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ABSTRACT

AMAN BAROT: Techniques in network embedding and Gaussian comparison for
high-dimensional statistics

(Under the direction of Shankar Bhamidi and Andrew B. Nobel)

This dissertation consists of research on three high-dimensional statistical problems. In the

first part of the dissertation, we study Gaussian comparison which is an important technique for

comparing distributions and functionals of Gaussian random variables. We derive a Gaussian

comparison result based on a smart-path argument. We show the significance of this result by an

application to a problem of maximal correlations in high dimensions.

In the second part of the dissertation, we study brain connectivity data sets. Networks have

emerged as an important tool to understand the complex structure and function of human brains.

We analyze the structural connectivity structure of human brains using two network data sets.

In the third part of the dissertation, we focus on the problem of community detection on

networks using node embedding methods. In recent decades, network data sets containing millions

and billions of nodes have become available. This has necessitated the development of scalable

methods for their analysis. One such class of methods are methods for node embedding. Node

embedding methods encode nodes of a network in a low-dimensional Euclidean space which allows

one to use well-known methods for Euclidean spaces for network analysis. In this dissertation

we study the problem of community detection using two well-known node embedding methods:

DeepWalk and node2vec. We describe the network sparsity regimes when the k-means algorithm

applied to the node embeddings detects communities for graphs generated from the stochastic

block model, and when such an approach might fail. We also describe how increasing the non-

backtracking parameter in the node2vec method leads to provable improvements in community

detection compared to DeepWalk.
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CHAPTER 1

Introduction

This dissertation consists of research work on three research problems. We introduce each

of these problems and describe our contributions in sections 1.1, 1.2 and 1.3 of this chapter. In

Chapter 2, we describe our Gaussian comparison result and apply it to the problem of hypothesis

testing for covariance structures in high dimensions. In Chapter 3, we describe our data analysis

on structural brain connectivity data. In Chapter 4, we describe our work on community detection

using low-dimensional node embeddings. In Chapter 5, we provide proofs of all the results in

Chapter 4. In Chapter 6, we suggest directions for future work.

1.1 Hypothesis testing for covariance structures in high dimensions

Covariance structures in high-dimensions have been of interest in many applications such as gene

co-expression analysis (D’haeseleer et al., 2000; Horvath and Dong, 2008) and brain network analysis

(Stam, 2014; Teicher et al., 2016; van den Heuvel and Hulshoff Pol, 2010). These applications

motivate the study of hypothesis testing for these structures.

In the small sample setting, sample covariance matrix is used for testing for the covariance

structure. However, this is not a good estimate for the covariance structure in high dimensions. In

the case of testing for the inverse of the covariance matrix, the precision matrix, the corresponding

sample precision matrix is not well defined. In addition to high dimensionality, the dependency

structure also makes the problem challenging.

There are two types of testing problems in high dimensions: global testing for the overall

pattern of the covariance structure and simultaneous testing for a large collection of hypothesis for

local covariance structures. We will focus on global testing. We first fix some notation. Let X =

(X1,X2, . . . ,Xn)T be a matrix consisting of n independent and identically distributed row vectors of

dimension p each. We will further assume that each Xi has multivariate normal distribution unless

1



otherwise stated. Each Xi has mean µ = (µ1, µ2, . . . , µp) and covariance matrix Σ = (σij)p×p. The

sample mean is given by X̄ = 1
n

∑n
k=1 Xk and the sample covariance matrix is given by

Σ̂ =
1

n

n∑
k=1

(Xk − X̄)T (Xk − X̄).

We first discuss tests for H0 : Σp = Ip. In the classical theory of statistics when p < n, the

likelihood ratio test is used for testing H0 : Σp = Ip. The likelihood ratio test statistic (LRT)

in that setting is L = n(tr(Σ̂) − log |Σ̂| − p). For fixed p and n → ∞, it can be shown that L

converges in distribution to χ2
1
2
p(p+1)

under H0. This is useful in practice when p
n is closer to 0.

However, use of this for comparable n and p leads to a large Type I error. Bai & Silverstein (Bai and

Silverstein, 2008) use random matrix theory (RMT) results to show that when p
n → (0, 1), µp = 0

and under moment bounds on the variables Xi, a corrected LRT converges in distribution to N(0, 1)

distribution. Further extensions are proved in (Jiang et al., 2012; Zheng et al., 2015).

In addition to using LRT, the spectral norm and the Frobenius norm have also been used for

testing. Johnstone (Johnstone et al., 2001) showed that when Xi ∼ N(0, Ip) and n
p converges to a

constant in (0,∞), the largest eigenvalue of XTX converges after recentering to the Tracy-Widom

distribution of order 1. Soshnikov (Soshnikov, 2002) extended this result by showing that the

joint distribution of the largest k eigenvalues converges to the Tracy-Widom distribution. He also

extended results to the sub-gaussian case. Péché (Péché, 2009) further extended these results to

the case of Xi having moment bounds and the limit p
n possibly being equal to 0 or ∞. Use of

Frobenius norm for testing was first done in (John, 1971) and (Nagao, 1973) in the small sample

setting. They used the test statistic 1
p ||Σ̂−I||F where the subscript F denotes the Frobenius norm.

Ledoit & Wolf (Ledoit et al., 2002) showed that when p > n, this test is not consistent. They

introduced a correction term to form a consistent estimator. Further extensions are in (Srivastava,

2005; Birke and Dette, 2005; Chen et al., 2010).

Towards testing for more general covariance structures, the test for H0 : Σp = σ2Ip was studied

by John (John, 1971) and Ledoit & Wolfe (Ledoit et al., 2002). Ledoit & Wolfe (Ledoit et al., 2002)

showed that the statistic 1
p tr

{(
Σ̂

p−1tr(Σ̂)
− I
)2
}

, used in the low dimension setting, is consistent

even when p grows with n. Next, we discuss the case when Σp is diagonal under the null hypothesis.

This case is equivalent to testing H0 : R = Ip where R is the correlation matrix. A natural test
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statistic here is the largest off-diagonal value of the sample correlation matrix, R̂, i.e.

Ln,p = max
1≤i<j≤p

|R̂i,j |.

Cai & Jiang (Cai and Jiang, 2011) showed that when Xi are independent, nL2
n,p converges in

distribution to the Gumbel distribution after recentering. Cai & Jiang (Cai and Jiang, 2011,

2012) extend these results under Gaussian assumption to the regimes when p, the number of

variables, is exponential or super-exponential in n. Shao & Zhou (Shao and Zhou, 2014) provide

conditions on the moments of Xij for the convergence of Ln,p in the sub-exponential and exponential

setting. In recent work, Fan & Jiang (Fan and Jiang, 2019) study the case when the variables

Xi are highly dependent. More specifically, the authors work under the case that correlations

Rij = ρ, ∀1 ≤ i 6= j ≤ p. They show that the limit of Ln,p is Gumbel, a convolution of Gumbel and

normal, or a normal distribution depending on the growth of ρ with respect to 1√
log p

.

In the case of more general covariance structures, methods used for the testing of H0 : Σp = Ip

are not directly applicable. All of the results above which are based on the maximum of a subset of

the sample correlation or covariance matrix make use of the Chen-Stein method (Arratia et al., 1990)

for Poisson approximation. Poisson approximation is a powerful technique to compare dependent

vectors or processes. However the method requires sufficient amount of independence in order for

it to be applicable. In the next chapter we introduce an alternative technique, namely Gaussian

comparison, to approach the hypothesis testing problem.

Gaussian comparison techniques have been used in many research areas such as empirical

processes (Boucheron et al., 2013) and extreme value theories (Leadbetter et al., 2012). These

techniques help us compare probability distributions of Gaussian vectors or processes based on

their covariance structures. Our Gaussian comparison result (Theorem 1) compares expectations of

functionals of an arbitrary multivariate normal vector and a standard normal vector. In particular,

this helps us compare the extremal processes derived from these vectors. Lemma 2 is another

comparison result of a similar nature in Chapter 2.

In order to demonstrate how Gaussian comparison results such as Theorem 1 and Lemma 2

may be used, we apply these to the problem of hypothesis testing for covariance structures given

by short-range dependence. In this problem, we test whether the covariance matrix Σ is banded
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where Σ = (σij)p×p is said to be banded with bandedness τ ∈ N if

σkl = 0 for all pairs (k, l) such that |k − l| ≥ τ.

We use the test statistic given by

Un,τ := max
1≤i<j≤p,|i−j|≥τ

|(X·i ·X·j)|
n2

,

which is the maximum over the pairs of columns or attributes which are independent under the

null hypothesis. In addition to studying the maxima of the covariances, in Chapter 2 we also study

the stochastic process derived from the full collection {(X·i ·X·j)}1≤i<j≤p,|i−j|≥τ .

1.2 Multilayer networks

Many real world systems consist of an interacting collection of entities. For example in the case

of brain connectivity analysis, brain regions may be thought of as entities which interact with each

other. A simplification of such complex systems is to only look at pairwise interactions between

entities. This leads to what is known as a network which is a collection of entities and their pairwise

relationships. One of the simplest examples of a network is a graph. A graph G is a pair (V,E)

where V is the set of entities, referred to as nodes, in the network and E ∈ {0, 1}V×V is the set

of edges which indicate the presence or absence of a relationship between pairs of nodes. More

explicitly, an edge equal to 1 represents that there a link between two nodes and 0 indicates the

absence of it. A weighted graph or network is defined similarly except E ∈ RV×V . Edges in a

weighted network represent the strength of the relationship between the nodes.

Networks have been useful in understanding structure, dynamics and function of complex sys-

tems. A few examples of such systems come from analysis of brain connectivity, gene co-expression

(Stuart et al., 2003), protein-protein interactions (Schwikowski et al., 2000), social networks (Lusher

et al., 2013) and transportation systems (Guimerà et al., 2005). Specifically in the context of brain

connectivity analysis, network analysis has shown that many diseases are reflected as abnormal net-

work organization between the cortical regions (Bassett et al., 2008; Bassett and Bullmore, 2009;

He et al., 2008; Stam et al., 2007).
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In order to understand the structure of complex networks, network modeling can be very useful

to extract features that explain the network structure. Network models are also useful to understand

whether certain features in real networks deviate from what we expect under a given model. In the

following, we first discuss models for single networks followed by models for multilayer networks.

Starting with the work of Erdős & Rényi (Erdős and Rényi, 1960), a large body of work has

been devoted to the study of random graph models for real world networks. Two properties were

observed to be satisfied by many real world networks. The first property is the small world property

which means that the shortest distance between any two nodes in the network is O(log n) where n

is the number of nodes in the network. The second property is that the distribution of the node

degrees (the number of edges starting at a node) follows a power law. To model these properties,

the Watts-Strogatz model (Watts and Strogatz, 1998) and the Barabási-Albert model (Barabási

and Albert, 1999) respectively were introduced.

Another feature of many real world networks is the presence of communities or clusters of

nodes which have relatively distinct density of edges within the community compared to rest of

the nodes in the network. This motivates a mixture model for random graph models referred to

as the stochastic block model (SBM) (Holland et al., 1983a). In addition to modeling, SBMs can

be used for community detection (Karrer and Newman, 2011) and as a benchmark for community

detection algorithms. SBMs have been extended in various directions such as to allow for mixed

memberships of nodes (Airoldi et al., 2005, 2008), latent class models (Hoff, 2008) and weighted

networks (Aicher et al., 2015). Apart from these, two more important class of models are given

by the exponential random graph models (Robins et al., 2007a,b) and latent feature models (Palla

et al., 2012; Miller et al., 2009).

In addition to explaining features which account for properties in real networks, network models

are also used for comparing features in real networks to features in network models satisfying

constraints. Some examples of these are block models and its extensions which have been mentioned

above. Two well-known types of these models given by the Chung-Lu model (Chung and Lu, 2002)

and the configuration model (Molloy and Reed, 1995) model networks satisfying constraints relating

to the distribution of the degree and the expected degree of nodes in the network.

Though the study of single networks has been very useful, a lot of networks today constitute

what are known as multilayer networks. Multilayer networks can be loosely described as a collec-
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tion of networks, also called layers in this context, which are related to each other in some way.

For example, brain connectivity networks of a subject taken at several time points or different

transportation networks such as subway and bus for a given city. Modeling each layer separately

fails to borrow information across layers. Thus there is a need to model these networks jointly.

An analog of graphs can be defined for multilayer networks as a pair (G,E) where G is a set

of graphs or layers i.e. G = {Gk|1 ≤ k ≤ n}, Gk = (Vk, Ek) and E = {{0, 1}Vi×Vj |1 ≤ i 6= j ≤ n} is

the set of edges or links between the layers. Therefore, in addition to links within a layer, there are

links between nodes across layers as well. More generally, multilayer networks may have weighted

edges and other attributes.

Several multilayer models have been proposed which model the layers with a fixed or expected

degree sequence and model the links between layers (Leicht and D’Souza, 2009; Bianconi et al.,

2015; Gao et al., 2012, 2013). Similar to single layer models, several multilayer models also model

community structure in the networks. (Zhang et al., 2017) propose a null model for networks

evolving over time. (Matias and Miele, 2017; Matias et al., 2018) define temporal stochastic models

by modeling how the model parameters change over time. Several models have also been proposed

for joint community detection for multilayer networks (Paul and Chen, 2018; Barbillon et al., 2017;

Han et al., 2015; Stanley et al., 2016; Peixoto, 2015).

Towards jointly modeling networks, in Chapter 3 we start with describing two brain network

data sets. The first data set consists of structural connectivity networks of human brains. The

networks are of subjects over three time points from infancy to age 2. The networks in the data

set are weighted. This is a period of immense brain development. We explore questions such as

predicting whether the subject was preterm or not based on the networks, network normalization,

effects of scanner, and analysis over time.

The second data set consists of subjects in the ages 50 and over. Most of these subjects

have brain networks over 4 − 5 time points and each of these networks are labeled as cognitively

normal (CN) or mild cognitive impairment (MCI) or Alzheimer’s disease (AD). The networks in

this data set are weighted as well. We explore questions such as prediction of mini-mental state

exam (MMSE) scores and predicting diagnosis labels.

In section 6.2 we describe a proposed method for joint modeling of multilayer networks. This

approach makes use of optimal mass transport which may be thought of as a shortest path between
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configurations or in our case, network models. We introduce and describe two methods and explain

these methods in the context of the Erdős-Rényi model, the stochastic block model and the degree-

corrected model.

1.3 Node embedding methods

In recent decades, very large network data sets have become available. This had led to the

development of new methods for the analysis of such data sets. We review below one class of such

methods called node embedding methods. Node embedding methods map nodes of a network into

a low-dimensional Euclidean space. One can then use methods for Euclidean spaces for network

analysis. Broadly, there are three types of node embedding methods in the literature. We discuss

each of the three types of methods below. We first fix some notation. For an observed graph G, A

denotes the adjacency matrix of the graph and D denotes the diagonal matrix with the degrees of

the nodes, i.e. Dii =
∑

j Aij . L = D − A denotes the Laplacian matrix for the graph. Zi denotes

the node embedding of node i in a low-dimensional Euclidean space. A(k) denotes the kth power

of the matrix A.

The first type of methods are based on matrix factorization. The node embeddings for these

methods are obtained by finding low-rank factorization of a matrix derived from the Laplacian or

the adjacency matrix of the graph. Belkin and Niyogi (2002) compute the embeddings so that

connected nodes tend to be close to each other in their embeddings. In particular, they minimize

∑
ij

‖Zi − Zj‖2FAij .

The node embeddings can then be obtained by the eigendecomposition of L. The Graph Factor-

ization (GF) algorithm (Ahmed et al., 2013) approximate A by inner products of the embeddings

and solve the following problem:

∑
(i,j)

(Aij − 〈Zi, Zj〉)2 +
λ

2

∑
i

‖Zi‖2F .

GraRep (Cao et al., 2015) use higher powers of A to find the optimal embeddings. In particular,

they compute the embeddings by finding the singular value decomposition (SVD) of the matrix
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given by

(i, j) 7→ log

 A
(k)
ij∑

i′ A
(k)
i′j

− log
( c
N

)
,

where c is a constant. HOPE (Ou et al., 2016) computes the node embeddings by the SVD of a

node similarity matrix S. For this, S may be computed using any method of choice based on the

application and the method allows for S to be asymmetric.

The second type of methods are based on random walks. The first step for these methods

consists of running random walks on the underlying graph and creating a matrix of co-occurences.

Pairs of nodes which are closer to each other on the random walks are assigned a higher co-occurence.

The second step then consists of computing node embeddings so that pairs of nodes with higher

co-occurences tend to be close to each other in terms of Euclidean inner product. These methods

perform well for link prediction and node classification for large sparse graphs as the co-occurences

provide a flexible measure of strength of the relationship between any two nodes as compared to

deterministic measures. We discuss two methods of this type, DeepWalk (Perozzi et al., 2014) and

node2vec (Grover and Leskovec, 2016), in more detail in Chapter 4. Another well-known method

often compared to DeepWalk and node2vec is LINE (Tang et al., 2015). This solves the same

optimization problem but uses the adjacency matrix or edge weights in place of co-occurences.

The third type of methods are based on deep neural networks. These methods allow for

modeling highly non-linear relationships between the node features and node embeddings. One

approach for this is based on applying the idea of deep autoencoder (Hinton and Salakhutdinov,

2006) to the setting of networks. Two methods using this approach are DNGR (Cao et al., 2016)

and SDNE (Wang et al., 2016). Both of these algorithms have a shared set of parameters for

embedding the nodes which means that the number of parameters do not scale linearly with n, the

number of nodes in the network. Some of the other prominent deep neural network based methods

use features from the neighborhoods of the nodes to construct node embeddings as opposed to using

the whole network. This is an especially useful approach for very large graphs, but these are also

flexible in the sense that they can be used to generate embeddings for new nodes using a previously

trained model. Some examples of these methods are (Kipf and Welling, 2016a,b; Hamilton et al.,

2017a).
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Node embedding methods have been used successfully for tasks such as network visualization,

node classification and link prediction. The node embeddings output from any one of these methods

can be used for a variety of downstream tasks. However, it is not clear which of these methods are

better suited for specific tasks than others. It is also not clear if certain graph structures are better

encoded using specific embedding methods compared to others. Since most of the recent scalable

node embedding methods lack interpretability, it is of interest to better understand the mechanisms

underlying these methods to both understand the limitations of these methods and any in-built

biases in these methods. This motivates the need for a theoretical study to answer these questions.

Theoretical studies will also be helpful for future researchers to build upon when designing new

methods. With this background, in this dissertation we study DeepWalk and node2vec algorithms.

More specifically, we study how these methods perform for community detection. Towards this

we use the stochastic block model, a well-known benchmark model for community detection, to

generate graphs for our theoretical analysis. We find network sparsity levels when applying the

k-means algorithm on the node embeddings detects communities. Our results also indicate the

network sparsity levels when this approach will not work. Another important implication of our

results is that node2vec performs provably better than DeepWalk when using a large backtrack-

ing parameter. The latter two results have significance for practitioners when choosing a node

embedding method for community detection and also in choosing parameters for node2vec.
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CHAPTER 2

Gaussian comparison for correlations in high-dimensions

2.1 Introduction

Gaussian comparison is an important technique to compare distributions and expectations of

sets of Gaussian random variables. It is used in various applications such as empirical processes

(Boucheron et al., 2013), extreme value theories (Leadbetter et al., 2012), high dimensional sta-

tistical inference (Chernozhukov et al., 2015) and several topics in probability theory (Adler and

Taylor, 2007; Li, 1999; Li and Shao, 2001).

We discuss a couple of Gaussian comparison results. In (Slepian, 1962), D. Slepian proved

an inequality which compares probabilities of sets of Gaussian vectors. In order to describe this

more precisely, we fix some notation. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two

Gaussian vectors. Suppose EX = EY = 0,EX2
i = EY 2

i , and EXiXj 6 EYiYj for i 6= j. Then

Slepian’s inequality states that for all u1, u2, . . . , un ∈ R we have

P (Xi 6 ui, ∀i = 1, 2, . . . , n) 6 P (Yi 6 ui, ∀i = 1, 2, . . . , n).

In other words, an ordering between the covariances helps us establish stochastic domination

between the two variables. An important extension of Slepian’s inequality is the Sudakov-Fernique

inequality which compares the expectations of maximum of random variables. The inequality says

that provided EX = EY and EXiXj 6 EYiYj for i 6= j, we have

Emax
i
Xi > Emax

i
Yi.

Several more important extensions of these two types of inequalities may be found in (Gordon,

1985, 1987; Kahane, 1986; Vitale, 2000). In this chapter we derive a Gaussian comparison result

to compare expectations of functions of random variables based on a smart-path argument. The
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significance of this result is demonstrated using an application to a problem of maximal covariances

in high dimensions. We give a brief introduction to this problem in the next section. In section

2.3, we describe our results. In section 2.4, we give proofs of the Gaussian comparison results. In

section 2.5.1, we give proofs of our results on maximal covariances.

2.2 Covariances in high dimensions

Correlation networks arise in applications such as gene co-expression analysis (D’haeseleer et al.,

2000; Horvath and Dong, 2008) and brain network analysis (Stam, 2014; Teicher et al., 2016; van den

Heuvel and Hulshoff Pol, 2010). Gene co-expression analysis reveals genes which are expressed

similarly across experimental conditions. Similarly, functional brain network analysis identifies

brain regions with similar activity. These methods are useful in understanding the gene regulatory

networks and brain structure and function respectively.

Correlation network applications motivate the problem of hypothesis testing for correlation

structures. Since the data sets in applications are large in dimension, we are interested in asymptotic

results. We now set up the notation and describe our model for the data.

Let Yn = {Yij : 1 6 i 6 n, 1 6 j 6 p} be a n× p dimensional matrix jointly Gaussian random

variables. In the context of gene expression data, Yn is the gene expression matrix constructed

using p genes and n experimental conditions. Similarly in the context of functional connectivity

data, Yn describes the activation patterns of p brain regions over n time points. The rows are

independent and identically distributed random vectors and Y1· = (Y11, Y12, . . . , Y1p) ∼ N(0,Σ)

where Σ = {ρkl : 1 6 k, l 6 p} is the covariance matrix satisfying ρi,i = 1 for 1 6 i 6 p. We would

like to test that the covariance matrix is banded with bandedness τ ∈ N, i.e.,

ρkl = 0 for all pairs (k, l) such that |k − l| > τ.

A natural test statistic is the following

Un,τ := max
16i<j6p,|i−j|>τ

|(Y·i · Y·j)|
n2

,
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where (Y·i ·Y·j) denotes the Euclidean inner product between vectors Y·i and Y·j . This motivates the

study of the extremal landscape of normalized sample covariances obtained from Y. We describe

our results towards this in the next section.

2.3 Results

In this section we present formal statements of our results. As the results involve point pro-

cesses, we recall the necessary definitions in the next subsection. We refer interested readers to the

comprehensive treatises (Kallenberg, 1973; Daley and Vere-Jones, 2003, 2008).

2.3.1 Point Process Preliminaries

Let (Ω,F ,P) be a probability space, and for d > 1, let B(Rd) denote the Borel subsets of Rd.

A point process with values in Rd is a map Π : Ω×B(Rd)→ {0, 1, . . .} such that (i) Π(·, B) is an F-

measurable function for every fixed B ∈ B(Rd), and (ii) Π(ω, ·) is a counting measure on B(Rd) for

every ω ∈ Ω. In all our examples, Π will be simple almost surely. In what follows we will suppress

the dependence of Π on ω, denoting Π(ω,B) as Π(B). Let λ : Rd → [0,∞) be a Borel measurable

function such that λ(B) :=
∫
B λ(x) dx is finite for every bounded set B ∈ B(Rd). A point process

Π is said to be Poisson with rate function λ(·) if (i) Π(B) ∼ Poisson(λ(B)) for each bounded set

B ∈ B(Rd), and (ii) for any k > 2 and disjoint Borel sets B1, . . . , Bk, Π(B1),Π(B2), . . . ,Π(Bk) are

independent. A sequence of point processes Π1,Π2, . . . converges to a point process Π in the vague

topology, written Πn
d

=⇒ Π, if for every compactly supported continuous function f : Rd → [0,∞)

the (random) integral
∫
f dΠn converges to

∫
f dΠ in the usual sense of weak convergence.

2.3.2 Gaussian comparison

In this section we describe the main comparison result. We start by recalling extremal point

process in the independent regime. Let Z1, Z2, . . . be independent N (0, 1) random variables. For

each N > 1 let

aN =
√

2 logN and bN =
√

2 logN − log(4π logN)√
8 logN

, (2.1)
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be the standard extreme value scaling and centering constants, respectively, for the Gaussian.

By the classical extreme value theorem for the Gaussian distribution, aN (max{Z1, . . . , ZN} − bN )

converges in distribution to − log T where T is an Exp(1) random variable. Note that − log T has

a standard Gumbel distribution. More generally, one may study the joint behavior of the order

statistics of Z1, . . . , ZN via the associated point process

ΓN =
N∑
i=1

δ{aN (Zi − bN )}, (2.2)

where δ{x} denotes the measure assigning mass one to the point x. It follows from standard

results (cf. (Leadbetter et al., 1983, Theorem 5.7.2)) that as N tends to infinity ΓN converges in

the vague topology to the Poisson process Π0 on R with intensity function γ(x) = exp(−x). In

particular, if ξ1 > ξ2 > · · · denote the ordered points of Π0, then ξr has the same distribution as

− log(T1 + · · ·+ Tr) where T1, . . . , Tr are independent Exp(1) random variables.

The following result derives an explicit bound between the extremal process in the independent

regime and the extremal process of an arbitrary multivariate normal vector. For this we need to

setup notation. Let Z = (Z1, Z2, . . . , ZN ) be as above a vector of independent standard normal

random variables, and let X = (X1, X2, . . . , XN ) be a multi-normal random vector such that

E(Xi) = 0, E(X2
i ) = 1, and E(XiXj) := σij ∈ (−1, 1) for 1 6 i < j 6 N .

Theorem 1 (Gaussian comparison). Let f : R → [0, 1] be a compactly supported, twice differ-

entiable function, and define GN : RN → R by

GN (x) := exp

{
−

N∑
i=1

f(aN (xi − bN ))

}
(2.3)

where aN and bN are defined as in (2.1). Let θ ∈ R be any number such that f(x) = 0 for all x 6 θ

and define uN := bN + θ/aN . Then

|EGN (X)− EGN (Z)| 6
2 |f ′|2∞ a2

N

u4
N

∑
i 6=j,σij 6=0

e−u
2
N/(1+σ+

ij)

(1− σ+
ij)

1/2
(2.4)

where x+ = max{x, 0} and |f ′|∞ = supx |f ′(x)|.
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Remark 2.3.1. Under the same assumptions on X and Z as those in Theorem 1, it is shown in

(Bhamidi et al., 2012, Lemma 2.2) that for each u > 1,

∣∣∣∣P( max
16i6N

Xi > u
)
− P

(
max

16i6N
Zi > u

)∣∣∣∣ 6 ∑
i 6=j,σij 6=0

2 Φ̄2(u)

√√√√1 + σ+
ij

1− σ+
ij

· e−σ
+
iju

2/(1+σ+
ij). (2.5)

Using standard Gaussian tail bounds (see (2.8)), one may show that the bounds in (2.4) and (2.5)

are of the same order when u = uN .

2.3.3 Normalized covariances in high dimensions

Let Xn = (Xij)16i6n,16j6p be a n × p dimensional matrix with Xij
iid∼ N(0, 1). We recall Yn

and Un,τ from section 2.2. Yn = {Yij : 1 6 i 6 n, 1 6 j 6 p} is a n× p dimensional matrix jointly

Gaussian random variables and

Un,τ := max
16i<j6p,|i−j|>τ

|(Y·i · Y·j)|
n2

.

For 0 < δ < 1, let

Γp,δ := {1 6 i 6 p : |ρij | > 1− δ for some 1 6 j 6 p with j 6= i}.

We now recall the following result in (Cai and Jiang, 2011).

Proposition 1 (Cai & Jiang 2011, Theorem 4). Suppose as n→∞:

1. p = pn →∞ with log p = o(n1/3);

2. τ = o(pt) for any t > 0;

3. for some δ ∈ (0, 1), |Γp,δ| = o(p), which is particularly true if max16i<j6p |ρi,j | 6 1− δ.

Then, nU2
n,τ−4 log p+log log p converges weakly to an extreme distribution of type I with distribution

function

F (y) = exp

{
− 1√

8π
e−y/2

}
, y ∈ R.
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Motivated by the scaling in the above Proposition, we define

R(U, V ) := n

(
〈U, V 〉
n

)2

− 4 log p+ log log p

=
(〈U, V 〉)2

n
− 4 log p+ log log p

Define two point processes by setting

ΓXn(B) =
∑

16a<b6p,|a−b|>τ

1B{R(X·a, X·b)}, (2.6)

ΓYn(B) =
∑

16a<b6p,|a−b|>τ

1B{R(Y·a, Y·b)} (2.7)

for each Borel set B ⊂ R. Then we have the following point process result.

Theorem 2. Let Γ0 be the Poisson point process with intensity function γ(x) = 1
2
√

8π
exp

(
−x

2

)
.

Let ΓYn be the point process as defined above. Suppose as n→∞:

1. p = pn →∞ with log p = o(n1/3);

2. τ = o(pt) for any t > 0;

3. for some δ ∈ (0, 1), there exists ε ∈ (0, 1) such that |Γp,δ| = o(p1−ε).

Then ΓYn →d Γ0.

