
ABSTRACT

JOHN F. JOSEPH.  Application of Queuing Theory to Standpost
Design.  (With the Assistance of Dr. DONALD T. LAURIA)

Queuing theory was used to show that lengthy waiting lines

can develop at standposts if World Health Organization guidelines

are used for design.  Line lengths were predicted as a function

of population size, customer arrival rate, and other factors.
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Chapte r I

INTRODUCTION

A. Pu rpose

Hundreds of thousands of people live in the slums of Teguci¬

galpa, Honduras.  Many of them have migrated from rural areas in

the hope of finding a better life in the city, yet most struggle

to obtain even the basic necessities.  One such necessity is

water.  House connections to the public water supply are rare in

the slums of Tegucigalpa.  Residents must often travel to a

standpost, and upon arriving there, they may have to wait in line

for hours before filling their buckets.

The time these Tegucigal pans spend waiting in line for water

is of concern. A mother waiting in line might otherwise care for

her children or sell more tortillas so that her family could have

more adequate meals. A child waiting in line might otherwise be

in school. Time is precious for all, especially those struggling

tosurvive.

In Ukunda, Kenya, a rural community, not only do the water

consumers have to wait in line, but the water vendors do as well

in order to fill containers prior to selling them door-to-door.

If these vendors could spend less time waiting in line, they

might be able to make better livings for themselves, serve more

people, and possibly pass on the savings to the consumers.

The problem of poor people having to wait in line for water

is common not only in Tegucigalpa and Ukunda but in many Third

World countries.  Wherever significant numbers of people are

without house connections to a water system, there is a poss-
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ibility that they will have to spend valuable time waiting in

line.

The purpose of this paper is twofold:

1. Develop a fuller understanding of how waiting lines
develop at public standposts.

2. Apply queuing theory to determine the standpost dis¬
charge capacity (i.e., the flowrate when the faucets
are fully open) required to serve a given population
size, or to determine the population size which can be
served by a standpost of a given discharge capacity.

The problem of long waiting lines is caused by many factors,

many of which are nontechnical (e.g., lack of funding for capital

improvements). However, a technical understanding of how waiting

lines develop and the design requirements for eliminating lengthy

waiting lines are necessary steps towards solving the problem.

B.  The Role of Queuing Theory

The World Health Organization has published guidelines for

standpost design in  P u b1i c Standpost Water Suppli es ^ A Design

Manual ^ Technical Paper Series 14.  Annex A is an excerpt from
this manual.  Some items of interest pertaining to these WHO

guidelines are the following:

1.  The guidelines are based on the assumption that during

'peak hours' the number of customers which can be served

per unit time should be equal to the expected number of

arrivalsperunittime.

2. The number of 'peak hours' may vary from 4 to 12,

according to section 3.3 of the excerpt.  Section 3.4

states that there is a certain "water collection pattern
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during peak hours".  'Peak hours' in the excerpt repre¬

sents the time period over which the arrivals at the

standpost are relatively frequent.  The arrivals during

some hours within this time period are more frequent than

the arrivals during other hours within this time period.

Therefore, the 'peak demand' in the excerpt is actually

an average demand over a period of several hours during

which a time-varying demand may occur.

In regard to item #1, queuing theory can show that if the

discharge capacity is such that the number of customers that can

be served per unit time is equal to the expected number of arri¬

vals per unit time, then, in situations where the number of users

is sufficiently large, the length of the waiting line will tend

to grow quite long as time progresses.  Queuing theory suggests

that discharge capacities should generally be higher than those

indicated in the guidelines, if long waiting lines are to be

avoided.

In regard to item #2, queuing theory can show that if demand

follows a time-varying pattern, then the average length of the

line will be longer than if demand were constant.  The average

length of the line increases with the extent to which demand var¬

ies with time.  The degree of variation during 'peak hours'

should be considered for design purposes.

Regardless of whether the guidelines in Annex A are satis¬

factory for consumers and vendors with small containers to fill,

intuition suggests that standposts for water vendors who have

carts or trucks should be designed for different discharge capa-
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cities.  A truck or a cart may take much longer to fill than a

personal container carried by hand.  A waiting line of 3 persons

may not be a cause for concern, but a waiting line of 3 vendors

with trucks or carts would probably be of great concern to other

users.  Queuing theory can be applied to help determine required

discharge capacities for standposts serving such vendors.

Finally, queuing theory is useful in developing an under¬

standing of how waiting lines develop.  Such understanding is

helpful for design purposes.
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Chapter 11

LITERATURE REVIEW

Sule and Oni (1988) have applied queuing theory to standpost

design, but make the following three assumptions:

1) The expected number of arrivals at the standpost per unit
time is constant throughout the day.

2) The time required to serve customers is exponentially
distributed among the customers.

3) The population is large enough to be considered infinite.

In regard to the first two assumptions, the arrival rate

will in many cases vary throughout the day (Feachem, et al, 1972)

and the time required to serve customers is generally not expo¬

nentially distributed.  Queuing models which allow for a time-

varying arrival rate have been presented by Koopman (1972) in his
analysis of airplane queues at airports and by Stevenson (1971)

in his study of emergencies requiring ambulances.  These models

use a step function to approximate the time-varying behavior, and

also do not require that service times be exponentially distri¬

buted.  (The models presented in Chapter IV generally follow the

pattern of these models.)  Yet, as in the work by Sule and Oni,
the population is assumed to be infinite.

The assumption of an infinite population is often used in

the literature because it allows for simplicity and flexibility.

The literature does not clearly state how large a population must

be if this assumption is to provide accurate results.  It is

suspected that in some cases the population served by a standpost

may be too small to be considered infinite, and that a small-
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population model is necessary.   WHO guidelines suggest that the

population served by a single-faucet standpost be kept between 25

and 125 persons.  A population of 25 is far less than any of the

population sizes assumed to be infinite in the literature.

Unfortuneately, the amount of queuing literature for popula¬

tions which are too small to be considered infinite is scanty.

Peck and Hazelwood (1958) present equations and tables for the

expected queue length without assuming the population is infi¬

nite, but some other rather restrictive assumptions are employed.

Also, the solutions apply only when the queue length has reached

equilibrium, and no indication is given of the time required to

reachequilibrium.

In summary, the literature is helpful for populations which

can be considered infinite, but it neither states how large in

practical terms the population must be to be considered infinite

nor what to do when it cannot be considered infinite.
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Chapter III

WHO DESIGN GUIDELINES AND QUEUING THEORY SERVICE TIME

Based on the WHO guidelines in Annex A, the required dis¬

charge capacity per standpost, Q rr^ (XX  ' in units of volume per hour,

is given by the following equation

' max
N X C^/24 X P X 1/(1 - w) X 1/f (3.1)

where N = design population.  The guidelines
recommend limiting N to 100 to 250
people per standpost, not exceeding
500 people per standpost in any case.
Also, the number of users per faucet
should be in the range of 25 to 125.

C, = average per capita daily demand

P = peak factor.  P is supposed to account
for the standpost being used more inten¬
sively during some hours than others.
The guidelines state that P is normally
in the range of 2 to 4, and that the
number of peak hours per day is typically
between 4 and 12.  The guidelines state
that P can be approximated as 24/t, in
which t is the number of peak hours.

w = waste factor, or the fraction of water
discharged at the standpost that is not
carried away by customers.  This portion
includes water spilt as containers are
being filled and also water used directly
from the tap for purposes such as washing
clothes.  According to the guidelines, w
is in the range of 0.1 to 0.4.

f = efficiency factor.  This factor is
supposed to account for the tap not
flowing fully while it is being opened
and closed.  The guidelines state that
an ordinary screw tap has an efficiency
factor of 0.8 to 0.9, while a rapid
closing ball valve has an efficiency
factor of nearly 1.0.

The efficiency factor f and the waste factor w require

careful consideration.  The efficiency factor in equation 3.1 is

7

NEATPAGEINFO:id=1DE59FDB-AF32-4222-8173-B4AD34B0E022



necessary because of the time required to open and close the tap.

This opening and closing leaves less time available for the

standpost to discharge at its full capacity.  The discharge

capacity must therefore be increased by a factor of 1/f to com¬

pensate for the lost time.  The inclusion of the efficiency

factor in equation 3.1 would theoretically account for the clos¬

ing and opening time only if this time were proportional to the

time required to fill the container, which is not the case.  The

opening and closing time depends on the valve type and remains

constant regardless of the time required to fill a container.

However, throughout this paper, the efficiency factor is assumed

to account for the valve opening and closing time.

The waste factor w includes all water which is discharged

from the standpost but not hauled away in containers.  The factor

thus not only includes water spilt while containers are being

filled, but also water used directly from the tap for purposes

such as washing clothes and water wasted due to the tap being

left open or leaking when the standpost is not in use.  For the

examples worked in this paper, it is assumed that taps are kept

closed when the standpost is not in use and that the standpost

can be used only for filling containers.  Thus w is at the lower

endofitsrange,about0.1.

A basic parameter of queuing theory is tau (i;) , the time

required to serve a single customer.  This service time is given

by

T =  V X (c / Q^J   X 1/(1 - w) X 1/f     .(3.2
where V = volume of water customers obtain

8

NEATPAGEINFO:id=A2C237A8-63D1-48E5-A210-E2EEA83F493A



pervisittothestandpost

c =   number of taps at the standpost

Notice that w in equation 3.2 includes only water wasted

while containers are being filled.  It does not include other

water wasted (e.g., water being wasted by a tap left open when

not in use) because such wasted water would not contribute to the

s e r V i c e t i m e .

Neither equation 3.2 nor the WHO guidelines account for the

time required to position the container under the tap and remove

it when full.  This time is assumed to be negligible throughout

thispaper.
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Chapter IV

LARGE-POPULATION MODELS

A key assumption for the models presented in this chapter is

that the population served by the standpost is large enough to be

considered infinite.  This assumption makes modeling relatively

easy and flexible.  However, if the population is not sufficient¬

ly large, the assumption will produce erroneous results.  There¬

fore, a small-population model is presented in the following

chapter.  Its results will be compared with those of the large-

population model to determine how large a population must be to

beconsidered infinite.

A.  Basic Large-Population Model

The basic large-population model employs the following

assumptions:

1. A standpost begins service with no one waiting in line
when i t opens.

2. The standpost has only one tap.

3. The time required to serve a customer, tau (tr) , is the
same for all customers.  Units for tau are minutes or
hours.

4. The expected (i.e., average) rate at which customers
arrive, lambda (A), does not ^ary   with time.  Units for
lambda are persons/minute or persons/hour.

Model derivation consists of the following three steps:

1. Determining the probability density function (PDF) for
the number of arrivals at the standpost.

2. Using the PDF determined in step 1 to derive the
PDFofthenumberofpeopleinline.

10
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3.  Using the PDF determined in step 2 to determine expect¬
ed line lengths and waiting times.

To illustrate these steps and determine resulting line

lengths when the WHO guidelines are used for design, assume the

standpost has an operating period from 6:00 a.m. to 6:00 p.m.,

which roughly corresponds to daylight hours.  The standpost has a

single tap and serves a population of 120, with an average per

capita demand of 12 gallons/day.  The waste factor w   is 0.11,

and the efficiency factor f is 0.9.  The expected arrival rate

of customers does not vary between 6:00 a.m. and 6:00 p.m., so

the number of peak hours is 12, resulting in a peak factor of

24/12 = 2.  Based on WHO guidelines (equation 3.1), the required

discharge capacity of the standpost is

Q^<,^ = 120 X (12/24) X 2 x (1/[1 - 0.11]) x (1/0.9)

=150gallons/hour

=2.5gallons/minute  (gpm)

Assume that all containers are 6 gallons, and that each person

who visits the standpost carries only one container per visit, so

that each member of the population takes an average of two trips

to the standpost.  The expected arrival rate, X , is constant

throughout the 12-hour period and is (120 x 2)/12 = 20 persons/hr

The service time,IT, is given by equation 3.2 to be

'^ = 6 X (1/2.5) X (1/[1 - 0.11]) X (1/0.9)
=3.0minutes

The service time TT of 3 minutes is equivalent to a service rate

11
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capacity, mu i^i) ,   of 20 persons per hour; ^.e.,M=     '^-/t   with t:
in hours.  The expected arrival rate A and the service rate
capacity/^ are therefore equal .

The above 3-step procedure can now be applied as follows.

1.  Probability Density Function of the Number of Arrivals

Assuming that the potential number of standpost users during

a time interval of duration t is large enough to be considered

infinite, the Poisson equation can be employed to express the

probability of the number of arrivals during t.  Letting Pj^(t) be
the probability that k arrivals occur during time interval t and

letting X be the expected number of arrivals per unit time, the
P 0 i s s 0 n e q u a t i 0 n i s

K -At
Pjt)   =   (At) e   /k! (4.1)

For example, if the expected arrival rate of customers {\)   is

20 per hour, then the probability that exactly 18 arrivals occur
inanintervaltofonehouris

p (1.0 hr) = (20/hr x 1.0 hr) e    /IB!
=0.084

or about 1 in 12.  In other words, if the standpost were observed

for 1000 1-hour time periods selected at random, it would be

expected that 18 arrivals would occur in 84 of them.

Figure 4-1 shows how the probability of arrivals during a 1

hour period varies with k for expected arrival rates of

10 persons/hour, 20 persons/hour, and 30 persons/hour.

Continuous curves are shown for exposition.  However, the

12
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FIGURE 4-1 Probability of k arrivals in 1 hour vs. k
for expected arrival rates of 10 persons/hr,
20 persons/hr, and 30 persons/hr.
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probability function is actually discrete.

2. Probability Density Function of the Number of
People at the Standpost

The key to converting the PDF of arrivals into the PDF of

customers at the standpost is to select a period of time t in the

Poisson equation equal to that required to serve a single cus¬

tomer.  Assume that all customers begin to be served at the start

of a service period and finish being served at the end of it.

Since the PDF of the number at the standpost is known at the

beginning of the first interval (i.e., the probability that no

one is initially at the standpost is 1, and the probability that

1 or more customers are at the standpost initially is 0 under the

assumptions stated at the outset), the PDF of customers in the

line at the beginning of the second and later intervals can be

determi ned.

For the scenario presented on p.11, this procedure for con¬

verting the PDF of arrivals to the PDF of customers at the stand-

post is as follows.  First, the Poisson equation is applied to

determine the probability density function of the number of

arrivals between 6:00 a.m and 6:03 a.m. (i.e., during the first

interval) with t in the equation replaced by the service timeT,

which in this case is 3 minutes (0.05 hour).

pjr) = (X X r) e' 7k!
The   probability   that   no   one   arrives   during   the   first   interval   is

p   (0.05   hr)   =   (20/hr   x   0.05   hr)   e^^^^'""^ /Q\
" -   0.368

The   probabilities   for   other  arrivals   are   as   follows.

14

NEATPAGEINFO:id=2F5D3627-86C4-49FC-B908-EFE185B6512F



p,(0.05 hr) = 0.368
Pjio.OB hr) =0.184
p (0.05 hr) = 0.061
p^(0.05hr) = 0.015
Pg(0.05 hr) = 0.003
p, (0.05 hr) - 0.001

The probabaility of 7 or more arrivals during the 0.05 hour
i nterval is 0.000.

With this PDF of arrivals in the first interval, the PDF of

the number at the standpost at 6:03 a.m. can be determined.  For

example, the probability that 0 people are at the standpost at
6:03 a.m., the beginning of the second interval is as follows:

joint probability
that no one is in
line at 6:00 a.m.
and no arrivals
occur between 6:00
and 6:03 a.m.

joint probabi1i ty
that 1 person is
in line at 6:00
a.m. and no
arrivals occur
between 6:00 and
6:03 a.m.

The above two terms describe the only two possible ways for no
one to be at the standpost at 6:03.  If no one is at the stand-
post at 6:00 and no one arrives between 6:00 and 6:03, then no

one will be at the standpost at 6:03.  Also, if 1 person is at
the standpost at 6:00 and no one arrives between 6:00 and 6:03,

then no one will be at the standpost at 6:03 because the 1 person
will have been served.  The above two terms describe mutually

exclusive events.  The terms can therefore be added.  Letting
v-(n) be the probability that j people are at the standpost at

the beginning of the nth service period, the above situation can
be expressed as follows:

vj2) v^(l) X p (0.05 hr) + V (1) x p (0.05 hr)

15
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Since it has been assumed that no one is at the standpost when it

opens (6:00 a.m.)> v^(l) = 1.0 and v^(l) = 0.0.  The above

equation can thus bewrittenasfollows:

Vo(2) 1 .0 X 0.368  +  0.0x0.36! 0.368

Similarly, the probability that 1 person is at the standpost

at 6:03 is as fol1ows:

joint probability that no one is
in line at 6:00 and 1 arrival

occurs during the first service
peri od

joint probability that 1 person is
in line at 6:00 and 1 arrival

occurs during the first service
period

joint probability that 2 persons
are in line at 6:00 and no

arrivals occur during the first
service period

The first term results in 1 person at the standpost at 6:03 only

if the arriving person must wait until the beginning of the

second interval to be served, which was assumed on p.14.  The

second and third terms result in 1 person at the standpost at

6:03 because only 1 person present at 6:00 is served from 6:00 to

6:03, and anyone arriving during the first interval must wait

until the second interval to be served.  These three mutually

exclusive events can be expressed symbolically as follows:

16
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v,(2) v„(l) X p,(0.05 hr)  +  v.(l) x p (0.05 hr)
v^(l) X p„(0.05 hr)
1.0 X 0.368  + 0.0 X 0.368

0.3 68

+  0.0 X 0.368

Proceeding in a similar fashion,

y^{2) Vo(l)   X   p,(0.05   hr)     +     v,(l)   X   p^(0.05   hr)
V,(1)   X   p,(0.05   hr)      + ͣ    ͣ ͣ      ""        ͣv^(l)   X   p^(0.05   hr)

1.0   X   0.184

0.0   X   0.368

0.184

+     0.0   X   0.184

+     0.0   X   0.368

The other values of the PDF for customers at the standpost at

6:03areasfollows:

V3(2) =     0.061

v^(2) =     0.015

vs(2) =     0.003

v^(2) =     0.001

V.   (2) =     0.000

The V;(2) values can then be used to determine v:(3) values,

i.e., the PDF at 6:06.  For example, Vj(3), the probability that

one is at the standpost at the beginning of the third interval,

is

V, (3) = v„(2) X p,(0.05 hr) + v,(2) x p,(0.05 hr) +
v^(2) X p^(0.05 hr)

=   0.368   X   0.368   +   0.368   x   0.368   +   0.184   x   0.368

=0.339

The Vj(3) values can then be used to determine Vj(4) values,
and so on, until the PDF of the number in line is known for the

beginningofallserviceperiods.

The general form of the PDF for customers at the standpost

17
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at the beginning of any interval is as follows:

probability that j
persons are in
1 i n e a t t h e

beginning of
periodn+1

joint probability that no one is
in line at the beginning of period
n and j persons arrive during
p e r 1 0 d n

joint probability that 1 person is
in line at the beginning of period
n and j persons arrive during
period n

joint probability that 2 persons are
in line at the beginning of period
n and j - 1 persons arrive during
periodn

joint probability that 3 persons are
in line at the beginning of period
n and j - 2 persons arrive during
periodn

joint probability that j + 1 persons
are in line at the beginning of
period n and no persons arrive during
period n

In mathematical symbols:

Vj (n + 1) = ^ (v; (n) X P^(t)) (4.2)

wherek=jifi=0,andl<=j-i +1  ifi>0.

Equation 4.2 indicates that if i > 0, then one customer is served

during the nth interval.  The number of arrivals, k, is therefore

18
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1 more than the difference in the number at the standpost at the

beginning of interval n and the number at the beginning of inter¬

val n + 1.  However, if i = 0, then no departure occurs during

the nth interval, and k = j - i = j.  Another observation con¬

cerning equation 4.2 is that the number of right hand side terms

i s a 1 w a y s j + 2 .

