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ABSTRACT 

REBECCA K SINNOTT: Mechanisms that promote liberation of mitotic stress-
induced death 

(Under the direction of Dr. Angelique Whitehurst) 

 Paclitaxel is an anti-mitotic drug that, due to its success in the clinic, has become 

a backbone of first-line chemotherapeutic regimens for many malignancies including 

non-small cell lung cancer (NSCLC). While paclitaxel-based regimens are efficacious for 

some NSCLC patients, response is often incomplete, rarely curative and unpredictable, 

indicating widespread intrinsic resistance in chemo-naïve tumors. Thus, there is an unmet 

need for new combinatorial treatment strategies to better target paclitaxel resistant tumor 

cells. 

To study the molecular basis for this resistance, we first established a test bed of 

NSCLC-derived cell lines that evade cell death from high concentrations of paclitaxel 

due to an uncoupling of mitotic damage from cell death. We then employed a genome-

wide loss-of-function cytotoxic screen to identify the molecular components that can re-

engage paclitaxel-mediated cell death programs in an otherwise paclitaxel-resistant 

background. This screen was performed in the presence and absence of a mitotic 

damaging, yet sub-lethal, dose of paclitaxel.  This approach revealed a cohort of proteins 

that support tumor cell viability in the presence of mitotic damage. 

From this study, we find that prolonging a mitotic delay, by inhibition of either 

the APC or novel mitotic regulators, CASC1 and TRIM69, collaborates with a sub-lethal 

dose of paclitaxel to engage cell death programs. In particular, we find that CASC1, 
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which is frequently co-amplified with KRAS, is essential for microtubule polymerization 

and mitotic spindle formation. We also identified TRIM69, an E3 ubiquitin ligase, that 

we find is recruited to the spindle poles during mitosis to support mitotic fidelity. 

Importantly, stable depletion of either CASC1, or TRIM69, attenuates tumor cell growth 

in vivo. Finally, we demonstrate that pharmacological inhibition of the APC collaborates 

with an otherwise sublethal dose of paclitaxel. 

We hypothesize that during the course of tumor evolution, cancer cells become 

dependent on mechanisms that support rapid and inappropriate mitotic exit for cell 

viability and that these same intrinsic mechanisms are engaged to evade anti-mitotic 

therapeutics. Thus, therapeutic strategies that can prolong a mitotic delay may enhance 

patient response to paclitaxel-based therapies. 
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Chapter I. Introduction 
 
Lung cancer treatment 

Lung cancer is the leading cause of cancer-related death in the United States [1]. 

This high mortality rate is partially attributable to the often late stage of disease 

progression at the time of diagnosis, which leaves patients with limited therapeutic 

options beyond standard cytotoxic therapies [2]. Technological advancements over the 

past 10-15 years have allowed for the identification of patient subsets that carry specific 

genetic mutations that can be targeted to improve individual patient outcome. Currently, 

the epidermal growth factor receptor (EGFR) and the recently identified fusion protein, 

EML4-ALK, are examples of tumor vulnerabilities that can be targeted to improve non-

small cell lung cancer (NSCLC) patient survival [3].  

Gain-of-function mutations in the tyrosine-kinase EGFR (epidermal growth factor 

receptor) have been identified in NSCLC tumors with varying penetrance in different 

ethnicities [4, 5]. Patients with an EGFR mutation can benefit from addition of specific 

inhibitors, erlotinib and gefitinib, in combination with the cytotoxic standard-of-care 

regimen [6-10]. In addition to EGFR mutations, a small subset of patients, 2 % - 7 %, 

have been found to have a mutant fusion protein between the tyrosine kinases EML4 

(echinoderm microtubule-associated protein like-4) and ALK (anaplastic lymphoma 

kinase) [11, 12]. The ELM4-ALK fusion protein is targetable and has a predicted 50-60 

% patient response rate [5, 13]. Despite the promise of these targeted therapies for small 

subsets of NSCLC patients, the vast majority of NSCLC tumors contain either currently 
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non-targetable oncogenic alterations, such as alterations to KRAS, or no known genetic 

lesion [5]. Thus, for a majority of patients, the current cytotoxic standard-of-care is the 

only available treatment option.  

