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ABSTRACT 

KATHRYN CAPPELL: Symplekin and Transforming Acidic Coiled-Coil Containing Protein 3 
Support the Cancer Cell Mitotic Spindle 

(Under the direction of Dr. Angelique Whitehurst) 
 
An increased rate of proliferation in cancer cells, combined with abnormalities in spindle 

architecture, places tumors under increased mitotic stress.  Previously, our laboratory performed a 

genome-wide paclitaxel chemosensitizer screen to identify genes whose depletion sensitizes non-

small cell lung cancer (NSCLC) cells to mitotic stress induced by paclitaxel treatment.  This 

screen uncovered a cohort of genes that are required for viability only in the presence of 

paclitaxel.   Two genes uncovered in this screen were the polyadenylation scaffold symplekin and 

the gametogenic protein transforming acidic coiled-coil containing protein 3 (TACC3).   

Herein, we examine the impact of polyadenylation and gametogenesis on the tumor cell 

mitotic spindle. First, we demonstrate that depletion of SYMPK and other polyadenylation 

components sensitizes many NSCLC cells, but not normal immortalized lines, to paclitaxel by 

inducing mitotic errors and leading to abnormal mitotic progression. Second, we demonstrate that 

multiple gametogenic genes are required for normal microtubule dynamics and mitotic spindle 

formation in the presence of paclitaxel.  Additionally, we show that the gametogenic protein 

TACC3 is uniquely required for mitosis only in transformed cell lines but not normal 

immortalized cell lines and that this unique dependency can be targeted in vitro with a small 

molecule. 

These studies reveal an unanticipated dependence of the cancer cell mitotic spindle on 

polyadenylation and gametogenic genes.  We propose that, faced with mitotic stress, cancer cells 

develop conditional dependencies on processes such as polyadenylation that occur in all cells and 

emergent dependencies on gametogenic genes that are overexpressed in tumor cells. 
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Hallmarks of cancer and the stress phenotype of cancer cells 

An increased proliferation rate in cancer cells, coupled with dysregulation of normal 

controls on cellular growth, drives several hallmarks of tumors.  These hallmarks were originally 

elegantly proposed by Hanahan and Weinberg and include self-sufficiency in growth signals, 

insensitivity to anti-growth signals, evasion of apoptosis, sustained angiogenesis, limitless 

replicative potential, and metastasis (1).  Over the past several decades, scientists have unraveled 

the signaling networks driving the hallmarks of cancer and found many hallmarks derive from 

activation of oncogenes or loss of tumor suppressors.  Knowledge of the signaling pathways 

driving the hallmarks of cancer has led to significant improvements in cancer treatment using 

drugs that target oncogenic signaling networks.  However, researchers have also realized new 

complexities in cancer including a tremendous degree of genetic heterogeneity between tumors, 

the existence of subpopulations within a single tumor that may respond differently to drugs, the 

propensity for tumors to develop resistance to targeted therapeutics, and a strong influence of 

stress pathways on the tumor cell phenotype.   These complexities demand new directions for 

scientific inquiry but also represent potential inroads for the development of novel therapeutics. 

Stress phenotypes in cancer cells – One recent development in cancer biology has been 

increased recognition of the importance of stress phenotypes in modulating tumor cell growth.   

The stress phenotypes commonly observed in cancer include immune, metabolic, proteotoxic, 

oxidative, DNA damage, and mitotic stress (2).  Stress phenotypes are so common in cancers that 

it has been proposed these represent additional hallmarks of the tumor cell (2).  These stress 

phenotypes arise from the increased proliferation rate and aberrant signaling networks found in 

cancer cells.  For example, DNA damage stress can arise from alterations in DNA repair 

signaling networks that limit the ability of a cancer cell to fix damaged DNA.   Interestingly, 

stress phenotypes can enhance cancer cell growth but also represent a unique vulnerability of the 

tumor cell.  This is exemplified by BRCA mutant breast cancers, which are markedly deficient in 

DNA repair.  Mutations in BRCA correlate with a poor prognosis and increased tumor incidence.  
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However, BRCA mutant breast cancers have markedly increased sensitivity to PARP inhibitors 

that target DNA damage repair (3).  Thus, a second perturbation of the DNA damage repair 

pathway in BRCA mutant breast cancers can greatly increase tumor cell killing.  The stress 

phenotypes therefore represent a pressure point in the cancer cell that can be therapeutically 

exploited. 

While the idea that these stress phenotypes represent additional hallmarks of cancer cells 

is new, stress pathways have in actuality been indirectly targeted in cancer treatment for decades.  

Two notable examples of this are cytotoxic agents that induce DNA damage and mitotic stress in 

tumor cells.   DNA damage stress is commonly targeted in cancers using platinum compounds or 

radiation, both of which damage the DNA.  Mitotic stress is targeted with agents such as the 

Vinca alkaloids and paclitaxel, which damage the tumor cell mitotic spindle.  These cytotoxic 

therapies represent the mainstream of cancer treatment today.  Although cytotoxic therapies 

activate stress pathways in tumor cells, potent effects on normal tissues limit the usefulness of 

cytotoxic therapies.  These off-target effects are likely due to the fact that cytotoxic drugs target 

components that are present in both tumor and normal cells, in contrast to agents such as PARP 

inhibitors that preferentially affect BRCA mutant cancer cells. A better understanding of how 

cytotoxic drugs activate stress pathways in cancer may lead to more directed targeting of stress 

phenotypes unique to cancer cells, leading to improved efficacy and less effects on normal 

tissues. 

Using a genome-wide synthetic lethal paclitaxel chemosensitizer screening strategy our 

laboratory has uncovered a cohort of gene products that sensitize cells to the mitotic stress 

induced by paclitaxel treatment (4).   This dissertation will focus specifically on two groups of 

genes uncovered in this genome-wide screen; those involved in polyadenylation and those 

involved in gametogenesis.  Herein, we demonstrate an unappreciated link between these genes 

and the response of non-small cell lung cancer (NSCLC) lines to mitotic stress.  Therefore, a 

deeper discussion of the mitotic stress phenotype of cancer cells is warranted.  
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Mitotic stress in cancer 

Mitotic stress is widely observed in cancer cells and likely accounts for the clinical 

success of numerous anti-mitotic therapies including paclitaxel and the Vinca alkaloids.  Mitotic 

stress arises from an increased rate of proliferation in combination with structural changes in the 

cancer cell including aneuploidy, supernumerary centrosomes, and altered microtubule stability.   

These three structural alterations are interdependent since development of any one of these 

alterations can drive development of the others.  Importantly, these structural alterations in the 

tumor cell mitotic spindle represent unique vulnerabilities that could provide a method to more 

specifically target mitotic stress in tumor cells. 

Aneuploidy and the spindle assembly checkpoint - Aneuploidy describes cells that 

have an uneven number of chromosomes that is either more or less then the normal diploid 

chromosomal complement.   Greater then 90% of human solid tumors are aneuploid (5).  The 

widespread occurrence of aneuploidy in solid tumors is somewhat of a paradox because 

aneuploidy consistently reduces proliferative capacity both at the organismal (6, 7) and the 

cellular level (8) yet cancers grow at an extremely high rate. This paradox can be partially 

explained by aneuploidy leading to increased expression of oncogenes or loss of tumor 

suppressors (9).  For example, changes in chromosomal composition can lead to amplification of 

the oncogene ERBB2 (10) or loss of the tumor suppressor PTEN (11).   These alterations in 

expression of oncogenic genes could provide a proliferative advantage to the tumor cell and 

account for the widespread occurrence of aneuploidy in tumors. 

The mechanism by which tumor cells become aneuploid likely involves some type of 

bypass of the spindle assembly checkpoint (SAC) (Figure 1.1).  The SAC is the major mitotic 

checkpoint that monitors for proper attachment of chromosomes at the kinetechore to 

microtubules of the mitotic spindle.   In the absence of proper attachments, the SAC delays entry 

into anaphase by preventing activation of the E3 ligase CDC20-APC.  This prevents the 

polyubiquitination and destruction of substrates such as securin and cyclin B1 that is needed for  
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Figure 1.1 
 

 

Figure 1.1 The spindle assembly checkpoint  
 Cartoon depicting the core components and function of the SAC.  The presence of an 
unattached kinetechore triggers activation of the SAC and recruitment of checkpoint proteins 
such as MAD2, BubR1 and Bub3 to CDC20 of the anaphase promoting complex (APC), 
inhibiting APC activity.  When all kinetechores make the proper attachments and spindle tension 
is established, the checkpoint is turned off and CDC20-APC becomes active.  This allows for 
ubiquitination and subsequent degradation of CDC20-APC substrates, including cyclin B1 and 
securin, and allows for anaphase onset.  
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anaphase onset (12).   Activation of this checkpoint protects the cell from uneven segregation of 

chromosomes during mitosis and therefore acts as a fail-safe to avoid the development of 

aneuploidy.   Thus, for a cell to develop aneuploidy, it must bypass the SAC. 

There are several possible mechanisms by which aneuploid cells may avoid detection by 

the SAC including mutations in checkpoint genes, altered expression of checkpoint proteins, 

aberrant spindle attachments, or the generation of multi-polar spindles (13). Originally, it was 

thought that tumor cells must exhibit widespread mutation or loss of checkpoint genes to allow 

for bypass of the SAC.  However, mutations in checkpoint proteins were later shown to be 

relatively rare (14-16), which is inconsistent with the widespread incidence of aneuploidy in 

tumor cells (13).   In fact, checkpoint proteins are often over-expressed in tumor cells (17, 18) and 

overexpression of checkpoint proteins has been shown to drive the development of aneuploidy 

(18, 19).  The mechanism by which overexpression of checkpoint proteins drives aneuploidy may 

involve an increased mitotic delay leading to nondisjunction of sister chromatids and tetraploidy 

(18).  In addition to alterations in the SAC components themselves, tumor cells may also become 

aneuploid by developing spindle attachments that are not detected by the SAC.   Two examples of 

these types of defects are changes in chromatid cohesion or merotelic attachments.  Altered 

chromatid cohesion occurs when the two sister chromatids adhere to each other abnormally 

during mitosis, allowing for improper segregation of an additional chromatid to one daughter cell 

without activation of the SAC (13, 20, 21).   Merotelic attachments, which occur when a single 

kinetechore attaches to both spindle poles, are also not detected by the SAC and could lead to 

aneuploidy (22, 23). Finally, the ability of some cancer cells to undergo multipolar mitoses, as 

discussed below, could also account for aneuploidy development (13).  It is currently unclear 

which of these mechanisms is the major driver of aneuploidy in tumor cells. 

The necessity for aneuploid cells to avoid activation of the SAC during each round of 

replication undoubtedly places tumor cells under increased mitotic stress as compared to normal 

cells (13, 24).    It may be possible to exploit this increased mitotic stress by developing drugs 
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that specifically target aneuploid cells.  As the vast majority of normal cells in the human body 

are euploid, aneuploidy-specific compounds could have greatly reduced off-target effects on 

normal tissues.  A recent study has identified compounds that specifically kill aneuploid as 

compared to euploid cells in culture (25).   Future studies to examine the impact of these drugs in 

vivo may uncover a more specific method for targeting mitotic stress in tumors. 

Supernumerary centrosomes and multipolar mitoses - An additional structural barrier 

to mitosis in tumor cells is abnormal expression of greater then two centrosomes in a single 

mitotic cell.  The presence of these supernumerary centrosomes in tumor cells is common and 

may correlate with tumor aggressiveness (26-29). Supernumerary centrosomes can arise through 

a number of mechanisms including fusion of two cells, failed cytokinesis, over-duplication, and 

following activation of oncogenic signaling pathways (27, 30-32). The presence of additional 

centrosomes in a single mitotic cell can lead to nucleation of more then two spindle poles and 

therefore places the cell at risk for a multipolar mitosis (33).  Multipolar mitoses result in 

abnormal segregation of chromosomes into three or more daughter cells and can foster the 

development of aneuploidy (33, 34).  However, it is unclear whether this is a significant source 

for aneuploidy in tumors since the daughter cells from a multipolar division are often inviable 

(33, 35, 36).   Regardless of whether additional centrosomes drive the development of 

aneuploidy, it is clear that supernumerary centrosomes represent a source of mitotic stress in the 

cancer cell. 

To overcome this mitotic stress, tumor cells must find a way to achieve a bipolar mitosis 

even in the presence of additional centrosomes.  A cell with supernumerary centrosomes may 

achieve a bipolar mitosis by either inactivating (27), removing (27, 37) or clustering (38-40) the 

additional centrosomes.  Of these options, centrosome inactivation and removal is relatively rare 

in human tumors while centrosome clustering is much more common (27).   Centrosomal 

clustering occurs when the mitotic cell creates a bipolar spindle by grouping the redundant 

centrosomes into two poles.  This can allow the cell to undergo a bipolar mitosis even in the 
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presence of additional centrosomes.  Centrosome clustering may represent either a unique 

adaptation of tumor cells to the extra centrosome or an additional dependence of tumors on 

centrosomal clustering pathways that exist in all cells (27).  Since normal human cells rarely 

express redundant centrosomes, the pathways guiding centrosome clustering may be uniquely 

required in tumor cells and represent tumor-specific drug targets. The requirement for clustering 

in cancer cells has spurred efforts to identify genes specifically required for this process, 

including a recent genome-wide screen (41).  Importantly, both CKAP5 (41, 42) and TACC3 

(42), discussed in Chapters 2 and 3 of this work, have been implicated in centrosomal clustering.  

Changes in microtubule stability and composition - A final mitotic stress phenotype 

often observed in tumor cells is profound changes in the stability and composition of the 

microtubule network. Microtubules are structures composed of heterodimers of alpha and beta 

tubulin. There are six isotypes of alpha and 7 isotypes of beta tubulin (43). Microtubules are 

dynamic structures that continually cycle between a state of growth and shrinkage.  This cycling 

is called microtubule dynamicity and is vital for rapid formation of the mitotic spindle. In tumor 

cells, this equilibrium is shifted such that tumor cell microtubules are more stable then those in 

normal immortalized cells (44-46).  Increased microtubule stability in tumor cells has been 

postulated to drive the development of aneuploidy because kinetechore-microtubule attachments 

that are excessively stable increase the likelihood of improper segregation of the chromosomes 

between the daughter cells (44-46).   The enhanced microtubule stability in tumor cells may 

partially explain the success of chemotherapeutic drugs targeting the microtubules.   

Several mechanisms may account for the increased stability of microtubules in tumor 

cells.  First, altered microtubule stability observed in tumor lines could be due to changes in 

oncogenic signaling, which can have important effects on the microtubule network (47-51). 

Second, increased stability could derive from changes in the composition of microtubule fibers in 

tumor cells. Different cell types can utilize distinct tubulin isotypes and this can have important 

impacts on the efficacy of microtubule-targeted drugs (52).  These changes in isotype 
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composition could likewise influence stability of microtubules in tumor lines.   Third, changes in 

microtubule stability could develop in tumor cells due to altered expression of microtubule 

stabilizing proteins.  For example, the microtubule stabilizing proteins HEC1 (53, 54), TACC3 

(55) and CKAP5 (56, 57) are all highly over-expressed in cancer cells.   This overexpression may 

drive increased microtubule stability in tumor cells.   An important future direction of study is 

determining the factors uniquely supporting microtubule stability in tumor cells and 

understanding how these influence the development of aneuploidy. 

Overall, tumor cells face profound mitotic stress due to aneuploidy, the presence of 

supernumerary centrosomes, and altered microtubule stability.  Identifying the molecular 

mechanisms by which these stresses interface with each other and with tumorigenic phenotypes is 

an important future direction of study.  In particular, these stresses may have a strong influence 

on the response of tumor cells to anti-mitotic therapies. 

Paclitaxel and genome-wide screen to identify modulators of chemosensitivity 

Discovery of paclitaxel - Paclitaxel is an anti-mitotic chemotherapy that targets 

microtubules in dividing cells (43).  Paclitaxel was originally isolated from the bark of the Pacific 

Yew tree and later shown to have potent efficacy in killing tumor cells (58). The earliest clinical 

trials of paclitaxel were hugely successful with efficacy seen in some cancers, such as ovarian 

carcinoma, which previously had few treatments available.  Early trials in ovarian carcinoma 

demonstrated a 30% overall response rate and some patients exhibited complete remissions (59).  

At the time, this level of response rate in ovarian carcinoma was outstanding.  Since then, 

paclitaxel has become widely utilized to treat a range of cancers including breast, ovarian, lung, 

head and neck cancers, and Kaposi sarcoma, and is now an important part of the clinical 

armamentarium (43).   

The history of discovery of paclitaxel demonstrates the hurdles encountered in 

developing a clinically useful drug. First, paclitaxel was difficult to isolate from the bark of the 
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Pacific Yew.  Researchers attempted to isolate paclitaxel from almost every part of the Yew tree 

but were unable to derive a sufficient quantity of drug to satisfy the appetites of researchers, 

clinicians, and patients (60).  Large quantities of trees had to be cut down to obtain enough 

paclitaxel to meet demand.  There was so much demand, however, that there were fears the 

Pacific Yew would be driven to extinction (61).  Fortunately, a synthetic method to make 

paclitaxel was developed, compromising one of the most difficult chemical syntheses to date 

(62).  Second, paclitaxel had poor solubility, which made it difficult to administer the drug to 

patients.  This almost led researchers to abandon paclitaxel but was somewhat solved by the use 

of the agent Cremophor, a derivative of castor oil, to resuspend paclitaxel (60). Third, there was 

an initial concern that paclitaxel had too much toxicity on normal cells.   However, further 

research indicated there was a sufficient therapeutic window to allow paclitaxel to become a 

clinically useful drug.  The fact that paclitaxel, now one of the most widely utilized 

chemotherapies, had to overcome many significant hurdles demonstrates the challenges faced in 

cancer drug discovery.   

Problems of paclitaxel treatment – The widespread clinical usage of paclitaxel 

demonstrates its success as a chemotherapeutic agent.  However, paclitaxel treatment still has two 

major problems: drug resistance and drug side effects.  First, resistance to paclitaxel treatment is 

common. Resistance to paclitaxel can be primary, occurring in chemonaïve patients, and 

secondary, developing in patients after several cycles of treatment.  The biological mechanisms of 

paclitaxel drug resistance are the object of intense study and are discussed in more detail below 

(52).  Second, paclitaxel treatment can lead to several side effects including allergic reactions, 

alopecia, nausea and vomiting, dose-related immunosuppression, and peripheral neuropathy (63).  