2.4 Proofs: Gaussian comparison

This section contains the proofs of the Gaussian comparison results. We begin with by showing

Gaussian tail bounds needed for the proof of Theorem 1. Then, we provide a proof of Theorem 1.
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2.4.1 Gaussian Tail Bounds

Let Φ̄(x) = 1−Φ(x) where Φ(x) is the cumulative distribution function of the standard Gaussian

distribution. Recall that for x > 0,

Φ̄(x) 6
1√
2πx

e−x
2/2. (2.8)

The proof of Theorem 1 requires an inequality for the probability that two correlated Gaussian

random variables each exceeds a common threshold.

Lemma 1. Let (Z,Zρ) be jointly Gaussian random variables with mean 0, variance 1, and corre-

lation E(ZZρ) = ρ ∈ (−1, 1). Then for any u > 0,

P(Z > u,Zρ > u) 6
(1 + ρ)2

2πu2
√

1− ρ2
exp

(
−u2/(1 + ρ)

)
. (2.9)

Proof of Lemma 1. Fix u > 0. When ρ > 0 the proof follows from inequality (2.8) and equation

(1.2) in (Willink, 2004). Here we consider the case ρ < 0. Note that we may write Zρ = ρZ +√
1− ρ2Z ′, where Z ′ is a standard Gaussian random variable independent of Z. By conditioning

on the value of Z, it is easy to see that

P(Z > u,Zρ > u) =

∫ ∞
u

Φ̄ (g(t)) φ(t) dt where g(t) =
u− ρt√
1− ρ2

. (2.10)

Now define

η =

√
1− ρ
1 + ρ

and h(x) = ex
2/2 Φ̄(x).

As h′(x) = x ex
2/2 Φ̄(x) − 1/

√
2π, inequality (2.8) implies that h(x) is decreasing for x > 0. It

follows from equation (2.10) that

P(Z > u,Zρ > u) =

∫ ∞
u

e−g(t)
2/2 h(g(t))φ(t) dt (2.11)

6 h(g(u))

∫ ∞
u

e−g(t)
2/2 φ(t) dt

= h(ηu)

∫ ∞
u

e−g(t)
2/2 φ(t) dt,
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where in the last step we have used the fact that g(u) = ηu. Routine algebra and a change of

variables establishes that

∫ ∞
u

e−g(t)
2/2 φ(t) dt = e−u

2/2

∫ ∞
u

1√
2π

exp

(
− (t− ρu)2

2(1− ρ2)

)
dt (2.12)

=
√

1− ρ2 e−u
2/2Φ̄(ηu).

Combining (2.11), (2.13), and inequality (2.8) yields the bound (2.9), as desired. �

2.4.2 Proof of Theorem 1

The proof of Theorem 1 requires a preliminary lemma. A version of the lemma appears in

(Bhamidi et al., 2012), but as the proof is only sketched there, and as the lemma may be of

independent interest, we provide a detailed statement and proof below. The proof relies on a

smart-path argument and Gaussian integration by parts.

Lemma 2. Let G : Rn → R be a bounded, twice continuously differentiable function with bounded

derivatives

Gi(x) =
∂G(x)

∂xi
1 6 i 6 n and Gij =

∂G(x)

∂xi∂xj
1 6 i, j 6 n.

If X ∼ Nn(0,ΣX) and Y ∼ Nn(0,ΣY ) are normal random vectors then

EG(Y)− EG(X) =
1

2

n∑
i,j=1

∆ij

∫ 1

0
EGij(Xt) dt

where ∆ij = EYiYj − EXiXj = (ΣY − ΣX)ij and Xt ∼ Nn(0,Σt) with Σt := (1− t) ΣX + tΣY .

Proof: Assume without loss of generality that X and Y are independent. For each t ∈ [0, 1] define

the random vector

Xt = (1− t)1/2 X + t1/2 Y

and the associated function ϕ(t) = EG(Xt). Note that X0 = X, X1 = Y, and that Xt ∼ Nn(0,Σt),

where Σt is defined as in the statement of the lemma. Thus

EG(Y)− EG(X) = ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t) dt,
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and it suffices to show that for each t ∈ (0, 1)

ϕ′(t) =
1

2

n∑
i,j=1

∆ijEGij(Xt). (2.13)

To this end, fix t ∈ (0, 1) and note that Xt is distributed as Σ
1/2
t Z where Z ∼ N (0, I) is a standard

normal random vector with independent components. To simplify notation, let At := Σ
1/2
t . It

follows from our regularity assumptions and the chain rule that

ϕ′(t) =
d

dt
EG(At Z) = E

[
d

dt
G(At Z)

]
= E

[
n∑
i=1

Gi(At Z)
d

dt
(At Z)i

]

=

n∑
i,j=1

(A′t)ijE (Zj Gi(At Z)) , (2.14)

where A′t denotes the entry-by-entry derivative of the matrix At. Fix i, j for the moment and define

the function

Hij(s) := EGi(At Zs) where Zs := (Z1, · · · , Zj−1, s, Zj+1, · · · , Zn).

It follows from a simple conditioning argument and Gaussian integration by parts that

E [Zj Gi(AtZ)] = E [Zj Hij(Zj)] = EH ′ij(Zj).

By another application of the chain rule,

H ′ij(s) = E
[
d

ds
Gi(At Zs)

]
=

n∑
k=1

E
[
Gik(At Zs)

d

dt
(At Zs)k

]

=
n∑
k=1

(At)jkEGik(At Zs).

Thus, as Z1, . . . , Zn are independent,

EH ′ij(Zj) =
n∑
k=1

(At)jkEGik(At Z).
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Combining this last equation with (2.14), we find that

ϕ′(t) =
n∑

i,k=1

EGik(At Z) ·
n∑
j=1

(A′t)ij(At)jk

=

n∑
i,k=1

EGik(Xt) · (A′tAt)ik. (2.15)

Recalling that At = Σ
1/2
t , it is easy to see that (A2

t )
′
ik = (Σt)

′
ik = ∆ik. Furthermore, as At and

A′t are symmetric,

(A2
t )
′ = A′tAt + AtA

′
t = A′tAt + (A′tAt)

T . (2.16)

Fix 1 6 i < k 6 n. Continuity of the second partial derivatives ensures that Gik = Gki, and

therefore

EGik(Xt) · (A′tAt)ik + EGki(Xt) · (A′tAt)ki

= EGik(Xt)
(
(A′tAt)ik + (A′tAt)ki

)
= EGik(Xt) (A2

t )
′
ik = EGik(Xt) ∆ik,

where the penultimate equality follows from (2.16). A similar argument shows that (A′tAt)ii =

∆ii/2. Thus (2.13) follows from (2.14), and the proof is complete.

Proof of Theorem 1: Fix N > 1. Let f : R → [0, 1] and θ ∈ R be as in the statement of the

theorem. To reduce notation, define a := aN , b := bN , and u := b + θ/a, and let G : RN → R be

defined as in (2.3). Clearly, for i 6= j,

Gij(x) = a2f ′(a(xi − b)) f ′(a(xj − b))G(x).

Our assumptions concerning f and θ ensure that f ′(a(x−b)) = 0 for x 6 u, and that 0 < G(x) 6 1.

Now let Z ∼ NN (0, I) and X ∼ NN (0,Σ) be multinormal random vectors such that the

covariance matrix Σ = {σij} of X satisfies σij = 1 if i = j and σij ∈ (−1, 1) for i 6= j. For t ∈ [0, 1]

let Xt ∼ NN (0, tΣ + (1− t) I). It follows from the properties of Gij(x) that for i 6= j and each t,

|EGij(Xt)| 6 a2 |f ′|2∞ P(Xt
i ∧Xt

j > u).
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From this inequality and an application of Lemma 2, we obtain the bound

|EG(X)− EG(Z)| 6 a2 |f ′|2∞
∑
i<j

|σij |
∫ 1

0
P(Xt

i ∧Xt
j > u) dt

Applying the change of variables t→ t/σij for each i, j such that σij 6= 0 yields the inequality

|EG(X)− EG(Z)| = a2 |f ′|2∞
∑
i<j

∣∣∣∣∫ σij

0
P(Z ∧ Zt > u) dt

∣∣∣∣
where Z,Zt are jointly normal random variables with mean 0, variance 1, and correlation E(ZZt) =

t. By Lemma 1,

P(Z ∧ Zt > u) 6
(1 + t)2

2πu2
√

1− t2
exp

(
− u2

1 + t

)
,

and therefore

|E(G(X))− E(G(Z))| 6 4 |f ′|2∞ a2

u2

∑
i<j

∣∣∣∣∣
∫ σij

0

exp
(
−u2/(1 + t)

)
2π
√

1− t2
dt

∣∣∣∣∣ .
Routine algebra implies that for σij 6= 0

∣∣∣∣∣
∫ σij

0

exp
(
−u2/(1 + t)

)
2π
√

1− t2

∣∣∣∣∣ dt 6 2 Φ̄2(u)

√√√√1 + σ+
ij

1− σ+
ij

· e−σ
+
iju

2/(1+σ+
ij)

More details may be found in the latter part of proof of Lemma 2.2 from (Bhamidi et al., 2012).

Applying the tail bound in (2.8) to the final expression above completes the proof. �

2.5 Proofs: Maximal correlations

We begin this section with the proof of Theorem 2. We then state and prove the supplementary

results.
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2.5.1 Proof of Theorem 2

Proof of Theorem 2. Let f : R → [0, 1] be an arbitrary compactly supported function. For a

n× p matrix Z, let

Gfn(Z) :=
∏

16a<b6p,|a−b|>τ

exp {−f(R(Z·a, Z·b))} ,

By Theorem 4.11 from (Kallenberg, 2017) and by Proposition 2 we have

EGfn(X) = Ee−ΓXnf → Ee−Γ0f .

In order to show ΓYn → Γ0, it is enough to show that

|EGfn(Y )− EGfn(X)| → 0.

By an approximation argument, it is enough to show this for functions f which are smooth.

We will suppress the superscript f in Gfn in the rest of the proof.

Let

Xt
i· ∼ Np(0,Σ

t) with (Σt)kl := tρkl, 0 6 t 6 1, 1 6 k, l 6 p and

Rij,t := R(Xt
·i, X

t
·j).

Note that the superscript t in the notation above does not stand for powers or exponentiation.

Observe that Y
d
= X1. We will suppress the parameter t in the notation for Rij,t, Xt

·i and Xt
·j , and

only write Rij for example.

We apply the Gaussian comparison to bound |EGn(Y ) − EGn(X)|. Note that the ∆ij factor

in Lemma 2 is 0 for the summands involving independent coordinates since we compare to the

independent setting. The subscripts in the notation below will denote matrix coordinates with

respect to which we differentiate.

For 1 6 a < b 6 p with |a− b| < τ and 1 6 k 6 n, we have

∂G(Xt)

∂xka
= G(Xt) ·

∑
i:|a−i|>τ

−f ′(Rai)Rai
ka and,
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∂G(Xt)

∂xkaxkb
= G(Xt) ·

 ∑
i:|a−i|>τ

−f ′(Rai)Rai
ka

 ·
 ∑
j:|b−j|>τ

−f ′(Rbj)Rbj
kb

 .

Let [u, v] ⊂ R be the support of f . Let un = n(u+ 4 log p− log log p) and vn = n(v + 4 log p−

log log p). The Gaussian comparison lemma gives the following equation:

EG(Y )− EG(X) =
∑

16a<b6p,|a−b|<τ

ρab

∫ 1

0

[
n∑
k=1

EGka,kb(Xt)

]
dt. (2.17)

The integrand above can expressed as follows.

n∑
k=1

EGka,kb(Xt) = E

G(Xt) ·
∑

i:|a−i|>τ

∑
j:|b−j|>τ

f ′(Rai)f ′(Rbj)

(
n∑
k=1

Rai
kaR

bj
kb

) (2.18)

Using Lemma 2 and equation 2.18 above, we have

|EG(Y )− EG(X)| 6

∑
16a<b6p,|a−b|<τ

∫ 1

0
E

 ∑
i:|a−i|>τ

∑
j:|b−j|>τ

||f ′||2∞1{Rai ∈ [u, v]}1{Rbj ∈ [u, v]}

∣∣∣∣∣
(

n∑
k=1

Rai
kaR

bj
kb

)∣∣∣∣∣
 dt,

where [u, v] is the support of f and hence contains the support of f ′.

It can be verified that

Rai
ka =

2(X·a ·X·i)Xki

n
.

and similarly

Rbj
kb =

2(X·b ·X·j)Xkj

n
.

These two equations imply that

n∑
k=1

Rai
kaR

bj
kb =

4

n2
(X·a ·X·i)(X·b ·X·j)(X·i ·X·j). (2.19)

Now,

1{Rai ∈ [u, v]} =⇒ |(X·a ·X·i)| 6
√
n(4 log p− log log p+ v) 6

√
4n log p,
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for large n. And we have a similar inequality for |(X·b ·X·j)|. This gives the following inequality

|EG(Y )− EG(X)| 6

||f ′||2∞
16 log p

n

∑
16a<b6p,|a−b|<τ

∫ 1

0
E

 ∑
i:|a−i|>τ

∑
j:|b−j|>τ

1{Rai ∈ [u, v]}1{Rbj ∈ [u, v]} |(X·i ·X·j)|

 dt,
Let {qn} ⊂ R be a sequence such that qn →∞ and qn = o(nt) for any t > 0. For any i, j write

|(X·i ·X·j)| = |(X·i ·X·j)|1{|(X·i ·X·j)| 6 nqn}+ |(X·i ·X·j)|1{|(X·i ·X·j)| > nqn}.

Using this we have the following inequality

|EG(Y )− EG(X)| 6

||f ′||2∞16qn log p
∑

16a<b6p,|a−b|<τ

∫ 1

0
E

 ∑
i:|a−i|>τ

∑
j:|b−j|>τ

1{Rai ∈ [u, v]}1{Rbj ∈ [u, v]}

 dt
+ ||f ′||2∞

16 log p

n

∑
16a<b6p,|a−b|<τ

∫ 1

0
E

 ∑
i:|a−i|>τ

∑
j:|b−j|>τ

1{|(X·i ·X·j)| > nqn} |(X·i ·X·j)|

 dt
We first bound the second term. Note there are at most 2p3τ ways of choosing the four indices

a, b, i and j. By Lemma 4, the second term is

6 ||f ′||2∞
32 log p

n
p3τ exp

{
−
(

1

8
qn − logC

)
n

}
,

= 16||f ′||2∞ exp

{
−
(

1

8
qn − logC

)
n+ 3 log p+ log τ + log log p− log n

}
,

→ 0 as log p = o( 3
√
n), τ = o(pt) for any t > 0,

where 0 < C <∞ is a constant. We now bound the first term. This can be rewritten as

||f ′||2∞16qn log p
∑

16a<b6p,|a−b|<τ

∑
i:|a−i|>τ

∑
j:|b−j|>τ

∫ 1

0
P (Rai ∈ [u, v],Rbj ∈ [u, v])dt

6 ||f ′||2∞16qn log p
∑

16a<b6p,|a−b|<τ

∑
i:|a−i|>τ

∑
j:|b−j|>τ

∫ 1

0
P (Rai > u,Rbj > u)dt
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To bound P (Rai > u,Rbj > u), we do case work. There are four column vectors involved.

1. One pair of the four columns are dependent. We know columns a and b are dependent

already as |a− b| < τ . So in this case only these two columns must be dependent. By Lemma 6.9

from (Cai and Jiang, 2011)

sup
|ρab|

P (Rai > u,Rbj > u) = O(p−4+ε),

for any ε > 0. There are at most 2p3τ ways of choosing the four column vectors. Thus the bound

in this case is

6 (||f ′||2∞16qn log p)(2p3τ)(cp−4+ε),

for large n and some constant c > 0. The above product goes to 0 as n→∞.

2. Two pairs of columns are dependent. There are two subcases here:

2a. Columns a and b are dependent and either columns a and j are dependent or

columns b and i are dependent. By Lemma 6.10 from (Cai and Jiang, 2011)

sup
|ρab|,|ρaj |,|ρbi|

P (Rai > u,Rbj > u) = O(p−
8
3

+ε),

for any ε > 0. There are at most 8p2τ2 ways of choosing the four column vectors in this case. Thus

the bound in this case is

(||f ′||2∞16qn log p)(8p2τ2)(cp−
8
3

+ε),

for large n and some constant c > 0. This product goes to 0 as n→∞.

2b. Columns a and b are dependent and columns i and j are dependent. Let

S1 := {(s1, s2, s3, s4)|si ∈ {1, 2, . . . , p} for 1 6 i 6 4, |s1 − s2| < τ, |s3 − s4| < τ,

|si − sj | > τ for (i, j) 6= (1, 2), (3, 4)}

S1 is a formal way of writing the set of all possible combinations for (a, b, i, j) under this subcase.

Now let

S2 := {(s1, s2, s3, s4) ∈ S1|si ∈ Γp,δ for some 1 6 i 6 4},
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and let

S3 := {(s1, s2, s3, s4) ∈ S1|si 6∈ Γp,δ for 1 6 i 6 4}.

We have S1 = S2 ∪ S3. We first bound for indices in S3.

By Lemma 6.11 from (Cai and Jiang, 2011) ∃ε′ > 0 which is dependent on δ > 0 such that

sup
|ρab|,|ρij |61−δ

P (Rai > u,Rbj > u) = O(p−2−ε′),

There are at most 4p2τ2 ways to choose the column vectors in this case. The bound in this case is

(||f ′||2∞16qn log p)(4p2τ2)(cp−2−ε′),

for large n and some constant c > 0. This product goes to 0 as n→∞.

We now bound for indices in S2. For this case we note that

P (Rai > u,Rbj > u) 6 P (Rai > u) = Θ(p−2).

There are at most 8|Γp,δ|pτ2 ways of choosing the four indices in this case. Thus the bound in this

case is

(||f ′||2∞16qn log p)(8|Γp,δ|pτ2)(cp−2),

for large n and some constant c > 0. This product goes to 0 as n→∞ as Γp,δ| = o(p1−ε) for some

ε ∈ (0, 1).

3. Three pairs of columns are dependent. Note that since columns a and i and columns

b and j are independent as |a− i| > τ and |b− j| > τ respectively. If we think of the four columns

as four nodes of a graph and draw an edge if the respective pair of columns are dependent, then

this graph will be connected. Therefore, the number of ways to choose columns in this case is at

most 8pτ3. Note that

P (Rai > u,Rbj > u) 6 P (Rai > u) = Θ(p−2)
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Thus the bound in this case is

(||f ′||2∞16qn log p)(8pτ3)(cp−2),

for some c > 0 and large n. This product goes to 0 as well.

4. Four or more pairs of columns are dependent. This case is similarly handled as the

previous one. There are at most 8pτ3 ways of choosing the columns and the joint probability is

bounded by cp−2 for some c > 0 and for large n.

Since, we have covered all the cases and the bound goes to 0 in each of the cases, we have

shown that |EG(Y )− EG(X)| → 0. Since f ∈ C∞(R) was arbitrary we are done. �

2.5.2 Proofs of supplementary results

We state and prove the supplementary results used in the proof of Theorem 2.

Lemma 3. Let U and V be two N(0, 1) vectors and let EUV = ρ ∈ [−1, 1]. Then

U2 + V 2
d
6 (1 + ρ2 + ρ

√
1− ρ2)Z2

1 + (1− ρ2 + ρ
√

1− ρ2)Z2
2 ,

where Z1 and Z2 are independent N(0, 1) random variables (and they are also independent of U

and V ).

Proof of Lemma 3. Let Z1 and Z2 be two N(0, 1) random variables which are independent of each

other and also independent of U and V . Then we have

U
d
= Z1 and, V

d
= ρZ1 +

√
1− ρ2Z2.

Now U2
1 = Z2

1 and

V 2
1 = ρ2Z2

1 + (1− ρ2)Z2
2 + 2ρ

√
1− ρ2Z1Z2

6 (ρ2 + ρ
√

1− ρ2)Z2
1 + (1− ρ2 + ρ

√
1− ρ2)Z2

2 .

Adding expressions for U2
1 and V 2

1 gives the result. �
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Lemma 4. Assume qn →∞ as n→∞. Then there exits n0 such that for all n > n0

E[|U · V |1{|U · V | > qnn}] 6 exp

{
−
(

1

8
qn − logC

)
n

}

where U and V are N(0, In) vectors and 0 < C <∞ is a constant not dependent on n.

Proof of Lemma 4. Let

Sn = U · V =
n∑
k=1

UkVk.

Let t0 = 1
4 . Then there exists x0 > 0 such that for all x > x0 we have x < exp

{
t0
2 x
}

. Choose

n0 ∈ N such that nqn > x0 for all n > n0. Then for n > n0 we have

|Sn|
(
1{|Sn| > qnn} exp

{
t0
2
qnn

})
6 exp

{
t0
2
|Sn|

}
exp

{
t0
2
|Sn|

}
= exp {t0|Sn|} .

Thus

E|Sn|1{|Sn| > qnn} 6 exp

{
− t0

2
qnn

}
· E exp {t0|Sn|} . (2.20)

Now |Sn| 6
∑n

k=1 |UkVk| and therefore using independence we have that

E exp {t0|Sn|} 6 E
n∏
k=1

exp {t0|UkVk|} = (E exp {t0|U1V1|})n.

Further since |U1V1| 6 1
2(U2

1 + V 2
1 ) we have

E exp {t0|Sn|} 6
(
E exp

{
t0
2

(U2
1 + V 2

1 )

})n
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By Lemma 3 we have

(
E exp

{
t0
2

(U2
1 + V 2

1 )

})n
6

(
E exp

{
t0
2

((1 + ρ2 + ρ
√

1− ρ2)Z2
1 )

})n
×(

E exp

{
t0
2

((1− ρ2 + ρ
√

1− ρ2)Z2
2 )

})n
6

(
E exp

{
t0
2

(3Z2
1 )

})n
×
(
E exp

{
t0
2

(2Z2
2 )

})n
= Cn, where 0 < C <∞ as t0 =

1

4
.

From (2.20) we have

E|Sn|1{|Sn| > qnn} 6 exp

{
−1

8
qnn+ n logC

}
.

�

Proposition 2. Let Γ0 be the Poisson point process with intensity function γ(x) = 1
2
√

8π
exp

(
−x

2

)
.

Let ΓXn be the point process as defined in 2.7. Suppose as n→∞:

1. p = pn →∞ with log p = o(n1/3);

2. τ = o(pt) for any t > 0;

Then ΓXn →d Γ0.

Proof of Proposition 2. By Theorem 4.18 from (Kallenberg, 2017), it suffices to show that for every

interval of the form (a, b] ⊂ R

1. P (ΓXn(a, b] = 0)→ P (Γ0(a, b] = 0) and,

2. lim supn→∞ EΓXn(a, b] 6 EΓ0(a, b] <∞.

We first note that

∫ ∞
y

γ(x)dx =

∫ ∞
y

1

2
√

8π
exp

(
−x

2

)
dx =

1√
8π

exp
(
−y

2

)
.

This calculation implies that

Γ0(y,∞) ∼ Poisson

(
1√
8π

exp
(
−y

2

))
,
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and so,

P (Γ0(y,∞) = 0) = exp

(
− 1√

8π
exp

(
−y

2

))
and EΓ0(y,∞) =

1√
8π

exp
(
−y

2

)
. (2.21)

We now give proofs of the two statements at the start of the proof. We note that it suffices to show

the above two statements for the the intervals of the form (y,∞) ⊂ R for y ∈ R.

1. Proof of the statement: P (ΓXn(y,∞) = 0)→ P (Γ0(y,∞) = 0).

P (ΓXn(y,∞) = 0) = P (R(X·a, X·b) 6 y for 1 6 a < b 6 p, |a− b| > τ),

= P

(
max

16a<b6p,|a−b|>τ
R(X·a, X·b) 6 y

)
,

= P

(
max

16a<b6p,|a−b|>τ
(X·a, X·b)

2 6 n(4 log p− log log p+ y)

)
,

→ exp

(
− 1√

8π
exp

(
−y

2

))
,

by Proposition 6.4 from (Cai and Jiang, 2011). The quantity in the last line above is equal

to P (Γ0(y,∞) = 0) by 2.21.

2. Proof of the statement: limn→∞ EΓXn(y,∞)→ EΓ0(y,∞) <∞.

EΓXn(y,∞) =
∑

16a<b6p,|a−b|>τ

P (R(X·a, X·b) > y),

= |D| · P (R(X·1, X·τ+1) > y),

where D = {1 6 a < b 6 p, |a− b| > τ}. Note that |Dc| 6 2pτ =⇒ |D| ∼ p2

2 .

By Lemma 6.8 from (Cai and Jiang, 2011) we have

P (R(X·1, X·τ+1) > y) = P (|(X·1, X·τ+1)| >
√
n(4 log p− log log p+ y))

= 2P ((X·1, X·τ+1) >
√
n(4 log p− log log p+ y))

= 2P

(
(X·1, X·τ+1)√

n log p
> yn

)
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where yn → 2. Now,

P

(
(X·1, X·τ+1)√

n log p
> yn

)
∼ p−y

2
n/2(log p)−1/2

2
√

2π
∼ e−y/2√

8πp2
.

Thus, P (R(X·1, X·τ+1) > y) ∼ 2 e−y/2√
8πp2

and so, EΓXn(y,∞) ∼ e−y/2√
8π

. This implies

limn→∞ EΓXn(y,∞)→ e−y/2√
8π

= EΓ0(y,∞).

This completes the proof.

�
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CHAPTER 3

Analysis of structural brain connectivity data sets

Networks are an important tool to analyze complex systems consisting of an interacting collec-

tion of entities. Though networks offer a simplification as they consist only of pairwise relationships

between entities, networks have been extremely useful in understanding the structure and function

of real world systems (Newman, 2010). A large body of network literature analyzes what are known

as single layer networks which represent a single type of relationship. However several applications

necessitate the study of multilayer networks which can represent multiple types of relationships.

For example, snapshots of social media networks over time captures relationships between people at

each time point but also how these relationships change over time (Borge-Holthoefer et al., 2011).

Another example is of air transportation networks which captures whether there are direct flights

between airports for a collection of airlines (Cardillo et al., 2013).

The analysis of multilayer networks has involved both generalizing methods for single layer

networks and introduction of new methods suited for multilayer analysis. For example diagnostic

measures such as node degree, clustering coefficient and centrality have been extended to multilayer

networks (Battiston et al., 2014; Cozzo et al., 2013; Ng et al., 2011). Similarly for joint modeling

of multilayer networks, several methods have been proposed (Bianconi, 2013; Stanley et al., 2016;

Peixoto, 2015).

In this chapter we look at two multilayer network data sets. These data sets were provided to

us by Martin Styner (personal communication). We start with a description of the data sets in

section 3.1. We then describe the analysis of these data sets in section 3.2.

3.1 Description of data sets

We give a brief description of the two data sets we have worked with.

31



3.1.1 Infant data set

This data set consists of 617 networks. The networks are in the form of weighted adjacency

matrices of dimension 78 × 78 for almost all the networks. The networks represent white matter

connectivity between 78 regions in the brain. The regions are given by the Automated Anatomical

Labeling (AAL 90) atlas. There are 219, 238 and 160 networks for ages 0, 1, and 2 respectively.

There are multiple networks or scans for many of the subjects. The following table gives details

about this:

Years 0 and 1 Years 0 and 2 Years 1 and 2 Years 0, 1, and 2

Total 86 31 73 19

Twins 54 25 63 17

A key feature of the data set is the presence of many twins. For the infants, we also have

information such as the date of birth, the gestation age at birth, gender and the time of brain

scan. In addition, there is information about whether the parents have had PTSD, Schizophrenia

or abuse.

3.1.2 ADNI data set

This data set consists of 514 networks. The networks are in the form of weighted adjacency

matrices of dimension 148 × 148. The networks represent white matter connectivity between 148

regions in the brain. There are multiple networks or scans for the subjects. There is an average of

3.64 scans per subject and a median of 4. We have one of the three diagnosis labels for the scans:

cognitively normal (CN), mild cognitive impairment (MCI), or Alzheimer’s disease (AD). We know

the scan date and the age at scan for most of the scans. For each of the subjects, we know the

gender, education, ethnicity and whether or not the subject is married. In addition, we know the

MMSE scores at the time of the first scan of the subjects.

3.2 Data analysis

In this section we give a summary of our data analysis on the two data sets described before.
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3.2.1 Data analysis on infant data set

We had the following questions for the data analysis:

1. How to normalize the data to put networks coming from different ages at the same scale?

2. What are some ways to account for the scanner effect and noise in the data set?

3. Can we predict attributes such as gestation age at scan and age since birth from the networks?

4. Can we identify the twins as either preterm or not-preterm based on the networks?

5. What are some multilayer models for

(a) networks over time?

(b) networks in one year or networks coming from one scanner?

We now describe our exploratory data analysis towards answering these questions. There is a

large amount of myelination in the human brain in the first few years. Thus, to compare all the

networks taken at the various ages, we need to normalize the data. Based on domain experts, this

can be done in two ways:

1. Matrix sum normalization: This is also referred to as the row-column normalization. Suppose

we have a network matrix A on n nodes. This normalization is given by the mapping Aij 7→
Aij∑n

k,l=1 Akl
. The interpretation is that after normalization the edge Aij represents the strength

of connectivity between node i and node j relative to the whole brain.

2. Row normalization: Given a network A on n nodes, the normalization is given by the mapping

Aij 7→ Aij∑n
k=1 Aik

. The interpretation is that after normalization the edge Aij represents the

strength of the connectivity relative to the connections originating from node i.

We also explored some other ways to normalize the data such as:

1. Normalization by surface area of the nodes in the brain: For a network A, this normalization

sends Aij 7→ Aij
si+sj

, where si and sj are the surface areas of the nodes.

