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ABSTRACT 
 
David James Bautz: Identification of Protein’s Complementary to the Autoantigen Proteinase 

3 and Their Involvement in the Pathogenesis of Autoimmune Disease 

(Under the direction of Ronald Falk, M.D., Gloria Preston, Ph.D. and Alex Tropsha, Ph.D.) 

 

 Previous work by our research group showed that PR3-ANCA patients had an 

antibody response to a recombinant complementary-PR3 protein encoded by the antisense 

strand of the PR3 mRNA.  To follow up on this work, we sought to determine whether the 

patients also had a T cell response to this recombinant complementary-PR3 protein and 

whether a protein reactive with those antibodies could be identified in vivo.    

 Chapter 2 of the dissertation describes the identification of CD4+ TH1 cells that 

proliferate in response to a complementary-PR3 peptide.  This proliferation was seen by both 

a CFSE assay as well as by interferon-γ production in an ELISPOT assay.  Those patients 

who had a T cell response to complementary-PR3 peptide also had antibodies to the 

complementary-PR3 protein.   

We next sought to determine if complementary-PR3 proteins could be identified from 

patient plasmapheresis material.  Chapter 3 of this dissertation describes the identification of 

two complementary-PR3 proteins, human plasminogen and Protein F, a protein from 

pseudomonas.  These proteins reacted with an antibody raised to a peptide encoded by the 

antisense RNA of the PR3 gene.  As complementary proteins are known to interact, 
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plasminogen was shown to be a substrate of PR3, indicative of interaction between the two 

proteins.  Lastly, the anti-complementary PR3 antibodies also bound to normal human 

leukocytes, cells that are known to bind plasminogen on their surface. 

 Chapter 4 describes the identification of anti-plasminogen autoantibodies in PR3-

ANCA positive patients.  These antibodies were purified using a complementary-PR3 

peptide column, indicating that the anti-cPR3 and anti-plasminogen antibodies are the same.  

The anti-plasminogen antibodies bound a surface-exposed loop on plasminogen’s catalytic 

domain.  Two in vitro assays confirmed the antibodies affect on plasminogen activity.  

Serological screening of sera indicated that the anti-plasminogen autoantibodies were more 

prevalent in those PR3-ANCA patients with a clinical history of venous thrombotic events.   

 By designing an experimental approach that considered protein complementarity, a 

previously unknown autoantigen and its pathogenic autoantibodies were identified.  

Consideration of complementary proteins can be used to discover other, and perhaps 

proximal, autoantigens and autoantibodies in other autoimmune diseases.     
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CHAPTER I 

PROLOGUE 
 

The work described in this dissertation touches upon one of the most complex issues 

in the biological sciences; how and why does the immune system, which is designed to 

protect the individual from pathogenic invaders, decide that the host is in fact the enemy?  

This question is the basis for studying autoimmune disease, and until it can be answered with 

confidence it will remain incredibly difficult to discover better cures and treatments for 

patients suffering from these debilitating diseases. 

Before describing the rationale for pursuing this project and the data subsequently 

generated, I will provide a discussion of ideas and theories that were combined in this 

research.  These theories may at first appear to be unrelated; however it will become apparent 

that as a result of not compartmentalizing theories and ideas a new model for discovering 

autoantigens and autoantibodies was discovered.  The dissertation will begin with an 

overview of the literature from which the major themes were generated that influenced the 

design and interpretation of the studies described. 

  

 



AUTOIMMUNE DISEASE 

Discerning the underlying cause of human disease is crucial to develop better and 

more effective treatments for a leading cause of suffering and mortality, autoimmune disease.  

While much effort has been put into the study of heart disease, cancer, and stroke, scientists 

are beginning to focus more on a loose-knit group of poorly understood diseases mediated by 

the immune system. 

Autoimmune diseases are characterized by the apparent unregulated attack by the 

immune system on self tissue.  There are over 80 autoimmune diseases currently identified 

that affect 14-22 million Americans [1].  They include common conditions such as Grave’s 

disease (1,150 per 100,000 individuals) as well as less frequent ailments such as Myasthenia 

gravis (0.4 per 100,000 individuals) [2].  Autoimmune diseases strike people of all ages, 

ethnicities, and backgrounds, however they typically affect women more frequently than men 

(>75% of those affected are women) for reasons that remain unclear [3]. 

Criteria have been introduced to help distinguish autoimmune diseases at three 

different levels: direct, indirect and circumstantial [4].  Direct evidence for an autoimmune 

disease requires transmissibility of the characteristic wounds from either human to human or 

human to animal.  Indirect evidence requires an animal model that re-creates the disease.  

Circumstantial evidence of autoimmune disease relies on “markers”, such as presence of high 

levels of autoantibodies in serum and/or deposition of antibody/antigen complexes in the 

affected organ. 

Autoimmune diseases are classified as either organ-specific or systemic.  Grave’s 

disease is an example of an organ-specific disease as it is characterized by an autoantibody 

response against the thyroid [5].  Examples of systemic autoimmune diseases include 
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Wegener’s granulomatosis (WG), microscopic polyangiitis (MPA), and Churg-Strauss 

syndrome (CSS), all of which are characterized by vasculitis affecting multiple organ 

systems, typically the small-sized vessels of the lungs and/or kidneys, as well as the presence 

of autoantibodies directed against proteins found in neutrophils [6]. 

 

SMALL-VESSEL VASCULITIS 

 Vasculitis is the term given to the group of uncommon diseases that result in 

inflammation of the blood vessels.  Vessels of any type and of any organ can be affected.  

Vasculitis has many causes, one of which is through an autoimmune response.  One way of 

categorizing different vasculitides is based on the size of the blood vessels they affect.  

Small-vessel vasculitides are defined as vasculitis that affects vessels smaller than the 

arteries, such as the arterioles and capillaries [7].  These diseases strike individuals of all 

ages, however they typically affect people in their 50’s and 60’s with the occurrence of these 

diseases similar between men and women [8].  The disease is quite rare, as it only affects 

approximately 1 in 100,000 people per year in Sweden [9] and 2 in 100,000 in the United 

Kingdom [10].  The aforementioned small-vessel vasculitides (WG, MPA, CSS) were 

determined to be closely related as early as the 1950’s [11].  This was confirmed by the 

discovery of circulating autoantibodies directed against constituents of the neutrophil and 

monocyte in patients suffering from these diseases.  These autoantibodies, termed ANCA 

(Anti-Neutrophil Cytoplasmic Autoantibodies), are present in approximately 90% of patients 

suffering from WG and MPA [12].     
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WEGENER’S GRANULOMATOSIS 

The condition of WG was first reported by Klinger in 1931 [13].  A more detailed 

description of the disease was later given by Friedrich Wegener [14].  The term “Wegener’s 

granulomatosis” was not introduced until 1954 by Godman and Churg [11].  Patients 

suffering from WG typically have inflammation of the small- and medium-sized blood 

vessels along with a number of different symptoms that affect various organ systems, 

however over 90% of WG patients have upper or lower respiratory tract disease [15].  Target 

organs include the upper airway (typically crusting and bleeding in the nasal passages), the 

lungs (pulmonary nodules and hemoptysis), and the kidneys (rapidly progressing segmental 

necrotizing glomerulonephritis) [16].  The American College of Rheumatology published 

acceptance criteria for WG [17], which was followed up by the Chapel Hill Consensus 

Conference on nomenclature of systemic vasculitis, and concluded that “the term ‘Wegener’s 

Granulomatosis’ is restricted to patients with granulomatous inflammation” [18].   

Treatment needs to commence quickly after diagnosis, as this disease leads to organ 

failure and potentially death without intervention.  The treatment of WG and other SVV 

occurs in three stages: induction of remission, maintaining remission, and treatment of 

relapse [19].  Patients who have aggressive disease are typically treated with intravenous 

corticosteroids and cyclophosphamide [7].  Combined therapy with those two drugs typically 

results in improvement of disease in 90 percent of patients and complete remission in 90 

percent [20].  The use of steroids and immuno-suppressive therapy has helped to make this a 

more manageable ailment, however these treatments are very caustic to the patient and could 

potentially lead to serious infections [7, 21]. 
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ANCA 

A feature that distinguishes WG, MPA and CSS from other small-vessel vasculitides 

is the presence of circulating ANCA.  ANCA, first described by Davies et al. in 1982 [22] 

and in WG in 1985 [23], are typically present in 85-95% of patients with small-vessel 

vasculitides [24].  An indirect immunofluorescence test is used to verify the presence of 

ANCA.  This test involves staining ethanol-fixed neutrophils with patient sera.  The 

antibodies are classified on the basis of their neutrophil staining pattern (Figure 1.1); either c-

ANCA (cytoplasmic ANCA) or p-ANCA (perinuclear ANCA).  The most common c-ANCA 

antigen is proteinase 3 (PR3), primarily associated with WG [25, 26], while the most 

common p-ANCA antigen is myeloperoxidase (MPO), which is largely associated with MPA 

[27].  An atypical staining pattern can also be seen with the target antigens 

bacterial/permeability increasing protein, elastase and catalase [28], however they are not 

associated with vasculitic autoimmune diseases.  ANCA are present to a lesser degree in 

other autoimmune diseases such as Sjogren’s syndrome (target antigen is lactoferrin) [29] 

and ulcerative colitis (target antigen is cathepsin G) [30].  When immunofluorescence 

staining is combined with ELISA testing the specificity for ANCA small-vessel vasculitis 

(SVV) is 99% and sensitivity for WG is 73% [31]. 

An interesting feature of small-vessel vasculitides is the lack of immune deposits 

along the vasculature [32].  This lack of ANCA antibody deposits has made proving ANCA 

causation difficult.  Strong data supporting a role of ANCA pathogenesis have come from 

numerous in vitro and in vivo studies.  It was shown that ANCA activate neutrophils in vitro, 

causing the release of reactive oxygen species and primary granule contents [33].  Van 

Rossum et al. showed that only those neutrophils that express PR3 on their surface were able 
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Figure 1.1.  ANCA Staining of Human Neutrophils.   
Human neutrophils are fixed with ethanol before staining with patient sera and a FITC-
labeled secondary antibody.  (A)  cANCA staining pattern, showing a grainy, diffuse staining 
of the cytoplasm. The most common autoantigen resulting in a cANCA staining pattern is 
proteinase 3.  (B) pANCA staining pattern showing a perinuclear staining with little staining 
of the cytoplasm.  The most common autoantigen resulting in a pANCA staining pattern is 
myeloperoxidase. 
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to bind PR3-ANCA from Wegener’s patients in a dose-dependent fashion [34].  There is now 

evidence from experimental animal models that ANCA are pathogenic and can cause disease 

[35].  Xiao et al. injected MPO into MPO knockout mice and then transferred splenocytes 

from these animals into mice deficient in B and T lymphocytes.  Mice that received anti-

MPO splenocytes developed “severe necrotizing and crescentic glomerulonephritis, 

granulomatous inflammation, and systemic necrotizing vasculitis” [35].  While MPO-ANCA 

have been shown to be pathogenic, there is still no animal model to prove the same 

relationship with PR3-ANCA. 

 

PROTEINASE 3 

Proteinase 3 (PR3) was first described in 1975 by Dewald et al. [36] and further 

characterized by Kao et al. during research into whether granulocyte proteins other than 

elastase could be involved in emphysema formation in humans [37].  PR3, along with 

elastase and azurocidin, is part of a family of serine proteases whose genes are located in a 

cluster on chromosome 19 that are synchronously expressed in the early stages of 

granulopoiesis in the bone marrow [38].  PR3’s function is associated with a number of 

different cellular activities, including inhibition of NADPH oxidase [39], apoptosis [40], and 

myeloid differentiation [41].  PR3 is also expressed on the surface of neutrophils in the 

enzymatically active form, however, unlike the granule localized form, it is resistant to 

inhibition [42]. 

PR3 was identified as a major ANCA target autoantigen at approximately the same 

time by a number of different research groups [25, 43-45].  It has been shown that expression 

of both PR3 and MPO message is upregulated in ANCA patient neutrophils [46].  In 
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addition, the presence of PR3 on the surface of neutrophils has been correlated with disease 

activity [47].  Taken together, these data suggest that there is amble PR3 antigen available for 

interaction with ANCA to cause disease in patients. 

There appear to be multiple epitopes recognized by ANCA, and most of these are 

conformational epitopes [48].  Since there is little consensus on what epitopes are important 

on PR3, our research group became interested in epitope mapping PR3-ANCA.  To do this, a 

random peptide library in bacteria was produced using blunt-ended fragments of the PR3 

cDNA.  Since the fragments were blunt-ended, they could insert into the vector either in the 

correct orientation or in the “flipped” orientation, generating PR3 peptides or peptides off the 

antisense strand of the gene.  The expressed peptide fragments were then tested for reactivity 

with PR3-ANCA.  The results of these experiments showed that a subset of PR3-ANCA 

patients had antibodies not only to PR3, but also to a complementary protein expressed off 

the antisense strand of the PR3 gene, which is referred to as complementary PR3, or cPR3 

[49].  These unexpected findings led to a series of experiments and ultimately to the 

development of a new theory of autoimmune disease formation, the theory of autoantigen 

complementarity. 

 

COMPLEMENTARY PROTEINS 

Complementary proteins are the protein equivalent to complementary nucleotide 

sequences, that is, they are proteins or peptides expressed in-frame off complementary DNA 

or RNA strands.  The idea of complementary proteins was first introduced by Mekler in 1969 

[50].  He recorded that the active, dimeric form of ribonuclease A was held together by 

specific amino acid interactions.  He found that reading the complementary RNA encoding 
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one of the interacting polypeptides in the 5’ -> 3’ direction yielded the amino acid sequence 

of the other interacting chain.  Little work was done with regard to complementary proteins 

until Mekler’s ideas were reinvented by Biro [51] and Blalock/Smith [52] in the 1980’s.  The 

basic theory put forth by this group of scientists is that peptides and proteins that selectively 

bind to one another are encoded by in-frame codons on complementary DNA/RNA strands.  

This idea has also been given the term “sense-antisense” that describes the proteins being 

encoded by sense and antisense nucleotide strands.  Due to the degeneracy of the genetic 

code, there are multiple antisense partners for most amino acids (Table 1.1). 

Based on the Mekler definition of complementary amino acids, a hydrophobic amino 

acid is always encoded opposite a hydrophilic partner [50, 52].  Thus, theoretically, for 

complementary proteins to interact it would require hydrophobic and hydrophilic amino 

acids to interact.  While intuitively this seems rather unappealing, there is some evidence to 

support this arrangement.  For example, leucine and lysine have been shown to interact 

spontaneously in solution [53].  It has also been suggested that binding between 

complementary proteins could be caused by the interactions between the hydrophobic side 

chains and the hydrocarbon backbone supporting the polar residues of their complementary 

partner [54, 55].   A model for the side-chain packing of glutamic acid and leucine has also 

been reported [56]. 

While there is no agreed upon explanation for why complementary proteins interact, 

there are numerous examples of interactions in the literature [57].  Jones was the first to 

perform experiments with complementary peptides [58].  He designed peptides to be 

antisense to the C-terminal portion of gastrin and all peptides produced, except for one, were
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Table 1.1.  Sense and Antisense Codon Table.  

 Codon 
5' -> 3' 

AS* Codon
5' -> 3'

Codon 
5' -> 3' 

AS Codon
5' -> 3'

Alanine A GCT AGC Serine S Leucine L TTA TAA Stop -
GCC GGC Glycine G TTG CAA Glutamine  Q
GCA TGC Cysteine C CTT AAG Lysine K
GCG CGC Arginine R CTC GAG Glutamate E

CTA TAG Stop -
CTG CAG Glutamine  Q

Arginine R CGT ACG Threonine T Lysine K AAA TTT Phenylalanine F
CGC GCG Alanine A AAG CTT Leucine L
CGA TCG Serine  S
CGG CCG Proline  P Methionine M ATG CAT Histidine H
AGA TCT Serine  S
AGG CCT Proline  P Phenylalanine F TTT AAA Lysine K

TTC GAA Glutamate E

Asparagine N AAT ATT Isoleucine I Proline P CCT AGG Arginine  R
AAC GTT Valine V CCC GGG Glycine G

CCA TGG Tryptophan W
Aspartate D GAT ATC Isoleucine I CCG CGG Arginine  R

GAC GTC Valine V

Cysteine C TGT ACA Threonine T Serine S AGT ACT Threonine T
TGC GCA Alanine A AGC GCT Alanine A

TCT AGA Arginine  R
TCC GGA Glycine G

Glutamic Acid E GAA TTC Phenylalanine F TCA TGA Stop -
GAG CTC Leucine L TCG CGA Arginine  R

Glutamine Q CAA TTG Leucine L Threonine T ACT AGT Serine S
CAG CTG Leucine L ACC GGT Glycine G

ACA TGT Cysteine C
ACG CGT Arginine R

Glycine G GGT ACC Threonine T Tryptophan W TGG CCA Proline P
GGC GCC Alanine A
GGA TCC Serine S Tyrosine Y TAT ATA Isoleucine I
GGG CCC Proline P TAC GTA Valine V

Histidine H CAT ATG Methionine M
CAC GTG Valine V Valine V GTT AAC Asparagine N

GTC GAC Aspartate D
Isoleucine I ATT AAT Asparagine N GTA TAC Tyrosine Y

ATC GAT Aspartate D GTG CAC Histidine H
ATA TAT Tyrosine Y

* AS = antisense

Amino Acid Amino Acid
AS

Amino Acid
AS 

Amino Acid
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biologically active.  Bost et al. produced a complementary peptide to adrenocorticotropin 

hormone (ACTH) by reading the antisense nucleotide sequence in-frame in the 5’->3’ 

direction.  This peptide, which they termed HTCA, bound to ACTH with high affinity [59].  

Ghiso et al. suggested that the interaction between cystatin C, a cysteine proteinase inhibitor, 

and complement C4 is mediated by segments coded by complementary DNA sequences of 

the two proteins [60].  Much of the work thus far involving complementary peptides has been 

with receptor-ligand interactions, for example with angiotensin II [61] and human follicle 

stimulating hormone (FSH) [62].  However, it should be noted that there is a lot of 

controversy surrounding the validity of complementary protein interactions and much of the 

data generated thus far has been debatable and contradictory [63, 64]. 