The current first-line, standard-of-care therapeutic regimen combines a DNA 

damaging reagent with the anti-mitotic paclitaxel [14, 15]. While this paclitaxel-based 

regimen has been shown to be efficacious, particularly in ovarian cancer, response in 

non-small-cell lung cancer has been notoriously poor with an approximate 30 % partial 

response rate at best [15-19]. Thus, there is an unmet need for new therapeutic 

approaches for treatment of NSCLC. Given the paucity of available targets for 

individualized therapy and the promise of taxane-based therapeutic regimens, novel 

therapeutic strategies that synergize with paclitaxel based treatment are in high demand. 

 Herein, I describe the undertaking of a genome-wide loss-of-function screen 

performed in a chemoresistant NSCLC-derived background in the presence of a 

damaging dose of paclitaxel.  This screen was performed to uncover those molecular 

mechanisms that can disengage paclitaxel-mediated cell death programs. Therefore, a 

discussion on paclitaxel’s known mechanism of action and current therapeutic challenges 

is warranted. 

Paclitaxel as a mainstay cytotoxic therapy 

 In the 1960s, the National Cancer Institute (NCI) began a broad scale screening 

initiative to identify natural products from plant, microbial, or marine-derived extracts 

that contained anti-cancer activity [20]. This screening approach identified paclitaxel as 

an active compound from a plant-derived extract of the Pacific Yew tree [21, 22]. In the 

NCI’s tumor screening process, paclitaxel was found to have antileukemic and tumor 
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inhibitory specific activity [22]. Given paclitaxel’s initial identification as a tumor-

inhibiting agent, clinical studies were performed in ovarian cancer.  The standard-of-care 

for ovarian cancer at the time was a platinum-based cytotoxic reagent that met with 

limited success and intrinsic resistance [17, 21, 23]. Initial paclitaxel clinical trials 

reported an impressive therapeutic response with at least 30 % of patients demonstrating 

either a 50 % reduction in tumor volume or a complete clinical response [17]. 

Additionally, patients who had been resistant to the platinum-based therapy were 

responsive to paclitaxel treatment, setting the stage for combination therapy clinical trials 

[17, 24, 25]. In the late 1980s, paclitaxel was shown to be efficacious in the treatment of 

both advanced NSCLC and breast cancer and was approved by the Food and Drug 

Administration (FDA) for use in 1992 [21, 26, 27]. Since then, paclitaxel has become a 

mainstay of cytotoxic therapy and is broadly used as the first-line standard-of-care in 

ovarian, breast and non-small cell lung cancer. 

Paclitaxel biological mechanism of action 

 Following the initial finding that paclitaxel was a potent anti-tumor agent, critical 

studies took place in order to understand it’s mechanism of action. Early studies led to the 

observation that paclitaxel can have profound impacts on microtubule dynamics and 

assembly [28, 29]. 

 Microtubules exist as hollow tubes composed of 13 protofilaments, formed by α/β 

tubulin heterodimers, that exhibit the unique property of dynamic instability. Dynamic 

instability is defined by several kinetic properties including: growth rate, shrinkage rate, 

frequency of depolymerization (catastrophe), frequency and rate of catastrophe rescues, 

and the duration of a “paused” state, during which no dynamic changes occur [30, 31]. 
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The ability to rapidly alter microtubule kinetics is essential for many cellular processes 

including, but not limited to, protein and vesicle transportation, a cells motility and cell 

division. Paclitaxel alters microtubule dynamics by directly binding the β-subunit of the 

α/β tubulin heterodimer. Binding of paclitaxel promotes a morphological change in the 

α/β heterodimer that results in an increased affinity for a neighboring protofilament [32]. 

The resulting increased affinity makes microtubule depolymerization energetically 

unfavorable and thus supports overall microtubule stability [31]. The initial in vitro 

studies found that at saturating concentrations, paclitaxel binds β-tubulin in a 1:1 ratio 

and increases both microtubule stability and promotes microtubule polymerization [31, 

32].  From these observations, paclitaxel is broadly classified as a microtubule stabilizing 

drug that at therapeutic doses functions by altering microtubule dynamics [31, 33, 34].  