2. Row-column normalization: For a network A, this normalization sends Aij 7→
Aij∑n

k=1 Aik+
∑n
k=1 Akj

.
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Among the four ways of normalizing the data, the broad summary of the data analysis is similar

or no-better than that of the case when we use the matrix sum normalization. Therefore, we will

mostly restrict to only the matrix sum normalization for the discussion below.

Identifying attributes from the networks To separate preterm and non-preterm among

the twin subjects based on their year 0 networks, we used random forests. The random forests

were trained on 50 random 70− 30 test-train sets. The mean accuracy was about 64% depending

upon the normalization used. However, standard deviation of the accuracy was high to not be able

to conclude if the prediction was better than random. Towards the same question, the node-layer

community extraction in (Wilson et al., 2017) was applied to the data set. This does not separate

the subjects as preterm or non-preterm either.

Next, to predict the gestation age at scan from the edge weights, random forests, LASSO

and ridge regression was used. The mean squared predicted error (MSPE) was about 102 to 122

depending upon the normalization used or if the networks were thresholded at the 90% level. For

reference, the prediction of reporting the mean age on the test set had a MSPE of 148.83. So, the

methods performed a little better than random. Similar results were obtained for predicting age

since birth.

kNN graphs, Principal component analysis and tSNE

kNN graphs were constructed as follows. Fix k = 5. Each network in our data set is considered

to be a node in the kNN graph. The distance between two networks is given by the Frobenius norm

of the difference between the respective adjacency matrices. A visualization of this graph shows 5

connected components. The value of k was varied around 5 and found the same connected compo-

nents. We also used distances such as the l1 norm and the cut metric and arrived at similar results.

The year 0 networks form two of the five connected components. These connected components

correspond to the two scanners, Allegra and TRIO, used for the brain scans. The year 1 and year

2 networks are spread over the other three components. One of these three connected components

consists of only networks from the Allegra scanner.

Each network was flattened to a
(

78
2

)
-dimensional vector. A principal component analysis was

performed using these vectors. The first three principal components (PCs) account for 50.86%

of the variation in the data set. The rest of the PCs individually account for small amount of

variation. We see 5 clusters in the PC1 vs. PC2 plot which are the same as the networks in the 5
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Figure 3.1: Visualization of the kNN graph over all networks. Here we take k = 5.

connected components in the kNN graphs. tSNE applied on the flattened networks also gives the

same clusters.

Our unresolved questions emerging from this analysis are:

1. What property do the networks in the three connected components consisting of year 1 and

year 2 networks satisfy which leads to their separation?

2. How to account for or adjust for the scanner effect observed in the data set?

Analyzing networks from the Allegra scanner

Since a scanner effect was observed in the data, analysis was restricted to networks from the

Allegra scanner as these form a larger percentage of the data set. Further to investigate differences

over time, we further restricted to Allegra networks in three clusters out of the five observed in

PCA in Figure 3.2. The three groupings consist of year 0 networks, mostly year 1 networks, and

mostly year 2 networks respectively. A principal component analysis leads to three clusters in the

PC1 vs. PC2 plot. PC1 separates the three clusters. We observe that PC2 scores increase with

age. A couple of natural questions are as follows:

1. Are the PC2 scores a measure of growth?
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Figure 3.2: Visualization of the output of the PCA. Each point in scores plots is a network. The networks
are colored by the connected component they belong to in kNN graphs

Figure 3.3: Line plot of PC2 values over the gestation age at scan. The lines connect the scans of the
subjects over time
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2. Is there consistency in how points(networks) move over time in the PC1-PC2 space?

For the first question, an ordinary least squares regression of PC2 over age at scan gave R2 =

72%(see Figure 3.3). Given the variation in PC2 values of subjects across time, one approach is

to fit a random effects model with a random term in the slope. However, a least squares fit only

for year 0 data produced R2 = 16.42%. One may hypothesize the length of the pregnancy to be a

contributing factor to the development of the infant brain. However, adding an extra variable for

the gestation age at birth only increases R2 to 17.07%.

For the second question, Kendall’s rank correlation test showed that only going from year 1 to

year 2, the PC2 ranks were significantly concordant(p-value = 0.0018). Also, if we look at only the

transitions between the three clusters, the PC2 ranks were not significantly concordant.

Fitting block models and edge distributions

The networks in the infant data set have a block structure. This suggests modeling them using

the stochastic block model (SBM). Towards this, we applied the strata multilayer SBM (Stanley

et al., 2016) to year 0 networks. The networks were thresholded at a some threshold levels such

as 85%, 90% and 95% level and model parameters were checked. At the 85% threshold level, the

model fit to two strata split the year 0 networks roughly into the networks scanned by Allegra and

the TRIO scanner.

Next, we checked whether the model separates networks by year. For this, we collected the 56

subjects who have scans available at year 0 and year 1 and are scanned by Allegra scanner. This

ensures there is no scanner effect. We then fit this subset of the data to two strata. However, the

networks in both the strata have many year 0 and year 1 networks. We also fit SBM individually

to each of the 56 ∗ 2 networks and clustered the parameters using the Euclidean distance between

the fitted block probability matrices and the mutual information criterion on community labels.

Both of these clustering approaches lead to clusters with both year 0 and year 1 networks. This

analysis suggests that we may be losing structure in the data by thresholding. Alternatively, we

need to model the networks in different ways. For the former, we looked at edge distributions and

found that most of the high mean edges follow a Gamma distribution. This will be useful for future

network models we propose.
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3.2.2 Data analysis on ADNI data set

The following were some of our questions towards this data set.

1. How well can the MMSE scores be predicted from the networks?

2. Can the diagnosis labels be predicted from the networks with high accuracy?

3. What are some good models for the evolution of the networks over time?

We now describe our data analysis towards answering these questions. To begin with, a principal

component analysis on the data set. For this, each network was flattened to a
(

148
2

)
-dimensional

row vector. Thus each network is viewed as an observation and each edge is viewed as a variable.

In the output, the first three PCs account for 35.38% of the variation in the data set. Rest of the

PCs individually account for about 2% or less of the variation. Three clusters were observed in

the PC1 vs. PC2 plot. The three groups given by the diagnosis labels are mixed in each of the

clusters. It was also verified that the clusters do not align with age and MMSE scores. Since, a

strong scanner effect was observed in the infant data set, it possible that these groupings may be

related to the scanner used. However, the scanner information is not available for this data set to

verify this.

kNN graphs were also constructed as follows. Choose k = 5. Each network is viewed as a

node and the distance between the networks is given by the Frobenious norm of the difference of

the network matrices. Using this setup, kNN graph over all the networks was constructed and

visualized. The networks are roughly separated into three connected components as in the PC1 vs

PC2 plot described earlier and do not correspond to the diagnosis labels, age or MMSE scores.

To find out well we can do with supervised learning methods, random forests and support

vector machines were used. For the diagnosis labels, the mean accuracy was 66% with a standard

deviation of 3.75% over 50 randomly generated test-train splits using 70% data on each split for

the training. For the MMSE scores, the random forests achieves a mean square prediction error

(MSPE) of 7.32 with standard deviation 1.24 over 50 random train-test splits of 70%− 30% ratio.

The baseline prediction given by predicting the mean MMSE score on the test set achieves a MSPE

of 9.14 with standard deviation of 1.47. We see that the MSPE for the predictor based on all edge

weights is close to the baseline and not necessarily better given the standard deviations.
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CHAPTER 4

Community detection using low-dimensional node embeddings

4.1 Introduction

Networks provide a useful framework to study interactions between entities, called nodes, in

many complex systems such as social networks, protein-protein interactions, and citation networks.

A number of important machine learning tasks such as clustering of nodes (community detection),

node classification, link prediction, and network visualization of node interactions can be performed

using network-based methods for these systems. In recent decades, network data sets containing

millions and even billions of nodes have become available in areas such as social networks. This has

necessitated the development of new methods which are scalable to very large networks. One major

class of algorithms, often termed network representation learning or network embedding techniques,

try to learn representations of network functionals (including nodes and in some cases edges) in a

low-dimensional Euclidean space, thus making large-scale network-valued data amenable to well-

known methods for data sets in Euclidean spaces. Typical applications of these methods include

network visualization by using t-SNE or PCA on the network embeddings, clustering of related

nodes by applying k-means on the network embeddings, and classification of nodes by applying

machine learning methods for Euclidean spaces. The main advantage of these algorithms lies in the

fact that they are scalable to very large networks even with millions of nodes; see (Chami et al.,

2020; Zhang et al., 2018; Hamilton et al., 2017b) and the references therein for a comprehensive

description of the multitude of methods now available and their applications in various domains of

network science.

Network embedding methods can be broadly classified into three types: methods based on

matrix factorization (Belkin and Niyogi, 2002; Cao et al., 2015; Ou et al., 2016; Ahmed et al., 2013),

method based on random walks (Tang et al., 2015; Perozzi et al., 2014; Grover and Leskovec, 2016),

and methods based on deep neural networks (Cao et al., 2016; Wang et al., 2016). In this chapter,
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we will focus on methods based on random walks. The first step for these methods consists of

running multiple random walks on the underlying graph and creating a matrix of co-occurrences

which keeps track of how frequently random walks visit one node from another within certain time-

span. Pairs of nodes which are closer to each other have a higher co-occurrence than pairs which

are further apart. The second step then consists of optimizing for network embeddings so that the

Euclidean inner products of the embeddings are proportional to the co-occurences (cf. Section 4.3.2).

These algorithms turn out to be heavily used in practice owing to a number of reasons including:

(a) network representations can be constructed using random walk based methods for large-scale

networks efficiently (see e.g. (Perozzi et al., 2014; Grover and Leskovec, 2016) for applications on

hundreds of thousands and in some cases million node networks); (b) these algorithms are easily

parallelizable; and (c) they can be easily adapted for local changes in the graph and thus easy

to use for streaming network data. These methods have been empirically observed to perform

well for link prediction and node classification for large sparse graphs as co-occurences provide a

flexible measure of strength of the relationship between any two nodes as compared to deterministic

measures based on degrees and co-neighbors.

This chapter focuses on the problem of finding clustering of nodes, often referred to as the

community detection problem. A well-known model for generating synthetic benchmarks for vali-

dating new community detection algorithms is the stochastic block model (SBM) (Holland et al.,

1983b; Fortunato and Hric, 2016). The literature for theoretical studies for community detection

on SBM is extensive and these existing methods primarily use spectral algorithms, semi-definite

programming, and message passing approaches. We refer the reader to the survey (Abbe, 2018)

for an overview. Since the more recent network embedding methods are designed to be scalable,

it is desirable to rigorously study them for the community detection problem. In order to find K

communities, we can apply K-means clustering on the embeddings from these algorithms to find

communities. The primary scientific question we aim to address in this chapter is:

In settings when the underlying network is generated from SBM, when can a network-

embedding followed by k-means clustering recover the community assignments? Since

community detection is generally more difficult for sparse graphs, it is also of interest to

know the relationship between sparsity levels and the co-occurrence length which result
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in meaningful guarantees as well as to understand regimes where these algorithms might

fail.

Here, co-occurrence length being t means that the algorithm constructs the co-occurrence matrix by

looking at the co-occurrence of nodes at t steps of the random walk. To answer the above questions,

we look at perhaps the two most popular of random-walk based network embedding algorithms:

(1) DeepWalk due to Perozzi, Al-Rfou, and Skiena (Perozzi et al., 2014), and (2) node2vec due

to Grover and Leskovec (Grover and Leskovec, 2016). While DeepWalk uses simple random walks

for the network embedding task, node2vec makes use of a weighted random walk with a different

weight for backtracking to the last visited node. To understand our results from a high-level, let n

denote the network size, ρn denote the sparsity level and t denote the co-occurrence length (these

are defined more precisely in Sections 4.3.1, 4.3.2). We will establish the following:

(R1) There exists a φ = φ(t) such that when nt−1ρtn × 1
(nρn)φ

� (log n)C , then DeepWalk recovers

communities of all but o(
√
n) nodes with high probability (cf. Theorem 4).

(R2) If nt−1ρtn � (log n)C and the backtracking probability is sufficiently small, then node2vec

recovers communities of all but o(
√
n) nodes with high probability (cf. Theorem 6).

(R3) If nt−1ρtn � 1, then the co-occurrence matrix might be quite far from the ground truth, which

provides strong evidence that DeepWalk, node2vec might end up misclassifying a positive

fraction of nodes (cf. Theorem 3 (4.17), and Theorem 5 (4.23)).

The results show that if the random walks used for the embedding are close to being non-

backtracking, then they can succeed up to the almost optimal sparsity level of the network. In-

tuitively, backtracks do not provide much new information about the network structure and their

effect becomes more prominent as the network becomes sparser. The effect due to backtracks, as

well as the interpretation of φ in (R1), is discussed in more detail in Remark 1. This phenomenon is

in line with the effectiveness of spectral methods using non-backtracking matrices in the extremely

sparse setting (networks with bounded average degree), which has been studied by Krzakala, Moore,

Mossel, Neeman, Sly, Zdeborová, and Zhang (Krzakala et al., 2013) and Bordenave, Lelarge, and

Massoulié (Bordenave et al., 2015) in the context of recovering communities partially. The closest

paper to this work is the important recent result of Zhang and Tang (Zhang and Tang, 2021) which
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proves an analogue of (R1) above for the DeepWalk. Our result (R1) further improves the regime

of success for DeepWalk compared to (Zhang and Tang, 2021).

Organization. The rest of the chapter is organized as follows. Section 4.3 describes the back-

ground such as the stochastic block model, the DeepWalk and node2vec algorithms, and community

detection using spectral clustering. Section 4.4 describes our main results in detail, followed by

proof ideas. The next chapter is dedicated to proofs of these main results.

4.2 Background

We give a brief background to two methods which are useful in understanding the node em-

bedding algorithms, DeepWalk and node2vec. We first discuss noise-contrastive estimation (NCE)

in section 4.2.1. We then discuss the Skip-gram model from natural language processing (NLP)

literature in section 4.2.2.

4.2.1 Noise-contrastive estimation

NCE (Gutmann and Hyvärinen, 2010) is a method to estimate parameters for unnormalized

statistical models. We describe the method as follows. Suppose x1, x2, . . . , xt are t data points

where the data distribution is given by a probability density function, pd. Further, suppose that

pd takes the following form

pd(·;α) =
p0
d(·;α)

Z(α)
,

where Z(α) is the normalization term. The goal is to estimate the parameters α. However, estimat-

ing the parameters by maximizing the likelihood is difficult if Z(α) is computationally intractable.

As a solution to this problem, NCE considers a related optimization problem described as follows.

First, an additional parameter c is introduced to replace the normalization term Z(α). Then, one

generates t samples from a known noise distribution, pN , which is easy to sample from. Then one

maximizes Jt, as defined below, over the parameters θ = {α, c}.

Jt(θ) =
∑
t

log σ

(
log

(
pd(xt, θ)

pN (xt)

))
+
∑
t

log

(
1− σ

(
log

(
pd(yt, θ)

pN (yt)

)))
,
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where σ is the logistic function. This optimization problem can intuitively be seen to optimize for

θ by discriminating between the two classes of samples: data samples and noise samples. If one

generates b noise samples for every element in the data set, one optimizes an analogous optimization

problem instead:

Jt(θ) =
∑
t

log σb

(
log

(
pd(xt, θ)

pN (xt)

))
+
∑
t′

log

(
1− σb

(
log

(
pd(yt′ , θ)

pN (yt′)

)))
,

where σb(x) = (1 + be−x)−1,

the first sum is over data samples i.e. samples from the unknown distribution pd and the second

sum is over the noise samples i.e. samples from the (known) noise distribution pN . Let θt be the

parameters obtained by maximizing Jt. It is shown in (Gutmann and Hyvärinen, 2010) that as

t→∞ and under certain conditions,

θt
P→ θ∗,

where θ∗ is the true set of parameters generating the data.

4.2.2 Skip-gram Model

Suppose we have a text data set such as a collection of sentences or text documents. The

objective of the Skip-gram Model is to learn word representations which are useful for predicting

surrounding words in a sentence. Given a data set with the sequence of words (w1, w2, . . . , wn), the

objective is to maximize the log-likelihood function

L
(1)
SG =

1

n

n∑
t=1

∑
−c6j6c,j 6=0

log p(wt+j |wt), (4.1)

where c is the number of words immediately preceding or succeeding the word wt. In this context,

the word wt is also called the center word. The intuition is that we are optimizing for the probability

of predicting nearby words and increasing c can lead to higher accuracy. The conditional probability

p(wt+j |wt) is given by the softmax function:

p(wt+j |wt) =
exp

{
〈f ′wt+j ,fwt〉

}
∑n

i=1 exp
{
〈f ′wi ,fwt〉

} ,
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where f ′wi is the vector representation of the predicted word, also called the output representation

of wi, and fwt is the vector representation of the center word, also called the input representation

of the word fwt . The denominator of the softmax function can be computationally intractable for

large n. Motivated by NCE, (Mikolov et al., 2013) modify L
(1)
SG in (4.1) to the following:

L
(2)
SG =

1

n

n∑
t=1

∑
−c6j6c,j 6=0

(
log σ(〈f ′wt+j ,fwt〉) +

b∑
i=1

Ewi∼Pn [log σ(−〈f ′wi ,fwt〉)]

)
, (4.2)

where Pn is the empirical distribution of words in the data set and we are sampling b words

from Pn for every summand in (4.1). The optimization of L
(2)
SG in (4.2) is much faster compared

to optimization of L
(1)
SG. With the optimization as given in (4.2), this method to compute word

vectors is called Skip-gram model with negative sampling.

4.3 Problem Setup

We begin this section by describing the notation used throughout this chapter and chapter 5,

followed by the definition of the stochastic block model (SBM) in Section 4.3.1. The underlying

graphs for our results will be generated by SBM. Next, we describe the DeepWalk and node2vec

network embedding algorithms in Section 4.3.2. These algorithms will be run on graphs generated

from the SBM. We end this section by describing the approach to recover communities from the

solution of the DeepWalk and node2vec algorithms in Section 4.3.3.

Notation. For a graph G = (V,E), AG will denote the adjacency matrix representation of G. We

will drop the subscript G on AG and denote the adjacency matrix simply by A when the graph is

clear from context. We write Sa×b for the set of a× b matrices with entries taking values in S. For

any matrix X, Xi? denotes the i-th row and X?i denotes the i-th column. Also, |X| will denote

the sum of its entries, and ‖X‖
F

= (
∑

i,j X
2
ij)

1/2 will denote the Frobenius norm of X. Denote

[n] = {1, 2, . . . , n}. We often use the Bachmann–Landau notation o(·), O(·), ω(·),Ω(·) etc. For

random variables (Zn)n>1, we write Zn = oP(1) and Zn = OP(1) as a shorthand for Zn → 0 in

probability, and (Zn)n>1 is a tight sequence respectively.
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4.3.1 Stochastic Block Model

We now describe the stochastic block model (Holland et al., 1983b). A random graphG = (V,E)

with V = [n] from the SBM is generated as follows. Each node in the graph is assigned to one of K

categories, called communities or blocks. We fix the set of communities to be [K]. Let g(i) ∈ [K]

denote the community of node i. We also define an n×K membership matrix Θ0 which contains

the communities of the nodes, defined as follows:

(Θ0)ir := 1{g(i) = r}.

Let B be a K×K matrix of probabilities, i.e. 0 6 Brs 6 1. The matrix B will be called the matrix

of block or community density parameters. Let

P := Θ0BΘT
0 .

The edges of the graph G are generated using P as follows:

Aij ∼ Bernoulli(Pij), Aij := Aji for i < j, and Aii := 0. (4.3)

The graph generated from this model does not have self-loops. Note that the parameter of the

Bernoulli distribution used for generating edge {i, j} depends only on the communities of the nodes

i and j.

For our results in this chapter, we are interested in the case when the number of communities,

K, is fixed, and the number of nodes, n, tends to infinity. We will assume throughout that K is

known. Then to generate a sequence of graphs, one graph for each n ∈ N, we first fix a K × K

matrix of probabilities B0. Let (ρn)n>1 ⊂ R be a sequence such that 0 6 ρn 6 1. The sequence ρn

will control the sparsity of the graphs as a function of n. The matrix B of block density parameters

for the graph on [n] is then given by

B = ρnB0.

We make the following usual assumptions:
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Assumption 1. (1) If nr denotes the size of community r, then nr
n → πr with πr > 0 for all

r ∈ [K].

(2) There exists constants cL and cU such that 0 < cL 6 (B0)ij 6 cU 6 1 and rank(B0) = K.

In our set up, the membership matrix Θ0 is the unknown and we want to estimate it by

observing one realization of A. Next, we discuss how to evaluate the accuracy of the predicted

community assignments. Let Θ̂ be an estimator of the community assignments. Note that the

communities are identifiable only upto a permutation of the community labels. Taking this into

account, we measure the prediction error by

Err(Θ̂,Θ0) :=
1

n
min
J∈SK

∑
i∈[n]

1
{

(Θ̂J)i? 6= (Θ0)i?
}
, (4.4)

where SK denotes the set of all K×K permutation matrices. If J is the minimizer in (4.4), then we

call a node to be misclassified under Θ̂ when (Θ̂J)i? 6= (Θ0)i?. Thus, we can note that Err(Θ̂,Θ0)

just computes the proportion of misclassified nodes.

We conclude our description of the SBM by defining some notation used in the context of

random-walks. Towards this, for a graph with adjacency matrix A, let DA denote the diagonal

matrix with the diagonal entries as the degrees of the nodes [n], i.e., (DA)ii =
∑n

j=1Aij . Let

WA denote the one-step transition matrix of a simple symmetric random walk given by AD−1
A .

Similarly, we define WP = PD−1
P where DP is the diagonal matrix containing row sums of P .

4.3.2 DeepWalk and node2vec

We describe the two random-walk based network embedding algorithms, namely DeepWalk

due to Perozzi, Al-Rfou and Skiena (Perozzi et al., 2014) and node2vec due to Grover and

Leskovec (Grover and Leskovec, 2016). Let G = (V,E) be an undirected, connected (and pos-

sibly weighted) graph with V = [n], and let AG be the adjacency matrix of G if G is unweighted. If

G is weighted, we can take AG to be the matrix of edge weights. Both the algorithms have two key

steps. In step 1, the algorithm generates multiple random walks on G. In step 2, one uses a “word

embedding” algorithm from the natural language processing literature such as word2vec (Mikolov

et al., 2013) by interpreting these random walks as sequences of words.
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Step 1: Generating walks. For both the methods, we generate r random walks, each of length

l on G. In the case of DeepWalk, a simple random walk is performed which has the one-step

transition probability given as

p(vi+1|vi) =


1

|(AG)i?| , if (vi, vi+1) ∈ E,

0, otherwise.

(4.5)

In the case of node2vec, a second-order random walk with two parameters α and β is performed. If

N (v) denotes the neighborhood of v, then the one-step transition probability in this case is given

by

p(vi+1|vi, vi−1) ∝



α if vi+1 = vi−1,

1 if vi+1 ∈ N (vi−1) ∩N (vi),

β if vi+1 ∈ N (vi−1)c ∩N (vi),

0 otherwise.

(4.6)

We consider β = 1 throughout this chapter. Following Qiu, Dong, Ma, Li, Wang, and Tang (Qiu

et al., 2018), we initialize using the stationary distribution of the random walks. For DeepWalk,

the initialization is given by

p(v) =
|(AG)v?|
|AG|

, ∀v ∈ V. (4.7)

And for node2vec, we initialize by

p(v1, v2) =
(AG)v1v2
|AG|

, ∀v1, v2 ∈ V. (4.8)

The initial distribution in (4.8) places equal probability on each ordered pair of nodes in the edge

set E. This initial distribution also happens to be the invariant distribution for the second-order

random walk if β = 1.

Step 2: Implementing word embedding algorithm. Next, the random walks are input to

word2vec algorithm due to Mikolov, Sutskever, Chen, Corrado, and Dean (Mikolov et al., 2013).
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This generates two node representations for each of the nodes. The latter is described, in the

context of graphs, in steps 2a and 2b below.

Step 2a: Computing the co-occurence matrix C. In this step, we construct an n× n matrix

C which counts how often two nodes appear in a certain distance of each other with respect to the

observed random walks. Formally, let tL, tU ∈ N be such that tL 6 tU . Let w(m) for 1 6 m 6 r be

the random walks from Step 1, each represented as a sequence of l nodes. Then

Cij =

r∑
m=1

tU∑
t=tL

l−t∑
k=1

(
1{w(m)

k = i,w
(m)
k+t = j}+ 1{w(m)

k = j,w
(m)
k+t = i}

)
.

DeepWalk and node2vec was proposed to have tL = 1. However, we will allow tL to vary for our

theoretical results. Also, the set up explained intuitively in the introduction corresponds to the

particular case tL = tU = t.

Step 2b: Optimizing for node representations. The node representations are then computed

using the Skip-gram model with negative sampling (SGNS) which was discussed in section 4.2.2.

In the context of networks, nodes are the words and sentences are the random walks. We describe

the details of the optimization in the context of networks. Let d be the embedding dimension.

The algorithm takes the co-occurrence matrix C as an input, and then it outputs two node vectors

fi,f
′
i ∈ Rd for each node i ∈ [n]. The vector fi is the “input” representation of the node and the

vector f ′i is the “output” representation of the node. We collect these node vectors in two d × n

matrices F and F ′. Although (Grover and Leskovec, 2016) initially proposed to have F = F ′, in

practice this requirement is often dropped. So we will not consider the assumption F = F ′, which

was also done in the theoretical analysis of (Zhang and Tang, 2021). The objective function of the

optimization problem is described as follows. Let

PC(j) :=

∑n
i=1Cij∑n

i=1

∑n
j=1Cij

=
|C?j |
|C|

,

be the empirical distribution on [n] constructed using the column sums of C. In (Mikolov et al.,

2013), a distribution proportional to P
3/4
C was used instead, which performs better in practice.

However, in theoretical analysis (Zhang and Tang, 2021; Qiu et al., 2018; Levy and Goldberg,

2014), one always considers PC for simplicity. Then one computes (F, F ′) by maximizing the
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objective function

L′C(F, F ′) =
n∑

i,j=1

(
Cij log σ(〈fi,f ′j〉) +

∑
{lm

iid∼PC |16m6bC(i,j)}

log σ(−〈fi,f ′lm〉)
)
, (4.9)

where b samples are taken from PC for each pair of nodes counted as a co-occurrence in C, and

σ(x) = (1 + e−x)−1 denotes the sigmoid function. For our theoretical analysis, we again follow

simplifications considered in earlier works (Levy and Goldberg, 2014; Qiu et al., 2018; Zhang and

Tang, 2021). First, instead of (4.9), we look at a related maximization problem

LC(F, F ′) =

n∑
i,j=1

Cij
(

log σ(〈fi,f ′j〉) + bEl∼PC [log σ(−〈fi,f ′l 〉)]
)
. (4.10)

Once we have an optimizer (F, F ′), we embed node i in Rd using Fi?. The following result due to

Levy and Goldberg (Levy and Goldberg, 2014) gives us a way to compute the optimizer in (4.10)

using factorization of a certain matrix:

Proposition 3. Given a matrix C ∈ Rn×n, let M̄C be a matrix with (i, j)-th entry given by

(M̄C)ij := log

(
Cij · |C|
|Ci?||C?j |

)
− log b. (4.11)

Let F, F ′ ∈ Rn×d be such that M̄C = FF ′T . Then (F, F ′) maximizes (4.10).

We give a proof in APPENDIX 1 for completeness. To simplify the form of the optimizers, one

either takes r →∞ or l→∞ (Qiu et al., 2018; Zhang and Tang, 2021). These assumptions ensure

that the co-occurence of (i, j) is observed sufficiently many times for all (i, j) and also simplify the

form of M̄C . For our results we will take r →∞ in which case we have the following result:

Proposition 4. Let A be the adjacency matrix of a graph. For node2vec, we will assume A resulting

from an unweighted graph. Let w(m) for 1 6 m 6 r be the random walks generated for DeepWalk

or for node2vec with β = 1. If
∑tU

t=tL
A

(t)
ij > 0 then

(M̄C)ij
a.s.−−−→
r→∞

(MC)ij := log

(∑tU
t=tL

(l − t)
(
P(w

(1)
1 = i,w

(1)
1+t = j) + P(w

(1)
1 = j,w

(1)
1+t = i)

)
2bγ(l, tL, tU )P(w

(1)
1 = i)P(w

(1)
1 = j)

)
,

(4.12)
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where γ(l, tL, tU ) = (2l−tL−tU )(tU−tL+1)
2 . The limiting term is well-defined if

∑tU
t=tL

A
(t)
ij > 0 and the

left hand side is also well-defined for large enough r.

We give a proof in APPENDIX 1. If
∑tU

t=tL
A

(t)
ij = 0 then (MC)ij := 0. We will refer to MC as

the M matrix associated to DeepWalk or node2vec on a graph.

4.3.3 Clustering using factorization of M matrix

We simply write M to denote the M -matrix of SBM. The idea would be to apply spectral

clustering to the M matrix in order to recover the communities, which considers the top K eigen-

values of M and applies an approximate K-means algorithm to recover the communities. Let us

describe this more precisely below. Given a graph, we can always factorize M = FF ′T such that

F, F ′ ∈ Rn×d for d > n. That would result in an n-dimensional embedding of the nodes. However,

since the underlying graph has an approximate rank-K structure, it might make more sense to try

to find an embedding in RK using an approximate factorization of M . To that end, we can find

argmin
F,F ′∈Rn×K

∥∥M − FF ′T∥∥
F
.