One of the useful purposes of equation 4.2 is determining

the probability that no one is at the standpost at any time.  A

computer program using equation 4.2 was written to determine

this.  The resulting curve for the illustrative example is shown

in Figure 4-2.  Although v^(n) decreases with time, it remains

positive; there is always a possibility that no one is at the

standpost.

3.  Line Lengths and Waiting Times

The PDF of the line length (which includes the person being

served) at the beginning of the nth interval can be used to

determine the expected (i.e., average) line length, L(n), as

fol1ows :

L(n) =^j X V;(n)
,11J

(4.3)

For the illustrative example, the expected number of people in

line at the beginning of the second interval (6:03) is

L(2) =  0 X 0.368  +  1 X 0.368  +  2 x 0.184  +
3 X 0.061  +  4 X 0.015  +  5 x 0.003  +
6 X 0.001

1.00 person
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Equation 4.3 includes the possibility that no one is in the
line (i.e., j = 0) to calculate the expected line length L(n).
However, when the line length is 0, no one is present to benefit
from the "shortness" of the line.  The expected line length
experienced by customers must exclude time when the line is

empty.  Therefore, it is of interest to know L'(n), the expected
line length given that the line is not empty (i.e., the expected
line length given that at least one person is at the standpost).
Atthebeginningofintervaln,

probability probability probability that
that j persons = that the line x j persons are in
are in line       is not empty      line given that

the line is not
empty

Referring to v-'(n) as the conditional probability that j people
are in line given that the line is not empty, the above equation
can be expressed in mathematical symbols as

V. (n)  =  (1 - v^(n)) x vj(n)

Solving for v.'(n) yields
J

v;(n) = Vj(n)/(1 - vjn)) (4.4)

For the illustrative example.

v,*(2) =  0.368/
v.'(2) =  0.291

V3'(2) =  0.097
v;(2) =  0.024
v; ( 2 ) =  0.005

1 - 0.368)  = 0.582

Note that V:'(n) is always larger than VQ(n) by the constant
multiple 1/(1 - v^(n)).  With the conditional probability of one
or more persons at the standpost at any time, it is possible to

21

NEATPAGEINFO:id=1B79B789-261D-4593-9BBB-312BA35C47D8



calculate L'(n), the expected line length given that the line is

not empty, as follows:

L'(n)  = X j X v.;(n)
allj>0       J

Combining equations 4.4 and 4.5,

(4.5)

L'(n)      =    I j   x   v(n)/(l   -   v^(n))
cl(j>0

from   which   it   follows   that

(4.6)

L'(n) L(n)/(1 - V fn)) (4.7)

At the beginning of the second service period for the illustra¬

tive example,

L ' (2)  =  1.00/(1 - 0.368)

=  1.58 pe rsons

which is substantially greater than L(2) = 1.00.

In addition to calculating the expected line length at the

beginning of any service interval, it is also possible to esti¬

mate the average amount of time persons arriving at the beginning

of the nth interval will have to wait to be served.  W(n), which

is the expected waiting time for the last person in line at the

beginning of the nth interval, is simply the product of the ex¬

pected number of service periods the person must spend at the

standpost, S(n), and the time required to serve each customer,  .

W(n) includes both the time the customer spends in the queue

before beginning to be served and the time spent being served.

W(n)   =  S(n) x -r (4.8) ,
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For a standpost with only one faucet, S(n) = L'(n). At the

beginning of the second service period for the illustrative

example,

W(n)  =  1.58 persons x 3 minutes/person
4.74 minutes

The "T = 3.00 minutes" curve in Figure 4-3 shows the in¬

crease in the expected line length L'(n) with time when the

expected arrival rate is 20 persons/hour, the service time is 3

minutes, and the discharge capacity is as determined by WHO

guidelines as shown on p. 11. For this curve the value of the

traffic intensity rho {p),   which is the ratio of the expected
arrival rate A to the service rate capacity/^., is

p=X/^   = X/[l/r)     =  20/hr / (1 / 3min) 1.00

(The computer program used to determine the data points for the

curve is shown in Annex C.l.)  Intuition might suggest that no

lengthy waiting lines would develop because the service rate

capacity is equal to the expected arrival rate, but such is not

the case.  At 6:00 p.m., L'(n), the average line length given

that at least one person is at the standpost, is 13 persons.

With a service time of 3 minutes, this length corresponds to a

waiting time of 3x13 =39 minutes.

An explanation of why L'(n) increases monotonically is as

fol1ows:

1. With T being the time since the standpost
began operating, the expected line length
L(T) is equal to the expected number of
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arrivals during T minus the expected number
ofpeopleservedduringT.

L(T) -     'AT expected number
served during T

2. The expected number served during T is equal
to the number of service intervals during T
minus the expected number of service periods
during which no one is being served.

expected number =
served during T

expected number
l/Z     -   of service periods

during which no
one is served

3. Combining equations from steps 1 and 2 and
noting from p. 12 that l/T is the service
ratecapacityy^-,

expected number

L (T) = XT - /xT   + of service periods
during which no
one is served

4.  However on p.12 it was shown that X =/A,   from
which it follows that

expected number
L(T)  =  of service periods

duringwhich no
one i s served

5. As shown in Figure 4-2, the probability that
no one is in line is always greater than 0.
The expected number of service periods during
which no one is served during T thus increas¬
es with T.  L(T) must therefore also
i n c r e a s e w i t h T.

6. Equation 4.7 expresses the relationship be¬
tween L'(T) and L(T).  Since L'(T) is always
greater than L(T), L'(T) must also increase
wi th T.

It is no coincidence that the traffic intensity /=> =   1.0
for the illustrative example.  The WHO equation 3.1 sets the

discharge capacity equal to the demand rate, with adjustments

made only for waste and for valve opening and closing.  The WHO

25

NEATPAGEINFO:id=F505D142-544A-4CFA-AA3C-0E755D4B3F4B



guidelines assume that a service rate capacity equal to the

expected arrival rate is adequate, and do not consider the

possibility of lengthy lines shown by queuing theory.

Note that for the traffic intensity Z' > 1 the expected

arrival rate is greater than the service rate capacity, and for

^ <-1 the reverse is true.  The traffic intensity therefore indi¬
cates the number of persons that are expected to arrive during

the time it takes to serve one person.  It is of interest to

know the sensitivity of L'{n) to changes in p  .  Figure 4-3

illustrates this for /i) values of 1.05, 1.00, 0.90, 0.80, and
0.70.  Note that forz? = 1.05 and with an expected arrival rate

A of 20 persons per hour, the service rate capacityyU. is 19.05

persons per hour, which is equivalent to a service period 'C

of 0.0525 hr per person, or 3.15 minutes.  Such a situation

might exist for the illustrative example if time required to

position and remove the container from under the faucet were not

negligible, but were 0.15 minutes (9 seconds).  For z? values less

than 1.0, the discharge capacity is increased to decrease the

service time '^, thereby increasing/^-.  For example, forz? =

0.80, the discharge capacity is increased to reduce the service

period to 2.4 minutes, increasing the service rate capacity A to

25 per hour.  Figure 4-3 shows that if a standpost is designed

such that service rate capacity is equal to or less than the

expected arrival rate (i.e., for P ^  1.00) then L'(n) may be

undesireably long.  When the service rate capacity significantly

exceeds the expected arrival rate (e.g.,/? = 0.80), results tend

to be satisfactory .
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of   L'(n),   is   given   by   the   following   equation   based   on   the   litera¬
ture    (Hillierand    Lieberman,    1980):

L'    =   1   +   /5/[2(l   -^)] (4.9)

This equation is applicable only when the service time does not
vary among customers, the standpost has only one faucet, the
expected arrival rate is constant, and the population is large
enough to be considered infinite.  This equation can be used to
quickly determine the maximum expected line length (given that
the line is not empty) when it is known that L'(n) is essentially
at steady-state before the standpost closes or the arrivals

cease.  Figure 4-3 shows that if/? is adequately less than 1.0,
steady-state is essentially reached very quickly, making equation
4.9 useful for such z) values.

B.  Variable Arrival Rates

Accounting for an expected arrival rate that changes over
time is quite straightforward. X is assumed to be constant
for any particular service interval but is allowed to vary from
one interval to the next.  The variation is therefore approxi¬
mated by a discrete function, which requires the application of
equation 4.1 at each step.  The model remains essentially the
same as that presented in the previous section, except that new p
values must be calculated for each service period having a

different^. This recalculation is necessary because p^^^ is a
functionofX.

To illustrate the application of queuing theory to a time-
varying expected arrival rate, X is assumed to vary as shown in

.   .      ͣ  27

NEATPAGEINFO:id=FA626E5B-7D5F-4596-8070-70CAEBDCB9F3



Figure 4-4a but is approximated as a discrete function for the

queuing model.  The shape of this arrival pattern is similar to

that for villages in Lesotho, Africa (Feachem, et al, 1978) and

is believed to be not uncommon for urban areas.  The average

value of 'X  is 20 persons/hour, and is thus equal to that of the
scenario presented in the previous section.  The standpost has

only one tap.  Population size, average per capita demand, con¬

tainer size, the waste factor, and the efficiency factor are as

in the example of the previous section.  The designer has little

data on how the water collection pattern varies throughout the

day, but knows that there will be significant usage during every

hour from 6:00 a.m. to 5:00 p.m. but no usage from 6:00 p.m. to

6:00 a.m.  He therefore estimates the number of peak hours to be

12, and uses WHO guidelines to calculate P to be 24 hr / 12 hr =

2.0 (by definition of P on p.7) and the required discharge capa¬
city to be

Q^^^ = 120 X (12/24) X 2 x (1/Cl - 0.11]) x (1/0.9)

= 2.50 gpm

The serVice time is

-^ = 6 x (1/2.50) x (1/[1 - 0.11]) X (1/0.9)
= 3 . 0 m i n u t e s

This example is thus identical to that of the previous section

except that the expected arrival rate X varies with time.

The value of A in persons per hour as a function of the

service interval is given by the following equations:
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FIGURE 4-4a. Expected arrival rate vs. time for section IV.B
illustrative example.
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X(n ) = 34 X n/40

A(n) = 46.5 X (148.8 - n)/148.8

X(n) = 34 X (n - 91.2)/108.8

A(n) = 34 X (240 - n)/40

for 0 :^ n ^ 40        (4.10)
or 6:00 a.m. to
8:00a.m.

for 40 < n < 120      (4.11)
or 8:00 a.m. to
noon

for 120 < n < 200     (4.12)
or noon to 4:00 p.m.

for 200 £ n < 240     (4. 13)
or 4:00 p.m. to
6:00p.m.

To determine, for example, the probability that the line at
the standpost is empty at the beginning of the second service
period, equation 4.2 is applied as in the constant expected arri-
ratecasetoobtain

Vg(2) = Vo (1) X Po(from 6:00 a.m. to 6:03 a.m.) +
v,(l) X p^(from 6:00 a.m. to 6:03 a.m.)

From equation 4.10, the A value for determining p^{from   6:00
a.m.to6:03a.m.)is

A (1) = 34 X 1/40 - 0.85 per hour

and , by equati on 4.1,

p^(from 6:00 a.m. to 6:03 a.m.) 0  -(0.85/hr X 0.05hr)
(0.85/hr X O.OShr)  e / 0!

=0.9 58

Given that v^(l) = 1.0 and v,(l) = 0.0,

v„(2) =   1.0 X 0.958 + 0.0 x 0.95!
0.958
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Thus, the procedure for determining probability values v-(n),

line lengths given that someone is at the standpost, and waiting

times, is exactly the same as when the expected arrival rate is

constant, except thatX(n) must be calculated for each service

period.

The resulting L'(n) values are shown by the P = 2.0 curve in

Figure 4-4b.  (The curve was calculated by the computer program in

Annex C.4,)  L'(n) reaches much greater values than shown by the

p -   1.00 curve in Figure 4-3, even though the average^ value

for the time-varying case is also 1.0.  For example, at about

4:50 p.m. L'(n) for the time-varying case is 31 persons,

corresponding to an expected waiting time W(n) of 31 x 3 = 93

minutes, which is quite long.  The L'(n) value from thez3 =

1.00 curve in Figure 4-3 at 4:50 is 12, corresponding to an

expected waiting time of 36 minutes.  The time variation in the

expected arrival rate is obviously an important consideration in

standpostdesign.

The designer may suspect that usage during the 12-hour

period from 5:00 a.m. to 6:00 p.m. varies significantly, and

although he may not know the extent of the variation, he may wish

to chose a more conservative peak factor of 2.5 to account for

the variation.   The required discharge capacity by WHO guide¬

line s w o u 1 d b e

Q^,, = 120 X (12/24) x 2.5 x (1/[1 - 0.11]) x (1/0.9)

= 18 7 gal 1 ons/day

= 3.1 gpm
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The service time would be

^ =6 X (1/3.1) x(l/Cl- 0.11]) X (1/0.9)

= 2.4 mi nutes

The computer program used to determine L'(n) for P = 2.0  was

modified to determine L'(n) for P = 2.5.  The resulting curve is

shown in Figure 4-4b.  L'(n) reaches its maximum value of 14

persons at 4:30.  The corresponding expected waiting time is 14 x

2.4 = 34 minutes, which is still rather long.

The designer may perceive that a thorough investigation of

the water collection pattern is warranted before designing the

standpost.  If he collects data to estimate the usage during

every hour between 6:00 a.m. and 6:00 p.m., he would find that

peak hourly usage occurs during the hour from 8:00 a.m. to 9:00

a.m. and the hour from 3:00 p.m. to 4:00 p.m.  He would find that

the average number of arrivals during either of these hours is

A = (34 persons/hr  +  27.75 persons/hr) / 2  =  30.9 persons/hr
'—-A at 8:00 a.m.    ^—A at 9:00 a.m.

from e-3n.  4.10 'porii eon.A-.li

The peak factor P would then be simply the ratio of this peak

hourly expected arrival rate and the average expected arrival

rate over the 24-hour period, or 30.9/10 = 3.09.  The required

discharge capacity by WHO guidelines would be 3.86 gpm.  The

service time would be 1.94 minutes.  Computer program results,

which are shown in the P = 3.09 curve in Figure 4-4b, show that

L'(n) would reach its maximum value of 6.65 persons at 4:18 p.m.

The corresponding expected waiting time is 6.65 x 1.94 = 12.9

minutes, which is a dramatic improvement over the P = 2.5 case.
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The peak factor of 2.0 provides a service rate capacity of

Jbi-   \IX-   1 person/3minutes = 20 persons/hour.  This rate is

equal to the expected arrival rate averaged over the peak period

of 12 hours.  The average value of ^     over this 12-hour period
is therefore 1.0.  The peak factor of 2.5 provides a service rate

capacity of 25 persons/hour, which is equal to the expected

arrival rate averaged over the peak period of 4 hours extending

from 6:55 a.m. to 10:55 a.m. (or from 1:05 p.m. to 5:05 p.m. for

the later of the twin peaks).  When P = 2.5, the average p

value over this 4-hour period is 1.0.  The peak factor of 3.09

provides a service rate capacity of 30.9 persons/hour and an

average ^ value of 1.0 over the 1.0-hour period extending from

8:00 a.m. to 9:00 a.m. (or from 4:00 p.m. to 5:00 p.m.).

The WHO guidelines state that the peak period is the time

during which "the standpost is used more intensively than during

the rest of the day", that it typically lasts between 4 and 12

hours, and that there is a time-varying water demand pattern

during the peak period.  Because the demand varies with time

during the peak period, the peak demand estimate will tend to

increase as the length of time selected for the peak decreases.

This is clearly shown by the difference in P factors for the

above examples.  Peak periods of 12 hours, 4 hours, and 1

hour correspond to peak factors of 2.0, 2.5, and 3.09,

respectively.  The guidelines do not indicate how to select the

length of the peak period, but indicate 4 to 12 hours to be the

range of typical lengths.  However, for the above example, using

a peak period of 4 hours or 12 hours is unacceptable.  Using a
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peak period of only 1 hour yields reasonable results (a maximum
L'(n) value of 6.65 persons) but even this line length might be
considered unacceptable if service times are not short.  For

example, if the service time is 5 minutes this length corresponds
to an expected waiting time of 6.65 x 5 -   33 minutes.

The guidelines also state that the peak factor is typically
in the range of 2 to 4.  When the designer selects 3.1 for the

conditions of this example, the maximum expected waiting time is

reasonable.  However, in some cases even a peak factor of P = 4

will not provide adequate discharge capacities.  Assume, for
example, that the arrival pattern is identical to that of Figure
4-4a except that no arrivals occur after noon.  People rely on

another source in the afternoon because the standpost is closed.
The daily demand from the standpost is thus reduced from 1440

gallons/day to 720 gallons/day.  The average hourly demand from
6:00 a.m. to noon would be 720/6 = 120 gallons/hour, and the av¬

erage hourly demand over the day would be 30 gallons/hour.  If a
peak factor of P = 120/30 = 4 is used, the resulting discharge
capacitywouldbe

Qmax = 120 x (6/24) X 4 X (1/[1 - 0.11]) x (1/0.9)
= 150 gal 1ons/day

= 2 . 5 g p m

The service time would be

-r = 6 X (1/2.5) X (1/[1 - 0.11]) x (1/0.9)
= 3 . 0 mi nutes

The discharge capacity and the service time are identical to that
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for the example resulting in the P = 2.0 curve in Figure 4-4b.
The L'(n) values would thus equal those shown by the P = 2.0

curve from 6:00 a.m. to noon.  The maximum L'(n) value is 25

persons.  The corresponding expected waiting time is 25 x 3 = 75
minutes, which is very long.

C .  M u 1 t i p 1 e F a u c e t s

Incorporating multiple faucets into the large-population

model is accomplished by recognizing that the maximum number of
departures which can occur during a service interval is no longer
1 as in the single faucet case, but is equal to the number of
faucets.  If, for example, there are two faucets, then equation
4.2mustbemodifiedas follows:

v;(n + 1) = Z (v- (n) x p JT))
1=0

(4.14)

wherek=j      if     i=Oorl
k   =   j   -   i   +   2     if     i   >  1

The derivation of this equation is analogous to that

starting on p. 15 for the single faucet case.  For example, the
mutually exclusive events which can account for one person at the

standpost at the beginning of the second service interval with

two faucets is as follows, which can be compared with its

counterpart on p. 17 for a single faucet.

V,(2) = v^(l) x p,(T)  +  V,(1) X p,(r)  +
v^(l) X p, (TT)  +  V3(l) X p^(-r)

Equation 4.2 can also be modified for three or more faucets

by taking into account that the maximum number of people served
during a service interval equals the number of faucets.
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Any even number of persons at a two-faucet standpost results

in a number of service periods equal to one-half the number of

persons.  Three or any higher odd number of persons at a

standpost with two faucets results in a number of service periods

equal to one-half the difference between that number and 1.

S(n), the expected number of service periods spent in line, is as

follows for a two-faucet standpost.

S(n) =   1 x v;(n)
+ 0.5 x 2 x v^(n)
+ 0.5x4xv^(n)

0.5 X (3
0.5 X (5

1)
1)

X vi(n)
(n)X V

(4.15)

The advantage of using S(n) over L'(n) is that it gives a better

indication of how long a person is expected to wait when there is

more than one faucet at the standpost.  The expected waiting time

is determined simply by multiplying S(n) by tr , the time required

to serve one person.  When the standpost has only one tap, S(n)

= L'(n), but when there is more than one faucet, S(n) < L'(n).

To illustrate the queuing model for a two-faucet standpost,

assume that the arrival pattern is as shown in Figure 4.4a and

that the scenario is identical to that of the previous section.

A peak period of 1 hour is used and, as shown in the previous

section, this result in a peak factor P = 3.09 and a WHO required

discharge capacity of 3.85 gpm.  The discharge capacity per

faucet is 3.86/2 = 1.93 gpm.  The service time is

-^ = 6 X ( 2 / 3 . 86 ) X (1 / [ 1 - 0 .11 ] ) X (1 /O . 9 )

= 3.9 mi nutes

The computer program which calculates S(n) and L'(n) is in Annex
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C.6.  The results are shown in Figure 4-5.

