ABSTRACT

JOHN F. JOSEPH. Application of Queuing Theory to Standpost
Design. (Wth the Assistance of Dr. DONALD T. LAURI A)

Queui ng theory was used to show that I engthy waiting |ines
can devel op at standposts if Wrld Health Organi zati on gui del i nes
are used for design. Line |lengths were predicted as a function

of popul ation size, custoner arrival rate, and other factors.
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Chapte r |

I NTRODUCTI| ON

A. Pu rpose
Hundr eds of thousands of people live in the sluns of Teguci -
gal pa, Honduras. Many of them have mgrated fromrural areas in

the hope of finding a better life in the city, yet npbst struggle

to obtain even the basic necessities. One such necessity is

wat er. House connections to the public water supply are rare in
the slunms of Tegucigal pa. Residents nust often travel to a

st andpost, and upon arriving there, they may have to wait in |ine
for hours before filling their buckets.

The tinme these Tegucigal pans spend waiting in line for water
is of concern. A nother waiting in line mght otherw se care for
her children or sell nore tortillas so that her famly could have
nore adequate neals. A child waiting in |ine m ght otherw se be
in school. Tinme is precious for all, especially those struggling
t osur vi ve.

I n Ukunda, Kenya, a rural community, not only do the water
consuners have to wait in line, but the water vendors do as well
in order to fill containers prior to selling them door-to-door.

If these vendors could spend less tinme waiting in line, they
m ght be able to nake better livings for thensel ves, serve nore
peopl e, and possibly pass on the savings to the consuners.

The probl em of poor people having to wait in line for water
is common not only in Tegucigal pa and Ukunda but in many Third
World countries. Wherever significant nunbers of people are

wi t hout house connections to a water system there is a poss-
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ibility that they will have to spend valuable tine waiting in

li ne.

The purpose of this paper is twofold:

1. Develop a fuller understanding of how waiting |ines
devel op at public standposts.

2. Aﬁply queuing theory to determne the standpost dis-
charge capacity (i.e., the flowate when the faucets
are fully open) required to serve a given popul ation
size, or to determ ne the popul ation size which can be
served by a standpost of a given discharge capacity.

The problemof long waiting lines is caused by nany factors,
many of which are nontechnical (e.g., lack of funding for capital
I mprovenents). However, a technical understanding of how waiting
| i nes develop and the design requirenments for elimnating |engthy

waiting lines are necessary steps towards sol ving the problem

B. The Role of Queuing Theory

The World Health Organi zati on has published guidelines for
standpost design in P u bli ¢ Standpost Water Suppli es ™ A Design
Manual ~ Technical Paper Series 14. Annex Ais an excerpt from

this manual. Sone itens of interest pertaining to these WHO

gui delines are the foll ow ng:

1. The guidelines are based on the assunption that during

‘peak hours' the nunber of customers which can be served

per unit time should be equal to the expected nunber of

arrival sperunitti ne.
2. The nunber of 'peak hours' may vary from4 to 12,
according to section 3.3 of the excerpt. Section 3.4

states that there is a certain "water collection pattern
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during peak hours". 'Peak hours' in the excerpt repre-
sents the tine period over which the arrivals at the
standpost are relatively frequent. The arrivals during
sone hours within this tine period are nore frequent than
the arrivals during other hours within this time period.
Therefore, the 'peak demand' in the excerpt is actually

an average demand over a period of several hours during

whi ch a tine-varyi ng denand nay occur

In regard to item #1, queuing theory can show that if the
di scharge capacity is such that the nunber of custoners that can
be served per unit tinme is equal to the expected nunber of arri-
vals per unit tinme, then, in situations where the nunber of users
Is sufficiently large, the length of the waiting line wll tend
to grow quite long as tine progresses. Queuing theory suggests
t hat di scharge capacities should generally be higher than those
indicated in the guidelines, if long waiting |ines are to be
avoi ded.

In regard to item#2, queuing theory can show that if denand
follows a tinme-varying pattern, then the average |length of the
line will be longer than if demand were constant. The average
length of the line increases with the extent to which demand var-
ies wwth tine. The degree of variation during 'peak hours'
shoul d be consi dered for design purposes.

Regar dl ess of whether the guidelines in Annex A are satis-
factory for consuners and vendors with small containers to fill,
intuition suggests that standposts for water vendors who have

carts or trucks should be designed for different di scharge capa-
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cities. Atruck or a cart may take nmuch longer to fill than a
personal container carried by hand. A waiting line of 3 persons
may not be a cause for concern, but a waiting |ine of 3 vendors
with trucks or carts would probably be of great concern to other
users. Queuing theory can be applied to help determ ne required
di scharge capacities for standposts serving such vendors.
Finally, queuing theory is useful in devel oping an under -
standi ng of how waiting lines develop. Such understanding is

hel pful for design purposes.
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Chapter 11

LI TERATURE REVI EW

Sul e and Oni (1988) have applied queuing theory to standpost

desi gn, but make the followi ng three assunptions:

1) The expected nunber of arrivals at the standpost per unit
time is constant throughout the day.

2) The tine required to serve custoners is exponentially
di stri buted anong the custoners.

3) The population is large enough to be considered infinite.

In regard to the first two assunptions, the arrival rate
will in many cases vary throughout the day (Feachem et al, 1972)
and the tinme required to serve custoners is generally not expo-
nentially distributed. Queuing nodels which allow for a tine-
varying arrival rate have been presented by Koopman (1972) in his
anal ysi s of airplane queues at airports and by Stevenson (1971)
in his study of emergencies requiring anmbul ances. These nodel s
use a step function to approxi mate the tine-varying behavi or, and
al so do not require that service tinmes be exponentially distrin-
buted. (The nodels presented in Chapter IV generally follow the
pattern of these nodels.) Yet, as in the work by Sule and Oni,
the population is assunmed to be infinite.

The assunption of an infinite population is often used in
the literature because it allows for sinplicity and flexibility.
The literature does not clearly state how | arge a popul ati on nust
be if this assunption is to provide accurate results. It is
suspected that in sone cases the popul ati on served by a standpost

may be too small to be considered infinite, and that a snmall -
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popul ati on nodel is necessary. VWHO gui del i nes suggest that the
popul ation served by a single-faucet standpost be kept between 25
and 125 persons. A population of 25 is far less than any of the
popul ation sizes assuned to be infinite inthe literature.
Unfortuneately, the amount of queuing literature for popul a-

tions which are too small to be considered infinite is scanty.
Peck and Hazel wood (1958) present equations and tables for the
expected queue | ength wthout assum ng the population is infi-
nite, but some other rather restrictive assunptions are enployed.
Al so, the solutions apply only when the queue | ength has reached
equi librium and no indication is given of the tine required to
reachequi li bri um

In summary, the literature is helpful for popul ations which
can be considered infinite, but it neither states how large in

practical terms the popul ation nust be to be considered infinite

nor what to do when it cannot be considered infinite.
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Chapter 111
VWHO DESI GN GUI DELI NES AND QUEUI NG THEORY SERVI CE TI ME

Based on the WHO guidelines in Annex A, the required dis-
charge capacity per standpost, Q. - In units of volume per hour
is given by the foll owi ng equation

e NX cnf24 X PX1/(1 - w X 1/f (3.1)
where N = design popul ation. The guidelines
recomrend linmting Nto 100 to 250
peopl e per standpost, not exceedi ng
500 peopl e per standpost in any case.
Al so, the nunber of users per faucet
should be in the range of 25 to 125.

C, = average per capita daily demand
F)

peak factor. P is supposed to account
for the standpost being used nore inten-
sively during some hours than others.

The guidelines state that Pis normally
in the range of 2 to 4, and that the
nurmber of peak hours per day is typically
between 4 and 12. The guidelines state
that P can be approxi nated as 24/t, in
which t is the nunber of peak hours.

w = waste factor, or the fraction of water
di scharged at the standpost that is not
carried away by custoners. This portion
i ncludes water spilt as containers are
being filled and al so water used directly
fromthe tap for purposes such as washing
clothes. According to the guidelines, w
is in the range of 0.1 to 0. 4.

f = efficiency factor. This factor is
supposed to account for the tap not
flowing fully while it is being opened
and cl osed. The guidelines state that
an ordinary screw tap has an efficiency
factor of 0.8 to 0.9, while a rapid
cl osing ball valve has an efficiency
factor of nearly 1.0.

The efficiency factor f and the waste factor w require

careful consideration. The efficiency factor in equation 3.1 is
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necessary because of the tinme required to open and close the tap.
Thi s opening and closing | eaves less tine available for the
standpost to discharge at its full capacity. The discharge
capacity nust therefore be increased by a factor of 1/f to com
pensate for the lost tine. The inclusion of the efficiency
factor in equation 3.1 would theoretically account for the clos-
ing and opening tinme only if this tinme were proportional to the
time required to fill the container, which is not the case. The
opening and closing tine depends on the valve type and renains
constant regardless of the tinme required to fill a container.
However, throughout this paper, the efficiency factor is assuned
to account for the valve opening and closing tine.

The waste factor wincludes all water which is discharged
fromthe standpost but not hauled away in containers. The factor
thus not only includes water spilt while containers are being
filled, but also water used directly fromthe tap for purposes
such as washing clothes and water wasted due to the tap being
| eft open or |eaking when the standpost is not in use. For the
exanpl es worked in this paper, it is assuned that taps are kept
cl osed when the standpost is not in use and that the standpost
can be used only for filling containers. Thus wis at the | ower

endofi t srange, about 0. 1.

A basic paraneter of queuing theory is tau (i;) , the time
required to serve a single custonmer. This service tine is given

by

T= VX(c/ @®J X1U(1-w X1/f (3.2

where V = vol une of water custoners obtain
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pervi si tt ot hest andpost
c = nunber of taps at the standpost

Notice that win equation 3.2 includes only water wasted
while containers are being filled. It does not include other
water wasted (e.g., water being wasted by a tap | eft open when
not in use) because such wasted water woul d not contribute to the
serVicetime.

Nei t her equation 3.2 nor the WHO gui del i nes account for the
time required to position the container under the tap and renove

it when full. This time is assumed to be negligible throughout
t hi spaper.
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Chapter |V

LARGE- POPULATI ON MODELS

A key assunption for the nodels presented in this chapter is

that the population served by the standpost is |arge enough to be
considered infinite. This assunption nakes nodeling relatively
easy and flexible. However, if the population is not sufficient-
ly large, the assunption will produce erroneous results. There-
fore, a small-population nodel is presented in the follow ng
chapter. Its results will be conpared with those of the |arge-

popul ati on nodel to determ ne how | arge a popul ati on nust be to

beconsi dered i nfinite.
A. Basic Large- Popul ati on Model

The basi c | arge-popul ati on nodel enpl oys the foll ow ng

assunpti ons:

1. A standpost begins service with no one waiting in |ine
when i t opens.

2. The standpost has only one tap.

3. The tine required to serve a customer, tau (tr) , is the
sane for all custoners. Units for tau are m nutes or
hour s.

4. The expected (i.e., average) rate at which custoners
arrive, |anbda (A), does not “ary wth tinme. Units for
| anbda are persons/m nute or persons/hour.

Model derivation consists of the follow ng three steps:

1. Determning the probability density function (PDF) for
t he nunber of arrivals at the standpost.

2. Using the PDF determned in step 1 to derive the
PDFof t henunber of peopl ei nl i ne.

10
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3. Using the PDF determined in step 2 to determ ne expect-
ed line lengths and waiting tines.

To illustrate these steps and determne resulting |line
| engt hs when the WHO gui delines are used for design, assune the
st andpost has an operating period from6:00 a.m to 6:00 p.m,
whi ch roughly corresponds to daylight hours. The standpost has a
single tap and serves a population of 120, with an average per
capita demand of 12 gallons/day. The waste factor w is 0.11,
and the efficiency factor f is 0.9. The expected arrival rate
of custoners does not vary between 6:00 a.m and 6:00 p.m, so
t he nunber of peak hours is 12, resulting in a peak factor of
24/ 12 = 2. Based on WHO gui delines (equation 3.1), the required

di scharge capacity of the standpost is

Q'<, M =120 X (12/24) X2 x (1/[1 - 0.11]) x (1/0.9)
=150gal | ons/ hour

=2.5gal lons/ m nute (gpm

Assune that all containers are 6 gallons, and that each person

who visits the standpost carries only one container per visit, so

t hat each menber of the popul ation takes an average of two trips
to the standpost. The expected arrival rate, X, is constant

t hroughout the 12-hour period and is (120 x 2)/12 = 20 persons/hr

The service tine,|IT, is given by equation 3.2 to be

‘A= 6 X (12,5 X (1/[1 - 0.11]) X (1/0.9)

=3. Om nut es

The service time TT of 3 minutes is equivalent to a service rate

11
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capacity, mu i™i) , of 20 persons per hour; ".e., M ALt with t:
in hours. The expected arrival rate A and the service rate

capacity/”™ are therefore equal

The above 3-step procedure can now be applied as foll ows.
1. Probability Density Function of the Nunber of Arrivals

Assum ng that the potential nunber of standpost users during
atinme interval of durationt is large enough to be considered
infinite, the Poisson equation can be enployed to express the

probability of the nunber of arrivals during t. Letting Pj*(t) be

the probability that k arrivals occur during tine interval t and
letting X be the expected nunber of arrivals per unit time, the

POissOnequatiOnis
_ K - At
Pit) = (At) e [k (4.1)
For exanple, if the expected arrival rate of custoners {\) IS

20 per hour, then the probability that exactly 18 arrivals occur

i nani nterval t of onehouri s

p (1.0 hr) = (20/hr x 1.0 hr) e /1 B!

=0. 084

or about 1 in 12. In other words, if the standpost were observed
for 1000 1-hour tine periods selected at random it would be
expected that 18 arrivals would occur in 84 of them

Figure 4-1 shows how the probability of arrivals during a 1
hour period varies with k for expected arrival rates of
10 persons/ hour, 20 persons/hour, and 30 persons/hour.

Conti nuous curves are shown for exposition. However, the

12


NEATPAGEINFO:id=279E6DB8-ED5D-499B-A049-BC22AEEFDB91


FIGURE 4-1 Probability of k arrivals in 1 hour vs. k

for expected arrival rates of 10 persons/hr,
20 persons/hr, and 30 persons/hr.
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probability function is actually discrete.
2. Probability Density Function of the Nunber of
Peopl e at the Standpost

The key to converting the PDF of arrivals into the PDF of
custonmers at the standpost is to select a period of time t in the
Poi sson equation equal to that required to serve a single cus-
tomer. Assune that all custoners begin to be served at the start
of a service period and finish being served at the end of it.
Since the PDF of the nunber at the standpost is known at the
begi nning of the first interval (i.e., the probability that no
one is initially at the standpost is 1, and the probability that
1 or nmore customers are at the standpost initially is O under the
assunptions stated at the outset), the PDF of customers in the
line at the beginning of the second and later intervals can be
determ ned.

For the scenario presented on p.11, this procedure for con-
verting the PDF of arrivals to the PDF of customers at the stand-
post is as follows. First, the Poisson equation is applied to
determ ne the probability density function of the nunber of
arrivals between 6:00 a.mand 6:03 a.m (i.e., during the first
interval) with t in the equation replaced by the service tineT,

which in this case is 3 mnutes (0.05 hour).

pjr) = (XXr) e 7k
The probability that no one arrives during the first interval s

o (0._05 hr) O? 3(%)/%[ X 0.05 hf) eA/\/\A'""A/Q

The probabilities for other arrivals are as follows.

14
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.(0.05 hr) = 0.368
Biio.CB hr) =0, 164
p°(0.05 hr) = 0.061
BAXO.OShr) = 0.015

g(0.05 hr) = 0.003

The probabaility of 7 or nmore arrivals during the 0.05 hour

i nterval is 0.000.
Wth this PDF of arrivals in the first interval, the PDF of
t he nunber at the standpost at 6:03 a.m can be determ ned. For

exanpl e, the probability that 0 people are at the standpost at

6:03 a.m, the beginning of the second interval is as foll ows:

joint probability joint probabili ty

that no one is in that 1 person is

line at 6: 00 a. m in line at 6: 00

and no arrival s a.m and no

occur between 6: 00 arrival s occur

and 6: 03 a. m bet ween 6: 00 and
6: 03 a. m

The above two ternms describe the only two possible ways for no
one to be at the standpost at 6:03. |If no one is at the stand-
post at 6:00 and no one arrives between 6:00 and 6:03, then no
one w |l be at the standpost at 6:03. Also, if 1 person is at

t he standpost at 6:00 and no one arrives between 6:00 and 6: 03,
then no one wll be at the standpost at 6:03 because the 1 person
w || have been served. The above two terns describe nmutually
exclusive events. The terns can therefore be added. Letting
v-(n) be the probability that j people are at the standpost at

t he beginning of the nth service period, the above situation can

be expressed as fol |l ows:

vj 2) vA(l) X p (0.05 hr) +V (1) x p (0.05 hr)

15
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Since it has been assuned that no one is at the standpost when it

opens (6:00 a.m)> vA(l) = 1.0 and v*(I) = 0.0. The above

equati on can thus bewittenasfoll ows:

0. 368
Vb(2) 1 .0 X 0.368 + 0.0x0. 36!

Simlarly, the probability that 1 person is at the standpost

at 6:03 is as fol 1lows:

joint probability that no one is

in line at 6:00 and 1 arrival
occurs during the first service
peri od

joint probability that 1 person is

in line at 6: 00 and 1 arrival
occurs during the first service
peri od

joint probability that 2 persons

are in line at 6: 00 and no

arrivals occur during the first
servi ce period

The first termresults in 1 person at the standpost at 6:03 only
if the arriving person nust wait until the beginning of the
second interval to be served, which was assuned on p.14. The
second and third ternms result in 1 person at the standpost at

6: 03 because only 1 person present at 6:00 is served from6:00 to
6: 03, and anyone arriving during the first interval nust wait
until the second interval to be served. These three nmutually

excl usi ve events can be expressed synbolically as foll ows:

16
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(1) X p,(0.05 h (1 0.05 h
V(2 \\iAng,,§005 hrr)) P el "

1.0 X 0.368 + 0.0 X 0. 368 + 0.0 X 0.368

0.3 68

Proceeding in a simlar fashion,

A Vo 005 he) o+ v () X pN0.05 hr
y2) M 005 h)r) +avA(|g)a) X "pA((o.os & i
1.0 X 0.184 + 0.0 X 0.184
0.0 X 0. 368 + 0.0 X 0.368
0. 184

The ot her values of the PDF for custoners at the standpost at

6: O3ar easf ol | ows:

V3( 2) = 0. 061
vA(2) = 0.015
vs(2) = 0.003
V/\( 2) = 0. 001
Vo) = 0. 000

The V;(2) val ues can then be used to determne v:(3) val ues,

i.e., the PDF at 6:06. For exanple, Vj(3), the probability that
one is at the standpost at the beginning of the third interval,

is

Vv, ( -v,,2 0.05 hr) +v,(2) x p,(0.05 hr) +
gxp 05hr)) (2) xp,( )

= 0368 X 0.368 + 0368 x 038 + 0.184 x 0.368

=0. 339

The Vj(3) values can then be used to determne Vj(4) val ues,

and so on, until the PDF of the nunber in line is known for the

begi nni ngof al | ser vi ceperi ods.

The general formof the PDF for custoners at the standpost

17
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at the beginning of any interval is as foll ows:

probability that |j joint probability that no one is
persons are in in line at the begi nning of period
lineatthe n and j persons arrive during

begi nni ng of perl10dn

peri odn+1

joint probability that 1 person is
in line at the beginning of period
n and j persons arrive during
period n

joint probability that 2 persons are
in line at the beginning of period

n and j - 1 persons arrive during
peri odn

joint probability that 3 persons are
in line at the begi nning of period

n and j - 2 persons arrive during
peri odn

joint probability that | + 1 persons
are in line at the beginning of

period n and no persons arrive during
period n

In mat hemati cal synbol s:
Vo(n+ 1) =" (v (n) XP(t)) (4.2
wher ek=ji fi =0, andl <=j -i +1 i fi=>0.

Equation 4.2 indicates that if i > 0, then one custoner is served

during the nth interval. The nunber of arrivals, k, is therefore

18
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1 nore than the difference in the nunber at the standpost at the
begi nning of interval n and the nunber at the beginning of inter-
val n + 1. However, if i = 0, then no departure occurs during
the nth interval, and k = - i =j. Another observation con-
cerning equation 4.2 is that the nunber of right hand side terns
i salwaysj+2.

One of the useful purposes of equation 4.2 is determ ning
the probability that no one is at the standpost at any tine. A
conmput er program using equation 4.2 was witten to determ ne
this. The resulting curve for the illustrative exanple is shown
in Figure 4-2. Although v*(n) decreases with time, it remins

positive; there is always a possibility that no one is at the

st andpost .
3. Line Lengths and Waiting Tines

The PDF of the line length (which includes the person being
served) at the beginning of the nth interval can be used to

determ ne the expected (i.e., average) line length, L(n), as

fol lows :

L(n) =7 X V;(n) (4.3)
11
For the illustrative exanple, the expected nunber of people in
line at the beginning of the second interval (6:03) is
L(2) = 0 X0.368 + 1 X0.368 + 2 x 0.184 +
5 x 0.