The solution can be obtained using the singular value decomposition of M . Indeed, if V (resp. U) is

the matrix of top K left (resp. right) singular vectors, and S is the diagonal matrix with K largest

singular values, then F = V and F ′ = SU . To understand if F should preserve the community

structure, let’s look at the graph G0 which is a weighted complete graph with weights given by

P . Then the corresponding M -matrix, denoted as M0, is computed using the expression of the

limiting matrix in (4.12) with the initial distribution and transition probabilities given in Step 1.

We note that M0 is deterministic. Recall that Θ0 is the matrix of community assignments. Also,

let V0 ∈ Rn×K be the matrix of the top K left singular vectors of M0. We will prove the following:

Proposition 5. If rank(M0) = K, then there exists full-rank matrix X0 ∈ RK×K such that V0 =

Θ0X0 + E0 where (E0)ij = O(n−3).

The proof of this fact in provided in Section 5.2.1 for DeepWalk and in Section 5.4.1 for

node2vec. This essentially shows that if rank(M0) for DeepWalk there are K distinct rows in V0

and two nodes have the same rows in V0 if and only if they are in the same community. Thus one
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can find the communities by applying K-means on the rows of V0. For node2vec, we have a similar

result except for a small noise term.

Next, we note that M0 may not always have rank K even when B has rank K. This can happen

as the rank of a matrix can drop after taking element-wise logarithm. To see this, consider the

following simple counter-example:

A =

1 1

1 e

 , and logA =

0 0

0 1

 .
We provide the following lemma which says that such cases only happen on a set of matrices of

measure zero. This implies that outside a set of measure zero, if B has rank K then M0 also has

rank K.

Lemma 5. Let X ∈ RK×K+ . Let ¯log : RK×K+ → RK×K be the mapping given by taking the element-

wise log of the matrix entries, and ¯log(x) = 0 if x = 0. Then

rank(X) = K =⇒ rank( ¯log(X)) = K a.s. λ,

where λ is the Lebesgue measure on RK×K+ .

See APPENDIX 1 for a proof. For this reason, we assume the following throughout:

Assumption 2. rank(M0) = K.

Motivated by this, we compute the community assignments as a k-means algorithm and a

(1 + ε)-approximate solution to the same. The K-means algorithm on the rows of V solves the

following optimization problem.

(Θ̂, X̂) = argmin
Θ∈{0,1}n×K ,X∈RK×K

‖ΘX − V ‖2
F
. (4.13)

Since it is NP-hard to find the minimizer for the above problem (Aloise et al., 2009), we can seek

an approximate solution instead (Kumar et al., 2004). Let ε > 0 be given. Then we say (Θ̄, X̄) is

an (1 + ε)-approximate solution to the K-means problem in (4.13) if Θ̄ ∈ {0, 1}n×K , X̄ ∈ RK×K

and
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∥∥Θ̄X̄ − V
∥∥2

F
6 (1 + ε) min

Θ∈{0,1}n×K ,X∈RK×K
‖ΘX − V ‖2

F
. (4.14)

Thus the final community assignment is computed as follows:

Algorithm 1 (Low-dimensional embedding using DeepWalk and node2vec).

(S1) Compute the M -matrix M and compute V ∈ Rn×K , the matrix containing the top K-

eigenvectors (in absolute value of the eigenvalue) of M .

(S2) Compute (Θ̄, X̄) ∈ {0, 1}n×K × RK×K as an (1 + ε)-approximate solution to the k-means

problem in (4.13) and output Θ̄.

The {0, 1}-valued matrix Θ̄ has the predicted community assignments for each of the nodes.

We note that each node is assigned exactly one community by the algorithm.

4.4 Main results

We describe our results in two parts. We first describe the results for the DeepWalk algorithm.

We then describe the results for the node2vec algorithm. For both the algorithms, our approach to

recovering communities from M proceeds by first showing that the Frobenius norm, ‖M −M0‖F,

is oP(n2). Then, one uses the Davis-Kahan theorem (Yu et al., 2015), and shows that this implies

that the proportion of misclassified nodes is oP(n−1/2).

Following the intuitions from Section 4.3.3, the primary objective in our community detection

task will be to bound ‖M −M0‖F. We first describe the results for DeepWalk in Section 4.4.1, and

then state the results for node2vec in Section 4.4.2. We end this section with a proof outline.

4.4.1 Results for DeepWalk

We describe the following proposition for bounding the Frobenius norm ‖M −M0‖F. We will

assume that tL > 2, since if tL = 1, then there are OP(n
2) entries of M which are equal to 0. This

makes ‖M −M0‖F of the order n. The following result gives estimates on ‖M −M0‖F based on

tL, tU and the sparsity parameter ρn:
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Theorem 3. Fix η > 0. Suppose tL > 2, and let φ = φ(tL) := btL/2c if tL > 3 and let φ = 0 if

tL = 2. Also let c0 = c0(tL, η) = 4 + (tL + 1)η, and suppose that

ntL−1ρtLn ×
1

(nρn)φ
� (log n)c0 . (4.15)

Then

‖M −M0‖F = OP

(
n(log n)−η + 1{tL = 2}

(
n

√
log n

nρ2
n

))
. (4.16)

If ρn is such that ntU−1ρtUn � 1 and nρn � 1, then given ε > 0 there exists a constant Cε > 0 such

that

P (‖M −M0‖F > Cεn) > 1− ε. (4.17)

The proposition says that ‖M −M0‖F = oP(n) as long as ntL−1−φρtL−φn is growing faster than

an appropriate power of log n. The power of the log n term is required for concentration of the

transition matrix of the random walk on SBM. The last part of the proposition says that the

Frobenius norm is Ω(n2) when ntU−1ρtUn � 1. This suggests that spectral clustering on the M -

matrix may not give good results at this level of sparsity. Thus in order to ensure a good low-

dimensional embedding, we should take tL suitably large.

Remark 1 (Effect of backtracking). To understand the quantity φ intuitively, let us consider a

simple case with tL = tU = t > 4 and t is even. If we were to compute the entry say Mii, we need

to understand how many walks of length t are possible from i to i. If we consider the edges in this

walk to be distinct, then the expected number of paths is of order nt−1ρtn, as we need to choose

t− 1 intermediate vertices and t specific edges need to appear. On the other hand, if we consider

the path where the walk alternatively visits a new node and then backtracks to i, then the expected

number of paths due to such backtracks is (nρn)t/2 = (nρn)φ. The condition in (4.22) is then just

ensuring that the contribution due to the backtracking path is smaller than the contribution from

the non-backtracking path. These kinds of backtracking walks do not contribute significantly for

node2vec with α small.
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With the bounds on the Frobenius norms in Theorem 3, we will conclude the following:

Theorem 4. Suppose that (4.15) holds. Fix ε > 0 and let (Θ̄, X̄) be a (1+ε)-approximate solution

in Algorithm 1. Then

Err(Θ̄,Θ0) = oP(n−1/2),

i.e., Θ̄ misclassifies at most oP(n1/2) many node-labels.

4.4.2 Results for node2vec

We now describe our results for the node2vec algorithm. As mentioned earlier, for our theoret-

ical analysis, we allow the parameter α = αn to vary with n and the parameter β to be fixed to be

equal to 1. We will also consider the cases when tL > 2. This is because when tL = tU = 2, M0

may not have a block structure, even asymptotically, and so spectral clustering of M may not give

us the communities of the nodes (cf. Lemma 17)

We look at three different regimes for the backtracking parameter α for the analysis of node2vec.

To compare DeepWalk and node2vec, we can think of DeepWalk as a special case of node2vec when

α = 1 and β = 1. The first regime is for the case when the backtrack parameter is larger than 1

and potentially growing with n. This case assigns a higher weight to the backtracks on the random

walks as compared to the DeepWalk algorithm. We do continue to have α � nρn in this case

which means that as a proportion of the degree of the node, the proportional weight assigned to

the backtracking edge goes to zero. The second and third regimes are for the case when α goes

to 0 which means that under the model it is less likely to backtrack on the random walks on the

graphs. The latter two regimes are differentiated based on the rate at which α→ 0.

The following proposition bounds the Frobenius norm ‖M −M0‖F for each of the three regimes

for node2vec.

Theorem 5. Let 3 6 tL 6 tU . Fix η > 0. Consider three regimes given as follows:
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1. Regime I: Let c0 = c0(tL, η) = 1 + 2η(tL −
⌈
tL−1

2

⌉
) + 1 and let c1 = c1(tL) = 2

tL−d
tL−1

2
e
. Let

α be such that

1 6 α� n
− 1

tL−d
tL−1

2 e
+1

(log n)−c1 , (4.18)

and assume that

ntL−d
tL−1

2
e−1ρ

tL−d
tL−1

2
e

n � αtL−d
tL−1

2
e(log n)c0 . (4.19)

2. Regime II: Fix δ > 0. Let

c0 = c0(tL, tU , η, δ) = tL · (2tU (tU + 1) + 2tU + 1 + tUδ + 1) + 2ηtU +
2tL

tL − d tL−1
2 e

,

and let c1 = c1(tU , δ) = 2tU (tU+1)+2tU+1
tU

+ δ. Let

n
− 1
tU (log n)c1 6 α 6 1, (4.20)

and assume that

ntL−1ρtLn � n

tL(tU−tL)

tU

(
tL−d

tL−1
2 e

)+
tL
tU
−1

(log n)c0 . (4.21)

3. Regime III: Let α = O
(

1
n

)
and let c0 = c0(tL, η) = 4 + (tL + 2)η. Assume that

ntL−1ρtLn � (log n)c0 . (4.22)

Then under each of the three regimes,

‖M −M0‖F = OP

(
n(log n)−η

)
. (4.23)
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On the other hand, if ρn is such that ntU−1ρtUn � 1 and nρn � 1, then given ε > 0 there exists a

constant Cε > 0 such that

P (‖M −M0‖F > Cεn) > 1− ε.

For the first regime, when α is growing with n, paths with backtracks have a larger contribution

as compared to the case of DeepWalk. Therefore, although the communities can be recovered from

the M -matrix, we need relatively dense graphs compared to DeepWalk. The second regime, when

α → 0, says that the communities can be recovered even when the graphs are relatively sparse

compared to the DeepWalk case. In particular if we take tL = tU = t > 3, then the result says that

we can recover the communities even when close to the regime when nt−1ρtn � 1. In contrast, when

nt−1ρtn � 1, we have ‖M −M0‖F = Ω(n) with probability bounded away from zero. The third

regime concerns the case when α = O
(

1
n

)
. In this case, again, the communities can be recovered

near the regime nt−1ρtn � 1 when tL = t = tU > 3. The results in this third regime are the

strongest among the three regimes. The intuitive reason for such good performance of node2vec

is that, if α is small, then situations such as Remark 1 either have lower contribution to upper

bounds, or do not arise for the biased random-walks in node2vec.

The bounds on the Frobenius norm in Theorem 5 leads to the following theorem about the

proportion of misclassified nodes.

Theorem 6. Fix ε > 0 and let tL > 3. Suppose ρn satisfy the respective conditions for the three

regimes as in Theorem 5, and let be a (1 + ε)-approximate solution in Algorithm 1. Then

Err(Θ̄,Θ0) = oP(n
−1/2),

i.e., Θ̄ misclassifies at most oP(n
1/2) many node-labels.

Proof outline. Before going into the proofs of these results, let us give a brief outline. We will

mainly provide a proof for the tL = tU = t case and the general case can be reduced to this special

case. The main idea for proving the upper bounds in Theorems 3, 5 is to get good estimates on the

moments of the total number of paths of length t. We will count these paths for each of the possible

community assignments of the intermediate vertices in the path. The goal is to show that the main
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contribution on the k-moments come from k disjoint paths. Proving that the contribution due to

rest of the paths is small requires a novel combinatorial analysis due to the possibilities of backtracks.

We first develop this methodology for DeepWalk (cf. Section 5.1). The path counting estimates

allow us to bound ‖M −M0‖F using Proposition 4. To prove Theorem 4, we use perturbation

analysis for the eigenspaces of ‖M −M0‖F. Due to Proposition 5, the eigenvectors of M0 are such

that two of its rows are the same if the nodes are in the same community and two rows are different

if they are in different community. Applying the perturbation analysis, the same property remains

approximately true for the top eigenvectors of M as well, which allows us to prove the success of

Algorithm 1 (cf. Section 5.2). The proof for node2vec uses similar ideas though the different weights

for the backtracking parameter of the random walk requires careful analysis (cf. Sections 5.3, 5.4).

57



CHAPTER 5

Proofs of DeepWalk and node2vec results

In this chapter we prove all the main results in Chapter 4. The proofs are organized as follows.

In Section 5.1, we set up the path counting estimates that are crucially used in our proof. We

complete analysis for DeepWalk in Section 5.2, and node2vec in Section 5.3 and Section 5.4.

5.1 Path counting for DeepWalk

In this section, we focus on computing the asymptotics for the number of paths having a some

specified community assignments for the intermediate vertices. In Section 5.1.1, we bound its k-th

moment and we end with a concentration condition in Section 5.1.2.

5.1.1 Bounding moments for paths of different type

Let us first set up some notation. Recall that g(u) denotes the community assignment for

vertex u. We say a path (i0, i1, i2, . . . , it) has composition (b0, b1, . . . , bt) if g(il) = bl. Define the

collection of path compositions for paths between two nodes i and j as

Bij := {(b0, b1, . . . , bt) : bl ∈ [K] for 0 6 l 6 t, b0 = g(i), bt = g(j)} . (5.1)

For b = (b0, b1, . . . , bt) ∈ Bi,j , we define the collection of paths between i and j with composition b

in the complete graph Kn as

Pb := {(i0, i1, . . . , it) : il ∈ [n] for 0 6 l 6 t, i0 = i, it = j, g(il) = bl} . (5.2)

For any path p = (i0, i1, . . . , it) ∈ Pb, we associate the random variable

Xp := Ai0i1Ai1i2 · · ·Ait−1it , (5.3)
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and define

Yb :=
∑
p∈Pb

Xp. (5.4)

To each element b = (b0, b1, . . . , bt) ∈ Bi,j we associate the term

U(b0,b1,...,bt) = Ub :=

(
t−1∏
i=1

nbiBbi−1bi

)
Bbt−1bt . (5.5)

We will upper bound the moments of Yb in terms of Ub. Similarly for the lower bound, we define

L(b0,b1,...,bt) = Lb :=

(
t−1∏
i=1

(nbi − (k(t− 1) + 1))Bbi−1bi

)
Bbt−1bt (5.6)

With this setup, we can state the following bounds on EY k
b .

Proposition 6. Let tL = tU = t > 3 be given and suppose that (4.15) holds. Then we have

Lkb 6 EY k
b 6 U

k
b (1 + o(1)).

The idea is to show that the leading term for EY k
b is due to E

(∏k
α=1Xpα

)
of k ordered paths

having kt distinct edges between them. The contribution of the rest of the terms are of a smaller

order. We summarize the second claim below. For any path p = (i0, i1, i2, . . . , it) ∈ Pb, let

e(p) := {{il, il+1} : 0 6 l < t} ,

be the set of edges in the path p. Let

Em :=
∑

(p1,p2,...,pk):pi∈Pb,|∪α∈[k]e(pα)|=m

P(Xp1Xp2 · · ·Xpk = 1). (5.7)

We will show the following:

Proposition 7. Under identical conditions as Proposition 6, we have
∑

m<ktEm = o(Ukb ).
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Proof of Proposition 6 using Proposition 7. Note that, we can write

EY k
b = E

( ∑
p∈Pb

Xp

)k
=

∑
(p1,p2,...,pk):pα∈Pb

P(Xp1Xp2 · · ·Xpk = 1). (5.8)

For the upper bound, Proposition 7 shows that it is enough to bound the summands corresponding

to sequences (p1, p2, . . . , pk) that satisfy | ∪kα=1 e(pα)| = kt, i.e. sequences of paths consisting of kt

distinct edges. In this case, P(Xp1Xp2 · · ·Xpk = 1) =
∏k
α=1 P(Xpα = 1). We note that each of the

paths pr has path type b, and we bound

P(Xpα = 1) 6 Ub =

( t−1∏
i=1

ngiBgi−1gi

)
Bgt−1gt ,

and thus the upper bound follows using Proposition 7. For the lower bound, we can simply restrict

the summands in (5.8) to the case | ∪kα=1 e(pα)| = kt. We compute

P(Xpα = 1) >

( t−1∏
i=1

(nbi − (2 + (α− 1)(t− 1) + (i− 1)))Bbi−1bi

)
Bbt−1bt

>

( t−1∏
i=1

(nbi − (k(t− 1) + 1))Bbi−1bi

)
Bbt−1bt = L(b).

Above for the marked vertices in path pα, the term (α − 1)(t − 1) is to account for not choosing

vertices seen in the first α− 1 paths, the summand 2 is for the nodes i and j, and (i− 1) is for the

nodes upto index (i− 1) in path pα. Hence the proof of the lower bound is also complete.

�

The rest of this section is devoted to the proof of Proposition 7. Let us start by setting up some

definitions that will be useful for us to count the contributions coming from intersecting paths. All

these definitions are demonstrated in Figure 5.1.

Definition 1 (Marked edge and marked vertex). Let (p1, p2, . . . , pk) be an ordered sequence of k

paths in Pb. Fix one of the paths pα = (i0, i1, i2, . . . , it) and consider the directed edge (il, il+1)

appearing at the l-th step. We will call (il, il+1) to be a marked edge if the undirected edge {il, il+1}

is not present in the paths pα′ , 1 6 α′ < α and also it is not equal to previous edges in the path pα,

i.e., {il, il+1} 6= {il′ , il′+1} for 0 6 l′ < l. Intuitively, we call (il, il+1) a marked edge if it is the first
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Figure 5.1: Illustrating marked edges (red), backtracks (black), and unmarked edges (dotted). The seg-
ments in this path are given by S1 = (u, v, w, v), S2 = (v, x, w), S3 = (x, y, x, u, x, u, x), S4 = (v, y). Here S3

is a Type II segment with k2 − k2 = 2 and k3 − k2 = 4. The rest are Type I segments.

time we see it as we count the edges along the paths p1 to pk. For a marked edge (il, il+1), we will

call il+1 to be a marked vertex if it was not seen before in previous paths and also in (i0, . . . , il).

Definition 2 (Backtrack). A directed edge (il, il+1) in a path pα = (i0, i1, i2, . . . , it) is called a

backtrack if il+1 = il−1.

Definition 3 (Segment). Let 0 6 l < l′ 6 t. We will say that (il, il′) is a segment in path pα if the

following conditions hold:

1. (il, il+1) is a marked edge, i.e., segments always start with a marked edge.

2. (ij , ij+1) is a marked edge or a backtrack for all l 6 j < l′.

3. There does not exist 0 6 l′′ < l such that (ij , ij+1) is a marked edge or a backtrack for all

l′′ 6 j < l and (il′′ , il′′+1) is a marked edge.

4. Either l′ = t or if l′ < t then (il′ , il′+1) is neither a marked edge nor a backtrack.

Intuitively, segments are maximal parts of paths consisting of marked edges and their backtracks.

The last two conditions ensure that segments cannot be extended to the left and to the right. The

edges outside the segments will often be referred to as unmarked edges. Thus, an unmarked edge

is an edge that was previously visited and it is not a backtrack of the last visited marked edge. In

Figure 5.1, the dotted lines are unmarked edges, and we can note that the corresponding undirected

edges had appeared previously in the path. Notice also that any two segments are separated by

one or more unmarked edges. Finally, we remark that the edge preceding a segment may be a

backtrack but it can only be a backtrack of an unmarked edge; see for example the second segment

in Figure 5.1.
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Definition 4 (Type I/II Segments and Paths). Let (il, il′) be a segment with r marked edges.

Suppose l = k1 < k2 < · · · kr+1 = l′ be integers such that (ikr′ , ikr′+1) for 1 6 r′ 6 r constitute the

set of all marked edge. Then (il, il′) is said to be a Type II segment if kr′+1−kr′ is an even number

for 1 6 r′ 6 r. In all other cases, (il, il′) is said to be a Type I segment. Intuitively, a Type II

segment just represents going back and forth on the same vertex. In Figure 5.1, the third segment

is Type II and the rest of the segments are Type I. We say that a path p is a Type I path if there

is at least one Type I segment in it. Otherwise, we call it a Type II path. Notice that Type II path

may not have any segment.

Definition 5. We call a path p saturated if all the edges in p are part of some segment, i.e., there

are no unmarked edges in a saturated path.

We now state the following elementary lemma which will be used throughout:

Lemma 6. There are at most nr−1 ways to choose marked vertices for a Type I path with r marked

edges, and there are at most nr ways to do the same for a Type II path with r marked edges.

Proof. Let us focus only on a path p that is saturated, since we want to maximize the choice of

marked vertices and they can only be found by walking through a marked edge. Consider the path

p, and note that the endpoints of p are fixed at i, j, and all the edges are either marked or is a

backtrack. Let (ikα , ikα+1) with 1 6 α 6 r be the marked edges. We construct a graph Hp using

only the marked edges (ignoring their orientation). Since p is saturated, we have Hp is connected,

and also the vertices of Hp (except possibly i, j) are marked vertices. If p is Type II, then Hp is a

star centered at i having r edges, and j can either be i or be one of the leaves. Thus the vertices

except i, j can be chosen in at most nr ways. If p is Type I, in order to get the maximum number

of vertices in Hp, one can have Hp to be a tree if i 6= j or a unicyclic graph if i = j. In both cases,

there are at most r − 1 vertices (other than i, j) to choose, and these can be chosen in nr−1 ways.

�

To complete the proof of Proposition 7, let Em,r denote the summands in (5.7) restricted to

the case that there are r Type I segments, so that

Em =

r∗(m)∑
r=r∗(m)

Em,r,
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where, given m, [r∗(m), r∗(m)] denotes the possible range of r. The analysis will consist of two

steps. In the first step, we analyze Em,r∗(m). Subsequently, we will show that Em,r is much smaller

than Em,r∗(m) for r > r∗(m).

Intuitively, Em,r∗(m) is the largest term as minimizing the number of Type I segments leads to

maximizing the number of choices for marked vertices. This can be seen from Lemma 6 which says

that there are at most r − 1 marked vertices to choose for a Type I segment with r marked edges.

In contrast, for a Type II segment we have an upper bound of r choices for r marked edges.

5.1.1.1 Computing Em,r∗(m).

We first find an expression of r∗(m). Note the following:

Observation 1. A Type I path has maximum number of marked edges if there is only one Type

I segment having t marked edges. We refer to these paths maximal Type I paths. (Thus, maximal

paths are saturated).

Observation 2. For a Type II path, let h = h(t, i, j) be the maximum number of marked edges.

Note that each marked edge in a Type II segment has at least one backtrack. We refer to such

paths as maximal Type II paths. Note that h = t/2 if t is even and i = j as each marked edge in

a Type II segment has at least one backtracking edge. If t is even and i 6= j then h = (t − 2)/2

as Type II segments must start and end at the same vertex and Type II segments are of an even

length. If t is odd and i 6= j, then h = (t − 1)/2 marked edges. If t is odd and i = j then it may

have a maximum of (t−3)/2 marked edges. In particular for the last case, we cannot have (t−1)/2

marked edges as if that were the case then the first or the last edge in the path would be a self-loop

at node i which has probability 0 in our model. We can also note that as a result, we cannot have

a Type II path when t = 3 and i = j and we take h = 0 in the case. Note that h 6 φ(t) = bt/2c

for t > 3, where φ(t) is defined in Theorem 3.

We have that for the case of r Type I segments, the number of marked edges satisfy m 6

rt+ (k − r)h. Let

f(r) := rt+ (k − r)h, 0 6 r 6 k.

Then r∗(m) is obtained by inverting f as described below:
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Lemma 7. r∗(m) = max{0, bm−kht−h c}.

Proof. Let f(r0 − 1) < m 6 f(r0) for some r0 > 1. We would like to put as many edges in Type I

segments as possible to minimize the number of Type I segments. However, since each path has

length t and m > (r0 − 1)t, we need r0 Type I segments, so that r∗(m) > r0. Also, this lower

bound is attained by taking r0 − 1 many maximal Type I paths and another Type I path that is

not maximal. If m 6 f(0), then we can get away with having no Type I segments. This completes

the proof. �

Next we count the possible ways of rearranging the Type I segments in k paths.

Lemma 8. Given m marked edges and r∗(m) Type I segments, the number of configurations of

Type I, II segments and unmarked edges Nm,r∗(m) satisfies

Nm,r∗(m) 6

(
k

r∗(m)

)
kf(r∗(m))−m3k−r∗(m)Cf(r∗(m))−m.

Proof. We treat four cases separately:

Case I: m = f(r0) for some 1 6 r0 6 k. r∗(m) = r0. If m = f(r0), then we must take r0 paths

to place the r0 = r∗(m) Type I segments which can be chosen in
(
k
r0

)
ways. The rest of the Type

II segments are placed in the remaining k − r0 paths. The Type I, II paths have to be maximal

in order to place these m marked edges. We note that there are at most t − 2h unmarked edges

in each of these Type II paths, which are not part of the segments, and these can be chosen in at

most m ways each. This is because each unmarked edge is chosen to be one of the m marked edges.

We also note that for each Type II path, there are t− 2h 6 3 ways of placing the Type II segment

in the path. So the overall bound for Case I is

(
k

r∗(m)

)
3(k−r∗(m)).

Case II: f(r0−1) < m < f(r0) for some 1 6 r0 6 k. Again, we have r∗(m) = r0. Let l = f(r0)−m.

Then we need r0 distinct paths to place the r0 = r∗(m) Type I segments, which again can be chosen

in
(
k
r0

)
. However, in this case, these paths might not be maximal. Take l1 and l2 such that l1+l2 6 l,
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all except l1 of the r0 Type I paths are maximal and and all except l2 of the k − r0 Type II paths

are maximal. We can choose these l1 + l2 many non-maximal paths in at most O(kl) ways. Also,

note that we can have at most 2l more unmarked edges compared to the case of m = f(r0). The

total number of ways of arranging the segments and unmarked edges for the non-maximal paths is

O(C l), where C is a constant that might depend on t. Thus the bound for this case is

(
k

r∗(m)

)
kl3(k−r∗(m))C l.

Case III: m = f(0). The same argument and the bound as Case I holds here. We note that this

case does not occur if h = 0.

Case IV: m < f(0). Thus m = f(0)− l for l > 0. Note that this case also does not occur if h = 0.

Recall that for m = f(0) case, all the paths have Type II segments containing h marked edges. We

would like to count the configurations for m = f(0) − l marked edges with no Type I segments.

We note that then there exist 1 6 u 6 l paths such that they have less than h marked edges and

the rest of the paths have h marked edges. We can choose the u paths in at most O(kl) ways. We

can then arrange segments in these l paths in C l ways. Note that we can have at most 2l more

unmarked edges for this case compared to the m = f(0) case. The overall bound for this case is

(Ck)l3k. �

We are now ready to prove asymptotics of Em,r∗(m).

Lemma 9.
∑

m<ktEm,r∗(m) = o(Ukb ).

Proof. Let us start by noting that Ub = Θ(nt−1ρtn). The number of choices of segments is

given by Lemma 8. Since we have r∗(m) Type I segments, we must have at least s(m) =

max {r∗(m)− (f(r∗(m))−m), 0} maximal Type I segments, with each of them having probability

at most Ub. In the rest, we have one Type I segment. Thus by Lemma 6, the vertices in the rest of

the paths can be chosen in at most nm−ts(m)−(r∗(m)−s(m)) ways. Also the m−ts(m) many remaining

marked edges give us a contribution of at most (Cρn)m−ts(m). The number of unmarked edges is
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specified in each of the cases in the proof of Lemma 8 above. Combining all these, we get

Em,r∗(m) 6

(
k

r∗(m)

)
kf(r∗(m))−m3k−r∗(m)Cf(r∗(m))−m

× U s(m)
b nm−ts(m)−(r∗(m)−s(m))ρm−ts(m)

n

×m(k−r∗(m))·(t−2h)+2(f(r∗(m))−m).

Using these bounds we see that with the choice of k = dlog ne

t−h−1∑
l=0

Ef(r0)−l,r?(f(r0)−l) = Ef(r0)−l,r?(f(r0)−l)

(
1 +O

(
k3

nρn

))
, r0 > 1,

f(0)−1∑
l=0

Ef(0)−l,r?(f(0)−l) = Ef(0)−l,r?(f(0)−l)

(
1 +O

(
k3

nρn

))
,

k∑
r0=0

Ef(r0),r?(f(r0)) = Ef(k),r?(f(k))

(
1 +O

(
k1+t−2h(nρn)h

nt−1ρtn

))
.

These bounds in turn imply that

kt−1∑
m=1

Em,r∗(m) = o
(
Ukb

)
.

�

5.1.1.2 Computing Em,r for r > r∗(m).

We start by noting the additional number of configurations with r Type I segments as compared

to Lemma 6.

Lemma 10. Given m marked edges and r Type I segments, let Nm,r be the number of configurations

of Type I, II segments and unmarked edges. Then, for any r > r∗(m),

Nm,r 6 Nm,r∗(m) × (Ck)(r−r∗(m))(t+1).

Proof. Let Tr be the set of all configurations of m marked edges and r Type I segments. Note that

a “configuration” here only specifies location of marked edges, segments, and the unmarked edges.

The backtracks of the marked edges are already specified. We will inductively bound Tr+1 in terms
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Figure 5.2: Example of a splitting a segment. (a) The original configuration of the segments in the chosen
path. The edges in the two segments are colored red and blue respectively. The edges are also labeled by
M, B and U if the edge is a marked edge, a backtrack of a marked edge and an unmarked edge respectively.
The dotted line indicates the location of the split. (b), (c) Two examples of configurations after the splitting
the segment. The two new segments are colored by green and violet.

