ABSTRACT

> JOHN F. JOSEPH. Application of Queuing Theory to Standpost Design: (With the Assistance of Dr. DONALD T. LAURIA)

Queuing theory was used to show that lengthy waiting lines can develop at standposts if Korld Health Organization guidelines are used for design. Line lengths were predicted as a function of population size, customer arrival rate, and other factors.

CONTENTS

I. INTRODUCTION 1
A. Purpose 1
B. The Role of Queuing Theory 2
II. LITERATURE REVIEN 5
III. WHO DESIGN GUIDELINES AND QUEUING THEORY SERVICE TIME 7
IV. LARGE-POPULATION MODELS 10
A. Basic Large-Population Model 10
B. Variable Arrival Rates 27
C. Multiple Faucets 35
D. Service Time Varying among Users 40
V. SMALL-POPULATION MODEL 48
VI. COMPARISON OF LARGE- AND SMALL-POPULATION MODELS. 63
A. Constant Arrival Rates 63
B. Variable Arrival Rates 65
VII. ROLE OF QUEUING THEORY IN STANDPOST DESIGN 70
A. General 70
B. Fixed Population and Constant Arrival Rates 70
C. Fixed Population and Variable Arrival Rates 74
D. Fixed Discharge Capacity and Constant Arrival Rates 76
E. Fixed Discharge Capacity and Variable Arrival Rates 78
F. Optimal Design 80
VIII. CONCLUSIONS AND RECOMMENDATIONS 82
A. Conclusions 82
B. Recommendations for Further Study 84
ANNEX A. Excerpt from Public Standpost Water Supplies $=$ A Design Manual $=$ Technical Series paper 14. 86
ANNEX B. Probability Fundamentals 91
ANNEX C. Computer Programs for Large- and Small-Population Models 93
C.1. Large-Population Program for Single Faucet and Constant λ 96
C.2. Large-Population Program for Two Faucets and Constant λ 98
C.3. Large-Population Program for Three Faucets and Constant λ 101
C.4. Large-Population Program for Single Faucet and Variable λ 104
C.5. Progran for Example in Section VII.C 107
C.6. Large-Population Program for Two Faucets and Variable λ 110
C.7. Program for Example in Section VII.E 113
C.8. Small-Population Program for Single Faucet and Constant λ 116
C.9. Small-Population Program Results 122
ANNEX D. Validity of Small-Population Model 128
REFERENCES 130

ACKNOHLEDGEMENTS

I thank God Almighty, who has a heart for the poor, and who was my primary inspiration for completing this report. I thank Dr. Donald T. Lauría, who learned about queuing theory so that he could effectively help me write this report. I thank him for his guidance in making the abstract concepts concrete and more easily understood for the reader.

I thank Dr. Daniel A. Okun and Dr. Dale Whittington for their review and interest.

INTRODUCTION

A. Purpose

Hundreds of thousands of people live in the slums of Tegucigalpa, Honduras. Many of them have migrated from rural areas in the hope of finding a better life in the city, yet most struggle to obtain even the basic necessities. One such necessity is water. House connections to the public water supply are rare in the slums of Tegucigalpa. Residents must often travel to a standpost, and upon arriving there, they may have to wait in line for hours before filling their buckets.

The time these Tegucigalpans spend waiting in line for water is of concern. A mother wafting in line might otherwise care for her children or sell more tortillas so that her family could have more adequate meals. A child waiting in line might otherwise be in school. Time is precious for all, especially those struggling to survive.

In Ukunda, Kenya, a rural community, not only do the water consumers have to wait in line, but the water vendors do as well in order to fill containers prior to selling them door-to-door. If these vendors could spend less time waiting in line, they might be able to make better livings for themselves, serve more people, and possibly pass on the savings to the consumers.

The problem of poor people having to wait in line for water is common not only in Tegucigalpa and Ukunda but in many Third World countries. Wherever significant numbers of people are without house connections to a water system, there is a poss-
ibility that they will have to spend valuable time waiting in line.

The purpose of this paper is twofold:

1. Develop a fuller understanding of how waiting lines develop at public standposts.
2. Apply queuing theory to determine the standpost discharge capacity (i.e., the flowrate when the faucets are fully open) required to serve a given population size, or to determine the population size which can be served by a standpost of a given discharge capacity.

The problem of long waiting lines is caused by many factors, many of which are nontechnical (e.g., lack of funding for capital improvements). However, a technical understanding of how waiting lines develop and the design requirements for eliminating lengthy waiting lines are necessary steps towards solving the problem.
B. The Role of Queuing Theory

The Korld Health Organization has published guidelines for standpost design in Public Standpost Water Supplies $=$ A Design Manual $=$ Technical Paper Series 14. Annex A is an excerpt from this manual. Some items of interest pertaining to these WHO guidelines are the following:

1. The guidelines are based on the assumption that during 'peak hours' the number of customers which can be served per unit time should be equal to the expected number of arrivals per unit time.
2. The number of 'peak hours' may vary from 4 to 12 , according to section 3.3 of the excerpt. Section 3.4 states that there is a certain "water collection pattern
during peak hours". 'Peak hours' in the excerpt represents the time period over which the arrivals at the standpost are relatively frequent. The arrivals during some hours within this time period are more frequent than the arrivals during other hours within this time period. Therefore, the 'peak demand' in the excerpt is actually an average demand over a period of several hours during which a time-varying demand may occur.

In regard to item \#1, queuing theory can show that if the discharge capacity is such that the number of customers that can be served per unit time is equal to the expected number of arrivals per unit time, then, in situations where the number of users is sufficiently large, the length of the waiting line will tend to grow quite long as time progresses. Queuing theory suggests that discharge capacities should generally be higher than those indicated in the guidelines, if long waiting lines are to be avoided.

In regard to item \#2, queuing theory can show that if demand follows a time-varying pattern, then the average length of the line will be longer than if demand were constant. The average length of the line increases with the extent to which demand varies with time. The degree of variation during 'peak hours' should be considered for design purposes.

Regardless of whether the guidelines in Annex A are satisfactory for consumers and vendors with small containers to fill, intuition suggests that standposts for water vendors who have carts or trucks should be designed for different discharge capa-
cities. A truck or a cart may take much longer to fill than a personal container carried by hand. A waiting line of 3 persons may not be a cause for concern, but a waiting line of 3 vendors with trucks or carts would probably be of great concern to other users. Queuing theory can be applied to help determine required discharge capacities for standposts serving such vendors.

Finally, queuing theory is useful in developing an understanding of how waiting lines develop. Such understanding is helpful for design purposes.

Chapter II

LITERATURE REVIEW

Sule and Oni (1988) have applied queuing theory to standpost design, but make the following three assumptions:

1) The expected number of arrivals at the standpost per unit time is constant throughout the day.
2) The time required to serve customers is exponentially distributed among the customers.
3) The population is large enough to be considered infinite.

In regard to the first two assumptions, the arrival rate will in many cases vary throughout the day (Feachem, et al, 1972) and the time required to serve customers is generally not exponentially distributed. Queuing models which allow for a timevarying arrival rate have been presented by Koopman (1972) in his analysis of airplane queues at airports and by Stevenson (1971) in his study of emergencies requiring ambulances. These models use a step function to approximate the time-varying behavior, and also do not require that service times be exponentially distributed. (The models presented in Chapter IV generally follow the pattern of these models.) Yet, as in the work by Sule and $0 n i$, the population is assumed to be infinite.

The assumption of an infinite population is often used in the literature because it allows for simplicity and flexibility. The literature does not clearly state how large a population must be if this assumption is to provide accurate results. It is suspected that in some cases the population served by a standpost may be too small to be considered infinite, and that a small-
population model is necessary. WHO guidelines suggest that the population served by a single-faucet standpost be kept between 25 and 125 persons. A population of 25 is far less than any of the population sizes assumed to be infinite in the literature.

Unfortuneately, the amount of queuing literature for populations which are too small to be considered infinite is scanty. Peck and Hazelwood (1958) present equations and tables for the expected queue length without assuming the population is infinite, but some other rather restrictive assumptions are employed. Also, the solutions apply only when the queue length has reached equilibrium, and no indication is given of the time required to reach equilibrium.

In summary, the literature is helpful for populations which can be considered infinite, but it neither states how large in practical terms the population must be to be considered infinite nor what to do when it cannot be considered infinite.

WHO DESIGN GUIDELINES AND QUEUING THEORY SERVICE TIME

Based on the WHO guidelines in Annex A, the required discharge capacity per standpost, $Q_{\max }$, in units of volume per hour, is given by the following equation:

$$
\begin{equation*}
Q_{\max }=N \times C_{d} / 24 \times P \times 1 /(1-w) \times 1 / f \tag{3.1}
\end{equation*}
$$

The efficiency factor f and the waste factor w require careful consideration. The efficiency factor in equation 3.1 is
necessary because of the time required to open and close the tap. This opening and closing leaves less time available for the standpost to discharge at its full capacity. The discharge capacity must therefore be increased by a factor of $1 / \mathrm{f}$ to compensate for the lost time. The inclusion of the efficiency factor in equation 3.1 would theoretically account for the closing and opening time only if this time were proportional to the time required to fill the container, which is not the case. The opening and closing time depends on the valve type and remains constant regardless of the time required to fill a container. However, throughout this paper, the efficiency factor is assumed to account for the valve opening and closing time.

The waste factor w includes all water which is discharged from the standpost but not hauled away in containers. The factor thus not only includes water spilt while containers are being filled, but also water used directly from the tap for purposes such as washing clothes and water wasted due to the tap being left open or leaking when the standpost is not in use. For the examples worked in this paper, it is assumed that taps are kept closed when the standpost is not in use and that the standpost can be used only for filling containers. Thus w is at the lower end of its range, about 0.1 .

A basic parameter of queuing theory is tau (τ), the time required to serve a single customer. This service time is given by

$$
\begin{equation*}
\tau=V \times\left(c / Q_{\max }\right) \times 1 /(1-w) \times 1 / f \tag{3.2}
\end{equation*}
$$

where $V=$ volume of water customers obtain

$$
\begin{aligned}
& \text { per visit to the standpost } \\
c= & \text { number of taps at the standpost }
\end{aligned}
$$

Notice that w in equation 3.2 includes only water wasted while containers are being filled. It does not include other water wasted (e.g., water being wasted by a tap left open when not in use) because such wasted water would not contribute to the service time.

Neither equation 3.2 nor the WHO guidelines account for the time required to position the container under the tap and remove it when full. This time is assumed to be negligible throughout this paper.

LARGE-POPULATION MODELS

A key assumption for the models presented in this chapter is that the population served by the standpost is large enough to be considered infinite. This assumption makes modeling relatively easy and flexible. However, if the population is not sufficiently large, the assumption will produce erroneous results. Therefore, a small-population model is presented in the following chapter. Its results will be compared with those of the largepopulation model to determine how large a population must be to be considered infinite.
A. Basic Large-Population Model

The basic large-population model employs the following assumptions:

1. A standpost begins service with no one waiting in line when it opens.
2. The standpost has only one tap.
3. The time required to serve a customer, tau (τ), is the same for all customers. Units for tau are minutes or hours.
4. The expected (i.e., average) rate at which customers arrive, lambda (λ), does not vary with time. Units for lambda are persons/minute or persons/hour.

Model derivation consists of the following three steps:

1. Determining the probability density function (PDF) for the number of arrivals at the standpost.
2. Using the PDF determined in step 1 to derive the PDF of the number of people in line.
3. Using the PDF determined in step 2 to determine expected line lengths and waiting times.

To illustrate these steps and determine resulting line lengths when the WHO guidelines are used for design, assume the standpost has an operating period from 6:00 a.m. to 6:00 p.m., which roughly corresponds to daylight hours. The standpost has a single tap and serves a population of 120 , with an average per capita demand of 12 gallons/day. The waste factor w is 0.11 , and the efficiency factor f is 0.9 . The expected arrival rate of customers does not vary between 6:00 a.m. and 6:00 p.m., so the number of peak hours is 12 , resulting in a peak factor of $24 / 12=2$. Based on WHO guidelines (equation 3.1), the required discharge capacity of the standpost is

$$
\begin{aligned}
Q_{\max } & =120 \times(12 / 24) \times 2 \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =150 \text { gallons/hour } \\
& =2.5 \text { gallons/minute }(\mathrm{gpm})
\end{aligned}
$$

Assume that all containers are 6 gallons, and that each person who visits the standpost carries only one container per visit, so that each member of the population takes an average of two trips to the standpost. The expected arrival rate, λ, is constant throughout the 12 -hour period and is $(120 \times 2) / 12=20$ persons $/ \mathrm{hr}$. The service time, τ, is given by equation 3.2 to be

$$
\begin{aligned}
\tau & =6 \times(1 / 2.5) \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =3.0 \text { minutes }
\end{aligned}
$$

The service time τ of 3 minutes is equivalent to a service rate
capacity, mu (μ), of 20 persons per hour; i.e., $\mu=1 / \tau$ with τ in hours. The expected arrival rate λ and the service rate capacity μ are therefore equal.

The above 3 -step procedure can now be applied as follows.

1. Probability Density Function of the Number of Arrivals

Assuming that the potential number of standpost users during a time interval of duration t is large enough to be considered infinite, the Poisson equation can be employed to express the probability of the number of arrivals during t. Letting $p_{k}(t)$ be the probability that k arrivals occur during time interval t and letting λ be the expected number of arrivals per unit time, the Poisson equation is

$$
\begin{equation*}
p_{k}(t)=(\lambda t)^{k} e^{-\lambda t} / k! \tag{4.1}
\end{equation*}
$$

For example, if the expected arrival rate of customers (λ) is 20 per hour, then the probability that exactly 18 arrivals occur in an interval t of one hour is

$$
\begin{aligned}
p(1.0 \mathrm{hr}) & =(20 / \mathrm{hr} \times 1.0 \mathrm{hr})^{18} \mathrm{e}^{-20 \times 1} / 18! \\
& =0.084
\end{aligned}
$$

or about 1 in 12. In other words, if the standpost were observed for 1000 -hour time periods selected at random, it would be expected that 18 arrivals would occur in 84 of them.

Figure 4-1 shows how the probability of arrivals during a 1 hour period varies with k for expected arrival rates of 10 persons/hour, 20 persons/hour, and 30 persons/hour. Continuous curves are shown for exposition. However, the

FIGURE 4-1. Probability of k arrivals in 1 hour vs. k for expected arrival rates of 10 persons/hr, 20 persons/hr, and 30 persons/hr.

probability function is actually discrete.

2. Probability Density Function of the Number of People at the Standpost

The key to converting the PDF of arrivals into the PDF of customers at the standpost is to select a period of time t in the Poisson equation equal to that required to serve a single customer. Assume that all customers begin to be served at the start of a service period and finish being served at the end of it. Since the PDF of the number at the standpost is known at the beginning of the first interval (i.e., the probability that no one is initially at the standpost is 1 , and the probability that 1 or more customers are at the standpost initially is 0 under the assumptions stated at the outset), the PDF of customers in the line at the beginning of the second and later intervals can be determined.

For the scenario presented on p.11, this procedure for converting the PDF of arrivals to the PDF of customers at the standpost is as follows. First, the Poisson equation is applied to determine the probability density furction of the number of arrivals between $6: 00 \mathrm{a} \cdot \mathrm{m}$ and 6:03 a.m. (i.e., during the first interval) with t in the equation replaced by the service time τ, which in this case is 3 minutes (0,05 hour).

$$
p_{k}(\tau)=(\lambda \times \tau)^{k} e^{-\lambda \tau} / k!
$$

The probability that no one arrives during the first interval is

$$
\begin{aligned}
P_{o}(0.05 \mathrm{hr}) & =(20 / \mathrm{hr} \times 0.05 \mathrm{hr})^{0} \mathrm{e}^{20 \times 0.05} / 0! \\
& =0.368
\end{aligned}
$$

The probabilities for other arrivals are as follows.
$p_{1}(0.05 \mathrm{hr})=0.368$
$\mathrm{p}_{2}(0.05 \mathrm{hr})=0.184$
$\mathrm{p}_{3}(0.05 \mathrm{hr})=0.061$
$\mathrm{p}_{4}(0.05 \mathrm{hr})=0.015$
$\mathrm{p}_{5}(0.05 \mathrm{hr})=0.003$
$\mathrm{p}_{6}(0.05 \mathrm{hr})=0.001$

The probabaility of 7 or more arrivals during the 0.05 hour interval is 0.000 .

With this PDF of arrivals in the first interval, the PDF of the number at the standpost at 6:03 a.m. can be determined. For example, the probability that 0 people are at the standpost at 6:03 a.m., the beginning of the second interval is as follows:

joint probability		joint probability
that no one is in	+	that 1 person is
line at 6:00 a.m.		in line at 6:00
and no arrivals		a.m. and no
occur between 6:00		arrivals occur
and 6:03 a.m.		between 6:00 and

The above two terms describe the only two possible ways for no one to be at the standpost at 6:03. If no one is at the standpost at $6: 00$ and no one arrives between $6: 00$ and $6: 03$, then no one will be at the standpost at 6:03. Also, if 1 person is at the standpost at 6:00 and no one arrives between 6:00 and 6:03, then no one will be at the standpost at $6: 03$ because the 1 person will have been served. The above two terms describe mutually exclusive events. The terms can therefore be added. Letting $v_{j}(n)$ be the probability that j people are at the standpost at the beginning of the nth service period, the above situation can be expressed as follows:

$$
v_{0}(2)=v_{0}(1) \times p_{0}(0.05 \mathrm{hr})+v_{1}(1) \times p_{0}(0.05 \mathrm{hr})
$$

Since it has been assumed that no one is at the standpost when it opens $\left(6: 00 \mathrm{a} . \mathrm{m}^{*}\right), \mathrm{v}_{0}(1)=1.0$ and $\mathrm{v}_{1}(1)=0.0$. The above equation can thus be written as follows:

$$
v_{0}(2)=1.0 \times 0.368+0.0 \times 0.368=0.368
$$

Similarly, the probability that 1 person is at the standpost at $6: 03$ is as follows:

$$
\begin{aligned}
& \text { joint probability that no one is } \\
& \text { in line at 6:00 and } 1 \text { arrival } \\
& \text { occurs during the first service } \\
& \text { period } \\
& \qquad+ \\
& \text { joint probability that } 1 \text { person is } \\
& \text { in line at 6:00 and } \begin{array}{l}
\text { occurs during the first service } \\
\text { period } \\
+ \\
\text { + } \\
\text { joint probability that } 2 \text { persons } \\
\text { are in line at 6:00 and no } \\
\text { arrivals occur during the first } \\
\text { service period }
\end{array}
\end{aligned}
$$

The first term results in 1 person at the standpost at $6: 03$ only if the arriving person must wait until the beginning of the second interval to be served, which was assumed on p.14. The second and third terms result in 1 person at the standpost at 6:03 because only 1 person present at $6: 00$ is served from 6:00 to 6:03, and anyone arriving during the first interval must wait until the second interval to be served. These three mutually exclusive events can be expressed symbollically as follows:

$$
\begin{aligned}
v_{1}(2) & =v_{0}(1) \times p_{1}(0.05 \mathrm{hr})+v_{1}(1) \times p_{1}(0.05 \mathrm{hr})+ \\
& =1.0 \times 0.368+0.0 \times 0.368+0.0 \times 0.368 \\
& =0.368
\end{aligned}
$$

Proceeding in a similar fashion,

$$
\begin{aligned}
v_{2}(2) & =v_{0}(1) \times p_{2}(0.05 \mathrm{hr})+v_{1}(1) \times p_{2}(0.05 \mathrm{hr})+ \\
& v_{2}(1) \times p_{1}(0.05 \mathrm{hr})+v_{3}(1) \times p_{0}(0.05 \mathrm{hr}) \\
& =1.0 \times 0.184+0.0 \times 0.184+ \\
& =0.0 \times 0.368+0.0 \times 0.368 \\
& =0.184
\end{aligned}
$$

The other values of the PDF for customers at the standpost at 6:03 are as follows:

$$
\begin{aligned}
& v_{3}(2)=0.061 \\
& v_{4}(2)=0.015 \\
& v_{5}(2)=0.003 \\
& v_{4}(2)=0.001 \\
& v_{j>6}(2)=0.000
\end{aligned}
$$

The $v_{j}(2)$ values can then be used to determine $v_{j}(3)$ values, i.e., the PDF at 6:06. For example, $\mathrm{v}_{1}(3)$, the probability that one is at the standpost at the beginning of the third interval, is

$$
\begin{aligned}
v_{1}(3) & =v_{0}(2) \times p_{1}(0.05 \mathrm{hr})+v_{1}(2) \times p_{1}(0.05 \mathrm{hr})+ \\
& v_{2}(2) \times p_{0}(0.05 \mathrm{hr}) \\
= & 0.368 \times 0.368+0.368 \times 0.368+0.184 \times 0.368 \\
= & 0.339
\end{aligned}
$$

The $v_{j}(3)$ values can then be used to determine $v_{j}(4)$ values, and so on, until the PDF of the number in line is known for the beginning of all service periods.

The general form of the PDF for customers at the standpost

```
probability that j
persons are in
line at the
beginning of
period n + 1
```

joint probability that no one is
in line at the beginning of period
$=n$ and j persons arrive during
period n
joint probability that 1 person is in line at the beginning of period n and j persons arrive during period n
$+$
joint probability that 2 persons are in line at the beginning of period n and j - 1 persons arrive during period n
$+$
joint probability that 3 persons are in line at the beginning of period n and $j-2$ persons arrive during period n
joint probability that j +1 persons
are in line at the beginning of
period n and no persons arrive during
period n

In mathematical symbols:

$$
\begin{equation*}
v_{j}(n+1)=\sum_{i=0}^{j+1}\left(v_{i}(n) \times p_{k}(\tau)\right) \tag{4.2}
\end{equation*}
$$

where $k=j$ if $i=0$, and $k=j-i+1$ if $i>0$.

Equation 4.2 indicates that if $i>0$, then one customer is served during the nth interval. The number of arrivals, k, is therefore

1 more than the difference in the number at the standpost at the beginning of interval n and the number at the beginning of interval $n+1$. However, if $i=0$, then no departure occurs during the nth interval, and $k=j-i=j$. Another observation concerning equation 4.2 is that the number of right hand side terms is always $\mathbf{j}+2$.

One of the useful purposes of equation 4.2 is determining the probability that no one is at the standpost at any time. A computer program using equation 4.2 was written to determine this. The resulting curve for the illustrative example is shown in Figure 4-2. Although $v_{o}(n)$ decreases with time, it remains positive; there is always a possibility that no one is at the standpost.