Since the idea of hydrophobic and hydrophilic amino acids interacting is so 

intellectually unappealing, Blalock hypothesized that complementary peptides would assume 

complementary shapes due to the “inverse forces” working on each peptide due to their 

inverted hydropathic profile.  He suggested that it is hydropathic complementarity that is 

driving the specific interactions between complementary peptides, not specific interactions 

between amino acids with opposing hydropathies.  His ideas have been formally put forth as 

the molecular recognition theory (MRT) [65].  Furthermore, Blalock and coworkers 

suggested that the idiotypic network theory, said to be composed of complementary cellular 

interactions that regulate the immune system, results from complementary shapes brought 

about by complementary hydropathic profiles [66]. 
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IDIOTYPIC NETWORK THEORY 

Neils Jerne theorized that the immune system is composed of a large network of 

interacting antibodies and receptors [67].  He postulated that an antibody molecule contains a 

paratope, or antibody combining site, that itself is composed of idiotopes, or epitopes 

displayed by the variable regions of antibodies.  Thus, the paratope and idiotopes are 

expressed together and are dependent upon the primary sequence of the antibody variable 

region.  It is these idiotopes, a group of which is called an idiotype, that are recognized by 

other antibodies in the immune system.   

If an antigen is introduced to the immune system, there will be a response by a group 

of antibodies.  The antigen combining sites on these antibodies will contain unique sequences 

that are unfamiliar to the immune system, thus an immune response will be generated against 

these idiotypes.  Jerne theorized that these anti-idiotypic antibodies will bear the “internal 

image” of the original antigen.  He also believed that the idiotypic network would play a role 

in suppressing an antibody response that in turn would lead the entire system back to a state 

of equilibrium.  His idea’s were confirmed in a number of experiments by his research group 

that showed anti-idiotypic antibodies were produced in rabbits injected with immunoglobulin 

[68]. 

Jerne’s work has also been supported by a number of studies by other groups 

examining the nature of idiotypic interactions.  Braden et. al. produced a crystal structure of 

the monoclonal antibody D1.3 (that binds chicken egg-white lysozyme) binding to a 

monoclonal anti-idiotypic antibody E5.2 [69].  They showed that E5.2 and D1.3 had 

approximately the same topological and binding group mimicry as between D1.3 and 

lysozyme, supporting the idea that E5.2 carried the “internal image” of lysozyme.  Mimicry 
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of receptor/ligand interactions by anti-idiotypic antibodies has also been extensively reported 

[70]. 

 

IDIOTYPES AND AUTOIMMUNITY 

Idiotypic antibody interactions have also been reported in the study of a number of 

autoimmune diseases.  Shechter et al. found that mice injected with insulin developed 

antibodies not only to insulin, but to insulin receptor [71].  These anti-insulin receptor 

antibodies bound to insulin receptor, displaced already bound insulin, and mimicked the 

actions of insulin in stimulating the oxidation of glucose and inhibiting lipolysis.  The 

binding of anti-insulin receptor antibodies to insulin receptor could be blocked by anti-insulin 

antibodies suggesting the two antibodies formed an idiotypic pair.  To characterize these 

antibodies further, the group produced chemically altered insulin that did not bind to insulin 

receptor.  This altered insulin produced high levels of antibody, however no anti-idiotypic 

antibody that bound to insulin receptor was produced.  The group concluded that the epitope 

responsible for the specific idiotypic network was most likely the part of insulin recognized 

by the insulin receptor [72]. 

Anti-idiotypic antibodies were reported to be responsible for the therapeutic affects of 

intravenous immunoglobulin (IVIg) in the treatment of patients with ANCA vasculitis [73].  

To follow up on this observation, Jayne et al. searched for anti-idiotypic antibodies in 

patients with MPO-ANCA.  They found a reciprocal relationship between MPO-ANCA and 

anti-MPO-ANCA, i.e. when the MPO-ANCA level was high, the anti-idiotypic antibody 

level was low and vice versa [74].  The same group recorded a similar finding with regard to 

patients suffering from primary biliary cirrhosis.  These patients typically have anti-
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mitochondrial antibodies (AMA).  When a monoclonal antibody was raised to the E2 

complex of pyruvate dehydrogenase complex (the target antigen of AMA), it was able to 

bind anti-idiotypic antibodies from sera.  The specificity of these anti-idiotypic antibodies 

was shown by their ability to inhibit binding of AMA to mitochondria but not other 

autoantibodies to their respective autoantigens [75].  The group did not investigate whether 

these autoantibodies were involved in control of AMA.   

The study of myasthenia gravis (MG), an autoimmune disease characterized by 

antibodies to acetylcholine receptor (AChR), has resulted in a further understanding of the 

idiotypic network and how it relates to autoimmune disease.  Erlanger, et al. produced a 

highly potent agonist to acetylcholine receptor, BisQ, and utilized this compound in the study 

of antibodies to AChR.  They produced antibodies to BisQ and immunized rabbits with these 

anti-BisQ antibodies, the hypothesis being that the anti-anti-BisQ antibodies would mimic 

BisQ and bind to AChR and thus potentially cause disease.  Out of 5 rabbits immunized with 

anti-BisQ antibodies, 4 of them showed signs of MG [76].  In addition to showing signs of 

disease, the rabbits also exhibited anti-AChR antibodies by ELISA.  This work was followed 

up by immunization of mice with BisQ to allow the formation of anti-anti-BisQ antibodies to 

occur through the intact idiotypic network.  The researchers made hybridoma cell lines and 

screened for anti-anti-BisQ antibodies using their rabbit anti-BisQ antibody.  They found a 

very substantial “auto-anti-idioytpic” response (i.e. a high level of anti-anti-BisQ antibodies) 

[77].  At around the same time, and by accident, a second group identified anti-idiotypic 

antibodies to anti-AChR antibodies while working on an anti-AChR ELISA in humans with 

MG [78].   
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Erlanger et al. utilized the same strategy for the identification of anti-idiotypic 

antibodies in a patient with Grave’s disease, an ailment characterized by autoantibodies 

directed against thyroid-stimulating hormone (TSH) receptor.  Immunization of mice with 

both bovine and human TSH resulted in the production of hybridomas that produced anti-

TSH antibodies as well as anti-idiotypic antibodies.  The researchers then used one of the 

monoclonal anti-TSH antibodies (LE-4) to make an affinity column and passed human 

plasmapheresis fluid from a Grave’s disease patient over the column.  The eluted antibody 

inhibited the binding of LE-4 to TSH and also bound to the TSH receptor, thus showing the 

presence of anti-idiotypic antibodies in a human patient [79].   

Mice with experimental systemic lupus erythamatosus (SLE) have anti-double 

stranded (ds) DNA antibodies.  Since the idiotypic network has been hypothesized to control 

autoantibody reactivity, it was hypothesized that anti-anti-dsDNA antibodies would alleviate 

symptoms in SLE mice.  To test this, Shoenfeld et al. affinity purified anti-anti-dsDNA 

antibodies from IVIg (IVIg-ID) using an affinity column composed of anti-dsDNA 

antibodies isolated from 55 patients with active SLE.  They then treated mice with normal 

IVIg and IVIg-ID before and after the mice developed anti-dsDNA antibodies.  The mice 

treated with IVIg-ID had significantly lower proteinurea, a longer survival time and a 

decrease in  anti-dsDNA antibodies [80]. 

 

COMPLEMENTARY PROTEINS AND THE IDIOTYPIC NETWORK 

Since Jerne’s network theory presupposes a network of receptors and antibody 

combining sites with “complementary” shapes, and since peptides encoded by sense-

antisense strands of DNA were hypothesized to have complementary conformations, Smith et 

15 



al. tested whether antibodies to complementary peptides would interact in an idiotypic 

fashion [66].  To test this, they injected a rabbit with ACTH and a second rabbit with HTCA.  

They then isolated total IgG from both rabbits and showed that antibodies specific to ACTH 

from one rabbit bound to antibodies to HTCA from the other rabbit through their combining 

sites; they were an idiotypic pair.  This work was followed up by the same group using a pair 

of arbitrary complementary peptides [81]. Figure 1.2 gives a graphical representation of the 

relationship between complementary proteins and the idiotypic network. 

If anti-idiotypic antibodies can be derived from complementary peptides, one 

potential application for complementary peptides could be their use in treating autoimmune 

disease.  It follows that if anti-idiotypic antibodies could be induced, above the level already 

seen naturally in the disease, they could potentially block the action of harmful 

autoantibodies.  This has been shown to be the case in a rat model of MG, where both a 

monoclonal antibody to an antisense peptide (corresponding to the autoantibody binding site 

on acetylcholine receptor) and an antisense peptide itself have alleviated symptoms [82, 83]. 

The application of complementary peptides and the existence of an intact idiotypic 

network in human autoimmune disease was shown by Routsias et al. in the study of 

Sjogren’s syndrome and SLE [84].  Autoantibodies to La/SSB (ribonucleoproteins) are 

typically found in patients suffering from these diseases.  The group was investigating 

whether patients had anti-idiotypic antibodies to antibodies specific for known determinants 

on La/SSB.  They produced a complementary peptide to the known epitope on La/SSB using 

the deduced sequence from the non-coding strand of the La/SSB gene and demonstrated that 

patients had antibodies specific for both the known epitope as well as a peptide 

complementary to the epitope [84].  The group then injected mice with both La/SSB peptides
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Figure 1.2.  Complementary Proteins and the Idiotypic Network.   
Complementary proteins, expressed in-frame off sense/antisense nucleic acid strands, 
specifically interact.  Smith et al. showed that antibodies raised against a pair of 
complementary peptides (that interact) bind in an idiotypic fashion through their variable 
regions.  Pendergraft et al. expanded upon this work by showing injection of an antisense 
peptide resulted in production of antibodies to both antisense peptide and sense peptide, thus 
demonstrating an intact idiotypic network and its relation to complementary proteins. 
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(both sense and complementary) and showed that antibodies to La/SSB were produced in 

both sense and antisense-immunized animals [85].  They also devised a novel ELISA to 

unmask idiotypic antibody relationships that were interfering with their test.  In mice 

immunized with the complementary peptide they were initially unable to show a response to 

La/SSB protein.  They hypothesized that anti-complementary peptide antibodies were 

binding to anti-La/SSB antibodies. To circumvent this problem, they heated sera samples at 

55°C to disrupt antibody/antibody interactions and then added complementary peptide to 

block binding between the two antibodies.  The samples were re-tested and they showed that 

the mice immunized with complementary antibody did in fact have antibodies to La/SSB.  In 

addition, they were able to show that T-cell help was required for anti-idiotypic antibody 

development [86]. 

 

AUTOANTIGEN COMPLEMENTARITY 

The theory of autoantigen complementarity was conceived based partly on the fact 

that a subset of PR3-ANCA patients were shown to have antibodies that reacted with a 

recombinant, complementary-PR3 protein [cPR3(105-201)] [49].  In agreement with the results 

seen by Smith et al. [66], antibodies to PR3 were separate and distinct from antibodies to 

cPR3(105-201) and the two sets of antibodies bound in an idiotypic fashion.  In addition, mice 

injected with cPR3(105-201) developed not only antibodies to cPR3 but also antibodies to 

human PR3. 

The theory of autoantigen complementarity asserts that it is not the autoantigen, but a 

peptide or protein complementary to the autoantigen that drives autoimmune disease.  

Specifically, an antibody response against a protein complementary to an autoantigen triggers 
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an anti-idiotypic antibody response (in agreement with Jerne’s network theory).  This anti-

idiotypic antibody then reacts with the autoantigen resulting in autoimmune disease (Figure 

1.3). 

Where do complementary proteins come from?  The theory proposes that the 

complementary proteins could either be produced endogenously (by aberrant transcription 

and translation of antisense message) or introduced exogenously by a microbial pathogen.  In 

fact, there is evidence to support both of these routes.  There are a large number of antisense 

transcripts identified in the human genome [87], and in fact a protein encoded by the 

antisense strand of a ubiquitously expressed gene has been identified in kidney cancer [88].  

Antisense transcripts from the PR3 gene were found in 10 of 22 PR3-ANCA patients tested, 

while no antisense PR3 transcripts were found in a group of SLE patients or healthy controls 

[49].  In addition to being produced by the host, complementary proteins (or their mimics) 

could be introduced by microbes and/or viruses.  There are a number of bacterial and viral 

proteins that share sequence homology with proteins that are antisense to known autoantigens 

[89], including proteins from two microbes, Staphylococcus aureus and Entamoeba 

histolytica, which have homologies to cPR3(105-201) and have been most closely linked to the 

development of PR3-ANCA [90, 91].   

 

ANTIGENIC COMPLEMENTARITY AND THE DEFINITION OF COMPLEMENTARY PROTEINS 

Root-Bernstein et al. proposed the theory of antigenic complementarity to explain the 

induction of autoimmunity [92].  The theory posits that a pair of molecularly complementary 

antigens (where at least one of the antigens mimics a “self” protein) gives rise to a pair of  
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Figure 1.3.  The Theory of Autoantigen Complementarity.   
The theory posits that it is not the autoantigen, but a protein or peptide complementary to the 
autoantigen that drives autoimmune disease.  The antigen (shown in red) is introduced 
through either transcription/translation of endogenous antisense DNA or by a foreign 
pathogen.  This initiates the production of antibodies (Ab1, shown in blue).  Through the 
idiotypic network, Ab1 then causes the production of anti-idiotypic antibodies (Ab2, shown 
in red) that in turn react with the autoantigen, in this case a protein expressed on the surface 
of neutrophils as in the case with ANCA disease.  This theory is predicated on the fact that 
the antigen and the autoantigen have complementary shapes that result in binding. 
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molecularly complementary immune responses that attack each other along with a tissue or 

organ in the body (Figure 1.4).  This theory is similar to the theory of autoantigen 

complementarity in that it proposes complementary proteins are involved in induction of 

autoimmune disease; however there is an important difference in how a complementary 

protein pair is defined.  The theory of autoantigen complementarity uses the Mekler 

definition of complementarity, that is, a peptide or protein produced, in-frame, from the 

antisense strand of the coding gene.  Root-Bernstein et al. define complementary proteins as 

those able to bind to each other (molecularly complementary surfaces) and capable of 

inducing the production of complementary antibodies (or T cells) that act like idiotype-anti-

idiotype pairs without the necessity of being encoded by sense-antisense codons [92].  Both 

definitions of complementarity are valid, with the Mekler definition being more stringent 

while the Root-Bernstein definition allows for a broader group of protein-protein pairs to be 

considered as complementary.  The theory of antigenic complementarity also proposes that 

the sets of complementary proteins are likely to be microbial and/or viral in nature, and 

requires that only if one of these proteins is sufficient enough to “self” does an autoimmune 

reaction occur.   

Some evidence exists to support antigenic complementarity.  Root-Bernstein et al. 

used the autoimmune disease idiopathic thrombocytopenia purpura (ITP) as a case study for 

their theory [92].  ITP is characterized by autoantibodies to platelet glycoprotein 1b (pgp 1b) 

and von Willebrand’s factor (VWF) [93].  pgp 1b and VWF bind to each other during the 

normal blood coagulation cascade and their binding regions have been well characterized 

(i.e., they are molecularly complementary) [94].  Root Bernstein et al. showed that antibodies 

to VWF bind to antibodies to pgp 1b (i.e., the molecular complementarity between the two  
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Figure 1.4.  The Theory of Antigenic Complementarity.   
The theory posits that it is a pair of molecularly complementary antigens that induce 
molecularly complementary antibody (or T-cell) responses, i.e. having an idiotypic 
relationship, but with both antibodies being idiotypic.  These complementary antibodies will 
bind to each other and their respective antigens to create circulating immune complexes.  
Each antibody will also treat the other as “nonself”, resulting in breakdown of the self-
nonself distinction and an immunological civil war will be initiated.  If one or both of the 
antigens are mimics of a self determinant then this civil war will spread to attack host tissue.  
Adapted from Root-Bernstein et al, Clin Dev Immunol 2006  
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proteins is reflected in the antibodies) [92].  They also showed that antibodies to 

cytomegalovirus (CMV) bound to antibodies to group A streptococcus (GAS), two infectious 

agents that have been associated with the onset of ITP [95, 96].  Proteins from CMV and 

GAS show significant homologies to both regions of VWF and pgp 1b that are involved in 

the binding of VWF and pgp 1b.  Lastly, antibodies to GAS bind antibodies to VWF, and 

antibodies to CMV bind antibodies to pgp 1b.  Taken together, these data fit their model; 

however showing this system functions in an animal model of disease is lacking. 

 

PROJECT GOALS AND OUTCOMES 

Knowing that patients have circulating antibodies to a protein complementary to PR3, 

we hypothesized that proteins complementary to PR3 could be purified and identified in vivo.  

Specifically, the objectives of the research presented here were to identify proteins that are 

complementary to PR3, to determine if these protein(s) had any functional or clinical 

significance, and whether these proteins could be implicated in the etiology of PR3-ANCA 

vasculitis.  The hypothesis was that proteins complementary to PR3 could be identified in 

either patient’s sera or tissue samples, these proteins would interact with PR3, and multiple 

patients would have antibodies specific to these complementary proteins. 

Chapter II of this dissertation discusses the discovery of complementary-PR3 proteins 

in PR3-ANCA patients.  One of the complementary proteins identified was plasminogen, a 

90 kDa protein that circulates as the immature form of plasmin, the serine protease 

responsible for fibrin clot dissolution.  Along with plasminogen, we discovered a microbial 

protein from Psuedomonas, Protein F, which reacted with our anti-complementary PR3 

antibody and was found in two separate PR3-ANCA patients. 
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Chapter III of the dissertation will discuss the identification of a novel autoantibody 

to plasminogen in a subset of PR3-ANCA patients.  These autoantibodies were not seen in a 

group of healthy control subjects, MPO-ANCA patients, or patients who had idiopathic 

thrombotic events.  The antibodies altered normal plasminogen activity in two separate in 

vitro assays.  In addition, these antibodies were found most often in patients who had 

suffered a thrombotic event. 