These effects are related both to paclitaxel itself and to the Cremophor delivery vehicle.  In 

particular, Cremophor is believed responsible for many of the allergic reactions that occur with 

treatment and potentially could also account for peripheral neuropathies (60, 64).  Researchers are 

currently attempting several new methods of delivering paclitaxel including nanoalbumin-bound 
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or nab-paclitaxel.  Nab-paclitaxel (Abraxane or ABI-007) is a Cremophor-free formulation that 

uses albumin-stabilized nanoparticles to deliver paclitaxel and was recently approved by the FDA 

for the treatment of breast cancer (65) and has shown efficacy in NSCLC (66).  Many of the other 

side effects seen with paclitaxel are observed with other cytotoxic chemotherapeutic agents and 

stem from the ability of paclitaxel to kill rapidly dividing cells of the gut, bone marrow, and hair 

follicle.  New formulations of paclitaxel that allow for increased concentration of paclitaxel 

within tumors may reduce effects on normal tissues by allowing for decreased drug dosage (67, 

68).   Alternatively, it may be possible to combine paclitaxel treatment with other agents to avoid 

several of the dose-related side effects of paclitaxel (4).  Future efforts to address the problems of 

drug resistance and side effects related to paclitaxel treatment could have important impacts on 

patient care. 

Biological mechanism of paclitaxel - Shortly after the discovery of the efficacy of 

paclitaxel in killing cancer cells (58), paclitaxel treatment was shown to alter mitotic spindle 

function by increasing microtubule stability (69, 70).   This was the first link of paclitaxel to the 

microtubule network and it was later shown that paclitaxel binds directly to the beta tubulin 

subunit (71).  Since paclitaxel binds the beta tubulin subunit to increase microtubule stability, it is 

classically taught in pharmacology courses that paclitaxel functions by stabilizing microtubules, 

in contrast to other agents, such as nocodazole, that destabilize microtubules (72).  Although the 

division of microtubule-targeted agents into those that stabilize or destabilize microtubules is 

conceptually simple and consistent with the impact of these drugs on microtubules in vitro, the 

reality of how paclitaxel functions in a living cancer cell is somewhat more complex. In 

particular, paclitaxel has potent effects on both mitotic progression and cancer cell death at 

concentrations 10-1000 fold below the dose required to produce polymerized microtubules (43, 

73, 74).  Therefore, it is thought that the biological effects of paclitaxel derive not from it causing 

massive microtubule polymerization in tumor cells but rather from effects on microtubule 

dynamics.  In a dividing cell, microtubules are constantly cycling between a state of growth and a 
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state of shrinkage or catastrophe, a process called microtubule dynamicity (75). Since paclitaxel 

has effects on microtubule dynamicity at a much lower dose then that needed to induce outright 

polymerization, the efficacy of paclitaxel likely derives from its ability to disrupt microtubule 

dynamicity (43).  The disruption of microtubule dynamics in paclitaxel-treated cells impairs the 

ability of the mitotic spindle to make proper kinetechore-microtubule attachments.  These 

improper attachments lead to activation of the spindle assembly checkpoint (SAC), mitotic delay, 

and triggering of cell death pathways (63).   In summary, paclitaxel functions by binding to the 

beta tubulin subunit and inducing alterations in microtubule dynamics, which causes impaired 

mitotic progression and cell death. 

Heterogeneity in response to paclitaxel – Ideally paclitaxel treatment causes death of 

the cancer cell in mitosis as described above.  Unfortunately, there is much more complexity in 

the ways in which both patients and tissue culture cells respond to paclitaxel.  In particular, while 

some patients demonstrate a marked response to paclitaxel, others show no response at all (59).  

This heterogeneity of response is paralleled in tissue culture cells where there is great variation in 

cell fate after paclitaxel treatment both between and within tumor lines (35, 76-80). In tissue 

culture cells, paclitaxel treatment can lead to a range of responses (Figure 1.2). These responses 

include dying directly in mitosis, exiting from mitosis, returning to interphase, or exiting as a 

micronucleated cell that may either die or continue to cycle.  This heterogeneity of response in 

vitro may explain the heterogeneity of response to paclitaxel treatment in patients.   

Whether a mitotic cell exposed to paclitaxel dies during mitosis likely relates to how the 

cell responds to activation of the spindle assembly checkpoint (SAC). Although the term SAC 

suggests a checkpoint that cells presumably must satisfy before proceeding through mitosis, the 

SAC is better thought of as a “check-pause”. This means that cells can sometimes slip past the 

checkpoint without forming the proper kinetechore-microtubule attachments.  This ability to slip 

past the checkpoint is due to a slow degradation of mitotic cyclin B1 following prolonged mitotic 

arrest (76, 81).   Slippage past the SAC is problematic because once the cell has slipped out of  
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Figure 1.2 
 

 

 

Figure 1.2 Variation in response of mitotic cells to anti-mitotic therapies 
 Depiction of fates observed in cancer cells following treatment with anti-mitotic agents 
such as paclitaxel. These fates include (1) dying in mitosis (2) exiting as a micronucleated cell 
that can either continue to cycle (3) or die and (4) exiting as two daughter cells that die later in 
interphase. 
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mitosis, paclitaxel treatment is not effective until the next round of replication.  Therefore, 

researchers have attempted to understand what guides the decision of a cell to die in mitosis after 

treatment with paclitaxel.  The most effective studies have used single-cell time-lapse imaging to 

follow cells treated with paclitaxel and map the fate of individual treated cells (35, 76-80). The 

prevailing theory suggests that whether a cell dies in mitosis after treatment with paclitaxel relates 

to a balance between two competing networks: the rate of degradation of cyclin B1 and the 

activation rate of apoptotic pathways (63).   In this model, cyclin B1 is slowly degraded in the 

SAC-arrested cell by a proteasome-dependent mechanism (35, 76).  Concurrently, activation of 

the SAC triggers apoptotic pathways that are designed to detect mitotic cells that cannot form the 

proper kinetechore-microtubule attachments.  When the rate of activation of apoptotic pathways 

exceeds the rate of cyclin B1 destruction, the cell dies in mitosis.  In contrast, if the rate of cyclin 

B1 destruction exceeds the rate of apoptotic pathway activation, the cell slips through the 

checkpoint.  The heterogeneity observed in response of different tumor lines to paclitaxel may 

therefore derive from variation in apoptotic factors between individual cells and cell lines (35, 79, 

80, 82).  Therefore, agents that allow for prolonged activation of the SAC may have increased 

efficacy in killing cancer cells during mitosis (82).  

A paclitaxel-treated cell that successfully slips through the SAC without dying may 

subsequently die during interphase or continue to cycle (Figure 1.2).  The factors governing fate 

of these post-mitotic cells are less clear.  In particular, it is largely unknown what factors allow 

some micronucleated cells to re-enter the cell cycle while other micronucleated cells die or 

senesce.   Several studies have documented a p53-dependent arrest of micronucleated cells in G1 

following abnormal mitotic exit (83-85).  This suggests the presence of a post-mitotic checkpoint 

that restrains proliferation of damaged cells.  In addition, the degree of mitotic damage does not 

appear to correlate with post-mitotic fate because the duration of the preceding mitotic arrest does 

not influence the rate of post-mitotic death in interphase (35).    Since prolonged mitotic arrest 

usually indicates a greater degree of mitotic damage, this finding suggests the likelihood of cell 
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death following a micronucleated exit is independent of the degree of mitotic damage.  Therefore, 

heterogeneity in propensity for micronucleated cell death may depend on variations in activation 

of apoptotic pathways between individual cells and tumor cell lines.  A more complete 

understanding of the factors governing post-mitotic cell fate may help in developing better anti-

mitotic therapies.  

Resistance to paclitaxel treatment – Paclitaxel treatment is limited by significant drug 

resistance that can be due to several factors including mutations in beta tubulin, upregulation of 

drug efflux pumps, changes in expression of beta tubulin isotypes, and changes in cell death 

pathways.   First, mutations in beta tubulin that may impair paclitaxel binding could drive 

resistance.  However, mutations in beta tubulin are rare and unlikely to account for the 

widespread incidence of drug resistance (52, 86).  Second, upregulation of drug efflux pumps can 

drive drug resistance.  Drug efflux pumps result in a decreased concentration of paclitaxel in the 

cell and therefore less cancer cell death with drug treatment.  Upregulation of drug efflux pumps 

has been documented with paclitaxel therapy (87).   Third, changes in expression of tubulin 

isotypes can lead to paclitaxel resistance.  Changes in tubulin isotypes have been documented in 

paclitaxel-resistant ovarian carcinomas (88).  Most commonly, increased expression of beta-3 

tubulin has been shown to drive paclitaxel resistance (52).  Finally, altered apoptotic signaling 

networks could also influence the development of resistance (89-91).  Cells with a decreased 

propensity to die in mitosis may therefore exhibit increased resistance to paclitaxel therapy.  

Overall, it is clear that multiple factors can determine the development of resistance to paclitaxel. 

Our own laboratory has performed genome-wide paclitaxel chemosensitizer screens in 

two NSCLC cell lines: paclitaxel-sensitive H1155 cells (4) and paclitaxel-resistant HCC366 cells 

(unpublished).  Interestingly, the genes identified as hits in the H1155 screen had very little 

overlap with the genes identified in the HCC366 screen.  Moreover, depleting genes identified in 

the H1155 screen in HCC366 cells had minimal effects on HCC366 viability.  This suggests that 

the lack of overlap from the screens derives not from false negatives but from intrinsic 
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differences between resistant and sensitive cells.  Therefore, very different factors may govern the 

response to paclitaxel in primarily sensitive as opposed to resistant cells.  

Genome-wide screen to identify modulators of paclitaxel sensitivity - Given the 

significant limitations of paclitaxel, coupled with the widespread usage of this drug in the clinic, 

identification of new drug targets that synergize with paclitaxel could have a significant impact.  

Additionally, identification of such targets could reveal important biology about how tumor cells 

respond to mitotic stress.  To address these questions, our lab performed the first genome-wide 

siRNA chemosensitizer screen to identify genes whose depletion significantly increases response 

of the NSCLC line H1155 to paclitaxel (4).  For the screen, the H1155 cell line was transfected in 

96-well plates in a one-well one-gene format with siRNAs targeting greater then 21,000 genes.  

After two days of gene knockdown, the transfected cells were treated with either no paclitaxel or 

a dose of paclitaxel that has minimal effects on cell viability (10 nM).  After an additional two 

days of growth in the presence of paclitaxel, cell viability was determined using a luminescence-

based CellTiter Glo viability assay.  This screen returned two types of hits; monogenic lethal hits, 

in which siRNA knockdown alone reduces viability, and synthetic lethal hits in which gene 

knockdown only reduces viability in the presence of paclitaxel.  Importantly, the screen returned 

genes whose knockdown was previously shown to synergize with paclitaxel, identified novel 

drug targets, and also uncovered nearly every component of the gamma-tubulin ring complex, a 

structure needed for nucleation of spindle microtubules (4).   This ability of the screen to uncover 

both novel genes and genes which have already been shown to influence paclitaxel sensitivity 

validates the screening approach and suggests the completion of a successful screen. 

Several relevant points should be made about this screen.   First, the screen hit list was 

significantly enriched for genes previously shown to impact the mitotic spindle.  This enrichment 

likely derives from the fact that the screen was performed using paclitaxel to induce mitotic 

stress.  Second, as expected with any genome-wide screen, this screen pulled many hits that had 

no previous function associated with them or no logical reason by which their knockdown would 
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synergize with paclitaxel.  Given the identification of multiple mitotic proteins in the screen, it is 

likely that many of these unknown hits impact mitotic spindle formation.  This has proved to be 

the case with several hits, including symplekin (SYMPK), the subject of Chapter 2 of this 

dissertation (92).  Third, the screen pulled several members of a gene family called the cancer-

testis antigens (CT-antigens) including ACRBP, FATE1, FMR1NB and NXF2 (4, 93).  The CT-

antigens are a family of genes that share a common expression pattern showing upregulation in 

tissues of gametogenesis and cancer cells with minimal expression in normal adult tissues (93).  

The CT-antigens are discussed in more detail below but their identification in a screen for genes 

affecting tumor cell viability suggests these genes may have an unrecognized role in supporting 

tumor cell phenotypes. The CT-antigens and a related protein, TACC3, is the subject of Chapter 3 

of this dissertation.  Fourth, as necessary with any genome-wide screen extensive validation has 

been performed to reduce the potential that any observation is due to an off-target effect of the 

siRNA.  Most commonly, screen hits have been validated by deconvolution of the siRNA pool 

both at the level of viability and on relevant phenotypes.  As an additional control for these 

effects, the parallel system of shRNA to mediate gene knockdown has also been effective.  

Finally, follow-up of hits from this genome-wide screen has revealed important information about 

the mitotic spindle, response of tumor cells to mitotic stress, and uncovered new drug targets.  

Next, I will discuss the functions of the screen hit symplekin. 

Role of symplekin in polyadenylation and tumorigenesis 

Discovery of SYMPK at the tight junction and in polyadenylation - Symplekin 

(SYMPK) was originally discovered as a component of the zona occludens plaques found in tight 

junctions of epithelial cells (94).  It was given the name symplekin, meaning “to tie together” in 

Greek, for its localization to these important sites of cellular contact.  Subsequent studies 

demonstrated that SYMPK interacts with the Y-box transcription factor ZONAB at the tight 

junction and can modulate expression of ZONAB target genes (95).  In particular, symplekin 
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increases transcription of the target genes cyclin D1 (95) and claudin-2 (96) but decreases 

expression of the transcription factor AML1/Runx1 (97).   Functionally, these effects of SYMPK 

at the tight junction drive proliferation while reducing cellular differentiation.    

The authors who discovered SYMPK at the tight junction also observed strong SYMPK 

expression in the nucleoplasm of a range of cells that lack tight junctions (94).  The function of 

SYMPK in this cellular compartment was not elucidated until several years later when a group 

identified SYMPK as a component of the polyadenylation machinery (98).   In particular, it was 

found that SYMPK interacts directly with the polyadenylation protein CSTF2, demonstrates some 

homology to the yeast polyadenylation component PTA1 (99), and exists in a complex with 

multiple polyadenylation factors.  Therefore, while SYMPK regulates transcription at the tight 

junction it also has a role in controlling polyadenylation. 

SYMPK and polyadenylation - Polyadenylation is a post-transcriptional process that is 

required for the maturation of most mammalian pre-mRNAs, excluding histones, and controls 

mRNA nuclear export, stability, and translation (100).    A longer poly(A) tail typically leads to 

more translation of the mRNA while a shorter tail decreases translation of the mRNA.  

Polyadenylation occurs simultaneously with cleavage of the pre-mRNA and is directed by a large 

complex of polyadenylation and cleavage factors (Figure 1.3A) (100). These factors include five 

cleavage and polyadenylation specificity factors (CPSF1-5 and hFip1), three cleavage stimulation 

factors (CSTF1-3), cleavage factors Im and IIm, poly (A) polymerase (PAP), poly(A) binding 

protein (PABP) and symplekin (Table 1.1) (100).   While all these factors, with the exception of 

PABP, are required for the in vitro cleavage reaction, only a subset (the CPSFs, PAP and PABP) 

are needed for in vitro polyadenylation (101). Several of these factors were identified in our 

genome-wide paclitaxel screens in the NSCLC lines H1155 and HCC366 (Figure 1.3B) (4).  This 

suggests an important role for the polyadenylation machinery and symplekin in controlling 

chemosensitivity. 

The process of polyadenylation and cleavage begins with recognition of three primary  
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Figure 1.3 

A. 

 

B. 
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Figure 1.3 Protein factors involved in cleavage and polyadenylation and impact of their 
depletion in two genome-wide screens  
 (A) Simplified cartoon depicting the poladenylation machinery assembled on a pre-
mRNA transcript with canonical primary sequence elements represented in black boxes.  
Components of the CPSF are shown in blue while components of the CstF are in purple.  
SYMPK acts as a scaffold to link the CPSF to the CstF machinery.   (B) Data from genome-wide 
screens in two NSCLC lines, H1155 and H1299.  Viability ratio in paclitaxel (siGENE 10 
nM/siCONTROL 10 nM) is represented in blue with darker colors indicating a stronger synthetic 
lethal hit.  Genes identified as monogenic lethals are indicated in red. 
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Table 1.1 Characteristics of mammalian cleavage and polyadenylation factors 

Group Subunits Alternative 
names 

Step in 
processing Interacts with: Function 

CSTF1 CstF-50 CSTF3, PolII CTD Binds PolII/CTD 
complex 

CSTF2 CsfF-64 SYMPK, CSTF3 Binds RNA through 
G/U rich sequence 

CstF 

CSTF3 CstF-77 

Cleavage 

CPSF1, CSTF2, 
CSTF1 Scaffolding function 

CPSF1 CPSF-160 
CSTF3, PolII CTD, 

PAP, hFip1, 
SYMPK 

Binds RNA at PAS 
site 

CPSF2 CPSF-100 CPSF3, SYMPK Binds U-rich RNA 

CPSF3 CPSF-73 CPSF2, SYMPK Cleavage 
endonuclease 

CPSF4 CPSF-30 HFip1 Binds U-rich RNA 

CPSF 

hFip1 FIPIL1 

Cleavage and 
poly(A) 
addition 

PAP, CPSF1, 
CPSF4, CSTF3 

Binds U-rich RNA 
and positions PAP at 
polyadenylation site 

CF Im-68 CPSF6 CF Im-25 Aids in PAS site 
recognition 

CFIm 
CF Im-25 CPSF5 

Polyadenylation 
CFIm-68 and PAP Aids in PAS site 

recognition 

hPCF11 PCF11 Unknown Unknown 
CFIIm 

hCLp1 HEAB 
Unknown 

CFIm and CPSF Unknown 

- Symplekin SYMPK 
Cleavage and 

poly(A) 
addition 

CSTF2, CPSF1, 
CPSF2, CPSF3 

Scaffolding function, 
links CPSF to CSTF 

- PAP PAPOLA Polyadenylation hFip1, CFIm, 
CPSF1 

Catalyzes addition of 
the poly(A) tail 

RNA 
Polymerase 

II 
Pol II CTD - Transcriptional 

termination 
hPcf11, CPSF1, 
CSTF1, CSTF3 

Terminates 
transcription 

- PABII PABN1 Polyadenylation CPSF4 Lengthens and 
stabilizes poly(A) tail 

Information in this table is derived from data in the following sources: (100, 101) 
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sequence elements in the pre-mRNA by components of the polyadenylation and cleavage 

complex.  The primary sequence elements include the polyadenylation signal (PAS), the cleavage 

site, and the G/U-rich downstream element (DSE) (100).   The PAS usually has the sequence 

AAUAAA (102) and is recognized and bound by CPSF1 (103).  The cleavage site is recognized 

by the cleavage stimulation factor CSTF2 and does not have a conserved sequence (104) but most 

often consists of the nucleotide sequence CA with cleavage occurring after the cytosine (100).   