3. Line Lengths and Waiting Times

The PDF of the line length (which includes the person being served) at the beginning of the nth interval can be used to determine the expected (i.e., average) line length, $L(n)$, as follows:

$$
\begin{equation*}
L(n)=\sum_{\text {all } j} j \times v_{j}(n) \tag{4.3}
\end{equation*}
$$

For the illustrative example, the expected number of people in line at the beginning of the second interval (6:03) is

$$
\begin{aligned}
L(2) & =0 \times 0.368+1 \times 0.368+2 \times 0.184+ \\
& 3 \times 0.061+4 \times 0.015+5 \times 0.003+ \\
& =1 \times 0.001 \\
& 1.00 \text { person }
\end{aligned}
$$

Equation 4.3 includes the possibility that no one is in the line (i.e., $j=0$) to calculate the expected line length $L(n)$. However, when the line length is 0 , no one is present to benefit from the "shortness" of the line. The expected line length experienced by customers must exclude time when the line is empty. Therefore, it is of interest to know $L^{\prime}(n)$, the expected line length given that the line is not empty (i.e., the expected line length given that at least one person is at the standpost). At the beginning of interval n,

$$
\begin{aligned}
& \text { probability probability probability that } \\
& \text { that } j \text { persons }=\text { that the line } x \text { jpersons are in } \\
& \text { are in line is not empty the given that } \\
& \text { empty }
\end{aligned}
$$

Referring to $v_{j}^{\prime}(n)$ as the conditional probability that j people are in line given that the line is not empty, the above equation can be expressed in mathematical symbols as

$$
v_{j}(n)=\left(1-v_{0}(n)\right) \times v_{j}^{\prime}(n)
$$

Solving for $v_{j}^{\prime}(n)$ yields

$$
\begin{equation*}
v_{j}^{\prime}(n)=v_{j}(n) /\left(1-v_{o}(n)\right) \tag{4.4}
\end{equation*}
$$

For the illustrative example,

$$
\begin{aligned}
v_{1}^{\prime}(2) & =0.368 /(1-0.368)=0.582 \\
v_{2}^{\prime}(2) & =0.291 \\
v_{3}^{\prime}(2) & =0.097 \\
v_{4}^{\prime}(2) & =0.024 \\
v_{s}^{\prime}(2) & =0.005
\end{aligned}
$$

Note that $v_{j}^{\prime}(n)$ is always larger than $v_{0}(n)$ by the constant multiple $1 /\left(1-v_{o}(n)\right)$. With the conditional probability of one or more persons at the standpost at any time, it is possible to
calculate $L^{\prime}(n)$, the expected line length given that the line is not empty, as follows:

$$
\begin{equation*}
L^{\prime}(n)=\sum_{\text {ol } 1 ; j>0} j \times v_{j}^{\prime}(n) \tag{4.5}
\end{equation*}
$$

Combining equations 4.4 and 4.5 ,

$$
\begin{equation*}
L^{\prime}(n)=\sum_{0 \| j>0} j \times v_{j}(n) /\left(1-v_{0}(n)\right) \tag{4.6}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
L^{\prime}(n)=L(n) /\left(1-v_{0}(n)\right) \tag{4.7}
\end{equation*}
$$

At the beginning of the second service period for the illustrative example,

$$
\begin{aligned}
L^{\prime}(2) & =1.00 /(1-0.368) \\
& =1.58 \text { persons }
\end{aligned}
$$

which is substantially greater than $L(2)=1.00$.
In addition to calculating the expected line length at the beginning of any service interval, it is also possible to estimate the average anount of time persons arriving at the beginning of the nth interval will have to wait to be served. $W(n)$, which is the expected waiting time for the last person in line at the beginning of the nth interval, is simply the product of the expected number of service periods the person must spend at the standpost, $S(n)$, and the time required to serve each customer, . $W(n)$ includes both the time the customer spends in the queue before beginning to be served and the time spent being served.

$$
\begin{equation*}
H(n)=S(n) \times \tau \tag{4.8}
\end{equation*}
$$

For a standpost with only one faucet, $S(n)=L^{\prime}(n)$. At the beginning of the second service period for the illustrative example,

$$
\begin{aligned}
W(n) & =1.58 \text { persons } \times 3 \text { minutes } / \text { person } \\
& \approx 4.74 \text { minutes }
\end{aligned}
$$

The " $\tau=3.00$ minutes" curve in Figure $4-3$ shows the $i n-$ crease in the expected line length $L^{\prime}(n)$ with time when the expected arrival rate is 20 persons/hour, the service time is 3 minutes, and the discharge capacity is as determined by WHO guidelines as shown on p. 11. For this curve the value of the traffic intensity rho (p), which is the ratio of the expected arrival rate λ to the service rate capacity μ, is

$$
\rho=\lambda / \mu=\lambda /(1 / \tau)=20 / \mathrm{hr} /(1 / 3 \mathrm{~min})=1.00
$$

(The computer program used to determine the data points for the curve is shown in Annex C.1.) Intuition might suggest that no lengthy waiting lines would develop because the service rate capacity is equal to the expected arrival rate, but such is not the case. At 6:00 p.m., $L^{\prime}(n)$, the average line length given that at least one person is at the standpost, is 13 persons. With a service time of 3 ginutes, this length corresponds to a waiting time of $3 \times 13=39$ minutes.

An explanation of why $L^{\prime}(n)$ increases monotonically is as follows:

1. With T being the time since the standpost began operating, the expected line length $L(T)$ is equal to the expected number of

FIGURE 4-3. Expected line length (given that the line is not empty) vs. time for various traffic intensities and service times.

arrivals during T minus the expected number of people served during T.

$$
\begin{aligned}
& L(T)=\lambda T- \\
& \text { expected number } \\
& \text { served during } T
\end{aligned}
$$

2. The expected number served during T is equal to the number of service intervals during T minus the expected number of service periods during which no one is being served.

$$
\begin{aligned}
& \text { expected number }=T / \tau-\begin{array}{l}
\text { expected number } \\
\text { of service periods } \\
\text { during which no } \\
\text { one is served during } T
\end{array}
\end{aligned}
$$

3. Combining equations from steps 1 and 2 and noting from p. 12 that $1 / \tau$ is the service rate capacity μ,

$$
L(T)=\lambda T-\mu T \quad \begin{aligned}
& \text { expected number } \\
& \text { of service periods } \\
& \text { during which no } \\
& \text { one is served }
\end{aligned}
$$

4. However on p. 12 it was shown that $\lambda=\mu$, from which it follows that

$$
\begin{aligned}
& L(T)= \text { expected number } \\
& \text { of service periods } \\
& \text { during which no } \\
& \text { one is served }
\end{aligned}
$$

5. As shown in Figure $4-2$, the probability that no one is in line is always greater than 0 . The expected number of service periods during which no one is served during T thus increases with T. L(T) must therefore also increase with T.
6. Equation 4.7 expresses the relationship between $L^{\prime}(T)$ and $L(T)$. Since $L^{\prime}(T)$ is always greater than $L(T)$, $L^{\prime}(T)$ must also increase with T.

It is no coincidence that the traffic intensity $\rho=1.0$ for the illustrative example. The WHO equation 3.1 sets the discharge capacity equal to the demand rate, with adjustments made only for waste and for valve opening and closing. The WHO
guidelines assume that a service rate capacity equal to the expected arrival rate is adequate, and do not consider the possibility of lengthy lines shown by queuing theory.

Note that for the traffic intensity $\rho>1$ the expected arrival rate is greater than the service rate capacity, and for $\rho<1$ the reverse is true. The traffic intensity therefore indicates the number of persons that are expected to arrive during the time it takes to serve one person. It is of interest to know the sensitivity of $L^{\prime}(n)$ to changes in ρ. Figure $4-3$ illustrates this for ρ values of $1.05,1.00,0.90,0.80$, and 0.70. Note that for $\rho=1.05$ and with an expected arrival rate λ of 20 persons per hour, the service rate capacity μ is 19.05 persons per hour, which is equivalent to a service period τ of 0.0525 hr per person, or 3.15 minutes. Such a situation might exist for the illustrative example if time required to position and remove the container from under the faucet were not negligible, but were 0.15 minutes (9 seconds). For ρ values less than 1.0 , the discharge capacity is increased to decrease the service time τ, thereby increasing μ. For example, for $\rho=$ 0.80 , the discharge capacity is increased to reduce the service period to 2.4 minutes, increasing the service rate capacity μ to 25 per hour. Figure 4-3 shows that if a standpost is designed such that service rate capacity is equal to or less than the expected arrival rate (i.e., for $\rho>1.00$) then $L^{\prime}(n)$ may be undesireably long. When the service rate capacity significantly exceeds the expected arrival rate (e.g., $\rho=0.80$), results tend to be satisfactory.
of $L^{\prime}(n)$, is given by the following equation based on the literature (Hillier and Lieberman, 1980):

$$
\begin{equation*}
L^{\prime}=1+\rho /[2(1-\rho)] \tag{4.9}
\end{equation*}
$$

This equation is applicable only when the service time does not vary among customers, the standpost has only one faucet, the expected arrival rate is constant, and the population is large enough to be considered infinite. This equation can be used to quickly determine the maximum expected line length (given that the line is not empty) when it is known that $L^{\prime}(n)$ is essentially at steady-state before the standpost closes or the arrivals cease. Figure 4-3 shows that if ρ is adequately less than 1.0 , steady-state is essentially reached very quickly, making equation 4.9 useful for such ρ values.

B. Variable Arrival Rates

Accounting for an expected arrival rate that changes over time is quite straightforward. λ is assumed to be constant for any particular service interval but is allowed to vary from one interval to the next. The variation is therefore approximated by a discrete function, which requires the application of equation 4.1 at each step. The model remains essentially the same as that presented in the previous section, except that new p_{k} values must be calculated for each service period having a different λ. This recalculation is necessary because p_{k} is a function of λ.

To illustrate the application of queuing theory to a timevarying expected arrival rate, λ is assumed to vary as shown in

Figure 4-4a but is approximated as a discrete function for the queuing model. The shape of this arrival pattern is similar to that for villages in Lesotho, Africa (Feachem, et al, 1978) and is believed to be not uncommon for urban areas. The average value of λ is 20 persons/hour, and is thus equal to that of the scenario presented in the previous section. The standpost has only one tap. Population size, average per capita demand, container size, the waste factor, and the efficiency factor are as in the example of the previous section. The designer has little data on how the water collection pattern varies throughout the day, but knows that there will be significant usage during every hour from 6:00 a.m. to 6:00 p.m. but no usage from 6:00 p.m. to 6:00 a.m. He therefore estimates the number of peak hours to be 12, and uses HHO guidelines to calculate P to be $24 \mathrm{hr} / 12 \mathrm{hr}=$ 2.0 (by definition of P on $p .7$) and the required discharge capacity to be

$$
\begin{aligned}
Q_{\max } & =120 \times(12 / 24) \times 2 \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =2.50 \mathrm{gpm}
\end{aligned}
$$

The service time is

$$
\begin{aligned}
\tau & =6 \times(1 / 2.50) \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =3.0 \text { minutes }
\end{aligned}
$$

This example is thus identical to that of the previous section except that the expected arrival rate λ varies with time.

The value of λ in persons per hour as a function of the service interval is given by the following equations:

FIGURE 4-4a. Expected arrival rate vs. time for section IV.B $z:$
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots illustrative example.

time

FIGURE 4-4b. Expected line length (given that the line is not empty) vs. time for various peak factors and the expected arrival rate pattern in Figure 4-4a.

$$
\begin{array}{ll}
\lambda(n)=34 \times n / 40 & \begin{array}{l}
\text { for } 0 \leq n \leq 40 \\
\text { or } 6: 00 \mathrm{a} \cdot \mathrm{~m} \cdot \text { to } \\
8: 00 \mathrm{a} \cdot \mathrm{~m} .
\end{array} \\
\lambda(n)=46.5 \times(148.8-n) / 148.8 \quad \begin{array}{l}
\text { for } 40 \leq n \leq 120 \\
\text { or } 8: 00 \mathrm{a} \cdot \mathrm{~m} . \mathrm{to} \\
\text { noon }
\end{array} \\
\lambda(n)=34 \times(\mathrm{n}-91.2) / 108.8 & \begin{array}{l}
\text { for } 120 \leq n \leq 200 \\
\text { or noon to } 4: 00 \mathrm{p} \cdot \mathrm{~m} .
\end{array} \\
\lambda(n)=34 \times(240-n) / 40 & \begin{array}{l}
\text { for } 200 \leq n \leq 240 \\
\text { or } 4: 00 \mathrm{p} \cdot \mathrm{~m} . \operatorname{to} \\
6: 00 \mathrm{p} \cdot \mathrm{~m} .
\end{array}
\end{array}
$$

To determine, for example, the probability that the line at the standpost is empty at the beginning of the second service period, equation 4.2 is applied as in the constant expected arrirate case to obtain

$$
\begin{aligned}
v_{0}(2)= & v_{o}(1) \times p_{0}(\text { from } 6: 00 \mathrm{a} \cdot \mathrm{~m} . \text { to } 6: 03 \mathrm{a} \cdot \mathrm{~m} \cdot)+ \\
& v_{1}(1) \times p_{0}(\text { from } 6: 00 \mathrm{a} \cdot \mathrm{~m} . \text { to } 6: 03 \mathrm{a} \cdot \mathrm{~m} .)
\end{aligned}
$$

From equation 4.10 , the λ value for determining p_{0} (from 6:00 arm. to 6:03 arm.) is

$$
\lambda(1)=34 \times 1 / 40=0.85 \text { per hour }
$$

and, by equation 4.1,

$$
\begin{aligned}
\mathrm{p}_{0}(\text { from } 6: 00 \mathrm{a} \cdot \mathrm{~m} \cdot \text { to } 6: 03 \mathrm{a} \cdot \mathrm{~m} .) & =0 \mathrm{e}^{-(0.85 / \mathrm{hr} \times 0.05 \mathrm{hr})} / 0! \\
& (0.85 / \mathrm{hr} \times 0.05 \mathrm{hr}) \\
& =0.958
\end{aligned}
$$

Given that $v_{0}(1)=1.0$ and $v_{1}(1)=0.0$,

$$
\begin{aligned}
v_{o}(2) & =1.0 \times 0.958+0.0 \times 0.958 \\
& =0.958
\end{aligned}
$$

Thus, the procedure for determining probability values $v_{j}(n)$, line lengths given that someone is at the standpost, and waiting times, is exactly the same as when the expected arrival rate is constant, except that $\lambda(n)$ must be calculated for each service period.

The resulting $L^{\prime}(n)$ values are shown by the $P=2.0$ curve in Figure $4-4 \mathrm{~b}$. (The curve was calculated by the computer program in Annex C.4.) $L^{\prime}(n)$ reaches much greater values than shown by the $\rho=1.00$ curve in Figure $4-3$, even though the average ρ value for the time-varying case is also 1.0. For example, at about 4:50 p.m. L'(n) for the time-varying case is 31 persons, corresponding to an expected waiting time $W(n)$ of $31 \times 3=93$ minutes, which is quite long. The $L^{\prime}(n)$ value from the $\rho=$ 1.00 curve in Figure $4-3$ at $4: 50$ is 12 , corresponding to an expected waiting time of 36 minutes. The time variation in the expected arrival rate is obviously an important consideration in standpost design.

The designer may suspect that usage during the 12 -hour period from 6:00 a.m. to 6:00 p.m. varies significantly, and although he may not know the extent of the variation, he may wish to chose a more conservative peak factor of 2.5 to account for the variation. The required discharge capacity by WHO guidelines would be

$$
\begin{aligned}
Q_{m x x} & =120 \times(12 / 24) \times 2.5 \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =187 \mathrm{gallons} / \text { day } \\
& =3.1 \mathrm{gpm}
\end{aligned}
$$

The service time would be

$$
\begin{aligned}
\tau & =6 \times(1 / 3.1) \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =2.4 \text { minutes }
\end{aligned}
$$

The computer program used to determine $L^{\prime}(n)$ for $P=2.0$ was modified to determine $L^{\prime}(n)$ for $P=2.5$. The resulting curve is shown in Figure 4-4b. L'(n) reaches its maximum value of 14 persons at $4: 30$. The corresponding expected waiting time is $14 \times$ $2.4=34$ minutes, which is still rather long.

The designer may perceive that a thorough investigation of the water collection pattern is warranted before designing the standpost. If he collects data to estimate the usage during every hour between 6:00 a.m. and 6:00 p.m., he would find that peak hourly usage occurs during the hour from 8:00 a.m. to 9:00 a.m. and the hour from 3:00 p.m. to $4: 00 \mathrm{p}, \mathrm{m}$. He would find that the average number of arrivals during either of these hours is

$$
\begin{aligned}
& \bar{\lambda}=(34 \text { persons } / \mathrm{hr}+27.75 \text { persons } / \mathrm{hr}) / 2=30.9 \text { persons } / \mathrm{hr} \\
& \mathcal{L}_{\text {at 8:00 }} \text { a.m. } \quad \leftarrow \lambda \text { at 9:00 a.m. } \\
& \text { from eqn. } 4.10 \\
& \text { from eqn. } 4.11
\end{aligned}
$$

The peak factor P would then be simply the ratio of this peak hourly expected arrival rate and the average expected arrival rate over the 24 -hour period, or $30.9 / 10=3.09$. The required discharge capacity by WHO guidelines would be 3.86 gpm . The service time would be 1.94 minutes. Computer program results, Which are shown in the $P=3.09$ curve in Figure $4-4 b$, show that $L^{\prime}(n)$ would reach its maximum value of 6.65 persons at $4: 18 \mathrm{p} . \mathrm{m}$. The corresponding expected waiting time is $6.65 \times 1.94=12.9$ minutes, which is a dramatic improvement over the $P=2.5$ case.

The peak factor of 2.0 provides a service rate capacity of $\mu=1 / \tau=1$ person/3minutes $=20$ persons/hour. This rate is equal to the expected arrival rate averaged over the peak period of 12 hours. The average value of ρ over this 12 -hour period is therefore 1.0 . The peak factor of 2.5 provides a service rate capacity of 25 persons/hour, which is equal to the expected arrival rate averaged over the peak period of 4 hours extending from 6:55 a.m. to 10:55 a.m. (or from $1: 05 \mathrm{p} \cdot \mathrm{m}$. to $5: 05 \mathrm{p} . \mathrm{m}$. for the later of the twin peaks). When $P=2.5$, the average value over this 4 -hour period is 1.0 . The peak factor of 3.09 provides a service rate capacity of 30.9 persons/hour and an average ρ value of 1.0 over the 1.0 -hour period extending from 8:00 a.m. to 9:00 a.m. (or from 4:00 p.a. to 5:00 p.m.).

The WHO guidelines state that the peak period is the time during which "the standpost is used more intensively than during the rest of the day", that it typically lasts between 4 and 12 hours, and that there is a time-varying water demand pattern during the peak period. Because the demand varies with time during the peak period, the peak demand estimate will tend to increase as the length of time selected for the peak decreases. This is clearly shown by the difference in P factors for the above examples. Peak periods of 12 hours, 4 hours, and 1 hour correspond to peak factors of $2.0,2.5$, and 3.09 , respectively. The guidelines do not indicate how to select the length of the peak period, but indicate 4 to 12 hours to be the range of typical lengths. However, for the above example, using a peak period of 4 hours or 12 hours is unacceptable. Using a
peak period of only 1 hour yields reasonable results (a maximum $L^{\prime}(n)$ value of 6.65 persons) but even this line length might be considered unacceptable if service times are not short. For example, if the service time is 5 minutes this length corresponds to an expected waiting time of $6.65 \times 5=33$ minutes.

The guidelines also state that the peak factor is typically in the range of 2 to 4 . When the designer selects 3.1 for the conditions of this example, the maximum expected waiting time is reasonable. However, in some cases even a peak factor of $P=4$ will not provide adequate discharge capacities. Assume, for example, that the arrival pattern is identical to that of Figure 4-4a except that no arrivals occur after noon. People rely on another source in the afternoon because the standpost is closed. The daily demand from the standpost is thus reduced from 1440 gallons/day to 720 gallons/day. The average hourly demand from $6: 00 \mathrm{a} \cdot \mathrm{m}$. to noon would be $720 / 6=120 \mathrm{gallons} / \mathrm{hour}$, and the average hourly demand over the day would be 30 gallons/hour. If a peak factor of $P=120 / 30=4$ is used, the resulting discharge capacity would be

$$
\begin{aligned}
Q_{\max } & =120 \times(6 / 24) \times 4 \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =150 \text { gallons } / \text { day } \\
& =2.5 \mathrm{gpm}
\end{aligned}
$$

The service time would be

$$
\begin{aligned}
\tau & =6 \times(1 / 2.5) \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =3.0 \text { minutes }
\end{aligned}
$$

The discharge capacity and the service time are identical to that
for the example resulting in the $P=2.0$ curve in Figure $4-4 b$. The L'(n) values would thus equal those shown by the $P=2.0$ curve from 6:00 a.m. to noon. The maximum $L^{\prime}(n)$ value is 25 persons. The corresponding expected waiting time is $25 \times 3=75$ minutes, which is very long.

C. Multiple Faucets

Incorporating multiple faucets into the large-population model is accomplished by recognizing that the maximum number of departures which can occur during a service interval is no longer 1 as in the single faucet case, but is equal to the number of faucets. If, for example, there are two faucets, then equation 4.2 must be modified as follows:

$$
\begin{align*}
& v_{j}(n+1)= \sum_{i=0}^{j+2}\left(v_{i}(n) \times p_{k}(\tau)\right) \tag{4.14}\\
& \text { where } k=j \quad i f \quad i=0 \text { or } 1 \\
& k=j-i+2 \text { if } i>1
\end{align*}
$$

The derivation of this equation is analogous to that starting on $p .15$ for the single faucet case. For example, the mutually exclusive events which can account for one person at the standpost at the beginning of the second service interval with two faucets is as follows, which can be compared with its counterpart on $p .17$ for a single faucet.

$$
\begin{aligned}
& v_{1}(2)= v_{0}(1) \times p_{1}(\tau)+v_{1}(1) \times p_{1}(\tau)+ \\
& v_{2}(1) \times p_{1}(\tau)+v_{3}(1) \times p_{0}(\tau)
\end{aligned}
$$

Equation 4.2 can also be modified for three or more faucets by taking into account that the maximum number of people served during a service interval equals the number of faucets.

Any even number of persons at a two-faucet standpost results in a number of service periods equal to one-half the number of persons. Three or any higher odd number of persons at a standpost with two faucets results in a number of service periods equal to one-half the difference between that number and 1 . $S(n)$, the expected number of service periods spent in line, is as follows for a two-faucet standpost.

$$
\begin{align*}
S(n)= & 1 \times v_{1}^{\prime}(n) \\
& +0.5 \times 2 \times v_{2}^{\prime}(n)+0.5 \times(3-1) \times v_{3}^{\prime}(n) \tag{4,15}\\
& +0.5 \times 4 \times v_{4}^{\prime}(n)+0.5 \times(5-1) \times v_{5}^{\prime}(n)
\end{align*}
$$

The advantage of using $S(n)$ over $L^{\prime}(n)$ is that it gives a better indication of how long a person is expected to wait when there is more than one faucet at the standpost. The expected waiting time is determined simply by multiplying $S(n)$ by τ, the time required to serve one person. When the standpost has only one tap, $S(n)$ $=L^{\prime}(n)$, but when there is more than one faucet, $S(n)<L^{\prime}(n)$.

To illustrate the queuing model for a two-faucet standpost, assume that the arrival pattern is as shown in Figure 4.4 a and that the scenario is identical to that of the previous section. A peak period of 1 hour is used and, as shown in the previous section, this result in a peak factor $P=3.09$ and a WHO required discharge capacity of 3.86 gpm . The discharge capacity per faucet is $3.86 / 2=1.93 \mathrm{gpm}$. The service time is

$$
\begin{aligned}
\tau & =6 \times(2 / 3.86) \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =3.9 \text { minutes }
\end{aligned}
$$

The computer program which calculates $S(n)$ and $L^{\prime}(n)$ is in Annex
C.6. The results are shown in Figure 4-5.

The maximum values of the expected line length (given that at least one person is at the standpost) and the expected number of service periods spent at the standpost are 7.2 and 3.9 , respectively. The corresponding maximum expected waiting time is $3.9 \times 3.9=15.2$ ninutes. In the previous section the singlefaucet example with a peak factor of 3.09 resulted in a maximum expected waiting time of 12.9 minutes, which is a bit less than that of this two-faucet example. One might be surprised by this difference because the standpost discharge capacities are equal in these two examples. The service time at the two-faucet standpost is twice as great as at the single-faucet standpost because the flowrate through each of the faucets is half as great. Although the service time is twice as great, one would expect the number of service periods spent at the standpost to be halved because of the extra faucet, and that the waiting times for these two examples would be equal. However, when only one person is at the standpost the availability of a second faucet does not reduce that person's waiting time. Similarly, when some higher odd number of persons are in line, the number of service intervals required to serve all of them is the same as if one additional customer were in line. In general, if two standposts have equal discharge capacities, the one with the greater number of faucets will have slightly longer waiting times.

Figure 4-6 applies to constant expected arrival rates. The Figure shows S, the steady-state expected number of service intervals spent at the standpost vs. the traffic intensity ρ (the ratio of the expected arrival rate $\hat{\lambda}$ to the standpost service

FIGURE 4-5. Expected line length (given that the line is not empty) and expected number of service intervals spent at the standpost vs. time for section IV.C illustrative example.