3 X 0.061 + 4 X 0.015 + 003 +
6 X 0.001

1. 00 person
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Equation 4.3 includes the possibility that no one is in the
line (i.e., j =0) to calculate the expected line Iength L(n).
However, when the line length is 0, no one is present to benefit
fromthe "shortness" of the line. The expected line |length
experienced by custonmers nmust exclude tine when the line is
enmpty. Therefore, it is of interest to know L' (n), the expected
line length given that the line is not empty (i.e., the expected
line Iength given that at |east one person is at the standpost).

At t hebegi nni ngofi nterval n,

probability probability probability that
that | persons = that the line x j persons are in

are in line IS not enpty [ 1 ne given that
the l'ine is not
enpty

Referring to v-'(n) as the conditional probability that | people
are inline given that the line is not enpty, the above equation

can be expressed in nathematical synbols as

Vo (n) = (1 - vi(n)) x vj(n)

Solving for v.'(n) yields

vi(n) =Vi(n)/(1- vjn)) (4.4)
For the illustrative exanpl e.

Vv, *(2) = 0.368/ 1 - 0.368) = 0.582

v.' (2) = 0.291

V3 (2) = 0.097

v; (2) = 0.024

v; ( 2) = 0. 005

Note that V:'(n) is always larger than VQn) by the constant
nultiple /(1 - v*(n)). Wth the conditional probability of one

or nore persons at the standpost at any tine, it is possible to
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calculate L' (n), the expected line length given that the line is

not enpty, as follows:
! - i ' 4.5
L' (n) a|)|(onXV'j(”) (4.5)
Conbi ni ng equations 4.4 and 4.5,

L'(n) = 1) vl - v\{n) (4.6)

¢l (j>0
from which it follows that
L' (n) L(n)/(1 - V fn)) (4.7)
At the beginning of the second service period for the illustra-
tive exanpl e,
L' (2) = 1.00/(1 - 0.368)

= 1.58 pe rsons

which is substantially greater than L(2) = 1.00.

In addition to calculating the expected line length at the
begi nning of any service interval, it is also possible to esti-
mat e t he average anmount of tine persons arriving at the beginning
of the nth interval will have to wait to be served. Wn), which
is the expected waiting tine for the last person in line at the
begi nning of the nth interval, is sinply the product of the ex-
pect ed nunber of service periods the person nust spend at the
standpost, S(n), and the tine required to serve each custoner,
Wn) includes both the tine the custoner spends in the queue
before beginning to be served and the tine spent being served.

W N) = s(n) x -r (4.8) ,
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For a standpost with only one faucet, S(n) =L'(n). At the
begi nning of the second service period for the illustrative

exanpl e,

Wn) = 1.58 persons x 3 m nutes/person
4. 74 m nut es
The "T = 3.00 m nutes" curve in Figure 4-3 shows the in-
crease in the expected line length L'(n) with time when the
expected arrival rate is 20 persons/hour, the service tinme is 3
m nutes, and the discharge capacity is as determ ned by WHO
gui del i nes as shown on p. 11. For this curve the value of the

traffic intensity rho {p), whichis the ratio of the expected
arrival rate Ato the service rate capacity/"., is

p=Xn = X/[I/r) = 20/hr / (1/ 3nin) 1. 00

(The conputer programused to determne the data points for the
curve is shown in Annex C.1.) Intuition mght suggest that no
lengthy waiting |ines would devel op because the service rate
capacity is equal to the expected arrival rate, but such is not
the case. At 6:00 p.m, L'(n), the average line length given
that at |east one person is at the standpost, is 13 persons.
Wth a service tine of 3 mnutes, this length corresponds to a

waiting tinme of 3x13 =39 m nutes.

An expl anation of why L'(n) increases nmonotonically is as

fol 1lows:

1. Wth T being the time since the standpost
began operating, the expected line length
L(T) is equal to the expected nunber of
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arrivals during T mnus the expected nunber
of peopl eser vedduri ngT.

L(T) - "AT expect ed nunber
served during T

2. The expected nunber served during T is equa
to the nunber of service intervals during T
m nus the expected nunber of service periods
duri ng which no one is being served.

expect ed nunber
expected nunber = 1/Z - of service periods

served during T duri ng which no
one is served

3. Conbi ning equations fromsteps 1 and 2 and
noting fromp. 12 that |I/T is the service

rat ecapaci tyy”-,

expect ed nunber

L (T) = XT - /xT + of service periods
duri ng which no
one i s served

4. However on p.12 it was shown that X =/A, ~ from
which it foll ows that

expect ed nunber
L(T) = of service periods
duri ngwhi ch no

one i s served

5. As shown in Figure 4-2, the probability that
no one is inline is always greater than O.
The expected nunber of service periods during
whi ch no one is served during T thus increas-

es wwth T. L(T) nust therefore also
increasewithT

6. Equation 4.7 expresses the relationship be-
tween L' (T) and L(T). Since L'?T) s always
greater than L(T), L' (T) nust also increase
wi th T.

It is no coincidence that the traffic intensity /=>= 1.0

for the illustrative exanple. The WHO equation 3.1 sets the
di scharge capacity equal to the demand rate, with adjustnents

made only for waste and for val ve opening and closing. The WHO
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gui del i nes assume that a service rate capacity equal to the
expected arrival rate is adequate, and do not consider the
possibility of lengthy Iines shown by queuing theory.

Note that for the traffic intensity Z° > 1 the expected
arrival rate is greater than the service rate capacity, and for
AN<-1the reverse is true. The traffic intensity therefore indi-
cates the number of persons that are expected to arrive during

the time it takes to serve one person. It is of interest to

know the sensitivity of L'{n) to changes inp . Figure 4-3
iIlustrates this for /i) values of 1.05 1.00, 0.90, 0.80, and

0.70. Note that forz? = 1.05 and with an expected arrival rate
A of 20 persons per hour, the service rate capacityyU. is 19.05
persons per hour, which is equivalent to a service period 'C

of 0.0525 hr per person, or 3.15 mnutes. Such a situation

m ght exist for the illustrative exanple if time required to
position and renove the container fromunder the faucet were not
negligible, but were 0.15 mnutes (9 seconds). For z? values |ess
than 1.0, the discharge capacity is increased to decrease the
service time "M, thereby increasing/”-. For exanple, forz? =
0.80, the discharge capacity is increased to reduce the service
period to 2.4 mnutes, increasing the service rate capacity Ato
25 per hour. Figure 4-3 shows that if a standpost is designed
such that service rate capacity is equal to or |less than the
expected arrival rate (i.e., for P~ 1.00) then L' (n) may be
undesireably long. Wen the service rate capacity significantly
exceeds the expected arrival rate (e.g.,/? = 0.80), results tend

to be satisfactory .
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of L'(n), is given by the following equation based on the [litera-
ture (Hllierand Li eber man, 1980) :

L= s ) (4.9)

This equation is applicable only when the service tine does not
vary anong customers, the standpost has only one faucet, the
expected arrival rate is constant, and the population is large
enough to be considered infinite. This equation can be used to
qui ckly determ ne the maxi mum expected Iine length (given that
the line is not enpty) when it is known that L'(n) is essentially
at steady-state before the standpost closes or the arrivals
cease. Figure 4-3 shows that if/? is adequately less than 1.0,

steady-state is essentially reached very quickly, making equation

4.9 useful for such z) val ues.

B. Vari able Arrival Rates

Accounting for an expected arrival rate that changes over
time is quite straightforward. X is assumed to be constant
for any particular service interval but is allowed to vary from
one interval to the next. The variation is therefore approxi-
mated by a discrete function, which requires the application of
equation 4.1 at each step. The nodel remains essentially the
same as that presented in the previous section, except that new p

val ues nust be calculated for each service period having a

different®. This recalculation is necessary because p” is a

functi onof X

To illustrate the application of queuing theory to a tine-
varying expected arrival rate, Xis assuned to vary as shown in
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Figure 4-4a but is approximated as a discrete function for the
queui ng nodel . The shape of this arrival patternis simlar to
that for villages in Lesotho, Africa (Feachem et al, 1978) and
I's believed to be not unconmon for urban areas. The average
value of 'X is 20 persons/hour, and is thus equal to that of the
scenario presented in the previous section. The standpost has
only one tap. Population size, average per capita demand, con-
tainer size, the waste factor, and the efficiency factor are as
in the exanple of the previous section. The designer has little
data on how the water collection pattern varies throughout the
day, but knows that there will be significant usage during every
hour from6:00 a.m to 5:00 p.m but no usage from6:00 p.m to
6:00 a.m He therefore estimates the nunber of peak hours to be
12, and uses WHO guidelines to calculate Pto be 24 hr / 12 hr =

2.0 (by definition of Pon p.7) and the required discharge capa-

city to be

QA = 120 X (12/24) X 2 x (1T - 0.11]) x (1/0.9)

2.50 gpm

The serVice tine is

-N =6 x (1/2.50) x (1/[1 - 0.11]) X (1/0.9)

=3.0minutes

This exanple is thus identical to that of the previous section
except that the expected arrival rate X varies with tine.

The value of A in persons per hour as a function of the

service interval is given by the follow ng equations:
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FI GURE 4-4a. Expected arrival rate vs. tinme for section |V.B
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X(n ) = 34 X n/40 for 0 :~ n " 40 (4.10)
or 6:.00 a.m to
8: 00a. m

A(n) = 46.5 X (148.8 - n)/148.8 for 40 < n < 120 (4.11)

or 8:00 a.m to

noon

X(n) = 34 X (n - 91.2)/108.8 for 120 < n < 200 (4.12)

or noon to 4:00 p.m

A(n)

34 X (240 - n)/40 for 200 £ n < 240 (4. 13)
or 4:00 p.m to
6: 0O0p. m
To determne, for exanple, the probability that the line at
the standpost is enpty at the beginning of the second service

period, equation 4.2 is applied as in the constant expected arri-

r at ecaset oobt ai n

Vg(2) = Vo ﬁl) o(from 6:00 to 6:03 a.m; +
v, (1) a.m

X a.m
X pMfrom6:00 a.m to 6:03

Fromequation 4.10, the A value for determning pMfrom 6:00
a.mto6:03a.m)is

A (1) =34 X 1/40 - 0.85 per hour

and , by equati on 4.1,

p*(from6:00 a.m to 6:03 a.m) 0 -(0.85/hr X 0.05hr)
(0.85/hr X OGshr) e / O!

=0.9 58

Gven that v*(l) = 1.0 and v,(l) = 0.0,

v,(2) = 1.0 X 0.958 + 0.0 x 0.95!

0. 958
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Thus, the procedure for determning probability values v-(n),
line | engths given that soneone is at the standpost, and waiting
times, is exactly the sane as when the expected arrival rate is
constant, except thatX(n) nust be calculated for each service
peri od.

The resulting L' (n) values are shown by the P = 2.0 curve in
Figure 4-4b. (The curve was cal cul ated by the conputer programin
Annex C. 4,) L'(n) reaches much greater val ues than shown by the
p- 1.00 curve in Figure 4-3, even though the average” val ue
for the time-varying case is also 1.0. For exanple, at about
4:50 p.m L'(n) for the tine-varying case is 31 persons,
corresponding to an expected waiting time Wn) of 31 x 3 = 93
mnutes, which is quite long. The L' (n) value fromthez3 =
1.00 curve in Figure 4-3 at 4:50 is 12, corresponding to an
expected waiting time of 36 mnutes. The tine variation in the
expected arrival rate is obviously an inportant consideration in
st andpost desi gn.

The designer may suspect that usage during the 12-hour
period from5:00 a.m to 6:00 p.m varies significantly, and
al though he may not know the extent of the variation, he may w sh
to chose a nore conservative peak factor of 2.5 to account for

the variation. The required discharge capacity by WHO gui de-

lineswouldbe

Q,, =120 X (12/24) x 2.5 x (1/[1 - 0.11]) x (1/0.9)
= 18 7 gal 1 ons/day

= 3.1 gpm
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The service tine would be

N =6 X (1/3.1) x(I/A- 0.11]) X (1/0.9)

= 2.4 m nutes

The conputer programused to determne L'(n) for P=2.0 was
modified to determne L'(n) for P=2.5. The resulting curve is
shown in Figure 4-4b. L' (n) reaches its maxinumvalue of 14
persons at 4:30. The corresponding expected waiting tine is 14 x
2.4 = 34 mnutes, which is still rather |ong.

The designer may perceive that a thorough investigation of
the water collection pattern is warranted before designing the
standpost. If he collects data to estinmate the usage during
every hour between 6:00 a.m and 6:00 p.m, he would find that
peak hourly usage occurs during the hour from8:00 a.m to 9:00
a.m and the hour from3:00 p.m to 4:00 p.m He would find that
the average nunber of arrivals during either of these hours is

A = (34 persons/hr + 27.75 persons/hr) [/ 2 = 30.9 persons/hr
'—Aat 8:00 a.m AAat 9:00 a.m

frome-3n. 4.10 'porii eon.A-.li

The peak factor P would then be sinply the ratio of this peak
hourly expected arrival rate and the average expected arrival
rate over the 24-hour period, or 30.9/10 = 3.09. The required
di scharge capacity by WHO gui delines woul d be 3.86 gpm The
service time would be 1.94 mnutes. Conputer programresults,
which are shown in the P = 3.09 curve in Figure 4-4b, show that
L' (n) would reach its nmaxi mumval ue of 6.65 persons at 4:18 p.m
The corresponding expected waiting tine is 6.65 x 1.94 = 12.9

mnutes, which is a dramatic inprovenent over the P = 2.5 case.
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The peak factor of 2.0 provides a service rate capacity of

Jbi-  \IX 1 person/3m nutes = 20 persons/hour. This rate is

equal to the expected arrival rate averaged over the peak period
of 12 hours. The average val ue of over this 12-hour period
is therefore 1.0. The peak factor of 2.5 provides a service rate
capacity of 25 persons/hour, which is equal to the expected
arrival rate averaged over the peak period of 4 hours extending
from6:55 a.m to 10:55 a.m (or from11:05 p.m to 5:05 p.m for
the later of the twin peaks). Wwen P = 2.5, the average p

val ue over this 4-hour period is 1.0. The peak factor of 3.09
provides a service rate capacity of 30.9 persons/hour and an
average ™ value of 1.0 over the 1.0-hour period extending from
8:00 a.m to 9:00 am (or from4:00 ppm to 5:00 p.m).

The WHO gui delines state that the peak period is the tine
during which "the standpost is used nore intensively than during
the rest of the day", that it typically |asts between 4 and 12
hours, and that there is a tine-varying water denmand pattern
during the peak period. Because the denmand varies with tine
during the peak period, the peak demand estimate will tend to
increase as the length of tine selected for the peak decreases.
This is clearly shown by the difference in P factors for the
above exanples. Peak periods of 12 hours, 4 hours, and 1
hour correspond to peak factors of 2.0, 2.5, and 3.009,
respectively. The guidelines do not indicate how to select the
Il ength of the peak period, but indicate 4 to 12 hours to be the
range of typical lengths. However, for the above exanpl e, using

a peak period of 4 hours or 12 hours is unacceptable. Using a
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peak period of only 1 hour yields reasonable results (a maxi mum
L' (n) value of 6.65 persons) but even this line length m ght be
consi dered unacceptable if service tines are not short. For
example, if the service time is 5 mnutes this |ength corresponds
to an expected waiting time of 6.65 x 5 - 33 m nutes.

The guidelines also state that the peak factor is typically
inthe range of 2 to 4. Wen the designer selects 3.1 for the
conditions of this exanple, the nmaxi mum expected waiting tine is
reasonabl e. However, in sone cases even a peak factor of P =4
wi || not provide adequate di scharge capacities. Assune, for
exanmple, that the arrival pattern is identical to that of Figure
4-4a except that no arrivals occur after noon. People rely on
anot her source in the afternoon because the standpost is closed.
The daily demand fromthe standpost is thus reduced from 1440
gal lons/day to 720 gall ons/day. The average hourly demand from
6:00 a.m to noon would be 720/6 = 120 gal |l ons/hour, and the av-
erage hourly demand over the day would be 30 gallons/hour. |If a

peak factor of P = 120/30 = 4 is used, the resulting discharge

capaci t ywoul dbe

Qrax = 120 x (6/24) X 4 X (1/[1 - 0.11]) x (1/0.9)

150 gal 1lons/ day

=2.5gpm

The service tine would be

r =6 X (1/2.5) X (1/[1- 0.11]) x (1/0.9)

=3 . 0m nutes

The di scharge capacity and the service tine are identical to that
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for the exanple resulting in the P = 2.0 curve in Figure 4-4b.
The L' (n) values would thus equal those shown by the P = 2.0
curve from6:00 a.m to noon. The maximumL'(n) value is 25

persons. The correspondi ng expected waiting tine is 25 x 3 = 75

m nutes, which is very | ong.

C. MultipleFaucets

| ncorporating nultiple faucets into the | arge-popul ation
nmodel is acconplished by recognizing that the maxi mum nunber of
departures which can occur during a service interval is no |onger
1 as in the single faucet case, but is equal to the nunber of

faucets. |If, for exanple, there are two faucets, then equation

4. 2must benodi fi edas foll ows:

vi(n+1) =Z(v- (n) xplJT) (4.14)
wher ek=j i f i =Qor |
ko= ) - 0 o+ 2 it i o>

The derivation of this equation is anal ogous to that
starting on p. 15 for the single faucet case. For exanple, the
nmutual |y excl usive events which can account for one person at the
st andpost at the begi nning of the second service interval with
two faucets is as follows, which can be conpared with its

counterpart on p. 17 for a single faucet.

V,(2) =vl) x p,(T) + V(1) Xp,(r) +
(2) vAgIQ X pP ST}) + V3EI; X pA(gr}
Equation 4.2 can also be nodified for three or nore faucets

by taking into account that the maxi mum nunber of people served

during a service interval equals the nunber of faucets.
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Any even nunber of persons at a two-faucet standpost results
in a nunber of service periods equal to one-half the nunber of
persons. Three or any hi gher odd nunber of persons at a
standpost with two faucets results in a nunber of service periods
equal to one-half the difference between that nunber and 1.

S(n), the expected nunber of service periods spent inline, is as

follows for a two-faucet standpost.

(4. 15)

The advantage of using S(n) over L'(n) is that it gives a better

i ndi cation of how |long a person is expected to wait when there is
nore than one faucet at the standpost. The expected waiting tine
is determned sinply by multiplying S(n) by tr , the time required
to serve one person. Wen the standpost has only one tap, S(n)

= L'(n), but when there is nore than one faucet, S(n) < L'(n).

To illustrate the queui ng nodel for a two-faucet standpost,
assune that the arrival pattern is as shown in Figure 4.4a and
that the scenario is identical to that of the previous section.

A peak period of 1 hour is used and, as shown in the previous
section, this result in a peak factor P = 3.09 and a WHO required
di scharge capacity of 3.85 gpm The di scharge capacity per

faucet is 3.86/2 = 1.93 gpm The service tine is

A=6X(2/3.8)X(L/[1-0.11])X(1/0.9)

= 3.9 m nutes

The conputer program which calculates S(n) and L' (n) is in Annex
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C. 6. The results are shown in Figure 4-5.

The maxi mum val ues of the expected line |ength (given that
at | east one person is at the standpost) and the expected nunber
of service periods spent at the standpost are 7.2 and 3.9,
respectively. The correspondi ng nmaxi num expected waiting tine is
3.9 X 3.9 - 15. 2 m nutes. In the previous section the single-
faucet exanple with a peak factor of 3-09 resulted in a maxi num
expected waiting time of 12.9 mnutes, which is a bit |ess than
that of this two-faucet exanple. One mght be surprised by this
di fference because the standpost di scharge capacities are equal
in these two exanples. The service tine at the two-faucet stand-
post is twice as great as at the single-faucet standpost because
the flowate through each of the faucets is half as great. Al -

t hough the service tine is twice as great, one would expect the
nunber of service periods spent at the standpost to be hal ved
because of the extra faucet, and that the waiting tinmes for these
two exampl es woul d be equal. However, when only one person is at
the standpost the availability of a second faucet does not reduce
that person's waiting tinme. Simlarly, when sonme hi gher odd
nunber of persons are in line, the nunber of service intervals
required to serve all of themis the same as if one additional
custoner were in line. |In general, if two standposts have equal
di scharge capacities, the one with the greater nunber of faucets
wi Il have slightly longerwaiting tines.

Figure 4-6 applies to constant expected arrival rates. The
Figure shows S, the steady-state expected nunber of service
intervals spent at the standpost vs. the traffic intensity Z? (the

ratio of the expected arrival rate A to the standpost service
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FI GQURE 4-5. Expected line length (given that the line is not
enpty) and expected nunber of service intervals
spent at the standpost vs. tinme for section IV.C
illustrative exanpl e.
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n3

FI GURE 4-6. Steady-state expected nunber of service intervals
spent at thestandpost vs. traffic intensity for
a ) 2, and 3 t aps. - ,
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rate capacity cm where c is the nunber of taps and * is the
service rate capacity per tap) for 1, 2, and 3 faucets. For the

singl e-faucet curve, values were obtained by use of equation 4.9,
with S=1L". For the multiple-faucet curves, values were ob-
tained by the conputer prograns shown in Annexes C 2 and C. 3.
These conputer prograns do not actually calculate true steady-
state val ues, but cal culate values for 400 service periods, which

Is a long enough time for steady-state to be essentially reached

when/? = 0.9. Values for p close to but less than 1.0 are not
included in Figure 4-6 because of the lengthy time required to

reachnear st eady- st at e.

