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ABSTRACT 
 

ASYA LAZAROVA BORIKOVA: Regulation and Function of the Cerebral Cavernous 
Malformation Proteins 

(Under the direction of Gary L. Johnson, Ph.D.) 
 

 Cerebral Cavernous Malformations (CCM) is a genetic disease that causes 

dilated, leaky blood vessels in the brain and manifests with neurological deficits, 

seizures and hemorrhagic stroke. CCM is linked with loss-of-function mutations in 

ccm1, ccm2, and ccm3. CCM1, 2 and 3 are adaptor-like proteins that form a ternary 

complex, which has suggested that they regulate a common molecular pathway for 

the maintenance of endothelial cell function. We provide subcellular localization 

evidence in support of a common molecular role for CCM1 and 2, and define the 

only two known signaling pathways that are coordinately regulated by CCM1, 2 and 

3.  

Using molecular and functional approaches, we report that 

433MISDISSDIEAL444 is a nuclear export sequence in CCM2, the localization of 

CCM1 patterns that of wildtype and nuclear export deficient CCM2 and that the 

cytosolic localization of CCM2 is required for normal endothelial function. Regulated 

co-localization of CCM1 and CCM2 within the same subcellular compartment is 

consistent with a common function for CCM1 and 2. Consistent with these 
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observations a finding from Crose et al. showed that CCM2 binds the E3 ubiquitin 

ligase Smurf1 and localizes Smurf1 to sites of RhoA at the plasma membrane for the 

degradation of RhoA. We utilized molecular, FRET-based biosensor, biophysical 

and functional approaches to define that CCM1, 2 and 3 co-regulate the abundance 

and activity of RhoA and RhoA-dependent cytoskeletal dynamics and endothelial 

cell self-assembly in lumen-like tubes. We show that pharmacological and genetic 

inhibition of ROCK rescues the functional defects in CCM and propose ROCK as a 

potential therapeutic target for CCM.  

Using genetic, proteomic and functional approaches we also define that 

CCM1, 2 and 3 co-regulate the abundance and activity of the small GTPase Rap1, 

and demonstrate a novel interaction between CCM2 and the E3 ubiquitin ligase 

Smurf2. Smurf2 regulates the degradation of Rap1 in neurons and we propose that 

CCM1, 2 and 3 co-regulate Rap1 abundance and activity for the regulation of 

endothelial cell tube formation. The studies presented here provide evidence that 

CCM1,2 and 3 coordinately regulate RhoA and Rap1, two key signaling hubs for the 

maintenance of endothelial function and vascular repair.  
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CHAPTER I 

INTRODUCTION 

 

Definition, clinical manifestation and current standard of care  

Cerebral Cavernous Malformations (CCM) is a genetic disease that causes 

dilated, hyper-permeable, fragile blood vessels along the central nervous system 

(Rigamonti et al., 1987; Zhang et al., 2000; Clatterbuck et al., 2001; Clatterbuck and 

Rigamonti, 2002). The primary location for CCMs is the brain(Porter et al., 1999; 

Zabramski et al., 1999), with less frequent occurrences in the spinal cord (Vishteh et 

al., 1999), retina (Couteulx et al., 2002), liver (Davenport et al., 2001) and skin 

(Eerola et al., 2000). Early-stage CCM lesions are single dilated vessels which can 

remain static in size for years (Rigamonti et al., 1988). Advanced CCM lesions 

appear ‘mulberry-like’ due to multiple intertwined dilated blood vessels (Rigamonti et 

al., 1987). Progression into a mulberry-like structure is not required for symptoms to 

develop and patients can present with single or multiple CCMs (Cavalcanti et al., 

2012). While some patients never develop more than one lesion, others develop 

multiple lesions within months (Revencu and Vikkula, 2006). Progression into a 

symptomatic lesion is characterized by a slow, continuous extravasation of blood 

due to the hyperpermeability of the vessels, or by hemorrhage due to the dilated, 
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fragile lumens of CCM vessels (Boon et al., 2011). The accumulation of blood in the 

peri-lesion parenchyma leads to consistent inflammation and eventual necrosis of 

the surrounding tissue (Shi et al., 2007; 2009). Clinical symptoms include severe 

motor and sensory deficits, headaches, seizures and hemorrhagic stroke (Batra et 

al., 2009). The disease burden of CCM is further increased by multiple or recurrent 

lesions.  

An estimated 1 in 200 people from the general population carry a 

heterozygous mutation for CCM. This frequency is increased to 1 in 70 for 

Hispanics. Of heterozygous carriers, an approximate 30% develop lesions and 

another 25% of lesion carriers present with symptoms (Otten et al., 1989). Once 

symptoms are present, the current standard of treatment is palliative and with limited 

success. Anti-epileptics are used to control seizures, however less than half of CCM 

patients report symptom improvement (Awad and Jabbour, 2006). Migraine 

headaches are controlled through high-dose narcotics which need to be rotated to 

prevent development of drug-dependency (Batra et al., 2009). In cases of 

debilitating symptoms, rapid lesion bleeding or patient request, lesions are surgically 

excised. However, surgery is a suboptimal treatment due to cost, high risk for 

complications, the chance for lesion recurrence, the presence of multiple 

asymptomatic lesions within a patient and the potential for surgical inaccessibility of 

the lesion (Lunsford et al., 2010). Because current therapy does not address the 

molecular causes of CCM, lesion growth and progression into symptom 

manifestation remain a major clinical challenge. Thus a preventative or curative 

therapy targeted specifically to the molecular discrepancies of CCM is direly needed. 
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Genetic causes for CCM and the two-hit hypothesis  

CCM is linked with inactivating mutations in three genes: cerebral cavernous 

malformations 1/k-rev interaction trapped (ccm1/krit1) (Sahoo et al., 1999a), cerebral 

cavernous malformations 2/malcavernin/osmosensing scaffold for mekk3 

(ccm2/malcavernin/osm) (Liquori et al., 2003) and cerebral cavernous malformations 

3/programed cell death 10 (ccm3/pdcd10) (Craig et al., 1998). Loss of function in 

just one gene is sufficient for pathogenesis and the clinical manifestation for ccm1, 2 

or 3 patients is identical (Marchuk, 2003). 

The three genes encode for scaffold-like proteins that lack catalytic domains 

(Francalanci et al., 2009). Between the three genes over one hundred different 

mutations have been recorded (Revencu and Vikkula, 2006). These are point 

mutations that lead to aberrant splicing, frame shift or premature stop codon 

insertions (Verlaan et al., 2002). 

 CCM is separated into two categories based on the pathological origins of 

the mutations. The familial form is defined by inherited heterozygous germline 

mutations, whereas the sporadic form is characterized by spontaneously acquired 

somatic mutations(Laberge et al., 1999). Among familial cases estimated 40-53% 

display mutations in ccm1, 15-20% in ccm2, and 10-40% in ccm3 (Haasdijk et al., 

2012).  

Familial and sporadic patients display an identical set of symptoms. The most 

clinically distinguishable difference in the manifestation of the familial and sporadic 

forms is the age at symptomatic onset and the number of lesions present. Familial 

patients present between infancy and the third decade in life and develop multiple 
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lesions, whereas sporadic patients generally present after the sixth decade with 

prevalently single or few lesions (Revencu and Vikkula, 2006).  

The discrepancy between the low frequency of clinical presentation relative to 

the frequency of heterozygous carriers in the population and the fact that not all 

familial mutation carriers develop lesions has raised the idea that lesion 

development requires a ‘second-hit’ or loss of heterozygosity due to mutational 

inactivation of the second allele (Akers et al., 2008). This idea has been validated by 

findings from two different studies. The first is a study of the factors contributing to 

mutations in the wildtype allele of heterozygous CCM knockout mice. Lesion 

development was assessed under conditions of overall genetic instability induced by 

homozygous deletion of the tumor suppressor p53 or the mismatch repair protein 

MutS Homolog2 (MSH2). Lesion penetrance in Ccm1-/+/Trp53-/- and Ccm2-/+/Trp53-/- 

mice was 83% and 62% respectively(Shenkar et al., 2008) and 47% for Ccm1-

/+/Msh2-/- mice (McDonald et al., 2011). Ccm2-/+/Msh2-/- mice did not develop lesions 

(McDonald et al., 2011). While these findings failed to establish a role for MSH2 

during CCM lesion development, they provided initial experimental evidence that 

lesion development is promoted under conditions of genetic instability. A subsequent 

study which used laser microdissection to extract individual endothelial cells from 

familial CCM patient lesions and then sequenced both alleles of the heterozygously 

mutated CCM gene identified somatic mutations in the inherited widltype allele 

(Akers et al., 2008). Somatic mutations were not found in all endothelial cells within 

a lesion suggesting that a mosaic loss of heterozygosity is sufficient for CCM 

progression.  
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The Blood Brain Barrier  

In order for targeted molecular therapies to be created, the particular cell type 

affected by CCM had to be defined. Several cell types are important for the 

structural integrity and function of blood vessels in the brain (Figure 1.1). The main 

function of blood vessels in the brain is to maintain the blood brain barrier, or the 

passage of molecules from the blood to brain tissue.  Larger blood vessels are 

composed of a tube-like inner monolayer of endothelial cells and an outer layer of 

smooth muscle cells. Capillaries are constituted of the monolayer of endothelial cells 

only and lack the smooth muscle layer (Abbott et al., 2006). The blood brain barrier 

is physically maintained by the permeability of the endothelial monolayer. Two 

mechanisms of permeability across the blood brain barrier have been described. 

These are paracellular traffic across dissociated junction proteins and transcellular 

traffic, by lipophilic-mediated transport directly through the endothelial cells 

(Wittchen et al., 2005). Endothelial cells are connected through adherens and tight 

junctions. These two types of junctions are strictly separated in epithelial cells, 

however they are highly intermingled in endothelial cells (Abbott et al., 2006). The 

dissociation of these junctions creates a physical gap between endothelial cells that 

allows the passage of molecules or other cells (Wolburg and Lippoldt, 2002). 

Junction dynamics and transcellular migration are regulated by intercellular 

mechanisms in response to changes in shear stress, cytokine, ion and nitric oxide 

abundance. Smooth muscle cells have been suggested to regulate the blood brain 

barrier by secreting nitric oxide (Abbott et al., 2006). Pericytes and astrocytes 

directly interact with endothelial cells and thus provide structural support for the 
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cerebrovasculature. Both pericytes and astrocytes have been shown to regulate the 

blood brain barrier indirectly through regulation of the permeability of the endothelial 

monolayer (Armulik et al., 2010). Astrocytes secrete Vascular Endothelial Growth 

Factor (VEGF), and regulate the perivascular concentration of ions, as well as 

regulate the expression and activity of the Pgp-1/CD44 and Glucose Transporter 1 

(GLUT1) transmembrane transporters (Abbott et al., 2006). A deficiency in the 

number of pericytes around the cerebrovasculature leads to increased blood brain 

barrier permeability by regulation of the expression of blood brain barrier specific 

genes in endothelial cells and by regulating the interaction between astrocytes and 

endothelial cells (Armulik et al., 2010).  

CCM blood vessels resemble capillaries in that they are composed only of an 

endothelial monolayer and lack smooth muscle cells. However, CCM vessels also 

lack pericytes and surrounding brain parenchyma (Marchuk, 2003). A nearly 

diagnostic characteristic of CCM lesions is the presence of extravasated blood in the 

tissue immediately surrounding the lesion, suggesting a focal increase in endothelial 

monolayer permeability (Yadla et al., 2010). Since the blood brain barrier is 

maintained by endothelial, smooth muscle and astrocyte cells, the specific cell type 

affected by CCM had to be experimentally defined.  

Mice with conditional deletion of Ccm1 or 2 in smooth muscle cells, glia and 

neurons are born normal and have a normal lifespan (Whitehead et al., 2009). Mice 

with conditional deletion of Ccm 2 or 3 in the endothelium die between embryonic 

days E9.5 and E13.5 (Whitehead et al., 2009). Subsequent in vitro studies have 

confirmed that loss of CCM protein expression in endothelial cells impairs multiple 
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endothelial-specific functions including permeability of monolayers, migration and 

tube formation establishing the endothelial cell as the main cell type affected by 

CCM (Glading et al., 2007).   

Recently, the involvement of other cell types in CCM has been investigated. 

He et al. (He et al., 2010) and Louvi et al. (Louvi et al., 2011) report two different 

outcomes for conditional deletion of Ccm3 in neuronal and glial tissue. He et al. 

observed normal Mendelian ratios at birth, normal lifespan, no vascular lesions or 

other gross defects in mice when using the Nestin-Cre neuronal specific system to 

conditionally delete Ccm3 in neuronal tissue.  Louvi et al. observed lower than 

expected Mendelian ratios at birth, death at postnatal day 3 and larger brain size 

with dilated and simplified cerebral vasculature when Ccm3 was deleted with the 

Nestin-Cre promoter. The group also found that deletion of Ccm3 with a Gfap-Cre 

driver results in lower Mendelian ratios at birth, death at 4 weeks of age, enlarged 

brain, dilated ventricles and unsteady gait and circling. Gfap expression occurs in 

central nervous system neurons and glial astrocytes, oligodendroglia and ependymal 

cells. Finally, the group showed that when Ccm3 is lost in neocortex and 

hippocampal glial astrocytes and oligodendrocytes using an Emx-Cre system, mice 

are born in normal Mendelian ratios, have a normal lifespan and no gross 

neurological or vascular deficits, however still have enlarged brain size. Astrocytes 

isolated from these mice, similarly to astrocytes from Ccm3flox/flox; Gfap-Cre mice, 

displayed increased activation and proliferation and resistance to apoptosis, which 

can potentially impair normal endothelial cell function and the maintenance of the 

blood brain barrier. Overall the Louvi findings suggest a neuronal autonomous role 
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for Ccm3 and implicate neuronal and glial cells in CCM pathogenesis. How the 

crosstalk between endothelial, neuronal and glial cells is impaired in CCM and the 

retributions from such impairment are unknown and the existing mouse models for 

CCM will help define the answers to these questions.  

Animal models for CCM  

 In an effort to understand the pathogenesis of CCM, mouse and zebrafish 

disease models have been created. What has become apparent in these models is 

that similar to the disease phenotype in humans, loss of either ccm1, 2 or 3 leads to 

an identical phenotype suggesting that CCM1, 2 and 3 regulate a common 

endothelial cell function, although that function appears to be different during 

development of the vascular system and post-developmental maintenance of 

vessels.  

Mus Musculus 

Homozygous whole-animal and endothelium-specific deletion of Ccm1, 2, or 

3 in mice is embryonically lethal between E8.0 and E9.5 (Whitehead, 2004). This 

event points to an essential role for the three CCM proteins in endothelial function. 

At E8.5 knockout embryos display an enlarged left ventricular chamber of the heart, 

loss of branchial arch morphogenesis, enlargement of brain precursor vessels, and 

dilated aortic sac and pericardial cavity.  By E9.5 the absence of aortic arch 

morphogenesis becomes fatal. Endothelial cells of the branchial arch arteries fail to 

organize an intact lumen, creating a gap in the circulatory system. This leads to 

failure to initiate bloodflow despite normal heartbeat and embryonic death. In Ccm3-/- 

embryos the myocardium and endocardium are also disconnected, indicating a loss 
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of interaction between the smooth muscle and endothelial cells (He et al., 2010). 

Based on these studies, loss of Ccm1, 2 or 3 is phenotypically identical and 

consistent with the clinically identical presentation of ccm1, 2 or 3 patients.  

However, one group has presented data that embryos from endothelial 

specific Ccm3-/- mice created by the group establish normal circulatory system and 

bloodflow but die at E13.5 due to progressive enlargement and rupture of the 

cardinal vein (Chan et al., 2011). The authors interpreted these findings to mean that 

pathogenesis with loss of function in ccm3 is unique from the pathogenesis with loss 

of function of ccm1 or 2. However, these studies were performed with only partial 

deletion of Ccm3, whereas the phenotype of the Ccm3-/- mice with complete Ccm3 

deletion created by (Louvi et al., 2011) and (He et al., 2010) fully overlap the 

phenotype of the Ccm1 and Ccm2 mice.  

Vessel formation during development is divided into two stages, 

vasculogenesis and angiogenesis. Vasculogenesis is the de novo patterning of 

blood vessels from stem cells. Angiogenesis is the formation of branches from pre-

existing vessels. In mice vasculogenesis begins at 7.0-7.5 dpc and angiogenesis 

begins at 9.0-9.5dpc (Uyttendaele et al., 2001). As lethality in Ccm1, 2 and 3 

knockout mice occurs at 9.5 dpc, it has been hypothesized that the genes are 

activated during angiogenesis. More specifically, since patients display abnormal 

vascular morphology in pre-existing vessels rather than loss of vessel formation, the 

post-natal role of the genes is most likely in vessel remodeling. Indeed, studies with 

endothelial cells isolated from lesions of ccm2 and ccm3 patient lesions showed that 

upon short interfering RNA (siRNA) mediated knockdown of ccm2 or ccm3 mRNA 
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respectively (to compensate for the mosaic loss of heterozygosity), sprouting 

angiogenesis in vitro was not impaired but formed vessels eventually disintegrated 

more rapidly (Zhu et al., 2010; Zhu et al., 2011).  

Several mouse models have failed to recapitulate the CCM pathogenesis. 

Homozygous whole animal knockout mice, as discussed above, die during 

development. Whole animal Ccm1-/+ or Ccm2-/+ mice survive to birth, however they 

also fail to develop lesions (Plummer et al., 2004; Whitehead et al., 2009). Lesion 

penetrance increased under conditions of genetic instability introduced by crossing 

Ccm1-/+ and Ccm2-/+ mice with Trp53-/- or Msh2-/- mice. Lesions developed in 83% of 

Ccm1-/+/Trp53-/+ mice, 62% of Ccm2-/+/Trp53-/+, 47% of Ccm1-/+/Msh2-/+ and in none 

of the Ccm2-/+/Msh2-/+ mice (Shenkar et al., 2008; (McDonald et al., 2011). These 

findings supported the hypothesis that loss of heterozygosity is a genetic mechanism 

for CCM. However, these genetically engineered mice are a poor disease model 

since there is currently no evidence that either p53 or MSH2 are ever mutated in 

CCM.  

 The most successful CCM disease model in mice utilizes postnatal drug-

induced deletion of Ccm2 or 3 in endothelial cells. An inducible conditional deletion 

mouse model for CCM1 has not been reported to date. With this approach, the CCM 

genes are allowed to express normally throughout development and embryos 

survive to birth. Cunningham et al., induced homozygous deletion of Ccm2 at age 6-

8 weeks, and observed seizures, ataxia and death at 7-8 months of age 

(Cunningham et al., 2011). Chan et al. induced Ccm2 or Ccm3 loss of 

heterozygosity in pups immediately following birth and observed lesion formation at 
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4 and 1 month respectively (Porter et al., 1999; Zabramski et al., 1999; Chan et al., 

2011; 2011).  Both groups reported 100% penetrance. Similarly to human lesions, 

mouse lesions could be detected by magnetic resonance imaging and were 

characterized by dilated vessels with erythrocyte enrichment within the lumen, and 

hemosiderin peri-lesion staining. Hemosiderin is an iron-bound complex enriched in 

erythrocyte and macrophages and its peri-vascular localization is indicative of lesion 

bleeding, hemorrhage and inflammation. Large clusters of macrophages were found 

in proximity to the lesions further indicating local inflammation. The dilated vessels 

lacked staining for smooth muscle cells, pericytes and astrocyte feet attachments 

similarly to human CCM. Chan et al. additionally reported on the difference in 

pathogenesis in Ccm2 and Ccm3 mice. In addition to the earlier onset of symptoms 

in Ccm3 mice, the number of lesions formed was also greater in these mice. These 

findings parallel the disease progress in human CCM3 patients, who display 

symptoms earlier and with greater severity (Haasdijk et al., 2012).  

 In summary, normal embryonic development and lesion formation in 

adulthood define the inducible conditional mouse model as the approach that most 

faithfully recapitulates clinical CCM. This model holds great promise for use in future 

preclinical studies evaluating potential therapeutics, and in providing evidence for 

the molecular pathways responsible for loss of smooth muscle cells, pericytes and 

astrocyte attachments and lesion development.  

Danio rerio  

A zebrafish model for CCM has also been established and closely 

recapitulates the embryonic lethality phenotype observed in mice. Genetic silencing 
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of the zebrafish orthologs for ccm1 and ccm2, santa and valentine respectively, is 

accomplished through injection of morpholino oligos in zebrafish embryos.  Santa 

and valentine deficient embryos develop enlarged vessels of the brain, cardiac 

enlargement and occlusion of the branchial arch arteries that connect the heart to 

the aorta (Mably, 2006). This occlusion blocks the outflow of blood from the heart 

and leads to 95% lethality by 48 hours post fertilization (hpf). Morpholino knockdown 

of ccm3 in zebrafish is embryonic lethal at 24 hpf which is prior to onset of 

cardiovascular patterning. However, expression of a morpholino which induces 

aberrant ccm3 splicing in a manner identical to identified patient mutations causes 

thin-walled, dilated hearts, occlusion of the branchial arch arteries and embryonic 

death similarly to santa and valentine morpholino embryos (Zheng et al., 2010a).  

Structure-function relationships in CCM1, 2 and 3 govern formation of the CCM 

complex 

Sequence alignment and crystal structure studies of CCM1, 2 and 3 have 

shown that each of the proteins encode protein-protein interaction domains however 

lack catalytic domains (Béraud-Dufour et al., 2007a; Li et al., 2010). This suggests 

that CCM1, 2 and 3 perform scaffold or adaptor-like functions (Figure 1.2).  