FIGURE 4-6. Steady-state expected number of service intervals spent at the. standpost vs. traffic intensity for 1,2 , and 3 taps.

rate capacity $c \mu$ where c is the number of taps and μ is the service rate capacity per tap) for 1,2 , and 3 faucets. For the single-faucet curve, values were obtained by use of equation 4.9 , with $S=L^{\prime}$. For the multiple-faucet curves, values were obtained by the computer programs shown in Annexes C. 2 and C.3. These computer programs do not actually calculate true steadystate values, but calculate values for 400 service periods, which is a long enough time for steady-state to be essentially reached when $\rho=0.9$. Values for ρ close to but less than 1.0 are not included in Figure 4-6 because of the lengthy time required to reach near steady-state.

Figure $4-6$ shows that at a given ρ value, S decreases as the number of faucets increases. For example, at $\rho=0.8, \mathrm{~S}=3.00$ for one faucet and $S=1.66$ for three faucets. However, as discussed previously, for a given standpost discharge capacity the steady-state expected waiting time H increases as the number of faucets decreases. Assume for example that the standpost discharge capacity is 4.00 gpm , making the service time to be 2.00 minutes when there is one faucet. For three faucets the flow per faucet would be 1.33 gpm , making the service time to be 6.00 minutes. The resulting steady-state expected waiting time W at $\rho=0.8$ would be $3.00 \times 2.00=6.00$ minutes for one faucet, and $1.66 \times 6.00=9.96$ minutes for three faucets.
D. Service Time Varying Among Users

The volume of containers that users fill will often vary, causing the service time to vary among users. This causes diffi-
culty in applying the Poisson equation because the value of τ used in the equation is variable. This difficulty can be overcome by selecting probability distributions which are in a form which lend themselves to the numerical modeling of queues. However, such models are not presented in this paper for the following reasons:

1. For a constant expected arrival rate, the steady-state line length at an adequately designed standpost will be reached fairly quickly. Figure 4-3 shows how soon steady-state is reached when P (the traffic intensity, which is the ratio of the expected arrival rate to the service rate capacity) is adequately low. Reaching steady-state requires more time when ρ is higher. Although steady-state equations may not accurately calculate line lengths at underdesigned standposts (because ρ is too high and the standpost may close or arrivals may stop before steady-state is reached), they can be used to adequately design standposts, making numerical modeling unnecessary when the expected arrival rate is constant.
2. Koopman (1972) has shown that for time-varying expected arrival rates, the variation in service time among users does not seem to have a substantial impact on expected line lengths. Thus, when the expected arrival rate varies, the service time among users may be assumed constant and the queuing model of the previous section may be applied.

The following equation, which can be obtained from queuing theory texts (e.g., Hillier and Liebermann, 1980), determines L', the steady-state expected line length given that the line is not empty. The equation is applicable for any service time probability distribution, but the expected arrival rate must be constant, the standpost must have only one faucet, and the population must be large enough to be considered infinite.

$$
\begin{equation*}
L^{\prime}=1+\left(\lambda^{2} \sigma_{\tau}^{2}+\rho^{2}\right) /[2 p(1-p)] \tag{4.16}
\end{equation*}
$$

where $\delta_{\sim}=$ standard deviation of the service time

Equation 4.16 is applicable only if
ρ (the traffic intensity) is less than 1 . If ρ is equal to or greater than 1 , then steady-state is never reached and equation 4.16 is meaningless. Also, the equation should only be used if it is known that steady-state is reached before arrivals cease or the standpost closes.

Figure 4-7 shows L^{\prime} (the steady-state expected line length given that someone is at the standpost) vs. ρ curves for various service time standard deviations. As ρ increases, the effect of the standard deviation on L ' also increases. At $\rho=0.2$ (which would correspond to, for example, an expected arrival rate of 20 persons/hour and a service rate capacity of 100 persons/hour), the standard deviation has essentially no effect on L^{\prime}. At $\rho=$ 0.95 , L ' when the standard deviation equals the average service time is nearly twice L^{\prime} when the standard deviation is 0 .

As an example of applying equation 4.16 , assume that onethird of the customers are children with container size of 3 gallons (about 25 pounds) corresponding to a 1.2 -minute service time τ; one-third of the customers are adults with container size of 6 gallons (about 50 pounds) and $\tau=2.4$ minutes; and the other third are adults with container size of 9 gallons (about 75 pounds) and $\tau=3.6$ minutes. The standard deviation of the service time is about one minute. The average service time $\overline{\mathcal{\tau}}$ is 2.4 minutes, and the service rate capacity μ is $1 / 2.4=0.42$ persons/minute. Assuming an expected arrival rate of 20 persons/hour (0.33 persons/minute), $\rho=\lambda / \mu=0.33 / 0.42$ $=0.8$. The resulting steady-state expected line length given that at least one person is at the standpost is

FIGURE 4-7. Steady-state expected line length (given that the line is not empty) vs. traffic intensity for 1 tap and various service time standard deviations.

$$
\begin{aligned}
L^{\prime} & =1+\left(0.333^{2} \times 0.98^{2}+0.8^{2}\right) /[2 \times 0.8 \times(1-0.8)] \\
& =3.33 \text { persons }
\end{aligned}
$$

If the standard deviation were $0, L$ would be

$$
\begin{aligned}
L^{\prime} & =1+0.8^{2} /(2 \times 0.8 \times[1-0.8]) \\
& =3.00 \text { persons }
\end{aligned}
$$

The increase in L^{\prime} due to the variation is service time is thus $100 \% \times(3.33-3.00) / 3.33=11 \%$ for this example.

By multiplying equation 4.16 by $\bar{\tau}$ (the average service time) and using $\rho=\lambda / \mu=\lambda \bar{\tau}$, the steady-state expected waiting time W for a single-faucet standpost and constant expected arrival rate is as follows:

$$
\begin{equation*}
W=\bar{\tau}+\lambda\left(\sigma_{\tau}^{2}+\bar{\tau}^{2}\right) /(2 \times[1-\lambda \bar{\tau}]) \tag{4.17}
\end{equation*}
$$

For the above example, equation 4.17 shows that the steady-state expected waiting time H when the service time standard deviation σ_{τ} is 0 is 7.20 minutes, and 8.00 minutes when the standard deviation is a minute. The increase in W due to the standard deviation is $(8.00-7.20) / 7.20 \times 100 \%=11 \%$, which is of course the same percent increase the standard deviation causes in L'.

Based on a telephone operator staffing study done by Sze (1984), the percent increase in the steady-state expected waiting time W that the service time variation causes when there are multiple faucets is the same as the percent increase when there is a single faucet, assuming that the average of the varying service time equals the constant service time. For example, assume that $\rho=0.8, \tau=2.4$ minutes, and the standpost has
two taps. Based on Figure $4-6 \mathrm{~W}=2.2 \times 2.4=5.3$ minutes. If the service time standard deviation were increased to 1.0 minute, as in the previous example, then the steady-state expected waiting time W would be increased by 11%. The new value of W would be $1.11 \times 5.3=5.9$ minutes.

Figures 4-8 and 4-9 show for the effect that the service time standard deviation σ_{τ} has on S (the steady-state expected number of service periods customers spend at the standpost) for two and three taps, respectively. The curves for $\sigma_{\tau}>0$ were determined with the knowledge that S is directly proportional to W, and that the percent increase in S due to σ_{τ} is therefore the same for multiple faucets as it is for one faucet.

Understanding why the service time variation causes W to increase may prove useful. While customers having short service times are served, the service rate capacity is in effect increased, thereby decreasing the ρ value during that service time. While customers having long service times are served, the opposite occurs. Both long and short service times effectively change ρ temporarily. However, the relationship between W and ρ is concave-up (i.e., as ρ increases, the H vs. ρ curve becomes steeper). Therefore, longer service times cause a greater increase in H than do the shorter service times cause a decrease in W. The net effect is that W is greater when the service time varies among users than when service time is constant among users. As the variation is service time increases, so does W.

FIGURE 4-8. Steady-state expected number of service intervals spent at the standpost vs. traffic intensity for 2 taps and various service time standard deviations.

FIGURE 4-9. Steady-state expected number of service intervals spent at the standpost vs. traffic intensity for 3 taps and various service time standard deviations.

Chapter V

SMALL-POPULATION MODEL
The large-population models of Chapter IV are based on the assumption that the population is large enough to be considered infinite. This assumption allows for model simplicity and flexibility. Populations should therefore be assumed infinite whenever they are large enough for the assumption not to cause significant inaccuracies. In this chapter a small-population model (i.e., a model that does not assume the population is infinite) will be derived. In Chapter VI its results will be compared with the results of the model presented in section IV.A. Minimum population sizes which can be assumed to be infinite without causing serious inaccuracies will thus be determined. The same four assumptions listed on page 10 for the large-population model are also assumed for the small-population model so that any difference in results may be attributed strictly to the limitation of population size.

The small-population model is similar to the large-population model in that expected queve lengths are calculated at times which are interger multiples of the service period, i.e., expected line lengths are calculated at the beginning of the second service period, the beginning of the third service period, etc. However, the derivation of the small population model is more complex because the number of arrivals during any particular service period affects the PDF of the number of arrivals during other service periods. The reason for this is that the number of arrivals that have occured may be a significant portion of the population, thus influencing the probabilities of future arriv-
als. The model derivation consists of the following steps:

1. Determining the PDF for the number of arrivals at the standpost during any service period.
2. Using the PDF in step 1 to develop the PDF for sequences of arrivals over a series of consecutive service periods. (One of the probabilities expressed by this PDF would be, for example, the probability that 2 arrivals occur in the first service period, o arrivals occur in the second service period, and 4 arrivals occur in the third service period.)
3. Using the PDF determined in step 2 to calculate expected line lengths and wafting times.

These steps are discussed below. Assume that a singlefaucet standpost serves a population of 20 customers. A11 of the customers arrive at the standpost between 6:00 a.m. and 7:00 a.m.; employment away from home, school, etc., make other times inconvenient. The size of containers is assumed to be 6 gallons and the discharge capacity is 2.5 gpm . The waste factor w is 0.11 and the efficiency factor f is 0.9 . The resulting service time τ is, by equation 3.2 ,

$$
\begin{aligned}
\tau & =6 \times(1 / 2.5) \times(1 /[1-0.11]) \times(1 / 0.9) \\
& =3.0 \text { minutes }
\end{aligned}
$$

The scenario is therefore identical to that of section IV.A except that the population is limited to 20 and arrivals occur only between 6:00 a.m. and 7:00 a.m.

1. Probability Density Function of the Number of Arrivals During a Service Period

The time period during which all customers arrive is defined as T, which in this example is 1 hour ($6: 00$ a.m. to $7: 00$ a.m.).

Because the expected arrival rate is assumed not to vary with time, each member is just as likely to arrive between 6:00 a.m. and 6:03 a.m. as between, say, 6:30 a.m. and 6:33 a.m. The probability that a particular customer (i.e., an arbitrarily chosen customer out of the population of 20) arrives during some time period of length τ within T is simply τ / T. If T is the $1-$ hour period from 6:00 a.m. to 7:00 a.m. and τ is 3 minutes $(0.05 \mathrm{hr})$, then this probability is $0.05 \mathrm{hr} / 1.0 \mathrm{hr}=0.05$. The probability that two particular customers arrive during a time period of length τ is $(\tau / T) \times(\tau / T)$. The customers act indepen dently of each other and their probabilities of arriving during a period of length τ are therefore multiplied to determine the joint probability that both arrive during the period of length τ. In general, the probability that k particular customers arrive during a time period of length τ is $(\tau / T)^{k}$.

Similarly, if the population is N, the probability that $N-k$ particular customers arrive outside of a time period of length τ but still within time period T is $([T-\tau] / T)^{N-k}$.

The probability that k particular customers arrive during a time period of length τ and $N=k$ particular customers arrive outside of τ (i.e., during $T-\tau$) is

$$
(\tau / T)^{k} \times([T-\tau] / T)^{N-k}
$$

The probability that any k customers arrive during a period of length τ and any $N-k$ customers arrive during $T=\tau$ is an integer multiple of the above product. The integer is the number of possible sets of size k that can be selected from population
N, which is the permutation

$$
N!/(k![N-k]!)
$$

Therefore, defining $r_{k}(\tau)$ as the probability that k customers arrive during a period of length τ,

$$
\begin{equation*}
r_{k}(\tau)=(N!/(k![N-k]!))(\tau / T)^{k}([T-\tau] / T)^{N-k} \tag{5.1}
\end{equation*}
$$

Equation 5.1 is a form of the binomial distribution. For example, the probability that 2 customers arrive between 6:00 a.m. and 6:03 a.m. is

$$
\begin{aligned}
r_{2}(0.05 \mathrm{hr}) & =(20!/ 2!18!)(0.05 \mathrm{hr} / 1.0 \mathrm{hr})^{2}(0.95 \mathrm{hr} / 1.0 \mathrm{hr})^{20-2} \\
& =0.189
\end{aligned}
$$

Because the entire population of 20 arrives in a 1 -hour period and the expected arrival rate does not vary with time, the expected arrival rate is $20 / \mathrm{hr}$. Table $5-1$ compares the probabilities when applying the Poisson equation (equation 4.1) and the binomial equation (equation 5.1) over a 0.05 hr period when the expected arrival rate $\lambda=20$ persons $/ \mathrm{hr}$. The Poisson equation assumes the population is infinite, whereas the binomial equation assumes a population size of N, which in this example is 20 . It is well known that as N increases, the results of the binomial equation approach those of the Poisson equation. Table 5-1 shows that when the number of arrivals k is equal to 1 , which is the expected number of arrivals per service period, $r_{K}(0.05 \mathrm{hr})>$ $p(0.05 h r)$. That is, the probability of 1 arrival during a time period of length τ is greater when the population is 20 than when the population is infinite. This same inequality is also
true when the number of arrivals $k=2$. However, in general, $r_{k}(\tau)$ is less than $p_{k}(\tau)$ for values of k different from the expected number of arrivals per service period.

TABLE 4-1
Comparison of Binomial ($N=20$) and Poisson ($N=\infty$) Equation Results for $\tau^{\prime}=0.05 \mathrm{hr}$

k	$r_{k} \frac{(0.05 h r)}{}$	$p_{k} \frac{(0.05 h r)}{}$
0	0.358	0.368
1	0.377	0.368
2	0.189	0.184
3	0.060	0.061
4	0.013	0.015
5	0.002	0.003
6	0.000	0.001
7	0.000	0.000
.	.	$:$
.	0.000	0.000

2. Probability Density Function for Sequences of Arrivals During a Series of Consecutive Service Periods

With known PDF of arrivals during the first service period and given that no one is in line at 6:00 a.m., equation 4.2 can be used to determine the PDF for the number in line at the beginning of the second service period. For this purpose, the $r_{k}(\tau)$ values in Table $5-1$ are used in place of $p_{k}(\tau)$ because the population is 20 instead of infinite. The PDF can then be used to calculate the expected line length at the beginning of the second service period.

Calculating the PDF and expected line length at the beginning of the third service period is more difficult due to the fact that arrival probabilities during the second service period depend on those during the first. For example, if two arrivals
occur during the first period then the probability of three arrivals in the second period is different than if only one arrival had occured during the first period. It is therefore necessary to determine the probability of sequences of arrivals.

To determine the probabilities of sequences of arrivals, let the variables k_{1} and k_{2} represent the number of arrivals in the first and second periods, respectively. The probability of k_{2} arrivals during the second period given that k_{1} arrivals have already occured in the first period can be determined by equation 5.1 , but with the population reduced to $N=k_{1}$ and T reduced to $T-\tau$. This probability is

$$
\left(\left[N-k_{1}\right]!/\left(k!\left[N-k_{1}-k_{2}\right]!\right)\right)(\tau /[T-\tau])^{k_{2}}([T-\tau-\tau] /[T-\tau])^{N-k_{1}-k_{2}}
$$

In the above expression, the probability of k_{2} arrivals in the second interval is conditional on the probability of k, arrivals in the first interval. The product of the two probabilities is therefore equal to the joint probability that k, arrivals occur in the first interval and k_{2} arrivals occur in the second. Nultiplying the two probabilities yields

$$
\begin{equation*}
r_{k_{1}, k_{2}}(\tau)=\left[N!/\left(k_{1}!k_{2}!\left(N-k_{1}-k_{2}\right)!\right)\right](\tau / T)^{k_{1}+k_{2}}((T-2 \tau) / T)^{N-k_{1}-k_{2}} \tag{5,2}
\end{equation*}
$$

Similarly, the joint probability of k, arrivals in the first period, k_{2} arrivals during the second period, and k_{3} arrivals in the third period is

$$
\begin{align*}
& r_{k_{1}, k_{2}, k_{3}}(\tau)= \\
& \left(N!/\left(k_{1}!k_{2}!k_{3}!\left[N-k_{1}-k_{2}-k_{3}\right]!\right)(\tau / T)^{\kappa_{1}+k_{2}+k_{1}} \ddagger[T-3 \tau] / T\right)^{N-k_{1}-k_{2}-k_{3}} \tag{5.3}
\end{align*}
$$

Probabilities for sequences of arrivals over four or more service periods can similarly be determined.
3. Expected Line Lengths and Waiting Times

Once the probabilities of sequences of arrivals are determined, the PDF of the number in line can be determined. For example, to determine the probability that one person is in line at the beginning of the third service period, the probabilities of all possible arrival sequences causing one person to be at the standpost must be summed; that is
$v_{1}(3)=$

```
probability of no
arrivals in the first
service period and l
arrival in the second
period
    +
probability of 1
arrival in the first
period and l arrival
in the second period
    +
probability of 2
arrivals in the first
period and no arrivals
in the second period
```

The terms on the right would then be calculated by use of equation 4.2. The process would be repeated to determine $\mathrm{v}_{\mathrm{o}}(3)$, $v_{2}(3), v_{2}(3)$, etc. until the entire PDF of the number in line at the beginning of the third interval is known. This PDF can then be used to determine $L^{\prime}(n)$ by applying equation 4.6 .

Unfortunately, this process for determining L'(n) is quite cumbersome for populations greater than about ten and for service
periods later than the fourth or fifth; development of the computer program is excessively laborious. This difficulty is due to the very large number of possible arrival sequences. However, as discussed below, it is possible to determine the expected line length if $v_{0}(n)$ is known for each n. The necessity of calculating all $v_{j}(n)$ values other than $v_{o}(n)$ is thus eliminated. The multitude of arrival sequences that must be considered is greatly reduced.

The derivation of the procedure for calculating $L^{\prime}(n)$ values based on $v_{0}(n)$ values begins with the following equation:

$$
\begin{align*}
L(n+1)=L(n) \quad & =\begin{array}{l}
\text { expected number of arrivals } \\
\\
\\
\text { during period } n \\
\end{array} \\
= & \text { expected number of customers } \tag{5.4}\\
& \text { served during period } n
\end{align*}
$$

The expected number of arrivals during a service period is ρ, the traffic intensity, which for the small-population model is the ratio of the population size to the number of service intervals during which the standpost is open. Thus,

$$
\mathrm{L}(n+1)=\mathrm{L}(n)+\rho-\underset{ }{\text { expected number of customers }} \begin{align*}
& \text { served during period } n \tag{5.5}
\end{align*}
$$

The number of customers served during a service interval must be either 0 or 1 for a single-faucet standpost. Therefore,

and
probability
that 1 customer that no is served during period
probability
that no
customers
are served during period

Also,

expected number of customers served during period n	"	probability that no customers are served during period n	x	0	+	probability that 1 customer is served during period n	$\times 1$
	=	probability that 1 customer is served during period n					(5.7)

Combining equations 5.6 and 5.7 yields

expected number of customers served during period n	$=1-\quad$probability
that no customers are served during period n	

Equations 5.5 and 5.8 yield

$$
\begin{align*}
L(n+1)=L(n)+\rho-(1- & \text { probability that no } \tag{5.9}\\
& \text { customers are served } \\
& \text { during period } n)
\end{align*}
$$

The probability that no one is served during period n is equal to the probability that no one is at the standpost at the beginning of period n. So, equation 5.9 can be rewritten as

$$
\begin{align*}
L(n+1) & =L(n)+\rho-\left(1-v_{0}(n)\right) \\
& =L(n)+\rho+v_{0}(n)-1 \tag{5.10}
\end{align*}
$$

To illustrate equation $5.10, L(2)$ is calculated for the scenario presented in this chapter. Substituting $n=1$ in equation 5.10,

$$
\mathrm{L}(2)=\mathrm{L}(1)+\rho+\mathrm{v}_{0}(1)-1
$$

No one is waiting at the standpost when it opens at 6:00 a.m. Therefore, $L(1)=0$ and $v_{o}(1)=1$. Also, $\rho=1$. The above equation thus reduces to

$$
L(2)=0+1+1-1=1
$$

Hence, the expected number in line at the beginning of the second period (i.e, at 6:03 a.m.) is 1.

To calculate the expected number of customers at the beginning of the third interval,

$$
L(3)=L(2)+\rho+v_{0}(2)-1
$$

As shown before, $L(2)=1 . v_{o}(2)$, the probability that no customers are in line at the beginning of the second period, is, by equation 4.2 , equal to the probability that no customers arrive during the first period. This latter probability is given by equation 5.1 and has been calculated in Table 4.1 to be 0.358 . Thus,

$$
\begin{aligned}
L(3) & =1+1+0.358-1 \\
& =1.358
\end{aligned}
$$

Similarly, with $L(3)$ known, $L(4)$ can be determined after
calculating $v_{0}(3)$: The line is empty at the beginning of the third period if no customers arrive in the first and second periods or if 1 customer arrives in the first interval and no customers arrive in the second period. The following diagram illustrates this. Lines interconnect numbers to indicate arrival sequences which cause no one to be at the standpost during the third service interval. For example, a line connects 1 in the first column with 0 in the second column because 1 arrival in the first period and 0 arrivals in the second period causes no one to be at the standpost in the third period. No line connects 2 in the first column with 2 in the second column, for example, because such an arrival sequence would cause someone to be at the standpost during the third interval.

Sequences of Arrivals for Which No one is at the Standpost at the Beginning of the Third Period

Number of	Number of
Arrivals in	Arrivals in
lst Period	2nd Period

The probability that no customers are in the queue at the beginning of the third period is thus

$$
\begin{aligned}
& v_{0}(3)=\begin{array}{l}
\text { probability that no } \\
\text { customers arrive in the } \\
\text { 1stand 2nd periods }
\end{array} \quad+\begin{array}{l}
\text { probability that } 1 \\
\text { customer arrives in } \\
\\
\\
\\
\\
\\
\\
\\
\text { no customers arrive } \\
\text { ine 2nd period }
\end{array}
\end{aligned}
$$

Equation 5.11 is solved by application of equation 5.2 to each of the right hand side terms. The resulting $L(4)$ is then calculated by equation 5.10 .

Equation 5.10 can be applied in the above manner to each successive period. $L(n+1)$ can be determined once $L(n)$ is known. However, calculating $v_{o}(n)$ becomes increasingly complicated as n increases. This is due to the increase in the number of possible arrival sequences resulting in an empty line. For example, at the beginning of the fourth period, no customers will be present if any of the arrival sequences shown in the following diagram occur. The number of possible sequences is 5 , which is a 150% increase over the number of possible sequences causing an empty line at the beginning of the third period.

Sequences of Numbers of Arrivals for Which the Queue Is Empty at the Beginning of the Fourth Period

Number of Arrivals in 1st Period

Number of
Arrivals in 2nd Period

Number of Arrivals in 3rd Period

The computer program in Annex C. 8 calculates $v_{o}(2), v_{o}(3)$, $v_{o}(4), v_{o}(5)$ and $v_{o}(6)$ for various values of ρ and N. The program does not calculate $v_{o}(n)$ for $n>6$ becuase the list of possible arrival seqences for which no one is at the standpost at the beginning of period n is very large and complicated. Fortunately, an interesting phenomenon occurs at the beginning of period $n=N+1:$ the expected line length reaches steady-state. That is, $L(n+1) \equiv L(n)$ for $n \geq N+1^{*}$. By equation 5.10 this implies that $v_{0}(n)=1-\rho$ for $n \geq N+1$. With calculated values of $v_{o}(n)$ for the early periods, a curve through them (on a plot of $v_{0}(n)$ versus n) can be extrapolated to the $v_{0}(N+1)$ value of 1 - ρ at the beginning of period $N+1$. Such a curve is shown in Figure $5-1$ for the scenario of this chapter where $N=20$. That is, $v_{0}(20+1)=1-\rho=1-1=0$, which occurs at $7: 00 \mathrm{a} \cdot \mathrm{m}$.