Figure 4-6 shows that at a given” value, S decreases as the
nunber of faucets increases. For exanple, at z? = 0.8, S = 3.00
for one faucet and S = 1.66 for three faucets. However, as di s-
cussed previously, for a given standpost discharge capacity the
st eady-state expected waiting tine Wincreases as the nunber of
faucets decreases. Assune for exanple that the standpost dis-
charge capacity is 4.00 gpm mnaking the service tinme to be 2.00
m nutes when there is one faucet. For three faucets the flow
per faucet would be 1.33 gpm making the service tine to be 6.00

mnutes. The resulting steady-state expected waiting tinme W at

p= 0.8 would be 3.00 x 2.00 = 6.00 mnutes for one faucet, and

1.66 X 6.00 = 9.96 nminutes for three faucets.

D. Service Tine Varying Anmong Users

The volume of containers that users fill will often vary,

causing the service tine to vary anong users. This causes diffi-
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culty in applying the Poisson equation because the value of -XT

used in the equation is variable. This difficulty can be over-

conme by selecting probability distributions which are in a form

whi ch | end thensel ves to the numerical nodeling of queues. How-
ever, such nodels are not presented in this paper for the fol | ow
ingreasons:

1. For a constant expected arrival rate, the steady-state |ine
l ength at an adequately designed standpost will be reached
fairly quickly. Figure 4-3 shows how soon steady-state is
reached when P (the traffic intensity, which is the ratio
of the expected arrival rate to the service rate capacity)
is adequately low. Reaching steady-state requires nore tinme

when p is higher. Althouqh st eady-state equati ons may not
accurately calcul ate line1engths at underdesi gned stand-

posts (because” is too high and the standpost may cl ose or
arrivals may stop before steady-state is reached); they can

be used to adequately design standposts, making numneri cal
nodel i ng unnecessary when the expected arrival rate is con-

st ant .

2. Koopman (1972) has shown that for time-varying expected
arrival rates, the variation in service time anmong users
does not seemto have a substantial inpact on expected
line lengths. Thus, when the expected arrival rate var-
ies, the service tine anong users may be assunmed const ant
and the queui ng nodel of the previous section may be
appli ed .

The fol l ow ng equation, which can be obtained from queui ng
theory texts (e.g., Hillier and Liebermann, 1980), determnes L',
t he steady-state expected line length given that the line is not
enpty. The equation is applicable for any service tinme proba-
bility distribution, but the expected arrival rate nmust be con-
stant, the standpost nmust have only one faucet, and the popul a-

tion nust be large enough to be considered infinite.

L' == 1+ (<14 + [N[[27(] -M] (4. 16)

where 7/- standard deviation of the service tine
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Equation 4.16 is applicable only if n (the traffic intensi-

ty) is less than 1. If p is equal to or greater than 1, then
steady-state is never reached and equation 4.16 is meaningl ess.

Al so, the equation should only be used if it is known that
steady-state is reached before arrivals cease or the standpost
cl oses.

Figure 4-7 shows L' (the steady-state expected |ine |length

given that soneone is at the standpost) vs. p curves for various
service tinme standard deviations. Asz? increases, the effect of

the standard deviation on L' also increases. At/?= 0.2 (which
woul d correspond to, for exanple, an expected arrival rate of 20

persons/hour and a service rate capacity of 100 persons/hour),

the standard deviation has essentially no effect onL'. kt p =
0.95, L' when the standard deviation equals the average service

time is nearly twice L' when the standard deviation is O.

As an exanpl e of applying equation 4.16, assune that one-
third of the custonmers are children with container size of 3
gal l ons (about 25 pounds) corresponding to a 1.2-mnute service
time T ; one-third of the custoners are adults with container
size of 6 gallons (about 50 pounds) and T = 2.4 mnutes; and the
other third are adults with container size of 9 gallons (about 75
pounds) and ir= 3.6 mnutes. The standard deviation of the
service tine is about one mnute. The average service tine 'V 1is

2.4 mnutes, and the service rate capacity® is 1/2.4 = 0.42

persons/ mnute. Assum ng an expected arrival rate of 20

persons/hour (0.33 persons/mnute), p = *lp- = 0.33/0.42
= 0.8. The resulting steady-state expected line |ength given

that at | east one person is at the standpost is
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FI GURE 4-7. Steady-state expected |ine Ien?%h (given that

the line is not enpty) vs. traffic intensity

for 1 tap and variouS service tine standard
devi ati ons.
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L' - 1+ (0.333"x 0.98"+ 0.8")/C2 x 0.8 x (1 - 0.8)]

= 3.33 pe rsons

|f the standard deviation were 0, L' would be

L' =1 +0.8/(2x0.8x [1-0.8])

3. 00 pe rsons

The increase in L' due to the variation is service tinme is thus
100% x (3.33 - 3.00)/3.33 = 11%for this exanple.

By nultiplying equation 4.16 by T(the average service
time) and using /™ =\iM ="M~ the steady-state expected waiting
time Wfor a single-faucet standpost and constant expected

arrival rate is as foll ows:

W= AA( crj™ + rA) (2571 -Xx]) (4. 17)

For the above exanple, equation 4.17 shows that the steady-state
expected waiting time Wwhen the service tinme standard deviation
cCs 0is 7.20 mnutes, and 8.00 m nutes when the standard devi -
ation is a mnute. The increase in Wdue to the standard devi a-
tionis (8.00 - 7.20)/7.20 x 100% = 11% which is of course the

same percent increase the standard deviation causes in L'.

Based on a tel ephone operator staffing study done by Sze
(1984), the percent increase in the steady-state expected waiting
time Wthat the service tine variation causes when there are
multiple faucets is the sane as the percent increase when there
Is a single faucet, assum ng that the average of the varying
service tinme equals the constant service tine. For exanple,

assune that z? = 0.8, » = 2.4 mnutes, and the standpost has
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two taps. Based on Figure 4-6 W= 2.2 x 2.4 = 5.3 mnutes.
If the service tine standard deviation were increased to 1.0
mnute, as in the previous exanple, then the steady-state ex-

pected waiting time Wwould be increased by 11% The new val ue

of VWwwoul dbel . I | x5. 3=5. 9m nut es.

Figures 4-8 and 4-9 show for the effect that the service time
standard deviation cX* has on S (the steady-state expected nunber

of service periods custoners spend at the standpost) for two and

three taps, respectively. The curves for c¢Xj-> 0 were determ ned
with the know edge that Sis directly proportional to W and that

the percent increase in S due to o*is therefore the sanme for nul -

tiple faucets as it is for one faucet.

Under st andi ng why the service tine variation causes Wto
increase may prove useful. Wile custoners having short service
times are served, the service rate capacity is in effect in-
creased, thereby decreasing the jO value during that service tinme.
Wi | e custoners having long service tines are served, the oppo-
site occurs. Both long and short service tines effectively
change z> tenporarily. However, the relationship between Wand /?
I's concave-up (i.e., as z? increases, the Wvs. z? curve becones
steeper). Therefore, longer service times cause a greater in-
crease in Wthan do the shorter service tinmes cause a decrease
in W The net effect is that Wis greater when the service tine
vari es anong users than when service tinme is constant anong

users. As the variation is service tine increases, so does W
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FI GURE 4-8. Steady-state expected number of service intervals

spent at the standpost vs. traffic intensity for

2 taps and various service time standard
devi ati ons.
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FI GURE 4-9.
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Chapter V
SMVALL- POPULATI ON MODEL

The | ar ge- popul ati on nodel s of Chapter |V are based on the
assunption that the population is |arge enough to be considered
infinite. This assunption allows for nodel sinplicity and fl exi-
bility. Populations should therefore be assuned infinite when-
ever they are |l arge enough for the assunmption not to cause signi-
ficant inaccuracies. |In this chapter a small-popul ati on nodel
(i.e., a nodel that does not assume the population is infinite)
wll be derived. 1In Chapter VI its results will be conpared with
the results of the nodel presented in section IV.A M ni mum
popul ation sizes which can be assuned to be infinite w thout
causi ng serious inaccuracies will thus be determ ned. The sane
four assunptions |listed on page 10 for the | arge-popul ati on nodel
are al so assuned for the snmal 1- popul ati on nodel so that any
difference in results may be attributed strictly to the limta-
ti onof popul ati onsi ze.

The snal | - popul ation nodel is simlar to the | arge-popul an
tion nodel in that expected queue |lengths are calculated at tines
which are interger nultiples of the service period, i.e., expect-
ed line lengths are calculated at the beginning of the second
service period, the beginning of the third service period, etc.
However, the derivation of the small popul ati on nodel is nore
conpl ex because the nunber of arrivals during any particul ar
service period affects the PDF of the nunber of arrivals during
ot her service periods. The reason for this is that the number of

arrivals that have occured may be a significant portion of the

popul ation, thus influencing the probabilities of future arriv-
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als. The nodel derivation consists of the foll owi ng steps:
1. Determning the PDF for the nunber of arrivals at the
st andpost during any service period.
2. Using the PDF in step 1 to devel op the PDF for sequences
of arrivals over a series of consecutive service peri ods.
(One of the probabilities expressed by this PDF woul d

be, for exanple, the probability that 2 arrivals occur in
the first service period, O arrivals occur in the second

service period, and 4 arrivals occur in the third service
peri od.)

3. Using the PDF deternined in step 2 to cal cul ate expected
line lengths and waiting tines.

These steps are di scussed below. Assune that a single-
faucet standpost serves a popul ation of 20 custoners. All of
the custoners arrive at the standpost between 6:00 a.m and 7:00
a.m; enploynent away from hone, school, etc., make other tines
i nconvenient. The size of containers is assuned to be 6 gallons
and the di scharge capacity is 2.5 gpm The waste factor wis
0.11 and the efficiency factor f is 0.9. The resulting service

time TT is, by equation 3.2,

r= 6Kf]/25) X(L[1- 0.11]) x (1/0.9)

= 3.0 m nutes

The scenario is therefore identical to that of section |IV.A

except that the population is limted to 20 and arrivals occur

only between 6:00 a.m and 7:00 a.m

1. Probability Density Function of the Number of Arrivals
Dur i ngaSer vi cePeri od

The time period during which all custoners arrive is defined

as T, which in this exanple is 1 hour (6:00 a.m to 7:00 a.m).

49


NEATPAGEINFO:id=3AF23DAB-005E-4EA5-8762-102DE1A77F9D


Because the expected arrival rate is assuned not to vary with
time, each nenber is just as likely to arrive between 6:00 a. m
and 6:03 a.m as between, say, 6:30 a.m and 6:33 a.m The
probability that a particular custonmer (i.e., an arbitrarily
chosen custoner out of the population of 20) arrives during some
tine period of length Twithin T is sinmply t~/T. If Tis the 1-
hour period from6:00 a.m to 7:00 am and » is 3 mnutes
(0.05hr), then this probability is 0.05hr/1.0hr = 0.05. The
probability that two particular custoners arrive during a tine
period of length 1Z is [XIT) x ("C7 T). The custoners act indepen-
dently of each other and their probabilities of arriving during a
period of length Tare therefore multiplied to deternm ne the joint
probability that both arrive during the period of length X . I n
general, the probability that k particular custoners arrive dur-
ing atine period of length IT" is (T/T)

Simlarly, if the population is N, the probability that
N - k particular custoners arrive outside of a tine period of
length X but still within tine period Tis ([T —TJ/T)H_K

The probability that k particular custoners arrive during a
tinme period of length "X and N - k particular custoners arrive

OutsideOfIT(i.e.,duringT-"'C)is
(FIT)*" X ([T --r]/T) A

The probability that any k custoners arrive during a period
of length '"J'" and ~r\)i N - k custoners arrive during T -fis an
integer nmultiple of the above product. The integer is the nunber

of possible sets of size k that zi.x\ be sel ected from popul ati on
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N, which is the pernutation

N/ (KUIN - K] )

Therefore, defining r "7 (T) as the probability that k

custoners arrive during a period of |engths;,

)= (NN KO) (T A(T - e (5.1)

Equation 5.1 is a formof the binomal distribution. For exam

ple, the probability that 2 customers arrive between 6:00 a. m

and6: O3a.m is

(0.050) = (2011211 181 ) (0. 05hr/ L. Chr)(0. 95hr/ . )

=0. 189

Because the entire population of 20 arrives in a 1-hour period
and the expected arrival rate does not vary with tinme, the
expected arrival rate is 20/ hr. Table 5-1 conpares the proba-
bilities when applying the Poisson equation (equation 4.1) and

t he binom al equation (equation 5.1) over a 0.05hr period when
the expected arrival rateX= 20 persons/hr. The Poi sson equation
assunes the population is infinite, whereas the binom al equation
assunes a popul ation size of N, which in this exanple is 20. It
is well known that as N increases, the results of the binom al
equation approach those of the Poisson equation. Table 5-1 shows
t hat when the nunber of arrivals k is equal to 1, which is the
expected nunber of arrivals per service period, rj*(0.05hr) >

p (O.OBhr). That is, the probability of 1 arrival during a tine
period of length "Cis greater when the population is 20 than

when the population is infinite. This same inequality is also
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true when the nunber of arrivals k = 2. However, in general,

r ("t') is less than P*(T') for values of k different fromthe

expected nunber of arrivals per service period.

TABLE 4-1

Conparison of Binomal (N - 20) and Poisson (N o> )
Equation Results for T = 0.05 hr

r~(0.05hr) pj O. Cshr)

0] 0.3 58 0. 368
1 0. 377 0. 368
2 0, 189 0. 184
3 0. 060 0. 061
4 0. 013 0. 015
5 0. 002 0. 003
6 0. 000 0. 001
7 0. 000 0. 000
20 0. 00O 0. 000

2. Probability Density Function for Sequences of Arrivals
During a Series of Consecutive Service Periods

Wth known PDF of arrivals during the first service period
and given that no one is inline at 6:00 a.m, equation 4.2 can
be used to deternine the PDF for the nunber in Iine at the be-
gi nning of the second service period. For this purpose, the
r (T) values in Table 5-1 are used in place of p"(t) because the
popul ation is 20 instead of infinite. The PDF can then be used
to calculate the expected line length at the beginning of the
second service period.

Cal cul ating the PDF and expected line length at the begin-
ning of the third service period is nore difficult due to the
fact that arrival probabilities during the second service period

depend on those during the first. For exanple, if two arrivals
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occur during the first period then the probability of three ar-
rivals in the second period is different than if only one arriv-
al had occured during the first period. It is therefore neces-
sary to determne the probability of sequences of arrivals.

To determ ne the probabilities of sequences of arrivals, |et
the variables k, and k™ represent the number of arrivals in the
first and second periods, respectively. The probability of Kkj.
arrivals during the second period given that k, arrivals have
al ready occured in the first period can be determ ned by equation

5.1, but with the population reduced to N- kj and T reduced to
T-T. Thi s pr obabi 11 ty i s

(WK JHORN - K- ) (T ET -rr T -

In the above expression, the probability of k2 arrivals in
the second interval is conditional on the probability of k,arriv-
als inthe first interval. The product of the two probabilities
Is therefore equal to the joint probability that k, arrivals

occur inthe first interval and k™ arrivals occur in the second.
Mul tiplying the two probabilities yields

r(T) = [N TKE (N- k- KD TOTH A(T-20) 1177 (5.2)

9 -

Simlarly, the joint probability of k, arrivals in the first

period, k™ arrivals during the second period, and k* arrivals
inthe third period is

(N (k,Tkiki[N- Kk, - k- k]t 7T) ' - t[T - 3r]/T) (5.3)
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Probabilities for sequences of arrivals over four or nmore service

periods can simlarly bedeterm ned.

3. Expected Line Lengths and Waiting Tines

Once the probabilities of sequences of arrivals are deter-
m ned, the PDF of the nunber in |ine can be determned. For
exanple, to determne the probability that one personis in line
at the beginning of the third service period, the probabilities
of all possible arrival sequences causing one person to be at
t he standpost nust be summed; that is

probability of no
arrivals in the first

Vv, (3) service period and 1
arrival I n the second
peri od

probability of 1

arrival in the first

period and 1 arrival
in the second period

p robabi 11ty of 2

arrivals in the first

period and no arrivals
in the second period

The terns on the right would then be cal cul ated by use of equa-

tion 4.2. The process woul d be repeated to determne Vo(3),
V,(3), V3(3), etc. until the entire PDF of the nunber in |ine at
the beginning of the third interval is known. This PDF can then

be used to determne L'(n) by applying equation 4.6.

Unfortunately, this process for determning L'(n) is quite
cunmbersome for popul ations greater than about ten and for service
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periods later than the fourth or fifth; devel opnent of the com
puter programis excessively laborious. This difficulty is due
to the very large nunber of possible arrival sequences. However,
as discussed below, it is possible to determ ne the expected
line length if v*Cn) is known for each n. The necessity of cal-
culating all v-(n) values other than Vglh) is thus elimnated.

The multitude of arrival sequences that nust be considered is
g reatly reduced .
The derivation of the procedure for calculating L'(n) val ues

based on VQn) values begins with the follow ng equation:

L(n + 1) = L(n) + expected nunber of arrivals
during period n

expect ed nunber of custoners (5.4)
served during period n

The expected nunber of arrivals during a service period is

p, the traffic intensity, which for the smal 1-popul ation nodel
Is the ratio of the population size to the nunber of service

intervals during which the standpost is open. Thus,

L(n + 1) =L(n) +/? - expected nunber of custoners (5,5)
servedduri ngperi odn

The nunmber of custoners served during a service interva

must be either 0 or 1 for a single-faucet standpost. Therefore,

p robabi li ty probabi 1i ty
t hat no that 1

cust oner s cust oner
are served is served
duri ng during
period n period n

and
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probability probability

that 1 t hat no
cu stoner cust oner s (5.6)
i s served are served
duri ng during
period n period n
AT so.
expect ed probability probabi 1i ty
nunber of t hat no that 1
custone rs cu stone rs cust oner
served are served is served
duri ng duri ng duri ng
period n peri od n period n
p robabili ty
that 1
cu stomer (5.7)
is served
duri ng
period n

Conbi ni ng equations 5.6 and 5.7 yields

expect ed number probability
of custoners t hat no (5.8)
served during customers
period n are served
duri ng
peri od n

Equations 5.5 and 5.8 yield

L(n +1) =L(n) +" - probability that pg (5.9)

orrers erved
durlngperlodn)

The probability that no one is served during period nis equal to
the probability that no one is at the standpost at the beginning of

period n. So, equation 5.9 can be rewitten as
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L(n +1) =L(n) +"-(1-v*n))
= L(Nn) M p + v™(n) - 1 (5.10)

To illustrate equation 5.10, L(2) is calculated for the
scenario presented in this chapter. Substituting n=11in

equati ons. 10,

L(2) = L(1) + +v(]) - 1
No one is waiting at the standpost when it opens at 6:00 a. m

Therefore, L(I) =0 and v* (1) = 1. Aso, /? =1 The above

equation thus reduces to
L(2) =0+1+1-1-=1
Hence, the expected nunmber in line at the beginning of the second
period(i.e,at6:03a.m)isl.
To cal cul ate the expected nunber of custoners at the

begi nni ngof t het hi rdi nt erval ,

L(3) =L(2) " p +wN2) - 1

As shown before, L(2) - 1. Vg(2), the probability that no

custoners are in line at the beginning of the second period,
is, by equation 4.2, equal to the probability that no custoners
arrive during the first period. This latter probability is given

by equation 5.1 and has been calculated in Table 4.1 to be 0. 358.

Thus,

L(3) =1+ 1+0.358 - 1

=1. 358

Simlarly, with L(3) known, L(4) can be determ ned after
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calculating Vg(3). The line is enpty at the beginning of the

third period if no custoners arrive in the first and second
periods or if 1 custoner arrives in the first interval and no
custoners arrive in the second period. The follow ng diagram
illustrates this. Li nes i nterconnect nunbers to indicate arri val
sequences whi ch cause no one to be at the standpost during the
third service interval. For exanple, a line connects 1 in the
first colum with O in the second colum because 1 arrival in the
first period and O arrivals in the second period causes no one to
be at the standpost in the third period. No line connects 2 in
the first colum with 2 in the second columm, for exanple,
because such an arrival sequence woul d cause soneone to be at the

standpost during the third interval.

Sequences of Arrivals for Wiich No one is at the
St andpost at the Beginning of the Third Peri od

Nunber of Nunber of

Arrivals in Arrivals in

1st Peri od 2nd Peri od
20 20

The probability that no custoners are in the queue at the

beg inning of the third period is thus
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probability that no probability that 1 (5.11)
V (3) = custoners arrive in the custoner arrives in

1st and 2nd peri ods t he 1st period and
no custoners arrive

in the 2nd peri od

Equation 5.11 is solved by application of equation 5.2 to each of

the right hand side terns. The resulting L(4) is then calcul ated
by equation 5. 10.

Equation 5.10 can be applied in the above manner to each

successive period. L(n + 1) can be determned once L(n) is

known. However, calculating v*(n) becomes increasingly conpli-
cated as n increases. This is due to the increase in the nunber

of possible arrival sequences resulting in an enpty line. For
exanpl e, at the beginning of the fourth period, no custoners
will be present if any of the arrival sequences shown in the

fol  ow ng diagramoccur. The nunber of possible sequences is 5,
which is a 150% i ncrease over the nunber of possible sequences
causing an enpty line at the beginning of the third period.