The DSE can have several sequences but is typically either GU-rich or U-rich (105, 106), is 

located downstream of the PAS and cleavage sites, and binds CSTF2 (107).   Together these 

sequence elements in the pre-mRNA direct the assembly of the polyadenylation and cleavage 

factors and lead to simultaneous addition of the poly(A) tail and mRNA cleavage.  SYMPK is 

believed to act as a molecular scaffold in this process by binding to a number of proteins in the 

complex including CSTF2, CPSF1, CPSF2, and CPSF3 (98, 108, 109).  Therefore, activity of 

SYMPK and the polyadenylation components is essential for polyadenylation and expression of 

mRNAs. 

Additionally, SYMPK and components of the polyadenylation and cleavage machinery 

also participate in the maturation of the 3’ end of histone mRNAs (110, 111).  Histone mRNAs 

are the only eukaryotic mRNAs that are not polyadenylated.  Rather, histone mRNAs undergo a 

3’ maturation process which combines cleavage with addition of a stem-loop structure at the 3’ 

end of the mRNA (112).  Many of the same components that mediate the polyadenylation and 

cleavage reaction, including SYMPK, also direct maturation of histone mRNAs (112).  Therefore, 

SYMPK mediates histone maturation and polyadenylation. 

SYMPK and cytoplasmic polyadenylation - In most mammalian cells, polyadenylation 

is a nuclear process.  However, in Xenopus laevis oocytes (113-115) and in a subset of 

mammalian cell types (116-118) polyadenylation can also occur in the cytoplasm.  Cytoplasmic 

polyadenylation is an important method of post-transcriptional control of gene expression during 

meiotic cell divisions in Xenopus.  In Xenopus oocytes, many meiotic transcripts, including cyclin 
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B1, encode a cytoplasmic polyadenylation element (CPE) with the sequence UUUUUAU (114).  

These CPE-containing transcripts exist in the unstimulated oocyte as dormant transcripts with a 

very short poly(A) tail (119-122).  Upon stimulation of the oocyte to proceed through meiosis, the 

CPE is bound by the cytoplasmic polyadenylation element binding protein (CPEB) and a poly(A) 

tail is added (123). Addition of the poly(A) tail drives expression of the transcripts and meiotic 

progression.   Therefore, cytoplasmic polyadenylation allows for precise temporal control of gene 

expression during meiosis. 

The machinery controlling cytoplasmic polyadenylation shares many players in common 

with the nuclear polyadenylation machinery, including SYMPK (108, 124).  Two unique 

components of the cytoplasmic polyadenylation machinery with relevance to this work include 

the cytoplasmic polyadenylation element binding protein (CPEB) and the protein Maskin.  The 

CPEB functions to bind the CPE in dormant transcripts and direct the assembly of the 

cytoplasmic polyadenylation machinery (123).  Importantly, SYMPK has been shown to interact 

with the CPEB (124).  Additionally, the protein Maskin is a component of the cytoplasmic 

polyadenylation machinery that represses cytoplasmic polyadenylation by simultaneously binding 

the CPEB and the cap-binding factor eIF4E to prevent proper assembly of the cytoplasmic 

polyadenylation machinery on transcripts such as cyclin B1 (120, 125, 126).  The human TACC 

proteins, subject of Chapter 3 of this dissertation, demonstrate significant homology to Xenopus 

Maskin (127).   The identification of both TACC3 and SYMPK in our genome-wide paclitaxel 

chemosensitizer screen, coupled with the important role of cytoplasmic polyadenylation in 

controlling meiotic cell division, suggests that SYMPK may have an important role in 

mammalian cell division. 

SYMPK and polyadenylation in tumorigenesis - Emerging evidence has implicated 

both SYMPK and alterations in polyadenylation in cancer development.  First, SYMPK becomes 

upregulated as lung cancer cells progress from normal to malignant cells (128).  The upregulation 

of SYMPK in tumor cells could indicate an important role for SYMPK in supporting tumorigenic 
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phenotypes. Second, a recent study demonstrated a decrease in colorectal tumor formation 

following SYMPK depletion (96).  This phenotype could be due to either the effects of SYMPK 

on transcription at the tight junction or on polyadenylation.  This study therefore directly 

implicates SYMPK in colorectal tumor growth.  Third, the process of polyadenylation in general 

is frequently corrupted in tumor cells through a process called alternative polyadenylation.   

Alternative polyadenylation occurs when pre-mRNAs are polyadenylated at a site upstream of the 

canonical AAUAAA PAS sequence, resulting in a shorter 3’UTR (129, 130).  Alternative 

polyadenylation can occur in more then 50% of human genes (131) and use of these sites can 

alter mRNA export, stability and translation (129).   Usage of alternative polyadenylation sites is 

common in cancer cells and can activate oncogene expression (132). This activation of oncogenes 

is likely due to a shorter 3’UTR that may impair binding of regulatory elements like microRNAs 

(132).  Fourth, polyadenylation can be dysregulated in tumor cells in response to DNA damage 

(133), through interaction with tumor suppressors (134), and by upregulated expression of 

polyadenylation components (135).   These corrupted polyadenylation networks in tumors may 

account for the efficacy of the adenosine analog and non-specific polyadenylation inhibitor 

cordycepin in hematologic malignancies (136-141). Together, this research demonstrates that 

changes in symplekin expression or polyadenylation can profoundly alter the tumorigenic state.       

The cancer-testis antigens  

 Expression pattern of the cancer-testis antigens - The cancer-testis (CT) antigens are a 

diverse group of proteins that share a common pattern of expression showing enrichment in the 

organs of gametogenesis (including the testis, ovary and placental tissue), limited to no 

expression in normal adult tissues, and aberrant upregulation in tumor tissue (93). To date, there 

are over 130 genes classified as CT-antigens and the features of these genes have been compiled 

at CTpedia (http://www.cta.lncc.br), a publically accessible database (142, 143).  Many, but not 

all, of the CT-antigens are encoded on the X chromosome.  In fact, up to 10% of X-chromosome 
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encoded genes are CT-antigens (144).  The common expression of the CT-antigens in tumor cells 

suggests a functional role for these proteins in tumorigenesis.   

Several studies have examined the expression pattern of CT-antigens in human cancers 

and led to some broad conclusions (143, 145, 146).  First, CT-antigen expression can be detected 

in many tumor types but appears most commonly in melanoma and carcinomas of the bladder, 

lung, ovary, and liver (93).  Second, upregulation of the CT-antigens is often sporadic and not all 

CT-antigens are enriched in all tumors of a specific type (143, 145, 146).  For example, the CT-

antigen FMR1NB was detected in 5 out of 19 lung carcinomas (147).   This sporadic expression 

pattern has made it difficult to study the functional role of the CT-antigens since not all antigens 

are present in all cell lines.  However, there are cases where many tumors of the same type 

express a particular antigen.  This is exemplified by the CT-antigen ACRBP, which is expressed 

in over 70% of ovarian cancers (148).  Third, in tumors that express CT-antigens, expression of 

the antigen is often confined to a subpopulation of cells within the tumor (149).  This has led 

some to propose that the CT-antigens may have a role in conferring stem-cell like properties (93).   

Fourth, some CT-antigens are expressed at a low-level in a subset of adult tissues, particularly in 

brain tissue (143).  This suggests parallels between the networks controlling expression in brain 

and those controlling expression in tumors.  Finally, expression of many CT-antigens appears to 

be driven at least partially by promoter demethylation (146, 150-152).  Therefore, treatment with 

demethylating agents such as 5-aza-2’-deoxycytidine (DAC) can induce expression of CT-

antigens (146, 150).  However, hypomethylation appears to be necessary but not sufficient for 

CT-antigen expression since DAC treatment only induces expression of a subset of these genes 

(146).  Overall, expression of CT-antigens is sporadic both between and within tumors, is 

generally confined to tumors or gametogenic tissues, and is driven by promoter demethylation. 

Immunogenic properties of the CT-antigens - In addition to sharing a common pattern 

of gene expression, many, but not all, of the CT-antigens also share immunogenic properties.  

The ability to elicit an immune response has not been assessed for all CT-antigens and is not a 
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criterion for the CT antigen classification (93, 143).  However, the immunogenicity and unique 

expression pattern of the CT-antigens has made them tractable drug targets for cancer vaccines.  

For example, a vaccine targeting the CT-antigen MAGEA5 has caused significant tumor 

regressions in 7 out of 25 patients in a recent clinical trial (153).  This vaccine, developed by 

GlaxoSmithKline, has currently advanced to a larger phase III clinical trial in patients with 

NSCLC (154).  Importantly, CT-antigen targeted vaccines work by eliciting an immune response 

against tumor cells that express the CT-antigens.  Therefore, the efficacy of these vaccines does 

not necessarily derive from inhibition of cellular function of the CT-antigen. 

Functions of the CT-antigens - While sharing a similar expression pattern, the CT-

antigens have diverse cellular functions in everything from modulating protein-protein 

interactions to regulating transcription (93). However, a function for the majority of the CT-

antigens has not been assigned (93).  It is therefore unclear whether most of the CT-antigens are 

simply byproducts of dysregulated gene expression in tumor cells or whether they have a 

functional role in supporting tumorigenic phenotypes.   This is an important distinction 

therapeutically because CT-antigens with no functional role are likely mainly useful as vaccine 

targets while CT-antigens with a functional role in supporting tumor phenotypes could be 

targeted with small molecules.  Recent work demonstrated that the CT-antigen ACRBP 

functionally supports ovarian tumorigenesis by modulating expression of the microtubule-

associated protein NuMa (155). Additionally, other CT-antigens have demonstrated functional 

relevance to tumor cell phenotypes (156, 157).  This data suggests a functional role of at least 

some CT-antigens in tumorigenesis but the role of the vast majority of CT-antigens remains a 

black box.  The known functions of the CT-antigens and gametogenic genes discussed in Chapter 

3 of this dissertation are detailed in Table 3.1.   

Due to the limitations of studying the CT-antigens, stemming from limited knowledge of 

their function and their sporadic expression pattern, this dissertation also focuses on a 

gametogenic gene called transforming acidic coiled-coil containing protein 3 (TACC3).  TACC3 
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is strongly upregulated during gametogenesis and in tumor tissue but is also present in normal 

adult tissues, albeit at a lower level.  This expression pattern and the rich functional knowledge 

about TACC3 compelled us to utilize it as a model for studying the gametogenic genes in cancer.   

Transforming acidic coiled-coil containing protein 3 

The TACC family - Transforming acidic coiled-coil containing protein 3 (TACC3) is a 

member of the TACC protein family.  This family shares a common TACC domain at the C-

terminus that associates members of the family with microtubules and allows them to modulate 

microtubule stability (158, 159).  There are three TACC proteins in humans (TACC1-3) but only 

one TACC protein in mouse (AINT), Drosophila (D-TACC), and Xenopus (Maskin) (160).   All 

the human TACC genes are located in chromosomal regions that are commonly rearranged in 

cancer (55, 160, 161) but only TACC1 is directly transforming (161). Outside of the TACC 

domain, members of this family have distinct N-terminal signaling domains that allow TACC 

proteins to impact a range of processes including transcription and polyadenylation (160).   

TACC3 expression pattern - TACC3 demonstrates a pattern of expression that suggests 

a role in gametogenesis, embryonic development, and tumorigenesis.  In particular, TACC3 is 

highly expressed in the testis and during embryogenesis but is expressed at much lower levels in 

normal adult tissues with the exception of the hematopoietic system (55, 127, 162-165).    The 

finding that TACC3 knockout mice exhibit embryonic lethality accompanied by massive mitotic 

defects supports a role for TACC3 in development (164).  In cancer cells, TACC3 expression is 

dramatically upregulated in both tumor cell lines (55) and tissues (166, 167).  The exception to 

this consistent upregulation of TACC3 in cancer lines may be in ovarian cancer, where two 

studies have documented increased expression while another found decreased TACC3 expression 

(168-170).  The upregulation of TACC3 in tumor tissue may derive somewhat from its pattern of 

cell cycle expression, which is significantly increased in G2/M of the cell cycle (164, 171).  

Therefore, TACC3 expression is increased during gametogenesis and tumorigenesis and may be 
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controlled in a cell-cycle specific manner. 

Role of TACC3 in mitosis - During mitosis TACC3, which is expressed in the nucleus 

of interphase cells, is phosphorylated by aurora kinase A (AURKA) at three consensus AURKA 

phosphorylation sites (160, 172, 173).  Phosphorylation at these sites directs TACC3 to a diffuse 

region around the centrosome in mitotic cells (158, 174).  Mutation of the AURKA 

phosphorylation sites or treatment with the AURKA inhibitor VX-680 impairs TACC3 

phosphorylation and inhibits its localization to the centrosome (172, 175).  Once at the 

centrosome, TACC3 recruits and binds to the microtubule stabilizing protein CKAP5 (TOGp)  

(176).  CKAP5 functions by opposing the depolymerizing activity of the protein kinesin family 

member 2C (MCAK) to allow for increased microtubule growth and stability (177, 178). This 

important role in stabilizing microtubules probably accounts for the synergy previously observed 

by other groups between TACC3 knockdown and paclitaxel treatment (179, 180).    Therefore, 

TACC3 functions as a microtubule stabilizing protein and loss of TACC3 leads to decreased 

microtubule stability in vitro (176).  

Role of TACC3 outside of mitosis - Aside from its most well studied role in mitosis, 

TACC3 can influence a number of other processes including several that are relevant to this 

dissertation: cytoplasmic polyadenylation, differentiation, and response to hypoxia.  First, human 

TACC3 demonstrates 36% homology to Xenopus Maskin, which mediates cytoplasmic 

polyadenylation (127).  Cytoplasmic polyadenylation, as discussed above, is an important method 

of post-transcriptional control of gene expression during Xenopus oocyte development.  Maskin 

acts as a negative regulator of cytoplasmic polyadenylation of meiotic transcripts by binding to 

CPEB, which interacts with SYMPK, and inhibiting assembly of the polyadenylation complex on 

the pre-mRNA (120, 125, 126).  Importantly, human TACC3 lacks the domain in Maskin that 

interacts with CPEB (160).  An interaction between TACC3 and SYMPK by co-

immunoprecipitation can be detected but a functional role for the interaction is unclear (Figure 

4.2).  However, this interaction suggests that the function of human TACC3 may impinge on 
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polyadenylation, similarly to that observed in Xenopus.  Second, TACC3 has been shown to have 

a role in driving cellular differentiation, potentially by controlling activity of transcription factors 

(163, 165, 181).  This has relevance to this dissertation since a screen to identify small molecules 

that promote neuronal differentiation uncovered a TACC3 inhibitor that is used in Chapter 3 

(182).  Finally, the mouse TACC3 protein, AINT, may regulate the cellular response to hypoxia 

by binding to and altering the localization of the Ah receptor nuclear translocator protein (ARNT) 

(183).  ARNT heterodimerizes with HIF-1alpha in the presence of low oxygen tension to induce 

transcription from hypoxia response element containing genes (183).  This is relevant to this 

dissertation because the TACC3 inhibitor used in Chapter 3 likewise appears to influence 

response to hypoxia.   Therefore, TACC3 can influence several important processes outside of its 

role in mitosis. 

Thesis Summary 

This dissertation will cover two processes that may impact responsiveness of tumor cells 

to mitotic stress: polyadenylation and gametogenesis.  Both these projects arose from findings in 

genome-wide paclitaxel chemosensitizer screen (4).  In particular, Chapter 2 will focus on the 

potent screen hit SYMPK while Chapter 3 will focus on the screen hit TACC3. 

In Chapter 2 “Symplekin is required for appropriate microtubule function and mitosis” 

we investigate the role of the polyadenylation scaffold symplekin in impacting mammalian 

mitosis.  This work uncovers critical links between the polyadenylation machinery, paclitaxel 

responsiveness and mitosis.  In particular, in this chapter we show that symplekin depletion 

sensitizes NSCLC cells to paclitaxel by inducing mitotic errors, leads to altered microtubule 

dynamics, and causes loss of the microtubule stabilizing protein CKAP5.  Additionally, we 

demonstrate that other members of the polyadenylation machinery have similar impacts on 

mitosis, providing one of the first links between polyadenylation and mammalian mitosis.  

Finally, data in this chapter also demonstrates that the symplekin depletion may preferentially 
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affect tumor, as opposed to normal cell lines, suggesting a unique dependence of tumor lines on 

polyadenylation for mitotic progression. 

In Chapter 3 “TACC3 and multiple gametogenic genes support the cancer cell mitotic 

spindle” we study the links between several gametogenic genes and mitosis. We begin this work 

by depleting a panel of cancer-testis antigens and gametogenic genes from the NSCLC line 

H1155 in the presence of paclitaxel and showing how this impacts mitotic progression.  Next, we 

focus on the gametogenic gene TACC3 and demonstrate TACC3 is uniquely required for mitosis 

in tumor cell lines.  In particular, we perform immunofluorescence and live-cell imaging studies 

in a NSCLC progression model to determine the point during tumor evolution when TACC3 

becomes required for mitosis.  Finally, we use a TACC3 inhibitor to demonstrate that 

gametogenic genes can be targeted with small molecules and that doing so can increase the 

efficacy of current anti-mitotic drugs.  