The maximum values of the expected line length (given that

at least one person is at the standpost) and the expected number

of service periods spent at the standpost are 7.2 and 3.9,

respectively.  The corresponding maximum expected waiting time is

3.9 X 3.9 -   15.2 minutes.   In the previous section the single-

faucet example with a peak factor of 3-09 resulted in a maximum

expected waiting time of 12.9 minutes, which is a bit less than

that of this two-faucet example.  One might be surprised by this

difference because the standpost discharge capacities are equal

in these two examples.  The service time at the two-faucet stand-

post is twice as great as at the single-faucet standpost because

the flowrate through each of the faucets is half as great.  Al¬

though the service time is twice as great, one would expect the

number of service periods spent at the standpost to be halved

because of the extra faucet, and that the waiting times for these

two examples would be equal.  However, when only one person is at

the standpost the availability of a second faucet does not reduce

that person's waiting time.  Similarly, when some higher odd

number of persons are in line, the number of service intervals

required to serve all of them is the same as if one additional

customer were in line.  In general, if two standposts have equal

discharge capacities, the one with the greater number of faucets

will have slightly longerwaiting times.

Figure 4-6 applies to constant expected arrival rates.  The

Figure shows S, the steady-state expected number of service

intervals spent at the standpost vs. the traffic intensity Z? (the

ratio of the expected arrival rate A  to the standpost service
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FIGURE 4-5. Expected line length (given that the line is not
empty) and expected number of service intervals
spent at the standpost vs. time for section IV.C
illustrative example.
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FIGURE 4-6. Steady-state expected number of service intervals
spent at thestandpost vs. traffic intensity for
1 , 2, and 3 taps. . ,
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rate capacity cm, where c is the number of taps and ^ is the
service rate capacity per tap) for 1, 2, and 3 faucets.  For the
single-faucet curve, values were obtained by use of equation 4.9,

with S = L'.  For the multiple-faucet curves, values were ob¬
tained by the computer programs shown in Annexes C.2 and C.3.
These computer programs do not actually calculate true steady-
state values, but calculate values for 400 service periods, which

is a long enough time for steady-state to be essentially reached

when/? = 0.9.  Values for p    close to but less than 1.0 are not
included in Figure 4-6 because of the lengthy time required to
reachnearsteady-state.

Figure 4-6 shows that at a given^ value, S decreases as the
number of faucets increases.  For example, at z? = 0.8, S = 3.00

for one faucet and S = 1.66 for three faucets.  However, as dis¬

cussed previously, for a given standpost discharge capacity the
steady-state expected waiting time W increases as the number of
faucets decreases.  Assume for example that the standpost dis¬

charge capacity is 4.00 gpm, making the service time to be 2.00
minutes when there is one faucet.  For three faucets the flow

per faucet would be 1.33 gpm, making the service time to be 6.00
minutes.  The resulting steady-state expected waiting time W at

p=   0.8 would be 3.00 x 2.00 = 6.00 minutes for one faucet, and
1.66 x 6.00 = 9.96 minutes for three faucets.

D.  Service Time Varying Among Users

The volume of containers that users fill will often vary,
causing the service time to vary among users.  This causes diffi-
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culty in applying the Poisson equation because the value of -XT

used in the equation is variable.  This difficulty can be over¬
come by selecting probability distributions which are in a form
which lend themselves to the numerical modeling of queues.  How¬

ever, such models are not presented in this paper for the follow-

in g r e a s o n s :

1. For a constant expected arrival rate, the steady-state line
length at an adequately designed standpost will be reached
fairly quickly.  Figure 4-3 shows how soon steady-state is
reached when P   (the traffic intensity, which is the ratio
of the expected arrival rate to the service rate capacity)
is adequately low.  Reaching steady-state requires more time
when p  is higher.  Although steady-state equations may not
accurately calculate line lengths at underdesigned stand-
posts (because^ is too high and the standpost may close or
arrivals may stop before steady-state is reached), they can
be used to adequately design standposts, making numerical
modeling unnecessary when the expected arrival rate is con¬
stant.

2. Koopman (1972) has shown that for time-varying expected
arrival rates, the variation in service time among users
does not seem to have a substantial impact on expected
line lengths.  Thus, when the expected arrival rate var¬
ies, the service time among users may be assumed constant
and the queuing model of the previous section may be
appli ed .

The following equation, which can be obtained from queuing
theory texts (e.g., Hillier and Liebermann, 1980), determines L',
the steady-state expected line length given that the line is not
empty.  The equation is applicable for any service time proba¬

bility distribution, but the expected arrival rate must be con¬
stant, the standpost must have only one faucet, and the popula¬

tion must be large enough to be considered infinite.

L'  == I  + (-/'4 + /^)/[2^(l -^)] (4.16)
where 7^-   standard deviation of the service time
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Equation 4.16 is applicable only if     n   (the traffic intensi¬

ty) is less than 1.  If p   is equal to or greater than 1, then

steady-state is never reached and equation 4.16 is meaningless.

Also, the equation should only be used if it is known that

steady-state is reached before arrivals cease or the standpost

closes.

Figure 4-7 shows L' (the steady-state expected line length

given that someone is at the standpost) vs. p  curves for various

service time standard deviations.  Asz? increases, the effect of

the standard deviation on L' also increases.  At/?= 0.2 (which

would correspond to, for example, an expected arrival rate of 20

persons/hour and a service rate capacity of 100 persons/hour),

the standard deviation has essentially no effect on L'. kt p  =
0.95, L' when the standard deviation equals the average service

time is nearly twice L' when the standard deviation is 0.

As an example of applying equation 4.16, assume that one-

third of the customers are children with container size of 3

gallons (about 25 pounds) corresponding to a 1.2-minute service

time T ; one-third of the customers are adults with container

size of 6 gallons (about 50 pounds) and T = 2.4 minutes; and the

other third are adults with container size of 9 gallons (about 75

pounds) and ir= 3.6 minutes.  The standard deviation of the

service time is about one minute.  The average service time 'V  is

2.4 minutes, and the service rate capacity^ is 1/2.4 = 0.42

persons/minute.  Assuming an expected arrival rate of 20

persons/hour (0.33 persons/minute), p    =  ^ Ip- =   0.33/0.42
= 0.8.  The resulting steady-state expected line length given

that at least one person is at the standpost is
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FIGURE 4-7. Steady-state expected line length (given that
the line is not empty) vs. traffic intensity
for 1 tap and various service time standard
deviations.
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L' - 1 + (0.333^x 0.98^+ 0.8^)/C2 x 0.8 x (1 - 0.8)]

= 3.33 pe rsons

If the standard deviation were 0, L' would be

L' = 1 + 0.8"/(2 x 0.8 x [1 - 0.8])

= 3.00 pe rsons

The increase in L' due to the variation is service time is thus

100% x (3.33 - 3.00)/3.33 = 11% for this example.

By multiplying equation 4.16 by T(the average service

time) and using /^ =\iM- = '^'^  , the steady-state expected waiting
time W for a single-faucet standpost and constant expected

arrival rate is as follows:

W = ^+A( crj" + r^)/(2>^[l -Xx]) (4.17)
For the above example, equation 4.17 shows that the steady-state

expected waiting time W when the service time standard deviation

cCis 0 is 7.20 minutes, and 8.00 minutes when the standard devi¬

ation is a minute. The increase in W due to the standard devia¬

tion is (8.00 - 7.20)/7.20 x 100% = 11%, which is of course the

same percent increase the standard deviation causes in L'.

Based on a telephone operator staffing study done by Sze

(1984), the percent increase in the steady-state expected waiting

time W that the service time variation causes when there are

multiple faucets is the same as the percent increase when there

is a single faucet, assuming that the average of the varying

service time equals the constant service time.  For example,

assume that z? = 0.8, ^   = 2.4 minutes, and the standpost has
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two taps.  Based on Figure 4-6 W = 2.2 x 2.4 = 5.3 minutes.

If the service time standard deviation were increased to 1.0

minute, as in the previous example, then the steady-state ex¬

pected waiting time W would be increased by 11%.  The new value

ofWwouldbel.llx5.3=5.9minutes.

Figures 4-8 and 4-9 show for the effect that the service time

standard deviation cX^ has on S (the steady-state expected number

of service periods customers spend at the standpost) for two and

three taps, respectively.  The curves for cXj-> 0 were determined
with the knowledge that S is directly proportional to W, and that

the percent increase in S due to o^is therefore the same for mul¬
tiple faucets as it is for one faucet.

Understanding why the service time variation causes W to

increase may prove useful.  While customers having short service

times are served, the service rate capacity is in effect in¬

creased, thereby decreasing the jO  value during that service time.
While customers having long service times are served, the oppo¬

site occurs.  Both long and short service times effectively

change z> temporarily.  However, the relationship between W and /?

is concave-up (i.e., as z? increases, the W vs. z? curve becomes

steeper).  Therefore, longer service times cause a greater in¬

crease in W than do the shorter service times cause a decrease

in W.  The net effect is that W is greater when the service time

varies among users than when service time is constant among

users.  As the variation is service time increases, so does W.
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FIGURE 4-8. Steady-state expected number of service intervals
spent at the standpost vs. traffic intensity for
2 taps and various service time standard
deviations.
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FIGURE 4-9. Steady-state expected number of service intervals
spent at the standpost vs. traffic intensity for
3 taps and various service
deviations.
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Chapter V

SMALL-POPULATION MODEL

The large-population models of Chapter IV are based on the

assumption that the population is large enough to be considered

infinite.  This assumption allows for model simplicity and flexi¬

bility.  Populations should therefore be assumed infinite when¬

ever they are large enough for the assumption not to cause signi¬

ficant inaccuracies.  In this chapter a small-population model

(i.e., a model that does not assume the population is infinite)

will be derived.  In Chapter VI its results will be compared with

the results of the model presented in section IV.A.  Minimum

population sizes which can be assumed to be infinite without

causing serious inaccuracies will thus be determined.  The same

four assumptions listed on page 10 for the large-population model

are also assumed for the smal1-population model so that any

difference in results may be attributed strictly to the limita-

tionofpopulationsize.

The small-population model is similar to the large-popula¬

tion model in that expected queue lengths are calculated at times

which are interger multiples of the service period, i.e., expect¬

ed line lengths are calculated at the beginning of the second

service period, the beginning of the third service period, etc.

However, the derivation of the small population model is more

complex because the number of arrivals during any particular

service period affects the PDF of the number of arrivals during

other service periods.  The reason for this is that the number of

arrivals that have occured may be a significant portion of the

population, thus influencing the probabilities of future arriv-
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als.  The model derivation consists of the following steps:

1. Determining the PDF for the number of arrivals at the
standpost during any service period.

2. Using the PDF in step 1 to develop the PDF for sequences
of arrivals over a series of consecutive service periods.
(One of the probabilities expressed by this PDF would
be, for example, the probability that 2 arrivals occur in
the first service period, 0 arrivals occur in the second
service period, and 4 arrivals occur in the third service
period.)

3. Using the PDF determined in step 2 to calculate expected
line lengths and waiting times.

These steps are discussed below.  Assume that a single-

faucet standpost serves a population of 20 customers.  All of

the customers arrive at the standpost between 6:00 a.m. and 7:00

a.m.; employment away from home, school, etc., make other times

inconvenient.  The size of containers is assumed to be 6 gallons

and the discharge capacity is 2.5 gpm.   The waste factor w is

0.11 and the efficiency factor f is 0.9.  The resulting service

time TT is, by equation 3.2,

r =   6 K f ] /2.5 ) X (1/[1 - 0.11]) x (1/0.9)
=  3.0 minutes

The scenario is therefore identical to that of section IV.A

except that the population is limited to 20 and arrivals occur

only between 6:00 a.m. and 7:00 a.m.

1. Probability Density Function of the Number of Arrivals
DuringaServicePeriod

The time period during which all customers arrive is defined

as T, which in this example is 1 hour (6:00 a.m. to 7:00 a.m.).
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Because the expected arrival rate is assumed not to vary with

time, each member is just as likely to arrive between 6:00 a.m.

and 6:03 a.m. as between, say, 6:30 a.m. and 6:33 a.m.  The

probability that a particular customer (i.e., an arbitrarily

chosen customer out of the population of 20) arrives during some

time period of length Twithin T is simply t^/T.  If T is the 1-

hour period from 6:00 a.m. to 7:00 a.m. and ^  is 3 minutes

(0.05hr), then this probability is 0.05hr/1.0hr = 0.05. The

probability that two particular customers arrive during a time

period of length 1Z  is [XIT) x ('C7 T).  The customers act indepen¬

dently of each other and their probabilities of arriving during a

period of length Tare therefore multiplied to determine the joint

probability that both arrive during the period of length X .      In

general, the probability that k particular customers arrive dur-

ing a time period of length IT" is (T/T) .

Similarly, if the population is N, the probability that

N - k particular customers arrive outside of a time period of
H -K

length X but still within time period T is ([T -TJ/T)

The probability that k particular customers arrive during a

time period of length "X.   and N - k particular customers arrive

0 u t s i d e 0 f IT (i . e . , d u r i n g T - 'C ) i s

(r/T)*" X ([T --r]/T)'^"*'

The probability that any k customers arrive during a period

of length '"J' and ^r\)i   N - k customers arrive during T -fis an

integer multiple of the above product.  The integer is the number

of possible sets of size k that zi.x\   be selected from population
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N, which is the permutation

N!/(k![N - k]! )

Therefore,  defining  r ^^^ (T)  as the  probability  that  k
customers arrive during a period of lengths;,

r^ir)   = (N!/(k![N - k]!))(Tr/T)'^([T -'i:]/T)'^~''   (5.1)
Equation 5.1 is a form of the binomial distribution.  For exam¬
ple, the probability that 2 customers arrive between 6:00 a.m.
and6:03a.m. is

r^(0.05hr) = (20 !/2 ! 18 ! ) (0 . 05hr/1.Ohr)^(0.95hr/1.Ohr)^°'
=0.189

Because the entire population of 20 arrives in a 1-hour period
and the expected arrival rate does not vary with time, the

expected arrival rate is 20/hr.  Table 5-1 compares the proba¬
bilities when applying the Poisson equation (equation 4.1) and
the binomial equation (equation 5.1) over a 0.05hr period when
the expected arrival rateX= 20 persons/hr. The Poisson equation
assumes the population is infinite, whereas the binomial equation
assumes a population size of N, which in this example is 20.  It
is well known that as N increases, the results of the binomial
equation approach those of the Poisson equation.  Table 5-1 shows
that when the number of arrivals k is equal to 1, which is the

expected number of arrivals per service period, rj^(0.05hr) >
p (O.OBhr).  That is, the probability of 1 arrival during a time
period of length 'C is greater when the population is 20 than

when the population is infinite.  This same inequality is also
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true when the number of arrivals k = 2.  However, in general,

r ('t') is less than P^(T') for values of k different from the
expected number of arrivals per service period.

TABLE 4-1

Comparison of Binomial (N -   20) and Poisson (N
Equation Results for T = 0.05 hr

cx:>  )

r^(0.05hr) pjO.OShr)

0 0.3 58 0.368
1 0.377 0.368
2 0,189 0.184
3 0.060 0.061
4 0.013 0.015
5 0.002 0.003
6 0.000 0.001
7 0.000 0.000

20 0.000 0.000

2.  Probability Density Function for Sequences of Arrivals
During a Series of Consecutive Service Periods

With known PDF of arrivals during the first service period

and given that no one is in line at 6:00 a.m.,  equation 4.2 can

be used to determine the PDF for the number in line at the be¬

ginning of the second service period.  For this purpose, the

r (T) values in Table 5-1 are used in place of p^(t) because the

population is 20 instead of infinite.  The PDF can then be used

to calculate the expected line length at the beginning of the

second service period.

Calculating the PDF and expected line length at the begin¬

ning of the third service period is more difficult due to the

fact that arrival probabilities during the second service period

depend on those during the first.  For example, if two arrivals
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occur during the first period then the probability of three ar¬

rivals in the second period is different than if only one arriv¬

al had occured during the first period.  It is therefore neces¬

sary to determine the probability of sequences of arrivals.

To determine the probabilities of sequences of arrivals, let

the variables k, and k^   represent the number of arrivals in the

first and second periods, respectively. The probability of kj.

arrivals during the second period given that k, arrivals have

already occured in the first period can be determined by equation

5.1, but with the population reduced to N - kj and T reduced to

T -T.  Thi s pr obabi 1 i ty i s

([N-k,]!/(k![N - k, - kj!))(r/[T -'U]f^([T -r-r]/[T -V}{'^'~'^'

In the above expression, the probability of k2 arrivals in

the second interval is conditional on the probability of k,arriv¬

als in the first interval.  The product of the two probabilities

is therefore equal to the joint probability that k, arrivals

occur in the first interval and k^ arrivals occur in the second.

Multiplying the two probabilities yields

\^^2., ,N -k,-k.

r , (T) = [N!/(k,!ki (N - k, - k)!)](r/T)' ^((T-2r)/Tj  ' ^ (5.2)
') it-

Similarly, the joint probability of k, arrivals in the first

period, k^^ arrivals during the second period, and k^ arrivals

in the third period is

(N!/(k,!kiki[N - k, - k,- k,]! 7T) ' - t[T - 3r]/T) (5.3)
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Probabilities for sequences of arrivals over four or more service
periods can similarly bedetermined.

3.  Expected Line Lengths and Waiting Times

Once the probabilities of sequences of arrivals are deter¬
mined, the PDF of the number in line can be determined.  For

example, to determine the probability that one person is in line
at the beginning of the third service period, the probabilities
of all possible arrival sequences causing one person to be at
the standpost must be summed; that is

V, (3)
probability of no
arrivals in the first
service period and 1
arrival in the second
period

probability of 1
arrival in the first
period and 1 arrival
in the second period

p robabi11ty of 2
arrivals in the first
period and no arrivals
in the second period

The terms on the right would then be calculated by use of equa¬

tion 4.2.  The process would be repeated to determine Vo(3),
V,(3), V3(3), etc. until the entire PDF of the number in line at
the beginning of the third interval is known.  This PDF can then
be used to determine L'(n) by applying equation 4.6.

Unfortunately, this process for determining L'(n) is quite
cumbersome for populations greater than about ten and for service
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periods later than the fourth or fifth; development of the com¬
puter program is excessively laborious.  This difficulty is due
to the very large number of possible arrival sequences.  However,
as discussed below, it is possible to determine the expected

line length if v^Cn) is known for each n.  The necessity of cal¬
culating all v-(n) values other than VqIh) is thus eliminated.
The multitude of arrival sequences that must be considered is

g reatly reduced .

The derivation of the procedure for calculating L'(n) values
based on VQ(n) values begins with the following equation:

L(n + 1) = L(n) +  expected number of arrivals
during period n

expected number of customers
served during period n

(5.4)

The expected number of arrivals during a service period is

p,   the traffic intensity, which for the smal1-population model
is the ratio of the population size to the number of service

intervals during which the standpost is open.  Thus,

L(n + 1) = L(n) + /? - expected number of customers
servedduringperiodn

(5,5)

The number of customers served during a service interval
must be either 0 or 1 for a single-faucet standpost.  Therefore,

p robabi1i ty
that no
customers
are served
during
period n

probabi1i ty
that 1
customer
is served
during
period n

and
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probability
that 1

cu stomer

i s served

during
period n

probability
that no

customers

are served

d u r i n g
period n

(5.6)

AT so.

expected
number of

custome rs

served

during
period n

probability
that no

cu stome rs

are   served

during
peri od n

probabi1i ty
that 1

customer

is served

during
period n

p robabi1i ty
that 1

cu stomer

is served

during
period n

(5.7)

Combining equations 5.6 and 5.7 yields

expected number
of customers

served during
period n

probability
that no

customers

are served

during
peri od n

(5.8)

Equations 5.5 and 5.8 yield

L(n + 1) = L(n) + ^  - (1 - probability that no
customers are served

duringperiodn)

(5.9)

The probability that no one is served during period n is equal to

the probability that no one is at the standpost at the beginning of

period n.  So, equation 5.9 can be rewritten as
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L(n + 1) = L(n) + ^ - (1 - v^(n))
= L(n) ^ p   + v^(n) - 1 (5.10)

To illustrate equation 5.10, L(2) is calculated for the

scenario presented in this chapter.  Substituting n = 1 in

equations.10,

L(2) = L(l) +^ + v^(l) - 1
No one is waiting at the standpost when it opens at 6:00 a.m.

