
ABSTRACT

JAN ELIZABETH DEWATERS.  Biological Activity on Granular
Activated Carbon in the Presence of Ozonated Naturally
Occurring Humic Substances. (Under the direction of FRANCIS
A. DIGIANO.)

Biological activity on granular activated carbon may
significantly enhance the water purification process.
Shifting the pathway for contaminant removal from adsorption
to biodegradation results in steady state reduction across
the GAC bed, and increases filter run time through
regeneration of sorptive capacity for non- or slowly-
biodegradable compounds.  Trace contaminants present at low
concentrations and/or only seasonally may not meet minimum
growth and energy requirements of a biofilm population.  The
presence of a bulk substrate source such as humic substances
could stimulate the growth of a biofilm which will, in turn,
degrade trace pollutants as secondary metabolites.

A fixed-bed column reactor with a high recycle ratio
was used to examine biodegradation and adsorption of
ozonated humic substances (HS).  The percent biodegraded at
steady state increased with pre-ozonation, and with an
increase in EBCT (slower flowrate) and feed TOC
concentration.  At an ozone dose of 1 mg 03/mg TOC, EBCT =
3.9 min, and feed TOC = 7 mg/L, approximately 43% of the HS
were biodegraded.  Steady state biological activity, as
evidenced by CO2 production, was achieved within 1 day;
steady state TOC removal occurred after about 160 hours.
Phenol, when added at 50 /xg/L to the HS system, was degraded
within 60 hours.  When phenol was added to an established
biofilm, it was immediately biodegraded.

A method is presented for recovering viable cells from
a GAC biofilm. Kinetic studies with samples recovered from
an HS grown biofilm indicate that the biokinetics of phenol
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utilization by these microorganisms are comparable to
utilization kinetics by suspended cultures.

The enumeration of viable cells from samples recovered

at different stages of biofilm growth indicates that the
density of viable cells continues to increase in the GAC

bed, despite the achievement of steady state biological

activity.  The density of viable cells in the GAC reactor
bed, as enumerated by plate counts, was on the order of 10
to 10^ cells/gm.
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INTRODUCTION

1.1  Background

Activated Carbon is used in water treatment processes
for the removal of taste and odor causing compounds,
trihalomethane precursors and trace organics which may be
present in a water supply.  The combination of large
internal surface area (up to 100 m /gm) and surface-active
sites enables adsorption of a wide range of organic
molecules from solution.  This also creates a favorable

environment for bacterial growth.  Microorganisms are
attracted to the sorbed substrate, and a biofilm readily
develops.  The presence of this actively growing biofilm
could enhance the water purification process;  in addition
to adsorption, organic chemicals (both sorbed and in
solution) may be biologically degraded by the active
microbial population.

Granular activated carbon placed in columns or filter
beds takes advantage of microbial activity in the treatment
process, by providing a fixed surface to which biofilm can
adhere.  A biologically active GAC filter offers several
advantages over a purely adsorptive treatment process, as
well as over a process which is purely biological, such as a
slow sand filter.  Biodegradation lengthens filter run time
by offering continuous regeneration of sorptive sites on the
GAC surface.  After extended operation, a steady state
removal rather than complete breakthrough of contaminants
can be achieved.  Adsorption offers protection during the
initial stages of operation, before biological growth is
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established, and also ensures the removal of slowly- or non-
degradable compounds.  Moreover, adsorption can remove
contaminants in the event of a chemical spill, in which the
microbial community may not be prepared to respond or may be
damaged by toxicity.

The characteristics of a biofilm which develops within
a GAC bed depend to a large extent on the nature of organic
substrate in the incoming water.  A water may be rich in
organic matter, but if these organics are not readily
biodegraded, an active biofilm may not develop.  In
addition, anthropogenic organic compounds present at
extremely low levels (jug/L to ng/L concentrations) or for
short periods may not meet minimum growth requirements of
the biofilm population.

The bulk of the organic content in most potable water
supplies is comprised of humic substances, which are the
macromolecular decomposition products of plant material.
Since humic substances are, by definition, the end products
of decomposition, they are in general not easily
biodegraded.  Some form of pre-treatment is needed to
enhance biodegradation of the humic substances, and thus to
promote biofilm development.  Ozonation, sometimes used as a
disinfectant in water treatment, has been proposed as a
method for increasing the biodegradability of humic
substances and for encouraging biological activity in a GAC
treatment process.

The interactions between adsorption and biodegradation
at the carbon surface and the extent to which biological
activity will aid in the treatment process are not fully
understood.  Increased removal of TOC in GAC filters due to
microbial activity is variable and depends on the nature of
the organic matter.  Preozonation may enhance biofilm
activity, by increasing the biodegradability of the natural

NEATPAGEINFO:id=493272BF-F39D-4EBA-9214-F920A342ECF8



organics.  A constant supply of biodegradable organic matter
may sustain a biofilm which will, in turn, degrade trace
micropollutants which may be present in a water supply
seasonally and/or at low concentrations.

1.2  Objectives

This research is intended to develop a better
understanding of biofilm activity in a flow-through GAC
reactor receiving ozonated naturally occurring aquatic humic
substances, and to investigate the behavior of a trace
organic, such as phenol, in the presence of the humic
substances-grown biofilm.

The specific research objectives are as follow:

1. Develop a method to recover viable bacteria from the
adsorptive carbon surface, in order to quantify biological
activity and to enable biokinetic studies of micropollutant
degradation that utilize the microbial community indigenous
to the GAC.

2. Study the biokinetics of phenol metabolism by a
microbial community recovered from GAC colonized primarily
by bacteria adapted to ozonated humic substances.

3. Observe interactions between adsorption and
biodegradation of a trace amount of phenol in the presence
of ozonated humic substances in a laboratory scale, fixed-
bed reactor.

4. Observe development of the microbial community in a GAC
filter receiving ozonated humic substances, and its ability
to mineralize trace concentrations of phenol.
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2.  LITERATURE REVIEW

2.1  General Interest in Granular Activated Carbon

Carbon has long been known for its ability to remove

contaminants from water.  Filtering water through charcoal

for purification is mentioned in Sanskrit writings, and

ancient mariners are said to have stored their drinking

water in charred wooden barrels to maintain purity (Symons,
1984) .

Modern use of granular activated carbon in the U.S.

began with the work of Rosen and Middleton (Braus et al.,

1951) , who used GAC to concentrate organic compounds from

the aqueous phase for later extraction and identification.

With respect to drinking water treatment, carbon was used

largely for the removal of taste and odor causing compounds.

Baylis conducted experiments with GAC as a water treatment

aid in the late 1920's in Chicago (Baylis, 1929), and in

1929 GAC beds were installed in Bay City, Michigan

(Harrison, 1940).  During the 1930's, GAC filters were

installed in Dundee, Michigan (Finkbeiner, 1931), in Oshkosh

and Neenah, Wisconsin (Howson, 1938) , and in Culver City,

California (Harnish, 1937).  Through the 1940's and 1950's,

powdered activated carbon (PAC) largely replaced GAC as a
state-of-the-art method for water purification, but during
the 1960's interest in GAC was revived and by 1975 an

unpublished survey by the U.S. Environmental Protection

Agency (USEPA) indicated that 28 water utilities in the U.S.
were routinely using GAC adsorption, while eight more were
experimenting with the process.  The number by 1984 had
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reached 50-60 (Symons, 1984) and is expected to rise
dramatically in the near future due to the 1986 amendments
to the Safe Drinking Water Act, which specify GAC as the
best available technology for removal of many of the
synthetic organic contaminants which will require monitoring
(Cook & Schnare, 1986). .

Interest in biological growth on GAC filters, and in
interactions between biodegradation and adsorption, is more
recent than is interest in purely adsorptive mechanisms.  In
1975, Eberhardt, Madsen, and Sontheimer showed that
contaminants in the effluent from a GAC bed would reach

steady state concentrations prior to complete breakthrough,
as indicated by such parameters as UV absorbance, chemical
oxygen demand (COD), and total organic carbon concentration
(TOC).  Biodegradation of influent substrate as well as
substrate bound to the GAC surface was evidenced by
measurement of CO2 production and dissolved oxygen uptake
across the column (Eberhardt et al., 1975).  From a
comparison between a sterile and a nonsterile pilot plant,
Werner and co-workers (1979) conclude that microorganisms
are responsible for about 60% of the total oxygen
consumption and CO2 production, while the remaining 40% is
due to abiotic processes.  They note that microbial activity
increases filter efficiency and prolongs run time for GAC by
continuous regeneration of sorptive sites.

The presence of bacterial and protozoan growth on GAC
has been documented with the aid of scanning electron
microscopy (Weber et al., 1978).  Accumulation of bacteria
on the GAC surface is said to follow a sigmoidal growth-type
curve (Bancroft et al., 1983; Cairo & Suffet, 1979).
Maximum population densities reportedly vary;  Bancroft and
co-workers report that populations increased to an

Q

approximate steady state of 10 cells/gm of dry carbon,
while 10^ cells/gm wet weight were measured by Latosek and
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Benedek (1979).  Lower values are reported, 10° to 10'

cells/gm, for carbon used in drinking water treatment (Van

der Kooij, 1976; Cairo et al., 1979).  Maximum numbers

attained have been described as a function of both substrate

availability and influent bacterial density (Bancroft et

al., 1983).

Several attempts have been made to identify microbial

populations associated with GAC filters.  In a study carried

out at a water treatment plant on the Rhine River, Werner

and co-workers found a more diverse population in the filter
influent than in the effluent.  The fraction of bacterial

strains belonging to the genus Pseudomonas was found to

increase from 55% in the raw water, to 80% in the filter

effluent (Werner et al., 1979).  In a 6 month pilot plant

study investigating the removal of synthetic organic

chemicals by GAC, bacterial analyses identified the

predominant bacteria isolated from effluent and core samples

as gram negative fermenters and Bacillus species;

Pseudomonas aeruginosa were occassionally detected in the

effluent in low numbers (Donlan et al., 1981).  Research

performed in a GAC treatment study on the Delaware River

identified species of the genus Pseudomonas as most

predominant;  several Bacillus species were also detected

(Cairo & Suffet, 1979).

2.2  Biofilm Development

Bacteria have long been known to accumulate on

submerged surfaces.  Zobell and Allen, in 1935, found that

marine bacteria accumulated on glass surfaces and became

firmly attached after only one to two hours.  In 1943,

Zobell determined that incubation bottles with a higher

surface area-to-volume ratio increased microbial activity,

especially at low substrate concentrations (Zobell, 1943).
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He suggests the following advantages for bacterial
accumulation at surfaces:

1. In conditions of low substrate concentration, the
accumulation of nutrients at the solid/liquid interface will
enhance biological growth.
2. Solid surfaces may retard the diffusion of exoenzymes
away from the cell, promoting assimilation of nutrients
which must be hydrolyzed extracellularly.

Additional advantages for microbial attachment include the
following (Marshall, 1976; Characklis, 1973):

3. Biomass accumulated at the surface can be utilized for
sustenance during periods of starvation.
4. Biomass can remain fixed within a flowing environment,
and receive a constant supply of fresh nutrients without
motility requirements.
5. Predation is reduced by the protection of the
surrounding media.
6. Extracellular enzymes may be shared between bacteria.

The accumulation of bacteria at the solid/liquid
interface results in the formation of a biofilm, which is
generally a very adsorptive and porous structure, greater
than 95% water.  Biofilms can be a monolayer of cells or as
much as 3 0 to 40 centimeters thick, as observed in algal
mats (Characklis, 1984).

Biofilm development, as described by Characklis (1984),
involves five processes:

1. transport of organic molecules to the surface;
2. adsorption of organic molecules to the wetted surface,
resulting in a "conditioned" surface;
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3. attachment of microbial cells to the conditioned
surface;

4. metabolism by attached microbial cells resulting in more
attached cells and associated material; and,
5. detachment of portions of the biofilm.

Marshall and co-workers (Marshall et al., 1971a & b;
Marshall & Cruickshank, 1973; Marshall, 1976) propose that
the attachment process involves two distinct phases.  Phase
1 is an almost instantaneous phase, where bacterial adhesion
is relatively weak and reversible.  Phase 2 is irreversible
film attachment, requiring an "incubation period" during
which exocellular polymers are produced to achieve firm
adhesion.  During initial attachment, both motile and
nonmotile bacteria remain in motion.  At this stage the
bacteria remain some small but finite distance from the
surface by physical forces which result from a balance of
Van der Waals attractive forces and electron double layer
repulsion (Marshall et al., 1971a).

Culture age, time, temperature, and growth phase all
affect Phase 1 attachment (Fletcher, 1977).  Findings
indicate that cells adsorb best in log growth and worst
during death phases, that the number of attached cells is
proportional to solution phase bacterial concentration until
saturation is reached, and that the rate of adsorption is
proportional to temperature.  The total adsorption capacity
has been found to be independent of temperature and solution
phase population density.  Breyers and Characklis (1982)
have also observed, when feeding a biofilm reactor from a
chemostat, that the rate and extent of attachment is
directly proportional to growth rate in a mixed culture
system.

A change in pH can cause cells to sorb or desorb due to
a charge reversal phenomenon at the cell surface (Daniels,
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1971).  Attachment can be promoted by the addition of
divalent cations to the growth media.  No pH dependence was
found by Werner and co-workers, however, for changes in pH
from 5 to 8, nor temperature dependence between 5°C to 37°C,
for bacterial loadings on carbon (Werner et al., 1979).

Phase 2 attachment, according to Marshall et al.
(1971a), includes the bacterial production of exocellular
polymers.  Characklis (1984) has also included this
phenomenon as the fourth step of biofilm development.

Zobell (1943) was first to suggest that firm attachment
of bacteria to surfaces was mediated by some sort of
adhesive bacterial secretion.  Corpe and co-workers (Corpe,
1970a & b, 1972, 1973;  Tosteson & Corpe, 1975) observed
that marine bacteria attached to surfaces produced an
exocellular polysaccharidic material which was found to be
an acidic mucopolysaccharide composed mostly of polyanionic
carbohydrates.

The relationship between the growth rate of Pseudoroonas
aeruginosa and the rate of exocellular polymeric substance
(EPS) production under carbon limited conditions is
quantified in a detailed study presented by Robinson and co-
workers (Robinson et al., 1984).  They investigated the
extent to which growth rate affected EPS formation, and the
fractionation of glucose consumption between EPS formation
and purposes other than cellular reproduction.  Their
findings indicate that EPS was both growth and non-growth
associated.  Approximately 0.2 mg of polymer were formed per
mg total glucose consumed;  the fraction of glucose
converted to EPS by P. aeruginosa was greater at lower
growth rates.  Others have also found that the extent of
polymer formation is inversely proportional to the
organism's growth rate.  An important finding to note here
is that neglecting polymer production by organisms such as

NEATPAGEINFO:id=3D9D46AF-E82B-4EAA-89A6-6264FB62107A



10

p. aeruginosa leads to significant overestimation of

cellular yields, since such a large portion of energy and
carbon is diverted to EPS formation.  Differences in this

study are as follows;  Y = 0.6 mg cellular carbon/mg glucose

carbon consumed (neglecting EPS production) and Y = 0.3 mg

cellular carbon/mg glucose carbon consumed (accounting for

EPS production).  This is significant in light of the number

of studies which use results obtained from suspended growth

cultures to describe biofilm behavior (Chang & Rittmann,

1987; Namkung & Rittmann, 1986a & b; Rittmann & McCarty,

1980a & b; Speitel & DiGiano, 1987;  Stratton et al., 1983).

A need for calcium and magnesium ions in secondary

attachment has been observed.  Marshall (1976) found that

irreversible attachment failed to occur in the absence of

both ions, while the addition of either was sufficient to

allow attachment to proceed.  Turakhia et al. (1983)

observed a dramatic increase in biofilm detachment with the

addition of EDTA, a calcium-specific chelant, emphasizing

the importance of calcium to biofilm adhesion.

In addition to solution phase properties,

characteristics of the solid surface affect bacterial

attachment.  Increased rates of attachment may be encouraged

by a rough surface, which provides more surface area as well

as some degree of protection from fluid shear, which may

promote detachment (Characklis, 1984).  Surfaces with lower

energy have been found to retard cell adhesion;  precoating

exposed surfaces with a synthetic cationic polymer may

significantly enhance initial biofilm attachment.

Attachment in waters of low hardness, also, may be

encouraged by the addition of divalent cations not only to

the solution phase but to the solid surface as well.

Given that bacterial attachment and accumulation will

occur at the solid surface, the film will grow to achieve a
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condition of steady state which is ensured by the
equilibrium maintained between cellular attachment and
reproduction, and microbial decay and detachment.
Characklis (1984) notes that detachment occurs from the
moment of initial attachment, and results from two distinct
contributions:  shearing and sloughing.  Shearing refers to
the continuous removal of small portions of biofilm, and is
highly dependent on hydrodynamic conditions within the
fluid.  The rate of shearing increases with biofilm
thickness and fluid shear stress at the fluid/biofilm
interface.  Sloughing refers to the random removal of large
sections of biofilm and is generally attributed to nutrient
or oxygen limitations deep within the film, or to some
dramatic change in the environment.  Sloughing is more
frequently observed in thick biofilms in a nutrient rich
environment, such as a trickling filter wastewater treatment
process.

Detachment may also result from chemical treatment.
Oxidizing herbicides, chlorine, XJV radiation, surfactants,
and non-oxidizing biocides all will promote biofilm
detachment to some degree.

2.3.  Biodeqradation Within the Biofilm

Biofilms are responsible for the removal of soluble and
particulate contaminants from natural streams as well as in
engineered treatment processes (Characklis, 1984).  In
natural waters, biofilms may determine water quality by
influencing dissolved oxygen levels and may serve as a sink
for many toxic and/or hazardous materials.

The rates of fundamental microbial processes within a
biofilm are difficult to measure and are generally inferred
from such lumped parameters as (1) substrate consumption.
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(2) electron acceptor consumption (e.g., dissolved oxygen

depletion), (3) biomass production, and (4) product

formation (Characklis, 1984).

Substrate utilization within the biofilm is usually
assumed to follow the Monod kinetic model:

dS

dt

k«s«x

Kg   +   S
(2-1)

where S = substrate concentration within

the biofilm (mass/vol)

k = maximum rate coefficient

(mass substrate/biomass-hr)

X = biomass concentration (mass/vol)

Kg = half saturation coefficient
(mass/vol)

t = time

(Utilization is considered to be a positive quantity.)

Utilization rates in the biofilm may be controlled by

mass transfer limitations within the biofilm (Rittmann &

Mccarty, 1980a).  Mass transport within the biofilm is

governed by molecular diffusion, which is related to

substrate concentration by Pick's law:

Flux =  -Df---.

dS

dz

(2-2)

where D^ = molecular diffusivity of
substrate in biofilm (L /time)

z = direction normal to surface
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A material balance over an element of biofilm at steady
state yields:

(Flux in) - (Flux out) - (Reaction Rate) = 0

d^S    k'X'S
Df --; =  -------• (2-3)

dz^    Kg + S

utilization rates within the biofilm may also be
controlled by mass transfer limitations in the bulk fluid
(Characklis, 1984).  At low fluid velocities, a thick mass
transfer boundary layer can cause fluid phase mass transfer
resistance, which will serve to decrease substrate    '--.^
concentrations at the fluid-biofilm interface and as a

result will reduce the rate of utilization.  This same

phenomenon could be caused by a dilute liquid phase
substrate concentration.

Substrate removal rates increase with an increase in

biofilm thickness until a critical thickness is reached,
beyond which removal remains constant.  Trulear and
Characklis (1982) observed that this critical thickness
increases with bulk substrate concentration.  Once the

biofilm thickness exceeds the depth of substrate penetration
(as determined by bulk substrate concentration and substrate
utilization rates), removal rates will be unaffected by
additional cells.

2.4  Characterizing Biofilm Behavior;

Comparisons Between Free-Living and Fixed-Film Bacteria

In characterizing the kinetics of biofilm degradation,
a common approach has been to use suspended cultures to
determine parameters of the Monod equation for metabolism of
the compound or compounds of interest (Chang & Rittmann,
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1987;  Namkung & Rittmann, 1986b;  Rittmann & McCarty,
1980b;  Speitel & DiGiano, 1987;  Stratton et al., 1983).
Parameters obtained in such studies are then used to predict
the metabolic behavior of a biofilm grown in a flow-through
system which has been seeded, usually, with organisms from
the suspended population.

While the same principles of substrate utilization and
microbial growth kinetics apply to both fixed-film and
suspended-growth cultures, some differences in activity have
been noted.  Attached organisms are generally found to be
more active in taking up nutrients, and are more resistant
to such environmental stresses as starvation, heavy metals,
and chlorine (Herson et al., 1987).

The applicability of stoichiometric data obtained in
suspended culture to describe steady state biofilm processes
was investigated in a study by Bakke and co-workers (1984).
Their work suggests that, at a 5% level of statistical
significance, there is no difference in substrate removal
rates between chemostat data and combined chemostat/biofilm
data.  Furthermore, the biofilm growth rate data correlate
well with chemostat data, supporting the use of chemostat
derived kinetic coefficients to predict biofilm behavior.

Several investigators have used experimental techniques
in a laboratory chemostat reactor to c[uantify rate and
stoichiometry of fundamental processes within a biofilm
(Breyers & Characklis, 1982;  Trulear, 1983).  Results
suggest that chemostat-derived expressions may be used
successfully to predict biofilm behavior in some cases.
Important questions still remain, however, with respect to
exocellular polymer production and microbial detachment.

Differences between the physiology of suspended-growth
and fixed-film microorganisms may indeed give rise to
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differences in their metabolic behavior.  We might also

question whether a heterogeneous population of

microorganisms which colonizes a granular activated carbon

filter in a water treatment process will behave similarly to

cultures grown under conditions which basically select for

degraders of the specific substrate or substrates under

investigation.  These uncertainties could be circumvented by

utilizing the GAC-colonized microbial population in

laboratory studies to determine biokinetic parameters.  This

more closely simulates conditions of the system about which

predictions are to be made;  thus, there should be greater

confidence in the applicability of results.