In Chapter 4, I discuss the impact of these findings on the factors supporting 

tumorigenesis, response to chemotherapy, and mitosis.  In particular, I discuss how 

polyadenylation and the gametogenic machinery may interface with mitotic stress in tumor cells.  

I additionally discuss the clinical implications of this work and potential directions for future 

study. 

  



 

 

CHAPTER II 

SYMPLEKIN IS REQUIRED FOR APPROPRIATE MICROTUBULE 

FUNCTION AND MITOSIS 
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mitotic fidelity by supporting microtubule dynamics. Mol. Cell Biol. 30(21), 5135-44. 
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Summary 

Using a pangenomic loss of function screening strategy, we have previously identified 76 

potent modulators of paclitaxel responsiveness in non-small cell lung cancer. The top hit isolated 

from this screen, symplekin, is a well-established component of the mRNA polyadenylation 

machinery. Here, we performed studies to reveal the mechanistic underpinnings by which 

symplekin depletion synergizes with paclitaxel. We find that symplekin supports faithful mitosis 

by contributing to the formation of a bipolar spindle apparatus. Depletion of symplekin attenuates 

microtubule polymerization activity as well as expression of the critical microtubule 

polymerization protein, CKAP5 (TOGp). Depletion of additional members of the polyadenylation 

complex results in similar phenotypes, suggesting that the polyadenylation machinery is coupled 

to microtubule function and mitotic spindle formation. These results demonstrate a critical 

connection between the polyadenylation machinery and mitosis and suggest the polydenylation 

machinery may be a useful target in combination with current anti-mitotic therapies. 
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Introduction  

Pangenomic loss of function screening is emerging as an effective tool for revealing the 

components that support core biological processes including viral infection, DNA repair, 

chemotherapeutic responsiveness, melanogenesis and endocytosis (4, 184-188).  A number of 

screening efforts have focused on identifying those gene products that are required for mitotic 

progression in both the normal and tumorigenic setting (38, 41, 189-191). These screens have 

successfully returned validated mitotic participants but also have isolated a diverse set of 

unanticipated genes whose encoded proteins have no previously described role in mitotic 

progression but instead have well established roles in processes such as transcription (189-191), 

RNA splicing and translation (190, 191) and vesicle transport (190); thereby revealing an 

unexpected diversity in the compendium of gene products supporting mitosis.  

We have recently applied a genome-wide loss of function paclitaxel synthetic lethal 

strategy to identify genes that modulate chemoresponsiveness in non-small cell lung cancer cells 

(NSCLC) (4). This strategy returned a diverse set of gene products, including symplekin, whose 

depletion was the most potent for sensitizing NSCLC to a dose of paclitaxel that has no detectable 

impact on cell viability. Symplekin is a scaffold protein that supports the assembly of 

polyadenylation machinery on pre-mRNA transcripts; however no role for symplekin in drug 

sensitivity or mitosis has been reported (124). Polyadenylation is essential for the maturation of 

most pre-mRNAs and regulates mRNA nuclear export, stability and translation (100). In Xenopus 

laevis oocytes, the polyadenylation of specific meiotic transcripts is regulated such that their 

activation only occurs following meiotic maturation signals (120, 192, 193). In mammalian cells, 

the poly(A) tail length of specific transcripts changes in a cell cycle dependent manner (194), 

suggesting that cytoplasmic polyadenylation is a conserved mechanism for exerting translational 

regulation of gene expression prior to and during cell division.  

Here, we evaluate the contribution of the polyadenylation machinery to mitotic control in 
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the tumor cells. We find that symplekin is required to support bipolar spindle formation in 

multiple NSCLC derived tumor cells and that symplekin depletion impairs proliferation of 

NSCLC cells in vivo. The basis of symplekin’s contribution to mitotic progression appears to be 

at the level of microtubule function and expression of a critical component of the microtubule 

polymerization machinery, CKAP5 (TOGp). Depletion of other polyadenylation components 

causes similar alterations in CKAP5 expression and mitotic progression. Therefore, our results 

demonstrate that mitosis is acutely sensitive to perturbations of the polyadenylation machinery 

and suggest inhibition of polyadenylation may synergize with current anti-mitotic agents.  

Results 

 Symplekin is required for mitotic spindle integrity - Symplekin was originally 

identified as a statistically significant modulator of paclitaxel sensitivity using a high-throughput 

chemosensitizer screening platform. Thus, we first validated symplekin for off-target 

consequences by verifying that multiple independent siRNA sequences were capable of inducing 

synthetic lethality (Figure 2.1A). In addition, we validated that symplekin protein levels were 

depleted (Figure 2.1A). Because we have previously observed that RNAi paclitaxel sensitizer 

screens can return components whose depletion induces a mitotic arrest (4), we evaluated the 

integrity of the mitotic spindle in symplekin depleted H1155 cells treated with 10 nM paclitaxel. 

As observed for other targets identified by our whole genome screening effort, symplekin 

depletion led to an increase in the accumulation of mitotic figures (Figure 2.1B). This 

accumulation was also detected at the population level by flow cytometry which revealed a 

marked increase in 4N DNA content of symplekin depleted cells exposed to 10 nM paclitaxel as 

compared to control transfected cells (Figure 2.1C). Immunoblot analysis revealed elevated levels 

of cyclin B1, a substrate of the Anaphase Promoting Complex (APC), the E3 ligase whose 

activity is restricted in the presence of improper chromosome alignment (Figure 2.1D). Thus, the 

observed accumulation of mitotic cells in the symplekin-depleted samples could indicate an  
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Figure 2.1 

 

Figure 2.1  SYMPK is required for spindle integrity after exposure to paclitaxel 
 (A) Whole cell extracts of H1155 cells transfected with indicated siRNAs were 
immunoblotted to detect endogenous SYMPK (left panel). Viability assay in H1155 cells 
transfected with control or independent siRNAs targeting SYMPK.  Error bars represent Standard 
Error of the Mean (SEM), n=2. (B) H1155 cells transfected with the indicated siRNAs and 
exposed to paclitaxel for 24 hours were stained with DAPI to detect mitotic cells. Error bars 
represent Standard Deviation (SD), n=2.  (C) H1155 cells were transfected with indicated siRNAs 
and at 48 hours post-transfection, cells were exposed to paclitaxel for 24 hours. Cells were then 
fixed and stained with propidium iodide. A representative flow cytometry profile is shown. (D) 
Whole cell lysates of H1155 cells transfected with indicated siRNAs for 48 hours then exposed to 
paclitaxel for an additional 24 hours were immunblotted for cyclin B1. (E) H1155 cells 
transfected with indicated siRNAs for 48 hours then exposed to paclitaxel for 24 hours were fixed 
and stained with β-tubulin (green), pericentrin (red) and DAPI.  Cells were scored as having > 2 
centrosomes if there were more than 2 pericentrin positive poles during mitosis. Error bars 
represent SD, n=3. All p-values were calculated using a Student’s t-test. 
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aberrant mitosis. Indeed, symplekin depleted H1155 cells exposed to 10 nM paclitaxel displayed 

a high frequency of multipolar spindles characterized by disorganized tubulin and multiple 

centrosomes as compared to control-transfected cells (Figure 2.1E). These data suggest that 

symplekin function is directly coupled to the ability of cells to form a normal bipolar spindle. 

 Symplekin is required for high fidelity mitosis - Given our observations that symplekin 

contributes to bipolar spindle formation, we directly assessed the consequence of symplekin 

depletion on mitotic progression in real-time by live imaging of H1155 cells stably expressing the 

chromatin marker GFP-H2B. By performing single-cell lineage tracing, we measured both the 

length and outcome of mitosis in symplekin and control siRNA transfected cells (Figure 2.2A). 

As expected, control or symplekin depletion alone had little effect on either mitotic fate or mitotic 

timing (Figure 2.2A and 2.2B). However, symplekin depleted cells exposed to 10 nM paclitaxel 

exhibited a significantly prolonged mitosis as compared to control transfected and paclitaxel 

treated cells (Figure 2.2B). The outcome of this prolonged mitosis was aberrant in 75% of the 

individual cells studied. In particular, instead of the formation of 2 daughter cells, symplekin 

depleted samples underwent either apoptosis, micronucleation or a multipolar mitosis following 

mitotic arrest (Figure 2.2A and 2.2C). Taken together, these observations suggest that symplekin 

supports mitotic spindle formation and mitotic progression in NSCLC.  

 Symplekin is necessary for mitosis in diverse NSCLC genetic settings - To determine 

if the impacts of symplekin depletion can be observed across diverse genetic backgrounds, we 

assayed mitotic defects following symplekin depletion in H1299 cells, which were derived from a 

NSCLC lymph node metastasis. H1299 cells undergo a mitotic arrest followed by bypass of an 

activated APC and form micronucleated daughter cells when exposed to doses of paclitaxel 10 

nM and greater. Similar to the synthetic lethality seen in H1155 cells, H1299 cells depleted of 

symplekin and exposed to 10 nM paclitaxel displayed an increase in the frequency of micro- and 

multi-nucleated cells as compared to control (Figure 2.3A). We do not observe the same effects in 

the normal-tissue derived human bronchial epithelial cell line, HBEC3 (Figure 2.3B).  
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Figure 2.2 

 

Figure 2.2 SYMPK is required for normal mitotic progression in tumor cells 
 (A) H1155 cells expressing GFP-Histone H2B were transfected with indicated siRNAs.  
At 48 hours post-transfection, cells were exposed to 10 nM paclitaxel or carrier and imaged by 
live time-lapse microscopy from 24-72 hours post-paclitaxel treatment. Single-cell lineage tracing 
was performed to identify mitotic exit phenotype for a total of 48 cells per condition. (B) Quartile 
ranges for time in division as calculated from chromosome condensation to anaphase onset in 48 
cells under the conditions described in A. P-values were calculated with the Mann-Whitney test. 
(C) Fold increase in abnormal mitotic exits in 10 nM paclitaxel for control or SYMPK-depleted 
cells across 3 independent live cell imaging experiments. The data represents the fate of at least 
145 individual cells for each treatment. Error bars represent SD. 
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Figure 2.3 
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Figure 2.3 SYMPK is necessary for mitosis in multiple tumor cell lines  
 (A) H1299 cells were transfected with the indicated siRNAs for 48 hours followed by 
exposure to paclitaxel for 24 hours. Cells were fixed and stained with β-tubulin and DAPI (left 
panel) followed by quantification of micro and multinucleated cells (right panel).  Error bars 
represent SD, n=3.  (B) Immortalized HBEC3 cells were transfected with the indicated siRNAs 
for 48 hours followed by exposure to paclitaxel for 24 hours. Error bars represent SD, n=3. (C) 
H1299 cells were infected for 5 days with lentivirus targeting control (GFP) or SYMPK shRNAs 
were followed by staining and quantification of micro and multinucleated cells.  Errors bars 
represent SD, n=3. (D) H1155 cells were treated as in (C). Representative images (left panel) and 
quantification of percentage of total cells in mitosis (right panel) is shown.  Error bars represent 
SD, n=3.  (E) HCC515, HCC366 and BJ fibroblasts were treated as in B, except cells were fixed 
7 days post infection. Cells were co-stained with β-tubulin/DAPI and scored microscopically for 
micronucleation.  Error bars represent SD, n=3.  P-values were calculated using a Student’s t-test. 
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We next sought to determine the impacts of prolonged suppression of symplekin expression in 

NSCLC cells. To this end, we stably repressed symplekin expression in H1299 cells using an 

shRNA-mediated system where we pooled two effective shRNAs targeting symplekin (Figure 

2.3C). Stably repressing symplekin expression in the H1299 NSCLC line led to an increase in 

micronucleation in the absence of paclitaxel (Figure 2.3C). In our original screening cell line, 

H1155, stable repression of symplekin led to an increase in mitotic figures in the absence of 

paclitaxel (Figure 2.3D). Extending this analysis to two additional NSCLC lines and 

immortalized BJ fibroblasts revealed that the generation of micronucleated cells following 

prolonged symplekin depletion is a common phenomenon in NSCLC but not normal diploid 

fibroblasts immortalized with hTERT (Figure 2.3E). Thus, while the transient impacts of 

symplekin depletion are observable only in the presence of a microtubule disrupting agent, 

prolonged symplekin depletion alone increases the frequency of aberrant mitosis and mitotic 

arrest in tumor, but not normal, cells.  

 Loss of symplekin impairs tumor formation in a mouse xenograft model - To directly 

test if the mitotic dysfunction we observe in multiple NSCLC backgrounds could result in 

reduced neoplastic potential, we evaluated the ability of H1299 cells stably depleted of symplekin 

to form xenograft tumors in nude mice. Luciferase-expressing H1299 cells were injected into 

nude mice 5 days following infection with shRNAs targeting symplekin or GFP. Tumor 

development was monitored for 4 weeks by twice weekly imaging of tumors. While 100% of 

control-infected cells formed sub-cutaneous tumors, only 50% of mice injected with symplekin 

depleted cells established tumors (Figure 2.4A). Furthermore, at 5 weeks post-injection, the 

symplekin hairpin tumors were significantly smaller than control cells (Figure 2.4B), suggesting 

that the asymmetric divisions we observe in vitro may accumulate over time to reduce tumor cell 

proliferation.  
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Figure 2.4 

 

Figure 2.4 Depletion of SYMPK impairs tumor growth in vivo  
 (A) 2 million luciferase expressing H1299 cells infected with lentivirus harboring control 
or SYMPK shRNA’s were injected in the right flank of Harlan Nude mice. Picture depicts 
bioluminescence imaging of representative tumor burden at 35 days post injection. (B) Mice in 
(A) were subjected to BLI imaging twice weekly following injection of H1299 cells. Line graph 
of growth curves for indicated groups is shown. Error bars represent SEM for 10 mice in each 
group. 



42 

 Symplekin modulates microtubule polymerization - The formation of a normal, 

bipolar spindle apparatus is exquisitely dependent on proper microtubule function, which is 

significantly altered in the presence of chemotherapeutic drugs such as paclitaxel (43). Given the 

symplekin-paclitaxel synthetic lethal phenotype we observe in NSCLC, we probed microtubule 

polymerization efficiency in H1299 cells following transient depletion of symplekin using a 

microtubule regrowth assay. Here, H1299 cells transfected with control or symplekin siRNAs 

were exposed to a high dose of nocodazole to induce microtubule depolymerization. 

Microtubules were depolymerized to a similar degree in both control and symplekin transfected 

samples (Figure 2.5A and 2.5B). However, after 10 minutes of recovery, symplekin depleted cells 

displayed little microtubule regrowth from their centrosomes. A similar trend was observed in 

mitotic cells, where growth of microtubules from both the spindle poles and the kinetochores was 

significantly attenuated in symplekin depleted samples (Figure 2.5A and 2.5B). Similar 

phenotypes were observed in both H1299 and H1155 cells when we performed the experiment by 

an in vitro microtubule stability assay where polymerized tubulin is sedimented after the 

depolymerization and recovery steps and analyzed by immunoblotting (Figure 2.5C and 2.5D).  

Thus, depletion of symplekin significantly alters microtubule polymerization, a process that is 

essential for normal spindle formation.  

 SYMPK depletion leads to loss of CKAP5 - Symplekin is a multifunctional protein 

implicated in transcription and translation as well as signaling at tight junctions (94, 98, 108, 

124). The localization pattern of symplekin has previously been described at the tight junctions 

and in the nucleus (94), the latter of which is a pattern we also observe in H1299 cells (Figure 

2.6A). During mitosis, symplekin is distributed diffusely throughout the nucleoplasm and does 

not appear to localize to a specific mitotic structure at the microscopic resolution employed in this 

study (Figure 2.6A), suggesting that symplekin does not impact mitosis through a direct 

association with the mitotic machinery. Given the role of symplekin in gene expression (96, 108, 

195) and the errors observed in spindle integrity, mitotic progression and microtubule nucleation,  
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Figure 2.5 

 

Figure 2.5 Depletion of SYMPK reduces microtubule stability  
 (A) H1299 cells transfected with indicated siRNAs for 96 hours were treated with 11 uM 
nocodazole for 2 hours. Cells were fixed at 0 and 10 minutes post nocodazole washout and 
stained with β-tubulin (green), pericentrin (red) and DAPI. A representative image (left panel) of 
interphase cells at 0 and 10 minutes post-recovery and box plot quantification of fluorescence 
intensity (right panel) is shown.  The box plot was derived from quantifying a minimum of 75 
interphase cells per condition across 8 independent fields of view.  (B) Microtubule recovery in 
mitotic cells under the conditions described previously.  A representative image (left panel) of 
mitotic cells and a box blot quantification of fluorescence intensity (right panel) is shown.  The 
box plot was derived from quantifying a minimum of 45 mitotic cells per condition.  All p-values 
are by Mann-Whitney test.  (C) In vitro microtubule stability assay in H1299 cells.  Cells were 
transfected with the indicated siRNAs for 72 hours, treated with nocodazole for 30 minutes and 
the polymerized tubulin fraction was harvested by scraping into cold microtubule stabilizing 
buffer followed by high-speed centrifugation.  (D) Same assay as in (C) but performed in H1155 
cells. 
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Figure 2.6 
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Figure 2.6 SYMPK depletion leads to loss of CKAP5   
 (A) H1299 cells growing on glass coverslips were fixed and immunostained with anti-
symplekin (green), pericentrin (red) and DAPI.  Images depict SYMPK localization in both 
interphase and mitotic cells. (B) Representative immunofluorescence images of H1299 cells 
depleted of SYMPK and immunostained for a panel of centrosome and tubulin-associated 
proteins at 80 hours post-transfection.  (C) H1299 cells transfected with indicated siRNAs were 
fixed at 80 hours post-transfection and immunostained for CKAP5 (red), Aurora-A (green) and 
DAPI.  (D) Whole cell lysates from H1299 cells transfected with indicated siRNAs for 96 hours 
or infected with indicated shRNAs for 5 days were immunoblotted to assess CKAP5 expression.  
TACC3 is included as a control for effects on global protein expression following transient 
depletion. (E) H1299 cells transduced with lentivirus from control or two independent SYMPK-
targeting shRNAs were blotted for CKAP5 expression at 9 days post-infection. (F) Cell-titer Glo 
iability assay in H1155 and H1299 cells depleted of indicated siRNAs for 96 hours.  Error bars 
represent Standard Error of the Mean (SEM).  (G) H1299 cells were transfected with control and 
CKAP5 siRNAs for 96 hours and subjected to a microtubule regrowth assay as described 
previously.  Representative images (left panel) and quantification of fluorescence intensity (right 
panel) is shown. Box plot quantification is from a minimum of 40 cells across 11 independent 
fields of view. 
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we hypothesized that symplekin could be impacting expression of proteins required for mitotic 

spindle formation. To assess this possibility, we analyzed a panel of proteins required for proper 

centrosomal maturation and microtubule nucleation (176, 196-201). Symplekin depletion alone 

had no detectable effect on the localization and expression of almost all proteins studied (Figure 

2.6B). However, symplekin depletion had a profound effect on the expression of CKAP5 as 

detected by both immunofluorescence (Figure 2.6C) and immunoblot analysis (Figure 2.6D and 

2.6E). CKAP5 displays an elevated expression pattern in tumor cells (56) and localizes to the 

centrosome where it enhances microtubule polymerization and nucleation (57, 178). CKAP5 

depletion significantly decreases viability of H1155 and H1299 cells (Figure 2.6F). This effect is 

likely due to the potent impact of CKAP5 on microtubule polymerization and stability in H1299 

and other cell types (Figure 2.6G) (176, 202, 203). 