Values from the curve in Figure $5-1$ were used to determine $L(n)$ values by equation 5.10 . The $L^{\prime}(n)$ values were then calculated by equation 4.5 and plotted in Figure $5-2$. L'(n) reaches a maximum value of 2.8 at the beginning of period $n=21$, or 7:00 a.m. The expected waiting time at 7:00 a.m. is $W(21)=$ 2.8×3 minutes $=8.4$ minutes, which is fairly short. However, if the service time were, for example, 20 minutes with vendors hauling water by the cart, then $W(21)=2.8 \times 20$ minutes $=56$ minutes, which is quite lengthy. In this case the $21 s t$ interval would begin $20 \times 20=400$ minutes $=6.7$ hours after 6:00 a.m., or at 12:40 p.m.

FIGURE 5-1. Probability that no one is in line at the beginning of interval n vs. n and time for chapter V illustrative example.

FIGURE 5-2. Expected line length (given that the line is not empty) vs. n and time for chapter V illustrative example.

COMPARISON OF LARGE - AND SMALL-POPULATION MODELS

A. Constant Arrival Rates

The curves in Figure $6-1$ show L^{\prime} (the steady-state expected line length given that the line is not empty) vs. the traffic intensity ρ when the expected arrival rate λ and service time τ are constant and the standpost has only one faucet. The curves for populations of $N=10,20$, and 50 were obtained by the procedure described in chapter V. Recall that this procedure assumes that each member of the population makes one and only one trip to the standpost (p. 49). The $N=\infty$ curve was obtained by equation 4.9.

The curves show that if the traffic intensity ρ is near 0.8 , and each member of the population makes one and only one trip to the standpost, then a population as small as 50 can be assumed infinite without causing serious error. If ρ is near 0.5 then a population as small as 10 can be assumed infinite without causing serious error. As the ratio of the expected arrival rate to the service rate capacity decreases, so does the minimum population size which can be assumed infinite.

In many cases members of the population will make more than one trip to the standpost. WHO guidelines suggest that the average per capita dafly demand may sometimes be as high as 60 liters, or 130 pounds of water, which would not easily be carried in a single trip. This is not considered in the small-population model of Chapter V or its resulting curves in Figure 6-1, Also, the small-population model and curves are for only one faucet, while a standpost may often have multiple faucets. For these two

reasons it is necessary to define \prime^{\prime} as the effective population size, or the product of the actual population size and the average number of trips made per person divided by the number of taps at the standpost. N' can be used in the following procedure to determine S, the steady-state expected number of service periods spent at the standpost, which in turn can be multiplied by the service time if the waiting time is to be known:

1. Assume the population is infinite and apply the approaches described in chapter IV to determine S. (Recall that for a single-faucet standpost, S is numerically equal to L^{\prime}.)
2. Determine the effective population size N^{\prime}. For example, if a population of 75 has a per capita demand of 12 gallons and 6 gallons is obtained per trip, then the effective population size is 75 x $(12 / 6) / 3=50$ persons per faucet.
3. Multiply S determined in step 1 by the ratio of L^{\prime} in Figure 6-1 for the effective population size to L^{\prime} in Figure 6-1 for $N=\infty$. For example, assume L ' for a three-faucet standpost and a varying service time is determined in step 1 to be 3.20 at $\rho=0.8$. If the effective population size N^{\prime} is 50 as determined in step 2 , the ratio obtained from Figure $6-1$ from the $N=50$ and $N=\infty$ curves at $\rho=0.8$ is $2.5 / 3.0=0.83$. The resulting S is thus $3.20 \times 0.83=2.7$ periods.

Although the accuracy of this technique is not rigorously proven, it is believed to be reasonably accurate.
B. Variable Arrival Rates

The error due to assuming an infinite population when the expected arrival rate is constant is shown in Figure $6-1$, but the error when the expected arrival rate varies with time is more difficult to quantify exactly.

A rough estimate of the error can be obtained by considering

Figure 6-2. This figure shows $L^{\prime}(n)$ vs. n for population of 10 , 20 and 50 and an infinite population, given that the standpost has one faucet and expected arrival rates and service times are constant. The curves are for ρ (the ratio of the expected arrival rate to the service rate capacity) equal to 1.0 . Notice that the ratio of $L^{\prime}(11)$ (the expected line length at the beginning of the 11 th service period given that at least one person is at the standpost) for population $N=10$ to $L^{\prime}(11)$ for $N=\infty$ is $2.30 / 3.22$ $=0.71$. Also, the ratio of $L^{\prime}(21)$ for $N=20$ to $L^{\prime}(21)$ for $N=\infty$ is $2.93 / 4.25=0.69$, and the ratio of $L^{\prime}(51)$ for $N=50$ to $L^{\prime}(51)$ for $N=\infty$ is $4.48 / 6.31=0.71$. Regardless of the population size, the maximum expected line length (given that the line is not empty) reached at the beginning of interval $N+1$ is approximately 70% of what the value would be if the population were infinite.

Notice also that for $n<N+1$, the ratio of $L^{\prime}(n)$ for $N=$ 10,20 , or 50 to $L^{\prime}(n)$ for $N=\infty$ is greater than 0.70 . The ratio increases as n decreases, and nearly equals 1.0 for small n values. When $\rho=1$, the beginning of interval $N+1$ is when arrivals cease, efther because the standpost closes or people have finished collecting water for the day. So, for $\rho=1$, ratio of the limited-population $L^{\prime}(n)$ to the infinite-population $L^{\prime}(n)$ reaches is minimum value of about 0,7 when arrivals cease. The ratio at earlier times in the day will be higher.

A set of curves similar to that shown in Figure $6-2$ could also be prepared for ρ values other than 1.0 . Such sets of curves would show that the limited-population $L^{\prime}(n)$ to infinitepopulation $L^{\prime}(n)$ ratios always reach their minimum value when

FIGURE 6-2. Expected line length (given that the line is not empty) vs. n for a traffic intensity of 1.0 , a single faucet, service time constant among users,

arrivals cease, but that this minimum value is always greater than 0.7. (Note: For ρ values other than 1 , arrivals cease at the beginning of interval $(N+1) / \rho$.) This minimum ratio value which occurs when arrivals cease is smallest for $\rho=1$, and increases as ρ differs from 1. For example, for a population of $N=50$ and $\rho=0.8$, the ratio is 0.83 when arrivals cease. For a population of $N=50$ and $\rho=0.6$ the ratio is 0.91 when arrivals cease. For $\rho=0.4$ the ratio when arrivals cease is 0.98. This same behavior is also demonstrated for $N=10$ for which the ratios are slightly lower but still always exceed 0.7 and increase as ρ differs from 1 . The curves would also indicate that, as in the $\rho=1$ case, the ratio of the limited-population $L^{\prime}(n)$ to the infinite-population $L^{\prime}(n)$ increases as n decreases.

In summary, the above observations indicate that if the expected arrival rate λ is constant and $\rho=1.0$, then $L^{\prime}(n)$ when arrivals cease is about 70% of what it would be if the population were infinite. This percentage increases as ρ differs from 1. Also, as n decreases, the limited-population $L^{\prime}(n)$ to infinite-population $L^{\prime}(n)$ ratio increases.

In light of these observations, conclusions can be drawn for time-varying expected arrival rates. When the expected arrival rate varies with time, such as shown in Figure $4-4 a, \rho$ is near 1.0 for only a small percentage of the time. Thus $L^{\prime}(n)$ when arrivals cease for a limited population must be greater than 70% of what it would be if the population were infinite. Furthermore, because the limited-population $L^{\prime}(n)$ to infinite-population $L^{\prime}(n)$ ratio increases as n decreases, and because the maximum $L^{\prime}(n)$ value for a time-varying expected arrival rate typically occurs
well before arrivals cease, the maximum $L^{\prime}(n)$ value when λ varies for a limited population must be fairly close to that value when the population is infinite. The former is believed to be generally between 85% and 95% of the latter. Thus, the large-population model usually provides acceptable accuracy for determining maximum $L^{\prime}(n)$ values when λ varies.

ROLE OF QUEUING THEORY IN STANDPOST DESIGN
A. General

Queuing theory can be used for standpost design to ensure that the maximum expected waiting time is kept below some fixed value, or to meet other such waiting time criteria. Basically, the two methods of applying queuing theory are as follows:

1. With the population to be served by the standpost known, use queuing theory to determine the standpost discharge capacity required to meet the waiting time criterion.
2. With the standpost discharge capacity known, use queuing theory to determine the maximum population which can be served by the standpost while meeting waiting time criterion.

These methods are discussed in detail in the following sections.
The WHO has recommended limitations on populations served per standpost (Annex A). Theoretically, queuing theory can be used to successfully design standposts for populations exceeding WHO limitations. However, the designer should keep WHO guidelines in mind, realizing that the use of queuing theory for standpost design is not yet field-proven.
B. Fixed Population and Constant Arrival Rate

If the population to be served by a standpost is fixed, the customers arrive throughout the day at a constant rate, the standpost is to have only one faucet, and a maximum expected waiting time criterion is to be met, then the expected line length is assumed to reach near steady-state before the standpost
closes or arrivals cease. The maximum expected waiting time thus equals the steady-state expected waiting time, allowing for the use of equation 4.17 to determine the required service time. The procedure is as follows:

1. Estimate the total number of trips to the standpost made by the population, the average volume of water obtained per trip and its standard deviation, the waste factor w, and the efficiency factor f.
2. Determine the expected rate at which the customers arrive at the standpost. Since this rate is constant, simply divide the total number of trips made to the stanpost by the number of hours over which arrivals occur. For example, if the population is 100 with each person making an average of 2 trips to the standpost between 6:00 a.m. and 6:00 p.m., then the expected arrival rate λ is $\mathbf{1 6 . 7}$ persons/hour.
3. Express the standard deviation of the volume obtained per trip as the standard deviation of the service time. Equation 3.2 shows that the service time is proportional to the volume obtained. If the standard deviation of the volume is 2.1 gallons and the average volume is 7.5 gallons, then the standard deviation of the service time is $2.1 / 7.5 \times$ average service time, or $\sigma_{\tau}=0.28 \bar{\tau}$.
4. Use equation 4.17 to solve for the average service time. For example, if it is desired to keep the maximum expected waiting time (which is also the steady-state expected waiting time) below 10 minutes, and the expected arrival rate and the standard deviation of the service time are as in the above steps, then $\bar{\tau}=2.94$ minutes. (Note: Equation 4.17 is solved for $\widetilde{\mathcal{Z}}$ by trial-and-error because cannot be isolated to the left side of the equation.)
5. Determine the required discharge capacity by use of equation 3.2. If the waste factor w is 0.1 and the efficiency factor f is 0.9 , then the required discharge capacity by rearranging equation 3.2 is

$$
Q_{\max }=7.5 \times(1 / 2.94) \times 1 /(1-0.1) \times 1 / 0.9=3.15 \mathrm{gpm}
$$

6. Determine the service rate capacity μ, which is the inverse of the average service time, or $1 / 2.94=0.34$ persons/minute.
7. Determine ρ, which is the ratio of the expected arrival rate λ to the service rate capacity μ, or $0.278 / 0.34=$ 0.82 .
8. Use Figure $6-1$ to see whether assuming that the population is large enough to be considered infinite causes a significant error. The effective population size is $N^{\prime}=200$ (100 people $\times 2$ visits per person at a singlefaucet standpost). Figure $6-1$ shows that if an $N=200$ curve were interpolated between the $N=50$ and the $N=\infty$ curves, it would be very close to the $N=\infty$ curve at $P=0.82$. Therefore, the assumption of an infinite population causes no significant error, and the discharge capacity determined in step 5 is appropriate.

If Figure $6-1$ had shown that the assumption of an infinite population causes significant error, then the 10-minute waiting time criterion would have to be ficticiously increased slightly to, say, 10.5 minutes. Then steps 4 through 7 would have to be reworked. The ρ value that would result from applying these steps would be 0.83 . The ratio of S from the interpolated $N=$ 200 curve at $\rho=0.83$ to S from the $N=\infty$ curve at $\rho=$ 0.83 would then be multiplied by 10.5 minutes. If the result would be other than 10.0 minutes, then a new fictitious waiting time criterion would again have to be selected and steps 4 through 7 again repeated.

The designer should verify that steady-state is essentially reached by considering the curves in Figure 7-1 and the number of service intervals that will have elapsed when arrivals cease. In the unlikely event that steady-state is not reached, the designer can modify and apply the program in Annex C.1, and use it as a substitute for equation 4.17 in the above 8 -step procedure.

As discussed in section IV.C, for a given standpost discharge capacity, the waiting time decreases as the number of faucets decreases (and the discharge per faucet increases). Thus a standpost being designed should first be assumed to have one faucet. If the resulting capacity cannot be provided by a single faucet, then the standpost should be assumed to have two or more faucets. The following procedure should be used for standposts With more than one faucet:

$$
\text { 1. Do steps } 1 \text { through } 3 \text { described above. }
$$

FIGURE 7-1. Expected number of service intervals spent at the standpost vs. n for various traffic intensities, a single faucet, and service time constant among users.

2. Assume an average service time $\bar{\tau}$ of, say, 6.0 minutes, and determine the service rate capacity per faucet, which is the inverse of the average service time, or $1 / 6.0=0.167$ persons/minute. Determine the traffic intensity P, which is the ratio of the expected arrival rate λ to the standpost service rate capacity $\mathrm{c} \mu$. If the standpost has two faucets, $\rho=$ $0.278 /(2 \times 0.167)=0.83$.
3. For ρ determined in step 2, use Figure 4-8 (or Figure 4-9 if the standpost were to have 3 faucets) to determine S. If the service time standard deviation $\sigma_{\tau}=$ $0.5 \mathcal{\tau}$, then the corresponding S value at $\rho=0.83$ is 2.8 intervals. (Note: Interpolate if the standard deviation is other than $0,0.5 \overline{\mathcal{E}}$, or $\bar{\tau}$.) The resulting expected waiting time W is $2.8 \times 6.0=16.8$ minutes.
4. Apply step 8 above to see if assuming an infinite population causes error, and to adjust W if necessary.
5. If the adjusted H from step 4 is different from the waiting time criterion, assume a new value of the average service time and rework steps 2 through 4 .

The designer can verify that steady-state is essentially reached by considering Figure 7-1 and the number of elapsed service intervals. The programs in Annexes C. 2 and C. 3 can be modified and applied as necessary if steady-state is not yet reached.

C. Fixed Population and Time-varying Expected Arrival Rate

If the population served per standpost is fixed and the expected rate at which customers arrive varies with the time of day, then queuing theory can be used to determine the required discharge capacity as follows:

1. Estimate the average volume of water customers obtain per standpost visit, the waste factor w, and the efficiency factor f. Estimate the expected rate at which the customers arrive at the standpost as a function of the time of day.
2. Assume that the standpost is to have only one faucet and assume a service time. A good service time to assume is one that causes the service rate capacity to be equal to the peak expected arrival rate. If, for example, the designer determines the expected arrival pattern to be as shown in Figure $7-2$, then assume the service rate capacity is 20 persons/hour and that the service time is the inverse of this, or 0.05 hours $=3.0$ minutes.

FIGURE 7-2. Expected arrival rate pattern for section VII.C example.

time
3. Determine the required discharge capacity by use of equation 3.2. If the volume obtained per visit is 6 gallons, the waste factor w is 0,1 and the efficiency factor f is 0.9 , then the required discharge capacity by rearranging equation 3.2 is
$Q_{m a x}=6 \times(1 / 3.0) \times 1 /(1-0.1) \times 1 / 0.9=2.5 \mathrm{gpm}$
If the designer believes that this discharge cannot be provided by a single faucet without causing excessive splashing or waste, he should assume that the standpost has two faucets instead of one, with the service time being doubled and the discharge per faucet being 2.5/2 n 1.25 gpm . In this example, the discharge is appropriate for a single faucet.
4. Express the variation in the expected arrival rate shown in Figure 7-2 as a function of the service period, as follows:

$$
\begin{aligned}
& \lambda(n)=0.5 n \\
& \lambda(n)=24-0.1 n \\
& \lambda(n)=0.1 n \\
& \lambda(n)=120-0.5 n
\end{aligned}
$$

5. Modify the computer program in Annex C. 4 by substituting in the service time of 0.05 hours and the above expected arrival rate function. This modified program is shown in Annex C.5. Running the program to obtain results shows that the maximum expected waiting time is 14.3 minutes and occurs at about $4: 10 \mathrm{p} . \mathrm{m}$.
6. If the waiting criterion requires that the maximum expected waiting time not exceed 10 minutes, then the waiting time determined in step 5 is too long. A shorter service time must be selected and steps 3 through 5 must be reworked. Repeated attempts indicate that a service time of 0.046 hours (2.7 minutes) ensures that the maximum expected waiting time does not exceed 10 minutes. The corresponding discharge capacity is 2.7 gpm .
D. Fixed Discharge Capacity and Constant Expected Arrival Rate

If the standpost discharge capacity is fixed and the expected arrival rate is constant, then queuing theory can be used to determine the maximum population size which can be served while meeting a maximum expected waiting time criterion. The line length is assumed to reach its steady-state, maximum value before arrivals cease. The steps of the procedure are as follows:

1. Estimate the average volume of water obtained per visit to the standpost and its standard deviation, the waste factor W, and the efficiency factor f.
2. Use equation 3.2 to determine the corresponding average service time. For this example, assume the discharge capacity is 5.0 gpm to serve vendors who obtain an average of 40 gallons per visit. If the waste factor is 0.1 and the efficiency factor is 0.95 , then the aver3ge
service time is

$$
\begin{aligned}
\bar{\tau} & =40 \times(1 / 5.0) \times 1 /(1-0.1) \times 1 / 0.95 \\
& =9.36 \text { minutes }
\end{aligned}
$$

3. Determine the standard deviation of the service time. If the standard deviation of the volume of water obtained per trip is 10 gallons and the average volume is 6 gallons, then based on the proportionality of equation 3.2 , the standard deviation of the service time is $10 / 40 \times 9.36=2.34$ minutes.
4. Use equation 4.17 to solve for the expected arrival rate λ. For example, if it is desired to keep the maximum expected waiting time (which is also the steady-state expected waiting time) below 10 minutes, then equation 4.17 can be rearranged to yield

$$
\begin{aligned}
\lambda & =2(W-\bar{\tau}) /\left(\sigma_{\tau}^{2}+\bar{\tau}^{2}+2[W-\tau] \bar{\tau}\right) \\
& =2 \times(15-9.36) /\left(2.34^{2}+9.36^{2}+2 \times[15-9.36] \times 9.36\right) \\
& =0.0568 \text { persons/minute }=3.41 \text { persons/hour }
\end{aligned}
$$

(Note: If the standpost has more than 1 faucet, then Figure 4-8 or 4-9 must be used instead of equation 4.17. The value of ρ at $S=15 / 9.36$ intervals must be found from the appropriate curve, and then λ found from $\lambda=$ ρ / \bar{z}.
5. Determine the population based on the expected arrival rate found in step 4 . If the average number of trips made to the standpost per person is 2 , and the standpost is open for 12 hours, then the population is $3.41 \times 12 / 2$ - 20 persons.
6. Determine the service rate capacity μ, which is the inverse of the average service time, or 0.107 persons/minute.
7. Determine the traffic intensity P, which is the ratio of the expected arrival rate λ to the service rate capacity μ, or $0.0568 / 0.107=0.53$.
8. Use Figure $6-1$ to see whether assuming that the population is large enough to be considered infinite causes a significant error. The effective population size is $N^{\prime}=40$ (20 vendors $\times 2$ visits per vendor at a singlefaucet standpost). Figure $6-1$ shows that if an $N=40$ curve were interpolated between the $N=20$ and the $N=$ 50 curves, the resulting L^{\prime} at $\rho=0.53$ would be very close to the L 'value from the $N=\infty$ curve. Therefore, the assumption of an infinite population causes no significant error, and the population determined in
step 5 is appropriate.
If Figure $6-1$ had shown that the assumption of an infinite population causes significant error, then a a higher effective population size N^{\prime} would have to be assumed and its curve interpolated between the curves in Figure $6-1$. The value of ρ at $L^{\prime}=15 / 9.36$ persons would be selected from the curve and the corresponding expected arrival rate λ determined from ρ. λ would then be used to calculate an effective population size. If this calculated N^{\prime} equals the assumed N^{\prime}, then the assumed N^{\prime} is correct. The actual population size N can then be determined from N^{\prime}. However, if the assumed N^{\prime} does not equal the calculated N^{\prime}, then a new N^{\prime} must be assumed and the process repeated.

The number of standposts required in the standpost system can be found by dividing the total population by the population determined in the above procedure.

As discussed in section VII.B, the designer can verify that steady-state is essentially reached by considering Figure 7-1, and can modify and apply the programs in Annexes C.1, C.2, C.3.
E. Fixed Discharge Capacity and Time-varying Expected Arrival Rate

If the standpost discharge capacity is fixed and the expected customer arrival rate varies throughout the day, then queuing theory can be used to determine the population size which can be served while meeting waiting time criterion. The procedure is as follows:

1. Estimate the average volume of water obtained per visit to the standpost, the waste factor w, and the efficiency factor f.
2. Use equation 3.2 to determine the corresponding average service time. For this example, assume the standpost has two faucets and a discharge capacity of 5.0 gpm , or 2.5 gpm per faucet. If the average volume obtained per visit is 8 gallons, the waste factor is 0.1 , and the efficiency factor is 0.9 , then the average service time

$$
\begin{aligned}
\bar{\tau} & =8 \times(1 / 2.5) \times 1 /(1-0.1) \times 1 / 0.9 \\
& =3.95 \text { minutes }
\end{aligned}
$$

3. Based on collected field data or literature, determine the geometry of the expected arrival rate pattern throughout the day. If the shape of the expected arrival rate pattern is similar to that shown in Figure 7-2, then note that the peak expected arrival rate is $20 / 12$ ± 1.67 times the minimum expected arrival rate. Also note the times at which the peak and minimum values occur and that increases and decreases in the expected arrival rate are linear.
4. The expected arrival rate during peak standpost usage must be determined by trial and error. As a first guess in this example assume that it is equal to the standpost service rate capacity, which is $c \mu=c / \tau=$ $2 / 3.95=0.506$ persons $/$ minute $=30.4$ persons/hour. Use this as the peak expected arrival rate value and to determine other key expected arrival rate values that define the geometry of the expected arrival rate pattern. For this example, the minimum expected arrival rate is $12 / 20$ times the peak, or $12 / 20 \times 30.4=18.2$ persons/hour. Thus, the arrival pattern is as shown below.

Expected arrival rate pattern for section VII.E example.

5. Express the variation in the expected arrival rate shown above as a function of the service period, as follows:

$$
\begin{aligned}
& \lambda(n)=n \\
& \lambda(n)=36.5-0.201 n \quad 30 \leq n \leq 91 \text { (i.e. from } 8: 00 \\
& \lambda(n)=0.201 n-0.1 \quad 91 \leq n \leq 152 \text { (i.e., from noon } \\
& \text { to 4:00 p.m.) } \\
& \lambda(n)=182-n \quad 152<n \leq 182 \text { (i.e., from 4:00 } \\
& \text { to 6:00 p.m.) }
\end{aligned}
$$

6. Modify the computer program in Annex C. 6 by substituting in the service time of 0.0658 hours and the above expected arrival rate function. The resulting program is in Annex C.7. If the waiting time criterion is not met, assume a new peak expected arrival rate and rework steps 4 through 6. For this example, it is assumed that the waiting time criterion is met when the peak expected arrival rate is 30.4 arrivals/hour as shown in step 4 .
7. Deteraine the population size from the expected arrival rate pattern shown in step 4 . The area under the curve is
```
2(0.5 < 2hr x 30.4person/hr + 4hr x 18.2person/hr +
    0.5 x 4hr x (30.4 - 18.2)person/hr)
-255 persons.
```

If an average of 2 trips is made per person, then the population size is $255 / 2=128$ persons.