In order to use the GAC biofilm population in a

metabolic degradation study, the bacteria must first be

removed from the carbon surface with minimal alteration of

their metabolic activity.  Methods have been presented in

the literature for removal of viable bacteria from soil

samples utilizing a variety of enzymatic, ionic, and

polymeric substances in combination with blending, mixing,

or homogenization (Balkwill et al., 1975, 1977;  Bone &

Balkwill, 1986; Macdonald, 1986).  Balkwill et al. (1975)

report a procedure whereby a soil sample suspended in sodium

pyrophosphate solution (PPi, 0.1%) is subject to a series of

blending and sonication treatments separated by slow speed

centrifugation.  This method, followed by additional

centrifugation (15 centrifuge washes at 650xg) is said to

have recovered 90% to 99% of a sample of Arthrobacter

globiformis cells added to sterile and non-sterile soil

(Balkwill, et al., 1977).  Cells are recovered in the

supernatant fraction from each centrifuged sample.  In later

work. Bone and Balkwill (1986) recommend the polymer

polyvinyl pyrrolidone (PVP, molecular weight ranging from

10,000 to 360,000) as a releasing agent for all types of

flotation studies.  The material is said to release

bacterial films effectively from both saturated and
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unsaturated samples, although without physical agitation
only 3.4% to 10.1% of the viable cells are recovered.

An entirely different procedure has been reported for
removal of viable cells from colonized samples of granular
activated carbon (Camper et al., 1985a).  Homogenization of
carbon particles at 16,000 rpm (4°C) with a mixture of
Zwittergent 3-12 (10~^ M), EGTA (10"^ M), tris buffer (0.01
M, pH 7.0), and peptone (0.01%) recovered approximately 90%
of a known concentration of Escherichia coli attached to a

sample of GAC (10  cells per 0.1 gram carbon).

Cell recoveries in these studies have been determined

by colony forming unit counts.  Cell densities in
supernatant samples are compared with those remaining in the
pellet fraction, or with densities in the original untreated
sample.  While this method is preferable to a total cell
count because only viable cells are enumerated, results may
be biased.  By definition, a viable cell plate count will
only indicate the presence of microorganisms capable of
utilizing nutrients present in the media chosen for growth.
Cells which are viable yet unable to metabolize the media
will go undetected.  Extremely small colonies
("microcolonies") may develop, yet also go unobserved due to
their size.  Furthermore, a plate count is especially
inapplicable to samples containing solid material since,
while a particle may be inhabited by several bacteria, only
one colony per particle is likely to be detected in the
petri dish.  This problem is often compensated for by
introducing a normalizing factor to multiply up solid sample
plate counts;  this however introduces additional bias into
the procedure by assuming a constant cell density per
particle.  The difficulties involved in quantifying biofilm
bacteria raise questions regarding the actual cell
recoveries reported in the literature.
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2.5  Biodeqradation - Adsorption Interactions

The presence of an adsorptive media may affect

substrate utilization within the biofilm by altering

solution phase concentrations, as well as by providing

substrate at the biofilm/solid interface.  The "biological

activated carbon" (BAG) process refers to a granular

activated carbon filter in which biological activity is

encouraged.  The mechanisms involved are similar to those of

a slow sand (biological) filter, except that interactions

between adsorption and biodegradation enhance contaminant

removal.  These interactions may be important not only

during the initial stages of filter operation, before

biological activity becomes significant, but also in the

event of a chemical spill in that surface area is provided

to adsorb non- or slowly-degradable molecules.  Many

compounds which may be toxic at higher levels will adsorb to

the GAC surface, effectively reducing solution phase

concentrations to non-toxic levels which can be managed by

the microbial population.  Alternatively, compounds present

at concentrations below those necessary to support a

community of specific degraders may sorb and be accumulated

until, again, a manageable concentration is reached for

biodegradation to proceed.

The influence of GAC on bacterial metabolism was

investigated by Werner and co-workers (1979), using phenol

as a substrate.  They found that at 0.3 mg/L phenol the

presence of GAC has a negative influence on utilization.  At

such low concentrations carbon hinders microbial metabolism.

At 2.5 mg/L phenol, however, they noted utilization only in

the presence of GAC.  This concentration is evidently toxic,

and the adsorptive surface tends to decrease solution phase

concentrations to a metabolizable level.

NEATPAGEINFO:id=B30FCFE9-BBCD-47A1-ABE8-57E284402508



18

Higher metabolic activity has been detected on GAC than
on non-adsorptive media.  Speitel and DiGiano (1983) present
an investigation of biofilm degradation on GAC vs. that on
glass beads in which GAC, preequilibrated with phenol at 0.5
to 1.2 mg/L, was used in an effort to eliminate adsorption.
Their results show enhanced phenol biodegradation in the GAC
system, due presumably to the availability of sorbed
substrate.  The same phenomenon was shown at higher
concentrations by Li and DiGiano (1983).  Higher specific
growth rates and biodegradation rates of o-cresol,
acetophenone, phenol, and benzoic acid were detected on GAC
as compared to sand or glass beads.  The enhanced specific
growth rate increased with sorbed substrate concentration.
A decrease in particle size also gave rise to increased
growth rates, suggesting the importance of internal
diffusion to the rate of resupply of substrate to the
biofilm.

While many authors suggest interactions between the
activated carbon surface and attached microorganisms, others
claim that long-term contaminant removal is due not to
biodegradation but to a slow adsorption process.  Peel and
Benedek (1983) used a dual rate adsorption kinetic model to
predict purely adsorptive behavior in packed columns.  The
model suggests a two-step adsorption process consisting of
diffusion into the macropores and then, more slowly, into
the micropores of the GAC.  Although biological activity was
documented in their experimental column, as detected by
oxygen uptake and microscopic examination, they conclude
that relatively degradable organics are oxidized but that
materials which resist degradation will either adsorb or
pass through the process unaltered.  Continued removal of
substrate after long operating times, they propose, is due
not to biodegradation but to the slow kinetics of adsorption
into the GAC micropores.
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2.6  Describing the Process;  Biofilm Models

A great deal of interest during the past decade has

been directed toward understanding the fundamental processes

involved in biofilm degradation, both in the presence and in

the absence of adsorption.  A major thrust of the research

has been to develop models which describe adsorption and

biofilm degradation, for single and multiple substrate

systems. ,

In 1976, Williamson and McCarty presented a basic

biofilm model which idealizes the biofilm as a homogeneous

matrix of bacteria and extracellular polymers which bind the

bacteria together and to the surface (Williamson & McCarty,

1976a & b).  The model takes into account mass transport of

substrate from the bulk liquid phase to the biofilm surface,

mass transprot within the biofilm, and substrate utilization

within the biofilm.  Rittmann and McCarty further developed

the model by incorporating cell growth, and showed that by

equating energy capture and energy expenditure in the

biofilm a steady state biofilm thickness can be calculated

(Rittmann & McCarty, 1980a).  By equating the ratios of

energy capture and expenditure, they predicted the existence

of a minimum substrate concentration, S^j^j^^^, below which no
significant biofilm activity occurs:

Kg'b
Smin = —----• (2-4)

Y-k - b

where b = endogeneous decay

coefficient (1/time)

Y = microbial yield coefficient

(mass cells/mass substrate)
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Additional models for describing interactions between
biodegradation and adsorption have been developed (Benedek,
1980;  Chang & Rittmann, 1987;  Tien, 1980;  Ying & Weber,
1979;  Speitel et al., 1987a).  A model is presented by
Speitel and co-workers (1987a) which describes simultaneous
adsorption and biodegradation of a single substrate in a
column system.  Adsorption is described by the Fruendlich
isotherm and surface diffusion in the adsorbent;  Monod
kinetics are used to describe biodegradation.  Film
transport resistance and biofilm growth and decay are also
included.

Of special interest to this research is the model
developed by Chang and Rittmann (1987).  The model closely
parallels that of Speitel et al. (1987a), except that
instead of describing a column system, the model developed
by Chang and Rittmann describes biofilm growth and substrate
utilization in a reactor operating under a completely mixed
regime (the Biofilm Activated Carbon model, BFAC).  Axial
concentration gradients are eliminated.  The model is a
combination of two component-models:  the biofilm on glass
beads (BFCM) model which describes biofilm degradation in
the absence of adsorption, and the activated carbon in
completely mixed flow (ACCMF) model which describes
adsorption with little or no biodegradation.  Effluent
concentrations as predicted by each of the models are
presented in Figure 2-1.  Without adsorption, effluent
concentrations are close to influent concentrations in the
early stages of operation, before the biofilm is
established.  As microbial activity increases, effluent
concentrations are reduced through biodegradation.  With
adsorption in the absence of biodegradation, effluent
concentrations rise gradually until, eventually, there is no
reduction in concentration across the filter.  Biological
activity in combination with adsorption offers protection
during both the early stages of operation, when adsorption
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predominates, as well as later in the run when, although

adsorptive capacity may be exhausted, contaminant removal

across the bed is achieved as a result of biological

activity.

2.7  Secondary Substrate Utilization

An expansion of the Rittmann & McCarty model has been

presented which describes bisubstrate removal by biofilms

(Namkung & Rittmann, 1986a & b).  The model is based on a

concept that substrate can be utilized by biomass which

derives energy for growth and maintenance not from the

substrate in question but from another substrate present.

In such a way, compounds which are present at concentrations

below those necessary to support growth (as determined by

minimum energy requirements) may be degraded in the presence

of additional compounds at concentrations greater than S^j^^^j^.
The utilization of a specific compound can be increased by

altering the concentrations of growth-supporting substrate.

This concept, the biodegradation of compounds at

concentrations below those necessary to support growth at

the expense of an additional electron donor which provides

energy and nutrients for growth and maintenance, is termed

secondary substrate utilization.  The secondary substrates

do not supply energy for long term biofilm growth either

because their concentrations are too low, or they are

present in high concentrations but for only a short time.

The model presented by Namkung and Rittmann describes steady

state secondary utilization and biofilm accumulation in a

bisubstrate system, as opposed to a shock loading scenario.

The biofilm model for bisubstrate utilization was

tested using phenol as a target organic contaminant and

acetate as representative of background metabolites (Namkung
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& Rittmann, 1986b).  It was found that when phenol was

present at concentrations higher than Sjjjj^j^, an increase in
acetate concentration enhanced phenol degradation.  When
phenol concentration was reduced below S^^j^j^, a minimum
concentration of 3.3 ng  acetate COD/L was required to
stimulate phenol degradation;  increasing acetate
concentrations beyond this served to enhance phenol
degradation.  Further reductions in influent phenol
concentrations required still higher acetate concentrations
to stimulate degradation.  In general they conclude that
bisubstrate systems show significantly better removal than
single substrate systems.

The effect of acetate addition on biological activity
was also investigated by Speitel and co-workers (1987b).
They added 2 mg/L sodium acetate to a GAC column receiving
paranitrophenol (PNP) , at 2 liq/lt,   in an effort to enhance
biofilm growth.  Degradation of PNP was less in the
bisubstrate system than in a column which received 5 jug/L
PNP without the supplemental acetate.  The lower biological
activity may have resulted from decreased PNP
concentrations, or the microorganisms may have
preferentially metabolized sodium acetate over the less
biodegradable PNP.

Stratton and co-workers studied primary and secondary
utilization of five different substrates in tubular reactors

filled with glass beads (Stratton et al., 1983).  Acetate,
D-galactose, L-alanine, thymine, and phenol were tested as
primary substrates at 3 mg/L, and as secondary substrates at
0.3 to 3.0 mg/L.  They conclude from the work that, for the
same test concentration, secondary utilization of a
particular compound is less than primary utilization.
Secondary utilization is more effective for removal of
substrates at lower feed concentrations;  as the secondary
substrate concentration decreases, percent removal
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increases.  They also postulate that utilization of a
permanent secondary substrate at low concentrations will
usually be greater than that of a secondary substrate
present in short duration.

Secondary substrate utilization of trace contaminants
may occur in the presence of natural background organics
(humic substances), which could serve as primary electron
donors.  Rittmann and co-workers, in a study of aquifer
recharge in the Santa Clara Valley Water District,
demonstrated that the utilization of general organics
promoted and sustained the growth of a biofilm in an aquifer
near the injection well.  Certain individual compounds such
as naphthalene and heptaldehyde were utilized as secondary
substrates within the first meter of the well;  other
compounds were not degraded and were deemed either non- or
slowly-biodegradable (Rittmann et al., 1980).

Biofilms grown on humic substances have been used to
remove taste and odor causing compounds (Namkung & Rittmann,
1987c).  Short-term secondary-utilization tests were
performed, adding secondary substrates for two to three
hours to biofilm reactors which had received 1 mg/L peat
fulvic acid at 3 L/day for 290 to 360 days.  Mineralization
of the fulvic acids was constant at about 10%, as determined
by TOC measurements.  Results of the study indicate that
natural humic substances are capable of supporting a biofilm
which will degrade secondary compounds, both man-made
(phenol, naphthalene) and of natural origin (Geosmin, 2-
methylisoborneol (MIB)), which are present at very low
concentrations.  Best removals were noted at the lowest feed
concentrations (1 iiq/li  for phenol and naphthalene; 100 jug/L
for Geosmin and MIB).
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2.8  The BAC Process;  Contributions by Ozone

Noting the widespread occurrence of natural organic

matter and its potential for serving as primary substrate

for microbial growth brings us to consider a biologically

active carbon filter as an effective means for controlling

trace organics in a water supply.  While the large majority

of contaminants are present in the natural environment at

concentrations below the minimum required to support growth,

many may be degraded in the presence of biodegradable humic

substances.  Ozonation prior to a GAC filter should promote

contaminant degradation, since ozone has been noted by

several authors to increase the biodegradability of humic

substances (Benedek, 1979;  Hubele & Sontheimer, 1984;

Schalekamp, 1979;  Somiya et al., 1983).

Reactions between ozone and humic substances have been

shown to result in the formation of carbonyl groups (chiefly

COOH) among the volatiles from the humic and fulvic acids

(Killops, 1986).  Ozonation causes a shift in the molecular

weight distribution, resulting in an increased percentage of

lower molecular weight compounds (Lienhard & Sontheimer,

1979).  Other effects due to ozonation include increased

polarity, and a loss of double bonds and aromaticity,

resulting in decreased adsorbability (Lienhard & Sontheimer,

1979). P

Ozonation has been shown to increase the

biodegradability of humic substances.  Using a recycle

reactor containing nonadsorbing anthracite coal, Hubele and

Sontheimer (1984) demonstrated an increase in biodegradation

with ozone dosage, from 0.18 to 1.82 gm 03/gm TOC.

Preozonation has been proposed as a method for

increasing biological activity in a GAC filter.  In a pilot

plant study, Janssens and co-workers (1984) evaluated
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ozonation prior to GAC filtration with respect to organic

matter removal and reduction of assimilable organic carbon

(AOC).  It was found that an ozone dose up to 2 mg/L could

increase filter service time by 60% to 65%.  Ozonation
increased AOC in an amount proportional to the applied dose.
Their results, in addition, suggest that ozonation may alter
the pattern of the breakthrough curve due to the production
of a higher proportion of biodegradable compounds as well as

compounds of lower molecular weight and higher polarity,

which may be less adsorbable.

In an attempt to adapt ozonation and GAC filters to
produce "biological reactors", Hascoet and co-workers (1986)
assert that while ozone may or may not decrease dissolved

organic carbon (DOC), biodegradable dissolved organic carbon
(BDOC) is always increased.  In a full scale filter at

Rouen-La-Chapelle, France, containing 1-year-old GAC, they
determined that the dissolved organic carbon removed during

filtration consists essentially of biodegradable dissolved
organic carbon (ABDOC//^DOC = 0.7 to 0.9), and that this
removal occurs in the top 20 to 40 centimeters of the
filter.

A study was carried out on site in a potable water
treatment plant for Paris which uses ozone at various points
in the process train (Bourbigot et al., 1986).  The

experimental focus here was the role of ozone and GAC in
removing mutagenic compounds and trihalomethane (THM)

precursors.  Samples were withdrawn at several points and
tested for mutagenicity.  An important finding is that,
while ozone is successful in reducing mutagenicity, a

sufficient dose must be applied.  The number of mutants in

water which received 1.5 mg/L ozone was 2.4 times higher

than in the control sample, while no mutagenicity was found
in water which received 3 mg/L ozone.  Characteristics of
the raw water were not reported.  Ozone and GAC together are
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reported here as one of the best methods for eliminating
mutagenic compounds and for decreasing chlorine consumption
and THM formation.

Preozonation has also been demonstrated to have a

negligible effect on TOC removal.  In a USEPA-sponsored
pilot plant study at Shreveport, Louisiana, GAC beds were
operated with and without preozonation at an empty bed

contact time of 24 minutes (Glaze & Wallace, 1984).  The
organic content of the raw water ranged from 3 to 11 mg/L as
TOC;  ozone dosage was variable, but was usually less than
3.4 mg/L.  Although microbial activity was important in both
the ozonated and unozonated systems, results indicate that

preozonation did not effect TOC removal at any time.

Similar studies using a different source of TOC, a

shorter empty bed contact time, and a higher dose of ozone
have shown improved removal of TOC with preozonation

(Neukrug et al., 1984).  Prechlorination of the influent
water reduced the enhanced TOC removals in a parallel study,
despite ozonation.  This suggests that the beneficial
aspects of ozonation prior to a GAC filter with respect to
increased TOC biodegradation are dependent on
characteristics of the raw water, as well as on the ozone

dose applied.

2.9  Phenol Biodegradation

Phenol is a relatively degradable aromatic compound,
and has been the subject of several investigations involving
degradation kinetics at low substrate concentrations

(Chesney et al., 1985;  Jones & Alexander, 1986;  Pipes,
1976;  Scow et al., 1986;  Shimp & Pfaender, 1985a & b;
Subba-Rao et al., 1982).
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Phenol utilization has been modeled as a second order

process, depending equally on substrate and biomass

concentrations (Paris et al., 1982), a first order process,

depending only on substrate concentration (Subba-Rao et al.,

1982), and also as following Monod kinetics, a mixed order

model (Chang & Rittmann, 1987;  Speitel & DiGiano, 1987).

Jones and Alexander (1986), in a study to determine the

applicability of various kinetic models to phenol

mineralization in lake water, found that phenol

concentration had great impact on the fit of a particular

model.  They determined that at 0.5 ug/L, the data fit a

first order model;  a Monod model without growth was best

for concentrations near 1 ug/L, a logistic model at 2.0

ug/L, and logarithmic models at all higher concentrations.

The effect of additional substrates on phenol

utilization has been investigated by several authors (Rozich

& Colvin, 1986;  Shimp & Pfaender, 1985a & b;  Subba-Rao et

al., 1982).  Rozich and Colvin (1986) compared phenol

utilization by cultures acclimated to phenol (500 mg/L) and

to a phenol/glucose mixture (250 mg/L phenol, 500 mg/L

glucose).  Phenol removal rates were inhibited by the

presence of glucose under both growth and nonproliferating

conditions, indicating that the interference is occurring at

the level of enzyme functioning.  During the test, cells

previously acclimated to phenol switched their preference to

glucose.  Cells may preferentially utilize compounds which

will yield most rapid growth.

The addition of glucose at 10 gm/L had no effect on

phenol mineralization in Cayuga Lake water (Subba-Rao et

al., 1982);  78 to 96% of the phenol was mineralized in four

days. t

Shimp and Pfaender (1985a) investigated the influence

of readily degradable carbon substrates (amino acids.
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carbohydrates, fatty acids) as well as naturally occurring
humic acids (1985b) on the degradation of monosubstituted
phenols (m-cresol, m-aminophenol, p-chlorophenol).  Phenol
degradation was enhanced by adaptation to increasing
concentrations of the readily degradable substrates;
enhancement was the same for all three substrates,
suggesting that the results are due to a general stimulation
of metabolic activity.

Adaptation to increasing concentrations of humic
substances, however, significantly reduced the ability of
the community to degrade the monosubstituted phenols.  The
decrease in phenol degradation was not accompanied by a
reduction in total cell counts, plate counts, or amino acid
turnover times (an indication of the general metabolic state
of the community), although a decrease in the population of
specific compound degraders was noted.  These results were
unexpected;  humic substances have been known to stimulate
microbial activity (DeHaan, 1974, 1976;  Seki, 1982).  Since
humic substances are relatively non-biodegradable, the
community may have been starved for an additional carbon and
energy source.  Yet even with the addition of acetate, a
readily utilizable substrate, the suppressive effect of the
humic substances persisted.

It is possible that the suppressive effects noted by
Shimp and Pfaender were caused by a release of heavy metals,
previously bound to the humic substances, into the microbial
feed solution.  Another explanation may be that the humic
substances interacted with bacterial enzymes.  Butler and
Ladd (1971) found that humic substances suppressed the
activities of a number of proteases, presumably through
irreversible binding of the enzyme to the humic and fulvic
acid molecules.  In any case, the authors emphasize that the
inhibitory effects noted may be unique to the system under
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investigation;  the pervasiveness of such results has yet to

be proven.

2.10  Summary

The presence of bacterial growth in granular activated
carbon water filters is well documented.  Numerous studies

have investigated interactions between adsorption and

biodegradation, and models have been developed to describe

the process in single- and multiple-substrate systems.

Many investigators have used stoichiometric data

obtained in chemostat or batch studies, utilizing suspended

cultures, to describe biofilm behavior.  Differences between

characteristics of suspended-growth and fixed-film bacteria

have been noted.  It may be more desirable to utilize the

microbial community indigenous to the GAC filter for

obtaining stoichiometric data.

The interactions between adsorption and biodegradation

at the carbon surface and the extent to which biological

activity will aid in the treatment process are not fully

understood.  The growth of a biofilm on humic substances

after ozonation, and the possible biodegradation of trace

organic contaminants by the humic substances-grown biofilm,

are both important topics for consideration.
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3.  GENERAL APPROACH TO EXPERIMENTAL WORK

The objectives of this research are directed toward

obtaining a better understanding of the role played by
biodegradation in a GAC filter receiving water which
contains naturally occurring humic substances.  We are
interested in the ability of humic substances to serve as
substrate for biofilm microorganisms, and in the ability of
this humic substances-grown biofilm population to degrade a
trace micropollutant as a secondary metabolite.

The overall experimental approach is summarized here
to clarify how the different project phases are interlinked.
Each phase will then be described separately in detail,
including a description of experimental methods and the
analysis of results.

The general experimental effort is outlined in Figure
3-1, which reiterates each of the objectives and shows how
the accomplishment of one has enabled us to address the
next. .

Prerequisite to investigating the metabolic behavior of
biofilm microorganisms is the elimination of the adsorptive
system in which they have developed.  The presence of an
adsorptive surface such as GAC will interfere with
biokinetic studies, since organic compounds will

preferentially sorb to the carbon surface, altering their
availability as substrate.  Removing the biofilm
microorganisms from the GAC surface, then, while maintaining
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Develop Method
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from GAC.

