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Abstract

PARUL LAUL: Localized Energy Estimates Of The Wave Equation On Higher

Dimensional Hyperspherical Schwarzschild Spacetimes

(Under the direction of Jason Metcalfe)

The purpose of this dissertation is to discuss a robust way to measure dispersion

of the linear wave equation on the (n + 1)-dimensional Schwarzschild spacetime. One

of the greater motivations for studying the higher dimensional Schwarzschild and Kerr

spacetimes is to address the question of asymptotic stability of solutions to Einstein’s

equations. That is, if initial conditions are slightly perturbed, does the solution tend

to the unperturbed solution. Even in the simplest case (Minkowski spacetime), estab-

lishing nonlinear stability proved to be highly nontrivial. This was originally shown by

Christodoulou and Klainerman [23], and later simplified and generalized in [31] and [4],

respectively.

In considering the Kerr solution, we ask whether solutions to small perturbations of

Kerr initial data asymptotically approach perhaps a different member of the Kerr family.

Decay estimates are fundamental tools in addressing this question and by studying the

linear wave equation on Schwarzschild, we hope to gain some intuition in pursuing this

problem.

In this thesis we will determine localized energy estimates of the inhomogeneous wave

equation 2gφ = F on the (n + 1)-dimensional Schwarzschild manifold, for n ≥ 4. An

inevitable loss in the estimate arises due to trapped rays on a surface known as the photon

sphere. We then modify our technique and improve the estimate at this region.
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CHAPTER 1

Introduction

In this dissertation we discuss a robust way to measure dispersion of waves on the

higher dimensional hyperspherical Schwarzschild spacetime. The Schwarzschild manifold

is the unique spherically symmetric, stationary solution to the vacuum Einstein Equations

of General Relativity, and the simplest of which contains a black hole. Here we extend the

(3 + 1)-dimensional localized energy estimates of [34] to the (n+ 1)-dimensional case for

n ≥ 4. We adopt the notation d = n− 3 and write the (d+ 4)-dimensional Schwarzschild

manifold as M = R× (rs,∞)× Sd+2, with line element

ds2 = −
(

1− rd+1
s

rd+1

)
dt2 +

(
1− rd+1

s

rd+1

)−1
dr2 + r2dω2.(1.1)

Here dω denotes the surface element of Sd+2. The surface r = rs is known as the event

horizon or Schwarzschild radius, and physically represents the boundary of the black

hole.

When discussing localized energy estimates, one begins with the notion of a conserved

energy quantity. We define the wave operator or d’Alembertian,

2g := ∇α∂α = −
(

1− rd+1
s

rd+1

)−1
∂tt +

1

rd+2
∂r

[
rd+2

(
1− rd+1

s

rd+1

)
∂r

]
+ 6∇ · 6∇,

where 6∇ = 1
r
6∇0, and 6∇0 denotes the gradient on Sd+2. By exploiting its invariance under

time translation we then define the conserved energy, E[φ](t), with respect to the Killing



vector field ∂t, as

E[φ](t) =

∫
Sd+2

∫ ∞
rs

[(
1− rd+1

s

rd+1

)−1
(∂tφ)2(t, r, ω)

+

(
1− rd+1

s

rd+1

)
(∂rφ)2(t, r, ω) + |6∇φ|2(t, r, ω)

]
rd+2drdω.

Energy conservation in this case implies for φ satisfying the homogeneous wave equation

2gφ = 0, E[φ](t) = E[φ](0) for all time t. In what follows we consider the inhomogeneous

wave equation 2gφ = F and instead deduce the energy inequality,

E[φ](T ) . E[φ](0) +

∫ T

0

∫
Sd+2

∫
r≥rs
|2gφ||∂tφ|rd+2drdωdt.

In keeping with notation similar to [34], we set LE0 and LE∗0 to respectively describe

the localized energy and dual localized energy spaces, and define their respective norms

as,

||φ||2LE0
=

∫ ∞
0

∫
Sd+2

∫ ∞
rs

[
c0t (r)

(
1− rd+1

s

rd+1

)−1
(∂tφ)2(t, r, ω)+

c0r(r)

(
1− rd+1

s

rd+1

)
(∂rφ)2(t, r, ω) + c0ω(r)|6∇φ|2(t, r, ω) + c0(r)φ2(t, r, ω)

]
rd+2drdωdt,

||F ||2LE∗0 =

∫ ∞
0

∫
Sd+2

∫ ∞
rs

c0F (r)F 2rd+2drdωdt.

Here, the coefficients are given by

c0r = 1

rd+3

(
1−log

(
r−rs
r

))2 , c0ω = 1
r

(
r−rps
r

)2
, c0F =

rd+3( r−rsr )(1−log( r−rsr ))
3

( r−rpsr )
2

c0t =

(
r−rps
r

)2

rd+3

(
1−log

(
r−rs
r

))3 c0 = 1

r3

(
r−rs
r

)(
1−log

(
r−rs
r

))4 .

We point out that the surface r = rps :=
(
d+3
2

) 1
d+1 rs denotes the photon sphere and is

of particular importance in our results. We elaborate on a few features below and refer

the reader to Chapter 2 for a more detailed presentation.

With this setup, we state the main result of this dissertation:
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Theorem 1.1. Let φ satisfy the inhomogeneous wave equation 2gφ = F on the (d +

4)-dimensional hyperspherical Schwarzschild manifold. Then for d ≥ 1, we have the

following estimate

(1.2) sup
t≥0

E[φ](t) + ||φ||2LE0
. E[φ](0) + ||F ||2LE∗0 .

A few remarks are in order. First note that for large r the Schwarzschild spacetime

can be considered a slight perturbation of the Minkowski space. The results of [37]

and [38] then give an improved estimate near infinity, whereby the factor rd+3 in the

coefficients c0r(r), c
0
t (r) and c0F (r) can be replaced with r1+δ, δ > 0 . Second, we point

out the logarithmic singularity of the coefficients at r = rs, an indication of trapped rays

at the event horizon, is due to our choice of coordinates. It reinforces that in the given

(t, r, ω) coordinate system, the estimate is only meaningful exterior to the black hole. An

alternative coordinate choice and a non-degenerate energy quantity allows for estimates

within the black hole as well. This has been done in the (3 + 1)-dimensional case in

[17] and [34] and extended to higher dimensions in [44], 1 by exploiting the gravitational

redshift effect, a phenomenon we discuss in Chapter 2. Finally, we point out that the

coefficient of the angular derivative, c0ω, vanishes at the the photon sphere, an inevitable

loss again due to trapping. This will be discussed in greater detail in the subsequent

chapters. Here we point out that the quadratic loss can be improved to a logarithmic

loss, giving the stronger estimate

Theorem 1.2. Let φ satisfy the inhomogeneous wave equation 2gφ = F on the (d +

4)-dimensional hyperspherical Schwarzschild manifold. Then for d ≥ 1, we have that

estimate (1.2) holds, where the coefficients c0t , c
0
ω and c0F are now given by

c0t =

(
1−log| r−rpsr |

)−2

rd+3

(
1−log

(
r−rs
r

))3 , c0ω = 1
r

(
1− log

∣∣ r−rps
r

∣∣)−2
c0F =

rd+3( r−rsr )(1−log( r−rsr ))
4

(1−log| r−rpsr |)−2 .

1Upon submission of this thesis, we learned V. Schlue independently proved result (1.1) which later
appeared in ArXiv:1012.5963v1
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This thesis is divided as follows. In Chapter 2 we provide a condensed introduction

to the relevant aspects of General Relativity. We discuss the geometry of the Minkowski,

Schwarzschild and briefly, Kerr spacetimes, to establish the setting on which we consider

the localized energy estimates. In Chapter 3 we provide an overview of the known

localized energy estimates of the the wave equation in the (3 + 1)-dimensional case and

in Chapter 4 we prove the main result of the dissertation. In Chapter 5 we show how

the techniques in [34] can directly be applied to the higher dimensional case in order to

obtain the improved estimate.
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CHAPTER 2

General Relativity

General Relativity, or Einstein’s theory of relativity, is the discipline describing grav-

itational influences via geometry. The theory is formulated on a Lorentzian manifold

(M, g) called spacetime, and describes how the movement of particles is affected as a

consequence of gravitational forces. A distinguishing feature from classical Newtonian

physics is the fact that gravity is no longer considered a force, but instead an intrinsic

feature of the spacetime. Induced by mass, gravity causes the space-time to bend and

this bending is measured by curvature. The relationship between these two entities is

governed by Einstein’s Field Equations

(2.1) Rµν −
1

2
gµνR = 8πTµν ,

whereRµν is the Ricci tensor, R is the Ricci scalar, and Tµν is the stress energy-momentum

tensor of the surrounding matter distribution. The left hand side of (2.1), often denoted

Gµν := Rµν− 1
2
gµνR, is termed the Einstein tensor and enjoys the divergence free property

∇νG
µν ≡ 0. Moreover, conservation of energy-momentum implies that ∇µT

µν = 0. The

field equations are inspired by this relation, ie.∇νG
µν = ∇µT

µν , thus proposing the

tensors Gµν and Tµν to be proportional.

In this exposition, the localized energy estimates considered are described on certain

solutions to the (n+1)- dimensional vacuum equations, Tµν = 0. Equivalently, from (2.1)

this amounts to determining the metric such that Rµν ≡ 0. By imposing constraints on

the geometry of the spacetime, we discuss three different solutions, ordered by increasing

generality. In addition to the metric, we will also analyze particularly relevant properties

of the spacetimes including the structure of the geodesics and the notion of geodesic



trapped rays. The geodesic equations are given by

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0,(2.2)

where λ represents an affine parameter. Geodesics represent the natural, unaccelerated

course of a particle and hence are a fundamental tool in understanding the geometry of

the spacetime.

In regards to the metric, we will choose coordinates so that we may represent the

causal structure of events via a conformal diagram, as certain features of the geometry

will be more discernible in this case. However, in the estimates discussed in Chapters

3, 4 and 5, Cartesian and polar coordinates will be the systems of choice. Elaborating

slightly on the notion of causality, on a Lorentzian manifold (M, g), a tangent vector V

can be classified as being either time-like if g(V, V ) < 0, light-like or null if g(V, V ) = 0,

or space-like if g(V, V ) > 0. A curve x(λ) onM is said to be time-like, null or space-like,

if the tangent vector at each point of the curve is respectively, time-like, null or space-

like. At any given event P in spacetime, we define the set of all null vectors at P as the

light cone of P . This divides spacetime in to three regions and illustrates the fact that

physical particles can not move faster than the speed of light. The set of events that can

be reached via a time-like curve passing through P is said to describe the future light cone

of P , whereas those points which pass through P via a time like curve comprise of the

past light cone of P . In our study of waves, we consider causal curves, that is geodesics

that are either time-like or light-like. Finally, we denote i+, i−, and i0 as future timelike

infinity, past timelike infinity and spatial infinity, respectively, and I+, respectively, I−

as future, respectively, past null infinity.

We now describe the solutions to the vacuum equations considered in this exposition.

2.1. Minkowski Spacetime

The Minkowski spacetime (Rn+1, gM) is the trivial solution to the vacuum equa-

tions. In terms of Cartesian co-ordinates, the metric has matrix representation gM =

6



diag(−1, 1, ..., 1), or re-written in polar coordinates, ds2 = −dt2 + dr2 + r2dω2 where dω

is the surface element on Sn−1. The spacetime is described as being flat and thus, as

expected, solving the geodesics equations (2.2) yields straight lines,

x(λ) = (a0 + λb0, a1 + λb1, .., an + λbn),

where ai, bi ∈ R. The cartesian coordinate representation of Minkowski space does in fact

produce light-like curves at 45◦ so that the causal structure of events is easy to determine.

It is favourable, however, to compactify the space so that infinity is represented by a finite

value and thus geodesics can be represented in their entirety. A series of co-ordinate

transformations are conducted to achieve both properties. Define

1. u = t− r, v = t+ r

2. U = arctanu, V = arctan v

3. T = V + U, R = V − U

The end result is the metric ds2 = (cosT + cosR)(−dT 2 + dR2 + sin2Rdω2) where

R ∈ [0, π), and T ∈ (R− π,R+ π), [15]. The spacetime is compactified with finite time

and radial co-ordinates, and maintains the original 45◦ light cones that clearly describe

the causal structure of events. This is shown in Figure 2.1. below.

timelike particle
worldline of

i0

i+

i−

I+

I−

r = constantnull cone

t = constant

Figure 2.1. Penrose diagram of the Minkowski spacetime.
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Observe that all geodesics escape to infinity or minus infinity. That is, the Minkowski

space-time does not exhibit any trapped rays, a distinguishing feature from the spacetimes

described below.

2.2. Schwarzschild Spacetime:

It is on this setting for which the results of this dissertation are based, and hence

we provide greater details in formulating the solution. The Schwarzschild spacetime,

(M, g) is the non trivial spherically symmetric, static solution to the vacuum equations.

The term static refers to a spacetime which is stationary, that is, it admits a time-like

Killing vector field, and that this Killing vector field is orthogonal to a family of space-

like hypersurfaces. In terms of the metric in the traditional (t, x) coordinate system,

stationary implies the metric is time-independent, and the static condition imposes that

gtj = 0, where j = 1, ...., n, ie. there are no cross-terms in the matrix representation of

the metric. We point out that Birkhoff’s theorem states that any spherically symmetric

vacuum solution is necessarily static, and hence the Schwarzschild metric is the unique

solution under radial symmetry.

2.2.1. Metric derivation: We begin the derivation of the solution with the initial claim

that any spherically symmetric spacetime has line element of the form

ds2 = gaa(a, b)da
2 + gar(a, b)(dadb+ dbda) + gbbdb

2 + r2(a, b)dω2,(2.3)

where

dω2 =
[
dθ21 + (sin2 θ1)dθ

2
2 + (sin2 θ1 sin2 θ2)dθ

2
3 + ....+ (sin2 θ1 sin2 θ2 · · · sin2 θn−2)dθ

2
n−1
]

is the line element of the Sn−1 sphere. This is not obvious and the choice of the variable r

is merely suggestive notation. Several texts describe the solution, [15], [25], [40], [56], as

well the articles [43], [49]; we refer the reader to say, [15], for a more elaborate account

and from which this derivation is based. A simple change of coordinates allows us to

8



consider b = b(a, r) so that (2.3) becomes

ds2 = gaa(a, r)da
2 + gar(a, r)(dadr + drda) + grr(a, r)dr

2 + r2dω2.(2.4)

To eliminate the cross terms, we look for a function t(a, r) and note that t then satisfies

dt2 =

(
∂t

∂a

)2

da2 +

(
∂t

∂a

)(
∂t

∂r

)
(dadr + drda) +

(
∂t

∂r

)2

dr2.(2.5)

We wish to write (2.4) in the form

ds2 = m(t, r)dt2 + n(t, r)dr2 + r2dω2(2.6)

for some functions m,n. Thus substituting (2.5) in to this equation and comparing

with (2.4) imposes the conditions that gaa = m
(
∂t
∂a

)2
, gar = m

(
∂t
∂a

) (
∂t
∂r

)
, and grr =

m
(
∂t
∂r

)2
, a system of three equations to solve three unknowns t(a, r), m(a, r), n(a, r).

The assumption that our spacetime is Lorentzian forces either m or n to be negative

and the other positive. The choice is not arbitrary and we refer the reader to general

relativity texts, [15], [40], [56] for more detail. For our purposes, as the Schwarzschild

solution approaches the Minkowski spacetime for large r, we choose m to be negative

and write (2.6) as

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dω2.(2.7)

To solve the vacuum equations, we require determining α(t, r) and β(t, r) so that Rµν ≡ 0.

