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ABSTRACT 

Xiaolei Zhou: Model Assessment for Models with Missing Data 
(Under the direction of Hongtu Zhu) 

 

Missing data commonly occur in various study setting. In this dissertation, we first 

investigate three likelihood-based models for missing data in longitudinal studies: mixed 

effects models, pattern mixture models (PMM), and selection models. Extensive simulations 

from ten missing mechanisms are performed with the focus on treatment effect. Results 

suggest that no model consistently performs better than others under various missing data 

mechanism. However, PMM using the treatment-specific proportion and selection model 

provide some correction of the estimate compared with mixed-effects model in several 

missing not at random situations, even when the mechanism of missing data is not exactly the 

same as the model assumption. 

Secondly, we focus on the case deletion diagnostic measures for general linear models 

(GLMs) with missing covariate data. Cook's distance is one of the most important diagnostic 

tools to identify influential observations on the parametric models. However, Cook's distance 

may not be directly comparable because its scale stochastically depends on the degree of the 

perturbation. We define the degree of perturbation for GLM with missing covariates. Then, 

we derive the Cook's distance based on likelihood function and compare it to the Cook's 

distance based on the Q-function used in the EM algorithm for models with missing data. We 

further develop the scaled Cook's distance in the GLM with missing covariate data, which 

resolves the size issue of Cook's distance. Simulation data are used to illustrate the size 
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matters issue in GLM with missing covariates. The applications of scaled Cook's distances in 

a formal influence analysis are examined in simulations and real data examples. 

At last, we examine the connection between case deletion measures and cross validation 

method for GLM with missing covariates models. Based on such connection, we develop 

case-deletion model complexity (CMC) measures for quantifying the model complexity and 

case-deletion information criteria (CIC) for model selection. We develop these new measures 

and criteria based on the likelihood function and the Q-function, respectively. Some 

properties of CMC and CIC are investigated. Simulations and real data analysis show that 

CIC is a valuable tool for analysis of models with missing data.
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CHAPTER 1

INTRODUCTION

In the “big data” era, a large amount of data is available and waiting for people to

find out what is hidden inside. These data may come from a “true” complicated process.

Statisticians use statistical models to interpret data and to approximate the true compli-

cate process. However, the fitted model is nearly always not the true process. How to use

statistical tools (diagnostic measures) to detect the discrepancies between fitted model

and true process is a very important question for statisticians. We can distinguish two

types of discrepancies: i) discrepancy existing between isolated observations (influential

points and outliers) and the rest of the observations, and ii) systematic discrepancies

between the data and the fitted value obtained from statistical models. The existence of

missing data further increases the complexity of model fitting and diagnosis. Although

several methods have been developed to handle missing data, it remains a challenging

and active field for statisticians.

In this dissertation, we first present literature reviews. Then in Chapter 2, we compare

mixed-effects model, pattern-mixture model, and selection model in estimating treatment

effect for missing data in longitudinal studies. In Chapter 3, we develop the scaled Cook’s

distance for generalized linear models with missing covariates. In Chapter 4, we develop

the case-deletion information criterion for model selection on generalized linear models

with missing covariates.
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1.1 Missing Data and Treatment Effect

Missing data commonly occur in longitudinal studies. In clinical trial studies, patient-

reported outcomes (PROs), such as health-related quality of life (HRQOL) and symptoms

collected via validated questionnaires, often have a higher missing rate compared with

clinical outcomes evaluated by physicians. In some severe diseases, such as metastatic

breast cancer, it is not uncommon for 15% of patients to be missing HRQOL data even

at baseline (Zhou et al., 2009). Additional missingness occurring after baseline further

reduces the proportion of patients with data available for analysis. The reasons for

and amount of missing HRQOL data in clinical trials depend on the disease and when

and how the study is conducted and may not be similar among different treatment

groups. Fairclough (2010) listed various reasons why subjects fail to complete HRQOL

assessments. Some missing data may be caused by administrative reasons, such as staff

forgetting to administer the questionnaire or translation not available in the patient’s

language. The missing value may also be related to the patient’s condition; for example,

the patient stated that he or she was too ill to complete the questionnaire. The high

missing rate in HRQOL data can also be caused by a self-assessment questionnaire that

contains a long series of questions. Once a patient has missed an HRQOL assessment,

the retrospective collection of these data is usually impossible.

It is well known that missing data may not only reduce the power to detect change

from baseline but, more important, will lead to biased estimates of response when miss-

ingness depends on the response. At the end of 2009, the Food and Drug Administration

(FDA, 2009) published a guidance for industry in using PROs in clinical trials for label

claims. The guidance encourages the study to minimize patients’ dropouts and collect

PRO data even after patients have discontinued treatment. The study’s protocol and

statistical analysis plan should describe how missing data will be handled in the analysis.

However, the FDA does not consider any single method as preferred regarding statisti-
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cal strategies to deal with missing data due to early termination of patients before the

planned completion of a trial. European Medicines Agency (2010) guideline on missing

data in confirmatory clinical trials concur with this.

In 2010, the Panel on the Handling of Missing Data in Clinical Trials under the

National Research Council (2010) published a report with recommendations that will be

used not only to the FDA but also to the entire clinical trial community (Little et al.,

2012, O’Neill and Temple, 2012). The panel classified four types of approaches to adjust

for missing data: complete-case analysis (excluding subjects with missing data from

analysis), single imputation methods (such as last observation carried forward or baseline

value carried forward, was used in some clinical trials), estimating-equation methods, and

methods based on a statistical model. In estimating-equation methods, complete cases

are weighted by the inverse of an estimate of the probability of being observed, which may

be modeled with the use of observed variables, for example, baseline data. The statistical

model based methods includes likelihood function-based models, Bayesian methods, and

multiple imputation.

For the missing data problem, the applicability of the different methods is based

on a classification of the following missingness mechanisms: missing completely at ran-

dom (MCAR), missing at random (MAR), and missing not at random (MNAR). If the

probability of an observation being missing does not depend on observed or unobserved

measurements, then the observation is MCAR. If the probability of an observation be-

ing missing depends only on observed measurements, then the observation is MAR. If

the probability of an observation being missing depends on unobserved measurements

(e.g., patients with a poor outcome score are more likely to miss the assessment), then

the observation is MNAR. This type of missing data is also called nonignorable missing

data.

Complete-case analysis is based on MCAR. Single imputation methods is arbitrary.

Weighted estimating equations and multiple imputation are computationally available,

3



but they are built on ignorable missingness or MAR (Little et al., 2012, Ali and Siddiqui,

2000). The mixed-effects model, as a likelihood function-based model, is a frequent

choice for analyzing continuous outcomes in clinical trials because it uses all available

observed data and are valid when missing data are MCAR or MAR. However, when

missing data depend on an unobserved outcome (MNAR), the parameter estimates from

the mixed-effects model can be biased.

In clinical trial studies, we cannot rule out the MNAR scenario and sometimes it may

be more realistic than MAR; thus, it is recommended to assess the robustness of the

results by performing sensitivity analysis under the assumption of MNAR. Development

of statistical methods to handle MNAR data is a very important and promising area.

Ibrahim and colleagues (2005) and Ibrahim and Molenberghs (2009) provided several

overview articles of various models for missing data problems. Pattern-mixture model

(PMM) and selection model are two major methods to handle missing data under MNAR

based on likelihood functions. To account for nonignorable missing data, in addition to

random variables in the mixed-effects model, PMM and selection model include an ad-

ditional random variable for missingness in the likelihood functions (missing pattern in

PMM and missingness indicator in selection model). In both models, the random variable

for missing mechanism is not independent with the response variable. Pattern-mixture

models (Little, 1995) have been used widely to analyze continuous PRO data. A popular

PPM for PRO data analysis assumes that the missing mechanism depends only on treat-

ment (Hedeker and Gibbons, 1997). Pauler and colleagues (2003) further provided details

on how to estimate overall treatment effect from pattern-specific estimates based on the

treatment-specific proportion of the pattern when HRQOL changes linearly over time.

The missing mechanism may also depend on other covariates or response. The selection

model is based on the assumption of MNAR that whether or not the dependent variable

is missing depends directly on the value of the dependent variable at the time of missing.

The parameters in selection models can be estimated using the Monte Carlo expectation-
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maximization (MCEM) algorithm (Ibrahim et al., 2001, 2005, Ibrahim and Molenberghs,

2009). Both PMM and selection model have been applied using the Bayesian approach

(Daniels and Hogan, 2008, Little et al., 2011). Note that the pattern-mixture model and

selection model factorizations of the likelihood functions can be used to develop more

complex methods of joint modeling of responses and missing data process such as the

shared-parameter models (Ibrahim and Molenberghs, 2009, Daniels and Hogan, 2008),

where the missingness may depend on the random effect.

All models for handling missing data under MNAR make specific assumptions, which

are often untestable, and the statistical results obtained from different MNAR models

can be different. Therefore, the models under MNAR are often considered as part of a

sensitivity analysis (Molenberghs et al., 2001, 2004, Verbeke et al., 2001b). Although it

is well known that the estimates of response obtained from mixed-effects models fitted

to MNAR missing data can be biased, the impact of missing data on the estimate of

treatment effect (the difference between treatments) is more complex, depending on the

proportion of and reason for missing data in all treatment groups. Several studies (Pauler

et al., 2003, Michiels et al., 2002, Post et al., 2010) have included treatment effects

estimated from mixed-effects model and PMM or selection model using collected data.

However, because the true treatment effect is unknown in collected data, it is impossible

to evaluate the bias of the estimate using collected data. A simulation study is needed

to evaluate the impact of missing data on the estimate of treatment effect.

1.2 Model Assessment

The goal of the diagnostic measures is to assess how well the model fits the data and

how robust it is. Residuals (the difference between the observed response and the model-

predicted response) provide very important information about the model fitting, not only

for the individual observations, but also for the global model fitting. Instead of comparing

observed value to model-predicted value, another approach to assess model fitting is the
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influence measure. If a minor modification of the model seriously influences key results

of an analysis, it will be a cause for concern. On the other hand, if such modifications

do not have large impact the results, the model is robust with respect to the induced

perturbations (Cook, 1986).

1.2.1 Case Influence Measures

Case deletion measures assess the influence of deleting one or a set of observations from

the data on certain statistics. They are often used to identify influential points or the

impact of one or a few observations on overall model fitting. Two widely used case

deletion measures are Cook’s distance (Cook, 1977) and likelihood displacement (Cook

and Weisberg, 1982, Cook, 1986). The likelihood displacement measures the difference in

log-likelihood when one or a set of observations are removed. The likelihood displacement

is defined by

LD(i) = 2[l(θ̂)− l(θ̂[i])],

where θ is a p vector of the parameter of interest, θ̂ is the parameter estimated with full

data, θ̂[i] is the parameter estimates using data with the ith case deleted, and l(θ) is the

log-likelihood function for θ. The Cook’s distance measures the impact of deleting one or

a set of observations on parameter estimates. The generalized Cook’s distance is defined

by

CD(i) = (θ̂[i] − θ̂)>G(θ̂[i] − θ̂),

where G is a positive definite matrix, e.g., −∂2θ l(θ̂). It has been shown that Cook’s dis-

tance combines information from the studentized residuals and the variance of predicted

values for general linear model (Cook, 1977).

Most of the diagnostic measures were originally developed under linear regression

models (Cook, 1977, Cook and Weisberg, 1982, Chatterjee and Hadi, 1986), and then

for more complicated models, such as generalized linear models (Davison and Tsai,
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1992), generalized estimating equations (Preisser and Qaqish, 1996), models for clustered

data(Christensen et al., 1992, Banerjee and Frees, 1997, Haslett and Dillane, 2004), and

survival data (Weissfeld, 1990, Lin et al., 1993). In addition, considerable research has

been conducted to develop case influence measures in Bayesian analysis (Johnson and

Geisser, 1983, 1985, Pettit, 1986, Carlin and Carlin, 1991, Gelfand et al., 1992, Weiss

and Cook, 1992, Blyth, 1994, Peng and Dey, 1995, Weiss, 1996, Bradlow and Zaslavsky,

1997). Zhu et al. (2010) provided a comprehensive review of various Bayesian case in-

fluence measures and their properties. In Bayesian analysis, the influence of individual

observations (or a set of observations) is often assessed by comparing the posterior (or

predictive) distribution of the full data to the distribution after deleting these obser-

vations (case deletion). For example, the Cook’s posterior mode distance, denoted by

CP (i), quantifies the discrepancy between the posterior mode of θ with and without the

ith case (Cook and Weisberg, 1982). The posterior modes of θ for the full sample Y and

a subsample Y[i] are defined as θ̂ = argmaxθ log p(θ|Y ) and θ̂[i] = argmaxθ log p(θ|Y[i]),

respectively. CP (i) is given by

CP (i) = (θ̂[i] − θ̂)>Gθ(θ̂[i] − θ̂),

whereGθ is chosen to be a positive definite matrix. For instance, Gθ can be −∂2θ log p(θ|Y )

= −∂2θ log p(Y |θ) − ∂2θ log p(θ) evaluated at θ̂. Similarly, the Cook’s posterior mean dis-

tance, denoted by CM(i), quantifies the discrepancy between the posterior mean of θ

with and without the ith case. The posterior means of θ for the full sample Y and a sub-

sample Y[i] are defined as θ̃ =
∫
θp(θ|Y )dθ and θ̃[i] =

∫
θṗ(θ|Y[i])dθ, respectively. CM(i)

is given by

CM(i) = (θ̃[i] − θ̃)>Wθ(θ̃[i] − θ̃),

where Wθ is chosen to be a positive definite matrix.

Diagnostic measures have also been developed for models with missing data (Zhu
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et al., 2001, 2009, 2012b). The models for missing data usually use the EM algorithm

to obtain the maximum likelihood estimates (Lipsitz and Ibrahim, 1996, Ibrahim et al.,

1999). In EM algorithm, the MLE of the parameters θ in the complete likelihood function

(based on complete data) is obtained through iterations that maximizes the Q-function

Q(θ|θ̂) = E[lc(θ|Dc)|Do, θ̂],

where Dc being the complete data, Do being the observed data, and lc(θ|Dc) is the

complete-data log-likelihood function. Zhu et al. (2001) used Q-function to replace the

log likelihood in the likelihood displacement and showed that the analytic results were

very similar to those obtained from a classical local influence approach based on the

observed data likelihood function. Q-function is also used to obtain Cook’s distance for

generalized linear model with missing covariates (Zhu et al., 2009). However, to our

knowledge, there is no literature to assess how close the Cook’s distance obtained from

the Q-function compares to that obtained from the classical likelihood function.

Cook’s distance is one of the most important diagnostic tools. A large value of

Cook’s distance indicates that the observation is influential. However, Zhu et al. (2012a)

deliberated size matters issue of Cook’s distance. Cook’s distance may not be directly

comparable because the scale of Cook’s distance stochastically depends on the degree of

the perturbation. Dr. Zhu et al. introduced the scaled Cook’s distance to detect the

relatively influential subjects in the sense that the Cook’s distance is large relative to the

degree of perturbation. How the missing data impacts the degree of perturbation has

not been evaluated.

In addition to case deletion measures, a broader range of sensitive analyses have been

developed to assess the robustness of a model when perturbing the model assumptions

and/or individual observations. In frequentist analysis, extensive literature exists on

sensitivity analysis for missing data problems (Troxel, 1998, Zhu and Lee, 2001, Little
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and Rubin, 2002, Verbeke et al., 2001a, van Steen et al., 2001, Jansen et al., 2003,

2006, Copas and Eguchi, 2005, Daniels and Hogan, 2008, Shi et al., 2009). The general

questions are how to introduce an appropriate perturbation and how to assess its influence

on a model. In the Bayesian analysis of statistical models with missing data, Zhu et al.

(2014b) in their recent paper introduced various perturbations to modeling assumptions

and individual observations, and then developed a formal sensitivity analysis to assess

theses perturbations.

1.2.2 Criterion-based Model Assessment

To select an optimal model from a pool of statistical models for a given dataset, we

often need to consider both goodness of fit and model complexity. A model which bal-

ances model fitting and complexity is preferred. To achieve this, various information

criteria have been proposed for model comparisons, which incorporate measures of fit

and complexity for model choice. Such information criteria include Akaiki Information

Criterion (AIC) (Akaike, 1974), Takeuchi Information Criterion (TIC) (Takeuchi, 1976),

Generalized Information Criterion (GIC), (Konishi and Kitagawa, 1996), Network Infor-

mation Criterion (NIC) (Murata et al., 1994) the Bayesian Information Criterion (BIC)

(Schwarz et al., 1978, Lv and Liu, 2014, Konishi et al., 2004), the Deviance Information

Criterion (DIC) (Spiegelhalter et al., 2002), Bayesian Predictive Information Criterion

(BPIC) (Ando, 2007), and many others. In these criteria, the goodness of fit are based on

the deviance component −2 log p(y|θ̂) or the posterior mean of the deviance component

−2Eθ|y log p(y|θ), while the measures of model complexity vary from simply the number

of parameters to more complicated form. (Ibrahim et al., 2008) Recently, Zhu et al.

(2014a) proposed a set of Bayesian case-deletion model complexity measure to quantify

the effective number of parameters in a given statistical model, which leads to a Bayesian

case-deletion information criterion (BCIC) for model comparison.