Recover Blofilm from
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and Biodegradation
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Figure 3-1.     A General Overview to the
Experimental Approach

NEATPAGEINFO:id=C0F1D6B2-43E9-4FF5-B3CE-C4FA9584F375



33

their viability, was considered to be a necessary first step

in the experimental design.

Also important during the initial stages of

experimentation was the development of a laboratory scale

column system which would exhibit adsorption and

biodegradation of natural humic substances.  The successful

design of such a system would serve as the means for

generating microbial samples to be used, in conjunction with

the removal procedure, for such microbial analyses as

biokinetic rate studies, and the assessment of total and

viable cell densities, with cultures grown under different

operating conditions.  In addition, the column system would

enable in situ investigations of the interactions between

adsorption and biodegradation of a micropollutant in the

presence of natural humic substances.

Phenol was chosen as the model micropollutant for use

in this study.  The compound is readily biodegradable, and

in addition there is widespread information available in the

literature concerning its behavior in both natural and

engineered systems.  While these may be good reasons for

using phenol to develop and test the experimental

procedures, the long-range plan for further research in this

laboratory includes study of less-degradable compounds.
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4.  RECOVERY OF VIABLE CELLS FROM THE GAC SURFACE

4.1  Experimental Methods

Methods are presented in the literature for removing

viable cells from soil samples (Balkwill et al., 1975, 1977;

Bone & Balkwill, 1986;  Macdonald, 1986) and from colonized

granular activated carbon (Camper et al., 1985a) utilizing a

variety of chemical solutions in combination with mixing,

blending, or homogenization.  Dobbins and Pfaender (1988)

have developed a method for quantitative recovery of cells

from subsurface soil samples using a solution of polyvinyl

pyrrolidone (PVP-360, average molecular weight 360,000;

Sigma Chemical Company, St. Louis, Missouri), a polymeric

substance recommended by Bone and Balkwill (1986) as a

releasing agent for microbial films, and sodium

pyrophosphate buffer (PPi, Na2P207•IOH2O;  Aldrich Chemical
Company, Milwaukee, Wisconsin).  The soil suspension is

shaken vigorously on a rotary shaker, followed by slow speed

centrifugation.  Biomass is recovered in the liquid

supernatant.

We have attempted to adapt the methods developed by

Dobbins and Pfaender to the removal of viable cells from

GAC.  A general outline of our experimental program is

presented in Figure 4-1.  In an effort to optimize the

procedure, we focused on the effects of physical parameters

(length of time the suspension is shaken;  ultrasonication

vs. blending) as well as chemical parameters (three

concentrations of PVP/PPi were tested, in addition to a
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SAMPLE:
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to
GAC

Shake    (180 rmp)
0 min
10 min

(;;;'30 rntiT^
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Chemical Solutions Tested:
1.

2.

PVP/PPi
0.05%/1.0%

L0.10%/1:0%5)
0.50%/1.0%

Zwitterionic Detergent
Zwittergent 3-12, 10E-06 M
EGTA, 0.001 M
Peptone, 0.01%
Tris Buffer, 0.01 M, pH 7.0

Supernatant
Containing Cells:
1. Metabolic Assay
2. Cell Count

Pellet Resuspended,
Wash Repeated

Waring Blender Ultrasonication

Figure 4-1.      Schematic of
Biofilm Removal Study

Centrifuge
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zwitterionic detergent presented by Camper et al., 1985) on
the quantitative recovery of metabolically active cells.

A feasible and efficient method was needed for

determining both the total number of bacteria in the
original sample as well as the percent recovered into the
supernatant phase.  Viable cell plate counts are commonly
used to quantify cell recoveries.  In addition to problems
noted with respect to media selectivity and the formation of
"microcolonies", the method is inapplicable to solid
samples;  while a particle may be inhabited by several
bacteria, only one colony per particle is likely to be
enumerated.

We attempted, therefore, to utilize an amino acid
respiration assay to quantify the general metabolic activity
of the original sample as well as supernatant and pellet
fractions obtained after subjecting the sample to a removal
procedure.  The technique involves incubation with a mixture
of carbon-14 labeled amino acids and subsequent measurement
of  CO2 evolved from solution as a result of respiration.

The method could provide an unbiased measure of the recovery
of metabolically active cells from the carbon surface;
microscopic cell counts served as a check on the ability of
this procedure to quantify cell recoveries.

Carbon Sample.  Granular activated carbon was obtained from
an operating GAC filter at the Sanford Water Treatment Plant
in Sanford, North Carolina (5 MGD, population 18,000).  The
sample was collected from the top layer of the filter,
packed into a clean unsterile mason jar and refrigerated at
4°C until use.  Since only one carbon sample was obtained,
it was necessary to store the carbon, refrigerated,
throughout the duration of this phase of the project
(approximately two months).
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Subsamples were removed from the storage jar
aseptically for each experiment, utilizing a sterile metal
spatula.  The carbon was rinsed three times with sterile
distilled water to remove loosely attached biomass, and
drained 15 minutes on sterile filter paper (Whatman # 1
qualitative filter paper).  Dry weights for all GAC samples
were obtained with a Metier analytical balance.

Physical Desorption Parameters.  Physical agitation of a
solid sample should aid in the removal of attached biomass.
The extent of biofilm removal may depend on the duration as
well as the intensity of physical agitation.

The influence of the duration of physical treatment was
investigated by varying the length of time a sample was
shaken with a solution of PVP and PPi.  Since it was

necessary to eliminate the effect of different chemical
treatments on cell recoveries, we used a solution of 0.1%
PVP/1.0% PPi (weight percent) throughout this phase of the
investigation.  This solution is used by Dobbins and
Pfaender (1988) for desorbing biomass from soil samples.
Samples of GAC (five to six grams dry weight) were suspended
in sterile PVP/PPi reagent (75 ml) and shaken in sterile 200
ml beakers at 180 rpm on a rotary shaker (Jr. Orbital
Shaker, Lab Line Instruments, Inc., Melrose Park, Illinois).
Four samples were prepared, and were shaken for 0, 10, 30,
and 60 minutes, respectively.

After shaking, each sample was blended for one minute
in a sterile Waring blender (two 30 second bursts at 25
volts separated by a 30 second rest period).  The mixture
was centrifuged 15 minutes at 120 x g (Sorvall RC-2
refrigerated centrifuge, 4°C), enabling recovery of viable
cells into the supernatant fraction.  The supernatant was
decanted and retained, while the pellet was resuspended in
fresh PVP/PPi solution and the wash repeated.  Four
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successive washes were performed for each of the four
treatments.

Supernatants from each of the four washes for each

sample (16 supernatants total) and the carbon pellets which
remained after centrifugation (four) were assayed for
metabolic activity using the amino acid respiration
procedure described on page 43.  We used five live
replicates and one dead control for each sample assayed.
Dry weights of the carbon remaining from each wash and from
each assay were measured and summed to enable calculation of
the "amount of metabolic activity recovered per gram GAC"
for each wash procedure.

In order to compare metabolic activity in supernatant
and pellet fractions with that originally present in the
composite (unwashed) sample, GAC (15 grams) was suspended in
sterile PVP/PPi solution (200 ml) and assayed using the
amino acid respiration procedure.  The reason for using a
PVP/PPi solution, instead of sterile distilled water, was to
maintain constant conditions between the original and the
treated samples.  Changes in pH or solution composition
could affect metabolic activity.  Although the PVP/PPi
solution could possibly desorb cells from the original GAC
sample, whether the cells were sorbed or in solution was
irrelevant;  the entire solid/liquid slurry was assayed for
metabolic activity.

The intensity of physical agitation was also tested for
its influence on quantitative recovery of viable cells from
GAC.  Ultrasonication, instead of blending, was investigated
as a means for a more vigorous physical treatment.

The effect of ultrasonication was examined with an

activated carbon sample recovered from a laboratory column
study in which an ozonated humics solution (TOC = 7 mg/L)
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was fed at 2 L/day through a bed containing approximately 4
grams of GAC (Column Run No. 3, described in detail in
Chapter 6).  The GAC sample was split into two subsamples;
both were suspended in sterile PVP/PPi solution and shaken
for 30 minutes at 180 rpm (results showed that 30 minutes of
shaking was optimal).  One subsample was treated with the
blending procedure described above, while the other was
subject to ultrasonication for one minute at approximately
10 accoustic watts, pulsed at 50% duty cycle (500 Watt High
Intensity Ultrasonic Processor, Tekmar Instrument Company,
Cincinnati, Ohio).  Both mixtures were centrifuged at 120xg;
after recovering the cells with the supernatant phases, the
pellets were resuspended in fresh PVP/PPi solution and the
wash procedure repeated.  Four successive washes were
performed with each subsample.  Supernatants from each wash
were combined to yield one composite supernatant fraction
from each treatment: blending and ultrasonication.

Supernatants from the blended and sonicated samples

were subject to a metabolic rate study with phenol, as
described in Chapter 5.  This method was used instead of the
amino acid respiration assay, to compare the treatments for
recovery of metabolic activity from the GAC sample.  Phenol
respiration rates were measured at concentrations ranging
from 1 to 5000 jug/L-

Total and viable cells were enumerated in each of the

supernatant samples.  Total cells were counted using a
modified Acridine Orange Direct Count procedure, as
described below.  Viable cells were enumerated with a

modified Standard Plate Count, described in Chapter 5.

Chemical Desorption Parameters.  Four chemical solutions

were tested for their effect in desorbing bacterial cells
from the GAC surface.  Three of these contained PVP/PPi in
different concentrations (0.05/1.0, 0.1/1.0, and 0.5/1.0
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%PVP/%PPi, respectively).  The fourth solution was a
zwitterionic detergent containing Zwittergent 3-12, 10~^ M
(Calbiochem-Behring Corp., LaJolla, California), EGTA, lO"-^
M (ethyleneglycol-bis-(^-aminoethyl ether) N,N,N',N'-
tetraacetic acid; Sigma Chemical Company, St. Louis,
Missouri), 0.01% peptone (Difco Laboratories, Detroit,
Michigan), and tris buffer (O.Ol M, pH 7.0).  All four
solutions were prepared aseptically with sterile, particle-
free distilled water.

Activated carbon was suspended in each solution

(approximately 16 grams dry weight per 220 ml) in sterile
400 ml beakers.  The GAC/chemical suspensions were treated
with the shake-blend-centrifuge procedure described
previously, using the Waring blender instead of
ultrasonication.  Samples were shaken for 30 minutes, which
was determined optimal.  During the first wash, subsamples
were removed from each of the four treatments.  These were

assayed for total metabolic activity in the original sample
as well as for total microscopic cell counts.  Aliquots of
the GAC/chemical slurries were pipeted from the mixtures as
they were blending in the Waring blender.  A total of 80 ml
was removed from each sample;  thus the pellets, after
centrifugation, were resuspended in only 140 ml of their
respective solvents for repeated washing.  Six successive
washes were performed on each sample.

Supernatants from each wash were combined to yield a
composite supernatant fraction from each of the four
chemical treatments.  Supernatants and remaining carbon
pellets were assayed for metabolic activity using the amino
acid respiration technique.  In addition, a microscopic cell
count was performed on each of the four supernatant and four
pellet fractions.
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Potential Toxicity of PVP and PPi.  Biofilm microorganisms
recovered into the supernatant fraction of the GAC/chemical
slurry were to be used in biokinetic studies to assess their
metabolic activities.  Since our intent was to relate this
supernatant activity back to the original biofilm/GAC
sample, it was essential that the chemicals used for
desorption are not toxic or inhibitory to metabolic
processes.

The effect of polyvinyl pyrrolidone (PVP) and sodium
pyrophosphate (PPi) on metabolic activity was investigated
by incubating carbon samples with radiolabeled amino acids
in solutions of varying PVP/PPi concentrations.

A well mixed GAC/sterile phosphate buffer (0.1 M, pH
7.0) slurry was pipeted by ten ml aliquots into sterile 40
ml Pierce vials.  To each of these vials, sterile PVP/PPi
solutions (five ml) were added to yield the following
concentrations (%PVP/%PPi): 0/0, 0/1.0, 0.05/1.0, 0.1/1.0,
0.5/1.0, 1.0,1.0, and 1.0/0.0.  The samples were incubated
for two hours with carbon-14 labeled amino acids and assayed
for metabolic activity by quantifying the "'"'*C02 produced
during incubation.  We prepared five live replicates and two
dead controls (inhibited with sodium azide, NaN3) for each
PVP/PPi concentration.

Potential Adsorption of Amino Acids onto GAC.  The presence
of carbon fines in supernatant samples from the wash
procedures could potentially complicate the amino acid
respiration assay used to assess metabolic activity.  Amino
acids may adsorb to the carbon fines, altering solution
phase substrate concentrations.  Since respiration rates are
a function of substrate concentration, it is important to
know the precise concentration of amino acids in solution.
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The adsorptive behavior of amino acids in the presence
of GAC during the incubation period was investigated in two
separate studies.  One study was performed with a clean,
untreated sample of carbon and another with carbon which had
undergone several washes with PVP/PPi solution.  The
technique was identical for both studies.

Activated carbon, in amounts ranging from approximately
0.1 to 2 grams (dry weight), was suspended in ten ml
distilled water in 40 ml Pierce vials.  Metabolic activity
was inhibited in each sample by the addition of sodium
azide.  After allowing 20 to 3 0 minutes to ensure
inhibition, samples were injected with identical
concentrations of the radiolabeled amino acid mixture as
used in the respiration studies.  The mixture was also
injected into a vial containing only water and sodium azide
to enable determination of initial amino acid
concentrations.

The vials sat quiescent for 24 hours to simulate
conditions of the incubation period.  Following incubation,
solution phases were sampled from each vial and assayed for
radioactivity.  In the study using GAC which had been
treated with PVP/PPi solution, the vials were then acidified
and shaken for 20 hours on a rotary shaker at 60 rpm.  The
sampling/assay procedure was repeated after shaking.  Dry
weights were determined for each individual sample in both
studies.

The rate of amino acid adsorption was also
investigated.  A GAC sample (approximately three grams dry
weight) was suspended in 40 ml distilled water and injected
with carbon-14 labeled amino acids (final concentration
again comparable to respiration studies).  The supernatant
phase was sampled periodically throughout the
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incubation/acidification/shake procedure and assayed for
radioactivity.

Determination of Total Cell Numbers.  Total cell densities

were determined using a modified Acridine Orange Direct
Count (AODC) procedure (Hobbie et al., 1977).  Supernatant,
carbon pellet, and original GAC composite samples were
collected in sterile 40 ml pierce vials and fixed with
filtered formalin (final concentration 2%).  Samples were
stored at 4°C for approximately 2 weeks before counting.

Solid samples were homogenized at room temperature for
approximately eight minutes (intermittent blending separated
by periods of resting) using a Sorvall Omnimixer.  Aliquots
of the homogenized slurry were pipeted into clean, pre-
weighed vials for dry weight, determination.

Serial dilutions of each of the homogenized slurries
and supernatant samples were prepared in triplicate and
treated with Acridine Orange stain (final concentration
0.01%).  Each dilution was filtered through an Iragalan
Black soaked 0.2 /xm Nuclepore filter and viewed through a
Leitz Ortholux II epifluorescent microscope equipped with a
50 Watt A.C. mercury source, under 1250x magnification.
Most cells fluoresced bright red against a field of orange,
while a few were green.  Ten to fifteen fields were counted
per triplicate sample.

Amino Acid Respiration Technique.  The amino acid
respiration procedure was used to assay samples for
metabolic activity.  The general technique is outlined in
Figure 4-2.

The assay was performed by pipeting samples in ten ml
aliquots into sterile 40 ml Pierce vials.  Supernatant
samples were pipeted directly, while solid GAC samples were
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suspended to a thick slurry (approximately 0.75 grams GAC
per ten ml solution) in a sterile Waring blender and pipeted
with a ten ml oxford pipette with an enlarged tip.  For each
sample assayed, six or seven vials were prepared:  five
served as replicate samples, while one or two were amended
with sodium azide (final concentration approximately 1%) and
served as "dead" controls (these are referred to as "deads",
although sodium azide is a respiratory inhibitor and does
not necessarily kill cells).  Activities in the control
vials were subtracted from the live samples to determine net
respiration.

Each sample was injected with a mixture of radiolabeled
amino acids which had been prepared by diluting a stock
solution of carbon-14 labeled amino acids (New England
Nuclear, Boston, Massachusetts;  specific activity = 7.137
jug/)LtCi) in 50% ethanol.  The volume of amino acids added to
each vial was 50 to 60 ^1, or approximately 0.032 ng   (4.5E-
03 /LtCi; 10,000 disintegrations per minute, dpm) . Exact
measurement of the initial amino acid concentration was

determined by adding the mixture directly to three
scintillation vials containing ten ml counting cocktail
(Scintiverse II, Fisher Scientific).

Samples were capped with sterile Teflon septa and
incubated for 24 hours at room temperature in the dark.
This incubation time was proven sufficient to produce a

measurable amount of  CO2 by metabolic activity.  Following
incubation, each vial was acidified to pH 2 with phosphoric

acid (500 Ml H3PO4, 20% by weight).  The Teflon septa were
replaced with septa equipped with a CO2 trap which held 150
/Lil potassium hydroxide (KOH, IN) .  Vials were then shaken at
60 rpm on a rotary shaker for 20 hours, driving carbon-14

labeled CO2 from the acidic solution, into the base filled
trap.
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Carbon-14 labeled base was recovered from each of the

samples onto fluted pieces of Whatman #1 filter paper, which
were placed into scintillation vials with 10 ml counting
cocktail.  Carbon-14 activity was assayed with a Packard
Tri-Carb 300 CD liquid scintillation counter.

The efficiency of ^ CO2 recovery was determined by
incubating two or three additional samples with carbon-14
labeled barium carbonate (Ba^ CO3, New England Nuclear,
Boston, Massachusetts).  The solution was added
simultaneoulsy to two or three scintillation vials with
counting cocktail to determine the amount injected (equal to
100% efficiency).

Each solid phase sample was retained for dry weight
analysis.  Samples were dried at 40 to 45°C for
approximately two weeks, followed by dessication to ensure
complete dryness.

4.2  Results and Discussion

The effect of PVP/PPi solutions on metabolic activity
is presented in Figure 4-3.  The fraction of added amino
acids respired is plotted as a function of PVP/PPi
concentration.  An inhibitory effect of the PVP/PPi reagent
is noted, as evidenced by reduced respiration. The response,
however, does not necessarily depend on PVP or PPi
concentration.  A PVP/PPi solution concentration of
0.05%/1.0% supresses metabolic activity by 39% as compared
to the untreated sample, yet at concentrations of 0.1%/1.0%,
0.5%/1.0%, and 1.0%/1.0%, activity decreases by only 22%,
25%, and 30%, respectively.  A 1% solution of either PVP or
PPi alone reduces activity by 28%.
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Results of the physical treatment study investigating
the effect of mixing time on recovery of metabolic activity
from the solid phase are summarized in Table 4-1 and Figures
4-4 and 4-5.  Table 4-1 presents the amino acid dpm respired
as well as the fraction of added amino acids respired in
each supernatant sample from each wash.  Values for the
activity remaining in the GAC pellets from each treatment
are included, as well the activity of a composite (unwashed)
sample.  Higher respiration indicates the presence of more
metabolic activity in the sample.  The fraction of added
amino acids respired for each wash is expressed per gram of
GAC from which the sample was obtained.  Since GAC sample
size varied between treatments, normalizing the results by
GAC weight produced a means for comparison.

Results are plotted in Figures 4-4 and 4-5.  Metabolic
activities in the supernatant samples from the four washes
have been summed to yield the total dpm respired for each
treatment.  Metabolic activity remaining in the GAC pellet
is expressed as the fraction of added amino acids respired.

Recovery of metabolic activity from the solid phase
into the supernatant fraction increases with an increase in
length of mixing or shaking, up to a wash of approximately
30 minutes.  Supernatant activity increases by 90% from a
mixing time of 0 to 30 minutes, with no appreciable change
thereafter (up to 60 minutes).  Pellet fractions show a
corresponding decrease (by about 90%) and leveling off in
activity.

The recovery of significant activity even in the third
and fourth washes is evident in Table 4-1.  For all four
samples, the fourth wash recovered 20% to 30% as much
activity as the first wash (higher percentages were
recovered in later washes for the 0 and 10 minute samples
than for the 30 and 60 minute samples, as may be expected).
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Table <i-l

Suiiarized Data; Effect of Hixing Tiie on Recovery of Ketabolic Activity froi GAC

Hixlng
Tiic:

0

ͣ in
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lin

30 60

ͣ in

Sjiiple
1 dpi Resp
Iper gi GAC

dpi/g
�-S

Frac

Resp (f)

f

� -S
1 dpi Resp
Iper gi GAC

dpi/g
� -S

Frac

Resp (f)

f > dpi Resp
Iper gi GAC

dpn/g
� -S

Frac

Resp (f)

f

�-S      1
dps Resp

per gi EAC
dpi/g

� -S

Frac

Resp (f)

f          !

� -S

5

U    UasK

P

E

R   Hash

N

A

I    Hash

A

II

1   Hash

S

202.4 215.1
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2.39E-02 a.sfiE-oa

a-a^E-oa

197.9 228.6

167.2

2.3<iE-02 2.70E-02

1.9BE-02

'.13.7

3«.2

'I.B9E-02

1

5.72E-02 !

'1.06E-02 1
1

mA M'i.3
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'i.7'iE-02 4.B9E-02 1

'i.59E-02 1
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1
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4.B9E-03

!         72.9 87.4

58.?

B.41E-03 1.03E-O2

4.B7E-03

82.<i 95.9

48.9

9.7«-03

1
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93.7

1.26E-02 l.'ilE-02 !
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37I1.O 389.0
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)
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This suggests that still more activity may have been
recovered with additional washes.

These data suggest an optimum mixing time of 30 minutes

with several successive washes.  The percentage of metabolic

activity recovered can be calculated by comparing activities

presented in Table 4-1 for each of the fractions assayed

from each treatment.  Table 4-2 shows the percent metabolic

activity recovered by each treatment, calculated in several

different ways.  The supernatant activity has been divided

by the sum of activities in the supernatant and pellet

fractions, utilizing both the "fraction of added amino acids

respired (f)" (Method 1) as well as the "total amino acid

dpm respired" (Method 2).  In addition, percent recovery has

been calculated as the difference between activity

originally present in the composite sample and that

remaining in the pellet fraction, divided by the original

activity of the composite sample (Method 3).