Therefore, L(l) = 0 and v^ (1) = 1.  Also, /? = 1.  The above
equation thus reduces to

L(2) = 0 + 1 + 1 - 1 = 1

Hence, the expected number in line at the beginning of the second
period(i.e,at6:03a.m.)isl.

To calculate the expected number of customers at the

beginningofthethirdinterval,

L(3) = L(2) ^ p   + v^(2) - 1

As shown before, L(2) -   1.  Vq(2), the probability that no
customers are in line at the beginning of the second period,

is, by equation 4.2, equal to the probability that no customers

arrive during the first period.  This latter probability is given
by equation 5.1 and has been calculated in Table 4.1 to be 0.358.
Thus,

L(3) = 1 + 1 + 0.358 - 1

=1.358

Similarly, with L(3) known, L(4) can be determined after
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calculating Vg(3).  The line is empty at the beginning of the

third period if no customers arrive in the first and second

periods or if 1 customer arrives in the first interval and no

customers arrive in the second period.  The following diagram

illustrates this.  Lines interconnect numbers to indicate arrival

sequences which cause no one to be at the standpost during the

third service interval.  For example, a line connects 1 in the

first column with 0 in the second column because 1 arrival in the

first period and 0 arrivals in the second period causes no one to

be at the standpost in the third period.  No line connects 2 in

the first column with 2 in the second column, for example,

because such an arrival sequence would cause someone to be at the

standpost during the third interval.

Sequences of Arrivals for Which No one is at the
Standpost at the Beginning of the Third Period

Number of

Arrivals in

1st Period

Number of

Arrivals in

2nd Period

20 20

The probability that no customers are in the queue at the

beg inning of the third period is thus
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V (3) =
probability that no
customers arrive in the
1st and 2nd periods

probability that 1
customer arrives in
the 1st period and
no customers arrive
in the 2nd period

(5.11)

Equation 5.11 is solved by application of equation 5.2 to each of
the right hand side terms. The resulting L(4) is then calculated
by equation 5.10.

Equation 5.10 can be applied in the above manner to each
successive period.  L(n + 1) can be determined once L(n) is
known.  However, calculating v^(n) becomes increasingly compli¬
cated as n increases.  This is due to the increase in the number

of possible arrival sequences resulting in an empty line.  For
example, at the beginning of the fourth period, no customers
will be present if any of the arrival sequences shown in the
following diagram occur.  The number of possible sequences is 5,
which is a 150% increase over the number of possible sequences
causing an empty line at the beginning of the third period.

Sequences of Numbers of Arrivals for Which the Queue
Is Empty at the Beginning of the Fourth Period

Number of
Arrivals in
1st Period

Number of
Arrivals in
2nd Period

Number of
Arrivals in
3rd Period

20 20 20
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The computer program in Annex C.8 calculates v^(2), v^(3),

V (4), v^(5) and v^(6) for various values of p    and N.  The
program does not calculate v^(n) for n > 6 becuase the list of
possible arrival seqences for which no one is at the standpost
at the beginning of period n is very   large and complicated.

Fortunately, an interesting phenomenon occurs at the beginning of
period n = N + 1:  the expected line length reaches steady-state.

That is, L(n + 1) = L(n) for n^N + 1*.  By equation 5.10 this
implies that v (n) = 1 -/? for nsN + 1.  With calculated values

of Vo(n) for the early periods, a curve through them (on a plot
of V (n) versus n) can be extrapolated to the v^(N + 1) value of
1 - /. at the beginning of period N + 1.  Such a curve is shown
in Figure 5-1 for the scenario of this chapter where N = 20.

That is, v^(20 + 1) = 1 -^   = 1-1-0, which occurs at 7:00 a.m.
Values from the curve in Figure 5-1 were used to determine

L(n) values by equation 5.10.  The L'(n) values were then calcu¬
lated by equation 4.5 and plotted in Figure 5-2.  L'(n) reaches
a maximum value of 2.8 at the beginning of period n = 21, or

7:00 a.m.  The expected waiting time at 7:00 a.m. is W(21) =

2.8 x 3 minutes = 8.4 minutes, which is fairly short.  However,

if the service time were, for example, 20 minutes with vendors

hauling water by the cart, then W(21) = 2.8 x 20 minutes = 56

minutes, which is quite lengthy.  In this case the 21st interval

would begin 20 x 20 = 400 minutes = 6.7 hours after 6:00 a.m.,

oratl2:40p.m.

* Recall that N is the total size of the population to be served.
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FIGURE 5-1 Probability that no one is in line at the
beginning of interval n vs. n and time for
chapter V illustrative example.
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FIGURE 5-2. Expected line length (given that the line i
not empty) vs. n and time for chapter V
illustrative example.
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Chapter VI

COMPARISON OF LARGE- AND SMALL-POPULATION MODELS

A.  Constant Arrival Rates

The curves in Figure 6-1 show L' (the steady-state expected

line length given that the line is not empty) vs. the traffic in¬

tensity/? when the expected arrival rate A and service time 'l  are

constant and the standpost has only one faucet.  The curves for

populations of N = 10, 20, and 50 were obtained by the procedure

described in chapter V.  Recall that this procedure assumes that

each member of the population makes one and only one trip to the

standpost (p. 49).  The N =co curve was obtained by equation 4.9.

The curves show that if the traffic intensity z? is near 0.8,

and each member of the population makes one and only one trip to

the standpost, then a population as small as 50 can be assumed

infinite without causing serious error. ^'^ p   is near 0.5 then a

population as small as 10 can be assumed infinite without causing

serious error.  As the ratio of the expected arrival rate to the

service rate capacity decreases, so does the minimum population

size which can be assumed infinite.

In many cases members of the population will make more than

one trip to the standpost.  WHO guidelines suggest that the

average per capita daily demand may sometimes be as high as 60

liters, or 130 pounds of water, which would not easily be carried

in a single trip.  This is not considered in the small-population

model of Chapter V or its resulting curves in Figure 6-1.  Also,

the sma11-popu1 at 1 on model and curves are for only one faucet,

while a standpost may often have multiple faucets.  For these two
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FIGURE 6-1. Expected steady-state line length (given that
the line is not empty) vs. traffic intensity
for various populations, a single faucet, and
service time constant among users.
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reasons it is necessary to define N' as the effective population

size, or the product of the actual population size and the
average number of trips made per person divided by the number of

taps at the standpost.  N' can be used in the following procedure
to determine S, the steady-state expected number of service peri¬

ods spent at the standpost, which in turn can be multiplied by
the service time if the waiting time is to be known:

1. Assume the population is infinite and apply the
approaches described in chapter IV to determine S.
(Recall that for a single-faucet standpost, S is
numerically equal to L'.)

2. Determine the effective population size N'.  For
example, if a population of 75 has a per capita de¬
mand of 12 gallons and 6 gallons is obtained per
trip, then the effective population size is 75 x
(12/6)/3 = 50 persons per faucet.

3. Multiply S determined in step 1 by the ratio of L' in
Figure 6-1 for the effective population size to L' in
Figure 6-1 for H   = oo .     For example, assume L' for a
three-faucet standpost and a varying service time is
determined in step 1 to be 3.20 at^ = 0.8.  If the
effective population size N' is 50 as determined in
step 2, the ratio obtained from Figure 6-1 from the
N = 50 and N =o^ curves at p   =   0.8 is 2.5/3.0 = 0.83.
The resulting S is thus 3.20 x 0.83 = 2.7 periods.

Although the accuracy of this technique is not rigorously proven,

it is believed to be reasonably accurate.

B.VariableArrival Rates

The error due to assuming an infinite population when the
expected arrival rate is constant is shown in Figure 6-1, but the

error when the expected arrival rate varies with time is more

difficult to quantify exactly.

A rough estimate of the error can be obtained by considering
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Figure 6-2.  This figure shows L'(n) vs. n for population of 10,

20 and 50 and an infinite population, given that the standpost

has one faucet and expected arrival rates and service times are

constant.  The curves are for p    (the ratio of the expected ar¬

rival rate to the service rate capacity) equal to 1.0.  Notice that

the ratio of L'(ll) (the expected line length at the beginning of

the 11th service period given that at least one person is at the

standpost) for population N = 10 to L'(ll) for N ^ ao  is 2.30/3.22

= 0.71.  Also, the ratio of L'(21) for N = 20 to L'(21) for N =oo

is 2.93/4.25 = 0.69, and the ratio of L'(51) for N = 50 to L'(51)

for N =oois 4.48/6.31 = 0.71.  Regardless of the population

size, the maximum expected line length (given that the line is

not empty) reached at the beginning of interval N + 1 is approx¬

imately 70% of    what the value would be if the population

we re i nf i ni te .

Notice also that for n < N + 1, the ratio of L'(n) for N =

10, 20, or 50 to L'(n) for N = oo     is greater than 0.70.  The

ratio increases as n decreases, and nearly equals 1.0 for small

n values.  Whenz? = 1, the beginning of interval N + 1 is when

arrivals cease, either because the standpost closes or people

have finished collecting water for the day.  So, for^ = 1, ratio

of the limited-population L'(n) to the infinite-population L'(n)

reaches is minimum value of about 0.7 when arrivals cease.  The

ratio at earlier times in the day will be higher.

A set of curves similar to that shown in Figure 6-2 could

also be prepared for^ values other than 1.0.  Such sets of

curves would show that the limited-population L'(n) to infinite-

population L'(n) ratios always reach their minimum value when
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FIGURE 6-2. Expected line length (given that the line is not
empty) vs. n for a traffic intensity of 1.0, a
single faucet, service time constant among users
and various populations.
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arrivals cease, but that this minimum value is always greater
than 0.7.  (Note: Forz? values other than 1, arrivals cease at
the beginning of interval (N + l)/z?.)  This minimum ratio value
which occurs when arrivals cease is smallest for /? = 1, and

increases as p  differs from 1.  For example, for a population
of N = 50 and^ = 0.8, the ratio is 0.83 when arrivals cease.
For a population of N = 50 andyO ^   0.6 the ratio is 0.91 when
arrivals cease.  For p  = 0.4 the ratio when arrivals cease is
0.98.  This same behavior is also demonstrated for N = 10 for

which the ratios are slightly lower but still always exceed 0.7
and increase as/? differs from 1.  The curves would also indicate

that, as in thei? = 1 case, the ratio of the limited-population
L'(n) to the infinite-population L'(n) increases as n decreases.

In summary, the above observations indicate that if the

expected arrival rate /I is constant and p -   1.0, then L'{n)
when arrivals cease is about 70% of what it would be if the

population were infinite.  This percentage increases asz» differs
from 1.  Also, as n decreases, the limited-population L'(n) to
infinite-population L'(n) ratio increases.

In light of these observations, conclusions can be drawn for
time-varying expected arrival rates.  When the expected arrival
rate varies with time, such as shown in Figure 4-4a, /? is near
1.0 for only a small percentage of the time.  Thus L'(n) when
arrivals cease for a limited population must be greater than 70%
of what it wou^d be if the population were infinite.  Furthermore,
because the limited-population L'(n) to infinite-population L'(n)
ratio increases as n decreases, and because the maximum L'(n)
value for a time-varying expected arrival rate typically occurs
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well before arrivals cease, the maximum L'(n) value when X varies

for a limited population must be fairly close to that value when

the population is infinite.  The former is believed to be gener¬

ally between 85% and 95% of the latter.  Thus, the large-popula¬

tion model usually provides acceptable accuracy for determining

maximum L'(n) values when Avaries.
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Chapter VII

ROLE OF QUEUING THEORY IN STANDPOST DESIGN

A. General

Queuing theory can be used for standpost design to ensure

that the maximum expected waiting time is kept below some fixed

value, or to meet other such waiting time criteria.  Basically,

the two methods of applying queuing theory are as follows:

1. With the population to be served by the standpost
known, use queuing theory to determine the standpost
discharge capacity required to meet the waiting time
criterion.

2. With the standpost discharge capacity known, use
queuing theory to determine the maximum population
which can be served by the standpost while meeting
waitingtimecriterion.

These methods are   discussed indetail in the following sections.

The WHO has recommended limitations on populations served

per standpost (Annex A).  Theoretically, queuing theory can be

used to successfully design standposts for populations exceeding

WHO limitations.  However, the designer should keep WHO guide¬

lines in mind, realizing that the use of queuing theory for

standpost design is not yet field-proven.

B. Fixed Population and Constant Arrival Rate

If the population to be served by a standpost is fixed,

the customers arrive throughout the day at a constant rate, the

standpost is to have only one faucet, and a maximum expected

waiting time criterion is to be met, then the expected line

length is assumed to reach near steady-state before the standpost
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closes or arrivals cease.  The maximum expected waiting time thus

equals the steady-state expected waiting time, allowing for the

use of equation 4.17 to determine the required service time.  The

procedure is as follows:

1. Estimate the total number of trips to the standpost made
by the population, the average volume of water obtained
per trip and its standard deviation, the waste factor w,
andtheefficiencyfactorf.

2. Determine the expected rate at which the customers arrive
at the standpost.  Since this rate is constant, simply
divide the total number of trips made to the stanpost by
the number of hours over which arrivals occur.  For ex¬

ample, if the population is 100 with each person making
an average of 2 trips to the standpost between 6:00 a.m.
and 6:00 p.m., then the expected arrival rate ^is 16.7
persons/hou r.

3. Express the standard deviation of the volume obtained
per trip as the standard deviation of the service time.
Equation 3.2 shows that the service time is proportional
to the volume obtained.  If the standard deviation of

the volume is 2.1 gallons and the average volume is 7.5
gallons, then the standard deviation of the servjce time
is 2.1/7.5 X average service time, or a^ =   0.281^.

4. Use equation 4.17 to solve for the average service time.
For example, if it is desired to keep the maximum ex¬
pected waiting time (which is also the steady-state ex¬
pected waiting time) below 10 minutes, and the expected
arrival rate and the standard dev1ati_on of the service
time are as in the above steps, theji^xr = 2.94 minutes.
(Note: Equation 4.17 is solved forT^ by trial-and-error
because   cannot be isolated to the left side of the

equation.)

5. Determine the required discharge capacity by use of
equation 3.2.  If the waste factor w is 0.1 and the
efficiency factor f is 0.9, then the required discharge
capacity by rearranging equation 3.2 is

Q^^^=  7.5 X (1/2.94) x 1/(1 - 0.1) x 1/0.9 3.15 gpm

6. Determine the service rate capacity /x, which is the
inverse of the average service time, or 1/2.94 = 0.34
persons/mi nute.

7. Determine/? , which is the ratio of the expected arrival
rate A to the service rate capacityy>t, or 0,278/0.34 =
0.82.
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8. Use Figure 6-1 to see whether assuming that the popula¬
tion is large enough to be considered infinite causes a
significant error.  The effective population size is
N'= 200 (100 people x 2 visits per person at a single-
faucet standpost).  Figure 6-1 shows that if an N = 200
curve were interpolated between the N -   50 and the N - oo
curves, it would be very close to the N = c-o curve at
p   =   0.82.  Therefore, the assumption of an infinite
population causes no significant error, and the dis¬
charge capacity determined in step 5 is appropriate.
If Figure 6-1 had shown that the assumption of an
infinite population causes significant error, then the
10-minute waiting time criterion would have to be
ficticiously increased slightly to, say, 10.5 minutes.
Then steps 4 through 7 would have to be reworked.  The
p  value that would result from applying these steps
would be 0.83.  The ratio of S from the interpolated N =
200 curve at /^ = 0.83 to S from the H   = o^   curve at /> =
0.83 would then be multiplied by 10.5 minutes.  If the
result would be other than 10.0 minutes, then a new
fictitious waiting time criterion would again have to
be selected and steps 4 through 7 again repeated.

The designer should verify that steady-state is essentially
reached by considering the curves in Figure 7-1 and the number of

service intervals that will have elapsed when arrivals cease.  In
the unlikely event that steady-state is not reached, the designer

can modify and apply the program in Annex C.l, and use it as a

substitute for equation 4.17 in the above 8-step procedure.

As discussed in section IV.C, for a given standpost dis¬
charge capacity, the waiting time decreases as the number of
faucets decreases (and the discharge per faucet increases).  Thus
a standpost being designed should first be assumed to have one
faucet.  If the resulting capacity cannot be provided by a single
faucet, then the standpost should be assumed to have two or more

faucets.  The following procedure should be used for standposts
withmorethanonefaucet:

1. Do steps 1 through 3 described above.
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FIGURE 7-1. Expected number of service intervals spent at the
standpost vs. n for various traffic intensities, a
single faucet, and service time constant among
users.
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2. Assume an average service time t^ of, say, 6.0
minutes, and determine the service rate capacity per
faucet, which is the inverse of the average service
time, or 1/6.0 = 0.167 persons/minute.  Determine the
traffic intensity/? , which is the ratio of the expect¬
ed arrival rate A. to the standpost service rate capaci¬
ty cjJ-.      If the standpost has two faucets, /^ =
0.278/(2 X 0.167) = 0.83.

3. For^ determined in step 2, use Figure 4-8 (or Figure
4-9 if the standpost were to have 3 faucets) to deter¬
mine S.  If the service time standard deviation cJ^ =
0.5^, then the corresponding S value at p - 0.83 is 2.8
intervals. (Note: Interpolate if the standard deviation
is other than 0, 0.5^, or"^ .) The resulting expected
waiting time W is 2.8 x 6.0 = 16.8 minutes.

4. Apply step 8 above to see if assuming an infinite
population causes error, and to adjust W if necessary.

5. If the adjusted W from step 4 is different from the
waiting time criterion, assume a new value of the
average service time and rework steps 2 through 4.

The designer can verify that steady-state is essentially

reached by considering Figure 7-1 and the number of elapsed

service intervals.  The programs in Annexes C.2 and C.3 can be

modified and applied as necessary if steady-state is not yet

reached.

C.  Fixed Population and Time-varying Expected Arrival Rate

If the population served per standpost is fixed and the ex¬

pected rate at which customers arrive varies with the time of

day, then queuing theory can be used to determine the required

discharge capacity as follows:

1. Estimate the average volume of water customers obtain per
standpost visit, the waste factor w, and the efficiency
factor f-  Estimate the expected rate at which the cus¬
tomers arrive at the standpost as a function of the time
of day .
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is to have only one faucet and
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e rate capacity to be equal to
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FIGURE 7-2. Expected arrival rate pattern
for section VII.C example.
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Determine the required discharge capacity by use of
equation 3.2.  If the volume obtained per visit is 6
gallons, the waste factor w is 0.1 and the efficiency
factor f is 0.9, then the required discharge capacity
by rearranging equation 3.2 is

Q. 1/3.0 1/(1 - 0.1) X 1/0.9 2.5 gpm

If the designer believes that this discharge cannot be
provided by a single faucet without causing excessive
splashing or waste, he should assume that the standpost
has two faucets instead of one, with the service time
being doubled and the discharge per faucet being 2.5/2
= 1.25 gpm.  In this example, the discharge is appro¬
priate for a single faucet.

4. Express the variation in the expected arrival rate shown
in Figure 7-2 as a function of the service period, as
fol1ows:
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A(n) = 0.5n

:X(n) = 24 - O.ln

A(n) = O.ln

A(n) = 120 - 0.5n

0 -^   n ^40 (i.e., from 6:00
a.m. to 8:00 a.m.)

40 ^ n ^ 120 (i.e., from 8:00
a.m. to noon)

120 ^ n ^ 200 (i.e., from noon
to 4:00 p.m.)

200 ^ n < 240 (i .e. , from 4:00
to 6 : 00 p .m.)

5. Modify the computer program in Annex C.4 by substituting
in the service time of 0.05 hours and the above expected
arrival rate function.  This modified program is shown
in Annex C.5.  Running the program to obtain results
shows that the maximum expected waiting time is 14.3
minutesandoccursatabout4:10p.m.