The dissertation will conclude with the epilogue, where the research will be discussed 

with what is currently known and future directions for additional research will be offered. 
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ABSTRACT  

We discovered that patients with PR3-ANCA vasculitis have antibodies reactive 

against a protein complementary to the autoantigen PR3 [cPR3(105-201)].  Investigations into 

the etiology and consequences of these anti-cPR3(105-201) antibodies led to the proposal that 

complementary proteins are involved in inciting autoantibody production, as described in the 

theory of autoantigen complementarity.  The present studies indicate that CD4+ TH1 cells 

from PR3-ANCA vasculitis patients (n = 26) versus healthy controls (n = 34) exhibit 

increased proliferation (P = 0.0014) and IFN-γ expression when stimulated with cPR3138-169 

peptide (P = 0.0002), but not a scrambled peptide (P = 0.6 and P = 0.3, respectively).  This 

response was not observed in T cells from MPO-ANCA patients.  Reactivity to smaller, 

overlapping fragments of cPR3(138-169) ruled out the possibility that cPR3(138-169) peptide 

functions as a superantigen.  Ranked linear regression analysis indicated a likelihood that 

anti-cPR3(105-201) antibodies and cPR3138-169-specific T cells coexist within an individual (P = 

0.009 ), consistent with an immunological history of an encounter with a complementary-

PR3 protein.  Consideration of potential contributions of complementary protein pairs in 

autoimmune diseases could revolutionize the approach for exploring pathogenic mechanisms. 
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INTRODUCTION  

 The concept of complementary protein pairs was first proposed by L.B. Mekler in the 

late 1960s [97, 98].  He proposed that information embedded within the genetic code could 

identify proteins that would pair in nature: proteins from sense codons bind proteins from 

their antisense codons.  Skeptics of the validity of this idea are gradually realizing that 

experimentally this works and many researchers have discovered protein partners by utilizing 

complementary sequences coded by antisense codons (reviewed in [57, 99]).  Of course, not 

all proteins that form complexes meet Mekler’s definition of a complementary pair.  

Researchers debate what characteristics truly constitute a complementary pair.  A recent and 

broader definition of a complementary pair states that two proteins are complementary if they 

are capable of stereospecific binding and inducing an idiotype-antiidiotype antibody 

response, thus eliminating the restriction of sense and antisense codons [92].  The 

mechanistic basis for the natural affinity for complementary protein pairs remains largely 

speculative [64, 92], however, it is thought that inverted hydropathy may be a driving force 

[52]. 

 We became involved in studying complementary proteins after an unanticipated 

observation that patients with PR3-specific antineutrophil cytoplasmic autoantibodies (PR3-

ANCA) had antibodies against a complementary-PR3 protein.  Follow-up on these initial 

observations required production of a recombinant complementary-PR3 protein, designed by 

inserting nucleotides 315 to 618 (size predetermined by STOP codons) of PR3 cDNA into a 

vector in a flipped orientation.  The recombinant complementary-PR3 protein, termed 

cPR3(105-201), represents the middle third of the sense-PR3 protein (aa 105-201).  cPR3(105-201) 

protein formed a complex with native PR3  blocking its proteolytic activity [49].  Using this 
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reagent, we proved that anti-cPR3(105-201) antibodies were unique and that they bound PR3-

ANCA to form an idiotypic pair.   

We put forward the theory of autoantigen complementarity, which proposes that 

inciting antigens for autoimmune diseases are not the autoantigens, but instead proteins 

complementary to the relevant autoantigens [49].  The first event is an antibody response that 

targets a complementary protein; subsequently this antibody triggers an anti-idiotypic 

response.  It is the anti-idiotypic antibody that targets the autoantigen.   

These earlier studies focused on complementary proteins and their antibody-

producing B cells.  To date, no one has purposefully searched in humans for T cells that 

respond to complementary protein counterparts of known autoantigens.  What has been done 

in PR3-ANCA disease is a search for PR3-specific reactive T cells, but with little 

satisfaction.  The problem has been the lack of statistical differences between patients and 

healthy controls [100-106].  These data raise the question of why on the one hand we can 

identify peptide-specific, disease associated-IgG antibodies [107], but on the other hand have 

difficulty identifing the corresponding peptide-specific T cells [108].  A new approach is 

needed, and investigations into the potential contributions of complementary proteins 

provides a novel alternative. In support, a report published in the year 2000 proposed that 

difficulties identifing disease-associated PR3-specific T cells could be explained if a protein 

complexed to PR3, and not PR3 itself, was what actually induced T cell help for PR3-

specific B cells [104].  One suggestion is that PR3 may be complexed with a 

“complementary protein”.  Complementary antigens can form a molecular complex [52, 109] 

and this complex could have a unique structure that appears foreign.  Thus, processing of 

such a complex might result in a range of primary antibodies and/or T cell reactive clones: 
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some against the antigenic complex and some biased towards the individual components.  

Albeit, immunological responses incited by a complementary protein not complexed to its 

sense counterpart must be equally considered at this point.  

If patients with PR3-ANCA have experienced an immunological encounter with a 

cPR3-like antigen, then the T cells involved in that encounter may still be present and 

identifiable.  Herein we establish the first human correlate between T cell responses and 

complementary proteins. 
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MATERIALS AND METHODS 

 

Patients  

All subjects gave written informed consent and participated in the study according to 

the guidelines of the UNC Institutional Review Board (IRB # 97-MED-44).  The study 

included 9 females/17 males; mean age 49.8 yrs (26-79 yrs); 3 blacks, 22 Caucasians, 1 

Asian (Table 1).  Mean of PR3-ANCA titers across samples was 51.7 (range: 3.2-170.0).  

Healthy controls were recruited on site for blood donations (n = 34).  The disease control 

group of seven MPO-ANCA patients included 5 females /2 males, mean age 45 yrs (21-65 

yrs), 1 black, 5 Caucasians and 1 Asian.  Limits on the amount of blood obtainable per 

donation required that the different methodologies in this study be done in tandem.  Twelve 

of 26 patients donated blood more than once during the study’s two-year period.  Studies for 

anti-cPR3(105-201) antibody reactivity required the use of banked sera samples.  Healthy 

control sera were from approved kidney transplant donors (n = 12).

 

Proteins and synthetic peptides  

Recombinant cPR3(105-201) protein was produced as previously described [49].  The 

sequence of the protein is: 

DAGLAARDESANVMWPAEEGDHGDIELLQDLGWGVVGTHAAPAHGQALGAVGH

WLVLLWQLDCGDGGTEVGWAAQLDEENVVQFVLRVVVVQKHLSHREVLLGGLLR

PHVVGSEHHVHQALGYVPQAVRGRQHEAG (cPR3(138-169) peptide underlined). 

Synthetic peptides from Alpha Diagnostic (San Antonio, TX) included: 

cPR3(138-169): N-DLGWGVVGTHAAPAHGQALGAVGHWLVLLWQL-C (32aa) 
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Fragment 1 - cPR3(138-153): N-DLGWGVVGTHAAPAHG-C (16aa) 

Fragment 2 - cPR3(146-161): N-THAAPAHGQALGAVGH-C (16aa) 

Fragment 3 - cPR3(154-169): N-QALGAVGHWLVLLWQL-C (16aa) 

Sense-PR3(138-169): N-QLPQQDQPVPHGTQCLAMGWGRVGAHDPPAQV-C (32aa) 

Scrambled peptide: N-LWAGDWVALGLGAWLAGLHVHAQTPHVQVGGL-C (32aa) 

Purchased PR3 (Wieslab AB, Lund, Sweden) was passed over an Extracti-Gel AffinityPak 

detergent-removing column (Pierce, Rockford, IL) and heat inactivated (HI) (100oC/10 min) 

[106] to linearize the protein [103].  Recall antigen mixture contained tetanus toxoid (2 

µg/ml) and diphtheria toxin (2 µg/ml) (LIST LABS, Campbell, CA), plus 15 µg/ml of 

candida (Allermed Lab, San Diego, CA).  Other agents: concavalin A (Con A) (1 µg/ml), 

phorbol 12-myristate 13-acetate (PMA) (25 ng/ml), and  ionomycin (1 µg/ml) (Sigma, St. 

Louis, MO). 

   

Cell stimulations 

Blood was collected into sodium heparin CPTTM Cell Preparation tubes (BD 

Vacutainer®, Franklin Lakes, NJ) and peripheral blood mononuclear cells isolated per 

instructions.  Stimulants included peptides (2-25 µg/ml), HI-PR3 (2-10 µg/ml), recall antigen 

mixture and either ConA or PMA plus ionomycin.  Peptide solvent dimethyl sulfoxide 

(DMSO) was added to controls.    

 

CFSE Assay 

Cytoplasmic proteins were fluorescently labeled with carboxy-fluorescein diacetate, 

succinimidyl ester (CFSE) (0.1 µM) for 15min (Molecular Probes, Eugene, OR, USA).  
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Subsequent proliferation in the absence of CFSE results in decreased fluorescence intensity 

by ½ with each cell division.  Cells were cultured at 1x106 cell/ml 6 days with proteins (10 

µg/ml) or peptides (25 µg/ml).  CD3+ cells were labeled with phycoerythrin (PE)-mouse anti-

human CD3 monoclonal antibody (BD PharMingen, San Diego, CA) and analyzed by 

FACScan linked to a CELLQuest software system (Becton Dickinson Immunocytometry 

Systems, San Jose, CA).  The cell division index (CDI) is based on 5000 CFSEbright CD3+ 

cells as previously described [110].  

 

CFSEbright/5000
CFSEdim treated

CFSEdim

CFSEbright/5000

untreated
CDI=

CFSEbright/5000
CFSEdim

CFSEbright/5000
CFSEdimCFSEdim treated

CFSEdim

CFSEbright/5000
CFSEdim

CFSEbright/5000

untreated
CDI=

 

 

 

Enzyme-linked immunospot assay (ELISPOT) 

Cells were plated at 2 x 106 cells/ml in 100µl in triplicate on MultiScreen 96-Well 

Filtration Plates (Millipore, Bedford, MA) and coated with anti-human IFN-γ monoclonal 

antibody (Pierce).  Treatments included peptides (5 µg/ml), HI-PR3 (2 µg/ml), recall 

antigens and Con A.  IFN-γ releasing cells were detected with biotinylated-mouse anti-

human IFN-γ antibody (Pierce) (2µg/ml), streptavidin (SouthernBiotech, Birmingham, AL) 

and AEC solution, containing a 3-amino-9-ethylcarbazole tablet, N,N-Dimethyformamide 

and hydrogen peroxide (Sigma).  Data were analyzed using ImmunoSpot reader, 

ImmunoSpot 3 software, version 3.2 (Cellular Technology Ltd., Cleveland, OH). 
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Intracellular cytokine production of CD4+ and CD8+ cells 

Cells (0.8x106/ml/well) were cultured with HI-PR3 (10 µg/ml) or peptides (5 µg/ml) 

for four days.  PMA and ionomycin (6 hrs) served as a positive control.  Brefeldin A (Sigma) 

was added (10 µg/ml) for 4hrs.  Cells were fixed using FACS Lysing Solution and FACS 

Permeabilizing Solution 2 (Becton Dickinson) and were labeled with FastImmune anti-

human IFN-γ FITC antibody (BD PharMingen) and anti-human CD4- or CD8-PerCP labeled 

antibodies (BD Immunocytometry Systems) and analyzed by FACScan. 

   

Detection of anti-cPR3(105-201) antibodies in sera by ELISA 

High-binding plates (Coster, Cambridge, MA) were coated overnight at 4oC with 

recombinant cPR3(105-201) protein (5 µg/ml).  Sera was added (1:100) and reactive antibodies 

were detected with alkaline phosphatase goat anti-human antibody (Chemicon, Temecula, 

CA) plus alkaline phosphatase Substrate (Bio-Rad, Hercules, CA, USA) and read on a 

VERSAmax microplate reader (Molecular Devices, UK).  Values are percent of positive 

control (rabbit anti-his-tag antibody) (Santa Cruz Biotech, Santa Cruz, CA, USA) compared 

to the mean plus two standard deviations of healthy controls.  

 

Statistical analysis 

The Wilcoxon rank sum test was used as a nonparametric alternative to the two-

sample t-test for analysis of T cell responses to compare patients and healthy controls.  

Ranked linear regression analysis was used to determine associations between 

complementary protein responsive T cells and reactive antibodies. 
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RESULTS 

 

Patient study group 

Patients with biopsy-proven PR3-ANCA vasculitis (n = 26) were identified through 

the Glomerular Disease Collaborative Network between January 2004 and June 2006 (Table 

2.1).  To avoid the potential of T cell anergy due to immunosuppressive therapies, the patient 

enrollment was limited to those in remission, slightly active disease on maintenance drugs, 

and newly diagnosed patients before aggressive treatment.  Based on the Birmingham 

Vasculitis Activity Score (BVAS) 2003, 25 samples were from patients in remission (BVAS 

= 0) and 17 samples were from patients with active disease (BVAS > 0) (Table 2.1).  

Because of limitations on the amount of blood obtainable per patient-donation, inclusion in 

the different analyses required that patients donate more than once during the study’s two-

year period. 

 

Proliferative response of cPR3  peptide reactive T cells (138-169)

If patients with PR3-ANCA vasculitis have experienced an immunological encounter 

with a complementary-PR3-like protein, they should possess T cell pools of previously 

activated, differentiated cells that now exist as long-lived memory cells.  The particular 

amino acid sequence of cPR3(138-169) peptide used in this study was first identified as an 

epitope of patients’ antibodies during a screen of a bacterial expression library [49].  This 

specificity was confirmed by mass spectrometry (data not shown).  CD3  T cell subsets from 

patients exhibited increased proliferation upon encounter with cPR3  peptide compared  

+

(138-169)
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Table 2.1.  Clinical and Demographic Characteristics of Patients 
 

 Patients 
(n = 26) 

Samples 
(n = 41) Sex Race Age 

(years) 
Clinical 

Diagnosis 
BVAS 
Score Treatment 

A 1 M W 31 WG 0 MMF 
  2         0 MMF 
  3         0 MMF 
B 1 M B 50 WG 0 AZA, GC  
  2         0 AZA, GC  
C   M W 58 CSS 0 AZA  
D   M W 42 MPA 0 MMF  
E   M W 72 WG 0 CYC, GC  
F   F W 47 MPA 0 MMF  
G 1 M W 69 WG 0 CYC, GC  
  2         0 AZA, GC  
H  1 (2 tests) F W 66 WG 0 GC  
I 1 M W 26 MPA 0 AZA, GC  
  2         0 AZA, GC  
J 1 M W 38 MPA 0 Off therapy 
  2         0 Off therapy 
K 1 M W 57 MPA 0 AZA  
  2         0 AZA  
L   M W 64 MPA 0 CYC  
M 1 (2 tests) M B 32 WG 0 Off therapy 
N   M W 26 WG 0 Off therapy 
O 1 F B 55 WG 3 AZA  
  2         3 AZA  
  3         0 AZA 
  4         3 AZA  
P 1 M W 34 WG 5 GC  
  2         1 MMF, GC 
Q 1 F W 79 MPA 2 MMF 
  2         0 MMF  
R 1 M W 59 WG 3 CYC   
  2         0 Off therapy 
S 1 (2 tests) F W 56 WG 7 AZA, GC  
T  F W 56 WG 6 MMF* 

U   M Other 31 WG 5 MMF 
V   M W 47 WG 3 MMF, GC  
W   F W 26 WG 3 AZA, CsA  

X   M W 50 MPA 3 MMF, CsA, 
GC 

Y 1 F W 63 WG 12¶ CYC, GC 
  2         3 AZA, GC 
Z 1 F W 59 MPA 11¶ CYC, GC  
  2         0 MMF, CsA   

MMF: Mycophenolate Mofetil; CYC: Cyclophosphamide; AZA: Azathioprine 
GC: Glucocorticoids; CsA: Cyclosporine; WG: Wegener’s Granulomatosis  
MPA: Microscopic Polyangiitis; CSS: Churg Strauss Syndrome;  
¶Onset of disease  
*Status post Rituximab therapy 
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Figure 2.1. PR3-ANCA Patients T cells Respond to cPR3(138-169)

(A). A representative example of flow cytometric data; CD3+ T cells were gated and 
analyzed for the presence of a CFSEdim subset (upper left quadrant).  (B & C) Proliferative 
response of CD3+ T cells of vasculitis patients with PR3-ANCA, MPO ANCA and healthy 
controls (HC) after antigen stimulation. Combined data were plotted as cell division index 
(CDI). Solid horizontal lines indicate mean values. Comparisons between groups were done 
using the Wilcoxon Ranked Sum Test.  (D) Positive T cell response to recall antigen  
coincident with non-responsiveness to KLH indicates responding cells are memory cells 
versus naïve cells. 
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to healthy controls (n = 13) (Wilcoxon rank sum test, P = 0.0014) (Figure 2.1B).  A 

proliferative response to heat-inactivated-PR3 was detected in patients (P = 0.01) (Figure 

2.1C), although no differences were found upon encounter with sense-PR3(138-169) peptide (P 

= 0.09).  The CDI of responses to recall antigens was also similar comparing 9.4 ± 5.3 versus 

controls 11.0 ± 11.5 (P = 0.79).  The percent of background proliferation was similar 

comparing patients (3.0 ± 4.2) versus controls (2.0 ± 2.0). 

The proliferative response to cPR3(138-169) peptide occurred without additional 

costimulation with cytokines, suggesting that these T cells had a memory cell phenotype 

[111].  Indeed, no significant proliferation in response to KLH was detected in two PR3-

ANCA patients and seven MPO-ANCA patients (mean CDI: recall antigens = 6.55 ± 8.9; 

KLH = 1.10 ± 0.49) (Figure 2.1D), indicating that under the culture conditions used only 

previously primed but not naïve T cells are detected. 

 

T cells produce IFN-γ in response to cPR3(138-169) peptide 

cPR3(138-169)  stimulated an IFN-γ response in patients’ T cells but not in cells from 

healthy controls (Wilcoxon rank sum test, P = 0.0002) (Figure 2.2A).  Patient responses to 

sense-PR3(138-169) peptide was comparable to healthy controls (P = 0.12) as was the responses 

to PR3 (P = 0.19) and scrambled cPR3(138-169) peptide (P = 0.35) (Figure 2.2A).  There was a 

tendency for patients’ samples to be less responsive to the recall antigen controls, a reflection 

of their generally poor state of health and use of a variety of medications; however, 

statistically there was no difference between patients and healthy controls (Figure 2.2B).  