This in turn requires a calculation of the non-vanishing Christofell symbols and compo-

nents of the Riemann Tensor and Ricci Tensor. Denoting Ik = {k, ..., n− 1}, we have:

9



Christofell symbols:

Γttt = ∂tα(t, r) Γttr = ∂rα(t, r)

Γrtt = e2(α−β)∂rα(t, r) Γrtr = ∂tβ(t, r)

Γtrr = e2(β−α)∂tβ(t, r) Γrrr = ∂rβ(t, r)

Γθirθi = 1
r
, i ∈ I1, Γθiθjθi =

cos θj
sin θj

, i ∈ I2, j < i

Γrθ1θ1 = −re−2β Γrθiθi = −re−2βΠi−1
j=1 sin2 θj, i ∈ I2

Γ
θi−1

θiθi
= − sin θi−1 cos θi−1, i ∈ I2 Γ

θj
θiθi

= − sin θj cos θjΠ
i−1
k=j+1 sin2 θk,

i ∈ I2, j < i− 1

Riemann Tensor components:

Rt
rtr = e2(β−α)[∂2t β + (∂tβ)2 − ∂tα∂tβ] + [∂rα∂rβ − ∂2rα− (∂rα)2]

Rθ1
θiθ1θi

= (1− e−2β)Πi−1
k=1 sin2 θk, R

θj
θiθjθi

= −(e−2β + cos2 θj−1)Π
i−1
k=1 sin2 θk,

i ∈ I2 i ∈ I3, j < i

Rθi
θ1θiθ1

= 1− e−2β, i ∈ I2 R
θj
θiθjθi

= 1− (e−2β + cos2 θi−1)Π
i−1
k=1 sin2 θk,

i ∈ I2, j > i

Rt
θ1tθ1

= −re−2β∂rα Rt
θitθi

= −re−2β∂rαΠi−1
j=1 sin2 θj, i ∈ I2

Rt
θ1rθ1

= −re−2α∂tβ Rt
θirθi

= −re−2α∂tβΠi−1
j=1 sin2 θji ∈ I2

Rr
θ1rθ1

= re−2β∂rβ Rr
θirθi

= re−2β∂rβΠi−1
j=1 sin2 θj, i ∈ I2

Ricci tensor components:

Rtt = [∂2t β + (∂tβ)2 − ∂tα∂tβ] + e2(α−β)[∂2rα + (∂rα)2 − ∂rα∂rβ + 2
r
∂rα]

Rrr = −[∂2rα + (∂rα)2 − ∂rα∂rβ − 2
r
∂rβ]

Rθ1θ1 = e−2β[r(∂rβ − ∂rα)− (n− 2)] + (n− 2)

Rθiθi = Rθ1θ1Π
i−1
j=1 sin2 θj, i ∈ I2

Rtr = 2
r
∂tβ

The condition that Rµν = 0 in particular implies that Rtr = 2
r
∂tβ = 0, so that

β = β(r). Moreover using Rθ1θ1 = 0 and differentiating with respect to t, we may deduce

that ∂t∂rα(t, r) = 0. Thus α takes the form α(t, r) = f(r) + g(t). Choosing t such that

10



g(t) = 0, and substituting these in to (2.7) yields

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dω2.(2.8)

With our choice of coordinates and initial claim, we have shown that the spherically

symmetric assumption on the solution necessarily implies the metric is static.

Next, we consider the other components of the Ricci tensor. With α, β independent of

time, and both Rtt, Rrr = 0, we obtain e−2(α−β)Rtt+Rrr = 2
r
(∂rα+∂rβ) = 0. This shows

the sum of α and β is a constant c, and (2.8) becomes ds2 = −e−2βe2cdt2+e2βdr2+r2dω2.

Changing variables so that t→ e−ct, the metric takes the form

ds2 = −e−2βdt2 + e2βdr2 + r2dω2,(2.9)

and we are left to determine the function β. The equation Rθ1θ1 = 0 reduces to solving

e−2β(2r∂rβ − (n− 2)) = −(n− 2), or equivalently

∂r(r
n−2e−2β) = (n− 2)rn−3.(2.10)

Denoting the constant of integration as rn−2s , we deduce that e−2β =
(

1− rn−2
s

rn−2

)
, thus

completing the derivation. Note that we have an overdetermined system for α and β. It

can be readily verified that the other components of the Ricci tensor do in fact vanish

with β defined above.

The physical interpretation of the constant of integration can be determined by the

fact that in the limit r → ∞, the Schwarzschild solution approaches the Minkowski

spacetime and must coincide with Newtonian theory. In the weak field limit, ie. slight

perturbations of the Minkowski solution, the gtt component of the metric is found to be

−
(

1− 16πG
(n−1)ωn−1

M
rn−2

)
, where M describes the relativistic mass of the body, ωSn−1 denotes

the area of Sn−1, and G is the gravitational constant, [43]. A direct correspondence with

our solution above implies rn−2s = 16MπG
(n−1)ωn−1

, and thus we may interpret the constant rs

as the mass of the rotating object. In particular, setting G = 1 we obtain the well known

11



feature that rs = 2M in the (3 + 1)-dimensional case . We emphasize that this mass

parameter alone describes the family of Schwarzschild solutions.

In the remainder of this exposition it will be convenient to use the notation d =

n−3 to represent the spatial dimension. In Schwarzschild coordinates, the Schwarzschild

manifold (M, g) is then given by the space M = R× (rs,∞)× Sd+2, with line element

ds2 = −
(

1− rd+1
s

rd+1

)
dt2 +

(
1− rd+1

s

rd+1

)−1
dr2 + r2dω2.(2.11)

Before performing a series of coordinate transformations so as to obtain a representation

that easily depicts the causal structure of the spacetime, we highlight a few key points

described by the metric at hand. The surface r = rs, termed the Schwarzschild radius, or

event horizon, represents the distance from the centre of the mass to the radius at which

the gravitational escape velocity is the speed of light. As photons can not escape the

gravitational pull once inside this radius, the region r < rs forms a black hole. Also note

that from (2.11), the metric appears undefined at r = rs. This turns out to merely be a

consequence of the chosen coordinates and we will shortly see that many other coordinate

systems do not exhibit this singularity. Finally, observe that the metric is also singular

at r = 0. This is in fact a true singular point in the spacetime and represents the point

of infinite curvature.

2.2.2. Geodesic equations/Trapped rays: To determine the geodesics of this space-

time, we choose the coordinate system (r, t, θ1, θ2, ...θd+2), and seek curves x(λ) satisfying

(2.2). This set of coupled equations is greatly reduced once considering the symmetries

of the spacetime. Since the metric components are independent of t, θ1, ....θd+2 we deduce

that ∂t, ∂θ1 , ...∂θd+2
are Killing vector fields. Moreover, rotational symmetries, correlating

to conservation of angular momentum, imply that particles traverse in a plane. Thus,

we may assume without loss of generality that θ1 = θ2 = · · · = θd+1 = π/2. This gives

12



the Killing vector fields

K = ∂t ←→ Kµ =

(
−
(

1− rd+1
s

rd+1

)
, 0, ..., 0

)
(2.12)

R = ∂θd+2
←→ Rµ = (0, ..., 0, r2Πd+1

i=1 sin2 θi
∣∣
θi=π/2

) = (0, ..., 0, r2).(2.13)

Next, we claim that Killing vectors fields are constant along geodesic flows. Indeed, by

definition, if ξ is Killing then ∇νξµ +∇µξν = 0. Furthermore, if we let γ be a geodesic

with tangent vector uµ then by defintion ∇νu
µ = 0 and hence uν∇νu

µ = 0. Consider

then

uδ∇δ(g(ξ, u)) = uδ∇δ(ξµu
µ) = uδuµ∇δξµ + ξµu

δ∇δu
µ.

The first term vanishes by the defining property of Killing vector fields, and the sec-

ond vanishes since γ is a geodesic. Thus along geodesics, ξµu
µ = constant as claimed.

Applying this to the vectors K and R above, we have the conserved quantities

E := −Kµ
dxµ

dλ
=

(
1− rd+1

s

rd+1

)
dt

dλ
(2.14)

L := Rµ
dxµ

dλ
= r2

dθd+2

dλ
.(2.15)

Physically, the time translation and rotational symmetry respectively correspond to con-

servation of energy and angular momentum. In addition to these conserved quantities,

the geodesic equations D
dλ

dxµ

dλ
= 0 imply

−gµν
dxµ

dλ

dxν

dλ
= 0,(2.16)

for null geodesics. Expanding (2.16) for x(λ) yields,

−
(

1− rd+1
s

rd+1

)(
dt

dλ

)2

+

(
1− rd+1

s

rd+1

)−1(
dr

dλ

)2

+ r2
(
dθd+2

dλ

)2

= 0,

13



or equivalently

−
(

1− rd+1
s

rd+1

)2(
dt

dλ

)2

+

(
dr

dλ

)2

+ r2
(

1− rd+1
s

rd+1

)(
dθd+2

dλ

)2

= 0.

We substitute (2.14) and (2.15) in to the above equation to obtain

−E2 +

(
dr

dλ

)2

+

(
1− rd+1

s

rd+1

)(
L2

r2

)
= 0.(2.17)

Let V (r) = 1
2
L2

r2

(
1− rd+1

s

rd+1

)
denote the effective potential of the geodesic. We may then

interpret (2.17) as describing the trajectory of a particle with energy 1
2
E2 in a one di-

mensional potential, V , [55]. Specifically, this relationship can be written as

1

2

(
dr

dλ

)2

+ V (r) =
1

2
E2.(2.18)

As the angular momentum varies we obtain different trajectories governed by V (r). Con-

sider first the case where the angular momentum identically vanishes, L ≡ 0. This corre-

sponds to radial null geodesics and equation (2.18) becomes
(
dr
dλ

)2
=
(

1− rd+1
s

rd+1

)2 (
dt
dλ

)2
.

By scaling λ we may assume E = 1 so that dr
dλ

= ±1, and hence r = ±λ. In particular,

dt
dr

= ±
(

1− rd+1
s

rd+1

)−1
so that as r → rs we have that dt

dr
→ ±∞. That is, the slope of

the light cones in the r − t coordinate system become vertical. This suggests that null

geodesics tangent to the surface at r = rs are trapped, neither escaping to infinity or

the singularity, but instead are moving “vertically”. However, due to the red shift effect,

energy loss is exhibited, in fact, exponentially. This phenomenon essentially asserts that

the stronger the gravitational influence, proper time of an object slows down. Thus fre-

quency of waves radiated by objects near prominent gravitational fields lowers, shifting

to the red end of the electromagnetic spectrum. The proportionality between energy

and frequency thus implies energy loss. The red shift effect is apparent in the above

situation. The fact that dt
dr
→ ±∞ suggests that it is not possible for objects to reach,

let alone, surpass the surface r = rs. Objects falling in to the black hole do in fact cross

r = rs, however to an observer at infinity, it appears as if the object only asymptotically

14



approaches this surface. This misleading observation can be rectified by choosing an

alternate coordinate system.

Next consider the case where L is not identically 0. As above, we may set E = 1,

and seek r(λ) satisfying (
dr

dλ

)2

+
L2

r2

(
1− rd+1

s

rd+1

)
= 1.(2.19)

The behaviour of the particle is determined by the potential. At non-extreme points,

the photons move along the potential until possibly reaching a turning point ie.
(
dr
dλ

)2
=

0, and then traverse in the opposite direction. Of our interest is when the potential

attains extrema values, as this corresponds to particles moving in a circular orbit. Local

maxima (resp. local minima) correspond to unstable (resp. stable) orbits. We calculate

dV
dr

= − 2L2

rd+4

(
rd+1 − (d+3)rd+1

s

2

)
= 0 and find this occurs at r = rps := rs

(
d+3
2

)1/d+1
,

easily classified as a maximum of the function. The surface r = rps is called the photon

sphere, and like r = rs, it is a trapped surface. It is of particular importance as null

geodesics initially tangent to this surface will remain in a circular orbit, necessitating a

loss in energy estimates. Nonetheless, as a maximum of the potential, the photons will be

unstable here and hence slight perturbations will cause them to deviate from the orbit.

The above calculations classify the null geodesics of the Schwarzchild spacetime and

in particular, reveal the trapping phenomenon that is absent in Minkowski. In the last

section on Schwarzschild we re-write (2.11) and determine the Penrose representation.

2.2.3. Causal representation of Schwarzschild: We determine a suitable coordinate

system to represent the causal structure of geodesics and compactify the Schwarzschild

space-time. We write the sequence of coordinate transformations and refer the reader to

say, [15], [40], [56] for a more detailed account on the motivation of each step. We begin

by defining the Regge-Wheeler Tortoise co-ordinates, r∗,

r∗(r) =

∫ r

rps

(
1− rd+1

s

ρd+1

)−1
dρ,(2.20)
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with corresponding Schwarzschild line element,

ds2 = −
(

1− rd+1
s

rd+1

)
(dt2 − dr∗2) + r2dω2.(2.21)

We highlight that in these coordinates as r → rs, r
∗ ≈ ln(r − rs); thus, r∗ → −∞ as

r → rs. We then define the Eddington-Finkelstein coordinates

ũ = t+ r∗, ṽ = t− r∗

so that now

ds2 = −
(

1− rd+1
s

rd+1

)
dũdṽ + r2dω2.(2.22)

Let

u′ = e
ũ

2rd+1
s = e

r∗+t
2rd+1
s , v′ = −e

−ṽ
2rd+1
s = −e

r∗−t
2rd+1
s ,

with line element

ds2 = 4r2(d+1)
s

(
1− rd+1

s

rd+1

)
e
− r∗

rd+1
s du′dv′ + r2dω2.(2.23)

Defining the higher dimensional analog of the Kruskal-Szekres coordinates, we have

u =
1

2
(u′ + v′) = e

r∗

rd+1
s cosh

(
t

2rd+1
s

)
, v =

1

2
(u′ − v′) = e

r∗

rd+1
s sinh

(
t

2rd+1
s

)
,(2.24)

where now the line element becomes

ds2 = 4r2(d+1)
s

(
1− rd+1

s

rd+1

)
e
− r∗

rd+1
s (du2 − dv2) + r2dω2.(2.25)

Observe that r∗ and u, v satisfy u2 − v2 = e
r∗

rd+1
s → 0 as r → rs so that the event horizon

is described by the lines v = ±u. The relationship between t and u, v is given by the
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Figure 2.2. Penrose diagram of the Schwarzschild spacetime.

equation v
u

= tanh
(

t

2rd+1
s

)
. To obtain a closed form of the space, define

u′′ = arctan

(
u′√
rd+1
s

)
, v′′ = arctan

(
v′√
rd+1
s

)
(2.26)

where u′′, v′′ ∈
(
−π

2
, π
2

)
and −π < u′′ + v′′ < π. Then

tanu′′ tan v′′ =
1

rd+1
s

e
r∗

rd+1
s ,

tanu′′

tan v′′
= e

t

rd+1
s ,(2.27)

and the Penrose diagram is shown in Figure 2.2.

Regions I and II depict the exterior and interior of the blackhole, respectively. Re-

gions I ′ and II ′ constitute the symmetric universe, and are physically unrealistic. Region

II ′ is the so called white hole, representing a region in which objects can enter our uni-

verse but not the reverse whereas Region I ′ depicts the trajectories of space like, hence

unphysical particles. The estimates presented in this dissertation are carried through

solely in Region I.

2.3. Kerr Spacetime

We provide a very brief description of the higher dimensional Kerr solution to the

vacuum equations, as this is the setting to which we hope to extend the results of this

dissertation. The Kerr spacetime is an axial-symmetric, rotating black-hole, with angular
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momentum a. The solution to Einstein’s equations in the Boyer-Lindquist coordinate

system is given by

ds2 = −
(

1− rd+1
s

rd−1ρ2

)
dt2 +

2rd+1
s

rd−1ρ2
a sin2 θ1dtdθ2 +

ρ2

∆
dr2 + ρ2dθ21

+

(
r2 + a2 +

rd+1
s

rd−1ρ2
a2 sin2 θ1

)
sin2 θ1dθ

2
2 + r2 cos2 θ1dω

2
Sd ,

where, ρ2 = r2+a2 cos2 θ1 and ∆ = r2+a2− rd+1
s

rd−1 , [24]. The apparent singularity at ∆ = 0

is merely due to the chosen coordinates whereas the surface defined by ρ = 0 is actually

a true singularity, evidenced by the diverging Ricci scalar RρσµνR
ρσµν at this point. Both

r = 0 and θ1 = π
2

are singular points so that unlike the Schwarzschild spacetime, the

“point” of infinite curvature is now a ring. The Kerr metric is also undefined at the roots

of the equation ∆ = 0. It is precisely these surfaces that determine the event horizon of

a black hole and can be found by solving

y(r) = rd+1 + a2rd−1 − rd+1
s = 0.(2.28)

For d = 0, there are precisely two horizons, r± =
rs±
√
r2s−4a2
2

; however for d ≥ 1, y(r) has

only one positive root and thus the black hole necessarily has exactly one horizon [24].