6. If the waiting criterion requires that the maximum
expected waiting time not exceed 10 minutes, then the
waiting time determined in step 5 is too long.  A shorter
service time must be selected and steps 3 through 5 must
be reworked.  Repeated attempts indicate that a service
time of 0.046 hours (2.7 minutes) ensures that the
maximum expected waiting time does not exceed 10 minutes.
The corresponding discharge capacity is 2.7 gpm.

D.  Fixed Discharge Capacity and Constant Expected Arrival Rate

If the standpost discharge capacity is fixed and the expect¬
ed arrival rate is constant, then queuing theory can be used to

determine the maximum population size which can be served while

meeting a maximum expected waiting time criterion.  The line

length is assumed to reach its steady-state, maximum value before

arrivals cease.  The steps of the procedure are as follows:

1. Estimate the average volume of water obtained per visit
to the standpost and its standard deviation, the waste
factor w, and the efficiency factor f.

2. Use equation 3.2 to determine the corresponding average
service time.  For this example, assume the discharge
capacity is 5.0 gpm to serve vendors who obtain an
average of 40 gallons per visit.  If the waste factor
is 0.1 and the efficiency factor is 0.95, then the averag's
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servicetimeis

r=40x(l/5.0)xl/(l-0.1)xl/0.95
=9.36minutes

3. Determine the standard deviation of the service time.
If the standard deviation of the volume of water ob¬
tained per trip is 10 gallons and the average volume
is 6 gallons, then based on the proportionality of equa¬
tion 3.2, the standard deviation of the service time is
10/40x9.36=2.34minutes.

4. Use equation 4.17 to solve for the expected arrival rate
A.  For example, if it is desired to keep the maximum
expected waiting time (which is also the steady-state
expected waiting time) below 10 minutes, then equation
4.17canberearrangedtoyield

A= 2(w -^)/(o^%r-+ 2[W -fJT)
=   2   X (15 - 9.36)7(2.3 4^+ 9.3 6"+ 2 x [15 - 9.36] x 9.36)
= 0.0568 persons/minute -   3.41 persons/hour

(Note: If the standpost has more than 1 faucet, then
Figure 4-8 or 4-9 must be used instead of equation 4.17.
The value of/^ at S -   15/9.36 intervals must be found
from the appropriate curve, and then A found from A=
p/r.)

5. Determine the population based on the expected arrival
rate found in step 4.  If the average number of trips
made to the standpost per person is 2, and the standpost
is open for 12 hours, then the population is 3.41 x 12/2
= 20 persons .

6. Determine the service rate capacity/^, which is the
inverse of the average service time, or
0.107persons/minute.

7. Determine the traffic intensity p  ,   which is the ratio
of the expected arrival rate >. to the service rate
capacity/x, or 0.0568/0.107 = 0.53.

8. Use Figure 6-1 to see whether assuming that the popula¬
tion is large enough to be considered infinite causes a
significant error.   The effective population size is
N'= 40 (20 vendors x 2 visits per vendor at a single-
faucet standpost).  Figure 6-1 shows that if an N = 40
curve were interpolated between the N = 20 and the N =
50 curves, the resulting L' at/^ = 0.53 would be very
close to the L' value from the H   = oo   curve.  There¬
fore, the assumption of an infinite population causes
no significant error, and the population determined in
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s t e p 5 i s a p p r 0 p r i a t e .

If Figure 6-1 had shown that the assumption of an
infinite population causes significant error, then a
a higher effective population size N' would have to be
assumed and its curve interpolated between the curves in
Figure 6-1.  The value of/? at L' = 15/9.36 persons
would be selected from the curve and the corresponding
expected arrival rate A determined from p   .   A would then
be used to calculate an effective population size.  If
this calculated N' equals the assumed N', then the
assumed N' is correct.  The actual population size N
can then be determined from N'.  However, if the assumed
N' does not equal the calculated N', then a new N' must
be assumed and the process repeated.

The number of standposts required in the standpost system

can be found by dividing the total population by the population

determined in the above procedure.

As discussed in section VII.B, the designer can verify that

steady-state is essentially reached by considering Figure 7-1,

and can modify and apply the programs in Annexes C.l, C.2, C.3.

E.  Fixed Discharge Capacity and Time-varying Expected Arrival
Rate

If the standpost discharge capacity is fixed and the expect¬

ed customer arrival rate varies throughout the day, then queuing

theory can be used to determine the population size which can be

served while meeting waiting time criterion.  The procedure is as

fol1ows:

1. Estimate the average volume of water obtained per visit
to the standpost, the waste factor w, and the efficiency
factor f.

2. Use equation 3.2 to determine the corresponding average
service time.  For this example, assume the standpost
has two faucets and a discharge capacity of 5.0 gpm, or
2.5 gpm per faucet.  If the average volume obtained per
visit is 8 gallons, the waste factor is 0.1, and the
efficiency factor is 0.9, then the average service time
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1 s

r = 8 X (1/2.5) X 1/(1 - 0.1) X 1/0.9
=3.95minutes

Based on collected field data or literature, determine
the geometry of the expected arrival rate pattern
throughout the day.  If the shape of the expected arriv¬
al rate pattern is similar to that shown in Figure 7-2,
then note that the peak expected arrival rate is 20/12
= 1.67 times the minimum expected arrival rate.  Also
note the times at which the peak and minimum values oc¬
cur and that increases and decreases in the expected
arrival ratearelinear.

The expected arrival rate during peak standpost usage
must be determined by trial and error.  As a first
guess in this example assume that it is equal to the
standpost service rate capacity, which is c/x= c/T=
2/3.95 = 0.506 persons/minute = 30.4 persons/hour.  Use
this as the peak expected arrival rate value and to
determine other key expected arrival rate values that
define the geometry of the expected arrival rate pat¬
tern.  For this example, the minimum expected arrival
rate is 12/20 times the peak, or 12/20 x 30.4 - 18.2
persons/hour.  Thus, the arrival  pattern is as shown
below.

Expected arrival rate pattern for section VII.E example

x:

(/)

o
(/I
t_
QJ
Q.

G.OOn.^U        3'0Qj,«i, ID 00,1 -„    /^JOO/'I

time

^::^0p 4-yOt>.i^, ^;:0Of>.rt).
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Express the variation in the expected arrival rate shown
above as a function of the service period, as follows:

A(n) = n

A(n) = 36.5 - 0.201n

A(n) - 0.201n - 0.1

A(n) = 182 - n

0 ^ n -c 30 (i .e. , from 6:00
a.m. to 8:00 a.m.)

30 £ n < 91 (i.e., from 8:00
a.m. to noon)

91 s n  ^   152 (i.e., from noon
to 4:00 p.m.)

152 <^ n ^ 182 (i.e. , from 4: 00
to 6:00 p.m.)

6. Modify the computer program in Annex C.6 by substituting
in the service time of 0.0658 hours and the above ex¬
pected arrival rate function.  The resulting program is
in Annex C.7.  If the waiting time criterion is not met,
assume a new peak expected arrival rate and rework steps
4 through 6.  For this example, it is assumed that the
waiting time criterion is met when the peak expected
arrival rate is 30.4 arrivals/hour as shown in step 4.

7. Determine the population size from the expected arrival
rate pattern shown in step 4. The area under the curve
is

2(0.5 x 2hr x 30.4person/hr + 4hr x 18.2person/hr +
0.5 x 4hr x (30.4 - 18.2)person/hr)

=255persons.

If an average of 2 trips is made per person, then the
population size is 255/2 = 128 persons.

The number of standposts required in the standpost system

can be found by dividing the total population by the population

determined in the above procedure.

F.  Opt imal Des i gn

Ultimately, queuing theory can be used to optimally design a

standpost system.  One way would be to assign a money value to
time spent waiting at the standpost and the distance walked to

the standpost.  This money value could be added to the price the

customers are to pay to cover the cost of the system (if there is

80

NEATPAGEINFO:id=1CB9A467-95A1-4635-B8C5-83E7454A3E5B



a charge), and the objective would be to minimize the sum while

providing customers with their required amount of water.
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Chapter VI I I

CONCLUSIONS AND RECOMMENDATIONS

Queuing theory has important implications for standpost

design.  The following conclusions apply to time periods during

which the expected customer arrival rate at a standpost does not

vary:

1. If the expected rate at which customers arrive at a
single-faucet standpost is equal to the standpost's
service rate capacity (i.e., the rate at which custom¬
ers can be served) then the expected line length will
increase monotonically until the number of service
periods which has elapsed is equal to the total number
of arrivals that occur at the standpost per day.  For
example, if users start arriving at the standpost at
8:00 a.m., the time required to serve a customer is 5
minutes and a total of 30 trips are made to the stand-
post, then the expected line length will increase
monotonically until 5 x 30 = 150 minutes have elapsed,
oruntill0:30a.m.

The WHO guidelines in Annex A are based on the assump¬
tion that the service rate capacity should equal the
arrival rate averaged over the peak hours, and that the
number of peak hours per day is typically in the range
of 4 to 12.  Over such a long time period it is possible
for rather lengthy waiting lines to develop.

2. If the expected rate at which customers arrive at a
standpost is less than the service rate capacity, the
expected line length will increase monotonically
until the number of service periods which has elapsed
is equal to the number of arrivals that occur at the
standpost per day.  In this sense, the line length
increases as in conclusion #1 above.  However, if the
expected arrival rate is significantly less than the
service rate capacity, then the expected line length
will essentially reach its maximum value (but will not
exactly equal its maximum value) long before such a
number of time periods has elapsed.

undesi rea
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3. As the ratio of the expected arrival rate to the
service rate capacity increases, the steady-state
expected line length increase.  For ratios higher than
about 0.8, the expected line length increases greatly
for small increases in the ratio.

The standpost service rate capacity should be at
least roughly 1/0.8 = 1.25 times greater than the
expected arrival rate.  This will ensure that waiting
lines are kept fairly short, even if there is a slight
error in estimates of the system pressure or other
factors influencing the line length.

4. As the time required to serve customers varies among
customers (because customers have different container
sizes, or fill different numbers of containers), the
linelength increases.

WHO guidelines in no way take into account the varia¬
tion in the volume of water customers obtain per trip
to the standpost.  Queuing theory shows that to meet
expected waiting time or line length criteria, the
standpost discharge capacity must increase as this

.variation increases.

5. As the ratio of the expected arrival rate to the
service rate capacity decreases, the population size
which can be safely assumed to be infinite also
decreases.  For example, if the ratio is 0.5, then a
population as small as 10 can be assumed to be infinite
without causing significant error; whereas if the ratio
is 0.9 then the population must be a few hundred to
avoidsignificanterror.

The assumption of an infinite population allows for
model simplicity and flexibility.  However, if the
population is too small to be assumed infinite, then
the techniques presented in Chapters V and VI can be
u s e d 10 e s t i m a t e 1 i n e 1 e n g t h s .

The following conclusions apply to time periods during which

the expected arrival rate varies:

As discussed in Chapter VI, the assumption that the
population served by a standpost is infinite provides
reasonably accurate estimates of the maximum expected
w a i t i n g 11 m e .

The variation in the volume customers obtain per trip
to the standpost does not have a significant effect on
the waiting line length.  The volume can therefore be
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assumed to be constant and equal to the average volume.

8. If a standpost's service rate capacity equals the
expected arrival rate during the period of peak usage,
then waiting times will not necessarily be of satisfac¬
tory shortness-  This is especially true if the peak
period is long, such as 4 to 12 hours, which is stated
to be a typical length in the WHO guidelines.  If the
expected arrival rate actually varies during a so-called
peak period, then setting the service rate capacity
equal to this arrival rate will lead to even longer
wai ti ng t i mes.

The following conclusion applies regardless of whether the

expected arrival rate varies or is constant:

9. For a given standpost discharge capacity, the expected
time spent at the standpost increases slightly as the
number of faucets increases.  For example, a two-
faucet standpost with a discharge capacity of 3.0
gallons/minute (1.5 gallons/minute from each faucet)
will provide slightly longer waiting times than a
single-faucet standpost having a 3.0 gallons/minute
dischargecapacity.

When designing a standpost, the number of faucets should
initially be assumed to be one unless evidence indicates
otherwise. If the resulting required discharge capacity
is too great for a single faucet (because, for example,
excessive splashing or waste may result) then the stand-
should be designed again with two or more faucets.

B. Recommendations for Further Study

Queuing theory is useful for standpost design.  Additional

research may make its application easier and more successful.

The time required to serve a customer is a key parameter of

queuing theory. Data concerning the amount of water wasted when

filling a customer's container and the time required to position

and remove containers from under the faucet may prove useful in

accurately estimating the service time. As discussed in chapter

III, the time required to open and close the tap is generally not
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proportional to the volume of the container to be filled.  Use of

the efficiency factor f in equations 3.1 and 3.2 is theoretically

incorrect; the possibility of resulting service times being

erroneous may be worth investigating.  An appropriate alternative

shouldbeadoptedifnecessary.

A broad data base of how water collection varies throughout

the day for various scenarios (e.g., urban area where the stand-

post is open only for a few hours in the morning, rural areas

where the standpost is always open, etc.) may prove useful.  From

such a data base common patterns would perhaps emerge.  Computer

programs similar to those in Annex C could then be applied to each

scenario, and relatively simple equations or tables relating

discharge capacity, population size, and waiting time could be

developed.  Designers would then not need to spend much time on

data collection and computer modeling.
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3.   THE REQUIRED DISCHARGE CAPACITY
PER STANDPOST

ANNEX A., Excerpt from Public Standpost Water
Supplies   -  A  Design   Manual   -   Technical
S e r_i e_s_P a per_14,   W.H.O.   International
Reference   Center   for   Community   Water
Supply, 1979.

An important factor in the design of a public standpost water

supply system, is the required maximum discharge capacity

(Q  ) per standpost.

This parameter is the basis for the hydraulic calculation and

the determination of the dimensions of the service pipe and of

the type and number of taps.

<»
a-.

This Q   is determined by the design population (N) , the averagemax 3  I- i- ^

demand per capita (C,) , the peak factor (P) , the number of stand-

posts (S), the waste factor (w) and an efficiency factor (f).

The relationship between the factors is presented by the formula:
C,

Q   = N * - * -4^max      S  24
* P *

1-w  f

Each of the six factors that constitute this formula have to be

determined separately before the maximum discharge capacity can
be calculated.

3.1.   Design Population (N) -

This factor depends on the initial magnitude of the population

to be served, the growth rate of the population, and the design

period.

The initial number of users   (N ) in the area to be served by the
prospective standposts should be counted or estimated.
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An indication of the expected annual growth rate   (r) of the
population can be obtained from historical statistical data on
the area concerned. If these are not available, one may sub¬
stitute figures related to a similar area or to the country as
a whole.

The standpost must have sufficient capacity to meet the users'
water demands during a period of several years. The design
penod   (T) is determined by various technical and economic
factors; a period of ten years is usually sufficient, but there
may be local reasons that make a shorter or longer period
desirable.

The Design Population   (N) can now be calculated according to;

N = N « {l+r}'^
o

m

One may prefer to work with a growth factor: m = {l+r} . In that
case use can be made of a table giving the growth factor as a
function of a fixed annual growth rate and the design period. In
general the growth factor will be in the range of 1.0-1.6 (see
Annex 3).

Demand per Capita (C.)

The average volume of water drawn from public standposts is
typically between 20 and 60 litres per capita per day*(led).
Local habits related to domestic water use will have to be
studied in order to establish an accurate figure, particularly
in cases where there has been no previous experience with stand-
posts or where other sources are available. Normally, a provision
is also made for livestock watering.

Future increases in demand should be provided for. It is advis¬
able to provide excess capacity for a design period of at least
10 years and that allows for an increased consumption per person.

3.3.

3.4.

In the design of the distribution network, allowance may also
be made for uses other than domestic, sucli as small industries,

etc.

Peak Factor (P)

During some hours the standpost will be used more intensively

than during the rest of the day. The water supply system should

be capable of dealing with this peak demand. Therefore, a peak

factor representing the ratio between peak and average demand, is
introduced in the calculation Q   . Normally, this peak factormax        ͣ'
is in the range of 2 to 4, a typical average being 3.

The peak factor can be approximated by P = 24/t, in which t is
the number of peak hours (normally in the range of 4 to 12 per

day). Tlie result of this method tends, however, to be on the

high side, as the method presupposes that no water at all is

drawn outside the peak hours.

The peak factor should be determined with great care, as it has
a considerable influence on the Q   . It is recommended that the^max
local water collection pattern should always be studied thoroughly.

The Number of Standposts (S)

The required number of standposts is based on two other design
criteria, the maximum walking distance to the standpost and the

maximum number of users per tap. These two criteria are directly
related to the intended "level of service", which results from the

consultations between the users and the planners of the public

standpost scheme.
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The Maximum Walking Distance

In  general it is advisable to limit the walking distance to 200 m
and in densely populated areas it is often possible to limit the
distance to 100 m. In very sparsely populated areas a walking
distance of up to 500 m may sometimes be acceptable.

In densely populated areas, however, the application of this
criterion may result in too many users per standpost and per
tap. Therefore, a second criterion that relates to the popu¬
lation density in a particular area, is required.

The Maximum Number of Users per Standpost

It is advisable to limit the number of users per standpost to
100-250; in no case should this number exceed 500. The number

of users per tap should preferably be in the range of 25-125.
This criterion is directly related to the maximum discharge
capacity of the taps and to the water collection pattern during
peak hours.

Proceeding from more or less evenly spaced standposts in a given
area (A) and a set maximum walking distance (R), the number of
standposts can be assessed using the formula:

ͣ <

s = a/ttr^

A = total area of the scheme in m

S = the number of standposts
R = the service radius in m

TT = 3.14

It should be noted that the service radius does not exactly
equal the maximum walking distance (see Annex 4).

3.5.

In case the afore-mentioned approximation of the number of stand-
posts (S) leads to a too high average number of users per stand-
post, one may increase the number of taps per standpost, in order
to meet the criterion set for the maximum number of users per tap.
However, the number of taps per standpost should be limited to
avoid the crowding of too many people near one standpost; it is
advisable not to install more than four taps per standpost.
If by providing more than one tap the criterion of the maximum
number of users per tap can still not be met, the number of
standposts in the area under consideration is to be increased.

In practice, the actual local geographical and demographical
circumstances will determine the siting and the exact number
of standposts and taps, as well as the actual number of users
for each standpost. Hovjever, in most cases, as a first assess¬
ment, the above method gives satisfactory results.

Waste Factor (w)

Part of the water is inevitably spilt by users when filling their
containers or drawing water for immediate use at the standpost.
To express this numerically, the waste factor (w) is introduced.
This factor can be determined by calculating the ratio of the
amount of water actually taken away by the users and the total
amount of water discharged through the taps.

Spillage and wastage depend on the way in which containers are
filled, the type and condition of the taps, the height of the
taps above the bucket-stand, the water pressure, and on whether
or not the standpost is supervised.

The waste factor can best be estimated from data obtained in

other schemes. It should only include the spillage and wastage
related to the collection and use of water at the tap and not
the leakage of water in the main and branch pipes of tlie distri¬
bution network, as this li-akaq.™ water is not dii-charqed through
the taps.
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The waste factor is in the range of 0.1 to 0.4 which means

tliat 10 - 40'(. of the total discharge at the tap is spilt or wasted.
As the waste factor has a considerable influence on the Qmax

careful assessment of the factor is required.

It is important to decide whether water used for purposes, such

as washing of utensils and personal cleaning at the tap  should
bt= considered as part of the per capita demand or is to be regarded
in terras of spillage or wastage.

3.6.    The Efficiency Factor (f)

The efficiency factor is introduced to take into account that
the suppliers rating of the capacity of a tap is usually based
on continuous discharge at 10 raliw  with the tap fully open.
In practice the pressure will never be exactly 10 mhw and

discliarge is usually not continuous.  The closing and opening
of the tap will make the actual discharge smaller than the
ttieoretical maximum.