CCM1/KRIT1 (K-Rev Interaction Trapped 1) 

CCM1/KRIT1 was initially identified in a yeast two-hybrid study for binding 

partners of the small GTPase Rap1/K-rev (Serebriiskii et al., 1997). Ccm1 is located 

on chromosome 7q21.2 and contains 19 exons (Sahoo et al., 1999b). The N-

terminal domain of the protein (aa1-207) encodes a functional nuclear localization 

sequence (K46-L58) and an NPXY motif (192NPAY195) which interacts with the 
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Phosphotyrosine Binding (PTB) domain of β1-integrin cytoplasmic associated 

protein -1 (ICAP-1) (Zawistowski et al., 2002; Zhang et al., 2001). ICAP-1 competes 

with talin for the NPXY motif in the β1-integrin cytoplasmic tail and is thus a negative 

regulator of β1 integrin activity (Bouvard et al., 2006). It has been hypothesized that 

this function of ICAP-1 is regulated by the competitive binding of CCM1 and the β1-

integrin tail with ICAP-1 (Zawistowski et al., 2002; Zhang et al., 2001). However 

experimental evidence of the role of CCM1 in β1 integrin activity has not been 

published to date. Similarly, the biological significance of the nuclear localization of 

CCM1 also remains undefined.  

The central region of CCM1 (aa208-417) encodes two additional NPXY motifs 

(231NPLF234 and 250NPYF253) and three ankyrin repeats. The two NPXY motifs 

mediate CCM1-CCM2 binding which was first identified via mass spectrometry by 

Hilder et al. (Zhang et al., 2007a; Hilder et al., 2007). Ankyrin repeats are one of the 

most abundant domains and mediate protein-protein interactions (Mably, 2006; Li et 

al., 2006).  

The C-terminal region of CCM1 (aa 418-736) is spanned by a Band-four-

point-one-ezrin-radixin-moesin domain (FERM) domain. The domain is composed of 

three clover-like F lobes, where F1 has an ubiquitin-like fold, F2 has an acyl-coA-BP-

like helix bundle, and F3 is PTB-like. The F3 domain interacts with the third NPXY 

motif (250NPYF253) in a head to tail interaction and maintains CCM1 in a closed 

conformation (Béraud-Dufour et al., 2007b). In this state, the nuclear import of 

CCM1 is inhibited and CCM1 is localized in the cytoplasm. The head to tail 

interaction is thought to be a regulatory mechanism for CCM1 activity. When in the 
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opened state, the F2 and F3 lobes mediate binding with Rap1, a master regulator of 

endothelial permeability and adherens junctions. This interaction favors the 

cytoplasmic localization of CCM1. Two isoforms of Rap1 have been identified to 

date, Rap1a and Rap1b, and both interact with CCM1 (Béraud-Dufour et al., 2007b). 

The cytoplasmic localization of CCM1 is also favored by interaction with CCM2, as 

co-expression of wildtype CCM1 and CCM2 leads to the cytoplasmic localization of 

both however co-expression of CCM1 and CCM2 with mutation at F217 to disrupt 

PTB-domain interactions leads to the nuclear localization of CCM1. When expressed 

alone CCM1 also localizes to the nucleus, suggesting that CCM2 regulates the 

subcellular localization of CCM1(Zawistowski, 2005; Zhang et al., 2007b).  

CCM2/OSM (Osmosensing Scaffold for MEKK3)/malcavernin 

 To date only one functional domain has been identified in CCM2 and that is a 

phosphotyrosine binding domain (PTB) from Ser60 to Asp230 (Uhlik et al., 2003, 

Liquori et al., 2003). The domain was identified based on the primary sequence of 

CCM2. A high-resolution structure of CCM2, or for CCM1, has not been solved as of 

yet.  

 There are over 200 PTB domain proteins and the sequence motif recognized 

by this domain is classically defined as Asn-Pro-x-Tyr (NPxY) (Uhlik et al., 2005). 

The third position, indicated by x, can be occupied by any amino acid. Early studies 

had suggested that phosphorylation of the tyrosine was required for recognition by 

the PTB domain, however it is now recognized that a subclass of PTB domains do 

not require tyrosine phosphorylation for binding (Uhlik et al., 2005). Based on its 
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predicted crystal structure, the PTB domain of CCM2 belongs to the 

phosphotyrosine-independent Dab-like subclass (Uhlik et al., 2005).  

 In a seminal study Hilder et al. (Hilder et al., 2007) used full length CCM2 and 

CCM2 with a point mutation (F217A) predicted to disrupt the binding capacity of the 

PTB domain in a pull down assay followed by mass spectrometry-identification of the 

pulldown fraction. These experiments defined the PTB- dependent and PTB-

independent binding partners of CCM2. CCM1 and CCM3 were found to bind full 

length, but not F217A CCM2, indicating that a PTB-dependent interaction occurs 

between CCM2 and CCM1 and a functional PTB domain is required for CCM3 to be 

in the complex. In a pulldown assay for CCM2, both CCM1 and CCM3 were 

simultaneously isolated indicating that CCM1 and CCM3 do not compete for binding 

with CCM2 and that the three proteins exist in a ternary complex. The CCM1-CCM2 

interaction is maintained by the 231NPLF234 and 250NPYF253 motifs within CCM1. The 

CCM2-CCM3 interaction is maintained by a highly conserved hydrophobic patch 

within the FAT like domain of CCM3, however a specific NPxY-like motif within 

CCM3 has not been defined (Li et al., 2010; He et al., 2010).  

CCM3/PDCD10 (Programmed Cell Death 10) 

CCM3 is the only CCM protein for which a crystal structure has been solved 

(Li et al., 2010). Prior to the crystallization of CCM3, attempts to identify domains 

using sequence homology alignment, molecular modeling and secondary structure 

analysis had failed and the crystal structure defined the first ever identified domains 

within CCM3. The N terminal domain of the protein exhibits a unique structure that 

cannot be classified as any currently known fold (Li et al., 2010). In crystallography 
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structures this domain appeared in a homodimerized state. Pulldown experiments of 

overexpressed CCM3 confirmed the homodimerization of CCM3. Importantly the N 

terminal domain alone fails to interact with CCM2 in pulldown assays. The C 

terminal domain of CCM3 (M92-A212) exhibits a FAT-homology fold and when 

truncated from the N terminal domain is sufficient to mediate CCM3-CCM2 binding. 

The domain contains two alipathic helices of highly conserved sequence (HP1, after 

standard FAK domain nomenclature). The high sequence conservation within HP1 

suggested an essential function for the region. The authors disrupted the overall 

negative charge of the helices by point mutations of four conserved lysines (Lys-132, 

Lys-139, Lys-172 and Lys-179), or a serine (Ser-175) and showed that these 

disrupted CCM3-CCM2 binding.  

Defined molecular pathways for CCM1, 2 and 3 

While a common molecular function for CCM1, 2 and 3 had not been defined 

prior to our findings the proteins had been individually defined in several cellular 

pathways. 

CCM2-Smurf1-RhoA 

 In a seminal paper defining the first endothelial-relevant signaling pathway 

regulated by a CCM protein, Crose et al. demonstrated that CCM2 interacts with the 

Smad ubiquitin regulatory factor 1 (Smurf1) (Crose et al., 2009). Smurf1 is an E3 

ubiquitin ligase that regulates the degradation of the small GTPase RhoA (Sahai et 

al., 2007; Cheng et al., 2011). The interaction between CCM2 and Smurf1 is 

mediated by the PTB domain of CCM2 and the HECT domain of Smurf1 (Crose et 

al., 2009). Knockdown of CCM2 expression by short hairpin RNA (shRNA) in the 
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brain endothelial cells bEND.3 resulted in two-fold increase in the total levels of 

RhoA protein. Overexpression of increasing amounts of CCM2 and wildtype Smurf1 

led to gradual decrease in total RhoA levels, however overexpression of CCM2 and 

a catalytically inactive Smurf1 did not (Crose et al., 2009). These studies 

demonstrated that CCM2 is required for the Smurf1-dependent degradation of 

RhoA. The overexpression of CCM2 and Smurf1, and resultant depletion of RhoA, 

resulted in collapse of the actin cytoskeleton and decrease in cell size demonstrating 

that the interaction of CCM2 and Smurf1 is physiologically relevant (Crose et al., 

2009). The particular role of CCM2 in Smurf1 function was defined by their co-

localization at the cell edge, the site of active RhoA. Smurf1 localization to sites of 

active RhoA at the plasma membrane is mediated by the C2 domain of Smurf1 

(Sahai et al., 2007). The localization of C2-truncated Smurf1 which contained just a 

HECT domain was cytoplasmic, due to the absence of the C2 domain (Crose et al., 

2009). However, co-expression of the Smurf1 HECT domain with CCM2 led to the 

complete relocalization of the HECT domain to the plasma membrane. CCM2 thus 

functions in the localization of Smurf1 to the plasma membrane, where 

Smurf1degrades active RhoA. These studies showed that loss of CCM2 expression 

leads to increased total RhoA levels due to loss of Smurf1 localization to sites of 

active RhoA with the functional consequence of increased abundance of actin stress 

fibers, a well characterized RhoA-specific phenotype. shRNA mediated knockdown 

of CCM2 impaired bEND.3 migration in a wound healing assay, increased 

permeability of endothelial monolayers in Human Umbelical Vein Endothelial Cells 

(HUVECs), and impaired Mouse Embryonic Endothelial Cells (MEECs) formation of 
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lumen-like tube structures on matrigel, an in vitro assay of endothelial function 

(Crose et al., 2009). The authors proposed that these endothelial cell defects were 

due to the increased total RhoA protein levels and activity. 

RhoA 

RhoA is a small GTPase of the Rho family. It is activated downstream of 

multiple signals including but not limited to activated G-protein coupled receptors 

(GPCR)s, receptor tyrosine kinases and integrins. The main known function of RhoA 

is in regulation of the assembly and disassembly of the actin and microtubule 

cytoskeletons (Rossman et al., 2005). Regulation of the actin cytoskeleton occurs 

through two pathways activated by the RhoA effector Rho Kinase (ROCK). The first 

is activation of Myosin Light Chain Kinase (MLCK), which phosphorylates myosin 

light chain leading to the increased affinity of myosin for actin fibers and stabilization 

of the actin stress fibers (Shen et al., 2010). The second is activation of Lim Kinase 

(LIMK), which phosphorylates Coffilin. In its unphosphorylated state Coffilin binds 

and sequesters actin monomers thus inhibiting actin polymerization and favoring 

stress fiber degradation (Wiggan et al., 2012). Phosphorylation inhibits Coffilin and 

promotes stress fiber polymerization. The overall effect of increased RhoA activation 

is increased stress fiber abundance and stability. Regulation of microtubules occurs 

through Diaphanous (Dia) which is a scaffold protein that stabilizes the Anaphase 

Promoting Complex (APC) along microtubules and thus promotes microtubule 

assembly. Dia also functions in actin fiber assembly by regulating actin nucleation 

(Bishop and Hall, 2000; Jaffe and Hall, 2005; Watanabe et al., 1999).  
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Our understanding of small GTPase biology has greatly relied on Fӧrster 

resonance energy transfer (FRET)-based biosensor technology. In a FRET 

biosensor a small GTPase of interest is genetically coupled to cyan and yellow 

fluorescent proteins(Welch et al., 2011; Machacek et al., 2009). Activation of the 

small GTPase leads to a conformational shift and energy transfer from the cyan to 

yellow fluorescent protein and quantitative energy emission from the yellow 

fluorescent protein. This quantitative nature of the biosensors has made it possible 

to measure real time changes in the activation state of the small GTPase at 

particular cellular locations. Studies using RhoA biosensors have defined that RhoA 

regulates disassembly of the actin cytoskeleton at both the leading and retracting 

edge of migrating cells (Machacek et al., 2009; Pertz et al., 2006).  

 RhoA activity is essential for normal endothelial cell function. The dynamic 

changes in permeability during normal vessel function require dynamic changes in 

cell shape sufficient to increase or decrease adherens junction binding or to 

accommodate an inflammatory cell migrating between adjacent endothelial cells. 

Furthermore as a master regulator of cell migration, rapid on-off regulation of RhoA 

activity is essential during angiogenesis and vessel remodeling (Xu et al., 2009). 

Overexpression of constitutively active RhoA leads to impaired formation of lumen-

like tubes on matrigel (Xu et al., 2011).  

 The essential nature of RhoA in endothelial and vascular biology is further 

evidenced by the vascular defect phenotypes observed in genetically engineered 

mice with knockout for RhoA or a RhoA regulatory protein. Knockout of the 

RhoGTPase activating protein (RhoGAP) Rasip leads to embryonic lethality at E7 
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due to failed patterning of the vascular tube (Xu et al., 2011). Knockout of Arap3, the 

RhoGAP encoding adapter protein activated by Rap1 leads to embryonic death at 

E11 due to endothelial cell autonomous defect in sprouting angiogenesis 

(Gambardella et al., 2010). The vascular plexus of Arap3-/- mice patterns correctly, 

however endothelial cells remain in enlarged, cavernous clusters with little vascular 

branching indicating a defect in vascular remodeling. Interestingly, this defect is 

most prominently observed in the cerebral vasculature.  

 The identification of CCM2 as an upstream regulator of RhoA abundance and 

possibly activity has raised the possibility of RhoA as a key factor in CCM 

pathogenesis with the potential of ROCK as a druggable therapeutic target for CCM. 

 CCM1-Rap1 

The interaction between CCM1 and Rap1 was initially identified in a yeast-

two-hybrid screen, and has been validated by several independent groups 

(Serebriiskii et al., 1997; Liu et al., 2011; Li et al., 2012).  

While the phenotype of zebrafish treated with Rap1a or Rap1b morpholino 

does not phenocopy that of CCM zebrafish (see above), embryos injected with 

morpholinos for CCM1 and Rap1b at concentrations that alone yield 10% 

penetrance, when combined result in over 90% penetrance of the CCM-

characteristic big heart and circulatory block phenotype and the Rap1b-characteristic 

cranial hemorrhage phenotype (Gore et al., 2008). These studies suggested that 

Rap1b and CCM1 genetically interact to regulate a physiological event relevant to 

CCM. The single event shown to be co-regulated by Rap1b and CCM1 is regulation 

of endothelial permeability (Liu et al., 2011; Glading et al., 2007). Consistent with the 
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increased permeability that characterizes CCM vessels, the permeability of 

monolayers of endothelial cells in which CCM1 expression has been silenced by 

siRNA is increased. Treatment of these cells with the Rap1 activating agent 8-pCPT-

2’OMe-cAMP failed to rescue the increased permeability, demonstrating that CCM1 

functions downstream of Rap1 (Glading et al., 2007). At present endothelial 

permeability is the only physiological significance demonstrated for the CCM1-Rap1 

interaction however given the multiple cellular functions of Rap1 it is likely that the 

interaction has further physiological consequences. The role of the Rap1-CCM1 

interaction in Rap1-regulated RhoA activity is of particular interest as CCM2 has 

been shown to regulate the degradation of RhoA as discussed.  

Rap1 

Rap1 is a small GTPase that functions in adherens junction formation, inside-

out integrin activation and actin cytoskeletal regulation(Kooistra et al., 2006). Rap1 is 

ubiquitously expressed however its function has been most thoroughly studied in 

immune-response cells, endothelial cells and neurons (Wittchen, 2005; Bivona, 

2004; Murphy et al., 2005). Two Rap1 splice varients have been identified, Rap1a 

and Rap1b. While the two exhibit 95% sequence conservation, Rap1a knockout 

mice are viable and fertile with no gross deficiencies, and Rap1b knockout mice 

display up to 75% embryonic lethality due to cranial, liver and gut hemorrhage 

between E8.5 and E13 (Lakshmikanthan et al., 2011). The surviving Rap1b-/- mice 

exhibit delay or complete loss of clotting. These studies have suggested that the two 

isoforms perform distinct molecular functions. The subcellular localization of Green 

Fluorescent Protein (GFP)-tagged Rap1a is primarily along adherens junctions at 
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the plasma membrane, whereas GFP-Rap1b is primarily found in the endoplasmic 

reticulum, Golgi and perinuclear region. However, because antibodies that 

distinguish between the isoforms do not currently exist studies in endothelial cells 

have either not distinguished between the isoforms or have targeted Rap1b due to 

the severe mouse phenotype. Thus, while several molecular functions are known for 

Rap1, the relative contribution of each isoform to these functions is not been well 

defined (Wittchen et al., 2011).  

The best characterized physiological functions of Rap1 are in regulation of 

adherens-junction regulated endothelial permeability, i.e. vascular leak, cytoskeletal 

dynamics, cell polarity and integrin-mediated platelet-endothelium adhesion 

(Kooistra et al., 2006). Adherens junctions are composed of cadherins which are 

tethered to the actin cytoskeleton through a host of factors the best characterized of 

which are α- and β-catenin, p120-catenin, afadin6 (AF6) and zona occludin-1 (ZO-

1). It has been now established that the homodimeric interactions of Vascular 

Endothelial cadherins (VE-cadherin) between adjacent endothelial cells are the 

primary mechanism for maintenance of endothelial monolayer permeability(Brunton 

et al., 2004; Davis et al., 2003; Dejana, 2004). As a small GTPase, Rap1 is activated 

by the exchange of Guanine Diphosphate (GDP) for Guanine Triphosphate (GTP) 

facilitated by Guanine Exchange Factors (GEFs) and inactivated by GTP to GDP 

hydrolysis catalyzed by GAPs. Knockdown of the Rap1 activating RapGEF DOCK4 

results in loss of adherens junction formation, whereas introduction of wildtype 

DOCK4 or a mutationally activated form of Rap1 restores adherens junction 

formation (Yajnik et al., 2003). Pharmacological activation of Rap1 with 8-pCPT-
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2`OMe-cAMP, an activating agent for the RapGEF Epac, decreases endothelial 

monolayer permeability, however this effect is lost in VE-cadherin null cells 

suggesting that Rap1 is a negative regulator of permeability in a manner that 

requires VE-cadherin expression (Kooistra et al., 2005). Overexpression of the Rap1 

negative effector RapGAP inhibits adhesion of cells to Fc-VE-cadherin-coated 

plates, suggesting that Rap1 activity is required for VE-cadherin homodimerization. 

The mechanism through which Rap1 regulates VE-cadherin is not fully understood, 

however it is known that the RapGEF C3G competes with β-catenin for direct 

binding with the tail of Epithelial cadherin (E-cadherin), thus likely destabilizing and 

promoting its degradation (Hogan et al., 2004). Finally a recent study showed that 

Rap1a, but not Rap1b, regulates endothelial permeability as Rap1a but not Rap1b 

co-localized and immunoprecipitated with VE-cadherin, and knockdown of Rap1a 

but not Rap1b led to upregulation of permeability (Wittchen et al., 2011).  

The role of Rap1 in integrin function was initially established in the context of 

lymphocyte, T-cell and platelet adhesion to the endothelium which is mediated 

through integrins. Knockdown of Rap1a and Rap1b expression in these cells 

resulted in decreased αIIbβ3 integrin activation, and decreased adhesion to the 

endothelium (Zhang et al., 2011). Physiologically, loss of Rap1b but not Rap1a in 

mice leads to delay or loss of clotting following injury (Lakshmikanthan et al., 2011). 

A role for Rap1 in integrin activation in non-inflammatory response cells has also 

been established, suggesting a broader importance of Rap1 in integrin activation. 

Overexpression of constitutively activated Rap1 in chinese hamster ovary cells leads 

to the recruitment of the Rap1 effector RIAM, actin, and talin to the cytoplasmic tail 
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of the β-subunit of α4β1 integrins and integrin activation (Lee et al., 2009). While 

Rap1 regulation of integrin signaling in non-inflammatory cells appears to bear no 

physiological consequences as the phenotype in Rap1b knockout mice is 

hemorrhage during development (likely due to impaired adherens junction integrity) 

and delayed clotting in surviving pups, Rap1 is actively investigated in the regulation 

of epithelial to mesenchymal transition during tumor metastasis.  

Rap1 regulates RhoA 

Regulation of cytoskeletal dynamics by Rap1 is mediated through indirect 

regulation of RhoA, Rac1 and cdc42 (Hogan et al., 2004; Arthur et al., 2004). Initial 

studies into the role of Rap1 in cytoskeletal dynamics were prompted by the 

observation that treatment of endothelial cells with thrombin increased permeability 

and actin stress fiber formation (Kooistra et al., 2005). These studies suggested that 

cytoskeletal rearrangement may regulate the degradation and reformation of 

adherens junctions during permeability. Regulation of stress fiber dynamics is a 

function of the small GTPase RhoA (Jaffe and Hall, 2005). The activity of RhoA and 

Rap1 are both upregulated in endothelial cells treated with thrombin, however 

introduction of constitutively active Rap1 prevents thrombin-induced RhoA (Kooistra 

et al., 2005) activation suggesting that Rap1 is a negative upstream regulator of 

RhoA. The mechanism through which Rap1 signals to RhoA is that active Rap1 

recruits the adaptor protein Arap3 which encodes a RhoGAP domain(Gambardella 

et al., 2010; Moon and Zheng, 2003). In addition to regulating endothelial 

permeability, this Rap1-RhoA switch is important not only for regulating endothelial 

permeability but also axon formation in neurons (Jeon et al., 2010a; Yamada et al., 
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2005). Arap3 additionally encodes a GAP domain for the small GTPase Arf6, which 

is an upstream effector of Rac1 (Donaldson and Jackson, 2011). The main 

molecular role for Arf6 is regulation of vesicular trafficking. Arf6 is required for VE-

cadherin localization to the plasma membrane and recycling as knockdown of Arf6 

or introduction of a dominant negative mutant results in the accumulation of VE-

cadherin in vesicles and loss of VE-cadherin localization at the plasma membrane.  