Sequences of Nunbers of Arrivals for Wich the Queue
I's Enpty at the Beginning of the Fourth Period

Nunber of Nunber of Nunber of

Arrivals in Arrivals in Arrivals in

1st Peri od 2nd Peri od 3rd Peri od
20 20 20
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The conputer programin Annex C. 8 cal culates v*(2), v*(3),

V (4), v*(5) and v*(6) for various values of p  and N The
program does not cal culate v*(n) for n > 6 becuase the list of
possi bl e arrival segences for which no one is at the standpost
at the beginning of period nis very | arge and conpli cat ed.
Fortunately, an interesting phenonenon occurs at the begi nning of
period n = N+ 1. the expected line |length reaches steady-state.
That is, L(n+ 1) =1L(n) for n”"N + 1*. By equation 5.10 this
inplies that v (n) =1 -/? for nsN+ 1. Wth cal cul ated val ues
of Vo(n) for the early periods, a curve through them (on a plot
of V (n) versus n) can be extrapolated to the v*(N + 1) val ue of
1 - /. at the beginning of period N+ 1. Such a curve is shown
in Figure 5-1 for the scenario of this chapter where N = 20.
That is, v*(20 + 1) =1 -~ = 1-1-0, which occurs at 7:00 a.m
Values fromthe curve in Figure 5-1 were used to determ ne
L(n) values by equation 5.10. The L'(n) values were then cal cu-
| ated by equation 4.5 and plotted in Figure 5-2. L'(n) reaches
a maxi mum val ue of 2.8 at the beginning of period n = 21, or
7:00 a.m The expected waiting tine at 7:00 a.m is W21) =
2.8 x 3 mnutes = 8.4 mnutes, which is fairly short. However
if the service tine were, for exanple, 20 mnutes with vendors
haul ing water by the cart, then W21) = 2.8 x 20 mnutes = 56
m nutes, which is quite lengthy. 1In this case the 21st interval

woul d begin 20 x 20 = 400 mnutes = 6.7 hours after 6:00 a. m,
oratl 2: 40p. m

* Recall that Nis the total size of the population to be served.
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FIGURE 5-1 PpProbability that no one is in line at the
begi nning of interval n vs. n and tine for

chapter Villustrative exanple.
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FI GURE 5-2. Expected line length (given that the line i
not enmpty) vs. n and time for chapter V
illustrative exanple.
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Chapt er Vi

COVPARI SON OF LARGE- AND SMALL- POPULATI ON MCDELS

A. Constant Arri val Rates

The curves in Figure 6-1 show L' (the steady-state expected
line length given that the line is not enpty) vs. the traffic in-
tensity/? when the expected arrival rate A and service tine 'l are
constant and the standpost has only one faucet. The curves for
popul ati ons of N = 10, 20, and 50 were obtai ned by the procedure
described in chapter V. Recall that this procedure assunes that
each nmenber of the popul ati on nmakes one and only one trip to the
standpost (p. 49). The N =co curve was obtained by equation 4.9.

The curves show that if the traffic intensity z? is near 0.8,
and each nenber of the popul ati on makes one and only one trip to
t he standpost, then a population as snmall as 50 can be assuned
infinite without causing serious error. »”~ p is near 0.5 then a
popul ation as small as 10 can be assuned infinite w thout causing
serious error. As the ratio of the expected arrival rate to the
service rate capacity decreases, so does the m ni num popul ation
size which can be assuned infinite.

| n many cases nenbers of the population will nake nore than
one trip to the standpost. WHO gui del i nes suggest that the
average per capita daily demand nmay sonetinmes be as high as 60
l[iters, or 130 pounds of water, which would not easily be carried
inasingle trip. This is not considered in the small-popul ation
nodel of Chapter V or its resulting curves in Figure 6-1. Al so,
the small-popul at 1 on nodel and curves are for only one faucet,

whil e a standpost nay often have multiple faucets. For these two
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(persons)

FI GURE 6-1.

Expected steady-state line Iength (given that
trarfic intensity

the line is not enpty) vs.
for various popul ati ons,
servi ce tine constant
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a single faucet,
anobng users.
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reasons it is necessary to define N as the effective popul ation
size, or the product of the actual population size and the
average nunber of trips nmade per person divided by the nunber of
taps at the standpost. N can be used in the follow ng procedure
to determne S, the steady-state expected nunber of service peri-

ods spent at the standpost, which in turn can be nultiplied by

the service tine if the waiting tinme is to be known:

1. Assune the population is infinite and apply the
approaches described in chapter IV to determ ne S.
(Recall that for a single-faucet standpost, Sis
nunerically equal to L'.)

2. Determine the effective population size N. For
exanple, if a population of 75 has a per capita de-
mand of 12 gallons and 6 gallons is obtained per
trip, then the effective population size is 75 X
(12/6)/3 = 50 persons per faucet.

3. Multiply S determned in step 1 by the ratio of L' in
Figure 6-1 for the effective population size to L' in

Figure 6-1 for H = oo . For exanple, assume L' for a
t hree-faucet standpost and a varying service tine is

determned in step 1 to be 3.20 at® = 0.8. _If the
effective population size N is 50 as determned in

step 2, the ratio obtained fromFigure 6-1 fromthe
N =50 and N =0" curves at p = 0.81is 2.5/3.0 =0.83.
The resulting Sis thus 3.20 x 0.83 = 2.7 peri ods.

Al t hough the accuracy of this technique is not rigorously proven,

it is believed to be reasonably accurate.

B. ari abl eArri val Rates

The error due to assuming an infinite popul ati on when the
expected arrival rate is constant is shown in Figure 6-1, but the
error when the expected arrival rate varies with tine is nore

difficult to quantify exactly.

A rough estimate of the error can be obtained by considering
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Figure 6-2. This figure shows L' (n) vs. n for popul ation of 10,
20 and 50 and an infinite population, given that the standpost
has one faucet and expected arrival rates and service times are
constant. The curves are for p (the ratio of the expected ar-
rival rate to the service rate capacity) equal to 1.0. Notice that
the ratio of L'(lIl) (the expected |line Iength at the begi nni ng of
the 11th service period given that at | east one person is at the
standpost) for population N= 10 to L' (lIl) for N~ ao is 2.30/3.22
= 0.71. Also, the ratio of L' (21) for N= 20 to L'(21) for N =00
is 2.93/4.25 = 0.69, and the ratio of L'(51) for N=50 to L' (51)
for N =oois 4.48/6.31 = 0.71. Regardless of the popul ati on
size, the maxi mum expected line length (given that the line is
not enpty) reached at the beginning of interval N+ 1 is approx-
imately 70% of what the value would be if the popul ation
we rei nf i ni te.

Notice also that for n < N+ 1, the ratio of L'(n) for N =
10, 20, or 50 to L'(n) for N = o0 is greater than 0.70. The
rati o i ncreases as n decreases, and nearly equals 1.0 for snal
n values. Whenz? = 1, the beginning of interval N+ 1 is when
arrival s cease, either because the standpost cl oses or people
have finished collecting water for the day. So, for® =1, ratio
of the limted-population L'(n) to the infinite-population L' (n)
reaches is mni nrum val ue of about 0.7 when arrival s cease. The
ratio at earlier tines in the day will be higher.

A set of curves similar to that shown in Figure 6-2 could
al so be prepared for”™ values other than 1.0. Such sets of
curves would show that the limted-population L'(n) to infinite-

population L' (n) ratios always reach their m ni mrum val ue when
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FI GURE 6- 2. Expected line length ( ?I ven that the line is not
enpty) n for atraffic intensity of 1.0, a

single faucet service tinme constant among users
and vari ous popul ations.
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arrivals cease, but that this mninmumvalue is always greater
than 0.7. (Note: Forz? values other than 1, arrivals cease at
the beginning of interval (N+1)/z?.) This mninumratio value
whi ch occurs when arrivals cease is smallest for /? =1, and
increases as p differs from1. For exanple, for a population

of N=50 and"* = 0.8, the ratio is 0.83 when arrivals cease.

For a population of N=50 andyO”* 0.6 the ratio is 0.91 when

arrivals cease. For p = 0.4 the ratio when arrivals cease is
0.98. This same behavior is also denonstrated for N = 10 for

which the ratios are slightly lower but still always exceed 0.7
and increase as/? differs from1. The curves would also indicate
that, as in thei? = 1 case, the ratio of the |imted-popul ation
L' (n) to the infinite-population L' (n) increases as n decreases.

In sunmary, the above observations indicate that if the
expected arrival rate /I is constant and p - 1.0, then L'{n)

when arrivals cease is about 70% of what it would be if the

popul ation were infinite. This percentage increases asz» differs
froml. Also, as n decreases, the |imted-population L'(n) to
infinite-population L'(n) ratio increases.

In [ight of these observations, conclusions can be drawn for
tinme-varying expected arrival rates. \Wen the expected arrival
rate varies with tine, such as shown in Figure 4-4a, /? is near
1.0 for only a small percentage of the time. Thus L' (n) when
arrivals cease for a limted popul ation nust be greater than 70%
of what it woud be if the population were infinite. Furthernore,
because the limted-population L'(n) to infinite-population L' (n)
ratio increases as n decreases, and because the maxi mum L' (n)
value for a time-varying expected arrival rate typically occurs
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wel | before arrivals cease, the maximumL' (n) val ue when X varies
for alimted population nust be fairly close to that val ue when
the population is infinite. The former is believed to be gener-
ally between 85% and 95% of the latter. Thus, the |arge-popul a-

tion nodel usually provides acceptabl e accuracy for determ ning

maxi mum L' (n) val ues when Avari es.
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Chapter VI

RCOLE OF QUEUI NG THEORY | N STANDPCST DESI GN

A. Gener al

Queuing theory can be used for standpost design to ensure
t hat the maxi num expected waiting time is kept bel ow sone fixed
value, or to neet other such waiting tine criteria. Basically,
the two nethods of applying queuing theory are as foll ows:
1. Wth the population to be served by the standpost

known, use queuing theory to determ ne the standpost

di scharge capacity required to neet the waiting time
criterion.

2. Wth the standpost discharge capacity known, use
queui ng theory to determ ne the maxi mum popul ation
whi ch can be served by the standpost while neeting
wal ti ngtinecriteri on.

These nethods are  discussed indetail in the follow ng sections.
The WHO has recommended |imtations on popul ations served
per standpost (Annex A). Theoretically, queuing theory can be
used to successfully design standposts for popul ati ons exceedi ng
WHO limtations. However, the designer should keep WHO gui de-
lines in mnd, realizing that the use of queuing theory for

st andpost design is not yet field-proven.

B. Fi xed Popul ati on and Constant Arrival Rate

|f the population to be served by a standpost is fixed,
the custonmers arrive throughout the day at a constant rate, the
standpost is to have only one faucet, and a maxi num expected
waiting time criterionis to be net, then the expected line

length is assumed to reach near steady-state before the standpost
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closes or arrivals cease. The maxi num expected waiting tine thus

equal s the steady-state expected waiting time, allowng for the

use of equation 4.17 to determne the required service tine. The

procedure is as foll ows:

1

Estimate the total nunber of trips to the standpost nade
by the popul ation, the average vol une of water obtained

per trip and its standard deviation, the waste factor w,
andt heef fi ci encyfactorf.

Determ ne the expected rate at which the custoners arrive
at the standpost. Since this rate is constant, sinply
divide the total nunber of trips nade to the stanpost by
t he nunber of hours over which arrivals occur. For ex-
ample, if the population is 100 with each person naki ng
an average of 2 trips to the standpost between 6:00 a. m

and 6:00 p.m, then the expected arrival rate *is 16.7
persons/ hou r.

Express the standard deviation of the volume obtained
per trip as the standard deviation of the service tine.
Equation 3.2 shows that the service tinme is proportiona
to the vol ume obt ai ned. If the standard devi ati on of
the volune is 2.1 gallons and the average volune is 7.5
gal l ons, then the standard deviation of the servjce time
I's 2.1/ 7.5 X average service tine, or a* = 0.281",

Use equation 4.17 to solve for the average service tine.
For exanple, if it is desired to keeﬁ t he maxi num ex-
pected waiting time (which is also the stead%-state ex-
pected waiting tinme) below 10 mi nutes, and the expected
arrival rate and the standard devlati on of the service

time are_as in the above steps, theji”xr = 2.94 mnutes.
(Note: Equation 4.17 is solved forT? b¥ trial-and-error
because cannot be isolated to the left side of the

equation.)

Determ ne the required di scharge capacity by use of
equation 3.2. If the waste factor wis 0.1 and the
efficiency factor f is 0.9, then the required di scharge
capacity by rearranging equation 3.2 is

QA= 7.5 X (1/2.94) x 1/(1 - 0.1) x 1/0.9 3.15 gpm

Determne the service rate capacity /x, which is the
inverse of the average service tine, or 1/2.94 = 0.34
persons/ m nute.

Determne/? , which is the ratio of the expected arrival

rate Ato the service rate capacityy>t, or 0,278/0.34 =
0. 82.
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8. Use Figure 6-1 to see whether assum ng that the popul a-
tion is large enough to be considered infinite causes a
significant error. The effective population size is
N = 200 (100 people x 2 visits per person at a single-
faucet standpost). Figure 6-1 shows that if an N = 200
curve were interpol ated between the N - 50 and the N - oo
curves, it would be very close to the N = c-0 curve at

= 0.82. Therefore, the assunption of an infinite
popul ation causes no significant error, and the dis-
charge capacity determined in step 5 is appropriate.
|f Figure 6-1 had shown that the assunption of an
infinite popul ation causes significant error, then the
10-minute waiting time criterion would have to be
ficticiously increased slightly to, say, 10.5 m nutes.
Then steps 4 through 7 would have to be reworked. The
p value that would result from applying these steps
woul d be 0.83. The ratio of Sfromthe interpolated N =
200 curve at /» = 0.83to Sfromthe H =0 curve at /> =

0.83 would then be nultiplied by 10.5 mnutes. |If the
result would be other than 10.0 m nutes, then a new

fictitious waiting tine criterion would again have to
be sel ected and steps 4 through 7 again repeat ed.

The designer should verify that steady-state is essentially
reached by considering the curves in Figure 7-1 and the nunber of
service intervals that will have el apsed when arrivals cease. In
the unlikely event that steady-state is not reached, the designer
can nodify and apply the programin Annex C. |, and use it as a
substitute for equation 4.17 in the above 8-step procedure.

As discussed in section IV.C, for a given standpost dis-
charge capacity, the waiting time decreases as the nunber of
faucets decreases (and the discharge per faucet increases). Thus
a standpost being designed should first be assumed to have one
faucet. |If the resulting capacity cannot be provided by a single
faucet, then the standpost should be assuned to have two or nore

faucets. The follow ng procedure shoul d be used for standposts

wi t hnor et hanonef aucet :

1. Do steps 1 through 3 described above.
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FI GURE 7-1. Expect ed nunber of service |ntervals sPent at the
st and post vs. n for varlous traffic intensities,

S|ngle faucet, and service time constant anong
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2. Assune an average service tine t” of, say, 6.0
m nutes, and determ ne the service rate capacity per
faucet, which is the inverse of the average service
time, or 1/6.0 = 0.167 persons/mnute. Determne the
traffic intensity/? , which is the ratio of the expect-
ed arrival rate A to the standpost service rate capaci -
ty cjJ-. If the standpost has two faucets, /" =
0.278/ (2 X 0.167) = 0.83.

3. For” determned in step 2, use Fi %ure 4-8 (or Figure
4-9 if the standpost re to have 3 faucets) to deter-
mne S. |If the service tinme standard devi ation cJN =

0.5", then the corresponding S value at p - 0.83 is 2.8
interval s. (Note: Interpolate if the standard deviation
is other than 0, 0.5%, or"”™ .) The resulting expected
waiting tinme Wis 2.8 x 6.0 = 16.8 ni nut es.

4. Apply step 8 above to see if assumng an infinite
popul ati on causes error, and to adjust Wif necessary.

5. If the adjusted Wfromstep 4 is different fromthe
waiting tinme criterion, assune a new val ue of the
average service tinme and rework steps 2 through 4.

The designer can verify that steady-state is essentially
reached by considering Figure 7-1 and the nunber of el apsed

service intervals. The prograns in Annexes C.2 and C 3 can be

nodi fi ed and applied as necessary if steady-state is not yet

r eached.

C. Fixed Popul ation and Ti ne-varying Expected Arrival Rate

|f the popul ati on served per standpost is fixed and the ex-
pected rate at which custoners arrive varies with the tinme of

day, then queuing theory can be used to determne the required

di scharge capacity as foll ows:

1. Estimate the average volune of water customers obtain per
standpost visit, the waste factor w, and the efficiency
factor f- Estimate the expected rate at which the cus-
tomers arrive at the standpost as a function of the time
of day .
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0

Assurme that the standpost iis to have only one faucet and
good service time to assune is
e rate capacity to be equal to

i nver se

FIGURE 7-2. Expected arrival rate pattern
for section VII.C exanple.

fc-C0a.w.  800i.,y\ jOQ%. M noor\ 2, 001 AQON. N 4, 00

t i me

Determ ne the required di scharge capacity by use of
equation 3.2. |If the volume obtained per visit is 6
allons, the waste factor wis 0.1 and the efficiency
actor f is 0.9, then the required di scharge capacity
by rearrangi ng equation 3.2 is

Q 1/3.0 1/(1 - 0.1) X 1/0.9 2.5 gpm

| f the designer believes that this discharge cannot be
provided by a single faucet w thout causing excessive
splashin? or waste, he should assunme that the standpost
has two faucets instead of one, with the service tine
bei ng doubl ed and the di scharge per faucet being 2.5/2

=1.25 gpm In this exanple, the discharge is appro-
priate for a single faucet.

Express the variation in the expected arrival rate shown
in Figure 7-2 as a function of the service period, as

f ol 1lows:
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A(n) = 0.5n o -~ n ~"0 (i.e., from6:00
a.m to 800 a.m)

:X(n) =24 - Oln 40 ~ n ~ 120 (i.e., from8:00
a.m to noon)

A(n) = Oln 120 ~ n ~ 200 (i.e., from noon
to 4:00 p.m)

A(n) = 120 - 0.5n 200 » n < 240 (i .e. , from4:00

to6: 00p.m)

5. Modify the conputer programin Annex C. 4 by substituting
inthe service time of 0.05 hours and the above expected
arrival rate function. This nodified programis shown
in Annex C.5. Running the programto obtain results
shows that the maxi num expected waiting time is 14.3
m nut esandoccur sat about 4: 10p. m

6. If the waiting criterion requires that the maxi num
expected waiting tine not exceed 10 m nutes, then the
walting tine determned in step 5is too long. A shorter
service tine nust be selected and steps 3 through 5 nust
be reworked. Repeated attenpts indicate that a service
time of 0.046 hours (2.7 mnutes) ensures that the
maxi mum expected waiting time does not exceed 10 mi nutes.
The corresponding discharge capacity is 2.7 gpm

D. Fixed Discharge Capacity and Constant Expected Arrival Rate

| f the standpost discharge capacity is fixed and the expect-
ed arrival rate is constant, then queuing theory can be used to
det erm ne the maxi mum popul ati on size which can be served while
nmeeting a maxi mum expected waiting time criterion. The line
length is assuned to reach its steady-state, maxi num val ue before
arrivals cease. The steps of the procedure are as foll ows:
1. Estimate the average volume of water obtained per visit
to the standpost and its standard deviation, the waste
factor w, and the efficiency factor f.
2. Use equation 3.2 to determ ne the correspondi ng average
service tine. For this exanple, assune the discharge
capacity is 5.0 gpmto serve vendors who obtain an

average of 40 gallons per visit. |If the waste factor
is 0.1 and the efficiency factor is 0.95, then the averag's
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servi ceti nei s

r=40x(1/5.0)xlI/(l-0.1)xI/0.95

=9. 36m nut es

Determ ne the standard deviation of the service tine.
If the standard devi ati on of the vol une of water ob-
tained per trip is 10 gallons and the average vol une

Is 6 gallons, then based on the proportionality of equa-
tion 3.2, the standard deviation of the service tine is
10/ 40x9. 36=2. 34m nut es.

Use equation 4.17 to solve for the expected arrival rate
A.  For exanple, if it is desired to keep the maximm
expected waiting time (which is also the steady-state
expected waiting time) below 10 m nutes, then equation
4. 17canber ear r angedt oyi el d

A= 2(W - (0% -+ 2[W-FIT)
2 X (15- 9.36)7(2.3 4+ 9.3 6"+ 2 x [15 - 9.36] x 9.36)

0. 0568 persons/ mnute - 3. 41 persons/ hour

(Note: If the standpost has nore than 1 faucet, then
Figure 4-8 or 4-9 nust be used instead of equation 4.17.
The value of /" at S - 15/9.36 interval s nust be found
fromthe appropriate curve, and then A found from A=
p/r.)

Determ ne the popul ati on based on the expected arrival
rate found in step 4. If the average nunber of trips
made to the standpost per person is 2, and the standpost

I's open for 12 hours, then the populationis 3.41 x 12/2
= 20 persons .

Determ ne the service rate capacity/”, which is the
I nverse of the average service tine, or
0. 107per sons/ m nut e.

Determne the traffic intensity p , whichis the ratio
of the expected arrival rate > to the service rate

capacity/x, or 0.0568/0.107 = 0.53.