A conformal representation of the (3 + 1)-dimensional (d = 0) Kerr spacetime is shown

in Figure 2.3. Region I depicts the physical universe, while Region II denotes the region

between the two horizons. Note that upon passing the first horizon (the boundary of the

black hole and the equivalent of r = rs in Schwarzschild), the radial coordinate reverts

from being spacelike to timelike thus causing the particle to move in the direction of

decreasing r. Particles are then necessarily forced to pass the second horizon where r

switches back to being spacelike. It is therefore possible to avoid the singularity ρ2 = 0,

and enter another universe (Region I), or pass the singularity to enter a so called negative

space, Region III.
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Figure 2.3. Conformal diagram of the (3 + 1)-dimensional Kerr spacetime.

Determining the trapped null geodesics of Kerr is far more complicated than in the

Schwarzschild solution. It is now necessary to adhere to microlocal analysis, as char-

acterizing these regions requires both space and frequency components. For d = 0, we

refer the reader to [53] and references therein, where it is shown that all trapped null

geodesics lie within O(a) of the surface r = 3M, the photon sphere for d = 0.
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CHAPTER 3

Localized Energy Estimates for the Wave Equation in

(3 + 1)-dimensions

The localized energy estimates under consideration are the so-called Morwatez type

estimates. In this section we summarize a few known results on the (3 + 1)-dimensional

Minkowski, Schwarzschild and Kerr spacetimes.

3.1. Minkowski Spacetime

Estimates of this type were first introduced by Morwatez in studying the decay prop-

erties of the Klein-Gordon equation [41]. As a consequence, if φ solves the flat homoge-

neous wave equation 2φ := ∂2ttφ − ∆φ = ∂2ttφ −
∑n

j=1 ∂
2
jjφ = 0, with initial conditions

φ0 = φ(0) and φ1 = ∂tφ(0), then for n ≥ 3, the estimate∫ T

0

∫
Rn

1

r
|6∇φ(t, x)|2dxdt . ||∇φ0||2L2 + ||φ1||2L2(3.1)

can be used to show that the solution and the local energy decay to zero as T tends to

infinity. Here, the implicit constant is independent of T , r = |x| is the radial component

of x and 6∇φ denotes the angular derivative of φ, defined as 6∇j = ∂j − xj
r
∂r. This can

be proved via the positive commutator method, although we remark that Morawetz’s

original proof relied on clever energy identities. The commutator technique essentially

requires determining an appropriate differential multiplier X = f(r)∂r + n−1
2

f(r)
r

and

analyzing the space-time integral
∫ T
0

∫
Rn(2φXφ)dxdt, [47]. Upon integrating by parts

we determine conditions imposed on f(r) necessary to obtain a meaningful estimate. In

particular, the decay estimate (3.1) can be determined by choosing f(r) ≡ 1. By altering

the multiplier, that is, choosing appropriate functions f(r), we may generate other such



estimates. For example, considering the function f(r) = r
r+2j

and integrating over dyadic

annuli Aj = 2j−1 ≤ |x| ≤ 2j, gives

||〈x〉−1/2∇t,xφ ||2L2
t,x([0,T ]×Aj)

+ ||〈x〉−3/2φ||2L2
t,x([0,T ]×Aj)

. ||∇φ0||2L2 + ||φ1||2L2 ,(3.2)

where 〈x〉 denotes the Japanese bracket
√
|x|2 + 1. An estimate over all of Rn is achieved

by including a summability factor, and hence comes at the cost of replacing the terms

〈x〉−1/2 and 〈x〉−3/2 by the weights 〈x〉−1/2−δ and 〈x〉−3/2−δ, respectively. Otherwise,

allowing for a logarithmic blow up in time, we obtain

(3.3) (log(2 + T ))−1
(
||〈x〉−1/2∇xφ ||2L2

t,x([0,T ]×Rn)
+ ||〈x〉−3/2φ||2L2

t,x([0,T ]×Rn)

)
.

||∇φ0||2L2 + ||φ1||2L2 .

By introducing an appropriate dual norm we may generalize the hypothesis and consider

solutions to the inhomogeneous wave equation, 2φ = F . A more detailed account is

provided in the proof of the dissertation result.

Variations of the above estimates can be found in [27], [29], [28], [35], [45],[47], [48].

For the variable coefficient wave equation, see for example [1], [37], [38], [39], and [13],

[14], for time-dependent and independent perturbations, respectively.

The applications of localized energy estimates have been widespread, having played a

role in establishing long-time existence to the semi- and quasi-linear wave equations, e.g.

[28], [37], in proving global Strichartz estimates e.g. [14], [36], [45] and in scattering

theory e.g. [42], [48].

3.2. Schwarzschild spactime

In developing the same type of theory for the black hole setting, localized energy

estimates have also been studied on the (3 + 1)-dimensional Schwarzschild spacetime.

Such estimates were originally established for the Schrödinger equation with radially

symmetric data, [32], and thereafter for the wave equation, [6] -[8], [18], [20], [34].

Conformal Morawetz type estimates are shown in [12] and [17]; these are estimates
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analogous to Morawetz conformal estimates on Minkowski space-time, obtained by using

the multiplier (t2 + r2)∂t + 2tr∂r.

The approach used in establishing localized energy estimates in [6], [7], [17], [16],

[32] is to decompose the wave equation into spherical harmonics, determine a multiplier

on each harmonic, l, and then sum over all l. In contrast, the technique exploited in

[20] and [34] refrains from a spherical harmonic decomposition so as to avoid potential

summability issues. Consequently, only one multiplier is required.

Recall from Chapter 2 that the event horizon, r = rs, and the photon sphere, r = rps,

a priori impose difficulties in measuring the dispersion of waves. Photons may potentially

remain on these surfaces and not propagate out to infinity. On the photon sphere, the

instability of the rays here does permit energy decay, albeit with a loss. Specifically, in

[6] -[8] and [17], a quadratic polynomial loss is established at this region. However, it is

shown in [34] that the estimate near the photon sphere can be improved to a logarithmic

loss. By using Regge-Wheeler coordinates, decomposing the solution into spherical har-

monics and performing the Fourier transform in the time variable, one obtains an ODE

modeled by φ′′+λ2(x2±ε)φ = f . A WKB approximation gives an asymptotic expansion

of solutions to this ODE which in turn leads to the logarithmic energy loss at the photon

sphere.

The trapped rays on the event horizon also pose a potential problem, however the

red shift effect renders this trapping as negligible [18]. The logarithmic loss here, shown

in [6] -[8] and [17], is improved in [34] whereby using a non-degenerate energy, changing

coordinates and exploiting gravitational redshift [17], the estimate is extended past the

event horizon, although not so far as to the singularity. These results are used in showing

global Strichartz estimates of solutions to the wave equation on Schwarzschild. More

recently, the localized energy estimates determined in [34] have been used in establishing

the conjectured Price’s Law, which states that solutions to the wave equation have a

pointwise decay rate of |t|−3, [51].
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3.3. Kerr spacetime

Dispersive estimates on Kerr are very much a newly developing theory. Estimates for

solutions with small angular momentum a�M have been established, as here the Kerr

spacetime is considered a small perturbation of Schwarzschild; see [3], [19]-[22], [52],

[53]. The increased difficulty in the problem is due to the fact that a single differential

multiplier is no longer sufficient to obtain an estimate, and one must resort to two tensors

or pseudodifferential operators [2], [3], [17]. Furthermore, recall from Chapter 2 that the

trapped sets are also more complicated; we must adhere to microlocal analysis, as both

spatial and frequency components are necessary to classify them.
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CHAPTER 4

Higher Dimensional Localized Energy Estimate for the Wave

Equation on the Schwarzschild Spacetime

Here we prove the main result of the dissertation, Theorem 1.1, stated in the Intro-

duction. The technique we pursue is the so called Positive Commutator method. Recall

that the wave equation can be considered as the critical point of the Lagrangian func-

tional
∫ T
0

∫
Sd+2

∫
r≥rs L(φ, g)rd+2drdωdt, where L is the Lagrange density or Lagrangian

given by L = gαβ∂αφ∂βφ. Associated to L, we may define the stress-energy momentum

tensor, Qαβ := ∂L
∂gαβ
− 1

2
gαβL, which becomes

Qαβ[φ] = ∂αφ∂βφ−
1

2
gαβ∂

γφ∂γφ(4.1)

for the specific choice of L defined above. One of the most important features of this

tensor is ∇αQαβ = 2gφXφ, and in particular, it is divergence free if 2gφ = 0, [50]. Con-

tracting Qαβ with the radial multiplier X =
(

1− rd+1
s

rd+1

)
f(r)∂r, we form the momentum

density Pα[φ,X] = Qαβ[φ]Xβ, with divergence

∇αPα[φ,X] = ∇αQαβ[φ]Xβ +Qαβ[φ]∇αXβ

= 2gφXφ+Qαβ[φ]παβ

= 2gφXφ+ f ′(r)
(

1− rd+1
s

rd+1

)2
(∂rφ)2 +

(rd+1 − rd+1
ps

rd+1

)f(r)

r
|6∇φ|2

− 1

2

[(
1− rd+1

s

rd+1

)
r−(d+2)∂r(r

d+2f(r))
]
∂γφ∂γφ.

(4.2)

Here παβ = 1
2
(∇αXβ + ∇βXα) denotes the deformation tensor of X. The theorem will

follow by taking the space time integral of the divergence of appropriate momentum



density tensors. We will divide our analysis in to considering the spatial derivatives and

lower order terms separate from the time derivative term in the theorem.

4.0.1. (∂rφ)2, |6∇φ|2, φ2 terms:. In equation (4.2), we observe that the last term con-

sisting of the Lagrangian is unsigned. However, as the name of the technique suggests,

we ideally seek positive terms. Consequently we define

P̃α[φ,X] = Pα[φ,X] +
1

2

[(
1− rd+1

s

rd+1

)
r−(d+2)∂r(r

d+2f(r))
]
φ∂αφ

− 1

4
∂α

[(
1− rd+1

s

rd+1

)
r−(d+2)∂r(r

d+2f(r))
]
φ2,

and recompute the divergence

(4.3)

∇αP̃α[φ,X] = 2gφ
[
Xφ+

1

2

{(
1− rd+1

s

rd+1

)
r−(d+2)∂r(f(r)rd+2)

}
φ
]

+
(

1− rd+1
s

rd+1

)2
f ′(r)(∂rφ)2 +

(rd+1 − rd+1
ps

rd+1

)f(r)

r
|6∇φ|2

−1

4
∇α∂α

[(
1− rd+1

s

rd+1

)
r−(d+2)∂r(f(r)rd+2)

]
φ2.

With an appropriate choice of the radial function f(r), the theorem follows by taking the

space-time integral of equation (4.3) and bounding the resulting expression by the initial

energy and dual localized energy norm. Specifically, upon integrating over the space-time

slab [0, T ]× (rs,∞)× Sd+2 and applying the divergence theorem, (4.3) becomes

−
∫
Sd+2

∫
r≥rs

f(r)∂tφ∂rφ r
d+2 dr dω

∣∣∣T
0
−1

2

∫
Sd+2

∫
r≥rs

1

rd+2
∂r(f(r)rd+2)φ∂tφ r

d+2 dr dω
∣∣∣T
0

−
∫ T

0

∫
Sd+2

∫
r≥rs

2gφ

(
Xφ+

1

2

(
1− rd+1

s

rd+1

)
r−(d+2)∂r(f(r)rd+2)φ

)
rd+2drdωdt =

∫ T

0

∫
Sd+2

∫
r≥rs

(
1− rd+1

s

rd+1

)2

f ′(r)(∂rφ)2 +

(
rd+1 − rd+1

ps

rd+1

)
f(r)

r
|6∇φ|2 + l(f)φ2rd+2drdωdt,

(4.4)

where we have set

l(f) = − 1

4rd+2
∂r

(
rd+2

(
1− rd+1

s

rd+1

)
∂r

(
1

rd+2

(
1− rd+1

s

rd+1

)
∂r(r

d+2f(r))

))
.
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We remark that the above integration was conducted under the assumption that f(r)

is C2(R). Ideally, we would like to choose f(r) such that in addition to this regularity

condition, f(r) is bounded and all three terms in the integrand of the right hand side

of (4.4) are non-negative. It appears, however, that this is not possible and we sacrifice

the regularity of f(r). In doing so, we pick up boundary terms that must be controlled.

Moreover, with the choice of f(r) described below we find that l(f)φ2 is not signed. We

instead show that
∫ ∫ ∫

l(f)φ2rd+2drdωdt is bounded below by a positive term minus a

fraction of the (∂rφ)2 term and a small radial boundary term.

We naively begin our construction by defining

g(r) =
rd+2 − rd+2

ps

rd+2
and h(r) = log

(
rd+1 − rd+1

s
d+1
2
rd+1
s

)
,

and setting the multiplier to equal

g(r) +
Ard+1

s

rd+2
h(r),

for a constant A > 0 to be determined. We find that in addition to h(r) being unbounded

at rs, ensuring the appropriate signs for f ′(r) and l(f) leads to contradicting restrictions

on the choice of A. Despite these fallacies, we use this as a base in constructing the

multiplier. Note that the main source of the issues arise from the logarithmic term,

A

rd+2
h(r) at rs and at infinity. Consequently, the idea we pursue is to smooth out h(r)

at these two regions.

We set

a(x) =



−1
ε

εx+1
δ(εx+1)−1 − 1

ε
, x ≤ −1

ε

x, −1
ε
≤ x ≤ 0

x− 2
3α2x

3 + 1
5α4x

5, 0 ≤ x ≤ α

8α
15
, x ≥ α
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for α = 5− δ0, and 0 < δ0, ε� 1. Note that except for the discontinuity of a′′ at x = −1
ε

a is C2. We use this as a smoothing function and define the bounded function

f(r) = g(r) +
Ard+1

s

rd+2
a(h(r)),(4.5)

where A = d+2
d+3

rps. The choice of A and α will be described in the calculations be-

low. To simplify notation, we let rθ be the value of r such that h(rθ) = θ, ie. rθ =

rs
(
d+1
2
eθ + 1

) 1
d+1 . Thus f ′′(r) is discontinuous at r− 1

ε
so that in integrating (4.3), we must

add the positive term 1
4
rd+2
− 1
ε

(
1− rd+1

s

rd+1

− 1
ε

)2 (
f ′′(r−− 1

ε

)− f ′′(r+− 1
ε

)
) ∫ T

0

∫
Sd+2 φ

2(t, r− 1
ε
, ω)dωdt

or equivalently,

(4.6)
Ard+1

s (d+ 1)2

2

δε

r2−1/ε

∫ T

0

∫
Sd+2

φ2(t, r− 1
ε
, ω)dωdt

to the right hand side of equation (4.4).

The choice of a lends itself in to dividing the analysis in to four cases:

Case 1. r ∈ (rs, r− 1
ε
]

Case 2. r ∈ [r− 1
ε
, rps]

Case 3. r ∈ [rps, rα]

Case 4. r ∈ [rα,∞).

For each case, we readily show

•f(r) > 0 for r > rps and f(r) < 0 for r < rps

•f ′(r) > 0 for r > rs.
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The difficulty in our analysis comes primarily in the coefficient of the lower order term,

φ2. With additional effort, we prove

• in Cases 2-4, l(f) ≥ 0

• in Case 1, for 0 < κ1 < 1, κ2 > 0 and p(r) > 0,∫ ∫ ∫
l(f)φ2rd+2drdωdt ≥

∫ ∫ ∫
p(r)φ2 − κ1

(
1− rd+1

s

rd+1

)2
f ′(r)(∂rφ)2rd+2drdωdt

− κ2
∫ ∫

δεφ2(r−1/ε)dωdt,

where the radial boundary term above will be controlled by the commutator in Case 2.