Tr. For that, we consider two cases depending on whether the elements of Tr+1 has a Type I path

with two Type I segments or not. In both cases, we will find a relation between Tr to Tr+1.

Case I. Consider elements of Tr+1 that has a Type I path with two Type I segments. Let us call

this subset T Ir+1. We consider the elements in Tr which will be related to these elements in T Ir+1.

Let T Ir ⊂ Tr consisting of configuration such that there is at least one path p so that the following

hold:

1. Extra unmarked edges. p has l segments and l′ > l unmarked edges for some l, l′ > 1.

2. Well-splittable. Suppose p has a Type I segment (il, il+1, . . . , il′) with marked edges given

by (iks , iks+1) for l 6 ks < l′, 1 6 s 6 m′, m′ > 1, and the number of s with ks+1 − ks being

odd is at least 2.

Note that a path with l segments can be formed by just putting l − 1 unmarked edges between

segments. The first condition ensures that we have extra l′ − l + 1 of them. We will put these

extra unmarked edges inside segments to split them. Regarding condition 2, notice that a Type I

segment always has one of the ks+1−ks being odd (by definition), but the well-splittable condition

requires ks+1− ks to be odd additionally in a second place. This allows us to split a well-splittable

Type I segment into two Type I segments. For example, the blue segment in Figure 5.3 (a) is well-

splittable and it can be split into two parts with ks+1− ks being odd. We will split the segment by

moving an unmarked edge in between as illustrated in Figure 5.3.
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The general description for splitting is that given a path with extra marked edges and well-

splittable property, we can think of unmarked edges as “bars”, and segments as “labelled balls”.

The well-splittable segment is viewed as two Type I sub-segments and corresponds to two “labelled

balls”. Permute these bars and balls such that there is at least one bar between any two labelled

balls (bars can be adjacent). Also, there may be multiple ways to split well-splittable segment and

we consider all possible such splits. This creates multiple elements in T Ir+1 from an element in T Ir .

See Figure 5.2 (b), (c) for two possible elements. Moreover, we can get preimages of all the elements

in T Ir+1,. To do this, we can first take a path with two Type I segments, rearranging the segments

so that two Type I segments appear one after another. Then we can remove the unmarked edges

between them, which joins the two Type I segments. The removed unmarked edges can be placed

in other places adjacent to an unmarked edge. This is basically the inverse operation of the above

splitting constructions.

We can note there are O(k) preimages in total of an element in T Ir+1, where the factor k comes

from choice of the path p and the rest of the choices for permuting unmarked edges and segments

are O(1) as they are functions of only t which is bounded. Thus,

|T Ir+1| 6 O(k)× |T Ir | 6 O(k)× |Tr|.

Case II. We next relate arrangements of marked edges where there is at most one Type I segment

per path. We denote such arrangements as T IIr+1 ⊂ Tr+1. Let T IIr be the set of all ways of

specifying locations of segments such that there are a total of r Type I segments and each of the

Type I segments is placed on distinct paths. Suppose that r + 1 6 min(k,m) and r > r?(m).

Then we give a multi-map from T IIr onto T IIr+1 using a construction. The condition r + 1 6 m is

necessary so that T IIr+1 is non-empty as we must have at least r + 1 marked edges in order to have

r+ 1 paths each having a Type I segment. The condition r+ 1 6 k is also necessary for T IIr+1 to be

non-empty as we must have at least r + 1 distinct paths to place the r + 1 Type I segments. The

last condition r > r?(m) is to ensure that T IIr is non-empty. To fix notation, let S1(l) be the set of

all ways of arranging l marked edges in one path such that there is at least one Type I segment in

the path. Similarly, let S2(l) be the set of all ways of arranging l marked edges in one path such

that there are no Type I segments in the path. We now describe the construction. Let A ∈ T IIr

68



Figure 5.3: Example of the second construction for the case of t = 4, m = 4 and s = 1. The marked
edges are colored red. The letters M, B and U denote a marked edge, a backtrack of a marked edge and an
unmarked edge respectively. (a) The top path is the chosen path where we would place a Type I segment.
The second path contains one Type I segment and the bottom path is a Type II path. (b), (c) Two examples
of new configurations from the construction. In both the cases the top path now has a Type I segment and
the middle path continues to have a Type I segment.

and choose a path p not containing a Type I segment. We can do so as r + 1 6 k. Suppose p has

l > 0 marked edges. Choose 0 6 u1 + u2 6 t− l paths where u1 of the paths are paths containing

Type I segments with at least two marked edges and the rest u2 paths are paths which are distinct

from p, do not contain Type I segments, and contain at least one marked edge. If l = 0 we require

u1 + u2 > 0. It is feasible to choose such path(s) as r + 1 6 m. Suppose the u1 paths are labeled

as q1, q2, . . . , qu1 and the u2 paths indices q′1, q
′
2, . . . , q

′
u2 . Suppose these paths have lq1 , lq2 , · · · , lqu1

and lq′1 , lq′2 , · · · , lq′u2 marked edges respectively. Let vq1 , vq2 , · · · , vqu1 be such that 0 < vqi < lqi .

Similarly let vq′1 , vq′2 , · · · , vq′u2 be such that 0 < vq′i 6 lq′i . We require
∑

i vqi +
∑

i vq′i 6 t− l. Then

we modify the arrangements of marked edges in the paths so that the new arrangements for the

sequence of paths (p, q1, q2, . . . , qu1 , q
′
1, q
′
2, . . . , q

′
u2) is any element of

S1

(
l +
∑
i

vqi +
∑
i

vq′i

)
×

(
u1∏
i=1

S1(lqi − vqi)

)
×

(
u2∏
i=1

S2(lq′i − vq′i)

)
.
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We keep the arrangements of marked edges in the rest k−(1+u1 +u2) paths unchanged. This leads

to multiple images of A in T IIr+1. We note that there are O(kt+1) images of A due to the choice of

the paths and since the number of ways of choosing the new arrangements for the 1 +u1 +u2 paths

is O(1) as t is fixed. We also note that since we modify at most t + 1 paths in this construction,

the number of unmarked edges increases by at most t(t+ 1).

Now we show that the multi-map given by the construction above is surjective onto T IIr+1. For

this, let A′ ∈ T IIr+1. Let p be a path containing a Type I segment. If p has l 6 h edges we choose

an element in x ∈ S2(l). We can then see that A′ is in the image of the element A ∈ T IIr where the

path p has the arrangement of marked edges given by x and the rest of the paths have the same

arrangement of marked edges as A′. We note that since we have replaced the Type I segment in

the path p with a Type II segment, the element A has one less Type I segment. Now suppose that

p has l > h edges. Choose u1 + u2 6 l − h paths so that u1 paths contain Type I segments and

these paths are not equal to p and, u2 paths do not contain Type I segments segments. Suppose

the u1 paths are labeled as q1, q2, . . . , qu1 and the u2 paths are labeled as q′1, q
′
2, . . . , q

′
u2 . Suppose

that these paths have lq1 , lq2 , · · · , lqu1 and lq′1 , lq′2 , · · · , lq′u2 marked edges respectively. We require

that lqi < t and lq′i < h i.e. that these chosen paths are not saturated. Let vq1 , vq2 , · · · , vqu1 be such

that 0 < vqi 6 t− lqi . Similarly let vq′1 , vq′2 , · · · , vq′u2 be such that 0 < vq′i 6 h− lq′i . We require that

u1∑
i=1

vqi +

u2∑
i=1

vq′i = l − h.

This is feasible as long as r > r?(m). The above condition says that the chosen paths have enough

spaces to move l − h edges from path p to the chosen paths. Choose a new arrangement x of the

marked edges for the sequence of paths (p, q1, q2, . . . , qu1 , q
′
1, q
′
2, . . . , q

′
u2) from the set

S2 (h)×

(
u1∏
i=1

S1(lqi + vqi)

)
×

(
u2∏
i=1

S2(lq′i + vq′i)

)
.

Then keeping the arrangements of marked edges of the rest of the paths the same as in A′ and

choosing the arrangements for the chosen paths as x, we have a preimage A ∈ T IIr under the

construction described above.

70



From the two constructions above we have

|Tr+1| 6 O(k)|Tr|+O(kt+1)|Tr|. (5.9)

�

We can now compute asymptotics for Em,r.

Lemma 11.
∑r∗(m)

r=r∗(m)Em,r = Em,r∗(m)(1 + o(1)).

Proof. We start by giving a bound for Em,r. The probability of the m marked edges is bounded by

ρmn . By Lemma 6, the upper bound for the number of marked edges is m− r as there are r Type I

segments. Let

u(m) = (k − r∗(m)) · (t− 2h) + 2(f(r∗(m))−m),

be the upper bound for the number of unmarked edges for the case of r∗(m) segments obtained

from the proof of Lemma 9. Then by the two constructions in Lemma 10, the number of unmarked

edges for the case of r Type I segments is at most u(m) + (r− r∗(m)) · (t(t+ 1)). Combining these

we have

Em,r 6 Nm,rn
m−rρmnm

u(m)+(r−r∗(m))·t(t+1).

Then by using Lemma 10 we have

r∗(m)∑
r=r∗(m)

Em,r = Em,r∗(m)

r∗(m)∑
r=r∗(m)

(
O(kt+1) ·mt(t+1)

n

)r−r∗(m)

= Em,r∗(m)(1 + o(1)).

�

By Lemmas 9 and 11 we then have

∑
m<kt

Em 6 C
∑
m<kt

Em,r∗(m) = o(Ukb ).

This completes the proof of Proposition 7.
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5.1.2 Concentration of path counts

In this section, we prove concentration of Yb defined in (5.4). Let us start with a general result

which we will apply for indicator random variables appearing in paths:

Lemma 12. Let E be a finite set and let ξe be indicator random variables for e ∈ E with πe = P(ξe =

1) > 0. For a subset S ⊂ E, we define ξS :=
∏
e∈S ξe. Suppose S1, S2, . . . Sk be non-empty subsets

of E and let ne := |{j ∈ [k] : e ∈ Sj}|. Let E1 := {e ∈ ∪kj=1Sj : ne = 1} and E2 =
(
∪kj=1Sj

)
\E1.

Then we have

∣∣∣∣E k∏
j=1

(ξSj − EξSj )
∣∣∣∣ 6 ( ∏

e∈E1

πe

)
×
( ∏
e∈E2

πe(1 + πe)

)
. (5.10)

Proof. Let S(1)

j ⊆ S(2)

j ⊆ Sj and m = | ∪kj=1 S
(1)

j |. We define n(1)
e and E (1)

1 similarly as ne, E1 but

now with sets S(1)

j . We prove by induction on m that, for all possible choices of S(1)

j , S(2)

j ,

∣∣∣∣E k∏
j=1

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)∣∣∣∣ 6 ( ∏
e∈E(1)1

πe

)
×
( ∏
e∈E(1)2

πe(1 + πe)

)
. (5.11)

Throughout, we use the convention that a product over an empty index set is 1. For the induction

base case, suppose m = 1. Let e be the only element in ∪ki=1S
(1)

j and without loss of generality let

e ∈ S(1)

j for 1 6 j 6 n(1)
e . If n(1)

e = 1, then

E
(
ξ
S
(1)
1

− Eξ
S
(2)
1

)
= πe

(
1− Eξ′

S
(2)
1

)
6 πe,

where ξ′
S
(2)
1

:= ξ
S
(2)
1 \{e}

. The terms with S(1)

j = ∅ can be bounded by 1. This shows the base case

for m = 1 and n(1)
e = 1. If n(1)

e > 1, then

E
[ n(1)

e∏
j=1

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)]
= E

[ n(1)
e∏
j=1

(
ξe − Eξ

S
(2)
j

)]

= πe ·
n
(1)
e∏
j=1

(
1− Eξ

S
(2)
j

)
+ (1− πe) ·

n
(1)
e∏
j=1

(
− Eξ

S
(2)
j

)
6 πe + (πe)

n
(1)
e 6 πe(1 + πe).

This completes the proof of the base case m = 1.
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Next let m > 1. We will split in two cases depending on whether E (1)

1 6= ∅ and E (1)

1 = ∅. First,

if E (1)

1 6= ∅, then pick an element e ∈ E (1)

1 . Note that e can only be in one of S(1)

j ’s, and without

loss of generality let e ∈ S(1)

1 . Let Fe is the minimum sigma-algebra with respect to which (ξf )f 6=e

are measurable, and analogously to before, define ξ′
S
(1)
1

:= ξ
S
(1)
1 \{e}

and ξ′
S
(2)
1

:= ξ
S
(2)
1 \{e}

. Taking

iterated conditional expectation with respect to Fe, we get

E
[ ∏
j∈[k]:S

(2)
j 6=∅

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)]
= πe · E

[(
ξ′
S
(1)
1

− Eξ′
S
(2)
1

) ∏
j∈{2,3,...k}:S(2)

j 6=∅

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)]
.

Now we can conclude (5.11) by induction step using S(1)

1 \ {e}, S
(2)

1 \ {e} and S(1)

j , S(2)

j for j > 2,

and noting that E (2)

1 is unchanged in this new set up.

Next suppose that E (1)

1 = ∅. Pick any e ∈ E (1)

2 . Then n(1)
e > 1 and without loss of generality let

e ∈ S(1)

j for 1 6 j 6 n(1)
e . We again take iterated conditional expectation with respect to Fe to get

E
[ ∏
j∈[k]:S

(2)
j 6=∅

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)]

= E
[ ∏
j∈{n(1)

e +1,...,k}:S(2)
j 6=∅

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)
E
[ n(1)

e∏
j=1

(
ξ
S
(1)
j

− Eξ
S
(2)
j

) ∣∣∣Fe]].
(5.12)

We simplify

E
[ n(1)

e∏
j=1

(
ξ
S
(1)
j

− Eξ
S
(2)
j

) ∣∣∣Fe] = πe ·
n
(1)
e∏
j=1

(
ξ′
S
(1)
j

− Eξ
S
(2)
j

)
+ (1− πe)

n
(1)
e∏
j=1

(
− Eξ

S
(2)
j

)
. (5.13)

Suppose that m− l = |∪k
j=n

(1)
e +1

S(2)

j | for some l > 1 (we have l > 1 since e is not in the union). For

the second term in (5.13), we have

∣∣∣∣(1− πe) n
(1)
e∏
j=1

(−Eξ
S
(2)
j

)

∣∣∣∣ 6 πn(1)
e −1
e

∏
f∈∪n

(1)
e
j=1 S

(2)
j

πf =: Z1,

as the term ξe is repeated r times. We bound the term in (5.12) outside conditional expectation

by induction. If we consider the sets S(1)

j , S(2)

j for j > n(1)
e with S(2)

j 6= ∅ and create the sets Ẽ1 and
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Ẽ ′2 analogously to E (1)

1 , E (2)

1 when restricted to this smaller class of subsets. Then

∣∣∣∣E[ ∏
j∈{n(1)

e +1,...,k}:S(2)
j 6=∅

(
ξ
S
(1)
j

− Eξ
S
(2)
j

)]∣∣∣∣ 6 ∏
f∈Ẽ1

πf
∏
f∈Ẽ2

πf (1 + πf ) =: Z2.

Hence, the term in (5.12) is at most

πe

∣∣∣∣E[ ∏
j∈{n(1)

e +1,...,k}:S(2)
j 6=∅

(
ξ
S
(1)
j

− Eξ
S
(2)
j

) n(1)
e∏
j=1

(
ξ′
S
(1)
j

− Eξ
S
(2)
j

]∣∣∣∣+ Z1Z2

6 πe ·

 ∏
f∈E(1)1

πf ·
∏

f∈E(1)2 \{e}

πe(1 + πe)

+ πn
(1)
e −1
e

∏
f∈∪n

(1)
e
j=1 S

(2)
j

πf
∏
f∈Ẽ1

πf
∏
f∈Ẽ ′2

πf (1 + πf ).

The last term above is at most the bound in (5.11), which follows by noting that the second term

has a factor of (πe)
n
(1)
e with n(1)

e > 2, and for each of the variables f ∈ E (1)

1 , f 6= e the second term

has a factor smaller or equal to πf , and for each of the variables f ∈ E (1)

1 the second term has a

factor smaller or equal to πf (1 + πf ). This completes the proof. �

We now prove the following concentration result for Yb:

Proposition 8. Let tL = tU = t > 3 be given and k = dlog ne. Suppose that (4.15) holds. Then

we have

P (|Yb − EYb| > δEYb) = O(n−c),

where δ = Θ((log n)−η) for some η > 0, and c > 0 is any real number.

Proof. We will be using notation and terminology from proof of Proposition 7. By Markov’s

inequality, and using Proposition 6,

P (|Yb − EYb| > δEYb) 6
E(Yb − EYb)2k

δ2k (EYb)2k
6

E(Yb − EYb)2k

δ2k(Lb)2k
, (5.14)
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and moreover,

E(Yb − EYb)2k = E
( ∑
p∈Pb

(Xp − EXp)

)2k

=
∑

(p1,p2,...,p2k):pl∈Pb

E
2k∏
l=1

(Xpl − EXpl). (5.15)

Fix an ordered sequence (p1, p2, . . . , p2k). We can first note that E
∏2k
l=1(Xpl−EXpl) is equal to 0 if

there is a path pl which does not have any edges in common with the other 2k− 1 paths. Suppose

now that each of the paths share at least one edge with some other path. Then the minimum

number of unmarked edges or repeats of edges is at least k. This minimum k arises from the worst

case where we have k pairs of paths with each pair having one edge in common. Thus, the number

of marked edges m 6 2kt− k.

To bound E
∏2k
l=1(Xpl − EXpl), we use Lemma 12. For each marked edge e with endpoints in

block bi and bi′ between two nodes blocks bi and bi′ , we assign a weight w(e) = Bbi,bi′ . For each

unmarked edge e, we assign a weight w(e) = (1 + Bbi,bi′ ) instead. Then we can see by Lemma 12,

E
∏2k
l=1(Xpl − EXpl) is bounded by the product of the weights on the edges in the 2k paths, i.e.,

E
2k∏
l=1

(Xpl − EXpl) 6
∏

e:e is marked

w(e)×
∏

e:e is unmarked

(1 + w(e)). (5.16)

We note that while bounding Em in the proof of Proposition 7, we bounded the probability of each

of the marked edges by w(e) as well. Let E′m be the sum of summands in (5.15) corresponding to

paths with m marked edges. We use the bound 1 +w(e) 6 2 for the weight on the unmarked edges

and proceed as in the proof of Proposition 7 to have for m 6 2kt− k:

E′m 6 C
′
(

2k

r∗(m)

)
(2k)f(r∗(m))−m32k−r∗(m)Cf(r∗(m))−m

× U s(m)
b nm−ts(m)−(r∗(m)−s(m))ρm−ts(m)

n

× (2m)(2k−r∗(m))·(t−2h)+2(f(r∗(m))−m).

Let m0 be such that m0 = f(r∗(m)) and define E′m0
with the same expression as above. Then

bounding as in the proof of Proposition 7 we have from (5.15)

E(Yb − EYb)2k 6 CE′m0
.
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Thus, (5.14) together with the fact that Ub
Lb

= 1 +O( kn) yields

P (|Yb − EYb| > δEYb) 6

(
2k

r∗(m)

)
32k−r∗(m)U

r∗(m)
b (nρn)m−tr∗(m)(2m)(2k−r∗(m))·(t−2h)

δ2kL2k
b

6

(
Ub
Lb

)r∗(m)

·

(
Ck1+t−2h(nρn)hδ

− 2k
2k−r∗(m)

nt−1ρtn

)2k−r∗(m)

,

6 C

(
C(log n)1+t−2h−2η(t−h)(nρn)h

nt−1ρtn

)dlogne(t−h)−1

6 n−c,

for any c > 0 when (4.15) holds. This completes the proof of Proposition 8.

�

5.2 Analysis of spectral clustering for DeepWalk

In this section, we first prove properties of the M0 matrix in Section 5.2.1. In Section 5.2.2

we bound ‖M −M0‖F and complete the proof of Theorem 3. Finally, we bound the number of

misclassified nodes in Section 5.2.3 and complete the proof of Theorem 4.

5.2.1 Analysis of noiseless M-matrix

Recall the definition of the matrix M0 from Section 4.3.3. Also recall that Θ0 is the matrix of

true community assignments. Let (λi, vi), 1 6 i 6 K be the K largest eigenvalue-eigenvector pairs

of M0, and let V0 = (v1, . . . , vK). We will prove the following collection of claims for M0 and its

eigenspace:

Proposition 9. (a) There exists a full-rank matrix Z0 ∈ RK×K such that M0 = Θ0Z0ΘT
0 . More-

over, (M0)ij = Θ(1) uniformly in i, j ∈ [n].

(b) We have λi = Θ(n) and there exists a full rank matrix X0 ∈ RK×K such that V0 = Θ0X0.

(c) If i and j are two nodes such that g(i) 6= g(j), then we have

‖(V0)i? − (V0)j?‖F =

√
1

ng(i)
+

1

ng(j)
. (5.17)
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Proof. Part a. Let P (t) be the transition matrix for a simple random walk on a complete graph

with edge-weights P . Also, recall from (4.7) that the random walks are initialized with distribution

(|Pi?|/|P |)i∈[n]. By Proposition 4, we have

(M0)ij = log

(∑tU
t=tL

(l − t) · (P (t)

ij + P (t)

ji )

2bγ(l, tL, tU ) |Pi?||P | ×
|Pj?|
|P |

)
.

So in order to show that M0 = Θ0Z0ΘT
0 , it is enough to show that (P (t) + (P (t))T ) = Θ0ZΘT

0 for

some matrix Z. Towards this we have

(P (t))ij =
1

|P |
∑

(i0,i1,...,it):i0=i,it=j

Pi0i1Pi1i2 · · ·Pit−1it

( t−1∏
l=1

|Pil?|
−1

)
. (5.18)

Similarly, we can compute ((P (t))T )ij , and it is clear from these expressions that (P (t) + (P (t))T )ij

only depends on i and j through their block labels g(i) and g(j). This shows that (P (t) +(P (t))T ) =

Θ0ZΘT
0 for some appropriate matrix Z, and hence M0 = Θ0Z0ΘT

0 . We now show that Z0 has full

rank. Since B has rank K, P (t) has rank K and has the same block structure as B. We note that

diag
(
|P1?|−1, |P1?|−1, . . . , |Pn?|−1

)
is an invertible matrix. This implies that

(∑tU
t=tL

(l−t)·(P (t)
ij +P

(t)
ji )

2bγ(l,tL,tU )
|Pi?|
|P | ×

|Pj?|
|P |

)
has rank K and has the same block structure as B. Then by Lemma 5, Z0 has rank K a.s.

Next, we estimate the order of the coefficients (M0)ij . Note that

∑
(i0,i1,...,it)|i0=i,it=j

Pi0i1Pi1i2 · · ·Pit−1it = Θ(nt−1ρn). (5.19)

Indeed, the leading contribution is due to paths with t distinct edges and t − 1 choices of

intermediate vertices. If we have less distinct vertices among (i1, . . . , it−1), then the number

of choices is at most O(nt−2). This proves (5.19). Also, |P | = Θ(n2ρn) and |Pil?| = Θ(nρn).

Combining these orders implies that (M0)ij = Θ(1).

Part b. Note that

λivi = M0vi = Θ0Z0ΘT
0 vi =⇒ vi = Θ0

(
λ−1
i Z0ΘT

0 vi
)
.
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Taking X0 = Z0ΘT
0 V0Λ−1 with Λ = diag (λ1, . . . , λK), we get V0 = Θ0X0. Since Z0 is full rank,

rank(Z0ΘT
0 ) = K. Since rank(V0Λ−1) = K, we have X0 is full rank. Next we establish the order of

the eigenvalues. For this, let D = diag
(√
n1,
√
n2, . . . ,

√
nK
)
. We write

M0 = Θ0D
−1 (DZ0D)D−1ΘT

0 .

This shows that M0 and Z0 have the same eigenvalues. Note that the entries of

(DZ0D)ij =
√
ninj(Z0)ij and (Z0)ij = O(1) as (M0)ij = Θ(1). Hence its non-zero eigen-

values of DZ0D, and hence the non-zero eigenvalues of M0 will be of order Θ(n).

Part (c). We start by noting that V0 = Θ0X0, V0 has K distinct rows, as X0 has K distinct rows.

Thus, (V0)i? = (V0)j? whenever g(i) = g(j) and (V0)i? 6= (V0)j? whenever g(i) 6= g(j). We now

compute the inner products of rows of X0. For this, we first note that

〈(V0)?i, (V0)?j〉 = 〈(Θ0X0)?i, (Θ0X0)?j〉,

=
∑
r

nr((X0)ri · (X0)si),

= 〈D(X0)?i, D(X0)?j〉.

This shows that DX0 has orthogonal columns and as a consequence, orthogonal rows. This shows

that

〈(X0)r?, (X0)s?〉 = 0 if r 6= s and 〈(X0)r?, (X0)s?〉 =
1

nr
if r = s.

Thus, we have

〈(V0)i?, (V0)j?〉 = 0 if g(i) 6= g(j) and 〈(V0)i?, (V0)j?〉 =
1

ni
if g(i) = g(j).

Therefore, (5.17) follows immediately. �

We finish this section with the following perturbation result about the eigenspace of M , which

is a direct consequence of Davis-Kahan sin θ theorem (Yu et al., 2015, Theorem 2):
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Proposition 10. Let V be the matrix of K largest eigenvectors of M . There exists an orthonormal

matrix O ∈ RK×K such that

‖V − V0O‖F 6
√

8K ‖M −M0‖F
min16r6K |λr|

.

5.2.2 Bound on ‖M −M0‖F.

In this section, we prove Theorem 3. We start by proving it for a simple case t = tL = tU > 2.

Proposition 11. The conclusion for Theorem 3 holds with t = tL = tU > 2.

Proof. Let us first give a proof for t = tL = tU > 3 using the estimates from Section 5.1. The proof

for t = tL = tU = 2 is similar and we will give the required modifications at the end. Throughout,

the constants term C,C ′ may change from line to line in this proof. Let an = 4n(log n)−η. Recall

the notation WA and WP from Section 4.3.1. Also, recall from Proposition 4 that

Mij = log

[
2|A|

bγ(l, tL, tU )
(l − t) · (D−1

A W t
A)ij

]
1
A

(t)
ij >0

,

(M0)ij = log

[
2|P |

bγ(l, tL, tU )
(l − t) · (D−1

P W t
P )ij

]
. (5.20)

By Proposition 8 with k = dlog ne we have for any 1 6 i, j,6 n

P
(
A

(t)
ij = 0

)
6 O(n−3),

And this implies that

P
(
A

(t)
ij = 0 for some 1 6 i, j 6 n

)
= o(1),

=⇒ P (Mij = 0 for some 1 6 i, j 6 n) = o(1). (5.21)

Then we have

P (‖M −M0‖F > an) 6 o(1) + P
(∑

(i,j)

(M −M0)2
ij > a

2
n

)
. (5.22)
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Next we bound the second term in (5.22). By Chernoff bound, we have that for a sufficiently large

constant C0 > 0,

P
(∣∣∣∣ |A||P | − 1

∣∣∣∣ > C0n
−1/2

)
6 2 exp{−C ′n2ρn × C2

0/n} = o(n−4),

P
(
∃i ∈ [n] :

∣∣∣∣ |Ai?||Pi?|
− 1

∣∣∣∣ > C0

√
log n

nρn

)
6 2n exp(−C ′nρn × C2

0 log n/nρn) 6 o(n−4).

(5.23)

Using (5.23), we simplify the second term in (5.22) as

P
(∑

(i,j)

(M −M0)2
ij > a

2
n

)
6
∑
(i,j)

P
(

(M −M0)2
ij >

a2
n

n2

)

6
∑
(i,j)

P
(

max

{
(D−1

A W t
A)ij

(D−1
P W t

P )ij
,
(D−1

P W t
P )ij

(D−1
A W t

A)ij

}
> (1 +O(n−1/2)) exp

(an
n

))
+ o(n−4).

(5.24)

To analyze this, recall from (5.2) Pb is the set of paths with vertices having community assignment

b for b ∈ Bi,j . For p = (i0, . . . , it) ∈ Pb, let

X̄p =
1

|Ai0?|

t∏
l=1

Ail−1il

|Ail?|
, and Ȳb =

∑
p∈Pb

X̄p,

X̄∗p =
1

|Pi0?|

t∏
l=1

Pil−1il

|Pil?|
, and Ȳ ∗b =

∑
p∈Pb

X̄∗p .

Then we have (D−1
A W t

A)ij =
∑

b∈Bi,j Ȳb and (D−1
P W t

P )ij =
∑

b∈Bi,j Ȳ
∗
b . Now, for b ∈ Bi,j , P(Ȳb =

0) = o(n−4) by Proposition 8, and on the set {Ȳb 6= 0}, we have

(D−1
P W t

P )ij

(D−1
A W t

A)ij
6
∑
b∈Bi,j

Ȳ ∗b
Ȳb
,

(D−1
A W t

A)ij

(D−1
P W t

P )ij
6
∑
b∈Bi,j

Ȳb
Ȳ ∗b

.