CCM2-HEG1 

 CCM2 has been shown to genetically and biochemically interact with the 

orphan seven transmembrane receptor Heart of Glass 1 (HEG1). The enlarged heart 

phenotype and circulatory block observed in ccm1 and ccm2-morphant zebrafish is 

duplicated in heg1-morphant fish(Mably, 2006). Whole mouse knockout of Heg1 

produces viable offspring, however 50% of the pups die due to pulmanory 

hemorrhage prior to weaning(Kleaveland et al., 2009a). Evidence for the genetic 

interaction of Heg1 and Ccm2 comes from genetically engineered mice. Heg1-/-; 

Ccm2lacz/+, but not Ccm2lacz/+ , mice phenocopy Ccm2-/- animals and die at E9.5 due 

to failure of the endothelial cells to organize the lumens of the dorsal aorta and 

branchial arch arteries despite the cells homing to the proper location (Kleaveland et 

al., 2009b; Zheng et al., 2010a). 

 HEG1 and CCM2 interact biochemically as CCM2 is immunoprecipitated with 

the cytoplasmic tail of HEG1 (Kleaveland et al., 2009a). This interaction is enhanced 

upon co-expression of CCM2 and CCM1, and is lost with a CCM2 L197R mutation, 

which was originally identified in a CCM patient and has been shown to disrupt 
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CCM1-CCM2 binding. The cytoplasmic tail of HEG1 also immunoprecipitated CCM1 

alone, and CCM1 and CCM2 when co-expressed.  

To date neither a ligand nor a specific downstream pathway has been defined 

for the HEG1 receptor. How HEG1 regulates normal endothelial cell function or CCM 

protein function thus remain unknown. 

CCM3-VEGFR2 

 Evidence for the interaction of CCM3 with VEGFR2 comes from studies of the 

CCM3 knockout mouse (Li et al., 2010; (Zheng et al., 2010a). Due to the impaired 

vascular formation phenotype of Ccm3-/- mice the authors performed a small QRT 

PCR screen for well-established vascular regulatory factors. The mRNA levels of 

Vegfr2, Gata-1, and Scl1 were reduced(Zheng et al., 2010b; Louvi et al., 2011). This 

reduction in VEGFR2 expression also led to a decrease in downstream signaling as 

evidenced by decreased levels in phospho-PLC-γ, and phospho-Akt. In cultured 

endothelial cells the levels of CCM3 protein bound to the cytoplasmic tail of VEGFR2 

increased in a time course treatment with VEGF suggesting that CCM3 is recruited 

to VEGRF2. Finally, the authors showed that co-expression of VEGFR2 and three 

unique patient identified mutations of CCM3 led to lower overall levels of VEGFR2 

than when the receptor was coexpresed with wildtype CCM3, suggesting that the 

stability of VEGFR2 is decreased in the absence of wildtype CCM3. Furthermore, 

loss of CCM3 was defined to upregulate VEGFR2 endocytosis and degradation. 

However, the authors reported that they failed to observe an interaction between 

CCM2 and VEGFR2 or decreased VEGFR2 expression or signaling in CCM2 

knockdown cultured endothelial cells. Thus whether dysregulated VEGFR2 signaling 
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is a general defect in CCM due to loss of any of the three CCM genes or specific to 

CCM due to loss of CCM3 alone is currently not known.  

Objectives of this project 

Formation of the CCM complex 

There are over 100 unique mutations in ccm1, 2 and 3 identified in 

patients(Revencu and Vikkula, 2006). The vast majority of these lead to premature 

truncations or internal deletions with just several non-truncating point mutations 

identified to date(Verlaan et al., 2002; Akers et al., 2008; Couteulx et al., 2002).  

The most frequent mutations within CCM2 lead to alternative splicing and 

subsequent deletion of the N-terminal portion of the PTB domain, or to premature 

truncation and deletion of the C-terminus of the PTB domain thus likely resulting in 

disrupted or weakened PTB binding interactions (Verlaan et al., 2004). The single 

non-truncating CCM2 point mutation (L198R) which has been repeatedly identified in 

familial patients occurs within the PTB domain (Denier et al., 2004). This mutation is 

predicted to disrupt PTB domain interactions and has been experimentally shown to 

disrupt binding of CCM2 with CCM1 or CCM3 (Hilder et al., 2007; Zawistowski, 

2005). The big heart phenotype of ccm2-morphant zebrafish is rescued by 

expression of wildtype ccm2 but is not rescued by expression of ccm2L198R 

(Kleaveland et al., 2009b).  Overall these findings point toward the physiological 

requirement for a functional PTB domain in CCM2. As a physiological function of the 

CCM2 PTB domain is in organization of the CCM1/2/3 complex, we hypothesized 

that loss of organization of the CCM complex is a pathological event for CCM.  
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The events that govern the formation of the CCM complex however remain 

unknown. A common mechanism for governing protein complex formation and 

function is regulated subcellular localization. Regulation of subcellular localization 

has been proposed to be a mechanism that governs the formation of the CCM 

complex(Zawistowski, 2005; Faurobert and Albiges-Rizo, 2010). The endogenous 

localization of the three CCM proteins remains unknown due to the lack of 

immunofluorescence grade antibodies. When overexpressed alone in the monkey 

kidney fibroblast line COS-7 CCM1 localizes to the nucleus and CCM2 is found in 

the cytoplasm (Zawistowski, 2005). However, when CCM1 is overexpressed with 

CCM2 the localization of CCM1 shifts to the cytoplasm, where CCM1 and CCM2 co-

localize. Co-expression of CCM1 with the PTB mutated F217A CCM2 fails to 

relocalize CCM1 to the cytoplasm (Zawistowski, 2005), suggesting that the 

cytoplasmic localization of CCM1 is mediated by CCM2. We hypothesized that this 

co-regulation may occur by CCM2 directly recruiting CCM1 from the nucleus 

thus serving as a nuclear export adaptor for CCM1. We proposed to 

experimentally define the signals that govern the nuclear import and export of 

CCM2 and whether CCM2 encodes a functional nuclear import or export 

sequence required for a shuttling activity.  

CCM1, 2 and 3 regulate a common signaling pathway 

A successful therapy for CCM requires the identification of the molecular 

pathway(s) disrupted during CCM pathogenesis. Several clinical observations and 

experimental findings have suggested that CCM1, 2 and 3 regulate a common 

signaling pathway. The clinical symptoms, lesion morphology and pathology are 
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indistinguishable between ccm1, ccm2 and ccm3 patients. There is complete 

phenotypic overlap - enlarged heart, cardiac block and death by 48 hours post 

fertilization, for ccm1, ccm2, and ccm3-morphant zebrafish(Mably, 2006),(Zheng et 

al., 2010a). Mice with whole-tissue or endothelial specific deletion of Ccm1, Ccm2 or 

Ccm3 display mortality at E9.5 due to incomplete lumen formation of the dorsal aorta 

and branchial arch arteries (He et al., 2010; Whitehead, 2004; Whitehead et al., 

2009; Kleaveland et al., 2009b).  

The biochemical evidence for a common signaling pathway comes from the 

triple complex between CCM1, 2 and 3 where complex formation depends on a 

functional PTB domain within CCM2 (Zawistowski, 2005; Hilder et al., 2007). The 

most frequent mutations within CCM2 lead to alternative spicing and subsequent 

deletion of the N-terminal portion of the PTB domain, or to premature truncation and 

deletion of the C-terminus of the PTB domain. The single non-truncating point 

mutation (L198R) identified in a ccm2 patient occurs within the PTB domain and has 

been experimentally shown to disrupt binding of CCM2 with CCM1 or CCM3 (Denier 

et al., 2004; Zawistowski, 2005; Zheng et al., 2010a). The big heart phenotype of 

ccm2-morphant zebrafish is rescued by expression of wildtype ccm2 but is not 

rescued by expression of ccm2L198R, suggesting that loss of formation of the CCM 

complex is pathogenic (Kleaveland et al., 2009b). When co-expressed CCM1 and 

CCM2 co-localize to the cytoplasm whereas co-expression of CCM1 and the PTB 

mutated F217A CCM2 or expression of CCM1 alone result in the nuclear localization 

of CCM1 (Zawistowski, 2005). While the functional significance of the nuclear 
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localization of CCM1 has not been experimentally defined, these findings suggest 

that the subcellular localization of CCM1 is regulated by CCM2.  

Based on the common phenotype with loss of function in any of the three 

genes, disease progression which requires loss of just one CCM gene, and the 

formation of a CCM complex where the interaction of CCM2 with CCM1 and CCM3 

is impaired with patient-identified mutations, we hypothesized that CCM proteins 

regulate a common signaling pathway required for lumen formation, function 

and maintenance of endothelial cells.  
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Figure 1.1: Structure of a cerebrovascular capillary. The endothelial monolayer is 
structurally supported by pericytes and astrocytic feet. Tight and cell-cell junctions 
regulate paracellular permeability. Paracrine signaling from astrocytes, pericytes and 
interneurons regulate the blood brain barrier (adapted from Abbot NJ et al. 2006).  
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Figure 1.2: The known structure function relationships for CCM1, 2 and 3. All three 
proteins lack catalytic domains suggesting an adaptor-like function for the CCM1/2/3 
complex. Underneath each binding domain are listed known binding partners. The 
established or proposed function of binding interactions is listed on the right.  



 

 

 

 

 

 

CHAPTER II 

MATERIALS AND METHODS 
 

Methods employed in Chapter III 

Cell Culture 

MEECs were maintained in Dulbecco’s Modified Eagle medium (DMEM, 

Gibco)/3% fetal bovine serum (FBS, Invitrogen)/1% penicillin/streptomycin (pen-

strep, Invitrogen). HEK 293T and COS-7 cells were maintained in DMEM/10% 

FBS/1% pen-strep.  

shRNA knockdown and addback cell lines 

For knockdown of CCM2 in MEECs two different shRNA sequences (labeled 

shRNA#3 and shRNA#4) were used. Clone pLKO.1 shRNA moCCM2 TRCN# 

RMM3981-99230368 (Open Biosystems) was labeled shRNA #3 and clone TRCN# 

RMM3981-99230200 was labeled shRNA#4. To prepare shRNA lentivirus an 80% 

confluent 10cm plate of HEK293T cells were transfected with lentiviral cDNA and the 

packaging vectors pMDG.2 and pax2 in a ratio of 2:1:2 using Lipofectamine Reagent 

(Invitrogen). The virus-loaded media from the cells was collected 24 and 48 hrs post-

transfection and filtered through a 0.48um filter. Virus media was mixed with 

1.5ug/ml Sequabrene (Sigma) and placed on top of the endothelial cells. Forty-eight 
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hours later the media on the endothelial cells was replaced with standard cell media 

supplemented with 4ug/ml Puromycin (Promega) to select for cells infected with the 

puromycin-encoding pLKO shRNA vector. Knockdown was assessed using QRT-

PCR. 

 For addback of wildtype and nuclear export deficient CCM2, the retroviral 

vector pLNCx2 was used. To prevent knockdown of wildtype CCM2 once added 

back to MEECs with shRNA from CCM2, the sequence for CCM2 was mutated at 

the six independent residues recognized by shRNA#3. The mutations altered the 

codon but not amino acid sequence of CCM2. The CCM2 sequence recognized by 

shRNA #3 is 430WDRMISDISSDIEALGCSMDQDSA453. For addback of wildtype 

CCM2, the codon sequence for the following residues was changed as follows: 

Iso434 ATT to ATA, Iso437 ATC to ATA, Ser438 AGT to TCA, Iso441 ATT to ATA, 

Leu444 CTA to TTG, and Ser447 AGC to TCA. The nuclear export sequence of 

CCM2 is encoded between Iso434 and M448 and the nuclear export deficient CCM2 

sequence contains Alanine substitutions at Iso434, Iso437, Iso441 and Leu444 

which provide sufficient mismatch with the target sequence of shRNA#3 and the 

nuclear export deficient CCM2 was predicted to be resistant to shRNA #3-targeted 

degradation without further codon substitutions. Codon-substituted Yellow 

fluorescent Protein for energy transfer (YPet)-CCM2 and nuclear export deficient 

YPet-CCM2 were cloned into pLNCx2 using HindIII and NotI. The HindIII site 

between YPet and CCM2 was mutationally ablated prior to cloning into pLNCx2. To 

generate pLNCx2 retrovirus, pLNCx2 DNA was transiently transfected in HEK 293 

Phoenix cells which already encode the packaging vectors for retroviral infection of 
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mouse cells. Virus was collected as described above for lentiviral virus production. 

pLNCx2 positive cells were selected with FACS sorting for the YPet fluorescent 

marker. 

Plasmids 

Full-length CCM1, 2 and 3 were fused N-terminally with YPet or Cyan Protein 

for energy transfer (CyPet) by cloning into the mammalian expression vectors 

pYPet-C1 and pCyPet-C1 (Clontech). Rev1.4-YFP was obtained courtesy of Dr. 

Beric Henderson, Westmead Millenium Institute, Switzerland.  

Cell transfection 

MEECs were transfected with Amaxa Nucleofector electroporation using 

1x10^6 cells and 1ug DNA in 100ul suspension in the ‘MEF electroporation solution’ 

from Amaxa and electroporation program M37. Cells were immediately plated in full 

serum media at the needed concentration.  

Leptomycin B nuclear export assay and cell fixation 

Glass coverslips were coated with 0.0005% Fibronectin/PBS (Sigma) for 1hr 

at 37C in a 6-well dish. 50,000 cells were seeded in each well and allowed to adhere 

overnight. Cells were treated with 2ug/ml of Leptomycin B for 1-3hr prior to imaging 

as indicated. The media was aspirated and without washing the cells were fixed in 

3% paraformaldehyde/PBS for 20min. The cells were washed three times for 5min 

with PBS with gentle rocking. Cells were mounted in 90%glycerol/10% 1M Tris pH 

8.5 and imaged on a Zeiss Axiovert 200M microscope. 
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Rev1.4 nuclear export assay 

One microgram of Rev1.4-eYFP DNA was transfected in 50,000 COS-7 cells 

using Lipofectamine 2000 (Invitrogen) using the recommended protocol from the 

manufacturer.  Glass coverslips were coated for 1hr at 37˚C with 1:200 

fibronectin/Phosphate Buffered Saline (PBS; Invitrogent) and washed twice with 

PBS. The transfected cells were seeded onto the coverslips and incubated 

overnight. Cells were treated with 5µg/ml Actinomycin D (Invitrogen) for 3hrs at 37˚C 

prior to fixation as described above.  

Beta-galactosidase nuclear localization assay 

The vectors pHM830 Yellow Fluorescent Protein (YFP)-beta-galactosidase 

and pHM840 YFP-NLS-beta-galactosidase were obtained from Addgene. Full length 

CCM2 or CCM2 1-230 and 231-453 were cloned using standard cloning techniques 

between the NheI and SacII restriction sites. For imaging experiments 0.25 x 10^6 

COS7 cells were transiently transfected with 250ng DNA using Lipofectamine 2000 

(Invitrogen) and plated on fibronectin coated coverslips. Cells were fixed and imaged 

18-24 hours after plating.  

Statistical analysis 

 All statistical analysis was performed using Student’s t-test in Excel.  

Methods employed in Chapter IV 

Cell Culture 

MEECs were maintained in Dulbecco’s Modified Eagle medium (DMEM, 

Gibco)/3% fetal bovine serum (FBS, Invitrogen)/1% penicillin/streptomycin (pen-
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strep, Invitrogen). HEK 293T and COS-7 cells were maintained in DMEM/10% 

FBS/1% pen-strep.  

Generation of knockdown cell lines 

Knockdown of CCM2 in MEECs was achieved with pLKO.1 shRNA moCCM2 

TRCN# RMM3981-99230368 (Open Biosystems). To prepare shRNA lentivirus an 

80% confluent 10cm plate of HEK293T cells were transfected with lentiviral cDNA 

and the packaging vectors pMDG.2 and pax2 in a ratio of 2:1:2 using Lipofectamine 

Reagent (Invitrogen). The virus-loaded media from the cells was collected 24 and 48 

hrs post-transfection and filtered through a 0.48um filter. Virus media was mixed with 

1.5ug/ml Sequabrene (Sigma) and placed on top of the endothelial cells. Forty-eight 

hours later the media on the endothelial cells was replaced with standard cell media 

supplemented with 4ug/ml Puromycin (Promega) to select for cells infected with the 

puromycin-encoding pLKO shRNA vector. Knockdown was assessed using QRT-

PCR. 

QRT PCR 

Cells were cultured to 70% to 80% confluence in 10cm plates. Total RNA was 

extracted with RNEasy Plus Kit (Qiagen). Three micrograms of total RNA were 

converted to cDNA using SMARTer cDNA synthesis kit (Clontech). Standard Real 

Time PCR reactions were prepared using the manufacturer’s recommended 

TaqMan probes and 2x Universal Master Mix (Applied Biosystems).  

RhoA Biosensor 

Viral particles of the single chain eYFP-eCFP RhoA biosensor encoded in the 

adenoviral vector pAd/CMV/V5-GW/lacZ were a kind gift from Dr. Klaus Hahn (UNC-
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CH). To expand the viral particles the ViraPower Adenoviral Expression System 

(Invitrogen) was used. Fifty thousand MEECs were plated on 1:200 fibronectin 

coated coverslips. The following day, cells were infected with 30ul of adenovirus. 

Cells were imaged 18-24 hours later and images were processed exactly as 

described(Pertz et al., 2006).  

Tube formation assay 

A 24-well plate was coated on ice with 300ul of growth-factor reduced 

matrigel basement membrane (BD Biosciences). The matrigel was allowed to 

polymerize at 37C for 30min. Each well was seeded with 75,000 cells and the assay 

was allowed to continue for 18-22hrs at 37C/7% CO2. For drug treatments 10uM 

Y27632 (Cell Signaling) were added at the time the cells were plated on Matrigel. 

Cells were fixed with 3% paraformaldehyde/PBS for 20min, washed in PBS, 

permeabilized in 0.1% Triton X-100/PBS for 1hr, washed with PBS two times and 

incubated overnight with 1:200 Rhodamine Phalloidin solution at 4C. Cells were 

washed one time with PBS and imaged with BD Pathway confocal microscope (BD 

Biosciences). To accommodate for variation in matrigel thickness images were 

obtained as a multi-layer stack. Images were analyzed with ImageJ software by 

creating a maximum intensity projection image from the Z-stack command. 

Western blotting 

Cells were rinsed twice in ice-cold PBS and lysed on ice in 125mM Tris-HCl, 

pH8, 375mM NaCl, 25mM MgCl2, 2.5mM EDTA, 2.5% Triton X-100 supplemented 

with NaF, sodium orthovanadate, aprotinin and PMSF (all from Sigma). Protein 

concentration was quantitated with a Bradford assay. For total RhoA blots were 
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probed with mouse anti-RhoA (26C4, 1/1000) from Santa Cruz Biotechnologies, for 

phosphomyosin light chain blots were probed with rabbit anti-phosphoMLC2 (3671, 

1/1000) from Cell Signaling and for phosphor-coffilin (3313, 1/3000), Cell Signaling.  

3D force microscopy (3DFM)Magnetic Twisting Cytometry 

3DFM assays were performed as previously described(Guilluy et al., 2011). 

A 10x10mm cloning cylinder (Sigma) was attached to a glass coverslips using 

silicone grease. The area within the cloning cylinder was coated in fibronectin 

(1/100, Sigma). 10x10^5 cells were plated in each cylinder for 80-90% confluency 

18-24hrs prior to assaying. 2.8mm tosyl-activated magnetic dynabeads (Invitrogen) 

were incubated with Tris-free human fibronectin (Invitrogen) for 24hrs at room 

temperature. Beads were rinsed three times in PBS, sonicated and incubated on 

cells for 45min. Cell-bound beads were subjected to perpendicular tensile pullforces 

generated using the UNC 3D Force Microscope as previously described(Tim O'Brien 

et al., 2008). The poletip was placed 15um above the surface of the glass coverslips 

with cells. Pullforces were generated at 1V for 5sec in three consecutive pulls with 

10sec recovery time at 0V between pulls.  Movies of the bead displacement were 

recorded using a Pulnix high speed video camera (JAI, Ca). The trajectory of the 

bead movement during each pull was tracked with Video Spot Tracker (Center for 

Computer Integrated Systems for Microscopy and manipulation, 

www.cismm.cs.unc.edu).  Spring constants were calculated by fitting the bead 

displacement trajectory and applied force during each pull to Jeffrey’s model of 

viscoelastic fluids.  
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 The force applied at each pull was calculated based on standard curve of the 

distance traveled by a bead in a viscoelastic fluid of known density when force is 

applied by a poletip at 15um above the glass coverslip surface.  

Statistical analysis 

 All statistical analysis was performed using Student’s t-test in Excel.  

 

Methods employed in Chapter V 

Cell Culture 

HUVECs (ATCC) were cultured in EBM-2 media (Lonza). MEECs were 

maintained in Dulbecco’s Modified Eagle medium (DMEM, Gibco)/3% fetal bovine 

serum (FBS, Invitrogen)/1% penicillin/streptomycin (pen-strep, Invitrogen). HEK 

293T cells were maintained in DMEM/10% FBS/1% pen-strep.  

For knockdown in HUVECs shRNA clones from Open Biosystems were used. 

To prepare shRNA lentivirus an 80% confluent 10cm plate of HEK293T cells were 

transfected with lentiviral cDNA and the packaging vectors pMDG.2 and pax2 in a 

ratio of 2:1:2 using Lipofectamine Reagent (Invitrogen). The virus-loaded media from 

the cells was collected 24 and 48 hrs post-transfection and filtered through a 0.48um 

filter. Virus media was mixed with 1.5ug/ml Sequabrene (Sigma) and placed on top 

of the endothelial cells. Forty-eight hours later the media on the endothelial cells was 

replaced with standard cell media supplemented with 4ug/ml Puromycin (Promega) 

to select for cells infected with the puromycin-encoding pLKO shRNA vector. 