It is evident from Table 4-2 that the percent

recoveries of metabolic activity will vary, depending on the

type of calculation used.  Recoveries calculated by Method 3
are substantially higher for all four treatments than those
calculated with either of the other two methods.  This can

be explained by noting the losses in metabolic activity

between the original composite sample and the sum of

supernatant and pellet fractions, after treatment.  These

values are also presented in the table, and exceed 50% for

most samples.  The inability to account for all of the

original sample's metabolic activity, after treatment,

implies one of two things:  either the wash procedure is

inhibitory to microbial respiration, or the procedure used

for comparing solid (pellet) and liquid (supernatant)
fractions is not valid.
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Table 4-2

Calculated Results: Effect of fiixing Tise on Percent Recovery of ffetabolic Activity froi GAC

Hixing
Tise:

0

iin

10

sin

30

oin

60

ain

I Recovery (1! 20 29 ^9 ^9       1

I Recovery (2) '

12 32 50 ^5      1

I  Recovery (3)

57 hb 78 1    78

% Loss of

Activity (1)

hh 52 57 i    57      1

S Loss of

Activity (2) 1

kB 70 71 ;   67      1

((f) Resp. by Supernatant)
X Recovery (1) =--------------------------------------------------- >; lOOX

((f) Resp. by Supernatant) + ((f) Resp. by Pellet)

(dpa/ga Resp. by Supernatant)
(g) =---------------------------------------------------- >, joos

(dpi/ga Resp. by Supernatant) *  (dp«/ga Resp. by Pellet)

((f) Resp. by Original SaapieJ - ((f) Resp. by Pellet)
(3) =-------------------------------------------------- >: imt

(if) Resp. by Original Saaple)

.let. Activity in Supernatant + Met. Activity in Pellet
Loss of Activity = 1 - (--------------------------------------------------------) i  100'

fletabolic Activity Originally Present in CoiBposits Saiaple

(1) uses the Fraction of Added Aaino Acids Respired
(2) uses the Amino Acid dpa Respired per qa GAC
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There are two basic problems encountered when comparing
solid and liquid sample activities.  One problem involves
adding activities in the supernatants from each of the four
washes to yield a total metabolic activity recovered by each
treatment.  While the procedure is straight forward for
activities expressed as dpm respired per gram, adding the
fractional respiration for the four washes is not so clear.
The following explanation might offer help in understanding
why this is so:

Let fj^ = the fraction of added amino acids respired by the
supernatant from the ith wash of a particular treatment (i =
1 to n).

fi AAo,i'
AA^ j^= amino acid dpm respired by the supernatant from the
ith wash of the treatment

AAq ^=  amino acid dpm added to the supernatant from the ith
wash of the treatment.

AAj^ -L      ^^r,2          ^^r,n2 f^ =  ----1__ +  ----1__  +...+  ----1—.       (4-1)

With an infinite number of washes, all of the metabolic
activity will be recovered from the biofilm into a liquid
supernatant.  It does not necessarily follow, though, that
as i approaches infinity, f approaches 1.  The fraction of
added amino acids respired is a relative number used to
compare metabolic activity between samples;  the magnitude
of f is useful in this study not as an absolute number, but
for comparison purposes only.
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An alternative method for adding the fractions respired

in each wash can be found by considering what would have

resulted had we combined the four washes to yield a

composite supernatant sample, and added the entire amount of

amino acids to this composite sample:

AAj. 2 "•" ^^r ,2 ͣ* ͣ • • • "'' ^^r, n
2 f^  =  -----L------L------------L—. (4-2)

AAo,l + AAo^2 + ••• + AAq^j^

This calculation seems more appropriate from the perspective

of methodology;  however, the fractional respiration

obtained as such is equal to the average of the individual

washes.  This neglects metabolic activity recovered by

additional washes.

Fractional respirations reported for the supernatant

samples in Table 4-1 and used in calculating results

reported in Table 4-2 were obtained by adding the fraction

of added amino acids respired by each wash (f) for each

treatment (equation 4-1).  Neither of the methods discussed

for adding the fractions are sound, yet numbers obtained

with this calculation appear reasonable.

Supernatant activities expressed as dpm/gm are more

reliable than those expressed as a fractional respiration,

due to the uncertainties noted for adding the fraction of

added amino acids respired by each wash.  This reveals

another problem with comparing solid and liquid samples,

because for solid samples a fractional respiration more

appropriately describes metabolic activity.  Since the amino

acid concentration is expressed per gram GAC in the solid

sample, the initial substrate concentration will vary due to

differences in GAC dry weights between samples.  Changes in

initial concentration will reflect changes in utilization

kinetics.  Samples with less GAC will respire at a faster

rate, since more substrate is available;  those with a
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greater mass will respire more slowly.  In other words, the

difference in density of metabolically active cells in a

solid sample may not reflect a change in the amino acid dpm

respired, due to differences in metabolic velocities with

substrate concentration.  Using the fractional respiration

normalizes for changes in metabolic velocities due to
variation in initial substrate concentration.

Whether expressed as amino acid dpm respired per gram

or as fractional respiration, the results reported in Table

4-2 indicate maximum metabolic activity recoveries of

approximately 50%, with four successive 3 0 or 60 minute
washes.

The effect of mixing intensity on desorption of biofilm

microorganisms from a solid surface is shown in Table 4-3

and Figure 4-6.  No attempt was made to measure metabolic

activity or cell densities in the GAC pellet fractions;

comparisons were made only between supernatants recovered by

the two treatments.  Table 4-3 presents results for total

and viable cell recoveries by blending and ultrasonication.

While ultrasonication apparently recovered more viable cells

from the GAC (4.31E+08 vs. 9.04E+07), the results are

suspect due to large standard deviations in cell densities

obtained with this method.  With respect to total cells,

sonication recovered a substantially greater portion than

did blending (4.38E+09 vs. 2.05E+09).  At this point it is

unclear whether or not sonication is disrupting cell

membranes, resulting in the recovery and subsequent death of

a larger number of cells, or whether sonication does in fact

recover a higher percentage of viable cells.

Metabolic activities of the supernatants from the

blended and sonicated samples are presented in Figure 4-6.

The rate of phenol respiration per gram of GAC in the

original sample is plotted vs. substrate concentration.  The
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Table 4-3

Ceil Recoveries fros BAC: Blending vs. Ultrasonication

Blended Sonicated

Carbon

Dry Wt.

I
t

1

1.87 S.47

cells/ga
(avg)

Std Dev
tS)

avg   1
+-S   1

cells/ga
(avg)

Std Dev
(S)

avg   1
+-S   1

Viable
Cells

1

kAll*'il 1.3EE+08 1
it.37E+07 1

4.31E+0B 8.91Et08 1.3HE+09 i
-4.60E+08 1

Total
Ceils

2,05E+09 3.71E+08 E.iteE+09 ;
1.S3E+09 1

H.3BE+09 l.lSE+09 5.50E+09 !
3.26E+09 I

Viable/Total

,------------

h.k% 9.8X
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results suggest that differences in phenol respiration at

lower concentrations (up to 100 Mg/L) are insignificant;  at

higher concentrations the blended sample appears to be less

active, although we should question whether or not this is a

real result or an artifact of the experimental methods, as

depicted by the discontinuity in rate as a function of

substrate concentration for this sample.

The effect of treatment chemicals on cell recovery is

summarized in Table 4-4 and Figures 4-7 and 4-8.  Treatments

A, B, and C refer to PVP/PPi solutions at concentrations of

0.05/1.0, 0.1/1.0, and 0.5/1.0 %PVP/%PPi, respectively;

Treatment D refers to the zwitterionic detergent (formula

presented in Table 4-4).  Total metabolic activity has been

assayed for composite samples from each of the four

treatments and is presented in Figure 4-9.  Metabolic

activity in the composite sample decreases with an increase

in PVP concentration, and is especially inhibited by the

zwitterionic detergent.  These potential toxic effects will

tend to skew the data;  cell recoveries will be masked by

suppression of the total sample's metabolic activity as well

as selective suppression of activity in the supernatant or

pellet fractions.

Table 4-5 summarizes the percent recovery of metabolic

activity by the four chemical treatments, calculated by

comparing the activities presented in Table 4-4 for each of

the fractions assayed from each treatment.  Methods used to

calculate percent recoveries parallel those used for the

mixing-time experiment (Table 4-2).

Recoveries do not vary a great deal among the four

chemical treatments.  Expressed as fractional respiration

(Method 1), the results suggest that the maximum recovery of

metabolic activity was about 44%, recovered with Treatment

C.  Again we note losses in metabolic activity between the

NEATPAGEINFO:id=D0A7B426-4DF9-411B-A528-7F74B7D409DB



Table 4-<i

Surnarized Data: Efffct of ChEaical Irpattcnt on Rccovtry of Hetabolic Activity (ro> SK

Clioical

Tr patfient;

Trpatacnt

A

Ireatoent Ireaticnt

C
Ir;atiicnl

0

Sample
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Table ^t-S

Calculated Results; Effect of Cheaical Treataent on Percent Recovery of Ketaboiic Activity froa BAC
Cheaical
Treataent:

Treataent
A

Treataent
B

Treataent
C

Treataent
D

I Recovery (1) 1 38 31 ^^ i   35

% Recovery (2) !
19 18 1    S7 I    16      i

X Recovery (3) 1
83 33 1    86 1    38      1

% Loss of   1
Activity (1) 1

73
1
1

75 i   Ih 1    k                1

X Loss of    1

Activity (Si !
85

1
1

86 1   81 1  -0.5i      I

* The increase in activity noted for Treataent D is due to the low activity
of the Original Coaposite Saople (see Table 4-4).

((f) Resp. by Supernatant)
% Recovery (1) =------------------------------------------------- ; ͣ; lOOS

((f) Resp. by Supernatant) + ((f) Resp, by Pellet)

(dpa/ga Resp. by Supernatant)
(2) =----------------------------------------------------- „ 1005

(dpa/gs Resp. by Supernatant) + (dpa/ga Resp. by Pellet)

((f) Resp. by Original Sasple) - ((f) Resp. by Pellet)(3) = ---------------------------------------------1--------- J. joox
((f) Resp. by Original Saaple)

ilet. Activity in Supernatant + Met, Activity m Pellet
5 Loss of Activity = 1 - (------------------------------------------------------i ;; lOOX

Metabolic Activity Qriqinailv Present in Cooposite SassDle

(1) uses the Fraction of Added Amino Acids Respired
(S) uses the Aaino Acid dps Respired per ga SAC
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original sample and the sum of supernatant and pellet
fractions, after treatment.  The increase in activity for
the sample receiving Treatment D, the zwitterionic
detergent, results from the inhibition noted in the original
sample (see Figure 4-9).

In addition to the amino acid respiration assay for
metabolic activity, total cells were enumerated.
Microscopic cell counts were performed on supernatant and
pellet samples from the chemical treatment study, in an
effort to corroborate the recovery of total cells with that
of metabolic activity.  Total cell recoveries for each of
the chemical treatments are presented in Table 4-6, as
determined by AODC counts;  total cell density in the
original composite sample was 7.98E+09 cells/gram GAC.  This
is comparable to but slightly higher than cell densities
reported in the literature, which range from 10^ to 10^
cells/gram for GAC used in drinking water treatment (Van der
Kooij, 1976;  Cairo et al., 1979), to 10^ cells/gram wet
weight (Latosek & Benedek, 1979).

A loss in total cells occurred between the original
sample and the sum of supernatant and pellet fractions after
treatment.  Adding together the total cells enumerated in
the pellet and supernatant fractions (Table 4-6), we can
account for only 22%, 29%, and 29% of the cells enumerated
in the original sample for Treatments A, B, and C,
respectively.  No count was obtained for the pellet fraction
from Treatment D, due to loss of sample.  The reductions in
total cells between the composite sample and the sum of
supernatant plus pellet fractions are comparable in
magnitude to losses of metabolic activity (Table 4-5), when
expressed as the fraction of added amino acid dpm respired.
It can be inferred from this that metabolic activity may be
correctly expressed as the fraction of added amino acids
respired, rather than as total amino acid dpm respired.
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Table it-b

SuiaarizeiJ Data: Effect of Chemical Treatment on Desorption of Total Cells from GAC

Cheiical

Treatient:

Treatment

A

Treatment
B

Treatment

C

Treatment

D

Saiple : cells/gm GAC Std Dev    avg icells/gm GAC Std Dev    avg Icells/ga GAC Std Dev    avg Icells/gm GAC Std Dev    avg   i
(avg)     (S)      +-S (avg)     (S)      t-S (avg)     (SI      +-S (avg)     (SI      t-S   1

ͣ==.====.=============.===========«== ___----------_-----_-----------___--

,--------_-------------------._------
______________________________________________1
_-—---_ — -_„-..----— —----,---.-,,

Supernatant
1
1

1
1 1

Phase 1.00Et09  7.a3E+07  l.OBE+09 l.EBE+09  1.66E+0a  l.'i5E+09 9.39E+08  9.08E+07  l.03Et09 5.05EtOa  3.39Et07  S.ii'iE^Oa 1
9.g2E+oa l,UEt09 a.'iSEtOa 'I.66E+08 1

z====r=::====::=r======:===:;:==z:==:===

Pellet

1

Phase V.ElEtOa  1.36E»07  7.35Et0a 1.01Et09  9.0£Et07  l.lOEt09 l.3iE+09  l.ABE+Oa  1.51Et09 fHI»              1

7.07E+08 1 9.aOEt08 i l.eiE+09 1

____________________________________1

TreaUent A = PVP/PPi, O.OSX/l.OX
Treatitnt B = PVP/PPi, O.lOX/l.Ol

, Treataent C = PVP/PPi, O.SOUl.OX
Treatment D = Zwittergent 3-lE (lOE-Oi «)

EGTA (lOE-03 M)

Peptone (O.OIX)
Tris buffer (O.Oin. pH 7)
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Table 4-7 summarizes the recovery of total cells and of

metabolic activity by each of the four chemical treatments.

As with metabolic activity, total cell recoveries do not

vary a great deal among all three PVP/PPi concentrations.

Comparing the recovery of metabolic activity with that of

total cells by each treatment, we see that the solutions of

lower PVP/PPi concentrations (Treatments A and B) recovered

a higher percentage of total cells than of total metabolic

activity;  the effect was opposite for Treatment C, which

recovered a higher percentage of metabolic activity than of
total cells.

Differences between recoveries of total cells and of

metabolic activity can be explained in several ways.  That

two samples show higher total cell recoveries while the

third shows higher recovery of metabolic activity seems to

indicate a flaw in one or both of the techniques.  There are

several weaknesses in the amino acid respiration technique,

most importantly the inability to compare solid and liquid

sample activities.  These weaknesses, however, should affect

results somewhat uniformly across all samples.  Moreover, we

would not expect a treatment to recover a higher percentage

of metabolic activity than of total cells, expecially when

the treatment seems to have an inhibitory effect on

respiration (see Figure 4-9).  The most likely cause for

discrepancy here is, rather, an erroneously low total cell

recovery for Treatment C, due to the inability to quantify

cells accurately in a solid sample.  Chances for error are

extremely high in the counting procedure, since many cells

clump together or are hidden by large black GAC particles.

In addition, confidence in the accuracy of sample dry weight

is low owing to variability in solution composition and

slurry pipetability.
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Table W

Susmary of the Effects of CheiBical Treataent
on Percent Recovery of Total Cells and Hetabolic Activity fros SAC

1  Cheiical      !  Treatsent
1  Treataent:     1     A

Treatment
B

Treatient

C

Treatient   1

D      !

1 % Recovery of   1    58X
1  Total Cells    1

56?.

1                       1
)                       <

1 X Recovery of   1    2B%
1 Metabolic Activity 1           i

1    31S

ͣ

1

1

t        Ju/i         )

1

1

Treataent A = PVP/PPi, 0.05X/1.0X
Treatsent B = PVP/PPi, O.lOX/l.OX

Treataent C = PVP/PPi, 0.50X/1.0X

Treatient D = Zsittergent 3-12 i!0E-06 H)
ESTfl ilOE-03 R)

Peptone (O.OIX)
Tris Buffer (O.Oltl, pH 7)

X Recovery of Total Cells =
(Cells/giTi in Supernatant)

(Cells/giB in Supernatant + Cells/gi in Pellet)

X Recovery of Hetabolic Activity
ifrac. added aiaino acids respired by Supernatant)

ifrac. resp. by Supernatant * ͣ frac. resp. by Pellet!
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Because we lack confidence in the measurement of total

cell numbers for solid samples, there is additional

incentive for making the amino acid respiration technique

work.  The ability to somehow determine correctly a percent

recovery of metabolic activity into the supernatant phase,

and to corroborate this recovery with a total cell count

(assuming that the two will be comparable) would enable us

to determine the total number of cells in the original

sample simply through counting the supernatant fraction.

This would circumvent problems associated with counting

solid samples.  In addition, we could determine the

"metabolic activity per cell" in the original sample, a

parameter which may be used to indicate its metabolic state

for comparison purposes.

Besides potential toxicity of the removal solution, a

conceivable problem associated with the metabolic assay, due

directly to the respiration technique, is the potential

adsorption of amino acids onto GAC during incubation.

Adsorption would lower the solution phase concentration,

which in turn would result in lower metabolic velocities.

The effect would be greater for samples containing more

carbon, since more surface area would be available for

adsorption.

Addition of amino acids to GAC in the absence of the

PVP/PPi solution suggests that adsorption does indeed occur

(Figure 4-10).  As more carbon is added, the solution phase
amino acid concentration declines.  At carbon concentrations

comparable to those used in the respiration experiments

(0.75 gm per ten ml), 10% to 15% of the amino acids added to

solution are adsorbed during the incubation period.

Repeating the sorption experiment using GAC which had

undergone several PVP/PPi washes, however, indicates that

after treatment, very little adsorption occurs (Figure 4-

11).  At the end of the incubation period, there is
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relatively little change in solution phase concentration
with total GAC added.  Without the addition of PVP/PPi,
solid phase concentrations reached over 20,000 dpm/gm
(Figure 4-10).  In contrast, with PVP/PPi treatment they
barely exceed 2000.  Solution phase concentrations are also
much higher (750 to 1000 dpm/ml) due to the lower
adsorption.  Apparently the PVP/PPi reagent used to treat
the GAC adsorbs onto the surface, occupying sites which
would otherwise have been available to amino acids in
solution.

Figure 4-12 shows solid and liquid phase amino acid
concentrations for the same sample of PVP/PPi treated GAC
after acidification and shaking 20 hours at 60 rpm.  Here we
see adsorption, at magnitudes comparable to those observed
with clean untreated GAC.

A profile of the adsorption process over time (using a
GAC sample treated with PVP/PPi) is presented in Figure 4-
13.  This shows that, as expected, there is relatively
little change in solution phase concentration during the
incubation period.  Nearly all adsorption noted for the
"end-of-shake-time" sample occurs when the solution is
acidified, as shown in the figure.  Acidification protonates
the amino acids, making them more favorable for adsorption;
they preferentially displace PVP on the GAC surface.

Although Figures 4-11, 4-12, and 4-13 show nicely the
changes in amino acid adsorbability with solution
characteristics, we are concerned here with whether or not
solution phase concentrations are altered during the
incubation period due to adsorption.  As seen in Figures 4-
11 and 4-13, amino acids do not readily sorb onto GAC which
has been exposed to PVP/PPi solution.  The same result is
expected for GAC treated with the zwitterionic detergent
solution (Treatment D), as Zwittergent is a surfactant which
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alters the carbon surface, and peptone "prevents

readsorption" of bacteria (and hence amino acids) to GAC

(Camper et al., 1985).

Adsorption may, however, be more of a problem in

assaying the metabolic activity of the original untreated

GAC sample.  As a result, activities determined for these

samples may be falsely low due to a lower solution phase

concentration than accounted for.  This would imply that

even more of the metabolic activity was lost between the

original sample and the summed pellet and supernatant

fractions - a finding that, instead of rectifying the

method, only adds to the difficulties noted.

4.3 Summary

The amino acid respiration technique used here exhibits

several weaknesses when used to assess the recovery of

metabolically active cells from a solid sample into a liquid

supernatant.  Its basic shortcoming stems from an inability

to compare results obtained with solid and liquid samples,

as noted.

The assay does, however, seem valid for making

comparisons between supernatants obtained from different

types of removal treatments.  With this in mind, it appears

that most activity is recovered through several washes of 30

minutes each with a solution of polyvinyl pyrrolidone and

sodium pyrophosphate, separated by blending for one minute

in a Waring blender (two 30 second bursts separated by a 30

second rest period) and slow-speed centrifugation (15

minutes at 120xg).  Solution concentration does not seem to

have a significant impact on cell recoveries, although some

inhibition of metabolic activity is noted.
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When amino acid respiration in the combined supernatant
and pellet fractions, after treatment, is compared with that
in the original untreated sample, we note an apparent loss
of metabolic activity due to the treatment process.
Although the magnitude of this loss is comparable to losses
noted of total cell counts for the same samples (ranging
from 20% to 30%), the removal solutions do appear to inhibit
metabolism.  While PVP/PPi reagents do not exhibit a normal
dose-response inhibition, there is evidence of some
suppression of respiratory processes.  The zwitterionic
detergent, when used in the 30 minute wash procedure, is
suspected to be especially toxic.

Results of the Acridine Orange cell counts indicate
that six successive washes in sterile PVP/PPi solution,
separated by blending and slow-speed centrifugation, recover
approximately 50% of the total cells from the solid phase
into the supernatant fraction.  This may be comparable to
recovery of metabolic activity, although results of the
amino acid respiration assay are inconclusive.

Ultrasonication in place of blending appears to remove
a larger portion of total cells from the carbon surface.
The method may recover more viable cells and metabolic
activity as well, although the results are questionable due
to discrepancies in the data.

In summary, the removal technique cannot be used
quantitatively to recover biofilm microorganisms for studies
which will be related back to the original solid sample.  We
can, however, use the methods for qualitative analyses.  By
assuming that identical wash procedures will recover the
same percentage of biofilm bacteria from different samples,
the removal techniques can be used to compare biofilm
densities and metabolic activities between samples obtained
from different sources or subject to different treatment
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parameters.  The method also serves the purpose of

recovering cells for other kinds of tests, such as

biokinetic studies, which do not necessarily require

knowledge of the actual number of micoorganisms present in

the original sample or the percent recovered into

suspension.  In this way, we are able to study the

indigenous microbial community, while avoiding possible

interferences posed by the presence of the solid surface.
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5.  BIOKINETIC STUDIES:  PHENOL METABOLISM BY MICROORGANISMS

RECOVERED FROM A HUMIC SUBSTANCES-GROWN BIOFILM

5.1 Experimental Methods

Our approach in describing the biokinetics of phenol

metabolism has been to characterize utilization according to

the Monod kinetic model.  Biomass growth is expressed as:

ii = M-X. (5-1)

where X = biomass concentration (/xg/L)

t = time (hr)

/i = specific growth rate (/xg/L-hr)

Substrate degradation is related to growth rate by:

dS     1    dX

—  =---•-----^ (5-2)
dt    Y    dt

where S = substrate concentration (/xg/L)

Y = microbial yield coefficient

(Hg  cells produced/

/ig substrate utilized) .