Dose-dependent responses of three of these patients versus healthy controls confirmed the  
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Figure 2.2.  PR3-ANCA Patient T cells Produce IFN-γ in Response to cPR3(138-169)

(A)  T cell IFN-γ production in response to antigens.  ANCA vasculitis patients (Pts) and 
healthy controls (HC) were analyzed for cytokine production by ELISPOT.  Results show 
increased responses in Pts against the cPR3(138-169) peptide (data indicate spot number with 
antigen minus spot number without antigen).  (B)  Responses to recall antigens (mixture 
containing tetanus toxoid, diphtheria toxin, and candida).  (C)  Dose- dependent specificity of 
response to cPR3(138-169) peptide. Results are shown as mean spot number with antigen 
divided by mean spot number without antigen.  Three patients (open symbols) and three 
healthy controls (closed symbols) were analyzed for IFN-γ release by ELISPOT in varying 
concentrations of peptide.  (D)  CD4+ T cells were the IFN-γ responsive cells.  Data represent 
the mean increase of treated cells compared to untreated of patients and healthy controls. 
Comparisons between groups were done using the Wilcoxon Ranked Sum Test. 
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specificity of an IFN-γ-response to this peptide (Figure 2.2C).  The cPR3(138-169) peptide IFN-

γ-responders were of the CD4+ subset with a mean increase in patients of 5.3 ± 3.5-fold 

compared to healthy controls at 1.9 ± 0.75 (Wilcoxon ranked sum test, P = 0.005) (Figure 

2.2D).  IFN-γ-positive CD8+ cells were not increased (mean of 1.3 ± 1.02) compared to 

healthy controls (mean of 1.5 ± 0.67) (P = 1.0) (Figure 2.2D). 

 

Specificity of responses to fragments of cPR3(138-169) peptide 

cPR3(138-169) peptide bears some homologies to a number of bacterial proteins [49], 

and it was questioned whether this 32aa peptide had characteristics similar to a pathogen-

derived superagonist.  Three 16aa overlapping peptide-fragments were tested for stimulatory 

characteristics with the supposition that superantigen-like sequences would bias reactivity 

toward one fragment.  IFN-γ responses were random i.e., no cPR3(138-169) specific sequences 

common to all of patients (Table 2.2).  Of healthy controls (n = 12), nine individuals’ T cells 

were non-reactive, while two had greater than five spots on the assay against fragment 1 and 

one reacted with fragment 2.  The data indicate that cPR3(138-169) is not a superantigen. 

 

Individual variability among longitudinal samples   

A graphical representation of each patient’s T cell responsiveness over time provides 

a look at the potential for variable outcomes (Figure 2.3A).  Patient A was positive in all 

three assays with the proliferation studies (2004), FACS (2005), and ELISPOT (2006).  

However, patient K was negative in 2004 for proliferation, and positive in 2005 for 

ELISPOT assay.  Explanations for variability are not obvious as both patients were in 

remission and drug regimens remained consistent.  Statistical comparisons of individuals in  
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Table 2.2.  Responses to cPR3(138-169) Peptide Fragments 

Patients 
**Spot 

number 
cPR3138-153 

(Fragment 1) 

**Spot 
number 

cPR3146-161 

(Fragment 2) 

**Spot 
number 

cPR3154-169 

(Fragment 3) 
B 72.6 6.6 24.2 
T 29.0 17.0 12.0 
V 18.0 ≤untreated 14.0 
R 9.0 5.4 5.4 
A 6.8 2.5 2.5 
U 5.5 3.5 ≤untreated 
P 2.5 ≤untreated ≤untreated 
O 32.2 41.5 41.5 
J 5.5 10.5 2.1 
D 6.8 9.8 17.3 
Q 26.0 16.0 29.0 
C 1.3 0. 5 5.8 

Controls    
H-A ≤untreated ≤untreated ≤untreated 
H-B 1.3 ≤untreated ≤untreated 
H-C ≤untreated ≤untreated ≤untreated 
H-D 7.3 4.7 2.0 
H-E ≤untreated ≤untreated 1.5 
H-F ≤untreated 2.0 ≤untreated 
H-G ≤untreated ≤untreated ≤untreated 
H-H ≤untreated ≤untreated ≤untreated 
H-I 4.5 25.5 ≤untreated 
H-J 12.5 0.5 2.5 
H-K ≤untreated ≤untreated ≤untreated 
H-L 1.5 ≤untreated 1.0  

**The ELISPOT data are expressed as positive spots of treated wells minus spots on 
untreated wells.  
 
  cPR3(138-169) DLGWGVVGTHAAPAHGQALGAVGHWLVLLWQL 
  Fragment 1 DLGWGVVGTHAAPAHG 
  Fragment 2                         THAAPAHGQALGAVGH 
  Fragment 3                                                QALGAVGHWLVLLWQL 
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remission who showed a positive T cell response (BVAS = 0; 11 of 13) (patients A through 

N - Table 2.1) versus those who were not in remission (with BVAS score > 0; 10 of 13) 

(patients O through Z - Table 2.1) indicated an equal distribution within the two groups 

(Fisher’s exact test P = 0.99).  Moreover, statistical comparisons of samples taken at times of 

remission (n = 25), compared to active disease (n = 16) (Table 2.1; Figure 2.3B) gave similar 

results showing an equal distribution of responders and non-responders (Fisher’s exact test, P 

= 0.74).  The patients with high BVAS scores were newly diagnosed on medications for only 

a few days.  These patients responded to recall antigens and to cPR3(138-169) peptide.  Those 

patients on high dose – long duration medication failed to respond to recall antigen controls 

and thus were non-informative.  Other potential explanations such as type of medication 

(Table 2.1) or environmental related factors were not identifiable.  Variability is inevitable 

and appears to be a common occurrence in studies of human subjects [104].  The validity of 

our results is substantiated by use of multiple methodologies and by repetitive patient 

samplings. 

 

Coexistence of cPR3(138-169)-specific T cells with cPR3(105-201)-specific antibodies 

A critical question concerning the functional consequences of cPR3(138-169) peptide-

reactive CD4+ TH1 cells is whether they were responsible for cPR3(105-201)-specific B cell 

maturation and antibody expression.  Specifically, of the patients studied for T cell responses, 

is there any evidence that, at some point in time, they had circulating cPR3(105-201)-specific 

antibodies?  Stored sera samples were analyzed for the peak value for each individual (which 

in reality may not be the true physiological peaks due to limited samplings).  Antibody 

reactivity was higher in patients calculated as percent of positive control (27.96 ± 21.20)  
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Figure 2.3.  PR3-ANCA Patient Sample Variability and its Relationship to BVAS Score 
(A)  Sample variability.  Detection of cPR3(138-169) peptide responsive T cells in patient 
samples donated over time during the course of the study for proliferative responses, FACS 
analysis of T cell subsets, and ELISPOT analysis for IFN-γ production.  Mean value of 
healthy controls (HC) for each assay shown for comparison. (B)  Evaluation of the effects of 
disease activity (based on BVAS score) on T cell responsiveness to cPR3(138-169) peptide. 
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compared to healthy individuals (15.59 ± 5.51) (Wilcoxon ranked sum analysis, P = 0.05).  A 

ranked linear regression analysis indicated a likelihood of P value 0.0086 that, if patients had 

cPR3(138-169) peptide reactive T cells, they would also have the reactive antibodies.  The data 

support the conclusion that a complementary-PR3 protein (or its mimic) was presented as a 

helper T cell epitope stimulating B cell maturation and antibody production. 
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DISCUSSION  

The approach of exploring complementary protein pairs in autoimmune diseases 

offers a “breakthrough” in understanding mechanisms of pathogenesis.  This is the first 

report of disease-related T cell responsiveness to a protein complementary to a known 

autoantigen.  These cPR3(138-169)-responsive cells were classified as CD4+-TH1 cells, which 

are capable of delivering signals for B cell maturation [112].  There was a significant 

correlation between the presence of anti-cPR3(105-201) antibodies and responsive T cells on an 

individual basis.  These data are consistent with a complementary-protein-specific 

component in immunological events of PR3-ANCA vasculitis autoimmune disease.   

A limitation when studying human T cells is that the only available sample is 

peripheral blood cells, unlike animial studies where spleens and lymph nodes are available.  

Using circulating cells, we found that the number of spots in the ELISPOT assay were less 

than published animal studies using spleens.  Others report similarly low numbers of spots 

from  human peripheral cells and propose this is expected for low-frequency reactive cells 

[113].  These are not unexpected as memory cells are thought to primarily reside in the 

spleen and peripheral lymphoid tissue, with low numbers of cells found in the circulation.  

Our efforts to expand the T cells in culture in order to increase the number of spots were 

unsuccessful. What is comforting is the degree of concordance between the proliferation 

studies and the ELISPOT assay with repetitive patient samplings.  Even with these 

limitations, we successfully demonstrated a strong statistically significant response in 

patients compared to healthy controls.  

A topic for discussion is why T cells specific for the PR3 autoantigen have been 

difficult to find at significant levels.  Clayton and coworkers designed a system to determine 
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whether PR3-specific B cells require T cell help to produce antibodies using peripheral blood 

lymphocytes culture system.  Their conclusions were that B cells from patients produce PR3-

antibodies through a T cell independent pathway or through some non-specific B cell 

stimulation [114].  Nonetheless, PR3-specific T cells are identifiable.  Consider for the 

moment that anti-idiotypic antibody processes are involved in the generation of PR3-specific 

antibodies.  This possibility was supported when mice immunized with cPR3(105-201) peptide 

developed not only anti-cPR3(105-201) antibodies, but also antibodies that reacted with human-

native PR3.  These mouse anti-human-PR3 antibodies produced a cytoplasmic-staining 

pattern on human neutrophils identical to that produced by patients’ PR3-ANCA.  Thus, in 

these mice the derivation of the anti-human-PR3 reactive antibody must have occurred 

through an anti-idiotypic response incited by human-specific complementary protein [49]. 

The anti-idiotypic process is initiated with a T cell and B cell response against a PR3-

complementary-protein.  Antibodies can regulate each other by suppressing or augmenting 

the immune reaction in a manner that would perpetuate autoimmune disease  [79, 115, 116].  

An antibody is immunogenic by virtue of its non-germiline-encoded antigen-binding site.  B 

cells are known to spontaneously display endogenous V region peptides on their HLA class 

II molecules and acivate CD4+ T cells [117, 118]. Display of immunoglobulin-derived 

peptides (idiotopes) on APC HLA-II molecules can occur by several routes.  Monocytes and 

dendritic cells phagocytize antigen-antibody complexes bound to surface Fc-receptors, and 

they directly phagocytize soluble antibodies through routine environmental sampling.  Host 

antibodies are then degraded and loaded onto HLA II molecules and displayed on the APC 

surface in a manner similar to foreign antigens [119].  Alternatively, B cells endocytose 

antigens that ligate to surface immunoglobulin (the B cell receptor) and process these 
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proteins for display on HLA-II molecules [120-122].  How can this information be 

incorporated into understanding PR3-ANCA generation?  Experimental evidence indicates 

that animals immunized with human complementary-PR3 protein not only develop 

antibodies reactive with the immunogen, but also development of human-specific PR3 

antibodies.  This has been observed in mice [49], rabbits, and chickens (unpublished data).  

Likewise, a research group who studies La/SSB-specific autoantibodies associated with 

Sjogren’s syndrome and systemic lupus erythematosus found that mice immunized with the 

autoantigen’s complementary-peptide-counterpart elicited antibodies against the immunogen 

and anti-idiotypic antibodies that reacted with the sense autoantigen [86].  It has been 

demonstrated in multiple autoimmunity animal models that anti-idiotypes, raised against 

autoantibodies, induced anti-anti-idiotypes that possessed characteristics of the initial 

autoantibodies and caused disease after immunization [123, 124]. 

A crucial question is the source of the actual complementary-PR3 proteins that 

triggered the immunological responses described here.  Ongoing studies are addressing this 

by probing for proteins from patient material that react with our antibodies from rabbits 

immunized with complementary peptides. The possibilities remain that it could be carried in 

by a microbe with proteins homologous to the complementary protein [89, 125] or that 

patients aberrantly transcribe and translate it [49].  Somewhat encouraging, we have detected 

antisense transcripts in patients using an antisense specific primer for the reverse 

transcriptase reaction and PCR [49].  Whether these transcripts are, or even can be, translated 

is unclear, although there are reports of translated antisense transcripts [126]. 

A recent review prosposed that “complementary proteins, which occur naturally, or 

result from cellular dysfunction, might be more common than recognized currently. This 
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implies that the role of complementary proteins in autoimmunity merits increasing 

investigation”[127].  Understanding when and how complementary proteins initiate 

autoimmune disease will depend on discovering where these proteins come from.  

Nevertheless, there is enough evidence to warrant a closer look. 
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ABSTRACT 

 Biophysical interactions of proteins complementary to one another can provide a 

practical approach for discovery of novel autoimmune responses.  Prior studies demonstrated 

that patients with anti-neutrophil cytoplasmic autoantibody small vessel vasculitis (ANCA 

SVV) mounted an immune response to proteins complementary to proteinase 3 (PR3).  The 

current study demonstrates that a strategy capitalizing on principles of protein 

complementarity lead to the discovery of novel complementary-PR3 proteins.  Plasma 

proteins from PR3-ANCA patients were analyzed for proteins complementary to PR3 by 

chromatography, SDS-PAGE, western blot analysis and mass spectrometry.  Plasminogen 

and Protein F from pseudomonas were identified as putative complementary-PR3 proteins.  

Plasminogen is a substrate of PR3, indicative of interaction between these two proteins.  In 

prior studies, immunization of mice with complementary-PR3 protein resulted in antibodies 

produced not only to complementary-PR3 but to human PR3 as well.  These antibodies were 

shown to bind through their variable region; they were an idiotypic pair.  A rabbit immunized 

with PR3 developed antibodies not only to PR3 but to plasminogen as well through the 

idiotypic network.  Antibodies to PR3 were purified from chicken immunized with cPR3(138-

169) peptide, demonstrating an intact idiotypic network that can function in either direction.  

Anti-cPR3(138-169) antibodies were shown to stain normal human leukocytes, cells that are 

known to bind large quantities of plasminogen.  These studies demonstrate that the principles 

of protein complementarity can be utilized for the identification of previously unknown 

complementary proteins. 
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INTRODUCTION 

Biochemical properties of complementary protein pairs and their respective 

antibodies are thought to contribute to autoimmunity.  A serendipitous discovery by our 

research group, that patients with proteinase 3 (PR3)-specific anti-neutrophil cytoplasmic 

autoantibodies (PR3-ANCA) also had antibodies against a protein coded by the antisense 

strand of the PR3 cDNA [cPR3(105-201)], led to the proposal that autoantigen complementarity 

is an underlying mechanism of this autoimmune disease [49].  The implications are that 

molecular complementarity approaches will lead to identification of other, and perhaps 

proximal, antigens in autoimmune disease.  The goal of the present study was to isolate and 

identify a protein/s from patients’ plasma that might have given rise to these anti-cPR3105-201 

antibodies.  

 The principles of complementary protein chemistry were first put forth in the 1960s 

proposing that a protein translated 5′  3′ from antisense RNA is a complementary 

counterpart of the protein coded by the sense RNA and that these two proteins have a natural 

affinity for binding [50, 98].  Since that time, investigators have repeatedly demonstrated this 

phenomenon exists [52, 99, 128].  A recent review cites numerous studies proving that sense 

proteins and their complementary counterparts have a natural affinity, and that increasing 

affinity correlates with increasing peptide length [57].  The concept of complementarity has 

been extended to explain antigen-antibody binding proposing that the variable region of an 

antibody is chemically complementary to its antigen [66, 81, 129]. Further extrapolations 

suggest that antibodies reactive with a sense protein and antibodies reactive with the 

respective complementary protein are complementary to each other and have an affinity for 

binding.  This respective antibody pair is theorized to form an idiotypic pair [81].  In 
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conjunction, for over two decades, the idiotypic network has been implicated to be a 

component of autoimmunity by multiple researchers [79, 80, 116, 123, 124]. 

Of the autoimmune diseases we study which affect the kidney, one of the most 

profound is glomerulonephritis caused by ANCA specific for the neutrophil granule proteins 

PR3 or myeloperoxidase (MPO) [12, 33].  ANCA activate neutrophils and monocytes 

causing inappropriate release of granule constituents thus causing injury to vessel walls, in 

particular, the glomerular capillaries of the kidney and alveolar capillaries of the lung [21].  

In efforts to gain insights into disease causation, we propose to identify the antigen(s) that 

gave rise to antibodies reactive with cPR3(105-201) recombinant protein found earlier in this 

patient group.  Because plasmapheresis is often a treatment of choice, protein-rich material 

from acutely active patients was available for probing for putative cPR3 proteins.  

Plasminogen and Protein F from Pseudomonas were shown to be reactive with chicken and 

rabbit anti-cPR3(138-169) antibodies.  Anti-PR3 antibodies were purified from a chicken 

immunized with complementary PR3 peptide, demonstrating an intact immunological 

idiotypic network in yet another species.  Plasminogen and PR3 were shown to interact; in 

fact plasminogen is a previously unrecognized substrate of PR3.  In addition, a rabbit 

immunized with human PR3 developed antibodies not only to PR3 but to plasminogen as 

well, further evidence of a complementary relationship between the two proteins.  Protein 

complementarity has been utilized to discover a novel protein-protein interaction and could 

provide a new means for identifying other such interactions. 
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MATERIALS AND METHODS 

 

Antigens/Antibodies/Reagents  

Complementary-PR3 peptide corresponding to PR3 residues 138-169 [cPR3(138-169)] 

(NH2-DLGWGVVGTHAAPAHGQALGAVGHWLVLLWQL-COOH) and the 

corresponding sense PR3 peptide [PR3(138-169)] (NH2-QLPQQDQPVPHGTQCLAM 

GWGRVGAHDPPAQV-COOH) were obtained from Alpha Diagnostic International (San 

Antonio, TX) with additional cPR3(138-169) peptide obtained from the University of North 

Carolina Peptide Synthesis Facility (Chapel Hill, NC).  Chicken serum and yolk specific to 

cPR3(138-169) were obtained from Alpha Diagnostic.  Rabbit serum specific to cPR3(138-169) 

was produced in house.  Proteinase 3 was obtained from Elastin Products (Owensville, MO); 

plasminogen was obtained from Haematologic Technologies (Essex Junction, VT); elastase 

was obtained from Sigma (St. Louis, MO).  We obtained rabbit antibody to histidine and goat 

antibody to plasminogen from Santa Cruz Biotech (Santa Cruz, CA); rabbit antisera to PR3 

from Weislab AB (Lund, Sweden); alkaline phosphatase (AP)-conjugated goat antibody to 

human and rabbit IgG, AP-conjugated donkey antibody to goat IgG, AP-conjugated rabbit 

antibody to chicken IgY, horseradish peroxidase (HRP)-conjugated goat antibody to human 

and rabbit IgG, HRP-conjugated rabbit antibody to chicken IgY from Chemicon (Emecula, 

CA).  Fluorescein isothiocyanate (FITC)-conjugated rabbit antibody to chicken and goat was 

obtained from Chemicon.  The alkaline phosphatase substrate kit was obtained from Bio-Rad 

Laboratories (West Grove, PA).  The SuperSignal chemiluminescent peroxidase substrate kit 

was obtained form Pierce Biotechnology (Rockland, IL).  Western blots results were 

visualized by exposure to Biomax XAR film (Kodak, Syracuse, NY). 
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Recombinant complementary-PR3 protein production  

We produced a recombinant, complementary-PR3 protein corresponding to PR3 

residues 105-201 [cPR3(105-201)] as previously described.  Briefly, antisense PRTN3 DNA 

(nucleotides 166-456; GenBank accession no. X55668) was ligated to a BM40 secretion 

signal peptide and a 6x histidine tag and inserted into pcDNA3.  Protein was expressed and 

secreted from HEK293 cells.  Protein purification was performed using a HisTrap HP 

column (GE Healthcare, Piscataway, NJ).  Cell supernate was applied to the HisTrap column, 

washed with 5 column volume’s (CV) of binding buffer (PBS with 20 mM histidine, pH 7.6) 

and protein was removed from the column with 5 CV of elution buffer (PBS with 0.5 M 

histidine, pH 7.6).  Protein elution was monitored by absorbance at 280 nm and verified by 

both ELISA and western blot using a rabbit anti-histidine antibody.  The recombinant protein 

was dialyzed into phosphate-buffered saline (PBS) and the concentration was obtained with a 

protein assay using the Bio-Rad protein assay dye reagent and pre-aliquoted BSA standards.   