Knockdown HUVECs were cultured for minimum of 72hrs post initial exposure to 

puromycin prior to assaying. Knockdown was assessed using QRT-PCR.  
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QRT PCR 

Cells were cultured to 70% to 80% confluence in 10cm plates. Total RNA was 

extracted with RNEasy Plus Kit (Qiagen). Three micrograms of total RNA were 

converted to cDNA using SMARTer cDNA synthesis kit (Clontech). Standard Real 

Time PCR reactions were prepared using the manufacturer’s recommended 

TaqMan probes (CCM1 HS00184988_m1, CCM2 HS00230191_m1, CCM3 

HS00200578_m1, Arap3 Hs01078405_m1) and 2x Universal Master Mix (Applied 

Biosystems).  

RhoA and Rap1 pulldowns 

For all pulldowns cells were grown to 70-80% confluency and lysed as for 

Western blotting. Where indicated cells were treated with 5uM Forskolin/DMSO 

(Calbiochem) for 3hrs or 18-22hrs. Pulldowns were performed as described 

previously (Wittchen, 2008) with modifications as described below. 

Pulldowns for active RhoA were performed with mouse anti-GTP-RhoA from 

New East Biosciences. For each sample, 1ul of the antibody was coupled to 60ul of 

50/50 bead slurry of Sepharose-G beads (GE Healthcare). Pulldowns for active 

Rap1 were performed using the purified and Glutathione S-transferase (GST)-

tagged Rap1-binding domain RalGDS coupled to Glutathione Sepharose 4G beads 

(GE Healthcare). RalGDS-GST transformed bacteria were a kind gift from Dr. Keith 

Burridge (UNC-CH). RalGDS beads were prepared as described(Wittchen, 2008). 

Following incubation with anti-GTP-RhoA-coupled beads, cell lysates were 

incubated with RalGDS-coupled beads. To demonstrate that pulldowns were 

performed from equal amount of total protein across all samples 50ug of total protein 
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was removed from each sample before the sample was loaded onto the anti-GTP-

RhoA-coupled beads. The removed aliquots were separated on western blot and 

blotted for total RhoA or Rap1 and total ERK1/2.  

Tube formation assay 

A 24-well plate was coated on ice with 300ul of growth-factor reduced 

matrigel basement membrane (BD Biosciences). The matrigel was allowed to 

polymerize at 37C for 30min. Each well was seeded with 75,000 cells and the assay 

was allowed to continue for 18-22hrs at 37C/7% CO2. For drug treatments 5uM 

Forskolin/DMSO (Calbiochem), 200uM 8-(4-chlorophenylthio)-cAMP/MeOH (C010, 

Biolog) or 200uM N6-Benzoyl-cAMP/DMEM (B009, Biolog) were added at the time 

the cells were plated on Matrigel. Cells were fixed with 3% paraformaldehyde/PBS 

for 20min, washed in PBS, permeabilized in 0.1% Triton X-100/PBS for 1hr, washed 

with PBS two times and incubated overnight with 1:200 Rhodamine Phalloidin 

solution at 4C. Cells were washed one time with PBS and imaged with BD Pathway 

confocal microscope (BD Biosciences). To accommodate for variation in matrigel 

thickness images were obtained as a multi-layer stack. Images were analyzed with 

ImageJ software by creating a maximum intensity projection image from the Z-stack 

command. 

Western blotting 

Cells were rinsed twice in ice-cold PBS and lysed on ice in 125mM Tris-HCl, 

pH8, 375mM NaCl, 25mM MgCl2, 2.5mM EDTA, 2.5% Triton X-100 supplemented 

with NaF, sodium orthovanadate, aprotinin and PMSF (all from Sigma). Protein 

concentration was quantitated with a Bradford assay. For total or active RhoA blots 
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were probed with mouse anti-RhoA (26C4, 1/500) from Santa Cruz Biotechnologies. 

For total or active Rap1 blots used was mouse anti-Rap1 from BD Biosciences 

(1/1000). Rabbit anti-ERK 1/2 (C-14, 1/10000) was from Santa Cruz 

Biotechnologies.  

Statistical analysis 

 All statistical analysis was performed using Student’s t-test in Excel. 

 



 

 

 

 

 

 

CHAPTER III 

THE ROLE OF THE SUBCELLULAR LOCALIZATION OF CCM2 IN REGULATION 
OF THE NUCLEOCYTOPLASMIC DISTRIBUTION OF CCM1 AND ENDOTHELIAL 

CELL FUNCTION 
 

Introduction 

 Cerebral Cavernous Malformations is caused by loss of function mutations in 

ccm1, ccm2, and ccm3 in endothelial cells. CCM1, 2 and 3 form a ternary complex 

(CCM complex) dependent on a functional PTB within CCM2. The ccm2 point 

mutation L198 identified from patients occurs within the PTB domain and disrupts 

formation of the CCM complex (Zawistowski, 2005; Zheng et al., 2010a; Kleaveland 

et al., 2009b). In addition to mediating the formation of the CCM complex, the CCM2 

PTB domain regulates the localization of CCM1. YFP-CCM1 localizes to the nucleus 

when overexpressed alone in the monkey kidney fibroblast cells Cos7. Co-

expression with wildtype but not a PTB mutated CCM2 redistributes CCM1 to the 

cytoplasm, suggesting that the nucleocytoplasmic distribution of CCM1 is regulated 

by binding with CCM2 (Zawistowski, 2005). The particular mechanism that governs 

this redistribution has not been defined. Change in subcellular localization is a 

common mechanism for the regulation of protein activity. Thus defining the 

mechanism through which CCM2 regulates the nucleocytoplasmic distribution of 
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CCM1 can provide evidence for the yet undefined mechanism for the regulation of 

CCM protein activity. We hypothesized that by exchanging between the cytoplasm 

and nucleus, CCM2 exports CCM1 from the nucleus. 

 Exchange of molecules between the cytoplasm and nucleus occurs across 

the nuclear pore complex embedded within the nuclear envelope. Proteins smaller 

than 25kD utilize passive diffusion, whereas proteins larger than 25kD utilize 

facilitated diffusion. Proteins targeted for the nucleus encode a nuclear localization 

sequence (NLS) which is a 5-10 residue stretch of consecutive positively charged 

amino acids, Argenine (R), Histidine (H), Lysine (K). The sequence is recognized by 

the nuclear pore machinery and facilitates import into the nucleus (Mekhail et al., 

2007; Leung, 2003). Nuclear export is facilitated by recognition of a nuclear export 

sequence (NES) which has the canonical sequence of LeuX1-3 LeuX2-3 LeuXLeu, 

where X can be any amino acid and the Leucine can be substituted with other 

hydrophobic residues such as Isoleucine and Valine (Henderson and Percipalle, 

1997). The particular nuclear localization or nuclear export sequence can directly 

regulate the relative distribution of a protein with both a NLS and a NES (Henderson, 

2000; Li, 2006; Bhattacharya, 2003). A greater the number of positively charged 

residues within a NLS or hydrophobic residues within a NES results in a ‘stronger’ 

nuclear import or nuclear export signal (Henderson and Percipalle, 1997). Thus the 

steady-state localization of a protein with a strong NLS but weak NES can be 

predicted to be in the nucleus, whereas the steady-state localization of a protein with 

a weak NLS and a strong NES would be in the cytoplasm. The nuclear import and 

export of proteins is further regulated by binding partners which may mask the NLS 
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or NES, or themselves encode a NLS or NES, and by posttranslational modifications 

that induce conformational changes to expose or conceal a NLS or NES 

(Henderson, 2000; Thompson, 2005; Casar et al., 2007; Costa et al., 2006; Trotman 

et al., 2007).  

Here, we report that the total CCM2 population within a cell exchanges 

between the cytoplasm and nucleus. We identify a functional NES at the C-terminus 

of CCM2. The majority of identified patient mutations in CCM2 lead to premature 

truncations and the truncated species are thus predicted to lack the NES. We failed 

to define a nuclear localization sequence in the primary structure of the protein. 

When CCM1 was co-expressed with the nuclear export deficient CCM2, CCM1 was 

equally distributed between the cytoplasm and nucleus, suggesting that CCM2 

regulates the localization of CCM1 by both exporting CCM1 from the nucleus and by 

blocking the nuclear import of CCM1 likely by blocking the nuclear localization 

sequence of CCM1. We show that endothelial cells in which endogenous CCM2 

expression has been silenced through shRNA but which express the nuclear export 

deficient CCM2 fail to self-assemble into vascular lumen-like structures in vitro. 

These data suggest that the partial population of CCM1 and nuclear export deficient 

CCM2 that remain in cytoplasm is insufficient to maintain endothelial cell functions or 

fails to function properly due to the absence of a binding partner that the CCM1-

CCM2 complex deliver from the nucleus or due to lack of a post-translation 

modification that the CCM1-CCM2 complex acquire in the nucleus.  
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Results  

CCM2 translocates between the cytoplasm and nucleus 

 Based on the finding that co-expression with CCM2 leads to the re-

distribution of CCM1 from the nucleus to the cytoplasm in the fibroblast cells COS7, 

we hypothesized that CCM2 is a nucleocytoplasmic shuttle for CCM1. First we 

defined the subcellular localization of CCM1 and CCM2 when expressed alone or 

together in endothelial cells. When overexpressed alone YPet-CCM1 or YPet-CCM2 

in wildtype MEECs, CCM1 localizes strongly to the nucleus and CCM2 localizes 

almost exclusively to the cytoplasm. When the two proteins are co-expressed CCM1 

co-localizes strongly with CCM2 in the cytoplasm (Figure 3.1).  

To define whether CCM2 exchanges between the cytoplasm and nucleus of 

endothelial cells YPet-CCM2 transfected MEECs were treated with the small 

molecule Leptomycin B which inhibits nuclear export by blocking the target 

recognition site of the CRM1 protein from the nuclear export machinery(Henderson, 

2000; Henderson and Percipalle, 1997). If Ypet-CCM2 translocates between the 

cytoplasm and nucleus, then treatment with Leptomycin B is expected to result in the 

accumulation of YPet-CCM2 in the nucleus. In a timecourse treatment with 

Leptomycin B the nuclear population of YPet-CCM2 steadily increases, with the 

majority of YPet-CCM2 becoming trapped inside the nucleus by 3hrs after drug 

treatment (Figure 3.2). These findings indicate that CCM2 continuously translocates 

between the cytoplasm and nucleus. While localization studies are best performed 

on the endogenous protein population as overexpression can disrupt the 

stoichiometry of the endogenous rate of exchange between the cytoplasmic and 
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nuclear populations, the lack of an immunofluorescence grade antibody for 

endogenous CCM2 precludes such studies.  

CCM2 encodes a functional nuclear export sequence  

In order to define the role of CCM2 in the nucleocytoplasmic localization of 

CCM1, we first needed to define a method to disrupt the nucleocytoplasmic 

translocation of CCM2. Drugs such as Leptomycin B that inhibit the nuclear export 

machinery would produce insufficiently specific results as the drug will inhibit the 

nuclear export of CCM2 and all other proteins that exchange between the nucleus 

and cytoplasm. The primary sequence of CCM2 contains thirteen putative NESs 

(Figure 3.3). To define which of these are functional we utilized a nuclear export 

assay in which the Human Immunodeficiency Viral envelope protein Rev is fused 

with a putative NES and YFP (Henderson, 2000; Henderson and Percipalle, 1997). 

The assay has been successfully used by several independent groups (Rodriguez et 

al., 2004; Bhattacharya, 2003; Li, 2006). The wildtype Rev protein encodes both a 

NLS and a NES and consistent with published reports(Henderson and Percipalle, 

1997) appears in the cytoplasm and nucleoli when transfected in cells (Figure 3.4Ai 

and ii). The nucleoli accumulation of Rev is due to its binding to newly translated 

ribosomal mRNA. The RNA polymerase inhibitor Actinomycin D depletes the 

ribosomal mRNA pool, and the nuclear binding partners of Rev(Henderson, 

2000),(Henderson and Percipalle, 1997). When cells transfected with Rev-YFP are 

treated with Actinomycin D, Rev-YFP that enters the nucleus fails to becomes 

sequestered by binding with ribosomal mRNA, the nucleoli localization of Rev-YFP 

is lost and Rev-YFP appears cytoplasmic (Figure 3.4A iii and iv). To validate that 
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Actinomycin D only prevents the retention of Rev-YFP in the nucleus and does not 

inhibit the nuclear import of Rev-YFP and to validate the presence of a functional 

nuclear export sequence in Rev-YFP, cells transfected with Rev-YFP were treated 

with Leptomycin B (Figure 3.4B). Under these conditions, Rev-YFP accumulates in 

the nucleus consistent with the presence of a functional NLS and nuclear export 

dependent on a NES recognized by the nuclear export complex. Importantly, Rev-

YFP does not localize in the nucleoli indicating that the nuclear population is a result 

of the inhibited nuclear export of Rev-YFP rather than its retention in nucleoli.  

 A mutated species of Rev, referred to as Rev1.4, contains point mutations 

within the NES to disrupt its nuclear export capacity. Rev1.4-YFP alone localizes 

exclusively in the nucleoli (Figure 3.4Ci and ii). Fusion of Rev1.4-YFP with a 

previously defined functional NES such as that from the Protein Kinase Inhibitor 

protein (PKI; NSNELALKLAGLDINKTE) leads to the export of the chimera, named 

Rev1.4-YFP-PKI (NES), from the nucleus to the cytoplasm (Figure 3.4D). It is well 

established that nuclear localization and nuclear export sequences vary in ‘strength,’ 

i.e. the extent to which they can redirect subcellular localization (Henderson, 2000; 

Henderson and Percipalle, 1997). This strength is imparted by the number of basic 

or hydrophobic residues within the NLS or NES respectively. The primary sequence 

alone is sufficient to predict the relative strength of two nuclear localization or two 

nuclear export sequences, however the primary sequence alone is not sufficient to 

predict the relative strength between a nuclear localization and nuclear export 

sequence. The relative strength of a nuclear localization and export sequences 

within a protein is defined by the subcellular localization of the protein at steady 
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state(Henderson, 2000; Henderson and Percipalle, 1997). As exemplified by the 

strongly cytoplasmic localization of wildtype Rev or Rev1.4-YFP-PKI (NES), a 

protein can appear cytoplasmic despite the presence of a functional 

NLS(Henderson, 2000; Henderson and Percipalle, 1997). To reduce the 

accumulation of false positive fluorescent signal in the cytoplasm due to newly 

translated protein, cells were treated with the translation inhibitor cyclohexamide. 

The molecular role of Rev is to export newly transcribed ribosomal mRNA from the 

nucleus to the cytoplasm (Henderson and Percipalle, 1997). The relative abundance 

of Rev in the nucleus or cytoplasm is dynamically regulated by the overall 

abundance of ribosomal mRNA. Consistent with this function, wildtype Rev appears 

both in the cytoplasm and nucleoli (Figure 3.4Ai and ii). Using Rev1.4-YFP as an 

assay for the nuclear export capacity of putative sequences can produce false 

negative outcomes if the putative nuclear export sequence tested is ‘weaker’ relative 

to the NLS in Rev1.4 and the Rev1.4-YFP-NES chimera appears in the nucleoli 

similarly to the control Rev1.4-YFP(Henderson, 2000; Henderson and Percipalle, 

1997). Addition of Actinomycin D reduces the nucleoli localization of Rev-YFP 

(Figure 3.4A iii and iv) as the native NES exports the protein from the nucleus. In the 

absence of a functional NES, Rev1.4-YFP remains in the nucleoli (Figure 3.4Ci and 

ii). Actinomycin D treatment was used in all subsequent assays for putative nuclear 

export sequences as indicated.  

To define whether CCM2 encodes a functional NES, full length CCM2 (1-453) 

was fused with Rev1.4-YFP and the chimera was transfected in COS7 cells. Rev1.4-

YFP-CCM2 (1-453) localizes in the nucleoli and cytoplasm similarly to wildtype Rev-
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YFP and Rev1.4-YFP-PKI (NES) indicating that CCM2 encodes a functional NES 

(Figure 3.5Ai). Furthermore, the nucleoli population of Rev1.4-YFP-CCM2 (1-453) is 

depleted upon the addition of Actinomycin D (Figure 3.5Aii).  

To narrow down the portion of CCM2 that encodes the NES and to define 

whether CCM2 encodes a single or multiple functional nuclear export sequences, 

the N and C terminus of CCM2 were separately tested for nuclear export capacity. 

The N terminus was defined as residues 1-230 and the C terminus was defined as 

residues 231-453. The N terminus failed to relocalize Rev1.4-YFP to the cytoplasm 

even in the presence of Actinomycin D (Figure 3.5B), indicating that the N terminus 

does not encode a nuclear export sequence. The chimera encoding the C terminus 

relocalizes to the cytoplasm when cells are treated with Actinomycin D (Figure 

3.5C), suggesting that the NES of CCM2 is encoded between residues 231-453.  

The C terminus was further truncated and each serial truncation was fused with 

Rev1.4-YFP and tested for nuclear export capacity (Figure 3.6). The sequence 

428DEWDRMISDISSDIEALGCSMDQDSA453 was found to be sufficient to export 

the Rev1.4-YFP chimera to the cytoplasm (Figure 3.6). The consensus sequence for 

a nuclear export sequence is Lx1-3Lx2-3LxL, where the leucine can be substituted by 

a valine or isoleucine(Mekhail et al., 2007). Within the sequence D428 to A453, the 

sequence 433MISDISSDIEAL444 most closely matches the consensus sequence 

for a NES and a peptide with this sequence was fused with Rev1.4-YFP. This 

sequence was sufficient to cause the cytoplasmic localization of Rev1.4-YFP in the 

presence of Actinomycin D (Figure 3.6) demonstrating that it has nuclear export 

capacity. The nuclear export sequence is within the last 20 residues of the C 
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terminus of CCM2 and the majority of CCM2 mutations lead to premature truncation 

of the protein, which would lead to the loss of the nuclear export sequence.  

To define whether 433MISDISSDIEAL444 is a functional nuclear export 

sequence in CCM2, Iso434, Iso437, Iso441 and Leu444 in full length YPet-CCM2 

were simultaneously mutated to alanine (YFP-CCM2-NESm). The construct was 

transiently expressed in MEECs and its subcellular localization was examined by 

fluorescent microscopy. YPet-CCM2-NESm accumulated in the nucleus similarly to 

the extent of YPet-CCM2 accumulation observed when cells are treated with the 

nuclear export inhibitor Leptomycin B (Figure 3.7A). Furthermore, point mutations of 

as few as two of the isoleucine residues are sufficient to disrupt the nuclear export of 

CCM2 (Figure 3.7B). This suggests that if loss of the nuclear export function of 

CCM2 is important for CCM pathogenesis, a nuclear export defect occurs with 

mutation of just two of the four residues required for export.  

CCM2 mediates the nuclear export of CCM1 and blocks its nuclear import  

To define the role of the dynamic nucleocytoplasmic translocation of CCM2 in 

the assembly of the CCM complex, wildtype CCM2 (CCM2wt) or CCM2 with 

mutationally inactivated nuclear export sequence (CCM2-NESm) was conjugated to 

the blue fluorescent protein CyPet and transiently co-expressed with YPet-CCM1 in 

MEECs. When expressed alone CCM1 localizes almost completely in the nucleus 

(Figure 3.8). While co-expression of wildtype CCM2 with CCM1 leads to the 

redistribution of CCM1 from the nucleus to the cytoplasm, co-expression with CCM2-

NESm results in an almost equal distribution of CCM1 between the nucleus and 

cytoplasm (Figure 3.8). These results suggest that the nuclear export of CCM1 is 
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regulated by the nuclear export sequence of CCM2. While a molecular function for 

the CCM1-CCM2 interaction in the cytoplasm and nucleus is not currently known, 

the patient mutation L198R in CCM2 disrupts the formation of the CCM1-CCM2 

complex (Zawistowski, 2005; Liu et al., 2011), indicating that the interaction is 

required for endothelial cell function. The data presented here are consistent with a 

molecular role of CCM2 in the regulation of the subcellular localization of CCM1 and 

regulation of the assembly of the CCM1-CCM2 complex at the differential subcellular 

localizations.  

To define whether the CCM1 population that remains in the cytoplasm is 

retained by the cytosolic fraction of CCM2-NESm, or due to a CCM2-independent 

binding partner or posttranslational modification, the subcellular localization of CCM1 

was defined when CCM2 was genetically targeted to the nucleus. Two canonical 

nuclear localization sequences were fused with CyPet-CCM2-NESm (CyPet-CCM2-

NESm-NLS-NLS) and the protein was transiently co-expressed with YPet-CCM1 in 

Cos7 cells. Both CCM1 and CCM2-NESm-NLS-NLS appear entirely in the nucleus 

(Figure 3.8C), suggesting that the cytosolic fraction of CCM1 observed when the 

nuclear export of CCM2 is disrupted is due to the CCM2-NESm remaining in the 

cytoplasm. Previous findings using mass spectrometry and immunoprecipitation 

(Hilder et al., 2007) have shown that CCM1 and CCM2 form a complex, however 

these studies could not provide evidence for what proportion of the protein 

population exists in a complex or remains unbound by a CCM partner. Our finding 

that the subcellular localization of CCM1 duplicates that of CCM2 when the 

subcellular localization of CCM2 is genetically manipulated suggests that the 
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subcellular localization of CCM1 is regulated by CCM2. These data also validate the 

existence of the CCM1-CCM2 complex and provide strong evidence that the 

majority of the CCM1 and CCM2 populations exist as part of the CCM complex.  

The nuclear import of CCM2 is not mediated by a nuclear localization sequence 

encoded in the primary sequence  

Our findings defined that CCM2 regulates the subcellular localization of 

CCM1 however the mechanism through which the nuclear import of CCM2 is 

mediated remains unknown. To define whether CCM2 encodes a nuclear 

localization sequence the protein was threaded in the NucPred program (Brameier 

et al., 2007). The program scans the primary sequence for consecutively positively 

charged residues. The program failed to identify a nuclear localization sequence 

within a 37% margin of error (Figure 3.10).  