The above mentioned model selection criteria can be difficult to obtain for models
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including missing data, because these model selection criteria depend on the likelihood

function based on the observed data. Some research (Garcia et al., 2010, Ibrahim et al.,

2008) has been conducted to use the key components of the EM algorithm, such as the

Q-function, to develop an easily computable model selection criterion.
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CHAPTER 2

COMPARISON OF STATISTICAL MODELS IN ESTIMATING
TREATMENT EFFECT FOR MISSING DATA IN LONGITUDINAL

STUDIES

2.1 Introduction

The aim of this chapter is to examine the magnitude of the bias and the robustness of

mixed-effects models, PMMs, and selection models under different MNAR mechanisms

that are at different degrees of perturbation to the model assumptions. Our primary

interest is on the estimate of treatment effect, which is the interest of most clinical trials

and many observational studies. We also perform sensitivity analyses and simulations

to evaluate the robustness of the PMM, selection model, and mixed-effects model on

the estimates of treatment effects. The methods discussed in this manuscript and the

simulations performed were motivated by the analysis of PROs. However, they are ap-

propriate for the broader problem of missing data. These analyses are the first we know

to systematically evaluate and compare the mixed-effects models, PMMs, and selection

models using simulation data.

Section 2.2 defines treatment effect, and Section 2.3 reviews the three existing mod-

els: mixed-effects models, PMMs, and selection models. In Section 2.4, we describe an

extensive simulation study on comparing the three statistical models under several com-

mon scenarios of missing-data mechanisms, focusing on the treatment effect. Results are

presented in Section 2.5. Section 2.6 provides concluding remarks.
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2.2 Treatment Effect

Treatment effect is the primary interest in clinical trials. A large amount of literature

has been developed regard the effect of treatments on HRQOL in various disease areas

(Zhou et al., 2009, Sherrill et al., 2010). Different analysis methods have been used to

evaluate the treatment effect on HRQOL. However, the statistical definition of treatment

effect is not always clear or correct, even in some published methods articles.

Depending on the structure of models, treatment effect can be obtained from different

regression coefficients. For continuous outcomes, there are two popular types of models

based on the form of outcome. One type directly uses the response score as the dependent

variable, whereas the other uses change from baseline score as the dependent variable.

These models can also be further classified based on whether baseline measure is included.

The baseline measure is the one assessed before treatment initiation. We denote this

time point as t = 0. Table 2.1 summarizes how to obtain the treatment effects for four

commonly used models. We define treatment effect as the difference in the expected

value of the response scores between treatments after accounting for baseline difference.

In models 1 and 2, baseline value is not included in the models as a covariate. Therefore,

the treatment effect is obtained by subtracting the baseline difference from the response

difference. In models 3 and 4, baseline difference is accounted for by including the baseline

value in the model as a covariate.
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Table 2.1: Treatment Effect for Four Commonly Used Models

Model Response Variable Treatment Effect 

Model 1 
E(yt) = β0+β1 trt+β2 t+β3 trt×t,  
t ≥ 0 

 

 

Response score is the 
response variable, 
including y0;  
y0 is not a covariate 
 

Difference in E(yt) at t > 0 minus 
difference in E(y0) =  
E(yt|trt = 1) – E(yt|trt = 0) - [E(y0|trt = 1) – 
E(y0|trt = 0)] = β3 t , 
where  
E(yt |trt = 1) = β0+β1+(β2+β3)×t, 
E(yt |trt = 0) = β0 + β2 t 

 
Model 2 
E(yt - y0) = β0+β1 trt+β2 t+β3 trt×t, 

t > 0 
 

 

Change from baseline 
score is the response 
variable;  
y0 is not a covariate 

Difference in E(yt) at t > 0 minus 
difference in E(y0) =  
E[yt - y0|trt = 1]-E[yt - y0|trt =0] = β1+β3 t , 
where  
E(yt - y0 |trt = 1) = β0+β1+(β2+β3)t, 
E(yt - y0 |trt = 0) = β0 + β2 t 
 

Model 3 
E(yt)=β0+β1 trt+β2 t+β3 trt×t+β4y0, 
t > 0 

 

 

Response score after 
baseline is the response 
variable;  
y0 is a covariate 

Difference in E(yt) at t > 0 given a fixed y0 = 
E[yt|trt = 1, y0] - E[yt|trt = 0, y0] = β1+β3 t , 
where 
E(yt|trt=1,y0)= β0+β1+(β2+β3)t+β4y0, 
E(yt |trt = 0, y0)= β0+β2 t +β4y0 

 
Model 4 
E(yt - y0)=β0+β1trt+β2t+β3 trt×t+β4y0, 
t > 0 

 

 

Change from baseline 
score is the response 
variable;  
y0 is a covariate 

Difference in E(yt) at t > 0 given a fixed y0 = 
E[yt|trt = 1, y0] - E[yt|trt = 0, y0]  
= E[yt - y0|trt = 1, y0] - E[yt - y0|trt = 0, y0]  
= β1+β3 t , 

where  
E(yt -y0|trt=1, y0)=β0+β1+(β2+β3)t+β4y0, 
E(yt -y0|trt=0, y0)=β0+β2t+β4y0 

 

Note: trt is a 0/1 variable indicating treatment. t is used to indicate the time variable and the time index for the 
dependent variable ; t = 0 indicates baseline. 
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Note that by including the treatment-by-time interaction term, these models allow

treatment effect varies by time. In model 1, treatment effect depends only on the coeffi-

cient for the trt× t interaction (i.e., slope difference, β3). The slope difference obtained

from model 1 is the treatment effect at t = 1. If this coefficient is 0 or the interaction

is not included in the model, there is no treatment effect. However, in the other three

models, it is possible to estimate the treatment effect when the trt × t interaction is

not included. In other words, when treatment effect does not vary by time, the trt × t

interaction can be removed from models 2, 3, and 4.

Model 3 and model 4 in Table 2.1 are equivalent. The only difference is that β4 in

model 4 equals β4 in model 3 minus 1. When using model 4, it is often observed that

the change from baseline score (yt− y0, t > 0) is negatively related to baseline score (i.e.,

β4 < 0). This seems counterintuitive. However, as long as β4 in model 4 is greater than

-1, the response score (yt) is still positively correlated to y0. On the other hand, if β4 in

model 4 is less than -1, caution should be used because it indicates a negative correlation

between yt and y0.

The treatment effects can be obtained from a linear combination of the fixed-effects

coefficients. When assuming a linear relationship between the dependent variable and

time (e.g., models shown in Table 2.1), researchers sometimes naively compare the differ-

ence between treatments in slope and intercept or simply compare the difference in the

estimated value of the dependent variable. However, these comparisons are not always

appropriate depending on the setting of the model and whether treatment groups are dif-

ferent at baseline. Although in clinical trials patients are randomized into two treatment

groups, in some clinical trials, less than 70% of patients complete baseline PRO assess-

ments, and the baseline scores in the two treatment groups are not always comparable.

Therefore, to obtain treatment effect, the treatment difference in response scores must be

adjusted for baseline difference. Otherwise, the difference between post-treatment scores

may be due to the difference at baseline, not to treatment.
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In Table 2.1, time t is a continuous variable. However, it can also be generalized to the

case that time is a categorical variable, which allows a non-linear relationship between

treatment effect and time. In general, the methods described in the rest of this paper

to estimate treament effect when missing data exist are applicable to all above model

structures.

2.3 Existing Methods

In this section, we describe mixed-effects models, PMMs, and selection models, which are

used to estimate treatment effect when missing data exist in the response variable. Let

yi = (yi1, . . . , yini
)>, where yij denotes the response score (or the change from baseline

score) of the ith subject on the jth visit for i = 1, . . . , N and j = 1, . . . , ni. In some

clinical trials, ni may be the same for all subjects. For example, in a study to treat

irritable bowel syndrome, all patients received 12 weeks of treatment, and adequate relief

by patients as an endpoint was reported weekly (Mangel et al., 2008). However, ni may

vary across subjects–for example, in cancer trials where HRQOL is periodically reported

by patients until disease progression, death, or withdrawal from the study for toxicity or

other reasons (Zhou et al., 2009).

In clinical trial data, the response yi may contain missing values with nonmonotone

patterns–that is, some response values are observed again after a missing value occurs.

For example, yik may be missing and yik′ may be observed for some k′ > k. In this case,

we call yik intermittent missing. A subject may also have dropout missing, which is the

missing value after the last nonmissing value–that is, no response values are observed

again after the missing value occurs. One subject may have an intermittent missing or

a dropout missing value or both. When data are missing, we write yi = (ymis,i, yobs,i)

for convenience, where ymis,i denotes the missing components of yi, and yobs,i denotes the

observed components of yi.
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2.3.1 Mixed-effects Models

Consider the normal mixed-effects model without missing data given by yi = Xiβ +

Zibi + εi, i = 1, . . . , N , where Xi is an ni × p matrix of the fixed-effect covariates, and

Zi is an ni × q matrix of the random-effect covariates. Both Xi and Zi are fixed and

known, and Zi is usually a subset of Xi with fewer covariates. In addition, β is a p × 1

vector of unknown regression parameters, bi is a q× 1 vector of random effects, and εi is

an ni× 1 vector of errors. It is commonly assumed that all εi’s and bi’s are independent,

bi ∼ Nq(0, G) and εi ∼ Nni(θ, φIni), where G is a q × q matrix and Ini is an ni × ni

identity matrix.

Table 2.2 presents the likelihood function of the joint distribution of yi and bi for

subject i. Upon integration over the random effects, the marginal distribution of yi is

Nni(Xiβ, ZiGZ
>
i +φIni). When missing data exist in yi, the standard mixed-effects model

assumes that missing data are ignorable and the regression coefficients are estimated using

the observed data, yobs,i. Specifically, we can write

yobs,i = Xobs,iβ + Zobs,ibi + εobs,i, i = 1, . . . , N,

where Xobs,i, Zobs,i, and εobs,i are the subsets of Xi, Zi, and εi, respectively, corresponding

to yobs,i.
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Table 2.2: Examples of Mixed-effects Models, PMMs, and Selection Models

Model Likelihood 
Function 

Distributions  Note 

Mixed f(yi, bi) =  
f(yi|bi ; β, φ) f(bi ; 

G)  

yi = Xiβ + Zibi + εi, 
i = 1, …, N 
where  
bi ~ Nq(0, G)  
εi ~ Nni(0, φ Ini ) 
bi ┴ εi  

 

 

PMM f(yi
 , bi, si) =  

f(yi
 |bi , si ; βk, φ) 

f(bi; G) f(si), 
given si ┴ bi  

si ~ multinomial  

(1, πi1,…, πiK) 
For missing pattern k,  
yi

(k) = Xi β(k) + Zibi + εi  

si is the random variable that subject i 
belongs to a missing pattern k. 
πik, k = 1, .., K, is the proportion of subjects 
in missing pattern k in the true population, 
which may depend on covariates, such as 
treatment, or on response. 
 

Selection f(yi, bi, ri) =  
f(ri|yi) f(yi|bi ; β, 
φ) f(bi ; G),  
given ri|yi ┴ bi  

yi = Xiβ + Zibi + εi , 

i = 1, …, N  
ri = (ri1, …, rini)T,  
rij|yij ~ Bernoulli (πij) 
Logit(πij ) = ξ0 + ξ1 yij  

rij is the random variable that the observation 
j for subject i is missing. 
πij is the proportion of yij being missing 
given the value of yij in the true population.  
For MNAR, πij is dependent on yij, but it can 
also depend on response variables at other 
time points or on covariates. 
 

Note: Xi is an ni × p matrix of the fixed-effect covariates. Zi is an ni × q matrix of the random-effect 
covariates. Both Xi and Zi are fixed and known, and Zi is usually a subset of Xi with fewer covariates. 
β is a p × 1 vector of unknown regression parameters, bi is a q × 1 vector of random effects, and εi is 
an ni × 1 vector of errors. G is a q × q matrix and Ini is an ni × ni identity matrix. 
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2.3.2 Pattern-mixture Models

In addition to the response variables and the random effects, the likelihood function

of a PMM includes the missing pattern stratum variable si, which is usually assumed

independent of bi. For subject i, which is in pattern k, the likelihood function is given

by

Li,PMM = f(yi, bi, si) = f(si)f(yi|bi, si; βk, φ)f(bi;G),

where si ∼ multinomial(1, πi1, . . . , πiK), and πi1, . . . , πiK are the proportion of subjects

in all K missing patterns in the true population, which may depend on covariates, such as

treatment, or on response. Moreover, yi, bi, and si are assumed independent for different

subjects.

Conditional on the kth missing pattern, for subject i, the complete data yi = (ymis,i,

yobs,i) are given by

y
(k)
i = Xiβ

(k) + Zibi + εi,

where the superscript (k) on y
(k)
i indicates that subject i is in missing pattern k, and β(k)

is a p×1 vector of unknown regression parameters specifically for pattern k. Other model

assumptions are the same as those in the mixed-effects model. The PMM is conducted

by simply adding the covariate missing pattern and its interaction terms with other

fixed-effect covariates into a mixed-effect model. Parameter estimates can be obtained

by standard statistical software such as PROC MIXED in SAS.

The estimated response value given each dropout pattern can be obtained from

pattern-specific regression parameters. However, when estimating the response variable

for time points after dropout, additional assumptions (restriction) must be made, for

example, based on complete case, available case, or neighboring case (Fairclough, 2010).

These assumptions are not testable due to lack of data.

The estimation of the response value across all missing patterns can be obtained by

18



a weighted sum of pattern-specific estimates given by

E(y|X) =
K∑
k=1

E(y|X, pattern = k)πk,

where πk is the proportion of patients with the missing pattern, and X is fixed such as

treatment and baseline score.

A PMM assumes that a subject belongs to a specific missing pattern. When perform-

ing a PMM analysis, initially, K strata are created based on missing patterns. There are

several different ways of defining strata. In practice, the missing pattern strata are often

defined based on last visit before or after a certain time point (Hedeker and Gibbons,

1997). However, creating strata based only on last visit makes a strong assumption that

missing data within each stratum (i.e., intermittent missing) are ignorable (MCAR, or

MAR). Strata have also been defined based on reasons for withdrawal (e.g., death, disease

progression, toxicity, or other reason) (Pauler et al., 2003, Post et al., 2010). In sum-

mary, the choice of strata (or pattern) is a clinical judgment or is made for computational

convenience.

The parameters πik, k = 1, . . . , K, may or may not vary by subpopulation. In HRQOL

analysis, two popular assumptions are made on the mechanism, by which data are miss-

ing: (i) πik does not depend on any variable, or (ii) πik depends on treatment. Under

assumption (i), πik is estimated by the proportion of the kth missing pattern in the

whole sample. Under assumption (ii), πik is estimated by the proportion of the kth

missing pattern in each treatment group, separately.

2.3.3 Selection Models

Selection models get the name that observations were selected to be missing. Selection

models assume that the complete data, yi, follow a distribution and the probability of

missingness depends on the current value of yi, which may be missing. The conditional
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probability of missingness, πij, may be assumed to follow a logistic regression in which

response may be included as a covariate. In selection models, the complete data yi =

(ymis,i, yobs,i) are typically assumed to follow the same model given by

yi = Xiβ + Zibi + εi, i = 1, . . . , N.

The selection model introduces an ni vector of the missing data mechanism variable

ri = (ri1, . . . , ri,ni
)>, where rij = 1 indicating that yij is missing. Conditional on yi, ri is

commonly assumed to be independent of bi. Thus, for subject i, the joint distribution of

yi, bi, and ri is given by

Li,SM = f(yi, bi, ri) = f(ri|yi)f(yi|bi; β, φ)f(bi;G),

where rij|yij ∼ Bernoulli(πij), and πij is the proportion of yij being missing given the

value of yij in the true population. f(ri|yi) is often modeled by logistic regression or

probit models. For MNAR, πij is dependent on yij, but it can also depend on response

variables at other time points or on covariates. For different subjects, yi, bi, and ri

are assumed independent. Ibrahim and Molenberghs (2009) and Ibrahim and colleagues

(2001) described the MCEM algorithm used for parametric estimation in selection models

(Ibrahim et al., 2001, Ibrahim and Molenberghs, 2009).

2.4 Simulation

We conducted an extensive simulation study to compare the three existing models han-

dling of missing data under various missing patterns and mechanisms.

2.4.1 Data Generation

We simulated missing data on the response variable according to 10 different missing

mechanisms (Table 2.3). These missing mechanisms included MCAR (scenario 1); MAR
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(missing depending on treatment [scenario 2], the baseline score [scenario 3], or the

response at the previous assessment [scenario 4]); and MNAR (missing depending on

response at the current assessment [scenarios 5a and 5b]). We also considered intermittent

missing data in scenario 5b. Scenario 6 assumed that the missing mechanism was different

between two treatment groups: MCAR in one treatment group and MNAR in the other

treatment group. In scenarios 7 to 10, data were generated based on the assumption

of PMM. Specifically, subjects first were assigned randomly to one of the four dropout

groups: pattern 1, only one visit at time 1; pattern 2, last visit at time 2; pattern 3, last

visit at time 3; and pattern 4, last visit at time 4 (completer). In these scenarios, the

response variable depended on the dropout group to which a particular subject belonged.