This will show that the right hand side of (4.4) is non-negative as desired, and it will

remain to show the time boundary terms are dominated by the energy E[φ](t). The

latter will be proven in subsection 4.0.3. We proceed case by case:

Case 1: r ∈ (rs, r−1/ε]

The multiplier in this region was so constructed to smooth out the logarithmic blowup

of f(r) at the event horizon. For r in this region, h(r) ≤ −1
ε

so that a(h(r)) < 0. Thus

f(r) < 0 and

(4.7) f ′(r) =
(d+ 2)rd+2

ps

rd+3
− Ard+1

s (d+ 2)

rd+3
a(h(r))

+
Ard+1

s

rd+2

(d+ 1)rd(
δ(εh(r) + 1)− 1

)2
(rd+1 − rd+1

s )
> 0
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as desired. Next we consider l(f),

(4.8) l(g(r)) + l
(Ard+1

s

rd+2
a(h(r))

)
=

d+ 2

4r2d+5

(
dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2d+2
s

)
+
Ard+1

s (d+ 1)(d+ 3)

2

(rd+1
ps − rd+1)

r2d+6
a′(h(r))

+
Ard+1

s (d+ 1)2(d+ 5)

4

1

rd+5
a′′(h(r))

− Ard+1
s (d+ 1)3

4

1

r4(rd+1 − rd+1
s )

a′′′(h(r)).

Given that a′(h(r)) = (δ(εh(r) + 1) − 1)−2 > 0 and r < r−1/ε < rps, the second term

in the right is positive. The third term in the right of (4.8) also has the desired sign as

a′′(h(r)) = −2δε/(δ(εh(r) + 1) − 1)3 and h(r) ≤ −1/ε here. Observe that l(g) < 0 in

this range; however, we will use its boundedness property to show it can be controlled

for ε sufficiently small. We thus concentrate our efforts on the last term. Beginning with

a straightforward application of the Fundamental Theorem of Calculus, we find

(4.9)

∫ r−1/ε

rs

∂r

(
2Ard+1

s δε(d+ 1)2

r2(R(r))3
φ2(r)

)
dr = −2Ard+1

s δε(d+ 1)2

r2−1/ε
φ2(r−1/ε),

where we have introducedR(r) = (δ(εh(r)+1)−1) and suppressed the t and ω dependence

of φ, to simplify notation. Calculating the derivative of the integrand yields

(4.10)

∫ r−1/ε

rs

6Ard+1
s δ2ε2(d+ 1)3

r2(R(r))4
rd

rd+1 − rd+1
s

φ2 dr

= −
∫ r−1/ε

rs

4Ard+1
s δε(d+ 1)2

r3(R(r))3
φ2 dr +

∫ r−1/ε

rs

4Ard+1
s δε(d+ 1)2

r2(R(r))3
φ∂rφ dr

+
2Ard+1

s δε(d+ 1)2

r2−1/ε
φ(r−1/ε)

2.

We apply the Cauchy Schwarz inequality to the second term to obtain

(4.11)

∫ r−1/ε

rs

4Ard+1
s δε(d+ 1)2

r2(R(r))3
φ∂rφdr ≤

4

3

∫ r−1/ε

rs

Ard+1
s (d+ 1)(rd+1 − rd+1

s )

rd+2(R(r))2
(∂rφ)2dr

+ 3

∫ r−1/ε

rs

Ard+1
s δ2ε2(d+ 1)3

r2(R(r))4
rd

rd+1 − rd+1
s

φ2dr.
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In combining the results of (4.10) and (4.11), we find

(4.12)

∫ r−1/ε

rs

Ard+1
s (d+ 1)3

4

1

r4(rd+1 − rd+1
s )

a′′′(h(r))φ2rd+2dr ≤∫ r−1/ε

rs

2Ard+1
s (d+ 1)

3

(rd+1 − rd+1
s )

rd+2(R(r))2
(∂rφ)2dr +

∫ r−1/ε

rs

Ard+1
s (d+ 1)2

r3
a′′(h(r))φ2dr

+
δεArd+1

s (d+ 1)2

r2−1/ε
φ2(r−1/ε),

so that for γ > 0,

(4.13)

(
1

4
+ γ

)∫ r−1/ε

rs

Ard+1
s (d+ 1)3

r4(rd+1 − rd+1
s )

a′′′(h(r))φ2rd+2dr ≤(
2

3
+

8γ

3

)∫ r−1/ε

rs

Ard+1
s (d+ 1)

rd+2

(rd+1 − rd+1
s )

(R(r))2
(∂rφ)2dr

+ (1 + 4γ)

∫ r−1/ε

rs

Ard+1
s (d+ 1)2

r3
a′′(h(r))φ2dr + (1 + 4γ)

Ard+1
s δε(d+ 1)2

r2−1/ε
φ2(r−1/ε).

Dropping the positive a′(h(r)) term in (4.8) and applying the results of (4.13) we have,

(4.14)

∫ r−1/ε

rs

l(f)φ2rd+2drdωdt ≥∫ r−1/ε

rs

l(g)φ2rd+2drdωdt+ γ

∫ r−1/ε

rs

Ard+1
s (d+ 1)3

r4(rd+1 − rd+1
s )

a′′′(h(r))φ2rd+2dr

+

∫ r−1/ε

rs

Ard+1
s (d+ 1)2

r3

(
d+ 5

4
− (1 + 4γ)

)
a′′(h(r))φ2dr

−
(

2

3
+

8γ

3

)∫ r−1/ε

rs

Ard+1
s (d+ 1)

rd+2

(rd+1 − rd+1
s )

(R(r))2
(∂rφ)2dr

− (1 + 4γ)
δεArd+1

s (d+ 1)2

r2−1/ε
φ2(r−1/ε).

We choose γ such that
(
2
3

+ 8γ
3

)
< 1 ⇒ γ < 1

8
. As d+5

4
≥ 6

4
, for d ≥ 1, this choice of γ

automatically implies that the a′′ term yields a positive contribution. Moreover, observe

that a′′′(h(r)) = 6δ2ε2

(R(r))4
so that for ε sufficiently small, the corresponding term can be

made large enough to control l(g). For concreteness, we choose ε so that after absorbing

l(g), one half of the a′′′ term remains. That is,
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(4.15)∫ r−1/ε

rs

l(f)φ2rd+2drdω ≥ −
∫ r−1/ε

rs

(
2

3
+

8γ

3

)
Ard+1

s (d+ 1)

rd+2

(rd+1 − rd+1
s )

(R(r))2
(∂rφ)2dr

+
γ

2

∫ r−1/ε

rs

Ard+1
s (d+ 1)3

r4(rd+1 − rd+1
s )

a′′′(h(r))φ2rd+2dr − (1 + 4γ)
δεArd+1

s (d+ 1)2

r2−1/ε
φ2(r−1/ε).

γ was chosen such that the sum of the first term on the right of (4.4) with the first term

on the right of (4.15) is positive. Thus, in combining the boundary term above with

(4.6), it remains to control the term

−
(

1

2
+ 4γ

)
Ard+1

s δε(d+ 1)2

r2−1/ε

∫ T

0

∫
Sd+2

φ2(r−1/ε)dωdt.(4.16)

Boundary term at r−1/ε :

We show that (4.16) can be dominated by the right hand side of (4.4) for r ∈ [r−1/ε, rps],

whose positivity we confirm immediately afterwards. For ε chosen in Case (i), we choose

a parameter δ sufficiently small so as to control (4.16).

Define the smooth cut-off function β(r) =


1, r ∈ (rs, r−1/ε]

0, , r ≥ rps.

Then by the Fundamental Theorem of Calculus and applications of Cauchy Schwarz, the

following sequence of equations holds for r ≤ r−1/ε:

φ(r)2 =

(∫ rps

r

∂s(β(s)φ(s))ds

)2

=

(∫ rps

r

β′φds+

∫ rps

r

βφ′ds

)2

≤2

(∫ rps

r

|β′|ds
)(∫ rps

r

|β′|φ2(s)ds

)
+

2

(∫ rps

r

β(s)

sd+1 − rd+1
s

ds

)(∫ rps

r

β(s)(sd+1 − rd+1
s )(∂sφ)2ds

)
.
∫ rps

r

|β′|φ2ds− h(r)

∫ rps

r

β(s)(sd+1 − rd+1
s )(∂sφ)2ds.
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Applying this to r = r−1/ε and using equation (4.3), we have

Ard+1
s δε

r2−1/ε
φ2(r−1/ε) . δ

∫ rps

r−1/ε

∇αP̄α[φ,X]dr,

where the implicit constant is independent of ε. We will show next that the commutator

in the region [r−1/ε, rps] is in fact positive. Thus, integrating over [0, T ] × Sd+2, we find

that the boundary term can be bootstrapped into the terms in Case 2 for δ sufficiently

small.

Case 2: r ∈ [r−1/ε, rps]

In this region, the smoothing function is the identity and we have

f(r) =
rd+2 − rd+2

ps

rd+2
+
Ard+1

s

rd+2
ln

(
rd+1 − rd+1

s
d+1
2
rd+1
s

)
and

f ′(r) =
(d+ 2)rd+2

ps

rd+3
+
Ard+1

s (d+ 1)

rd+2

rd

rd+1 − rd+1
s

− Ard+1
s (d+ 2)

rd+3
ln

(
rd+1 − rd+1

s
d+1
2
rd+1
s

)
.

The logarithmic term is non-positive for r ≤ rps, thus we easily see that f(r) ≤ 0 and

f ′(r) ≥ 0. It remains to show that l(f) is positive. Evaluating this expression we find

l(f) =
(d+ 2)

4r2d+5
(dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2(d+1)
s )

− Ard+1
s

4r2d+6
(d+ 1)(d+ 3)(2rd+1 − (d+ 3)rd+1

s ).

We apply r ≤ rps to the second term to give

l(f) ≥ 1

4r2d+5

(
(d+ 2)(dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2(d+1)
s )

−Ar
d+1
s

rps
(d+ 1)(d+ 3)(2rd+1 − (d+ 3)rd+1

s )

)
.

(4.17)

Let β ∈ [rs, rps] denote the positive root of dr2d+2 + (d+ 3)rd+1
s rd+1− (d+ 2)2r2d+2

s . Then

for r > β, l(g) > 0. Moreover, if r ∈ [rs, β], the right hand side of (4.17) is non-negative
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if

A ≥ sup
[rs,β]

−rps(d+ 2)
(
dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2d+2
s

)
−(d+ 3)(d+ 1)rd+1

s (2rd+1 − (d+ 3)rd+1
s )

or equivalently,

A ≥ sup
[rs,β]

(d+ 2)rps
(d+ 3)(d+ 1)rd+1

s

[
d

2
rd+1 +

(d+ 2)(d+ 3)rd+1
s

4
+

(d+ 2)(d+ 1)2r2d+2
s

4(2rd+1 − (d+ 3)rd+1
s )

]
.

(4.18)

We find the derivative of the quantity in brackets to be (d+1)rd

2

(
d− (d+1)2(d+2)r2d+2

s

(2rd+1−(d+3)rd+1
s )2

)
< 0.

Thus the right hand side of (4.18) is decreasing so that the supremum occurs at r = rs.

This implies A ≥ d+2
d+3

rps; the lower bound of this inequality is our choice of A.

Case 3: r ∈ [rps, rα]

In this region, a(x) = x− 2
3α2x

3 + 1
5α4x

5 and f and f ′ are respectively,

f(r) =
rd+2 − rd+2

ps

rd+2
+
Ard+1

s

rd+2

h(r)

15α4

(
3h(r)4 − 10h(r)2α2 + 15α4

)
and(4.19)

f ′(r) =
(d+ 2)rd+2

ps

rd+3
− A(d+ 2)rd+1

s

rd+3
a(h(r)) +

Ard+1
s (d+ 1)

r2(rd+1 − rd+1
s )

(h(r)2 − α2)2

α4
.(4.20)

f(r) can easily seen to be non-negative when we view the quantity in parenthesis as a

non-negative polynomial in h(r). Moreover, the range of r corresponds to 0 ≤ h(r) ≤ α,

so that using that a has a maximum value of 8α
15

, the sum of the first two terms in (4.20)

is bounded below by (d+2)rd+1
s rps

rd+3

(
d+3
2
− 8α

15
d+2
d+3

)
. It is straightforward to verify this is pos-

itive for α < 5 ≤ 15
16

(d+3)2

d+2
; the last inequality follows from observing that 15

16
(d+3)2

d+2
is

smallest at d = 1. Hence the choice α = 5− δ0, for 0 < δ0 � 1.
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Finally we verify l(f) > 0. We begin by calculating

l(f) =
d+ 2

4r2d+5

(
dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2d+2
s

)
+

(d+ 2)(d+ 1)rd+1
s rps

4(d+ 3)r2d+6(rd+1 − rd+1
s )

(
−2(d+ 3)(rd+1 − rd+1

ps )(rd+1 − rd+1
s )a′(h(r))

+ (d+ 1)(d+ 5)rd+1(rd+1 − rd+1
s )a′′(h(r))

− (d+ 1)2r2d+2a′′′(h(r))
)
.

Establishing positivity of the above expression is equivalent to showing

p(r) + n1(r) + n2(r) + n3(r) > 0

where,

p(r) = r(dr2d+2 + (d+ 3)rd+1
s rd+1 − (d+ 2)2r2d+2

s )

n1(r) = −rpsrd+1
s (d+ 1)(2rd+1 − (d+ 3)rd+1

s )
(h(r)2 − α2)2

α4

n2(r) = rpsr
d+1
s

(d+ 1)2(d+ 5)

d+ 3
rd+14h(r)(h(r)2 − α2)

α4

n3(r) = rpsr
d+1
s

(d+ 1)3

d+ 3

r2d+2

rd+1 − rd+1
s

· 4α
2 − 3h(r)2

α4
.

The dominant term is p(r), and we shall show

1

3
p(r) + n1(r) > 0,(4.21)

1

2
p(r) + n2(r) ≥ 0,(4.22)

1

6
p(r) + n3(r) ≥ 0.(4.23)

In all three cases we use that r ≥ rps, and for the first two inequalities, that |h(r)2 − α2|
is maximized when h(r) = 0.
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Proof of (4.21):

1

3
p(r) + n1(r) ≥

1

3
rps(dr

2d+2 + (d+ 3)rd+1
s rd+1 − (d+ 2)2r2d+2

s )

− (d+ 1)rpsr
d+1
s (2rd+1 − rd+1

s (d+ 3))

=
1

3
rps

(
dr2d+2 − (5d+ 3)rd+1

s rd+1 + (2d2 + 8d+ 5)r2d+2
s

)
=

1

3
rps

(
d

(
rd+1 − 5d+ 3

2d
rd+1
s

)2

+
1

4d
(d+ 1)2(8d− 9)r2d+2

s

)
.

This last quantity is easily seen to be positive for d > 1. For the case d = 1,

1

3
p(r) + n1(r) ≥

1

3
r(r4 + 4r2sr

2 − 9r4s)− 2
√

2r3s(2r
2 − 4r2s)

=
1

3

(
3
√

2r5s − 13r4s(r −
√

2rs) + 20
√

2r3s(r −
√

2rs)
2 + 24r2s(r −

√
2rs)

3+

5
√

2rs(r −
√

2rs)
4 + (r −

√
2rs)

5

)
≥ 1

3

(
3
√

2r5s − 13r4s(r −
√

2rs) + 20
√

2r3s(r −
√

2rs)
2

)
where we have done a Taylor expansion about the photon sphere,

√
2rs, to the right hand

side of the first inequality. The above quadratic has no real roots thus proving the result

for d = 1.

Proof of (4.22):

1

2
p(r) + n2(r) ≥

1

2
rps(dr

2d+2 + (d+ 3)rd+1
s rd+1 − (d+ 2)2r2d+2

s )−

4rpsr
d+1
s

α2

(d+ 1)2(d+ 5)

d+ 3
rd+1h(r)

=
1

2
rps

(
d(rd+1 − rd+1

s )2 + 3(d+ 1)rd+1
s (rd+1 − rd+1

s )− (d+ 1)2r2d+2
s

− 8rd+1
s

α2

(d+ 1)2(d+ 5)

d+ 3
rd+1h(r)

)
.

(4.24)
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Setting x = h(r), or equivalently, rd+1 − rd+1
s = d+1

2
rd+1
s ex, we have that for 0 ≤ x ≤ α,

the right hand side (4.24) becomes

q(x) :=
1

2
rpsr

2d+2
s (d+ 1)2

[
d

4
e2x +

3

2
ex − 1− 4

α2

(d+ 5)(d+ 1)

d+ 3
xex − 8

α2

d+ 5

d+ 3
x

]
.