The number of standposts required in the standpost system can be found by dividing the total population by the population determined in the above procedure.

F. Optimal Design

Ultimately, queuing theory can be used to optimally design a standpost system. One way would be to assign a money value to time spent waiting at the standpost and the distance walked to the standpost. This money value could be added to the price the customers are to pay to cover the cost of the system (if there is
ch 8
a charge) and the objective would be to minimize the sum while providing customers with their required amount of water,

Queuing theory has important implications for standpost design. The following conclusions apply to time periods during Which the expected customer arrival rate at a standpost does not vary:

1. If the expected rate at which customers arrive at a single-faucet standpost is equal to the standpost's service rate capacity (i.e., the rate at which customers can be served) then the expected line length will increase monotonically until the number of service periods which has elapsed is equal to the total number of arrivals that occur at the standpost per day. For example, if users start arriving at the standpost at 8:00 a.m., the time required to serve a customer is 5 minutes and a total of 30 trips are made to the standpost, then the expected line length will increase monotonically until $5 \times 30=150$ minutes have elapsed, or until 10:30 a.m.

The WHO guidelines in Annex A are based on the assumption that the service rate capacity should equal the arrival rate averaged over the peak hours, and that the number of peak hours per day is typically in the range of 4 to 12. Over such a long time period it is possible for rather lengthy waiting lines to develop.
2. If the expected rate at which customers arriye at a standpost is less than the service rate capacity, the expected line length will increase monotonically until the number of service periods which has elapsed is equal to the number of arrivals that occur at the standpost per day. In this sense, the line length increases as in conclusion 1 above. However, if the expected arrival rate is significantly less than the service rate capacity, then the expected line length will essentially reach its maximum value (but will not exactly equal its maximum value) long before such a number of time periods has elapsed.

When designing standposts, the discharge capacity should be high enough so that the service rate capacity is significantly more than the expected arrival rate. This will ensure that the line nearly reaches its maximum value rather quickly, and will not grow to an undesireably long length.
3. As the ratio of the expected arrival rate to the service rate capacity increases, the steady-state expected line length increase. For ratios higher than about 0.8 , the expected line length increases greatly for small increases in the ratio.

The standpost service rate capacity should be at least roughly $1 / 0.8=1.25$ times greater than the expected arrival rate. This will ensure that waiting lines are kept fairly short, even if there is a slight error in estimates of the system pressure or other factors influencing the line length.
4. As the time required to serve customers varies among customers (because customers have different container sizes, or fill different numbers of containers), the line length increases.

WHO guidelines in no way take into account the variation in the volume of water customers obtain per trip to the standpost. Queuing theory shows that to meet expected waiting time or line length criteria, the standpost discharge capacity must increase as this variation increases.
5. As the ratio of the expected arrival rate to the service rate capacity decreases, the population size which can be safely assumed to be infinite also decreases. For example, if the ratio is 0.5 , then a population as small as 10 can be assumed to be infinite without causing significant error; whereas if the ratio is 0.9 then the population must be a few hundred to avoid significant error.

The assumption of an infinite population allows for model simplicity and flexibility. However, if the population is too small to be assumed infinite, then the techniques presented in Chapters V and $V I$ can be used to estimate line lengths.

The following conclusions apply to time periods during which the expected arrival rate varies:
6. As discussed in Chapter VI, the assumption that the population served by a standpost is infinite provides reasonably accurate estimates of the maximum expected waiting time.
7. The variation in the volume customers obtain per trip to the standpost does not have a significant effect on the wafting line length. The volume can therefore be
assumed to be constant and equal to the average volume.
8. If a standpost's service rate capacity equals the expected arrival rate during the period of peak usage, then waiting times will not necessarily be of satisfactory shortness. This is especially true if the peak period is long, such as 4 to 12 hours, which is stated to be a typical length in the who guidelines. If the expected arrival rate actually varies during a so-called peak period, then setting the service rate capacity equal to this arrival rate will lead to even longer waiting times.

The following conclusion applies regardless of whether the expected arrival rate varies or is constant:
9. For a given standpost discharge capacity, the expected time spent at the standpost increases slightly as the number of faucets increases. For example, a twofaucet standpost with a discharge capacity of 3.0 gallons/minute (1.5 gallons/minute from each faucet) will provide slightly longer waiting times than a single-faucet standpost having a 3.0 gallons/minute discharge capacity.

When designing a standpost, the number of faucets should initially be assumed to be one unless evidence indicates otherwise. If the resulting required discharge capacity is too great for a single faucet (because, for example, excessive splashing or waste may result) then the standshould be designed again with two or more faucets.
B. Recommendations for Further Study

Queuing theory is useful for standpost design. Additional research may make its application easier and more successful.

The time required to serve a customer is a key parameter of queuing theory. Data concerning the amount of water wasted when filling a customer's container and the time required to position and remove containers from under the faucet may prove useful in accurately estimating the service time. As discussed in chapter III, the time required to open and close the tap is generally not
proportional to the volume of the container to be filled. Use of the efficiency factor f in equations 3.1 and 3.2 is theoretically incorrect; the possibility of resulting service times being erroneous may be worth investigating. An appropriate alternative should be adopted if necessary.

A broad data base of how water collection varies throughout the day for various scenarios (e.g., urban area where the standpost is open only for a few hours in the morning, rural areas where the standpost is always open, etc.) may prove useful. From such a data base common patterns would perhaps emerge. Computer programs similar to those in Annex C could then be applied to each scenario, and relatively simple equations or tables relating discharge capacity, population size, and waiting time could be developed. Designers would then not need to spend much time on data collection and computer modeling.

3. THE REQUIRED DISCHARGE CAPACITY PER STANDPOST

in inportant factor in the design of a public standpost water supply systen, is the required naxinun discharge capacity ($\mathrm{O}_{\mathrm{nax}}$) per stcrdpost.
This paraseter is the basis for the hydraulic calculation and the deteraination of the dinensions of the service pipe and of the type and number of taps.

This $Q_{\text {max }}$ is deterained by the design population (N), the average denand per capita (C_{d}), the peak factor (P), the number of standposts (S), the waste factor (\mathbf{W}) and an efficiency factor (E). The relationship between the factors is presented by the formala:

$$
Q_{\max }=N \neq \frac{1}{s} \geq \frac{c_{d}}{24} \neq P=\frac{1}{1-w} \neq \frac{1}{f}
$$

Each of the six factors that constitute this formala have to be deternined separately before the maximun discharge capacity can be calculated.
3.1. Design Population (N)

This factor depends on the initial sagnitude of the population to be served, the growth rate of the population, and the design peried.

The initial number of users (H_{0}) in the area to be served by the prospective standposts should be counted or estimated.

An indication of the expected armala grouth rate (x) of the popalation can be obtained froa historical statistical data on the area concerned. If these are not available, one way subseitute figures related to a similar area or to the country as a whole.

The standpost nust have sufficient capacity to zeet the users' water denands during a period of several years. The design period (T) is deterained by various technical and econonle faccors: a period of ten years is uswally sufficient, but there say be local reasons that make a shorter or longer period desirable.

The Design Population (W) can new be calculated according tor

$$
N=N_{0} t(1+r)^{T}
$$

One eay prefer to work with a growth factori $a=(1+r)^{T}$. In that case use can be made of a table giving the growth factor as a function of a fixed annual growth rate and the design perici. In general the growth factor will be in the range of $1.0-1.6$ (sce Annex 3).
3.2. Deeand per Capita (C_{d})

The average volube of water drawn from public standposts is typically between 20 and 60 litres per capita por day* (led). Local habits related to domestic water use will have to be stadied in order to establish an accurate figure, particularly In cases vhere there has been no previous experience with standposts or where other sources are available. Normally, a provision is also made for livestock watering.

Natare increases in demand should be provided for. It is advisable to provide excess capacity for a design poriod of at least 10 years and that allows for an increased consumpeion per person.

In the design of the distribution netwark, allowance may also be made for uses other than domestic, guch as snall industries, etc.
3.3. Peak Factor (P)

During sone hours the standpost u111 be used eore Intensively than during the rest of the bay. The water supply syston should be capable of dealing with this peak denand. Therefore, a peak factor representing the ratio between peak and average deand. is introduced in the calculation $Q_{\text {max }}$. Normally, this peak factor is In the range of 2 to 4 , a typical average being 3 .

The peak factor can be approxinated by $P=24 / t$, in which t is the number of peak hours (nornally in the range of 4 to 12 per day). The result of this method tends, howover, to be on the high sido, as the nethod presupposes that no water at all is drawn oueside the peak hours.

The peak factor should be determined with groat care, as it has a considerable influence on the $Q_{\text {max }}$. It is reconmended that the local water collection pattern should always be skodied thoroughly

3.4. The Nurber of Standponts (S)

The required number of standposts is based on two other design eriteria. the maxinus walking distance to the standpost and the maximun numher of users per tap. These two eriteria are directly related to the intended -level of service*, which results from the conaultations between the usprs and the planners of the public standpost scheme.

The Narimum Halking Distance

In general it is advisable to limit the walking distance to $200=$ and in densely populated areas it is of ten posaible to lialt the distance to 100 m . In very sparsely popalated aroas a walking distance of up to 500 m may sosetinea bo acceptable.

In densely popalated areas, however, the application of this criterion may regult in too many users per standpost and per tap. Therefore, a second criterion that relates to the population density in a particular area, is required.

The Mazirm Monker of Users per Stardpost

It is advisable to limit the number of users per standpost to 100-250; in no ease should this number exceed 500. The number of users per tap sbould preferably be in the range of 25-125. This criterion is directly related to the maximun discharge capacity of the taps and to the water collection pattern during peak hours.

Proceeding fron more or less evenly spaced standposts in a given area (A) and a set maxibum walking distance (R), the nuaber of standposts can be assessed using the formula:

$$
\begin{aligned}
& S=\pi / \pi R^{2} \\
& A=\text { total area of the schese in } m^{2} \\
& S=\text { the number of standposts } \\
& R=\text { the service radius in } m \\
& \pi=3.14
\end{aligned}
$$

It should be noted that the service radius does not exactly equal the maximan walking distance (see Annox 4).

In case the afore-mentioned approxibation of the zumber of standposts (5) leads to a too high averago number of uscrs per standpost, one may increase the number of taps por standpost, in order to meet the criterion set for the naxinua number of users per tap. However, the number of taps per atandpost sheald bo limited to avold the crowding of too eany people near ono standpost; it is advisable not to install nore than four taps per standpost.
If by providing nore than one tap the eriterion of the maxinua nurber of users per tap can still not be met, the number of standposts in the area under consideration is to bo increased.

In practice, the actual local geographical and denographical circuestances will deteraine the siting and the exact nanber of standposts and taps, as well as the actual number of users for each standpost. However, in most eases, as a first assessment, the above nethed gives satisfactory rosults.

3.5. Haste Factor (w)

Part of the water is inevitably split by users whea filling their contalners or drawing water for imediate use at the standpost. To express this nunerically, the waste foctor (w) is introduced. This factor can be deternined by calculating the ratio of the ampunt of water actually taken away by the users asd the total anount of water discharged through the taps.
Spillage and vastage depend on the way in which coatainers are fllled, the type and condition of the taps, the helght of the taps above the bucket-staed, the water pressure, and on whether or not the standpost 13 supervised.

The waste factor can best be estinated from data obtained in other schemes. It ahould only include the spillago and wastage related to the collection and une of water at the tap and net the leakage of water in the main and branch plpes of the diatribution network, an this irakage water is not diacharged through the taps.

The waste factor is in the range of 0.1 to 0.4 which means that $10=401$ of the total discharge at the tap is spilt or wasted. As the waste factor has a considerable Influence on the $Q_{\text {nax }}$ careful assessment of the factor is required.
It is important to decide whether water used for parposes, such as washing of utensils and personal cleaning at the tap should bu considered as part of the per capita denand or is to be regarded In terms of apiliage or wastage.
3.6. The Efficiency Factor (f)

The efficiency factor is introduced to take into account that the suppliers rating of the capacity of a tap is usually based on continuous discharge at 10 mhw with the tap fully open. In practice the pressure will never be exactly 10 mhw and discharge is usually not continuous. The closing and opening of the tap will make the actual discharge smaller than the theoretical maximum.

Depending on the type of tap, the efficiency factor (f) can range fron almost 1.0 for a ball valve (rapid closing tap), to 0.9 and 0.8 for an ordinary screw tap, and 0.7 for speingloaded taps.
3.7. Calculation Example

The calculation of the required maximun discharge capacity of standposts can best be illustrated by an example: assume the following situation:
$N_{0}=$ initial number of users $=12000$
$r=$ population grouth rate $=2 \mathrm{~s}$ per year
$T=$ design period $=10$ years
A - area of scheme $=100$ ha $=1.10^{6} \mathrm{a}^{2}$
$s \quad=\quad$ number of standposts
$\mathrm{C}_{\mathrm{a}}=$ average denand per capita $=40$ 1cd
t - number of peak hours $=4.5 \mathrm{~h}$
$v \quad=$ wastage factor $=0.2$
f a efficiency factor $=0.9$

Tine design population can be calculated as:
$u=N_{o}=\{1+r\}^{T}=12000=1.02^{10}=12000 \pm 1.22=14640$ persons.
If the service radius is set as $\mathrm{R}=200 \mathrm{~m}$ and the number of users per standpost is liaited to 250 , the nuether of atandiposto can be detersined as follows:
a. $S P N / \pi R^{2}=10^{6} / 3.14 \mp\{200\}^{2}=7.96$ and
b. $\quad S>N / 250=14640 / 250=50.56$

Consequently, the maximum number of users per standpost is the decisive factor in this case (b). If the number of standposts is now set at 60, the average number of users per standpose is: $14640 / 60=244$ persons, and the service radius about 73 n .

The, required discharga capacity per stertpost can be calculated

$$
\begin{aligned}
Q_{\max }= & \frac{N}{s} \times \frac{C_{d}}{24} \pm p=\frac{1}{1-w} \div \frac{1}{f}= \\
& \frac{14640}{60}=\frac{40}{24} \times \frac{24}{4,5}=\frac{1}{1-0,21}=\frac{1}{0,9}=30121 / \mathrm{h}
\end{aligned}
$$

If the area had beon 1000 ha instead of 100 ha , the result of the equation $S \supset A / \pi R^{2}$, for $R=200$, would have been 80 standposts and the criterion of tho maximan walking diatance would have been decisive (a). The avorage number of users per standpost would then have beent $14640 / 80=183$ and the $Q_{\text {nax }}$ equal to $22601 / \mathrm{h}$ per standpost; assuaing that population and standposts are evenly distributed.

However, in practice, and particularly in larger areas, the population vill almost novar bo ovenly diotributed. Theroforo, the number of standposts and thoir location will always have to be deternined on the basis of the local geographical cieunstances, incluaing the variation in population density in the area concorned. This eay lead to a variation in the number of users per standpost and subsequently to a difference in the required discharge capacity of the various standposts.

The above serves to show that, generally speaking, the maximun number of users per standpost will be the criterion in densely populated areas, whilst in sparsely populated areas the maximun walking distance will be the decisive factor.

Finally, it should be pointed out that $Q_{\text {max }}$, as calculated in this Chapter, only relates to wator that is actually discharged via standposts. The total amount of water that is pumpid into the distribution network is often reported to be 10-501 higher than the total discharge via standposts and house connections. This is due to leakage in the pipo system. This factor is NOT included in the calculations in this publication, as this publication only deals with the discharge from standposts.

All the afore-nentionod valuos have been assumed. The dosigner should substitute his own data depending on the characteristics of the systen he is working on.

Modeling queuing processes requires use of probability theory. Some useful definitions are the following:

* The probability that an event occurs is the \% chance of it happening divided by 100%.
* Independent events are a group of events such that the occurence of any member(s) of the group does not change the probability that any of the other member(s) will occur. For example, suppose a group of 3 events consists of 3 coin tosses, each resulting in "heads". Each event of the group has a probability of 0.5 . Regardless of the result of, say, the first coin toss, each of the other 2 events still has a probability of 0.5 because the 3 events are independent. The result of one coin toss in no way changes the probability of "heads" on another coin toss.
* Mutually exclusive events are events such that the occurrence of one makes the occurrence of another impossible. If, for example, each of the numbers 1 through 10 are written on 10 pieces of paper which are placed in a hat, then getting 4 on the first draw and 4 on the second draw are mutually exclusive events. The paper with 4 can be drawn only once.

Useful principles of probability theory are:

* The probability of a group of independent events is the product of the probability of each separate event. Using
the above coin toss example, the probability that all 3 tosses result in "heads" is $0.5 \times 0.5 \times 0.5=0.125$. That is, only in about 12 times out of 100 that the experiment of tossing a coin 3 times is run will "heads" be obtained on all 3 tosses.
* The probability of an event that consists of a group of mutually exclusive events is the sum of the probabilities of each event in that group. Using the above numbers-in-thehat example, the probability that the number on the first draw is a 2 or a 3 is $1 / 10+1 / 10 \equiv 0.2$. That is, for the experiment of drawing a number from a hat, about 20 out of a 100 times the number will be either 2 or 3.

ANNEX C. Computer Programs for Large and Small Population Models

The computer programs contained in this annex are written in Fortran IV.

Lines which begin with the letter "C" are comment lines to aid the reader.

The computer language does not allow for use of the subscript "0" for elements of vectors and matrices. For this reason, " 1 " is used when " 0 " is required and all higher subscripts have " 1 " added to them. For example, to indicate the probability of no one in the waiting line the subscript " 1 " is used, and to indicate the probability of one person in the waiting line the subscript " 2 " is used. For vectors and matrices having no element with a "0" subscript this adjustment is not necessary. Variables in the computer programs with their corresponding symbols in the text are as follows:

Fortran IV	text
EAR	λ
EL	L
ELP	L'
PK	p_{k}
vo	v_{0}
VI	v_{i}
vJ	v_{j}

The Fortran IV symbols are followed by subscripts written in parenthesis, e.g., PK(I). These subscripts refer to the number in line when used with VI and VJ. For example, VI(4) is the probability that 3 (add " +1 " to convert to Fortran IV) persons are in the queuing system at the beginning of interval n. When used with PK, the subscripts refer to the number of arrivals that
occur during interval n. For example, $P K(11)$ is the probability that 10 arrivals occur during interval n. The subscripts with $E L$, ELP, S, and W refer to the interval number. For example, $E L(50)$ is the expected line length at the beginning of interval 50.

The variables A, B, C, D, and F have no direct significance in queuing theory, but are used as aids in the calculation process. The variable FACT(I) represents a vector of factorials used in calculating probabilities.

Equations $4.3,4.5$, and 4.6 are theoretically to be applied through $j=\infty$. For the purpose of calculation, an upper limit of $j=70$ is assumed. If the line length is greater than 70 , anyone arriving will decide not to join the line because of its great length. A new variable, $P 70(K)$, is introduced to be consistent With the 1 imit of 70 being placed on $j . P 70(K)$ is the probability that the number of arrivals occurring during a service interval is equal to or greater than the number that would cause 70 persons to be in line at the end of the interval. $v_{j}(n)$ and $v_{j}^{\prime}(n)$ for $j=70$ are negligible and the resulting $L(n)$ and $L^{\prime}(n)$ values are accurate unless the waiting line is extremely long.

Some variables are unique to the small population model. SASP3, SASP4, SASP5, and SASP6 are the probabilities that 0 departures occur in the third, fourth, fifth, and sixth intervals. For each of these intervals, there is more than one way that 0 departures will occur. For example, the probvability that 0 departures will occur in the third interval is the probability that 0 arrivals occur in the first interval and 0 arrivals occur in the second, plus the probability that 1 arrival occurs in the
first and 0 in the second. In the computer program, these latter probabilities are given the symbol ASP_with a subscript to distinguish them from each other. For example, SASP3 the sum of the ASP3's. The subscripts associated with each of the ASP's represent the number of arrivals (plus " +1 " to convert to Fortran IV) in the order in which they occur. For example, $\operatorname{ASP} 5(3,1,2)$ is the probability that 2 arrivals occur in the first interval, 0 in the second, and 1 in the third. Notice that the number of subscripts required will always be 2 less than the interval number of concern. In the case of ASP5, the number of subscripts required is 3. This is because the number of arrivals in the fourth interval is always 0 and the number of arrivals in the fifth interval is irrelevant.

C

$$
\begin{aligned}
& \mathrm{N}=1 \\
& 003 \mathrm{~N}=\mathrm{N}+1 \\
& \mathrm{VJ}(1)=\mathrm{VI}(1) * P K(1)+\mathrm{VI}(2) * P K(1) \\
& { }_{C}^{C} \text { Step 2: } V J(2) \text { through } V J(70) \text { are calculated. }
\end{aligned}
$$

C
C
C

DO $011 \mathrm{~J}=2,70$
$B=V I(1) * P K(J)$
D0 $010 \quad \mathrm{I}=2, \mathrm{~J}+1$
$K=J-1+2$
$010 \mathrm{~B}=\mathrm{VI}(\mathrm{I}) * \mathrm{PK}(\mathrm{K})+\mathrm{B}$
VJ (J) = B
011 CONTINUE
C
C Step 3: $\mathrm{VJ}(71)$ is calculated.
$\mathrm{C}=\mathrm{VI}(1) * \mathrm{P} 70$ (71)
DO $015 \mathrm{I}=2,71$
$\mathrm{K}=71-\mathrm{I}+2$
$015 \mathrm{C}=\mathrm{VI}(\mathrm{I}) * \mathrm{P} 70(\mathrm{~K})+\mathrm{C}$
$\operatorname{VJ}(71)=\mathrm{C}$
${ }_{C}^{C}$ Step 4: $v_{0}(n), L(n)$ and $L^{\prime}(N)$ are determined for the ${ }_{C}^{C}$ beginning of period n.
C

$$
\begin{aligned}
& V O(N)=V J(1) \\
& E L(N)=0.0 \\
& D 0 \quad 020 \quad J=2,71
\end{aligned}
$$

$020 \mathrm{EL}(\mathrm{N})=\mathrm{EL}(\mathrm{N})+\mathrm{VJ}(\mathrm{J}) * \operatorname{REAL}(\mathrm{~J}-1)$
$E L P(N)=E L(N) /(1.0-V J(1))$
C
C
C
C
Step 5: VJ's become VI's so that the 5 -step process may be repeated.
$00030 \quad \mathrm{I}=1,71$
030 VI (I) $=\mathrm{VJ}$ (I)
IF (N.LT. 241)GOTO 003
Results are written in file "ANNC1.TXT".
$V 0(1)=1.0$
$\operatorname{ELP}(1)=0.0$
VRITE (1,210) (I, V0(I), ELP (I) $\mathrm{I}=1,241$)
210 FORMAT(I $3,2 X, F 5.3,3 X, F 6.3,7 X, 13,2 X, F 5.3,3 X, F 6.3$) END

ANNEX C.2. This is a large-population model with constant rho values, two taps, and service time constant among users. The expected number of service intervals customers spend at the standpost is calculated as a function of the interval number.

The sizes of vectors are established. Variables are "DOUBLE PRECISION" so that high factorials can be calculated. The file "ANNC2.TXT" is opened for storage of results.

DIMENSION PK (70), P70(71), VI(71), VJ(73),S(400), FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, S, PK, P70, \& VI, VJ, RHO
$\operatorname{OPEN}(1, F$ ILE = 'ANNC2.TXT')
Factorials are calculated. These factorials will be used for calculating elements of the PK vector.

```
        F=1.0
        D0 001 I=1,70
        F=REAL (I)*F
    0 0 1 ~ F A C T ( I ) = F
```

The program is run for rho values starting at 0.20 . The rho value increases by increments of 0.1 until reaching 1.0 (See the second to last line of the program.)