 Shortly after the discovery of paclitaxel’s tumor inhibitory properties, paclitaxel 

was shown to induce damage to the mitotic spindle and inhibit appropriate mitotic 

division [29, 35]. Proper formation of the mitotic spindle for a high fidelity mitosis is 

critically reliant on rapid and stochastic remodeling of the microtubule network [31]. 

Given the paclitaxel-mediated impact on microtubule dynamics, it follows that the 

primary biological target of taxol treatment is mitosis. 

 During mitosis, the interphase microtubule network must be broken down and 

reorganized in order to form a bipolar mitotic spindle. The spindle is formed by 

microtubules that emanate out from the centrosomes, or mitotic spindle poles, and in a 

rapid seek-and-find manner, attach to chromosomes at their kinetochores. Proper bi-polar 

microtubule-kinetochore attachment aligns chromosomes on the metaphase plate for 

equal division into identical daughter cells [36]. This process requires long periods of 
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microtubule growth and the ability to shrink if an attachment is not initially attained [31]. 

Further, inappropriate microtubule-kinetochore connections must depolymerize to avoid 

erroneous segregation [37]. Once a cell has aligned all chromosomes on the metaphase 

plate, the cell continues to rely on microtubule dynamicity to apply tension across the 

established mitotic spindle and physically pull aligned chromosomes apart [38, 39]. Thus, 

disruption of appropriate microtubule dynamics impairs formation of a bipolar mitotic 

spindle and creates mitotic stress. Mitotic spindle formation is monitored by the sentinel 

spindle assembly checkpoint (SAC) to prevent erroneous chromosomal segregation. 

Inhibition of bi-polar spindle formation prevents satisfaction of the SAC which will in 

turn delay mitotic exit and, ideally, the genomic damage that would result from incorrect 

chromosome segregation. 

 In summary, treatment with paclitaxel inhibits microtubule dynamics, disrupts 

mitotic spindle formation and results in prolonged engagement of the SAC, which delays 

mitotic division. A prolonged mitotic delay can lead to cell death signaling, imparting the 

therapeutic benefit of paclitaxel treatment. Although the SAC has been well studied, how 

a prolonged delay ultimately couples to cell death and why some tumors are more 

sensitive to SAC engagement than others is still largely unknown. 

Spindle Assembly Checkpoint 

 The spindle assembly checkpoint delays mitotic exit until chromosomes have 

become properly aligned by the mitotic spindle. The delay is achieved through inhibition 

of the anaphase promoting complex/cyclosome (APC/C), an essential E3 ubiquitin ligase, 

until kinetochores have become attached to microtubules. Kinetochore-microtubule 

attachments are monitored through key sentinel proteins MAD2, BUBR1 and BUB3 that 
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assemble on the kinetochore in a dynamic mitotic checkpoint complex (MCC). The MCC 

inhibits APC/C activity by directly binding CDC20, an essential co-activator of the 

APC/C [40-42]. As kinetochore-microtubule attachments are established, the core MCC 

proteins, such as MAD2, are readily removed. Thus, the presence of MCC proteins at the 

kinetochore is interpreted as a lack of microtubule attachment [41, 43, 44]. Experiments 

inhibiting the APC/C and testing localization of MCC proteins at the kinetochore will be 

evaluated in chapters 4 and 5. 

 In a normal, non-transformed cell, the SAC remains engaged until microtubules 

establish connections with all kinetochores. Misalignment of a single unattached 

kinetochore has been shown to significantly delay cell cycle progression [45]. Once 

proper chromosome alignment has been achieved, the SAC is considered satisfied and 

CDC20 is released to activate the E3 ligase activity of the APC/C. The APC/C then 

polyubiquitylates key mitotic proteins, such as cyclin B1 and securin, marking them for 

degradation, which in turn allows for onset of anaphase (Figure 1) [41].  