 

Affinity purification of anti-cPR3(138-169) antibody   

We affinity purified antibody specific to cPR3(138-169) for use in ELISA and western 

blot experiments using a cPR3(138-169) affinity column.  cPR3(138-169) peptide was diluted to 1.0 

mg/ml in DMSO.  A HiTrap NHS-activated column (GE Healthcare) was washed with 6 ml 

of ice cold 1 mM HCl followed by addition of the cPR3(138-169) solution for 30 min at room 

temperature.  The column was then washed and deactivated with 6 ml of alternating high pH 

(0.5 M ethanolamine, 0.5 M NaCl, pH 8.3) and low pH (0.1 M acetate, 0.5 M NaCl, pH 4.0) 

buffer.  The column was sealed for 30 min after the second addition of high pH buffer and sat 
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at room temperature, Washing finished with 6 ml each of low pH, high pH and low pH 

buffer.  The column was stored in PBS (Invitrogen, Carlsbad, CA) with 0.1% NaN3. 

Antibodies specific for cPR3(138-169) peptide were affinity purified from immunized 

rabbit serum, chicken serum and chicken yolk.  The solutions were first filtered through a 

0.22 µm filter (Costar, Cambridge, MA) and then applied to the cPR3(138-169) column, the 

column was washed with 5 CV of PBS, and antibody was eluted with 0.1 M citric acid, pH 

2.5.  One ml aliquots were collected and antibody elution was monitored by absorbance at 

280 nm.  Antibody-containing fractions were neutralized immediately after elution with 100 

µl of 1.0 M Tris, pH 9.0.  The fractions were dialyzed into PBS overnight at 4°C. 

 

Purification of proteins from plasmapheresis fluid   

Use of human material was approved by the University of North Carolina-Chapel Hill 

Institutional Review Board and consent was obtained from all subjects.  All column 

chromatography was performed on a AKTA fast performance liquid chromatography (FPLC) 

instrument (GE Healthcare) with a Frac-950 fraction collector (GE Healthcare).  A 50 mL 

aliquot of plasmapheresis fluid (PLEX) was centrifuged at 3,000 x rpm to pellet insoluble 

material before filtering through a 0.22 µm filter (Costar).  Total IgG was removed by 

passage of plasmapheresis fluid over a protein G column (GE Healthcare), washing the 

column with 5 CV of PBS, and eluting IgG with 0.1 M citric acid, pH 2.5 in 1 mL fractions.  

Elution of IgG was monitored by absorbance at 280 nm and fractions containing IgG were 

immediately neutralized by addition of 100 µL of 1.0 M Tris, pH 9.0.  Total IgG was then 

dialyzed into PBS overnight at 4°C.  To adsorb out as much IgG as possible, PLEX was 

typically passed over the protein G column a minimum of 3 times.  No more IgG was 
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determined to be in the sample when the maximum protein absorbance during elution 

measured < 250 mAU.  IgG-depleted PLEX was then concentrated 2-fold using ICON 

concentrators (Pierce, Rockford, IL).  PLEX proteins were separated by passage of 3 mL 

aliquots over a Superdex 200 size exclusion column (GE Healthcare) and collection of 2 mL 

fractions.  Protein elution was monitored by absorbance at 280 nm and protein-containing 

fractions were tested for reactivity to anti-cPR3(138-169) antibody by ELISA.  Positive fractions 

by ELISA were pooled and further separated on a MonoQ ion exchange column (GE 

Healthcare).  Samples were applied to the column in binding buffer (20 mM Tris, pH 8.0) 

and eluted by addition of a linear gradient of elution buffer (20 mM Tris, 0.5 M NaCl, pH 

8.0). 

 

ELISAs showing PLEX proteins reactive to anti-cPR3(138-169) antibody 

High-binding 96-well plates (Costar) were coated with 50 µL of each protein-

containing size exclusion fraction overnight at 4°C and blocked 1 hour in fish gelatin buffer 

(20 mM phosphate, 150 mM NaCl, 1% fish gelatin (Sigma), 0.05% Tween-20, pH 7.6).  All 

subsequent steps were performed in blocking buffer and plates were washed 4 times with 

ELISA wash buffer (PBS plus 0.05% Tween-20) between each step.  Wells were exposed to 

rabbit or chicken anti-cPR3(138-169) antibody (diluted 1:250) for 2 hours at room temperature.  

Proteins reactive to the anti-cPR3(138-169) antibodies were detected after addition of alkaline 

phosphatase-conjugated species specific secondary antibody for 1 hour (diluted 1:5000) at 

room temperature followed by addition of alkaline phosphatase substrate.  Optical density at 

405 nm was measured every 15 minutes for 2 hours using a VERSAmax tunable microplate 
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reader (Molecular Devices, Sunnyvale, CA).  Positive fractions were determined visually by 

plotting absorbance versus fraction number.    

 

ELISAs to test patient reactivity to cPR3(105-201)  

High-binding 96-well plates (Costar) were coated overnight at 4°C with cPR3(105-201) (5 

µg/ml).  Plates were blocked by addition of PBS with 1% goat serum (Sigma) for 1 hour at 

room temperature.  All subsequent steps were performed in blocking buffer and plates were 

washed 4 times with ELISA wash buffer (PBS plus 0.05% Tween-20) between each step.  

Sera (diluted 1:100 in blocking buffer) were added for 2 hours at room temperature followed 

by AP-conjugated goat antibody to human IgG (diluted 1:10,000) for 1 hour.  Optical density 

(OD) at 405 nm was measured after alkaline phosphatase substrate addition using a 

VERSAmax tunable microsplate reader.  Rabbit antibody to histidine (diluted 1:100) served 

as a positive control.   Levels of anti-cPR3(105-201) antibody in sera were expressed as percent 

OD of sera to positive control.  Sera were considered positive when values exceeded the 

mean plus 2 standard deviations of healthy control subjects. 

 

Western blot analysis of patient plasmapheresis proteins 

Patient PLEX fractions from the size exclusion column that were reactive with the 

anti-cPR3(138-169) antibody were further evaluated by western blot.  Twenty-five microliters of 

each fraction were combined with 8 µl of 4x SDS loading buffer and separated by 4% 

stacking, 10% separating SDS-PAGE.  Proteins were then transferred to nitrocellulose 

(Whatman, Dassel, Germany), dried for 30 minutes to cross-link the proteins, blocked with 

10% Blotto (Bio-Rad), and probed with primary and HRP-conjugated secondary antibody.  
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Reactivity was visualized by addition of SuperSignal substrate and exposure of the blots to 

Biomax XAR film. 

 

Protein identification by mass spectrometry 

An aliquot of ELISA-positive fractions was separated by SDS-PAGE and stained 

with coomassie R-250 (0.1% coomassie R-250 (Bio-Rad), 10% acetic acid (Fisher Scientific, 

Pittsburgh, PA).  Protein bands reactive with anti-cPR3(138-169) antibody by western blot were 

then excised from the gel and subjected to in-gel tryptic digest.  The digested fragments were 

then applied to matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass 

spectrometry (MS) and identification was performed by database searching of identified 

peptides to a theoretical tryptic digest of the Swiss-Prot database.  Identification of peptides 

was confirmed by MS/MS analysis. 

 

Proteolysis assay 

PR-3 (3.7 µM) was incubated with plasminogen (0.4 µM) for 90 min at 37ºC in PBS.  

The reaction was stopped by addition of 4x reducing or non-reducing SDS loading buffer.  

The sample was separated out by SDS-PAGE, fixed with fixing solution (25% isopropanol, 

10% acetic acid) and stained with coomassie R-250 (0.1% coomassie R-250, 10% acetic 

acid).  Elastase (0.4 µM) was incubated with plasminogen as a positive control while 

plasminogen alone was used as a negative control. 
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Flow cytometry analysis of normal human leukocytes 

 We determined whether the anti-cPR3(138-169) antibodies would react with normal 

leukocytes before attempting to identify putative complementary-PR3 proteins in patient 

cells.  Fresh blood was obtained from healthy donors in Becton Dickinson vacutainer tubes 

K3 EDTA (purple top) (Franklin Lakes, NJ).  Fifty microliters of blood was aliquoted to a 15 

ml tube.  Two ml of 1X lysing solution was added to each blood aliquot, the samples were 

mixed by shaking the tube and the samples then sat at room temperature for 10 min.  The 

solution was spun at 500 x g for 5 min.  The supernate was aspirated off while not disrupting 

the cell pellet, with approximately 100-200 µl of solution left over.  Next, 500 µl 1X 

permeabilizing solution was added per tube, the tubes were vortexed briefly and they were 

left to sit at room temperature for 10 min.  The cells were then pelleted by spinning at 500 x 

g for 5 min.  The supernate was poured off, and the tubes were set upright with 

approximately 100 µl of solution left over.  The chicken anti-cPR3(138-169) antibody was 

added so the final concentration was 0.1, 1 and 5 µg/ml.  After addition of antibody, the 

samples sat at room temperature for 30 min.  When the incubation was complete, 2 ml of 

wash buffer was added to each tube and pipetted up and down.  The cells were then pelleted 

by spinning at 500 x g for 5 min.  The supernate was poured off and 1 µl of FITC-conjugated 

rabbit antibody to chicken was added to each tube.  The tubes were covered with aluminum 

foil and let sit at room temperature for 30 min.  Two ml of wash buffer was added and the 

tubes were spun at 500 x g for 5 min.  The supernate was poured off and 500 µl of 1% 

paraformaldehyde was added to each tube.  The stained cells were analyzed using a FACscan 

flow cytometer linked to a CellQuest software system (Becton Dickinson Immunocytometry 

Systems, San Jose, CA). 
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RESULTS 

 

A subset of PR3-ANCA patients have antibodies specific for cPR3(105-201)

 In order to determine in which patients to begin searching for complementary PR3 

proteins, it was first necessary to determine which of the patients in the PR3-ANCA positive 

patient cohort had antibodies to a complementary PR3 protein.  A recombinant, 

complementary PR3 protein corresponding to PR3 residues 105-201 [cPR3(105-201)] was 

produced and tested against 72 PR3-ANCA patient sera for reactivity by ELISA.  We found 

13 of 72 (18%) PR3-ANCA patients tested positive, as defined by a value greater than two 

standard deviations above the mean of 63 healthy controls, to this recombinant cPR3(105-201) 

protein (Figure 3.1).  Reactivity was expressed as OD of patient sera/OD of positive anti-His 

tag control.  These results are similar to what was previously reported by our research group 

[49], even though in that study they examined a smaller group of PR3-ANCA positive 

patients. 

 

Plasminogen is a serum protein recognized by anti-cPR3(138-169) antibodies 

We produced rabbit and chicken polyclonal antibodies specific for a 30-mer section 

of the recombinant cPR3 (corresponding to residues 138-169 of PR3, cPR3(138-169)) for use in 

identifying complementary PR3-like proteins in vivo.  Rabbit antibodies specific for cPR3(138-

169) were purified from total IgG while chicken antibodies specific for cPR3(138-169) were 

purified from serum and egg yolk with a cPR3(138-169) peptide affinity column.   
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Figure 3.1.  PR3-ANCA Patients React with cPR3(105-201). 
PR3-ANCA patient (n = 72) and healthy control (n = 63) sera were screened for reactivity to 
a complementary PR3 protein corresponding to PR3 residues 105-201 [cPR3(105-201)].  Data 
plotted is OD as a percentage of a positive control rabbit antibody to histidine.  The mean 
value of the healthy controls is 19% (dashed line).  All values above the mean plus two 
standard deviations of the healthy controls are considered positive (35%, solid line).  A total 
of 13 of 72 (18%) patients were positive, compared with 6 of 63 (9.5%) healthy controls.   
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We searched for complementary PR3 proteins in plasmapheresis fluid, from a patient 

who tested positive for anti-cPR3(105-201) antibodies, by performing a series of 

chromatographic separations.  The purification scheme was as follows: (1) IgG removal 

using a protein G affinity column, (2) size-exclusion chromatography of IgG-depleted 

plasmapheresis fluid, and (3) MonoQ ion-exchange chromatography of fractions that were 

reactive with the anti-cPR3(138-169) antibodies.  We tested the size exclusion fractions for 

complementary PR3-like proteins by ELISA using the rabbit and chicken cPR3(138-169)-

specific antibodies.  Figure 3.2A shows the peak of reactivity seen when PLEX fractions 

were probed with rabbit antibody along with a western blot of those reactive fractions 

indicating that the rabbit antibody reacted with three separate protein bands.  Those fractions 

reactive with the rabbit antibody were then pooled and placed over a MonoQ ion exchange 

column.  Figure 3.2B shows a coomassie stained gel of fractions off the MonoQ column with 

a corresponding western blot of the fractions.  The reactive protein bands were sent to the 

UNC-Duke Michael Hooker Proteomics Facility for identification.  The ~80 kDa protein 

band was identified as plasminogen, with the corresponding peptides identified by MS/MS 

inidicated in Figure 2.2B.  The ~40 kDa band was identified as β2-glycoprotein-1, with the 

corresponding identified peptides indicated.  The middle protein band could not be accurately 

identified on the coomassie stained gel and thus its identity is unknown. 

 

Protein F from pseudomonas reacts with chicken anti-cPR3(138-169) antibodies 

In order to optimize our chances of identifying complementary PR3 proteins, and to 

confirm results obtained with the rabbit anti-cPR3(138-169) antibody, we produced anti- 

cPR3(138-169) antibodies in chicken.  These antibodies were produced in two stages.   
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Figure 3.2.  Identification of Complementary-PR3 Proteins Using Rabbit Anti-cPR3
 Antibodies

(138-

169) . 
(A) Plasmapheresis proteins were fractionated by size exclusion chromatography and 
fractions 32-37 contained protein(s) reactive with rabbit anti-cPR3(138-169) antibodies by 
ELISA.  Western blot analysis identified three reactive proteins (~80 kDa, ~50 kDa, ~40 
kDa) using the rabbit antibody.  (B) Fractions 32-37 from the size exclusion column were 
pooled and further purified on a MonoQ ion exchange column.  The ~80, ~50 and ~40 kDa 
proteins were again eluted as determined by SDS-PAGE and western blot analysis.  The ~80 
kDa protein was identified as plasminogen by in-gel tryptic digest and mass fingerprinting 
while the ~40 kDa protein was identified as β2-glycoprotein-1.  The ~50 kDa protein could 
not be identified on the coomassie stained gel. 
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Initially, the chicken was injected with cPR3(138-169) peptide and approximately 3 weeks post 

injection serum was isolated from the chicken and shipped to our laboratory.  Anti-cPR3(138-

169) antibodies were purified from the serum using a cPR3(138-169) affinity column.  A second 

peptide injection was performed after serum isolation, and approximately 3 weeks post 

injection eggs were collected from the chicken and yolks were prepared by Alpha Diagnostic, 

Inc. and shipped to our laboratory.  The yolk was passed over the cPR3(138-169) peptide 

column and anti-cPR3(138-169) antibodies were isolated. 

The same size exclusion fractions that were tested by ELISA with the rabbit anti- 

cPR3(138-169) antibodies were then tested using chicken anti-cPR3(138-169) antibodies purified 

from serum after the first injection of cPR3(138-169) peptide into the chicken.  Figure 3.3A 

shows the reactivity by ELISA seen with the serum-purified chicken antibody.  Only one 

fraction appeared to contain protein(s) reactive to the chicken antibody, and when this 

fraction was evaluated by western blot there were reactive protein bands (Figure 3.3B).  The 

~26 kDa protein band was the only band visible by coomassie staining, and it was identified 

by mass spectrometry as Protein F from two different strains of Pseudomonas (Table 3.1).   

Plasmapheresis proteins were separated by size exclusion chromatography from an 

additional PR3-ANCA patient as well as a non-ANCA nephropathy patient to determine if 

Protein F could be identified in either of those two samples.  Figure 3.3C shows that the 

reactive protein band corresponding to Protein F is seen in the same fractions for both the 

additional PR3-ANCA patient tested as well as the non-ANCA nephropathy patient. 
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Figure 3.3.  Identification of Complementary-PR3 Proteins Using Chicken Anti- 
cPR3(138-169) Antibodies from Serum. 
(A)  Plasmapheresis proteins were fractionated by size exclusion chromatography and 
fraction 52 contained protein(s) reactive with chicken anti-cPR3(138-169) antibodies by ELISA.  
(B)  Western blot analysis identified multiple reactive proteins using the chicken antibody in 
fraction 52.  The only band identifiable by coomassie staining was the ~26 kDa protein band, 
which was subsequently identified by mass spectrometry as Protein F from two separate 
Pseudomonas strains (P. tolaasii, P. fluorescens).  The peptides identified in the 
Pseudomonas tolaasii protein are indicated in the blox. (C) Fractions from the size exclusion 
column were evaluated by western blot for two different ANCA patients and a non-ANCA 
nephropathy patient.  Fraction 52 was evaluated under both reducing and non-reducing 
conditions for ANCA patient 2.  The Protein F band is seen in samples from both ANCA 
patients as well as the nephropathy patient. 
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Table 3.1.  Identification of Protein F from Pseudomonas.  
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Chicken anti-cPR3(138-169) antibodies purified from yolk react with plasminogen 

Size exclusion fractions were also tested using chicken anti-cPR3(138-169) antibodies 

purified from egg yolk obtained after a second injection of cPR3(138-169) peptide into the 

chicken (Figure 3.4A).  Multiple reactive fractions were identified by ELISA, however when 

these fractions were pooled and analyzed by western blot, only one protein band was 

detected (Figure 3.4B).  This reactive protein band from pooled fractions group 1 was sent to 

mass spectrometry and was identified as a plasminogen fragment.  The fraction containing 

Protein F was not reactive with this anti-cPR3(138-169) antibody preparation. 