Depending on the type of tap, the efficiency factor (f) can

range from almost 1.0 for a ball valve (rapid closing tap), to

0.9 and 0.8 for an ordinary screw tap, and 0.7 for spring-
loaded taps.

3.7.   Calculation Example

The calculation of the required maximum discharge capacity of

standposts can best be illustrated by an example; assume the

following situation:

N   =  initial number of users =12 000
o

r = population growth rate = 2% per year

T = design period = 10 years

A = area of scheme = 100 ha = 1.10''m^

S = number of standposts

C = average demand per capita = 40 led

t = number of peak hours = 4.5 h

w = wastage factor =0.2

f = efficiency factor = 0.9

Tite design population  can be calculated as:

12000 * 1.22 = 14640 persons.N = N  * {l+r}'^= 12000 « 1.02'°
o

If the service radius is set as R=200 m and the number of users

per standpost is limited to 250, the nxMrher- of standposts  can be
determined as follows:

a. S>A/tiR^ = 10V3.14 * {200}^ = 7.96 and
b. S>N/250 = 14640/250 = 58.56

Consequently, the maximum number of users per standpost is the
decisive factor in this case (b).  If the number of standposts

is now set at 60, the average number of users per standpost is:
14640/60 = 244 persons, and the service radius about 73 m.

The.peqwtred discharge capacity per standpost  can be calculated
as:

N     d 11

^max   S   24       1-w    f

14640 ^ 40   24 1 i----- t  -- * ——  * -r --^   ±  _i_
(^0 24   4,5     (1-0,2}      0,9

3012 1/h
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If the area had been 1000 ha instead of 100 ha, the result of the
equation SiA/lTR^, for R = 200, would have been 80 standposts and
the criterion of the maximum walking distance would have been
decisive (a).  The average number of users per standpost would
then have been: 14640/80 = 183 and the Q   equal to 2260 1/h permax

standpost; assuming that population and standposts are evenly
distributed.

However, in practice, and particularly in larger areas, the pop¬
ulation will almost nevar bo evenly distributed.     Therefore, the
number of standposts and their location will always have to be
determined on the basis of the local geographical cicurastances,
including the variation in population density in the area con¬
cerned.  This may lead to a variation in the number of users per
standpost and subsequently to a difference in the required dis¬
charge capacity of the various standposts.

The above serves to show that, generally speaking, the maximum
number of users per standpost will be the criterion in densely
populated areas, whilst in sparsely populated areas the maximum
walking distance will be the decisive factor.

Finally, it should be pointed out that Q   , as calculated in thismax

Chapter, only relates to water that is actually discharged via
standposts.  The total amount of water that is pump4d into the
distribution network is often reported to be 10-50% higher than
the total discharge via standposts and house connections.  This
is due to leakage  in the pipe ay stem.     This factor is NOT  included
in the calculations in this publication, as this publication only
deals with the discharge from standposts.

All the afore-mentioned values have been assumed. The designer
should substitute his own data depending on the characteristics
of the system he is working on.
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ANNEX B.  ProbabilityFundamentals

Modeling queuing processes requires use of probability

theory.  Some useful definitions are the following:

* The probability that an event occurs is the %   chance of it

happening divided by 100%.

* Independent events are a group of events such that the

occurence of any member(s) of the group does not change the

probability that any of the other member(s) will occur.

For example, suppose a group of 3 events consists of 3 coin

tosses, each resulting in "heads".  Each event of the group

has a probability of 0.5.  Regardless of the result of, say,

the first coin toss, each of the other 2 events still has a

probability of 0.5 because the 3 events are independent.

The result of one coin toss in no way changes the

probability of "heads" on another coin toss.

* Mutually exclusive events are events such that the

occurrence of one makes the occurrence of another

impossible.  If, for example, each of the numbers 1 through

10 are written on 10 pieces of paper which are placed in a

hat, then getting 4 on the first draw and 4 on the second

draw are mutually exclusive events.  The paper with 4 can be

drawnonlyonce.

Useful principles of probability theory are:

* The probability of a group of independent events is the

product of the probability of each separate event.  Using
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the above coin toss example, the probability that all 3

tosses result in "heads" is 0.5 x 0.5 x 0.5 = 0.125.  That

is, only in about 12 times out of 100 that the experiment of

tossing a coin 3 times is run will "heads" be obtained on

al1 3 tosses .

* The probability of an event that consists of a group of

mutually exclusive events is the sum of the probabilities of

each event in that group.  Using the above numbers-in-the-

hat example, the probability that the number on the first ,

draw is a 2 or a 3 is 1/10 + 1/10 = 0.2.  That is, for the

experiment of drawing a number from a hat, about 20 out of a

100 times the number will be either 2 or 3.

cr?
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ANNEX C.   Computer Programs for Large and Small Population
Models

The computer programs contained in this annex are written in
F 0 r t r a n I V.

Lines which begin with the letter "C" are comment lines to

aid the reade r.

The computer language does not allow for use of the sub¬

script "0" for elements of vectors and matrices.  For this rea¬

son, "1" is used when "0" is required and all higher subscripts

have "1" added to them.  For example, to indicate the probability

of no one in the waiting line the subscript "1" is used, and to

indicate the probability of one person in the waiting line the

subscript "2" is used.  For vectors and matrices having no
element with a "0" subscript this adjustment is not necessary.

Variables in the computer programs with their corresponding
symbols inthetextareasfollows:

Fortran IV

EAR
EL
ELP
PK
VO
VI
VJ

text

A
L
L'
Pk
v<?
v;

The Fortran IV symbols are followed by subscripts written in

parenthesis, e.g., PK(I).  These subscripts refer to the number
in line when used with VI and VJ.  For example, VI(4) is the

probability that 3 (add "+1" to convert to Fortran IV) persons
are in the queuing system at the beginning of interval n.  When

used with PK, the subscripts refer to the number of arrivals that
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occur during interval n.  For example, PK(ll) is the probability

that 10 arrivals occur during interval n.  The subscripts with

EL, ELP, S, and W refer to the interval number.  For example,

EL(50) is the expected line length at the beginning of interval

50.

The variables A, B, C, 0, and F have no direct significance

in queuing theory, but are used as aids in the calculation pro¬

cess.  The variable FACT(I) represents a vector of factorials

used in calculating probabilities.

Equations 4.3, 4.5, and 4.6 are theoretically to be applied

through j - oo.      For the purpose of calculation, an upper limit of

j = 70 is assumed.  If the line length is greater than 70, anyone

arriving will decide not to join the line because of its great

length.  A new variable, P70(K), is introduced to be consistent

with the limit of 70 being placed on j.  P70(K) is the probabili¬

ty that the number of arrivals occurring during a service inter¬

val is equal to or greater than the number that would cause 70

persons to be in line at the end of the interval.  vj(n) and

vj'(n) for j = 70 are negligible and the resulting L(n) and L'(n)

values are accurate unless the waiting line is extremely long.

Some variables are unique to the small population model.

SASP3, SASP4, SASP5, and SASP6 are the probabilities that 0

departures occur in the third, fourth, fifth, and sixth inter¬

vals.  For each of these intervals, there is more than one way

that 0 departures will occur.  For example, the probvability that

0 departures will occur in the third interval is the probability

that 0 arrivals occur in the first interval and 0 arrivals occur

in the second, plus the probability that 1 arrival occurs in the

9 4
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first and 0 in the second.  In the computer program, these latter

probabilities are given the symbol ASP_ with a subscript to

distinguish them from each other.  For example, SASP3 the sum of

the ASPS's.  The subscripts associated with each of the ASP's

represent the number of arrivals (plus "+1" to convert to Fortran

IV) in the order in which they occur.  For example, ASP5(3,1,2)

is the probability that 2 arrivals occur in the first interval, 0

in the second, and 1 in the third.  Notice that the number of

subscripts required will always be 2 less than the interval

number of concern.  In the case of ASPS, the number of subscripts

required is 3.  This is because the number of arrivals in the

fourth interval is always 0 and the number of arrivals in the

fifth interval is irrelevant.

9i.
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ANNEX C.l.    Large-population model for determining v^(n)
and L'(n) when lambda and tau are constant
and the standpost has a single tap.  See sec¬
tion IV.A for details of the scenario being
modeled.

The sizes of vectors are established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNCl.TXT" is opened for storage
of results .

DIMENSION PK(70),P70(71),VI(71),VJ(71),V0(241),EL(241),
&ELP(241),FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, VO, EL, ELP,
&PK, P7 0, VI, VJ
0PEN(1,FILE='ANNCl.TXT ' )

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.
F = 1.0
DO 001 1 = 1 ,70
F=REAL(I)*F

001 FACT(I)=F

Column headings are written in file ANNCl.TXT.

WRITE(1,205)
205 F0RMAT(2X,'n' ,2X,'v (n) ' , 3X , ' L ' ' ( n ) ' , 9X,'n ' , 2X , ' v (n)',

&3X, 'L' '(n) ')

The PDF of the number in line at the beginning of the
first period is established.  No one is at the standpost
at this time.  Tau and lambda are assigned their values.
VI(1)=1.0
DO 002 1=2,71

002 VI(I ) = 0.0
TAU=0.05
EAR=20

The PK and P70 vectors are calculated.

004 PK(1)=1.0/EXP(EAR*TAU)
A=PK(1)
P70(2)=1.0-A
DO 005 1=2,70
PK(I) = (EAR*TAU)**REAL(I-1)/(FACT(I-1)*EXP(EAR*TAU) )
A=PK(I)+A
K=I+1

005 P70(K)=1.0-A

n is set equal to 1 and increases by 1 for each service
period.  The following 5-step process is applied to each
value of n to determine v^ (n)   and L'(n).

3«
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N = l
003   N=N+1

Step 1: VJ(1) is calculated.

VJ(1)=VI(1)*PK(1)+VI(2)*PK(1)

Step 2: VJ(2) through VJ(70) are calculated.
DO Oil 0=2,70
B = VI (1)*PK(J)
DO 010 1=2,J+1
K=J-I+2

010 B = VI (I)*PK(K)+B
VJ(J)=B

Oil CONTINUE

Step 3: VJ(71) is calculated.

C=VI(1)*P70(71)
DO 015 1=2,71
K=71-I+2

015 C=VI(I)*P70(K)+C
VJ(71)=C

Step 4: VgCn), L(n) and L'(N) are determined for the
beginningofperiodn.

V0(N)=VJ(1)
EL(N)=0.0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N)=EL(N)/(1.0-VJ(1))

Step 5:  VJ's become VI's so that the 5-step process may
be repeated.

DO 030 1=1,71
030 VI(I)=VJ(I)

IF(N.LT.241)G0T0 003
Results are written in file "ANNC1.TXT".

V0(l)=1.0
ELP(1)=0.0
WRITE(1,210)(I,V0(I),ELP(I),I=1,241)

210 F0RMAT(I3,2X,F5.3,3X,F6.3,7X,I3,2X,F5.3,3X,F6.3)
END
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ANNEX C.2.   This is a large-population model with constant
rho values, two taps, and service time constant
among users.  The expected number of service
intervals customers spend at the standpost is
calculated as a function of the interval number

The sizes of vectors are established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNC2.TXT" is opened for storage
ofresults.

DIMENSION PK(70) ,P70(71),VI(71),VJ(73),S(400),FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, S, PK, P70,

&VI, VJ, RHO
0PEN(1,FILE='ANNC2.TXT' )

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.

F = 1 . 0

DO 001 1=1,70
F = REAL(I )*F

001 FACT(I)=F

The program is run for rho values starting at 0.20.  The
rho value increases by increments of 0.1 until reaching 1.0
(See the second to last line of the program.)

RH0=0.1
100 RH0=RH0+0.1

The rho value and column headings are written in "ANNC2.TXT"

WRITE(1,201)RH0
201 F0RMAT(27X, 'RHO=' ,F3.1)

WRITE(1,205)
205 F0RMAT(2X, 'n' ,2X, 'S(n)',7X,'n' ,2X,'S(n) ' ,7X,'n' ,2

&X,'S(n)',7X,'n',2X,'S(n)',7X,'n',2X,'S(n)')

The probability distribution of the number at the standpost
at the beginning of the first interval is established.  No
one is at the standpost at this time.

VI(1)=1.0
DO 002 1=2,71    ͣ

002 VI(I)=0.0

The PK and P70 vectors are calculated.

004 PK(1)=1.0/EXP(2.0*RH0)
A = P K (1)
P70(2)=1.0-A
DO 005 1=2,70
PK(I) = (2.0*RHO)**REAL(I-1)/(FACT(I-1)*EXP(2.0*RHO) )
A=PK(I)+A
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K = I + 1

005 P70(K)=1.0-A

The expected number of service intervals customers spend at
the standpost is calculated at the beginning of each of 400
service intervals.  This process involves 5 steps, as follows

DO 040 N=l,400

Step 1: VJ(1) and VJ(2) are calculated.

VJ(1)-(VI(1)+VI(2)+VI(3))*PK(1)
VJ(2)=(VI(1)+VI(2)+VI(3))*PK(2)+VI(4)*PK(1)

Step 2: VJ(3) through VJ(69) are calculated.

DO Oil J=3,6 9
B=(VI(1)+VI(2)+VI(3))*PK(J)
DO 010 I =4,J+2
K=J-I+3

010 B = VI (I)*PK(K)+B       .       .
VJ(J)=B

Oil CONTINUE

Step 3: VJ(70) and VJ(71) are calculated.

VJ(70)-(VI(1)+VI(2)+VI(3))*PK(70)
DO 013 1=4,71
K=73-I

013 VJ(70)=VI(I)*PK(K)+VJ(70)
VJ(71)=(VI(1)+VI(2))*P70(71)
DO 015 1=3,71
K=74-I

015 VJ(71)=VI(I)*P70(K)+VJ(71)

Step 4: S(N), the expected number of service period spent
at the standpost at the beginning of the nth interval is
calculated.

S(N)=(VJ(2)+VJ(3)+VJ(4))*1.0
DO 020 1=2,35
J = 2*I
DO 020 K=J,J+1

020 S(N)=S(N)+VJ(K)*REAL(J)/2.0
S(N)=S(N)/(1.0-VJ(1))

Step 5:  VJ's at the end of the nth interval become VI's
for the beginning of interval n+l so that the 5-step
process may be repeated for interval n+l.

DO 030 1=1,71
030 VI(I )=VJ(I)
040 CONTINUE

Results are written in file "ANNC2.TXT".
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WRITE(1,210)(I,S(I),1=1,10)
WRITE(1,210)(10*I,S(10*I),I=1,40)

210 F0RMAT(I3,1X,F6.3,4X,I3,1X,F6.3,4X,I3,1X,F6.3,4X,I3,1X,
&F6.3,4X,I3,1X,F6.3)

If rho is less than 1.0, then rho is increased by 0.1 and
the entire process is repeated.

IF(RH0.LT.1.0)G0T0 100
END
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ANNEX C.3.   This is a large-population model with constant
rho values, three taps, and the service time
constant among users.  The expected number of
service intervals customers spend at the stand-
post is calculated at the beginning of each
interval.

The sizes of vectors are established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNC3.TXT" is opened for storage
of results.

DIMENSION PK(70) ,P70(71),VI(71) ,VJ(71),S(300) ,FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, S, PK, P70,

&VI , VJ, RHO
0PEN(1,FILE= 'ANNC3.TXT')

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.

F-l.O

DO 001 1=1 ,70
F=REAL(I)*F

001 FACT(I)=F

The program is run for rho values starting at 0.20.  The
rho value increases by increments of 0.1 until reaching
1.0.  (See the second to last line of the program.)

RH0=0.1
100 RH0=RH0+0.1

The rho value and column headings are stored in "ANNC3.TXT"

WRITE(1,201)RH0
201 F0RMAT(27X, 'RHO=' ,F3.1)

WRITE(1,205)
20 5 FORMAT(2X,'n',2X,'L''(n)',6X,'n',2X,'L''(n)',6X,'n',2

&X,'L" (n) ' ,6X,'n',2X,'L' • (n) ' ,6X,'n',2X,'L' ' (n)')

The probability distribution of the number at the standpost
at the beginning of the first interval is established.  No
one is at the standpost atthis time.

VI(1)=1.0
DO 002 1=2,71

002 VI(I)=0.0

The PK and P70 vectors are calculated.

004 PK(1)=1.0/EXP(3.0*RHO)
A=PK(1)
P70(2)-1.0-A
DO 005 1=2,70
PK(I)=(3.O*RHO)**REAL(I-l)/(FACT(I-l)*EXP(3.0*RH0))

1 0  I
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A=PK(I)+A
K = I+1

005 P70(K)=1.0-A

The expected number of service intervals customer spend at
the standpost is calculated at the beginning of each of 300
intervals.  This process involves 5 steps, as foliov/s:
DO 040 N-1,300

Step 1: VJ(1), VJ(2), and VJ(3) are calculated.
VJ(1)=(VI(1)+VI(2)+VI(3)+VI(4))*PK(1)
VJ(2)=(VI(1)+VI(2)+VI(3)+VI(4))*PK(2)+VI(5)*PK(1)
VJ(3)=(VI(1)+VI(2)+VI(3)+VI(4))*PK(3)+VI(5)*PK(2)+VI(6)*PK(1)

Step 2: VJ(4) through VJ(68) are calculated.
DO Oil J=4,68
B=(VI(1)+VI(2)+VI(3))*PK(J)
DO 010 I =4,J+3
K=J-I+4

010 B=VI(I)*PK(K)+B
VJ(J ) = B

Oil CONTINUE

Step 3: VJ(69), VJ(70), AND VJ(71) are calculated.

VJ(69)=(VI(1)+VI(2)+VI(3)+VI(4))*PK(69)
DO 012 1=5,71
K=73-I

012 VJ(69)=VI(I)*PK(K)+VJ(69)
VJ(70)=(VI(1)+VI(2)+VI(3)+VI(4))*PK(70)
DO 013 1=5,71
K=74-I

013 VJ(70)=VI(I)*PK(K)+VJ(70)
C=(VI(1)+VI(2)+VI(3))*P70(71)
DO 015 1=4,71
K=7 5-I

015 C=VI(I)*P70(K)+C      .
VJ(71)=C

Step 4: S(N), the expected number of service periods spent
at the standpost at the beginning of the nth interval is
calculated.

S(N)=(VJ(2)+VJ(3)+VJ(4))*1.0
DO 020 1=2,24
J=3*I-1
DO 020 K=J,J+2

020 S(N)=S(N)+VJ(K)*REAL(J+l)/3.0
S(N)=S(N)/(1.0-VJ(1))

Step 5:  VJ's at the end of the nth interval become VI's
for the beginning of interval n+1 so that the 5-step
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process may be repeated for interval n+1.

DO 030 I-l ,71
030 VI (I) = VJ(I)
040 CONTINUE

Results are written in file "ANNC3.TXT".

WRITE(1,210)(I,S(I),1=1,10)
WRITE(1,210)(10*1,5(10*1),1=1,30)

210 F0RMAT(I3,1X,F6.3,4X,I3,1X,F6.3,4X,I3,1X,F6.3,4X,I3,1X,
&F6.3,4X,I3,1X,F6.3)

If rho is less than 1.0, then rho is increased by 0.1 and
theentireprocess is repeated.

IF(RH0.LT.1.0)GOT0 100
END
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ANNEX C.4.     This is a large-population model for deter¬
mining L'(n) when lambda varies with time,
the standpost has a single tap, and the
service time is constant among users.  See
section IV.B for details of the scenario
being modeled.

The sizes of vectors are established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNC4.TXT" is opened for storage
of results.

DIMENSION PK(70) ,P70(71) ,VI (71) , VJ(71),EL(241),ELP(241),
&FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP,

&PK, P70, VI, VJ
0PEN(1,FILE= 'ANNC4.TXT')

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.
F = 1.0
DO 001 1 = 1,70
F=REAL(I)*F

001 FACT(I)=F . ^

Columnheadingsarewritten.