RHO $=0.1$
$100 \mathrm{RHO}=\mathrm{RH} 0+0.1$
The rho value and column headings are written in "ANNC2.TXT".
$\operatorname{WRITE}(1,201)$ RHO
$201 \operatorname{FORMAT}\left(27 \mathrm{X},{ }^{\prime} \mathrm{RH} 0={ }^{\prime}, \mathrm{F} 3.1\right)$
WRITE $(1,205)$
205 FORMAT $\left(2 x,{ }^{\prime} n ', 2 x, ' S(n)^{\prime}, 7 x,{ }^{\prime} n n^{\prime}, 2 x,{ }^{\prime} S(n)^{\prime}, 7 x,{ }^{\prime} n ', 2\right.$ $\left.\& x,{ }^{\prime} S(n)^{\prime}, 7 x,{ }^{\prime} n ', 2 X,{ }^{\prime} S(n)^{\prime}, 7 x,{ }^{\prime} n{ }^{\prime}, 2 X,{ }^{\prime} S(n)^{\prime}\right)$

The PK and P70 vectors are calculated.
$004 \operatorname{PK}(1)=1.0 / E \times P(2.0 * R H 0)$
$A=P K(1)$
P70(2) $=1 \cdot 0-\mathrm{A}$
D0 $005 \quad \mathrm{I}=2,70$
$\operatorname{PK}(I)=(2.0 * R H 0) * * R E A L(I-1) /(F A C T(I-1) * E X P(2.0 * R H 0))$
$A=P K(I)+A$

```
        K=I +1
    005 P70(K)=1.0-A
C
C
C
C
C
C
    The expected number of service intervals customers spend at
    the standpost is calculated at the beginning of each of 400
    service intervals. This process involves 5 steps, as follows:
    D0 040 N=1,400
    Step 1: VJ(1) and VJ(2) are calculated.
    VJ(1)=(VI (1)+VI (2)+VI (3))*PK (1)
    VJ(2)=(VI(1)+VI(2)+VI(3))*PK(2)+VI (4)*PK(1)
    Step 2: VJ(3) through VJ(69) are calculated.
    D0 011 J=3,69
    B=(VI (1)+VI (2)+VI (3))*PK(J)
    D0 010 I =4,J+2
    K=J-I +3
    010 B=VI(I)*PK(K)+B
    VJ(J)=B
    0 1 1 ~ C O N T I N U E ~
    Step 3: VJ(70) and VJ(71) are calculated.
    VJ(70)=(VI (1)+VI (2)+VI(3))*PK(70)
    D0 013 I =4,71
    K=73-I
    013 VJ (70)=VI(I)*PK(K)+VJ(70)
    VJ(71)=(VI(1)+VI(2))*P70(71)
    D0 015 I=3,71
    K=74-I
    015 VJ(71)=VI(I)*P70(K)+VJ(71)
    Step 4: S(N), the expected number of service period spent
    at the standpost at the beginning of the nth interval is
    calculated.
    S(N)=(VJ(2)+VJ(3)+VJ(4))*1.0
    DO 020 I =2,35
    J=2*I
    D0 020 K=J,J+1
0 2 0
    S(N)=S(N)+VJ(K)*REAL(J)/2.0
    Step 5: VJ's at the end of the nth interval become VI's
    for the beginning of interval n+1 so that the 5-step
        process may be repeated for interval }n+1\mathrm{ .
        D0 030 I= 1,71
    030 VI(I)=VJ(I)
    040 CONTINUE
    C
C Results are written in file "ANNC2.TXT".
```

ANNEX C.3. This is a large-population model with constant rho values, three taps, and the service time constant among users. The expected number of service intervals customers spend at the standpost is calculated at the beginning of each interval.
The sizes of vectors are established. Variables are "DOUBLE PRECISION" so that high factorials can be calculated. The file "ANNC3.TXT" is opened for storage of results.
DIMENSION PK(70),P70(71),VI(71),VJ(71),S(300),FACT(70)
DIMENSION PK(70),P70(71),VI(71),VJ(71),S(300),FACT(70)
DOUBLE PRECISION A, B, C, D, F, FACT, S, PK, P70,
DOUBLE PRECISION A, B, C, D, F, FACT, S, PK, P70,
\&VI, VJ, RHO
\&VI, VJ, RHO
OPEN(1,FILE= 'ANNC3.TXT')
OPEN(1,FILE= 'ANNC3.TXT')
Factorials are calculated. These factorials will be used for calculating elements of the PK vector.
$\mathrm{F}=1.0$
D0 $001 \mathrm{I}=1,70$
$\mathrm{F}=\mathrm{REAL}(\mathrm{I}) * \mathrm{~F}$
$001 \operatorname{FACT}(\mathrm{I})=\mathrm{F}$
The program is run for rho values starting at 0.20 . The rho value increases by increments of 0.1 until reaching 1.0. (See the second to last line of the program.)
$\mathrm{RHO}=0.1$
$100 \mathrm{RH} 0=\mathrm{RHO}+0.1$
The rho value and column headings are stored in "ANNC3.TXT" .
$\operatorname{HRITE}(1,201)$ RHO
201 FORMAT ($27 \mathrm{X},{ }^{\prime}$ RHO $={ }^{\prime}, \mathrm{F} 3.1$) WRITE $(1,205)$
205 FORMAT $\left(2 X,{ }^{\prime} n ', 2 X, L^{\prime \prime}(n)\right.$ ' $, 6 X,{ }^{\prime} n ', 2 X, L^{\prime \prime}(n) ', 6 X,{ }^{\prime} n^{\prime}, 2$ $\left.8 \mathrm{X},{ }^{\prime} \mathrm{L}^{\prime \prime}(\mathrm{n})^{\prime}, 6 \mathrm{X},{ }^{\prime} \mathrm{n}^{\prime}, 2 \mathrm{X}, \mathrm{'L}^{\prime}(\mathrm{n}) \mathrm{l}, 6 \mathrm{X}, \mathrm{I}^{\prime}, 2 \mathrm{X}, \mathrm{L}^{\prime \prime}(\mathrm{n})^{\prime}\right)$
The probability distribution of the number at the standpost at the beginning of the first interval is established. No one is at the standpost at this time.
$\mathrm{VI}(1)=1.0$
D0 $002 \mathrm{I}=2,71$
$002 \mathrm{VI}(\mathrm{I})=0.0$
C
C
The PK and P70 vectors are calculated.
004 PK (1) $=1.0 / \mathrm{EXP}(3.0 *$ RH0)
$A=P K(1)$
P70(2) $=1.0-\mathrm{A}$
DO $005 \quad \mathrm{I}=2,70$
$\operatorname{PK}(\mathrm{I})=(3.0 \star$ RHO $) * * \operatorname{REAL}(\mathrm{I}-1) /(\operatorname{FACT}(\mathrm{I}-1) * \operatorname{EXP}(3.0 * R H 0))$

	$\begin{aligned} & A=P K(I)+A \\ & K=I+1 \\ & P 7 O(K)=1 \cdot 0-A \end{aligned}$
C	
$\begin{aligned} & C \\ & C \\ & C \\ & C \end{aligned}$	The expected number of service intervals customer spend at
	the standpost is calculated at the beginning of each of 300
	intervals. This process involves 5 steps, as follows:
	D0 $040 \mathrm{~N}=1,300$
C	
C	Step 1: $\mathrm{VJ}(1), \mathrm{VJ}(2)$, and $\mathrm{VJ}(3)$ are calculated.
	$V J(1)=(V I(1)+V I(2)+V I(3)+V I(4)) * P K(1)$
	$V J(2)=(V I(1)+V I(2)+V I(3)+V I(4)) * P K(2)+V I(5) * P K(1)$
	$\mathrm{VJ}(3)=(\mathrm{VI}(1)+\mathrm{VI}(2)+\mathrm{VI}(3)+\mathrm{VI}(4)) \star \mathrm{PK}(3)+\mathrm{VI}(5) \star \mathrm{PK}(2)+\mathrm{VI}(6) * P \mathrm{~K}(1)$
C	
C	Step 2: $\mathrm{VJ}(4)$ through $\mathrm{VJ}(68)$ are calculated.
	D0 011 J=4,68
	$B=(V I(1)+V I(2)+V I(3)) * P K(J)$
	D0 $010 \quad \mathrm{I}=4, \mathrm{~J}+3$
	$\mathrm{K}=\mathrm{J}-\mathrm{I}+4$
	$B=V I(I) * P K(K)+B$
	VJ(J) = B
011	CONTINUE
C	
C	Step 3: VJ(69), VJ(70), AND VJ(71) are calculated.
C	
	$\mathrm{VJ}(69)=(\mathrm{VI}(1)+\mathrm{VI}(2)+\mathrm{VI}(3)+\mathrm{VI}(4)) * \mathrm{PK}(69)$
	DO $012 \mathrm{I}=5,71$
	$\mathrm{K}=73-1$
	$V J(70)=(V I(1)+V I(2)+V I(3)+V I(4)) * P K(70)$
	DO $013 \mathrm{I}=5,71$
	$K=74-1$
	$\mathrm{VJ}(70)=\mathrm{VI}(\mathrm{I}) * \mathrm{PK}(\mathrm{K})+\mathrm{VJ}(70)$
	$C=(V I(1)+V I(2)+V I(3)) * P 70(71)$
	DO $015 \mathrm{I}=4,71$
	$\mathrm{K}=75-1$
	$\mathrm{C}=\mathrm{VI}(\mathrm{I}) \star \mathrm{P} 70(\mathrm{~K})+\mathrm{C}$
	$\mathrm{VJ}(71)=\mathrm{C}$
C	
C	Step 4: S(N), the expected number of service periods spent
C	at the standpost at the beginning of the nth interval is
C	calculated.
C	
	$S(\mathrm{~N})=(\mathrm{VJ}(2)+\mathrm{VJ}(3)+\mathrm{VJ}(4)) * 1.0$
	D0 $020 \mathrm{I}=2,24$
	$\mathrm{J}=3 * \mathrm{I}-1$
	D0 $020 \mathrm{~K}=\mathrm{J}, \mathrm{J}+2$
	$S(N)=S(N)+V J(K) * R E A L(J+1) / 3.0$
	$S(N)=S(N) /(1.0-V J(1))$
C	
C	Step 5: VJ's at the end of the nth interval become VI's
C	for the beginning of interval $n+1$ so that the 5-step

 \(A=P K(I)+A\)
 The expected number of service intervals customer spend at the standpost is calculated at the beginning of each of 300 intervals. This process involves 5 steps, as follows:

D0 $040 \mathrm{~N}=1,300$
Step 1: VJ(1), VJ(2), and VJ(3) are calculated.

$$
\begin{aligned}
& V J(1)=(V I(1)+V I(2)+V I(3)+V I(4)) \star P K(1) \\
& V J(2)=(V I(1)+V I(2)+V I(3)+V I(4)) \star P K(2)+V I(5) \star P K(1) \\
& V J(3)=(V I(1)+V I(2)+V I(3)+V I(4)) \star P K(3)+V I(5) \star P K(2)+V I(6) \star P K(1)
\end{aligned}
$$

Step 2: $V J(4)$ through $V J(68)$ are calculated.

$$
\begin{aligned}
& B=(V I(1)+V I(2)+V I(3)) * P K(J) \\
& \text { DO } 010 \quad I=4, J+3 \\
& K=\mathrm{J}-\mathrm{I}+4 \\
& \begin{array}{c}
010 \begin{array}{l}
B=V I(I) * P K(K)+B \\
V J(J)=B
\end{array}
\end{array}
\end{aligned}
$$

Step 3: VJ(69), VJ(70), AND VJ(71) are calculated.
$\mathrm{VJ}(69)=(\mathrm{VI}(1)+\mathrm{VI}(2)+\mathrm{VI}(3)+\mathrm{VI}(4)) * \mathrm{PK}(69)$
$K=73-1$
$012 \mathrm{VJ}(69)=\mathrm{VI}(\mathrm{I}) * \mathrm{PK}(\mathrm{K})+\mathrm{VJ}(69)$
$\mathrm{VJ}(70)=(\mathrm{VI}(1)+\mathrm{VI}(2)+\mathrm{VI}(3)+\mathrm{VI}(4)) * \mathrm{PK}(70)$
D0 $013 \mathrm{I}=5,71$
$\mathrm{K}=74-1$
$013 \mathrm{VJ}(70)=\mathrm{VI}(\mathrm{I}) \star \mathrm{PK}(\mathrm{K})+\mathrm{VJ}(70)$
$\mathrm{C}=(\mathrm{VI}(1)+\mathrm{VI}(2)+\mathrm{VI}(3)) \star \mathrm{P} 70(71)$
DO $015 \mathrm{I}=4,71$
$\mathrm{K}=75-1$
$015 \mathrm{C}=\mathrm{VI}(\mathrm{I}) \star \mathrm{P} 70(\mathrm{~K})+\mathrm{C}$
$\mathrm{VJ}(71)=\mathrm{C}$
Step 4: S(N), the expected number of service periods spent at the standpost at the beginning of the nth interval is calculated.

```
\(S(N)=(\mathrm{VJ}(2)+\mathrm{VJ}(3)+\mathrm{VJ}(4)) * 1.0\)
DO \(020 \mathrm{I}=2,24\)
\(\mathrm{J}=3 * I-1\)
DO \(020 \mathrm{~K}=\mathrm{J}, \mathrm{J}+2\)
\(S(N)=S(N) /(1.0-V J(1))\)
```

Step 5: VJ's at the end of the nth interval become VI's for the beginning of interval $n+1$ so that the $5-s t e p$

C process may be repeated for interval $n+1$.
c
D0 $030 \mathrm{I}=1,71$
$030 \mathrm{VI}(\mathrm{I})=\mathrm{VJ}(\mathrm{I})$
040 CONTINUE
c
c
c

> Results are written in file "ANNC3.TXT".
$\operatorname{HRITE}(1,210)(\mathrm{I}, \mathrm{S}(\mathrm{I}), \mathrm{I}=1,10)$
$\operatorname{WRITE}(1,210)(10 * \mathrm{I}, \mathrm{S}(10 * \mathrm{I}), \mathrm{I}=1,30)$
210 FORMAT(I3,1X,F6.3,4X,13,1X,F6.3,4X,13,1X,F6.3,4X,13,1X, \&F6.3,4X,13,1X,F6.3)
C
C
C
C If rho is less than 1.0 , then rho is increased by 0.1 and the entire process is repeated.

$$
\begin{aligned}
& \text { IF(RHO.LT.1.0)GOTO } 100 \\
& \text { END }
\end{aligned}
$$

C ANNEX C. 4.
This is a large-population model for determining $L^{\prime}(n)$ when lambda varies with time, the standpost has a single tap, and the service time is constant among users. See section IV.B for details of the scenario being modeled.
The sizes of vectors are established. Variables are "DOUBLE PRECISION" so that high factorials can be calculated. The file "ANHC4.TXT" is opened for storage of results.
DIMENSION PK(70),P70(71),VI(71), VJ(71), EL(241),ELP(241), $\& F A C T(70)$
DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, \&PK, P70, VI, VJ
$\operatorname{OPEN}(1, F I L E=$ 'ANNC4.TXT')
Factorials are calculated. These factorials will be used for calculating elements of the PK vector.
$001 \operatorname{FACT}(\mathrm{I})=\mathrm{F}$
$\mathrm{F}=1.0$
D0 $001 \quad \mathrm{I}=1,70$
$\mathrm{F}=\mathrm{REAL}(\mathrm{I}) * \mathrm{~F}$
Column headings are written.
WRITE $(1,205)$

Lambda is determined for period n.
$\mathrm{N}=1$
003 IF (N.GT. 40)GOTO 401
EAR $=0.85 *$ REAL (N) GOTO 004
401 IF (N.GT.120)GOTO 402
$E A R=46.5-0.3125 *$ REAL (N) GOTO 004
402 IF (N.GT. 200)GOTO 403
EAR $=0.3125^{*}$ REAL $(N)-28.5$ GOTO 004
$403 \mathrm{EAR}=204 \cdot 0-0.85 *$ REAL (N)
FORMAT $\left(2 X, ' n ', 2 X, L^{\prime \prime}(n) ', 5 X,{ }^{\prime} n ', 2 X, L^{\prime \prime}(n) '\right.$,
$\left.\& 5 X,{ }^{\prime} n^{\prime}, 2 X, L^{\prime}(n)^{\prime}, 5 X, ' n{ }^{\prime}, 2 X, L^{\prime \prime}(n)^{\prime}, 5 X, ' n ', 2 X, L^{\prime \prime}(n)^{\prime}\right)$
$\operatorname{VI}(1)=1.0$
DO $002 \quad \mathrm{I}=2,71$
$002 \mathrm{VI}(\mathrm{I})=0.0$
$T A U=0.05$
C

C The PK and P70 vectors are calculated.
$004 \operatorname{PK}(1)=1.0 / E \times P(E A R * T A U)$
$A=P K(1)$
P70(2) $=1.0-\mathrm{A}$
DO $005 \quad \mathrm{I}=2,70$
$\operatorname{PK}(\mathrm{I})=(E A R * T A U) * * R E A L(I-1) /(\operatorname{FACT}(I-1) * E X P(E A R * T A U))$
$A=P K(I)+A$
$\mathrm{K}=\mathrm{I}+1$
$005 \mathrm{P} 70(\mathrm{~K})=1.0-\mathrm{A}$
C
C The expected line length given that the line is not empty is C calculated at the beginning of each interval. This process
C involves 5 steps, as follows:
$\mathrm{N}=\mathrm{N}+1$
C
C Step $1: V J(1)$ is calculated.
VJ (1) $=\mathrm{VI}(1)$ *PK (1) $+\mathrm{VI}(2)$ *PK (1)
${ }_{C}^{C}$ Step 2: $V J(2)$ through $V J(70)$ are calculated.
D0 $011 \mathrm{~J}=2,70$
$B=V I(1) * P K(J)$
D0 $010 \mathrm{I}=2, \mathrm{~J}+1$
$\mathrm{K}=\mathrm{J}-\mathrm{I}+2$
$010 \mathrm{~B}=\mathrm{VI}(\mathrm{I}) \star \mathrm{PK}(\mathrm{K})+\mathrm{B}$
VJ (J) =B
011 CONTINUE
C
C Step 3: $V J(71)$ is calculated.
$\mathrm{C}=\mathrm{VI}(1) * \mathrm{P} 70(71)$
D0 $015 \mathrm{I}=2,71$
$K=71-I+2$
$015 \mathrm{C}=\mathrm{VI}(\mathrm{I}) \star \mathrm{P} 70(\mathrm{~K})+\mathrm{C}$
$\mathrm{VJ}(71)=\mathrm{C}$
$\stackrel{C}{C}$ Step 4: $L(n)$ and $L^{\prime}(n)$ are calculated for the beginning of C period n.

```
        EL(N)=0.0
        DO 020 J=2,71
    020 EL(N)=EL(N)+VJ(J)*REAL(J-1)
            ELP(N)=EL(N)/(1.0-VJ(1))
C
C Step 5: VJ's become VI's so that the 5-step process may
C be repeated.
        D0 030 I=1,71
    030 VI(I)=VJ(I)
    IF(N.LT.241)GOTO 003
C
C Results are written in file "ANNC4.TXT".
```


ANHEX C．5．Large－population model for determining $W(n)$ when lambda varies with time，the standpost has a single tap，and the service time is constant among users．See section VII．C for details of the scenario being modeled．
The sizes of vectors are established．Variables are ＂DOUBLE PRECISION＂so that high factorials can be calculated．The file＂ANNC5．TXT＂is opened for storage of results．
DIMENSION PK（70），P70（71），VI（71），VJ（71），EL（241），ELP（241）， $\& W(241)$, FACT（70）
DOUBLE PRECISION A，B，C，D，F，FACT，EL，ELP，W， \＆PK，P70，VI，VJ
OPEN（1，FILE＝＇ANNC5．TXT＇）
Factorials are calculated．These factorials will be used for calculating elements of the PK vector．
C
Column headings are written．
WRITE $(1,205)$
205 FORMAT $\left(2 X,{ }^{\prime} n^{\prime}, 3 X, ' W(n) ', 5 X,{ }^{\prime} n ', 3 X, ' W(n)^{\prime}, 5 X,{ }^{\prime} n ', 3 X,{ }^{\prime} W(n)\right.$＇，
$85 \mathrm{X},{ }^{\prime} \mathrm{n}$＇， $3 \mathrm{X},{ }^{\prime} \mathrm{W}(\mathrm{n})^{\prime}, 5 \mathrm{X}, \mathrm{n}$＇， $\left.3 \mathrm{X}, \mathrm{\prime} W(\mathrm{n})^{\prime}\right)$
The PDF of the number at the standpost at the beginning of the first period is established．No one is at the standpost at this time．Tau is assigned its value．
VI（1）$=1.0$
DO $002 \mathrm{I}=2,71$
$002 \mathrm{VI}(\mathrm{I})=0.0$
$\mathrm{TAU}=0.05$
Lambda is determined for period n ．
$\mathrm{N}=1$
003 IF（N．GT． 40 ）GOTO 401
$E A R=0.5 \star$ REAL（N）
GOTO 004
401 IF（N．GT．120）GOTO 402
$E A R=24.0-0.1 *$ REAL（N）
GOTO 004
402 IF（N．GT．200）GOTO 403
$E A R=0.1$＊REAL（N）
GOTO 004
403 EAR $=120.0-0.5 * \operatorname{REAL}(N)$
C The PK and P70 vectors are calculated．

```

C
```

 \(004 \mathrm{PK}(1)=1.0 / E \times P(E A R * T A U)\)
 \(A=P K\) (1)
 P70(2) \(=1.0-A\)
 D0 \(005 \mathrm{I}=2,70\)
 \(\operatorname{PK}(I)=(E A R * T A U) * * R E A L(I-1) /(F A C T(I-1) * E X P(E A R * T A U))\)
 \(A=P K(I)+A\)
 \(\mathrm{K}=\mathrm{I}+1\)
    ```
    \(005 \mathrm{P} 70(\mathrm{~K})=1.0-\mathrm{A}\)
C
C The expected waiting time is calculated at the beginning of
C each interval. This process involves 5 steps, as follows:
    \(\mathrm{N}=\mathrm{N}+1\)
    Step 1: VJ(1) is calculated.
        \(V J(1)=V I(1) * P K(1)+V I(2) * P K(1)\)
    Step 2: \(V J(2)\) through \(V J(70)\) are calculated.
        D0 \(011 \mathrm{~J}=2,70\)
        \(\mathrm{B}=\mathrm{VI}(1) * P K(\mathrm{~J})\)
        D0 \(010 \mathrm{I}=2, \mathrm{~J}+1\)
        \(\mathrm{K}=\mathrm{J}-\mathrm{I}+2\)
    \(010 \mathrm{~B}=\mathrm{VI}(\mathrm{I}) * \mathrm{PK}(\mathrm{K})+\mathrm{B}\)
        \(\mathrm{VJ}(\mathrm{J})=\mathrm{B}\)
    011 CONTINUE
C
C Step 3: \(V J(71)\) is calculated.
    \(\mathrm{C}=\mathrm{VI}(1) * \mathrm{P} 70(71)\)
    D0 \(015 \mathrm{I}=2,71\)
    \(K=71-I+2\)
    \(015 \mathrm{C}=\mathrm{VI}(\mathrm{I}) * \mathrm{P} 70(\mathrm{~K})+\mathrm{C}\)
    \(\mathrm{VJ}(71)=\mathrm{C}\)
\({ }_{C}^{C}\) Step 4: \(L(n), L^{\prime}(n)\), and \(W(n)\) are calculated for the beginning
\(C\) of period \(n\). A factor of 60 is used to express \(W(n)\) in
    minutes.
    \(E L(N)=0.0\)
    DO \(020 \quad \mathrm{~J}=2,71\)
    \(020 \mathrm{EL}(\mathrm{N})=\mathrm{EL}(\mathrm{N})+\mathrm{VJ}(\mathrm{J}) * \operatorname{REAL}(\mathrm{~J}-1)\)
        \(E L P(N)=E L(N) /(1.0-V J(1))\)
        \(W(N)=60.0 * T A U * E L P(N)\)
    Step 5: VJ's become VI's so that the 5-step process may
    be repeated for the next interval.
    030 030 \(\mathrm{I}=1,7\)
    \(030 \mathrm{VI}(\mathrm{I})=\mathrm{VJ}(\mathrm{I})\)
    IF (N.LT. 241 ) GOTO 003
    Results are written in file "ANNC5.TXT".
```

 ANNEX C.6. Large-population model for determining S(n)
 when lambda varies with time, the standpost
 has two taps, and the service time is con-
 stant among users. See section IV.C for
 details of the scenario being modeled.
 The sizes of vectors are established. Variables are "DOUBLE PRECISION" so that high factorials can be calculated. The file "ANNC6.TXT" is opened for storage of results.