In all scenarios, subjects were assigned randomly at a 1:1 ratio to one of the two treatment

groups. For each subject, a continuous baseline covariate xi was generated from N(0, 1),

and the random-effect variable bi was generated from N(0, 1). The measurement errors

εij, i = 1, . . . , N, j = 1, . . . , ni, were generated independently from N(0, 1).
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Table 2.3: Missing Data Mechanism and Missing Rate in Simulation Data

Scenario Missing Mechanism Setting  
Missing 
Pattern 

Average Missing Rate 
(%) at Each Time Point 
by Treatment 

1 MCAR 20% of patients completing previous 
visit are missing randomly  
 

Dropout Trt1: 0/21/36/48 
Trt0: 0/20/37/50 

2 MAR  
Missing depends on 
treatment. 

Trt1: additional 30% missing at each 
visit 
Trt0: additional 10% missing at each 
visit 
 

Dropout Trt1: 0/29/50/65 
Trt0: 0/9/19/26 

3 MAR 
Dropout depends on x 

Logit(prob(rij = 1)) = xi - 3, j = 2,3,4 
 

Dropout Trt1: 0/25/40/51 
Trt0: 0/24/40/51 

4 MAR  
Missing depends on y at the 
previous visit 
 

Logit(prob(rij = 1)) = yi,j-1 - 3, j = 2,3,4 Dropout Trt1: 0/35/62/75 
Trt0: 0/21/44/58 

5a MNAR 
Missing depends on y at the 
current visit 
 

Logit(prob(rij = 1)) = yij - 3, j = 2,3,4 Dropout Trt1: 0/50/69/79 
Trt0: 0/36/54/64 

5b MNAR 
Missing depends on y at the 
current visit 
 

Logit(prob(rij = 1)) = yij - 3, j = 1, 2,3,4 Intermit-
tent + 
dropout 

Trt1: 33/50/51/49 
Trt0: 21/33/34/35 

6 MCAR in trt0 
MNAR in trt1 

Trt0: 20% of patents completing 
previous visit are missing randomly 
Trt1: Logit(prob(rij = 1)) = yij - 3, 
j = 2,3,4 
 

Dropout Trt1: 0/50/70/80 
Trt0: 0/20/36/49 

7 MNAR-PMM 
Dropout pattern does not 
depend on treatment 
 

15% in pattern1, 20% pattern2, 25% 
pattern3, 40% pattern4.  

Dropout Trt1: 0/15/35/59 
Trt0: 0/16/36/60 

8 MNAR-PMM Dropout 
pattern depends on treatment 
 

Trt0: 25% in each pattern 
Trt1: 15% in pattern 1, 20% pattern 2, 
25% pattern 3, 40% pattern 4.  

Dropout Trt1: 0/15/35/59 
Trt0: 0/26/51/76 

9  MNAR 
Dropout pattern does not 
depend on treatment; 
treatment effect depends on 
pattern 
 

15% in pattern 1, 20% pattern 2, 25% 
pattern 3, 40% pattern 4.  

Dropout Trt1: 0/16/35/60 
Trt0: 0/15/34/59 

10 MNAR 
Dropout pattern depends on 
treatment; treatment effect 
depends on pattern 
 

Trt0: 25% in each pattern 
Trt1: 15% in pattern 1, 20% pattern 2, 
25% pattern 3, 40% pattern 4. 

Dropout Trt1: 0/16/35/60 
Trt0: 0/24/49/74 

MAR = missing at random; MCAR = missing completely at random; MNAR = missing not at random; rij = indicator that yij is 
missing; Trt = treatment; xi = baseline score for subject i; yij = response score for subject i at visit j. 
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The simulation data for scenarios 1 to 6 included 100 subjects with four planned

postbaseline visits. The response variables were generated using an equation given by

yij = β0 + β1trti + β2xi + β3time2,ij + β4time3,ij + β5time4,ij + bi + εij,

where trti is the indicator for treatment (1 = trt 1, 0 = trt 0); xi is baseline score; and

time2,ij, time3,ij, and time4,ij are indicator variables for visit time corresponding to times

2, 3, and 4 (time 1 is the reference level). By treating time as a categorical variable,

we allow the relationship between the response score and time to be nonlinear, which

is common in HRQOL data. We generated two sets of data–one with and one without

treatment effect. In the first set, we set the treatment parameter as 1. In the second set,

we set the treatment parameter as 0. In both sets, the parameters other than treatment

were set as 1, indicating that response score increased at the first two visits and then

remained stable after that.

For scenarios 7 through 10, a total of 200 subjects were randomly assigned to one of

the four dropout patterns: pattern 1, only one visit at time 1; pattern 2, last visit at

time 2; pattern 3, last visit at time 3; and pattern 4, last visit at time 4 (completer).

The proportion of each pattern was the same across treatments in scenarios 7 and 9 and

was treatment specific in scenarios 8 and 10. The response variables were generated by

yij = β0 + β1trti + β2xi + β3time2,ij + β4time3,ij + β5time4,ij

+ β6pattern1,i + β7pattern2,i + β8pattern3,i

+ β15time2,ij × trti + β16time3,ij × trti + β17time4,ij × trti

+ β12time2,ij × pattern2,i + β13time2,ij × pattern3,i + β14time3,ij × pattern3,i

+ β9trti × pattern1,i + β10trti × pattern2,i + β11trti × pattern3,i

+ β18time2,ij × pattern2,i × trti + β19time2,ij × pattern3,i × trti

+ β20time3,ij × pattern3,i × trti + bi + εij,
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where pattern1,i, pattern2,i, and pattern3,i were indicator variables for dropout pattern

corresponding to patterns 1, 2, and 3 (pattern 4, completer, is the reference group).

The pattern parameters were set as β6 = 3, β7 = 2, and β8 = 1, that is, patients in

the earlier dropout groups had higher (worse) response scores. The time-by-treatment

interaction parameters were set as β15 = 2, β16 = 1.5, and β17 = 1. The pattern-by-

time interactions involve only three, rather than nine, parameters (= 3 × 3) because,

except for the completer group (pattern 4), the responses after dropout could not be

observed or included in analysis. Therefore, there was no need to generate the value

of those responses in our simulation. For the same reason, the treatment-by-time-by-

pattern three-way interactions also involved only three parameters (β18, β19, β20). The

treatment effect in scenarios 9 and 10 depended on dropout pattern (β1 = 1, β9 = β10 =

β11 = 1, β18 = β19 = β20 = 1), whereas in scenarios 7 and 8, the treatment effect did not

depend on dropout pattern (β1 = 1, β9 = β10 = β11 = 0, β18 = β19 = β20 = 0). We also

generated data with no treatment effect (β1 = 0, β9 = β10 = β11 = 0, β15 = β16 = β17 =

0, β18 = β19 = β20 = 0). In all scenarios, we set β2 = β3 = β4 = β5 = 1.

Data were generated using SAS for Windows (Version 9.2). Table 2.3 summarizes the

average missing rate from the simulated data by treatment group and time point. For

example, in scenario 1, there were no missing data at time 1, and the missing rate at

time 2 was 21% among the trt 1 group and 20% among the trt 0 group.

2.4.2 Analysis of the Simulated Data

For each simulation scenario, three models, including a mixed-effects model, a PMM,

and a selection model, described as follows were fitted to estimate the treatment effect.

Analysis for scenarios 1 to 6 (treatment effect does not vary by time)

For the mixed-effects model, the analysis included all observed visits. The models in-

cluded treatment, baseline score, and discrete time as fixed effects and a random intercept.
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Specifically, we specified

yij = β0 + β1trti + β2xi + β3time2,ij + β4time3,ij + β5time4,ij + bi + εij.

The treatment effect was estimated by β1. Parameter estimates and the estimates of the

standard error were obtained using PROC MIXED (SAS for Windows, Version 9.2).

For the PMM analysis, subjects in the simulated data first were grouped into four

dropout patterns based on the last visit. The sample proportion of the dropout groups

was calculated for the overall sample and for each treatment group separately. The

proportion was calculated using the number of subjects in each pattern group divided by

the total number of subjects. The analysis models included fixed effects and the random

intercept, as follows:

yij = β0 + β1trti + β2xi + β3time2,ij + β4time3,ij + β5time4,ij

+ β6pattern1,i + β7pattern2,i + β8pattern3,i

+ β9trti × pattern1,i + β10trti × pattern2,i + β11trti × pattern3,i

+ bi + εij.

The parameters were estimated using PROC MIXED based on all observed visits.

Then, using the model described previously, two estimates of the overall treatment effect

were obtained, one using the overall proportion of the dropout pattern and the other

using the treatment-specific proportion of the dropout pattern. The variance of the

treatment effects was obtained using the delta methods (Pauler et al., 2003).

The selection model contained the same fixed and random effects as the mixed model.

In addition, the probability of missingness was modeled by using logistic regression with

the current response variable as the covariate. For dropout missingness, only the first

missing visit was informative, and the missing data after that were not informative.
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Therefore, the missing data after the first missing were not included in the logistic re-

gression. Analysis was performed using R software.

Analysis for scenarios 7 to 10 (treatment effect varied by time)

In this set of scenarios, we allowed treatment effect to vary by time by adding treatment

by time interaction. For the mixed-effects model and selection model analyses, we added

the time-by-treatment interactions (3 terms: time2× trt; time3× trt; time4× trt) as fixed

covariates. The treatment effects were estimated for each time point.

For PMM, to obtain pattern-specific estimates, the model was specified in the same

way as data were generated. Note that only three time-by-pattern interaction terms and,

correspondingly, three time-by-pattern-by-treatment interaction terms were included in

the model. Other time-by-pattern and time-by-pattern-by-treatment interactions were

not estimable because of the missing pattern. The estimates of overall treatment effect

were obtained using the overall proportion of dropout pattern and the treatment-specific

proportion of dropout pattern as described previously.

2.5 Results

For scenarios 1 to 6, which do not include time-by-treatment interaction effect, Table

2.4 presents the simulation results for the estimates from the mixed-effects model, PMM,

and selection model. One estimate from the PMM was based on the overall proportion of

dropout groups, and the other was based on the treatment-specific proportion of dropout

groups.

Although the PMM and the selection model were designed to handle MNAR data,

both provided unbiased estimates of treatment effect (0.96 to 1.01) when missingness

did not depend on response. This was the case for scenario 1, in which, at each time

point, 20% of subjects completing previous visit were missing randomly; scenario 2, in

which the probability of missingness depended on treatment; and scenario 3, in which
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the probability of missingness response depended on the baseline score. As expected,

the mixed-effects model also provided unbiased estimates of treatment effect in these

scenarios.

When missingness depended on the observed response at the previous time point (sce-

nario 4) but not the current time point, the mixed-effects model provided an unbiased

estimate (1.03) as expected. However, the estimates from the PMM were biased, espe-

cially when the PMM estimates were based on the overall proportion of dropout groups.

The estimate from the selection model was also biased. This suggested that the selection

model might be sensitive to the parametric form of the missing mechanism, which was

not testable from the data.

When missingness at a visit depended on the current response (scenarios 5a and 5b),

the selection model built on such a missing mechanism provided an unbiased estimate.

Estimates of treatment from both the mixed-effects model and PMM were biased. This

was observed when the missing data were related to dropout or were intermittent. The

magnitude of the bias was the smallest for the PMM based on treatment-specific propor-

tion when missing data contained only dropout and was the largest for the PMM using

the overall proportion of dropout groups.

In scenario 6, the missing mechanism was different between treatment groups; 20%

of data were randomly missing among those who completed the previous visit in one

treatment group, while the missingness depended on the current response in the other

treatment group. In this scenario, the estimates from the selection model and the esti-

mates from the PMM based on the treatment-specific proportion were better than those

from the mixed-effect model and the PMM based on the overall proportion.

27



Table 2.4: Average Treatment Effect and Its Standard Error Estimated from the Mixed-
Effects Model, the Pattern-Mixture Model, and the Selection Model for Scenarios 1 to 6
(true treatment effect = 1)

(a) Point estimate of treatment effect 

Scenario Mixed PMM (ova) PMM (trb) Selection Model 

1 MCAR 1.00 1.00 1.01 1.00 

2 MAR (trt) 0.96 0.96 0.96 1.00 

3 MAR (x) 0.99 1.00 0.99 0.98 

4 MAR (yt-1)  1.03 0.73c 1.08c 1.07c 

5a MNAR (yt) 0.92c 0.77c 0.94c 0.97 

5b MNAR (yt) Intermittent missing 0.79c 0.71c 0.79c 0.99 

6 MCAR in trt0, MNAR(yt) in trt1 0.80c 0.73c 0.90c 0.91c 

(b) Standard error 

 Mixed PMM (ov)a PMM (tr)b Selection Model 

Scenario Emp. 

SE SE est. 

Emp. 

SE SE est. 

Emp. 

SE SE est. 

Emp. 

SE SE est. 

1 MCAR 0.24 0.24 0.23 0.25c 0.24 0.25c 0.22 0.24c 

2 MAR (trt) 0.27 0.24c 0.30 0.28c 0.26 0.25c 0.26 0.24c 

3 MAR (x) 0.24 0.24c 0.25 0.26c 0.25 0.26c 0.21 0.24c 

4 MAR (yt-1)  0.25 0.24c 0.22 0.22 0.27 0.27 0.21 0.27c 

5a MNAR (yt) 0.24 0.24 0.25 0.24c 0.25 0.26c 0.23 0.25c 

5b MNAR (yt) Intermittent missing 0.22 0.22c 0.21 0.23c 0.22 0.23c 0.20 0.23c 

6 MCAR in trt0, MNAR(yt) in trt1 0.22 0.25c 0.26 0.28c 0.23 0.26c 0.21 0.24c 

Emp = Empirical; est = estimate; MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at 

random; PMM pattern-mixture model; SE = standard error; trt = treatment. 
a Treatment effects estimated using proportion of dropout in overall sample (ov). 
b Treatment effects estimated using treatment-specific proportion of dropout (tr). 
c The 95% confidence interval does not cover the true value. 

 

Note: The average point estimate was obtained using the mean of the point estimates from the 100 simulations. The empirical SE 

was obtained using the standard deviation of the point estimates from the 100 simulations. The average SE estimate was obtained 

using the mean of the 100 SEs from the 100 simulations. The percent bias was calculated using the SE with three decimal places. 
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Table 2.5: Average Treatment Effect and Its Standard Error Estimated from the Mixed-
Effects Model, the Pattern-Mixture Model, and the Selection model for Scenarios 7 to
10

(a) Point estimate of treatment effect 

Scenario Time 

True 

trt eff. Mixed model PMM (ova) PMM (trb) 

Selection 

model 

7 PMM; dropout does not depend 

on trt, trt effect does not depend 

on pattern 

1 1 1.02 1.00 1.02 1.01 

2 3 3.02 3.01 3.02 3.01 

3 2.5 2.52 2.51 2.51 2.51 

4 2 2.05 2.05 2.07 2.03 

8 PMM; dropout depends on trt, 

trt effect does not depend on 

pattern 

1 0.6 0.63 1.01c 0.63 0.62 

2 2.55 2.54 3.01c 2.58 2.48 c  

3 2.1 2.08 2.52c 2.14 2.01c 

4 1.6 1.67 2.05c 1.67 1.55 

9 PMM; dropout does not depend 

on trt, trt effect depends on 

pattern 

1 1.6  1.64 1.62 1.64 1.61 

2 4.05 4.15c 4.05 4.09 4.11 

3 3.35 3.54c 3.36 3.39 3.50c 

4 2.6 2.87c 2.65 2.67 2.82c 

10 PMM; dropout depends on trt, 

trt effect depends on pattern  

1 1.2 1.23 1.70c 1.23 1.20 

2 3.6 3.65 4.15c 3.63 3.57 

3 2.95 3.08c 3.45c 2.98 2.99 

4 2.2 2.46c 2.72c 2.26 2.33c 

(b) Standard error 

  Mixed Model PMM (ova) PMM (trb) 

Selection 

Model 

 Time 
Emp. 

SE SE est. 
Emp. 

SE SE est. 
Emp. 

SE 

SE 

est. 

Emp. 

SE 

SE 

est. 
7 PMM; dropout does not depend 

on trt, trt effect does not depend 

on pattern 

1 0.25 0.26c 0.21 0.20c 0.24 0.26c 0.25 0.38c 

2 0.27 0.28c 0.19 0.22c 0.27 0.29c 0.25 0.45c 

3 0.32 0.30c 0.27 0.26c 0.33 0.31c 0.30 0.45c 

4 0.34 0.34 0.30 0.32c 0.34 0.36c 0.33 0.55c 

8 PMM; dropout depends on trt, 

trt effect does not depend on 

pattern 

1 0.25 0.26c 0.21 0.21c 0.25 0.26c 0.23 0.34c 

2 0.29 0.28c 0.21 0.24c 0.27 0.30c 0.28 0.44c 

3 0.35 0.31c 0.28 0.29c 0.35 0.33c 0.34 0.49c 

4 0.40 0.37c 0.35 0.36c 0.39 0.40c 0.41 0.56c 

9 PMM; dropout does not depend 

on trt, trt effect depends on 

pattern 

1 0.28 0.31c 0.20 0.21c 0.28 0.28c 0.25 0.36 c  

2 0.35 0.32c 0.22 0.24c 0.34 0.34 0.32 0.44c 

3 0.38 0.34c 0.28 0.28c 0.36 0.34c 0.35 0.50c 

4 0.35 0.38c 0.34 0.33c 0.37 0.37 0.33 0.62c 

10 PMM; dropout depends on trt, 

trt effect depends on pattern  

1 0.28 0.31c 0.21 0.22c 0.28 0.28 0.25 0.54c 

2 0.36 0.32c 0.23 0.26c 0.33 0.34c 0.32 0.58c 

3 0.40 0.35c 0.30 0.31 0.38 0.36c 0.37 0.62c 

4 0.38 0.41c 0.35 0.37c 0.40 0.42c 0.37 0.77c 

Emp = Empirical; est = estimate; PMM = pattern-mixture model; SE = standard error; trt = treatment. 
a Treatment effects estimated using proportion of dropout in overall sample (ov). 
b Treatment effects estimated using treatment-specific proportion of dropout (tr). 
c The 95% confidence interval does not cover the true value. 

Note: The average point estimate was obtained using the mean of the point estimates from the 100 simulations. The empirical SE 

was obtained using the standard deviation of the point estimates from the 100 simulations. The average SE estimate was obtained 

using the mean of the 100 SEs from the 100 simulations. The percent bias was calculated using the SE with three decimal places. 
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For scenarios 7 to 10, data were generated from the preidentified dropout patterns,

and the treatment effects varied by time; therefore, the treatment effects were estimated

at each time point. Table 2.5 presents the simulation results. The PMM estimates based

on the treatment-specific proportion were unbiased in all four scenarios as expected.