CCM2 contains three regions with several positively charged residues that 

appear in close proximity in the primary sequence. These are K6, K7, K9, K10 and 

K23, K26, R28, K29, K30, H32, K34, K38, K39 and 396RHRR399 (Figure 3.10). To 

define the role of these residues in the nuclear import of CCM2, the residues 2-40 

were deleted and 396RHRR399 was independently mutationally modified to 

396AHAA399. Each of these two CCM2 variants were independently expressed in 

endothelial cells and the cells were treated with the nuclear import inhibitor 

Leptomycin B. CCM2 lacking residues 2-40 and CCM2 396AHAA399 accumulated 

in the nucleus similarly to wildtype CCM2 (Figure 3.11 and 3.12). These results 

indicate that none of the three Lys, Arg, His-rich regions are functional nuclear 

import sequences for CCM2.  
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As an independent assay for putative nuclear localization sequences we used 

a nuclear localization assay based on the beta-galactosidase enzyme. The assay is 

designed similarly to the Rev1.4 nuclear export assay (Sorg and Stamminger, 1999). 

Proteins smaller than 50kD migrate across the nuclear pore by passive diffusion. 

Proteins larger than 50kD require a nuclear localization sequence to be actively 

imported into the nucleus (Mekhail et al., 2007; Lange et al., 2006' Leung, 2003). 

The molecular weight of CCM2 is ~54kD. When the beta-galactosidase protein, 

which has a molecular weight of 116kD, is fused with YFP (molecular weight of 

25kD) the resultant chimera (labeled YFP-b-gal) localizes exclusively in the 

cytoplasm (Figure 3.13A). When a nuclear localization sequence PKKKRKV from 

the SV-40 large T antigen is inserted between YFP and beta-gal, the chimera 

redistributes strongly to the nucleus (Figure 3.13B) in agreement with previous 

citations of the assay (Sorg and Stamminger, 1999). Insertion of wildtype full length 

CCM2 between YFP and beta-gal results in the complete cytoplasm localization of 

the chimera (Figure 3.13C) similarly to YPet-CCM2 (Figure 3.1). However, when 

fused with the nuclear export deficient CCM2-NESm the YFP-b-gal chimera become 

strongly nuclear (Figure 3.13D), suggesting that CCM2 encodes a NLS or binds a 

partner with a functional NLS. CCM2-NESm was truncated in half as for the Rev1.4 

assay and the halves were fused with YFP-b-gal. Neither the N (defined as residues 

1-230) nor the C terminus of CCM2-NESm (230-453) was sufficient to import the 

YFP-b-gal chimera (Figure 3.14). These results suggest that CCM2 does not encode 

a nuclear localization sequence but that the protein may be imported into the 

nucleus by a binding partner.  
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To experimentally define whether CCM2 is imported into the nucleus by a 

binding partner that binds to the PTB domain, the phosphotyrosine binding domain 

of CCM2 was disrupted by a point mutation of F217A. The mutation has been 

previously validated by mass spectrometry and immunoprecipitation assays to 

severely abrogate the interactions of CCM2 and its known binding partners (Hilder et 

al., 2007). The nuclear import capacity of YPet-CCM2 F217A was defined by a 

transient transfection in endothelial cells followed by treatment with the nuclear 

export inhibitor Leptomycin B. The F217A CCM2 accumulates in the nucleus 

similarly to wildtype CCM2 (Figure 3.15) suggesting the nuclear import of CCM2 is 

not mediated by a binding partner that utilizes the PTB domain to associate with 

CCM2. Using mass spectrometry over ten different CCM2 binding partners have 

been identified whose binding is only partially disrupted by the F217A mutation 

(Hilder et al., 2007).  

Endothelial cell self-assembly into tube-like structures is disrupted by inhibition of the 

nuclear export of CCM2  

 To define the functional significance of the nucleocytoplasmic translocation of 

CCM2 we used an in vitro assay for endothelial cell self-assembly in lumen-like 

tubes on a three-dimensional collagen matrix. The expression of endogenous CCM2 

was silenced in endothelial cells by shRNA and the nuclear export deficient variant 

of CCM2 was stably expressed. The cells were allowed to self-assemble into lumen-

like tubes. Loss of CCM2 impairs the formation of lumen-like tubes, whereas 

addback of wildtype CCM2 rescues tube formation. Addback of CCM2-NESm fails to 



   
 

57

rescue tube formation suggesting that it is the cytoplasmic localization of CCM2 that 

is important for CCM2-regulated tube formation (Figure 3.16).  

Discussion  

 The discovery of a complex between CCM1, 2 and 3 and the identification of a 

patient mutation in CCM2 (L198R) which disrupts its binding with CCM1 and 3 

suggests that the formation of the CCM1-2-3 complex is essential for the function of 

CCM1, 2 and 3. The molecular events which govern the formation of the CCM1-2-3 

complex however remain unknown. Based on previous findings that the 

nucleocytoplasmic distribution of CCM1 is altered upon co-expression with CCM2 

(Zawistowski, 2005), we hypothesized that the nucleocytoplasmic translocation of 

CCM2 regulates the formation of the CCM1-2 complex.  

To this effect we first defined that CCM2 can localize in the nucleus by 

treating CCM2-transfected cells with Leptomycin B, a drug that inhibits the nuclear 

export machinery. The accumulation of CCM2 in the nucleus of drug-treated cells 

demonstrated that CCM2 can localize to the nucleus. Furthermore, the finding 

suggested that the rate at which CCM2 exchanges between the nucleus and 

cytoplasm is rapid and biased toward a cytoplasmic localization as CCM2 is found 

almost entirely in the cytoplasm of quiescent cells.  

The nucleocytoplasmic exchange of proteins is governed by nuclear export 

and nuclear localization sequences. These are a consecutive stretch of hydrophobic 

or basic residues respectively, which are encoded in the primary sequence of the 

translocating protein or that of a binding partner(Lange et al., 2006; Mekhail et al., 

2007; Chuderland et al., 2008). In order to define the role of CCM2 in the 
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nucleocytoplasmic distribution of CCM1, a method to manipulate the 

nucleocytoplasmic distribution of CCM2 was necessary.  

Using a Rev1.4 nuclear export assay we identified a functional nuclear export 

sequence in CCM2 within residues Iso434, Iso437, Iso441 and Leu444. Alanine 

substitutions at these residues in full length CCM2 lead to the strong nuclear 

localization of CCM2, suggesting that the protein becomes ‘trapped’ inside the 

nucleus in the absence of a functional nuclear export sequence. The nuclear export 

sequence of CCM2 occurs in the final 30 amino acids of the C-terminal tail of the 

protein and outside the single-encoded domain within CCM2, a phosphotyrosine 

binding domain. The vast majority of patient mutations lead to premature truncation 

of the protein which would lead to the deletion of the nuclear export sequence 

located at the very C-terminus.  

To define the role of CCM2 in the subcellular distribution of CCM1, nuclear 

export deficient CCM2 was co-expressed with CCM1. Previous observations had 

demonstrated that the subcellular distribution of CCM1 shifts from the nucleus to the 

cytoplasm when co-expressed with wildtype but not F217A CCM2 suggesting that 

CCM2 either inhibits the nuclear import of CCM1 by blocking the nuclear localization 

sequence in CCM1 (Zawistowski, 2005) or serves to export CCM1 from the nucleus. 

Our current findings showed that CCM1 completely overlaps the nuclear localization 

of nuclear export deficient CCM2. Despite the nuclear export mutation of CCM2, a 

small portion of CCM2-NESm remains in the cytoplasm. A portion of CCM1 is also 

observed in the cytoplasm of CCM2-NESm cells. To define whether this cytoplasmic 

population of CCM1 and 2 exists in a complex or is due to newly translated protein, 
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CCM2-NESm was tagged with two copies of the nuclear localization sequence from 

PKI. The nuclear localization sequences are expected to target CCM2 to the nucleus 

regardless of the endogenous factors that regulate the nuclear import of CCM2. 

CCM2-NESm-NLS-NLS localizes exclusively in the nucleus together with CCM1, 

suggesting that the nuclear import of CCM1 is regulated by CCM2 possibly through 

the import of the CCM1-CCM2 complex. These findings suggest that CCM1 is 

imported and exported from the nucleus as a complex with CCM2.  

We used the beta-galactosidase assay to test for a nuclear localization 

sequence within CCM2 (Sorg and Stamminger, 1999). When CCM2 is truncated in 

two, neither half targets the beta-gal chimera to the nucleus suggesting that the 

nuclear import of CCM2 is not governed by a nuclear localization encoded in the 

primary sequence of the protein. We also demonstrate that the nuclear import of 

CCM2 is not mediated by a binding partner dependent on F217 in the 

phosphotyrosine binding domain. However the F217A mutation in CCM2 does not 

fully disrupt the binding of CCM2 with every one of its binding partners, suggesting 

that the nuclear import of CCM2 may be mediated by a binding partner not 

dependent on F217. Alternatively, the nuclear import of CCM2 may be mediated by 

a nuclear localization sequence created by the three dimensional fold of the protein 

rather that a sequence encoded in the primary sequence. The nuclear import of 

proteins is still poorly understood with the alpha and beta importins as the primary 

known proteins to recognize primary sequence basic residues. However multiple 

proteins have been shown to be imported into the nucleus in a manner independent 
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of alpha and beta importin (Lange et al., 2006) suggesting that other nuclear import 

machinery exists.  

Finally, we show that the molecular function of the nucleocytoplasmic 

translocation of CCM2, in addition to regulating the subcellular localization of CCM1 

and thus the CCM1-2 complex, is to regulate the self-assembly of endothelial cells in 

lumen-like tube structures in vitro. Consistent with the disease phenotype, shRNA-

mediated deletion of CCM2 in endothelial cells impair their ability to self-assemble 

into tubes. Addback of the wildtype but not nuclear export deficient CCM2 rescues 

this defect, suggesting that the cytoplasmic localization of CCM2 is required for 

CCM2-regulated tube formation and that the nuclear localization of CCM2 is not 

sufficient to drive tube formation in endothelial cells.  

Overall, our findings report for the first time the exact nuclear export 

sequence in CCM2, show that CCM2 does not encode a canonical basic-residue 

nuclear localization sequence and that the cytoplasmic localization of CCM2 is 

required for CCM2-driven lumen assembly of endothelial cells.  
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Figure 3.1: The subcellular localization of CCM1 is regulated by CCM2 expression. 
MEECs were transiently transfected with YPet-tagged CCM1, 2 or 3. CCM1 
localizes almost exclusively in the nucleus (Ai; YPet-CCM1 is in green, DAPI 
staining in red and DAPI demarcates the nucleus), whereas CCM2 localizes in the 
cytoplasm (Aii.) and CCM3 distributes equally between the cytoplasm and nucleus 
(Aiii). When CCM1 is transiently co-expressed with CCM2, the 
subcellularlocalization of CCM1 shifts from the nucleus to the cytoplasm (B; YPet-
CCM1 in green, CyPet-CCM2 in blue, DAPI in red).  
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Figure 3.2: CCM2 translocates between the cytoplasm and nucleus. MEECs were 
transiently transfected with YPet-CCM2 and treated with the nuclear export 
machinery inhibitor Leptomycin B for 1 or 3hr. In untreated cells YPet-CCM2  
appears strongly in the cytoplasm (Ai). With continuous treatment with Leptomycin 
B, a population of YPet-CCM2 progressively accumulates in the nucleus indicating 
that CCM2 translocates between the cytoplasm and nucleus (Aii and Aiii). YPet-
CCM2 in green, DAPI is red and DAPI demarcates the nucleus. The translocation of 
CCM2 is recapitulated with Flag-CCM2 (Bi and Bii, Flag-CCM2 was 
immunofluorescently stained with Cy3 anti-Flag and appears in red. DAPI is green). 
The subcellular localization of the YPet protein alone in untreated MEECs (Ci) is 
different from that of YPet-CCM2 (Ai) and does not respond to treatment with 
Leptomycin B (Cii) suggesting that the subcellular localization of the YPet-CCM2 
chimera is governed by CCM2 and not YPet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

64

 

 

Figure 3.3: CCM2 encodes thirteen putative nuclear export sequences. All Iso, Leu 
and Val residues are highlighted in yellow. Clusters of residues similar to the 
consensus nuclear export sequence Lx1-3Lx2-3LxL, where L is Leu, Iso or Val and x 
is any residue, are underlined. For reference, the first and last residues of the PTB 
domain (S60 and D230) are shown in blue. The experimentally defined nuclear 
export sequence in CCM2 is shown in bold.  
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Figure 3.4: Validation of the Rev1.4-YFP assay for nuclear export sequences. When 
transiently expressed in Cos7 cells Rev-YFP wildtype localizes in the cytoplasm and 
nucleoli (Ai and ii, arrows). Treatment with Actinomycin D blocks the Rev-YFP 
accumulation in the nucleoli and Rev-YFP appears cytoplasmic (Aiii and iv). 
Treatment with Leptomycin B causes the nuclear accumulation of Rev-YFP due to 
the presence of a functional NLS and NES in Rev (B). Rev1.4-YFP lacks a NES and 
localizes exclusively in the nucleoli (Ci and ii) even in the presence of Actinomycin D 
(Ciii and iv). When the NES from PKI is clones in Rev1.4-YFP, the chimera localizes 
in the cytoplasm (D), demonstrating that addition of a NES to Rev1.4-YFP causes a 
shift in subcellular localization. Rev-YFP is in green, DAPI in red.   
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Figure 3.5: CCM2 residues 230-453 encode a functional NES.Cos7 cells were 
transiently transfected with full length CCM2 or CCM2 1-230 or CCM2 231-453 
fused with Rev1.4-YFP and treated with Actinomycin D as indicated. Full length and 
230-453 CCM2 Rev1.4-YFP localize to the cytoplasm in Actinomycin D treated cells 
(Aii and Cii) suggesting that the C terminal half of CCM2 encodes a functional NES. 
Rev1.4-YFP chimeras are in green, and DAPI in red.  
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Figure 3.6: Residues 428-453 in CCM2 encode a NES. Serial truncations of CCM2 
were fused with Rev1.4-YFP and tested for nuclear export capacity. The region 428-
453 was the minimally required sequence for nuclear export (E). Rev1.4-YFP signal 
is in green and DAPI in red. 
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Figure 3.7: Residues I434, I437, I441 and L444 encode the NES in CCM2. Simultaneous mutagenesis of I434, I437, I441 
and L444 to alanine in full length YFP-CCM2 leads to the nuclear accumulation of YFP-CCM2 to a similar extend as the 
nuclear accumulation of wildtype YFP-CCM2 following treatment with Leptomycin B (A). Mutagenesis of just two of the 
four residues, I437 and L444 is sufficient to abrogate the nuclear export of CCM2 (B). YFP fusion proteins are in green, 
DAPI in red.  
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Figure 3.8: The subcellular localization of CCM1 mimics that of CCM2. CyPet-CCM1 (in blue) and YPet-CCM2 (in green) 
were transiently co-expressed in MEECs. CCM1 appears cytoplasmic when co-expressed with wildtype CCM2 (A), but 
relocalizes partially to the nucleus when co-expressed with CCM2-NESm (B) and becomes fully trapped in the nucleus 
when co-expressed with a CCM2-NESm fused with two consensus NLS (C) to force the nuclear import of the cytoplasmic 
population of CCM2-NESm as observed in B. 
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Figure 3.9: An NLS cannot be predicted based on the primary sequence of 
CCM2. The sequence of CCM2 was threaded in a NLS prediction software, 
where residues color-coded in blue and green are less likely to encode for a NLS 
and residues in red are more likely. No NLS sequences can be predicted in 
CCM2.
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Figure 3.10: Putative NLS residues in CCM2 predicted on consensus sequence. 
The consensus definition for a NLS is a cluster of basic residues. Three clusters 
of basic residues were found in CCM2 and appear in red here.  
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Figure 3.11: Deletion of the first 40 residues in CCM2 fails to abrogate the 
nuclear import of CCM2. Residues 2-40 were deleted in wildtype YFP-CCM2 and 
the construct was transiently expressed in Cos7 cells. Despite the lack of the first 
two clusters of putative NLS residues in YFP- CCM2 2-40, the protein still 
accumulates in the nucleus following treatment with Leptomycin B (B), indicating 
the YFP-CCM2 2-40 translocates from the cytoplasm to the nucleus and a NLS is 
not encoded in residues 2-40. YFP fusion proteins are in green, DAPI in red.
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Figure 3.12: Residues 396RHRR399 do not encode a NLS in CCM2. The 
sequence was modified to AHAA by PCR and YPet-CCM2-396AHAA399 was 
transiently expressed in MEECs. To directly examine the nucleus for 
fluorescence signal, serial sections along the z-axis were generated and 
deconvolved to eliminate background fluorescence. Disruption of the 
396AHAA399 sequence did not inhibit the nuclear import of CCM2 and YPet-
CCM2-396AHAA399 (A) is still observed in the nucleus similarly to wildtype 
YPet-CCM2 (B) following treatment with Leptomycin B. YPet fusion protein in 
green, DAPI in blue.  
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Figure 3.13: Validation of the β-galactosidase assay for putative NLS. YFP-β-gal localizes in the cytoplasm (A) due to the 
larger than 50kD size of YFP-β-gal and the absence of a NLS in β-gal. Fusion of β-gal with a canonical NLS leads to the 
complete localization to the nucleus (B). Fusion of YFP-β-gal with wildtype CCM2 fails to relocalize the chimera to the 
nucleus (C) however fusion of YFP-CCM2-NESm with β-gal leads to the nuclear accumulation of the chimera (D), 
demonstrating that CCM2 translocates to the nucleus, YFP-CCM2-NESm appears cytoplasmic due to the functional NES, 
and that fusion with β-gal does not impair the nucleocytoplasmic translocation of CCM2. DAPI pseudocolored in red. 
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Figure 3.14: Neither residues 1-230 nor 231-453 NESm of CCM2 encode a NLS. CCM2 
truncations 1-230 and 231-453NESm were fused with YFP-β-gal and transiently 
expressed in MEECs. Neither sequence causes the nuclear import of the YFP-CCM2 
truncation- β-gal chimera. YFP fusion proteins are in green and DAPI in red.  
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Figure 3.15: The nuclear import of CCM2 is not mediated by a binding partner. The 
nucleocytoplasmic translocation of YPet-CCM2-F217A mutant expressed in MEECs is 
similar to that of wildtype YPet-CCM2 following treatment with Leptomycin B.  
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Figure 3.16: The cytoplasmic localization and nuclear translocation of CCM2 are 
required for the molecular function of CCM2 in endothelial cell self-assembly in lumen-
like tubes. Wildtype MEECs self-assemble in lumen-like tube structures when plated on 
matrigel (A). Loss of CCM2 expression by two different shRNA sequences disrupts the 
ability of MEECs to form tube like structures (B and C). Addback of wildtype CCM2 in 
the shCCM2 MEECs rescues tube formation (D). However addback of CCM2-NESm or 
CCM2-NESm-NLS fails to rescue the tube formation of shCCM2 cells (E and F).



 

 
 

 

 

 

CHAPTER IV 

RHO KINASE INHIBITION RESCUES THE ENDOTHELIAL CELL CEREBRAL 
CAVERNOUS MALFORMATION PHENOTYPE 

 

Introduction 

It was recently shown that loss of endothelial cell expression of CCM2 resulted in 

activation of the GTPase RhoA (Crose et al., 2009).  Crose et al. 2009 demonstrated 

that CCM2 knockdown in brain microvascular endothelial cells resulted in defective 

RhoA degradation because of the dysregulation of Smurf1, a CCM2 binding partner and 

an E3 ubiquitin ligase that controls RhoA degradation.  RhoA overabundance induced 

by loss of CCM2 was shown to increase cytoskeletal stability, inhibit vessel-like tube 

formation, and increase endothelial cell monolayer permeability.  Herein, we show that 

loss of CCM1, 2 or 3 expression results in a common phenotype associated with RhoA 

overexpression and activation.  We use a single-cell live-cell assay to define the 

cytoskeletal biomechanical phenotype resulting from loss of CCM expression in human 

endothelial cells. We define Rho Kinase (ROCK) as a critical RhoA effector for the 

pharmacological manipulation of the RhoA phenotype in CCM cells. ROCK is activated 

by RhoA and phosphorylates several substrates, including myosin light chain, myosin 

light chain phosphatase, and LIM kinase for the regulation of actin cytoskeletal 
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dynamics(Jaffe and Hall, 2005).  ROCK has also been shown to regulate vascular 

permeability and has been a drug discovery target for regulation of vascular bed 

diseases (Chrissobolis and Sobey, 2006).  Our findings show the increased RhoA 

abundance and activity in CCM cells leads to increased cytoskeletal stiffening which 

leads to aberrant invasion and tube formation. We demonstrate that ROCK inhibition 

rescues extracellular matrix invasion and vessel-like tube formation, two endothelial cell 

functions disrupted by the loss of CCM protein expression. 

Results 

Knockdown of CCM1, 2 or 3 induces RhoA overexpression and persistent RhoA activity  

Stable knockdown of CCM1, 2 or 3 in Human Umbelical Vein Endothelial Cells 

(HUVECs) each resulted in 4.58, 5.11 and 3.78 average fold increases in RhoA 

expression relative to WT cells (p values were respectively 0.0009, 0.013 and 0.0018; 

Figure 4.1A and B).  Knockdown was achieved with targeted shRNA for each ccm1, 

ccm2 and ccm3 mRNA and was on average 76, 93 and 96% respectively for shCCM1, 

2 and 3 relative to wildtype (p values 0.00028, 1.11e-8, 1.82-e7 respectively; Figure 

4.1D and E). The finding that inhibition of CCM1, 2 or 3 protein expression similarly 

caused marked increases in RhoA expression demonstrates for the first time that the 

three CCM proteins function coordinately to regulate RhoA protein levels; loss of any 

one CCM protein causes an increase in RhoA expression. Analysis of the mRNA 

transcript levels for RhoA in shCCM1, 2 and 3 cells revealed no significant increase in 

RhoA message levels (Figure 4.1F). An increase in the abundance but not transcription 

levels of RhoA is consistent with a dysregulation in RhoA degradation caused by loss of 
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CCM1, 2 or 3, although we have not excluded aberrant post-translational regulation of 

RhoA.  