```
```

 DIMENSION PK(70),P70(71),VI(71),VJ(71),EL(185),ELP(185),
    ```
    DIMENSION PK(70),P70(71),VI(71),VJ(71),EL(185),ELP(185),
&FACT (70),$(241)
&FACT (70),$(241)
    DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, S,
    DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, S,
&PK, P70, VI, VJ
&PK, P70, VI, VJ
    OPEN(1,FILE='ANNC6.TXT'')
    OPEN(1,FILE='ANNC6.TXT'')
    Factorials are calculated. These factorials will be used
    for calculating elements of the PK vector.
        F=1.0
        D0 001 I= 1,70
        F=REAL (I)*F
        WRITE(1,205)
    205 FORMAT(2X,'n',3X,'W(n)',5X,'n',3X,'W(n)',5X,'n',3X,'K(n)',
        &5X,'n',3X,'W(n)',5X,'n', 3X,'W(n)')
    The PDF of the number in line at the beginning of the
    first period is established. No one is at the standpost
    at this time. Tau is assigned its value.
        VI(1)=1.0
        D0 002 I=2,71
    002 VI (I) =0.0
        TAU=0.06478
C
C
    N=1
    003 IF(N.GT.31)GOTO 401
        EAR=1.1014*REAL (N)
        GOTO }00
    401 IF(N.GT.93)GOTO 402
        EAR=46.5-0.4049*REAL(N)
        GOTO 004
    402 IF(N.GT,154)GOTO 403
        EAR=0.4049*REAL (N)-28.5
        GOTO 004
    403 EAR=204.0-1.1014*REAL(N)
C
    Lambda is determined for period n.
The PK and P70 vectors are calculated for period \(n\).
```

c
$004 \operatorname{PK}(1)=1.0 / E X P(E A R * T A U)$
$\mathrm{A}=\mathrm{PK}(1)$
P70(2) $=1.0-A$
D0 $005 \quad \mathrm{I}=2,70$
$\operatorname{PK}(\mathrm{I})=(E A R * T A U) * * R E A L(I-1) /(F A C T(I-1) * E X P(E A R * T A U))$
$A=P K(I)+A$
$\mathrm{K}=\mathrm{I}+1$
$005 \mathrm{P} 70(\mathrm{~K})=1 \cdot 0-\mathrm{A}$
C
C
C
C
C
The expected number of service intervals customers spend at the standpost is calculated at the beginning of each interval.
This process involves 5 steps, as follows:

$$
N=N+1
$$

$\stackrel{C}{C}$ Step 1: $V J(1)$ and $V J(2)$ are calculated.
C
$V J(1)=(V I(1)+V I(2)+V I(3)) \star P K(1)$
$V J(2)=(V I(1)+V I(2)+V I(3)) \star P K(2)+V I(4) \star P K(1)$
C
Step 2: $V J(3)$ through $V J(69)$ are calculated.
D0 $011 \mathrm{~J}=3,69$
$B=(V I(1)+V I(2)+V I(3)) * P K(J)$
D0 $010 \quad \mathrm{I}=4, \mathrm{~J}+2$
$K=\mathrm{J}-\mathrm{I}+3$
$010 B=V I(I) * P K(K)+B$
$\mathrm{VJ}(\mathrm{J})=\mathrm{B}$
011 CONTINUE
C
Step 3: $V J(70)$ and $V J(71)$ are calculated.
$V J(70)=(V I(1)+V I(2)+V I(3)) * P K(70)$
D0 013 $\mathrm{I}=4,71$
$K=73-I$
$013 \mathrm{VJ}(70)=V I(I) * \operatorname{PK}(K)+V J(70)$
$V J(71)=(V I(1)+V I(2)) * P 70(71)$
DO $015 \quad \mathrm{I}=3,71$
$K=74-I$
$015 \mathrm{VJ}(71)=\mathrm{VI}(\mathrm{I}) * \mathrm{P} 70(\mathrm{~K})+\mathrm{VJ}(71)$
C Step $4 \mathrm{~A}: \mathrm{L}(\mathrm{n})$ and $\mathrm{L}^{\prime}(\mathrm{n})$ are calculated for the beginning of period n.
$E L(N)=0.0$
D0 $020 \quad \mathrm{~J}=2,71$
020
$E L(N)=E L(N)+V J(J) * R E A L(J-1)$
$E L P(N)=E L(N) /(1.0-V J(1))$
C
C Step $48: S(n)$ is calculated for the beginning of period n.

$$
\begin{aligned}
& A=(V J(2)+V J(3)) * 1.0 \\
& D 0021 \quad I=2,35 \\
& J=2 * I
\end{aligned}
$$

```
                D0 021 K=J,J+1
    021 A=A+VJ (K)*REAL(J)/2.0
            S(N)=A/(1.0-VJ(1))
C
C Step 5: VJ's become VI's so that the 5-step process.may
C be repeated for the next service interval.
C
```



```
C
C Results are written in file "ANNC6.TXT".
C
                ELP(1)=0.0
                S(1)=0.0
                WRITE (1,210)(I,ELP(I),S(I),I=1,185)
    210 FORMAT(I3,F7.3,I6,F7.3,I6,F7.3,I6,F7.3,I6,F7.3)
        - END
```

```
    ANNEX C.7. Large-population model for determining W(n)
    when lambda varies with time, the standpost
    has two taps, and the service time is con-
    stant among users. See section VII.E for
    details of the scenario being modeled.
    The sizes of vectors are established. Variables are
    "DOUBLE PRECISION" so that high factorials can be
    calculated. The file "ANNC7.TXT" is opened for storage
    of results.
    DIMENSION PK(70),P70(71),VI(71),VJ(71),EL(182),ELP(182),
&FACT (70),W(182)
    DOUBLE PRECISION A, B, C, D, F, FACT, EL, ELP, H,
&PK, P70, VI, VJ
    OPEN(1,FILE='ANNC7.TXT')
    Factorials are calculated. These factorials will be used
    for calculating elements of the PK vector.
    F=1.0
    D0 001 I=1,70
    F=REAL(I)*F
    205 FORMAT(2X,'n',3X,'W(n)',5X,'n',3X,'W(n)',5X,'n',3X,'W(n)',
    &5X,'n',3X,'W(n)',5X,'n',3X,'H(n)')
    The PDF of the number in line at the beginning of the
    first period is established. No one is at the standpost
    at this time. Tau is assigned its value.
```

001 FACT（I）$=\mathrm{F}$

Column headings are written．
$\mathrm{VI}(1)=1.0$
D0 $002 \mathrm{I}=2,71$
$1(1)=0.0$
TAU $=0.0658$
C
C Lambda is determined for period n ．
$\mathrm{N}=1$
003 IF（N．GT．29）GOTO 401
$E A R=1.0 *$ REAL（ N ）
GOTO 004
401 IF（N．GT．91）GOTO 402
EAR $=36.5-0.201 *$ REAL（N）
GOTO 004
402 IF（N．GT．152）GOTO 403
EAR $=0.201$＊REAL（N）-0.1 GOTO 004
$403 \mathrm{EAR}=182.3-1.0 *$ REAL（ N ）

C

```
\(004 \mathrm{PK}(1)=1.0 / \mathrm{EXP}(E A R * T A U)\)
    \(A=P K\) (1)
    P70(2) \(=1.0-A\)
    D0 \(005 \mathrm{I}=2,70\)
    \(\operatorname{PK}(I)=(E A R * T A U) * * R E A L(I-1) /(F A C T(I-1) * E X P(E A R * T A U))\)
    \(\mathrm{A}=\mathrm{PK}(\mathrm{I})+\mathrm{A}\)
    \(\mathrm{K}=\mathrm{I}+1\)
    \(005 \mathrm{P} 70(\mathrm{~K})=1.0-\mathrm{A}\)
```

${ }_{C}$ The expected waiting time is calculated at the beginning of
C each interval. This process involves 5 steps, as follows:
$\mathrm{N}=\mathrm{N}+1$
${ }_{C}^{C}$ Step 1: VJ(1) and $V J(2)$ are calculated.
$V J(1)=(V I(1)+V I(2)+V I(3)) * P K(1)$
$\mathrm{VJ}(2)=(\mathrm{VI}(1)+V I(2)+V I(3))$ *PK (2) +VI (4)*PK (1)

Step 2: $V J(3)$ through $V J(69)$ are calculated.
D0 $011 \mathrm{~J}=3,69$
$B=(V I(1)+V I(2)+V I(3)) \star P K(J)$
DO $010 \quad I=4, J+2$
$\mathrm{K}=\mathrm{J}-\mathrm{I}+3$
$010 \mathrm{~B}=\mathrm{VI}(\mathrm{I}) * \mathrm{PK}(\mathrm{K})+\mathrm{B}$
$\mathrm{VJ}(\mathrm{J})=\mathrm{B}$
011 CONTINUE

> C
${ }_{C}$ Step 3: $V J(70)$ and $V J(71)$ are calculated.
$\mathrm{VJ}(70)=(\mathrm{VI}(1)+\mathrm{VI}(2)+\mathrm{VI}(3)) * \operatorname{PK}(70)$
D0 $013 \quad \mathrm{I}=4,71$
$K=73-\mathrm{I}$
013 VJ $(70)=V I(I) * P K(K)+V J(70)$
$V J(71)=(V I(1)+V I(2)) * P 70(71)$
D0 015 I=3,71
$K=74-1$
$015 \mathrm{VJ}(71)=\mathrm{VI}(\mathrm{I}) * \mathrm{P} 70(\mathrm{~K})+\mathrm{VJ}(71)$
C Step 4A: $L(n)$ and $L^{\prime}(n)$ are calculated for the beginning of C period n.
$E L(N)=0.0$
DO $020 \mathrm{~J}=2,71$
$020 \mathrm{EL}(\mathrm{N})=\mathrm{EL}(\mathrm{N})+\mathrm{VJ}(\mathrm{J}) * \operatorname{REAL}(\mathrm{~J}-1)$
$E L P(N)=E L(N) /(1.0-V J(1))$
C
C
C
Step $4 B: W(n)$ is calculated for the beginning of period n.

$$
\begin{aligned}
& A=(V J(2)+V J(3)) \star 1.0 \\
& D 0021 \quad I=2,35 \\
& J=2^{\star} I \\
& D 0021 \quad K=J, J+1
\end{aligned}
$$

021

$$
\begin{aligned}
& A=A+V J(K) * R E A L(J) / 2.0 \\
& W(N)=60.0 * T A U * A /(1.0-V J(1))
\end{aligned}
$$

C
C Step 5: VJ's become VI's so that the 5 -step process may . . C be repeated for the next interval.
C

$$
\begin{array}{ll}
\mathrm{DO}(030 \mathrm{I}=1,71 \\
030 & V I(I)=V J(I) \\
& \text { IF (N.LT. 182)GOTO } 003
\end{array}
$$

C
C Results are written in file "ANNC7.TXT".
C

$$
\begin{aligned}
& \text { H(1)=0.0 } \\
& \text { WRITE }(1,210)(I, W(I), I=1,182) \\
& 210 \text { FORMAT }(\mathrm{I} 3, \mathrm{~F} 7.2, \mathrm{I} 6, \mathrm{~F} 7.2, \mathrm{I} 6, \mathrm{~F} 7.2, \mathrm{I} 6, \mathrm{~F} 7.2, \mathrm{I} 6, \mathrm{~F} 7.2) \\
& \text { END }
\end{aligned}
$$

ANNEX C.8. This is a small-population model with constant rho values, a single tap, and service time constant among users. The probabilities that no customers are served during intervals $2,3,4$, 5 , and 6 are calculated for values of rho and population size. Results are in Annex C.9.

The sizes of matrices are established. Variables are "DOUBLE PRECISION" so that high factorials can be calculated. The file "ANNC9.TXT" is opened for storage of results.

DIMENSION ASP3(2), $\operatorname{ASP} 4(3,2), \operatorname{ASP} 5(4,3,2), \operatorname{ASP} 6(5,4,3,2)$, \& FACT(51)
DOUBLE PRECISION ASP2,ASP3,ASP4,ASP5,ASP6,FACT,
\&F,SASP2,SASP3,SASP4,SASP5,SASP6
$\operatorname{OPEN}(1, \mathrm{FILE}=$ 'ANNC9.TXT')
Factorials are calculated. These factorials will be used in calculating ASP's.

$$
\begin{aligned}
& F=1.0 \\
& \quad D 0001 \quad I=1,51 \\
& F=R E A L(I) \star F \\
& 001 \mathrm{FACT}(I)=F
\end{aligned}
$$

The program is run for rho values starting at 0.10 and increas-
ing in increments of 0.10 . The population size starts at 10
and increases in increments of 5 .
RH0 $=0.0$
$300 \mathrm{RHO}=\mathrm{RHO}+0.10$ $\mathrm{N}=5$
$400 \mathrm{~N}=\mathrm{N}+5$
$A=R H O / R E A L(N)$
The probability that no customers are served during the second interval is calculated.

```
ASP2=FACT(N)*REAL(N+1)/(FACT(N+1))*((1.0-A)**REAL(N))
SASP2=ASP2
```

The probability that no customers are served during the third interval interval is calculated.
$S A S P 3=0.0$
D0 $030 \quad \mathrm{I}=1,2$
$\operatorname{ASP} 3(1)=\operatorname{FACT}(N) * R E A L(I) * R E A L(N+2-1) /(F A C T(1) * F A C T(N+2-1)) *$
$\&(A * * R E A L(I-1)) *((1.0-2.0 * A) * * R E A L(N+1-I))$
030 SASP3=ASP3(I)+SASP3
The probability that no customers are served during the fourth interval is calculated.

SASP4 $=0.0$

```
            D0 040 J=1,2
            I=1
            ASP4(I,J)mFACT (N)*REAL(I)*REAL(J)*REAL(N+3-I-J)/
    &(FACT(I)*FACT(J)*FACT(N+3-I-J))*
    &(A**REAL (I +J-2))*((1.0-3.0*A)**REAL (N+2-I-J))
    040 SASP4=ASP4 (1,J) +SASP4
            D0 041 I=2,3
            DO 041 J=1,4-I
            ASP4(I,J)=FACT(N)*REAL(I)*REAL(J)*REAL(N+3-I-J)/
            &(FACT(I)*FACT (J)*FACT(N+3-I-J))*
            &(A**REAL}(I+J-2))*((1.0-3.0*A)**REAL (N+2-I-J))
    041 SASP4=ASP4(1,J)+SASP4
\begin{tabular}{lll} 
DO & 051 & \(\mathrm{~J}=2,3\) \\
DO & 051 & \(\mathrm{~K}=1,4-\mathrm{J}\)
\end{tabular}
            I=1
            ASP5(I,J,K)=FACT(N)*REAL(I)*REAL (J)*REAL(K)*REAL (N+4-I-J-K)/
            &(FACT(I)*FACT(J)*FACT(K)*FACT(N+4-I-J-K))*
            &(A**REAL}(I+J+K-3))* ((1.0-4.0*A)**REAL (N+3-I-J-K)
    051 SASP5=ASP5(1,J,K) +SASP5
C
C
C
    053 SASP5=ASP5 (2,J,K)+SASP5
    DO 054 I= 3,4
    DO 054 J=1,5-I
    D0 054 K=1,6-1-J
    ASP5(I,J,K)=FACT(N)*REAL(I)*REAL(J)*REAL (K)*REAL(N+4-I-J-K)/
    &(FACT(I)*FACT (J)*FACT(K)*FACT(N+4-I-J-K))*
```

```
    \(\&(A * * R E A L(I+J+K-3)) *((1.0-4 \cdot 0 * A) * * R E A L(N+3-I-J-K))\)
    054 SASP \(5=A S P 5(I, J, K)+S A S P 5\)
```

The probability that no customers are served during the sixth interval is calculated.
$S A S P 6=0.0$
C
DO $060 \mathrm{~L}=1,2$
$\mathrm{I}=1$
$\mathrm{J}=1$
$K=1$
$\operatorname{ASP} 6(1, J, K, L)=\operatorname{FACT}(N) * \operatorname{REAL}(I) * \operatorname{REAL}(J) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL $(N+5-I-J-K-L) /$
\& $($ FACT $(I) * F A C T(J) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
\& ($A * * R E A L(I+J+K+L-4)) *((1,0-5 \cdot 0 * A) * * R E A L(N+4-I-J-K-L))$
060 SASP6=ASP6(1,1,1,L)+SASP6

$$
\begin{array}{lll}
D 0 & 061 & K=2,3 \\
D 0 & 061 & L=1,4-K
\end{array}
$$

$\mathrm{I}=1$
$\mathrm{J}=1$
$\operatorname{ASP} 6(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L})=\mathrm{FACT}(\mathrm{H}) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL (N+5-1-J-K-L)/
$\&(\operatorname{FACT}(\mathrm{I}) * \operatorname{FACT}(\mathrm{~J}) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
$\approx(A * * R E A L(I+J+K+L-4)) *((1 \cdot 0-5 \cdot 0 * A) * * \operatorname{REAL}(N+4-I-J-K-L))$
061 SASP $6=\operatorname{ASP} 6(1,1, K, L)+S A S P 6$
D0 $062 \mathrm{~L}=1,2$
$\mathrm{I}=1$
$\mathrm{J}=2$
$K=1$
$\operatorname{ASP} 6(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L})=\mathrm{FACT}(\mathrm{N}) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL (N+5-I-J-K-L)/
\& $\operatorname{FACT}(\mathrm{I}) * F A C T(\mathrm{~J}) * F A C T(K) * F A C T(L) * F A C T(N+5-I-\mathrm{J}-K-L)) *$ \& (A**REAL $(I+J+K+L-4)) *((1.0-5.0 * A) * * R E A L(N+4-I-J-K-L))$ 062 SASP6:ASP6(1,2,1,L)+SASP6
C
D0 $063 \mathrm{~K}=2,3$
D0 $063 \mathrm{~L}=1,4-\mathrm{K}$
$\mathrm{I}=1$
$\mathrm{J}=2$
ASP6 ($1, \mathrm{~J}, \mathrm{~K}, \mathrm{~L})=\mathrm{FACT}(\mathrm{N}) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL $(N+5-I-J-K-L) /$
\& $(\operatorname{FACT}(\mathrm{I}) * F A C T(J) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
\& (A**REAL $(\mathrm{I}+\mathrm{J}+\mathrm{K}+\mathrm{L}-4))$ * ($(1.0-5 \cdot 0 * A) * * \operatorname{REAL}(\mathrm{~N}+4-\mathrm{I}-\mathrm{J}-\mathrm{K}-\mathrm{L}))$
063 SASP6=ASP6(1,2,K,L)+SASP6
C
D0 $064 \mathrm{~J}=3,4$
DO $064 \mathrm{~K}=1,5-\mathrm{J}$
DO $064 \mathrm{~L}=1,6-\mathrm{J}-\mathrm{K}$
$\mathrm{I}=1$
$\operatorname{ASP} 6(I, J, K, L)=F A C T(N) * \operatorname{REAL}(I) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$ \& REAL (N+5-I-J-K-L)/
$\&(F A C T(1) * F A C T(J) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
$\&(A * * R E A L(I+J+K+L-4)) *((1,0-5.0 * A) * * R E A L(N+4-I-J-K-L))$ 064 SASP $6=\operatorname{ASP} 6(1, J, K, L)+S A S P 6$
C
D0 $065 \mathrm{~L}=1,2$
$I=2$
$\mathrm{J}=1$
$\mathrm{K}=1$
$\operatorname{ASP} 6(I, J, K, L)=\operatorname{FACT}(N) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL (N+5-1-J-K-L)/
$\&(\operatorname{FACT}(\mathrm{I}) * F A C T(J) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
$\&(A * * R E A L(I+J+K+L-4)) *((1.0-5.0 * A) * * R E A L(N+4-1-J-K-L))$
065 SASP6=ASP6(2,1,1,L)+SASP6
DO $066 \mathrm{~K}=2,3$
D0 $066 \mathrm{~L}=1,4-\mathrm{K}$
$\mathrm{I}=2$
$\mathrm{J}=1$
$\operatorname{ASP} 6(I, J, K, L)=\operatorname{FACT}(N) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL (N+5-I-J-K-L)/
\& (FACT (I) *FACT (J) *FACT (K) *FACT(L) *FACT $(N+5-I-J-K-L)) *$
\& (A**REAL $(\mathrm{I}+\mathrm{J}+\mathrm{K}+\mathrm{L}-4))^{\star}\left(\left(1.0-5 \cdot 0^{*} A\right) \star \star \operatorname{REAL}(\mathrm{N}+4-\mathrm{I}-\mathrm{J}-\mathrm{K}-\mathrm{L})\right)$
$066 \operatorname{SASP} 6=\operatorname{ASP} 6(2,1, K, L)+S A S P 6$
D0 $067 \mathrm{~L}=1,2$
$\mathrm{I}=2$
$J=2$
$K=1$
$\operatorname{ASP} 6(I, J, K, L)=\operatorname{FACT}(N) * \operatorname{REAL}(I) * \operatorname{REAL}(J) * \operatorname{REAL}(K) * \operatorname{REAL}(L) *$
\&REAL (N+5-I-J-K-L)/
\& (FACT (I) *FACT (J) *FACT $(\mathrm{K}) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
\& (A**REAL $(I+J+K+L-4)) \star((1.0-5 \cdot 0 * A) * * R E A L(N+4-I-J-K-L))$
067 SASP $6=\operatorname{ASP} 6(2,2,1, L)+S A S P 6$
$\begin{array}{lll}\text { DO } & 068 \mathrm{~K}=2,3 \\ \text { DO } & 068 \mathrm{~L}=1,4-K\end{array}$
$\mathrm{I}=2$
$\mathrm{J}=2$
$\operatorname{ASP} 6(I, J, K, L)=F A C T(N) * R E A L(I) * R E A L(J) * R E A L(K) * R E A L(L) *$
\&REAL $(N+5-I-J-K-L) /$
$\&(\operatorname{FACT}(\mathrm{I}) * F A C T(J) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
$\&(A * * \operatorname{REAL}(I+J+K+L-4)) *((1 \cdot 0-5 \cdot 0 * A) * * \operatorname{REAL}(N+4-I-J-K-L))$
068 SASP6=ASP6(2,2,K,L)+SASP6
C
D0 $069 \mathrm{~J}=3,4$
D0 $069 \mathrm{~K}=1,5-\mathrm{J}$
D0 $069 \mathrm{~L}=1,6-\mathrm{J}-\mathrm{K}$
$\mathrm{I}=2$
$\operatorname{ASP} 6(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L})=\mathrm{FACT}(\mathrm{N}) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(\mathrm{~J}) * \operatorname{REAL}(\mathrm{~K}) * \operatorname{REAL}(\mathrm{~L}) *$
\&REAL $(N+5-I-J-K-L) /$
$\&(F A C T(I) * F A C T(J) * F A C T(K) * F A C T(L) * F A C T(N+5-I-J-K-L)) *$
\& (A**REAL $(\mathrm{I}+\mathrm{J}+\mathrm{K}+\mathrm{L}-4)) *((1,0-5 \cdot 0 * A) * * \operatorname{REAL}(\mathrm{~N}+4-\mathrm{I}-\mathrm{J}-\mathrm{K}-\mathrm{L}))$
069 SASP6=ASP6(2,J,K,L)+SASP6
C
D0 $610 \mathrm{~L}=1,2$
$I=3$
$\mathrm{J}=1$
$K=1$
$\operatorname{ASP} 6(I, J, K, L)=\operatorname{FACT}(\mathrm{N}) * \operatorname{REAL}(\mathrm{I}) * \operatorname{REAL}(J) * \operatorname{REAL}(K) * R E A L(L) *$ \&REAL (N+5-I-J-K-L)/
\& (FACT (I)*FACT (J)*FACT (K)*FACT (L)*FACT $(N+5-I-J-K-L)) *$
$\&(A * * R E A L(I+J+K+L-4)) *((1.0-5 \cdot 0 * A) * * R E A L(N+4-I-J-K-L))$ 610 SASP $6=\operatorname{ASP} 6(3,1,1, L)+S A S P 6$
C