The PMM estimates using overall proportion were unbiased when the dropout distri-

bution did not depend on treatment (scenarios 7 and 9), but they were biased when the

dropout distribution depended on treatment (scenarios 8 and 10). When the dropout

distribution did not depend on treatment, the estimates based on overall proportion were

more efficient (smaller standard error [SE]) than those based on the treatment-specific

proportion. When the treatment effects depended on the dropout pattern (scenarios 9

and 10), estimates obtained from the mixed-effects model was biased at later time points.

However, the mixed-effects model provided unbiased estimates of treatment effect in the

scenarios in which treatment effect did not depend on dropout pattern (scenarios 7 and

8), even though the response depended on dropout pattern. The selection model pro-

vided biased results at some time points, when either dropout depended on treatment or

treatment effect depended on dropout pattern, although the magnitude of bias was small

(<10%). Tables 2.4(b) and 2.5(b) present the simulation results on SE estimates. Except

for a few cases, the SEs from the mixed-effects model, the PMM, and the selection model

are all biased (the 95% confidence interval does not cover the true value.)

When there was no true treatment effect (i.e., parameters for treatment were 0), the

bias was less than 0.10 for all models, except for scenario 6, in which treatments had

different missing mechanisms. In scenario 6, the bias from PMM estimates using overall

proportion (-0.16) was larger than that from the mixed model (-0.12), selection model

(-0.13), and PMM using treatment-specific proportion (-0.10).
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2.6 Conclusions

Our simulation results suggest that the treatment effect defined as difference in expected

value of the response variable given the same baseline was unbiased when the model

assumption on missing mechanism holds. Pattern-mixture model provides good estimates

when subjects are from different missing patterns. The selection model provides good

estimates when the probability of missingness is dependent on the value of response

variable. When the model assumption does not hold, the estimate is biased. There is

not a model that consistently performs better than others. However, the PMM using

the treatment-specific proportion and the selection model provide some correction of the

estimate compared with the mixed-effects model in several MNAR situations, even when

the mechanism of missing data is not exactly the same as the model assumption.

To obtain the overall treatment effect from the PMM, the treatment-specific pro-

portion of missing pattern should be used in most cases. The overall treatment effect

obtained based on the overall proportion of the pattern should be used only when the

dropout proportion does not depend on treatment. In this situation, the estimate is

equivalent to the estimate based on the treatment-specific proportion but is more effi-

cient.

For selection models, when the probability of missingness depends on the previous

response, the estimates from the selection model used in analysis, which specify that the

probability of missingness depends on current response in the logit model, are biased.

However, this will be improved if the logit model includes the previous response as a

covariate.
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CHAPTER 3

DIAGNOSTIC MEASURES FOR GENERALIZED LINEAR MODELS
WITH MISSING COVARIATES

3.1 Introduction

Missing data commonly occur in various study setting, in both observational studies and

clinical trials. Methods for handling missing data strongly depend on the model assump-

tions. Diagnostic measures provide useful information to measure impact of observations

on the parametric models. Cook’s distance is one of the most important diagnostic tools

and has been expended to the models with missing data with the log likelihood replaced

by the Q-function. However, to our knowledge, there is no literature to assess how close

the Cook’s distance obtained from the Q-function compares to that obtained from the

classical likelihood function. A large value of Cook’s distance indicates that the obser-

vation is influential. However, Cook’s distance may not always be directly comparable.

Zhu et al. (2012a) deliberated size matters issue of Cook’s distance and showed that the

scale of Cook’s distance stochastically depends on the degree of the perturbation. Zhu,

et al. illustrated this in mixed effect models. How the missing data impact the degree of

perturbation and the Cook’s distance has not been evaluated.

The aim of this chapter is to deliberate the Cook’s distance and degree of perturbation

for generalized linear models (GLMs) with missing covariates, and to develop scaled

Cook’s distance for GLMs with missing covariates. In Section 3.2, we review the GLMs

with missing covariates. In Section 3.3, we defined the degree of perturbation for GLMs

with missing covariates. In Section 3.4, we derive the Cook’s distance based on observed

likelihood function and compare it to the Cook’s distance based on Q−function. In
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Section 3.5, we illustrate our development of the scaled Cook’s distance in the GLM

with missing covariate data. In Section 3.6, we performed simulation studies for multiple

scenarios. Final remarks are presented at last.

3.2 Generalized Linear Model with Missing Covariate Data

Consider n independent observations (xi, zi, yi), i = 1, . . . , N , where yi denotes the re-

sponse variable of the ith subject, xi is a p1-dimensional vector of completely observed

covariates, and zi is a p2-dimensional vector of partially observed covariates. We write zi

= (zm,i, zo,i) for convenience, where zm,i denotes the missing components of zi, and zo,i

denotes the observed components of zi. Let ri be a p2-dimensional random vector, whose

k-th component, rik, equals 1 if zik is missing for subject i, and 0 if zik is missing, where

zik is the k-th component of zi. Under the NMAR setting, we specify the joint distri-

bution of (xi, zi, ri, yi) for each i. We further decompose f(xi, zi, ri, yi) into a product of

three conditional distributions as follows (Little and Schluchter, 1985; Little and Rubin,

2002 Ibrahim, 1990; Lipsitz and Ibrahim, 1996; Ibrahim and Lipsitz, 1996):

f(xi, zi, ri, yi) = f(yi|xi, zi)f(xi, zi)f(ri|xi, zi, yi).

The model involves three levels of assumptions: i) For generalized linear models, including

general linear model, logistic regression, probit regression, Poisson regression, and gamma

regression, yi given (xi, zi) has a density in the exponential family with parameters for

regression coefficients β = (β1, . . . , βp), p = p1 + p2, and the scale parameter τ . ii) We

need to specify the distribution of f(zi, xi) with parameter α, although it is not necessary

to specify a distribution for xi because xi’s are completely observed. iii) The missing data

mechanism f(ri|xi, zi, yi) is commonly specified using logistic regression models for the

binary variables rij, with parameters for regression coefficients ξ.

The EM algorithm has been a popular technique for obtaining the maximum likeli-
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hood estimates (MLE) of η = (β, τ, α, ξ) in GLMs with missing covariate data, where

the MLE η̂ is the maximizer of the Q-function Q(η|η̂) = E[lc(η|Dc)|Do, η̂] with Dc =

{(yi, xi, zi, ri) : i = 1, . . . , n} being the complete data, and Do = {(yi, xi, zo,i, ri) : i =

1, . . . , n} being the observed data, and Dm = {zm,i : i = 1, . . . , n} being the missing

data. At the sth iteration of the EM iteration, given η(s), the E-step involves evaluating

the Q-function, given by

Q(η|η(s)) = E[lc(η|Dc)|Do, η
(s)]

=
n∑
i=1

∫
log[f(yi|xi, zi; β, τ)]f(zm,i|xi, zo,i, ri, yi; η(s))dzm,i

+
n∑
i=1

∫
log[f(xi, zi;α)]f(zm,i|xi, zo,i, ri, yi; η(s))dzm,i

+
n∑
i=1

∫
log[f(ri|xi, zi, yi; ξ)]f(zm,i|xi, zo,i, ri, yi; η(s))dzm,i

=
n∑
i=1

Q1,i(β, τ |η(s)) +
n∑
i=1

Q2,i(α|η(s)) +
n∑
i=1

Q3,i(ξ|η(s))

= Q1(β, τ |η(s)) +Q2(α|η(s)) +Q3(ξ|η(s)), (3.1)

where lc(η|Dc) = log f(Dc|η) is the complete-data log-likelihood function. In E-step, the

missing value (of the random variables) is replace with the estimated value (a function of

parameter estimates) at sth iteration. The M-step consists of maximizing Q1(β, τ |η(s)),

Q2(α|η(s)), and Q3(ξ|η(s)), separately. In M-step, the estimated value is used as ”ob-

served” value of the missing data in MLE for complete data.

When subject i contains missing data, we take expecation of the complete-data log-
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likelihood function with respect to zm,i given xi, zo,i, ri, yi, η
(s) noted as follows:

Q1,i(β, τ |η(s)) = Ezm,i
{log[f(yi|xi, zm,i; β, τ)]},

Q2,i(α|η(s)) = Ezm,i
{log[f(xi, zm,i;α)]},

Q3,i(ξ|η(s)) = Ezm,i
{log[f(ri|xi, zm,i, yi, ; ξ)]}.

Note that when subject i does not contain missing data, they reduce to

Q1,i(β, τ |η(s)) = log[f(yi|xi, zo,i; β, τ)],

Q2,i(α|η(s)) = log[f(xi, zo,i;α)],

Q3,i(ξ|η(s)) = log[f(ri|xi, zo,i, yi, ; ξ)].

Example 1. Consider the example for the general linear model defined below:

yi = β1 + β2xi + β3zi + εi, (3.2)

where the εi’s are independent and identically distributed (i.i.d.), εi ∼ N(0, τ), and

zi ∼ N(µz, τz) for i = 1, . . . , n. Because xi is completely observed for i = 1, . . . , n, we do

not need to specify its distribution. The covariate zi may be missing for some cases. We

assumed MAR for zi as follows:

logit [prob(ri = 1|xi, zi, yi)] = ξ0 + ξ1xi, (3.3)

where ri = 1 when zi is missing. Let X>i = (1, xi, zi), β
> = (β1, β2, β3), X

>
12,i =

(1, xi), β
>
12 = (β1, β2), and ξ> = (ξ1, ξ2). The complete-data log-likelihood function for
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subject i is given by

l1,i = log (f(yi|xi, zi; β, τ)) = −0.5 log(2π)− 0.5 log τ − 0.5
(yi −X>i β)2

τ

= −0.5 log(2π)− 0.5 log τ − 0.5
(yi −X>12,iβ12 − ziβ3)2

τ
,

l2,i = log (f(zi;α)) = −0.5 log(2π)− 0.5 log τz − 0.5
(zi − µz)2

τz
,

l3,i = log (f(ri|xi, zi, yi; ξ)) = riX
>
12,iξ − log[1 + exp(X>12,iξ)].

In this MAC setting for general linear model, we show that the f(zm,i|xi, zo,i, ri, yi; η(s))

in equation (3.1) can be written as follows:

f(zm,i|xi, ri, yi; η(s)) = f(zm,i|yi, xi; η(s)) ∝ f(zm,i; η
(s))f(yi|xi, zm,i; η(s)).

This is a product of two likelihood functions of the normal distribution. It can be shown

that zm,i|xi, ri, yi ∼ N(µzm,i, τzm) with

µzm,i =

(
β2
3

τ
+

1

τz

)−1(β3(yi −X>12,iβ12)
τ

+
µz
τz

)
and τzm =

(
β2
3

τ
+

1

τz

)−1
.

We define Sobs as the subset of subjects with observed zi and Smis as the subset of

subjects with missing zi. I(.) is the indicator function. Since Ezm,i
{zm,i} = µzm,i and
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Ezm,i
{z2m,i} = µ2

zm,i + τzm, we have

Q1(β, τ |η(s)) =
N∑
i=1

Q1,i(β, τ |η(s))

= −N
2

log(2π)− N

2
log τ − 1

2τ

N∑
i=1

(yi −X>12,iβ12)2

− 1

2τ

N∑
i=1

(−2)(yi −X>12,iβ12)[ziI(i ∈ Sobs) + µ
(s)
zm,iI(i ∈ Smis)]β3

− 1

2τ

N∑
i=1

[z2i I(i ∈ Sobs) + (µ
(s)2
zm,i + τ (s)zm)I(i ∈ Smis)]β2

3 ,

Q2(α|η(s)) =
N∑
i=1

Q2,i(α|η(s))

= −N
2

log(2π)− N

2
log τz

− 1

2τz

N∑
i=1

[z2i I(i ∈ Sobs) + (µ
(s)2
zm,i + τ (s)zm)I(i ∈ Smis)]

− 1

2τz

N∑
i=1

(−2)[ziI(i ∈ Sobs) + µ
(s)
zm,iI(i ∈ Smis)]µz −

1

2τz
Nµ2

z,

Q3(ξ|η(s)) =
N∑
i=1

l3,i =
N∑
i=1

{riX>12,iξ − log[1 + exp(X>12,iξ)]},

which is the log likelihood function of the regular logistic regression with nonmissing data

(under MAR).

The estimate of ξ can be simply obtained from the regular logistic regression analysis.

For other parameters, the M-step maximizes Q1(β, τ |η(s)) and Q2(α|η(s)). The closed

forms are available for (β12, β3, τ, µz, τz). Let J be the N × 1 matrix with value 1 for

all elements, y be the N × 1 matrix of response variables, and X12 be the N × 2 design

matrix of known covariates. To simplify the notation, we write Z(s) as the N × 1 design

matrix of covariate with missing value replaced with estimated value µ
(s)
zm,i, and define
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A(s), B(s) as follows:

A(s) =
N∑
i=1

[z2i I(i ∈ Sobs) + (µ
(s)2
zm,i + τ (s)zm)I(i ∈ Smis)], B(s) = (bij),

where bij’s are given by

bij =


[ziI(i ∈ Sobs) + µ

(s)
zm,iI(i ∈ Smis)][zjI(j ∈ Sobs) + µ

(s)
zm,jI(j ∈ Smis)],when i 6= j,

z2i I(i ∈ Sobs) + (µ
(s)2
zm,i + τ

(s)
zm)I(i ∈ Smis),when i = j.

To calculate (β
(s+1)
12 , β

(s+1)
3 ), we take the first derivative of Q1,
∂Q1

∂β12
= τ−1{X>12(y −X12β12)−X>12Z(s)β3} = 0

∂Q1

∂β3
= τ−1{Z(s)>(y −X12β12)− A(s)β3} = 0.

This yields

β
(s+1)
12 = {X>12[I − A(s)−1B(s)]X12}−1X>12[I − A(s)−1B(s)]y,

β
(s+1)
3 = A(s)−1Z(s)>(y −X12β

(s+1)
12 ).

Similarly, other parameter estimates can be easily obtained as follows:

τ (s+1) =
1

N

N∑
i=1

(yi −X>12,iβ
(s+1)
12 )2 − 2

N

N∑
i=1

(yi −X>12,iβ
(s+1)
12 )[ziI(i ∈ Sobs)

+ µ
(s)
zm,iI(i ∈ Smis)]β(s+1)

3 +
1

N

N∑
i=1

[z2i I(i ∈ Sobs) + (µ
(s)2
zm,i + τ (s)zm)I(i ∈ Smis)]β(s+1)2

3

=
1

N
[y −X12β

(s+1)
12 ]>[y −X12β

(s+1)
12 ]− 2

N
[y −X12β

(s+1)
12 ]>Z(s)β

(s+1)
3

+
1

N
A(s)β

(s+1)2
3 ,
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µ(s+1)
z =

∑
i∈obs zi +

∑
i∈mis µ

(s)
zm,i

N
=
J>Z(s)

N
,

τ (s+1)
z =

A(s)

N
− µ(s+1)2

z .

3.3 Degree of Perturbation

We use P (I|M) to denote the degree of perturbation introduced by deleting the subset I

for the fitted model M . Critchley et al. (2001) used the Euclidean geometry to quantify

the size of perturbation for one-sample problems. However, it cannot be easily generated

for relatively complex data structures, such as longitudinal data. Recently, Zhu et. al

(2012) proposed P (I|M) based on the Kullback-Leibler distance. The proposed P (I|M)

has the following four desired principle properties: i) non-negativity, ii) uniqueness, iii)

monotonicity, and iv) additivity.

Degree of perturbation is derived below in a more general setting. Consider the

probability function of a random vector Y > = (Y >1 , . . . , Y
>
n ), denoted by p(Y |θ), where

θ = (θ1, . . . , θq)
> is the set of parameters. A subscript ‘[I]’ denotes the relevant quantity

with all observations in I deleted. Let Y[I] be a subsample of Y with YI = {Yi : i ∈ I}

deleted and p(Y[I]|θ) be its probability function. We define the maximum likelihood

estimators of θ for the full sample Y and a subsample Y[I] as θ̂ = argmaxθ log p(Y |θ) and

θ̂[I] = argmaxθ log p(Y[I]|θ), respectively.

We can write p(Y |θ) = p(Y[I]|θ)p(YI |Y[I], θ). Consider the following model for charac-

terizing the deletion of YI given by

p(Y |θ, I) ≡ p(Y[I]|θ)p0(YI |Y[I]),

where p0(YI |Y[I]) is a fixed conditional density of YI given Y[I] independent of θ. Zhu et.

al. suggest setting p0(YI |Y[I]) = p(YI |Y[I], θ∗), where θ∗ is the true value of θ under M .

When M is correctly specified, p(YI |Y[I], θ∗) is the true data generator for YI given Y[I].
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The Kullback-Leibler distance between p(Y |θ) and p(Y |θ, I), denoted by KL(Y, θ|I)

can be written as follows:

KL(Y, θ|I) =

∫
p(Y |θ) log

(
p(Y |θ)
p(Y |θ, I)

)
dY =

∫
p(Y |θ) log

(
p(YI |Y[I], θ)
p(YI |Y[I], θ∗)

)
dY.

When YI is independent of Y[I], KL(Y, θ|I) reduces to

KL(Y, θ|I) =

∫
p(YI |θ) log

(
p(YI |θ)
p(YI |θ∗)

)
dYI .

Finally, P (I|M) is defined as the weighted Kullback-Leibler distance between p(Y |θ) and

p(Y |θ, I) as follows:

P (I|M) =

∫
KL(Y, θ|I)p(θ|θ∗,Σ∗)dθ, (3.4)

where p(θ|θ∗,Σ∗) is a Gaussian prior for unknown θ with mean θ∗ and positive definite

covariance matrix Σ∗ (e.g., the Fisher information matrix). Furthermore, if a particu-

lar set of components of θ is of interest and other components are treated as nuisance

parameters, we may fix these nuisance parameters in their true value.