Note that q(0) = rpsr
2d+2
s (d+1)2(d+2)

8
, thus it suffices to show that q′(x) > 0 for x ∈ [0, α].

Calculating this quantity for α = 5, we find

q′(x) =
1

2
rpsr

2d+2
s (d+ 1)2

[
1

2
ex(3 + dex)− 4

α2

(d+ 5)

d+ 3

(
2 + (d+ 1)ex(1 + x)

)]
≥ 1

2
rpsr

2d+2
s (d+ 1)2

[
1

2
ex(3 + dex)− 6

25

(
2ex + (d+ 1)e2x

)]
=

1

2
rpsr

2d+2
s (d+ 1)2

[(
13d− 12

50

)
e2x +

(
3

2
− 12

25

)
ex
]
> 0.

where the inequality follows from using d+5
d+3
≤ 3

2
for d ≥ 1 and 1 +x ≤ ex. By continuity,

the inequality also holds for α = 5− δ0 for some δ0 > 0, thus completing the proof.

Proof of (4.23):

1

6
p(r) + n3(r) ≥

1

6
rps

[
dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2d+2
s )+

24rd+1
s

α2

(d+ 1)3

d+ 3

(
1− 3

α2
h(r)2

)
r2d+2

rd+1 − rd+1
s

]
=

1

6
rps

[
d(rd+1 − rd+1

s )2 + 3(d+ 1)rd+1
s (rd+1 − rd+1

s )− (d+ 1)2r2d+2
s +

24rd+1
s

α2

(d+ 1)3

d+ 3

(
1− 3

α2
h(r)2

)(
(rd+1 − rd+1

s ) + 2rd+1
s +

r2d+2
s

rd+1 − rd+1
s

)]

≥ 1

6
rps

(
d(rd+1 − rd+1

s )2 + 3(d+ 1)rd+1
s (rd+1 − rd+1

s )− (d+ 1)2r2d+2
s

+
24rd+1

s

α2

(d+ 1)3

d+ 3

(
1− 3

α2
h(r)2

)(
(rd+1 − rd+1

s ) + 2rd+1
s

)
− 144r2d+2

s

α4

(d+ 1)2

d+ 3
h(r)2

)
,

(4.25)
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where in the last inequality we have used that

24rd+1
s

α2

(d+ 1)3

d+ 3

(
1− 3

α2
(h(r))2

) r2d+2
s

rd+1 − rd+1
s

≥ −72rd+1
s

α4

(d+ 1)3

d+ 3
(h(r))2

r2d+2
s

rd+1 − rd+1
s

≥ −144

α4
r2d+2
s

(d+ 1)2

d+ 3
(h(r))2,

as − 1

rd+1−rd+1
s

is minimized at the photon sphere.

We proceed as above and use the change variables x = h(r), where x ∈ [0, α]. Then

the last line of (4.25) can be re-written as

s(x) :=
rpsr

2d+2
s (d+ 1)2

6

[
d

4
e2x +

(
3

2
+

12

α2

(d+ 1)2

d+ 3

)
ex − 36

α4

(d+ 1)2

d+ 3
x2ex

− 144

α4

d+ 2

d+ 3
x2 +

(
48

α2

d+ 1

d+ 3
− 1

)]
.

(4.26)

Then s(0) = rpsr
2d+2
s (d+1)2

24

(
d+ 2 + 48(d+1)(d+5)

α2(d+3)

)
> 0 and a calculation of s′(x) gives

s′(x) =
1

6
rpsr

2d+2
s (d+ 1)2

[
d

2
e2x +

(
3

2
+

12

α2

(d+ 1)2

d+ 3

)
ex

− 288

α4

d+ 2

d+ 3
x− 36

α4

(d+ 1)2

d+ 3
xex(x+ 2)

]
≥ 1

6
rpsr

2d+2
s (d+ 1)2

[
d

2
e2x +

(
3

2
+

12

α2

(d+ 1)2

d+ 3

)
ex

− 288

α4

d+ 2

d+ 3
ex − 36

α4

(d+ 1)2

d+ 3
e2x(5 + 2)

]
=

1

6
rpsr

2d+2
s (d+ 1)2

[(
d

2
− 252

α2

(d+ 1)2

d+ 3

)
e2x

+

(
3

2
+

12

α4

(α2(d+ 1)2 − 24(d+ 2))

d+ 3

)
ex
]
.

It is rather straight forward to verify the coefficients of the exponential terms are positive

for d ≥ 1 and α = 5. Again by continuity, the positivity remains for α = 5− δ0, for some

δ0 > 0.

Case 4: r ∈ [rα,∞)

The calculations in this case are quite simple. The smoothing function is constant, and
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we have

f(r) =
rd+2 − rd+2

ps

rd+2
+
Ard+1

s

rd+2

8α

15
, and

f ′(r) =
(d+ 2)rd+2

ps

rd+3
− A8αrd+1

s

15

(d+ 2)

rd+3
=

(d+ 2)rpsr
d+1
s

rd+3

(
d+ 3

2
− 8α

15

d+ 2

d+ 3

)
.

f is easily seen to be positive, and as was described in Case 3, α was precisely chosen so

that f ′ > 0. Finally,

l(f) = l(g) =
(d+ 2)

4r2d+5

(
dr2d+2 + (d+ 3)rd+1

s rd+1 − (d+ 2)2r2(d+1)
s

)
where the quadratic term in parenthesis has one root β ∈ (rs, rps); thus l(f) is indeed

positive.

In the cases above, we have shown that the multiplier with f(r) defined in (4.5)

satisfies the criteria we imposed. It can also be readily verified that the coefficients of

the (∂rφ)2, |6∇φ|2 and φ2 terms are respectively bounded below by cr(r), cω(r) and c0(r).

Thus to show Theorem 1.1, we require bounding the (∂tφ)2 term in the localized energy

norm, the time boundary terms and the forcing term. These are proved in section 4.0.2,

section 4.0.3, and section 4.0.4, respectively.

4.0.2. (∂tφ)2 term:. Here we define an alternate one tensor, P̄α[φ,X], to obtain (∂tφ)2

terms in the divergence. We set

P̄α[φ,X] = ct(r)φ∂αφ−
1

2
(∂αct(r))φ

2,

whose divergence is

∇αP̄α[φ,X] = ct(r)∂
αφ∂αφ+ ct(r)φ∇α∂αφ−

1

2
∇α(∂αct(r))φ

2.(4.27)

Analogous to the case in controlling the spatial derivatives and lower order terms, we

integrate (4.27) over the space time block [0, T ]×(rs,∞)×Sd+2 and apply the divergence
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theorem. This gives

(4.28)

∫ T

0

∫
Sd+2

∫
r≥rs

(
1− rd+1

s

rd+1

)−1
ct(r)(∂tφ)2rd+2drdωdt =

∫
Sd+2

∫
r≥rs

(
1− rd+1

s

rd+1

)−1
ct(r)φ∂tφ

∣∣∣∣∣
T

0

rd+2drdω+

∫ T

0

∫
Sd+2

∫
r≥rs

[
2gφ (ct(r)φ) +

((
1− rd+1

s

rd+1

)
(∂rφ)2 + |6∇φ|2)

)
ct(r)

+
1

2rd+2
∂r

(
rd+2

(
1− rd+1

s

rd+1

)
∂r(ct(r))

)
φ2

]
rd+2drdωdt.

Using that ct(r) is bounded, the first term on the right can be controlled by E[φ](t) via

Cauchy Schwarz and a Hardy inequality which we describe in the next section. Moreover,

ct(r) ≤ cr(r), cω(r) by construction, so that we may apply the bounds of the radial and

angular derivative terms in the previous section to the second expression. In calculating

the coefficient of the lower order term, we find

(4.29)
1

2rd+2
∂r

(
rd+2

(
1− rd+1

s

rd+1

)
∂r(ct(r))

)
=

1

2rd+2

(
(d+ 1)rd+1

s c′t(r) + (d+ 2)(rd+1 − rd+1
s )c′t(r)

)
+

1

2

(
1− rd+1

s

rd+1

)
c′′t (r).

Given that as r → rs,


c′t(r) ≈ 1

(r−rs)(1−log( r−rsr ))
4 ,

c′′t (r) ≈ 1

(r−rs)2(1−log( r−rsr ))
5

and as r →∞,


c′t(r) ≈ 1

rd+4

c′′t (r) ≈ 1
rd+5

we may conclude that 1
2rd+2∂r

(
rd+2

(
1− rd+1

s

rd+1

)
∂r(ct(r))

)
. c0(r) thus controlling the

lower order term.

4.0.3. A Hardy Inequality and Time Boundary Terms: In this section we control

the time boundary terms of equations (4.4) and (4.28) by the energy quantity. The

bound on the first time boundary term of (4.4) follows quite readily by exploiting the
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boundedness of f(r) and via an application of the Cauchy-Schwarz inequality. Indeed,

∫
Sd+2

∫
r≥rs

f(r)∂tφ∂rφr
d+2drdω .

∫
Sd+2

∫
r≥rs

[(
1− rd+1

s

rd+1

)−1
(∂tφ)2 +

(
1− rd+1

s

rd+1

)
(∂rφ)2

]
rd+2drdω . E[φ](t).

To control the second time-boundary term, we again apply Cauchy-Schwarz so that

(4.30)∫
Sd+2

∫
r≥rs

1

2rd+2
∂tφ∂r(r

d+2f(r))φrd+2drdω .
∫

Sd+2

∫
r≥rs

(∂tφ)2
(

1− rd+1
s

rd+1

)−1
rd+2drdω

+

∫
Sd+2

∫
r≥rs

(
1

rd+2
∂r(r

d+2f(r))

)2(
1− rd+1

s

rd+1

)
φ2rd+2drdω.

The first term on the right of (4.30) is trivially bounded by E[φ](t). For the second term

we claim

∫
r≥rs

(
1

rd+2
∂r(r

d+2f(r))

)2(
1− rd+1

s

rd+1

)
φ2rd+2dr .

∫
r≥rs

(
1− rd+1

s

rd+1

)
(∂rφ)2rd+2dr

(4.31)

and point out that the coefficient of φ2 in the left integrand is

O

(
1

(log(rd+1 − rd+1
s ))4(rd+1 − rd+1

s )

)
as r → rs and O

(
1

r2

)
as r →∞.(4.32)

It will be convenient to revert to the (d + 2)-dimensional Regge-Wheeler coordinates,

r∗(r) =
∫ r
rps

(
1− rd+1

s

ρd+1

)−1
dρ. Of particular relevance is that as r → rs, r

∗ ≈ log(r − rs),
while as r →∞, r∗ ≈ r. Then the theorem will follow via the Hardy-type inequality∫ ∞

rs

r2

(1 + |r∗|)4
(

1− rd+1
s

rd+1

)−1
φ2rd+2dr .

∫ ∞
rs

(
1− rd+1

s

rd+1

)
(∂rφ)2rd+2dr,(4.33)
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and verifying the left hand side of (4.33) is bounded below by the left hand side of (4.31)

at the event horizon and at infinity, (since it is bounded elsewhere). This last fact is an

immediate consequence of (4.32).

We now set out to prove (4.33), or equivalently∫ ∞
−∞

r2

(1 + |r∗|)4φ
2rd+2dr∗ .

∫ ∞
−∞

(∂r∗φ)2rd+2dr∗.(4.34)

We follow the proof of estimate (52) in [17].

Proof (4.34): Define t(r∗) such that t′(r∗) = r2

(1+|r∗|)4 r
d+2 and t(−∞) = 0. That is, set

t(r∗) =

∫ r∗

−∞

r(ρ)2

(1 + |ρ|)4 r(ρ)d+2dρ.(4.35)

Observe that the coefficient of the left integrand of (4.34) is exactly t′(r∗). Thus we

calculate∫
t′(r∗)φ2rd+2dr∗ = −2

∫
t(r∗)φ∂r∗φ r

d+2dr∗

≤ 2

(
t(r∗)2

t′(r∗)
(∂r∗φ)2 rd+2dr∗

)1/2(∫
t′(r∗)φ2 rd+2dr∗

)1/2

= 2

(∫
(1 + |r∗|)4

r2
t(r∗)2(∂r∗φ)2 rd+2dr∗

)1/2(∫
t′(r∗)φ2 rd+2dr∗

)1/2

.

Dividing through by the term (
∫
t′(r∗)φ2 rd+2dr∗)1/2 gives(∫

t′(r∗)φ2 rd+2dr∗
)1/2

≤ 2

(∫
(1 + |r∗|)4

r2
t(r∗)2(∂r∗φ)2 rd+2dr∗

)1/2

.(4.36)

Moreover, as r∗ → −∞, t(r∗) ∼ 1
|r∗|3 , and as r∗ → ∞, t(r∗) ∼ 1

|r∗| so that in both cases

(1+|r∗|)4
r2

t(r∗)2 . rd+2. Thus,∫ ∞
−∞

r2

(1 + |r∗|)4φ
2rd+2dr∗ .

∫ ∞
−∞

(∂r∗φ)2rd+2dr∗

proving (4.34) as desired.
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Finally, we show the boundary terms in (4.28) are bounded above by E[φ](t). Another

application of Cauchy Schwarz yields

(4.37)

∫
Sd+2

∫
r≥rs

(
1− rd+1

s

rd+1

)−1
ct(r)φ∂tφr

d+2drdω .

∫
Sd+2

∫
r≥rs

(
1− rd+1

s

rd+1

)−1
(∂tφ)2rd+2drdω +

∫
Sd+2

∫
r≥rs

c2t (r)
(

1− rd+1
s

rd+1

)−1
φ2rd+2drdω,

where the first term on the right is clearly bounded by E[φ](t) and the integrand of the

second satisfies (4.32). We can then use (4.33) and the energy inequality to complete the

proof.

4.0.4. Inhomogeneous term . Recall that the energy inequality gives

E[φ](t) . E[φ](0) +

∫ t

0

∫
Sd+2

∫
r≥rs

2gφ∂tφr
d+2drdωdt.(4.38)

Moreover, in combining the results of the previous three sections, we find

(4.39) ||φ||2LE0
. |E[φ](t)− E[φ](0)|+

∫ ∞
0

∫
Sd+2

∫
r≥rs

(
|2gφ||Xφ+ ct(r)φ

+

(
1

2

(
1− rd+1

s

rd+1

)
r−(d+2)∂r(f(r)rd+2)

)
φ|
)
rd+2drdωdt.

We thus require showing the integrals on the right of (4.38) and (4.39) are controlled

by the dual localized energy norm. Combining the two integrals and applying Cauchy

Schwarz yields the upper bound

(4.40)

∫
t>0

1

ε
||c

1
2
FF ||2L2dt+

∫
t>0

ε||c−
1
2

F |Xφ+ ct(r)φ+ c1∂tφ

+
1

2

(
1− rd+1

s

rd+1

)
r−(d+2)∂r(f(r)rd+2)φ|||2L2dt.
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The second term is then controlled by

(4.41) ε

∫
t>0

∫
Sd+2

∫
r≥rs

c−1F

(
1− rd+1

s

rd+1

)2
(∂rφ)2 + c−1F c2tφ

2 + c−1F c21(∂tφ)2

+ c−1F

(
1

2rd+2

(
1− rd+1

s

rd+1

)
∂r(r

d+2f(r))

)2

φ2rd+2drdωdt.

Observe that c−1F c2t =
( r−rpsr )

6

r3d+9( r−rsr )(1−log( r−rsr ))
6 ≤ c0(r). Moreover,

(
1

2rd+2

(
1− rd+1

s

rd+1

)
∂r(r

d+2f(r))
)2

satisfies (4.32) so that

c−1F

(
1

2rd+2

(
1− rd+1

s

rd+1

)
∂r(r

d+2f(r))
)2

. c0(r). Finally, the weighted factor cF (r) was con-

veniently chosen to satisfy c−1F . cr, cω, ct, thus we may bootstrap the second term in to

the localized energy norm by choosing ε sufficiently small.

This now completes the proof of Theorem 1.1.
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CHAPTER 5

Logarithmic Loss at the Photon Sphere

In this section we show the improved estimate, Theorem 1.2, whereby the second

degree polynomial loss at the photon sphere is replaced by a logarithmic loss. The proof

of the theorem follows almost directly from the corresponding theorem in [34], ie. the

(3 + 1)-dimensional case.