C

C

613 SASP $6=A S P 6(I, J, K, L)+S A S P 6$
Results are written in file "ANNC9.TXT"
WRITE (1,099) RH0, N
099 FORMAT ('RHO =', F3.1,5X,'POPULATION=', I2)
WRITE (1,100)SASP2, SASP 3, SASP4, SASP5 5, SASP 6
100 FORMAT ('SASP2 =', F5. $4,3 X, ' S A S P 3=', F 5.4,3 X, ' S A S P 4=', F 5.4,3 X$, $\&^{\prime}$ SASP $5=', F 5.4,3 X, ' S A S P 6=', F 5.4$)

If the population is less than 50 or rho is less than 1.0 , then the process is repeated for a larger population and/or a different rho value.
IF (N:LT. 50) GOTO 400
1E(RHO.LT -1.0)60T0 300
CONTINUE
END

ANNEX C.9. Results of small-population model with constant rho, single tap, and service time constant among users. (Computer program is in Annex C.8)

$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP2 } m .9044 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=10 \\ \text { SASP } 3=.9004 \end{array}$	SASP4=.9001	SASP5 $=.9000$	SASP6\%.9000
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP } 2=.9045 \end{aligned}$	POPULATION $=15$ SASP 3 $=.9005$	SASP4 $4=.9001$	SASP5 $=.9000$	SASP6 $=.9000$
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP2 }=.9046 \end{aligned}$	POPULATION $=20$ SASP 3F. 9005	SASP4 $=.9001$	SASP5=.9000	SASP6 $=.9000$
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP } 2=.9047 \end{aligned}$	POPULATION $=25$ SASP $3=.9005$	SASP4 $=.9001$	SASP5 $=.9000$	SASP6 $=.9000$
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP2 }=.9047 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=30 \\ \text { SASP3 }=.9006 \end{array}$	SASP4 $=.9001$	SASP5 $=.9000$	SASP6 $=.9000$
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP } 2=.9047 \end{aligned}$	POPULATION $=35$ SASP3 $=.9006$	SASP4 $=.9001$	SASP $5=.9000$	SASP6 $=.9000$
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP } 2=.9047 \end{aligned}$	POPULATION $=40$ SASP $3=.9006$	SASP4=.9001	SASP5 $=.9000$	SASP6=.9000
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP2 }=.9047 \end{aligned}$	POPULATION $=45$ SASP $3=.9006$	SASP4=.9001	SASP5 $=.9000$	SASP6 $=.9000$
$\begin{aligned} & \text { RHO }=.1 \\ & \text { SASP2 }=.9047 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=50 \\ \text { SASP } 3=.9006 \end{array}$	SASP4=.9001	SASP5 $=.9000$	SASP6=.9000
$\begin{aligned} & \text { RHO }=.2 \\ & S A S P 2=.8171 \end{aligned}$	POPULATION=10 SASP $3=.8033$	SASP4 $=.8007$	SASP $5=.8002$	SASP $6=.8000$
$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP2 }=.8176 \end{aligned}$	POPULATION=15 SASP3 $=.8037$	SASP4 $=.8009$	SASP $5=.8002$	SASP6 $=.8001$
$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP2 }=.8179 \end{aligned}$	POPULAT ION=20 SASP3=.8039	SASP4 $=.8010$	SASP5 $=.8003$	SASP6 $=.8001$
$\begin{aligned} & \text { RHO }=.2 \\ & S A S P 2=.8181 \end{aligned}$	POPULATION $=25$ SASP $3=.8040$	SASP4 $=.8010$	SASP5 $=.8003$	SASP $6=.8001$
$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP } 2=.8182 \end{aligned}$	POPULATION=30 SASP $3=.8040$	SASP4= 8011	SASP $5=.8003$	SASP $6=.8001$
$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP2 }=.8183 \end{aligned}$	$\begin{array}{r} \text { POPULAT I ON }=35 \\ \text { SASP } 3=.8041 \end{array}$	SASP4 $=.8011$	SASP5 $=.8003$	SASP6=. 8001
$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP2 }=.8183 \end{aligned}$	POPULATION $=40$ SASP $3=.8041$	SASP4=.8011	SASP5 $=.8003$	SASP6 $=.8001$
$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP } 2=.8184 \end{aligned}$	$\begin{array}{r} \text { POPULAT ION }=45 \\ \text { SASP3 }=.8041 \end{array}$	SASP4 $=.8011$	SASP $5=.8003$	SASP6 $=8001$

```
ANNEX C.9 (continued)
```

$\begin{aligned} & \text { RHO }=.2 \\ & \text { SASP } 2=.8184 \end{aligned}$	POPULATI ON=50 SASP3=.8042	SASP4=.8011	SASP5=.8003	SASP6=.8001
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP } 2=.7374 \end{aligned}$	$\begin{array}{r} \text { POPULAT I ON }=10 \\ \text { SASP }=.7105 \end{array}$	SASP4=.7033	SASP 5*.7010	SASP $6=.7003$
$\begin{aligned} & \text { RHO }=.3 \\ & S A S P 2=.7386 \end{aligned}$	POPULATION=15 SASP 3=.7115	SASP4 $=.7040$	SASP5 $=.7014$	SASP6=. 7005
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP2 }=.7391 \end{aligned}$	$\begin{array}{r} \text { POPULAT } 1 O N=20 \\ \text { SASP }=.7120 \end{array}$	SASP4 $=.7043$	SASP $5=.7017$	SASP6 = . 7006
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP } 2=, 7395 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=25 \\ \text { SASP }=.7123 \end{array}$	SASP4 $=.7045$	SASP $5=.7018$	SASP6=. 7007
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP } 2=.7397 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=30 \\ \text { SASP } 3=.7125 \end{array}$	SASP4 $=.7047$	SASP5 $=.7019$	SASP6=. 7008
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP2=.7399 } \end{aligned}$	POPULATION $=35$ SASP $3=.7126$	SASP4=.7048	SASP $5=.7020$	SASP6=.7008
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP2=. } 7400 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=40 \\ \text { SASP }=.7127 \end{array}$	SASP 4 $=.7049$	SASP5 $=.7020$	SASP6=.7009
$\begin{aligned} & \text { RHO = }+3 \\ & \text { SASP2=.7401 } \end{aligned}$	POPULATI ON $=45$ SASP3=.7128	SASP4 $=.7049$	SASP 5 = 7020	SASP6 $=.7009$
$\begin{aligned} & \text { RHO }=.3 \\ & \text { SASP } 2=.7401 \end{aligned}$	POPULATION $=50$ SASP3=.7129	SASP4 $=.7050$	SASP $5=.7021$	SASP6 $=.7009$
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP } 2=.6648 \end{aligned}$	POPULATION=10 SASP $3=.6233$	SASP4 $=.6094$	SASP $5=.6038$	SASP6 $=.6015$
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP2 }=.6667 \end{aligned}$	POPULATION=15 SASP $3=.6252$	SASP4 $=.6110$	SASP $5=.6051$	SASP 6 = 6023
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP2 }=.6676 \end{aligned}$	POPULATION $=20$ SASP $3=.6262$	SASP4 $=.6119$	SASP $5=.6057$	SASP6=.6028
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP2 }=.6682 \end{aligned}$	POPULATION $=25$ SASP 3=. 6268	SASP4 $=.6124$	SASP $5=.6061$	SASP6m.6031
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP } 2=.6685 \end{aligned}$	POPULATION=30 SASP3=.6271	SASP $4=.6127$	SASP $5=.6064$	SASP6=.6034
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP2 }=.6688 \end{aligned}$	POPULATION=35 SASP $3=.6274$	SASP 4 $=.6130$	SASP5 $=.6066$	SASP6 $=.6035$
$\begin{aligned} & \text { RHO }=.4 \\ & \text { SASP2 }=.6690 \end{aligned}$	$\begin{array}{r} \text { POPULATI } O N=40 \\ \text { SASP } 3=.6276 \end{array}$	SASP4 $=.6131$	SASP5 $=.6068$	SASP6 $=.6036$

$\begin{aligned} \text { RAS }=.4 & =.6690 \quad \text { SASP3 }=.6276\end{aligned}$
SASP $4=.613$
SASP5 $=.6068$
SASP6 $=.6036$

ANNEXC. 9 (continued)

RH0 $=.4 \quad$ POPULAT ION $=45$
SASP2 $=.6691 \quad$ SASP $3=.6278$
RHO $=.4 \quad$ POPULATION $=50$ SASP2 $=.6692 \quad$ SASP $3=.6279$

RHO $=.5 \quad$ POPULATION $=10$
SASP2 $=.5987 \quad$ SASP $3=.5424$
RHO $=.5 \quad$ POPULATION=15 SASP2=.6014 SASP3=.5456

RH0 $=.5 \quad$ POPULATION $=20$
SASP2 $=.6027 \quad$ SASP3 $=.5472$
RHO $=.5 \quad$ POPULATION $=25$
SASP2 $=.6035 \quad$ SASP3 $=.5481$
RHO $=.5 \quad$ POPULATION $=30$
SASP2 $=.6040 \quad$ SASP3 $=.5487$
RHO = . $5 \quad$ POPULATION $=35$
SASP2 $=.6043$ SASP $3=.5492$
RHO = . $5 \quad$ POPULAT $10 N=40$
SASP $2=.6046 \quad$ SASP $3=.5495$
RHO = . $5 \quad$ POPULATION $=45$
SASP $2=.6048 \quad$ SASP3 $=.5498$
RHO $=.5 \quad$ POPULATION $=50$
SASP2=.6050 SASP3=.5500
RHO= . $6 \quad$ POPULATION $=10$
SASP2 $=.5386 \quad$ SASP3 $=.4684$
RHO $=.6 \quad$ POPULATION $=15$
SASP2 $=.5421 \quad$ SASP3 $=.4730$
RHO $=.6 \quad$ POPULATION $=20$
SASP2 $=.5438 \quad$ SASP3 $=.4753$
RHO $=.6 \quad$ POPULATION $=25$
SASP2 $=.5448 \quad$ SASP $3=.4766$
RHO $=.6 \quad$ POPULATION $=30$
SASP2 $=.5455 \quad$ SASP3 $=.4775$
RHO $=.6 \quad$ POPULATION $=35$
SASP2*. 5460

SASP $3=.4782$

SASP4 $=.6133$	SASP5 $=.6069$	SASP6 $=.6037$
SASP4 $=.6134$	SASP $5=.6070$	SASP6 $=.6038$
SASP4 $=.5205$	SASP $5=.5100$	SASP6 $=.5047$
SASP4 $=.5236$	SASP5 $=.5129$	SASP6 $=.5071$
SASP4 $=.5252$	SASP5 $=.5143$	SASP6 $=.5084$
SASP4 $=.5262$	SASP5 $=.5152$	SASP6 $=.5091$
SASP4 $=.5268$	SASP $5=.5158$	SASP6=. 5097
SASP4 $=.5272$	SASP5\%. 5162	SASP6 $=.5100$
SASP4m. 5276	SASP5 $=.5165$	SASP6 $=.5103$
SASP4 $=.5278$	SASP $5=.5168$	SASP6 $=.5106$
SASP4 $=.5280$	SASP5 $=.5170$	SASP6=.5107
SASP4=.4379	SASP5 $=.4215$	SASP6=.4119
SASP4 $=.4430$	SASP $5=.4267$	SASP6 $=.4169$
SASP4 $=.4456$	SASP5 $=.4293$	SASP6=.4194
SASP4=.4471	SASP5 $=.4308$	SASP6 $=.4209$
SASP4 $=.4480$	SASP5 $=.4318$	SASP6=.4219
SASP4 $=.4487$	SASP5=.4326	SASP6=.4226

ANNEX C. 9 (continued)

$\mathrm{RHO}=.6$	POPULATION $=40$			
SASP2 $=.5463$	SASP 3 $=.4786$	SASP4=.4493	SASP $5=.4331$	SASP6".4231
$\begin{aligned} & \text { RHO }=.6 \\ & \text { SASP } 2=.5466 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=45 \\ \text { SASP } 3=.4790 \end{array}$	SASP4:.4497	SASP5 = 4335	SASP6=.4236
$\begin{aligned} & \text { RHO }=.6 \\ & \text { SASP2 }=.5468 \end{aligned}$	$\begin{array}{r} \text { POPULAT } I O N=50 \\ \text { SASP } 3=.4793 \end{array}$	SASP4 $=.4500$	SASP5 $=.4339$	SASP6 $=.4239$
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4840 \end{aligned}$	$\begin{array}{r} \text { POPULAT } I O N=10 \\ \text { SASP } 3=.4014 \end{array}$	SASP4=.3628	SASP5*.3401	SASP6*. 3253
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4883 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=15 \\ \text { SASP } 3=.4076 \end{array}$	SASP4=.3701	SASP $5=.3482$	SASP6 $=.3338$
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4904 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=20 \\ \text { SASP3 }=.4105 \end{array}$	SASP4 $=.3737$	SASP $5=.3521$	SASP6 $=.3379$
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP } 2=.4917 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=25 \\ \text { SASP3 }=.4123 \end{array}$	SASP4 $=.3758$	SASP $5=.3544$	SASP6=.3403
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4925 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=30 \\ \text { SASP }=3=.4135 \end{array}$	SASP4 $=.3772$	SASP 5 = 3559	SASP6=.3419
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=, 4931 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=35 \\ \text { SASP } 3=.4143 \end{array}$	SASP4 $=.3781$	SASP $5=.3570$	SASP6 = . 3431
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4935 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=40 \\ \text { SASP } 3=.4149 \end{array}$	SASP4=.3789	SASP $5=.3578$	SASP6 $=.3439$
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4939 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=45 \\ \text { SASP }=.4154 \end{array}$	SASP4 $=.3794$	SASP $5=.3584$	SASP6 $=.3446$
$\begin{aligned} & \text { RHO }=.7 \\ & \text { SASP2 }=.4941 \end{aligned}$	$\begin{array}{r} \text { POPULAT I ON }=50 \\ \text { SASP } 3=.4158 \end{array}$	SASP4=.3799	SASP5 $=.3589$	SASP6 $=.3451$
$\begin{aligned} & \text { RHO }=.8 \\ & S A S P 2=.4344 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=10 \\ \text { SASP3 }=.3415 \end{array}$	SASP4 $=.2958$	SASP $5=.2672$	SASP6=.2470
$\begin{aligned} & \text { RHO }=.8 \\ & \text { SASP2 }=.4395 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=15 \\ \text { SASP } 3=.3491 \end{array}$	SASP4 $=.3054$	SASP $5=.2784$	SASP6=.2597
$\begin{aligned} & \text { RHO }=.8 \\ & S A S P 2=.4420 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=20 \\ \text { SASP } 3=.3528 \end{array}$	SASP4 $=.3099$	SASP $5=.2837$	SASP6 $=.2656$
$\begin{aligned} & \text { RHO }=.8 \\ & S A S P 2=.4435 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=25 \\ \text { SASP } 3=.3550 \end{array}$	SASP4 $=.3126$	SASP $5=.2868$	SASP6 $=.2690$
$\begin{aligned} & \text { RHO }=.8 \\ & \text { SASP } 2=.4445 \end{aligned}$	POPULATION $=30$ SASP 3=. 3564	SASP4 $=.3144$	SASP $5=.2888$	SASP6 $=.2713$

ANNEX C. 9 (continued)

RHO $=.8$
SASP2 $=.4452$
POPULATION=35

RHO $=.8 \quad$ POPULATION $=40$
SASP2 $=.4457 \quad$ SASP $3=.3582$
RHO = $8 \quad$ POPULATION $=45$
SASP2 $=, 4461 \quad$ SASP3 $=.3588$
RHO $=.8 \quad$ POPULATION $=50$
SASP2=. 4464
RHO $=.9 \quad$ POPULATION $=10$
SASP2 $=.3894$
RHO $=.9 \quad$ POPULATION $=15$
SASP2 $=.3953$
RHO $=.9 \quad$ POPULATION $=20$
SASP2 $=.3982$
RHO $=.9 \quad$ POPULATION $=25$
SASP2=. 3999
RH0 $=.9 \quad$ POPULATION $=30$
SASP2 $=.4010$
RHO $=.9 \quad$ POPULATI ON $=35$
SASP2 $=.4018$
RHO $=.9 \quad$ POPULATI $9 \mathrm{~N}=40$
SASP2 $=.4024 \quad$ SASP $3=.3079$
RH0 $=.9 \quad$ POPULATION $=45$
SASP2=.4029 SASP3=. 3086
RHO $=.9 \quad$ POPULAT I $0 \mathrm{~N}=50$
SASP2 $=.4032$
RHO $=1.0 \quad$ POPULATION $=10$
SASP2=. 3487
RHO $=1.0 \quad$ POPULAT ION= 15
SASP2 $=.3553 \quad$ SASP3 $=.2518$
RHO $=1.0 \quad$ POPULATION $=20$
SASP2=.3585 SASP3 $=.2567$
RHO $=1.0 \quad$ POPULAT $10 N=25$
SASP2=.3604 SASP3=. 2595
RHO $=1.0 \quad$ POPULAT ION $=30$
SASP2=.3617

SASP3 $=.3092$ SASP3=. 2416 OPULAT ION=15
SASP $3=.2518$

SASP3=. 2614

SASP4 $=.3156$	SASP $5=.2902$	SASP6 $=.2729$
SASP4 $=.3166$	SASP $5=.2913$	SASP6 $=.2740$
SASP4 $=.3173$	SASP $5=.2921$	SASP6 $=.2750$
SASP4 $=.3179$	SASP $5=.2928$	SASP6=.2757
SASP4 $=.2371$	SASP $5=.2038$	SASP6 $=.1792$
SASP4 $=.2488$	SASP $5=.2179$	SASP6=. 1958
	-	
SASP4=.2543	SASP $5=.2245$	SASP6 $=.2034$
SASP4=.2575	SASP $5=.2283$	SASP6 $=.2078$
SASP4 $=.2596$	SASP $5=.2308$	SASP6 $=.2106$
SASP4 $=.2611$	SASP $5=.2326$	SASP6 $=.2126$
SASP4 $=.2622$	SASP $5=.2339$	SASP6 $=.2141$
SASP4 $=.2631$	SASP $5=.2349$	SASP6 $=.2152$
SASP4 $=.2638$	SASP $5=.2357$	SASP6 $=.2161$
SASP4 $=.1868$	SASP $5=.1505$	SASP6=. 1230
SASP4 $=.2001$	SASP $5=.1670$	SASP6=.1429
SASP4 $=.2064$	SASP $5=.1746$	SASP6 $=.1517$
SASP4 $=.2101$	SASP5 $=.1789$	SASP $6=.1568$
SASP4 $=.2125$	SASP $5=.1818$	SASP6 $=.1601$

ANNEX C. 9 (continued)

$\begin{aligned} & \text { RHO }=1.0 \\ & \text { SASP } 2=.3626 \end{aligned}$	$\begin{array}{r} \text { POPULATION }=35 \\ \text { SASP } 3=.2628 \end{array}$	SASP4=.2142	SASP5=. 1838	SASP6=. 1624
$\begin{aligned} & \text { RHO }=1.0 \\ & \text { SASP } 2=.3632 \end{aligned}$	$\begin{array}{r} \text { POPULAT I ON }=40 \\ \text { SASP }=.2638 \end{array}$	S	SASP $5=.1853$	41
$\begin{aligned} & \text { RHO }=1.0 \\ & \text { SASP } 2=.3638 \end{aligned}$	$\begin{array}{r} \text { POPULATI ON }=45 \\ \text { SASP } 3=.2646 \end{array}$	SASP4=.2164	SASP5=.1864	SASP6=. 1654
RH0 $=1.0$	POPULAT I $0 \mathrm{N=} 50$			
, SASP2=.3642	SASP3=.2652	SASP4=.2172	SASP 5 =. 1874	SASP6 $=.1664$

RH0 $=1.0 \quad$ POPULATION $=35$ SASP 3=. 2628

POPULATI $0 \mathrm{~N}=40$ SASP3=.2638

POPULATI ON=45 SASP3=. 2646

PULATION=50 SASP 3=. 2652

SASP4=.2172 SASP5=.1874 SASP6=. 1664

ANNEX D. Validity of Small-Population Model

The large-population models presented in chapter IV are similar to widely accepted models found in the literature. However, the small-population model in chapter V is not found in the literature. Its validity must be verified.

The small-population model determines the expected line length (given that the line is not empty) with a rather roundabout method. The method is necessary because the list of arrival sequences that must be considered quickly becomes cunbersome when the population is larger than a handful. To verify the validity of the method, the writer derived a more direct method. However, this method can be applied only to very small populations because its sequence lists are even more cumbersome than those of the chapter V method. This more direct method calculates the probability of each possible combination of numbers of arrivals. For each combination, the resulting line length is calculated and then multiplied by the probability of the combination occurring. The sum of these products equals the expected line length. As an example of this procedure, the expected line length at the beginning of the third interval when the population size is 2 is determined by first calculating the probability of 0 arrivals in the first and second intervals, the probability of 0 arrivals in the first interval and 1 arrival in the second, the probability of 0 in the first and 2 in the second, the probability of 1 in the first and 0 in the second, the probability of 1 in the first and 1 in the second, and the probability of 2 in the first and 0 in the second. Each of these probabilities is multiplied
by its corresponding line length at the beginning of the third interval. (For example, if 0 arrivals occur in the first interval and 2 arrivals occur in the second interval, the line length at the beginning of the third interval would be 2 persons. Notice that, as in all other numerical models presented in this paper, the assumption is made that arrivals must wait at least until the beginning of the next interval to be served.) The sum of the products is the expected line length at the beginning of the third interval.

This model and the model presented in chapter V were run for a population size of 4 . The results were identical. Also, as discussed at the end of chapter V, steady-state is attained at the beginning of the 5 th interval, which is interval $N+1$.

The chapter V model was also verified by substituting the Poisson distribution for the binomial distribution. The results of this modified model are identical to the large-population model presented in chapter IV.

REFERENCES

Bagchi, T. P., and Templeton, J. G. C. Numerical Methods in Markov Chains and Bulk Queues. Springer-Verlag, Berlin, $1 \overline{972}$.

Giffin, Walter C. Queueing: Basic Theory and Applications. Grid, Inc., Columbus, Ohio, 1978.

Hillier, Frederick S., and Lieberman, Gerald J. Introduction to Operations Research. Holden-Day, Inc., Dakland, California, 1980.

Hillier, Frederick S., and Yu, 01 iver S. Queuing Tables and Graphs. Elsevier North Holland, Inc., 1981.

Kelton, David W., and Law, Averill M. "The Transient Behavior of the $M / M / s$ Queue, with Implications for Steady-State Simulation." Operations Research, vol. 33, no. 2 (March-April, 1985).

Kendall, David G. "Some Problems in the Theory of Queues." Journal of the Royal Statistical Society, vol. 13, no. 2 (1951).

Koopman, Bernard 0. "Air-Terminal Queues under Time-Dependent Conditions." Operations Research, vol. 20, no. 6 (Nov-Dec, 1972).

Peck, L. G., and Hazelwood, R. N. Finite Queuing Tables. John Wiley \& Sons, Inc., New York, 1958.

Sule, B. F., and 0ni, 0. A. "A New Approach For Locating Public Standpipes In A Water Supply Distribution Network." Water International, vol. 13 (1988).

Sze, David Y. "A Queuing Model for Telephone Operator Staffing," Operations Research, vol. 32, no. 2 (March-April, 1984).

World Health Organization. Public Standposts for Developing Countries. WhO International Reference Center for Community Vater Supply, The Hague, The Netherlands, 1978.

World Health Organization. Public Standpost Water Supplies $=$ Technical Series Paper 13. WH0 International Reference Center for Community Water Supply, The Hague, The Netherlands, 1979.

World Health Organization. Public Standpost Hater Supplies $-A$ Design Manual $=$ Technical Series paper 14. Who InternationaT Reference Center for Community hater Supply, The Hague, The Netherlands, 1979.