Here, we apply general definition (3.4) to derive degree of perturbation for GLM with

missing covariates as below. For GLM with missing covariates, Yi = (xi, zi, ri, yi), we can

write the Kullback-Leibler distance as

KL(η|I) =

∫ ∫ ∫ ∫ ∏
i∈I

f(xi, zi, ri, yi|η) log

( ∏
i∈I f(xi, zi, ri, yi|η)∏
i∈I f(xi, zi, ri, yi|η∗)

)∏
i∈I

dxidzidridyi

=

∫ ∫ ∫ ∫ ∏
i∈I

f(xi, zi, ri, yi|η)

(∑
i∈I

[
log

f(xi, zi, ri, yi|η)

f(xi, zi, ri, yi|η∗)

])∏
i∈I

dxidzidridyi

=
∑
i∈I

EYi

[
log

f(xi, zi, ri, yi|η)

f(xi, zi, ri, yi|η∗)

]
.

40



Therefore, we have

P (I|M) =

∫
KL(η|I)p(η|η∗)dη

=
∑
i∈I

EηEYi

[
log

f(xi, zi, ri, yi|η)

f(xi, zi, ri, yi|η∗)

]
=
∑
i∈I

P (i|M).

For GLM with missing covariates, the degree of perturbation is different for subjects

with observed data and subjects with missing data. When subject i is observed, we have

P (i|M) = EηEYi

[
log

f(xi, zi, ri, yi|η)

f(xi, zi, ri, yi|η∗)

]
= EηEYi

[
log

f(yi|xi, zi, β, τ)

f(yi|xi, zi, β∗, τ∗)
+ log

f(xi, zi|α)

f(xi, zi|α∗)
+ log

f(ri|xi, zi, yi, ξ)
f(ri|xi, zi, yi, ξ∗)

]
.

When subject i has missing covariates, we can only observe (xi, ri, yi), and therefore have

P (i|M) = Eβ,τ,ξExi,ri,yi

[
log

∫
f(xi, zi, ri, yi|η)dzi∫
f(xi, zi, ri, yi|η∗)dzi

]
.

This is further illustrated using the Example 1.

Example 1 (continue). Let X>i = (1, xi, zi), β
> = (β1, β2, β3), X

>
12,i = (1, xi), β

>
12 =

(β1, β2), and ξ> = (ξ1, ξ2). When subject i is observed, we have

P (i|M) = EηEYi

[
log

f(yi|xi, zi, β, τ)

f(yi|xi, zi, β∗, τ∗)
+ log

f(xi, zi|α)

f(xi, zi|α∗)
+ log

f(ri|xi, ξ)
f(ri|xi, ξ∗)

]
= EηEziEyi|zi [log f(yi|zi, β, τ)− log f(yi|zi, β∗, τ∗)]

+EηEzi [log f(zi|µz, τz)− log f(zi|µz∗, τz∗)]

+EξEri [log f(ri|ξ)− log f(ri|ξ∗)]

= P1(i|M) + P2(i|M) + P3(i|M).
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Specifically, we have

P1(i|M) = EηEziEyi|zi

[
log

f(yi|xi, zi, β, τ)

f(yi|xi, zi, β∗, τ∗)

]
= EηEziEyi|zi{−0.5 log(2π)− 0.5 log τ − 0.5

(yi −X>i β)2

τ

−
[
−0.5 log(2π)− 0.5 log τ∗ − 0.5

(yi −X>i β∗)2

τ∗

]
}

= 0.5Eη[log(τ∗/τ)] + 0.5EηEziEyi|zi{
(yi −X>i β∗)2

τ∗
− (yi −X>i β)2

τ
}

= 0.5Eη[log(τ∗/τ)] + 0.5EηEziEyi|zi

[
(yi −X>i β∗ + yi −X>i β)(X>i β −X>i β∗)

τ∗

]
+0.5Eη

τ

τ∗
− 0.5Eη

τ

τ

= 0.5Eη[log(τ∗/τ)] + 0.5
X>12,iEη[(β12 − β12∗)(β12 − β12∗)>]X12,i

τ∗

−
Eη[X

>
12,i(β12 − β12∗)(β3 − β3∗)µz]

τ∗
+ 0.5

Eη[(τz + µ2
z)(β3 − β3∗)2]
τ∗

,

P2(i|M) = EηEzi

[
log

f(zi|µz, τz)
f(zi|µz∗, τz∗)

]
= EηEzi{−0.5 log(2π)− 0.5 log τz − 0.5

(zi − µz)2

τz

−
[
−0.5 log(2π)− 0.5 log τz∗ − 0.5

(zi − µz∗)2

τz∗

]
}

= 0.5Eη[log(τz∗/τz)] + 0.5EηEzi{
(zi − µz∗)2

τz∗
− (zi − µz)2

τz
}

= 0.5Eη[log(τz∗/τz)] + 0.5EηEzi{
(zi − µz∗)2

τz∗
− (zi − µz)2

τz∗

+
(zi − µz)2

τz∗
− (zi − µz)2

τz
}

= 0.5Eη[log(τz∗/τz)] + 0.5EηEzi

[
(zi − µz∗ + zi − µz)(µz − µz∗)

τz∗

]
+0.5Eη

τz
τ∗z
− 0.5Eη

τz
τz

= 0.5Eτz [log(τz∗/τz)] + 0.5
Eµz [(µz − µz∗)2]

τz∗
,
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P3(i|M) =

∫
Eri

[
log

f(ri|xi, ξ)
f(ri|xi, ξ∗)

]
p(ξ|ξ∗)dξ

= EξEri{riX>12,iξ − log[1 + exp(X>12,iξ)]

−riX>12,iξ∗ + log[1 + exp(X>12,iξ∗)]}

= Eξ log{
1 + exp(X>12,iξ∗)

1 + exp(X>12,iξ)
}+ Eξ[(X

>
12,iξ −X>12,iξ∗)Eri(ri)]

= Eξ log{
1 + exp(X>12,iξ∗)

1 + exp(X>12,iξ)
}+ Eξ{X>12,i(ξ − ξ∗)

exp(X>12,iξ)

1 + exp(X>12,iξ)
}

= Eξ log
(1− π)

(1− π∗)
+ Eξ[X

>
12,i(ξ − ξ∗)π], (3.5)

where π = logit−1(X>12,iξ) and π∗ = logit−1(X>12,iξ∗).

When subject i has missing covariates, to calculate P (i|M), we first derive the

marginal likelihood function as below:

∫
f(xi, zi, ri, yi|η)dzi =

∫
f(yi|xi, zi, β, τ)f(zi, α)f(ri|xi, ξ)dzi

= f(ri|xi, ξ)
∫
f(yi|xi, zi, β, τ)f(zi, α)dzi,

where
∫
f(yi|xi, zi, β, τ)f(zi, α)dzi is the marginal distribution of yi, which follows a nor-

mal distribution with mean µyi = E(yi) = Ezi [E(yi|zi)] = X12,iβ12 + β3µz and variance

τy = V ar(yi) = Ezi [V ar(yi|zi)] + V arzi [E(yi|zi)] = τ + β2
3τz. Therefore, we have

log

[∫
f(xi, zi, ri, yi|η)dzi

]
= −0.5 log(2π)− 0.5 log τy − 0.5

(yi − µyi)2

τy

+riX
>
12,iξ − log[1 + exp(X>12,iξ)],

and

P (i|M) = EηEyi{−0.5 log τy − 0.5
(yi − µyi)2

τy
− [−0.5 log τy,∗ − 0.5

(yi − µyi,∗)2

τy,∗
]}

+EξEri{riX>12,iξ − log[1 + exp(X>12,iξ)]−
[
riX

>
12,iξ∗ − log[1 + exp(X>12,iξ∗)]

]
}

= P4(i|M) + P3(i|M),
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where P3(i|M) is the same as (3.5) and P4(i|M) is given by

P4(i|M) = 0.5Eη[log(τy∗/τy)] + 0.5
Eη[(µyi − µy∗)2]

τy∗

= 0.5Eη[log(
τ∗ + β2

3∗τz∗
τ + β2

3τz
)] + 0.5

Eη{[X>12,i(β12 − β12∗) + β3µz − β3∗µz∗]2}
τ∗ + β2

3∗τz∗
.

The degree of perturbation for GLM with missing covariates has a much more compli-

cated form than the model without missing data. As shown in Example 1, when subject

i is observed, the degree of perturbation includes three components: P1(i|M) for the

model on response yi, P2(i|M) for the model on covariate zi, and P3(i|M) for the model

on missing mechanism ri. In P1(i|M), the first two components are similar to what are in

the general linear models with fixed covariates (X12,i). In addition, P1(i|M) includes the

component for the random covariates (zi) and the component involving the product of

the fixed covariates and the random covariates. When subject i has missing covariate zi,

the degree of perturbation includes the same component P3(i|M) for missing mechanism

and the different component P4(i|M) for response. When subjects do not have missing

data, the degree of perturbation is related to the variance of β12 and µz, while the degree

of perturbation for subjects with missing data is not related to the variance of µz. In

both cases, the degree of perturbation is a function of observed covariate X12. This will

be further illustrated in the simulation study.

3.4 Cook’s Distance

Cook’s distance and many other deletion diagnostics measure the distance between the

maximum likelihood estimators of θ with and without observations in set I. A subscript

[I] denotes the relevant quantity with all observations in I deleted. Cook’s distance for

I, denoted by CDI , can be defined as follows:

CDI = (θ̂[I] − θ̂)>G(θ̂[I] − θ̂),
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where θ̂ is the MLE for the full sample, θ̂[I] is the MLE for the subsample with all

observations in I deleted, and G is a positive definite matrix. When the interest is on a

subset of θ or a linear combination of θ, say L>θ, the partial influence of the subset I on

L>θ̂, denoted by CD(I|L), can be defined as

CD(I|L) = (θ̂[I] − θ̂)>L{L>G−1L}−1L>(θ̂[I] − θ̂).

For GLM with missing covariates models, we can calculate Cook’s distance based

on the log-likelihood function (l) of the observed data or the Q-function used in the EM

algorithm (i.e., E[lc(Dc, θ)|Do, θ̂]). We denote the l−based Cook’s distance as CD and the

Q−based Cook’s distance as QCD. The MLE from maximizing the observed likelihood

function or maximizing the Q-function are equivalent. Specifically,

θ̂ = argmax l(Do, θ) = argmax E[lc(Dc, θ)|Do, θ̂].

However, as shown below, Q-based MLE for θ̂[I] is different from l-based estimate, because

Q-based MLE is conditional on the MLE θ̂ from the full sample:

θ̂CD[I] = argmax l[I](Do[I], θ), θ̂
QCD
[I] = argmax E[lc(Dc[I], θ)|Do, θ̂],

where Dc[I] is a subsample, in which all observations in I are deleted from Dc. Because

θ̂[I] is needed for every case, to reduce the total computational burden, we use the one-

step approximation θ̂1[I] of θ̂[I] (Zhu et al., 2001, 2009) based on Taylor expansion. For

the subsample Dc[I], we define Q[I](θ̂|θ̂) as Q[I](θ̂|θ̂) = E[lc(Dc[I], θ)|Do, θ̂]|θ=θ̂, where the

expectation is taken with respect to f(Dm|Do, θ̂). For l-based and Q-based estimates,

we can write

θ̂1CD[I] = θ̂ + {−∂2θ l(Do|θ̂)}−1∂θl[I](Do[I]|θ̂), (3.6)
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θ̂1QCD[I] = θ̂ + {−∂2θQ(θ̂|θ̂)}−1∂θQ[I](θ̂|θ̂).

The G matrix is chosen to be a positive definite matrix as below for l−based and Q−based

Cook’s distance, respectively:

GCD = −∂2θ l(Do|θ̂), GQCD = −∂2θQ(θ̂|θ̂).

Therefore, we can approximate CD and QCD as

CDI = ∂θl[I](Do[I]|θ̂)>{−∂2θ l(Do|θ̂)}−1∂θl[I](Do[I]|θ̂),

QCDI = ∂θQ[I](θ̂|θ̂)>{−∂2θQ(θ̂|θ̂)}−1∂θQ[I](θ̂|θ̂).

Continuing with Example 1, we derive the CD and QCD for general linear model

with missing covariates, which will be used later in simulation study to compare these

two quantities.
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Example 1 (continued). We can write the log likelihood function as

l =
∑
i∈Sobs

{−0.5 log(2π)− 0.5 log τ − 0.5
(yi −X>i β)2

τ

−0.5 log(2π)− 0.5 log τz − 0.5
(zi − µz)2

τz

+riX
>
12,iξ − log[1 + exp(X>12,iξ)]}

+
∑
i∈Smis

{−0.5 log(2π)− 0.5 log τy − 0.5
(yi − µyi)2

τy

+riX
>
12,iξ − log[1 + exp(X>12,iξ)]}

= −
∑
i∈Sobs

{0.5 log τ + 0.5
(yi −X>i β)2

τ
+ 0.5 log τz + 0.5

(zi − µz)2

τz
}

−
∑
i∈Smis

{0.5 log(τ + β2
3τz) + 0.5

(yi −X>12,iβ12 − β3µz)2

(τ + β2
3τz)

}

+
N∑
i=1

{riX>12,iξ − log[1 + exp(X>12,iξ)]}+ constant

= l12(y, zobs, x|β, τ, µz, τz) + l3(r, x|ξ).

Note that the log-likelihood function (l) can be decomposed to two parts, with each

involves a distinct subset of the parameters. GCD can be written as a block diagnal

matrix with two blocks. Therefore, the diagnostic measure CDi can be decomposed as

the sum of two diagnostic measures. With the one-step approximation, we can write

CDi = CDi,12 + CDi,3,

where CDi,12 and CDi,3 are, respectively, given by

CDi,12 =

∂(β,τ)l12[i](y[i], x[i], zobs[i]|β̂, τ̂)>{−∂2(β,τ)l12(y, x, zobs|β̂, τ̂)}−1∂(β,τ)l12[i](y[i], x[i], zobs[i]|β̂, τ̂),

CDi,3 = ∂ξl3[i](r[i], x[i]|ξ̂)>{−∂2ξ l3(r, x|ξ̂)}−1∂ξl3[i](r[i], x[i]|ξ̂).
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As shown in (3.1), the Q-function can be decomposed into three components as follows:

Q(β, τ, α, ξ|η(s)) = Q1(β, τ |η(s)) +Q2(α|η(s)) +Q3(ξ|η(s)).

Therefore, the diagnostic measure QCDi can be decomposed as the sum of three diag-

nostic measures. With the one-step approximation, we can write

QCDi = QCDi,1 +QCDi,2 +QCDi,3,

where

QCDi,1 = ∂(β,τ)Q1[i](β̂, τ̂ |η̂)>{−∂2(β,τ)Q1(β̂, τ̂ |η̂)}−1∂(β,τ)Q1[i](β̂, τ̂ |η̂),

QCDi,2 = ∂αQ2[i](α̂|η̂)>{−∂2αQ2(α̂|η̂)}−1∂αQ2[i](α̂|η̂),

QCDi,3 = ∂ξQ3[i](ξ̂|η̂)>{−∂2ξQ3(ξ̂|η̂)}−1∂ξQ3[i](ξ̂|η̂).

In the MAR case, QCDi,3 is the same as CDi,3. The difference between CDi and

QCDi lies on the difference between CDi,12 and QCDi,1 + QCDi,2. Let τ and τz be

nuisance parameters. To calculate CDi,12 and QCDi,1 + QCDi,2, we derive the first

derivatives and second derivatives of the log-likelihood function (l) and the Q-functions

as follows, which will be used later in the simulation study.
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For CD, we have

∂l

∂β12
=

∑
i∈obs

(yi −X>12,iβ12 − ziβ3)X12,i

τ
+
∑
i∈mis

(yi −X>12,iβ12 − µzβ3)X12,i

τ + β2
3τz

,

∂l

∂β3
=

∑
i∈obs

(yi −X>12,iβ12 − ziβ3)zi
τ

+
∑
i∈mis

{− β3τz
τ + β2

3τz

+
(yi −X>12,iβ12 − β3µz)µz

τ + β2
3τz

+
(yi −X>12,iβ12 − β3µz)2β3τz

(τ + β2
3τz)

2
},

∂l

∂µz
=

∑
i∈obs

zi − µz
τz

+
∑
i∈mis

(yi −X>12,iβ12 − β3µz)β3
τ + β2

3τz
,

∂2l

∂β2
12

= −
∑
i∈obs

X>12,iX12,i

τ
−
∑
i∈mis

X>12,iX12,i

τ + β2
3τz

,

∂2l

∂β12∂β3
= −

∑
i∈obs

ziX12,i

τ
−
∑
i∈mis

{ µzX12,i

τ + β2
3τz

+
2β3τz(yi −X>12,iβ12 − µzβ3)X12,i

(τ + β2
3τz)

2
},

∂2l

∂β12∂µz
= −

∑
i∈mis

β3X12,i

τ + β2
3τz

,

∂2l

∂β2
3

= −
∑
i∈obs

zizi
τ
−
∑
i∈mis

{τz + µzµz
τ + β2

3τz
+

2β3τz[−β3τz + (yi −X>12,iβ12 − β3µz)µz]
(τ + β2

3τz)
2

+
−(yi −X>12,iβ12 − β3µz)2τz + 2(yi −X>12,iβ12 − β3µz)µzβ3τz

(τ + β2
3τz)

2

+
(yi −X>12,iβ12 − β3µz)24β2

3τ
2
z

(τ + β2
3τz)

3
},

∂2l

∂β3∂µz
=

∑
i∈mis

{
yi −X>12,iβ12 − 2β3µz

τ + β2
3τz

−
2(yi −X>12,iβ12 − β3µz)β2

3τz

(τ + β2
3τz)

2
},

∂2l

∂µ2
z

= −
∑
i∈obs

1

τz
−
∑
i∈mis

β2
3

τ + β2
3τz

.
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For QCD, we have

∂Q1

∂β12
= − 1

2τ
(−2)X>12(y −X12β12)−

1

2τ
2X>12Z

(s)β3,

∂Q1

∂β3
= − 1

2τ
(−2)Z(s)>(y −X12β12)−

1

2τ
2A(s)β3,

∂Q2

∂µz
=

1

τz

N∑
i=1

[ziI(i ∈ obs) + µ
(s)
zm,iI(i ∈ mis)]− Nµz

τz
,

∂2Q1

∂β2
12

= −X
>
12X12

τ
,
∂2Q1

∂β12β3
= −X

>
12Z

(s)

τ
,
∂2Q1

∂β2
3

= −A
(s)

τ
,
∂2Q2

∂µ2
z

= −N
τz
.