The specific growth rate, Mi is related to substrate
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concentration:

Kg + S

(5-3)

where n^  = maximum specific growth rate
(Mg/L-hr)

Kg = half saturation coefficient
(/xg/L)

Combining equations (5-1) through (5-3), we obtain the

following expression for substrate utilization:

dS     1   Miii'S'X
__  =  ---.--------. (5_4)
dt      Y    Kg + S

The term (n^/Y)   is commonly referred to as the maximum rate
coefficient, k {nq  substrate//xg biomass-hr) .  Substituting

this into equation (5-4), we obtain the familiar expression

for substrate utilization as described by Monod kinetics:

dS  ^  .klSiX__
dt     Kg + s • ^^ ^'

For most engineering applications three parameters, Y, k,

and Kg, are needed to fit the model to a particular system
under investigation.

The experimental methods used here to estimate kinetic

parameters are a modification of the multiple concentration

initial rate procedure developed by Pfaender and Bartholomew

(1982).  The method involves incubating a series of

microbial samples with several concentrations of a

radiolabeled test substrate for a short period of time, and

subsequently measuring the amount of substrate assimilated
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•

into cellular material as well as that respired to CO2•  The
data can be used, along with measurement of biomass
concentration X, to determine the desired kinetic parameters
through nonlinear analysis of a plot of dS/dt vs. S
(equation 5-5).

Substrate Solutions.  Phenol served as the substrate in all

biokinetic studies.  Radiolabeled phenol (Phenol-Ring-UL-
-••^C, specific activity 12.22 mCi/mmol;  Pathfinder
Laboratories, Inc., St. Louis, Missouri) was diluted in 95%
ethanol to form a stock solution, final concentration
approximately 2200 dpm/^1.  Working solutions were prepared
by diluting aliquots of this stock with unlabeled phenol in
50% ethanol.  Separate solutions were prepared for each
concentration used in the rate studies;  20 jul of each were
added to the samples to yield activities in the vials
ranging from 10,000 to 50,000 dpm.  Test substrate
concentrations ranged from 1 to 10,000 M^/L'

Microbial Samples.  Biomass recovered from laboratory-scale
GAC reactors constituted the microbial sample for biokinetic
studies.  The reactors were fixed-bed columns with high
recycle ratios, which approximated completely mixed-flow
reactors.  Biofilm growth was encouraged by feeding the
reactors an ozonated solution of naturally occurring humic
substances (HS).  Reactor design and operation is described
in detail in Chapter 6 (samples were obtained from the
column specified as Run No. 2).

Biomass was recovered from the colonized GAC using the
shake-blend-centrifuge procedure described in Chapter 4.
The solution used to desorb the biofilm was prepared by
adding PVP and PPi (0.1% and 1.0% by weight, respectively)
to an aliquot of the ozonated HS used as reactor feed.  The
solution was filtered four times through a 0.2 fim  membrane
filter to approximate a particle free liquid, and sterilized
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2 0 minutes at 2 0 psi prior to the addition of PVP and PPi
reagents;  earlier studies revealed that the PVP reagent
congeals at high temperatures.  The final pH was adjusted to
that of the ozonated HS, pH 6.2.  Column feed solutions were
used for desorption in order to minimize changes in habitat
for microorganisms recovered from the biofilm into the
liquid suspension.  Drastic changes in pH or in nutrient
availability could alter their metabolic state.

Supernatants from each successive wash of the GAC for
each sample contained the biomass for the biokinetic tests.
These washes were combined to yield a total solution of
known volume, from which aliquots were withdrawn for
incubation with phenol.

Determination of Microbial Density.  The biomass density, X,
used for characterizing microbial degradation kinetics was
determined utilizing a modified Standard Plate Count
procedure (Standard Methods, 16th ed., 1985).  Serial
dilutions of each sample were plated onto Tryptocase Soy
Agar (Difco Chemical Laboratories, Detroit, Michigan), which
was prepared in the ozonated HS solution used as feed to the
laboratory reactors.  The media was adjusted to a final pH
of 6.2.

Samples were plated in duplicate at five dilutions and
incubated at 27"C for 2 weeks before enumeration.  This

incubation temperature is given by Werner et al. (1979) as
most adequate for enumerating bacteria in GAC systems.
Preliminary experiments showed no apparant change in viable
cell number after 14 days of incubation at this temperature.

Cell numbers were converted to biomass by assuming an
average cell dry weight of 2E-10 mg/cell (Gaudy and Gaudy,
1980).
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General Experimental Methodology.  The general procedure for
assessing microbial biokinetics is outlined in Figure 5-1.
The microbial sample obtained by desorbing the biofilm from

the laboratory-scale GAG reactor became the source of

biomass for each substrate uptake experiment.  For each

phenol concentration tested, a ten ml aliquot of this
biomass solution was injected into each of six sterile 25 ml
vials (Wheaton Scientific, Millville, New Jersey).  Two of

the vials served as controls for abiotic processes and as a
means for correcting results for background radioactivity;

these are referred to as "dead samples" and were injected
with 500 |il of 25% sodium azide, a metabolic inhibitor.  The

remaining four vials are designated as "live samples".

After adding 20 ^1  of carbon-14 labeled substrate, each vial
was filled to the top with a sterile HS solution (again

identical to the reactor feed), capped with a Teflon lined
septum and ring cap (Pierce Chemical Company, Rockford,

Illinois), and inverted.  Samples were incubated for five to

six hours, headspace free, in the dark at room temperature.

The initial concentration of phenol was determined by
injecting 20 nl  of radiolabeled substrate into three

scintillation vials each containing ten ml counting
cocktail.

—CO2 Respiration.  Following the incubation period, each
sample was transferred to a 40 ml Pierce vial; the vials

contained 150 /il of IN KOH, to minimize CO2 losses.  A
Teflon-lined connector cap (Wheaton Scientific, Millville,
New Jersey) was used for the transfer, preventing contact of
the sample with the atmosphere.  In the 40 ml vial, each

sample was adjusted to pH 2 by adding 1 ml 80% by volume

H3PO4.  The septa were replaced with base-filled traps, and
CO2 was recovered using the same procedure as that for the

amino acids respiration assay.    CO2 recovery efficiencies
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-^   Biofilm Removal

GAC Reactor:

feed TOG = 25 mg/L
(ozonated HS)

EBCT = 13.9 min

4 live replicates

I
2 controls

Microbial Sample
x^ in Solution

10 ml aliquots to
25 ml vials

Inject 20 ul
Test Chemical

Fill with Sterile Column Feed Solution

incubate Headspace Free, Inverted
in Dark at Room Temperature, 5-6 hrs

Acidify to pH 2
Shake 20 hrs, 60 rpm

\
Transfer to 40 ml Vial

with Base and C02 Trap

Filter 5 ml through
0.2 um Filter

Count 14-C

on Filter   "^
( = 14-C Cells)

I- Collect C-14 Labeled Base

from Trap, Count C-14
( = 14-C02)

Rinse twice with

10 ml 50% EtOH

Count C-14 in 5 ml Filtrate

( = C-14 Substrate)

Net Respiration    = Avg. Live C02 dpm - Avg. Control C02 dpm
Net Assimilation = Avg. Live Filter dpm - Avg. Control Filter dpm

= Avg. Control Filtrate dpm - Avg. Live Filtrate dpm - Net Respiration

Figure 5-1.    Methodology for Biokinetic Studies

«

NEATPAGEINFO:id=0BBE919D-CEA5-4116-B44A-5651CA4BD567



84

were determined by incubating five additional samples with
Ba^^C03.

—C Assimilation into Cells.  The uptake of carbon-14 into
cellular material was determined by filtering a five ml
aliquot of the acidified sample, after  CO2 recovery,
through a 0.2 /xm Gelman cellulose triacetate filter (GA-8,
Gelman Sciences, Inc., Ann Arbor, Michigan).  Filters were
presoaked in a 1 mg/L phenol solution to saturate binding
sites.  Filtration was followed by two successive rinses
with 10 ml 50% ethanol;  preliminary experiments determined
this to be the optimum procedure for recovering assimilated
carbon-14.

Each filter, as well as two 5 ml portions of the
combined filtrate and wash, were assayed for carbon-14
radioactivity on a Packard Tri-Carb 300 CD liquid
scintillation counter.

5.2  Interpretation of the Data

Substrate Concentrations.  By definition, an "initial rate"
approach considers only initial substrate concentrations,
assuming that the incubation period is sufficiently short
such that changes in substrate concentration may be
neglected.  While this may be the case at lower substrate
concentrations, metabolic velocities at higher
concentrations were indeed sufficient to reduce solution
phase phenol concentrations.

Because of this, average substrate concentrations have
been calculated for use in describing the kinetics of the
system.  Substrate concentrations were calculated as
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follows:

S(avg) = Si - (dS/dt).(At/2).        (5-6)

Phenol Respiration.  Respiration rates for phenol were
calculated at each concentration as the difference between

the averaged live and dead activities, correcting for ͣ' ͣ^C02
recovery efficiency (E) and dividing by the incubation time;

(avg. live dpm)-(avg. dead dpm)   1
resp. rate =---------------------------- •---.  (5-7)

incubation time E

The result obtained is in terms of "dpm/hr";  conversion to
units of "/xg phenol/hr" is done with a factor derived from
both the specific activity of radiolabeled phenol and the
ratio of labeled to unlabeled phenol in the working
solution:   jug phenol/dpm = (Mg/L total phenol in working
solution)/(specific activity of phenol (dpm/ug) x ug labeled
phenol in working solution).  Conversion factors were unique
to each working solution prepared.

Phenol Assimilation.  Phenol which has been assimilated into
cellular material should be retained along with microbial
biomass by a 0.2 /xm membrane filter.  Net assimilation of
carbon-14 can be determined with two independent
calculations.  One method calculates differences between the
radioactivity remaining on the filters from the live and the
dead samples, while the other takes differences in the
activities of the filtrates from the two samples.  These are
described as:

Method 1.  assimilation = average live filter activity -
average dead filter activity;
Method 2.  assimilation = average dead filtrate activity -
average live filtrate activity - net respiration.

NEATPAGEINFO:id=043B85A5-F94B-49E1-B40C-756A67F97DD3



86

Method 2 is understandable if we begin by noting that

assimilation + respiration = total decrease in substrate

activity due to biodegradation.  The decrease in substrate

activity is measured by the difference between the filtrate

activity for the dead control and the live samples (the dead

control filtrate will have greater substrate activity

because no biodegradation has occurred).  Subtracting

respiration from both sides yields the eguation for Method

2.

The more common approach is to use Method 1 (Pfaender

and Bartholomew, 1982; Speitel and DiGiano, 1987).  This

method is less labor intensive since it requires that only

the filters be assayed for radioactivity.  Furthermore, by

using only the filter activities we avoid the variation in

filtrate activities caused by dilution of the filtrate with

the alcohol wash.  For most test concentrations, differences

between the activities of live sample filters and dead

sample filters gave reasonable results for net assimilation.

In some cases, though, primarily at low substrate

concentrations, the presence of carbon fines in the

microbial sample interfered with this type of calculation.

Radiolabeled phenol adsorbed to the carbon and was retained

on the filter along with assimilated substrate.  At low

phenol concentrations, the amount of sorbed phenol in both

live and dead samples was significantly greater than the net

assimilation of label into cells, making differences between

live and dead filter activities indistinguishable.

In an effort to remedy this problem, net assimilation

was calculated at each concentration using both filter and

filtrate activities, in two separate calculations.  When

results obtained from the two methods were in close

agreement, the net assimilation reported is that obtained

using the filter activities.  When the two calculations gave

conflicting results, a mass balance on carbon-14 in the
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system usually indicated a discrepancy in the filter

activities due to radiolabeled phenol associated with the

carbon fines in solution.  For these cases, phenol

assimilation was calculated using differences in filtrate

activities between live and dead samples.

Cellular Yields.  The microbial yield coefficient was
calculated at each substrate concentration as follows:

Y _  __^fc-assimilated_______ ft^  a\
^       **C-assimilated"+~**C=respired '        ^       '

Although cellular yields may change with nutrient

concentration for substrates such as phosphate and nitrogen,

the yield is much less variable when the limiting nutrient

is a carbon source (Koch, 1979).  Yields were calculated at

each concentration and averaged to obtain an overall yield
coefficient.

Application of the Monod Kinetic Model to Experimental

Results.  As with substrate concentration, changes in the

concentration of biomass will affect substrate degradation

rates.  We therefore need to make another simplifying

assumption in the Monod equation before applying the model

to our results.  This additional assumption is that changes

in biomass concentration during the incubation period can be

neglected.

Simkins and Alexander (1984) postulate that for

conditions where the initial cell concentration is greater

than an inoculum size permitting one division of active

cells at a particular substrate concentration, population

density can be treated as approximately constant.  The

actual ratio of cell density to substrate concentration

necessary for making this assumption when applying data to a

model depends on the specific substrate in question and on
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the magnitude of the yield coefficient.  We assume, for our
purposes here, that our supernatant samples were

sufficiently concentrated in cellular material as compared
to phenol concentration, and that our incubation period is
sufficiently short, such that changes in biomass
concentration can be neglected.

Assuming a constant biomass density allows us to

further simplify the analysis of phenol degradation
kinetics.  Dividing the Monod equation for substrate
utilization through by X gives:

ids/dti ^ __k:^s___
X      Kg + s •        t^ yj

The terms k and Kg can be estimated by nonlinear regression
analysis, using (dS/dt)/X and S as the dependent and
independent variables, respectively.

5.3  Results

Two different sources of biomass were used to measure

the kinetics of phenol degradation:

1. Unexposed Population - biomass desorbed from a GAC
reactor which received ozonated humic substances at a feed

concentration of 25 mg/L for 19 days;  the empty bed contact
time (EBCT) =13.9 minutes; and

2. Exposed Population - biomass desorbed from a GAC reactor

which was fed ozonated humic substances at 25 mg/L (EBCT =
13.9 min) but, after 19 days of operation, was also fed
phenol for five days at a concentration of 50 /xg/L.

Degradation rates and yield coefficients for each of

the experiments are presented in Table 5-1;  yield
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Table 5-1

Phenol Biodegradation Kinetic Data

89

Concentration

(Mg/L)

Degradation
Rate

(.Ha phenol//tg biomass-hr)

Microbial
Yield

(/tgC//<gC)

Unexposed Population

1.0

9.3

79.0

874.0

9600.0

2.30E-04 0.67
5.80E-03 0.68
1.06E-01 0.52
4.79E-01 0.64
^ ͣ^1E-01 0^

Overall Yield Coefficient = 0.63

Exposed Population

1.1

10.8

84.7

968.7

9783.0

7.31E-05

4.92E-04

9.52E-02

2.27E-01

3.44E-01

0.48

0.75

0.39

0.21

0^8

Overall Yield Coefficient = 0.46

Unexposed Sample:

Mass of GAC = 4.12 gm
Vol. Solution into which biomass recovered = 1.0 L
Total Cell Density = 4.75E+09 cells/gm +/- 17%
Viable Cell Density = 4.88E+08 cells/gm +/- 54%
Time of Bed operation before biomass removed = 19 days

Exposed Sample-

Mass of GAC = 11.45 gm
Vol. Solution into which biomass recovered = 1.0 L
Total Cell Density = 2.94E+09 cells/gm +/- 2.7%
Viable Cell Density = 1.28E+08 cells/gm +/- 35%
Time of Bed Operation before adding phenol = 19 days
Time of Bed Operation before biomass removed = 24 days
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coefficients have been calculated at each concentration as
ͣ^^C  assimilated into cells divided by the total -^^C
metabolized, and are presented in units of jug biomass
carbon//xg phenol carbon.  These units are unusual, but
derive directly from the radioactivity data.  Overall yield
coefficients, calculated by averaging the yields at each
concentration, are included in the table.  Figures 5-2 and
5-3 show plots of respiration rate, uptake rate, and total
degradation rate (the sum of uptake and respiration), in
units of /xg phenol//xg biomass-hr, vs. substrate
concentration for each sample.  The rates and concentrations
are expressed logarithmically, in order to present all of
the data for each sample in a single figure.

The Monod model was applied only to kinetic data
obtained with the unexposed population (Figure 5-2).  It was
obvious from inspection of Figure 5-3 that a simple
curvilinear function, as predicted by the Monod model, would
not fit the set of data collected for the exposed
population.  Three methods were used to calculate values for
the maximum rate coefficient, k, and the half saturation
coefficient. Kg, in an effort to obtain a reasonable fit.
The reason that three methods were tried is that an initial
attempt with nonlinear regression of the data in arithmetic
form (equation 5-9) appeared to give a poor fit, when
plotted logarithmically.  Errors at low substrate
concentrations were exaggerated, due to the logarithmic
scale of the plot.  Another nonlinear regression was
performed, on the data expressed logarithmically:

(dS/dt)
log ------- = log(k-S) - log(Kg + S) .    (5-10)X

Both regressions were done with the SYSTAT subroutine NONLIN
(Wilkinson, 1986).  In addition, the parameters were
determined by inspection of the rate curve in Figure 5-2.
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Recovered from a Humic Substances-Grown Biofilm.
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At low substrate concentrations, where S«Kg, (dS/dt)/X =
(k/Kg)'S and the slope is equal to k/Kg.  At high
concentrations, where S»Kg, (dS/dt)/X = k.  This last
method, although a less sophisticated approach, was employed
to give a general feeling for the validity of the parameters
obtained by nonlinear regression analysis.

Kinetic parameters obtained by each of the three
methods are summarized in Table 5-2.  Figure 5-4 shows
substrate utilization rates predicted using parameters
obtained with each of the three methods, and their
relationship to the experimental data for the unexposed
population.  In general, the differences in biokinetic
constants as estimated by these three methods are not
considered large.  The lack of a good fit of the model to
the data is exaggerated in Figure 5-4 due to the use of a
logarithmic scale.

5.4 Discussion

A unique characteristic of these biokinetic experiments
is that they have utilized microorganisms recovered from a
biofilm population, rather than those grown in suspended
culture, to investigate phenol metabolism.  Our intent was
to compare biokinetic parameters obtained with the biofilm
microorganisms to those obtained by other studies with
suspended cultures.  In this way the methods could be
evaluated, assessing the benefits or drawbacks of using the
biofilm population.

The Monod kinetic model has been used to describe
phenol biodegradation.  In order to justify applying
biokinetic parameters to the Monod equation as a basis for
comparing our results to the literature, we first have to
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Table 5-2

Sumnary of Microbial Kinetic Parameters for the Unexposed Population

Method for

Estimation

k (»g Phenol/tfg biomass-hr)

Value   Std. Dev.

K^  (ug Phenol/L)

Value   Std. Dev.

Nonlinear

Arithmetic Regression (1) 0.50     0.05 187.6     86.8

Nonlinear

Logarithmic Regression (2) 0.55     0.26 407.0    248.5

Inspection of Figure 5-2 0.46 331

(dS/dt) k'S

(1)

<S * S)

(dS/dt)

(2)        log log(k'S) -  log(Kg + S)

NEATPAGEINFO:id=651ECBCC-E7B8-4F4D-9820-137179797369



A                                 ..M   —r. -is
-----------<

^^   _^l^^'^'^^^T
o~ ''"^ 5^^^--'^'^

^.^   T—    _ ^^t^^                    — r^
SI
1            — ^^                      ^-^1
CI          — ^^."''^^^M

^ ^•^a ^^ j''"'^
s« ^^o ' ^^ ^^^''^
DQ  O^ '^    ^^* ͣ*    .4 v-^^
CD         Z1 ^^^^               ^^ A
3 ^.>^
o ^        ^.^c ^^^
4) ^^^
ͣ^ 7 ^
CL   '
o-

CX>  -r—   Z
Z3
ͣ

5         - i,

1 A Experimental  Data
o-= », ,„.   ,,..,, Arithmetic  Regressionͣ^           ^

- - -. - -Logarithmic  Regression
-------------Inspection

ft
1

O"" 1        ͣͣ(I     II n 1 1 T""    r -r 1 1 1 111 ͣͣͣ-.....r......T    T   1   I'l 1 1 I  .....1 .....r ͣͣͣ! ͣ i'T 1 1 r'
10 10^ 10'

Phenol Concentration  (ug/L)
10*
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demonstrate a satisfactory fit between model predictions and
experimental data.

By inspection of Figure 5-4, it is apparent that model

predictions for metabolic velocities at low substrate

concentrations are higher than experimental data for the

unexposed population, using kinetic parameters estimated
with any of the three methods described above.   At higher

concentrations, where metabolism approaches a maximum rate,

the predictions improve.  Presented on a logarithmic scale,

the prediction obtained using kinetic parameters estimated

through nonlinear regression of the arithmetic expression

(equation 5-9) looks especially poor.  These parameters were
estimated by minimizing the squared residuals about the

experimental data points.  The errors are distorted by the

logarithmic scale;  errors at low substrate concentrations

are exaggerated as compared to those at higher

concentrations.  A nonlinear regression on the logarithmic

form of the equation (equation 5-10) improves the fit

somewhat at lower substrate concentrations.  This prediction

is nearly identical to that made using parameters obtained

by inspection of the degradation curve.  Although the fit

looks better here, the validity of using the logarithmic

form of the equation is questionable.  The actual form of

the model is arithmetic;  data has been plotted on a

logarithmic scale only as a visual aid.  Thus, while the

logarithmic regression may appear to give a better fit to

the data, parameters obtained with this method apply to the

logarithmic, not the arithmetic, form of the Monod equation.

This analysis raises questions regarding the

applicability of the Monod equation for describing substrate
utilization kinetics over such a wide range of substrate
concentrations-  It appears from these data that the model

may be weak at low substrate concentrations, but that

maximum utilization rates are predicted quite accurately.
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The relative error at these higher substrate concentrations
evidently outweighs the importance of the lower values.