 

PR3 and plasminogen are complementary proteins 

Complementary proteins, as defined by Root-Bernstein, are theorized to interact and 

to give rise to idiotypic antibodies [92].  Since plasminogen and PR3 are not complementary 

proteins as defined by Mekler, that is they are not encoded by sense-antisense codons, we 

attempted to determine if PR3 and plasminogen fit the Root-Bernstein definition of 

complementary proteins.  If PR3 and plasminogen bind together, an expected result would be 

that PR3 would cleave plasminogen, based on a report that elastase, a close homolog of PR3, 

cleaves plasminogen [130].  Addition of PR3 to plasminogen resulted in cleavage of 

plasminogen (Figure 3.5A) indicating that these two proteins physically interact.  Elastase 

cleaves plasminogen to the anti-angiogenesis compound angiostatin, and PR3 derived 

fragments of plasminogen were similar in size to the elastase derived fragments, although the 

exact location of PR3 cleavage on plasminogen was not determined.   

A second expected result if plasminogen and PR3 are complementary proteins would 

be that production of antibodies to one of the proteins would lead to production of antibodies
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Figure 3.4.  Identification of a Complementary-PR3 Protein Using Chicken Anti-
cPR3  Antibodies from Egg Yolk(138-169) . 
(A)  Plasmapheresis proteins were fractionated by size exclusion chromatography and 
multiple fraction contained protein(s) reactive with chicken anti-cPR3(138-169) antibodies by 
ELISA.  (B)  Western blot analysis of the pooled elution fractions identified a reactive 
protein band in pooled fraction 1, while no other reactive proteins were detected.  The 
reactive protein band was identified as a plasminogen fragment by mass spectrometry. 
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against the other protein through the idiotypic netowork.  Our research group had previously 

shown that injection of cPR3(138-169) into mice resulted in the production of antibodies to not 

only cPR3(138-169) but also to PR3.  We decided to test this model in the opposite direction, 

i.e. would injection of PR3 result in production of antibodies to plasminogen?  

Plasmapheresis fractions were probed for the presence of PR3 using serum from a rabbit 

immunized with human PR3.  PR3 was not detected, however, the rabbit PR3-specific serum 

contained antibodies reactive with plasminogen (Figure 3.5B), in contrast to pre-immune 

serum that was non-reactive with both PR3 and plasminogen.  Presumably, these anti-

plasminogen antibodies were made through the idiotypic network as the rabbit had no 

exposure to human plasminogen.   

Lastly, we examined whether an intact idiotypic network was active in chicken 

immunized with cPR3(138-169).  We were able to isolate anti-PR3 antibodies from the same 

chicken immunized with cPR3(138-169) peptide using the corresponding PR3 sense peptide 

[PR3(138-169)].  We tested these antibodies’ reactivity to both cPR3(105-201) and PR3.  Anti- 

cPR3(138-169) antibodies, previously shown to react to plasminogen, bind to cPR3(105-201) but 

not with PR3 (Figure 3.5C).  Anti-PR3(138-169) antibodies purified from the cPR3(138-169) 

immunized chicken react with PR3 but not with cPR3(105-201).  This further confirms that the 

anti-cPR3/anti-plasminogen antibodies are a separate pool of antibodies from the anti-PR3 

antibodies.   In addition, since anti-cPR3(105-201) antibodies have previously been shown to be 

the idiotypic partner to anti-PR3 antibodies, it means that anti-PR3 and anti-plasminogen 

antibodies are idiotypic. 
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Figure 3.5.  Plasminogen and PR3 are Complementary Proteins.   
(A) Plasminogen was incubated with PR3 or elastase (known to cleave plasminogen to the 
anti-angiogenesis compound angiostatin) for 1 hour at 37°C.  The reaction was stopped by 
addition of non-reducing SDS sample buffer, the samples were separated by SDS-PAGE, and 
stained with coomassie R-250.  The results show cleavage of plasminogen by native PR3. (B) 
To determine if native PR3 was present in fractions from the size exclusion column, a 
western blot was performed utilizing serum from a rabbit immunized with human PR3.  The 
30 kDa PR3 protein band was not present in any fraction, however there was reactivity with 
the 80 kDa band identified as plasminogen. (C) The idiotypic network is active in chicken 
immunized with cPR3(138-169) peptide.  Chicken anti-cPR3(138-169) antibodies, purified using a 
cPR3(138-169) peptide columan and shown previously to react with plasminogen, react with 
cPR3(105-201) but not with PR3.  Anti-PR3 antibodies were purified from the same chicken, 
using a PR3(138-169) sense peptide, and these antibodies react with PR3 but not with cPR3(105-

201) or plasminogen. 
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Anti-cPR3(138-169) antibodies bind to normal human leukocytes 

 We attempted to search patient leukocytes for additional complementary-PR3 

proteins using our anti-cPR3(138-169) antibodies.  Before doing so, we determined if the 

antibodies would bind to normal leukocytes.  We isolated leukocytes from healthy donors, 

fixed and permeabilized the cells and then stained them with anti-cPR3(138-169) antibody 

isolated from chicken egg yolk before analyzing them by flow cytometry.  In addition, we 

stained the cells with anti-CD14 and anti-CD3 so that we could positively identify the 

monocytes and lymphocytes, respectively (Figure 3.6A).  The results show that the anti-

cPR3(138-169) antibody stains all leukocytes (Figure 3.6B).  These results were seen for two 

different concentrations of anti-cPR3(138-169) antibody.  Normal chicken IgY did not stain any 

of the cells.  After a literature search we discovered that plasminogen is known to bind to all 

leukocytes with relatively high affinity [131]. 
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Figure 3.6.  Anti-cPR3  Antibodies Bind to Normal Human Leukocytes(138-169) . 
(A) Normal human leukocytes were fixed and permeabilized before analysis by flow 
cytometry.  Cells were initially stained with anti-CD14 and anti-CD3 so that monocytes and 
lymphocytes could be positively identified.  Neutrophils and other granulocytes make up the 
group of cells colored in blue. (B) Normal human leukocytes were stained with normal 
chicken IgY or anti-cPR3(138-169) at two different concentrations.  Chicken anti-cPR3(138-169) 
antibodies stain all leukocytes, while normal chicken IgY and goat IgG do not stain. 
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DISCUSSION 

By capitalizing on complementary protein-protein interactions, based on the theory of 

autoantigen complementarity, we searched for proteins complementary to a known human 

autoantigen, PR3.  We began by identifying those patients who had circulating antibodies to 

a recombinant, complementary PR3 protein [cPR3(105-201)].  The fact that 18% of the PR3-

ANCA patients tested were positive for these antibodies is encouraging and supports the 

hypothesis put forth in the theory of autoantigen complementarity that a previous exposure to 

a complementary protein could have initiated the production of PR3-ANCA.  Previously, our 

research group had published that 7/34 (20%) PR3-ANCA patients tested positive for 

antibodies to cPR3(105-201), thus the results seen in this study were very comparable.   

Why do some PR3-ANCA patients have antibodies to a complementary-PR3 protein?  

There are at least two explanations available.  The first is that patients are in fact exposed to 

some type of complementary protein, be it produced endogenously or brought in 

exogenously, that results in antibody production and subsequent anti-idiotypic antibody 

production leading to an autoimmune reaction.  The second explanation is that these 

antibodies that react with the complementary protein are simply produced as a result of the 

idiotypic network and in fact are secondary to the production of PR3-ANCA.  As discussed 

in the Prologue, there are reports of anti-idiotypic antibodies from a host of autoimmune 

diseases, including SLE, MPO-ANCA vasculitis, MG and diabetes.  Smith et al showed that 

idiotypic antibodies are produced by complementary peptides, thus even if these anti-

complementary protein antibodies were produced secondarily to the PR3-ANCA it isn’t 

surprising that they would react to a contrived, complementary protein.  Alternatively, the 

presence of anti-idiotypic antibodies in those other autoimmune diseases could be support for 
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a wider application of the theory of autoantigen complementarity than just to ANCA 

vasculitis.  Since we only have serum available from patients after their diagnosis, it is nearly 

impossible to determine which antibody response came first.  Other investigators have 

utilized the United States Department of Defense serum repository, which contains over 30 

million serum samples collected over time from over 5 million armed forces members, to 

study when autoantibodies formed in those patients later diagnosed with an autoimmune 

disease.  Arbuckle et al used samples from 130 individuals in that repository and showed that 

antibodies to SLE antigens form years before a diagnosis of SLE is made in those individuals 

[132].  A study similar to that could be performed to determine if anti-complementary protein 

antibodies arise before the presence of autoantibodies and development of disease.   

We produced antibodies to cPR3(138-169) and using these antibodies we identified two 

putative, complementary-PR3 proteins in plasmapheresis fluid taken from two different PR3-

ANCA patients.  The discovery of these two proteins, plasminogen and Protein F, was 

surprising given that plasminogen is a ubiquitous protein with a prominent role in fibrinolysis 

in all individuals and Protein F is a bacterial protein that you would typically not expect to 

find circulating in human serum.  Neither of these proteins is encoded by the antisense strand 

of the PR3 gene and neither of these proteins has significant sequence similarity to cPR3(105-

201), thus they do not fit neatly into the theory of autoantigen complementarity.  However, 

given that an antibody raised to a complementary PR3 protein reacts with both of them 

means that there is some relationship present between those proteins and PR3. 

How does this theory of autoantigen complementarity work, and how can it be 

utilized to further discover initiating antigens in autoimmune diseases?  The presence of 

complementary proteins has long been described.  Mekler noted in the 1960’s that proteins 
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translated off the sense and anti-sense RNA strands in the same reading frame interacted like 

complementary nucleic acid strands.  Complementary protein pairs have been extensively 

studied and mostly been used to investigate receptor-ligand interactions for biochemical 

engineering studies.  There is no clear explanation for why complementary proteins interact, 

although Blalock et al. have proposed that it is complementary shape, brought about by the 

inverse hydropathic profiles of complementary proteins, that drives binding.  They have 

furthered our understanding of complementary proteins and their relationship to the immune 

system by demonstrating that antibodies raised to complementary peptides bound in an 

idiotypic fashion, i.e. through their variable domains.  This relationship was similar to what 

had previously been demonstrated with PR3-ANCA and antibodies to complementary-PR3 

protein,   

Root-Bernstein has posited a variation on these themes, defining a complementary 

pair of proteins as capable of stereospecific binding and induction of molecularly 

complementary antibodies or T-cell antigen receptors.  In this model, two molecularly 

complementary antigens bind together and are processed by the immune system 

simultaneously.  Tolerance is broken if one or both of those molecularly complementary 

antigens has homology with a “self” protein.  PR3 and plasminogen bind to each other, as 

expected for a complementary pair, and plasminogen is a substrate for PR3, which 

documents physical interaction.  We show here that a rabbit immunized with human PR3 

developed antibodies not only to PR3 but also to plasminogen, presumably through the 

idiotypic network as pre-immune serum from the rabbit did not react with either PR3 or 

plasminogen.  Mice, rabbits and chicken (which we show in this research) that were 

inoculated with complementary-PR3 peptide developed antibodies to this peptide as well as 
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PR3, suggesting that the idiotypic network is responsible for the derivation of the secondary 

antibody response, not necessarily the binding of proteins together.  However, binding of 

these complementary pairs to each other may augment antigenic propensity.  It appears that 

PR3 and plasminogen are complementary proteins as defined by Root-Bernstein, thus 

utilizing that definition of complementarity is likely called for as it pertains to the theory of 

autoantigen complementarity.  However, the theory of antigenic complementarity is not 

necessarily correct, as we have shown that anti-idiotypic antibodies can form without the 

presence of a second antigen. 

Now that PR3 and plasminogen are known to bind, and antibodies to PR3 and 

plasminogen are idiotypic, it would be interesting to determine the interface where PR3 and 

plasminogen interact.  The reason for this is to test whether the surfaces involved in 

PR3/plasminogen binding are the same that bind to their respective antibodies.  Proving this 

would likely open an entirely new avenue of thinking in regards to protein-protein 

interactions and protein-antibody interactions.  Jerne hypothesized that the anti-idiotypic 

antibodies would hold the “internal image” of the original antigen.  In the case of PR3 and 

plasminogen that would mean PR3-ANCA would bind to the same region of PR3 that 

plasminogen binds to, and vice versa.  To prove this, it would be necessary to either 1) show 

where PR3 cleaves plasminogen or 2) resolve a crystal structure of plasminogen and PR3 in 

complex (using a non-enzymatically active form of PR3).  However, this may not necessarily 

be the only interaction between the two proteins.  It is possible that PR3 could bind to a 

portion of plasminogen and then cleave at an entirely separate region.  A crystal structure of 

the two proteins bound together could help in this matter.  Another set of data that would 

prove extremely helpful would be identification of epitopes on PR3 recognized by PR3-
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ANCA.  Thus far, only PR3-peptide binding studies have been employed to determine where 

on PR3 the ANCA bind.  These studies have not given a definitive answer, other than there 

are multiple epitopes recognized by ANCA, both within a single patient and within a 

population of patients.  We did attempt one round of epitope mapping using affinity purified 

PR3-ANCA and the method described utilizing mass spectrometry.  The results of that 

experiment were inconclusive as the only epitope identified by mass spectrometry was also 

seen when a control IgG was incubated with PR3.  Since that method does have limitations, 

and since PR3-ANCA are known to bind to conformational epitopes, it will prove very 

difficult to epitope map those autoantibodies. 

Another idea to consider with regard to multiple epitopes recognized by PR3-ANCA 

is that there could be additional autoantibody pools in PR3-ANCA patients that recognize 

different PR3 binding proteins.  Identification of a series of PR3 binding proteins could be 

used in an ELISA to determine if PR3-ANCA patients had autoantibodies to any of those 

proteins.  If other such autoantibodies were found, it would be very interesting to compare 

the PR3-ANCA epitope mapping data with other autoantibodies the patients have and 

determine if there is any correlation, i.e. if ANCA bind to a certain epitope on PR3 do those 

patients more often than not have anti-plasminogen autoantibodies.   

Identification of Protein F in plasmapheresis fluid from two ANCA patients and a 

non-ANCA patient is certainly intriguing.  The strains of pseudomonas that Protein F is 

found are not pathogenic.  One strain, P. tolaasii is a mushroom pathogen while the other 

strain, P. fluorescens is part of the normal flora of the large intestine.  Protein F from those 

two strains is very similar, with close to 90% homology between the two.  While only three 

peptides of Protein F were identified in the mass fingerprinting, the scores generated were 
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still considered significant.  Protein F, like plasminogen, shares little to no sequence 

homology with cPR3(138-169), thus it is difficult to determine how and why these proteins were 

identified by antibodies raised to cPR3(138-169).  PR3-ANCA patients typically complain of 

suffering from “flu-like” symptoms shortly before being diagnosed with ANCA disease, thus 

a microbial protein leading to the onset of PR3-ANCA is certainly possible.  While we did 

not pursue the Protein F story further for this project, clearly this will need to be followed up 

on.  Cloning of protein F from one or both strains of pseudomonas would allow an ELISA 

screening of patient sera to determine if any PR3-ANCA patients have anti-Protein F 

antibodies.  The results of that experiment would then help determine if the identification of 

Protein F by anti-cPR3(138-169) antibodies was real or simply an artifact.   

These studies were designed to explore if the theory of autoantigen complementarity 

could lead to the detection of a novel autoimmune response.  The discovery that plasminogen 

is complementary to PR3 provides additional support for the theory of autoantigen 

complementarity. 
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ABSTRACT 

 PR3-ANCA vasculitic autoimmune disease is characterized by autoantibodies 

directed agasint the neutrophil protein PR3.  Previous results showed that an antibody raised 

to a recombinant, complementary protein expressed off the antisense strand of the PR3 gene 

recognized plasminogen from PR3-ANCA patient plasmapheresis fluid.  The current study 

demonstrates that a subset of PR3-ANCA patients have antibodies directed against 

plasminogen that have a functional consequence.  Anti-plasminogen antibodies were purified 

from two separate PR3-ANCA patients using a cPR3(138-169) affinity column.  Antibody 

epitopes were determined by degradation of non-epitope regions followed by mass 

spectrometry of protected fragments.  Fibrin clot assays measured the functional effects of 

these autoantibodies.  Serologic studies searching for antibodies to plasminogen were 

assayed by ELISA in 106 ANCA SVV patients, 57 patients with idiopathic thrombosis and 

63 healthy controls.  Anti-plasminogen autoantibodies recognized a surface-exposed 

structure within plasminogen’s protease domain, effectively decreased the conversion of 

plasminogen to plasmin and delayed clot dissolution in vitro.  Anti-plasmiongen 

autoantibodies were identified in a subset of PR3-ANCA patients but not controls and these 

patients had increased risk for thrombotic events.  This is the first example in human disease 

of a complementary protein pair (PR3 and plasminogen) giving rise to complementary 

antibodies where one of those antibodies also correlates with a clinical complication. 
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INTRODUCTION 

 A number of prevailing theories on the origin of human autoimmunity provide 

insights into disease causation [133].  These approaches have been difficult to translate into 

curative therapy in human autoimmune disease and, as a consequence, most therapy is aimed 

at suppressing the inflammatory responses. 