 A prolonged mitotic delay indicates some level of genomic damage that cannot be 

readily resolved. Thus ideally, a prolonged mitotic delay will engage cell death programs 

to eliminate proliferation of damaged cells [31]. However, as evidenced by accumulation 

of aneuploidy cells, or cells with an uneven number of chromosomes, in greater than 90 

% of solid tumors, the spindle assembly checkpoint is not fail-safe [46, 47]. In addition to 

the late stage at which many NSCLC patients are diagnosed, patients also exhibit variable 

and paltry responses to paclitaxel-based treatment [15-19]. This suggests that tumors 

have mechanisms by which to survive paclitaxel-induced mitotic damage and bypass cell 

death signaling from a prolonged mitotic delay. In order to elucidate novel therapeutic 
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entry points to collaborate with paclitaxel treatment we must first understand the current 

therapeutic challenges. 

Current challenges for paclitaxel based therapies 

 Paclitaxel has been a mainstay cytotoxic therapy for over twenty years. While 

treatment with paclitaxel can be highly efficacious, it is subject to the same challenges as 

most drugs, namely side-effects and drug resistance. Briefly, the dose-limiting side 

effects of paclitaxel treatment are neutropenia and peripheral neuropathy. These main 

side effects are accompanied by nausea, vomiting, alopecia and cardiac abnormalities 

[48]. Thus, even in paclitaxel-responsive patients, treatment regimens are limited due to 

the systemic effects on the patient. If mechanisms are identified that can synergize with 

paclitaxel treatment, one potential benefit could be reduction of the negative side-effects 

for the patient allowing for more aggressive treatment with lower doses of the cytotoxic 

drugs. 

 Resistance to paclitaxel treatment, both intrinsic and acquired, is common and can 

be achieved through several avenues [49, 50]. First, altering the propensity of a cell to 

induce apoptosis, thereby increasing general drug resistance, can dampen paclitaxel’s 

cytotoxic effects [51]. A second avenue to resistance is through over-expression of drug 

efflux pumps, which can limit the ability of paclitaxel to accumulate in the cell [52]. 

Mutations to tubulin, or the paclitaxel binding site on tubulin, are rare [53] however, 

alterations to microtubule dynamic instability, altering paclitaxel’s functional target, have 

been observed. 

 The degree of dynamic instability of a microtubule network is regulated by 

multiple factors, including the expression of varying tubulin isotypes [54]. There are six 
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α-tubulin and seven β-tubulin isotypes that can form heterodimers in multiple 

combinations. β-tubulin isotypes have been demonstrated to impart different degrees of 

dynamic instability [54, 55]. An increased expression of βIII-tubulin, which may decrease 

microtubule dynamicity, has been reported in models of acquired resistance in NSCLC 

and is associated with resistance to microtubule-targeted drugs in a number of epithelial 

cancers [34, 54, 56]. Altering microtubule stability could impact the availability of 

paclitaxel’s biological target and diminish overall drug efficacy. Resistance to paclitaxel 

treatment can also be achieved through an uncoupling of paclitaxel-induced mitotic 

damage from cell death. While the mechanisms underlying mitotic stress-induced cell 

death are not well understood, the process of mitotic slippage allows cells to bypass the 

SAC and exit mitosis despite having a damaged mitosis or unaligned chromosomes. 

Thus, mitotic slippage may represent a fulcrum between mitotic cell survival and death. 

Mitotic slippage 

 While the mechanisms of how anti-mitotic drugs produce a mitotic delay have 

been well studied, how cells ultimately respond to the prolonged mitotic delay is not well 

understood [49]. Elegant live-cell imaging studies have demonstrated that both the 

duration of mitotic delay and fate of arrested cells in response to mitotic stress is highly 

variable within and between tumor cell lines [57]. A prolonged mitotic delay may result 

in several distinct cell fates: cells may compensate and exit normally into two daughter 

cells, undergo apoptosis from mitosis, exit mitosis without dividing, or undergo what is 

termed mitotic slippage, which is the inappropriate segregation of unaligned 

chromosomes. This inappropriate mitotic slippage results in the formation of multi or 

micronucleated cells. The fate of micronucleated cells is also highly variable. They may: 
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undergo apoptosis in the following G1 due to their sustained genomic damage, exit the 

cell cycle, or continue to undergo additional rounds of division [57, 58] (Figure 2). It was 

originally thought that the ability of cells to aberrantly exit mitosis would be due to wide 

spread mutation or loss of core SAC proteins; however, this was found to be a fairly rare 

event [59]. While the mechanisms governing these various responses are not clearly 

defined, mitotic slippage has been suggested to be the result of competing kinetic 

mechanisms engaged upon entry into mitosis. 