WRITE(1,205)
205   F0RMAT(2X,'n' ,2X,'L''(n)',5X,'n',2X, 'L' ' (n)',

&5X,'n',2X, -L' '(n) ' ,5X, 'n' ,2X, 'L' ' (n) ' ,5X,'n',2X, 'L"(n) ')
The PDF of the number at the standpost at the beginning of the
first period is established.  No one is at the standpost
atthistime.  Tauisassigneditsvalue.

VI(1)=1.0
DO 002 1=2,71

002 VI(I)=0.0
TAU=0.05

Lambda is determined for period n.

N = l
003 IF(N.GT.40)G0T0 401

EAR=0.85*REAL(N)
GOTO 004

401 IF(N.GT.120)G0T0 402
EAR=46.5-0.3125*REAL(N)
GOTO 004

402 IF(N.GT.200)G0T0 403
EAR=0.3125*REAL(N)-28.5
GOTO 004

403 EAR=204.0-0.85*REAL(N)
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The PK and P70 vectors are calculated.

004 PK(1)=1.0/EXP(EAR*TAU)
A = P K (1)
P70(2)=1.0-A
DO 005 1=2,70
PK(I ) = (EAR*TAU)**REAL(I-1)/(FACT(I-1)*EXP(EAR*TAU))
A=PK(I)+A
K = I + 1

005 P70(K)=1.0-A

The expected line length given that the line is not empty is
calculated at the beginning of each interval.  This process
involves5steps,asfollows:

N = N + 1

Step 1: VJ(1) is calculated.

VJ(1)=VI(1)*PK(1)+VI(2)*PK(1)

Step 2: VJ(2) through VJ(70) are calculated.

DO Oil J=2,70
B=VI(1)*PK(J)
DO 010 1=2,J + 1
K=J-I+2

010 B=VI(I)*PK(K)+B
VJ(J)=B

Oil CONTINUE

Step 3: VJ(71) is calculated.

C=VI(1)*P70(71)
DO 015 1=2,71
K=71-I+2

015 C=VI(I)*P70(K)+C
VJ(71)=C

Step 4: L(n) and L'(n) are calculated for the beginning of
period n.

EL(N)=0.0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N)=EL(N)/(1.0-VJ(1))

Step 5:  VJ's become VI's so that the 5-step process may
be repeated.

DO 0 30 1=1,71
030 VI(I)=VJ(I)

IF(N.LT.241)G0T0 003

Results are written in file "ANNC4.TXT".

1 J5
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210

ELP(1)=0.0
WRITE(1,210)(I,ELP(I) ,1 = 1 ,241)
F0RMAT(I3,F7.2,I6,F7.2,I6,F7.2
END

I6,F7.2,I6,F7.2)
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ANNEX C.5.  Large-population model for determining W(n)
when lambda varies with time, the standpost
has a single tap, and the service time is
constant among users.  See section VII.C for
details of the scenario being modeled.

The sizes of vectors are established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNC5.TXT" is opened for storage
of results.

DIMENSION PK(70),P70(71),VI(71),VJ(71),EL(241),ELP(241),
&W(241),FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, W,

&PK, P70, VI, VJ
0PEN(1,FILE='ANNC5.TXT')

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.

F = 1.0
DO 001 1=1 ,70
F=REAL(I)*F

001 FACT(I)=F

Column headings are written.

WRITE(1,205)
205 FORMAT(2X,'n',3X,'W(n)',5X,'n',3X,'W(n)',5X,'n',3X,'W(n)',

&5X, 'n ' ,3X,'W(n)',5X, 'n ' ,3X, 'WCn)')

The PDF of the number at the standpost at the beginning of the
first period is established.  No one is at the standpost
at this time.  Tau is assigned its value.

VI(1)=1.0
DO 002 1=2,71

002 VI(I ) = 0.0
TAU=0.05

Lambda is determined for period n.

N = l
003 IF(N.GT.40)G0T0 401

EAR=0.5*REAL(N) '
GOTO 004

401 IF(N.GT.120)G0T0 402
EAR=24.0-0.1*REAL(N)
GOTO 004

402 IF(N.GT.200)G0T0 403
EAR=0.1*REAL(N)
GOTO 004

403 EAR=120.0-0.5*REAL(N)

The PK and P70 vectors are calculated.
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004 PK(1)=1.0/EXP(EAR*TAU)
A=PK(1)
P70(2)=1.0-A
DO 005 1=2,70
PK(I ) = (EAR*TAU)**REAL(I-1)/(FACT(I-1)*EXP(EAR*TAU))
A=PK(I)+A
K = I+1

005 P70(K)=1.0-A

The expected waiting time is calculated at the beginning of
each interval.  This process involves 5 steps, as follows:

N = N + 1

Step 1: VJ(1) is calculated.

VJ(1)=VI(1)*PK(1)+VI(2)*PK(1)

Step 2: VJ(2) through VJ(70) are calculated.
DO Oil J=2,70
B=VI(1)*PK(J)
DO 010 1=2,J+1
K=J-I+2

010 B=VI(I)*PK(K)+B
VJ(J )=B

Oil CONTINUE

Step 3: VJ(71) is calculated.

C=VI(1)*P70(71)
DO 015 1=2,71
K=71-I+2

015 C=VI(I)*P70(K)+C
VJ(71)=C

Step 4: L(n), L'(n), and W(n) are calculated for the beginning
of period n.  A factor of 60 is used to express W(n) in
minutes.

EL(N)=0.0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N)=EL(N)/(1.0-VJ(1))
W(N)=60.0*TAU*ELP(N)

Step 5:  VJ's become VI's so that the 5-step process may
berepeatedforthenext interval.

DO 030 1=1,71
030 VI( I)=VJ(I)

IF(N.LT.241)G0T0 003

Results are written in file "ANNC5.TXT".
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210

W(1)=0.0
WRITE(1,210)(I
F0RMAT(I3,F7.2
END

W(I),I=1,241)
I6,F7.2,I6,F7 2,I6,F7.2,I6,F7.2)
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ANNEX C.6.   Large-population model for determining S(n)
when lambda varies with time, the standpost
has two taps, and the service time is con¬
stant among users.  See section IV.C for
details of the scenario being modeled.

The sizes of vectors are   established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNC6.TXT" is opened for storage
of results .

DIMENSION PK(70) ,P70(71),VI(71),VJ(71),EL(185),ELP(185) ,
&FACT(70),S(241)
DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, S,

&PK, P70, VI, VJ
0PEN(1,FILE='ANNC6.TXT ' )

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.

F = 1.0
DO 001 1=1,70
F=REAL(I)*F

001 FACT(I)=F

Column headings are written.

WRITE(1,205)
2 05 FORMAT(2X, ͣn',3X,'W(n)',5X,'n',3X,'W(n)',5X,'n',3X,'W(n)',

&5X,'n ' ,3X, 'W(n)',5X,'n',3X,'W(n) ')

The PDF of the number in line at the beginning of the
first period is established.  No one is at the standpost
at this time.  Tau is assigned its value.

VI(1)=1.0
DO 002 1=2,71

002 VI(I)=0.0
TAU=0.06478

Lambda is determined for period n.

N = 1
003 IF(N.GT.31)G0T0 401

EAR=1.1014*REAL(N)
GOTO 004

401 IF(N.GT.93)G0TO 402
EAR=46.5-0.4049*REAL(N)
GOTO 004

402 IF(N.GT.154)G0T0 403
EAR=0.4049*REAL(N)-28.5
GOTO 004

403 EAR=204.0-1.1014*REAL(N)

The PK and P70 vectors are calculated for period n.
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c
c
c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c

c
c
c

004 PK(1)=1.0/EXP(EAR*TAU)
A=PK(1)
P70(2)=1.0-A
DO 005 1=2,70
PK(I)-(EAR*TAU)**REAL(I-1)/(FACT(I-1)*EXP(EAR*TAU))
A=PK(I)+A

005 P70(K)=1.0-A

The expected number of service intervals customers spend at
the standpost is calculated at the beginning of each interval
This process involves 5 steps, as follows:

N = N + 1

Step 1: VJ(1) and VJ(2) are calculated.

VJ(1)=(VI(1)+VI(2)+VI(3))*PK(1)
VJ(2)=(VI(1)+VI(2)+VI(3))*PK(2)+VI(4)*PK(1)

Step 2: VJ(3) through VJ(69) are calculated.
DO Oil J=3,69
B=(VI(1)+VI(2)+VI(3))*PK(J)
DO 010 1=4,J + 2
K=J-I+3

010 B = VI (I)*PK(K)+B
VJ(J)=B

Oil CONTINUE

Step 3: VJ(70) and VJ(71) are calculated.

VJ(70)=(VI(1)+VI(2)+VI(3))*PK(70)
DO 013 1=4,71
K=73-I

013 VJ(70)=VI(I)*PK(K)+VJ(70)
VJ(71)=(VI(1)+VI(2))*P70(71)
DO 015 1=3,71
K=74-I

015 VJ(71)=VI(I)*P70(K)+VJ(71)

Step 4A: L(n) and L'(n) are calculated for the beginning of
period n.

EL (N) =0.0
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N)=EL(N)/(1.0-VJ(1))

Step 48: S(n) is calculated for the beginning of period n.

A=(VJ(2)+VJ(3))*1.0
DO 021 1=2,35
J = 2*I

1 1 1
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c
c
c
c

c
c
c

DO 021 K=J,J+1
021 A=A+VJ(K)*REAL(J)/2.0

S(N)=A/(1.0-VJ(1))

Step 5:  VJ's become VI's so that the 5-step process may
be repeated for the next service interval.

DO 030 1 = 1 ,71
030 VI(I)=VJ(I)

IF(N.LT.185)G0T0 003

Results are written in file "ANNC6.TXT".

ELP(1)=0.0  .....
S(1)=0.0
WRITE(1,210)(I,ELP(I),S(I),I=1,185)

210 FORMAT(I3,F7.3,I6,F7.3,I6,F7.3,I6,F7.3,I6,F7.3)
END

112

NEATPAGEINFO:id=3C6ED3C1-2CAE-43F2-A1E1-3C5D2218B23C



c
c
c
c
c
c
c
c
c
c
c

c
c
c
c

c
c
c

c
c
c
c
c

c
c
c

c
c

ANNEX  C.7.    Large-population model for determining W(n)
when lambda varies with time, the standpost
has two taps, and the service time is con¬
stant among users.  See section VII.E for
details of the scenario being modeled.

The sizes of vectors are established.  Variables are
"DOUBLE PRECISION" so that high factorials can be
calculated.  The file "ANNC7.TXT" is opened for storage
of results.

DIMENSION PK(70),P70(71),VI(71),VJ(71),EL(182),ELP(182),
&FACT(70) ,W( 182)
DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, W,
&PK, P70, VI, VJ
0PEN(1,FILE='ANNC7.TXT')

Factorials are calculated.  These factorials will be used
for calculating elements of the PK vector.
F = 1.0
DO 001 1-1,70
F=REAL(I)*F

001 FACT(I)=F

Column headings are written.

WRITE(1,205)
2 05 FORMAT(2X,'n',3X,'W(n)',5X,'n',3X,'W(n)',5X,'n',3X,'W(n)',

&5X, "n" ,3X,'W(n)',5X,'n',3X,'W(n) ' )

The PDF of the number in line at the beginning of the
first period is established.  No one is at the standpost
at this time.  Tau is assigned its value.

VI (1) = 1.0
DO 002 1=2,71

002 VI(I)=0.0
TAU-0.0658

Lambda is determined for period n.

N = l
003 IF(N.GT.29)G0T0 401

EAR=1.0*REAL(N)
GOTO 004

401 IF(N.GT.91)G0T0 402
EAR=36.5-0.201*REAL(N)
GOTO 004

402 IF(N.GT.152)G0T0 403
EAR=0.201*REAL(N)-0.1
GOTO 004

403 EAR=182.3-1.0*REAL(N)

The PK and P70 vectors are calculated for period n.
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c
c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c

c
c
c

004 PK(1)=1.0/EXP(EAR*TAU)
A=PK(1)
P70(2)=1.0-A
DO 005 1=2,70
PK(I)=(EAR*TAU)**REAL(I-1)/(FACT(I-1)*EXP(EAR*TAU))
A=PK(I)+A
K = I+1

005 P70(K)-1.0-A

The expected waiting time is calculated at the beginning of
each interval.  This process involves 5 steps, as follows:

N = N + 1

Step 1: VJ(1) and VJ(2) are calculated.

VJ(1)=(VI(1)+VI(2)+VI(3))*PK(1)
VJ(2)=(VI(1)+VI(2)+VI(3))*PK(2)+VI(4)*PK(1)

Step 2: VJ(3) through VJ(69) are calculated.

DO Oil J=3,69
B-(VI(1)+VI(2)+VI(3))*PK(J)
DO 010 1=4,J+2
K=J-I+3

010 B=VI(I)*PK(K)+B
VJ(J )=B

Oil CONTINUE

Step 3: VJ(70) and VJ(71) are calculated.

VJ(70)=(VI(1)+VI(2)+VI(3))*PK(70)
DO 013 1=4,71
K=73-I

013 VJ(70)=VI(I)*PK(K)+VJ(70)
VJ(71)=(VI(1)+VI(2))*P70(71)
DO 015 1=3,71
K=74-I

015 VJ(71)=VI(I)*P70(K)+VJ(71)

Step 4A: L(n) and L'(n) are calculated for the beginning of
p e r i 0 d n .

EL(N)=0.0        '
DO 020 J=2,71

020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
ELP(N)=EL(N)/(1.0-VJ(1))

Step 4B: W(n) is calculated for the beginning of period n.

A=(VJ(2)+VJ(3))*1.0
DO 021 1=2,35
J = 2*I
DO 021 K=J,J+1
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c
c
c
c

c
c
c

021 A=A+VJ(K)*REAL(J)/2.0
W(N)=60.0*TAU*A/(1.0-VJ(1))

Step 5:  VJ's become VI's so that the 5-step process may
be repeated for the next interval.

DO 030 1=1,71
030 VI(I)=VJ(I)

IF(N.LT.182)G0T0 003

Results are written in file "ANNC7.TXT".

W(l )=0.0
WRITE(1,210)(I,W(I),1-1,182)

210 F0RMAT(I3,F7.2,I6,F7.2,I6,F7.2,I6,F7.2,I6,F7.2)
END
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c
c

c
c

c
c
c
c
c
c

c
c

c
c

c
c
c
c

c

c
c

c
c

c
c

c
c

c
c
c
c

ANNEX C.8.   This is a small-population model with constant
rho values, a single tap, and service time con¬
stant among users.  The probabilities that no
customers are served during intervals 2, 3, 4,
5, and 6 are calculated for values of rho and
population size.  Results are in Annex C.9.

The sizes of matrices are established.  Variables are "DOUBLE
PRECISION" so that high factorials can be calculated.  The file
"ANNC9.TXT" is opened for storage of results.

DIMENSION ASP3(2),ASP4(3,2),ASP5(4,3,2),ASP6(5,4,3,2),
&FACT(51)
DOUBLE PRECISION ASP2,ASP 3,ASP4,ASP5,ASP6,FACT,
&F,SASP2,SASP3,SASP4,SASP5,SASP6
0PEN(1,FILE='ANNC9.TXT')

Factorials are   calculated.  These factorials will be used in
calculatingASP's.

F = 1.0

DO 001 1=1,51
F=REAL(I)*F

001 FACT(I ) = F

The program is run for rho values starting at 0.10 and increas¬
ing in increments of 0.10.  The population size starts at 10
andincreasesinincrementsofB.

RHO=0.0
300 RH0=RH0+0.10

N = 5
400 N=N+5

A=RHO/REAL(N)

The probability that no customers are served during the
second interval is calculated.

ASP2=FACT(N)*REAL(N+1)/(FACT(N+1))*((1.0-A)**REAL(N))
SASP2=ASP2

The probability that no customers are served during the
third interval interval is calculated.

SASP3=0.0

DO 030 1=1,2
ASP3(I)=FACT(N)*REAL(I)*REAL(N + 2-I)/(FACT(I)*FACT ( N + 2-I ))*
&(A**REAL(I-1))*((1.0-2.0*A)**REAL(N+1-I))

030 SASP3=ASP3(I)+SASP3

The probability that no customers are served during the
fourth intervaliscalculated.

SASP4=0.0

1 16
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c
c
c
c

DO  040  J-1,2
1=1
ASP4(I,J)=FACT(N)*REAL(I)*REAL(J)*REAL(N+3-I-J)/

&(FACT(I )*FACT(J)*FACT(N + 3-I-J) )*
&(A**REAL(I+J-2))*((1.0-3.0*A)**REAL(N+2-I-J))

040 SASP4=ASP4(1,J)+SASP4
DO   041   1=2,3
DO   041   J=l,4-I
ASP4(I,J)=FACT(N)*REAL(I)*REAL(J)*REAL(N+3-I-J)/

&(FACT(I)*FACT(J)*FACT(N+3-I-J))*
&(A**REAL(I+J-2))*((1.0-3.0*A)**REAL(N+2-I-J))

041 SASP4=ASP4(I,J)+SASP4

The probability that no customers are served during the
fifth interval is calculated.

SASP 5 = 0.0

05

DO 050 K=l,2
1=1
J = l

ASP5( I ,J,K)-FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(N + 4-I-J-K)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(N+4-I-J-K))*
&(A**REAL(I+J+K-3))*((1.0-4.0*A)**REAL(N+3-I-J-K))

0 SASP5=ASP5(1,1,K)+SASP5

05

DO 051 J=2,3
DO 051 K=l,4-J
1 = 1
ASP5(I ,J,K)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL{N + 4-I-J-K)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(N+4-I-J-K))*
&(A**REAL(I+J+K-3))*((1.0-4.0*A)**REAL(N+3-I-J-K))
1 SASP5=ASP5(1,J,K)+SASP5

05

DO 052 K=l,2
1=2
J = l
ASP5(I,J,K)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(N+4-I-J-K)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(N+4-I-J-K))*
&(A**REAL(I+J+K-3))*((!.0-4.0*A)**REAL(N+3-I-J-K))
2 SASP5=ASP5(2,1,K)+SASP5

05

DO 053 J-2,3
DO 053 K=l,4-J
1=2
ASP5(I,J,K)=FACT(N)*REAL(I)*REAL(J)*REAL(K)
&(FACT(I)*FACT(J)*FACT(K)*FACT(N+4-I-J-K))*
&(A**REAL(I+J+K-3))*((1.0-4.0*A)**REAL(N+3-I-J
3 SASP5=ASP5(2,J,K)+SASP5

REAL(N+4-I-J-K)/

K))

000541=3,4
DO 054 J = l ,5-1
DO 054 K = l ,6-I-J
ASP5(I,J,K)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(N+4-I-J-K)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(N+4-I-J-K))*
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c
c
c
c

&(A**REAL(I+J+K-3))*((1.0-4.0*A)**REAL(N+3-I-J-K))
054 SASP5=ASP5(I,J,K)+SASP5

The probability that no customers are served during the
sixth interval is calculated.