To prove the theorem we localize near the photon sphere and define the smooth cutoff

function χps(r) supported in a neighbourhood of r = rps. We strengthen the LE0 norm

and weaken the dual norm LE∗0 , and define the LE and LE∗ spaces such that

||φ||2LE = ||φ||2LE0
+ ||χpsφ||2LEps(5.1)

||φ||2LE∗ = ||φ||2LE∗0 + ||χpsφ||2LE∗ps .(5.2)

Postponing the definition of the LEps and LE∗ps spaces, the estimate we then wish to

prove is

Theorem 5.1. Let φ satisfy the inhomogeneous wave equation 2gφ = F on the (d+ 4)-

dimensional hyperspherical Schwarzschild manifold. Then for d ≥ 1, we have

(5.3) sup
t≥0

E[φ](t) + ||φ||2LE . E[φ](0) + ||F ||2LE∗ .

However, given the results of Chapter 4, it suffices to show

Theorem 5.2. Let φ and F be functions supported in a neighbourhood of rps such that

2gφ = F . Then for d ≥ 1,

(5.4) ||φ||2LEps . ||F ||2LE∗ps .



In the analysis to follow we will determine the inequalities

||φ||LEps & ||
∣∣ ln |r∗|∣∣−1∇t,xφ||L2

||F ||LE∗ps . ||
∣∣ ln |r∗|∣∣F ||L2 ,

(5.5)

where r∗ refers to the Regge-Wheeler coordinate defined in Chapter 2. Consequently,

pending the proof of Theorem 5.2, we deduce the desired result:

Corollary 5.3. Let φ satisfy the inhomogeneous wave equation 2gφ = F on the (d+ 4)-

dimensional Schwarzschild manifold. Then for d ≥ 1, the conclusion of Theorem 1.2

holds.

We begin by setting up the necessary background to establish (5.5) so that Corolloary

5.3 is indeed validated.

It is convenient to convert to Regge-Wheeler coordinates where the photon sphere

is now translated to r∗ = 0. Observe that the spherically symmetric nature of the

trapped set, and the fact that losses are only an issue in the high frequency limit makes

it favourable to appeal to pseudo-differential operators and to decompose ∆Sd+2 into

spherical harmonics. With this we introduce some notation that will be used below.

Let λ be the eigenvalue associated to the λ-th harmonic in the expansion of
√−∆Sd+2 ,

and Πλ the projection of the operator
√−∆Sd+2 on the λ-th eigenspace. Due to spherical

symmetry, our desired pseudo-differential operator, A, is independent of ω ∈ Sd+2 so that

we may fix λ and consider estimates on each λ-th harmonic. Specifically, to the symbol

aps(r
∗, ξ, λ), we fix λ and denote the corresponding one dimensional weyl operator as

awps(λ), where awps(λ)(f) =
∫ ∫

a
(
x+y
2
, ξ, λ

)
eiξ(x−y)f(y)dydξ,. We can then write

Aps :=
∑
λ

awps(λ)Πλ,

and by Plancherel’s theorem, determine the estimates in question on individual projec-

tions.
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To construct the desired symbol, we begin with defining the smooth increasing func-

tions γ0, γ1, such that

γ0 : R→ R+, γ1 : R+ → R+,

γ0(y) =


1, y < 1,

y, y ≥ 2

γ1(y) =


√
y, y < 1/2,

1, y ≥ 1.

and the smooth function γ : R2 → R+, satisfying

γ(y, z) =


1, z < C

γ0(y), y <
√
z/2, z ≥ C,

√
zγ1(y

2/z), y ≥
√
z/2, z ≥ C

where C is a fixed large constant. We then define the symbol aps,

aps(r
∗, ξ, λ) = γ(− ln(r∗2 + λ−2ξ2), lnλ)

=



1, lnλ < C
1, r∗2 + λ−2ξ2 > e−1

− ln(r∗2 + λ−2ξ2), e−
√

lnλ
2 < r∗2 + λ−2ξ2 < e−2

√
lnλ, r∗2 + λ−2ξ2 < e−

√
lnλ

, lnλ ≥ C

with reciprocal a−1ps = 1/aps. Denote the corresponding Weyl operator, Aps =
∑

λ a
w
ps(λ)Πλ,

and approximate inverse A−1ps =
∑

λ(a
−1
ps )w(λ)Πλ. With this definition we record a few

boundedness properties of the symbols and operators as they are frequently used in the

analysis below.

Observe that for λ sufficiently small, lnλ < C so that aps = a−1ps = 1 and for λ large, the

following inequalities hold

1 ≤ aps(r
∗, ξ, λ) ≤ aps(r

∗, 0, λ) ≤ (lnλ)1/2(5.6)

(lnλ)−1/2 ≤ a−1ps (r∗, 0, λ) ≤ a−1ps (r∗, ξ, λ) ≤ 1.(5.7)
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Moreover, a calculation of the derivatives of the symbols leads to the bounds

|∂αr∗∂βξ ∂νλaps(r∗, ξ, λ)| ≤ cα,β,νλ
−β−ν(r∗2 + λ−2ξ2 + e−

√
lnλ)−

α+β
2

|∂αr∗∂βξ ∂νλa−1ps (r∗, ξ, λ)| ≤ cα,β,νλ
−β−νa−2ps (r∗, ξ, λ)(r∗2 + λ−2ξ2 + e−

√
lnλ)−

α+β
2

(5.8)

where α+β+ν > 0, and we have used the fact that y2 > z ⇒ r∗2+λ−2ξ2 < e−
√
lnλ. It fol-

lows from the equations in (5.8) that for λ fixed, |∂αr∗∂βξ ∂νλa(r∗, ξ, λ)| ≤ Cα,β,ν〈|ξ|〉δ−(|β|+|ν|).
A similar estimate holds for a−1ps and we can then conclude both aps, a

−1
ps ∈ Sδ1,0, for δ > 0.

It follows that

||awps(λ)(a−1ps )w(λ)− I||L2 . λ−1e
√
lnλ.(5.9)

With this setup, we define the LEps norm

||φ||LEps = ||A−1ps φ||H1
t,x
≈ ||A−1ps ∇t,xφ||L2(5.10)

with respective dual norm

||F ||LE∗ps = ||ApsF ||L2 .(5.11)

From the bounds in (5.6) and (5.7), we respectively have, ||awps(λ)F ||L2 . ||aps(r∗, 0, λ)F ||L2

and ||(a−1ps )w(λ)φ||L2 & ||a−1ps (r∗, 0, λ)φ||L2 . Moreoever, combining these with the defini-

tions of aps(r
∗, 0, λ) and a−1ps (r∗, 0, λ), we can deduce the bounds

||awps(λ)F ||L2 .||aps(r∗, 0, λ)F ||L2 . ||
∣∣ ln |r∗|∣∣F ||L2(5.12)

||(a−1ps )w(λ)φ||L2 &||a−1ps (r∗, 0, λ)φ||L2 & ||
∣∣ ln |r∗|∣∣−1φ||L2 .(5.13)

These imply (5.5) and we are now ready to prove Theorem 5.2.

Proof of Theorem 5.2:

We begin by setting u = r
d+2
2 φ, g =

(
1− rd+1

s

rd+1

)
r
d+2
2 F and by re-writing the d’Alembertian
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in terms of r∗, which we denote by 2RW . This yields

r
d+2
2

(
1− rd+1

s

rd+1

)
2g

(
u

r
d+2
2

)
= 2RWu(5.14)

where 2RW = −∂2t +∂2r∗+ 1
r2

(
1− rd+1

s

rd+1

)
∆Sd+2 +V (r), and V (r) is the potential given by,

V (r) =

(
1− rd+1

s

rd+1

)(
d+ 2

2

)
1

rd+3

[
d

2

(
1− rd+1

s

rd+1

)
rd+1 + rd+1

s (d+ 1)

]
.

We then have that u solves 2RWu = g.

It will also be convenient to simplify the energy expressions. In a compact neighbour-

hood of r∗ = 0, observe that

E[φ](t) ≈
∫ ∫

(∂tφ)2 + (∂r∗φ)2 + |6∇0φ|2drdω.(5.15)

and the initial localized energy norms, LE0, LE
∗
0 can be expressed as

||φ||2LE0
≈
∫ ∫ ∫

(∂r∗φ)2 + r∗2((∂tφ)2 + |6∇0φ|2 + φ2drdωdt

||F ||2LE∗0 ≈
∫ ∫ ∫

r∗−2F 2drdωdt.

(5.16)

Moroever, for φ and F supported in a neighbourhood of r∗ = 0,

||φ||LEps ≈ ||u||LEps and ||F ||LE∗ps ≈ ||g||LE∗ps

so that instead of (5.4) we may prove the bound

(5.17) ||u||2LEps . ||g||2LE∗ps .

The approach taken by [34] and [54] is to do a Fourier transform in time and to decompose

the solution u in to spherical harmonics. That is, let Y i
λ be an orthonormal basis for the

space {Yλ|∆Sd+2Yλ = −λ2Yλ}, and let u =
∑

λ,i uλ,iY
i
λ , where uλ,i(τ, r) ∈ R. Then we
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have

∑
λ,i

τ 2uλ,iY i
λ + ∂2r∗uλ,iY

i
λ + V (r)uλ,iY

i
λ −

λ2
(

1− rd+1
s

rd+1

)
r2

uλ,iY
i
λ

 =
∑
λ,i

gλ,iY
i
λ .(5.18)

We restrict the analysis to each harmonic, λ and each component i, and by an abuse of

notation, set uλ,i = u and gλ,i = g. This yields

(5.19) ∂2r∗u+ Vλ,τ (r
∗)u = g

where Vλ,τ (r
∗) = τ 2 − 1

r2

(
1− rd+1

s

rd+1

)
λ2 + V .

By Plancherel’s theorem and (5.19), estimate (5.17) will follow from showing

||∂r∗u||L2 + (|τ |+ |λ|)||(a−1ps )w(λ)u||L2 . ||awps(λ)g||L2 .(5.20)

The analysis is broken down in to four cases depending on the relative sizes of |λ| and

|τ |. For the first three, it will suffice to prove

(5.21) ||∂r∗u||L2 + (|τ |+ |λ|)||u||L2 . ||g||L2 .

Indeed, this estimate has no loss at the photon sphere and hence is stronger than (5.4).

We proceed case by case. In what follows, we let the support of u and ur∗ be contained

in the interval [r−, r+]

Case 1: λ, τ . 1.

In this case note that |Vλ,τ (r∗)| . 1, thus we wish to show

||∂r∗u||L2 + ||u||L2 . ||g||L2 .(5.22)

Define the positive definite energy functional

E[u](r∗) = (∂r∗u)2 + u2(5.23)
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and observe that

∂r∗E[u](r∗) . |∂r∗u||g − Vλ,τu|+ |∂r∗uu|

. E[u](r∗) + g2
(5.24)

where in the last bound we have used that |Vλ,τ (r∗)| . 1. This gives

E[u](r∗) =

∫ r+

r−

E dr∗ + ||g||2L2(5.25)

so that by Gronwall’s Inequality, E1/2 ≤ ||g||L2 , and hence (5.22) follows.

Case 2: λ� τ .

Here we wish to show ||u||L2 +|τ |||∂r∗u||L2 . ||g||L2 . We define the positive definite energy

functional

E[u](r∗) = (∂r∗u)2 + Vλ,τ (r
∗)u2,(5.26)

and as above calculate the derivative to obtain

∂r∗E[u](r∗) . |∂r∗ug|+ |∂r∗Vλ,τ (r∗)u2|

. E[u](r) + g2

where we have used that Vλ,τ (r
∗) ≈ ∂r∗Vλ,τ (r

∗) ≈ τ 2 and hence ∂r∗Vλ,τ (r
∗)u2 . E[u](r∗).

An application of Gronwall’s Inequality gives the desired bound for λ� τ .

Case 3: τ � λ.

In this case, we consider the Dirichlet boundary value problem
∂2r∗u+ Vλ,τ (r

∗)u = g

u(r∗−) = u(r∗+) = 0.

(5.27)

Upon multiplying equation (5.27) by u and integrating by parts we obtain

−
∫ r+

r−

(∂r∗u)2dr∗ +

∫ r+

r−

Vλ,τ (r
∗)u2dr∗ =

∫ r+

r−

gu dr∗.
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Observe that in this case Vλ,τ ≈ −λ2 so that an application of Cauchy Schwarz to the

right side yields the desired result.

Case 4: λ ≈ τ � 1.

We prove (5.20) as (5.21) is no longer true. That is, we wish to show

(5.28) ||∂r∗u||L2 + λ||(a−1ps )w(λ)u||L2 . ||awps(λ)g||L2 ,

which will follow through a series of reductions. The nature of the trapped rays arise in

high frequencies so that in is this case, we consider λ and |ξ| large. The goal will be to

control the second term on the left in the above inequality, as ||∂r∗u||L2 does not exhibit a

loss near the photon sphere. In fact, we have already shown in the previous section that

it satisfies the desired bound. However, it will be advantageous to retain this term in

proving (5.28) as it will be used to control λ||(a−1ps )w(λ)u||L2 for |ξ| � λ. When |ξ| � λ,

the second term dominates and we need to show λ||(a−1ps )w(λ)u||L2 . ||awps(λ)g||L2 .

In the first reduction we re-characterize (5.19). First note that in this case we may

consider V a small perturbation and thus write Vλ,τ ≈ Ṽλ,τ := τ 2 − 1
r2

(
1− rd+1

s

rd+1

)
λ2 with

derivative 2
r3

(
rd+1−rd+1

ps

rd+1

)
λ2. It immediately follows that Ṽ

′

λ,τ (rps) = 0, and Ṽ
′′

λ,τ (rps) > 0.

Thus for a smooth function W (r∗) with nondegenerate minimum at r∗ = 0, and for

|ε| . 1 we may write (5.19) as

(5.29) ∂2r∗u+ ((W (r∗) + ε)λ2)u = g.

Then we claim:

Theorem 5.4. Let W be a smooth function satisfying W (0) = W ′(0) = 0,W ′′(0) > 0

and let |ε| . 1. Suppose u and g are supported near r∗ = 0 and satisfy

(5.30) (∂2r∗ + λ2(W (r∗) + ε))u(r∗) = g.

Then (5.28) holds. i.e. ||∂r∗u||L2 + λ||(a−1ps )w(λ)u||L2 . ||awps(λ)g||L2 .

51



We would like to replace the norm ||awps(λ)g||L2 with ||aps(r∗, 0, λ)g||L2 as this would

allow us to avoid weyl calculus analysis. However recall from (5.12), the latter norm

is larger, and in fact Theorem 5.4 is no longer true. Instead, we claim that we can

decompose g into two functions, one of which will allow us to use the low frequency norm

||aps(r∗, 0, λ)g||L2 . Specifically we have,

Lemma 5.5. For each function g ∈ L2 supported near the photon sphere, there exists

functions g1 and g2 supported near the photon sphere such that g = g1 + λ−2∂2r∗g2 and

(5.31) ||aps(r∗, 0, λ)g1||L2 + |||r∗2 + e−
√
lnλ|1/8g2||L2 + λ−2||∂r∗g2||L2 . ||awps(λ)g||L2 .

The proof will be presented following the proof of Proposition 5.8. With the Lemma

at hand, it will then suffice to show

(5.32) ||∂r∗u||L2 + λ||(a−1ps (λ))wu||L2 .

||aps(r∗, 0, λ)g1||L2 + |||r∗2 + e−
√
lnλ|1/8g2||L2 + λ−2||∂r∗g2||L2 .

We continue to reduce the problem further. Let g1 and g2 be described as above, and

define

u = λ−2g2 + ũ,

with derivative

∂r∗u = λ−2∂r∗g2 + ∂r∗ũ.

By (5.32) we require showing

||λ−2∂r∗g2||L2 + λ||λ−2(a−1ps (λ))wg2||L2 + ||∂r∗ũ||L2 + λ||(a−1ps (λ))wũ||L2

. ||aps(r∗, 0, λ)g1||L2 + |||r∗2 + e−
√
lnλ|1/8g2||L2 + λ−2||∂r∗g2||L2 .