  Previously, we showed that CCM2 knockdown resulted in dysregulated Smurf1-

mediated degradation of RhoA (Crose et al., 2009). The overlapping phenotype of 

increased RhoA abundance for all three CCM knockdown cell lines is consistent with a 

requirement of a functional CCM1/2/3 protein complex for the regulation of RhoA 

degradation. 

To assess whether the increase in total RhoA results in an increase of active 

RhoA, the levels of active, GTP-bound RhoA were assayed in shCCM1, 2 and 3 

HUVECs. The levels of active RhoA in shCCM1, 2 and 3 cells were respectively 3.78, 

2.40 and 4.83 fold higher than in wildtype cells (p values 0.001, 3.95e-6, 0.049 

respectively Figure 4.1A). These data provide direct evidence that loss of not only 

CCM2, but CCM1 or CCM3 results in the increased activation of RhoA, and establishes 

the first identified common pathway for CCM1, 2 and 3.  

To validate that loss of CCM1, 2 or 3 leads to increased RhoA abundance and 

activity, the RhoA protein and activation levels were assayed in a second endothelial 

cell line using an independent assay for RhoA activity. Loss of CCM1, 2 or 3 expression 

by shRNA in mouse embryonic endothelial cells (MEECs) was 70, 96 and 95% 

respectively relative to control cells treated with the pLKO.1 shRNA empty vector 

(Figure 4.2A). Loss of CCM2 protein expression was also validated by western blot with 

a mouse antibody raised against full-length CCM2 (Figure 4.2B). Antibodies for CCM1 

and CCM3 are not currently available through commercial sources.  
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 Similarly to the phenotype observed in human endothelial cells with shRNA for 

CCM1, 2 or 3, loss of CCM protein expression in mouse endothelial cells also resulted 

in the 3.8, 8.6 and 2.1 fold increase in RhoA relative to wildtype cells (p values are 

0.034, 0.0044, 0.017 respectively; Figure 4.2C and 4.2D). To define the RhoA activity in 

shCCM1, 2 and 3 MEECs the spatial distribution of active RhoA was assayed using a 

single-chain RhoA biosensor based on Förster Resonance Energy Transfer (FRET). 

The biosensor has been extensively characterized for measurement of RhoA activity in 

live cells (Pertz et al., 2006). The overexpression of RhoA observed in CCM knockdown 

cells results in a persistent activation of RhoA (Figure 4.2E).  In WT endothelial cells, 

RhoA activity is low and observed primarily at the cell edge as previously described for 

fibroblasts.   With shRNA knockdown of CCM2 or CCM3 there is a significant increase 

in RhoA activity not only at the cell edge but also in the cytoplasm and nucleus.  When a 

population of approximately 50 single cells is imaged and averaged for FRET intensity 

of the RhoA biosensor at the cell edge, cytoplasm or nucleus, the CCM1, 2 and 3 

knockdown cells each have a highly statistically significant increase in RhoA activation 

relative to control cells (Figure 4.2F). Strikingly, RhoA activity is extremely high in CCM1 

knockdown cells relative to control, CCM2 or CCM3 knockdown cells (Figure 4.2E). 

Statistical analysis of a population of individual CCM1 knockdown cells indicates an 

average of 1.62, 2.33, and 1.48-fold increase in FRET intensity relative to WT cells for 

the cytoplasm, nucleus, and cell edge, respectively (Figure 4.2F).  

These results show regulation of RhoA protein expression is consistent in two 

independent endothelial cell lines and is common to the loss of any of the three CCM 

proteins. However, the pronounced RhoA activity in CCM1 knockdown cells compared 
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to CCM2 or CCM3 knockdown indicates the CCM proteins are not simply in a common 

pathway but have specific functions. Whereas CCM2 binds Smurf1 for control of RhoA 

degradation, CCM1 appears to have a functional role as a negative regulator of RhoA 

activity and loss of CCM1 has a pronounced effect on RhoA activity, which is different 

from the regulation of RhoA protein expression. Thus, the CCM proteins organize a 

signaling network, not simply a pathway for control of RhoA function. 

ROCK2 is required for increased phosphorylation of myosin light chain 2 and cofilin in 

CCM 1, 2 or 3 knockdown cells 

ROCK1 and ROCK2 are closely related kinases with overlapping but also distinct 

functions.  Both ROCK1 and ROCK2 bind activated GTP-RhoA.  ROCK1/2 

phosphorylates MLC2 and phosphorylates and activates LIM Kinase, which 

consequently phosphorylates Cofilin. Phospho-MLC2 and phospho-Cofilin are a 

measure of ROCK1/2 activity in cells. MLC2 is required for the control of actin 

cytoskeletal dynamics, induction of stress fiber formation, and cell contraction, whereby 

ROCK1/2 phosphorylation of MLC2 and MLC phosphatase leads to increased 

cytoskeletal stability. Cofilin is an adaptor that binds and sequesters away actin 

monomers to promote actin stress fiber degradation. Phosphorylation is an inhibitory 

modification for Cofilin and thus increased phosphorylation of Cofilin also leads to 

increased cytoskeletal stability.  

We previously showed that stress fiber-associated phospho-MLC2 was 

increased in brain microvascular endothelial cells upon knockdown of CCM2 (Crose et 

al., 2009). Given the increased RhoA activity observed in CCM1, 2 or 3 knockdown 
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endothelial cells (Figures 4.1 and 4.2), we predicted that stress fiber formation and 

phosphorylation of MLC2 and Cofilin would be increased with knockdown of each of the 

CCM proteins.  

The levels of phospho-MLC2 in shCCM1, 2 and 3 human endothelial cells were 

increased 3.1, 2.1 and 1.8 fold relative to pLKO.1 control cells (Figure 4.3A). Phospho-

Cofilin levels in shCCM1, 2 and 3 cells were increased 2.4, 3.4 and 3.1 fold relative to 

pLKO.1 control cells (Figure 4.3B-D). Consistent with an increase in phospho-MLC2 

and phospho-Cofilin, shCCM1, 2 and 3 cells displayed increased formation of stress 

fibers and increased cell size (Figure 4.3C, E,F). However, there is not a linear 

relationship with the RhoA activity measured in Figure 4.1 with knockdown of CCM1, 2 

or 3 and the relative levels of phospho-MLC2 and phospho-Cofilin or stress fiber 

formation. This is consistent with dysregulation of a regulatory network differentially 

controlled by each CCM protein. Nonetheless, control of RhoA expression is a 

convergent regulatory function requiring each CCM protein.   

In endothelial cells ROCK2 is the functionally predominant ROCK form and was 

targeted for shRNA knockdown. Loss of ROCK2 expression reversed the increase in 

phospho-MLC2 observed in each of the CCM protein knockdown MEEC lines, and 

treatment with the small molecule ROCK inhibitor Y-27632 reversed the increased 

phospho-Cofilin in shCCM1 HUVECs (Figure 4.4). These data demonstrate that ROCK2 

stimulates the phosphorylation of MLC2 and Cofilin in endothelial cells. 
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The cytoskeleton of CCM deficient endothelial cells shows increased stiffening in 

response to external mechanical force 

To define the functional consequence of the increased RhoA with loss of CCM a 

biomechanical assay that measures the cytoskeletal response to applied mechanical 

force was used. Magnetic twisting cytometry (MTC) is a well established biophysical 

approach for the profiling of the mechanical phenotype of the cell cytoskeleton(Tim 

O'Brien et al., 2008; Guilluy et al., 2011; Kasza et al., 2009). Several decades of study 

of the biomechanical properties of cells have established that in response to a series of 

external applied force pulses the actinomyosin cytoskeleton remodels and this 

cytoskeletal response is mathematically described as a viscoelastic spring(Hoffman and 

Crocker, 2009; Koenderink et al., 2009; Kasza et al., 2009).  

MTC was used as an independent, single-cell assay to define the cytoskeletal 

dynamics in human endothelial cells with loss of CCM proteins. For MTC, beads were 

coated with fibronectin and allowed to adhere to integrins on the surface of plated 

wildtype or shCCM1 or 2 HUVECs. The cell-bead interaction was imaged by Scanning 

Electron Microscopy which demonstrated that beads are attached directly to the surface 

of the cell and that the bead-cell interaction between wildtype and shCCM1 cells bears 

no gross differences (Figure 4.5A). A series of short magnetic pulses were introduced to 

create a mechanical pullforce on the integrin-bound beads and the displacement of the 

bead in the x and y direction was recorded. The displacement of beads on wildtype 

HUVECs progressively decreased with consecutive pulls due to the progressive 

stiffening spring-like response of the underlying cytoskeleton (Figure 4.5B). CCM1 
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deficient HUVECs also responded by cytoskeletal stiffening with progressive 

applications of magnetic pullforce, however the difference in the distance traversed by 

the bead following the first and consecutive pulls was greater for shCCM1 cells than for 

wildtype cells (Figure 4.5B). The displacement of the bead can be related to the 

stiffness of the underlying cytoskeleton by Jeffrey's modulus. Briefly, the stiffening 

response of the cytoskeleton is modeled as a spring, where the stiffness of the 

cytoskeleton is the product of the predefined magnitude of the pullforce applied to the 

beads divided by the distance traveled by the bead for the duration of the force (Tim 

O'Brien et al., 2008; Guilluy et al., 2011).  

  The difference in the relative stiffness of the cytoskeleton during the first and 

second pull was measured for 38 independent beads over four independent 

experiments in wildtype cells, 37 independent beads for four independently derived 

shCCM1 HUVEC cell lines and 9 independent beads for three independently derived 

shCCM2 HUVEC cell lines. No significant cytoskeletal stiffening occurred between the 

first and second pulls for wildtype cells for which the average fold change in first to 

second pull stiffness was 0.99 (p value 0.85; Figure 4.5C). Stiffening in wildtype cells 

was observed during the third pull (Figure 4.5B). The fold increase in cytoskeletal 

stiffness between the first and second pulls for shCCM1 and shCCM2 cells was 

respectively 1.21 (p value 0.0026) and 1.37 (p value 0.033; Figure 4.5C).  

The molecular mechanisms that are described by the cytoskeletal stiffening 

measured with MTC of fibronectin coated beads on fibroblasts were recently defined 

(Guilluy et al., 2011). In response to a mechanical force on β1integrins, the RhoGEFs 
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LARG and GEF-H1 are activated leading to the activation of RhoA. When RhoA was 

knocked down by siRNA the stiffening response was abrogated and no significant 

difference in stiffness was observed between the first and second pulls of RhoA-

depleted cells (Guilluy et al., 2011). These studies established that the stiffening 

response in cells is mediated by the activation of RhoA, where the amplitude of the 

stiffening response is proportional to the concentration of active RhoA. In line with the 

Guilluy findings, the increased stiffening response in CCM depleted HUVECs suggests 

a greater abundance of total or active RhoA or an increase in the total abundance of the 

LARG and GEF-H1 RhoGEFs leading to the rapid activation of a greater population of 

RhoA molecules. Indeed, as demonstrated by western blot, immunoprecipitation for 

active RhoA and with the RhoA biosensor, the abundance of total and active RhoA is 

increased in CCM deficient cells. The relative mRNA levels of GEF-H1 in wildtype or 

shCCM1 endothelial cells were assessed independently of MTC experiments and were 

found to be equivalent between wildtype and shCCM1 cells (data not shown). MTC 

provides an independent, single-cell validation of the RhoA phenotype with loss of 

CCM. 

 To unequivocally establish whether RhoA activation causes the increased 

cytoskeletal stiffening in CCM depleted cells, the stiffening response was measured in 

shCCM1 cells treated with Y-27632. The stiffening response in shCCM1 cells was 

abrogated upon ROCK inhibition with a 1.05 fold increase in stiffening between the first 

and second pulls (p value 0.61; Figure 4.5D). In short, the MTC studies in shCCM1 and 

2 cells provided an independent assay for the functional consequence of the loss of 
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CCM proteins. The biomechanical phenotype of shCCM1 and 2 cells is one of 

increased RhoA activation following mechanical deformation of the cell resulting in 

increased cytoskeletal stiffness relative to the stiffness observed in wildtype cell 

subjected to similar mechanical stress.  

Filamin A is an actin cross-linking adaptor protein whose expression has been 

shown to correlate positively with an increase in cytoskeletal stiffness (Coughlin et al., 

2006; Kasza et al., 2009). The levels of Filamin A in shCCM1, 2 and 3 HUVECs were 

increased relative to wildtype cells (Figure 4.5E and F). Knockdown in these cell lines 

was verified by RT PCR (data not shown) and as an additional marker for knockdown 

cells were also stained for actin stress fibers which were shown to be increased in 

shCCM1, 2 and 3 cells above. Filamin A crosslinks actin filaments and thus reinforces 

the stability of the cytoskeleton. When a pullforce is applied, the underlying cytoskeleton 

rapidly reorganizes to counteract the force and to reinforce the linkage of the integrins to 

which the bead is coupled. An increase in Filamin A abundance can be predicted to 

increase the resistance of the cytoskeleton to deformation created by a pullforce. The 

observed increase in the levels of Filamin A is consistent with the increase in 

cytoskeletal stiffness resulting from increased RhoA-P-MLC2/P-Cofilin signaling.  

The bead-coupled integrins are tethered to the underlying cytoskeleton and to 

define this interaction in CCM deficient cells, passive movement rheology 

measurements were obtained for the passive diffusion of bead-coupled integrins across 

the plasma membrane. For passive movement rheology the displacement of fibronectin-

coated beads in the x and y directions was recorded in the absence of applied external 
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force. The passive diffusion coefficient was calculated for each bead and was 1.51, 

2.02, and 1.79 fold higher in shCCM1, 2 or 3 HUVECs respectively (p values 0.012, 

2.94e-11, 2.34e-10 respectively; Figure 4.5G and H). This increased diffusion of 

integrin-coupled beads in CCM deficient cells suggest a disrupted coupling of the 

integrins to the cytoskeleton consistent with the disrupted RhoA activity and cytoskeletal 

dynamics demonstrated here.  

Combined these biophysical studies define that the biomechanical profile in CCM 

deficient HUVECs is increased RhoA/ROCK activation in response to external force on 

integrin such as during cell migration and cell-cell or cell-matrix adhesion required 

during vascular remodeling in three dimensions. Furthermore, these data define that the 

functional consequence of the elevated RhoA/ROCK leads to increased cytoskeletal 

stiffness in response to mechanical cues consistent with CCM as a disease of disrupted 

RhoA/ROCK signaling and cytoskeletal dynamics.  

Knockdown of CCM1, 2 or 3 inhibits endothelial cell vessel-like tube formation and 

invasion of extracellular matrix 

Knockdown of CCM1, 2 or 3 in endothelial cells results in the inhibition of 

extracellular matrix invasion and vessel-like tube formation (Figure 4.6, Figure 4.7Ai-iv 

and 4.7B). The findings define a common phenotype for loss of each of the three CCM 

proteins with inhibition of invasion and vessel-like tube formation providing quantitative 

assays to define treatments to rescue the CCM pathology. Based on the common 

inhibition of invasion and vessel-like tube formation, and the increased ROCK2-
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dependent increase in phospho-MLC2 with knockdown of each CCM protein, we 

reasoned that ROCK2 was a therapeutic target to reverse the CCM phenotype. 

CCM1, 2 or 3 knockdown pathology is rescued by inhibition of ROCK.  

Relevant to rescue of the CCM pathology, we previously demonstrated that the 

small molecule ROCK inhibitor Y-27632 rescued the inhibition of endothelial cell 

migration resulting from shRNA knockdown of CCM2 in a scrape wound healing assay 

with brain microvascular endothelial cells (Crose et al., 2009). Y-27632 was used to test 

the role of ROCK in rescuing the loss of endothelial cell invasion of extracellular matrix 

(Figure 4.7iv-viii and 4.7B). The inhibition of extracellular matrix invasion resulting from 

CCM1, 2 or 3 knockdown was rescued by either loss of ROCK2 expression or treatment 

of cells with Y-27632 (Figure 4.7).  CCM1 knockdown cells were only weakly rescued by 

Y-27632 but strongly rescued by shRNA knockdown of ROCK2. This may in part be due 

to the time-dependent reversal of the strong CCM1 knockdown phenotype with Y-27632 

(Figure 4.2E, Figure 4.6 and see below).   

Discussion 

The three CCM genes are scaffold or adaptor proteins capable of forming a 

CCM1-2-3 protein complex for organization of proteins involved in regulating the 

cytoskeleton(Hilder et al., 2007). Thus, the molecular basis of CCM is fascinating in that 

the loss of function of a scaffold or adaptor protein is sufficient to develop the pathology 

(Uhlik et al., 2003; Kleaveland et al., 2009b; Whitehead et al., 2009).  The function of 

CCM proteins was further elucidated by the discovery that RhoA becomes 

overexpressed with loss of CCM2 expression, and that CCM2 regulates RhoA protein 
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level by controlling its degradation (Crose et al., 2009, Whitehead et al., 2009).  We 

have now shown that CCM1 and 3 proteins in addition to CCM2 are required for 

regulation of RhoA protein levels, and loss of CCM1, 2 or 3 each results in the 

pronounced increase in expression of RhoA.  This result supports the critical role of the 

CCM protein complex in controlling RhoA expression.  The RhoA biosensor allowed 

measurement of live cell images for RhoA activity in control and CCM1, 2 and 3 

knockdown cells. Clearly, RhoA activity is increased with loss of CCM1, 2 or 3 proteins 

and the increased RhoA activity results in changes in regulation of ROCK and the 

cytoskeleton. We propose a model of CCM as a disease of disrupted cytoskeletal 

stability through deregulation of RhoA abundance and activity (Figure 4.8). The 

pronounced RhoA activity with CCM1 knockdown strongly suggests that CCM1 has a 

function controlling a Rho guanine nucleotide exchange factor or Rho GTPase 

activating protein.  This difference suggests a function specific for CCM1 relative to 

CCM2 or 3.  However, the effect of CCM1 loss of expression was not generally different 

than what was observed with loss of CCM2 or 3 expression for changes in phospho-

MLC2  and phospho-Cofilin levels or dysregulation of invasion or vessel-like tube 

formation. The dysregulated RhoA/ROCK-control of cytoskeleton remodeling defined by 

MTC, increased Filamin A and passive rheology provide a comprehensive single-cell 

profile of the cytoskeleton in shCCM1,2 and 3 HUVECs and independently demonstrate 

a consistent similarity in the disrupted cytoskeleton response with loss of all three CCM 

proteins.  

These findings indicate there is not simply a linear pathway of RhoA expression-

ROCK activation-phosphorylation of MLC2 and Cofilin. Rather, the CCM proteins 
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represent a dynamic regulatory network where they are sometimes in a complex but 

other times found in different cellular locations (Zawistowski, 2005; Uhlik et al., 2003), 

consistent with common but also distinct functions. We have proposed that CCM 

proteins localize signaling complexes to specific cellular locations associated with actin 

reorganization(Crose et al., 2009; Hilder et al., 2007).  This would suggest CCM 

proteins spatially control RhoA degradation for regulating specific physiological 

functions.  Interestingly, activation of Rho GTPases and ROCK has also been observed 

in Smith-Lemli-Opitz syndrome (Jiang et al., 2010), suggesting that dysregulation of this 

signaling axis has major pathophysiological implications in different human diseases.  

Surgical resection is currently the standard treatment for symptomatic CCM, a 

highly invasive procedure with significant risk to the patient (Awad, 2005).  In addition, 

lesions located in critical areas such as the brainstem or basal ganglia are more likely to 

exhibit a poor natural history, yet no treatment exists because they are surgically 

inaccessible. The discovery that inhibition of ROCK, a kinase activated by RhoA, is able 

to rescue dysregulated endothelial cell physiology resulting from loss of CCM1, 2 or 3 

expression provides, for the first time, a pharmacological approach using a small 

molecule kinase inhibitor for treatment of CCM.  The function of RhoA and ROCK in 

promoting vascular permeability is consistent with the dysregulated RhoA-ROCK 

signaling axis being important in promoting CCM pathology.  Thus, ROCK inhibitors are 

clearly potential therapeutics for the treatment of CCM. Studies have shown that two 

ROCK inhibitors, Fasudil and Y-27632, are reasonably well tolerated in animals (Đnan 

and Büyükafşar, 2008).  In fact, Fasudil has been used in Japan for treatment of 
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cerebral vasospasm following subarachnoid hemorrhage since 1995 (Yamazaki et al., 

2009), indicating ROCK inhibitors can be tolerated in humans.   