The purpose here is not to present an in-depth analysis
of the applicability of the Monod model to our data, but
rather to estimate kinetic parameters for this model and to
compare them with others reported in the literature.  The
biokinetic parameters listed in Table 5-3 for this research
were estimated through nonlinear regression of the
arithmetic expression (equation 5-9).  The literature values
in Table 5-3 were all obtained with suspended-growth
cultures, acclimated to phenol.  Those from this research
were obtained using biofilm microorganisms recovered from a
GAC reactor receiving ozonated HS;  despite the differences
in growth medium and type of culture, they fall within the
range of literature reported values.  This range, though, is
quite large:  values of k range from 0.157 to 0.57 /xg
Phenol//ig biomass-hr, while Kg ranges from 56 to 2110 ^g
Phenol/L.  Parameters in the table reported by Schimizn
(1973) and by Neufeld & Valiknac (1979) were obtained in
chemostat studies, while batch studies were used in this
research.  The presence of wall growth is a common problem
in chemostats and may lead to erroneously high estimates for
jUjjj, due to the accumulation of substrate at the surface of
the container (Speitel, 1985).  The result is a high
estimate of Kg.

The biokinetic parameters in Table 5-3 reported by
Speitel (1985) and Chang (1985) were obtained in batch
rather than chemostat studies.  Results from this research

agree more closely with the work of Chang, the values of k
and Kg reported by Speitel being lower than those of Chang.
One possible explaination for Speitel's lower values is the
use of total organic carbon to quantify biomass
concentration, X.  Such a measure will include both live and
dead microorganisms;  the result will be a high estimate of
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Table 5-3

Literature and Experimental Values for Phenol Kinetic Parameters

source

(MgC/AgC)   (/ig Phenol/^g Biomass-hr)    (/tg Phenol/L)

This Research

0.46
O.fiS 0.496 187.6

exposed population
unexposed population

Experimentally Determined by Others

0.48 0.157
0.24 0.57
0.83 0.29

0.85 0.24

56
240
300
2110

(1)
(2)
(3)
(4)

(1) Speitel (1985)
(2) Chang (1985)
(3) Schimizn (1973)
(4) Neufeld & Valiknac (1979)
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microbial density and, hence, low values for kinetic
parameters.  An overestimate of microbial density was
avoided by Chang and in this research by using the viable
cell count as a measure of biomass concentration.

It appears, then, that kinetic parameters estimated in
this research with biofilm microorganisms agree reasonably
well with those obtained in similar studies (batch studies)
using microorganisms grown in suspended culture.  What can
we conclude from this regarding the value of employing
biofilm microorganisms to investigate biokinetics? Had our
results not agreed with literature values, there would be
reason to suspect differences between the behavior of fixed-
film and suspended-growth cultures with respect to phenol
utilization.  Such differences would warrant utilizing the
GAC community in studies intended to describe biofilm
behavior.  These results show, however, that differences
between the kinetics of phenol utilization by a suspended-
growth culture and a biofilm population, after suspension,
may be negligible.

This result is encouraging to those attempting to
characterize biofilm behavior, since using a suspended
culture avoids the necessity of desorbing viable cells from
a biofilm.  Caution should nonetheless be exercised in

relying on results of this study to validate assumptions
regarding similarities between fixed-film and suspended-
growth cultures.  This study was performed only once, and
with a single substrate.  It is possible that the behavior
of these biofilm microorganisms was significantly altered
upon suspension of the culture into a liquid supernatant.
We have yet to confirm the applicability of these results
directly to the in situ biofilm system.

As important as comparing Monod biokinetic parameters
to literature values is the difference in metabolic activity
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noted between the exposed and unexposed populations.  Figure

5-5 presents the rate of phenol degradation vs. substrate
concentration for both the exposed and the unexposed

populations.  At higher phenol concentrations (above S = 100

fj.g/'L) ,   the degradation rates are similar, but at lower

concentrations (below S = 100 Mg/L) the community which has

been exposed to the micropollutant degrades the compound at
a much lower rate than the unexposed community.  A

discontinuity in the relationship between degradation rate
and substrate concentration as observed for the exposed

population may indicate biphasic degradation kinetics.

Similar behavior with respect to phenol degradation in lake

water was noted by Rubin and co-workers (1982);  they

observed a discontinuity in the plot of phenol

mineralization rate vs. concentration for three lake water

samples, all at around 100 iiq/'L  phenol. The effect, they

postulate, may reflect the activity of two different types

of organisms - oligotrophs, active at lower substrate

concentrations, and heterotrophs (or copiotrophs), active at

higher concentrations.  Another possible explanation for the

reduced degradation rate at low substrate concentrations by

the exposed community derives from the way the data is

expressed:  respiration rate per viable cell.  The

proportion of phenol degraders to the total microbial

community in the pre-exposed population is probably much

greater than in the unexposed population.  This leads to a

lower substrate concentration per degrader and thus a lower

utilization rate in the exposed community.

Another distinction to note between the exposed and
unexposed populations is the difference in the microbial

yield coefficient, which represents the amount of substrate

incorporated into cellular material per unit substrate

metabolized.  As seen in Table 5-1, the yield coefficient is
much higher for the unexposed than for the exposed
population (0.63 vs. 0.46 jug biomass C//ig phenol C) .  This
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suggests that a pre-exposed microbial community will respire
a higher percentage of total substrate metabolized; an
unexposed community will assimilate more material into
cells.  A similar result has been demonstrated by Pfaender
and co-workers (personal communication, D.C. Dobbins).  They
have shown, with samples from pristine and from contaminated
subsurface environments, that pre-exposure will lead to an
increased proportion of the metabolized contaminant being
respired.  This indicates that the microbial community has
shifted from one which maximizes cellular uptake, to one
which rapidly mineralizes substrate to CO2.
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ADSORPTION AND BIODEGRADATION IN FLOW-THROUGH REACTORS

6.1  Background;  Choice of Reactor Design

This phase of study was intended to investigate
interactions between adsorption and biodegradation of
naturally occurring humic substances (HS), as would be
encountered in a GAC filter used for water treatment.  We

are particularly interested in the ability of HS to enhance
biofilm growth, and further, in the ability of this biofilm
to degrade phenol when introduced at very low concentrations
and at different stages of biofilm development.

The flow-through reactors used in this study are based
on a design presented by Chang and Rittmann (1987), in an
investigation of the adsorption and biodegradation of
phenol.  Their design is a fixed-bed column with a high
internal recycle ratio, which approximates a completely
mixed reactor.  A high recycle ratio dilutes the influent
feed concentration;  as a result, the change in
concentration across the bed is very small though the
overall change between the feed and the effluent may be
quite large.  Intuitively, the recycle ratio may affect the
kinetics of the system, since it will control the velocity
through the GAC bed.  However, since by definition EBCT =
(reactor volume)/(feed flowrate), the overall removal rate
should be independent of the recycle ratio.  With sufficient
recycle ratio, the system represents a differential element
in a GAC bed, having no axial concentration gradient.

NEATPAGEINFO:id=3940B62D-66B4-46B2-841D-60C982749F5F



104

This design met two important criteria for the study by
Chang and Rittmann:

1. saturation of sorptive capacity occurred within a
reasonable time (on the order of two weeks) for convenient
laboratory investigations, and
2. axial concentration gradients were eliminated, leaving
operating time as the only dependent variable for modeling
considerations.

Model predictions for breakthrough curves of an adsorbable,
non-biodegradable component, a non-adsorbable, biodegradable
component, and the combination of the two from this fixed-
bed column with high recycle ratio are presented in Figure
2-1 (see page 21).

The reactor design of Chang and Rittmann was amended to
accommodate a study of biofilm growth caused by adsorption
and biodegradation of ozonated HS rather than phenol.  The
adsorbability of HS is considerably different than that of
phenol:  the adsorption mass transfer zone is larger and the
sorptive equilibrium capacity is much less.  Both of these
factors affect the choice of reactor size (hence, mass of
GAC) and empty bed contact time.  A larger mass of GAC, and
therefore a longer EBCT, will be needed to observe a
measureable (gradual) breakthrough curve for humic
substances.

Another factor to be considered in modifying the
reactor design is the biodegradability of ozonated HS, since
removal will be due not only to adsorption but to
biodegradation as well.  The Monod equation for substrate
utilization is helpful in understanding factors affecting
the extent of substrate removal (i^S) across a reactor
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element:

AS      k'S'X
---  =  --------. (6-1)
At      Kg + S

The change in S across the GAC bed due to biodegradation can
be affected by:  EBCT (since this is proportional to At),
substrate concentration (S), and bacterial density (X).  The
magnitude of substrate reduction is directly proportional to
the contact time in the bed as well as to biomass
concentration.  The relationship between (AS/At) and
substrate concentration, S, is variable and depends on S.
At low substrate concentrations, S«Kg, (AS/At) = (k'S«X)/Kg
and As is directly proportional to S;  at higher substrate
concentrations, however, where S»Kg, (AS/At) = (k'X)/Kg.
Here the biodegradation rate will be unaffected by substrate
concentrations in the feed solution.

Adjusting the EBCT is the simplest way to control the
extent of biodegradation in the reactor.  Microbial density
is a result of operating characteristics and feed solutions,
and is therefore beyond our control.  While the feed
concentration could easily be changed, we are not sure of
the biodegradation kinetics (in particular, Kg) for ozonated
humic substances; thus, the effect on utilization rate is
unknown.

Two major modifications were made to the design
presented by Chang and Rittmann, to meet the needs of this
study.  We used a larger mass of GAC (hence a larger reactor
volume, as defined by the volume occupied by the fixed bed
of GAC), and a longer EBCT.
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6.2  Adsorption and Biodegradation of Humlc Substances

6.2.1  Experimental Methods

General Desicrn of Column System A schematic of the reactor
design is shown in Figure 6-1.  The fixed-bed columns were
constructed of glass;  two sizes were used, one with a
diameter of 1.85 cm and a length of 21.5 cm (Vol =57.8
cm-^) , which held approximately 30 grams of GAC, and the
other similar in diameter but shorter, with a length of 2 cm
(Vol = 5.4 cm^), which held approximately 4 grams of GAC.
The two sizes were used in the process of determining the
correct mass of GAC for saturating the bed with HS within a
reasonable amount of time.  The columns were equipped with
removable end caps, which were held in place by rubber o-
rings and metal clamps.  GAC was retained in the bed with
monofilament nylon mesh (Small Parts, Inc., Miami, Florida).

The column feed and effluent lines consisted of Teflon
tubing (I.D. = 1/16 in.).  The feed pump was an Ismatec
peristaltic pump (Cole Palmer Instrument Company, Chicago,
Illinois), which accurately delivered feed at low flowrates;
pump tubing was constructed of silicon.  A glass break tube
was placed between the feed reservoir and feed pump to
prevent back-contamination of the feed.  For experimental
runs which utilized more than one column, receiving
identical feed solutions, the breaktube also served as a
means for splitting the feed flow from a single line (from
the reservoir) into several lines (one to each column).

Two types of feed reservoirs were used.  For operating
several columns which all received the same feed, a single
reservoir (25L) constructed of autoclavable linear
polyethylene (Nalge Company, Rochester, New York) was used.
For runs with one or more columns receiving different feed
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solutions, glass aspirator bottles (2L) were used.  The feed
reservoirs were capped with rubber stoppers equipped with
holes for ventilation;  glass tubing stuffed with glass wool
was used to prevent atmospheric contamination of the feed.

The recycle line was constructed of Bevaline tubing
(Teflon lined polyethylene tubing, I.D. = 1/4 in.; Atlantic
Plastics, Raleigh, North Carolina).  The recycle pump was a
Masterflex peristaltic pump (Cole Palmer Instrument Company,
Chicago, Illinois) which had a higher capacity than did the
feed pump;  recycle pump tubing, also, was silicone.  The
recycle ratio was set at approximately 20:1 for the first
three column runs, and increased to 38:1 thereafter.
Recycle ratios were set on the basis of minimizing the
change in HS concentration across the reactor (to
approximate a differential element), as well as to maintain
a reasonable loading rate (total flowrate (Q + Qj^) divided
by cross-sectional area) on the filter.

In all experiments, the entire column apparatus was
sterilized by autoclaving for 30 minutes at 20 psi prior to
initiation of the run;  the Bevaline tubing, which
withstands a maximum temperature of only 200°F, was
sterilized in 95% ethanol.  Fresh feeds were prepared daily,
in freshly autoclaved feed reservoirs.  Feed flowrates
varied between experimental runs, ranging between 2 and 6
L/day, and were monitored daily with a graduated cylinder
and stop watch.

Carbon Sample.  Filtrasorb-400 GAC (Calgon Corp.,
Pittsburgh, Pennsylvania) served as media for all column
experiments.  GAC was ground with a mortar and pestel and
sieved to retrieve the 3 0x40 mesh fraction (average particle
diameter 0.5 mm).  The carbon was rinsed several times with
distilled deionized water to remove fines, dried at 105°C,
and stored in a dessicator until use.  Prior to each run.
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GAC samples were rinsed again and autoclaved at 2 0 psi for
30 minutes.

Dry weights were obtained for GAC by drying to a
constant weight at 105°C;  samples were weighed on a Metier
analytical balance.

Feed Solutions.  Water high in natural HS concentration was
obtained from Lake Drummond, a richly colored lake located
in the Great Dismal Swamp in Suffolk, Virginia.  The organic
content of the raw water is approximately 40 mg/L as TOC;
prior analyses have determined that the ratio of fulvic to
humic acids is about 9:1 (personal communication. Young Seo
Ko) .

Water was retrieved in large quantities, pressure
filtered through a 1 /xm honeycomb filter (Tate Engineering,
Roanoke, Virginia), and stored in 20L plastic containers at
4°C until use.  For ozonated HS, the water was ozonated also
in large quantities and stored.  When it was desired to
lower the organic content of the feed, swamp water was
diluted to the desired concentration in sterile distilled
deionized water.

Ozonation.  The humic substances were ozonated at a dose of

approximately 1 mg ozone per mg TOC.  Ozone was generated
with a Grace LG-2-LI laboratory ozone generator (Union
Carbide, South Plainfield, New Jersey) and delivered at a
gas flowrate of approximately 1 L/min, through stainless
steel and Teflon tubing, to a glass reactor containing 20L
of Lake Drummond water.  Figure 6-2 is a schematic
description of the ozonation process and Table 6-1 provides
the operating parameters.

*

Samples were ozonated for approximately 27 minutes,
followed by a 15 minute purge with nitrogen gas at a
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Table 6-1

Ozonation Operating Parameters

111

0^ Pressure in Generator (psi)

Power Supplied to Generator (V)

Gas Flourate into Solution (L/min)

0, Supplied per Minute (mg/min)

Ozonation Time (min)

Ozone Dosage (mg O^/mg TOO

Nitrogen Purge Time (min)

N_ Gas Flowrate (L/min)

15

120

1

41 to 42

27

1/1

15

1
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flowrate of 1 L/min to remove residual unreacted ozone.
Generation rates were calculated by passing ozone directly
to the secondary circuit KI trap for a period of two or
three minutes both before and after ozonating the sample.
Initial and final rates were combined to yield an average
generation rate.

Ozone dosage was calculated using a material balance.
The total amount generated was calculated with the average
generation rate and total reaction time;  unreacted ozone
passed through the sample was collected in the two in-series
primary circuit KI traps.  No attempt was made to measure
the rate of ozone decomposition.  Any decomposed ozone is
accounted for as reacted ozone, which may lead to calculated
dosages slightly higher than those actually applied.
However, the total amount of decomposed ozone as compared to
that reacted should be very small at neutral pH, especially
if contact time is relatively short (Sullivan and Roth,
1979).  Furthermore, ozone stability increases with
decreasing pH (Standard Methods, 16th ed., 1985);  the pH of
Lake Drummond water is approximately 6.

Ozone concentration in each KI trap was determined
utilizing an iodometric titration (Standard Methods, 16th
ed., 1985).  Free iodine liberated by ozone from the KI
solution was titrated with a standard O.IN solution of

sodium thiosulfate, using a starch indicator.  Thiosulfate
solutions were standardized with potassium biiodate.

Analytical Methods.  Organic content was measured as total
organic carbon concentration, TOC, and in some cases as
dissolved organic carbon concentration, DOC.  DOC samples
were vacuum filtered through a 0.2 /xm Gelman triacetate
filter which had been pre-rinsed with distilled deionized
water and approximately 20 ml of sample.
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Two instr-uments were used to measure TOC and DOC.  For

the initial portion of the work, using unozonated swamp
water and ozonated swamp water without dilution, TOC was
measured on a Beckman Model 915-B analyzer equipped with a
high sensitivity detector.  These samples were acidified to
pH 2 and purged with nitrogen gas to drive off inorganic
carbon as CO2.  For all later studies a newer instrument was
available;  organic and inorganic (COj) carbon
concentrations were analyzed with an O.I. Model 700 Total
Organic Carbon Analyzer (O.I. Corporation, College Station,
Texas).

6.2.2  Results and Discussion

Several runs were performed to find the proper
combination of operating conditions (feed TOC, mass of GAC
in reactor, EBCT, recycle ratio) that would yield both
biodegradation and adsorption of natural humic substances,
and also meet the criteria that the reactor system behave as
a differential element.  To be a differential element, the
change in TOC across the reactor must by very small but
measureable.  Four runs are reported here, each differing in
feed solution characteristics, empty bed contact time, or
both.  Operating characteristics for each column run,
referred to as Run Nos. 1, 2, 3, and 4, are presented in
Table 6-2.

Run No. 1 was performed to test the design for the
differential element assumption.  It was also used to obtain
information regarding the adsorptive capacity of GAC for HS,
and their biodegradability.  A 57.8 cm"^ column containing 30
grams of GAC (dry weight) was fed untreated water from Lake
Drummond, feed TOC =25 mg/L;  the breakthrough curve is
presented in Figure 6-3.
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• Table 6-2

Operating Characten sti cs: Column Run Numbers 1-4

GAC Reactors Recieving Humic Substances, Varying Feed Conditions and EBCT

Carbon Bed Feed Recycle Loading
Column Dry Wt. Vol. EBCT Feed Flowrate Ratio Rate^
Run No. (gm) (cm') (min) Solution (L/day) (Q,/Q) (m/hr)

1

1 30 57.8 41.6

13.9^
TOC=25 mg/L
unozonated

2

6"
20/1

20/1

6.2

19.5

2 33.4 57.8 13.9 TOC=25 mg/L
ozonated

6 20/1 19.5

3 4.34 5.38 1.3 T0C=7 mg/L

ozonated
' ' .* 20/1 19.5

4 3.97 5.38 3.9 T0C=7 mg/L

ozonated

z 38/1 11,7

• Loading Rate = (Q + Q|^)/cross- sectional area of column reactor (.\?/\}-f>

Flowrate in Run No. 1 was increased after 9 days of operation to 6 L/day.
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At a feed flowrate of 2 L/day (EBCT = 41.6 lllin) the
column exhibited roughly 10% breakthrough of HS after nine
days of operation.  The feed flowrate was increased to 6
L/day (EBCT = 13.9 min) after about 210 hours, in hopes of
achieving a more rapid rise in effluent TOC concentrations.
By 380 hours, TOC in the effluent stream had reached
approximately 55% of the influent concentration and was
still increasing.  Thus the empty bed contact time, even at
a feed rate of 6 L/day, was too long for our purposes;  a
convenient laboratory study requires saturation of sorptive
capacity within two to three weeks.  In addition, no
significant biofilm growth was detected in the column, as
evidenced both visually and by the continual rise in
effluent TOC.  This implies that without ozonation the humic
substances are not easily biodegraded.

Run No. 2 was directed toward enhancing biological
activity on the GAC surface.  The HS solution was ozonated
(1 mg 03/mg TOC) and fed at 6 L/day (EBCT =13.9 min) to a
column reactor similar to that used in the unozonated

system;  the breakthrough curve is shown in Figure 6-4.  The
immediate rise and subsequent drop in effluent TOC
concentrations early in the run are discussed below; after
about 75 hours of operation, the effluent TOC rose
continuously until reaching a steady state concentration
equal to approximately 30% of the feed by 320 hours.
Effluent concentrations remained at or about this level

until 430 hours of operation, at which point the run was
terminated.

As evidenced by the significant steady state reduction
in TOC, biological activity in Run No. 2 was substantial.  A
small plug of carbon was removed from the influent end of

the column after 330 hours of operation, and a minimum of
5E+09 cells/gm were detected on the carbon surface by
epifluorescence microscopy.  Upon termination of the run.
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approximately 4.75E+09 cells/gm were recovered from the
carbon utilizing the PVP/PPi wash procedure described in
Chapter 4.  About 10% of the cells, or 4.88E+08 cells/gm,
were viable as indicated by a modified standard plate count,
These numbers are comparable to literature reported values:
total cell densities reportedly range from 10° to 10'
cells/gm for GAC used in water treatment (Van der Kooij,
1976;  Cairo et al., 1979)

(Latosek & Benedek, 1979).

1976;  Cairo et al., 1979), to 10^ cells/gm wet weight

Extensive biological activity, in combination with the
large mass of GAC, resulted in a substantial drop in TOC
across the reactor in Run No. 2.  The change in HS
concentration across the bed was about 38%, which is nearly
half of the total steady state removal noted (70%).  Thus,
the reactor was not operating in accord with the
differential element assumption.

An interesting feature of the TOC vs. time profile
shown in Figure 6-4, as previously noted, is the immediate
rise and subsequent drop in effluent TOC concentrations
during the first 75 hours of operation.  This "hump" was
also observed later in Run Nos. 3 and 4 (See Figure 6-6 and
6-7) but did not occur at the same point in time.  The
results in Run No. 4 suggested that the difference in time
positioning of the rise and fall in TOC concentration could
be related to EBCT.  The ratio of the EBCT in Run Nos. 2 and

4 is 0.28, which is about the same as the ratio of operating
times covered by the "hump" (0.27).  Unfortunately the
positioning of the "hump" in Run No. 3 did not follow the
same relationship.

A possible explanation for the shape of these
breakthrough curves can be found by making the assumption of
a two-component mixture of humic substances.  One component
is biodegradable and only slightly (if at all) adsorbable.
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and the other component is non-biodegradable but adsorbable.
Recent modeling work by Garber in this laboratory has shown
one simple way to modify the Chang and Rittmann model (1987)
to account for the biodegradation and adsorption of such a
two-component mixture (personal communication, J. Garber).
The resulting breakthrough curves for each of the two
components and that of the components added together are
shown in Figure 6-5, from Garber's work.  This modeling
exercise suggests a "hump" in the TOC breakthrough curve
when a two-component mixture is assumed.  The
biodegradable/slightly adsorbable component rapidly
increases in concentration but then decreases again due to
biodegradation; in contrast, the non-

biodegradable/adsorbable component steadily increases due to
exhaustion of sorptive capacity.  In effect, two steady
state conditions are observed in this system.  A steady
state with respect to biological activity is reached rather
early, as depicted by the leveling off of effluent
biodegradable/slightly-adsorbable TOC.  However, steady
state with respect to overall TOC removal across the bed is
achieved only after sorptive capacity is depleted.  Further
evidence for early attainment of steady state with respect
to biological activity will be presented later in the

analysis of data for CO2 production in Run No. 4 (page 125).