3.5 Scaled Cook’s Distance

Following (Zhu et al., 2012a), we introduce the scaled Cook’s distance for GLM with

missing covariates as below.

The scaled Cook’s distance for matching mean and standard deviation is defined

based on the log-likelihood function and the Q-function, respectively, as follows:

SCD(I) = (CD(I)− E[CD(I)|M ])/Std[CD(I)|M ],

SQCD(I) = (QCD(I)− E[QCD(I)|M ])/Std[QCD(I)|M ],

where the expectation is taken with respect to M , the current model fitted to the data;

and I is the subset that we would like to assess the influence. This scaled Cook’s distance

measures the standardized influential level of the subset I when M is true. A large value

of SCD or SQCD indicates that the subset I is relatively influential.

We use the parametric bootstrap method to compute E[CD(I)|M ], Std[CD(I)|M ],

E[QCD(I)|M ] and Std[QCD(I)|M ] as follows:

Step 1. We use M̂ = {f(xi, zi, ri, yi; η̂)} to approximate the modelM = {f(xi, zi, ri, yi;

η)}, generate a random sample Y s from f(xi, zi, ri, yi; η̂), and then calculate CD(I)s and

QCD(I)s for subset I.

Step 2. By repeating this process S times, we can obtain a sample {CD{I}s : s =
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1, . . . , S} and then we use its empirical mean CD(I) =
∑S

s=1CD(I)s/S to approximate

E[CD(I)|M ], and use its empirical standard deviation to approximate Std[CD(I)|M ].

Similarly, we approximate E[QCD(I)|M ] and Std[QCD(I)|M ] using the empirical mean

and standard deviation from the sample {QCD{I}s : s = 1, . . . , S}.

Moreover, we calculate the two probabilities as follows:

Pr(I) =
S∑
s=1

I(CD(I)s ≤ CD(I))/S, QPr(I) =
S∑
s=1

I(QCD(I)s ≤ QCD(I))/S,

where I(.) is an indicator function of a set. Because CD(I)s can be regarded as the “true”

Cook’s distance when the model is true, a large value of Pr(I) (or QPr(I)) indicates I as

influential.

3.6 Simulation Studies Using One Dataset

We conducted simulation studies to compare the Cook’s distance and scaled Cook’s

distance based on the log-likelihood function and Q-function. We first simulated data for

the linear model yi = β0 + β1xi + β2zi + εi, where the εi’s are i.i.d. and εi ∼ N(0, τ), xi ∼

N(0, 1), zi ∼ N(µ, τz), i = 1, . . . , n. We set n = 100 subjects, β0 = β1 = β2 = 1, τ =

τz = 1, and µ = 0. The response yi and the covariate xi are completely observed for

i = 1, . . . , n, but the covariate zi may be missing for some subjects.

We consider the following three missing mechanisms:

i) The missingness is only dependent on xi (MAR). We set zi as missing if ri = 1.

The missingness variable ri follows a Bernoulli distribution with logit(prob(ri = 1)) =

ξ0 + ξ1xi. We set ξ0 = −1.5, and ξ1 = 1.0 to obtain an average missingness fraction of

20%.

ii) The missingness is dependent on both xi and zi (MNAR). The missingness variable

ri follows a Bernoulli distribution with logit(prob(ri = 1)) = ξ0 + ξ1xi + ξ2zi. We set

ξ0 = −1.5, ξ1 = 1.0, and ξ2 = 1.0. The missing rate is approximately 20%.
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iii) The missingness is dependent on both xi and zi (MNAR) with a larger missing

rate. The missingness variable ri follows a Bernoulli distribution with logit(prob(ri =

1)) = ξ0 + ξ1xi + ξ2zi. We set ξ0 = −1.5, ξ1 = 1.0, and ξ2 = 15. The missing rate is

approximately 40%.

For each missing mechanism, we generated data to assess how diagnostic measures

work in four scenarios i) no outlier, ii) having an outlier(s) in the covariate with missing

data (adding outliers in the z domain), iii) having an outlier(s) in the response variable

(adding outliers in the y domain), and iv) having an outlier(s) in the covariate without

missing data (adding outliers in the x domain). For each scenario with outliers, we started

with the simple scenario which included only one outlier by replacing z100 with z100 + 5,

replacing y100 with y100+5, and replacing x100 with x100+5, respectively. Then, we assess

the scenario including multiple outliers. When the outliers are all in the same directions,

it is possible that there may be a confounding effect that increases the impact of outliers

on the model. In the other hand, when the outliers are in the opposite directions, their

impact on the model may be diminished. To assess how diagnostic measures perform

when multiple outliers exist in the GLM with missing covariates, we modified the last two

observations indexed by [99] and [100]. We added 5 to both observations [99] and [100] to

get two outliers in the same directions. To get two outliers in the opposite directions, we

added 5 to observation [100] and subtracted 5 to observation [99]. Summary of simulation

scenarios are presented in Table 3.1.
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Table 3.1: Summary of Simulation Scenarios

No. Description Missing Mechanism Outlier 

MAR scenario 

1 Missing mechanism is 

dependent on X only 

logit(prob(ri=1)) = ξ0 + ξ1 xi,  

where ri=1 when zi is not observed. 

We set ξ0 = -1.5, and ξ1 =1.0. (~20% 

missing) 

 

none 

2a Missing mechanism is 

dependent on X only, plus 

outlier(s) in Z domain  

Change z100 to z100 + 5.0 

2b Change z100 to z100 + 5.0 

Change z99 to z99 + 5.0 

2c Change z100 to z100 + 5.0 

Change z99 to z99 - 5.0 

3a Missing mechanism is 

dependent on X only, plus 

outlier(s) in Y domain 

Change y100 to y100 + 5.0 

3b Change y100 to y100 + 5.0 

Change y99 to y99 + 5.0 

3c Change y100 to y100 + 5.0 

Change y99 to y99 - 5.0 

4a Missing mechanism is 

dependent on X only, plus 

outlier(s) in X domain 

Change x100 to x100 + 5.0 

4b Change x100 to x100 + 5.0 

Change x99 to x99 + 5.0 

4c Change x100 to x100 + 5.0 

Change x99 to x99 - 5.0 

MNAR scenario  

5 all missing mechanism is 

dependent on Z 

logit(prob(ri=1)) = ξ0 + ξ1 xi + ξ2 zi, 

where ri=1 when zi is not observed. 

We set ξ0 = -1.5, and ξ1 =1.0, ξ2 =1.0.  

(~20% missing) 

none 

6a all missing mechanism is 

dependent on Z, plus outlier(s) 

in Z domain 

Change z100 to z100 + 5.0 

6b Change z100 to z100 + 5.0 

Change z99 to z99 + 5.0 

6c Change z100 to z100 + 5.0 

Change z99 to z99 - 5.0 

7a all missing mechanism is 

dependent on Z, plus outlier(s) 

in Y domain 

Change y100 to y100 + 5.0 

7b Change y100 to y100 + 5.0 

Change y99 to y99 + 5.0 

7c Change y100 to y100 + 5.0 

Change y99 to y99 - 5.0 

8a all missing mechanism is 

dependent on Z, plus outlier in 

X domain 

Change x100 to x100 + 5.0 

8b Change x100 to x100 + 5.0 

Change x99 to x99 + 5.0 

8c Change x100 to x100 + 5.0 

Change x99 to x99 - 5.0 

9 all missing mechanism is 

dependent on Z 

logit(prob(ri=1)) = ξ0 + ξ1 xi + ξ2 zi, 

where ri=1 when zi is not observed. 

We set ξ0 = -1.5, and ξ1 =1.0, ξ2 =15.  

(~40% missing)  

  

 

none 

10a all missing mechanism is 

dependent on Z, plus outlier(s) 

in Z domain 

Change z100 to z100 + 5.0 

10b Change z100 to z100 + 5.0 

Change z99 to z99 + 5.0 

10c Change z100 to z100 + 5.0 

Change z99 to z99 - 5.0 

11a all missing mechanism is 

dependent on Z, plus outlier(s) 

in Y domain 

Change y100 to y100 + 5.0 

11b Change y100 to y100 + 5.0 

Change y99 to y99 + 5.0 

11c Change y100 to y100 + 5.0 

Change y99 to y99 - 5.0 

12a all missing mechanism is 

dependent on Z, plus outlier in 

X domain 

Change x100 to x100 + 5.0 

12b Change x100 to x100 + 5.0 

Change x99 to x99 + 5.0 

12c Change x100 to x100 + 5.0 

Change x99 to x99 - 5.0 
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To analyze these data, we used the general linear model with missing covariate de-

scribed previously in Example 1. This model is based on the assumption of MAR. We

obtained β̂, τ̂ , α̂, ξ̂ using the EM algorithm. We calculated CD and QCD for deleting

each subject using the one-step approximation. We also calculated the scaled CD and

QCD based on empirical mean and standard deviation from the parametric bootstrap

sample. Correspondingly, we calculated the degree of perturbation for each subject with

and without missing data. Note that, as shown previously, the component related to ξ

is the same for CD and QCD (CDi,3 = QCDi,3). The degree of perturbation related to

ξ (3.5) is the same for subjects with and without missing data. In addition, in practice,

the primary interest is often on β. Therefore, for comparison purpose, we did not include

the component involving ξ in our analysis.

Figure 3.1 presents the results for the scenario with no outlier. Both the CD and

QCD are small for all subjects. QCD is very close to CD when missing mechanism is

correctly specified (missing data is MAR; the top plots). They are also very close when

the model is misspecified (missing data is MNAR; the middle plots show the scenario

with a missing rate of approximately 20%, and the bottom plots show the scenario with

a missing rate of approximately 40%).

54



Figure 3.1: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with No Outlier. The three plots in the top are from the scenario of MAR (Scenario 1).
The three plots in the middle are from the scenario of MNAR (Scenario 5). The three
plots in the bottom are from the scenario of MNAR with a greater missing rate (Scenario
9).
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Figure 3.2 presents the results with one outlier in the covariate with missing data, z

domain (Scenario 2a). The outlier, observation [100], has a large value in CD (1.8). In

the scenario with two outliers in the same direction into the simulation data in z domain

(Figure 3.3, Scenario 2b), both outliers have larger CD comparing to other observations

(1.3 for observation [99] and 1.2 for observation [100]). However, the magnitude of CD for

both observations is smaller than that in Scenario 2a. In the scenario with two outliers

in the opposite directions in the z domain (Figure 3.3, Scenario 2c), the two outliers have

different CD (2.1 and 0.9) even though the perturbation we added are the same. When

the true missing mechanism is MNAR (Scenarios 6a, 6b, 6c), the results are similar to the

Scenarios 2a, 2b, and 2c, in which the missing mechanism is correctly specified. However,

when the true missing mechanism is MNAR and the missing rate is approximately 40%

(Scenarios 10a, 10b, and 10c), notable differences are seen in the value of CD comparing

to Scenarios 2a, 2b, and 2c. In all these scenarios, QCD is very close to CD except for

the outliers in the scenarios with misspecified missing mechanism and a large amount of

missing data (Scenarios 10a, 10b, and 10c).

Figures 3.5 to 3.7 display results with outliers in the response, y domain. The outliers

have larger CD comparing to other observations. In the scenario with only one outlier, we

see a larger CD in the scenario with misspecified missing mechanism and a large amount

of missing data (Scenarios 11a) comparing to Scenarios 3a and 7a in Figure 3.5. In the

scenarios with two outliers in the same direction (Figure 3.6), the magnitude of CD for

each observation is smaller than that in the scenario with one outlier. However, in the

scenarios with two outliers in the opposite direction (Figure 3.7), the magnitude of CD

for observation [99] is larger than that in the scenarios with only one outlier. The CD is

also sensitive with the missing mechanism and missing rate when the outliers are in the

response domain.
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Figure 3.2: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with One Outlier in z Domain. The three plots in the top are from the scenario of MAR
(Scenario 2a). The three plots in the middle are from the scenario of MNAR (Scenario
6a). The three plots in the bottom are from the scenario of MNAR with a greater missing
rate (Scenario 10a).
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Figure 3.3: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with Two Outliers in z Domain in Same Direction. The three plots in the top are from
the scenario of MAR (Scenario 2b). The three plots in the middle are from the scenario
of MNAR (Scenario 6b). The three plots in the bottom are from the scenario of MNAR
with a greater missing rate (Scenario 10b).
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Figure 3.4: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with Two Outliers in z Domain in Opposite Direction. The three plots in the top are
from the scenario of MAR (Scenario 2c). The three plots in the middle are from the
scenario of MNAR (Scenario 6c). The three plots in the bottom are from the scenario of
MNAR with a greater missing rate (Scenario 10c).
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Figure 3.5: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with One Outlier in y Domain. The three plots in the top are from the scenario of MAR
(Scenario 3a). The three plots in the middle are from the scenario of MNAR (Scenario
7a). The three plots in the bottom are from the scenario of MNAR with a greater missing
rate (Scenario 11a).
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Figure 3.6: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with Two Outliers in y Domain in Same Direction. The three plots in the top are from
the scenario of MAR (Scenario 3b). The three plots in the middle are from the scenario
of MNAR (Scenario 7b). The three plots in the bottom are from the scenario of MNAR
with a greater missing rate (Scenario 11b).
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Figure 3.7: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with Two Outliers in y Domain in Opposite Direction. The three plots in the top are
from the scenario of MAR (Scenario 3c). The three plots in the middle are from the
scenario of MNAR (Scenario 7c). The three plots in the bottom are from the scenario of
MNAR with a greater missing rate (Scenario 11c).
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Figures 3.8 to 3.10 display results with outliers in the covariate without missing data,

x domain. The outliers in x domain also have larger CD comparing to other observations.

In the scenarios with two outliers, in same or opposite directions, the magnitude of CD

for each outlier is smaller than that in the scenario with only one outlier. It appears that

the CD is not sensitive to missing mechanism and missing rate when the outliers are in

the covariate without missing data.

For each scenario we examined, we also present the index plots for QCD and the

scatter plot of CD and QCD. In all these scenarios, QCD is very close to CD for non-

outliers regardless of missing mechanism and missing rate. For outliers, QCD is slightly

smaller than CD, but still sufficient to identify influential observations.
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Figure 3.8: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with One Outlier in x Domain. The three plots in the top are from the scenario of MAR
(Scenario 4a). The three plots in the middle are from the scenario of MNAR (Scenario
8a). The three plots in the bottom are from the scenario of MNAR with a greater missing
rate (Scenario 12a).
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Figure 3.9: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with Two Outliers in x Domain in Same Direction. The three plots in the top are from
the scenario of MAR (Scenario 4b). The three plots in the middle are from the scenario
of MNAR (Scenario 8b). The three plots in the bottom are from the scenario of MNAR
with a greater missing rate (Scenario 12b).
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Figure 3.10: Index Plots and Scatter Plots of CD and QCD from the Simulation Data
with Two Outliers in x Domain in Opposite Direction. The three plots in the top are
from the scenario of MAR (Scenario 4c). The three plots in the middle are from the
scenario of MNAR (Scenario 8c). The three plots in the bottom are from the scenario of
MNAR with a greater missing rate (Scenario 12c).
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3.7 Additional Simulation Studies

To further assess the performance of CD, QCD, scaled CD/QCD and their relationship

with degree of perturbation when the covariate has missing value, additional simulations

were conducted. For scenario 1, which does not include outliers, we generated 100 sample

data with fixed x and r, and calculated CD, QCD, scaled CD/QCD, Pr, QPr, and degree

of perturbation. First, we generated the box plots for CD, scaled CD, and Pr of each

observation (Figure 3.11). The CDs are always positive, and the mean CDs (green dots)

for all observations are close to zero. The scaled CD distributed around zero. The mean

Pr is around 0.5 in the case without outliers. The Q−function based approximation

QCD is slightly smaller than CD in means, but the mean scaled QCD and QPr are very

close to scaled CD and Pr.

The mean degree of perturbation by x plot is shown in Figure 3.12. It is clearly shown

that the degree of perturbation is a function of x. In addition, subjects with missing z

have a much smaller degree of perturbation. Correspondingly, the subjects with missing

data are likely to have a smaller CD. The mean CD by mean degree of perturbation plot

shows a positive correlation between CD and degree of perturbation, while the scaled

CD accounted for this correlation as shown in the mean scaled CD by mean degree of

perturbation plot.

We also conducted the simulation that the missing mechanism also depends on z

(Scenario 5). Results are similar to Scenario 1.
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Figure 3.11: Box Plots for CD, Scaled CD, Pr and Scatter Plots with Q-based Ap-
proximation. Results from 100 Simulation Samples for Scenario 1. Green dots indicates
means. Red bars (dots) are observed, and blue bars (dots) are subjects with missing z.
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Figure 3.12: Scatter Plots of Mean Degree of Perturbation with x, Mean CD, and Mean
Scaled CD. Results from 100 Simulation Samples for Scenario 1. Red dots are observed
subjects, and blue dots are subjects with missing z.
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Then, we further evaluated the scenarios with outliers similar to the scenarios 2, 3, 4

for correctly specified missing mechanism and 6, 7, 8 for misspecified missing mechanism.