 In patients who have ANCA SVV, autoantibodies react with neutrophils and 

monocytes causing aberrant activation and subsequent vascular injury.  There are increasing 

data implicating complementary proteins in autoantibody production (discussed earlier in 

Chapter 1).  Complementary protein pairs have a natural affinity for binding and are derived 

from a number of sources, including the transcription and translation of complementary 

strands of DNA [99].  The phenomenon of complementarity is proposed to be a driving force 

in autoimmune responses through a number of mechanisms.  This concept became more 

likely with the demonstration that patients with PR3-ANCA SVV harbor antibodies against 

proteins complementary to the corresponding autoantigen, PR3.  Demonstration of idiotypic 

pairing of these two coexisting antibodies led to the theory of autoantigen complementarity.  

Antibodies raised in rabbits and chicken to the complementary PR3 protein recognized 

plasminogen.  Now the question arises as to whether patients have antibodies to 

plasminogen.  In the current study, anti-plasminogen autoantibodies were identified in a 

subset of PR3-ANCA patients, they delayed fibrin clot dissolution in vitro and, of clinical 

significance, occurred most commonly in PR3-ANCA patients with coincident thrombotic 

events.   
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MATERIALS AND METHODS 

 

Study Population 

The 106 patients with ANCA SVV in this study had pauci-immune necrotizing and 

crescentic glomerulonephritis and a positive PR3-ANCA (n = 72) or myeloperoxidase 

(MPO)-ANCA (n = 34) determination.  Patients were classified into types of ANCA-SVV as 

defined by the Chapel Hill nomenclature [18].  Patients consented to long-term follow up in 

the prospective cohort studies from the time of disease onset (diagnostic entry biopsy) until 

death.  Blood samples were available at the time of clinically indicated diagnostic vasculitis 

testing and thus not always available at the time of venous thrombotic events. 

A clotting control group was composed of 57 patients randomly selected from the 

thrombophilia service with a history of idiopathic deep vein thrombosis or pulmonary emboli 

of unknown etiology.  All study participants were evaluated for the presence of classic risk 

factors for venous thromboembolism.  A group of 63 healthy individuals who were either 

kidney or blood donors constituted a healthy control group.  All studies were approved by the 

University of North Carolina School of Medicine Institutional Review Board. 

 

Antigens/Antibodies/Reagents 

Complementary-PR3 peptide corresponding to PR3 residues 138-169 [cPR3(138-169)] 

(NH2-DLGWGVVGTHAAPAHGQALGAVGHWLVLLWQL-COOH) was obtained from 

Alpha Diagnostic International (San Antonio, TX) and the University of North Carolina 

Peptide Synthesis Facility (Chapel Hill, NC).  The particular amino acid sequence of cPR3 

peptide used in this study, amino acids 138-169, was first identified as an epitope of patients’ 
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antibodies during a screen of a bacterial expression library [49]. Plasminogen, plasmin and 

thrombin were obtained from Haematologic Technologies (Essex Junction, VT); tissue-type 

plasminogen activator (tPA) was graciously provided by Dr. Alisa Wolberg; urokinase-type 

plasminogen activator (uPA) was obtained from Sigma (St. Louis, MO).  Spectrozyme PL 

was obtained from American Diagnostica (Stamford, CT).  We obtained rabbit antibody to 

histidine and goat antibody to plasminogen from Santa Cruz Biotech (Santa Cruz, CA); 

normal human IgG from Bethyl Laboratories (Montgomery, TX); alkaline phosphatase (AP)-

conjugated goat antibody to human and rabbit IgG, AP-conjugated donkey antibody to goat 

IgG, horseradish peroxidase (HRP)-conjugated goat antibody to human IgG from Chemicon 

(Emecula, CA).  The alkaline phosphatase substrate kit was obtained from Bio-Rad 

Laboratories (West Grove, PA).  The SuperSignal chemiluminescent peroxidase substrate kit 

was obtained form Pierce Biotechnology (Rockland, IL).  Western blots results were 

visualized by exposure to Biomax XAR film (Kodak, Syracuse, NY). 

 

Affinity purification of patient anti-cPR3(138-169) antibody 

 We affinity purified antibody specific to cPR3(138-169) for use in ELISA and western 

blot experiments using a cPR3(138-169) affinity column.  Preparation of the cPR3(138-169) 

affinity column was discussed in Chapter III.  Total human IgG isolated from PR3-ANCA 

patient PLEX was filtered through a 0.22 µm filter (Costar, Cambridge, MA) and then 

applied to the cPR3(138-169) column, the column was washed with 5 column volumes (CV) of 

PBS, and antibody was eluted with 0.1 M citric acid, pH 2.5.  One ml aliquots were collected 

and antibody elution was monitored by absorbance at 280 nm.  Antibody-containing fractions 
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were neutralized immediately after elution with 100 µl of 1.0 M Tris, pH 9.0.  The fractions 

were dialyzed into PBS overnight at 4°C. 

 

Western blot analysis of patient anti-cPR3(138-169) reactivity 

To determine if patient affinity purified anti-cPR3(138-169) antibodies were reactive 

with plasminogen (as are rabbit and chicken anti-cPR3(138-169) antibodies, see Chapter III) the 

patient antibodies were used for western blot analysis of elution fractions.  Twenty-five 

microliters of each PLEX fraction were combined with 8 µl of 4x SDS loading buffer and 

separated by 4% stacking, 10% separating SDS-PAGE.  Proteins were then transferred to 

nitrocellulose (Whatman, Dassel, Germany), dried for 30 minutes to cross-link the proteins, 

blocked with 10% Blotto (Bio-Rad), and probed with patient affinity purified anti-cPR3(138-

169) antibody (1:100 dilution) and HRP-conjugated secondary antibody.  Reactivity was 

visualized by addition of SuperSignal substrate and exposure of the blots to Biomax XAR 

film. 

Patient anti-cPR3(138-169) antibody reactivity to plasminogen and plasmin was 

evaluated by western blot.  One µg of plasminogen and plasmin were combined with 8 µl of 

4x SDS non-reducing and reducing loading buffer and separated by 4% stacking, 10% 

separating SDS-PAGE.  Proteins were then transferred to nitrocellulose (Whatman, Dassel, 

Germany), dried for 30 minutes to cross-link the proteins, blocked with 10% Blotto (Bio-

Rad), and probed with patient affinity purified anti-cPR3(138-169) antibody (1:100 dilution) and 

HRP-conjugated secondary antibody.  Reactivity was visualized by addition of SuperSignal 

substrate and exposure of the blots to Biomax XAR film. 

 

83 



Epitope mapping of anti-plasminogen autoantibodies 

Epitope mapping of anti-plasminogen antibodies utilizing MALDI-MS was 

performed as a collaboration with the UNC-Duke Michael Hooker Proteomics Facility as 

previously described [134].  Briefly, affinity purified anti-cPR3(138-169) antibody or PR3-

ANCA patient total IgG was covalently linked to CNBr-activated sepharose beads (GE 

Healthcare) according to the manufacturer’s instructions.  The antibody-linked beads were 

incubated with 50 µg plasminogen or cPR3(138-169) peptide for 2 hours at room temperature 

and submitted for analysis.   

A series of proteolytic digestions is used to cleave protein segments that are not 

protected by the antibody, and thus not part of the epitope.  The beads are then washed and 

the MALDI matrix breaks apart the epitope/antibody interaction, freeing the peptide 

fragment.  This fragment is then subjected to MALDI analysis to determine what portion of 

the protein is still bound to the antibody after each addition of protease.  This procedure is 

successful as the antibodies themselves are rather resistant to proteolysis.  A theoretical 

digestion can be performed for each addition of protease and this theoretical list of fragments 

can be compared to the MALDI mass spectrum to determine what fragments are still bound 

to antibody.  The first protease used was Lys-C (Wako Chemicals, Richmond, VA), which 

cleaves after lysine residues and results in relatively large fragments to analyze.   This was 

followed by addition of Trypsin-TPCK (Worthington Biochemical, Lakewood, NJ).  Finally, 

N-terminal and C-terminal degradation is performed with Aminopeptidase M (Roche 

Applied Science, Indianapolis, IN) and Carboxypeptidase Y (Roche Applied Science).  

MS/MS analysis was performed to confirm peptide identity.  Antibody with no protein added 

was utilized as a negative control. 
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In vitro plasminogen assays 

To test the activity of the anti-plasminogen autoantibodies, a set of in vitro 

plasminogen assays was performed.  Plasminogen (15 µg/mL final concentration) was pre-

incubated with affinity purified patient anti-plasminogen autoantibodies (30 µg/mL final 

concetnration), control human total IgG (30 µg/mL final concentration) or HBS buffer (20 

mM HEPES, 150 mM NaCl, 5 mM Ca2+ pH 7.4) for 10 min in a 1.5 ml eppendorf tube.  uPA 

(3 nM final concentration) or tPA (13 µg/mL final concentration) was combined with 

Spectrozyme PL (500 µM final concentration) in HBS buffer and placed in a 96-well plate 

(Costar) and the plasminogen/antibody mixture was added to begin the assay.  Change in 

absorbance at 405 nm was monitored in duplicate samples using a VERSAmax tunable 

microplate reader ((Molecular Devices, Sunnyvale, CA). 

To determine the anti-fibrinolytic effects of the affinity-purified patient anti-

plasminogen autoantibodies, normal human plasma (90% final concentration) was pre-

incubated with affinity purified autoantibodies (50 µg/mL final concentration), control 

human total IgG (50 µg/mL final concentration) or HBS buffer for 10 min in a 1.5 ml 

eppendorf tube.  Plasma was added to a 96-well plate (Costar) containing thrombin (15 nM 

final concentration) and uPA (30 nM final concentration).  Clot formation and dissolution 

were monitored by absorbance at 405 nm using a VERSAmax tunable microplate reader.  

Two independent experiments were performed using affinity purified anti-plasminogen 

antibody from two different PR3-ANCA patients. 
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ELISAs to test patient reactivity to plasminogen 

High-binding 96-well plates (Costar) were coated overnight at 4°C with plasminogen 

(5 µg/ml).  Plates were blocked by addition of PBS with 1% goat serum (Sigma) for 1 hour at 

room temperature.  All subsequent steps were performed in blocking buffer and plates were 

washed 4 times with ELISA wash buffer (PBS plus 0.05% Tween-20) between each step.  

Sera (diluted 1:100 in blocking buffer) were added for 2 hours at room temperature followed 

by AP-conjugated goat antibody to human IgG (diluted 1:50,000) for 1 hour.  Optical density 

at 405 nm was measured after alkaline phosphatase substrate addition using a VERSAmax 

tunable microplate reader.  Goat antibody to plasminogen (diluted 1:500) served as a positive 

control.   Levels of anti-plasminogen antibody in sera were expressed as percent OD of sera 

to positive control.  Sera were considered positive when values exceeded the mean plus 2 

standard deviations of healthy control subjects. 

 

Statistical Analysis 

 Statistical analysis of the in vitro plasminogen assays was performed using a 

Student’s t test.  Anti-plasminogen autoantibodies are plotted as a continuous measure of the 

percentage of positive control.  However, the frequency of positive anti-plasminogen 

autoantibodies, and not the continuous value, was the primary measure of interest.  

Therefore, statistical comparisons between the prevalence of positives between patient 

groups were evaluated using a 2-sided Fisher’s exact test to accommodate the small number 

of positive values in several patient groups. 
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RESULTS 

 

Anti-cPR3(138-169) antibodies from PR3-ANCA patients react with plasminogen 

 Anti-cPR3(138-169) antibodies were affinity purified from two PR3-ANCA patients 

using a cPR3(138-169) affinity column.  These antibodies were then tested for reactivity to 

plasminogen by performing a western blot of those fractions that were reactive with the 

rabbit anti-cPR3(138-169) antibody.  The results show that the patients’ anti-cPR3(138-169) 

antibodies react with plasminogen, but not with β2-glycoprotein-1 like the rabbit antibody, 

and this reactivity is specific as it can be competed away by pre-incubating the antibody with 

cPR3(138-169) peptide (Figure 4.1A). 

 To confirm reactivity, both plasminogen and plasmin were purchased and separated 

out by SDS-PAGE under reducing and non-reducing conditions.  A western blot using 

patient affinity purified anti-cPR3(138-169) antibody shows that the antibodies only react with 

non-reduced plasminogen and not with reduced plasminogen or with plasmin (Figure 4.1B). 

 

A target epitope for anti-cPR3(138-169) antibodies on plasminogen 

We utilized a mass spectrometry approach to identify an epitope recognized by the 

patient’s anti-cPR3(138-169) antibodies.  Antibody was cross-linked to sepharose beads, 

incubated with plasminogen, and then subjected to a series of proteolytic digestions.  Those 

portions of plasminogen not involved in binding to the antibody are degraded and washed 

away and the residues on plasminogen in the epitope can be identified by MS/MS analysis.  

A target epitope was identified for the patient affinity purified anti-cPR3(138-169) antibodies.  

This epitope, which is part of the catalytic domain of plasminogen, is a surface exposed loop 
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Figure 4.1.  Patient IgG, Affinity Purified Using a cPR3  Peptide Column, Reacts 
with Plasminogen

(138-169)

   
(A) Affinity purified patient antibody was used for western blot analysis of protein fractions 
reactive with the rabbit anti-cPR3(138-169) antibodies.  Plasminogen was recognized by the 
antibody, while β2-glycoprotein-1 was not.  When cPR3(138-169) peptide was incubated with 
patient IgG prior to addition to the nitrocellulose, antibody binding to plasminogen was 
competed away.  (B) Commercially prepared plasminogen and plasmin were separated by 
SDS-PAGE under both reducing and non-reducing conditions, transferred to nitrocellulose 
and probed with the patient affinity purified antibody.  The patient antibody reacts with non-
reduced plasminogen, but not with reduced plasminogen or with plasmin. (C) A cartoon 
representation of the target epitope of the anti-plasminogen autoantibodies within the 
catalytic domain of plasminogen (PDB 1DDJ), which is shown in blue.  This epitope is 
shown in relation to the tPA/uPA activation site, which is indicated in purple. The sequences 
for the plasminogen epitope and the target epitope on cPR3 are shown with the similarity 
between the two indicated by the underline. 
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structure residing on the opposite side of the molecule from where plasminogen is cleaved 

and activated by tPA or uPA (Figure 4.1C).  The target sequence (VNLEPHVQEIEVSR) 

shares little homology with the target sequence of cPR3(138-169) (VGTHAAPAHGQ), 

however the two sequences do share the common motif P-HXQ.  This motif was recognized 

by two separate patients’ affinity purified anti-cPR3(138-169) antibodies as well as an additional 

three patients total IgG.  As a negative control, normal IgG was incubated with plasminogen 

and evaluated by the same methods.  No plasminogen peptides were found to bind to the 

normal human IgG.  Taken together, these results show that anti-cPR3(138-169) and anti-

plasminogen antibodies are one in the same. 

 

Assessment of anti-plasminogen autoantibodies on plasminogen function 

The epitope of anti-plasminogen antibodies resides in the catalytic domain of 

plasminogen, which is spatially removed from the tissue-type plasminogen activator 

(tPA)/urokinase-type plasminogen activator (uPA) cleavage site.  Cleavage by tPA or uPA 

converts plasminogen into plasmin, an active protease capable of fibrinolysis [135]. We 

tested whether antibody-binding to plasminogen would affect tPA/uPA-induced activation.  

The first assay examined the effect of anti-plasminogen autoantibodies on plasminogen 

conversion to plasmin utilizing a chromogenic substrate specific for plasmin.  Figure 4.2A 

shows a sample plot of data generated in this assay.  The absorbance at 405 nm increases as 

the chromogenic substrate is cleaved upon conversion of plasminogen to plasmin in the 

presence of no antibody, control human IgG or affinity purified patient anti-plasminogen 

antibody.  The patients anti-plasminogen antibody decreased the conversion of plasminogen 

to plasmin.  Two independent experiments were performed for each of two different patient’s  

89 



 

0 5 10 15 20
0.2

0.4

0.6

0.8

O
D

 (4
05

 n
m

) 

Time (min)

No IgG Control
IgG

Patient
IgG

A
vg

 O
D

 @
 6

0 
m

in
 (4

05
 n

m
)

0.2

0.3

0.4

0.5

0.6

A

C

No IgG
Control IgG
Patient IgG

O
D

 (4
05

 n
m

) 

0 15 30 45 60
Time (min)

0

0.1

0.2

0.3

0.4

0.5

B

½ clot 
lysis

Clot 
max

Clot 
min

0.46 0.46

0.34

4.0

8.0

12.0

16.0

No IgG Control
IgG

Patient
IgG

Av
g 

½
cl

ot
 ly

si
s 

tim
e 

(m
in

)

D

9.38
9.63

11.4

P < 0.001

P = 0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Functional Effects of Anti-Plasminogen Autoantibodies. 
(A) An in vitro assay was performed to determine the rate of plasmin formation in the 
presence of anti-plasminogen autoantibodies by combining plasminogen, uPA or tPA, and a 
chromogenic substrate with and without control human IgG or affinity purified 
autoantibodies.  Shown is the average of two replicates for one patient’s antibodies in the 
presence of uPA.  (B) The average absorbance after 60 minutes is shown +/- the standard 
deviation from two independent experiments for Patients A and B with both uPA and tPA.  
Anti-plasminogen autoantibodies decreased the conversion of plasminogen to plasmin, when 
compared to HBS buffer or normal human IgG at the same concentration.  (C) An in vitro 
clotting assay examined how anti-plasminogen autoantibodies affect fibrin clot formation 
and/or dissolution.  Normal human plasma was combined with HBS buffer alone, normal 
human IgG or patient anti-plasminogen autoantibodies, in the presence of thrombin and uPA.  
Clot formation and dissolution were monitored by change in absorbance at 405 nm.  Shown 
is the average of two replicates for one patient’s antibodies +/- the standard deviation.  (D)  
The average ½ clot lysis time is shown +/- the standard deviation from two independent 
experiments for Patients A and B.  Anti-plasminogen autoantibodies delayed the fibrinolysis 
of the clot.  Statistical analysis done by Student t test. 
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antibodies using both tPA and uPA.  The average OD after 60 minutes was then calculated 

and plotted in Figure 4.2B.  The patients’ affinity purified antibodies resulted in a significant 

decrease in the conversion of plasminogen to plasmin.   

The second experiment performed to test the effect of anti-plasminogen 

autoantibodies on plasminogen activity utilized normal human plasma and examined the 

effect of clot formation and dissolution.  Combining plasma with thrombin and uPA results 

in a clot forming (as seen by an increase in absorbance at 405 nm) and then dissolving (a 

decrease in absorbance at 405 nm).  Figure 4.2C shows the average results of two 

independent experiments for one patient’s affinity purified anti-plasminogen autoantibodies.  