Use Figure 6-1 to see whether assumng that the popul a-
tion is large enough to be considered infinite causes a
significant error. The effective popul ation size is
N = 40 (20 vendors x 2 visits per vendor at a single-
faucet standpost). Figure 6-1 shows that if an N = 40
curve were interpolated between the N = 20 and the N =

50 curves, the resulting L' at/" = 0.53 woul d be very
close to the L' value fromthe H = 00 curve. There=

fore, the assunption of an infinite popul ation causes
no significant error, and the popul ation determned in
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stepSisapprOpriate.

If Figure 6-1 had shown that the assunption of an

i nfinite popul ati on causes significant error, then a

a higher effective population size N would have to be
assuned and its curve interpol ated between the curves in

Figure 6-1. The value of/? at L' = 15/9. 36 persons
woul d be selected fromthe curve and the correspondi ng

expected arrival rate A determned fromp . A woul d then
be used to calculate an effective popul ation size. |If

this calculated N equals the assuned N, then the
assuned N is correct. The actual popul ation size N

can then be determ ned from N . However, if the assuned
N does not equal the calculated N, then a new N nust
be assunmed and the process repeated.

The nunber of standposts required in the standpost system
can be found by dividing the total popul ation by the popul ation
determ ned in the above procedure.

As discussed in section VII.B, the designer can verify that

steady-state is essentially reached by considering Figure 7-1,

and can nodi fy and apply the prograns in Annexes C. |, C 2, C 3.

E. Fixed Discharge Capacity and Ti ne-varyi ng Expected Arriva
Rat e

| f the standpost discharge capacity is fixed and the expect-
ed customer arrival rate varies throughout the day, then queui ng
t heory can be used to determ ne the popul ation size which can be

served while neeting waiting tine criterion. The procedure is as

fol 1lows:

1. Estimate the average vol une of water obtained per visit

to the standpost, the waste factor w, and the efficiency
factor f.

2. Use equation 3.2 to deternmi ne the correspondi ng aver age
service tine. For this exanple, assune the standpost
has two faucets and a di scharge capacity of 5.0 gpm or
2.5 gpm per faucet. |If the average vol une obtai ned per
visit is 8 gallons, the waste factor is 0.1, and the
efficiency factor is 0.9, then the average service tine
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r =8 X (1/2.5) X1/(1- 0.1) X 1/0.9

=3. 95m nut es

Based on collected field data or literature, determ ne
the geonetry of the expected arrival rate pattern

t hroughout the day. |f the shape of the expected arriv-
al rate patternis simlar to that shown in Figure 7-2,
then note that the peak expected arrival rate Is 20/12
= 1.67 tines the m ninmum expected arrival rate. Al so
note the tinmes at which the peak and m ni num val ues oc-

cur and that increases and decreases in the expected
arrival ratearelinear.

The expected arrival rate during peak standpost usage
nmust be determned by trial and error. As a first
guess in this exanple assume that it is equal to the
standgost service rate capacity, which is c/x= c/T=

2/ 3.95 = 0.506 persons/mnute = 30.4 persons/hour. Use
this as the peak expected arrival rate value and to
determ ne other key expected arrival rate val ues that
define the geonetry of the expected arrival rate pat-

tern. For this exanple, the m nimum expected arrival
rate is 12/20 tinmes the peak, or 12/20 x 30.4 - 18.2

persons/hour. Thus, the arrival pattern is as shown

bel ow.

Expected arrival rate pattern for section VII.E exanple

G 0. AU 30Q, «, 1D 00,1 -, /Mo | A0 4-yQ>. i, A;:OG>.H).

tinme
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Express the variation in the expected arrival rate shown
above as a function of the service period, as foll ows:

A(n) =n O”n-c30 (i .e. , from6:00
am to 800 a.m)

A(n) = 36.5 - 0.201n 30 £ n<91 (i.e., from8:00
a.m to noon)

A(n) - 0.201n - 0.1 99 s n 7 152 (i.e., from noon
to 4:00 p. m)

A(n) = 182 - n 152 <~ n ~ 182 (i.e. , from4: 00

to 6:00 p.m)

Modi fy the conmputer programin Annex C 6 by substituting

in the service tine of 0.0658 hours and the above ex-
pected arrival rate function. The resulting programis
in Annex C.7. If the waiting tine criterion is not net,
assune a new peak expected arrival rate and rework steps
4 through 6. For this exanple, it is assunmed that the
waiting tine criterion is net when the peak expected
arrival rate is 30.4 arrival s/hour as shown in step 4.

Determ ne the popul ation size fromthe expected arri val

rate pattern shown in step 4. The area under the curve
is

2(0.5 x 2hr x 30.4person/hr + 4hr x 18.2person/hr +
0.5 x 4hr x (30.4 - 18.2)person/hr)
=255per sons.

| f an average of 2 trips is nade per person, then the
popul ati on size is 255/2 = 128 persons.

The nunber of standposts required in the standpost system

can be found by dividing the total population by the popul ation

determ ned in the above procedure.

F.

Opt imal Des i gn

Utimtely, queuing theory can be used to optimally design a

st andpost system One way would be to assign a noney value to

tinme spent waiting at the standpost and the di stance wal ked to

t he standpost. This noney value could be added to the price the

custoners are to pay to cover the cost of the system (if there is
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a charge), and the objective would be to mnimze the sumwhile

providing custoners with their required anount of water.
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Chapter VI 1 |

CONCLUSI ONS AND RECOMVENDATI ONS

Queui ng theory has inportant inplications for standpost
design. The follow ng conclusions apply to tine periods during

whi ch the expected custoner arrival rate at a standpost does not

vary:

1. If the expected rate at which custoners arrive at a
singl e-faucet standpost is equal to the standpost's
service rate capacitg (i.e., the rate at which custom
ers can be served) then the expected line length wll
i ncrease nonotonically until the nunber of service
periods which has el apsed is equal to the total nunber
of arrivals that occur at the standpost per day. For
exanple, if users start arriving at the standpost at
8:00 a.m, the tinme required to serve a custoner is 5
mnutes and a total of 30 trips are nade to the stand-

post, then the expected line length will increase
nmonotonically until 5 x 30 = 150 m nutes have el apsed,
oruntill O: 30a. m

The WHO guidelines in Annex A are based on the assunp-
tion that the service rate capacity should equal the
arrival rate averaged over the peak hours, and that the
nunmber of peak hours per day is typically in the range
of 4 to 12. Over such a long tine period it is possible
for rather lengthy waiting |ines to devel op.

2. If the expected rate at which customers arrive at a
standpost is |less than the service rate capacity, the
expected line length will increase nonotonically
until the nunber of service periods which has el apsed
is equal to the nunber of arrivals that occur at the
standpost per day. In this sense, the line length
i ncreases as in conclusion #1 above. However, if the
expected arrival rate is significantly Iess than the
service rate capacity, then the expected |line |length
will essentially reach its maxi mum value (but will not
exactly equal its maxi mum value) |ong before such a
nunber of tine periods has el apsed.

undesi rea
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3. As the ratio of the expected arrival rate to the
service rate capacity increases, the steady-state
expected line I ength increase. For ratios higher than

about 0.8, the expected line Iength increases greatly
for small increases in the ratio.

The standpost service rate capacity should be at

| east roughly 1/0.8 = 1.25 tines greater than the
expected arrival rate. This will ensure that waiting
lines are kept fairly short, even if there is a slight
error in estimates of the system pressure or other
factors influencing the |line | ength.

4. As the tinme required to serve custoners vari es anpng
custoners (because custonmers have different container
sizes, or fill different nunbers of containers), the
linel ength increases.

WHO gui delines in no way take into account the varia-
tion in the volune of water custoners obtain per trip

to the standpost. Queuing theory shows that to neet

expected waiting tine or line length criteria, the

st andpost di scharge capacity nust increase as this
.vari ati on i1 nNncr eases.

5. As the ratio of the expected arrival rate to the
service rate capacity decreases, the popul ation size
whi ch can be safely assuned to be infinite al so
decr eases. For exanple, if the ratio is 0.5, then a
popul ation as small as 10 can be assuned to be infinite
Wi t hout causing significant error; whereas if the ratio
is 0.9 then the popul ati on nust be a few hundred to
avoi dsi gni fi canterror.

The assunption of an infinite population allows for
nmodel sinplicity and flexibility. However, if the
popul ation is too snall to be assunmed infinite, then
t he techni ques presented in Chapters V and VI can be
usedl0estimatelinelengths.

The foll owi ng conclusions apply to tinme periods during which

the expected arrival rate varies:

As discussed in Chapter VI, the assunption that the
popul ati on served by a standpost is infinite provides

reasonably accurate estimtes of the naxi num expected
waitingllme.

The variation in the volume custoners obtain per trip
to the standpost does not have a significant effect on
the waiting line length. The volune can therefore be
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assuned to be constant and equal to the average vol une.

8. If a standpost's service rate capacity equals the
expected arrival rate during the period of peak usage,
then waiting times will not necessarily be of satisfac-
tory shortness- This is especially true if the peak
period is long, such as 4 to 12 hours, which is stated
to be a typical length in the WHO guidelines. |[If the
expected arrival rate actually varies during a so-called
peak period, then setting the service rate capacity
equal to this arrival rate will lead to even | onger
wai ti ngt i nmes.

The foll ow ng conclusion applies regardl ess of whether the
expected arrival rate varies or is constant:

9. For a given standpost discharge capacity, the expected
time spent at the standpost increases slightly as the
nunmber of faucets increases. For exanple, a two-
faucet standpost with a di scharge capacity of 3.0
gallons/mnute (1.5 gallons/mnute fromeach faucet)

w il provide slightly longer waiting tines than a
si ngl e-faucet standpost having a 3.0 gallons/mnute
di schargecapacity.

When designing a standpost, the nunber of faucets should
initially be assuned to be one unl ess evi dence indicates
otherwise. If the resulting required discharge capacity
is too great for a single faucet (because, for exanple,
excessive splashing or waste may result) then the stand-
shoul d be designed again with two or nore faucets.

B. Recommendati ons for Further Study

Queui ng theory is useful for standpost design. Additional
research nmay make its application easier and nore successful.

The time required to serve a custonmer is a key paraneter of
queui ng theory. Data concerning the anmount of water wasted when
filling a customer's container and the time required to position
and renove containers fromunder the faucet may prove useful in
accurately estimating the service tinme. As discussed in chapter

11, the tine required to open and close the tap is generally not
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proportional to the volune of the container to be filled. Use of
the efficiency factor f in equations 3.1 and 3.2 is theoretically
incorrect; the possibility of resulting service tinmes being
erroneous nmay be worth investigating. An appropriate alternative
shoul dbeadopt edi f necessary.

A broad data base of how water collection varies throughout
the day for various scenarios (e.g., urban area where the stand-
post is open only for a few hours in the norning, rural areas
where the standpost is always open, etc.) may prove useful. From
such a data base common patterns woul d perhaps enmerge. Conputer
prograns simlar to those in Annex C could then be applied to each
scenario, and relatively sinple equations or tables relating
di scharge capacity, population size, and waiting tinme could be
devel oped. Designers would then not need to spend nuch tinme on

data coll ecti on and conput er nodel i ng.
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ANNEX A.,

Excerpt from Public Standpost Water
Supplies - A Design Mnual -  Technical
SeriesPaper_ 14, WHOQ International
Reference Center for  Community \ater
Suppl y, 1979.

3.

THE REQUI RED DI SCHARGE CAPACI TY
PER STANDPOST

An inportant factor in the design of a public standpost water
supply system is the required maxi mum di scharge capacity

(Q ) per standpost.

This parameter is the basis for the hydraulic calculation and
the deternination of the dinensions of the service pipe and of
the type and nunber of taps.

This Q,—Jsgdetermned bysthe desi gy popul ation (N . the average
demand per capita (C) , the peak factor (P) , the nunber of stand-
posts (S), the waste factor (w) and an efficiency factor (f).

The rel ationship between the factors is presented by the fornula:

C,
- N * . % . p o
Qmax_ N s 2'4{1 " 1-w f

Each of the six factors that constitute this fornula have to be

determ ned separately before the maxi mum di scharge capacity can

be cal cul at ed.

Desi gn Popul ati on (N) -

This factor depends on the initial nagnitude of the popul ation
to be served, the growth rate of the popul ation, and the design

peri od.

The initial nunber of users (N) inthe area to be served by the
prospective standposts shoul d be counted or estinmated.
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An indication of the expected annual growth rate (r) of the

popul ation can be obtained fromhistorical statistical data on
the area concerned. If these are not available, one may sub-

stitute figures related to a sinmlar area or to the country as
a whol e.

The standpost nust have sufficient capacity to meet the users
wat er demands during a period of several years. The design
penod (T) is determned by various technical and economc
factors; a period of ten years is usually sufficient, but there
may be local reasons that make a shorter or |onger period

desi r abl e.

The Design Population (N) can now be cal culated according to

N=N«{l+r}"

One may prefer to work with a growh factor: m={l+} . In that
case use can be made of a table giving the growh factor as a
function of a fixed annual growth rate and the design period. In

general the growth factor will be in the range of 1.0-1.6 (see

Annex 3).

Denand per Capita (C.)

The average vol une of water drawn from public standposts is

typically between 20 and 60 |itres per capita per day*(led).
Local habits related to domestic water use will have to be

studied in order to establish an accurate figure, particularly
in cases where there has been no previous experience with stand-

posts or where other sources are available. Normally, a provision
is also nade for |ivestock watering.

Future increases in demand should be provided for. It is advis-
able to provide excess capacity for a design period of at |east
10 years and that allows for an increased consunption per person

In the design of the distribution network, allowance may al so
be made for uses other than donmestic, sucli as snmall industries,

etc.

Peak Factor (P)

During sone hours the standpost will be used nore intensively
than during the rest of the day. The water supply system shoul d
be capabl e of dealing with this peak denmand. Therefore, a peak
factor representing the ratio between peak and average denmand, is
introduced in the cal cul ation Qmax' Normally, this peak factor

isin the range of 2 to 4, a typical average being 3.

The peak factor can be approximated by P = 24/t, in which t is
the nunber of peak hours (normally in the range of 4 to 12 per
day). Tlie result of this nethod tends, however, to be on the
hi gh side, as the nethod presupposes that no water at all is

drawn out si de the peak hours.

The peak factor should be determined with great care, as it has
a consi derabl e influence on the Qrmx. It is recommended that the

Il ocal water collection pattern should always be studied thoroughly.

The Nunber of Standposts (S)

The required nunber of standposts is based on two ot her design
criteria, the maxi mum wal ki ng di stance to the standpost and the
maxi mum nunber of users per tap. These two criteria are directly
related to the intended "l evel of service", which results fromthe
consul tati ons between the users and the planners of the public

st andpost schene.
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The Maxi num WVl ki ng Di stance

In general it is advisable to limt the walking distance to 200 m

and in densely populated areas it is often possible to limt the
distance to 100 m In very sparsely popul ated areas a wal ki ng
di stance of up to 500 m nay sonetines be acceptable.

In densely popul ated areas, however, the application of this
criterion may result in too many users per standpost and per
tap. Therefore, a second criterion that relates to the popu-
|ation density in a particular area, is required

The Maxi mum Nunber of Users per Standpost

It is advisable to limt the nunber of users per standpost to
100- 250; in no case should this nunber exceed 500. The nunber
of users per tap should preferably be in the range of 25-125
This criterion is directly related to the maxi num di scharge
capacity of the taps and to the water collection pattern during

peak hours.

Proceeding fromnore or less evenly spaced standposts in a given
area (A) and a set maxi mum wal ki ng di stance (R), the nunber of
st andposts can be assessed using the forml a:

s = alttr”?

A = total area of the schene in m
S = the nunber of standposts
R = the service radius in m

TT = 3. 14

It should be noted that the service radius does not exactly
equal the maxi mum wal ki ng di stance (see Annex 4)

I'n case the afore-nentioned approximtion of the number of stand-
posts (S) leads to a too high average nunber of users per stand-
post, one may increase the number of taps per standpost, in order
to meet the criterion set for the maxi mum nunber of users per tap.
However, the nunber of taps per standpost should be linmted to
avoi d the crowding of too many peopl e near one standpost; it is
advi sable not to install nore than four taps per standpost

If by providing nore than one tap the criterion of the maximm
nunber of users per tap can still not be nmet, the nunber of
standposts in the area under consideration is to be increased

In practice, the actual |ocal geographical and denmographica
circumstances will deternmine the siting and the exact number
of standposts and taps, as well as the actual number of users
for each standpost. Hovjever, in nost cases, as a first assess-

nment, the above nmethod gives satisfactory results

Waste Factor (w)

Part of the water is inevitably spilt by users when filling their
containers or drawing water for inmediate use at the standpost

To express this nunerically, the waste factor (w) is introduced
This factor can be determned by calculating the ratio of the
anount of water actually taken away by the users and the tota
anmount of water discharged through the taps

Spi |l age and wast age depend on the way in which containers are
filled, the type and condition of the taps, the height of the
taps above the bucket-stand, the water pressure, and on whet her

or not the standpost is supervised.

The waste factor can best be estimated fromdata obtained in
other schenes. It should only include the spillage and wastage
related to the collection and use of water at the tap and not
the | eakage of water in the main and branch pipes of tlie distri-
bution network, as this |li-akag. Mwater is not dii-charged through

the taps.
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3.6.

The waste factor is in the range of 0.1 to 0.4 which means

tliat 10 - 40'(. of the total discharge at the tap is spilt or wasted
As the waste factor has a considerable influence on the Qumx
careful assessment of the factor is required.

[t is inportant to decide whether water used for purposes, such

as washing of utensils and personal cleaning at the tap should

bt= considered as part of the per capita demand or is to be regarded
interras of spillage or wastage

The Efficiency Factor (f)

The efficiency factor is introduced to take into account that
the suppliers rating of the capacity of a tap is usually based
on continuous discharge at 10 raliw with the tap fully open

In practice the pressure will never be exactly 10 mhw and
discliarge is usually not continuous. The closing and opening
of the tap will make the actual discharge smaller than the

ttieoretical nmaxi mum

Depending on the type of tap, the efficiency factor (f) can
range fromalmost 1.0 for a ball valve (rapid closing tap), to

0.9 and 0.8 for an ordinary screwtap, and 0.7 for spring-
| oaded t aps.

3.7.

Cal cul ati on Exanpl e

The cal culation of the required maxi num discharge capacity of

standposts can best be illustrated by an exanple; assume the
follow ng situation:

NO = initial nunber of users =12 000

r = population growth rate = 2% per year
T = design period = 10 years

A = area of scheme = 100 ha = 1.10""' nf*

S = nunber of standposts

C = average demand per capita = 40 led

t = nunber of peak hours = 4.5 h

w = wastage factor =0.2

f = efficiency factor = 0.9

Tite design population can be cal culated as

N= N_* {14} 7= 12000 « 1.02°°

12000 * 1.22 = 14640 persons.

If the service radius is set as R=200 mand the nunber of users
per standpost is limted to 250, the nxMher- of standposts can be

determ ned as foll ows:

a. SAtIR = 10V3.14 * {200}" = 7.96 and
b. S>N 250 = 14640/ 250 = 58. 56

Consequently, the maxinum number of users per standpost is the
decisive factor in this case (b). [If the number of standposts
i's now set at 60, the average nunber of users per standpost is
14640/ 60 = 244 persons, and the service radius about 73 m

The. pequtred discharge capacity per standpost can be cal cul ated

' N d 131
Apax S 24 1-w f

14640~ 40, 24 1 i

(/\0 A -4,5— (i-rO,_Z} s 6_7I97 3012 1/h
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If the area had been 1000 ha instead of 100 ha, the result of the
equation SIAITRY, for R =200, woul d have been 80 standposts and
the criterion of the maxi mumwal king distance woul d have been
decisive (a). The average nunmber of users per standpost woul d
then have been: 14640/80 = 183 and the Q.. equal to 2260 1/h per

standpost; assuming that population and standposts are evenly
di stri buted.

However, in practice, and particularly in larger areas, the pop-
ulation will almost nevar bo evenly distributed. Therefore, the
number of standposts and their location will always have to be
deternined on the basis of the local geographical cicurastances
including the variation in population density in the area con-
cerned. This may lead to a variation in the nunber of users per
standpost and subsequently to a difference in the required dis-
charge capacity of the various standposts.

The above serves to show that, generally speaking, the maxinmum
number of users per standpost will be the criterion in densely

popul ated areas, whilst in sparsely popul ated areas the maximum
wal king distance will be the decisive factor.

Finally, it should be pointed out that Q..., as calculated in this
Chapter, only relates to water that is actually discharged via
standposts. The total amount of water that is punpdd into the
distribution network is often reported to be 10-50% hi gher than
the total discharge via standposts and house connections. This

IS due to leakage in the pipe ay stem This factor is NOT included
inthe calculations in this publication, as this publication only
deal s with the discharge from standposts.

Al the afore-nentioned val ues have been assumed. The designer
shoul d substitute his own data depending on the characteristics
of the systemhe is working on.
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ANNEX B. Pr obabi |l i t yFundanment al s

Model i ng queui ng processes requires use of probability

theory. Sone useful definitions are the foll ow ng:

* The probability that an event occurs is the % chance of it

happeni ng di vi ded by 100%

* | ndependent events are a group of events such that the
occurence of any nmenber(s) of the group does not change the
probability that any of the other nenber(s) wll occur.

For exanpl e, suppose a group of 3 events consists of 3 coin
t osses, each resulting in "heads". Each event of the group
has a probability of 0.5. Regardless of the result of, say,
the first coin toss, each of the other 2 events still has a
probability of 0.5 because the 3 events are independent.