 Cyclin B1, a substrate of the APC/CCDC20 , must be degraded in order to progress 

from metaphase to anaphase [41]. To address the question of how cells are able to 

inappropriately exit mitosis without proper chromosome alignment, Brito et al designed a 

GFP-cyclin B1 lacking a D-box, the recognition sequence for ubiquitination by the 

APC/CCDC20 [60]. This APC/CCDC20 resistant cyclin B1 construct was stably expressed in 

human RPE-1, non-tumorigenic cells, to monitor cyclin B1 stability in response to 

various mitotic insults [60]. Through this study, Brito et al found that in the presence of 

an active spindle assembly checkpoint, cyclin B1 is slowly degraded despite it not being 

targeted by APC/CCDC20. This study suggests that the APC/C is not fully inhibited by the 

SAC and a low level of constant ubiquitination allows for the slow degradation of cyclin 

B1 over time [60]. The hypothesis that the APC/C is not fully inhibited while the SAC is 

active is supported by additional lines of evidence. Several APC/C substrates have been 

shown to be degraded in a CDC20 dependent manner in the presence of an active SAC 

including CDC20 itself [61-64]. These data demonstrate that a low level of APC/C 

activity both reinforces the SAC-mediated mitotic delay, by targeting CDC20, and 

supplies a timing mechanism to allow cells to eventually escape a mitotic delay, by 
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targeting cyclin B1. 

  In addition to slow degradation of cyclin B1, MCL-1, (myeloid cell leukemia 

sequence 1) a pro-survival protein, is targeted for degradation by both APC/CCDC20 

dependent and independent mechanisms during a prolonged mitosis [65, 66]. It is posited 

that once a threshold of pro-apoptotic signals, such as the loss of MCL-1, accumulate, a 

cell will irreversibly commit to cell death programs. If sufficient cyclin B1 is degraded to 

allow for mitotic exit after the death threshold has been crossed, the cell may still 

undergo apoptosis in the resulting G1 [57, 67]. Thus, cell fate may be intimately tied to 

mitotic timing. However, the mechanisms ultimately coupling mitotic timing and mitotic 

damage to cell death have not been elucidated.  

 Currently the molecular mechanisms that govern the capacity to slip through a 

prolonged mitotic arrest are of high interest. Understanding those mechanisms that allow 

a tumor cell to uncouple mitotic stress from cell death, independent of other known 

resistance mechanisms, can lead to improved combinatorial strategies to improve taxane 

based therapies.  

Project summary 

 The ultimate goal of the project described herein has been to elaborate the 

molecular mechanisms that support tumor cell survival in the presence of mitotic 

damage. To this end, we first characterized a cohort of NSCLC-derived cell lines for 

paclitaxel responsiveness to identify a paclitaxel-resistant discovery platform. From an 

identified cohort of resistant cell lines, the HCC366s were selected in which to perform a 

genome wide, siRNA-based, loss-of-viability screen in the presence and absence of a 

damaging, yet sub-lethal dose of paclitaxel. Importantly, this cell line contains neither 
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tubulin mutations nor an increased expression of the multi-drug efflux pump MDR-1 

(unpublished observation). Performing the screen both in the presence and absence of 

paclitaxel allowed for the identification of those molecular components that are 

specifically required to deflect mitotic stress-induced cell death. Secondary screening 

analysis coupled a medium through put cytotoxicity screen with a live-cell imaging 

platform. This strategy allowed stratification of high-interest chemosensitizers and 

revealed a cohort of proteins that support both tumor cell viability and mitotic slippage. 