The bounds in (5.13) imply λ||λ−2(a−1ps (λ))wg2||L2 . λ||λ−2g2||L2 . |||r∗2+e−
√
lnλ|1/8g2||L2 ,

so that Lemma 5.5 gives the desired bound for g2. We thus need to show the appropriate

bounds for ||∂r∗ũ||L2 and λ||(a−1ps (λ))wũ||L2 . First note that if u satisfies (5.30), then ũ
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solves

∂2r∗ũ+ λ2(W + ε)ũ = g̃ where g̃ = g1 − (W + ε)g2.(5.33)

For ũ then, we claim that

Lemma 5.6. For each λ−1 < σ < 1 and each function ũ with compact support,

λ||(a−1ps )w(λ)ũ||L2 . ||(σ + |W + ε|)−1/4∂r∗ũ||L∞ + λ||(σ + |W + ε|)1/4ũ||L∞ .(5.34)

Furthermore, for the g̃ term described in (5.33) we claim that

||(λ−1 + |W + ε|−1/4)g1||L1 + ||(λ−1 + |W + ε|−1/4)(W + ε)g2||L1 . ||awps(λ)g||L2 .(5.35)

Indeed, observe that

||(λ−1 + |W + ε|−1/4)(W + ε)g2||L1 . |||r∗2 + e−
√
lnλ|1/8g2||L2

where we have used ||(λ−1 + |W + ε|−1/4)(W + ε)|r∗2 + e−
√
lnλ|−1/8||L2 <∞ for a compact

region about r∗ = 0. Applying Lemma 5.5 then gives equation (5.35) for g2. For g1 we

will show

Lemma 5.7. For g, g1 defined above, the following weighted L1 bound holds for g1,

||(λ−1 + |W + ε|−1/4)g1||L1 . ||aps(r∗, 0, λ)g||L2 .(5.36)

In this case, using (5.12), the right side of equation (5.36) is bounded above by

||awps(r∗, 0, λ)g1||L2 , and again, appealing to Lemma 5.5, equation (5.35) follows. The

proof of above two lemmas follows the proof of Lemma 5.5 at the end of the section.

Summarizing the above reductions, we find that in proving (5.20) it will suffice to show

the following proposition:
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Proposition 5.8. Given functions u, g supported in a neighbourhood of r∗ = 0, and

|ε| . 1 satisfying

(∂2r∗ + λ2(W + ε))u = g,(5.37)

there exists λ−1 < σ < 1 such that

||(σ + |W + ε|)−1/4∂r∗u||L∞ + λ||(σ + |W + ε|)1/4u||L∞ . ||(λ−1 + |W + ε|)−1/4g||L1 .

(5.38)

The first term on the left gives the L2 bound for ur∗ in (5.20). Indeed,∫
|ur∗|2dr∗ . ||(σ + |W + ε|)−1/4∂r∗u||2L∞

∫
(|σ + |W + ε|)1/2dr∗,(5.39)

where over a compactly supported region, (σ+|W+ε|) is integrable. We thus concentrate

on the remainder of (5.20) and proceed with the proof of Proposition 5.8.

Proof of Proposition 5.8:

We are in the midst of proving Case 4 of (5.17), so that λ ≈ τ � 1. We consider three

subcases depending on the size of ε. The method of proof follows in the spirit of Cases 1-

3, where we consider an energy functional, determine bounds on its derivative and apply

Gronwall’s inequality. Using that W has a non-degenerate minimum at r∗ = 0, in what

follows we write |W + ε| ≈ |r∗2 + ε|. We define the energy functional

E[u(r∗)] = λ2(W + ε)1/2u2 + (W + ε)−1/2u2r∗ +
1

2
Wr∗(W + ε)−3/2uur∗ ,(5.40)

determined by doing a WKB analysis on (5.30). This will be slightly modified in each of

the cases below.

Case (i): ε� λ−1:

Here we choose σ = ε and show:

(5.41) λ(ε+ r∗2)1/4|u|+ (ε+ r∗2)−1/4|∂r∗u| . ||(ε+ r∗2)−1/4g||L1 .
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We define the energy as in (5.40) and claim that E is in fact positive. Indeed,

1

2
Wr∗(W + ε)−3/2uur∗ ≥ −

1

4δ
(W + ε)−1/2u2r∗ −

δ

4

(
W 2
r∗(W + ε)−5/2u2

)
.(5.42)

For δ > 0 chosen appropriately, ie. δ > 1
4
, the first term on the right can be absorbed in

to the second summand of the energy functional, (5.40). For the second term, choosing

δ = 1 we assert that 1
4
W 2
r∗|W + ε|−5/2u2 ≤ λ2|W + ε|1/2u2 or equivalently,

|Wr∗ |2 ≤ 4λ2|W + ε|3.(5.43)

Since W ≈ r∗2 ⇒ |Wr∗| ≈ |W |1/2 it is sufficient to show

|W | � λ2|W + ε|3,(5.44)

however this follows trivially since ε� λ−1. Thus the second term of (5.42) can also be

bootstrapped in to (5.40) and validates positivity.

A computation of the derivative of E[u(r∗)] yields

(5.45)
d

dr∗
E[u(r∗)] =

1

2
uur∗

(
Wr∗r∗(W + ε)−3/2 − 3

2
W 2
r∗(W + ε)−5/2

)
+

(W + ε)−1/4g

(
2(W + ε)−1/4ur∗ +

1

2
(W + ε)−5/4Wr∗u

)
.

Using the bound |Wr∗r∗| . 1, the first and second cross terms respectively satisfy

1

2
uur∗Wr∗r∗(W + ε)−3/2 .

1

λ
(W + ε)−3/2

(
λ2(W + ε)1/2u2 + (W + ε)−1/2u2r∗

)
.

1

λ
(W + ε)−3/2E[u(r∗)],

W 2
r∗(W + ε)−5/2uur∗ .

|W |
λ(W + ε)5/2

(
λ2u2(W + ε)1/2 + u2r∗(W + ε)−1/2

)
.

1

λ
(W + ε)−3/2E[u(r∗)].
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Furthermore, the second term of (5.45) is bounded above by

(W + ε)−1/4|g|
(

2(W + ε)−1/4|ur∗|+
1

2
|W + ε|1/2|W + ε|−5/4|u|

)
. |W + ε|−1/4|g|

(
|W + ε|−1/4|ur∗|+ (λ−1|W + ε|−1)λ|W + ε|1/4|u|

)
. |W + ε|−1/4E1/2[u(r∗)]|g|,

where we have used that |Wr∗| ≈ |W |1/2 and λ−1|W + ε|−1 . 1. Combining these gives

the estimate

(5.46)
d

dr∗
E[u(r∗)] . λ−1(W + ε)−3/2E + E1/2(W + ε)−1/4|g|.

We apply this to d
dr∗

(E1/2) to give

∣∣ d
dr∗

(E1/2)
∣∣ ≤ CE−1/2

2

(
λ−1(W + ε)−3/2E + E1/2(W + ε)−1/4|g|

)
=
C

2

(
λ−1(W + ε)−3/2E1/2 + (W + ε)−1/4|g|

)
.

It follows that E1/2 ≤ C
2

(∫
λ−1(W + ε)−3/2E1/2dr∗ +

∫
(W + ε)−1/4gdr∗

)
, so that we may

apply Gronwall’s inequality to obtain

(5.47) E1/2 ≤ ||(W + ε)−1/4g||L1 exp

(∫
C

2
λ−1(W + ε)−3/2ds

)
.

This establishes (5.41) as
∫

C
2
λ−1(W + ε)−3/2ds <∞ on a compact region.

Case (ii): |ε| . λ−1

Here we choose σ = λ−1, thus σ + |W + ε| ≈ λ−1 + r∗2. Then we show:

(5.48) λ(λ−1 + r∗2)1/4|u|+ (λ−1 + r∗2)−1/4|∂r∗u| . ||(λ−1 + r∗2)−1/4g||L1 .

The analysis is divided in to two subcases: (a) |r∗| � λ−1/2 and (b) |r∗| . λ−1/2.

Case (ii)(a): |r∗| � λ−1/2. We consider the energy functional (5.40) but note that E

is now positive for W � λ−1. A proof of this is analogous to Case (i) with W now

dominating λ−1 as opposed to ε� λ−1.
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We again compute the derivative of E, show the bound akin to (5.46), apply Gron-

wall’s Inequality and hence obtain (5.48) for |r∗| � λ−1/2.

Case (ii) (b): |r∗| . λ−1/2. Using this relation, showing (5.48) reduces to establishing

λ3/4|u|+ λ1/4|ur∗| . ||λ1/4g||L1 .(5.49)

In the given region, (∂2r∗ + λ2(W + ε))u = g is a small perturbation of (∂2r∗ + λ)u = g.

Via the multiplier method, we can then derive the energy functional

E[u(r∗)] = λ3/2|u|2 + λ1/2|ur∗|2,

whose derivative is given by

d

dr∗
E[u(r∗)] = 2λ3/2uur∗ + 2λ1/2ur∗g − 2λ5/2(W + ε)uur∗ .(5.50)

Since we are in a region where both |W |, |ε| . λ−1, equation (5.50) satisfies∣∣∣∣ ddr∗E[u(r∗)]

∣∣∣∣ . λ3/2|uur∗|+ λ1/2|ur∗g| . (λ2|u|2 + λ|ur∗|2) + λ1/2|ur∗g|

. λ1/2E[u(r∗)] + E1/2λ1/4|g|.

As above E1/2 ≤ C
2

(∫
λ1/2E[u(r∗)]1/2dr∗ +

∫
λ1/4g dr∗

)
so that by Gronwall’s Inequality

E1/2 . ||λ1/4g||L1 exp

(∫ r∗

−λ− 1
2

C

2
λ1/2ds

)
.

This completes the proof of Case (ii)(b).

Case (iii): −ε� λ−1.

Let σ = |ε|1/3λ−2/3. We must show the pointwise bound

(5.51) λ(|W + ε|+ |ε|1/3λ−2/3)1/4|u|+ (|W + ε|+ |ε|1/3λ−2/3)−1/4|∂r∗u|

. ||(|W + ε|+ |ε|1/3λ−2/3)−1/4g||L1 .
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The analysis is divided in to three regions:

(a) W + ε� λ−
2
3 |ε| 13

(b) |W + ε| . λ−
2
3 |ε| 13

(c) [r′−, r
′
+] = {W + ε < −Cλ− 2

3 ε
1
3}.

We remark that the technique to prove the first two cases closely resembles Cases (i) and

(ii) whereas Case (iii)(c) uses a slightly different approach.

Beginning with Case (iii)(a), we define the energy functional from (5.40)

E[u(r∗)] = λ2(W + ε)1/2u2 + (W + ε)−1/2u2r∗ +
1

2
Wr∗(W + ε)−3/2uur∗(5.52)

and claim it is positive definite, ie. (5.44) is satisfied. Indeed,

|W | ≤ |W + ε|3
(
|W + ε|−2 + |ε||W + ε|−3

)
� |W + ε|3(λ4/3|ε|−2/3 + |ε|λ2|ε|−1)� λ2|W + ε|3,

where in the second inequality we applied the region of consideration and in the last

inequality, we used −ε� λ−1. Applying (5.46) and Gronwall’s inequality then gives

(5.53) E1/2 ≤ ||(W + ε)−1/4g||L1 exp

(∫ r∗

r̃

C

2
λ−1(W + ε)−3/2ds

)
.

Since W + ε� λ−2/3|ε|1/3, (5.51) immediately follows.

Next we prove the estimate for Case (iii) (b), a symmetric region about the zeroes of

W + ε. As in Case (ii) (b), since |W + ε| . λ−2/3|ε|1/3, (5.37) is a small perturbation of

(∂2r∗ + λ4/3|ε|1/3)u = g. We can therefore define a corresponding energy functional to the

latter and obtain

E[u(r∗)] = λ2(λ−1/3|ε|1/6)u2 + (λ1/3|ε|−1/6)u2r∗.
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We proceed via arguments similar to Case (ii) (b):

d

dr∗
E[u](r∗) ≤ 2λ5/3|ε|1/6|uur∗|+ 2|ur∗g|λ1/3|ε|−1/6 + 2|uur∗ ||W + ε|λ7/3|ε|−1/6

. λ5/3|ε|1/6|uur∗|+ 2|ur∗g|λ1/3|ε|−1/6

where we have used |W + ε| . λ−2/3|ε|1/3. Then∣∣∣∣ ddr∗E[u](r∗)

∣∣∣∣ . λ2/3|ε|1/6E + λ1/6|ε|−1/12E1/2g.

Applying Gronwall’s inequality, and noting that
∫
|W+ε|≤Cλ−2/3|ε|1/3 λ

2/3|ε|1/6dr∗ < ∞ for

an arbitrary constant C, gives the desired bound.

Finally we consider Case (iii) (c). Let ω = |W + ε|+ |ε|1/3λ−2/3 and consider the bounds

for |u| and |∂r∗u| separately. For |u|, we require showing

λ2||ω1/4u||2L∞ . ||ω−1/4g||2L1 .

Multiplying equation (5.37) by −λu and integrating by parts yields∫ r′+

r′−

(λ|∂r∗u|2 + λ3|W + ε||u|2) dr∗ =

∫ r′+

r′−

−λugdr∗ + λuur∗
∣∣r′+
r′−
,(5.54)

where the positivity of the second term on the left follows since W + ε < 0. Note that

the integral on the right satisfies the bound

∫ r′+

r′−

λug dr∗ . λ||ω1/4u||L∞(r′−,r
′
+)

∫ r′+

r′−

ω−1/4|g|dr∗ . λ||ω1/4u||L∞(r′−,r
′
+)||ω−1/4g||L1(r′−,r

′
+),

(5.55)

and that the boundary terms fall in to the region considered in Case (iii) (b). Thus we

have,

(5.56)

∣∣∣∣ ∫ r′+

r′−

(λ|∂r∗u|2 + λ3|W + ε||u|2)dr∗
∣∣∣∣ .

λ||ω1/4u||L∞(r′−,r
′
+)||ω−1/4g||L1(r′−,r

′
+) + ||ω−1/4g||2L1(r′−,r

′
+).
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To complete the proof for |u| it remains to show

λ2||ω1/4u||2L∞ .
∫ r+

r−

(λ|∂r∗u|2 + λ3|W + ε||u|2)dr∗.

We proceed via the Fundamental Theorem of Calculus and write

λ2|ω1/4u|2 = λ2
∣∣∣∣ ∫ r∗

r′−

∂r∗(ω
1/2u2)dr∗

∣∣∣∣ = λ2
∣∣∣∣ ∫ r∗

r′−

(
1

2
ω−1/2∂r∗ωu

2 + 2ω1/2uur∗

)
dr∗
∣∣∣∣.