 SYMPK alters CKAP5 levels post-transcriptionally and independently of protein 

degradation - Given symplekin’s role in transcription and translation, we evaluated CKAP5 

transcript levels in symplekin-depleted cells. Symplekin depletion did not affect the level of 

CKAP5 mRNA, suggesting a post-transcriptional mode of regulation (Figure 2.7A). To determine 

whether the effects on CKAP5 were mediated by increased degradation, we evaluated CKAP5 

protein levels in symplekin depleted cells exposed to the proteosome-inhibitor, MG-132. CKAP5 

levels were globally increased in MG-132 treated cells, however, proteosome inhibition was not 

sufficient to rescue the reduced CKAP5 levels observed in symplekin depleted cells (Figure 

2.7B).  Since CKAP5 stabilizes microtubules primarily by opposing the depolymerizing activity 

of MCAK, we evaluated the impact of codepletion of SYMPK and MCAK on the microtubule 

network. In H1299 cells, MCAK depletion impairs microtubule depolymerization by nocodazole 

as has previously been reported (44). Importantly, co-depletion of MCAK and SYMPK results in 

the depolymerization of microtubules in the presence of nocodazole. (Figure 2.7C).  

 Multiple polyadenylation components collaborate with paclitaxel - Symplekin is a 

core component of the polyadenylation machinery, which has recently been implicated in  
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Figure 2.7 

 

Figure 2.7 SYMPK alters CKAP5 levels post-transcriptionally 
 (A) qPCR analysis of CKAP5 mRNA levels in H1299 cells depleted of SYMPK at 96 
hours post-transfection. Error bars represent SD, n=4 biological replicates.  (B) Whole cell lysates 
of H1299 cells transfected with indicated siRNAs for 96 hours and exposed to vehicle or MG-132 
for 14 hours were immunoblotted for CKAP5 expression (left panel).  The graph (right panel) 
depicts densitometry analysis with error bars representing SEM from n=2 biological replicates.  
(C) H1299 cells were transfected with the indicated siRNAs for 96 hours followed by 
depolymerization of microtubules with 11 uM nocodazole for 2 hours.   Representative images at 
0 minutes recovery (top panel) and quantification of a minimum of 120 cells from a 
representative experiment (bottom panel) is shown.   Gene knockdown was confirmed by RT-
PCR (right panel) with error bars representing SEM from triplicate analysis.  
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regulating mitotic progression through phase-specific changes in poly(A) tail length (194). To 

determine if attenuation of the polyadenylation complex in general can collaborate with 

paclitaxel, we retrospectively examined the impact of the 14 core polyadenylation proteins in our 

original genome-wide paclitaxel sensitivity screen (4). In addition to symplekin, depletion of the 

polyadenylation proteins CPSF1, CSTF2 and CPSF3 all enhanced paclitaxel sensitivity to some 

degree in our primary screen.  In H1299 cells, depletion of both CPSF1 and CPSF3 reduced 

CKAP5 protein levels as detected by immunoblot analysis (Figure 2.8A), suggesting that CKAP5 

expression is exquisitely sensitive to perturbations of the polyadenylation complex. Additionally, 

H1299 cells depleted of CSTF2, CPSF1 or CPSF3 and exposed to paclitaxel demonstrated a 

significant increase in the occurrence of multi and micronucleated cells (Figure 2.8B). To 

determine if these subunits impacted mitotic progression in a similar manner to symplekin, we 

employed our time-lapse imaging system in H1155 GFP-H2B cells to evaluate mitotic outcomes. 

As with symplekin, CPSF1, CPSF3 and CSTF2 depletion increased the frequency of abnormal 

mitotic exits (Figure 2.8C). Thus, altered expression of multiple polyadenylation components has 

acute effects on mitotic fidelity.  

Discussion 

We have uncovered a functional connection between the polyadenylation machinery and 

formation of a bipolar spindle needed for accurate segregation of chromosomes. These mitotic 

defects are due, at least in part, to attenuation of the microtubule polymerization machinery and 

loss of microtubule dynamicity, which is essential for chromosome capture and alignment. The 

observation that depletion of multiple components of the polyadenylation complex leads to 

mitotic defects demonstrates an unanticipated and critical contribution of this complex to mitotic 

progression by supporting microtubule dynamics. Our results, taken together with the 

identification of symplekin depletion as a significant sensitizer to paclitaxel, suggest that 

polyadenylation machinery is tightly coupled to mitotic progression.  
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Figure 2.8 

 

Figure 2.8 Polyadenylation is required for CKAP5 expression and mitosis   
 (A) Whole cell lysates from H1299 cells transfected with indicated siRNAs for 96 hours 
were immunoblotted for CKAP5 expression. (B) H1299 cells were transfected with the indicated 
siRNAs for 48 hours followed by exposure to paclitaxel for an additional 24 hours.  Cells were 
stained for β-tubulin and DAPI followed by quantification of multi and micronucleated cells.  
Error bars represent SD, n=3.  (C) H1155 GFP-H2B cells were transfected with the indicated 
siRNA’s to mediate gene knockdown (left panel), treated with 10 nM paclitaxel and imaged 
under the conditions described previously.   Radar plot (right panel) depicts mitotic exit 
phenotype with each line indicating a 10% increase in exit type.  Results are from a minimum of 
50 cells per condition. 
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 In particular, we find that the protein expression level of a critical mitotic component, CKAP5, is 

sensitive to depletion of polyadenylation machinery. While we have not yet determined if CKAP5 

protein expression can be directly regulated by polyadenylation, we find that symplekin depletion 

does not appear to affect CKAP5 transcript abundance or protein turnover. Thus, the changes we 

observe in CKAP5 protein expression could be due to an alteration in translation initiation or 

mRNA stability, which could be a direct result of the depletion of key polyadenylation 

components. Alternatively, perturbations in polyadenylation machinery, which may be impacting 

a large set of set of transcripts (194), could alter endogenous mechanisms that regulate CKAP5 

protein levels. In either case, we have revealed that mitosis, microtubule dynamics and CKAP5 

levels are sensitive to alterations in the polyadenylation machinery.  

An emerging paradigm is that polyadenylation may play an important role in 

tumorigenesis. Most transcripts have alternative polyadenylation (APA) sites, which allows for 

regulation of the 3’UTR length. APA has been correlated with proliferation, as activation of T-

cells induces a global shortening of 3’UTRs (204), and with tumorigenesis, where truncation of 

the 3’UTR is widespread, potentially conferring resistance to miRNA-mediated silencing to 

support oncogenic phenotypes (132, 205). In addition, symplekin expression in lung and colon 

cancer cells is elevated as compared to normal cells (96, 128), indicating that an upregulation of 

polyadenylation machinery could be a frequent event during tumorigenesis. Our findings that 

symplekin depletion induces mitotic defects in tumor cells, but not in normal cells, suggest that 

the demand for cell division in tumor cells may heighten the dependency on polyadenylation 

machinery to maintain the molecular framework that supports mitosis. Collectively, these results 

suggest that polyadenylation may be a vulnerability in tumor cells. Anti-mitotics, such as 

paclitaxel, are first-line chemotherapeutics whose effectiveness is limited by significant toxicity 

and acquired resistance. Thus, therapeutic regimens that combine anti-mitotics with 

polyadenylation inhibitors may have an enhanced effectiveness on cytotoxicity in tumor cells, 
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while decreasing adverse events in normal tissues. 

Experimental Procedures 

Cell culture - H1155, H1299, HCC366 and HCC515 cells were a gift from John Minna. 

All cells lines had recently been genotyped using SPR analysis. Cells were maintained in RPMI 

(Gibco) with 5% FBS as described (4). BJ fibroblasts immortalized with hTERT were a gift from 

Fred Grinnell (UT-Southwestern). BJs were maintained in DMEM + 10 % FBS.  

Cell Titer Glo Assays - Cell Titer Glo assays were performed using independent siRNAs 

from the siGENOME SMART pool targeting symplekin as previously described (4).  

siRNA Transfections - Transfections were performed as described with siGENOME 

SMART pools (ThermoFisher). Cells were transfected for either 72 or 96 hours as indicated in 

the figure legends. As a control, either a mismatch siRNA or an siRNA targeting DLNB14, which 

has no detectable impact in our assay system, was used.  

High-Content Imaging - H1155 GFP-histone 2B-expressing cells were obtained by 

retroviral transduction. Retrovirus was produced by Fugene (Roche) transfection of 293gp cells 

with pCLNCX-GFP-H2B (a gift from Gray Pearson, UT-Southwestern) and VSV-G and virus 

was harvested at 48 hours post-transfection. H1155 cells at 50% confluency were transduced with 

virus in 4 ug/mL Polybrene and stably expressing cells were selected using 600 ug/mL Geneticin 

(Gibco). For imaging, cells were reverse transfected with the indicated siRNAs, plated in a 96 

well format and exposed to paclitaxel at 48 hours post-transfection. 24 hours post-paclitaxel 

treatment, the cells were imaged on a BD Pathway 855 bio-imager using a 40X or 20X high-NA 

objective. Images were taken every 15 minutes for the next 48 hours and an image sequence was 

generated using Image J. Manual quantification was used for the indicated parameters. 

Flow cytometry - H1155 cells were fixed in 50% ethanol/PBS, washed and resuspended 

in propidium iodine (BD) for 30 minutes. A minimum of 10,000 cells were collected for each 

condition by Summit 4.3 (Dako) and cell cycle distribution was determined using the ModFit 
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software package (Verity Software House).  

Lentivirus production - shRNA clones in the PLKO1 vector were obtained from The 

RNAi Consortium (Open Biosystems). Lentivirus targeting SYMPK was produced by Fugene-

mediated transfection of 293T cells with plasmids for VSV-G, ∆8.9 and shRNA’s targeting 

SYMPK or GFP (SYMPK clones TRCN0000141511 and TRCN0000144902 were effective). 

Virus was harvested at 48 hours post-transfection and used to infect cells at 50% confluency in 

conjunction with 5 ug/uL Polybrene. Infection rates based on GFP performed in parallel were 

over 90 %.  

Quantitative real-time RT-PCR - Total RNA was collected from H1299 cells using the 

GenElute Mammalian Total RNA Miniprep Kit (Sigma). cDNA was synthesized from 2 ug total 

RNA using the High-Capacity cDNA reverse transcription kit (Applied Biosystems). Real-time 

RT-PCR used inventoried TaqMan gene expression assays designed to detect mRNA exclusively 

and the 7500 Fast real-time PCR system (Applied Biosystems). Actin or GAPDH was used as the 

endogenous control and cells transfected with control siRNA were used for calculating 

differences in expression by the 2-∆∆CT method. For CKAP5 levels following SYMPK reduction, 

results are from pooling of 3 individual experiments performed in duplicate in which the average 

endogenous control Ct values between conditions never varied more than 0.3.  For measurement 

of transcript knockdown, experiments were performed in triplicate with Ct values between 

conditions never varying more then 0.6. 

Immunoblotting - Cells were lysed directly in boiling sample buffer (100 mM Tris-Cl, 

4% SDS, 20% glycerol, 0.2% bromophenol blue), subjected to SDS-polyacrylamide gel 

electrophoresis and transferred to Immobilon polyvinylidene difluoride membrane (Sigma). For 

MG-132 experiments, 20 uM MG-132 (Sigma) was added for 12 hours prior to harvesting. 

Primary antibodies used include anti-SYMPK (BD Biosciences), anti-GAPDH (Santa Cruz), anti-

cyclin B1 (Cell Signaling), anti-TACC3 (Santa Cruz), anti-CKAP5 (Abcam), anti-CSTF2 

(Abcam), anti-CPSF1 (Santa Cruz) and anti-CPSF3 (Santa Cruz). Secondary antibodies used 
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include peroxidase-conjugated anti-mouse and anti-rabbit IgG (Jackson ImmunoResearch). 

Densitometry analysis was performed in ImageJ.  

Immunofluorescence - Cells were grown on glass coverslips and fixed at 72 or 96 hours 

post-transfection in 3.7% formaldehyde. Cell were processed for immunofluorescence as 

described previously (4, 155). To visualize centrosomal proteins (CKAP5, TACC3, c-NAP1, 

Rootletin and NUMA1), cells were extracted with 0.5% Triton for 30 seconds, prior to fixation in 

cold methanol. Primary antibodies used include anti-beta tubulin (Sigma), pericentrin (Abcam), 

rootletin (Santa Cruz), Aurora-A (Sigma), Ncd80 (Abcam), TACC3 (BioLegend), NUMA1 

(Novus) and CKAP5 (Abcam). After washes in PBTA, slips were placed in AlexaFluor 

conjugated secondary antibody (Invitrogen). Slides were imaged on an Axioimager upright 

microscope (Zeiss) equipped with a CCD camera.  

Microtubule Regrowth Assay - H1299 cells were treated with 11 uM nocodazole 

(Calbiochem) at 96 hour post-transfection. After 2 hours of treatment, cells were placed in fresh 

media and allowed to recover for the indicated time period. Cells were washed in PHEM buffer 

(60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2.0 mM MgCl2, 1.0 uM paclitaxel) and 

depolymerized tubulin was extracted with 0.2% Triton in PHEM buffer for 1 minute. Extracted 

cells were washed in 1X PBS and fixed in 3.7% formaldehyde for 15 minutes. 

Immunofluorescence for β-tubulin and pericentrin was performed after permeabilization in 0.5% 

Triton and blocking in PBTA. Quantification of mean ß-tubulin fluorescence intensity in the 

region of the centrosome was measured in ImageJ. For the measurement, pericentrin staining was 

used to identify the centrosomes of each cell and a circle of constant diameter across all samples 

was drawn around the centrosome to measure the intensity of the ß-tubulin fibers emanating from 

the centrosome. ImageJ was utilized to measure the ß-tubulin fluorescence in the circle with a 

minimum of 40 cells per treatment group.  

In Vitro Microtubule Stability Assay - H1299 cells were treated with 11 uM 

nocodazole for 2 hours and allowed to recover in fresh media for the indicated time period.  Cells 
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were washed twice in PBS and then harvested by scraping into cold microtubule stabilizing buffer 

(180 mM PIPES, 13M glycerol, 1M MgCl2, 25 mM EGTA, 0.5% Triton, 50 mM paclitaxel, 

protease inhibitors).   Polymerized microtubules were pelleted by centrifugation at 12,000g for 10 

minutes at 4 degrees.  The supernatant containing the de-polymerized microtubule fraction was 

removed and the polymerized microtubules were resuspended in microtubule stabilizing buffer 

and boiling sample buffer prior to analysis by western blotting for beta tubulin.  

Tumor xenografts - H1299 cells stably expressing luciferin (H1299_luc) were a gift 

from John Minna (UT-Southwestern). H1299_luc cells were transduced with lentivirus targeting 

shGFP or SYMPK and viable cells were harvested at 5 days post-infection for injection into nude 

mice. Two million cells/mouse were injected subcutaneously in the right flank and mice were 

treated with 10ul/gram luciferin and imaged bi-weekly with Bioluminescent Imaging until tumor 

development. Tumor growth was thereafter monitored bi-weekly by BLI imaging. Tumor volume 

was calculated as l x w2 x 0.5 from BLI measurements. All animals were treated in accordance 

with Institutional Animal Care and Use Committee (IACUC) guidelines instituted at The 

University of North Carolina at Chapel Hill.  
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Summary 

Increased proliferation rates in tumors, coupled with abnormalities in spindle 

architecture, places tumor cells under increased mitotic stress.  Previously, we performed a 

genome-wide paclitaxel chemosensitizer screen to identify targets whose depletion sensitizes lung 

cancer cells to this mitotic stress.  The screen uncovered multiple cancer-testis antigens and 

gametogenic proteins whose depletion increases the efficacy of paclitaxel. The gametogenic 

landscape is emerging as an important player in tumorigenesis.  Here, we demonstrate that 

multiple gametogenic proteins identified in our screen impact paclitaxel sensitivity by altering 

mitotic spindle formation.  Using a tumor progression model, we show dependence of the mitotic 

spindle on the gametogenic gene TACC3 can be detected in the early stages of oncogenic 

transformation but not in normal bronchial epithelial cells.  This dependency may derive from 

alterations in microtubule dynamics and mitotic progression that accompany cellular 

transformation and which are observed in our tumor progression model.  Finally, we show that 

the gametogenic protein TACC3 can targeted in vitro using a small molecule.  Together, these 

results suggest mitotic roles for the gametogenic program in mammalian tumorigenesis and 

suggest therapeutic efficacy in targeting gametogenic genes. 
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Introduction 

Numerous biological processes are corrupted in tumor cells to allow for increased 

proliferation rates, evasion of apoptosis and metastases (1).   While these corrupted networks 

drive tumor growth, they also put the cell under heightened stress (2).   One of the most common 

stress phenotypes in cancer cells is mitotic stress, which presents several barriers to a successful 

division. These include aneuploidy, which forces the cell to contend with an altered amount of 

genetic material during mitosis and may itself arise from aberrant cellular division (9, 18, 22, 24).  