Thus, in order to bound 5.24, it is enough to bound the probabilities for Ȳ ∗b /Ȳb or Ȳb/Ȳ
∗
b being

large. Since the row sums of A are concentrated by (5.23), we will bound Y ∗b /Yb, Yb/Y
∗
b instead,

where Y ∗b is as defined below:

X∗p =

t∏
l=1

Pil−1il , and Y ∗b =
∑
p∈Pb

X∗p .
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Fix (i, j). We estimate the difference

|EYb − Y ∗b | =
∣∣∣∣E ∑

p∈Pb

(Ai0i1 · · ·Ait−1it − Pi0i1 · · ·Pit−1it)

∣∣∣∣. (5.25)

The summands in the equation above are equal to zero if the associated path (i0, i1, . . . , it) has

t distinct edges and there are no self-loops. Consider the first set of summands in (5.25). By

Proposition 7 the sum over summands with less than t distinct edges is O(1/nρn)E[Yb]. We now

give an upper bound on the summands Pi0i1 · · ·Pit−1it as follows. Suppose a path has less than t

distinct edges. If the path is a Type I path then by Lemma 6 the number of choices of distinct

vertices along the path is less than t− 1. If the the path is a Type II path, then again by Lemma 6

the number of choices of distinct vertices along the path is at most bt/2c. Finally, if there are

self-loops then the number of choices of vertices is less than t − 1. This implies that the upper

bound on the second set of summands is O(1/n)E[Yb]. Thus in summary we have

|EYb − Y ∗b | = O

(
1

nρn

)
EYb. (5.26)

These computations show that

Yb
Y ∗b

=
Yb

EYb (1 +O((nρn)−1))
, and

Y ∗b
Yb

=
EYb

(
1 +O((nρn)−1)

)
Yb

. (5.27)

Recall that an = 4n(log n)−η. To compute (5.24), we now use Proposition 8, (5.23) and (5.27) to

obtain

P
(

(D−1
P W t

P )ij

(D−1
A W t

A)ij
> (1 +O(n−1/2)) exp

(an
n

))
6
∑
b∈Bi,j

P
(
Ȳ ∗b
Ȳb
> exp{C(log n)−η}

)
+ o(n−3)

6
∑
b∈Bi,j

P
(
Y ∗b
Yb
> 1 + (log n)−η

)
+ o(n−3) = o(n−3).

A similar bound can be computed with
(D−1

A W t
A)ij

(D−1
P W t

P )ij
as well repeating the same computations. Hence

we have established that the term in (5.24) is at most o(n−3), and thus combining (5.22) and (5.21),

we conclude that ‖M −M0‖F = OP(an), and thus (4.16) follows for tL = tU = t > 3. For tU = t = 2,

the argument is exactly similar except that we use (Janson et al., 2000, Theorem 2.8) for showing
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(5.21), we use Bernstein’s inequality in place of the concentration inequality in Proposition 8, we

don’t need (5.26) for i 6= j case, and for the i = j case we use the bound EYb
Y ∗b

= O(ρ−1
n ).

Next, we prove (4.17) in the case tL = tU = t > 2. Let nt−1ρtn � 1. We will show that, for any

ε > 0,

P
(
‖M −M0‖F > Cεn

2
)
> P

(∑
(i,j)

(M0)2
ij1{Mij = 0} > Cεn2

)
> 1− ε,

for some constant Cε > 0 depending on ε and the last inequality holds for large enough n.

By Proposition 9, the entries of (M0)ij ’s are constant over all i, j pairs such that g(i) = r, g(j) =

s. Also, M0 will have some non-zero entries since rank(M0) = K. Let r and s be such that g(i) = r

and g(j) = s and |(M0)ij | = C1 > 0 for all i, j such that g(i) = r and g(j) = s, and the number of

such pairs of i, j is at least C2n
2 for some 0 < C2 < 1. Let

Sr,s := {(i, j) : Atij = 0, gi = r, gj = s}, Tr,s := {(i, j) : Atij > 0, gi = r, gj = s}.

Then

P
(∑

(i,j)

(M0)2
ij1{Mij = 0} > Cεn2

)
> P

( ∑
(i,j)∈Sr,s

C2
1 > Cεn

2

)
= P

(
|Sr,s| >

Cεn
2

C2
1

)
.

Next let i and j be any two nodes such that gi = r, gj = s, and i 6= j. Then by Proposition 6 we

have

P
(
Atij > 0

)
6
∑
b∈Bi,j

P (Yb > 0) 6 C3n
t−1ρtn,

for some constant C3 > 0. This along with Markov inequality implies that

P
(
|Tr,s| > C3ε

−1nt+1ρtn
)
6
n2 · C3n

t−1ρtn
C3ε−1nt+1ρtn

6 ε.

This shows that for large enough n we have

P
(
|Sr,s| > |Sr,s|+ |Tr,s| − C3ε

−1nt+1ρtn
)
> 1− ε =⇒ P

(
|Sr,s| > C2n

2 − C3ε
−1nt+1ρtn

)
> 1− ε.
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Taking Cε = C2
1C2/2 and noting that nt+1ρtn = o(n2) completes the proof. �

Next we complete the proof of Theorem 3 for general tL, tU .

Proof of Theorem 3. The general idea is to reduce the computations to the analogous computations

for the tL = tU case. If tL = 2 and i 6= j then by (Janson et al., 2000, Theorem 2.8),

P
(
A

(2)
ij = 0

)
6 exp{−θ(nρ2

n)}.

Similarly if i = j (and tL = 2) we have

P
(
A

(2)
ii = 0

)
6 exp{−θ(nρn)}.

By the assumption of ntL−1ρtLn � (log n) when tL = 2, we have

P
(
A

(2)
ij = 0 for some 1 6 i, j 6 n

)
= o(1).

Next let max(3, tL) 6 t 6 tU . Then by Proposition 8 with k = dlog ne we have for any 1 6 i, j,6 n

P
(
A

(t)
ij = 0

)
6 O(n−3).

And this implies that

P
(
A

(t)
ij = 0 for some 1 6 i, j 6 n and for some t ∈ {tL, tL + 1, . . . , tU}

)
= o(1).
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Then proceeding as in proof of Proposition 11 we have

P (‖M0 −M‖F > an)

6 P
(
‖M0 −M‖F > an, A

t
ij > 0 for 1 6 i, j 6 n, tL 6 t 6 tU

)
+ o(1),

6 o(1) +
∑

16i 6=j6n
P

 ∑tU
t=tL

(l − t)
(
D−1
P W t

P

)
ij∑tU

t=tL
(l − t)

(
D−1
A ŴP

t
)
ij

> exp

{
an√
2n
− θ(n−1/2)

}
+
∑

16i6n

P

 ∑tU
t=tL

(l − t)
(
D−1
P W t

P

)
ii∑tU

t=tL
(l − t)

(
D−1
A ŴP

t
)
ii

> exp

{
an√
2n
− θ(n−1/2)

}

+
∑

16i 6=j6n
P


∑tU

t=tL
(l − t)

(
D−1
A ŴP

t
)
ij∑tU

t=tL
(l − t)

(
D−1
P W t

P

)
ij

> exp

{
an√
2n
− θ(n−1/2)

}
+
∑

16i6n

P

∑tU
t=tL

(l − t)
(
D−1
A ŴP

t
)
ii∑tU

t=tL
(l − t)

(
D−1
P W t

P

)
ii

> exp

{
an√
2n
− θ(n−1/2)

} . (5.28)

We show how to bound the second term in the equation 5.28. For this we see that

P

 ∑tU
t=tL

(l − t)
(
D−1
P W t

P

)
ij∑tU

t=tL
(l − t)

(
D−1
A ŴP

t
)
ij

> exp

{
an√
2n
− θ(n−1/2)

}
6

tU∑
t=tL

P

 (
D−1
P W t

P

)
ij(

D−1
A ŴP

t
)
ij

> exp

{
an√
2n
− θ(n−1/2)

} .

Then each of the probabilities for fixed t can be bounded as in the proof of Propositions 11.

Analogously the rest of the terms in (5.28) can be bounded. This completes the proof. �

5.2.3 Bounding the number of missclassified nodes

Proof of Theorem 4. This proof uses standard arguments to bound the proportion of misclassified

nodes such as given in (Lei et al., 2015). For this proof, we choose O ∈ RK×K obtained by an

application of Proposition 10 which satisfies

‖V − V0O‖F 6
‖M −M0‖F

Cn
= oP(1), (5.29)
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where the last step follows using Theorem 3. To simplify notation, we denote U = V0O in the rest

of the proof. Let nmax = maxr∈[K] nr. Recall (Θ̄, X̄) from (4.14) and let V̄ = Θ̄X̄. Then let

S =

{
i ∈ [n] :

∥∥V̄i? − Ui?∥∥F
>

1

5

√
2

nmax

}
.

We will show that for i /∈ S the community is predicted correctly using Θ̄. The proof of the theorem

is in two steps.

Step 1: Bounding |S|. By the definition of S we have

∑
i∈S

√
2

nmax
6
∑
i∈S

5
∥∥V̄i? − Ui?∥∥F

6 5
∥∥V̄ − U∥∥

F
=⇒ |S| 6 5√

2

√
nmax

∥∥V̄ − U∥∥
F
. (5.30)

Next, we recall the optimization problem in (4.14) is given as follows.

∥∥Θ̄X̄ − V
∥∥2

F
6 (1 + ε) min

Θ∈{0,1}n×K ,X∈RK×K
‖ΘX − V ‖2

F
.

We substitute U for ΘX to get the following upper bound:

∥∥V̄ − V ∥∥2

F
6 (1 + ε) ‖U − V ‖2

F
. (5.31)

Then by (5.29) and (5.31) we have

∥∥V̄ − U∥∥
F
6
∥∥V̄ − V ∥∥

F
+ ‖V − U‖

F
6 (1 +

√
1 + ε) ‖V − U‖

F
= oP(1).

This combined with equation 5.30 we have |S| = oP(
√
n).

Step 2: Bounding the prediction error. For any community r, there exists ir ∈ [n] such that

gir = r and ir /∈ S as nr = θ(n) and |S| = oP(
√
n). By Proposition 9c, for r 6= s we have

∥∥V̄ir? − V̄is?∥∥F
> ‖Uir? − Uis?‖F −

∥∥V̄ir? − Uir?∥∥F
−
∥∥V̄is? − Uis?∥∥F

>

√
1

nr
+

1

ns
− 2

5

√
2

nmax
>

3

5

√
2

nmax
. (5.32)
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Next, let i be such that gi = r and i /∈ S. We show that V̄i? = V̄ir?. For this we note that Ui? = Uir?

and

∥∥V̄i? − V̄ir?∥∥F
6
∥∥V̄i? − Ui?∥∥F

+
∥∥Uir? − V̄ir?∥∥F

<
1

5

√
2

nmax
+

1

5

√
2

nmax
<

2

5

√
2

nmax
. (5.33)

In view of (5.32) and (5.33) we must have V̄i? = V̄ir? as each node is assigned exactly one community

by the (1 + ε)-approximate k-means algorithm and there are exactly distinct K rows in V̄ (again

by (5.32)). Let C be a permutation matrix defined so that Θ0C assigns community r to node ir,

for 1 6 r 6 K. Then we have,

∑
i

1{Θ̄i? 6= (Θ0C)i?} 6 |S|.

From the bound on |S| from Step 1, we have that Err(Θ̄,Θ0) is oP (1/
√
n) and this completes the

proof of Theorem 4. �

5.3 Path counting for node2vec

In this section, we focus on computing the asymptotics for the sum of weighted paths having

some specified community assignments for the intermediate vertices. In section 5.3.1 and 5.3.2, we

bound its k-th moment and we end with a concentration inequality in section 5.3.3.

5.3.1 Bounding moments of path counts for Regime III

We compute upper bounds for the k-th moment and k-th centered moments for weighted paths

between two nodes under conditions given by Regime III. We first fix some notation. Let Bij and

Pb be defined as in (5.1) and (5.2).

For any path p = (i0, i1, i2, . . . , it) ∈ Pb, let

N((i0, i1, . . . , it)) := {l|2 6 l 6 t, il−2 = il} ,
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be the set of locations of backtracks in the path. Let

n = n((i0, i1, . . . , it)) = |N((i0, i1, . . . , it))|,

be the number of backtracks in p. For any path p = (i0, i1, i2, . . . , it) ∈ Pb and α > 0, we associate

the random variable

Xp,α := Ai0i1Ai1i2 · · ·Ait−1itα
n((i0,i1,...,it)), (5.34)

and let

Yb,α :=
∑
p∈Pb

Xp,α. (5.35)

We note that when α = 1, Xp,1 = Xp and Yb,1 = Yb where Xp and Yb are as defined in (5.3) and

(5.4) respectively. To simplify notation in this section, we will drop the subscript α and simply

write Xp and Yb in place of Xp,α and Yb,α respectively. Let Ub and Lb be the upper and lower

bounds for path type b ∈ Bi,j as defined in (5.5) and (5.6) respectively. Then we have the following

bounds on EY k
b

Proposition 12. Let tL = tU = t > 3 be given and suppose that α = O
(

1
n

)
and (4.22) holds. Then

we have

Lkb 6 EY k
b 6 U

k
b (1 + o(1)).

Again the idea, as in section 5.1, is to show that the leading term for EY k
b is due to E

(∏k
π=1Xpπ

)
of k ordered paths pπ having kt distinct edges between them. The contribution of the rest of the

terms are of a smaller order. Similar to section 5.1, let

Em = Em,α :=
∑

(p1,p2,...,pk):pπ∈Pb,|∪i∈[k]e(pπ)|=m

E(Xp1Xp2 · · ·Xpk). (5.36)

We will show the following:

Proposition 13. Under identical conditions as in Proposition 12, we have
∑

m<ktEm = o(Ukb ).
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Proof of Proposition 12 using Proposition 13. Note that, we can write

EY k
b = E

( ∑
p∈Pb

Xp

)k
=

∑
(p1,p2,...,pk)|pπ∈Pb

E(Xp1Xp2 · · ·Xpk). (5.37)

For the upper bound, Proposition 13 shows that it is enough to bound the summands corresponding

to sequences (p1, p2, . . . , pk) that satisfy | ∪kπ=1 e(pπ)| = kt, i.e. sequences of paths consisting of

kt distinct edges. We note that there are no backtracks in this case and so, E(Xp1Xp2 · · ·Xpk) =

P(Xp1Xp2 · · ·Xpk = 1) =
∏k
π=1 P(Xpπ = 1). Thus we have the same upper and lower bounds Ukb

and Lkb as in Proposition 6.

�

The rest of this section is devoted to the proof of Proposition 13. Towards this let Em,r denote

the summands in (5.36) restricted to the case that there are r segments, Type I or Type II, so that

Em =

r∗(m)∑
r=r∗(m)

Em,r,

where, given m, [r∗(m), r∗(m)] denotes the range of r. We note that this is in contrast to the proof

of Proposition 7 where r was the number of Type I segments. We also note that we are reusing the

notation r∗(m) and r∗(m) from the proof of Proposition 7 to simplify the notation but the values

of r∗(m) and r∗(m) will be different in this proof.

The analysis will again consist of two steps. In the first step, we analyze Em,r∗(m) and in the

second step, we will show that Em,r is much smaller than Em,r∗(m) for r > r∗(m).

The following is the intuition for why Em,r∗(m) is the largest term. Due to the presence of

backtracks, the contribution from Type II segments is of the same or a smaller order than Type I

segments. By Lemma 6 minimizing Type I segments leads to the maximum number of choices of

marked edges. Combining these two ideas, we see that we must minimize the number of segments.

A formal proof is provided in the rest of the section.
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5.3.1.1 Computing Em,r∗(m).

We begin by noting that r∗(m) is given by

r∗(m) =
⌈m
t

⌉
.

To see this we note that each path can have at most t marked edges. So we can place m marked

edges in a minimum of dmt e paths. The next lemma counts the number of configurations of segments

and unmarked edges. For this, let Nm,r∗(m) be the number of configurations of m marked edges

placed in r segments, Type I or II. Again, we are reusing the notation Nm,r∗(m) from section 5.1.

Lemma 13.

Nm,r∗(m) 6 C

(
k

r∗(m)

)
ktr∗(m)−m.

Proof. The proof is divided into two cases:

Case I: m
t ∈ N. Note that r∗(m) = m

t in this case. We can choose m
t paths containing all the m

marked edges in
(
k
m
t

)
ways. Al the edges in the chosen m

t paths are marked edges and all the edges

in the rest of the paths are unmarked edges.

Case II: m
t /∈ N. We can first choose

⌈
m
t

⌉
paths to place the marked edges. By pigeonhole

principle, there are 0 < l 6 t
⌈
m
t

⌉
−m of the

⌈
m
t

⌉
chosen paths which are not saturated. We can

choose arrangements for these l paths in C l ways where C is a constant that may depend on t. The

chosen paths can have at most l unmarked edges. The rest k−
⌈
m
t

⌉
all have only unmarked edges.

�

We now complete the proof with the following lemma.

Lemma 14.
∑

m<ktEm,r∗(m) = o(Ukb ).

Proof. We recall that Ub = Θ(nt−1ρtn). The number of choices of segments is given by Lemma 13.

Let s(m) be the number of maximal (or saturated) Type I paths when placing m marked edges

in r∗(m) paths. When m
t ∈ N, all the r∗(m) paths containing marked edges are maximal Type I

paths and each of them have probability at most Ub as there are no backtracks. When m
t /∈ N we
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have s > max
{⌈

m
t

⌉
−
(
t
⌈
m
t

⌉
−m

)
, 0
}

maximal Type I paths. The number of unmarked edges is at

most kt−m. The number of marked edges in the non-maximal Type I paths is equal to m−s(m)t.

Choose a Type I segment with m′ marked edges in a non-maximal Type I path. By Lemma 6,

the vertices can be chosen in at most nm
′−1 ways. The number of backtracks in the Type I segment

can be equal to 0 or larger than 0. So α0 = 1 is an upper bound for the factor coming from

backtracks in (5.34). And so the upper bound for the contribution coming from the choice of

vertices and backtracks is nm
′−1α0 = nm

′−1. Now for a Type II segment (in a non-maximal Type

I path) with m′ marked vertices, there must be at least m′ backtracks. Thus the corresponding

upper bound for a Type II segment is nm
′
αm
′

= O(1). We can note that we can have a Type II

segment in only a non-saturated path and so the number of Type II segments are O(1). Using this

analysis, for any segment, Type I or II, with m′ marked edges in a non-maximal (Type I) path, we

upper bound the choices of marked vertices and the factors from backtracks by Cnm
′−1.

Combining all these, we get

Em,r∗(m) 6 C

(
k

r∗(m)

)
ktr∗(m)−m × U sb nm−s(m)t−(r∗(m)−s(m))ρm−s(m)t

n ×mkt−m.

Using these bounds we see that with the choice of k = dlog ne

t−1∑
l=0

Er0t−l,r?(r0t−l) = Er0t,r?(r0t)

(
1 +O

(
k2

nρn

))
, r0 > 1,

k∑
r0=1

Er0t,r?(r0t) = Ekt,r?(kt)

(
1 +O

(
kt+1

nt−1ρtn

))
.

These bounds in turn imply that

kt−1∑
m=1

Em,r∗(m) = o
(
Ukb

)
.

�

5.3.1.2 Computing Em,r for r > r∗(m).

We start with a lemma to bound the number of configurations of segments and unmarked edges

as in Lemma 13.
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Lemma 15. Given m marked edges and r segments, let Nm,r be the number of configurations of

segments and unmarked edges. Then, for any r > r∗(m),

Nm,r 6 Nm,r∗(m) ×O(k(r−r∗(m))(t+1)).

Proof. Let Tr be the set of all configurations of m marked edges and r, Type I or Type II, segments.

Note that we are reusing the notation Tr from proof of Proposition 10 but Tr is defined differently

here. We will inductively bound Tr+1 in terms Tr. For that, we consider two cases depending on

whether the elements of Tr+1 has a path with two segments or not. In both cases, we will find a

relation between Tr to Tr+1.

Case I. Suppose that Tr+1 has a path with two segments. Let us call this subset T Ir+1. We

consider the elements in Tr which will be related to these elements in T Ir+1. Let T Ir ⊂ Tr consisting

of configuration such that there is at least one path p so that the following condition holds:

• Extra unmarked edges. p has l segments and l′ > l unmarked edges for some l, l′ > 1.

The first condition is the same as in the proof of Lemma 10. The second condition condition is

absent as in this construction we will split any segment, Type I or II, as long as it has at least two

marked edges. Similar to the proof of Lemma 10, we split a segment only at a marked edge. This

is to ensure that splitting creates two segments. The rest of the details of this construction, and

the proof that the relation given by the construction is surjective onto T Ir+1 are similar to Case I

in the proof of Lemma 10. As in Lemma 10 we have

|T Ir+1| 6 O(k)× |T Ir | 6 O(k)× |Tr|.

Case II. We next relate arrangements of marked edges where there is at most one segment per

path. We denote such arrangements as T IIr+1 ⊂ Tr+1. Let T IIr be the set of all ways of specifying

locations of segments such that there are a total of r segments and each of the segments is placed

on distinct paths. We note that T IIr is defined differently as compared to the construction for

DeepWalk in Lemma 10. Suppose that r + 1 6 min(k,m) and r > r?(m). Then we give a multi-

map from T IIr onto T IIr+1 using a construction. The condition r + 1 6 m is necessary so that T IIr+1

is non-empty as we must have at least r+ 1 marked edges in order to have r+ 1 paths each having
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a Type I segment. The condition r + 1 6 k is also necessary for T IIr+1 to be non-empty as we must

have at least r+ 1 distinct paths to place the r+ 1 Type I segments. The last condition r > r?(m)

is to ensure that T IIr is non-empty. To fix notation, let S(l) be the set of all ways of arranging l

marked edges in one path. We now describe the construction. Let A ∈ T IIr and choose a path p

not containing a segment. We can do so as r + 1 6 k. Suppose p has l > 0 marked edges. Choose

0 6 u 6 t − l paths where the u paths are distinct from p, and contain at least one marked edge.

If l = 0 we require u > 0. It is feasible to choose such path(s) as r + 1 6 m. Suppose the u paths

are labeled as q1, q2, . . . , qu. Suppose these paths have lq1 , lq2 , · · · , lqu marked edges respectively.

Let vq1 , vq2 , · · · , vqu be such that 0 < vqi < lqi . We require
∑

i vqi 6 t − l. Then we modify the

arrangements of marked edges in the paths so that the new arrangements for the sequence of paths

(p, q1, q2, . . . , qu) is any element of

S

(
l +
∑
i

vqi

)
×

(
u∏
i=1

S(lqi − vqi)

)
.

We keep the arrangements of marked edges in the rest k − (1 + u) paths unchanged. This leads

to multiple images of A in T IIr+1. We note that there are O(kt+1) images of A due to the choice of

the paths and since the number of ways of choosing the new arrangements for the 1 + u paths is

O(1) as t is fixed. We also note that since we modify at most t+ 1 paths in this construction, the

number of unmarked edges increases by at most t(t+ 1).

Now we show that the multi-map given by the construction above is surjective onto T IIr+1. For

this, let A′ ∈ T IIr+1. Let p be a path containing a Type I segment. Suppose p has l marked edges.

Choose u 6 l paths so that u paths contain marked edges and these paths are not equal to p.

Suppose the u paths are labeled as q1, q2, . . . , qu. Suppose that these paths have lq1 , lq2 , · · · , lqu

marked edges respectively. We require that lqi < t i.e. that these chosen paths are not saturated.

Let vq1 , vq2 , · · · , vqu be such that 0 < vqi 6 t− lqi . We require that

u∑
i=1

vqi = l.

This is feasible as long as r > r?(m). The above condition says that the chosen paths have enough

spaces to move l edges from path p to the chosen paths. Choose a new arrangement x of the marked
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edges for the sequence of paths (p, q1, q2, . . . , qu) from the set

S (0)×

(
u∏
i=1

S(lqi + vqi)

)
.

Then keeping the arrangements of marked edges of the rest of the paths the same as in A′ and

choosing the arrangements for the chosen paths as x, we have a preimage A ∈ T IIr under the

construction described above.

From the two constructions above we have

|Tr+1| 6 O(k)|Tr|+O(kt+1)|Tr|. (5.38)

�

We can now compute asymptotics for Em,r.

Lemma 16.
∑r∗(m)

r=r∗(m)Em,r = Em,r∗(m)(1 + o(1)).

Proof. We start by giving a bound for Em,r. The probability of the m marked edges is bounded

by ρmn . The upper bound for the unmarked edges is kt − m. We now compute a bound for the

choices of marked vertices and factors arising from backtracks. For this we note that for both the

constructions in the proof of Lemma 15 we modify at most t + 1 paths and create an additional

segment in the modified paths. By similar reasoning as in the proof of Lemma 14, for any Type

I segment with m′ marked edges in the modified paths we have an upper bound of nm
′−1 and for

a Type II segment (in the modified paths) we have an upper bound of O(1). Since we create an

additional segment in the modified paths, we have an associated factor of O(n−1). Combining these

we have

Em,r 6 Nm,rn
m−rρmnm

kt−m.

This implies that

r∗(m)∑
r=r∗(m)

Em,r = Em,r∗(m)

r∗(m)∑
r=r∗(m)

(
O(kt+1)

n

)r−r∗(m)

= Em,r∗(m)(1 + o(1)).
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By Lemmas 14 and 16 we have

∑
m<kt

Em 6 C
∑
m<kt

Em,r∗(m) = o(Ukb ).

This completes the proof of Proposition 13.

5.3.2 Bounding moments of path counts for Regimes I and II

In this section we bound the kth moment EY k
b,α for regimes I and II.

Proposition 14. Let tL = tU = t > 3 be given and suppose that either (4.18) and (4.19) hold or

(4.20) and (4.21) hold. Then we have

Lkb 6 EY k
b,α 6 U

k
b (1 + o(1)).

Proof of Proposition 14. Let Xp,α and Yb,α be defined as in (5.34) and (5.35). We will suppress the

dependence on α in the notation. We first provide a proof for Regime I and then provide a proof

for Regime II.

Proof for Regime I. We note that if there are m marked edges, there can be at most kt −m

backtracks. So for this regime, we add an additional factor of αkt−m (i.e. a factor of α for each

unmarked edge) to our bounds for an upper bound on the contribution from backtracking edges

(in the case of m marked edges). This shows that

E′m 6 C
′
(

2k

r∗(m)

)
(2k)f(r∗(m))−m32k−r∗(m)Cf(r∗(m))−m

× U s(m)
b nm−ts(m)−(r∗(m)−s(m))ρm−ts(m)

n

× (2m)(2k−r∗(m))·(t−2h)+2(f(r∗(m))−m) × αkt−m.
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Note that the upper bound on the marked edges remains the same for summands with m

marked edges and r > r∗(m) Type I segments.

r∗(m)∑
r=r∗(m)

Em,r = Em,r∗(m)

r∗(m)∑
r=r∗(m)

(
O(kt+1)

n

)r−r∗(m)

= Em,r∗(m)(1 + o(1)).

This implies that

∑
m<kt

Em 6 C
∑
m<kt

Em,r∗(m) = o(Ukb ).

This completes the proof for Regime I.

Proof for Regime II. Suppose we place m marked edges using r Type I segments. Then the

minimum number, b = b(r,m), of marked edges in Type II segments is given by

b := max(m− rt, 0). (5.39)

For the lower bound above, we subtract rt as each of the r Type I paths can have at most t marked

edges each. Since each marked edge is followed by a backtrack in a Type II segment, there are a

minimum of b backtracking edges when using r Type I segments to place m marked edges. Then

we can use a similar proof as the proof of Proposition 6 and Proposition 7 to establish an upper

bound for the kth moment of Yb,α. Towards the same, we use an additional factor of α for each

backtracking edge in the upper bounds, and we use the lower bound on such edges from (5.39).

This gives us the following bound for the summands corresponding to paths with m marked edges

and r∗(m) Type I segments:

E′m 6 C
′
(

2k

r∗(m)

)
(2k)f(r∗(m))−m32k−r∗(m)Cf(r∗(m))−m

× U s(m)
b nm−ts(m)−(r∗(m)−s(m))ρm−ts(m)

n

× (2m)(2k−r∗(m))·(t−2h)+2(f(r∗(m))−m) × αb.

where s(m) is the number of saturated paths with t marked edges.
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Next, we show that Em,r is much smaller than Em,r∗(m). For this, from (5.39) we note that if

we increase the number of Type I segments by (r − r∗(m)), then the lower bound on the number

of backtracking edges reduces by (r − r∗(m))t edges. With this observation and the proof of

Proposition 7 in Section 5.3.1.2 we have

r∗(m)∑
r=r∗(m)

Em,r = Em,r∗(m)

r∗(m)∑
r=r∗(m)

(
O(kt+1)

nαt

)r−r∗(m)

= Em,r∗(m)(1 + o(1)).

This implies that

∑
m<kt

Em 6 C
∑
m<kt

Em,r∗(m) = o(Ukb ).

This completes the proof for Regime II.

�

5.3.3 Concentration of path counts

We will prove the following concentration result for Yb,α.

Proposition 15. Let tL = tU = t > 3 be given and k = dlog ne. Suppose that (4.18) and (4.19)

holds for Regime I, (4.20) and (4.21) holds for Regime II, and α = O(1/n) and (4.22) holds for

Regime III. Then we have

P (|Yb,α − EYb,α| > δEYb,α) = O(n−3),

where δ = Θ((log n)−η) for some η > 0.

Proof. Recall the definition of Xp,α from (5.34). By Markov’s inequality, and using Proposition 12,

P (|Yb,α − EYb,α| > δEYb,α) 6
E(Yb,α − EYb,α)2k

δ2k (EYb,α)2k
6

E(Yb,α − EYb,α)2k

δ2k(Lb)2k
, (5.40)
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and moreover,

E(Yb,α − EYb,α)2k = E
( ∑
p∈Pb

(Xp,α − EXp,α)

)2k

=
∑

(p1,p2,...,p2k):pl∈Pb

E
2k∏
l=1

(Xpl,α − EXpl,α),

=
∑

(p1,p2,...,p2k):pl∈Pb

2k∏
l=1

αN(pl) · E
2k∏
l=1

(Xpl,1 − EXpl,1). (5.41)

where Xpl,1 is obtained by plugging α = 1. We note that for any path p, Xp,1 = Xp where Xp

is as defined in (5.3). With the observation (5.41), we bound as in the proof of Proposition 8 to

complete the proof. There are three regimes. We compute the bounds for each of the three regimes

below.