The result of one coin toss in no way changes the

probability of "heads" on another coin toss.

* Mutual ly exclusive events are events such that the

occurrence of one nmakes the occurrence of another

i npossible. [If, for exanple, each of the nunbers 1 through

10 are witten on 10 pieces of paper which are placed in a

hat, then getting 4 on the first draw and 4 on the second

draw are mutual |y exclusive events. The paper with 4 can be

dr awnonl yonce.

Useful principles of probability theory are:

* The probability of a group of independent events is the

product of the probability of each separate event. Using
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t he above coin toss exanple, the probability that all 3
tosses result in "heads" is 0.5 x 0.5 x 0.5 = 0.125. That
is, only in about 12 tinmes out of 100 that the experinent of

tossing a coin 3 tines is run will "heads" be obtained on

all 3 tosses .

The probability of an event that consists of a group of
nmutual |y exclusive events is the sumof the probabilities of
each event in that group. Using the above nunbers-in-the-
hat exanple, the probability that the number on the first ,
drawis a 2 or a 3is 1/10 + 1/10 = 0.2. That is, for the

experinment of drawing a nunber froma hat, about 20 out of a

100 tinmes the nunber will be either 2 or 3.
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ANNEX C. Conmputer Prograns for Large and Snall Popul ati on
Model s

The conputer prograns contained in this annex are witten in

FOrtranl V.

Lines which begin with the letter "C' are coment lines to
aid the reade r

The conputer | anguage does not allow for use of the sub-
script "0" for elenents of vectors and matrices. For this rea-
son, "1" is used when "0" is required and all higher subscripts
have "1" added to them For exanple, to indicate the probability
of no one in the waiting line the subscript "1" is used, and to
indicate the probability of one person in the waiting |ine the
subscript "2" is used. For vectors and matrices having no
element with a "0" subscript this adjustnent is not necessary.

Variables in the conputer programs with their correspondi ng

synbol s i nt het ext ar easf ol | ows:

Fortran |V t ext
EAR A
EL L
ELP L
PK Pk
VO v<?
\Y/|

VJ

The Fortran IV synbols are foll owed by subscripts witten in
parenthesis, e.g., PK(I). These subscripts refer to the nunber
inline when used with VI and VJ. For exanple, VI(4) is the
probability that 3 (add "+1" to convert to Fortran |V) persons
are in the queuing systemat the beginning of interval n. \Wen

used with PK, the subscripts refer to the nunber of arrivals that
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occur during interval n. For exanmple, PK(Il) is the probability
that 10 arrivals occur during interval n. The subscripts with
EL, ELP, S, and Wrefer to the interval nunber. For exanple,
EL(50) is the expected line length at the beginning of interval
50.

The variables A, B, C, 0, and F have no direct significance
i n queuing theory, but are used as aids in the calculation pro-
cess. The variable FACT(1) represents a vector of factorials
used in calculating probabilities.

Equations 4.3, 4.5, and 4.6 are theoretically to be applied
through j - oo. For the purpose of calculation, an upper limt of
j =70 is assumed. If the line length is greater than 70, anyone
arriving wll decide not to join the |ine because of its great
length. A new variable, P70(K), is introduced to be consistent
wth the limt of 70 being placed on j. P70(K) is the probabili-
ty that the nunber of arrivals occurring during a service inter-

val is equal to or greater than the nunber that would cause 70

persons to be in line at the end of the interval. vj(n) and
vj'(n) for j =70 are negligible and the resulting L(n) and L' (n)
val ues are accurate unless the waiting line is extrenmely |ong.
Sone variables are unique to the small popul ati on nodel .
SASP3, SASP4, SASP5, and SASP6 are the probabilities that 0
departures occur in the third, fourth, fifth, and sixth inter-
vals. For each of these intervals, there is nore than one way
that O departures will occur. For exanple, the probvability that
O departures will occur in the third interval is the probability

that O arrivals occur in the first interval and 0O arrivals occur

in the second, plus the probability that 1 arrival occurs in the

9 4
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first and O in the second. In the conputer program these latter
probabilities are given the synbol ASP_ with a subscript to

di stingui sh themfromeach other. For exanple, SASP3 the sum of
the ASPS s. The subscripts associated with each of the ASP' s
represent the nunber of arrivals (plus "+1" to convert to Fortran
V) in the order in which they occur. For exanple, ASP5(3,1,2)
is the probability that 2 arrivals occur in the first interval, 0
in the second, and 1 in the third. Notice that the nunber of
subscripts required will always be 2 less than the interval

number of concern. |In the case of ASPS, the nunber of subscripts
required is 3. This is because the nunber of arrivals in the

fourth interval is always 0 and the nunber of arrivals in the

fifth interval is irrel evant.

9i.


NEATPAGEINFO:id=4C4F041F-E758-428F-858A-17EA1980A2AD


OO0 00 o0 00 o0 o o0

OO0 oo

O 0 o0 o0

o o o0

ANNEX C. |. Lar ge- popul ati on nodel for determ ning v~(n)
and L' (n) when | anbda and tau are constant
and the standpost has a single tap. See sec-

tion IV.A for details of the scenario being
nodel ed.

The sizes of vectors are established. Variables are
"DOUBLE PRECI SION' so that high factorials can be
calculated. The file "ANNC . TXT" is opened for storage

of results .

DI MENSI ON PK( 70, P70(71), VI (71), VJ(71), VO( 241) , EL( 241),
&ELP(241) , FACT( 70)

DOUBLE PRECISION A, B, C, D, F, FACT, VO EL, ELP,

&PK, P7 0, VI, VJ

OPEN( 1, FILE=" ANNC . TXT * )

Factorials are cal cul at ed. These factorials wll be used
for calculating elenents of the PK vector.

F=10
DO 001 1 = 1,70
F=REAL(1)*F

001 FACT(I)=F
Col um headings are witten in file ANNC . TXT.

WRI TE( 1, 205)
205 FORVAT(2X.'m' ,2X'v (n) ', 3X, "L' " (n) ', 9X'n', 2, " v(n),
&% 'L () ")

The PDF of the nunber in line at the beginning of the
first period is established. No one is at the standpost
at this tine. Tau and | anbda are assigned their val ues.

VI (1)=1.0
DO 002 1=2, 71

002 VI(1 ) =0.0
TAU=0. 05
EAR=20

The PK and P70 vectors are cal cul at ed.

004 PK(1)=1.0/ EXP( EAR* TAU)
A=PK( 1)
P70(2) =1. 0- A
DO 005 1=2,70
PK(1) = (EARFTAU)**REAL(1-1)/(FACT(I-1)*EXP(EARTAU) )
A=PK(1) +A
K=l +1
005 P70(K)=1.0-A

nis set equal to 1 and increases by 1 for each service
period. The follow ng 5-step process is applied to each
value of n to determne v*» (n) and L'(n).
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N =
003 N=N+1

Step 1: VJ(1) is calcul ated.
VJ(1) =VI (1) *PK( 1) +VI ( 2) * PK( 1)
Step 2: VJ(2) through VJ(70) are cal cul at ed.

DO Gl 0=2,70
B =Vl (1)*PK(J)
DO 010 1=2,J+1
K=J-1+2

010 B = VI (1)*PK(K)+B
VI(J) =B

G | CONTI NUE

Step 3: VJ(71) is calcul ated.

C=VI (1) *P70( 71)
DO 015 1=2,71
K=71-1+2

015 C=VI (1) *P70(K) +C
VI(71) =C

Step 4: VgCn), L(n) and L' (N) are determned for the

begi nni ngof peri odn.

VO(N) =VJ( 1)
EL(N) =0. 0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N) =EL(N)/ (1. 0- VJ(1))

Step 5: VJ's becone VI's so that the 5-step process nay
be repeat ed.

DO 030 1=1, 71
030 VI (1)=VI(1)
| F(N. LT. 241) GOTO 003

Results are witten in file "ANNC1l. TXT".

VO(1)=1.0

ELP( 1) =0. 0

WRI TE( 1, 210) (1, VO(1), ELP(1), =
210 FORMAT(I 3, 2X, F5. 3, 3X, F6. 3, 7X, |

END

1, 241)
3, 2X, F5. 3, 3X, F6. 3)
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ANNEX C. 2. This is a |l arge-popul ati on nodel wth constant
rho val ues, two taps, and service time constant
anong users. The expected nunber of service

intervals custoners spend at the standpost is
cal cul ated as a function of the interval nunber

The sizes of vectors are established. Variables are
"DOUBLE PRECI SI ON' so that high factorials can be
calculated. The file "ANNC2. TXT" is opened for storage

of resul ts.

DI NENSI ON PK(70) , PTO(71), I (1), VI(73) , (400) , FACT(70)
DOUBLE PRECI SI A, B, . D, F, FACT, S, PK, P70,
&VI, VJ, RHO

OPEN( 1, FI LE=" ANNC2. TXT' )

Factorials are cal cul at ed. These factorials will be used
for calculating elenents of the PK vector.

F=1.0

DO 001 1=1, 70

F = REAL(l )*F
001 FACT(1)=F

The programis run for rho values starting at 0.20. The
rho val ue increases by increments of 0.1 until reaching 1.0
(See the second to last line of the program)

RHO=0. 1
100 RHO=RHO+O. 1

The rho val ue and col um headings are witten in "ANNC2. TXT"

WRI TE( 1, 201) RHO
201 FORMAT(27X, ' RHO=' , F3.1)
WRI TE( 1, 205)
205 FORMAT(2X, 'n' , 2X, 'S(@'jx,'n' 2% US(n) L TX N2
&X' S(n) ", 7X ' nT, 2% T S(n) " 7X ', 2, 'S(n) )

The ﬁrobability di stribution of the number at the standpost
at the beginning of the first interval is established. No
one is at the standpost at this tine.

VI (1)=1.0
DO 002 1=2,71 @
002 VI (1)=0.0

The PK and P70 vectors are cal cul at ed.

004 PK(1)=1.0/EXP(2. 0* RHO)
A=PK (1)
P70(2)=1.0-A
DO 005 1=2,70
PK(1) = (2.0*RHO) **REAL(I-1)/(FACT(I-1)*EXP(2. 0*RHO) )
A=PK(1) +A
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K=1+1
005 P70(K)=1.0-A

The expected nunber of service intervals custoners spend at
t he standpost is cal cul ated at the begi nning of each of 400
service intervals. This process involves 5 steps, as foll ows
DO 040 N=I, 400
Step 1. VJ(1) and VJ(2) are cal cul at ed.
VI(1)-(VI(1)+VI(2)+VI(3))*PK(1)
VI(2)=(VI(1)+VI (2)+VI(3))*PK(2)+VI (4)*PK(1)
Step 2: VJ(3) through VJ(69) are cal cul at ed.
DOGI J=3,6 9
B=(VI (1) +VI(2)+VI(3))*PK(J)
DO 010 | =4, J+2
K=J-1+3
010 B = VI (1)*PK(K)+B
VJ(J) =B

G | CONTI NUE

Step 3: VJ(70) and VJ(71) are cal cul at ed.

VI(70) - (VI (1) +VI (2) +VI (3) ) * PK( 70)
DO 013 1=4,71
K=73-1
013 VJ(70)=VI (1) *PK(K) +VJ( 70)
VI(71) =(VI (1) +VI (2)) *P70( 71)
DO 015 1=3, 71
K=74- 1|

015 VJ(71)=VI (1)*P70(K) +VJ(71)

Step 4: S(N), the expected nunber of service period spent

at the standpost at the beginning of the nth interval is
cal cul at ed.

S(N) =(VJ(2) +V3(3) +VI(4)) *1. 0
DO 020 1=2,
J = 2%
DO 020 K=J, J+1

020 S(N)=S(N) +VI(K) *REAL(J)/ 2.0
S(N)=S(N) / (1. 0-VI(1))

Step 5: VJ's at the end of the nth interval becone VI's

for the beginning of interval n+tl so that the 5-step
process nay be repeated for interval n+l.

DO 030 1=1,71

030 VI (I )=VI(l)
040 CONTI NUE

Results are witten in file "ANNC2. TXT".
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VR TE( 1, 210) ( 10*1, (10*I) | =1, 40)

210 FORMA (I3 1X, F6. 3, 4X, 13,1X, F6. 3, 4X, 1 3, 1X, F6. 3, 4X, 1 3, 1X,
&F6. 3, 4X, 1 3, 1X F6. 3)

WRITEié 210;§ ,S(1), 1=1, 10)

If rho is less than 1.0, then rho is increased by 0.1 and
the entire process is repeated.

| F(RHO. LT. 1. 0) GOTO 100
END
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ANNEX C. 3. This is a large-popul ati on nodel with constant
rho val ues, three taps, and the service tine
constant anmong users. The expected nunber of
service intervals custoners spend at the stand-

post is calculated at the beginning of each
I nterval .

The sizes of vectors are established. Variables are
"DOUBLE PRECI SION' so that high factorials can be
calculated. The file "ANNC3. TXT" is opened for storage

of results.

DI VENSI ON PK(70)  PTO(71) VI (71) ,VJ(71)  S(300) ,FACT(70)
DOUBLE PRECI SI A B C D F, FACT, S, PK, P70,
&VI , VJ, RHO

OPEN( 1, FI LE= ' ANNC3. TXT")

Factorials are calcul ated. These factorials will be used
for calculating elenments of the PK vector

F-1.0

DO 001 1=1 , 70

F=REAL(1)*F

001 FACT(1)=F

The programis run for rho values starting at 0.20. The
rho val ue increases by increnents of 0.1 until reaching
1.0. (See the second to last line of the program)

RHO=0. 1
100 RHO=RHO+O0. 1

The rho val ue and col utm headi ngs are stored in "ANNC3. TXT"

WRI TE( 1, 201) RHO
201 FORMAT(27X, 'RHO=' |, F3.1)
WRI TE( 1, 205)
20 5 FORMAT(ZX,'n',2X,'L"(n)',6X,'n',2X,'L"En)',6X,'n',2
&L () e XL () e e 2% )

The ﬁrobability distribution of the number at the standpost

at the beginnin% of the first interval is established. No
one is at the standpost atthis tine.

VI(1)=1.0
DO 002 1=2,71
002 VI(1)=0.0

The PK and P70 vectors are cal cul at ed.

004 PK(1)=1.0/ EXP(3. 0* RHO)
A=PK( 1)
P70(2)-1.0-A
DO 005 1=2, 70

PK(1)=(3. O*RHO) **REAL(1 -1 )/ (FACT(1-1)*EXP(3. 0* RH0) )

10 1
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A=PK(1) +A
K=1+1

005 P70(K)=1.0-A

The expected nunber of service intervals custonmer spend at
t he standpost is calculated at the begi nning of each of 300
intervals. This process involves 5 steps, as foliov/s:
DO 040 N-1, 300
Step 1: VJ(1), VJ(2), and VJ(3) are cal cul at ed.
VI(1)=(VI(1)+VI(2)+VI(3)+VI (4))*PK(1
VI(2)=(VI(1)+VI (2)+VI (3) +VI (4)) *PK(2) +VI (5) * PK( 1
VI(3)=(VI(1)+VI(2)+VI(3)+VI(4))*PK(3)+VI(5)*PK(2)+VI(6)*PK(1)
Step 2: VJ(4) through VJ(68) are cal cul at ed.
DO O | J=4, 68
B=(VI (1) +VI (2)+VI (3))*PK(J)
DO 010 I =4, J+3
K=J-1+4
010 B=VI (1) *PK(K) +B
Vi(J) =B

G | CONTI NUE
Step 3: VJ(69), VJ(70), AND VJ(71) are cal cul at ed.

VI(69) =(VI (1) +VI (2) +VI (3) +VI (4)) * PK( 69)
DO 012 1=5,71
K=73-1
012 VJ(69)=VI (1)*PK(K)+VI(69)
VI(70) =(VI (1) +Vi (2) +Vi (3) +VI (4)) * PK( 70)
DO 013 1=5,71
K=74- |
013 VJ(70)=VI (1)*PK(K) +VI(70)
C=( VI (1) +VI (2) +VI (3) ) * P70( 71)
DO 015 1=4,71

K=7 5-1
015 C=VI (1) *P70(K) +C
VJ(71)=C

Step 4: S(N), the expected nunber of service periods spent
at the standpost at the beginning of the nth interval 1s

cal cul at ed.

S(N) =(VJ(2) +VI(3) +VI(4))*1. 0
DO 020 1=2, 24
J=3*1-1
DO 020 K=J, J+2

020 S(N)=S(N) +VJ(K)*REAL(J+)/3.0
S(N)=S(N)/ (1. 0-VI(1))

Step 5: VJ's at the end of the nth interval becone VI's
for the beginning of interval n+tl so that the 5-step
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process may be repeated for interval n+1.

DO 030 I-1 ,71
030 VI (1) = VJ(I)
040 CONTI NUE

Results are witten in file "ANNC3. TXT".

WRI TE( 1, 210) (I, S(1), 1=1, 10)
WRI TE( 1, 210) (10*1, 5(10*1), 1=1, 30)
210 FORMAT(I3, 1X, F6. 3, 4X, | 3, 1X, F6. 3, 4X, | 3, 1X, F6. 3, 4X, | 3, 1X,
&F6. 3, 4X, | 3, 1X, F6. 3)

If rhois less than 1.0, then rho is increased by 0.1 and
t heentireprocess is repeated.

| F(RHO. LT. 1. 0) GOTO 100
END

10
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ANNEX C. 4. This is a |arge- poPuIation nmodel for deter-

mning L'(n) when [anbda varies with tinme,
t he standpost has a single tap, and the

service tinme i s constant anpong users. See
section IV.B for details of the scenario

bei ng nodel ed.

The sizes of vectors are established. Variables are
"DOUBLE PRECI SION' so that high factorials can be
calculated. The file "ANNCA. TXT" is opened for storage

of results.

DI MENSI ON PK(70) , P70(71) ,M (71) , VJ(71),EL(241), ELP(241),
&FACT( 70)

DOUBLE PRECI SION A, B, C, D, F, FACT, EL, ELP,
&PK, P70, VI, VJ
OPEN( 1, FI LE= ' ANNCA. TXT")

Factorials are cal cul at ed. These factorials wll be used
for calculating elenents of the PK vector

F=1.0

DO 001 1 =1,70

F=REAL(1)*F

001 FACT(I)=F . ~
Col unmmheadi ngsarewri tten.

VIRI TE( 1, 205)
205  FORMAT(2X,"n' ,2X'L''(m)',5X.'m 2% 'L ° gn)',
g5, ' n', 2%, ~L (ny ¢t osX nt 2k LT (n) LB, 2%, LM (n) )

The PDF of the nunber at the standpost at the beginning of the

first period is established. No one is at the standpost
att hi sti ne. Taui sassi gnedi t sval ue.

VI (1)=1.0
DO 002 1=2,71
002 VI(1)=0.0
TAU=0. 05

Lanbda is determ ned for period n.

N=I

003 | F(N. GT. 40) GOTO 401
EAR=0. 85* REAL( N)
GOTO 004

401 | F(N. GT. 120) GOTO 402
EAR=46. 5- 0. 3125* REAL(N)
GOTO 004

402 | F(N. GT. 200) GOTO 403
EAR=0. 3125*REAL(N) - 28. 5
GOTO 004

403 EAR=204.0-0. 85*REAL(N)
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The PK and P70 vectors are cal cul at ed.

004 PK(1)=1. 0/ EXP( EAR* TAU)
A=PK (1)
P70(2) =1. 0- A
DO 005 1=2, 70
PK(I ) = (EAR‘TAU)**REAL(I-1)/ (FACT(! - 1)*EXP( EARF TAU))

A=PK(1) +A
K=1+1
005 P70(K)=1.0-A
The expected line length given that the line is not enpty is
cal cul ated at the beginning of each interval. This process
i nvol ves5st eps, asfol | ows:
N=N+1
Step 1: VJ(1) is calcul at ed.
VI(1)=VI (1) *PK(1)+VI (2)*PK(1)
Step 2: VIJ(2) through VJ(70) are cal cul at ed.
DO O 1 J=2,70
B=VI (1) * PK( J)
DO 010 1=2,J + 1
K=J-1+2
010 B=VI (1) *PK(K) +B
VI(J) =B

G | CONTI NUE

Step 3: VJ(71) is calcul ated.

C=VI (1) *P70(71)
DO 015 1=2,71
K=71-1+2

015 C=VI (1)*P70(K) +C
VI(71) =C

Step 4. L(n) and L' (n) are calculated for the begi nning of
peri od n.

EL(N) =0. 0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J- 1)
ELP(N) =EL(N)/ (1. 0- VI( 1))

Step 5: VJ's becone VI's so that the 5-step process nmay
be repeat ed.

DO 0 30 1=1,71

030 VI (1)=VI(I)
| F(N. LT. 241) GOTO 003

Results are witten in file "ANNC4. TXT".
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ELP( 1) =0. 0
WRI TE('1, 210)

210 FORMAT(I 3
END

(1,E
JF7.2

LP(1) ,1 = 1 ,241)
16, F7.2,16,F7.2 16,F7.2,16, F7.2)
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ANNEX C. 5. Large-popul ation nodel for determ ning Whn)
when | anbda varies with tinme, the standpost
has a single tap, and the service tine is
constant anong users. See section VII.C for
details of the scenario bei ng nodel ed.

The sizes of vectors are established. Vari abl es are
"DOUBLE PRECI SION' so that high factorials can be
calculated. The file "ANNC5. TXT" is opened for storage

of results.