For each scenario, we added 5 outliers to assess how diagnostic measures perform when

multiple outliers exist in the GLM with missing covariates. We evaluated two scenarios:

a) all outliers are in the same direction by adding 5 to the value; and b) outliers are in

the opposite direction by adding or subtracting 5 to the value. We ordered the simulated

data by x before adding the outliers. We chose one subject with a close to median x

and observed z, two subjects with a close to first quartile of x and two subjects with a

close to third quartile of x. Because the probability of being missing on z increased as x

increased, we chose the two subjects near the first quartile of x with observed z and chose

the two subjects near the third quartile of x with missing z. To generate the outliers,

we replace the selected subjects with the value plus 5, except that for scenario b, the

outlier near the first quartile with a larger index was replaced by the value subtracting

5 and same for the subject near the third quartile with a larger index. For each of the

scenarios 2, 3, 4, 100 sample data were generated with the same x and r (the missingness
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of z). For scenarios 6, 7, 8, the sample data also had the same z because the missingness

depends on z.

Selected results are presented in Figures 3.13 to 3.18. In these index box plots, red

bars (dots) are for observed subjects, and blue bars (dots) are for subjects with missing z.

Green dots indicates means. When adding outliers in z domain (Figure 3.13), the three

outliers had outstanding value of CD, scaled CD, and Pr. The other two outliers are

not observed and therefore are not influential. When the missing mechanism is correctly

specified, all non-outliers have a small CD or scaled CD. However, when the missing

mechanism is misspecified, some non-outliers, with missing z or observed z have a CD

or scaled CD larger than other subjects. This is more obvious in the Pr box plot. The

same results are seen when the outliers are in the different direction (Figure 3.14).
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Figure 3.13: Box Plots for CD, Scaled CD, and Pr. Results from 100 Simulation Samples
for Scenarios 2a (MAR, left panels) and 6a (MNAR, right panels) - 5 Outliers in z Domain
in the Same Direction. Green dots indicates means. Red bars (dots) are observed, and
blue bars (dots) are subjects with missing z.
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Figure 3.14: Box Plots for CD, Scaled CD, and Pr. Results from 100 Simulation Samples
for Scenarios 2b (MAR, left panels) and 6b (MNAR, right panels) - 5 Outliers in z Domain
in the Opposite Direction. Green dots indicates means. Red bars (dots) are observed,
and blue bars (dots) are subjects with missing z.
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When adding outliers in y domain (Figure 3.15), in addition to the three outliers

with observed z (red bars), the two outliers with missing z (blue bars) also have an

outstanding value of CD, scaled CD, and Pr. As seen for Scenarios 2b and 6b, when

the missing mechanism is correctly specified, all non-outliers have a small CD or scaled

CD. However, when the missing mechanism is misspecified, some non-outliers, have a CD

or scaled CD larger than other subjects, even similar to the true outliers (e.g. subject

43 has a similar CD to the true outlier subject 50). In addition, the magnitude of the

diagnostic measures for the true outliers can be larger (e.g., subject 81) or smaller (e.g.,

subject 50) than the value when the missing mechanism is correctly specified, although

they are still much larger than most non-outliers. The same results are seen when the

outliers are in the different direction (Figure 3.16).

When adding outliers in x domain (Figure 3.17), all five outliers have an outstanding

value of CD, scaled CD, and Pr. However, the influence of the two outliers with missing

z (blue bars) are much smaller. As seen for Scenarios 2b and 6b (outliers in y domain),

when the missing mechanism is correctly specified, all non-outliers have a small CD or

scaled CD. However, when the missing mechanism is misspecified, some non-outliers,

have a CD or scaled CD larger than other subjects, even similar to the true outliers. In

addition, the magnitude of the diagnostic measures for the true outliers can be different

from the value when the missing mechanism is correctly specified, and in some cases the

specified outliers are not very influential. The similar results are seen when the outliers

are in the different direction (Figure 3.18).
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Figure 3.15: Box Plots for CD, Scaled CD, and Pr. Results from 100 Simulation Samples
for Scenarios 3a (MAR, left panels) and 7a (MNAR, right panels) - 5 Outliers in y Domain
in the Same Direction. Green dots indicates means. Red bars (dots) are observed, and
blue bars (dots) are subjects with missing z.
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Figure 3.16: Box Plots for CD, Scaled CD, and Pr. Results from 100 Simulation Samples
for Scenarios 3b (MAR, left panels) and 7b (MNAR, right panels) - 5 Outliers in y Domain
in the Opposite Direction. Green dots indicates means. Red bars (dots) are observed,
and blue bars (dots) are subjects with missing z.
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Figure 3.17: Box Plots for CD, Scaled CD, and Pr. Results from 100 Simulation Samples
for Scenarios 4a (MAR, left panels) and 8a (MNAR, right panels) - 5 Outliers in x Domain
in the Same Direction. Green dots indicates means. Red bars (dots) are observed, and
blue bars (dots) are subjects with missing z.
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Figure 3.18: Box Plots for CD, Scaled CD, and Pr. Results from 100 Simulation Samples
for Scenarios 4b (MAR, left panels) and 8b (MNAR, right panels) - 5 Outliers in x Domain
in the Opposite Direction. Green dots indicates means. Red bars (dots) are observed,
and blue bars (dots) are subjects with missing z.
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3.8 Real Data Examples

3.8.1 National Survey Cholesterol Data

For illustration purpose, we applied the GLM with missing covariates to a random sam-

ple of a publically available US national survey data. This data contains the lab value

of 120 subjects for the total cholesterol value, HDL, and LDL. There is no missing data

in total cholesterol and HDL (high-density lipoprotein cholesterol, also called “good”

cholesterol), but has 6% missing in LDL (low-density lipoprotein cholesterol, also called

“bad” cholesterol). We consider a general linear model with total cholesterol value as

the response variable and HDL and LDL as the covariates. We assume the missingness

of LDL depends on HDL, which is supported by the logistic regression analysis. We cal-

culated CD(I) for each subject and the degree of perturbation. We computed the scaled

Cooks distance using 100 bootstrap samples, and then Pr(I). The results from the GLM

with missing covariates model are shown in Figure 3.11, where we label observations with

relatively large CD and/or scaled CD. A positive correlation between CD and scaled CD

is observed, but there are some discrepancies between them. For instance, Subject 83

has the second largest CD, but is not outstanding in scaled CD index plot. It is also

interesting to see that Subject 9 with a missing LDL (and therefore smaller degree of

perturbation) has a small CD, but relatively large scaled CD. The value of QCD (based

on the Q-function) in this sample is similar to CD (based on observed likelihood func-

tion). Same is true for scaled QCD and scaled CD. One common question for identifying

influential observations is how to interpret the value of CD or scaled CD. What cut off

value should be considered as influential. For CD, the value greater than 1 or 4 divided

by number of observations (which is 0.03 for our sample) are often used to identify in-

fluential observations. However, those criteria can be either too restrict or too loosened.

The value of Pr provides an interpretation of the scaled CD. For example, as shown in

the Pr vs. scalded CD plot, a value greater than 0.88 in scaled CD is corresponding to
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a greater than 0.85 probability that the scaled CD from sample is larger than the scaled

CD from the parametric bootstrapping sample. A larger value of the scaled CD is linked

to a greater probability of the observed value is greater than the “true” value given that

the fitted model is the true model.

Figure 3.19: Results from Cholesterol Data
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3.8.2 Liver Cancer Data

As another example, we considered data on 191 patients from two Eastern Cooperative

oncology Group clinical trials (Ibrahim et al., 1999). We are interested in how the number

of cancerous liver nodes (y) when entering the trials is predicted by four other baseline
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characteristics: age (in years, x1), body mass index (kg/m2, x2), associated jaundice (yes

or no, x3), and time since diagnosis of the disease (in weeks). The time since diagnosis

variable has missing data and is skewed. After we took the logarithm transformation on

it, the distribution is approximately normal.

We used a general linear model yi|xi, zi, β ∼ N(β(xi, zi)
>, τ), where xi = (xi1, xi2, xi3),

zi =logarithm of time since diagnosis, and zi ∼ N(µz, τz). We further modeled the

missingness of zi (r = 1 if missing, and r = 0 ifobserved) by logistic regressions. We

assumed the missing covariates are MAR and calculated the MLE of parameters using

the EM algorithm. We calculated CD, QCD, scaled CD, scaled QCD, and Pr for each

subject. The results are shown in Figure 3.20. The value of QCD and scaled QCD are

very close to the CD and scaled CD, respectively. This is the same as what are seen

in simulations and the cholesterol data example. All these diagnostic measures and Pr

suggest that subject 10 is an influential point and worth further investigation.

3.9 Conclusions

In summary, we have derived the Cook’s distance for the GLM with missing covariates

based on both the observed likelihood function and the Q−function used in EM algo-

rithm. We have defined the degree of perturbation for GLM with missing covariates

and demonstrated that the degree of perturbation is more complicated for the model

with missing covariates. Subjects without missing data have a larger degree of pertur-

bation than those with a missing covariate given the same x. We have further derived

the scaled Cook’s distance to adjust for the degree of perturbation. We examined the

performance of these diagnostic measures in various scenarios with correctly specified or

misspecified missing mechanism. We used simulation data to illustrate the size matters

issue in general linear model with missing covariates. In addition, our simulation results

suggest that for general linear model with missing covariates, QCD is very close to CD

for the “good” data points, even when the sample included outliers or the misspecified
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Figure 3.20: Results from Liver Cancer Data
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missing mechanism. For the outliers, QCD is close to or slightly smaller than CD, but

it is generally sufficient to the purpose to identify influential observations. The largest

differences between QCD and CD are found when the missing mechanism is misspec-

ified with a large amount of missing data. The missing mechanism has an impact on

the diagnostic measures. When the missing mechanism is misspecified, in our example,

some non-outliers have a CD or scaled CD larger than other non-outliers. We applied

the proposed method to two real data examples. The results demonstrated the similar-

ity between QCD and CD and illustrated the proposed model diagnostic measures are

valuable in real data analyses with missing data.
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CHAPTER 4

INFORMATION CRITERIA FOR GENERALIZED LINEAR MODELS
WITH MISSING COVARIATES

4.1 Introduction

The aim of this chapter is to select an optimal model from a pool of statistical models

for a given dataset. One needs to consider both goodness of fit and model complexity.

A model which balances model fitting and complexity is preferred. To achieve this,

various information criteria, such as Akaiki Information Criterion (AIC) or Bayesian

Information Criterion (BIC), have been proposed for model comparisons. In both AIC

and BIC, deviance, −2 log p(Y |θ̂), is used to measure the goodness of fit. The penalty

term for model complexity is set as 2p in AIC and p log(n) in BIC, respectively, where p

is the number of parameters and n is the number of observations.

Recently, (Zhu et al., 2014a) developed a new measure of model complexity based

on Bayesian case deletion measures, called Bayesian Case-deletion Model Complexity

(BCMC), and then further proposed a Bayesian Case-deletion Information Criterion

(BCIC). Motivated from BCMC and BCIC, we use those new case deletion measures de-

veloped in Chapter 3 to construct various new case-deletion model complexities (CMCs)

and case-deletion information criteria (CIC) for generalized linear models (GLM) with

missing covariates.
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4.2 Method

4.2.1 Case Deletion Measures

Consider a probability function of observed data Y = (Y1, · · · , Yn)T , denoted by p(Y |θ),

where θ = (θ1, · · · , θp)T is a p× 1 vector in an open subset Θ of Rp. Cook’s distance and

other case-deletion diagnostics measure the distance between the maximum likelihood

estimators (MLEs) of θ with and without observations in a set I. The set I may contain

one observation or multiple observations in data. A subscript [I] denotes the relevant

quantity with all observations in I deleted. Cook’s distance for I, denoted by CD(I),

can be defined as follows:

CD(I) = (θ̂[I] − θ̂)>G(θ̂[I] − θ̂),

where θ̂ is the MLE for the full sample, θ̂[I] is the MLE for the subsample with all

observations in I deleted, and G is a positive definite matrix. When our primary interest

is to make inference on a linear combination of θ, say L>θ, the partial influence of the

subset I on L>θ̂, denoted by CD(I|L), may be defined as

CD(I|L) = (θ̂[I] − θ̂)>L{L>G−1L}−1L>(θ̂[I] − θ̂).

For GLM with missing covariates models, as shown in Chapter 3, we can calculate

Cook’s distance based on either the log-likelihood function (`) of the observed data or

the Q-function. We can approximate CD and QCD as

CD1(I) = ∂θl[I](Do[I]|θ̂)>{−∂2θ l(Do|θ̂)}−1∂θl[I](Do[I]|θ̂), (4.1)

QCD1(I) = ∂θQ[I](θ̂|θ̂)>{−∂2θQ(θ̂|θ̂)}−1∂θQ[I](θ̂|θ̂). (4.2)
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4.2.2 Cross Validation and Model Complexity

Cross-validation (CV) is a popular strategy for carrying out model selection (Stone, 1974,

Arlot et al., 2010). The primary idea behind CV is to repeatedly split data into a training

sample and a validation sample multiple times in order to estimate the “risk” of each

model. The training sample is primarily used for training, whereas the validation sample

is used for estimating the risk of a given model. Finally, CV selects an optimal model

with the smallest estimated risk from a pool of candidate models. This data splitting

heuristics are valid for a wide range of data generating processes.

Case deletion measure and cross-validation method share the same strategy of split-

ting the data into two subsamples. Specifically, to calculate case deletion measure, one

divides the data into a given set YS and the remaining set, Y[S], and then quantifies

the influential level of the set S. In contrast, the CV method divides the data into two

subsamples including a training sample Y[S] for model fitting and a validation sample YS

for assessing “risk”. To calculate the risk of a given model, one has to carry out data

splitting many times, and the final validation result is averaged over all splittings.

For GLM with missing covariates, our measure of cross validation is based on the

predictive distribution of the observed data l(Do,S|θ̃[S]), where θ̃[S] is an estimate of θ

based on the training set Do,[S]. Let S1, . . . , SnB
be a sequence of non-empty proper

subsets of {1, · · · , n} corresponding to our data splitting scheme, where nB is an inte-

ger. For example, nB = n for the leave-one-out CV and nB = n!/[m!(n − m)!] for the

exhaustive leave-m-out CV where n ≥ m ≥ 1. The CV estimator of the risk based on

IS = {Sk}1≤k≤nB
is defined as

CVR(IS) = −n−1B
∑
Sk∈IS

l(Do,[Sk]|θ̃[Sk]). (4.3)
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Similarly, we define another CV measure based on the Q-function as follows

QCVR(IS) = −n−1B
∑
Sk∈IS

QSk
(θ̃[Sk]|θ̂[Sk]). (4.4)

In addition to sharing the same strategy of splitting the data, we can establish a formal

connection between the case deletion measures (CD and QCD) and their corresponding

CV measures (CVR and QCVR). We obtain the following theorems, whose detailed proof

can be found in the Appendix.

Theorem 1. Under Assumptions C1-C4 in the Appendix, CVR(IS) and QCVR(IS) have

the following asymptotic expansions:

CVR(IS) = −n−1B
∑
Sk∈IS

l(Do,[Sk]|θ̂) + n−1B
∑
Sk∈IS

CD1(Sk; θ̂)[1 + op(1)], (4.5)

QCVR(IS) = −n−1B
∑
Sk∈IS

QSk
(θ̂|θ̂) + n−1B

∑
Sk∈IS

QCD1(Sk; θ̂)[1 + op(1)]. (4.6)

Theorem 1 shows a direct connection between CVR(IS) and CD1(IS), and between

QCVR(IS) and QCD1(IS). Based on this, we define case-deletion model complexity

measures CMC and QCMC, which are based on the observed likelihood and the Q-

function, respectively:

CMC(IS) = nn−1S n−1B ×
∑
Sk∈IS

CD(Sk; θ̃). (4.7)

QCMC(IS) = nn−1S n−1B ×
∑
Sk∈IS

QCD(Sk; θ̃). (4.8)
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4.2.3 Case-deletion Information Criterion

Based on the development of CMC, we develop a model selection criterion, called case-

deletion information criterion (CIC), to select an optimal model from a pool of candidate

models {Ml : l = 1, · · · , L} for the same dataset. Specifically, for model Ml and the

deletion set IS, CIC is defined as

CIC(IS,Ml) = −2
∑
Sk∈IS

l(Do,[Sk]|θ̂(Ml),Ml) + (nBnS/n)Cn(IS, θ̂(Ml),Ml), (4.9)

where θ̂(Ml) is the maximum likelihood estimator of θ under model Ml. Moreover,

Cn(IS, θ̂(Ml),Ml) is a penalty term, which is a variation of CMC and a function of the

data, the deletion set IS, and an estimator of θ(Ml). We choose an optimal model,

denoted by Mopt, which minimizes CIC(IS,Ml), as follows:

Mopt(IS) = argminMl:1≤l≤LCIC(IS,Ml). (4.10)

When deleting one observation at a time (leave-one-out deletion), CIC for model Ml

is equivalent to

CIC(Ml) = −2l(Do|θ̂(Ml),Ml) + Cn(θ̂(Ml),Ml).

The first term is the deviance, which is the same as AIC and BIC. The penalty term

Cn is different for different criteria. For CIC, we define it based on CMC. Two popular

choices of Cn are the AIC-type penalty and the BIC-type penalty. For the AIC-type

penalty, Cn = C0×CMC(IS), where C0 is a bounded positive scalar. In practice, similar

to AIC, it is common to set C0 = 2 following Akaike’s heuristics (Arlot et al., 2010).