The patients’ antibodies result in an increase in the time necessary for fibrin clot dissolution.  

An average of ½ clot lysis time from testing two patient’s affinity purified antibodies in two 

separate experiments showed a significant increase in lysis time when compared to normal 

human IgG (P = 0.02) (Fig. 4.2D).  This delay did not involve increased thrombin generation 

or activation of the thrombin-activatable fibrinolysis inhibitor, as the level of calcium present 

in the assay was insufficient to cause activation of endogenous clotting factors [136]. 

 

Prevalence of anti-plasminogen autoantibodies 

The prevalence of anti-plasminogen autoantibodies in a PR3-ANCA patient 

population was determined by ELISA analysis (Fig. 4.3A).  Demographics of study 

participants are shown in Table 4.1.  Anti-plasminogen autoantibodies were higher in the 

PR3-ANCA patients (16 of 72, 22 %), as compared with 4 of 63 healthy control subjects (6  
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Table 4.1.  Demographics and Clinical Diagnosis of Study Participants 
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Figure 4.3.  Prevalence of Anti-Plasminogen Autoantibodies. 
(A) A plasminogen ELISA shows that 16 of 72 (22%) PR3-ANCA patients are positive for 
anti-plasminogen autoantibodies. This compares with 4 of 63 (6%) healthy control subjects, 5 
of 57 (9%) thrombotic patients and 2 of 34 (6%) MPO-ANCA patients.  A positive value is 
defined as two standard deviations above the mean of 63 healthy control subjects (25.6%), as 
marked by the dashed line.  (B) When those patients who had thrombotic events are plotted 
alone, 5 of 9 (56%)  PR3-ANCA patients are positive, compared to 5 of 57 (9%) disease 
controls and 0 of 4 (0%) MPO-ANCA patients.  (C) Multiple samples from Patient A were 
tested by ELISA to monitor the change in anti-plasminogen autoantibody levels compared to 
DVT events over time. 

93 



%), 2 of 34 MPO-ANCA patients (6 %) and 5 of 57 patients with idiopathic thrombosis (9 

%) (P = 0.001) (Fig. 4.3A). 

Focusing on patients with deep venous thrombosis (DVT), we identified 9 of 72 PR3-

ANCA patients with events (6 with Wegener’s granulomatosis and 3 with microscopic 

polyangiitis) (Fig. 4.3B).  Of these 9 PR3-ANCA thrombotic patients, 5 were positive for 

anti-plasminogen autoantibodies (56 %) compared to 0 of 4 MPO-ANCA thrombotic patients 

(0 %) and 5 of 57 patients with idiopathic thrombosis (9 %) (P = 0.002).  As assessed by the 

Birmingham Vasculitis Activity Score (BVAS), the five anti-plasminogen autoantibody 

positive PR3-ANCA patients had active disease, whereas the four negative sera came from 

patients in remission with a BVAS score of zero.  An extensive workup for thrombophilic 

defects in all PR3-ANCA patients with a thrombotic event revealed no abnormalities.  

Importantly, none of the PR3-ANCA thrombotic patients had nephrotic range proteinuria or a 

history of DVT prior to the onset of the disease.  There were 4 patients with MPO-ANCA 

SVV who similarly developed a thrombosis.  No differences were found with respect to risk 

factors for venous thromboembolism among the PR3-ANCA, MPO-ANCA and the total set 

of ANCA-SVV patients.   

Sera samples from patients collected over a number of years allowed the tracking of 

autoantibody fluctuations and their association with DVT events.  Representative of the data 

(Figure 4.3C), a patient with a DVT presented with high levels of anti-plasminogen 

autoantibodies (number 1).  The patient received plasmapheresis treatment and the antibody 

titer dropped (number 2).  Over the next nine months the patient experienced two more DVT 

events and the anti-plasminogen autoantibodies levels were again very high (number 3).  
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Since that time, the patient has not experienced a DVT and the anti-plasminogen 

autoantibodies level has trended downward (number 4). 
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DISCUSSION 

Knowing that antibodies raised to cPR3(138-169) peptide reacted with plasminogen from 

PR3-ANCA patient plasmapheresis fluid (see Chapter III), and the fact that a subset of PR3-

ANCA patients had circulating antibodies to this complementary PR3 protein, we sought to 

determine if PR3-ANCA patients had antibodies that would react with plasminogen.  Anti-

plasminogen autoantibodies were seen in a subset of PR3-ANCA patients.  This autoimmune 

response was quite restricted in that these autoantibodies reacted with plasminogen but not 

with plasmin.  They react to a motif found on both cPR3(138-169) and plasminogen.  These 

autoantibodies had a functional significance in that they altered fibrinolysis in vitro and were 

associated with a thrombotic propensity in some PR3-ANCA patients. 

Plasminogen is a 90 kDa glycoprotein and is the inactive precursor to plasmin.  This 

serine protease is responsible for fibrin clot dissolution [137].  In the presence of fibrin, 

plasmin is generated by cleavage of the Arg561-Val562 bond by tPA [138] or uPA bound to its 

cellular receptor [139].  Plasminogen is also involved in a number of different pathways 

including cell migration [140], inflammation [141], and tumorigenesis [142].  These 

autoantibodies appear to interfere with the ability of plasminogen to dissolve a fibrin clot, but 

this study did not examine whether or not these autoantibodies alter the activity of 

plasminogen in any other way.  It is interesting that these anti-plasminogen autoantibodies 

have been shown to affect plasminogen activity in vitro despite the fact that their reactivity is 

highly restricted to plasminogen but not plasmin.  Yang et al. identified plasmin-specific 

autoantibodies in patients with antiphospholipid syndrome that cross-reacted with 

plasminogen [143].  However, only 1 of 6 patient derived plasmin-specific monoclonal 

antibodies altered fibrin clot lysis.  In solution, these autoantibodies decreased the conversion 
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of plasminogen to plasmin which may explain the increase in the time necessary to break 

down a clot in the clotting assay. 

Based on these data, we postulated that patients with anti-plasminogen autoantibodies 

could be more susceptible to clot formation.  The fact that 56% of the PR3-ANCA patients 

studied who were known to have a thrombotic episode also had anti-plasminogen 

autoantibodies is intriguing, especially considering the serum samples were obtained at times 

of clinically indicated visits and not at times of clotting episodes.  This compares to a study 

by Simmelink et al. who found no relationship between the presence of anti-plasminogen 

autoantibodies and development of thrombosis in lupus anticoagulant-positve patients with 

systemic lupus erythematosus [144].  The disease control patients with idiopathic deep 

venous thrombosis did not have anti-plasminogen autoantibodies at any higher rate than 

healthy controls, thus it is unlikely that these autoantibodies are as a consequence of a 

thrombotic event and are more than likely participating in the cause of them.  

Myeloperoxidase-ANCA SVV patients, who are very similar with respect to their clinical 

phenotype, served as a control population.  There were only four of these patients who had 

thrombi and none of them had anti-plasminogen autoantibodies.  In this MPO-ANCA SVV 

patient population there was no significant increase in the overall anti-plasminogen 

autoantibody propensity when compared to our healthy control population or those with 

idiopathic thrombotic disorder.  In PR3-ANCA patients who had a thrombophilia work-up, 

there was no laboratory or clinical evidence for increased thrombotic propensity.  Our 

findings may be relevant to a few recent reports that examined venous thrombotic events 

(VTE) in ANCA vasculitis patients.  One study reported 13 of 105 ANCA vasculitis patients 
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developed a VTE [145].  Ten of these patients were PR3-ANCA positive and three were 

MPO-ANCA positive, a percentage quite similar to our findings.  A second study showed 

that 29 of 180 patients in a clinical trial of Wegener’s granulomatosis developed a venous 

thrombotic event (VTE) [146].  As a follow up, those investigators examined the 180 patients 

for presence of anticardiolipin and anti-β2-glycoprotein-1 antibodies along with several 

genetic hypercoagulable factors and found no difference between those patients who 

developed a VTE and those that did not [147]. 

These autoantibodies do not appear to be long-lasting, thus it is possible that a higher 

percentage of our patients could have tested positive for anti-plasminogen autoantibodies if 

they had been purposefully sought at the time of the clotting episode or prior to it.  The 

absence of sera at critical time points is a limitation of our study and a question that needs to 

be tested in a prospective manner.  Conversely, there are patients in our study who had anti-

plasminogen autoantibodies but no clinical evidence for a thrombotic event.  One 

explanation, that takes into consideration the in vitro data, is that inadequacies in clot 

dissolution would be of no consequence unless a clot is forming.  A second consideration is 

that aggressive treatment with immunosuppression and plasmapheresis may reduce the titer 

of anti-plasminogen autoantibodies to levels below a threshold required for phenotypic 

expression.  The autoantibodies may increase the likelihood of a thrombotic event but are not 

sufficient by themselves to cause such an event, as has been speculated for patients with anti-

phospholipid antibodies but no thrombotic episodes.   

Our study does not provide any new information as to the inciting cause of PR3 

autoantibodies in small vessel vasculitis.  This study does demonstrate the presence of a 

novel and important autoantibody system discovered on the basis of the complementary 
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protein interaction hypothesis.  Interestingly, anti-plasminogen antibodies have also been 

found in a rat model of human membranous nephropathy known as Heymann nephritis [148], 

where glomerular lesion results from binding of antibodies to gp330, a receptor of the low-

density lipoprotein receptor superfamily that binds to plasminogen [149].  Patients with 

membranous nephropathy have venous thrombotic episodes, and it would be interesting to 

determine whether these patients have antibodies to plasminogen as well. 

Our studies were designed to explore if PR3-ANCA patients had antibodies to a 

protein, plasminogen, which had previously been shown to be complementary to the disease 

autoantigen, PR3.  The discovery that autoantibodies to plasminogen are detected in this 

specific patient population provides additional support for the theory of autoantigen 

complementarity.  The positive correlation between high levels of anti-plasminogen 

autoantibodies and thrombotic events suggests that the antibodies may have a pathological 

role in this patient population.  Our studies do not illuminate the cause of PR3-ANCA, 

although there are a number of microbes linked to the onset of ANCA [90, 91] that bear 

proteins complementary to PR3 [89].  Studying complementary protein interactions provides 

an elucidation of the perplexing question of why patients with autoimmune diseases have 

autoimmune responses to structurally different antigens.  These studies do provide a novel 

approach for the discovery of autoantibodies and autoantigens that may have implications in 

the broadening field of autoimmunity. 
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CHAPTER V 

EPILOGUE

 

 How and why the immune system falters during autoimmune disease is likely to 

involve a complex series of abnormal situations coming together in precisely the right 

sequence of events.  The primary goal of this research project was to isolate and identify 

complementary-PR3 proteins that could be implicated in the onset of PR3-ANCA formation 

according to the theory of autoantigen complementarity.  The discovery that PR3-ANCA 

patients have CD4+ T cells that react with a complementary-PR3 peptide furthers supports 

the idea that they had an earlier immunological response to a complementary-PR3 protein.  

The discovery that plasminogen is a complementary-PR3 protein is important and 

noteworthy, however it can not be considered to be an initiator of PR3-ANCA formation 

based on its high level of expression in all individuals.  Protein F from Pseudomonas was 

also identified as a complementary-PR3 protein and its potential involvement is intriguing; 

however the fact that the protein was also identified in a non-ANCA patient makes it less 

likely that it is a culprit in ANCA development.   

 Plasminogen does not fit well into the theory of autoantigen complementarity, at least 

as it is conceived at this point.  The sequences of plasminogen and PR3 are not antisense, and 

plasminogen has only the slightest sequence similarities with cPR3(138-169).  The theory posits 

that it is a complementary protein, or its microbial mimic, that kicks start an immunological 

 



cascade culminating in the production of autoantibodies.  Since plasminogen is such a 

ubiquitous protein, present in all individuals serum at approximately 250 µg/ml [150], it 

seems likely that something else is occurring to produce the anti-plasminogen autoantibodies 

and PR3-ANCA.  What is interesting is that the anti-plasminogen autoantibodies and PR3-

ANCA form an idiotypic pair.  However, this would be true for only those approximately 

20% of PR3-ANCA patients that have anti-plasminogen autoantibodies.  It is known that 

different PR3-ANCA patients antibodies recognize different epitopes on PR3.  It would not 

be expected then that all PR3-ANCA would have anti-plasminogen antibodies if those are in 

fact anti-idiotypic to PR3-ANCA.  Thus, it would be interesting to determine if all the PR3-

ANCA patients that have antibodies that recognize a certain epitope on PR3 also have anti-

plasminogen autoantibodies, and perhaps those patients whose antibodies recognize a 

different epitope on PR3 also have a different, as of yet undiscovered class of autoantibodies 

to protein(s) other than plasminogen.   

 The identification that anti-plasminogen autoantibodies correlate with venous 

thrombotic events (VTE) in PR3-ANCA patients is especially interesting.  Until now, all that 

was known was that ANCA vasculitis patients had an increased risk for VTE, however it was 

unclear why this was the case.  As we exhibited in Chapter IV, anti-plasminogen 

autoantibodies taken from two separate patients altered the conversion of plasminogen to 

plasmin, and also caused an increase in the time necessary for fibrinolysis.  The level of 

calcium was controlled for in these experiments (in order to prevent any activation of 

endogenous clotting factors), thus it lends support to the autoantibodies involvement.  That 

does not mean it is likely the autoantibodies are the only requirement for VTE, but are most 

likely one factor that predisposes those individuals who have them to a VTE.  A prospective 
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study will need to be undertaken after a clinical test for anti-plasminogen autoantibodies is 

developed to study their association with VTE in ANCA vasculitis patients more precisely.   

The definition of complementarity as put forth by Root-Bernstein et al. is applicable 

to the data presented here.  Plasminogen and PR3 do not fit the Mekler definition of 

complementarity, however they do fit the Root-Bernstein definition in that they bind and 

antibodies to each protein form an idiotypic pair.  The real issue then is why does a cPR3 

peptide bind to anti-plasminogen antibodies?  A possible explanation is that antisense 

proteins do have complementary shapes to their sense counterpart, and cPR3(138-169) 

corresponds to a part of PR3 that binds to plasminogen.  Antibodies made to these parts of 

PR3 and plasminogen then contain the “internal image” of the other.  Another way to say this 

is that cPR3(138-69) is a mimotope to plasminogen.  A mimotope is a peptide that mimics the 

epitope of a particular protein without sharing sequence homology with that particular 

protein.  Plasminogen and cPR3(138-169) fit this definition as the two proteins are recognized 

by the same antibodies and yet they have little sequence homology (outside of the P-HXQ 

motif).  However, that motif is not enough to explain antibody binding as altering the P, H 

and Q of that motif only resulted in a ~30% decrease in antibody binding.  Thus, it appears 

most likely that a much larger portion of cPR3(138-169) than the P-HXQ motif is responsible 

for antibody binding, making cPR3(138-169) a mimotope of plasminogen.   

 What are mimotopes and how can they fit in with the results of these studies?  

Mimotopes are mimics of protein epitopes.  They can be utilized for the identification of 

important amino acid residues in epitope:antibody interactions.  Mimotopes were originally 

described in the study of determinants on foot-and-mouth disease virus.  Geysen et al 

developed a technique whereby a monoclonal antibody directed against foot-and-mouth virus 
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was used to screen a random peptide library.  Those peptides that bound to the antibody were 

then sequenced and shown to have almost no homology with any portion of the virus capsid 

proteins [151].  Thus, the researchers had discovered a peptide that bound to antibodies 

specific for virus capsid proteins with no sequence homology to virus capsid proteins, and 

they termed these peptides “mimotopes”. 

 The use of mimotopes in disease research was first shown by Balass, et al. while 

attempting to identify a possible ligand for a monoclonal antibody (mAb 5.5) directed against 

a conformational epitope on the MG autoantigen AChR [152].  They identified 3 positive 

clones from a random peptide library with the sequences DLVWLL, DIVWLL and LIEWLL.  

None of those sequences correspond to any portion of AChR.  The monoclonal antibody 5.5 

was shown to cause MG in chickens after passive immunization, however administering the 

peptide DLVWLL specifically blocked onset of MG in mAb 5.5 immunized chickens.  In 

addition to MG, mimotopes have been discovered that bind antibodies raised to the 

autoantigens of ITP [153], primary biliary cirrhosis [154] and SLE [155].  Mimotopes have 

also been used for immunization studies, as peptides from randomly generated libraries have 

been shown to induce a protective immune response to measles virus [156] and to 

pneumococci [157].  None of the peptides used in the immunizations bore any sequence 

homology to the known epitope determinants recognized by the antibody used to discover the 

peptide.   

 Now that a mimotope of plasminogen has been identified and used for the discovery 

of anti-plasminogen autoantibodies, there are at least two potential applications for 

mimotopes in ANCA research.  The first is to determine if screening of a mimotope library 

can be used to epitope map PR3-ANCA and MPO-ANCA, as all efforts to do so up to this 
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point have been met with limited success.  Unfortunately, since both sets of antibodies appear 

to bind conformational epitopes, identification of peptides that contain sequences of PR3 or 

MPO is unlikely.  However, a more promising avenue of research may be with the use of 

mimotopes for the treatment of ANCA disease.  Knowing that mimotopes can bind to 

antibodies that recognize a certain protein, the question then becomes whether they can be 

utilized for the prevention of antibody binding to protein, i.e. can they block autoantibodies 

from binding to autoantigen in autoimmune disease?   A potential set of experiments would 

be to use patient sera, or purified PR3-ANCA, to screen random peptide libraries for the 

discovery of mimotopes that would bind to ANCA and prevent binding to PR3, thereby 

inhibiting their pathogenic capabilities.  Alternatively, since there is an animal model of 

MPO-ANCA mediated disease it would be possible to identify mimotopes that bind to MPO-

ANCA and determine if they can be successfully administered in mice to prevent disease 

caused by immunization with MPO-ANCA.  While cPR3(138-169) would not make a good 

mimotope candidate due to the fact that it is antisense to PR3 and invokes the idiotypic 

network (i.e. anti-plasminogen antibodies), it has still opened up the possibility for an 

entirely new avenue of research into treatment options for this autoimmune disease.  

 The theory of autoantigen complementarity remains a viable model for the induction 

of autoimmune disease, however the identification of a complementary protein that can be 

utilized in causation of disease in an animal model remains elusive.  While a proximal 

antigen was not discovered, these studies have shown that protein complementarity can be 

utilized for the identification of novel autoantibodies and autoantigens, and the search for a 

disease-causing complementary protein should continue.               
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