Differences between influent and effluent TOC

concentrations after long periods of reactor operation
represent the extent of steady state biodegradation within
the GAC bed.  The effect of ozonation on steady state
biodegradation can be seen by comparing the TOC removals in
Run Nos. 1 and 2.  Run No. 2 received ozonated HS at a

concentration of approximately 25 mg/L and an EBCT of 13.9
minutes.  As seen in Figure 6-4, the effluent TOC reached
only 30% of the influent at steady state.  Effluent TOC for
the unozonated HS used in Run No. 1, on the other hand

(Figure 6-3), reached 55% of the influent concentration by
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380 hours and was still rising.  Comparison of these results
supports the idea that ozonation increases the
biodegradability of humic substances.  It must also be noted
that the EBCT in Run No. 1 was decreased from 41.6 minutes

to 13.9 minutes after 210 hours of operation.  The long EBCT
(41.6 min) during the first nine days would have, in fact,
increased the chance for HS biodegradation compared to that
in Run No. 2 (EBCT = 13.9 min).  Nevertheless, we still saw
less biodegradation in Run No. 1 than in Run No. 2.  This
reinforces our conclusion that ozonating the humic
substances increases biological activity in the GAC filter
bed. ,

The reactor design was modified after Run No. 2.  Run
No. 2 showed that the laboratory reactor system could be
operated to produce measureable amounts of both adsorption
and biodegradation.  However, the reactor did not meet the
criteria for behaving as a differential element, i.e., the
change in TOC concentration across the reactor was too large
(38%).  This presented problems from a modeling standpoint.
In addition, the extensive biological growth was of concern
because it caused too much head loss.  To overcome these

difficulties, the length of the reactor was shortened in Run
No.3 from 21.5 cm to 2 cm, thus reducing the EBCT from 13.9
minutes to 1.3 minutes at a feed flowrate of 6 L/day.
Shortening the reactor reduces the extent of steady state
biodegradation, also solving the problem of excessive head
loss.  In addition, the feed concentration of ozonated HS
was decreased from 25 to approximately 7 mg/L (as TOC) in
order to compensate for the loss in sorptive capacity
incurred by decreasing the reactor length and, thus, mass of
GAC.

The results of Run No. 3 are shown in Figure 6-6.  The
profile shows the same initial rise and fall in effluent TOC
concentrations, as was noted in Run No. 2, during the first
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70 hours of operation.  Here the early "hump" in effluent
TOC extends much higher (to 57% of the feed, as opposed to
12% for Run No. 2), likely resulting from less HS
biodegradation in Run No. 3 than in Run No. 2.  After only
140 hours the effluent TOC had reached a steady state value,
approximately 95% of the feed TOC.  This steady state was
maintained until 420 hours, at which time the column was
disassembled.

GAC recovered from this reactor was used in the biofilm

removal study, to compare the effects of ultrasonication and
blending on the desorption of biofilm microorganisms
(Chapter 4).  A PVP/PPi wash (using the blender procedure)
recovered approximately 8.53E+07 viable cells/gm from the
GAC, as opposed to 4.88E+08 cells/gm recovered from Run No.
2.  Assuming consistent fractional recoveries from sample to
sample, this represents an 82% reduction in bacterial
density at steady state (with respect to TOC removal) due to
the lower EBCT and in part to the diluted feed
concentration.  Run No. 3 demonstrated that reducing the
EBCT would, as expected, reduce the steady state removal of
TOC by biodegradation.  However, it was clear that
biological activity was too limited in this design (only
about 5% of the TOC was being removed biologically).

The EBCT was increased to 3.9 min in Run No. 4 to

increase the extent of biodegradation;  this was done by
decreasing the feed flowrate to 2 L/day.  The feed
concentration was kept at 7 mg/L TOC.  The resulting
breakthrough curve for Run No. 4 is shown in Figure 6-7.
The effluent TOC reaches a steady state, egual to
approximately 57% that of the feed concentration, after
about 160 hours.  Thus, 43% of the feed HS was biodegraded.
The "hump" in the breakthrough curve that was noted in Run
Nos. 2 and 3 again occurs, in this case after about 20 hours
of operation.  The hump extends to an effluent TOC which
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falls between the TOC reached by the hump in Run Nos. 2 and
3;  in Run No. 4 the effluent TOC reaches about 25% of the
feed.  This suggests that the extent of HS biodegradation in
Run No. 4 was greater than that in Run No. 3, but less than
Run No. 2.

Figure 6-8 offers a more comprehensive description of
the adsorption and biodegradation processes.  Plotted

together are concentrations of TOC, DOC, and CO2 (in mgC/L)
in the effluent stream for Run No. 4.  Differences between

TOC and DOC represent biomass leaving the reactor.  For most
of the run, the difference is very small.  However, a sharp
peak in TOC occurred at around 200 hours, while the DOC
remained at its previous level.  This implies that the loss
of biofilm from the reactor is not a steady ongoing process,
as is usually assumed in mathematical modeling.  While this
research is not aimed at modeling the results, others
attempting to do so should beware of such complications.  A
further observation is that given the closeness of TOC and
DOC during most of the breakthrough curve, either could be
used to measure the concentration of HS.

Carbon dioxide in the effluent stream is an indication

of microbial activity within the column.  The production of

CO2 is due to mineralization of humic substances.  Evidence
for the presence of biodegradable/slightly adsorbable and
non-biodegradable/adsorbable components is the leveling off
of CO2 concentrations after about 20 hours of operation;
CO2 production stabilizes within about the same operating
time as is covered by the "hump" in effluent TOC.  This
means that biodegradation of the biodegradable/slightly
adsorbable component has reached steady state while effluent
TOC continues to rise, due to breakthrough of the non-
biodegradable/adsorbable fraction in the HS mixture.  The
two steady states observed in the modeling exercise in
Figure 6-5 are also noted here:  a steady state with respect
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to biological activity, which is achieved quite early, and a
steady state with respect to overall TOC removal, which is
reached when the sorptive capacity of the GAC bed is
exhausted.

An additional piece of information is provided by
influent and effluent TOC and CO2 concentrations at steady
state (with respect to overall TOC removal).  A material
balance on carbon can be used to calculate the overall
microbial yield coefficient, Y, which is equal to the carbon
assimilated into cells per unit substrate carbon
metabolized.  For Run No. 4, the material balance is as
follows:

Feed

TOC =7.0 mgC/L
CO- 0.7 mgC/L

Total Input =7.7 mgC/L

Effluent

TOC =4.0 mgC/L
CO2 = 1.3 mgC/L

Total Output =5.3 mgC/L

At steady state:

(Total C Input) - (Total C Output) = Carbon Assimilated
in Reactor

Since, by definition, the sorptive capacity of GAC has been
exhausted at steady state, the only means for assimilation
of carbon in the reactor is through cellular uptake.  Thus:

Carbon Assimilated =7.7 mgC/L - 5.3 mgC/L = 2.4 mgC/L.into Cells

The Total Substrate metabolized is equal to the change in
TOC across the reactor:

Total Substrate Metabolized =7.0-4.0 = 3.0 mgC/L.
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Finally, the yield coefficient (Y) can be calculated:

Y = (Assimilated Carbon)/(Total Carbon Metabolized)

(2.4 mg/L biomass C)
=--------------------  =  0.8 mgC/mgC.

(3.0 mg/L substrate C)

6.2.3  Summary:  Effect of EBCT and Feed Conditions on
Steady State TOC Removal by Biodegradation

The results of the four column runs are summarized in

Table 6-3.  Comparing Run Nos. 1 and 2 shows that ozonation
increased the biodegradability of the HS.  Comparing Run
Nos. 2 and 3 shows that decreasing the feed concentration of
HS and the EBCT greatly reduced the extent of
biodegradation;  both can be reasoned intuitively to limit
biological activity.  Finally, a comparison of Run Nos. 3
and 4 shows that increasing the EBCT while holding the feed
TOC concentration constant substantially increased the
removal of HS by biodegradation.

The experimental design of Run No. 4 was considered the
most successful;  exhaustion of sorptive capacity for HS was
observed in a reasonable time period (160 hours, or 6.5
days), and biodegradation could be measured conveniently
without excessive head loss build-up.  This became the
prototype for the design of all further column experiments.
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Table 6-3

Sumnarized Results: Column Run Numbers 1-4

GAC Reactors Receiving Humic Substances, Varying Feed Conditions and EBCT

Ozone Feed Steady State % TOC
Run dosage EBCT TOC Effluent TOC Removed
No. (mg Oj/mg TOO (min) (mg/L) (mg/L) at Steady State

1 0 41.6/13.9* 25 *• **

2 1/1 13.9 25 7.5 7UX

3 1/1 1.3 7 6.6 5X

4 1/1 3.9 7 4.0 43%

* Flowrate in Run No. 1 was increased after 9 days of operation to 6 L/day.

** Steady state was newer  achieved in Run No. 1. After 380 hours of operation. Effluent
TOC = 14 mg/L.
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6.3  Biodegradation of Phenol

in the Presence of Ozonated Humic Substances

6.3.1  Background

Run No. 4 established the best operating conditions for
measuring adsorption and biodegradation of ozonated humic
substances.  The objective of this next phase of study was

to measure the adsorption and biodegradation of trace levels

of phenol (50 /xg/L) in the presence of HS.  Two questions
were of particular interest:

1. Will phenol biodegradation be enhanced by the presence
of ozonated HS? and

2. Will phenol be more readily biodegraded if introduced to
a biofilm already developed from a feed of ozonated HS than

if introduced simultaneously with HS from the beginning of
reactor operation?

It is important to understand that model predictions of
the interaction between adsorption and biodegradation always
show that the development of a biofilm will not occur until

substrate begins to accumulate outside the GAC particle,
i.e., until sorptive capacity becomes limiting.  This makes
good sense for a single substrate like phenol:  while

adsorption is actively taking place, no substrate can

accumulate and so the biofilm cannot grow.  Dovantzis (1986)
showed in his modeling work that biodegradation will not
occur for several months if the feed concentration is 50

Mg/L and the EBCT is 0.5 min.  However, the introduction of

another large supply substrate, such as ozonated HS, changes
this notion.  Now the biofilm can develop independent of the
accumulation of phenol; the presence of this bulk-substrate-

grown biofilm may alter the interactions between adsorption
and biodegradation of the trace concentration of phenol.
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6.3.2  Experimental Methods

Three columns runs were performed for this phase of
research, referred to as Run Nos. 5, 6, and 7.  Operating
parameters (EBCT, mass of GAC, feed TOC) were identical to
those of Run No. 4.  Feed solution, however, was varied
between runs:

Run No. 5;  A 7 mg/L ozonated HS solution was fed to a GAC
reactor for 210 hours before adding phenol at 50 Mg/L*
Run No. 6:  Both ozonated HS (7 mg/L) and phenol (50 Mg/L)
were fed simultaneously from the beginning of reactor
operation.

Run No. 7; No HS were added to the feed;  phenol at 50 /xg/L
was the only substrate provided.

Run No. 7 served as a "control" to determine if biofilm

development would be slowed by eliminating the major supply
substrate, i.e., the primary substrate.  According to
mathematical modeling of adsorption and biodegradation
interactions, biological activity will be initiated only
after substantial adsorption has occurred.

Reactor Design.  The design is identical to that shown in
Figure 6-1, with individual feed reservoirs for each
reactor.  Glass aspirator bottles (2L) were used to contain
the daily supply of feed;  the drip tube was eliminated to
simplify column operation.  In an effort to prevent
microbial growth in the feed, reservoirs were replaced daily
with cleaned, sterile bottles containing fresh feed
solution.  Effluent from each column was directed to a

collection tube constructed from the tip-end of a narrow
buret (total volume about 10 ml).  These collection tubes
were selected to minimize the loss of CO^.
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Feed Solutions.  Feed solutions were prepared by diluting
filter-sterilized nutrients and pH 6.2 buffer (filtered
through a 0.2 nm  Gelman triacetate filter into a sterile
erlenmeyer flask) into sterile distilled deionized water.
Nutrient and buffer compositions are given in Table 6-4.
Ozonated humic substances were added to produce a feed TOC
of approximately 7 mg/L, for Run Nos. 5 and 6;  no HS were
used in Run No. 7.  Radiolabeled phenol was added from a
stock solution, prepared in ozonated, distilled, deionized
water at pH 2 (specific activity = 3,812 dpm//iL;
concentration = 190.6 jug/L) ;  the final feed concentration
was 50 /xg/L.

Analytical and Sampling Methodology.  The HS concentration
was measured by TOC with an O.I. Model 700 Total Organic

Carbon Analyzer.  It was also possible to measure total CO2
production with the same instrument.  TOC and CO2
measurements are due to adsorption and biodegradation of
both HS and phenol.  However, the HS are present in the feed
at 7 mg/L, compared to phenol at 50 Mg/L-  For all intents,

therefore, TOC and COj measurements reflect adsorption and
biodegradation of just the ozonated humic substances.

Effluent carbon-14 radioactivity was attributed to
radiolabeled phenol being fed to the reactor.  This
radioactivity is found in three fractions:  total

radioactivity, nonpurgeable radioactivity, and
nonpurgeable*filterable radioactivity.  The meaning of each
fraction and the procedure by which each was obtained are
explained below.

Total radioactivity was measured from five ml samples
of effluent collected with a volumetric pipet from the
collection tube for each column.  Each sample was added to a
scintillation vial containing two drops of Carbosorb II
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Table (,-U

Nutrient and Buffer Compositions

Constituent Concentration (mg/L)

Phenol Buffer

KH2P0^
KgHPO^

NagHPO^

65.0

215.0

250.0

Nutrients

CaClj'ZHjO
MgSO^
NH.Cl

15.0

5.0

3.5
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(6003073, United Technologies, Packard Instrument Company,

Downers Grove, Illinois).  Total radioactivity consists of

ͣ' ͣ^COj, ͣ' ͣ^C'biomass, ͣ' ͣ'^C'substrate, and perhaps ^^C*metabolic
end-products. ..

The nonpurgeable and the nonpurgeable'filterable

radioactivity were measured from approximately 20 ml

effluent samples collected dropwise into a 40 ml Pierce

vial.  The samples were acidified to pH 2 with concentrated

HCl and purged five minutes with nitrogen gas to drive off

ͣ' ͣ^002, thus leaving behind the nonpurgeable fraction.  After
removing a five ml aliquot of this nonpurgeable fraction for

ͣ' ͣ'^C counting, the residual solution in the Pierce vial was
filtered through a 0.2 jum Gelman triacetate filter which had

been presoaked in 1 mg/L phenol to saturate binding sites.

The filtrate, which excludes all radioactivity due to  CO2
and ^^C'biomass, constitutes the nonpurgeable'filterable
fraction.  A five ml aliquot of this fraction was collected

for ͣ' ͣ^C counting.  Scintiverse II counting cocktail (10 ml)
was added to each scintillation vial prior to counting.

Samples were assayed for radioactivity with a Packard Tri-

Carb 300 CD Liquid Scintillation Counter.

Carbosorb II is an organic amine designed to absorb

carbon dioxide for the purpose of scintillation counting;

the capacity for CO2 absorption is 211 mg C02/inl (Chang,
1985) .  Control experiments with Ba-^^C03 indicate that the
efficiency (E) of this procedure for CO2 quantification is
approximately 88%.  The acidification and 5-minute purge was

found to remove over 99% of the ͣ'"'^C02 from solution.
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6.3.3  Data Analysis

The potential components of each of the three

radioactive fractions are as follow:

^^C* Total = """^002 + -^"^C'biomass + ͣ' ͣ^C* substrate + ^^C*
metabolic end-products

ͣ' ͣ'^C'Nonpurgeable = ͣ' ͣ^C'biomass + -^^C* substrate + -' ͣ^C*
metabolic end-products

ͣ' ͣ^C'Nonpurgeable* filterable = ͣ'-^C'substrate +
•'•'^C•metabolic end-products.

Metabolic end-products have been ignored in this analysis,

since it has been found that phenol biodegradation yields

only about 2% conversion of carbon to end-products and that

these are strongly adsorbed onto GAC (Schultz, 1982).  Thus,

the concentration of end-products in the effluent stream

should be negligible and the ͣ' ͣ^C'nonpurgeable'filterable
fraction is equivalent to ^C*substrate.

This makes the calculation of •'•^C02,   C*cells, and
ͣ^^C*substrate quite simple:

^^C02 = (^"^C-total - ^^C'nonpurgeable)/E
where E = 88%.

ͣ^^C* Cells = ͣ' ͣ'*C'nonpurgeable - ͣ' ͣ^C-nonpurgeable*
filterable.

ͣ^/^C* Substrate = ͣ'•^C-nonpurgeable* filterable.

All of the above radiolabeled quantities refer only to

phenol added in the reactor feed.  We are particularly
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interested in the concentration of   CO2, because it
represents the phenol that is biodegraded in the GAC bed.

6.3.4  Results

Effluent TOC and total CO2 production in Run Nos. 5 and
6 are shown in Figure 6-9. Effluent TOC is taken to
represent HS escaping adsorption and/or biodegradation;
total COo production is caused by biodegradation of HS.  The
TOC breakthrough curve is similar to that observed in Run
Nos. 2-4 in which only HS were added.  The rise and fall of
TOC during the initial stages of operation, i.e., the
"hump", is quite apparent.  We also note that COj production
stabilized after the "hump" is observed.  This, as noted
before, means that the concentration of biodegradable
organics in the effluent stream was constant.  The continued
rise in effluent TOC is due to breakthrough of the
adsorbable/non-biodegradable HS fraction.  Steady state was
reached after about 2 00 hours of operation, with
approximately 40% of the applied TOC being biodegraded.

Phenol mineralization in Run Nos. 5-7, as measured by

the production of  CO2/ is presented as a function of
operating time in Figure 6-10.  The time scale has been
shifted for Run No. 5, so that time zero corresponds to the
point at which phenol addition commenced, which was actually
210 hours into the run.

The delay in "^"^002 production for Run Nos. 5 and 6,
which received ozonated HS in addition to phenol, was very
brief compared to that for Run No. 7 (the control), which
received only phenol at 50 Mg/L.  In addition, biological
activity was substantially greater in Run Nos. 5 and 6 than
in Run No. 7.  Of the total ^'^C*substrate added to each
reactor in Run Nos. 5 and 6, 60 to 70% was being converted
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to ͣ' ͣ^002 after 140 and 350 hours, respectively (Figure 6-
10).  Conversion of ^^C'substrate to ͣ'"^C02 in Run No. 7, on
the other hand, seemed to level off at about 40%.
Biological activity was not expected in Run No. 7 because
the development of a biofilm should have been delayed until
much of the sorptive capacity had been used and phenol began
to accumulate around the GAC particle.  One possible
explanation for phenol biodegradation here is that the
system became contaminated with microbial seed, which
stimulated biological activity.

The time at which phenol biodegradation began in Run
No. 6 (phenol and HS introduced simultaneously) coincides
with the achievement of stable biofilm activity, as depicted
by total CO2 production in the column (Figure 6-9).  In
contrast, adding phenol to a GAC column with an established
biofilm population (Run No. 5) resulted in immediate phenol
degradation, as evidenced by ''" CO2 production.  Thus, these
results demonstrate the importance of the primary substrate
(HS) in establishing microbial activity.

The shearing loss of biomass (C«cells) produced
specifically by biodegradation of radiolabeled phenol is
shown in Figure 6-11, for Run Nos. 5-7.  Our earlier studies
of biodegradation of HS suggested that biofilm losses
occurred intermittently, rather than continuously (page
125).  The same conclusion is reached here for biomass grown
on phenol.  In addition, we can see that the loss of ͣ' ͣ^C
labeled cells began much earlier for Run No. 5, in which
phenol was added to an established biofilm.  This is

reasonable given the observation that biodegradation, and
thus biomass growth, began earlier for this run.  In
contrast, biomass losses from the control. Run No. 7, were
insignificant compared to Run Nos. 5 and 6 until about 330
hours of operation.  This agrees with the observation that
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biomass growth, which obviously must precede biomass shear,
was not as great as in Run Nos. 5 and 6.

Phenol concentration leaving the reactors, as measured
by ͣ' ͣ^C*substrate, was negligible throughout all three runs.
This means that phenol was either being adsorbed or
biodegraded effectively throughout the time of observation.
The pathway for phenol removal - adsorption vs.
biodegradation - can be determined from the measurement of
radiolabeled fractions.  Plots of cumulative phenol
biodegraded vs. phenol applied to the reactor for Run Nos.
5-7 are shown in Figure 6-12.  The cumulative amount of
phenol biodegraded has been calculated using  CO2
production, taking into account microbial yield:

Total ^^C02 producedCumulative biodegradation =
(1-Y)

A straight line with slope equal to one would result if all
the phenol applied were biodegraded.  A slope less than one
implies some adsorption (since no phenol left the column in
solution);  a slope greater than one is possible only if
phenol is biodegraded from both sorbed and solution phases.

The value of the microbial yield coefficient will have
a direct influence on the slope of a plot of cumulative
phenol biodegraded vs. phenol applied.  A value of 0,46 jug
cell*carbon/jug phenol• carbon was used to prepare Figure 6-
12, which is the yield coefficient determined in the
biokinetic studies for the phenol-acclimated population
(Chapter 5).  Although the variability of this value is
quite large (see Page 89), it is in reasonable agreement
with prior work done in this laboratory, which determined a
value of 0.48 nq  cell*carbon//xg phenol• carbon (Speitel,
1985).
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6.3.5  Discussion

According to mathematical models of the interaction
between adsorption and biodegradation for a single substrate
supply, substrate must first accumulate around the GAC
particle before a biofilm can develop.  Thus, adsorption
will delay biofilm development until sorptive sites become
depleted.  Aside from this explanation of delay, the
phenomenon of acclimation, which cannot be included easily
in a mathematical model, may also be operative.