For the BIC-type penalty, Cn = C0,n × CMC(IS) with limn→∞C0,n = ∞. Similar to

BIC, C0,n is often set as log(n) or other functions of a higher order (Birgé and Massart,
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2007). Therefore, CIC can be regarded as a generalization of the existing model selection

criteria. Just as the well-known results on the asymptotic equivalence between CV and

AIC (Stone 1977), Theorem 1 shows the asymptotic equivalence between CVR and CIC

with AIC-type penality.

Because different deletion sets lead to slightly different CIC(IS,Ml) for all l, it is

possible that Mopt(IS) may vary across IS. However, when we consider the leave-m-out

(LMO) deletion, we are able to obtain an invariant property of Mopt(IS).

Theorem 2. Assume that Yis’ are independent and Cn(IS, θ̂(Ml),Ml) = Ĉ0,n×CMC(IS),

where Ĉ0,n is independent of IS and Ml, but it may depend on n. We have the following

results.

(i) For the leave-m-out CV, we have CIC(ILMO,Ml) =

 n− 1

m− 1

CIC(ILOO,Ml)

and Mopt(ILMO) = Mopt(ILOO) for any m that n ≥ m ≥ 1.

(ii) If CIC(ILOO,Mopt(ILOO))−CIC(ILOO,Ml) >> Op(nBn
−3/2) for all Ml 6= Mopt(ILOO),

Assumption C5 holds, and we use CD1(IS) to approximate CMC(IS), then Mopt(ILMO) =

Mopt(ILOO) in probability 1 for any m that n ≥ m ≥ 1.

Theorem 2 shows that CIC(IS,Ml) and Mopt(IS) are invariant under different exhaus-

tive splitting. Detailed proof can be found in the Appendix.

Similarly, we define QCIC for Q-function based case-deletion information criterion as

follows.

QCIC(IS,Ml) = −2
∑
Sk∈IS

QSk
(θ̂(Ml)|θ̂(Ml)) + (nBnS/n)C ×QCMC(IS, θ̂(Ml)), (4.11)

where C = C0 or C0,n.

4.3 Simulation

We conducted simulation studies to investigate the finite sample performance of CIC

and compare CIC with AIC and BIC in GLM with missing covariates. Furthermore, we
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assessed the performance of the Q-function based criterion QCIC.

Simulated datasets and candidate models are described as follows. Simulated datasets

were generated from a general linear model with a missing covariate. Specifically, we

consider the following true model given by yi = β1 + β2xi + β3zi + εi, where the εi’s

are independent and identically distributed (i.i.d.), εi ∼ N(0, τ), xi ∼ N(0, 1), and

zi ∼ N(µz, τz) for i = 1, . . . , n. The covariate xi is completely observed for i =

1, . . . , n. The covariate zi may be missing for some cases. We assumed MAR for zi

as logit [prob(ri = 1|xi, zi, yi)] = ξ0 + ξ1xi, where ri = 1 when zi is missing. We set

n = 100 subjects, β1 = β2 = β3 = 1, τ = τz = 1, µz = 0, ξ0 = −1.5, and ξ1 = 1. An

additional continuous covariate vi was simulated from N(0, 1), and a categorical covariate

wi was simulated from Bernoulli(0.5). We consider five candidate models as follows:

M1 (true model): yi|xi, zi ∼ N(β1 + β2xi + β3zi, τ);

M2: yi|zi ∼ N(β1 + β2zi, τ);

M3: yi|xi, vi, zi ∼ N(β1 + β2xi + β3vi + β4zi, τ);

M4: yi|xi, wi, zi ∼ N(β1 + β2xi + β3wi + β4zi, τ);

M5: yi|xi, vi, wi, zi ∼ N(β1 + β2xi + β3vi + β4wi + β5zi, τ).

We generated 1000 simulated datasets from M1 and then calcualted AIC, BIC, CIC, and

QCIC for the five candidate models. For CIC, we calculated both CICA, that is the

CIC with AIC-type penalty, Cn = 2×CMC, and CICB, that is the CIC with BIC-type

penalty, Cn = log(n) × CMC. Similarly, we calculated QCICA and QCICB based on

Q-function.

Table 4.1 shows the number of times out of the 1000 simulations that each rank was

achieved for M1, the true model. The columns in Table 4.1 correspond to the rankings of

AIC and BIC. The rows of Table 4.1 correspond to the proposed criteria CICA, CICB and

their variations based on the Q-function. CICA is highly concordant with AIC (94.6%
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concordant). CICB is highly concordant with as BIC (96.1% concordant). In contrast,

QCICA has only 46.2% concordant rate with CICA, and QCICB has 69.9% concordant

rate with CICB.

Table 4.1: Comparison of Ranks of the True Model M1 from Various Model Selection
Criteria in GLM with Missing Covariates

Table 4.2 shows the number of times out of the 1000 simulations that each rank was

achieved for each model for all model selection criteria. M1 got ranked as number one 674

times by CICA and 790 times by CICB, which is similar to AIC (681 times) and BIC (803

times), respectively. The Q-based criterion QCICA ranked M1 as number one for the

least times (602 times). However, the other Q-based criterion QCICB correctly ranked

M1 as number one 852 times, which is the highest among all model selection criteria.

M2 is the misspecified model, which missed an important covariate x. For all selection

criteria, the model M2 was ranked last most of the time, but still in great than 10% of

the simulations it was ranked as number one by CICA, CICB, as well as AIC and BIC.

AIC-type criteria have a fewer percentage ranking number one than BIC-type criteria.

Notably, the Q-based criteria, both QCICA and QCICIB, ranked M2 as number five for

all the simulations. M3, M4, and M5 include additional covariates that are not in the

true model. Most of the time, selection criteria ranked M5 (least parsimonious model)
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as number 4, more favorable than the misspecified model M2, but less favorable than

M3 and M4. Models with an additional covariate, either continuous (M3) or categorical

(M4), have a rank of 2 or 3 most of the time for all selection criteria.

Table 4.2: Comparison of Ranks for M1 to M5 from Various Model Selection Criteria in
GLM with Missing Covariates

These results indicate that CICs perform reasonably well for model selection in GLM

with missing covariates. CICA is highly concordant with AIC, and CICB is highly

concordant with BIC. BIC-type criteria (BIC and CICB) performs better than AIC-

type criteria (AIC and CICA). The Q-based criteria are moderately concordant with the

likelihood function-based criteria. However, they also perform reasonably well for model

selection, especially the BIC-type QCICB.
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4.4 Real Data Analysis

To illustrate our proposed methods, we considered data on 191 patients from two Eastern

Cooperative oncology Group clinical trials as mentioned in Chapter 3 (Ibrahim et al.,

1999). We are interested in how the number of cancerous liver nodes (y) when entering

the trials is predicted by four other baseline characteristics: age (in years, x1), body mass

index (kg/m2, x2), associated jaundice (yes or no, x3), and time since diagnosis of the dis-

ease (in weeks). The time since diagnosis variable has missing data and is skewed. After

we took the logarithm transformation on it, the distribution is approximately normal.

We used a general linear model yi|xi, zi, β ∼ N(β(xi, zi)
>, τ), where xi = (xi1, xi2, xi3),

zi =logarithm of time since diagnosis, and zi ∼ N(µz, τz). We further modeled the

missingness of zi (r = 1 if missing, and r = 0 if observed) by logistic regressions. We

assumed the missing covariates are MAR and calculated the MLE of parameters using

the EM algorithm. We applied the proposed CIC method in addition to the existing

model selection criteria to illustrate the application of CIC.

Table 4.3 shows the values of AIC, BIC, and four CIC measurements as well as the

ranks of four candidate models (listed below) for each criterion.

M1: yi|xi, zi ∼ N(β1 + β2xi1 + β3xi2 + β4xi3 + β5zi, τ);

M2: yi|xi, zi ∼ N(β1 + β2xi1 + β3xi2 + β4xi3 + β5xi1xi3 + β6zi, τ);

M3: yi|xi, zi ∼ N(β1 + β2xi1 + β3xi2 + β4xi3 + β5xi2xi3 + β6zi, τ);

M4: yi|xi, zi ∼ N(β1 + β2xi1 + β3xi2 + β4xi3 + β5xi1xi3 + β6xi2xi3 + β7zi, τ).

The best model selected by different criteria is consistent, which is the model in-

cluding only the main effects (M1). M4 was ranked as worst by all criteria. The two

models ranked 2-3 are slightly off, however, with almost indistinguishable values. Same

as the simulation results, the values of CICA and CICB are very close to AIC and BIC,
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Table 4.3: Model Selection Results of Liver Cancer Data

Candidate AIC CICA QCICA BIC CICB QCICB
Model (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)

M1 1066.49 (1) 1066.06 (1) 1081.34 (1) 1086.00 (1) 1084.89 (1) 1099.86 (1)
M2 1067.75 (2) 1067.62 (3) 1082.84 (3) 1090.52 (2) 1090.17 (3) 1105.07 (3)
M3 1068.39 (3) 1067.21 (2) 1082.55 (2) 1091.15 (3) 1088.06 (2) 1103.09 (2)
M4 1069.72 (4) 1068.48 (4) 1083.73 (4) 1095.74 (4) 1092.49 (4) 1107.42 (4)

Table 4.4: Model Selection Results of Liver Cancer Data, Excluding One Outlier

Candidate AIC CICA QCICA BIC CICB QCICB
Model (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)

M1 1063.31 (1) 1061.53 (1) 1076.00 (1) 1082.79 (1) 1078.13 (1) 1092.21 (1)
M2 1065.30 (3) 1063.07 (3) 1077.54 (3) 1088.03 (3) 1082.17 (3) 1096.26 (3)
M3 1065.02 (2) 1062.00 (2) 1076.22 (2) 1087.75 (2) 1079.82 (2) 1093.67 (2)
M4 1067.02 (4) 1063.52 (4) 1077.74 (4) 1093.00 (4) 1083.82 (4) 1097.65 (4)

respectively. The values of CIC based on Q-function (QCICA and QCICB) are slightly

off from that based on the likelihood function (CICA and CICB), but result in the same

rank in this liver cancer data. Table 4.4 shows the results when excluding the outlier

(Observation 10) identified in Chapter 3. All criteria gave the same ranking when the

outlier was removed.

4.5 Conclusions

We have examined the connection between case deletion measures and cross validation

method for GLM with missing covariates models. Based on such connection, we have

developed CMC measures for quantifying the model complexity and CICs for model

selection. We have developed these new measures and criteria based on the likelihood

function and the Q-function used in the EM algorithm for models with missing data.

Some properties of CMC and CIC are investigated. Simulations and real data analysis

show that CIC is a valuable tool for analysis of models with missing data.
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APPENDIX: ASSUMPTIONS AND PROOFS

We need some notation. We use || · || to denote the Euclidean norm of a vector or

a matrix and use λmax(A) and λmin(A) to denote the largest and smallest eigenvalues of

a symmetric matrix A, respectively. We use the mathematical symbols (e.g., O(N−1))

and the stochastic-order symbols, such as Op(1), op(1), and Op(N
−1) throughout. We

define FQ(θ) = ∂θE[`c(θ|Dc)|Do, θ̂], FQ,[S](θ) = ∂θE[`c(θ|Dc,[S])|Do, θ̂], F (θ) = ∂θ`(Y |θ),

and F[S](θ) = ∂θ`(Y[S]|θ), where `(Y |θ) = log p(Y |θ) and `(Y[S]|θ) = log p(Y[S]|θ) .

The following assumptions are needed to facilitate the technical details, although

they are not the weakest possible conditions. Because we develop all results for general

parametric models, we only assume several high-level assumptions for the observed-data

log-likelihood function as follows. It is assumed that similar conditions hold for the

complete-data log-likelihood function.

Assumption C1. θ̂ and θ̂[S] for all S are consistent estimates of θ∗ ∈ Θo.

Assumption C2. Let ∆(θ) = θ − θ∗ and suppose

log p(Y |θ) = log p(Y |θ∗) + ∆(θ)TFN(θ∗)− 0.5∆(θ)TJN(θ∗)∆(θ)[1 + op(1)] and

log p(Y[S]|θ) = log p(Y[S]|θ∗) + ∆(θ)TFN,[S](θ∗)− 0.5∆(θ)TJN,[S](θ∗)∆(θ)[1 + op(1)]

uniformly for all θ ∈ B(θ∗, δ0/
√
N) = {θ :

√
N ||θ− θ∗|| ≤ δ0}. Moreover, N−1/2FN(θ∗) =

Op(1), N−1/2FN,[S](θ∗) = Op(1), maxS∈IS supθ,θ′∈B(θ∗,N−1/2δ0) ||JN,[S](θ) − JN,[S](θ
′)|| =

op(N),

0 < inf
θ∈B(θ∗,δ0N−1/2)

λmin(n−1JN(θ)) ≤ sup
θ∈B(θ∗,δ0N−1/2)

λmax(N
−1JN(θ)) <∞, and

0 < min
S∈IS

inf
θ∈B(θ∗,δ0N−1/2)

λmin(N−1JN,[S](θ)) ≤ max
S∈IS

sup
θ∈B(θ∗,δ0N−1/2)

λmax(N
−1JN,[S](θ)) <∞.
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Assumption C3. Assume that for small δ0 > 0, if NS ≤ N0, a fixed constant, then

max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂θ log p(YS|Y[S], θ)|| = Op(1) and max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂2θ log p(YS|Y[S], θ)|| = op(N).

Assumption C4. limNIS
→∞N

−1
B E[KN(IS|θ∗)] = K∗(IS) and limN→∞N

−1E[JN(θ∗)] = J∗,

where KN(IS|θ) = n−1B
∑

Sk∈IS [∂θ log p(YS|Y[S], θ)⊗2] and the expectation is taken with

respect to the true data generator. Moreover, for a small δ0 > 0, we have

sup
θ∈B(θ∗,δ0)

||KN(IS|θ)−E[KN(IS|θ)]|| = op(1) and sup
θ∈B(θ∗,δ0)

||JN(IS|θ)−E[JN(IS|θ)]|| = op(1).

Assumption C5. Each component of N−1B
√
N{KN(IS|θ∗)− E[KN(IS|θ∗)]} is asymptoti-

cally tight.

Proof of Theorem 1. It follows from Assumptions C1-C3 that we can expand l(Do,[Sk]|θ̃Sk
)

at θ̂ for each S and obtain

∑
Sk∈IS

l(Do,[Sk]|θ̃Sk
) =

∑
Sk∈IS

l(Do,[Sk]|θ̂) +
∑
Sk∈IS

∂θl(Do,[Sk]|θ̂)
T (θ̃[Sk] − θ̂)[1 + op(1)].

Following (3.6) and ∂θl(Do,[Sk]|θ̂) = ∂θl(Do|θ̂) − ∂θl(Do[Sk]|θ̂) where ∂θl(Do|θ̂) = 0 for

MLE θ̂, we have

∑
Sk∈IS

l(Do,[Sk]|θ̃Sk
) =

∑
Sk∈IS

l(Do,[Sk]|θ̂)−
∑
Sk∈IS

[∂θl(Do[Sk]|θ̂)]
T [Jn(θ̂)]−1l(Do[Sk]|θ̂)[1 + op(1)],

where Jn(θ̂) = −∂2θ l(Do|θ̂). This yields Theorem 1 (4.5). Theorem 1 (4.6) can be obtained

following similar derivation for Q-function.

Proof of Theorem 2. We consider the exhaustive splitting for the leave-m-out CV. For
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any Sk = {{i1}, · · · , {im}} that {iv} and {iv′} are independent when v 6= v′, we have

l(Do,[Sk]|θ̂(Ml),Ml) =
m∑
v=1

l(Do,iv |θ̂(Ml),Ml)),

∑
Sk∈IS

l(Do,[Sk]|θ̂(Ml),Ml) =
nBm

n

n∑
i=1

l(Do,i|θ̂(Ml),Ml),

=

 n− 1

m− 1

 n∑
i=1

l(Do,i|θ̂(Ml),Ml),

Under Assumptions C1, C2, and C5 , we have

n−1B
∑
Sk∈IS

CD(Sk; θ̂)=tr{[Jn(θ̂)]−1Kn(IS|θ̂)} = n−1{tr[J−1∗ K∗(IS)] + op(1)}, (4.12)

where Jn(θ̂) = −∂2θ l(Do|θ̂) and J∗ = lim
n→∞

n−1E[Jn(θ∗)], in which the expectation is taken

with respect to the true data generator and θ∗ denotes the true parameter. Moreover,

Kn(IS|θ̂) = n−1B
∑

Sk∈IS [∂θl(Do,[Sk]|θ̂)]⊗2 and

K∗(IS) = lim
n→∞

(nB)−1
∑
Sk∈IS

E{[∂θl(Do,[Sk]|θ∗)]
⊗2},

where a⊗2 = aaT for any vector a.

E{[∂θl(Do,[Sk]|θ∗]
⊗2} =

∑
iv ,iv′

E{∂θl(Do,iv |θ̂(Ml),Ml)∂θl(Do,i′v |θ̂(Ml),Ml)
T}

=
m∑
v=1

E{∂θl(Do,iv |θ̂(Ml),Ml)
⊗2},

∑
Sk∈IS

E{[∂θl(Do,[Sk]|θ̂(Ml),Ml)]
⊗2} =

nBm

n

n∑
i=1

E{∂θ l(Do,i|θ̂(Ml),Ml))
⊗2}. (4.13)

Following (4.12), (4.13) yields that CMC(ILMO) = nBm
n
× CMC(ILOO).
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Therefore, we have

CIC(ILMO,Ml) =

 n− 1

m− 1

CIC(ILOO,Ml),

which yields Theorem 2 (i). Theorem 2 (ii) directly follows from Assumption C5.
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