DI MENSI ON PK(70), P70(71), VI (71), VJ(71), EL(241), ELP(241),
&W 241) , FACT( 70)

DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, W
&PK, P70, VI, VJ

OPEN( 1, FI LE=" ANNC5. TXT")

Factorials are cal cul at ed. These factorials will be used
for calculating elenents of the PK vector

F=10
DO 001 1=1 , 70
F=REAL(1)*F

001 FACT(I)=F
Col um headi ngs are witten.

VR TE( 1, 205)
205 FORMAT(2X,'n',3X,"Wn)',5X,'n",3X,"Wn)',5X 'n",3X "Wn)'",
&5X, 'n '(,3X,'V\(n)',5x\,/\('n)' 3% wen)') Wn) Wen)

The PDF of the nunmber at the standpost at the beginning of the
first period is established. No one is at the standpost
at this tinme. Tau is assigned its val ue.

VI (1)=1.0

DO 002 1=2, 71
002 VI(1 ) = 0.0

TAU=0. 05

Lanbda is determ ned for period n.

N =1

003 | F(N. GT. 40) GOTO 401
EAR=0. 5* REAL( N)
GOTO 004

401 | F(N. GT. 120) GTO 402
EAR=24. 0- 0. 1* REAL( N)
GOTO 004

402 | F(N. GT. 200) ®TO 403

EAR=0. 1* REAL( N)
GOTO 004

403 EAR=120. 0- 0. 5* REAL(N)

The PK and P70 vectors are cal cul at ed.
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004 PK(1)=1.0/ EXP( EAR* TAU)
A=PK( 1)
P70(2) =1. 0- A
DO 005 1=2, 70
PK(1 ) = (EAR*TAU)**REAL(I-1)/(FACT(I-1)*EXP(EAR*TAU))
A=PK(1) +A
K=1+1
005 P70(K)=1.0-A

The expected waiting ti s cal cul ated at the beginning of
each interval. This pr ce invol ves 5 steps, as follows:
N=N+1

Step 1. VJ(1) is calcul ated.
VI(1) =VI (1) *PK( 1) +VI ( 2) * PK( 1)
Step 2: VJ(2) through VJ(70) are cal cul ated.

DOGI J=2,70
B=VI (1) * PK(J)
DO 010 1=2,J+1
K=J-1+2

010 B=VI (1) *PK(K) +B
VJ(J )=B

G | CONTI NUE

Step 3: VJ(71) is calculated.

C=VI (1) *P70( 71)
DO 015 1=2,71
K=71-1+2

015 C=VI (1)*P70(K)+C
VJ(71) =C

Step 4: L(n), g , and V\g are calculated for the begl nni ng
of period n. actor of 60 is used to express Wn) i

m nut es.

EL(N) =0. 0
DO 020 J=2,71

020 EL(N)=EL(N) +VJ(J)*REAL(J- 1)
ELP(N) =EL(N)/ (1. 0- VI(1))
W N) =60. 0* TAU* ELP( N)

Step 5: VJ's becone VI's so that the 5-step process may
ber epeat edf ort henext i nterval.

DO 030 1=1,71
030 VI( 1)=Vi(1)
| F(N. LT. 241) GOTO 003

Results are witten in file "ANNC5. TXT"
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ANNEX C. 6. Lar ge- popul ati on nodel for determ ning S(n)
when | anbda varies with tine, the standpost

has two taps, and the service tine is con-
stant anobng users. See section IV.C for
details of the scenari o bei ng nodel ed.

The sizes of vectors are est abl i shed. Vari abl es are
"DOUBLE PRECI SI ON' so that high factorials can be
calculated. The file "ANNC6. TXT" is opened for storage

of results .

DI MENSI ON PK(70) , P70(71), VI (71), VJ(71), EL(185), ELP(185) ,
&FACT( 70), S(241)

DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, S,
&PK, P70, VI, VJ

OPEN( 1, FI LE=" ANNC6. TXT ' )

Factorials are cal cul at ed. These factorials will be used

for calculating elenments of the PK vector

F=10
DO 001 1=1, 70
F=REAL(1)*F

001 FACT(I)=F
Col um headi ngs are witten.

WRI TE( 1, 205)

2 05 FORMAT(2Xan',3X,'Wn)',5X'n',3X'Wn)', 5% " 'n', 3% ' Wn)',

&X,'n ', 3X "Wn)',5X"n",3X"Wn) ")

The PDF of the nunber in line at the beginning of the
first period is established. No one is at the standpost
at this tine. Tau is assigned its val ue.

VI (1)=1.0

DO 002 1=2,71
002 VI(1)=0.0

TAU=0. 06478

Lanbda is determ ned for period n.

N=1

003 | F(N. GT. 31) GOTO 401
EAR=1. 1014* REAL(N)
GOTO 004

401 | F(N. GT. 93) ®TO 402
EAR=46. 5- 0. 4049* REAL( N)
GOTO 004

402 | F(N. GT. 154) G0TO 403
EAR=0. 4049* REAL(N) - 28. 5
GOTO 004

403 EAR=204. 0-1. 1014*REAL(N)

The PK and P70 vectors are cal cul ated for period n.
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004 PK(1)=1.0/ EXP( EAR* TAU)
A=PK( 1)
P70(2)=1.0- A
DO 005 1=2,70
PK(1) - (EAR* TAU) ** REAL( | - 1) / (FACT(I - 1) * EXP( EAR* TAU) )
A=PK( 1) +A

005 P70(K)=1.0-A

The expected nunber of service intervals custonmers spend at
the standpost is calculated at the begi nning of each interval
Thi s process involves 5 steps, as follows:

N=N+1

Step 1. VJ(1) and VJ(2) are calcul at ed.

VI(1) =(VI (1) +VI (2) +VI (3))* PK( 1)
VI(2) =(VI (1) +VI (2) +VI (3)) * PK( 2) +VI (4) * PK( 1)

Step 2: VIJ(3) through VJ(69) are cal cul at ed.

DO G 1 J=3, 69
B= (VI(1)+VI(2)+VI(3))*PK(J)
DO 010 1=4,J +
K=J-1+3
010 B = VI (I)*PK(K)+B
VJ(J) =B
QG | CONTI NUE

Step 3: VJ(70) and VJ(71) are cal cul ated.

VJI(70) =(VI (1) +VI (2) +VI (3)) * PK( 70)
DO 013 1=4,71
K=73-1
013 VJI(70) =Vl (1)*PK(K) +VJ(70)
VI(71) =(VI (1) +VI ( 2) ) * P70( 71)
DO 015 1=3,71
K=74- 1

015 VJI(71)=VI (1)*P70(K)+VJ(71)

Step 4A: L(n) and L' (n) are calculated for the beginning of
period n.

EL (N) =0.0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N) =EL(N)/ (1. 0- VI(1))

Step 48: S(n) is calculated for the beginning of period n.
A=(VJI(2)+VI(3))*1.0

DO 021 1=2, 35
J = 2*|
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DO 021 K=J, J+1
021 A=A+VJ(K)*REAL(J)/2.0
S(N) =A/ (1. 0-VI(1))

Step 5: VJ's becone VI's so that the 5-step process nmay
be repeated for the next service interval.

DO030 1 =1,71
030 VI (1)=VI(l)
| F(N. LT. 185) GOTO 003

Results are witten in file "ANNC6. TXT".

ELP(1)=0.0 .....
S(1)=0. 0
WRI TE( 1, 210) (I, ELP(1), S(1), I =1, 185)

210 FORVAT(I3,F7.3,16,F7.3,16,F7.3,16,F7.3,16, F7. 3)
END
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ANNEX C. 7. Lar ge- popul ati on nodel for determ ning Whn)
when | anbda varies with tine, the standpost
has two taps, and the service tinme is con-
stant anong users. See section VII.E for
details of the scenario bei ng nodel ed.

The sizes of vectors are established. Vari abl es are
"DOUBLE PRECI SION' so that high factorials can be
calculated. The file "ANNC7. TXT" is opened for storage

of results.

DI MENSI ON PK(70), P70(71), VI (71), VJ(71), EL(182), ELP(182),
&FACT(70) , W 182)

DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, W
&PK, P70, VI, VJ

OPEN( 1, FI LE=" ANNC7. TXT")

Factorials are cal cul at ed. These factorials will be used
for calculating elenents of the PK vector.

F=10
DO 001 1-1,70
F=REAL(1)*F

001 FACT(I)=F

Col um headi ngs are witten.

WRI TE( 1, 205)

2 05 FORMAT(2X,' n',3X,'Wn)',5X 'n', 3% 'Wn)',5%" n,3X" Wn)',

002

003

401

402

403

&X, "n" ,3X,"Wn)',5X "'n",3X,"Wn) ")

The PDF of the nunber in line at the beginning of the
first period is established. No one is at the standpost
at this tine. Tau is assigned its val ue.

VI (1) = 1.0
DO 002 1=2, 71
VI (1)=0.0

TAU- 0. 0658

Lanbda is determ ned for period n.

N=1I

| F(N. GT. 29) G®0TO 401
EAR=1. 0* REAL( N)

GOTO 004

| F(N. GT. 91) ®0TO 402
EAR=36. 5- 0. 201* REAL( N)
GOTO 004

| F(N. GT. 152) GOTO 403
EAR=0. 201* REAL(N) - 0. 1
GOTO 004

EAR=182. 3- 1. 0* REAL(N)

The PK and P70 vectors are calcul ated for period n.
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004

005

010

al

013

015

PK( 1) =1. 0/ EXP( EAR* TAU)

A=PK( 1)

P70(2) =1. 0- A

DO 005 1=2, 70

PK( 1) =( EAR* TAU) ** REAL(| - 1) / ( FACT( | - 1) * EXP( EAR* TAU) )
A=PK(1) +A

K= 1+1

P70(K) - 1. 0- A

The expected waiting tinme is cal cul ated at the beginning of
each interval. This process involves 5 steps, as foll ows:

N=N+1

Step 1: VJ(1) and VJ(2) are cal cul at ed.

VI(1) =(VI (1) +VI (2) +VI (3)) *PK( 1)
VI(2) =(VI (1) +VI (2) +VI (3)) * PK( 2) +VI (4) * PK( 1)

Step 2: VJ(3) through VJ(69) are cal cul at ed.

DO Gl J=3, 69

B- (VI (1) +VI (2) +VI (3)) *PK(J)
DO 010 1=4, J+2

K=J-1+3

B=VI (1) * PK( K) +B

VJ(J )=B

CONTI NUE

Step 3: VJ(70) and VJ(71) are cal cul at ed.

VJ(70) =(VI (1) +VI (2) +VI (3)) * PK( 70)
DO 013 1=4,71

K=73-1

VJ(70) =VI (1) *PK(K) +VJ( 70)
VI(71) =(VI (1) +VI (2)) * P70( 71)

DO 015 1=3,71

K=74- |

VI(71) =VI (1) *P70( K) +VJ( 71)

Step 4A: L(n) and L'(n) are calculated for the begi nning of
peri0dn.

EL(N)=0.0
DO 020 J=2, 71

020 EL(N)=EL(N) +VJ(J) * REAL(J- 1)

ELP(N)=EL(N)/(1.0-VJ(1))
Step 4B: Wn) is calculated for the beginning of period n.
A=(VJI(2)+VI(3))*1.0

DO 021 1=2, 35

J = 2%

DO 021 K=J, J+1
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021 A=A+VJ(K)*REAL(J)/2.0
W N) =60. 0* TAU* A/ (1. 0- VJ( 1))

Step 5 VJ's becone VI's so that the 5-step process may
be repeated for the next interval.

DO 030 1=1,71
030 VI (1)=VI(I)
| F(N. LT. 182) GOTO 003

Results are witten in file "ANNC7. TXT".

WI )=0.0
WRI TE( 1, 210) (1, W 1), 1- 1, 182)

210 FORMVAT(I13,F7.2,16,F7.2,16,F7.2,16,F7.2,16, F7. 2)
END
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ANNEX C. 8. This is a small -popul ati on nodel wi th constant
rho values, a single tap, and service tine con-
stant anpbng users. The probabilities that no
custoners are served during intervals 2, 3, 4,
5, and 6 are cal cul ated for values of rho and
popul ation size. Results are in Annex C. 9.

The sizes of matri ces are established. Vari abl es are "DOUBLE

PRECI SI ON' so that high factorials can be calculated. The file
"ANNCO. TXT" is opened for storage of results.

DI MENSI ON ASP3(2), ASP4( 3, 2), ASP5( 4, 3, 2), ASP6(5, 4, 3, 2),
&FACT(51)

DOUBLE PRECI SI ON ASP2, ASP 3, ASP4, ASP5, ASP6, FACT,
&F, SASP2, SASP3, SASP4, SASP5, SASP6

OPEN( 1, FI LE=" ANNCO. TXT")

Factorials are cal cul at ed. These factorials will be used in
cal cul ati ngASF' s.

F=1.0
DO 001 1=1,51
F=REAL(I)*F

001 FACT(l ) = F

The programis run for rho values starting at 0.10 and i ncreas-

ing in increnents of 0.10. The popul ation size starts at 10
andi ncr easesi ni ncr enent sof B.

RHO=0. O

300 RHO=RHO+O0. 10

N=25

400 N=NH+5

A=RHO' REAL( N)

The probability that no custoners are served during the
second i nterval is cal cul at ed.

ASP2=FACT( N) * REAL( N+1) / ( FACT(N#1) ) * ( (1. 0- A) ** REAL(N))
SASP2=ASP2

The probability that no custoners are served during the
third interval interval is cal cul at ed.

SASP3=0. 0

DO 030 1=1, 2

ASP3( 1) =FACT(N) *REAL( 1) *REAL(N + 2-1)/(FACT(1)*FACT ( N + 2-1 ))*
&(A**REAL(1-1))*((1.0-2. 0*A)**REAL(N+1-1))

030 SASP3=ASP3(| ) +SASP3

The probability that no custoners are served during the
fourth intervali scal cul at ed.

SASP4=0. O
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DO 040 J-1,2

1=1

ASP4( 1, J) =FACT(N) * REAL( 1) * REAL(J) * REAL( N#3- | - J) /

& FACT(1 )*FACT(J)*FACT(N + 3-1-J) )*

& A**REAL(1+J-2))*((1.0-3.0*A) **REAL( N#2-1-J))
040 SASP4=ASP4( 1, J) +SASP4

DO 041 1=2, 3

DO 041 J=l, 4-1

ASPA4( 1, J) =FACT(N) * REAL( 1) * REAL(J) * REAL( N+3-1-J)/

& FACT(1)* FACT(J) * FACT(N#3-1-J)) *

& A**REAL( 1 +J-2) ) *( (1. 0-3. 0*A) ** REAL( N#2- 1 - J))
041 SASP4=ASP4( 1, J) +SASP4

The probability that no custoners are served during the
fifth interval is cal cul at ed.

SASP 5 = 0.0

DO 050 K=I, 2
1=1
J =1
ASP5( | ,J,K)-FACT(N)*REAL(1)*REAL(J) *REAL(K) *REAL(N + 4-1-J-K)/
& FACT( 1) * FACT(J) * FACT( K) * FACT( N#4-1 - J- K) ) *
&( A** REAL(| +J+K-3)) *( (1. 0- 4. 0* A) **REAL(N+3- | - J- K) )
050 SASP5=ASP5( 1, 1, K) +SASP5

DO 051 J=2,3
DO 051 K=l , 4-J
1=1
ASP5(1 , J, K) =FACT(N) * REAL( | ) * REAL(J) * REAL(K) * REAL{ N + 4-1-J-K)/
& FACT( 1) * FACT(J) * FACT(K) * FACT( N#4- | - J- K) ) *
&( A**REAL(| +J+K-3) ) *( (1. 0- 4. 0% A) **REAL(N+3- | - J- K))
05 1 SASP5=ASP5( 1, J, K) +SASP5

DO 052 K=I, 2
1=2
J =1
ASP5( 1, J, K) =FACT(N) * REAL( | ) * REAL( J) * REAL( K) * REAL( N#4- | - J- K) /
& FACT( 1) * FACT(J) * FACT( K) * FACT( N#4-1- J-K) ) *
&( A** REAL( | +J+K-3))*((!. 0- 4. 0% A) ** REAL( N+3- | - J- K))
05 2 SASP5=ASP5( 2, 1, K) +SASP5

DO 053 J-2, 3
DO 053 K=l , 4-J
1=2
ASP5( 1, J, K) =FACT(N) * REAL( | ) * REAL(J) * REAL(K) REAL(N+4-1-J-K)/
& FACT(1) * FACT(J) * FACT(K) * FACT( N#4-1-J-K) ) *
&( A** REAL(| +J+K-3)) *( (1. 0-4. 0*A) **REAL(N+3-1-J K))
053 SASP5=ASP5( 2, J, K) +SASP5

000541=3, 4

DO 054 J =1 ,5-1

DO 054 K=1 ,6-1-J

ASP5( 1, J, K) =FACT(N) * REAL( | ) * REAL(J) * REAL( K) * REAL( N+4- | - J- K) /
& FACT(1)* FACT(J) * FACT(K) * FACT( N¥4- 1 - J- K) ) *

117


NEATPAGEINFO:id=07442AF8-EEFC-4646-9643-851991848EA7


O O O o

&( A**REAL( 1 +J+K- 3)) *(( 1. 0- 4. 0% A) **REAL( N#+3- 1 - J- K) )
054 SASP5=ASP5( I, J, K) +SASP5

The probability that no custoners are served during the
sixth interval is cal cul at ed.

SASP6=0. O

DO 050 L-1, 2

1=1

J =1

K=1

ASPG(1 ,J ,K L)=FACT(  *REAL(I)*REAL(J)*REAL(K)*REAL(L) *
&REAL(N+5-1 - J-K-L)/

& FACT( 1) * FACT(J)* FACT(K) * FACT(L) * FACT(N#5-1-J -K-L))*
&( A+ *REAL(1 +J+K+L-4)) *( (1. 0-5. 0% A) **REAL( N+4- | -J-K-L))
060 SASPE=ASP6( 1, 1, 1, L) +SASP6

DO 061 K=2, 3
DO 061 L=l, 4-K
1=1
J =1
ASP6( 1,J,K L)=FACT(  *REAL(I)*REAL(J)*REAL(K)*REAL(L)*
SREAL(N#5- | - J- K- L) /
& FACT(| )*FACT(J)*FACT(K)* FACT(L) *FACT(N + 5-1-J K-L) )*
&(A* *REAL(1 +J+K+L-4)) *((1.0-5. 0% A) **REAL( N#4-1 *J-K-1))
061 SASPG=ASP6( 1, 1, K, L) +SASP6

DO 062 L=I, 2

1=1

J =2

K=l

AsP6(1,J, K L) FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*

SREAL(N#5- 1 - J- K- L)/

& FACT( 1) * FACT(J) * FACT(K) * FACT( L) * FACT( N¥5- | - J'aK- L) ) *

&( A* *REAL( | +J+K+L-4)) *( (1 0-5. 0*A) ** REAL( N+4- | *J- K- D)
062 SASP6=ASP6(1, 2, 1, L) +SASP6

DO 063 K=2, 3
DO063 L =1 ,4-K
1=1
J=2
ASP6( 1, J, K, L) FACT(N)*REAL(I)*REAL(J) REAL ( K) * REAL( L) *
&REAL( N#5- 1 - J- K- L)/
& FACT(1) * FACT(J) * FACT(K) * FACT( L) * FACT( N#5- | - J- K- L) ) *
&( A** REAL( | +J+K+L-4) ) *( (1. 0- 5. 0% A) ** REAL( N#4- | - J- K- L))
063 SASP6=ASP6( 1, 2, K, L) +SASP6

DO 064 ]
DO 064 K
DO 064
1=1
ASP6(1 J.K L)=FACT N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
&REAL(N#5-1-J-K- L)/

& FACT(1)* FACT(J) * FACT(K) *FACT(L *FACT(N#5-1-J-K-L))*

3,4
l,5-
|, 6-
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064 SASP6=ASP6( 1, J, K, L) +SASP6

DO 065 L=I, 2
1=2
J =1
K=l
ASP6( 1, J, K, L) =FACT(N) * REAL( | ) * REAL(J) * REAL( K) * REAL( L) *
&REAL( N#5-1 - J-K- L)/
& FACT( 1) * FACT(J) * FACT( K) * FACT(L) * FACT( N#5- 1 - J- K- L) ) *
&( A** REAL( | +J+K+L-4))*( (1. 0-5. 0*A) **REAL(N+4- - J- K- L))
065 SASP6=ASP6(2,1 ,1 ,|-)+SASP6

DO 066 K=2, 3

DO 066 L=l, 4-K

1=2

J=1

ASP6( 1, J, K, L) =FACT(N) * REAL( 1) * REAL( J) * REAL( K) * REAL( L) *
&REAL( N#5-1 - J-K- L)/
& FACT( 1) * FACT(J) * FACT( K) * FACT(L) * FACT( N#5- 1 - J- K- L) ) *
&( A** REAL( | +J+K+L-4)) *((1.0-5. 0*A) ** REAL( N+4- | - J- K- L))