Given that the RhoA-ROCK signaling network is clearly dysregulated in CCM, 

there is still much to learn about the RhoA activation and inactivation cycle and how it is 

dysregulated in CCM endothelial cells.  Questions also remain regarding the CCM 

protein complex and control of signaling networks including the potential involvement of 

additional kinases that could contribute to the CCM pathology and be pharmacologically 

targeted for treatment of CCM.  For example, mitogen activated protein kinase kinase 3 

(MEKK3), a MAP3K that regulates ERK5, JNK and NFӧB, is in the CCM protein 

complex and is important for regulating responses to inflammatory cytokines such as IL-

1 (Hilder et al., 2007; (Yamazaki et al., 2009). Significantly, it appears a 

pharmacological small molecule treatment to control CCM is a real possibility. 
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Figure 4.1: RhoA abundance and activity are increased in shCCM1, 2 and 3 human 
endothelial cells. (A) Blots show that the abundance of total and active RhoA are 
increased with loss of CCM1, 2 and 3 in HUVECs. (B) Bar graph shows that the 
average fold increase of total RhoA is 4.58 (p value 0.00091), 5.11 (p value 0.013) and 
3.78 (p value 0.0018) in shCCM1, 2 and 3 HUVECs respectively based on minimum of 
five independent western blot experiments. (C) Bar graph shows that the average fold 
increase in active RhoA is 4.87 (p value 0.0012), 6.72 (p value 2.95x10-6) and 7.25 (p 
value 0.048) in shCCM1, 2 and 3 HUVECs respectively based on two independent 
immunoprecipitation experiments. (D) Bar graph shows mRNA levels of CCM1, 2 and 3 
in wildtype HUVECs and in shCCM1, 2 or 3 HUVECs. Knockdown was assayed by RT 
PCR and the relative mRNA levels for CCM1, CCM2, or CCM3 in shCCM1, 2, or 3 cells 
were 0.24 (p value 0.00028), 0.07 (p value 1.11x10-8), and 0.04 (p value 1.82x10-7) 
relative to levels in wildtype cells. Bar graph represents average from three independent 
experiments. (E) Table shows the mRNA detection Ct threshold for each CCM1, 2 or 3 
before and after knockdown were within the dynamic range of the RT PCR technology, 
which is between 16 and 30 Ct. Results from two sets of independently generated cell 
lines are shown. The p value of the statistical significance in the difference of Cts for 
wildtype and knockdown cells is also shown. The column ‘Fold change relative to WT’ 
shows the decrease in mRNA in knockdown cells relative to wildtype cells. (F) Table 
displays the Ct mRNA transcript levels of RhoA in wildtype and shCCM1, 2 and 3 
HUVECs. The Ct levels of CCM1, 2 or 3 in the same cells are also shown to 
demonstrate presence of knockdown. Results from two sets of independently generated 
knockdown cell lines are shown.  
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Figure 4.2: RhoA activity is increased in shCCM1, 2 or 3 mouse endothelial cells. (A) 
Graph shows RT PCR quantitation of CCM1, 2 or 3 mRNA transcript in wildtype, 
shCCM1, 2 or 3 MEECs. Expression of CCM1, 2, and 3 mRNA in shCCM1, 2, and 3 
cells is knocked down respectively by 70, 96 and 95% relative to pLKO.1 control cells. 
Graph represents the means ± SEM of three independent experiments performed in 
triplicate. (B) Western blot of WT and shCCM2 MEECs shows that endogenous CCM2 
protein signal is lost in shCCM2 cells. (C) The total RhoA levels in shCCM MEECs is 
increased. (D) Bar graph is quantitation of total RhoA levels in shCCM MEECs from 
three independent experiments (E) WT, shCCM1, 2 or 3 MEECs were infected with a 
FRET-based RhoA biosensor, where activation of RhoA leads to FRET. The measured 
FRET signal has been pseudocolored, where blue indicates low FRET and low RhoA 
activity, and red/white indicates high FRET and high RhoA activity. RhoA activity is 
increased at the cell edge (defined as 1.5 ӧm width at the edge of the cell), the 
cytoplasm and nucleus of shCCM1, 2 or 3 endothelial cells. (F) Bar graph shows the 
fold change in FRET intensity for the cytoplasm, nucleus and cell edge of shCCM1, 2 or 
3 relative to WT control cells. Cytoplasm fold FRET increase: shCCM1 cells=1.62 (p 
value 4e-11), shCCM2 cells=1.16 (p value 0.001), shCCM3=1.23 (p value 0.0003). 
Nuclear fold FRET increase: shCCM1 cells=2.33 (p value 4.8e-11), shCCM2=1.16 (p 
value 0.002), shCCM3=1.23 (p value 0.0002). Cell edge fold FRET increase: shCCM1 
cells=1.48 (p value 5e-9), shCCM2 cells=1.16 (p value 0.002), shCCM3 cells=1.20 (p 
value 0.002). Data represents the mean ± SEM for minimum of 25 cells in two 
independent experiments. Data in Figure 4.2A is courtesy of Christopher F. Dibble, 
UNC-CH. 
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Figure 4.3: Loss of CCM1, 2 and 3 leads to increased P-MLC2, P-Cofilin and actin 
stress fibers in human endothelial cells. (A and B) Western blots show a statistically 
significant increase in the levels of P-MLC2 and P-Cofilin in shCCM1, 2 or 3 
HUVECS. (C and D) Immunofluorescent staining for P-Cofilin in shCCM1, 2 or 3 
HUVECs validates the increase in P-Cofilin. (C and E) Immunofluorescent staining 
for actin shows the increase in stress fibers in shCCM1, 2 or 3 HUVECs. (F) The cell 
size of shCCM1, 2 or 3 HUVECs was measured based on the actin staining and is 
significantly larger relative to control cells.  
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Figure 4.4: Inhibition of ROCK reverses the increased P-MLC2 and P-Cofilin in CCM 
endothelial cells. (A) Western blots showing an increase in phospho-MLC2 in 
shCCM1, 2 or 3 mouse endothelial cells, which is lost upon shRNA knockdown of 
ROCK2. (B) Bar graph shows the abundance of phospho-MLC2 in shCCM1, 2 or 3 
cells increases respectively 1.7, 3.0 and 1.6-fold relative to control pLKO.1 cells 
(graph represents average of three independent experiments). Upon shRNA 
knockdown of ROCK2, this abundance decreases below detectable levels, 50 and 
90% respectively for shCCM1, 2 or 3 relative to control pLKO.1 empty shRNA 
vector. (C) Dose-dependent decrease in P-Cofilin in pLKO.1 or shCCM1 human 
endothelial cells treated with increasing concentrations of Y-27632. (D) Bar graph of 
the dose-dependent decrase in P-Cofilin with Y-27632 treatment of pLKO.1 and 
shCCM1 human endothelial cells (graph represents average of three independent 
experiments, where shCCM1 cells were derived three independent times).  
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Figure 4.5: The biomechanical phenotype of CCM deficient human endothelial cells 
is increased RhoA/ROCK signaling and increased cytoskeletal stiffening. (A) Atomic 
Force Microscopy shows the similarly surface-bound beads on top of wildtype and 
shCCM1 HUVECs. (B) The displacement profile of beads on wildtype or shCCM1 
cells in response to three consecutive magnetic pulls with 20second no-force breaks 
in between pulls. The distance traveled by beads on wildtype cells begins to 
decrease at the third pull with little decrease between the first and second pulls, 
whereas the cytoskeleton of shCCM1 cells begins to respond by stiffening by the 
second pull. (C) Bar graphs quantitate the relative stiffness of the cells during the 
first and second pulls, where the increase in stiffness at the second pull is 
statistically significant for shCCM1 and shCCM2 cells. (D) Bar graphs show the 
decreased response in cytoskeletal stiffening in shCCM1 cells treated with Y-27632 
consistent with the established role for RhoA in the regulation of the stiffening 
response. (E and F) Immunofluorescent staining and quantitation for Filamin A (red), 
Rhodamine-Phalloidin (green) and DAPI (blue) shows an increase in the signal for 
Filamin A and Rhodamine Phalloidin with loss of CCM protein expression. Note the 
increased cell size with loss of CCM proteins. (G and H) A distribution of diffusion 
coefficients established by passive rheology for individual beads on top of wildtype 
or CCM knockdown cells. The passive diffusion of shCCM1,2  or 3 cells is 
respectively 1.51, 2.01 and 1.79 fold higher than for wildtype cells (p values 0.012, 
2.94x10-11, 2.34x10-10 respectively). For all panels, data representative of minimum 
of three independent experiments where knockdown cell lines were independently 
derived for each separate experiment. Scanning Electron Microscopy images are 
courtesy of Alekhya Yechoor and Alexander Nelson, UNC-CH. 



 

105 

 

 

Figure 4.6: ROCK inhibition with Y-27632 or shRNA rescues the invasion defect in shCCM1, 2 or 3 mouse endothelial 
cells. (A) shCCM1, 2 or 3 MEECs were seeded in the top of a Boyden chamber invasion chamber. Cells invaded to the 
bottom of the membrane were stained with Rhodamine phalloidin and imaged. Five images per membrane were taken 
and one image per condition is shown.  Invasion of shCCM1, 2 or 3 cells is decreased relative to WT, but rescued upon 
treatment with 10µM Y-27632 or upon shRNA knockdown of ROCK2. (B) Bar graph showing the fold change in the 
number of invaded shCCM cells relative to pLKO.1. Invasion in shCCM1, 2 or 3 cells is decreased respectively 70%, 70% 
and 60% relative to pLKO.1 cells. Data represents mean ± SEM for minimum of three independent experiments.
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Figure 4.7: The ROCK inhibitor Y-27632 rescues the impaired tube formation of 
shCCM1, 2 and 3 human endothelial cells. (Ai) Wildtype HUVECs self-assemble in 
lumen-like tube structures when plated on matrigel in vitro. (Aii through iv) shCCM1, 
2 or 3 HUVECs fail to form tube like structures. (Av through viii) Treatment with Y-
27632 rescues the impaired tube formation in shCCM1, 2 and 3 cells. Bar graph 
shows the fold change in number of tubes formed relative to wildtype. Tube 
formation in shCCM1, 2 and 3 cells is respectively 0.36, 0.32 and 0.15 fold relative 
to wildtype (p values are 0.0005, 0.02, 0.03 respectively). Tube formation in 
shCCM1, 2 and 3 cell treated with Y-27632 is respectively 0.72, 1.13 and 0.44 fold 
relative to wildtype (p values are 0.39, 0.35, 0.08 respectively). Bar graph represents 
minimum of two independent experiments.  
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Figure 4.8: Proposed model for CCM as a disease of increased RhoA abundance 
and activity. CCM1, 2 and 3 coordinately regulate Smurf1-dependent degradation of 
RhoA. Loss of CCM1, 2 or 3 increases RhoA abundance and activity and leads to 
increased ROCK activity, increased phosphorylation of myosin light chain (MLC) and 
Cofilin which co-regulate cytoskeletal turnover. This leads to functional defects 
including increased cytoskeletal stiffening in response to mechanical force, 
increased stress fiber formation, decreased invasion and impaired tube-like lumen 
formation. These functional defects are rescued by ROCK inhibition through Y-
27632 or shRNA knockdown. 

 

 

 

  



 

 

 

 

 

 

CHAPTER V 

CEREBRAL CAVERNOUS MALFORMATIONS PROTEINS CONTROL SMURF2-
MEDIATED DEGRADATION OF RAP1 IN ENDOTHELIAL CELLS 

 

Introduction 

The only known common molecular pathway for CCM1, 2 and 3 in endothelial 

cells is based on the finding of Crose et al. that CCM2 is a binding partner for the E3 

ubiquitin ligase Smurf1, where CCM2 regulates the Smurf1-mediated degradation of 

RhoA. The functional significance of the CCM2-Smurf1 interaction is that CCM2 

targets Smurf1 to sites of active RhoA at the plasma membrane, where loss of 

CCM2 expression led to the increased abundance and activity of RhoA (Crose et al., 

2009). Furthermore, CCM2 deficient cells displayed increased stress fiber formation 

and decreased migration consistent with an increase in RhoA activity (Crose et al., 

2009).  Subsequently we showed that consistent with a common molecular function 

as a ternary complex, knockdown of CCM1, 2 and 3 by shRNA leads to the 

increased protein abundance and activity of RhoA (Borikova et al., 2010b). The 

functional consequence of this increase in RhoA activity was increased 

phosphorylated myosin light chain 2 (P-MLC2), decreased invasion and impaired 

self-assembly in lumen-like tubes in vitro for shCCM1, 2 or 3 endothelial cell where 

inhibition of Rho Kinase (ROCK), a downstream effector of RhoA, reverses these 
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defects(Borikova et al., 2010b). The vascular leak of CCM mice was rescued upon 

treatment with the small molecule inhibitor for RhoA Fasudil (McDonald et al., 2012; 

Stockton et al., 2010). These studies have strongly established that Smurf1-

dependent dysregulation of RhoA protein levels is an underlying molecular cause for 

CCM.  

To date regulation of the RhoA-ROCK pathway remains the only identified 

common molecular pathway for CCM1, 2 and 3. Rap1 is a small GTPase of the Ras 

family that regulates multiple endothelial cell functions including actin remodeling, 

endothelial tube formation, establishment of polarity and vascular leak (Kooistra et 

al., 2006; Kooistra et al., 2005). Several groups have independently defined Rap1 as 

a binding partner for CCM1 (Glading et al., 2007) however little remains known 

about the functional significance of the interaction of CCM1 and Rap1. Morpholino-

mediated knockout of the Rap1b isoform of Rap1 in zebrafish embryos causes 

intracranial hemorrhage in 70% of the fish. The combined morpholino knockout of 

Rap1b and CCM1 at morpholino concentrations that alone produce a defect in less 

than 10% of embryos leads to intracranial hemorrhage in 30% of the injected 

embryos and cardiac blockage in 70% of the injected fish (Gore et al., 2008), 

establishing that Rap1b and CCM1 participate in a common molecular pathway. 

CCM1 binds both Rap1a and Rap1b isoforms of Rap1, suggesting a general Rap1 

regulation by CCM1. We set out to define the functional significance of Rap1 in CCM 

biology. We show that similarly to the coordinate regulation of the RhoA through 

Smurf1, CCM1, 2 and 3 coordinately regulate the abundance and activity of Rap1 

through a novel CCM2-Smurf2 interaction, where Smurf2 has previously been 
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defined as an E3 ligase for Rap1 (Schwamborn et al., 2007).  Rap1 is a negative 

regulator of RhoA through the activation of the RhoGAP Arap3. Arap3-/- mice die at 

E11 due to endothelial cell autonomous defect that leads to clusters of cavernous 

vessels with little branching that are most prominently observed in the cerebral 

vasculature (Gambardella et al., 2010). We show that cAMP-mediated activation of 

Rap1 leads to Arap3 RhoGAP-dependent inactivation of RhoA in CCM1, 2 and 3 

cells. However, Arap3 RhoGAP-mediated decrease in RhoA activity is sufficient to 

rescue the tube formation defect in shCCM1 cells but not shCCM2 or shCCM3 cells 

suggesting that Smurf1-mediated inactivation of RhoA is required for the regulation 

of RhoA in CCM. 

Much emphasis has been placed on understanding the regulation of small 

GTPases through Guanine Exchange Factors (GEF) and GTPase activating proteins 

(GAP), however an equally necessary role for regulation through E3 ubiquitin ligases 

has began to emerge. The stepwise process of protein ubiquitination through E1-E2-

E3 ligases targets proteins for degradation through the ubiquitin proteasome system 

or targets the protein for a specific subcellular location. To date only 2 E1 and 30 E2 

ligases have been identified, whereas the number of known E3 ligases exceeds 600 

(Rotin and Kumar, 2009; Bernassola et al., 2008). This has indicated that E1s and 

E2s show little target specificity, whereas E3s regulate the degradation or 

localization of a specific set of proteins. Several studies have shown that E3-

mediated degradation of small GTPases is a regulatory mechanism for GTPase 

signaling. siRNA-mediated knockdown of Smurf1 in epithelial cells has been shown 

to not only increase RhoA abundance but to increase the levels of GTP-RhoA, P-
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MLC2 and stress fiber formation, with a decrease in cell migration (Sahai et al., 

2007; Rotin and Kumar, 2009; Bernassola et al., 2008). Synaptopodin is an adaptor 

protein which competes with Smurf1 for RhoA binding. Knockdown of synaptopodin 

leads to decreased RhoA abundance - due to increased Smurf1-mediatd RhoA 

degradation - and decreased stress fiber formation and increased migration. 

Reversely, overexpression of synaptopodin leads to increase in total and GTP-

RhoA(Asanuma et al., 2006). These studies provide evidence that aberrant 

degradation of RhoA leads not only to aberrant overall abundance of RhoA but also 

to a parallel change in the levels of the active GTPase, suggesting that E3 ligases 

are an independent mechanism for the regulation of small GTPase activity. An 

additional level of regulation of signaling downstream of effector targets for E3 

ligases is through the E3-exerted fine control of the special distribution of targets. 

During neuronal maturation axon specification requires the localized activity of Rap1 

in a single neurite, which eventually becomes the axon. Smurf2 mediates the 

degradation of Rap1 in all but one of the neurites, which subsequently matures as 

an axon. In combination with our previously published findings, the work presented 

here delineates CCM is a disease of disrupted E3 ligase activity and subsequent 

disrupted RhoA and Rap1 regulation of endothelial cell functions.  

Results 

Loss of CCM1, 2 or 3 leads to increased total Rap1 protein 

shRNA mediated knockdown of CCM1, 2 and 3 in HUVECs was established 

as previously described (Figure 4.1E). Knockdown of CCM1, 2 or 3 in HUVECs led 

respectively to the 3.83, 3.98 and 3.41 fold increased in Rap1 protein levels in a 
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miminum of five independent experiments (p values respectively 0.0001, 0.0013, 

and 0.0016 Figure 5.1A and B). Rap1 protein levels were increased respectively 

7.43, 8.87 and 7.58 fold in CCM1, 2 and 3 MEECs (Figure 5.1C and D) and 3.95, 

5.05 and 3.62 fold in human endothelial progenitor cells (EPC; p values respectively 

0.0001, 0.03, 0.02; Figure 5.1E and F) in two independent experiments. Although 

two isoforms of Rap1 are known, Rap1a and Rap1b, currently available antibodies 

do not distinguish the two and the data herein report an increase in the combined 

population of Rap1a and Rap1b. New knockdown cell lines were created for each 

independent experiment in HUVECs, and CCM knockdown EPCs were created from 

two different human donors. Loss of CCM1, 2 or 3 expression in three independent 

endothelial cell lines consistently caused the increased abundance of Rap1 

indicating that CCM protein regulation of Rap1 abundance is a general endothelial 

event and a common function for CCM1, 2 and 3. To date RhoA is the only identified 

common effector for CCM1, 2 and 3. While each of the CCM proteins has been 

individually linked with several different signaling factors the fact that loss of function 

in any one of the CCM genes leads to pathogenesis and that CCM1, 2 and 3 form a 

ternary complex suggests that pathogenesis results from the loss of a common 

molecular function for CCM1, 2 and 3. Defining regulation of Rap1 abundance as a 

common molecular role of CCM1,2  and 3 establishes a new signaling paradigm in 

CCM pathogenesis.  

To establish the mechanism for this increase in Rap1 abundance with loss of 

CCM proteins, the mRNA transcript levels of Rap1a and Rap1b were measured in 

CCM protein knockdown HUVECs. In all three CCM knockdown cell lines the 
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message levels of both Rap1a and Rap1b relative to wildtype cells remained 

unchanged (Figure 5.1G and H). Based on two independently generated sets of 

CCM1, 2 or 3 knockdown cell lines, the Ct detection threshold cycles for Rap1a 

mRNA in shCCM1, 2 and 3 were respectively 0.98, 1.06 and 0.96 fold different from 

the Ct detection cycle in wildtype cells (p values 0.59, 0.54 and 0.69 respectively). 

Similarly, the Ct threshold cycles for Rap1b in shCCM1, 2 and 3 cells were 

respectively 0.91, 1.72 and 1.08 fold different from the Ct detection cycle in wildtype 

cells (p values 0.65, 0.64 and 0.73). The slight increase in Rap1b transcript in 

shCCM2 cells consistently occurred in both independently generated shCCM2 cell 

lines assayed, however this elevation in transcript was not statistically significant 

with a p value of 0.64. These findings indicated that the increased Rap1 protein 

levels are not due to an increase in Rap1 translation but possibly due to a 

dysregulation of Rap1 degradation or post-transcriptional regulation of Rap1 

mRNAs.  

 CCM2 binds the E3 ubiquitin ligase Smurf2 

The interaction between CCM2 and the RhoA ubiquitin ligase Smurf1 is 

mediated through the Phosphotyrosine Binding Domain (PTB) of CCM2 and the 

HECT domain of Smurf1 (Crose et al., 2009). The degradation of Rap1 in neurons is 

mediated by the HECT family E3 ubiquitin ligase Smurf2. We hypothesized that 

similarly to the interaction of CCM2 with Smurf1, CCM2 binds Smurf2 through their 

respective PTB and HECT domains. When CCM2 and Smurf2 were co-expessed, 

CCM2 was isolated with Smurf2 in immunoprecipitation assays (Figure 5.2). This is 

the first report of a CCM2-Smurf2 interaction. In combination with Crose et al.’s 
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original report of a CCM2-Smurf1 interaction, the formation of a CCM2-Smurf2 

complex suggests that the molecular function of CCM2 may be in the localized 

delivery of the Smurf1 and Smurf2 E3 ubiquitin ligases to RhoA and Rap1 for the 

regulation of RhoA and Rap1-dependent endothelial cell functions. However, not just 

loss of CCM2 but also loss of CCM1 and CCM3 expression leads to an increase in 

the total levels of Rap1 suggesting that the CCM1, 2 and 3 complex coordinately 

regulates Smurf2-dependent Rap1 degradation.  

Loss of CCM1, 2 or 3 leads to increased activated Rap1 

To define the effect of the increase in total Rap1 on Rap1 activity, the levels 

of active Rap1 were measured in shCCM1, 2 or 3 HUVECs.  The loss of CCM1, 2 or 

3 expression caused respectively a 4.87, 5.85 and 5.90 fold increase in the levels of 

active Rap1 (p values 0.014, 0.035 and 0.029 respectively; Figure 5.3). The 

increased levels of active Rap1 correlate precisely with the observed increase in 

Rap1 abundance. These findings are consistent with published reports of the 

signaling effect with loss of E3 expression such as the increase in total and active 

RhoA with siRNA mediated knockdown of Smurf1 (Sahai et al., 2007) and suggest 

that CCM1, 2 and 3 are required for Smurf2 degradation of Rap1.  