Proof for Regime I. We use the bounds in the proof of Proposition 14 to have the following

bounds for m 6 2kt− k marked edges:

E′m 6 C
′
(

2k

r∗(m)

)
(2k)f(r∗(m))−m32k−r∗(m)Cf(r∗(m))−m

× U s(m)
b nm−ts(m)−(r∗(m)−s(m))ρm−ts(m)

n

× (2m)(2k−r∗(m))·(t−2h)+2(f(r∗(m))−m) × α2kt−m.

Let m0 be such that m0 = f(r∗(m)) and define E′m0
with the same expression as above. Then

bounding as in the proof of Proposition 14 we have from (5.40)

E(Yb,α − EYb,α)2k 6 CE′m0
.

Thus, (5.41) together with the fact that Ub
Lb

= 1 +O( kn) yields

P (|Yb,α − EYb,α| > δEYb,α) 6

(
2k

r∗(m)

)
32k−r∗(m)U

r∗(m)
b (nρn)m−tr∗(m)(2m)(2k−r∗(m))·(t−2h)α2kt−m

δ2kL2k
b

6 C

(
C(log n)1+t−2h−2η(t−h)(nρn)hαt−h

nt−1ρtn

)dlogne(t−h)−1

6 n−c,

for any c > 0 when (4.18) and (4.19) hold. This completes the proof.
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Proof for Regime II. We use the bounds in the proof of Proposition 14 to have the following

bounds for m 6 2kt− k marked edges:

E′m 6 C
′
(

2k

r∗(m)

)
(2k)f(r∗(m))−m32k−r∗(m)Cf(r∗(m))−m

× U s(m)
b nm−ts(m)−(r∗(m)−s(m))ρm−ts(m)

n

× (2m)(2k−r∗(m))·(t−2h)+2(f(r∗(m))−m) × αb.

Let m0 be such that m0 = f(r∗(m)) and define E′m0
with the same expression as above. Then

bounding as in the proof of Proposition 14 we have from (5.40)

E(Yb,α − EYb,α)2k 6 CE′m0
.

Thus, (5.41) together with the fact that Ub
Lb

= 1 +O( kn) yields

P (|Yb,α − EYb,α| > δEYb,α) 6

(
2k

r∗(m)

)
32k−r∗(m)U

r∗(m)
b (nρn)m−tr∗(m)(2m)(2k−r∗(m))·(t−2h)αb

δ2kL2k
b

,

6 C

(
C(log n)1+t−2h−2η(t−h)(nρn)hαh

nt−1ρtn

)dlogne(t−h)−1

6 n−c,

for any c > 0 when (4.20) and (4.21) hold. This completes the proof.

Proof for Regime III. We use the bounds in the proof of Proposition 13 to have the following

bounds for m 6 2kt− k marked edges:

E′m 6 C

(
2k

r∗(m)

)
(2k)tr∗(m)−m × U s(m)

b nm−s(m)t−(r∗(m)−s(m))ρm−s(m)t
n × (2m)2kt−m.

Let m0 be such that m0 = f(r∗(m)) and define E′m0
with the same expression as above. Then

bounding as in the proof of Proposition 13 we have from (5.40)

E(Yb,α − EYb,α)2k 6 CE′m0
.
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Thus, (5.41) together with the fact that Ub
Lb

= 1 +O( kn) yields

P (|Yb,α − EYb,α| > δEYb,α) 6

(
2k

r∗(m)

)
U
r∗(m)
b (2m)2kt−m0

δ2kL2k
b

,

6

(
Ub
Lb

)r∗(m)

·

(
Ck · ktδ−

2k
2k−r∗(m)

nt−1ρtn

)2k−r∗(m)

,

6 C

(
C(log n)1+t−2ηt

nt−1ρtn

)dlogne(t)−1

6 n−c,

for any c > 0 when (4.22) holds. This completes the proof.

�

5.4 Analysis of spectral clustering for node2vec

We analyze the matrix M0 and the eigendecomposition of M in section 5.4.1. We then prove

Theorem 5 in section 5.4.2. We then end with the proof of Theorem 6.

5.4.1 Analysis of M-matrix

We start with the proof of Lemma 17 which shows that M0 has an approximate block structure.

This then leads to the proof of Proposition 5. Using these two results, in Lemma 18 we then

provide bounds for the inner products of rows of V0 similar to the bounds given for DeepWalk in

Proposition 9c.

Now we show that M0 has a block structure when tL > 3 but not when tL = 2. We also show

that the entries of M0 are O(1) when tL > 3.

Lemma 17. Suppose that tL > 2. Then we have

M0 = M0(αn) = log

(
tU∑
t=tL

Θ0Gt,nΘT
0 +Rt,n

)
,

where Gt,n is a K×K matrix and Rt,n is a diagonal matrix. The following hold for the decomposition

above

1. Rt,n = 0 when t is odd, and (Rt,n)ii = O(n−
t
2 ) when t > 2 and t is even.
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2. If tL > 2 or if tL = 2 and i 6= j: (Gt,n)ij = O(1) and Mij = O(1) (as a function of n).

3. If tL = 2 and i = j: Mii →∞ if α→∞, Mii → −∞ if α→ 0, and Mii = O(1) if α = θ(1).

Further, in this case we also have (Gt,n)ii = 0.

Proof of Lemma 17. Let

P (t)

ij =
∑

(i0,i1,...,it):i0=i,it=j

Pi0i1Pi1i2 · · ·Pit−1it

1

|P |

(
t−1∏
l=1

1

|Pil?| − 1 + α

)
· αn((i0,i1,...,it)), (5.42)

be the t-step transition probability for node2vec. Then

(M0)ij = log

(∑tU
t=tL

(l − t) · (P (t)

ij + P (t)

ji )

2bγ(l, tL, tU ) |Pi?||P | ×
|Pj?|
|P |

)
. (5.43)

And we define M ′0 as follows.

(M ′0)ij :=

(∑tU
t=tL

(l − t) · (P (t)

ij + P (t)

ji )

2bγ(l, tL, tU ) |Pi?||P | ×
|Pj?|
|P |

)
. (5.44)

We first describe a decomposition of M ′0. Towards this, for any sequence k = (k0, k1, . . . , km+1)

such that 0 = k0 < k1 < · · · < km < km+1 = t, and any path type b = (b0, b1, . . . , bt) such that

b0 = g(i) and bt = g(j) we define

Eb,k,i,j,t :=
∑

(i0,i1,...,it)|i0=i,it=j

1{(g(i0), g(i1), . . . , g(it)) = (b0, b1, . . . , bt)}

1{(il, il+1) is a backtrack for kr < l < kr+1, (ikr , ikr+1) is not a backtrack for 1 6 r 6 m}

Pi0i1Pi1i2 · · ·Pit−1it

1

|P |

(
t−1∏
l=1

1

|Pil?| − 1 + α

)
· αn((i0,i1,...,it)). (5.45)

Eb,k,i,j,t is a sum over paths of length t between nodes i and j with locations of edges which are

not backtracks given by the sequence k and the block labels of the vertices along the paths given

by the sequence b. We can note that

P (t)

ij =
∑
k

∑
b

Eb,k,i,j,t. (5.46)
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For a given t, consider a sequence k = (k0, k1, . . . , km+1) such that kr+1 − kr is odd for some r

where 1 6 r 6 m. This implies that the endpoints of the path do not have an equality constraint

between them. From this we can see that the summands Eb,k,i,j in (5.45) depend on i and j only

through the block types g(i) and g(j).

On the other hand, consider a sequence k such that kr+1 − kr is even for 1 6 r 6 m. In this

case we have the equality constraint i = j. We also have that t is even and m 6 t/2. By Lemma

6, there are O(n
t
2 ) paths associated with the sequence k.

Then we define

(Nt,n)′ij :=
∑

Eb,k,i,j,t1{k = (k0, k1, . . . , km+1), kr+1 − kr is odd for some 1 6 r 6 m, km+1 = t},

(Rt,n)′ij :=
∑

Eb,k,i,j,t1{k = (k0, k1, . . . , km+1), kr+1 − kr is even for 1 6 r 6 m, km+1 = t},

(Nt,n)ij :=

∑tU
t=tL

(l − t) ·
(

(Nt,n)′ij + (Nt,n)′ji

)
2bγ(l, tL, tU ) |Pi?||P | ×

|Pj?|
|P |

 ,

(Rt,n)ij :=

∑tU
t=tL

(l − t) ·
(

(Rt,n)′ij + (Rt,n)′ji

)
2bγ(l, tL, tU ) |Pi?||P | ×

|Pj?|
|P |

 . (5.47)

Then M ′0 = Nt,n +Rt,n by (5.44) and (5.46). Further, by the discussion in the previous paragraph

Nt,n is a block matrix with the same block structure as P , Rt,n = 0 when t is odd and when t is

even and i 6= j, and (Rt,n)ij = O(n−
t
2 )(Nt,n)ij when t is even, t > 2 and i = j. In the case when

t = 2 and i = j, we have (Nt,n)ij = 0.

Now we describe the order of the coefficients of M0 and N . We note that if α = 1, we can see

that M0(1) is the matrix in the DeepWalk in which case by Proposition 9 we have (M0(1))ij = O(1).

Thus more generally (M0)ij = O(1) iff for all tL 6 t 6 tU

∑
(i0,i1,...,it):i0=i,it=j

Pi0i1Pi1i2 · · ·Pit−1it
1
|P |

(∏t−1
l=1

1
|Pil?|−1+α

)
· αn((i0,i1,...,it))∑

(i0,i1,...,it):i0=i,it=j
Pi0i1Pi1i2 · · ·Pit−1it

1
|P |

(∏t−1
l=1

1
|Pil?|

) = θ(1). (5.48)

Towards this note that
pil

pil−1+α → 1 as pil = θ(nρn). Next consider paths between i and j without

any backtracks i.e. n((i0, i1, . . . , it)) = 0. There are θ(nt−1) such paths if t > 2 and if t = 2

and i 6= j. Now consider paths with n((i0, i1, . . . , it)) = s > 0 and consider the case t > 2. If

we consider Type I paths with s backtracks, then there are O(nt−s−1) such paths and combined
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with the factor of αs from backtracks, the total contribution is O(nt−s−1αs) = o(nt−1) by (4.18).

If we consider Type II paths with s backtracks, then there are O(nh) such paths and combined

with the factor from backtracks, the total contribution is O(nhαh) which is o(nt−1) by (4.18). This

implies that the fraction in (5.48) tends to 1. We can note that the leading term, i.e. paths with

n((i0, i1, . . . , it)) = 0, is a summand in the definition of (N ′)t,n in (5.47). Thus (N ′t,n)ij = θ(1).

Now consider the case when t = 2. If t = 2 and i 6= j, there cannot be a backtrack and so the

leading contribution is from the case when n((i0, i1, . . . , it)) = 0. Thus, the fraction in (5.48) tends

to 1. In this case (R2,n)′ij = 0 and (N2,n)′ij = O(1). If t = 2 and i = j then the fraction in (5.48)

tends to 0 when α→ 0, tends to 0 if α→ 0, and is θ(1) if α = θ(1). In this case (N2,n)′ii = 0. This

completes the proof.

�

Now we are ready to prove Proposition 5.

Proof of Proposition 5. Let ˜log : [0,∞]→ R be defined by

x 7→ log x, x > 0,

x 7→ 0, x = 0.

To simplify notation, we will write log for ˜log at all places in the proof. By Lemma 17, (log(Z0))ij

is O(1). So by approximating log around 1 we have

M0 = log
(
ΘZ0ΘT +R

)
,

= Θ logZ0ΘT +R′,

where R′ is a diagonal matrix and R′ii = O(n−2) as we consider tL > 2 for node2vec. By Propo-

sition 9b (applied to Θ logZ0ΘT ) and since logZ0 has rank K, Θ logZ0ΘT has K non-zero eigen-

values, λ̃i, where λ̃i = θ(n). By Weyl’s theorem on eigenvalues, M0 has rank K and each of the K

non-zero eigenvalues is θ(n). Now let vi, 1 6 i 6 K be the columns (i.e. eigenvectors of M0) in V0.
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Then

λivi = M0vi = Θ logZ0ΘT vi +R′vi, (5.49)

=⇒ vi = Θ
(
λ−1
i logZ0ΘT vi

)
+ λ−1

i R′vi.

Let Λ = diag (λ1, λ2, . . . , λK). Then taking X0 = logZ0ΘTV0Λ−1 and E0 = R′V Λ−1 completes the

proof. �

Next, we compute bounds on the inner products of rows of V0. The bounds are similar to the

DeepWalk case except that we have small error terms.

Lemma 18. Consider the decomposition M0 = log
(
ΘZ0ΘT +R

)
. Let V0 ∈ Rn×K be the matrix

of top K left singular vectors of M0 and let V0 = ΘX0 +R0 be the decomposition from Proposition

5. Then

〈(V0)i?, (V0)j?〉 = 1 {gi = gj}

(
Θ

(
1
√
n1
,

1
√
n2
, . . . ,

1
√
nK

)T)
i

+O(n−2.5).

If i and j are two nodes such that gi 6= gj, then we have

‖(V0)i? − (V0)j?‖F =

√
1

ngi
+

1

ngj
+O(n−3).

Proof of Lemma 18. As shown in proof of Proposition 5

M0 = Θ logZ0ΘT +R′,

where R′ is a diagonal matrix and R′ii = O(n−2). Let V ∈ Rn×K be matrix of top K left singular

vectors of N = Θ logZ0ΘT . Then by Proposition 9bc (applied to N), V = ΘX satisfying the

following:

1. X ∈ RK×K and has K distinct rows. And so, V has K distinct rows.

2. Rows of X are orthogonal and the row norms are given by Θ
(

1√
n1
, 1√

n2
, . . . , 1√

nK

)T
.

3. Let λ̃i for 1 6 i 6 K be the top K eigenvalues. Then λ̃i = θ(n).
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Let λi be the top K eigenvalues of V0. By Weyl’s theorem on eigenvalues, |λi − λ̃i| 6 O(n−1.5).

Let Êi (resp. Ei) be the eigenspace corresponding to λ̃i (resp. λi). Let VÊ and (V0)E be the

eigenvectors corresponding to the eigenspaces. Then by Davis-Kahan theorem there exists O such

that

∥∥(V0)E − VÊO
∥∥

F
6
‖R′‖

F

θ(n)
= O(n−2.5).

We can note that if we replace VÊ by VÊO, then we continue to have the three properties for V

listed above. As a consequence, ‖V − V0‖F = O(n−2.5) which implies the first part of the result.

For the second part we have for any i, j such that g(i) 6= g(j)

‖(V0)i? − (V0)j?‖F =

√
‖(V0)i?‖2F + ‖(V0)j?‖2F − 2〈(V0)i?, (V0)j?〉,

=

√
1

ngi
+

1

ngj
+O(n−2.5),

=

√
1

ngi
+

1

ngj
+O(n−3).

�

5.4.2 Bound on ‖M −M0‖F.

We provide a proof of Theorem 5 in this section.

Proof of Theorem 5. To begin the proof we can note that Mij = 0 iff
∑tU

t=tL
A

(t)
ij = 0. Using the

same arguments as in the proof of Proposition 11 and Theorem 3 along with the lower tail inequality

in Proposition 8 we can conclude that

P (Mij = 0 for some i, j) = o(1).

Thus we can assume that Mij 6= 0 for the rest of the proof.

Let an = 4n(log n)−η and let bn,1 = exp
{

an√
2n

}
and bn,2 = exp

{
an√
2n

}
. Recall from (5.42) that

P (t)

ii is the t-step transition probability for node2vec, and recall from (5.43) the form of M0 for
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node2vec. Then we have

P (‖M −M0‖F > an) = P

 ∑
16i,j6n

log2

(
Mij

(M0)ij

)
> a2

n

 ,

6 o(1) +
∑

16i 6=j6n

tU∑
t=tL

P

P
(
w

(1)
1 = i,w

(1)
1+t = j

)
|Pi?|
|P | ×

|Pj?|
|P |

P (t)

ij P
(
w

(1)
1 = i

)
P
(
w

(1)
1 = j

) > bn,1


+

∑
16i 6=j6n

tU∑
t=tL

P

 P (t)

ij P
(
w

(1)
1 = i

)
P
(
w

(1)
1 = j

)
P
(
w

(1)
1 = i,w

(1)
1+t = j

)
|Pi?|
|P | ×

|Pj?|
|P |

> bn,1


+
∑

16i6n

tU∑
t=tL

P

P
(
w

(1)
1 = i,w

(1)
1+t = i

)
|Pi?|
|P | ×

|Pi?|
|P |

P (t)

ii P
(
w

(1)
1 = i

)
P
(
w

(1)
1 = i

) > bn,2


+
∑

16i6n

tU∑
t=tL

P

 P (t)

ii P
(
w

(1)
1 = i

)
P
(
w

(1)
1 = i

)
P
(
w

(1)
1 = i,w

(1)
1+t = i

)
|Pi?|
|P | ×

|Pi?|
|P |

> bn,2

 . (5.50)

Fix tL 6 t 6 tU and i 6= j. We show how to bound a typical term in the third summand in

(5.50). Recall from (5.2) that Pb is the set of paths with vertices having community assignment b

for b ∈ Bi,j . Similar to the proof of Proposition 11, for p = (i0, . . . , it) ∈ Pb, let

X̄p,α =
Ai0i1
|Ai0?|

1

|Ait?|

(
t−1∏
l=1

Ailil+1

|Ail?| − 1 + α

)
· αn(p), and Ȳb,α =

∑
p∈Pb

X̄p,α, (5.51)

X̄∗p,α =
Pi0i1
|Pi0?|

1

|Pit?|

(
t−1∏
l=1

Pilil+1

|Pil?| − 1 + α

)
· αn(p), and Ȳ ∗b,α =

∑
p∈Pb

X̄∗p,α.

Then we can write

P

 P (t)

ij P
(
w

(1)
1 = i

)
P
(
w

(1)
1 = j

)
P
(
w

(1)
1 = i,w

(1)
1+t = j

)
|Pi?|
|P | ×

|Pj?|
|P |

> bn,1


= P

(
|P |
|A|

∑
b∈Bi,j Ȳ

∗
b,α∑

b∈Bi,j Ȳb,α
> bn,1

)
6
∑
b∈Bi,j

P

(
|P |
|A|

Ȳ ∗b,α
Ȳb,α

> bn,1

)
+ o(n−4). (5.52)

The last term o(n−4) above, obtained by an application of Proposition 15, is a bound on the

probability P (Xb = 0) so that
Ȳ ∗b,α
Ȳb,α

is well-defined for the rest of the arguments below. We now

show how to bound the typical summand in (5.52). Towards this we use the Chernoff bound as in

the proof of Proposition 11 to bound |P ||A| . We next show how to bound the fractions coming from
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the degree terms in (5.51). Towards this we note that for any 0 < δ < 1 and for any l ∈ [n] we have

P (|Ail?| − 1 + α 6 (1− δ)(|Pil?| − 1 + α)) = P
(
|Ail?| 6

(
(1− δ) +

δ(1− α)

|Pil?|

)
|Pil?|

)
,

6 P
(
|Ail?| 6

(
1− δ

2

)
|Pil?|

)
,

as |Pil?| = θ(nρn). By similar reasoning we also have for 0 < δ < 1 and for any l ∈ [n]

P (|Ail?| − 1 + α > (1 + δ)(|Pil?| − 1 + α)) 6 P
(
|Ail?| >

(
1 +

δ

2

)
|Pil?|

)
.

These inequalities combined with the Chernoff bound help bound P
(
|P |
|A|

Ȳ ∗b,α
Ȳb,α
> bn,1

)
as follows.

Define

X∗p,α =
t∏
l=1

Pil−1ilα
n, and Y ∗b,α =

∑
p∈Pb

X∗p,α.

Then we have

P

(
|P |
|A|

Ȳ ∗b,α
Ȳb,α

> bn,1

)
6 P

(
Y ∗b,α
Yb,α

> exp

{
an√
2n
− θ

(
1√
n

)
− θ

(√
log n

nρn

)})
+O(n−4),

6 P
(
Y ∗b,α
Yb,α

> 1 + (log n)−η
)

+O(n−4), (5.53)

as an = 4n(log n)−η.

Fix (i, j) such that i 6= j. We estimate the difference

∣∣EYb,α − Y ∗b,α∣∣ =

∣∣∣∣∣∣
∑
p∈Pb

(
EAi0i1 · · ·Ait−1it − Pi0i1 · · ·Pit−1it

)
αn

∣∣∣∣∣∣ . (5.54)

If α 6 1, we have the right hand side in (5.54) to be O

(
1
nρn

)
EYb,α from (5.26) in the proof of

Proposition 11 for DeepWalk, and as both EYb,α and EYb,1 are θ(nt−1ρtn) by Proposition 12 and

Proposition 14. We now look at the case when α > 1. The summands in (5.54) are equal to zero

if the associated path (i0, i1, . . . , it) has t distinct edges and there are no self-loops. Consider the

first set of summands in (5.54). Consider Type I paths with s < t marked edges. Then there are
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O(ns−1) such paths and their total contribution is O(ns−1ρsnα
t−s) = O

(
α
nρn

)
Ub. Now consider

Type II paths with s marked edges. Recall that the path starts at node i and ends at node j.

Then let l > 0 be the first index such that il = j. Then il must be an endpoint of a marked edge.

We note that il cannot be the last vertex of a segment as Type II segments start and end at the

same vertex and l is the first index such that il = j. This implies that the choice of the vertex il is

determined to be equal to j. Thus there are O(ns−1) paths of this type and by a similar calculation

as for Type I paths, the overall contribution is O
(

α
nρn

)
Ub.

We now give an upper bound on the summands Pi0i1 · · ·Pit−1it as follows. Suppose a path has

less than t distinct edges. If the path is a Type I path with s backtracks then by Lemma 6 the

number of choices of distinct vertices along the path is at most t − s − 1. Thus the contribution

from such paths is O

(
α
n

)
EYb,α. If the the path is a Type II path with s marked edges, then by

reasoning as in the previous paragraph the number of paths of this type are O(ns−1) and so the

O
(

α
nρn

)
Ub.

Finally, if there are self-loops then the number of choices of vertices is less than t − 1. This

implies that the upper bound on the second set of summands is O(1/n)EYb,α. Thus in summary

we have

∣∣EYb,α − Y ∗b,α∣∣ = O

(
1

nρn

)
EYb,α, i 6= j, α = O(1),

∣∣EYb,α − Y ∗b,α∣∣ = O

(
α

nρn

)
EYb,α, i 6= j, α� 1. (5.55)

These computations show that in particular for i 6= j we have

Yb,α
Y ∗b,α

=
Yb,α

EYb,α (1 +O((nρn)−1))
, and

Y ∗b,α
Yb,α

=
EYb,α

(
1 +O((nρn)−1)

)
Yb,α

. (5.56)

With this bound we complete our calculation from (5.53). We use Proposition 15 and (5.56)

to conclude that

P
(
Y ∗b,α
Yb,α

> 1 + (log n)−η
)

= O(n−3).
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This completes the argument to show that the last term in (5.50) goes to 0. The second term in

(5.50) can be bounded similarly. The third and the fourth term in (5.50) are for the case when i = j.

Again, the proof is similar except we use the following computations to bound
EYb,α
Y ∗b,α

. Recall that

EYb,α = θ(nt−1ρtn). We estimate Y ∗b,α. Suppose a path has m < t distinct edges and b backtracks.

Then by Lemma 6, the number of such paths is O(nm) and so the contribution from such paths is

O(nmρtnα
b)� O((nρn)t) as m+ b 6 t and α� nρn. This shows that

1

n
�

EYb,α
Y ∗b,α

� n, i = j. (5.57)

This completes the first part of the proof.

The second part of the proof, for the range ntU−1ρtUn � 1, is similar to the analogous proof in

the proof of Theorem 3 except the following two changes:

1. Lemma 17 is used to show that the entries of Mij are O(1).

2. We use Proposition 12 to bound EYb,α.

�

5.4.3 Bounding the number of missclassified nodes

We provide a proof of Theorem 6 in this section.

Proof of Theorem 6. For this proof, we choose O ∈ RK×K obtained by an application of Proposi-

tion 10 which satisfies

‖V − V0O‖F 6
‖M −M0‖F

Cn
= oP(1), (5.58)

where the last step follows using Theorem 5. To simplify notation, we denote U = V0O in the rest

of the proof. Let nmax = maxr∈[K] nr. Recall (Θ̄, X̄) from (4.14) and let V̄ = Θ̄X̄. Then let

S =

{
i ∈ [n] :

∥∥V̄i? − Ui?∥∥F
>

1

5

√
2

nmax

}
.

We will show that for i /∈ S the community is predicted correctly using Θ̄. The proof of the theorem

is in two steps.
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Step 1: Bounding |S|. By the definition of S we have

∑
i∈S

√
2

nmax
6
∑
i∈S

5
∥∥V̄i? − Ui?∥∥F

6 5
∥∥V̄ − U∥∥

F
=⇒ |S| 6 5√

2

√
nmax

∥∥V̄ − U∥∥
F
. (5.59)

Next, we recall the optimization problem in (4.14) is given as follows.

∥∥Θ̄X̄ − V
∥∥2

F
6 (1 + ε) min

Θ∈{0,1}n×K ,X∈RK×K
‖ΘX − V ‖2

F
.

We substitute U for ΘX to get the following upper bound:

∥∥V̄ − V ∥∥2

F
6 (1 + ε) ‖U − E0 − V ‖2F . (5.60)

Then by (5.58) and (5.60) we have

∥∥V̄ − U∥∥
F
6
∥∥V̄ − V ∥∥

F
+ ‖V − U‖

F
6 (1 + o(n−1.5) +

√
1 + ε) ‖V − U‖

F
= oP(1).

This combined with (5.59) we have |S| = oP(
√
n).

Step 2: Bounding the prediction error. For any community r, there exists ir ∈ [n] such that

gir = r and ir /∈ S as nr = θ(n) and |S| = oP(
√
n). By Lemma 18, for r 6= s we have

∥∥V̄ir? − V̄is?∥∥F
> ‖Uir? − Uis?‖F −

∥∥V̄ir? − Uir?∥∥F
−
∥∥V̄is? − Uis?∥∥F

,

>

√
1

nr
+

1

ns
+O(n−3)− 2

5

√
2

nmax
,

>
2.9

5

√
2

nmax
. (5.61)

Next, let i be such that gi = r and i /∈ S. We show that V̄i? = V̄ir?. For this we note that Ui? = Uir?

and

∥∥V̄i? − V̄ir?∥∥F
6
∥∥V̄i? − Ui?∥∥F

+
∥∥Uir? − V̄ir?∥∥F

,

<
1

5

√
2

nmax
+

1

5

√
2

nmax
+O(n−3),

<
2.1

5

√
2

nmax
. (5.62)
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In view of (5.61) and 5.62 we must have V̄i? = V̄ir?. Let C be a permutation matrix defined so that

Θ0C assigns community r to node ir, for 1 6 r 6 K. Then we have,

∑
i

1{Θ̄i? 6= (Θ0C)i?} 6 |S|.

From the bound on |S| from Step 1, we have that Err(Θ̄,Θ0) is oP (1/
√
n) and this completes the

proof of Theorem 6. �
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CHAPTER 6

Future work

In this chapter we discuss future extensions of our work. In section 5.1 we discuss extensions

of our work in Chapter 2 to problems in correlations in high dimensions. In section 5.2 we discuss

an approach to modeling multilayer networks which can be applied to brain network data sets

discussed in Chapter 3. In section 5.3 we discuss extensions of our work in Chapter 4 to problems

in network embedding.

6.1 Correlations in High Dimensions

There are several extensions to explore connected to our work in Chapter 2. We first recall

some notation. Let X be a n × p matrix. This is to be viewed as n observations of p variables.

Suppose the entries of X are normally distributed and let Σ = (σij)16i,j6p be the p× p matrix of

covariances of columns of X and let R = (ρij)16i,j6p be the matrix of correlations of columns of

X. Let

ρ̂ij =
(X·i − X̄·i)T (X·j − X̄·j)

‖(X·i − X̄·i)T ‖ · ‖(X·j − X̄·j)‖
, 1 6 i, j 6 p

be the sample correlations of the columns of X. Let Ln = max16i<j6p ρ̂ij . Then distributional

results for Ln can be used to test H0 : R = I (Cai and Jiang, 2012) i.e. whether the covariance

matrix Σ is diagonal. Another covariance structure of interest from applications in time series and

econometrics is the banded covariance structure. We say a covariance matrix Σ is banded with

bandedness τ if σij = 0 whenever |i − j| > τ . In (Cai and Jiang, 2011) a modified form of Ln is

used to test if Σ has a banded structure under the assumption that log p = o(n
1
3 ). In extension of

these results, it is of interest to explore the following question.
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• Can we test whether Σ has a banded structure when p � n? In (Cai and Jiang, 2012), it

is shown that asymptotically the distribution of Ln shows a phase transition depending on

whether log p
n converges to γ = 0, or γ ∈ (0,∞) or to γ = ∞. Do similar results hold under

the three regimes in the presence of a banded structure? Further how does the size of the

band τ need to vary with respect to n and p for the results to continue to hold?