Additionally, cancer cells frequently display centrosomal amplification, making it necessary for 

the cell to cluster the redundant centrosomes to achieve a bipolar mitosis (26, 28, 29, 33, 41).   

Finally, cancer cells have altered microtubule stability and this has been postulated to drive 

genomic instability (44-46).  These mitotic stress phenotypes represent vulnerabilities in the 

cancer cell that can be exploited therapeutically, as demonstrated by the success of anti-mitotics 

such as paclitaxel. 

The ability to query the entire genome now presents the opportunity to identify pressure 

points within these stressed processes to reveal ideal therapeutic entry points.  Previously, we 

have used this technique to identify a cohort of gene products whose depletion sensitizes cancer 

cells to a sublethal dose of paclitaxel (4).  Our genome-wide loss of function chemosensitizer 

screen uncovered several cancer-testis (CT) antigens and gametogenic proteins that alter the 

response to paclitaxel.   Additionally, we have shown that expression of the CT antigen ACRBP, 

originally recovered in our genome-wide screen, correlates with survival of ovarian cancer 

patients and modulates the responsiveness of lung and ovarian cancer cells to paclitaxel (155).   

Cancer cells and germ cells share several important features including rapid proliferation, 

invasive ability, immortalization, and genome hypomethylation (93).  Recently, overexpression of 

several germline genes has been shown to drive malignant tumor grown in Drosophila (206) and 

a somatic to germline transition was documented in long-lived C. elegans mutants (207).  These 

results suggest a functional role for the germline program in controlling proliferative capacity that 
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may apply to mammalian tumors.  Several groups have demonstrated widespread expression of 

CT-antigens in a variety of human cancers (143, 145, 146). However, little is known about the 

functional relevance of the gametogenic program in supporting mammalian tumor growth. Due to 

their limited expression in normal adult tissues, the CT-antigens and gametogenic proteins 

represent theoretically ideal drug targets that may be associated with minimal off-target effects on 

normal tissues. 

Here, we examine the intersection between the gametogenic program and response of 

cancer cells to mitotic poisons.  We first demonstrate that multiple CT-antigens and gametogenic 

proteins are required for formation of a normal bipolar mitotic spindle in the presence of 

paclitaxel.   We then use a lung cancer progression model to catalog the changes in microtubule 

stability and mitotic progression that accompany the steps of cellular transformation.   Finally, we 

use the protein TACC3 as a model dependency to demonstrate that some gametogenic players are 

more required in tumor cells then normal cells and can be targeted both in vitro and in vivo.  

Together, these results establish the gametogenic machinery, and TACC3 in particular, as a 

unique target to increase the effectiveness of current anti-mitotic therapeutics. 

Results 

 Multiple gametogenic genes identified in genome-wide screen - Previously, our 

genome-wide screen identified a number of CT-antigens that, when depleted, synergize with low-

dose paclitaxel (4).  A retrospective analysis of our dataset revealed additional gametogenic genes 

that, while not classified as CT-antigens, demonstrate an expression pattern showing enrichment 

in the organs of gametogenesis (Table 3.1).   Although these genes share a common enrichment in 

gametogenic tissue and often are over-expressed in tumor cells, little is known about their cellular 

function in gametogenesis and tumorigenesis.  The identification of these genes as hits that 

reduce viability in a genome-wide paclitaxel chemosensitizer screen suggests a functional role for 

the gametogenic program in mammalian tumorigenesis.            



Table 3.1 Characteristics of gametogenic proteins identified in screen 

Gene Full gene name Domains Role in spermatogenesis Role in tumorigenesis CT antigen? Overexpessed in 
tumors 

ACRBP Acrosin binding 
protein Signal peptide 

Binds to acrosin, a proteolytic 
protein in sperm that allows 

penetration of the zona pellicuda of 
the oocyte (208) 

Interacts with NuMa to support 
mitotic spindle formation (155) Yes Yes 

FMR1NB 
Fragile X mental 

retardation 
neighbor 1 

Signal peptide, 
trefoil, 

transmembrane 
Unknown Unknown Yes Yes 

NXF2 Nuclear RNA 
export factor 2 Unknown 

Promotes mRNA export from 
nucleus, NXF2-deficient mice are 
infertile and demonstrate meiotic 

errors (209, 210) 

Unknown Yes Yes 

FATE1 Fetal and adult 
testis expressed 1 Transmembrane Unknown 

Overexpression promotes 
proliferation of hepatocellular 

carcinoma cells (211) 
Yes Yes 

MAGEA5 Melanoma antigen 
family A5 MAGE Unknown 

MAGE family proteins can bind 
RING E3 ligases to direct 

degradation of target proteins 
(212) 

Yes Yes 

STARD6 
START domain 

containing protein 
6 

START May control lipid and sterol 
transport (213) Unknown 

No, enriched 
in germ cells 
(213, 214) 

Unknown 

TACC3 

Transforming 
acidic coiled-coil 
containing protein 

3 

TACC  Unknown Control of microtubule stability 
during mitosis (177, 178) 

No, enriched 
in germ cells 

(162) 
Yes 

FSIP1 
Fibrous sheath 

interacting protein 
1 

Coiled-coil 

Interacts with sperm fibrous 
sheath, a cytoskeletal structure in 

the flagellum that may support 
motility (215) 

Unknown 
No, enriched 
in germ cells 

(215) 
Unknown 

BDG29 
Zinc finger CCHC 
domain containing 

14 

ZINC finger, 
SAM Unknown Unknown No Unknown 

Information in this table is derived from the Human Protein Reference Database (216), CTPedia (142), and from the individual sources listed above.  
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 To confirm the gametogenic expresssion pattern of these genes, we performed real-time 

PCR analysis of human tissue RNA samples (Figure 3.1A).  All the identified genes 

demonstrated enrichment in testis tissue relative to several other normal human tissues.   Most of 

the CT-antigens (ACRBP, FMR1NB, NXF2, FATE1 and MAGEA5) were expressed at very low 

levels in normal tissues but the ACRBP was expressed at a higher level in normal brain tissue, 

consistent with previous reports of enrichment of CT-antigens in brain (143).   In contrast, the 

gametogenic genes (STARD6, TACC3, FSIP1, BDG29) were expressed at higher levels in 

normal tissues.     Given our identification of these genes in a viability screen, we tested whether 

gene depletion in combination with paclitaxel led to increased apoptosis.   Strikingly, depletion of 

these genes in H1155 cells (Figure 3.1B) markedly increased induction of the apoptotic marker 

cleaved caspase 3 (Figure 3.1C) Importantly, gene depletion alone had little effect on apoptosis, 

with the exception of the CT-antigen FATE1, which showed marked induction of cleaved caspase 

3 following gene depletion.  These genes share a common enrichment in gametogenic tissue but 

have diverse cellular functions, making it unclear how depletion of most of these genes alters 

paclitaxel sensitivity.    

 Loss of gametogenic genes impairs formation of the bipolar mitotic spindle – 

Previously, we have observed that paclitaxel chemosensitizer screens often return components 

which impact mitotic spindle formation (4, 92, 155).    There is only limited knowledge about the 

cellular function of the gametogenic genes studied here and the knowledge that does exist have 

implicated these genes in everything from regulation of mRNA transport to protein degradation.  

Given these diverse cellular functions but common enrichment in our paclitaxel sensitizer screen, 

we hypothesized that many of these genes may alter mitotic spindle formation to increase 

paclitaxel sensitivity.  To test this hypothesis, we depleted these genes in H1155 cells, treated 

with paclitaxel and stained the mitotic spindle with gamma tubulin and pericentrin (Figure 3.2A).  

FATE1 was excluded from this analysis due to the potent induction of apoptosis following  
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Figure 3.1 
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Figure 3.1 Multiple gametogenic genes sensitize H1155 NSCLC cells to paclitaxel 
 (A) Real-time PCR analysis of gene expression profiles in pooled human tissue mRNA 
samples.  Gene expression is normalized to testis and is represented by the 2^-ddCT method with 
error bars representing standard deviation (n=2).  (B) Real-time PCR analysis of gene expression 
following transfection of the indicated siRNA for 72 hours.  Error bars represent standard error of 
the mean (n=3). (C) Lysates from siRNA transfected H1155 cells treated for 24 hours with 
paclitaxel (Pac.) were immunoblotted for cleaved caspase 3 and GAPDH. 
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Figure 3.2 
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Figure 3.2 Loss of gametogenic genes impairs formation of the bipolar mitotic spindle 
 (A) H1155 cells were transfected with the indicated siRNA’s, treated with paclitaxel for 
24 hours and then stained with gamma tubulin/pericentrin to visualize the mitotic spindle.  
Examples of abnormal spindles observed are shown on the left.  Error bars represent standard 
deviation (n=3).  (B) Live cell imaging results from H1155 GFP-H2B cells transfected and then 
exposed to paclitaxel for 24 hours prior to imaging on a high content scope.  All numbers are 
from a minimum of 50 cells per condition.  (C) Microtubule recovery assay in H1299 cells 
depleted of the indicated components.  The microtubule network was depolymerized with 
nocodazole, allowed to recover in warm media for the indicated time period and then visualized 
with beta tubulin/pericentrin immunostaining. 
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FATE1 depletion.  Depletion of all the gametogenic genes led to an increase in abnormal spindle 

architecture.  Two main types of abnormal spindles were observed; type 1 abnormal spindles had 

only two pericentrin-positive poles but exhibited gamma tubulin bundles while type 2 spindles 

had multiple pericentrin positive poles (Figure 3.2A).  Abnormal spindle architecture can lead to 

abnormal mitotic progression or may be successfully repaired by the cell to allow for a normal 

division. To examine the consequence of these abnormal spindles on mitotic progression, we 

performed high-content live cell imaging in H1155 cells stably expressing the chromatin marker 

GFP-histone 2B.  Strikingly, depletion of these cancer-testis antigens and gametogenic genes in 

the presence of paclitaxel increased the percent of cells exiting abnormally from mitosis and led 

to an increase in mitotic delay (Figure 3.2B).  

 Abnormal mitotic spindle formation and mitotic progression can arise from errors in 

many cellular pathways.  In the past, we have observed that multiple genes identified in our 

genome-wide paclitaxel screen, including the CT-antigen ACRBP and the polyadenylation 

scaffold SYMPK, modulate the function of microtubule associated proteins or microtubule 

stability (92, 155).  The finding that many screen hits modify microtubule stability is not 

surprising given the known impact of paclitaxel on microtubule dynamics (43, 217).   Therefore, 

we tested whether these additional gametogenic gene products affect microtubule stability. While 

several genes had no effect on microtubule stability, the genes TACC3, FMR1NB, NXF2, 

STARD6 and BDG29 significantly decreased the ability of the microtubule network to regrow 

following depolymerization with nocodazole (Figure 3.2C).   Importantly, different genes had 

unique effects on microtubule recovery.  For example, STARD6 depletion impaired microtubule 

depolymerization while depletion of FMR1NB enhanced depolymerization.  Even with these 

different effects on depolymerization, all genes led to a significantly slower recovery of organized 

microtubule asters after nocodazole treatment, indicating an impaired ability of the microtubule 

network to reorganize following mitotic stress.   Taken together, these results show an 

unanticipated reliance of the cancer cell mitotic spindle on several gametogenic proteins for 
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microtubule dynamics, formation of a bipolar mitotic spindle, and mitotic progression. 

 Oncogenic changes alter mitotic properties - Given our observation that multiple 

gametogenic genes, many of which are upregulated in cancer cells, impact microtubule dynamics, 

we hypothesized that cancer cells may become dependent on these genes to support microtubule 

stability.  Other groups have observed increased microtubule stability in cancer cells (44, 45) but 

it is unclear how most oncogenic changes alter microtubule stability.  To address this question, 

we obtained a cancer cell progression model where the immortalized human bronchial epithelial 

cell line, HBEC3, has been engineered to lose the tumor suppressor p53 and/or over-express a 

constitutively active KRas V12 mutant, or wild-type EGFR (218).   The lines expressing KRas or 

EGFR combined with loss of p53 are more tumorigenic as indicated by their increased propensity 

to form colonies in soft agar (218).  To probe whether these oncogenic changes alter microtubule 

stability, we performed microtubule recovery assays in each line of the progression model (Figure 

3.3A).  Loss of p53 expression makes cells more sensitive to nocodazole depolymerization.  

However, over-expresssion of constitutively active KRas and to a lesser extent wild-type EGFR 

significantly increased the rate at which the microtubule network recovered from nocodazole 

treatment.  Importantly, depletion of KRas by siRNA decreased the rate of recovery of the 

microtubule network, indicating that the effects on microtubule stability are dependent on 

expression of KRas (Figure 3.3B) Together, these results indicate that oncogenic changes 

profoundly alter microtubule dynamics.  

 To examine the consequence of these changes on mitotic progression, we engineered 

each line of the progression model to express GFP-histone 2B and then observed the lines as they 

progress through an unperturbed mitosis (Figure 3.3B).  Interestingly, loss of p53 led to a 

significant mitotic delay and an increase in the percent of cells exiting abnormally from mitosis.  

Expression of mutant KRas or wild-type EGFR rescued this mitotic delay and restored normal 

exit phenotype.    Overall, these results indicate that oncogenic changes can profoundly alter both 

microtubule dynamics and mitotic progression.  
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Figure 3.3 
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Figure 3.3 Oncogenic changes alter mitotic properties  
 (A) Microtubule recovery assay in each line of the lung cancer progression model.  The 
cell lines were depolymerized with nocodazole and allowed to recover in warm media for the 
indicated time period. Immunoblot for p53, KRas, p-EGFR and GAPDH is to confirm line 
identities. (B) Microtubule recovery assay performed as in (A) following transfection of siRNA 
for 72 hours into the p53/Ras line. (C) Live cell imaging in the 3KT, p53, p53Ras and p53EGFR 
lines engineered to stably express GFP-H2B.  Manual analysis for mitotic timing and exit 
phenotype is represented for 50 cells per condition.   P value is derived from a Mann-Whitney test 
of medians comparing mitotic timing in the p53 line to all other lines individually. 
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Oncogenic changes drive a dependency on TACC3 - The observation that oncogenic changes 

alter microtubule stability and mitotic progression in this tumor progression model suggest the 

presence of networks uniquely supporting mitosis in transformed as compared to normal 

immortalized cells.   To test this hypothesis, we depleted TACC3 in a panel of three normal 

immortalized lines and three tumor lines (Figure 3.4A).  We chose TACC3 for this analysis 

because, unlike many of the gametogenic genes we are studying, the mechanism by which 

TACC3 impacts microtubule dynamics is well known (176).  Additionally, TACC3 is expressed, 

albeit at lower levels, in normal immortalized lung cancer lines, in contrast to the classical CT-

antigens, which are often not expressed in normal immortalized lines (55, 93, 166, 167).   

Strikingly, TACC3 depletion had minimal impact on all the normal lines analyzed but 

significantly increased micronucleation response in each tumor line (Figure 3.4A).   

The increased sensitivity of tumor lines to TACC3 depletion could arise from a myriad of 

changes in the mitotic spindle that accompany transformation.  The isogenic HBEC3 tumor 

progression model allows identification of the transformation events that drive a dependency on 

TACC3.  Depletion of TACC3 using a pool of two effective shRNAs in this model system led to 

increased micronucleation in both transformed lines (p53Ras and p53EGFR) while having 

minimal effects in the p53 line and no effect in the normal immortalized 3KT line (Figure 3.4B). 

These differential effects on micronucleation could be due to a unique effect of TACC3 in 

transformed lines or could derive from experimental differences between the lines such as 

differential rates of division or altered apoptotic signaling in response to mitotic damage.   To 

exclude the latter two possibilities, we utilized our GFP-histone 2B expressing lines and 

performed live-cell imaging in the context of TACC3 depletion in each line.  Strikingly, depletion 

of TACC3 in this system had no effects on the normal immortalized 3KT line, some effect on the 

p53 line and the strongest effects on the p53Ras and p53EGFR lines (Figure 3.4C).   TACC3 

depletion occurred at a similar rate in both the 3KT and p53Ras lines, indicating that these effects  
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Figure 3.4 
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Figure 3.4 Oncogenic changes drive a dependency on TACC3   
 (A) Counts of micro/multinucleated cells after knockdown of TACC3 by siRNA for 48 
hours followed by treatment of increasing doses of paclitaxel.  Doses of paclitaxel utilized were: 
BJ (0, 1, 10 pM), HBEC30 (0, 0.1, 1 nM), HBEC3, ES2 and H1299 (0,1,10 nM) and HCC366 (0 
and 1 nM).  Error bars represent standard deviation, n=3 biological replicates for normal lines and 
n=1 for tumor lines.  (B) 3KT, p53, p53Ras and p53EGFR lines were depleted of TACC3 by 
shRNA for 7 days, fixed and stained for beta tubulin/pericentrin.  Counts for 
multi/micronucleated are from n=2 biological replicates with error bars representing standard 
deviation. Immunoblot is for confirmation of knockdown at Day 7 post-transduction.  (C) 3KT, 
p53, p53Ras and p53EGFR lines stably expressing GFP-H2B were depleted of control or TACC3 
by shRNA for 5 days prior to live cell imaging for an additional 48 hours.  Counts of mitotic 
timing and exit phenotype are from a manual analysis of 50 cells per condition.   P-values are 
from a Mann-Whitney test of medians.  (D) Immunoblot depicting degree of gene knockdown at 
3 and 5 days post-transduction in the 3KT and p53Ras lines. 
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are unlikely due to differential rates of gene knockdown (Figure 3.4D).   Together, these results 

indicate that cancer cells may be more sensitive to depletion of microtubule stabilizing proteins 

such as TACC3.   

 TACC3 dependency is targetable with KHS101 - A conceptually ideal anti-mitotic 

agent would target components that are only required for division of tumor cells.  Several of the 

CT-antigens studied here may represent these ideal targets but no small molecules targeting these 

proteins have been described to date. Our findings that TACC3 is specifically required in tumor 

cells and observations from several groups that TACC3 is upregulated in tumor tissue relative to 

normal tissue (55, 166, 167), suggest that TACC3 may also represent an ideal target.  Recently, 

the TACC3 inhibitor KHS101 was identified in a screen for compounds that drive differentiation 

of neurons (182).    These authors treated rats with the TACC3 inhibitor and saw no toxicity 

associated with the compound.  Further, the effects of the TACC3 inhibitor on mitotic spindle 

formation were not examined.   