Rap1 in CCM knockdown cells can be activated by Forskolin leading to decrease in 

active RhoA 

 Stimulus-induced activation of Rap1, such as by neurite growth factor(Jeon et 

al., 2010a),(Jeon et al., 2010b), or pharmacological agents for the activation of 

RapGEFs, leads to the inactivation of RhoA through the Rap1-activated RhoGAP 

Arap3 (Adamson et al. 2006; Zieba et al., 2011). The increased activity of both Rap1 
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and RhoA in CCM deficient endothelial cells suggests that either Rap1-Arap3-RhoA 

signaling is disrupted or is insufficient under quiescent conditions to normalize the 

elevated RhoA activity if RhoA inactivation in CCM requires the activation of more 

than one GAP or the presence of Smurf1.  

To define whether Rap1-RhoA signaling is functional in the absence of CCM 

protein expression, the levels of active RhoA were measured in shCCM1, 2 and 3 

HUVECs treated with the small molecule Forskolin. Stimulation of endothelial cells 

with the Adenylyl Cyclase agonist Forskolin leads to the Rap1-mediated inhibition of 

RhoA. Adenylyl Cyclase stimulates the production of cAMP, which in turn activates 

the Rap1GEF EPAC leading to Rap1 activation (Breckler et al., 2011; Zieba et al., 

2011; Adamson et al. 2006). Despite the increased basal activity of Rap1 in 

shCCM1, 2 or 3 HUVECs, treatment with Forskolin further increased the levels of 

active Rap1 in shCCM1 and 2 HUVECs (Figure 5.4A) and concomitantly decreased 

the levels of active RhoA in shCCM1, 2 and 3 HUVECs (Figure 5.4B). Further 

activation of the elevated levels of Rap1 suggests that only a portion of the total 

available Rap1 proteins is basally activated with loss of CCM proteins as a sufficient 

population of GDP-Rap1 is available for activation by EPAC. The decrease in RhoA 

activity in all three CCM knockdown cell lines indicates that Rap1-mediated signaling 

for the inactivation of RhoA is an intact signaling system in CCM deficient cells, 

however is insufficient in normalizing the active RhoA to levels similar to RhoA levels 

in wildtype cells.  

These findings bear a broader significance for the molecular cause of CCM in 

the mechanistic inactivation of the dysregulated RhoA. An additional target activated 
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by cAMP is Protein Kinase A (PKA) which phosphorylates RhoA at Ser188 which 

induces the binding of Rho Guanine Dissociation Inhibitor alpha (RhoGDIα) and 

internalization and inactivation of RhoA(Wang et al., 2006). The findings that 

stimulation of two RhoA inactivating pathways, through the RhoGAP Arap3 and 

through RhoGDIα only partially decreases the overactivated RhoA in CCM deficient 

cells suggests that RhoA inhibition through Smurf1 is a dominant defect in 

dysregulation of RhoA in CCM.  

Activation of Rap1 rescues the tube formation defect in CCM1 but not CCM2 or 

CCM3 HUVECs 

 One in vitro phenotypic defect of CCM knockdown endothelial cells is the loss 

of self-assembly into tube like structures when cells are seeded in a three 

dimensional collagen substrate(Borikova et al., 2010a),(Crose et al., 2009). To 

define whether the Forskolin-mediated decrease in active in RhoA is sufficient to 

rescue the tube formation defect of CCM deficient endothelial cells, shCCM1, 2 and 

3 HUVECs were treated with Forskolin and assayed for tube formation. Forskolin 

was sufficient to rescue the tube formation defect in shCCM1, but not shCCM2 or 

shCCM3 HUVECs (Figure 5.5). Similar results were obtained when cells were 

treated with 8-CPT-cAMP, a cAMP analog that activates EPAC and PKA (Figure 

5.5). However, the tube formation defect of shCCM1 cells was not rescued upon 

treatment with 6-Bnz-cAMP which is a cAMP analogue that specifically activates 

PKA but not EPAC (Figure 5.5). These data delineate a Rap1-specific pathway for 

the rescue of tube formation in shCCM1 cells. Despite the Forskolin-stimulated 

decrease in active RhoA in all three CCM knockdown cell lines, this decrease was 
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sufficient to induce functionally-significant changes only in shCCM1 cells. A previous 

study had defined CCM1 as a downstream effector of Rap1 based on the evidence 

that Forskolin failed to rescue the permeability defect of shCCM1 HUVECs, where 

Forskolin-mediated activation of Rap1 reduces monolayer permeability in wildtype 

cells (Glading et al., 2007). The spatial distribution of active RhoA in shCCM1 cells is 

also prominently different that the distribution in shCCM2 and shCCM3 cells (Figure 

4.2E). Thus in addition to the common function of regulating Rap1 and RhoA 

abundance and activity, each of the CCM proteins appears to play an additional, 

differential role in Rap1, RhoA and Rap1-RhoA signaling.  

The Rap1-activated RhoGAP Arap3 is required for Rap1-mediated inactivation of 

RhoA 

 To better define the mechanism through which Forskolin rescues the tube 

formation defect in shCCM1 cells, these cells were treated with siRNA for Arap3 and 

Forskolin. An average of 61% knockdown in Arap3 mRNA was confirmed by QRT 

PCR (Figure 5.6A). In the absence of Arap3, Forskolin failed to rescue tube 

formation in shCCM1 cells (Figure 5.6B). In combination with our findings that 

Forskolin activates Rap1 in shCCM1 cells and decreases the levels of active RhoA, 

these data provide evidence that Rap1-Arap3-RhoA signaling is functionally 

significant in shCCM1 cells and pharmacological activation of this pathway is 

sufficient to rescue the tube formation defect in shCCM1 cells.  

Discussion 

To date disruption of Smurf1-mediated RhoA degradation and resultant 

increase in RhoA abundance, activity and signaling through ROCK for regulation of 



 118 

 

actin cytoskeleton remains the only identified common pathway for CCM1, 2 and 3 

functions. The disease relevance of the elevated RhoA-ROCK signaling is 

demonstrated by mouse studies in which the lesion burden (number, progression to 

bleeding and hemorrhage incidence) was significantly decreased with the addition of 

the ROCK inhibitor Fasudil(Stockton et al., 2010; McDonald et al., 2011; 2012).  

 Here we identify a second molecular pathway commonly regulated by all 

three CCM proteins – the regulation of Rap1 degradation through a novel CCM2-

Smurf2 interaction. Smurf2 is an E3 ligase that was originally shown to regulate the 

degradation of Rap1 during neuronal axonal specification(Schwamborn et al., 2007). 

The functional outcome of the Smurf2-CCM2 interaction appears to be identical to 

the functional outcome of the Smurf1-CCM2 interaction - an increase in the 

abundance and activity of the small GTPases Rap1 and RhoA, respectively, with 

loss of CCM2. Furthermore, loss of CCM1 or CCM3 expression similarly leads to an 

increase in Rap1 abundance, without an increase in the expression of either the 

Rap1a or Rap1b isoforms (Figure 5.1), and an increase in activity (Figure 5.2). 

Consistent with the previously identified ternary complex between CCM1, 2 and 3 

and the common disease pathology with loss of function in any one of the three 

CCM genes, these findings delineate a novel common pathway for CCM1,2 and 3 

proteins in the regulation of Smurf2-mediated control of the abundance and activity 

of Rap1. The broader significance of these findings is that they define CCM as a 

disease of aberrant Smurf1 and Smurf2 E3 ligase activity for the regulation of RhoA 

and Rap1.  
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Currently available antibodies do not distinguish between the Rap1a and 

Rap1b isoform due to their high sequence homology (95% sequence coverage). 

Due to this limitation, the original report demonstrating that Smurf2 mediates the 

degradation of Rap1b used QRT PCR to show that Rap1b is the dominant isoform 

expressed in neurons to make the distinction in the degraded Rap1 isoform 

(Schwamborn et al., 2007). However, a specific preferential interaction of Smurf2 

with Rap1b over Rap1a was not demonstrated and Rap1a is expressed in neuronal 

cells albeit at mRNA transcript levels lower than Rap1b (Schwamborn et al., 2007). 

Our QRT PCR analysis shows that the CT mRNA message level threshold at which 

Rap1a and Rap1b are detected in wildtype HUVECs are 22.39 and 27.40, 

respectively where a CT threshold lower than 30 is commonly accepted to indicate 

proteins expressed at biologically significant levels. Furthermore, CCM1 interacts 

with both Rap1a and Rap1b (Béraud-Dufour et al., 2007a). Thus our findings of the 

increase of total Rap1 in CCM1, 2 or 3 knockdown cells in a manner dependent on 

CCM2-Smurf2-mediated Rap1 degradation is consistent with the current 

understanding of Smurf2-Rap1 degradation.   

In agreement with the classically established role of Rap1 as a negative 

regulator of cell permeability, RhoA activity and actin stress fiber formation, the 

increase in Rap1 activity observed with loss of CCM can be expected to result in 

decreased permeability, decreased RhoA activity and decreased RhoA-mediated 

stress fiber formation. However, CCM endothelial cells are characterized by an 

increase in permeability when in a monolayer, increase in RhoA activity and 

increase in stress fiber formation (Crose et al., 2009). This discrepancy suggests 
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that that either the active Rap1 observed with loss of CCM is not properly localized, 

or that CCM proteins function downstream of Rap to additionally regulate 

permeability and RhoA activity. Consistent with this prediction, CCM proteins 

regulate the degradation and activity of RhoA through Smurf1. Glading et al. showed 

that activation of Rap1 failed to rescue the increase permeability in CCM1 deficient 

endothelial cells and placed CCM1 downstream of Rap1 (Glading et al., 2007). The 

loss of Smurf1-mediated degradation of RhoA is further consistent with an additional 

role for CCM proteins downstream of Rap1. Additional studies are needed to 

delineate the spatiotemporal localization of active and total Rap1 with loss of CCM 

protein expression.  

Rap1 mediated inactivation of RhoA occurs through the activation of the 

Rap1-dependent RhoGAP Arap3 in response to an increase in the intracellular 

levels of cAMP (Gambardella et al., 2010; Jeon et al., 2010a). To define whether the 

Rap1-Arap3-RhoA signaling pathway can be activated in CCM knockdown cells, 

RhoA activity and tube formation were assayed following Rap1 stimulation with the 

AC agonist Forskolin or cAMP analogues. The tube formation defect can be rescued 

in CCM1 knockdown cells but not in CCM2 or CCM3 cells, despite the decrease in 

active RhoA following treatment with Forskolin in all three CCM knockdown cell 

lines. Importantly, upon loss of siRNA-mediated Arap3 expression Forskolin fails to 

rescue tube formation in shCCM1 HUVECs, demonstrating that the effect of 

Forskolin is mediated by Rap1-Arap3 signaling specifically. Furthermore, these data 

indicate that GAP-mediated decrease in the activation of RhoA is insufficient to 

overcome the Smurf1-dependent regulation of RhoA in shCCM2 and shCCM3 
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endothelial cells. Further studies of the localization of activated Rap1 and RhoA in 

CCM1 versus CCM2 and CCM3 cells is needed to delineate the differences in signal 

transduction in these cell lines.  

The significance of our findings is threefold. First we define a second 

molecular pathway in which CCM1, 2 and 3 coordinately regulate the abundance 

and activity of a small GTPase, Rap1, where CCM2 interacts with the E3 ligase 

required for the degradation of that GTPase, Smurf2. Second, we delineate that 

cAMP-Rap1-Arap3RhoGAP-RhoA signaling is a mechanism for the pharmacological 

regulation of the formation defects with loss of CCM1 expression. Finally, we provide 

evidence that while GAP-mediated inactivation of RhoA through Rap1-

Arap3RhoGAP-RhoA signaling is sufficient to reverse the increased RhoA activity in 

shCCM1,2  and 3 cell this is insufficient to rescue the tube formation defect of 

shCCM2 and 3 cells, arguing that Smurf-mediated inactivation of RhoA is required 

for the regulation of RhoA activity in CCM. These studies delineate the functional 

significance of Rap1 in CCM pathology and redefine CCM as a disease of loss of 

Smurf1 and Smurf2 E3 ubiquitin ligase regulation of RhoA and Rap1 activity.  
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Figure 5.1: Rap1 abundance is increased in shCCM1, 2 or 3 endothelial cells. (A, C, 
E) Western blots for total Rap1a/b protein from HUVEC, MEEC and EPS cells show 
increase in Rap1a/b abundance. (B, D, F) Bar graph quantitations of total Rap1a/b 
from western blots in A, C and E. (B) Bar graph quantitation of average 3.83, 3.98 
and 3.41 fold increase in total Rap1a/b in shCCM1, 2 or 3 HUVECs (p values 
0.0001, 0.0013, and 0.0016 respectively). Graph represents minimum of five 
independent experiments using independently generated shRNA knockdown cell 
lines. (D) Bar graph quantitation of average 7.43, 8.87 and 7.58 fold increase in total 
Rap1a/b in shCCM1, 2 or 3 MEECs. Graph represents two independent 
experiments. (E) Bar graph quantitation of average 3.95, 5.05 and 3.62 fold increase 
in total Rap1a/b levels in shCCM1, 2 or 3 EPCs (p values 0.0001, 0.03, 0.02 
respectively). Graph represents two independent experiments using cells isolated 
from two different human donors. (G) Quantitative Real Time PCR analysis of the 
mRNA abundance of Rap1a and Rap1b in two independently generated sets of 
shCCM1, 2 and 3 HUVECs. (H) Graphical quantitation of the fold change in Rap1a 
and Rap1b mRNA levels in shCCM1, 2 and 3 HUVECs. Figures 5.1C-F are courtesy 
of Christopher F Dibble, UNC-CH.  
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Figure 5.2: CCM2 interacts with the Rap1 E3 ligase Smurf2. Western blot shows that 
CCM2 is pulled down with Flag-Smurf2 when the two are expressed in HEK293 cells 
and cell lysates are separated with anti-Flag antibody, then probed for CCM2. The 
isolated CCM2 is specifically bound to Smurf2 rather than non-specifically pulled 
down as no CCM2 signal is detected when CCM2 is expressed with the Flag-EV. 
Figure courtesy of Bryan Richardson, UNC-CH.    
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Figure 5.3: Active Rap1 is increased in shCCM1, 2 or 3 HUVECs. The levels of 
active Rap1 were on average 4.87, 5.85 and 5.90 fold higher in shCCM1, 2 or 3 
HUVECs, respectively (p values 0.014, 0.035, and 0.029). Data represents minimum 
of five independent experiments with independently derived knockdown cell lines.  
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Figure 5.4: Forskolin increases active Rap1 levels and decreases active RhoA levels 
in shCCM1, 2 or 3 HUVECs. (A) Pulldown assays showing activation of Rap1 in 
shCCM1 (i) and 2 (ii) HUVECs following stimulation with Forskolin. (B) 
Immunoprecipitation showing that levels of active RhoA are decreased with 
Forskolin treatment in shCCM1, 2 (i) and 3 (ii) HUVECs 
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Figure 5.5: Forskolin rescues the tube formation defect in shCCM1 but not shCCM2 
or shCCM3 HUVECs. shCCM1, 2 and 3 HUVECs fail to self assemble in tube-like 
structures (top panels horizontal across). Treatment with Forskolin and the EPAC 
and PKA agonist 8-CPT-cAMP rescues the tube formation defect in shCCM1 cells 
but not in shCCM2 or shCCM3 cells. Treatment with the PKA specific agonist 6-Bnz-
cAMP fails to rescue the tube formation defect in shCCM1 cells. Bar graph 
represents minimum of two independent experiments.  
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Figure 5.6: Knockdown of Arap3 abrogates the Forskolin-mediated rescue of the 
tube formation defect in shCCM1 endothelial cells. (A) Bar graph represents the 
average of three independent experiments of the mRNA transcript level of CCM1, 
Arap3 and Rap1 in shCCM1+siArap3 relative to wildtype cells as assessed by 
Quantitative Real Time PCR. Average knockdown of CCM1 and Arap3 were 
respectively 65% and 61% (p values 0.0096 and 0.0091 respectively). The levels of 
Rap1 in shCCM1+siArap3 cells were 1.12 fold relative to levels in wildtype cells (p 
value 0.29). (B) Forskolin rescues the disrupted tube formation of shCCM1 cells, 
however fails to rescue the tube formation of shCCM1 cells when they are 
additionally treated with siRNA for Arap3 (bottom across). (C) Bar graph represent 
quantitation of the fold change in number of tubes formed with the conditions 
described in B. Graph represents average of three independent experiments. 
 
 
 
 
  



 

 
 
 
 

 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

The CCM field has dramatically expanded within the last four years. At the 

beginning of this project the biological functions of the CCM proteins were yet to be 

identified. However the finding that CCM1,2 and 3 (Hilder et al., 2007) form a ternary 

complex was a paradigm shift in CCM as it gave rise to the hypothesis that CCM1, 2 

and 3 participate in a common molecular pathway. Within the next several years 

several additional key discoveries were made. The most important of these was the 

identification that the CCM2 interacts with the E3 ubiquitin ligase Smurf1 for the 

regulation of the cytoskeletal regulator RhoA. Loss of CCM2 expression gave rise to 

upregulation of the abundance and activity of RhoA suggesting that CCM is a 

disease of disrupted cytoskeletal remodeling. The dysregulation of RhoA with loss of 

CCM2 expression was defined by two independent groups within several weeks of 

each other (Crose et al., 2009; Whitehead et al., 2009).  

 Our findings demonstrated that aberrant cytoskeletal stability resultant from 

increased RhoA abundance and activity resulted from the loss of each CCM1 or 

CCM3, providing the first biochemical evidence that the CCM proteins regulate a 

common pathway (Figure 6.1). Furthermore, the functional defects arising from 

deregulation of the RhoA and resulting ROCK activation were reversed with 
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inhibition of ROCK suggesting that ROCK is a potential therapeutic target for CCM. 

ROCK is a particularly promising target as the ROCK inhibitor Fasudil has been 

used for the treatment of cerebral vasospasms for over ten years in Japan and is 

well tolerated in humans (Đnan and Büyükafşar, 2008). Consistent with the 

requirement for the CCM complex at the cell membrane for the regulation of Smurf1-

mediated RhoA degradation, impairing the nucleocytoplasmic translocation of CCM2 

by mutating the nuclear export sequence in CCM2 led to loss of endothelial cell tube 

formation.  

The next key advancement in CCM comes from our discovery of the CCM1, 2 

and 3 common regulation of the abundance and activity of the small GTPase Rap1 

(Figure 6.1). The finding that CCM2 interacts with the E3 ligase Smurf2 has provided 

the preliminary basis for the next paradigm shift in molecular functions of the CCM 

proteins – the regulation of HECT family E3 ligases Smurf1 and Smurf2 for the 

regulation of RhoA and Rap1 signaling. The interaction between CCM2 and Smurf1 

and Smurf2 occurs between the PTB domain of CCM2 and the HECT domain of 

Smurf1 and Smurf2. The HECT family of E3 ligases encompasses twenty eight E3s 

(Rotin and Kumar, 2009; Bernassola et al., 2008). Whether CCM proteins regulate 

the activity of additional HECT E3 members remains unknown and a screen for 

additional HECT E3 interaction partners for CCM2 can provide the first 

comprehensive understanding of the molecular role of CCM proteins in cell 

physiology.  

Immunofluorescent staining for the phosphorylated form of the downstream 

effector for ROCK LIM Kinase in lesions extracted from CCM1, 2 and 3 patients has 
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shown an increase in phospho-cofilin in the endothelial monolayer of the lesions 

(unpublished data from Christopher F. Dibble, UNC-CH). This provided in vivo 

validation for the disease-relevance of our in vitro findings and defined CCM as a 

disease of aberrant cytoskeletal dynamics. Multiple signaling pathways converge on 

the regulation of the cytoskeleton, including signaling from RhoA and Rap1. Future 

studies will need to elucidate the relative contribution of RhoA, Rap1 and other small 

GTPases such as Rac1 and cdc42 which frequently function in conjunction with 

RhoA and Rap1 for the regulation of the cytoskeletal defect in CCM deficient 

endothelial cells. While we currently present preliminary evidence for the Smurf1 and 

Smurf2-dependent dysregulation of RhoA and Rap1 activity with loss of CCM 

proteins, additional experiments will need to validate the importance of Smurf1 and 

Smurf2 for the regulation RhoA and Rap1 relative to regulation by RhoGAPs and 

RhoGEFs. Specifically, the MTC and passive diffusion biophysical approaches 

presented here will be used to define the biomechanical profile in CCM deficient 

cells with agonist-induced activation of Rap1, inhibition of RhoA, or in wildtype cells 

with knockdown of Smurf1 or Smurf2. These studies will provide comprehensive 

understanding of the relative contribution of the two GTPases currently known to be 

dysregulated in CCM in the regulation of the cytoskeleton of CCM deficient cells, 

and will test for the involvement of additional GTPases in the cytoskeletal defect in 

CCM.  
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Figure 6.1: Proposed model for the molecular basis of CCM. We propose that 
through the interaction of CCM2 with Smurf1 and Smurf2, CCM1, 2 and 3 
coordinately regulate the degradation of RhoA and Rap1, leading to the increased 
RhoA and Rap1 activity. The increase in RhoA activity causes upregulation of 
phospho-MLC and phospho-Cofilin with a functional outcome of increased 
cytoskeletal stiffening and impaired lumen formation. Inhibition of ROCK with 
Y29632 or shRNA knockdown reverses the cytoskeletal stiffening defect and the 
impaired lumen-like tube formation in each of the CCM knockdown cell lines and 
marks ROCK as a potential therapuetic target for CCM. We propose that activation 
of Rap1 with Forskolin leads to activation of the the RhoGAP Arap3 and decrease in 
RhoA activity in each CCM1, 2 and 3 knockdown HUVECs. Rap1 activation rescues 
tube formation only in shCCM1 cells suggesting that while Arap3 GAP-mediated 
inactivation of RhoA is possible, the inactivation is not sufficent to reverse the 
phenotype in shCCM2 and shCCM3 cells presumably due to the requirement for 
Smurf1-dependent inactivation of RhoA.  
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