Another direction to explore is to study related covariance structures which capture dependence

between the columns of X. More explicitly, what the are the distributional limits of maximal

correlation under the following conditions:

• The correlation ρi,j → 0 as |i− j| → ∞.

• The variables Xki and Xkj are strongly dependent when |i − j| 6 τ and weakly dependent

when |i− j| > τ where τ is the bandedness of Σ.

Many of the distributional results for Ln or modifications of it assume that X is a Gaussian

matrix. This motivates the following question:

• To what extent can the limiting results for the maximal correlation be extended to sub-

Gaussian distributions both with and without the banded condition?

(Fan and Jiang, 2019) describe limits of Ln when ρij = ρ, ∀i 6= j. It is of interest to

understand the limiting regimes under more general dependence structures. This motivates the

following question.

• (Low dependence) In (Fan and Jiang, 2019) it is shown that a recentered and scaled version

of Ln converges to the Gumbel distribution under the assumption that ρi,j = ρ, 1 6 i 6= j 6 p

and ρ = o
(

1√
log p

)
. Does a similar result hold when ρi,j = o

(
1√

log p

)
but the correlations,

ρi,j , are not assumed to be equal to each other?

One of the challenges to the previous question posed above is to define a common recentering since

ρi,j can vary with i and j. For example, a large recentering may force the smaller correlations to

−∞.

In addition to the maximal correlation, it is of interest to understand the full process of cor-

relations and understand how it behaves for large n and p. As a consequence, this helps us to
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understand the second largest correlation, the third largest correlation and so on. This motivates

the following question.

• How to compute functionals of the point process of sample covariances and sample correla-

tions?

6.2 Multilayer Networks

In this section we propose a method for modeling multilayer networks. The data sets, as

described in Chapter 3, consist of networks with weights and networks over time. Therefore our

goal is a modeling framework which encompasses those two properties. We describe our modeling

approach which uses the framework of optimal mass transport. This framework is flexible in various

ways. For example it can include weighted networks, temporal networks and networks of different

sizes. We describe the approach in more detail below.

In many real world contexts, it is of interest to find an shortest or minimum cost method to

move between two configurations. Optimal mass transport is a way to formalize this problem. This

problem was first formulated by G. Monge in 1781 in the context of computing the cost of moving

a mound of sand from a source to a destination. The problem has since been generalized and has

applications in imaging (Haker et al., 2004), astrophysics (Frisch et al., 2002), meteorology (Cullen

et al., 1991) and seismology (Métivier et al., 2016).

Optimal mass transport has also been used in the context of networks for graph matching (Xu

et al., 2019). However to the best of my knowledge, no multilayer network models uses optimal

transport. Towards this, we can formulate the optimal distance between either

1. the random graph models which approximate the observed graphs or,

2. between two fixed observed networks.

The work in (Xu et al., 2019; Peyré and Cuturi, 2019) uses the latter framework. We describe the

modeling approach using the former framework in three steps below.

Define a cost function between networks. Suppose we have two networks G and H consisting

of n nodes each. Then one can define a wide range of similarity measures to compare G and H.

We will think of these measures as costs to transform the network G to network H. For example,
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the Hamming distance computes the number of edges which are present in G but not in H or vice

versa. Another example is any measure which compares the number of motifs such as triangles,

stars etc. between two graphs. If G and H have weights and other attributes, then these can be

compared and included in the overall measure as well. Many of these costs can also be defined

when G and H have differing number of nodes.

In order to keep the notation and description easy to follow, we fix n the number of nodes and

focus on Gn the set of all unweighted simple symmetric graphs on n nodes. Let c : Gn×Gn → R be

a cost function comparing pairs of graphs. If c is the Hamming distance then for any two graphs

G and H

c(G,H) =

n∑
i=1

n∑
j=1

|Gi,j −Hi,j |,

where Gi,j (resp. Hi,j) is 1 is there is an edge between node i and node j and 0 otherwise.

Computing transportation cost between models. We begin by describing how to com-

pute transportation cost between two sets of points. We will then describe how this can be

used to compute costs between models as well. To fix notation, let X = {x1, x2, . . . , xn} and

Y = {y1, y2, . . . , ym} be two finite sets. Let

α =

n∑
i=1

aiδxi and β =

m∑
j=1

bjδyj

be two probability measures on X and Y. Let c : X × Y 7→ R+ be a cost function which assigns

a cost c(xi, yj) of transporting a unit mass from location xi to location yj . Let π be a coupling of

the measures α and β. In other words, π is a joint distribution on X ×Y with marginals α and β.

Then π(xi, yj) can be interpreted as the amount of mass transported from location xi to location

yj . The total cost of transportation with respect to c is given by

n∑
i=1

m∑
j=1

c(xi, yj)π(xi, yj) or
∑

(x,y)∈X×Y

c(x, y)π(x, y) or Eπ(c).

Alternatively if X and Y are two random variables with (X,Y ) ∼ π, the cost of transportation is

given by

E(X,Y )(c(X,Y )).
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Let Π(α, β) be the set of all couplings between α and β. Then the optimal transport cost

between α and β with respect to c is given by

Lc(α, β) := min
π∈Π(α,β)

∑
(x,y)∈X×Y

c(x, y)π(x, y) or,

min
π∈Π(α,β)

Eπ(c) or,

min
(X,Y )

E(X,Y )(c(X,Y )),

where (X,Y ) is a couple of random variables X ∼ α and Y ∼ β.

In the context of graphs, let P1 and P2 be two random graph models on Gn, the set of all graphs

of size n. For example, P1 = ER(p1) and P2 = ER(p2) where ER(p) is the Erdős-Renyi random

graph model with parameter p. Note that P1 and P2 are probability distributions on Gn. Let π be

a coupling of the P1 and P2. Then the transport cost between the two models with respect to a

cost function is c is given by

∑
G∈Gn

∑
H∈Gn

c(G,H)π(G,H) or
∑

(G,H)∈Gn×Gn

c(G,H)π(G,H) or Eπ(c).

Eπ(c) can be thought of as the average cost of moving from model P1 to model P2 with respect

to cost c.

We give an example when P1 = ER(p1) and P2 = ER(p2) and c is the Hamming distance. Let

π be a coupling of P1 and P2. Suppose (G,H) is a sample from π. Let qi,j = Pπ(Gij = 1, Hij = 1)

i.e. the probability that both the graphs have ijth edge is equal to qi,j . Then

Eπ(c) =
∑

i,j∈[n]:i<j

(p1 + p2 − 2qi,j),

is the transportation cost between the two models.

Network models using optimal mass transport. Above we described how to find optimal

cost or distance between two single layer network models. However in practice we do not know

the underlying model which best approximates the observed networks. Therefore we would like to

fit the best model for each of the individual observed networks in addition to the best coupling
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between them. We propose two methods towards this goal. We describe these methods for jointly

modeling two graphs. In future work, we will analyze how to extend these two more than two

graphs and networks with weights.

Let G1 and G2 be two observed graphs. Let P1 and P2 be families of single layer models

we would like for modeling G1 and G2 separately. For example, P1 and P2 may be Erdős-Renyi

network models or stochastic block models (SBM). Then

F(P1,P2) :=
⋃

α1∈P1,α2∈P2

Π(α1, α2).

is the set of all coupling we would like to optimize over to find the best fit for (G1, G2). In applica-

tions it would be of interest to use a smaller subset of F(P1,P2) for modeling or for computational

purposes. To simplify notation if π is a coupling, we denote the marginal distributions by π1 and

π2. We propose two ways to jointly model networks

a) minπ∈F(P1,P2)− log π(G1, G2) + λLc(π1, π2).

b) minπ∈F(P1,P2)− log π(G1, G2) + λEπ(c).

The first term in both the methods is the log-likelihood of the two graphs. The first method

penalizes the optimal cost between the marginal distributions. This method will choose a coupling

for which the marginals are close with respect to the optimal transport cost. The second method

penalizes a coupling by the transportation cost associated to it. We describe these two methods in

three examples.

6.2.1 Erdős-Renyi Models

Let ER(p) be the Erdős-Renyi random graph model on [n] with parameter p. Let P1 = P2 =

{ER(p)|0 6 p 6 1}. We consider the following types of couplings π.

FER = {π ∈ F(P1,P2)|Pπ(Xij = 1, Yij = 1) = Pπ(Xkl = 1, Ykl = 1), where (X,Y ) ∼ π}.

These are the set of couplings where we have a single parameter describing the dependence between

the two graphs. The the optimization problems simplify as follows
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Figure 6.1: This is a simulation for optimization problem a). It describes the effect of λ on the fitted
parameters p1, p2 and q. For each point in the plot, 10 Erdős-Renyi graphs on 10 nodes were generated with
parameters p1 = 0.2, p2 = 0.4 and the dependence parameter q = 0.1. The 10 fitted parameters were then
averaged. An increase in λ forces the parameters p1 and p2 to be equal to each other.

Figure 6.2: This is a simulation for optimization problem b). It describes the effect of λ on the fitted
parameters p1, p2 and q. For each point in the plot, 10 Erdős-Renyi graphs on 10 nodes were generated with
parameters p1 = 0.2, p2 = 0.4 and the dependence parameter q = 0.1. The 10 fitted parameters were then
averaged. An increase in λ forces the parameter q to increase and the probabilities Pπ(Xij = 1, Yij = 0) and
Pπ(Xij = 0, Yij = 1) to decrease. Here π refers to the fitted coupling or joint model.
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a) min(p1,p2) minπ∈Π(ER(p1),ER(p2))∩FER
{
− log π(G1, G2) + λ

(
n
2

)
|p1 − p2|

}
.

b) min(p1,p2) minπ∈Π(ER(p1),ER(p2))∩FER

{
− log π(G1, G2) + λ(

∑
i,j∈[n]:i<j p1 + p2 − 2qπ)

}
, where

qπ = Pπ(Xij = 1, Yij = 1).

Note that for the first method, penalty term is the difference between the density parameters for

the Erdős-Renyi models. For the second method, the penalty term is the transportation cost for

the coupling. The latter may be interpreted as following. Suppose (X,Y ) ∼ π and we observe

Xij = 1 and the conditional probability that Yij = 1 is high, then we have a smaller penalty term.

While if this conditional probability is lower, the penalty will be higher. Figures 6.1 and 6.2 show

effect of the parameter λ on the fitted parameters p1, p2 and q. This is informative about the fitted

models from the above two methods.

6.2.2 Stochastic Blocks Models

Let K be the number of blocks. Assume the blocks are known and let gi denote the block for

node i. Also for 1 6 k 6 l 6 K let

Nk,l =
∑

16i<j6n

δ{gi = k, gj = l},

be the number of pairs of nodes between groups k and l.

Let p = (pk,l) with 0 6 pk,l 6 1, 1 6 k 6 l 6 K be a matrix of block probabilities and

let g = (gi)i be the block labels. Let SBM(p,g) be the stochastic block model with the given

parameters. We will suppress notation and just write SBM(p) below. Similar to the Erdős-Renyi

case, let P1 = P2 = {SBM(p)|0 6 pk,l 6 1, 1 6 k 6 l 6 K} and let

F1
SBM = {π ∈ F(P1,P2)|Pπ(Xij = 1, Yij = 1) = Pπ(Xkl = 1, Ykl = 1), where (X,Y ) ∼ π}.

In words, this means that we would like to model the individual networks using a stochastic

block model with K blocks and the dependence between the networks is given by a single parameter

(which is to be fitted). The two methods simplify as follows.
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Figure 6.3: This is a simulation for optimization problem a). It describes the effect of λ on the fitted
parameters p10 = Pπ(Xij = 1, Yij = 0), p01 = Pπ(Xij = 0, Yij = 1),p11 = Pπ(Xij = 1, Yij = 1) and
p00 = Pπ(Xij = 0, Yij = 0) where π is the fitted coupling. The plot consists of a symmetric matrix of 9
subplots, one for each pair of blocks. For each point in the plot, 10 graphs were generated from SBM on
10 nodes were generated with parameters. The 10 fitted parameters were then averaged. At λ = 0, we can
observe the original parameters. An increase in λ forces the parameters p10 and p01 to be equal to each
other.
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Figure 6.4: This is a simulation for optimization problem b). It describes the effect of λ on the fitted
parameters p10 = Pπ(Xij = 1, Yij = 0), p01 = Pπ(Xij = 0, Yij = 1),p11 = Pπ(Xij = 1, Yij = 1) and
p00 = Pπ(Xij = 0, Yij = 0) where π is the fitted coupling. The plot consists of a symmetric matrix of 9
subplots, one for each pair of blocks. For each point in the plot, 10 graphs were generated from SBM on
10 nodes were generated with parameters. The 10 fitted parameters were then averaged. At λ = 0, we can
observe the original parameters. An increase in λ forces the parameters p10 and p01 to decrease.
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a) min(p1,p2) minπ∈Π(SBM(p1),SBM(p2))∩F1
SBM{

− log π(G1, G2) + λ
∑

16k6l6K Nk,l(p
1
k,l + p2

k,l − 2 min{p1,p2})
}

.

b) min(p1,p2) minπ∈Π(SBM(p1),SBM(p2))∩F1
SBM{

− log π(G1, G2) + λ
∑

16k6l6K Nk,l(p
1
k,l + p2

k,l − 2qπ)
}

, where qπ = Pπ(Xij = 1, Yij = 1).

The first term in both the optimization problems above is the log-likelihood of the observed networks

as in the Erdős-Renyi case. The penalty term in b) is also similar as before. In a), the penalty term

is somewhat different but it again penalizes the difference between the density parameters. Figures

6.3 and 6.4 describe the effect of λ on the fitted parameters which in turn helps us understand how

the models are fitted.

If we instead chose to restrict couplings to

F2
SBM = {π ∈ F(P1,P2)|Pπ(Xij = 1, Yij = 1) = Pπ(Xkl = 1, Ykl = 1),

where (X,Y ) ∼ π and gi = gk & gj = gl},

the two optimization problems can be written as follows.

a) min(p1,p2) minπ∈Π(SBM(p1),SBM(p2))∩F2
SBM{

− log π(G1, G2) + λ
∑

16k6l6K Nk,l|p1
k,l − p2

k,l|
}

.

b) min(p1,p2) minπ∈Π(SBM(p1),SBM(p2))∩F2
SBM{

− log π(G1, G2) + λ
∑

16k6l6K Nk,l(p
1
k,l + p2

k,l − 2qπk,l)
}

, where qπk,l = Pπ(Xij = 1, Yij = 1) for

(i, j) such that gi = k and gj = l and i < j.

This case is identical to the Erdős-Renyi case. The only difference being that there are
(
K
2

)
block parameters compared to 1 density parameter in the Erdős-Renyi case. The optimization can

be done separately for each of the pairs of blocks.

6.2.3 Degree Corrected Models

For simplicity, we only discuss degree corrected Erdős-Renyi models. Analogously, optimization

problems may be written for degree corrected stochastic block models. Fix two sequences da = (dai )i

and db = (dbi)i satisfying 0 6 dai , d
b
j 6 1,

∑n
i=1 d

a
i = 1 and

∑n
i=1 d

b
i = 1. We write DC − ER(da, p)
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for the degree corrected Erdős-Renyi model. To be specific, if X ∼ DC−ER(da, p), P (Xi,j = 1) =

pdai d
a
j for 1 6 i < j 6 n. Now let P1 = P2 = DC − ER(da, p) and

FDC−ER = {π ∈ F(P1,P2)|Pπ(Xij = 1, Yij = 1) = Pπ(Xkl = 1, Ykl = 1), where (X,Y ) ∼ π}.

This means that we would like to model both the layers using DC − ER models and the

dependence between the networks is given by a single parameter. If we know the degree parameters,

then the optimization problems become

a) min(pa,pb) minπ∈Π(DC−ER(da,pa),DC−ER(db,pb))∩FDC−ER{
− log π(G1, G2) + λ

{
pa

2 (1−
∑

i(d
a
i )

2) + pb

2 (1−
∑

i(d
b
i)

2)− q∗(r2 −
∑

i(d
a
i )

2(dbi)
2)
}}

where

q∗ = mini<j{padai daj , pbdbidbj} and r =
∑

i d
a
i d
b
i .

b) min(pa,pb) minπ∈Π(DC−ER(da,pa),DC−ER(db,pb))∩FDC−ER{
− log π(G1, G2) + λ

{
pa

2 (1−
∑

i(d
a
i )

2) + pb

2 (1−
∑

i(d
b
i)

2)− q(r2 −
∑

i(d
a
i )

2(dbi)
2)
}}

, where

qπ = Pπ(Xij = 1, Yij = 1) and r =
∑

i d
a
i d
b
i .

The expressions may look complicated due to the presence of the degree parameters. However

the optimization problems are similar in nature. The method a) penalizes by the difference between

the marginal parameters given constraints and method b) penalizes using the transportation cost

of the coupling.

We review our discussion in this section. We introduced two ways to jointly model networks. We

used transport cost and optimal transport cost between distributions towards this. We described

these methods in the context of three examples of random graph models. The methods were

described for modeling two networks. In future work we will analyze how to extend these models

to more than two networks and to weighted networks.

6.3 Network Embeddings

Our work in Chapter 4 can be extended in various directions described as follows.

Interplay between node2vec parameters. Our work explores the effect of the non-backtracking

parameter α in node2vec on community detection. It would be of interest to explore the effect of the
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other parameter β as well. In particular, it would be interesting to explore the interplay between

the two parameters on its effects on community detection. Answers to these questions can inform

practitioners when choosing parameters for node2vec for the purposes of community detection.

Degree-corrected stochastic block model. Our work uses graphs generated from the stochas-

tic block model (SBM) and studies the community detection problem using node embeddings

from node2vec and DeepWalk. However given the community labels, nodes have identical degree

distributions under SBM. This is unlike real-world networks where degrees follow a power-law dis-

tribution. To generalize our work, one could analyze the same community detection problem using

node embeddings but now with graphs generated from the degree-corrected stochastic block model.

Weighted networks. Another direction of research is to consider the problem in Chapter 4 for

weighted networks. node2vec algorithm allows for weights in the model and so one could start with

a weighted stochastic block model and analyze the corresponding community detection problem.

Time-series of networks. All of the suggested directions of research above are for studying one

network. However, in many real-world data sets we have a collection of networks related to each

other. One example is a time-series of networks. In such a setting one would start with a model for

the time-series of networks. Then one would apply the node embedding method to the networks

at each time slice to obtain a time-series of network embeddings. One would then analyze the

relationships between the embeddings.

Application to brain networks. One could apply the node embedding algorithms, DeepWalk

and node2vec, to brain network data sets discussed in Chapter 3. For both the infant data set and

the ADNI data set discussed in Chapter 3, one could study the time series of network embeddings

to gain insight about brain development or degeneration over time. It would also be interesting

to see how network embeddings vary with groups. For example, for the infant data set, one could

compare network embeddings for years 0, 1 and 2. One could also compare network embeddings

for preterm and non-preterm subjects. Another interesting grouping is by the scanner, Allegra

and TRIO, used in creating the data sets. This may help in gaining insight into the effects of the

scanner in the networks and potentially help in removing some of this effect. Similarly for the

ADNI data set, one could compare network embeddings for the three groups: cognitively normal

(CN), mild cognitive impairment (MCI) and Alzheimer’s disease (AD).
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APPENDIX 1: PROPERTIES OF OPTIMIZERS FOR EMBEDDING ALGO-
RITHMS

Proof of Proposition 3. Note that

El∼PC
[

log σ(−〈fi,f ′l 〉))
]

=
n∑

j′=1

|C?j′ |
|C|

log σ(−〈fi,f ′j′〉)).

Thus, (4.10) reduces to

LC(F, F ′) =

n∑
i,j=1

[
Cij log σ(〈fi,f ′j〉) + b

|Ci?||C?j |
|C|

log σ(−〈fi,f ′j〉)
]
. (1)

Let `C(〈fi,f ′j〉) be the (i, j)-th summand above. Defining x = 〈fi,f ′j〉, we optimize `C(x). Taking

partial derivative with respect to x,

∂`C
∂x

=
Cij

1 + ex
− b |Ci?||C?j |

|C|
× ex

1 + ex
.

Equating the derivative to zero, we have x = log
( Cij ·|C|
|Ci?||C?j |

)
− log b, and thus,

〈fi,f ′j〉 = log

(
Cij · |C|
|Ci?||C?j |

)
− log b = (MC)ij . (2)

Thus, if M̄C = FF ′T , then 〈Fi?, F ′j?〉 satisfies (2). �

Proof of Lemma 4. We recall that co-occurences are given by

Cij =

tU∑
t=tL

r∑
m=1

l−t∑
k=1

1
{
w

(m)
k = i,w

(m)
k+t = j

}
+ 1

{
w

(m)
k = j,w

(m)
k+t = i

}
.

By the strong law of large numbers,

∑r
m=1 1

{
w

(m)
k = i,w

(m)
k+t = j

}
r

a.s.−−−→
r→∞

P
(
w

(1)
k = i,w

(1)
k+t = j

)
. (3)
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The initial distribution for DeepWalk is an invariant distribution for each of the random walks.

We now note that the initial distribution for node2vec is also invariant for the walks for node2vec,

i.e.:

P
(
w

(1)
1 = i,w

(2)
1 = j

)
= P

(
w

(1)
k = i,w

(1)
k+1 = j

)
, 1 6 k < l. (4)

The computation below shows that this follows by induction. Suppose that (ik+1, ik+2) ∈ E.

P
(
w

(1)
k+1 = ik+1,w

(1)
k+2 = ik+2

)
=

∑
ik|(ik,ik+1)∈E

P
(
w

(1)
k = ik,w

(1)
k+1 = ik+1,w

(1)
k+2 = ik+2

)
,

=
∑

ik|(ik,ik+1)∈E

P
(
w

(1)
k+2 = ik+2|w

(1)
k = ik,w

(1)
k+1 = ik+1

)
· P
(
w

(1)
k = ik,w

(1)
k+1 = ik+1

)
,

=
αAik+1ik

dik+1
+ (−1 + α)Aik+1ik

·
Aikik+1

|A|
+

∑
ik 6=ik+2

Aik+1ik+2

dik+1
+ (−1 + α)Aik+1ik

·
Aikik+1

|A|
1 {(ik, ik+1) ∈ E} ,

=
1

|A|
.

In view of (3) and (4) we have

Cij
r

a.s.−−−→
r→∞

tU∑
t=tL

(l − t)
(
P
(
w

(1)
1 = i,w

(1)
1+t = j

)
+ P

(
w

(1)
1 = j,w

(1)
1+t = i

))
,

∑
i′ Ci′j
r

a.s.−−−→
r→∞

2P
(
w

(1)
1 = j

)
·
tU∑
t=tL

(l − t) = 2γ(l, tL, tU )P
(
w

(1)
1 = j

)
,

∑
j′ Cij′

r

a.s.−−−→
r→∞

2P
(
w

(1)
1 = i

)
·
tU∑
t=tL

(l − t) = 2γ(l, tL, tU )P
(
w

(1)
1 = i

)
,∑

i′j′ Ci′j′

r

a.s.−−−→
r→∞

2γ(l, tL, tU ).

The result follows from these equations. We note that if,
∑tU

t=tL
A

(t)
ij > 0 then,

tU∑
t=tL

(l − t)
(
P
(
w

(1)
1 = i,w

(1)
1+t = j

)
+ P

(
w

(1)
1 = j,w

(1)
1+t = i

))
> 0,
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and so the logarithm is well-defined for the limiting term. In this case, we also have Cij > 0 for

large r and so log

(
Cij ·(

∑
i′j′ Ci′j′)

b
∑
j′ Cij′

∑
i′ Ci′j

)
is well-defined for large enough r. �

Proof of Lemma 5. Let

Z = {X ∈ RK×K : rank(X) < K},

be the set of all matrices which are not of full rank. Note that λ(Z) = 0 as Z is the zero set of the

determinant function on RK×K which is a polynomial function of the matrix entries. Next, let

S = {X ∈ RK×K+ : rank(X) = K, rank( ¯logX) < K},

be the set of all matrices in RK×K+ for which the rank drops after applying ¯log. Let ¯exp be the

mapping given by applying the exponential function element-wise to the matrix entries. Then we

can note that S ⊂ ¯exp(Z). Thus to complete the proof, it is enough to show that λ( ¯exp(Z)) = 0.

This final assertion follows by (Rudin, 1987, Lemma 7.25) as ¯exp is a smooth function and so it

must map null sets to null sets. �
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APPENDIX 2: PATH COUNTING WITH CONSTRAINTS

For the analysis of paths with backtracks, it is useful to have an accurate estimate of the number

of paths between two nodes satisfying constraints specifying the locations of the backtracking edges

along the paths. Lemma 19 below counts the number of vertices that need to be chosen along

the paths under such constraints. This is a more general version of Lemma 6 which may be of

independent interest.

Lemma 19 is stated in terms of sets and equivalence classes. For ease of reading, we describe

the setup in the context of graphs. In the graphs context, the set A in Lemma 19 is the set of

vertices, the sequence (i0, i1, . . . , is) is a path on the graph that does not intersect itself, and the

sequence ki gives all the non-backtracking edges. The relation R simply says that two vertices in

the path have to be equal when there is a backtracking edge. The equivalence relation ∼ is defined

to keep track of distinct vertices under the constraints given by backtracking edges. We now state

and prove the lemma.

Lemma 19. Let A be a set and let (i0, i1, . . . , is) be a sequence of distinct elements from A, i.e.

il 6= il′ , 0 6 l 6= l′ 6 s. Let I = {i0, i1, . . . , is}. Let 0 = k1 < k2 < · · · < km < km+1 = s be a

subsequence of (0, 1, . . . , s) of length m+ 1. Let R be a relation defined on I by

il−1R il+1, kr < l < kr+1, 1 6 r 6 m.

Let ∼ be an equivalence relation defined on I using the following:

1. i ∼ i

2. i ∼ j if i R j or j R i

3. i ∼ j if there is a sequence of elements l1, l2, . . . , lr such that i R l1, lr′ R lr′+1 for 1 6 r′ < r,

and lr Rj.
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Let [il] be the equivalence class of il for 0 6 l 6 s and let

E := { [il] | 0 < l < s}.

If kr+1 − kr is an even number for 1 6 r 6 m, then |E| = m and [i0] = [is]. In all other cases,

|E| = m− 1 and [i0] 6= [is].

Proof of Lemma 19. We prove the result by induction on m. For the induction base case, suppose

m = 1. If s is an even number, then k2− k1 = s is even. We have [i0] ∼ [i2], [i2] ∼ [i4], . . . , [is−2] ∼

[is], and so we have i0 ∼ is. All the elements indexed by the even numbers are in one equivalence

class and the ones indexed by odd numbers are in a different equivalence. Since there are only two

equivalence classes and one of them is [i0], E = [i1]. Now suppose that s is an odd number. Then

we have [i0] ∼ [i2], [i2] ∼ [i4], . . . , [is−3] ∼ [is−1] and [i1] ∼ [i3], [i3] ∼ [i5], . . . , [is−2] ∼ [is]. There

are two equivalence classes but E = φ. Further [i0] 6= [is] as s is odd. This proves the base case.

Now suppose m > 1. Suppose there exists kr such that kr+1 − kr is even. Then with similar

reasoning as in the base case above, we have [ikr ] = [ikr+1 ] and [ikr ] 6= [ikr+1]. Further by the

definition of the relation, there is no sequence of elements such that ikr+1R il1 , il1 R il2 , . . . , ilj−1
R ilj

where lj < kr or lj > kr+1. Thus [ikr+1] 6= [il] for l < kr and l > kr+1. Thus we have

E = [ikr+1]
⊔
{[il] | 0 < l 6 kr or kr+1 < l < s}. (5)

Consider the shortened sequence (i0, i1, . . . , ikr , ikr+1+1, ikr+1+2, . . . , is) along with the relation R

defined using the subsequence 0 = k1 < k2 < · · · < kr < kr+2 < kr+3 < · · · < km+1 = s. There

are m − 1 elements in the subsequence and so by induction, {[il] | 0 < l 6 kr or kr+1 < l < s} has

m− 2 or m− 1 elements depending upon whether kl+1 − kl is even for 1 6 r′ 6 m, r′ 6= r + 1. By

equation 5, this shows the result.
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Suppose now instead that there does not exist kr such that kr+1−kr is even. Then with similar

reasoning as in the base case, for any 1 6 r 6 m we have for kr < l < kr+1 that [il] = [ikr ] or

[il] = [ikr+1 ]. Further [ikr ] 6= [ikr+1 ] as kr+1 − kr is odd and by the definition of R, elements can

only be equivalent to each other at an even distance from each other. Next we claim [ikr ] 6= [ikr′ ]

for r 6= r′. Suppose on the contrary that it were the case that [ikr ] = [ikr′ ] for some r 6= r′. Then

let ikr R il1 R il2 · · · R ilj R ikr′ and assume that this is the shortest sequence of elements relating ikr

and ikr′ . Let lj′ be the first index in the sequence such that lj′ = kr′′ for some r′′. By definition of

R, if i R i′ then kp 6 i, i′ 6 kp+1 for some p. Thus lj′ = kr or lj′ = kr+1 or lj′ = kr−1. We cannot

have the latter two cases as we have shown that [ikr ] 6= [ikr+1 ] and [ikr ] 6= [ikr−1 ]. Thus lj′ = kr.

This implies that lj′ R lj′+1R · · · R ikr′ is a shorter sequence of elements relating ikr and ikr′ . But

this is a contradiction to the fact that we started with the shortest sequence with such a property.

Thus we conclude that

E = {[il] | l = kr, 1 < r 6 m}, |E| = m− 1.

This completes the proof.

�
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