To test whether the phenotypes we observe with TACC3 depletion can be recapitulated 

with this inhibitor, we examined the impact of co-treatment of H1155 cells with KHS101 and 

paclitaxel.  Combined drug treatment significantly enhanced the ability of paclitaxel to drive 

apoptosis as indicated by the induction of cleaved caspase 3 (Figure 3.5A).    Additionally, the 

combination of paclitaxel and KHS101 impaired the ability of H1155 cells to form colonies in 

soft agar (Figure 3.5B).   As observed with siRNA to TACC3 and paclitaxel, co-treatment of 

H1155 cells with paclitaxel and KHS101 led to an increased proportion of cells in mitosis 

accompanied by a marked increase in the frequency of micro and multi-nucleated cells (Figure 

3.5C).   Closer examination of the mitotic spindle apparatus by staining with beta-tubulin and 

pericentrin revealed the spindle in KHS101 and paclitaxel treated cells was grossly abnormal with 

cells frequently displaying multiple pericentrin-positive poles (Figure 3.5D). Previously, KH101 

was shown to interact with TACC3 in vitro and in vivo (182) but how this interaction impairs 

TACC3 activation is unknown.   Given the known requirement for TACC3 phosphorylation prior  
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Figure 3.5 
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Figure 3.5 TACC3 dependency is targetable with KHS101 
 (A) Immunoblot of whole cell lysates from H1155 cells treated with paclitaxel for 24 
hours followed by 48 hours of combined treatment with KHS101.  (B) Soft agar assay of H1155 
cells maintained in paclitaxel/KHS101 media for 2 weeks.  Counts are of total colonies in a 6-
well dish from a representative experiment.  (C) H1155 cells were treated with paclitaxel for 24 
hours followed by 24 hours of combined treatment with KHS101 and fixed prior to staining with 
beta tubulin/pericentrin.  Quantification is from manual counting of mitotic index and 
micronucleated cells.  Error bars represent standard deviation (n=3).  (D) H1155 cells treated as 
in (C) were stained with beta tubulin/pericentrin and mitotic cells were analyzed for normal 
spindle formation.  Quantification is by manual counting of cells with multiple pericentrin 
positive poles.   Error bars represent standard deviation (n=3).  (E) Whole cell lysates from 
H1155 cells treated with paclitaxel for 24 hours followed by 24 hours of combined treatment with 
KHS101 were immunoblotted for p-TACC3, TACC3 and GAPDH. 
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to its activation and direction to the spindle (174), we probed the ability of KHS101 to impact 

phosphorylation of TACC3.     Treatment of H1155 cells with KH101 significantly decreased the 

phosphorylation of TACC3 both with and without the addition of paclitaxel (Fig. 4G). Taken 

together, these data suggest the TACC3 dependency observed in tumor cells may be targetable 

through combined treatment with KHS101 and paclitaxel.   

Discussion 

This study establishes the functional relevance of multiple CT-antigens and gametogenic 

proteins in supporting cancer cell growth and mitosis.   Beyond being mere byproducts of 

aberrant protein expression patterns in tumor cells, these proteins appear to be important 

dependencies that have developed in the tumorigenic environment.  Understanding the functional 

role of the other CT antigens in supporting tumor growth is an important future direction.  

Further, it will be important to understand how the gametogenic proteins interface with the 

normal cellular and mitotic machinery.   We have previously demonstrated the ability of the CT-

antigen ACRBP to alter the activity of the normal mitotic component NuMA (155).   A recent 

study also demonstrated that the CT-antigen MAGEA4 interacts with TACC3 in tumor cells 

(219).  Therefore, there appear to be important connections between the normal and gametogenic 

machinery that require further study. 

Previously, several other groups have described alterations in mitosis that accompany 

tumor suppressor loss or activation of oncogenes (47, 48, 50, 220-222).  To our knowledge, our 

study is the first that catalogs the sequential impact of these changes in a tumor progression 

model system.   From our study it appears that oncogene activation can rescue some of the defects 

in mitotic progression that accompany tumor suppressor loss.  Part of this ability may stem from 

alterations in microtubule dynamic instability that accompany oncogenic changes and may also 

account for the potent efficacy of microtubule-targeted drugs in cancer cells.    We hypothesize 

these changes in the mitotic spindle may drive conditional dependencies on components that are 
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normally expressed in all cells and also emergent dependencies on components that are aberrantly 

upregulated in tumor cells.  The requirement for TACC3 expression specifically in the 

transformed lines supports the postulation that there exist mitotic dependencies that are unique to 

tumor cells.    

Inhibition of these mitotic dependencies in tumor cells may provide a route to more 

effective and tumor-targeted chemotherapies.  While TACC3 is more widely expressed in 

multiple tissues then a true CT-antigen, we observed no toxicity in mice treated with KHS101 

even in combination with paclitaxel and a previous study that identified the compound observed 

no toxicity in rats (182).  KHS101 appears to be truly synthetic lethal with paclitaxel on mitosis, 

as we observed no mitotic defects with in vitro single agent treatment of KHS101 even at doses 

up to 10 uM.  Notably, we did observe changes in pH in the media of cells treated with KHS101, 

a phenotype that is consistent with the effects of TACC3 on hypoxic response (183). The lack of 

single agent activity with KHS101 alone on mitotic cells may account for why a previous group 

never identified mitotic spindle defects with the drug (182).    This synthetic lethal phenotype 

could be useful if combined with paclitaxel formulations that are specifically directed to tumor 

cells.      

More broadly, this study establishes the relevance of pharmacologically targeting 

gametogenic proteins to treat cancer.  Current efforts are focused on therapeutic vaccines directed 

against the CT-antigens to raise an immune response against the cancer cell (153, 154).  The 

establishment of a functional role of these proteins in supporting tumor growth suggests another 

avenue for intervention may utilize pharmacological targeting of these antigens independent of 

their immunogenic properties. 

Experimental Procedures 

Cell culture - H1155, H1299 and HCC366 cells were maintained in RPMI medium 

(Gibco) with 5% fetal bovine serum.   ES2 cells were maintained in RPMI supplemented with 
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10% fetal bovine serum and BJ fibroblasts were grown in DMEM supplemented with 10% fetal 

bovine serum.   3KT, p53, p53/Ras and p53/EGFR lines were generated as described previously 

(218) and were maintained in keratinocyte media (Gibco) with provided supplements.  Paclitaxel 

(LC laboratories) was resuspended in DMSO. 

KHS101 treatment - KHS101 was a kind gift from Peter Schultz (182).   Additional 

KHS101 was synthesized by the UNC Center for Integrative Chemical Biology and Drug 

Discovery.  KHS101 was suspended in DMSO to a concentration of 10 mM and diluted in media 

to 2 uM final concentration.   

siRNA transfection - Transfection conditions were as described previously (4) using 

siGENOME Smart pools (ThermoFischer) and Dharmefect transfection reagent.   Control 

oligonucleotide was either a mismatch siRNA or a siRNA targeting DLNB14. 

shRNA transductions - Lentivirus was produced as described previously (92) using 

short hairpin RNA clones in the PLKO1 vector from the RNA Consortium (Open Biosystems).   

High-content live cell imaging - Cell lines expressing GFP-histone 2B were generated 

by viral transduction as described previously (92).    A stable population of GFP-H2B expressing 

cells was obtained through fluorscence activated cell sorting by the UNC Flow Cytometry Core 

Facility.   The stably expressing lines were then treated as described in the figure legends and 

imaged on the BD Pathway 855 imager using a 20X high-numerical aperature objective.   Images 

were taken approximately every 15 minutes for the indicated time period and movies were 

generated using ImageJ.  Results are from manual quantification for a minimum of 50 cells per 

condition. 

Quantitative real-time RT PCR - For confirmation of gene knockdown, RNA was 

harvested from cells transfected with siRNA for 72 hours using the GenElute Mammalian Total 

RNA Miniprep Kit (Sigma).  cDNA was generated using 2 ug of total RNA and the High-

Capacity cDNA reverse transcription kit (Applied Biosystems).    Real-time RT PCR detection 

used inventoried TaqMan gene expression assays purchased from Applied Biosystems that are 
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designed to exclusively detect mRNA.   Amplification was performed on the 7500 Fast Real 

Time PCR machine (Applied Biosystems).    The ribosomal subunit RPL27 was used as the 

endogenous control and differences in expression were calculated using the 2-∆∆CT method.   For 

evaluation of gene expression in various human tissues, total human RNA samples pooled from 

multiple individuals were obtained from Clontech.  

Immunoblotting - Cells were lysed in boiling sample buffer as described previously 

(92).  The primary antibodies used were from Santa Cruz (KRas, GAPDH, TACC3) or Cell 

Signaling (p53, EGFR, p-EGFR, cleaved caspase 3, p-AURKA).  p-TACC3 antibody was a kind 

gift from Kazuhisa Kinoshita (174).   Secondary antibodies were peroxidase-conjugated anti-

mouse and anti-rabbit IgG (Jackson ImmunoResearch).    

Immunofluorescence - Conditions for immunofluorescence were described previously 

(92).  Briefly, cells were grown on glass coverslips and fixed at the indicated time point in 3.7% 

formaldehyde.   Primary antibodies used were anti-beta tubulin (Sigma) and pericentrin (Abcam).  

Secondary antibodies were Alexa Fluor conjugated mouse or rabbit antibodies (Invitrogen).    

Soft agar assay - 1X10^4 H1155 cells were resuspended in 0.5% bacto agar in complete 

media and overlaid on solidified 0.5% bacto agar in 60 mm dishes.  After solidification, a top 

layer of complete media was added.   For drug treatments, half the media from the top layer was 

removed and replaced with media containing 2X the final drug concentration and 2X fetal bovine 

serum.    Colonies were grown for 2 weeks and then stained with 0.005% crystal violet in PBS 

overnight.   

Microtubule regrowth assay - Cells grown on glass coverslips were depolymerized with 

11 uM nocodazole (Calbiochem) for 30 minutes.  After depolymerization, cells were washed and 

allowed to recover in warm media for the indicated time period.  Depolymerized microtubules 

were extracted in 0.2% Triton-X100 in PHEM buffer (60 mM PIPES pH 7.0, 25 mM HEPES, 

100 mM EGTA, 2 mM MgCl2, 1 uM paclitaxel) and slips were then fixed in 3.7% formaldehyde.  

The microtubule network was stained with beta-tubulin (Sigma) and pericentrin (Abcam).   
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Summary  

Understanding the networks controlling response of cells to mitotic stress can reveal 

important insights into tumorigenesis, mitosis and anti-mitotic chemotherapy.  This work has 

uncovered two methods by which NSCLC cells can be sensitized to mitotic stress induced by 

paclitaxel treatment: inhibition of the polyadenylation machinery and altered expression of 

gametogenic genes.   

In Chapter 2, we revealed important links between the polyadenylation machinery and 

formation of the bipolar mitotic spindle.  Specifically, we demonstrated that SYMPK depletion 

combined with paclitaxel treatment leads to a G2/M delay, formation of abnormal mitotic 

spindles, and altered mitotic progression.  We further showed SYMPK depletion leads to mitotic 

errors in multiple tumor, but not normal, cell lines and that depletion of SYMPK impairs tumor 

formation in vivo.  The mitotic errors observed with SYMPK depletion are likely due to altered 

microtubule stability and reduced expression of the microtubule stabilizing protein CKAP5. 

Finally, we showed depletion of multiple polyadenylation subunits leads to similar errors in 

mitosis.  Together, these findings suggest that polyadenylation is essential for both mitosis and 

response to mitotic stress. 

In Chapter 3, we examined the intersection of the gametogenic program with mitotic 

spindle formation.  Here, we demonstrated that depletion of a panel of gametogenic genes in 

combination with paclitaxel leads to apoptosis, mitotic errors, abnormal mitotic progression, and 

altered microtubule stability.  We then used a tumor progression model to demonstrate that both 

microtubule dynamics and mitotic progression are altered following loss of tumor suppressors or 

overexpression of oncogenes.  We also showed these oncogenic changes drive a dependency on 

the gametogenic protein TACC3 such that mitotic errors are only observed following TACC3 

depletion in the more transformed lines.  Finally, we demonstrate that inhibition of TACC3 using 

the small molecule KHS101 synergizes with paclitaxel.  These findings provide evidence that 

these gametogenic proteins are functionally important in tumorigenesis and suggest efficacy in 
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targeting the gametogenic program in combination with current anti-mitotic drugs. 

In this final chapter, I discuss the clinical significance of our findings and potential future 

directions.  First, I discuss the potential existence of unique tumor-specific dependencies in the 

cancer cell mitotic spindle that arise in the context of mitotic stress.  Second, I discuss emerging 

links between polyadenylation and mitosis.  Third, I examine the parallels between the 

gametogenic machinery and tumorigenesis.  Finally, I discuss the clinical implications of this 

work in terms of therapeutic targeting of polyadenylation, TACC3, and gametogenic proteins.  

Future directions 

Unique dependencies of the cancer cell mitotic spindle – We have demonstrated a 

dependence of the cancer cell mitotic spindle on polyadenylation and expression of gametogenic 

genes.  Interestingly, the mitotic defects we observe following depletion of SYMPK or TACC3 

are seen only in tumor, but not normal immortalized, cell lines.  This absence of phenotype in the 

normal immortalized lines suggests that unique networks may support mitosis in tumor cells.  We 

propose that tumor cells demonstrate two types of mitotic dependencies: conditional 

dependencies on processes such as polyadenylation that are present in both tumor and normal 

cells and emergent dependencies on processes such as the gametogenic program that are 

reactivated in tumor cells.  Inhibition of these tumor-specific dependencies may provide a route to 

more effective anti-mitotic chemotherapies that have fewer effects on normal tissues.  

Mitotic stress phenotypes that are unique to tumor cells may drive the development of 

conditional and emergent dependencies.  Mitotic stress phenotypes are commonly observed in 

tumor cells but absent in normal immortalized cells and include aneuploidy (5), supernumerary 

centrosomes (26-29), and alterations in microtubule stability (44-46).  To support proliferation in 

the presence of these mitotic stressors, tumor cells may develop enhanced dependencies on 

certain processes (Figure 4.1).   Specifically, cancer cells may develop alterations in gene 

expression that allow for a bipolar division.  Over time, there may be competitive selection for  
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Figure 4.1 

 

Figure 4.1 Model of adaptation to mitotic stress in tumor cells 
 In normal cellular division, there is little mitotic stress.  During tumorigenesis, alterations 
including aneuploidy, centrosome over-duplication, and altered microtubule dynamics increase 
mitotic stress.  To adapt to this stress, tumor cells may exhibit altered expression of genes that 
support division under mitotic stress.  Over-time, there is competitive selection for cancer cells 
that have acquired these alterations to normalize mitosis.  These selected cells may exhibit 
conditional and emergent dependencies on the genes that are supporting division in the presence 
of mitotic stress. 
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tumor cells within the population that have acquired these alterations.   These tumor cells have 

enhanced dependencies that allow for a normal mitosis but which also represent a potential 

therapeutic target.  An important future direction will be to uncover the networks specifically 

supporting response to mitotic stress. Two recent studies have initiated this search by identifying 

genes required specifically in aneuploid cells (7) and cells with supernumerary centrosomes (41).  

These studies showed both CKAP5 and TACC3 are genes required for centrosomal clustering 

(41, 42).  A unique requirement for centrosomal clustering could account for some of the tumor-

specific phenotypes we observe following SYMPK or TACC3 depletion.  The other genes 

uncovered in these studies may represent additional tumor-specific dependencies that could 

eventually be targeted for improved chemotherapy.   Further efforts to uncover genes uniquely 

supporting mitotic stress phenotypes will likely reveal additional dependencies. 

Another important future direction is gaining a better understanding of how mitotic stress 

develops in tumor cells.  In Chapter 3, we used a tumor progression model to catalog the changes 

in mitotic progression and microtubule stability that accompany cellular transformation.  Here, 

we showed loss of the tumor suppressor p53 increases the amount of time that cells spend in 

mitosis.  The increased time spent in mitosis may be due to an increased level of genomic 

instability because p53 inhibits the proliferation of aneuploid cells (223).  Interestingly, the 

mitotic timing defects we observe with p53 loss are rescued by overexpression of either a 

constitutively active KRas mutant or wild-type EGFR.  This suggests that oncogenic signaling 

events can compensate for the errors in mitosis induced by tumor suppressor loss.   It is not 

currently known how these oncogenic signaling events compensate for mitotic defects seen with 

tumor suppressor loss.  Interestingly, we have observed changes in microtubule stability that 

accompanies loss of p53 and overexpression of mutant KRas or EGFR.  These changes in 

microtubule stability may provide a mechanism by which oncogenic signaling alter mitotic 

progression.  Additionally, altered microtubule stability could account for the enhanced 

dependency on TACC3 for normal mitotic progression in the transformed cell lines.  An 
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important future direction is testing the effects of tumor suppressor loss or oncogene activation on 

mitotic progression and microtubule stability in an independent tumor progression model.   This 

study will establish whether the effects we observe are cell-line specific and whether similar 

effects can be observed with loss of other tumor suppressors or activation of other oncogenes.  

Unraveling these connections will lead to a better understanding of the molecular drivers of 

mitotic stress in tumor cells. 

A final important future direction is to understand the influence of mitotic stress 

phenotypes on tumorigenesis.  As observed with many of the stress phenotypes of tumor cells, 

mitotic stress appears to have a dual role in both driving tumorigenesis and sensitizing tumor cells 

to mitotic stressors. In particular, aneuploidy can lead to an increase in tumor relapse in a mouse 

model of lung cancer (19).  Additionally, the presence of supernumerary centrosomes in tumor 

cells correlates with tumor aggressiveness (26, 29, 224).  Therefore, therapies designed to induce 

mitotic stress in tumor cells may have the unintended effect of driving tumorigenesis.  A better 

understanding of the influence of mitotic stress on tumorigenesis will help predict the likelihood 

of such adverse outcomes.   Importantly, microtubule-targeted agents such as paclitaxel or the 

Vinca alkaloids have not been associated with a worsening of tumorigenesis, even though altered 

microtubule stability can lead to aneuploidy (44-46).  The clinical success of these agents 

suggests that targeting mitotic stress may be a plausible therapeutic strategy without increasing 

tumorigenesis.   The success of drugs that induce mitotic stress may relate to their ability to cause 

catastrophic mitotic errors rather then sub-acute mitotic errors that allow for continued 

proliferation and potential worsening of tumorigenesis.  