066 SASP6=ASP6( 2, 1, K, L) +SASP6

DO 067 L=, 2
1=2
J =2
K=1
ASP6( 1, J, K, L) =FACT(N) * REAL( | ) * REAL(J) * REAL( K) * REAL( L) *
&REAL( N#5- | - J- K- L) /
& FACT(1) * FACT(J) * FACT(K) * FACT( L) * FACT( N#+5- 1 - J- K- L) ) *
&( A** REAL(| +J+K+L-4))*((1.0-5. 0*A) ** REAL( N+4- | - J- K- L))
067 SASP6=ASP6( 2, 2, 1, L) +SASP6

DO 068 K=2, 3

DO 068 L=l, 4-K

1=2

J=2

ASP6( 1, J, K, L) =FACT(N) * REAL( 1) * REAL( J) * REAL( K) * REAL( L) *
&REAL( N¥5- 1 - JZ K- L)/
& FACT(1 )*FACT(J)*FACT(K)* FACT(L) *FACT(N + 5-1-J-K-L))*
&( A** REAL( | +J+K+L-4))*( (1. 0-5. 0% A) ** REAL( N#4- | - J- K- L) )

068 SASP6=ASP6( 2, 2, K, L) +SASP6

DO 069 J=3, 4

DO 069 K=l , 5-J

DO 069 L=l,5-J-K

1=2

ASP6( 1, J, K, L) =FACT(N) * REAL( 1) * REAL(J) * REAL(K) * REAL(L) *
&REAL(N#5- 1 - J-K- L)/
& FACT( 1) * FACT(J) * FACT( K) * FACT( L) * FACT( N#5- | - J- K- L) ) *
&( A** REAL(| +J+K+L-4))*((1.0-5. 0*A) **REAL(N+4- 1 - J-K- L))

069 SASP6=ASP6( 2, J, K, L) +SASP6

DO 610 L =12
1=3
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J =1
K=1

ASP6( 1, J, K, L) =FACT(N) * REAL( 1) * REAL( J) * REAL( K) * REAL( L)
&REAL( N+5- 1 - J- K- L) /
&(FACT( 1) * FACT(J) * FACT(K) * FACT( L) * FACT(N#5-1-J-K L))*
&( A** REAL(| +J+K+L-4))*((1.0-5. 0%A) ** REAL(N+4-1-J K-L))

10 SASP6=ASP6( 3, 1, 1, L) +SASP6

DO 6 11 L=I,2

1=3
J=1
K=2

ASP6 (|, J, K, L) =FACT(N) * REAL( | ) * REAL(J) * REAL( K) * REAL( L) *
&REAL (N+5-1-J-K-L)/
& FACT( 1) * FACT(J) * FACT(K) * FACT(L) * FACT( N#5-1-J- K- L)) *
& A** REAL(| +J+K+L-4))*((1.0-5. 0%A) ** REAL( N#4- 1 - J- K- L))

11 SASP 6=ASP5( 3, 1, 2, L) +SASP6

1=3
J =1
K=3
L-1

ASP6( |, J, K, L) =FACT(N) * REAL( 1) * REAL( J) * REAL( K) * REAL(L) *
&REAL( N+5-1-J-K-L)/
& FACT (1) * FACT(J) * FACT(K) * FACT( L) * FACT( N+5- | - J- K- L) ) *
&(A**REAL( 1 +J+K+L-4) ) *( (1. 0-5. 0*A) ** REAL( N+4- | - J- K- L))

SASP6 =ASP6( 3, 1, 3, 1) +SASP6

DO 612 J=2, 3
DO 612 K=I, 4-J
DO 612

1=3

L=1,5J-K

ASP6( 1, J, K, L) =FACT(N) * REAL( 1) * REAL( J) * REAL( K) * REAL( L) *
&REAL( N#5- 1 - J- K- L) /

& FACT( 1) * FACT{ J) * FACT( K) * FACT(L) * FACT( N#5- | - J- K- L))

*

&( A** REAL(| +J+K+L-4))*((1.0-5. 0%A) **REAL( N+4- | - J- K- L))
12 SASP6=ASP6{ 3, J, K, L) +SASP6

DO
DO
DO
DO

613
613
613
613

1=4 5
J=1 6-
K=l 7-
L= 8

ASP6( 1, J, K, L) =FACT(N) * REAL( 1) * REAL(J) * REAL( K) * REAL( L) *
&REAL( N#5- 1 - J- K- L)/

& FACT( |

) * FACT(J) * FACT(K) * FACT(L) *FACT(N + 5-1-J-K-L))

*

& A**REAL(1 + J+K + L-4))*((1.0-5. O*A)**REAL(N + 4-1-J-K-1))
513 SASP6=ASP6( 1, J, K, L) +SASP6

Results are witten in file

WRI TE( 1, 099) RHO, M

099 FORMAT(' RHO=', F3. 1, 5X, ' POPULATI ON=', 12)
WRI TE( 1, 100) SASP2, SASP3, SASP4, SASP5, SASP6

100 FORMAT( ' SASP2=" | F5. 4, 3X, "' SASP3='
& SASP5=', F5. 4, 3X, ' SASP6=", F5. 4)

120

" ANNCO. TXT"

, F5. 4, 3X, ' SASP4='

, F5. 4, 3X
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O o o O 0

If the population is less than 50 or rho is |l ess than

1.0, then the process is repeated for a | arger popul ation
and/or a different rho val ue.

I F(N. LT. 50) @QTO 400

| F(RHO. LT. 1. 0) GTO 300
CONTI NUE

END

121
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ANNEX C. 9.

RHO= . 1
SASP2=. 9044

RHO = 1

SASP2” 9045

RHO = 1

SASP2: 2046

RHO = 1
SASP2” . 9047

RHO = 1
SASP2=. 9047

RHO= , 1
SASP2”" . 9047
RHO= , 1
SASP2 = . 9047
RHO . 1
SASP2 = . 9047
RHO= , 1
SASP2 = . 9047
RHO= . 2
SASP2= .8171
RHO=2

SASP2 = 8176
RHO =

SASP2: 8179
RHO =

SASP2 = . 8181
RHO = 2
SASP2 = . 8182
RHO= . 2

SASP2=. 8183

RHO =
SASP2~ 8183
RHO =
SASP2~ 8184

POPULATI ON=10
SASP3=. 9004

POPULATI ON=15
SASP3=. 9005

POPULATI ON- 20
SASP3=. 9005

POPULATI ON=25
SASP3=. 9005

POPULATI ON=30
SASP3=. 9006

POPULATI ON=35
SASP3=. 9006

POPULATI ON=40
SASP3=. 9006

POPULATI ON=45
SASP3=. 9006

POPULATI ON=50
SASP3=. 9006

POPULATI ON=10
SASP3=. 8033

POPULATI ON- 15
SASP3=. 8037

POPULATI ON=20
SASP3=. 8039

POPULATI ON=25
SASP3=. 8040

POPULATI ON- 30
SASP3=. 8040

POPULATI ON=35
SASP3=. 8041

POPULATI ON=40
SASP3=. 8041

POPULATI ON=45
SASP3- . 8041

SASP4=.

SASPA4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

12 2

Results of small-popul ati on nodel
single tap,
( Conput er

9001

9001

9001

9001

9001

9001

9001

9001

9001

8007

8009

8010

8010

8011

8011

8011

8011

SASP5=.

SASPS=.

SASP5=.

SASP5- .

SASP5=.

SASP5=.

SASPS=.

SASP5=.

SASP5=.

SASP5=.

SASPS5=.

SASP5=.

SASP5=.

SASP5=.

SASP5=.

SASP5=.

SASP5=.

w th const ant
and service tinme constant anbng users.
programis in Annex C. 8)

9000

9000

9000

9000

9000

9000

9000

9000

9000

8002

8002

8003

8003

8003

8003

8003

8003

r ho,

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6G- .

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

9000

9000

9000

9000

9000

9000

9000

9000

9000

8000

8001

8001

8001

8001

8001

8001

8001
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ANNEX C. 9 (conti nued)

RHO= . POPULATI ON- 50
SASP2 = 8184 SASP3=. 8042
RHO = POPULATI ON=10
SASP2 = 7374 SASP3=. 7105
RHO = POPULATI ON=15
SASP2 = 7386 SASP3=. 7115
RHO= . 3 POPULATI ON=20
SASP2=. 7391 SASP3=. 7120
RHO = POPULATI ON- 25
SASP2: 7395 SASP3=. 7123
RHO= . 3 POPULATI ON=30
SASP2=. 7397 SASP3=. 7125
RHO = POPULATI ON=35
SASP2 = 7399 SASP3-. 7126
RHO= . 3 POPULATI ON=40
SASP2=. 7400 SASP3=. 7127
RHO = POPULATI ON=45
SASP2~ 7401 SASP3=. 7128
RHO = POPULATI ON=50
SASP2 = 7401 SASP3=. 7129
RHO= . 4 POPULATI O\ O
SASP2=. 6648 SASP3=. 6233
RHO= .4 POPULATI ON=15
SASP2=. 6667 SASP3=. 6252
RHO= .4 POPULATI ON=20
SASP2=. 6676 SASP3=. 6262
RHO- . 4 POPULATI ON- 25
SASP2=. 5582 SASP3=. 6268
RHO= . 4 POPULATI ON=30
SASP2- . 6685 SASP3=. 6271
RHO= . 4 POPULATI ON=35
SASP2=. 6688 SASP3=. 6274
RHO= .4 POPULATI ON=40
SASP2=. 6690 SASP3=. 6276

SASP4=. 8011

SASP4=. 7033

SASP4=. 7040

SASP4=. 7043

SASP4=. 7045

SASP4=. 7047

SASP4- . 7048

SASP4-. 7049

SASP4=. 7049

SASP4=. 7050

SASP4=. 604

SASP4=. 6110

SASP4- . 6119

SASP4=. 6124

SASP4=. 6127

SASP4=. 6130

SASP4=. 6131

123

SASP5=.

SASP5=.

8003

7010

SASP5=. 7014

SASP5=.

SASP5- .

SASP5=.

SASP5=.

SASPS- .

SASP5- .

SASP5=.

SASP5=.

SASP5=.

SASP5=.

SASP5=.

SASPS5=.

SASP5=.

SASP5=.

7017

7018

7019

7020

7020

7020

7021

6038

6051

6057

6061

6064

6066

6068

SASP6=. 8001
SASP6=. 7003
SASP6=. 7005

SASP6- . 7006

SASP6=. 7007

SASP6=. 700{

SASP6-. 7008

SASP6=. 7009

SASP6=. 7009

SASP6=. 7009

SASP6=. 6015
SASP6=. 6023
SASP6- . 6QRi

SASP6- . 6031
SASP6- . 6034
SASP6=. 6035
SASP6=. 6036
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ANNEX C. 9 (conti nued)

RHO= , 4
SASP2 = . 6691
RHO= ,
SASP2= 6692
RHO-

SASP2 = 5987
RHO =

SASP2= 6014
SASP2: . 6027
RHO- 5
SASP2 = . 6035
RHO = 5
SASP2” . 6040
RHO = 5
SASP2 = . 6043
RHO =

SASP2 = 6046
RHO =

SASP2” 6048
RHO= .5

SASP2=. 6050

RHO =
SASP2”~ 5386
RHO= . 6
SASP2=. 5421

RHO =

SASP2 = . 5438
RHO= , 6
SASP2 = . 5448
RHO =

SASP2”~ . 5455
RHO = 6
SASP2~ . 5460

POPULATI ON=45
SASP3=. 6278

POPULATI ON=50
SASP3=. 6279

POPULATI ON=10
SASP3=. 5424

POPULATI ON=15
SASP3=. 5456

POPULATI ON=20
SASP3=. 5472

POPULATI ON=25
SASP3=. 5481

POPULATI ON=30
SASP3- . 5487

POPULATI ON=35
SASP3=. 5492

POPULATI ON=40
SASP3=. 5495

POPULATI ON=45
SASP3=. 5498

POPULATI ON=50
SASP3=. 5500

POPULATI ON=10
SASP3=. 4684

POPULATI ON=15
SASP3=. 4730

POPULATI ON=20
SASP3=. 4753

POPULATI ON=25
SASP3- . 4766

POPULATI ON=30
SASP3=. 4775

POPULATI ON=35
SASP3=. 4782

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASPA4=.

SASP4=.

SASP4 =.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4

SASP4=.

SASP4=.

124

6133

6134

5205

5236

5252

5262

5268

5272

5276

5278

5280

4379

4430

4456

4471

4480

4487

SASP5=.

SASP5=.

SASP5=.

SASP5=.

SASPS5=.

SASP5=.

SASPS5=.

SASP5=.

SASP5=.

SASP5=.

SASPS5=.

SASP5=.

SASPS5=.

SASP5=.

SASPS5=.

SASPS=.

SASP5=.

6069

6070

5100

5129

5143

5152

5158

5162

5165

5168

5170

4215

4267

4293

4308

4318

4326

SASP6- .

SASP6=.

SASP6=.

SASPG6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

SASP6=.

6037

6038

5047

5071

5084

5091

5097

5100

5103

5106

5107

4119

4169

4194

4209

4219

4226
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ANNEX C . 9
RHO= .6
SASP2=. 5463

RHO= .6
SASP2=. 5466

RHO= .6
SASP2=. 5468

RHO= .7
SASP2=. 4840

RHO= .7
SASP2=. 4883

RHO= .7
SASP2=. 4904

RHO= .7
SASP2=. 4917

RHO= .7
SASP2=. 4925

RHO= .7
SASP2=. 4931

RHO= .7
SASP2- . 4935

RHO= .7
SASP2=. 4939

RHO= .7
SASP2=. 4941

RHO= .8
SASP2=. 4344

RHO= .8
SASP2=. 4395

RHO- .8
SASP2=. 4420

RHO= .8
SASP2=. 4435

RHO= .8
SASP2=. 4445

(conti nued)

POPULATI ON=40
SASP3=. 4786

POPULATI ON=45
SASP3=. 4790

POPULATI ON=50
SASP3=. 4793

POPULATI ON=10
SASP3=. 4014

POPULATI ON=15
SASP3=. 4076

POPULATI ON=20
SASP3=. 4105

POPULATI ON=25
SASP3=. 4123

POPULATI ON- 30
SASP3=. 4135

POPULATI ON=35
SASP3=. 4143

POPULATI ON=40
SASP3=. 4149

POPULATI ON=45
SASP3=. 4154

POPULATI ON=50
SASP3=. 4158

POPULATI ON=10
SASP3=. 3415

POPULATI ON=15
SASP3=. 3491

POPULATI ON=20
SASP3- . 3528

POPULATI ON=25
SASP3=. 3550

POPULATI ON=30
SASP3=. 3564

SASPA=.

SASPA4=.

SASP4- .

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4- .

SASPA4=.

SASP4=.

SASP4=.

SASPA4=.

SASPA4=.

SASP4- .

SASP4- .

SASPA4=.

SASP4=.

12

4493

4497

4500

3628

3701

3737

3758

3772

3781

3789

3794

3799

2958

3054

3099

3126

3144

SASP5=. 4331

SASP5=. 4335

SASPS5- . 4339

SASP5=. 3401

SASP5- . 3482

SASP5=. 3521

SASP5=. 3544

SASP5=. 3559

SASP5-. 3570

SASP5=. 3578

SASP5=. 3584

SASP5- . 3589

SASP5=. 2672

SASP5=. 2784

SASP5- . 2837

SASP5=. 2868

SASP5=. 2888

SASP6=. 4231

SASP6=. 4236

SASP6- . 4239

SASP6=. 3253

SASP6- . 333i

SASP6=. 3379

SASP6- . 3403

SASP6- . 3419

SASP6=. 3431

SASP6=. 3439

SASP6=. 3446

SASP6=. 3451

SASP6=. 2470

SASP6=. 2597

SASP6=. 2656

SASP6=. 2690

SASP6=. 2713
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ANNEX C. 9 (conti nued)

RHO= . 8 POPULATI ON=35
SASP2=. 4452 SASP3=. 3574

RHO= . 8 POPULATI ON=40
SASP2=. 4457 SASP3-. 3582

RHO= . 8 POPULATI ON=45
SASP2=. 4461 SASP3=. 3588

RHO= .8 POPULATI ON=50
SASP2=. 4464 SASP3=. 3592

RHO- .9 POPULATI ON=10
SASP2=. 3894 SASP3=. 2883

RHO= . 9 POPULATI ON- 15
SASP2=. 3953 SASP3=. 2973

RHO- .9 POPULATI ON- 20
SASP2- . 3982 SASP3=. 3016
RHO= .9 POPULATI ON=25
SASP2=. 3999 SASP3=. 3042

RHO= . 9 POPULATI ON=30
SASP2=. 4010 SASP3=. 3059

RHO= . 9 POPULATI ON=35
SASP2=. 4018 SASP3=. 3071

RHO= . 9 POPULATI ON=40
SASP2=. 4024 SASP3=. 3079

RHO= . 9 POPULATI ON=45
SASP2=. 4029 SASP3=. 3086

RHO= . 9 POPULATI ON=50
SASP2- . 4032 SASP3=. 3092

RHO=1. O POPULATI ON=10
SASP2=. 3487 SASP3=. 2416

RHO=1. O POPULATI ON=15
SASP2=. 3553 SASP3=. 2518

RHO=1. O POPULATI ON=20
SASP2=. 3585 SASP3=. 2567

RHO=1. O POPULATI ON=25
SASP2=. 3604 SASP3-. 2595

RHO=1. O POPULATI ON=30
SASP2=. 3617 SASP3=. 2614

SASP4=

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASP4=.

SASPA4=.

SASP4=.

SASP4=.

SASPA4=.

SASP4=.

SASP4=.

SASPA4=.

SASP4=.

SASP4=.

SASP4=.

12(3

3156

3166

3173

3179

2371

2488

2543

2575

2595

2611

2622

2631

2638

1868

2001

2064

2101

2125

SASP5= .

SASP5= .

SASP5= .

SASP5=

SASP5-

SASP5= .

SASP5= .

SASP5= .

SASP5= .

SASP5= .

SASP5= .

SASP5= .

SASP5-

SASP5= .

SASP5= .

SASP5= .

SASP5= .

SASP5= .

2902

2913

2921

. 2928

. 2038

2179

2245

2283

2308

2326

2339

2349

. 2357

1505

1670

1746

1789

1818

SASP6= .

SASP6= .

SASP6= .

SASP6= .

SASPG6= .

SASP6= .

SASPG= .

SASP6= .

SASPG6= .

SASP6= .

SASP6= .

SASP6= .

SASP6= .

SASPG6= .

SASPG6= .

SASP6= .

SASPG6-

SASPG6= .

2729

2740

2750

2757

1792

1958

2034

2078

2106

2126

2141

2152

2161

1230

1429

1517

. 1568

1601
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ANNEX C.3 (continued)

RHO=1. O POPULATI ON=35
SASP2=. 3626 SASP3=. 2628

RHO=1. O POPULATI ON=40
SASP2- . 3632 SASP3=. 2638

RHO=1. O POPULATI ON=45
SASP2=. 3638 SASP3=. 2646

RHO=1. O POPULATI ON=50
, SASP2=. 3642 SASP3=. 2652

SASP4=.

SASP4=.

SASPA4=.

SASP4=.

12 7

2142

2154

2164

2172

SASP5=. 1838
SASP5=. 1853
SASP5=. 1864
SASP5=. 1874

SASP6=. 1624
SASP6=. 1641
SASP6=. 1654
SASP6=. 1664
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ANNEX D. Validity of Snal 1- Popul ati on Model

The | arge-popul ati on nodel s presented in chapter |V are
simlar to widely accepted nodels found in the literature.
However, the small-popul ation nodel in chapter V is not found
in the literature. Its validity nust be verified.

The snal | - popul ati on nodel determ nes the expected |ine
xl ength (given that the line is not enpty) with a rather rounda-
bout nmethod. The nethod is necessary because the list of arrival
sequences that nust be considered qui ckly becones cunbersone when
the population is larger than a handful. To verify the validity
of the nethod, the witer derived a nore direct nethod. How~
ever, this nethod can be applied only to very small popul ati ons
because its sequence |lists are even nore cunbersone than those
of the chapter V nethod. This nore direct nethod cal cul ates the
probability of each possible conbinati on of nunbers of arrivals.
For each conbination, the resulting line length is cal cul ated and
then nultiplied by the probability of the conbination occurring.
The sum of these products equals the expected line |length. As
an exanple of this procedure, the expected line length at the
begi nning of the third interval when the popul ation size is 2
is determined by first calculating the probability of 0 arrivals
in the first and second intervals, the probability of 0 arrivals
in the first interval and 1 arrival in the second, the proba-
bility of O in the first and 2 in the second, the probability of
1inthe first and O in the second, the probability of 1 in the
first and 1 in the second, and the probability of 2 in the first

and 0 in the second. Each of these probabilities is nmultiplied

12Ss
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by its corresponding line length at the beginning of the third
interval. (For exanple, if O arrivals occur in the first inter-
val and 2 arrivals occur in the second interval, the line length
at the beginning of the third interval would be 2 persons.

Notice that, as in all other numerical nodels presented in

this paper, the assunption is nade that arrivals nust wait at

l east until the beginning of the next interval to be served.)
The sum of the products is the expected line |length at the begin-
ni ngofthethird i nterval .

Thi s nodel and the nopbdel presented in chapter V were run
for a population size of 4. The results were identical. Al so,
as di scussed at the end of chapter V, steady-state is attained
at the beginning of the 5th interval, which is interval N+1

The chapter V nodel was al so verified by substituting the
Poi sson di stri bution for the binom al distribution. The results
of this nodified nodel are identical to the |arge-popul ation

nodel pr esent edi nchapter| V.
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