The delay in "^'*C02 production observed in this research
is extremely brief compared to what would be expected from a
mathematical model.  For example, Dovantzis (1986) simulated
the response of a packed GAC bed having an EBCT of only 0.5
min to a feed of 50 ^q/'L  phenol.  His model results showed
that adsorption dominated for the first few months of
operation.  The fact that a longer EBCT (3.9 min) was used
in this research would suggest an even longer delay before
the onset of biological activity.  Therefore, the results
shown in Figure 6-10 are very interesting because they show
that when ozonated HS are available as primary substrate,
phenol biodegradation begins within a few days (60 hours) at
most, regardless of when the phenol is introduced to the
system.

Similar results have been demonstrated for a purely
biological system.  Namkung and Rittmann (1987) showed that
phenol was readily degraded at concentrations as low as 1
Mg/L by an established biofilm grown in glass bead reactors
which received HS at 1 mg/L as TOC.  Approximately 10% of
the HS were degraded at steady state; 89.6% of the applied
phenol was removed by the biofilm.

Speitel et al. (1987) ran columns of virgin GAC which
received 5 /xg/L phenol in the presence of unozonated humic
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substances at about 4 mg/L as TOC.  The removal of phenol
after EBCT of 0.2 and 1.4 minutes was compared.  Unlike our
study in which phenol biodegradation occurred after three
days, biological activity (as evidenced by ͣ'"^C02 production)
was not detected until 30 days of column operation.  The
major difference, however, was the lack of HS biodegradation
noted by Speitel et al..  That is, complete breakthrough of
the humic substances occurred almost immediately at an EBCT
of 0.2 minutes, and after three weeks at an EBCT of 1.4
minutes.  This means that there was no biodegradation of HS
and, therefore, that phenol served as the sole electron
donor for the biofilm microorganisms.  In our system,
biological activity was encouraged by ozonating the humic
substances, as well as by providing a longer empty bed
contact time (3.9 minutes).  We have shown, earlier in this
chapter, that ozonating the humic substances enhances their
susceptibility to biodegradation, and that increasing the
EBCT from 1.3 minutes to 3.9 minutes increases the percent
degraded at steady state from 5% to 43%.

The presence of these ozonated humic substances, then,
enhances biodegradation of a low concentration of phenol.
How does this enhancement effect change with operating time?
When added from start-up, prior to the development of
significant biological activity, phenol is adsorbed and
accumulated on the GAC surface.  As the biofilm becomes

established, phenol degradation proceeds.  The onset of
phenol degradation coincides with achievement of a stable HS

biofilm population, as evidenced by CO2 production (Figure
6-9).  It appears that phenol is degraded during these early
stages as it diffuses through the biofilm toward the GAC
surface.  The immediate biodegradation of phenol when added
to a GAC column with an established biofilm supports the
idea that the phenol is degraded on its way through the
biofilm from the liquid phase.
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The implication of this finding is that predictions of
microbial activity by mathematical models which describe
interactions between adsorption and biodegradation must very
carefully consider all sources of substrate that can account
for biofilm development.  In this case, phenol
biodegradation would not have been predicted in months of
operation if the HS were ignored as a substrate source.

Distinct differences in phenol removal pathways are
apparent from inspection of Figure 6-12. The slope of each
plot increases with column operating time as more phenol is
applied.  With a yield coefficient of 0.46 ng  cell'carbon/Mg
phenol'Carbon, however, the slope in no case exceeds 1.0.
This is expected because a slope of 1.0 would indicate
biodegradation as the sole pathway for removal.  More
importantly, the slope observed in Run No. 5 increases at a
much faster rate than in Run No. 6.  This is because the
biofilm was first established with ozonated HS for 210 hours
before introducing phenol and, thus, phenol biodegradation
very soon became nearly 100%.  In other words, phenol was
not adsorbed even though sorptive capacity existed.  By
contrast, a very shallow slope was observed until a
considerable amount of phenol was applied in Run No. 6.
This suggests that adsorption, rather than biodegradation,
occurred in the early stages of the run.  We expect this
result because the phenol and HS were introduced from the
beginning of Run No. 6; biodegradation of phenol could not
occur until the biofilm first became established, through
biodegradation of ozonated HS.

The slope for Run No. 7, which received no additional
substrate besides phenol at 50 iig/L,   is much shallower than
the other two runs which received ozonated HS.  This means
that without the HS, biological activity is substantially
less and adsorption becomes the predominant pathway for
phenol removal.
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As more phenol is applied, the slope in Figure 6-12
gradually increases, resulting from an increase in
biological activity.  The slope for Run No. 5 approaches 1
(/ig phenol metabolized//ig phenol applied) by the end of the
run, indicating that all phenol applied to the column was
being biodegraded at this point.  The slope for Run No. 6
reached 0.9 /ig/M^/ and probably would have approached 1 had
the run continued.  Thus we see that, with extended
operation, differences in phenol removal pathways become
less apparent and the behavior of both systems receiving
ozonated HS approaches that of a purely biological reactor.
However, the fact that the slope in Run No. 7 increases to
only 0.56 ng/fJ.g,   indicates that even after 350 hours of
operation, a substantial portion of the applied phenol was
removed through adsorption.
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7.  DEVELOPMENT OF A BIOFILM

ON OZONATED HUMIC SUBSTANCES

7.1 Experimental Methods

An experiment was designed to investigate changes in
biofilm characteristics from reactor start-up until steady
state removal of ozonated HS was achieved.  Changes in
biofilm density were monitored, as well as changes in the
ability of the indigenous community to mineralize phenol.

Column Operation.  Four column reactors were operated in
parallel, each receiving ozonated HS at a concentration of
approximately 7 mg/L TOC and a feed flowrate of 2 L/day
(EBCT =3.9 min).  Each reactor contained approximately 4
grams (dry weight) of GAC.  The columns, referred to here as
A, B, C, and D, were dissassembled in succession on Days 4
(t = 84 hours), 7 (t = 157 hours), 10 (t = 230 hours) and 15
(t = 349 hours), respectively, for microbial analyses.

Analytical Methods.  Effluent DOC was measured for each
reactor.  These samples were obtained by vacuum filtration
through 0.2 jim  Gelman triacetate filters which had been
rinsed with distilled deionized water and approximately 20
ml of sample. DOC was analyzed with an O.I. Model 700 Total
Organic Carbon analyzer.  Carbon dioxide concentration was
measured in unfiltered effluent samples.

Biofilm Removal.  Activated carbon was removed aseptically
from each reactor and subject to the wash procedure
described in Chapter 4.  Columns A and B (t = 84 and 157
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hours, respectively) were treated with ultrasonication;  the
original procedure utilizing a Waring blender was used for
Columns C and D (t = 230 and 349 hours, respectively).  The
change in procedure, from ultrasonication to blending, was
made to avoid disrupting the integrity of the cells.

Determination of Microbial Densities.  Total cell densities

recovered from the GAC samples were determined using a
modified Acridine Orange Direct Count procedure, as outlined
in Chapter 4 (Hobbie et al., 1977).  Viable cells were
enumerated with the plate count procedure, as described in
Chapter 5.

Phenol Mineralization.  The metabolic rate of phenol
biodegradation was studied using biofilm microorganisms
recovered from each GAC sample by the procedures described
above.  Our purpose was to compare phenol utilization rates
at different stages of biofilm development.  We therefore
measured only respiration rates;  cellular uptake was not
measured.  Since respiration is proportional to total
metabolism, this measurement was sufficient for comparison
purposes.

The experimental procedure for metabolic uptake study
parallels that described in Chapter 5.  A series of seven
phenol concentrations were tested, ranging from 1 to 1,000
jLtg/L;  samples were incubated for approximately 10 hours,
headspace free at room temperature in the dark.  For each of
the four microbial samples, four live and two dead vials
were prepared at each phenol concentration.  Five additional

vials were incubated with Ba-'-^C03 to determine the
efficiency of  CO2 recovery.
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7.2  Results and Discussion

The DOC breakthrough curves for each of the four

columns, A-D, are presented in Figure 7-1.  These curves
should be identical because each reactor received the same

DOC feed concentration and had the same EBCT.  The slight
differences noted are due, most likely, to variations in the
actual weight of GAC in each reactor and possibly to
differences in head loss through the columns.  The
differences seem to be most noticeable during early stages
of operation.  While it could be argued that these
difference would lessen as the microbial community
stabilizes, the number of reactors in operation also
decreases according to the schedule of removing them for
recovery of biofilm.

Also shown in Figure 7-1 is the production of CO2 in
Column D.  These data are similar to those presented for
earlier reactor experiments (Figures 6-8 and 6-9), showing
the attainment of a steady state in biological activity
after about 50 hours of operation while effluent TOC
continues to rise due to further depletion of sorptive
capacity for the non-biodegradable fraction.

The dry weight of GAC, total days of operation, and
percent breakthrough of TOC upon disassembly of each reactor
are presented in Table 7-1.  The extent of HS biodegradation
at steady state is seen to be about 33% and is in general
agreement with results of previous experiments described
with similar operating conditions.

7.2.1  Cell Densities

Total and viable cell densities recovered from each

reactor are presented in Table 7-2.  Due to a change in
removal methods used between the first two and the second
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Table 7-1

Operational Information: GAC Column Reactors for Biofilm Development Study

Colunn Carbon Dry Wt. Total Hours (days)       % HS Breakthrough
on Termination

36X

B 3.63 157 (6.5) 58%

C 3.17 230 (9.6) 67X

D 3.46 349 (14.5) 67%

Carbon Dry Wt. Total Hours (days)

(gm) of Operation

3.64 84 (3.5)

3.63 157 (6.5)

3.17 230 (9.6)

3.46 349 (14.5)

NEATPAGEINFO:id=5911885A-800E-4185-8A41-B4735A530610



152

Table 7-2

Total and Viable Cell Densities Recovered from Column Reactors A-D

Column Removal  Operating
Method   Time (hrs)

Cell Densities (cells/gm GAC)

Viable   Std. Dev. % Viable/TotalTotal    Std. Dev.

A (1) 84

B (1) 157

C (2) 230

D (2) 349

1.13E+09 1.93E+08

1.90E+09 1.02E+08

1.02E+09 2.80E+08

1.89E+09 8.71E+07

4.67E+06 2.20E+06

2.29E+07 9.61E+06

6.70E+06 2.34E+06

7.39E+06 6.92E+06

0.41%

1.21%

0.66%

0.13%

Removal Method (1) = Ultrasonication
(2) = Blending
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two samples, we are only able to use these data to compare
cell densities between 84 and 157 hours, and between 230 and
349 hours, and not among all four samples.  As discussed in
Chapter 4, we suspect that ultrasonication removes a higher
percentage of total cells and possibly a higher percentage
of viable cells from the carbon surface;  thus the switch
from ultrasonication back to blending, between samples
obtained from Columns B and C, may have resulted in the
recovery of a lower percentage of cells from the surface of
the last two samples.

The increase in total cells between an operating time
of 84 and 157 hours was 67% (1.13E+09 to 1.90E+09 cells/gm),
with a corresponding increase in viable cells of 390%
(4.67E+06 to 2.29E+07 cells/gm).  Between 230 and 349 hours
of operation, total cell density increased by about 86%
(1.02E+09 to 1.89E+09 cells/gm), while the density of viable
cells in the column decreased by 64% (6.70E+06 to 2.39E+06
cells/gm).  These cell densities are comparable to those
observed in Run No. 2 of Chapter 6 (4.75E+09 cells/gm),
being slightly lower due to the lower feed TOG and shorter
EBCT.

These data also reveal some interesting trends in the
ratio of viable cells to total cells during reactor
operation.  Between 84 and 157 hours, we see that the
percentage of viable cells increased from 0.41% to 1.21%.
The percentage increases if cell growth exceeds the
accumulation of decaying or dead cells.  In contrast,
between 230 and 349 hours the percentage of viable cells
decreased from 0.66% to 0.13%.  Not only did the percentage
decrease, but the viable cell count itself decreased while
the total cells increased.  Therefore, later in reactor
operation decaying cells accumulated within the biofilm and
resulted in an increased biomass density without a
corresponding increase in viable cells.
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The 64% decrease in viable cell count between 230 and

349 hours is questionable.  A drop in the density of viable

cells should only result from some perturbation to the

system (change in pH, temperature, feed conditions, oxygen

availability) which may limit microbial growth.  Reduced

growth, hence reduced substrate utilization, should reflect
an increase in effluent TOC due to an increase in the

concentration of biodegradable/slightly adsorbable fraction

of HS (or a decrease in CO2 production due to less
activity).  Neither change was observed;  consequently, the

noted drop in viable cells may be an artifact of the

experimental procedure.  This could have resulted from

either a high count at t = 230 hours, or a low count at t =
349 hours.

Despite variations in total and viable cell densities

with operating time, CO2 production (Figure 7-1) reached a
steady state within about one day from start-up.  Thus, the

amount of HS mineralized by the biofilm microorganisms was

constant after this point, even though the density of viable

cells was increasing.  The rapid attainment of steady state

CO2 production despite further changes in cell population
density may be explained using the concept of a "critical

film thickness" (Trulear & Characklis, 1982).  According to

the theory, substrate removal rates increase with an
increase in biofilm thickness until a critical thickness is

reached, beyond which removal remains constant.  This

critical thickness refers to the depth to which substrate

diffuses into the biofilm.  Once the biofilm thickness

exceeds the depth of substrate penetration, as determined by
bulk substrate concentration and substrate utilization

rates, biodegradation rates will be unaffected by additional

cells which may accumulate on the surface of the film.
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7.2.2  Metabolic Activity:  Phenol Mineralization

Figures 7-2 and 7-3 show the results of a metabolic
rate study performed with each biofilm sample, indicating
the rate of phenol respiration as a function of substrate
concentration.  Figure 7-2 expresses the respiration rates
per gram of GAC in the reactor from which the microbial
sample was obtained.  This is useful in comparing the
potential for phenol utilization across the GAC bed at
different stages of operation.  In Figure 7-3, the rates are
expressed per viable cell in the microbial sample.  This
normalizes for differences in the percentage of viable cells
(and, hence, metabolic activity) recovered from the GAC
surface by the two different methods used (blending vs.
ultrasonication).

A significant reduction in metabolic activity between
samples recovered with ultrasonication (t = 84 and 157
hours) and those recovered by blending (t = 230 and 349
hours) is evident in Figure 7-2.  This suggests that
ultrasonication may recover a higher percentage of metabolic
activity from the biofilm.  As a result, this figure is
useful only for making comparisons of phenol utilization
rates per gram of GAC between 84 and 157 hours, and between
230 and 349 hours, and not among all four samples.

Figure 7-2 suggests that an increase in the ability of
the microbial community to mineralize phenol occurs during
both the initial (from 84 to 157 hours) and final stages
(from 230 to 349 hours) of column operation.  The rate of
phenol metabolism per mass of GAC within the bed should vary
depending on how long the column has been in operation
before the phenol is added - the rate being faster with a
later addition.  This is what we would expect from our study
of phenol utilization in the presence of ozonated HS
presented in Chapter 6.  As the bed operates, a biofilm
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develops and the chances for micropollutant degradation

increase.  However, the increase in phenol utilization rate

from 23 0 to 349 hours was not accompanied by an increase in

viable cells.  As discussed above, there may have been a

problem with the viable cell plate count for either the 230

or the 349 hour sample.  The increase in substrate

utilization rates should reflect an increase in biomass

density in the GAC bed.

The respiration rates normalized for viable cell

density are shown in Figure 7-3.  Presented in this way, the

data suggest that unit metabolic activity per cell, with

respect to phenol mineralization, decreases with operating

time for the first three samples (up to t = 230 hours).  The

anomaly in results obtained with the 349 hour sample are

unexplainable, and reinforce our suspicion in the viable

cell plate count.  A low count for this sample would inflate

the respiration rates per cell.

#

This drop in phenol mineralization rate per viable cell

with operating time is similar to the behavior noted with

respect to HS biodegradation, where constant HS

mineralization was observed (as depicted by steady state COj
production in Figure 7-1) despite an increase in the density

of viable cells.  We suggested the concept of a critical

biofilm thickness beyond which substrate cannot diffuse as

an explanation.  However, no biofilm exists in studies of

phenol metabolism because the cells were removed from the

GAC in order to conduct the investigation.  It may be that

the cells which exhibited lower unit activity in the biofilm

(with respect to HS degradation) retained this reduced

activity even after being released from the film into a

liguid suspension.  The behavior is similar in character to

a log-phase growth curve.  Activity is high in the early

stages of growth, but decreases as the community develops

and less colonization sites are available.  This would
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explain the slowed metabolism.  On the other hand, the
decrease in unit activity may reflect increased competition
in samples with a higher biomass density.  At this point, we
can only speculate.  More evidence is needed for a
conclusive explanation.

7.3  Summary

This biofilm development study suggest that although
viable cell density continues to increase during the initial
stage of column operation (up to at least 157 hours, or 6.5
days), the rate of humics mineralization in the column
stabilizes after only one day of operation.  A decrease in
unit activity per cell might be explained using the concept
of a critical biofilm thickness, at which point the film
thickness is equivalent to the depth of substrate
penetration (Trulear & Characklis, 1982) .  Once this
critical thickness is reached, substrate removal rates will
be unaffected by additional cells.  The critical biofilm
thickness for a reactor operating under conditions used here
is reached during the first day of operation.

A decrease in unit activity per cell with column
operating time was also noted during phenol mineralization.
Biofilm microorganisms, when recovered from the film into a
liquid solution, exhibit decreased unit activity per cell as
the biofilm develops.  Although mineralization rates per
cell decrease, there is an increase in total phenol
mineralization rates (hence, total activity in the GAC bed
with respect to phenol degradation) with operating time
during both the initial and later stages of filter
operation. ,
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CONCLUSIONS AND RECOMMENDATIONS

8.1  Conclusions

1. Viable cells can be desorbed from the surface of
colonized GAC using a solution of polyvinyl pyrrolidone
(PVP) and sodium pyrophosphate (PPi) .  Successive 30 minute
washes on a rotary shaker at 180 rpm in PVP/PPi, separated
by blending and slow-speed centrifugation (120xg), recovered
approximately 50% of the total cells from the biofilm into a
liquid supernatant.  The amount of metabolic activity
recovered cannot be determined.

Microorganisms recovered from a biofilm using this
PVP/PPi wash procedure can be used in biokinetic studies.
Results of a study which measured the kinetics of phenol
degradation using biomass samples recovered from a GAC bed
indicate that biokinetic parameters obtained using biofilm
microorganisms are comparable to literature reported values,
obtained with suspended cultures.

2. Differences in phenol metabolism between an exposed and
an unexposed population of biofilm microorganisms reflect a
change in response due to pre-exposure. The biodegradation
rate was noted not to be a continuous function of substrate
concentration for the exposed population, i.e., a sudden
jump occurred at around 100 Mg/L Phenol. In addition, pre¬
exposure resulted in a higher proportion of the metabolized
phenol being respired to CO2.
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3. Ozonated humic substances are capable of supporting
biofilm growth in a GAC reactor.  The extent to which
biological activity develops depends on:

1. Pretreatment of HS:  ozonation at a dose of 1 mg

03/mg TOC enhanced biological growth.
2. EBCT:  increasing the EBCT resulted in a larger

percent TOC removal by biodegradation.
3. Feed HS Concentration:  a higher feed TOC

concentration encouraged biofilm growth.

4. A hump which occurred very early in the breakthrough
curve for ozonated HS suggests that the organics may be
comprised of two components:  one which is biodegradable and
only slightly adsorbable, and another which is adsorbable
but non-biodegradable.  The effluent concentration of the
biodegradable/slightly adsorbable component rapidly
increased after reactor start-up, but then decreased again
due to biodegradation.  In contrast, the non-
biodegradable/adsorbable component steadily increased due to
exhaustion of sorptive capacity.  Carbon dioxide production
stabilized within about the same operating time as was
covered by the hump in effluent TOC, meaning that a steady
state with respect to biological activity was achieved quite
early in the run.

5. The density of viable cells within the laboratory-scale
GAC reactor continued to increase despite the attainment of
steady state CO2 production. -Microorganisms recovered from
a GAC bed at different stages of operation exhibited a
reduced unit metabolic activity per cell with respect to
phenol mineralization, as the biofilm developed.

6. The delay in ^^C02 production in a GAC reactor (EBCT =
3.9 min) after adding carbon-14 labeled phenol, at 50 jug/L,
was very brief when ozonated HS were provided (at 7 mg/L).
When phenol and HS were added simultaneously from start-up,
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the commencement of   CO2 production coincided with the
achievement of stable biofilm activity, as evidenced by

steady state CO2 production (presumably from HS
biodegradation).  Adding phenol to an established biofilm
resulted in immediate phenol biodegradation.

In either case, phenol biodegradation began within 60
hours.  By 300 hours (12 days) the pathway for phenol
removal across the GAC bed was predominantly through
biodegradation.  The implications of these results are that
mathematical models which describe interactions between

adsorption and biodegradation must very carefully consider
all sources of substrate which can account for biofilm

development.  By way of example, a typical mathematical
model result given by Dovantzis (1986) showed that no
biodegradation occurs within the first few months of
operation if the feed is phenol at 50 /ig/L and the EBCT is
0.5 min.  The presence of a much larger, less adsorbable
substrate source, such as ozonated HS, allows much more
rapid biofilm development and subsequently more rapid
biodegradation of phenol.

8.2 Recommendations

1. The fixed-bed recycle reactor design of this research
should be used further to test model predictions utilizing
the theory of a 2-component HS mixture (biodegradable/
slightly adsorbable and non-biodegradable/adsorbable
components).

2. The study should be repeated utilizing a compound which
is less susceptible to biodegradation than phenol;
substituted phenols like P-nitrophenol should be considered.

3. The design of the fixed-bed recycle reactor should be
modified to obtain more information.  A shorter EBCT would
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be helpful to enable observation of micropollutant
breakthrough, yet the EBCT must be sufficient for HS
biodegradation.  Differences between the behavior of
ozonated HS and of trace micropollutants in a GAC bed pose
difficulties to the design of a system which will enable
observation of adsorption and biodegradation of both
components.  Thought should be given to amending the design
for further study of micropollutant adsorption and
biodegradation.

4.  With refinement, the techniques presented here for
desorption of biofilm microorganisms could provide a means
for investigating biological activity associated with an
operating GAC filter.  The methods would enable an
assessment of the potential for contaminant biodegradation
in a particular GAC bed, by performing biokinetic studies
with the microbial community indigenous to the filter.
Further refinement should focus on removing carbon fines
from the supernatant into which biomass is recovered, and
also on developing a means for relating results back to the
GAC sample.  A method is needed for determining the percent
recovery of biologically active cells from the biofilm into
the liquid suspension.
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