Emerging links between polyadenylation and mitosis- In addition to our own work, 

several new studies suggest ties between polyadenylation and the mitotic spindle.  First, a recent 

study also observed a G2/M delay following shRNA-mediated SYMPK depletion in HeLa cells 

(109). Importantly, these authors were able to rescue the mitotic phenotypes seen with SYMPK 

depletion by overexpression of wild-type SYMPK.  This data suggests SYMPK is required for 
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normal mitotic progression in cervical cancer in addition to lung cancer.   Second, another study 

performed a genome-wide screen to identify genes regulated by cytoplasmic polyadenylation in 

mammalian cells (194).   This study also observed mitotic defects following depletion of the 

cytoplasmic polyadenylation components CPEB1 and CPEB4.  Together with our own work, 

these studies link the polyadenylation machinery to formation of the mitotic spindle. 

A critical next step in our understanding of how polyadenylation interfaces with mitosis 

is identifying mitotic genes that are regulated by polyadenylation.  During Xenopus meiosis, only 

a subset of genes that encode a cytoplasmic polyadenylation element is regulated by 

polyadenylation (119, 121, 122).   For several reasons I suspect dysregulated expression of a 

similar subset of genes accounts for the mitotic errors we observe following depletion of 

polyadenylation components.  First, we identified CKAP5 as a gene affected by SYMPK 

depletion by taking a candidate approach to examine expression of multiple genes important for 

spindle formation and microtubule dynamics.  While CKAP5 depletion may account for many of 

the phenotypes we observe with SYMPK depletion, it is unlikely that we would have identified 

the only gene affected by polyadenylation by taking a candidate approach alone.  Second, the 

impacts on mitosis and tumorigenesis we observe following loss of polyadenylation components 

seem more consistent with alterations in a subset of genes.  This subset of genes must be limited 

in size because we see little effect on cell viability with siRNA targeting SYMPK alone. 

However, the strong effects of SYMPK depletion on tumorigenesis and mitosis suggest more 

then loss of CKAP5 expression may be involved.  Finally, a recent paper that identified genes 

affected by depletion of the cytoplasmic polyadenylation component CPEB in mammalian cells 

identified a relatively small subset of genes showing altered polyadenylation following CPEB 

depletion (194).   This suggests that, similarly to Xenopus meiosis, only some genes are regulated 

by cytoplasmic polyadenylation.  An important future direction will be to perform a similar study 

in mammalian cells depleted of SYMPK to identify mitotic genes regulated by polyadenylation. 

An additional future direction is determining whether components of the polyadenylation 
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machinery associate with the mitotic spindle.  Recently, a study demonstrated localization of a 

subset of mRNAs to mitotic microtubules in Xenopus oocytes and in human cells (225). 

Association of mRNAs with the mitotic spindle could allow for localized and temporal control of 

mRNA expression, similar to that observed in Xenopus (120). Additionally, we have observed an 

interaction between SYMPK and TACC3 by endogenous co-immunoprecipitation in H1155 and 

H1299 NSCLC cells (Figure 4.2).  These data suggest the intriguing hypothesis that the 

polyadenylation machinery may associate with the mitotic spindle.  This association could be an 

additional mechanism by which mitotic cells detect spindle damage and control mitotic 

progression. Unraveling these physical connections between the polyadenylation machinery and 

the mitotic spindle will be an interesting direction for future study.  In particular, 

immunoprecipitation-mass spectrometry studies of SYMPK binding partners should be 

performed in mitotic cells to identify other mitotic components that may interact with SYMPK.  

Additionally, it will be important to verify that TACC3 interacts with other components of the 

polyadenylation machinery, such as CSTF2, that are necessary for formation of the complete 

polyadenylation complex.  

Parallels between gametogenesis and tumorigenesis- Commonalities between 

gametogenesis and tumorigenesis have been noted for decades.  Most famously, John Beard 

proposed the trophoblastic theory of cancer over a century ago that suggested cancer arises from a 

“vagrant primary germ cell” that fails to migrate to the gametogenic tissue (226).  Although 

subsequent findings do not support this theory for the origin of most cancers, there continue to 

exist important parallels between germ cell development and tumorigenesis.  These similarities 

were recently reviewed by Lloyd Old and colleagues and include immortalization, invasive 

ability, asymmetric cell divisions, migratory ability, genomic hypomethylation, angiogenesis, 

immune evasion, and expression of the CT-antigens (93). These parallels between gametogenesis 

and cancer suggest the same processes that support gametogenesis may likewise support cancer 

growth.  In addition to our own work, two recent studies support this hypothesis.  First, a soma-
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to-germline transition has been documented in Caenorhabditis elegans mutants that demonstrate 

increased longevity (207).  The finding that germline genes increase longevity may indicate a role 

for these genes in maintaining proliferative capacity that could be relevant to cancer cell 

proliferation.  Second, a recent report demonstrated overexpression of multiple germline genes in 

Drosophila embryos stimulates growth of brain tumors (206).   This suggests germline genes can 

initiate cellular transformation to drive tumor growth.  The contribution of most germline genes 

to mammalian tumorigenesis, however, remains unknown. 

An important future direction will be identifying the functions of the CT-antigens in 

tumorigenesis. This dissertation has focused on a subset of CT-antigens that were identified in a 

synthetic lethal screen with an anti-mitotic drug, so naturally we have found many of these genes 

support mitosis.  However, other groups have shown CT-antigens to be involved in diverse 

cellular processes (212, 227).  Several methods would elucidate the functions of the CT-antigens 

in tumorigenesis.  First, identification of CT-antigen interaction partners is an important future 

direction. We have previously demonstrated that the CT-antigen ACRBP interacts with the 

mitotic spindle protein NuMA to impact mitosis (155).  The gametogenic gene TACC3 also 

interacts with the CT-antigen MAGEA4 (219).  Determining whether other CT-antigens connect 

to the normal cellular machinery is a necessary future direction.  Second, an increased 

understanding of the role of the CT-antigens in gametogenesis may inform our understanding of 

their roles in tumorigenesis.  For example, the CT-antigens MAGEA5 and NXF2 are expressed in 

the spermatogonial stage of gametogenesis, the stage in which germ cells undergo mitotic 

division (93).  Our finding that both these genes impact mammalian mitosis suggests they may 

function similarly in both gametes and tumors.   Finally, functional studies of the impact of CT-

antigen depletion or overexpression on tumor growth are needed.  These studies have not been 

performed on a large-scale with the CT-antigens as a group, probably due to their sporadic 

expression across cell lines.    However, systematic studies of cell lines that do express CT-

antigens will establish which are required for tumorigenesis.  Overall, a better understanding of 



88 

Figure 4.2 

 

Figure 4.2  Interaction of SYMPK and TACC3   
(A) Co-immunoprecipitation of SYMPK and TACC3 in the H1155 NSCLC line.  

SYMPK was immunoprecipitated using a monoclonal SYMPK antibody (Cell Signaling) from 
whole cell lysates (40 mM HEPES, 5% TritonX-100, 80 mM beta-glycerophosphate, 0.5% 
sodium deoxycholate, 1 mM EGTA, 150 mM or 500 mM NaCl, and protease inhibitor tablets).  
The immunoprecipitated fraction was blotted for TACC3 (Santa Cruz).   (B) Co-
immunoprecipitation of SYMPK and TACC3 in the H1299 NSCLC line.  Conditions were as in 
(A) but using 150 mM NaCl in the lysis buffer. 
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 the cellular functions of the CT-antigens may allow targeting of the gametogenic program in 

cancer cells. 

The reasons for sporadic inter- and intra-tumoral expression of the CT-antigens also 

require further study.  First, if the CT-antigens are indeed supporting tumorigenic phenotypes, it 

is unclear why some cancers require expression of many CT-antigens while other cancers require 

none at all. It is possible there is similar heterogeneity in requirements for CT-antigen expression 

as there is in the signaling pathways that are activated to drive tumor growth.  Alternatively, only 

a subset of CT-antigens may actually increase tumor growth while the others are simply 

byproducts of aberrant gene expression.   Second, the factors driving CT-antigen expression in 

most cancers are not clear.   Genomic hypomethylation can drive expression of a subset of CT-

antigens but expression of many CT-antigens is not induced even with high doses of the 

demethylating agent 5-aza-2’-deoxycytidine (146).   This demonstrates that hypomethylation is 

not sufficient for expression of all CT-antigens and suggests additional unidentified factors may 

have a role in driving CT-antigen expression.   Finally, further study is needed to uncover the 

reasons for CT-antigen expression in only a subpopulation of cells within the tumor.  It is 

possible that CT-antigens confer stem-cell like properties to the tumor or support tumor growth 

by driving proliferation of other non-CT-antigen expressing cells within the tumor.  For example, 

the CT-antigen FMR1NB encodes a signal peptide (216) and may be secreted into the 

extracellular space.  This could allow FMR1NB to influence the properties of surrounding cells in 

a paracrine manner.   Ultimately, an understanding of these factors controlling CT-antigen 

expression will require gene expression profiling coupled with functional studies of the CT-

antigens at the single-cell level. 

Clinical implications  

As an MD/PhD student, the clinical implications of my dissertation research merit special 

emphasis.  Here, I will discuss several potential impacts of this work on drug development 
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including the usage of polyadenylation inhibitors to treat cancer, the utility and limitations of the 

TACC3 inhibitor KHS101, and the potential for targeting other CT-antigens with small 

molecules. 

Cordycepin to inhibit polyadenylation- Our results demonstrating synergy between 

depletion of polyadenylation components and treatment with paclitaxel suggest potential efficacy 

in combined treatment with anti-mitotic drugs and inhibitors of the polyadenylation machinery.  

Although no specific inhibitors of the polyadenylation machinery exist, several studies have been 

performed with an adenosine analog called cordycepin.  Cordycepin treatment inhibits 

polyadenylation by chain termination of the poly(A) tail but also potently inhibits nucleic acid 

synthesis (228).  In pre-clinical studies, cordycepin has shown efficacy in killing leukemia cells 

(137, 139-141) and is currently in clinical trials (136, 138).  The impact of cordycepin on cell 

growth in these studies could derive from cordycepin’s effects on polyadenylation or changes in 

nucleic acid synthesis.   To test whether cordycepin treatment can synergize with paclitaxel, we 

have treated H1155 NSCLC cells with the combination of cordycepin and paclitaxel.  In these 

studies, we observed no significant synergy with combination treatment (Figure 4.3).  We 

attribute this lack of efficacy to a potent interphase block that we observe with cordycepin 

treatment, likely derived from the effect of cordycepin on nucleic acid synthesis.   This interphase 

block likely inhibits the efficacy of paclitaxel because paclitaxel treatment is specific for mitotic 

cells.  Importantly, we and others have not observed a similar interphase block following 

depletion of polyadenylation components (92, 109).  This suggests that cordycepin does not 

mimic the cell biological effects of loss of the polyadenylation machinery. Therefore, 

polyadenylation inhibitors with increased specificity towards polyadenylation may demonstrate 

more significant synergy with paclitaxel.     

Utility and limitations of the TACC3 inhibitor KHS101- The significant efficacy seen 

with combined paclitaxel/KHS101 treatment of NSCLC lines in this dissertation suggests utility 

of KHS101 in vitro.   As a potential small molecule chemotherapeutic agent, three factors require  
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Figure 4.3 

 

Figure 4.3 Co-treatment of H1155 cells with cordycepin and paclitaxel  
CellTiter-Glo (CTG) viability assay in H1155 cells treated with cordycepin, paclitaxel, or 

combination treatment.   H1155 cells were plated in a 96-well format, treated with paclitaxel for 
24 hours, treated with cordycepin for an additional 48 hours, followed by addition of CTG 
reagent and luminescence readings.  Increased arbitrary luminescence units (ALU) indicate the 
presence of more viable cells.  
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consideration including the ability of KHS101 to inhibit TACC3, the specificity of 

KHS101 for TACC3, and the potential utility of KHS101 treatment in vivo.  First, it is important 

to consider whether KHS101 inhibits TACC3 function.  The initial study that identified KHS101 

demonstrated the ability of biotinylated KHS101 to bind TACC3 both in cellular lysates and 

using purified recombinant TACC3 protein (182).  Additionally, these authors demonstrated that  

the KHS101-TACC3 interaction could be inhibited by addition of unlabelled KHS101 (182).  

Moreover, the cell biological phenotypes observed in this original study of KHS101 and in our 

own work with KHS101 are consistent with those expected following inhibition of TACC3.   

Together, these results suggest that KHS101 indeed targets TACC3.  Second, it is important to 

consider the specificity of KHS101 for TACC3.  Since KHS101 was only identified in 2010, 

there is as no extensive data addressing inhibitor specificity but the structure of the compound 

provides clues.  KHS101 is a 4-aminothiazole compound and aminothiazoles can inhibit Aurora 

kinase activity (229).  TACC3 is phosphorylated by AURKA (174) so it is possible that the 

effects we observe with KHS101 are due to AURKA inhibition rather then a specific effect on 

TACC3.   However, the cell biological phenotypes we observe are inconsistent with a strong 

effect on AURKA activity.  In particular, AURKA inhibitors cause massive mitotic defects 

without the addition of paclitaxel (230) whereas we do not see any mitotic defects with single 

agent KHS101 treatment even at high (10 uM) doses.  This suggests KHS101 is not targeting 

AURKA.  A more detailed analysis of the specificity of KHS101 is nevertheless needed.  Finally, 

it is important to determine whether KHS101 has efficacy in vivo.   A previous study achieved a 

plasma concentration of >1.5 uM following intravenous dosing of KHS101 at 6 mg/kg of body 

weight but observed poor oral bioavailability (182).  The authors of this study also observed no 

toxicity with KHS101 treatment (182), a finding that is consistent with our own studies in mice 

(data not shown).  An important future direction is testing the efficacy of KHS101 in treating a 

mouse model of NSCLC.   Overall, forthcoming studies to examine the specificity and in vivo 

efficacy of KHS101 will elucidate the therapeutic utility of this compound. 
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Potential for targeting other CT antigens- In addition to the TACC3 inhibitor 

KHS101, it would be useful to identify drugs that may target other CT-antigens in a range of 

cancers.  Identification of such drugs will hinge on a better understanding of the functional 

significance and expression pattern of all CT-antigens.  Current knowledge points to two methods 

by which some CT-antigens may be targeted with small molecules including direct targeting of 

CT-antigens that have known “druggable” structures and indirect targeting of CT-antigens that 

are modified by processes which are druggable.   

Directed targeting may be efficacious with CT-antigens that have known domains that 

can be targeted and is best illustrated with two CT-antigens: human monopolar spindle kinase 1 

(MPS1) and bromodomain testis specific (BRDT).  MPS1 (also known as TTK) is a dual-

specificity kinase that can phosphorylate serine/threonine and tyrosine residues in target proteins 

and controls SAC activation (231, 232).  MPS1 is a CT-antigen that is highly expressed in 

gametogenesis and also upregulated in gastric, lung, and bladder tumors (233, 234).   As a kinase, 

MPS1 is highly targetable and a recent study identified an ATP-competitive inhibitor of MPS1 

that reduces tumor growth in vitro and in vivo (235), suggesting potential efficacy in targeting 

this CT-antigen.  In addition to MPS1, the CT-antigen BRDT may also represent a potential drug 

target.  BRDT is expressed during gametogenesis (236), upregulated in tumors (237), and appears 

to function in the control of chromatin remodeling (238).   BRDT mediates chromatin remodeling 

through two encoded bromodomains, a domain that the Bradner lab has recently been successful 

in selectively inhibiting with small molecules (239).  Identification of additional targetable 

domains in CT-antigens will be an important future direction in the push for development of CT-

antigen directed therapeutics. 

In addition to targeting the CT-antigens directly, it may also be possible to indirectly 

target these proteins by targeting pathways that control CT-antigen function or expression.  

Indirect targeting may be advantageous because there are likely more compounds available that 

could modify CT-antigen function as compared to compounds that specifically target the 



94 

individual CT-antigen proteins.  However, two disadvantages of indirect targeting are loss of 

specificity on tumor tissue and the requirement for significant knowledge about CT-antigen 

function to design an effective indirect targeting strategy.   One method of indirect targeting 

would involve targeting proteins upstream of the CT-antigen that modify CT-antigen function.  

For example, the activity of members of the MAGE family of CT-antigens is regulated by 

phosphorylation (240), suggesting that control of these upstream phosphorylation events may be a 

pathway to modulate MAGE function.  Another method of indirect targeting would be to modify 

pathways that control CT-antigen expression.  Currently, it is known that expression of a subset 

of CT-antigens is driven by genomic hypomethylation but what drives expression of the 

remaining antigens is unclear (146).   Future efforts to identify the pathways controlling CT-

antigen function may therefore yield important insights into methods for indirect targeting.  These 

studies should include analysis of the role of oncogenic signaling pathways and transcriptional 

networks in controlling CT-antigen expression. 

Conclusions 

 In this work, we have revealed previously unrecognized connections between the 

polyadenylation machinery, gametogenesis, and formation of the mitotic spindle.  Understanding 

the mechanisms in which polyadenylation components and gametogenic genes influence mitotic 

stress may have important implications for the design of next generation anti-mitotic 

chemotherapeutics.  Additionally, this work has informed our understanding of the processes 

required for tumor cell response to mitotic stress.  Perhaps more importantly, this research has 

opened up additional avenues for future study.  In particular, characterizing the mitotic mRNAs 

affected by polyadenylation and probing the functional impact of all the CT-antigens on 

tumorigenesis are important directions for future work.   Further study of these questions will 

doubtless have impact on our understanding of tumor cell biology and open up new in-roads for 

chemotherapy. 
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