SASP6=0.0

0

DO 050 L-1,2
1 = 1
J = l
K = l
ASP

&REA
&(FA
&(A*

60 SAS

*REAL(I)*REAL(J)*REAL(K)*REAL(L)*6(1 ,J ,K,L)=FACT(
L(N+5-I-J-K-L)/
CT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J
*REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I
P6=ASP6(1,1,1,L)+SASP6

-K-L))*
-J-K-L))

0

DO
DO
1 = 1
J = l
ASP

&REA
&(FA
&(A*

61 SAS

061 K=2,3
061 L=l,4-K

•REAL(I)*REAL(J)*REAL(K)*REAL(L)*6( I,J,K,L)=FACT(
L(N+5-I-J-K-L)/
CT(I )*FACT(J)*FACT(K)*FACT(L)*FACT(N + 5-I-J
*REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I
P6=ASP6(1,1,K,L)+SASP6

K-L) )*
•J-K-L))

0

DO 062 L=l,2
1 = 1
J = 2
K = l
ASP

&REA
&(FA
&(A*

62 SAS

6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
L(N+5-I-J-K-L)/
CT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J'
*REAL(I+J+K+L-4))*((1•0-5.0*A)**REAL(N+4-I
P6=ASP6(1,2,1,L)+SASP6

ͣK-L))*
•J-K-D)

0

DO 063 K=2,3
DO 063 L = l ,4-K
1=1
J = 2
ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*

&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

63 SASP6=ASP6(1,2,K,L)+SASP6

DO 064
DO 064
DO 064
1=1
ASP6(I

J = 3,4
K = l,5-
L = l,6-

J,K L)=FACT
&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L

N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*

*FACT(N+5-I-J-K-L))*
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&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))
064 SASP6=ASP6(1,J,K,L)+SASP6

DO 065 L=l,2
1=2
J = l
K = l
ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*

&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

065 SASP6=ASP6(2,1 ,1 ,l-)+SASP6

DO 066 K=2,3
DO 066 L=l,4-K
1 = 2
J = l
ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*

&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

066 SASP6=ASP6(2,1,K,L)+SASP6

DO 067 L=l,2
1=2
J = 2
K = l

ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

067 SASP6=ASP6(2,2,1,L)+SASP6

DO 068 K=2,3
DO 068 L=l,4-K
1=2
J = 2
ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
&REAL(N+5-I-J-K-L)/
&(FACT(I )*FACT(J)*FACT(K)*FACT(L)*FACT(N + 5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

068 SASP6=ASP6(2,2,K,L)+SASP6

DO 069 J=3,4
DO 069 K=l,5-J
DO 069 L=l,5-J-K
1=2
ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

069 SASP6=ASP6(2,J,K,L)+SASP6

DO 610
1 = 3

L = l,2

US
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J = l

K = l

ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)
&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J

10 SASP6=ASP6(3,1,1,L)+SASP6

L))*
K-L))

DO 6

1=3
J = l
K = 2
ASP6

&REAL

&(FAC
&(A**

11 SASP

11 L=l,2

(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
(N+5-I-J-K-L)/
T(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))
6=ASP5(3,1,2,L)+SASP6

1=3
J = l
K = 3

L-1

ASP6(
&REAL(
&(FACT
&(A**R
SASP6

I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
N+5-I-J-K-L)/
(I)*FACT(J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
EAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))
=ASP6(3,1,3,1)+SASP6

C

C
c

DO 612 J=2,3
DO 612 K=l,4-J
DO 612 L = l ,5-J-K
1=3

ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
&REAL(N+5-I-J-K-L)/
&(FACT(I)*FACT{J)*FACT(K)*FACT(L)*FACT(N+5-I-J-K-L))*
&(A**REAL(I+J+K+L-4))*((1.0-5.0*A)**REAL(N+4-I-J-K-L))

12 SASP6=ASP6{3,J,K,L)+SASP6

5

6-1
7-I-J

8-I-J-K

ASP6(I,J,K,L)=FACT(N)*REAL(I)*REAL(J)*REAL(K)*REAL(L)*
&REAL(N+5-I-J-K-L)/
&(FACT(I )*FACT(J)*FACT(K)*FACT(L)*FACT(N + 5-I-J-K-L))*
&(A**REAL(I + J+K + L-4))*((1.0-5. 0*A)**REAL(N + 4-I-J-K-L))

513 SASP6=ASP6(I,J,K,L)+SASP6

Results are written in file "ANNC9.TXT"

WRITE(1,099)RH0,M
099 F0RMAT('RH0=',F3.1,5X,'P0PULATI0N=',12)

WRITE(1,100)SASP2,SASP3,SASP4,SASP5,SASP6
100 FORMAT( 'SASP2=' ,F5.4,3X,'SASP3=' ,F5.4,3X,'SASP4=' ,F5.4,3X

&'SASP5=',F5.4,3X,'SASP6=',F5.4)

DO 613 1 = 4

DO 613 J = l

DO 613 K=l

DO 613 L = l
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c
c
c

c

c

If the population is less than 50 or rho is less than
1.0, then the process is repeated for a larger population
and/or a different rho value.

IF(N.LT.50)G0T0 400
IF(RH0.LT.1.0)G0T0 300
CONTINUE
END
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ANNEX C.9. Results of small-population model with constant rho,
single tap, and service time constant among users.
(Computer program is in Annex C.8)

RHO= .1

SASP2=.9044

RHO =
SASP2^

RHO =
SASP2:

RHO =

SASP2^

1

9045

P0PULATI0N=10

SASP3=.9004   SASP4=.9001

P0PULATI0N=15
SASP3=.9005   SASP4=.9001

SASP5=.9000   SASP6=.9000

SASP5=.9000   SASP6=.9000

1
9046

1

.9047

1

POPULATION-20
SASP3=.9005 SASP4=.9001   SASP5=.9000   SASP6=.9000

RH0 =

SASP2=.9047

RHO= ,

SASP2^

RHO= ,

SASP2 =

RHO- .

SASP2 =

RHO= ,

SASP2 =

RHO= .

SASP2=

RHO= ͣ
SASP2 =

RHO =

SASP2:

RHO =

SASP2 =

RHO =

SASP2 =

1

.9047

1

.9047

1

.9047

1

.9047

2

.8171

8176

8179

.8181

2

.8182

P0PULATI0N=25

SASP3=.9005   SASP4=.9001

P0PULATI0N=30
SASP3=.9006   SASP4=.9001

P0PULATI0N=35

SASP3=.9006   SASP4=.9001

P0PULATI0N=40

SASP3=.9006   SASP4=.9001

P0PULATI0N=45

SASP3=.9006   SASP4=.9001

P0PULATI0N=50

SASP3=.9006   SASP4=.9001

P0PULATI0N=10

SASP3=.8033   SASP4=.8007

POPULATION-15
SASP3=.8037   SASP4=.8009

P0PULATI0N=20
SASP3=.8039   SASP4=

RHO= .2

SASP2=.8183

RHO =
SASP2^

RHO =

SASP2^

8183

8184

P0PULATI0N=25
SASP3=.8040   SASP4=.8010

POPULATION-30

SASP3=.8040   SASP4=.8011

P0PULATI0N=35
SASP3=.8041   SASP4=.8011

P0PULATI0N=40
SASP3=.8041   SASP4=.8011

P0PULATI0N=45
SASP3-.8041   SASP4=.8011

SASP5-.9000   SASP6=.9000

SASP5=.9000   SASP6=.9000

SASP5=.9000   SASP6=.9000

SASP5=.9000   SASP6=.9000

SASP5=.9000   SASP6=.9000

SASP5=.9000   SASP6-.9000

SASP5=.8002   SASP6=.8000

SASP5=.8002   SASP6=.8001

8010   SASP5=.8003   SASP6=.8001

SASP5=.8003   SASP6=.8001

SASP5=.8003   SASP6=.8001

SASP5=.8003   SASP6=.8001

SASP5=.8003   SASP6=.8001

SASP5=.8003   SASP6=.8001
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ANNEX C.9   (continued)

RHO=   .
SASP2 = 8184

POPULATION-50
SASP3=.8042 SASP4=.8011        SASP5=.8003        SASP6=.8001

RHO =
SASP2 = 7374

P0PULATI0N=10
SASP3=.7105 SASP4=.7033        SASP5=.7010        SASP6=.7003

RHO =

SASP2 = 7386

P0PULATI0N=15

SASP3=.7115 SASP4=.7040       SASP5=.7014        SASP6=.7005

RHO=   .3 P0PULATI0N=20
SASP2=.7391        SASP3=.7120 SASP4=.7043        SASP5=.7017        SASP6-.7006

RHO =

SASP2: 7395

POPULATION-25
SASP3=.7123 SASP4=.7045        SASP5-.7018        SASP6=.7007

RHO=   .3 P0PULATI0N=30
SASP2=.7397        SASP3=.7125 SASP4=.7047        SASP5=.7019        SASP6=.700{

RHO =

SASP2 = 7399

P0PULATI0N=35
SASP3-.7126 SASP4-.7048        SASP5=.7020        SASP6-.7008

RHO=   .3 P0PULATI0N=40
SASP2=.7400        SASP3=.7127 SASP4-.7049        SASP5-.7020        SASP6=.7009

RHO =

SASP2^ 7401

P0PULATI0N=45
SASP3=.7128 SASP4=.7049        SASP5-.7020        SASP6=.7009

RHO =
SASP2 = 7401

P0PULATI0N=50
SASP3=.7129 SASP4=.7050        SASP5=.7021        SASP6=.7009

RHO=   .4 POPULATION^IO
SASP2=.6648        SASP3=.6233 SASP4=.6Q94        SASP5=.6038        SASP6=.6015

RHO=   .4

SASP2=.6667

P0PULATI0N=15

SASP3=.6252 SASP4=.6110        SASP5=.6051        SASP6=.6023

RHO=   .4

SASP2=.6676

P0PULATI0N=20

SASP3=.6262 SASP4-.6119        SASP5=.6057        SASP6-.6Q2i

RHO-   .4 POPULATION-25
SASP2=.5582        SASP3=.6268 SASP4=.6124        SASP5=.6061        SASP6-.6031

RHO=   .4 P0PULATI0N=30
SASP2-.6685        SASP3=.6271 SASP4=.6127        SASP5=.6064        SASP6-.6034

RHO=   .4 P0PULATI0N=35
SASP2=.6688        SASP3=.6274 SASP4=.6130        SASP5=.6066        SASP6=.6035

RH0=   .4

SASP2=.6690

P0PULATI0N=40

SASP3=.6276 SASP4=.6131        SASP5=.6068        SASP6=.6036
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ANNEX C.9 (continued)

RHO= ,

SASP2 =

RHO= ,
SASP2=

RHO- ,

SASP2 =

RHO =
SASP2=

RHO =
SASP2:

RHO-
SASP2 =

RHO =

SASP2^

RHO =

SASP2 =

RHO =
SASP2 =

RHO =
SASP2^

4

.6691

6692

5987

6014

.6027

5
.6035

5

.6040

5

.6043

6046

6048

P0PULATI0N=45

SASP3=.6278   SASP4=.6133

P0PULATI0N=50
SASP3=.6279   SASP4=.6134

P0PULATI0N=10

SASP3=.5424   SASP4=.5205

P0PULATI0N=15
SASP3=.5456   SASP4=.5236

P0PULATI0N=20
SASP3=.5472   SASP4=.5252

P0PULATI0N=25
SASP3=.5481   SASP4=.5262

P0PULATI0N=30
SASP3-.5487   SASP4=.5268

P0PULATI0N=35

SASP3=.5492   SASP4=.5272

P0PULATI0N=40
SASP3=.5495   SASP4

RH0= .5

SASP2=.6050

RH0 =

SASP2^ 5386

RH0= .6
SASP2=.5421

RH0 =

SASP2 =

RH0= ,
SASP2 =

RH0 =
SASP2^

RH0 =

SASP2^

.5438

6

.5448

.5455

6

.5460

P0PULATI0N=45

SASP3=.5498   SASP4=.5278

P0PULATI0N=50
SASP3=.5500   SASP4=.5280

P0PULATI0N=10
SASP3=.4684   SASP4=.4379

P0PULATI0N=15
SASP3=.4730   SASP4=.4430

P0PULATI0N=20
SASP3=.4753   SASP4=.4456

P0PULATI0N=25

SASP3-.4766   SASP4

P0PULATI0N=30
SASP3=.4775   SASP4=.4480

P0PULATI0N=35
SASP3=.4782   SASP4=.4487

SASP5=.6069   SASP6-.6037

SASP5=.6070   SASP6=.6038

SASP5=.5100   SASP6=.5047

SASP5=.5129   SASP6=.5071

SASP5=.5143   SASP6=.5084

SASP5=.5152   SASP6=.5091

SASP5=.5158   SASP6=.5097

SASP5=.5162   SASP6=.5100

=.5276   SASP5=.5165   SASP6=.5103

SASP5=.5168   SASP6=.5106

SASP5=.5170   SASP6=.5107

SASP5=.4215   SASP6=.4119

SASP5=.4267   SASP6=.4169

SASP5=.4293   SASP6=.4194

4471   SASP5=.4308   SASP6=.4209

SASP5=.4318   SASP6=.4219

SASP5=.4326   SASP6=.4226

124

NEATPAGEINFO:id=F1D1E5AF-4833-476A-B1E9-C6745811F22C



ANNEX C .9   (continued)

RHO=   .6

SASP2=.5463

P0PULATI0N=40

SASP3=.4786 SASP4=.4493        SASP5=.4331        SASP6=.4231

RHO=   .6

SASP2=.5466
P0PULATI0N=45

SASP3=.4790 SASP4=.4497        SASP5=.4335        SASP6=.4236

RHO=   .6

SASP2=.5468
P0PULATI0N=50

SASP3=.4793 SASP4-.4500        SASP5-.4339        SASP6-.4239

RHO=   .7

SASP2=.4840
P0PULATI0N=10
SASP3=.4014 SASP4=.3628        SASP5=.3401        SASP6=.3253

RHO= .7

SASP2=.4883
P0PULATI0N=15

SASP3=.4076 SASP4=.3701        SASP5-.3482        SASP6-.333i

RHO=   .7

SASP2=.4904
POPULATION=20

SASP3=.4105 SASP4=.3737        SASP5=.3521        SASP6=.3379

RHO=   .7
SASP2=.4917

P0PULATI0N=25
SASP3=.4123 SASP4=.3758        SASP5=.3544        SASP6-.3403

RHO=   .7

SASP2=.4925
POPULATION-30
SASP3=.4135 SASP4-.3772        SASP5=.3559        SASP6-.3419

RHO=   .7

SASP2=.4931
P0PULATI0N=35

SASP3=.4143 SASP4=.3781        SASP5-.3570        SASP6=.3431

RHO=   .7
SASP2-.4935

P0PULATI0N=40

SASP3=.4149 SASP4=.3789        SASP5=.3578        SASP6=.3439

RHO=   .7

SASP2=.4939
P0PULATI0N=45

SASP3=.4154 SASP4=.3794       SASP5=.3584        SASP6=.3446

RHO=   .7

SASP2=.4941
P0PULATI0N=50

SASP3=.4158 SASP4=.3799        SASP5-.3589        SASP6=.3451

RHO=   .8

SASP2=.4344
P0PULATI0N=10

SASP3=.3415 SASP4=.2958        SASP5=.2672        SASP6=.2470

RHO=   .8

SASP2=.4395
P0PULATI0N=15

SASP3=.3491 SASP4-.3054        SASP5=.2784        SASP6=.2597

RHO-   .8

SASP2=.4420
P0PULATI0N=20
SASP3-.3528 SASP4-.3099        SASP5-.2837        SASP6=.2656

RHO=   .8

SASP2=.4435
P0PULATI0N=25

SASP3=.3550 SASP4=.3126        SASP5=.2868        SASP6=.2690

RHO=   .8
SASP2=.4445

P0PULATI0N=30

SASP3=.3564 SASP4=.3144        SASP5=.2888       SASP6=.2713
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ANNEX C.9   (continued)

RHO=    .8 P0PULATI0N=35
SASP2=.4452 SASP3=.3574        SASP4=.3156

RHO=   .8 P0PULATI0N=40
SASP2=.4457 SASP3-.3582        SASP4=.3166

RHO=    .8 P0PULATI0N=45
SASP2=.4461 SASP3=.3588        SASP4=.3173

RHO=   .8

SASP2=.4464

RHO-   .9

SASP2=.3894

P0PULATION=50
SASP3=.3592 SASP4=.3179

P0PULATI0N=10
SASP3=.2883   SASP4=.2371

RHO= .9     POPULATION-15
SASP2=.3953   SASP3=.2973   SASP4=.2488

RHO- .9

SASP2-.3982

RHO= .9

SASP2=.3999

POPULATION-20

SASP3=.3016   SASP4=.2543

P0PULATI0N=25

SASP3=.3042   SASP4=.2575

RHO= .9 P0PULATI0N=30

SASP2=.4010 SASP3=.3059   SASP4=.2595

RHO= .9 P0PULATI0N=35
SASP2=.4018 SASP3=.3071   SASP4=.2611

RHO= .9 P0PULATI0N=40
SASP2=.4024 SASP3=.3079   SASP4=.2622

RHO= .9 P0PULATI0N=45
SASP2=.4029 SASP3=.3086   SASP4=.2631

RHO= .9 P0PULATI0N=50

SASP2-.4032 SASP3=.3092   SASP4=.2638

RH0=1.0 P0PULATI0N=10
SASP2=.3487 SASP3=.2416   SASP4=.1868

RH0=1.0 P0PULATI0N=15
SASP2=.3553 SASP3=.2518   SASP4=.2001

RH0=1.0 P0PULATI0N=20

SASP2=.3585 SASP3=.2567   SASP4=.2064

RH0=1.0 P0PULATI0N=25

SASP2=.3604 SASP3-.2595   SASP4=.2101

RH0=1.0 P0PULATI0N=30

SASP2=.3617 SASP3=.2614   SASP4=.2125

SASP5=

SASP5=

SASP5=

SASP5=

SASP5-

SASP5=

SASP5=

SASP5=

SASP5=

SASP5=

SASP5=

SASP5=

SASP5-

SASP5=

SASP5=

SASP5=

SASP5=

SASP5=

.2902

.2913

.2921

.2928

.2038

.2179

.2245

.2283

.2308

.2326

.2339

.2349

.2357

.1505

.1670

.1746

.1789

.1818

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6=

SASP6-

SASP6=

.2729

.2740

.2750

.2757

.1792

.1958

.2034

.2078

.2106

.2126

.2141

.2152

.2161

.1230

.1429

.1517

.1568

.1601
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ANNEX C.3  (continued)

RH0=1.0 P0PULATI0N=35
SASP2=.3626 SASP3=.2628

RH0=1.0 POPULATION=40
SASP2-.3632 SASP3=.2638

RH0=1.0 P0PULATION=45
SASP2=.3638 SASP3=.2646

RH0=1.0 P0PULATI0N=50

,SASP2=.3642 SASP3=.2652

SASP4=.2142

SASP4=.2154

SASP4=.2164

SASP4=.2172

SASP5=.1838        SASP6=.1624

SASP5=.1853        SASP6=.1641

SASP5=.1864        SASP6=.1654

SASP5=.1874        SASP6=.1664
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ANNEX D.  Validity of Smal1-Population Model

The large-population models presented in chapter IV are

similar to widely accepted models found in the literature.

However, the sma11-population model in chapter V is not found

in the literature.  Its validity must be verified.

The small-population model determines the expected line

xlength (given that the line is not empty) with a rather rounda¬

bout method.  The method is necessary because the list of arrival

sequences that must be considered quickly becomes cumbersome when

the population is larger than a handful.  To verify the validity

of the method, the writer derived a more direct method.  How¬

ever, this method can be applied only to very small populations

because its sequence lists are even more cumbersome than those

of the chapter V method.  This more direct method calculates the

probability of each possible combination of numbers of arrivals.

For each combination, the resulting line length is calculated and

then multiplied by the probability of the combination occurring.

The sum of these products equals the expected line length.  As

an example of this procedure, the expected line length at the

beginning of the third interval when the population size is 2

is determined by first calculating the probability of 0 arrivals

in the first and second intervals, the probability of 0 arrivals

in the first interval and 1 arrival in the second, the proba¬

bility of 0 in the first and 2 in the second, the probability of

1 in the first and 0 in the second, the probability of 1 in the

first and 1 in the second, and the probability of 2 in the first

and 0 in the second.  Each of these probabilities is multiplied

12S
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by its corresponding line length at the beginning of the third

interval.  (For example, if 0 arrivals occur in the first inter¬

val and 2 arrivals occur in the second interval, the line length

at the beginning of the third interval would be 2 persons.

Notice that, as in all other numerical models presented in

this paper, the assumption is made that arrivals must wait at

least until the beginning of the next interval to be served.)

The sum of the products is the expected line length at the begin-

ningofthethird interval.

This model and the model presented in chapter V were run

for a population size of 4.  The results were identical.  Also,

as discussed at the end of chapter V, steady-state is attained

at the beginning of the 5th interval, which is interval N+1.

The chapter V model was also verified by substituting the

Poisson distribution for the binomial distribution.  The results

of this modified model are identical to the large-population

modelpresentedinchapterlV.
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