(5.57)

Using that ∂r∗ω ≈ |Wr∗ | . λ|W + ε|3/2 and ω−1/2 ≤ |W + ε|−1/2, for the first term on the

right of (5.57) we have

λ2
∣∣∣∣ ∫ r∗

r′−

(
1

2
ω−1/2∂r∗ω)u2dr∗

∣∣∣∣ .∫ r∗

r′−

λ2|W + ε|−1/2(λ|W + ε|3/2)|u|2dr∗ =

∫ r∗

r′−

λ3|W + ε||u|2dr∗,

while the second integral satisfies the following bound

λ2
∣∣∣∣ ∫ r∗

r′−

2ω1/2uur∗dr
∗
∣∣∣∣ . λ3

∫ r∗

r′−

ω|u|2dr∗ + λ

∫ r∗

r′−

|ur∗|2dr∗

.
∫ r∗

r′−

λ3|W + ε||u|2dr∗ + λ

∫ r+

r′−

|ur∗|2dr∗.

where we have used that |ε|1/3λ−2/3 . |W + ε|. Combining the above two inequalities

gives

λ2||ω1/4u||2L∞ .
∫ r∗

r′−

λ3|W + ε||u|2dr∗ +

∫ r∗

r′−

λ|∂r∗u|2dr∗.(5.58)

We thus have

λ2||ω1/2u||2L∞(r′−,r
′
+) . λ||ω1/4u||L∞(r′−,r

′
+)||ω−1/4g||L1 + ||ω−1/4g||2L1 .
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We use the fact that a2 ≤ ab + b2 ≤ δa2 + 1/δ
b

2
+ b2 ⇒ a2 . b2 to obtain the desired

bound on |u|

λω1/4|u| . ||ω−1/4g||L1 .(5.59)

Finally we show the pointwise bound on ur∗ ,

||ω−1/4ur∗ ||L∞ . ||ω−1/4g||L1 .(5.60)

Define the energy functional

Ē[u](r∗) = −λ2|W + ε|1/2u2 + |W + ε|−1/2(∂r∗u)2 − 1

2
Wr∗|W + ε|−3/2uur∗(5.61)

where Ē[u] + 2λ2|W + ε|1/2u2 = E[u] and

E[u] = λ2|W + ε|1/2u2 + |W + ε|−1/2u2r∗ +
1

2
Wr∗ |W + ε|−3/2uur∗ ,

similar to the energy defined in (5.40). Note the negative coefficient of u2 prevents E

from being positive definite; however, this will not affect obtaining the desired bound for

ur∗ . As in the previous cases, we calculate the derivative of Ē[u],

(5.62)
d

dr∗
Ē[u](r∗) =

1

2
uur∗(|W + ε|−3/2Wr∗r∗ +

3

2
W 2
r∗ |W + ε|−5/2)−

|W + ε|−1/4(ur∗r∗ − λ2|W + ε|u)(|W + ε|−1/4ur∗ +
1

2
|W + ε|−5/4Wr∗u),

using ur∗r∗−λ2|W + ε|u = g, and the analysis of Case (i) we obtain the derivative bound∣∣∣∣ ddr∗ Ē[u](r∗)

∣∣∣∣ . λ−1|W + ε|−3/2E + E1/2|W + ε|−1/4g.(5.63)

We point out that the energy used on the right hand side is that defined in (5.40) to

attain positivity. Integrating out the above equation and adding 2λ2|W + ε|1/2u2 to both
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sides yields

E[u](r∗) .
∫
λ−1|W + ε|−3/2Edr∗ +

∫
E1/2|W + ε|−1/4gdr∗ + 2λ2|W + ε|1/2u2.(5.64)

We apply Gronwall’s Inequality to the first two terms and use that on the region under

consideration |W + ε| ≈ ω on the third so that

E[u](r∗) . λ2||ω1/4u||2L∞(r′−,r
′
+) + ||ω−1/4g||2L1(r′−,r

′
+).(5.65)

This gives the desired estimate bound ||ω−1/4ur∗||L∞ . ||ω−1/4g||L1(r−,r+).

With the exception of proving the technical lemmas involved in the reduction, this

completes the proof of Proposition 5.8 and hence demonstrates the logarithmic loss at

r = rps.

Proof of Lemma 5.5: Recall that

aps(r
∗, ξ, λ) =



1, lnλ < C
1, r∗2 + λ−2ξ2 > e−1

− ln(r∗2 + λ−2ξ2), e−
√

lnλ
2 < r∗2 + λ−2ξ2 < e−2

√
lnλ, r∗2 + λ−2ξ2 < e−

√
lnλ

, lnλ ≥ C

so that aps(r
∗, ξ, λ) ≈ aps(r

∗, 0, λ) if

ln(r∗2 + e−
√
lnλ) ≈ ln(r∗2 + e−

√
lnλ + λ−2ξ2).(5.66)

In particular, (5.66) includes the case where λ−2ξ2 < (r∗2 + e−
√
lnλ)1/8. We character-

ize this set as the region D =
{

ln(λ−2ξ2) < 1
8

ln(r∗2 + e−
√
lnλ)
}
. Define a smooth cut

off function, χ(x) =


1, x ∈ (−∞,−1]

0, x ∈ [0,∞)

and a smooth characteristic function of D,

χD(r∗, ξ, λ) = χ(ln(λ−2ξ2) − 1
8

ln(r∗2 + e−
√
lnλ)). Upon computing ∂αξ ∂

β
xχD we find that

|∂αξ ∂βr∗χD(r∗, ξ)| ≤ Cα,β(1 + |ξ|)−α+δβ, so that for δ > 0, χD ∈ S0
1,δ.
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Define the symbol

q(r∗, ξ, λ) = λ2ξ−2(1− χD)

and the components of g,

g1 := (1 + λ−2D2
r∗q

w)g

g2 := qwg,

(5.67)

where Dr∗ = 1
i
∂r∗ . It follows immediately that g = g1 + λ−2∂2r∗g2. As constructed, g1

and g2 are not necessarily supported near the photon sphere, r∗ = 0. We can define new

functions,

g̃1 := χ1(r
∗)g1

g̃2 := χ1(r
∗)g2,

where χ1 is a smooth compactly supported cutoff function, identically equal to 1 on the

support of g. As will be evident below, lemma 5.5 still holds in this case. We thus

omit the latter construction and define g1 and g2 as in (5.67). The analysis is divided

in showing the estimate for g1 and g2 separately. Beginning with g2, we are required to

show

|||r∗2 + e−
√
lnλ|1/8g2||L2 + λ−2||∂r∗g2||L2 . ||awps(λ)g||L2 .(5.68)

However, using that (a−1ps )w(λ) is an approximate inverse for awps(λ), we can equivalently

let g = (a−1ps )w(λ)f , and show

||(r∗2 + e−
√
lnλ)1/8qw(a−1ps )w(λ)f ||L2 + λ−2||∂r∗(qw(a−1ps )w(λ)f)||L2 . ||f ||L2 .(5.69)

Consider the first term on the left hand side of (5.69). In calculating the operator

product (r∗2 + e−
√
lnλ)1/8qw(a−1ps )w(λ) it is sufficient to consider the principal symbol

since the remainder lies in the smoother space OPS−1+δ1,δ . We show that the product of

the symbols is bounded as this would enable us to use L2 −L2 estimates. Note that a−1ps
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is bounded by (5.7). For q(r∗, ξ, λ), if |ξ| & λ than both λ2

ξ2
and (1 − χD) are bounded.

For |ξ| . λ note that the support of q corresponds to the region where χD 6= 1, or

equivalently, λ−2ξ2

(r∗2+e−
√
lnλ)1/8

> e−1 so that q . (r∗2 + e−
√
lnλ)−1/8. It then follows that

||(r∗2 + e−
√
lnλ)1/8qw(a−1ps )w(λ)f ||L2 . ||f ||L2 .

For the second term, by Plancherel we consider |λ−2ξqa−1| = 1
|ξ| |1− χD||a−1|. If λ . |ξ|

all three terms of the product are trivially bounded. For λ & |ξ|, we use that on the

support of χD, λ−2e

(r∗2+e−
√
lnλ)1/8

> 1
ξ2

. This then establishes (5.69).

Next we show the desired bound for g1 in lemma 5.5,

||aps(r∗, 0, λ)g1||L2 . ||awps(λ)g||L2 .

Again, as in the case of g2 we show an equivalent bound:

||aps(r∗, 0, λ)(1 + λ−2D2
r∗q

w)(a−1ps )w(λ)f ||L2 . ||f ||L2 .

We have already shown that for δ > 0, aps(r
∗, 0, λ), (a−1ps )w(λ) are in Sδ1,δ. Moreoever

(1 + λ−2D2
r∗q

w) ∈ S0
1,δ so that the product of the three lies in Sδ1,δ. As above, it suffices

to show that the principal symbol of the product, namely,

aps(r
∗, 0, λ)χDa

−1
ps (r∗, ξ, λ) =

γ(− ln r∗2, lnλ)

γ(− ln(r∗2 + λ−2ξ2), lnλ)
χD(5.70)

is bounded. However, on the support of χD, (5.66) holds from which it easily follows that

(5.70) is bounded. This completes the proof of lemma 5.5.

Proof of Lemma 5.6: We must show for every σ satisfying λ−1 < σ < 1 and compactly

supported ũ, estimate (5.34) holds. Recall that we are assuming W (0) = W ′(0) = 0 and

W ′′(0) > 0 so that for r∗ in a neighbourhood of the origin, W ≥ 0. Thus if ε + σ > 0,

σ + |W + ε| ≈ σ + |ε|+W . This allows us to replace the pair (ε, σ) with (0, σ + |ε|). We

can then assume that either ε = 0 or ε < −σ as the ε = 0 case implies ε + σ > 0. The
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proof is divided in to three cases.

Case 1: |ε|, σ < e−
√
lnλ. Divide ũ in to an almost orthogonal dyadic decomposition in

the spatial r∗ variable. That is, we divide the interval (−1, 1) and consider u on the

regions |r∗| < s0 and |r∗| > s0, for s0 specified below. Specifically,

ũ = ũ<s0 +
∑

s0≤s<1

ũs, s0 = e−
1
2

√
lnλ,

where us is supported on the annulus Is, and |Is| ≈ s. For each us, we fix r∗ in a−1ps . The

pseudo-differential operator reduces to a Fourier multiplier and we can write

||(a−1ps )w(λ)ũs||L2 ≈ ||a−1ps (s,D, λ)ũs||L2

||(a−1ps )w(λ)ũ<s0||L2 ≈ ||a−1ps (0, D, λ)ũ<s0||L2 .

(5.71)

We first consider the region s > s0, so that a−1ps ≈ −(ln(r∗2 + λ−2ξ2))−1. When λ−2ξ2 <

s2δ, we have a−1ps . ln |s|−1. On the other hand, for λ−2ξ2 > s2δ, we have that a−1ps ≤ 1.

This gives

λa−1ps (s, ξ, λ) . λ| ln s|−1 + s−δ|ξ|, δ > 0.(5.72)

It follows from (5.71) and Plancherel that

λ||(a−1ps )w(λ)ũs||L2 . | ln s|−1λ||ũs||L2 + s−δ||∂r∗ũs||L2 .(5.73)

We next show that the right hand side of (5.73) is bounded above by the right hand side

of (5.34). In applying Cauchy Schwarz to each term, we respectively obtain,

(∫
Is

|ũs|2dr∗
)1/2

. ||(σ + |W + ε|)1/4ũs||L∞
(∫

Is

(σ + |W + ε|)−1/2dr∗
)1/2

(∫
Is

|∂r∗ũs|2dr∗
)1/2

. s1/2||(σ + |W + ε|)−1/4∂r∗ũs||L∞
(∫

Is

s−1(σ + |W + ε|)1/2dr∗
)1/2

.

(5.74)
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Note that in the case under consideration, |ε|, σ < e−
√
lnλ and s > s0, thus σ+ |W + ε| ≈

W . In particular, on the support of ũs, σ + |W + ε| ≈ s2. Substituting this in to the

above integrals and using that |Is| = s gives

λ||(a−1ps )w(λ)ũs||L2 . | ln s|−1λ||(σ + |W + ε|)1/4ũ||L∞ + s1−δ||(σ + |W + ε|)−1/4∂r∗ũ||L∞ ,
(5.75)

where we have replaced us with u on the right hand side. The almost L2 orthogonal

nature of the functions (a−1ps )w(λ)ũs gives

λ

∣∣∣∣∣∣∣∣ ∑
s0≤s<1

(a−1ps )w(λ)ũs

∣∣∣∣∣∣∣∣2
L2

. λ
∑

s0≤s<1

||(a−1ps )w(λ)ũs||2L2 .(5.76)

Indeed, in calculating the kernel of (a−1ps )w the cross terms exhibit rapid decay and can

therefore be bootstrapped in to the square terms as desired. We apply this to (5.75)

and note that both terms on the right are in fact summable. For the first term, letting

s ≈ 2−j
2 ⇒ |(ln |s|)−1| ≈ j−2 we have convergence as a p series, whereas in the second

term s ≈ |2−j2|1−δ so that convergence is established via a geometric series. This gives

the desired estimate

λ||(a−1ps )w(λ)ũ||L2 . λ||(σ + |W + ε|)1/4ũ||L∞ + ||(σ + |W + ε|)−1/4∂r∗ũ||L∞ .(5.77)

To complete the proof for this case, we consider the region where |r∗| < s0. An analysis

identical to the one above yields the bound

λ||(a−1ps )w(λ)ũ<s0||L2 . | ln s0|−1λ||ũ<s0||L2 + s−δ0 ||∂r∗ũs0||L2 .(5.78)

In applying Cauchy-Schwarz as in (5.74) we obtain the bound∫
|r∗|<s0

(σ + |W + ε|)−1/2dr∗ . lnλ,(5.79)
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so that we pick up the weaker estimate

λ||(a−1ps )w(λ)ũ<s0||L2 . λ||(σ + |W + ε|)1/4ũ||L∞ + s1−δ0 ||(σ + |W + ε|)−1/4∂r∗ũ||L∞ .
(5.80)

Despite losing the logarithmic weight the desired bound is obtained and hence completes

the proof of Case 1.

Case 2: ε = 0, σ ≥ e−
√
lnλ. As before, we decompose u as

ũ = ũ<s0 +
∑

s0≤s<1

ũs, s0 =
√
σ.

The proof is analogous to Case 1 for r∗ > s0. For r∗ < s0, the integral on the left of

(5.79) is now integrable making the analysis easier.

Case 3: ε < −e−
√
lnλ, σ < −ε. Again we decompose u,

ũ = ũ<s0 +
∑

s0≤s<1

ũs, s0 =
√
−ε,

and follow the analysis done in the previous cases for |r∗| > s0. As in Case 1, there is a

singularity in the weight (σ + |W + ε|)−1/2 in the region |r∗| < s0. However, here note

that (5.78) satisfies∫
|r∗|<s0

(σ + |W + ε|)−1/2dr∗ .
∫
|r∗|<s0

|W + ε|−1/2dr∗ ≤
∫
|r∗|<s0

2|ε|−1/2dr∗ . 1.(5.81)

This completes the proof of Lemma 5.6.

Proof of lemma (5.7): We wish to show

||(λ−1 + |W + ε|)−1/4g1||L1 . ||aps(r∗, 0, λ)g||L2(5.82)
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with g1, g defined above. Applying Cauchy-Schwarz to the left hand side, and denoting

I to be the support of g1, it would suffice to show∫
I

(λ−1 + |r∗2 + ε|)−1/2a−2ps (r∗, 0, λ)dr∗ <∞.(5.83)

Let G(ε, r∗) denote the integrand of (5.83) and consider the cases ε ≥ 0 and ε < 0,

separately. For ε ≥ 0, we let

I1 = {|r∗| < λ−1/2}
I2 = {λ−1/2 < |r∗| < e−

√
lnλ}

I3 = {I ∩ {e−
√
lnλ < |r∗|}}.

Then,∫
I1

G(ε, r∗)dr∗ .
∫
I1

(λ−1)−1/2dr∗ ≤ λ1/2(2λ−1/2) . 1.∫
I2

G(ε, r∗)dr∗ .
∫
I2

1

|r∗2|1/2
1

(
√

lnλ)2
dr∗ . 1, since aps ≈

√
lnλ for |r∗| < e−

√
lnλ.∫

I3

G(ε, r∗)dr∗ .
∫
I∩{e−

√
lnλ<|r∗|<e−1}

1

|r∗2|1/2
1

(ln r∗)2
dr∗

+

∫
I∩{e−1<|r∗|}

G(ε, r∗)dr∗ . 1 + |I| . 1

where in this last case we have used that aps(r
∗, 0, λ) ≈


ln |r∗|, {e−

√
lnλ < |r∗| < e−2}

1, {e−1 < |r∗|}
and that G is bounded away from r∗ = 0.

For the case when ε < 0, let

I1 = |r∗| < |ε|1/2

I2 = I ∩ {|ε|1/2 < |r∗|}
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Then,∫
I1

G(ε, r∗)dr∗ .
∫
I1

1

(−r∗2 + ε)1/2
dr∗ ≤

∫
|r∗|<|ε|1/2

|ε|−1/2dr∗ . 1,∫
I2

G(ε, r∗)dr∗ .
∫
I∩{√ε<|r∗|<e−1}

1

(ln r∗)2(r∗2 − ε+ λ−1)1/2
dr∗ +

∫
I∩{e−1<|r∗|}

G(ε, r∗)dr∗

.
∫
√
ε<|r∗|<e−1

1

(ln r∗)2r∗
dr∗ + |I| . 1

where again as above, we have used aps(r
∗, 0, λ) ≈ ln |r∗| in the first integral, and that

G(ε, r∗) is bounded in the second.

This completes the proof of Lemma (5.7) and hence the proof of Proposition (5.8).
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