We identify ANAPC5, a core component of the APC/C, whose genetic and 

pharmacological inhibition collaborates with paclitaxel treatment. Further we find that 

tumor cells are more sensitive to direct APC/C inhibition than normal cells suggesting 

that targeting mitotic timing may have a targetable therapeutic window. 

 The other members of the mitotic slippage cohort had never before been 

implicated in mitosis. Specifically, we identified CASC1 and report it functions as a 

novel regulator of microtubule dynamics and the E3 ubiquitin ligase, TRIM69, as a novel 

component of mitotic spindle poles. Overall, this work supports the hypothesis that 

prolonging a mitotic delay through targeting SAC activity and mitotic exit can recouple 

mitotic damage to cell death. From this work, we hypothesize that tumor cells rely on 

mitotic slippage mechanisms as a means of evading mitotic stress-induced cell death. 

Those cells that have evolved mechanisms to undergo a rapid and inappropriate mitotic 

exit gain the collateral advantage of an intrinsic resistance to microtubule-targeted 

therapeutics. 
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Figure 1. 

 

Figure 1. The spindle assembly checkpoint 
  
The spindle assembly checkpoint is active at the start of mitosis in order to monitor the 
formation of the bipolar mitotic spindle. Top: The mitotic checkpoint complex (MCC-
orange) is composed of MAD2, BUBR1 and BUB3. In the absence of a microtubule-
kinetochore attachment, the MCC binds and inhibits CDC20. CDC20 is an essential 
activator of the APC/C E3 ubiquitin ligase (purple), thus binding of the MCC to CDC20 
prevents activation of the APC/C. Bottom: Once a full bipolar mitotic spindle is formed 
and all kinetochores are attached to microtubules, the SAC is considered satisfied. When 
microtubules become attached to kinetochores and tension is established across the 
forming spindle, the MCC is released from CDC20 and removed from the kinetochore. 
CDC20 can then activate the E3 ligase activity of the APC/C and target key mitotic 
proteins, including cyclin B1 and securin, for proteasomal degradation. This allows the 
cell to progress from metaphase into anaphase. 
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Figure 2. 

 

 

Figure 2. Variable fates following a prolonged mitotic delay. 
  
Map of potential fates following a prolonged mitotic delay. Cells may (1) eventually 
align and exit into two normal daughter cells (2) exit mitosis without division (3) undergo 
cell death from mitosis or (4) aberrantly exit into a micronucleated cell(s). 
Micronucleated may cells die (5) from their incurred damage (6) enter into a G1 cell 
cycle arrest or (7) undergo additional rounds of division. 
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Chapter II. Materials and Methods1 

 Cells and Reagents: HBEC and NSCLC cell lines, except A549, were a gift from 

John Minna, 293s, A549s and HeLas were a gift from Dr. Michael White at UTSW. 

HBEC cell lines were maintained in keratinocyte medium supplemented with supplied 

epidermal growth factor and bovine pituitary extract (Gibco). HeLa and 293 cells were 

maintained in DMEM (Gibco) supplemented with 10 % FBS. NSCLC cell lines were 

maintained in RPMI medium (Gibco) supplemented with 5 % fetal bovine serum (FBS). 

Paclitaxel (Sigma or Tocris), Nocodazole (Calbiochem) and ProTAME (Boston 

Biochem) were dissolved in Dimethyl Sulfoxide (DMSO). APO-ONE® and Cell-Titer 

Glo® (CTG) were obtained from Promega.    

 Paclitaxel Dose Curves: Cell lines were seeded in 96-well plates at densities such 

that they reached 50 % confluence 48 hours later. 48 hours post-plating, cells were 

treated with indicated concentrations of paclitaxel. 48 hours post drug exposure, cell 

viability was assessed by Cell-Titer Glo® assay (Promega). 

Immunofluorescence: Immunofluorescence was performed as previously 

described [68, 69].  Briefly, cells were grown on coverslips in 24-well plates. Cells were 

1fixed in either 3.7 % formaldehyde, or methanol, permeabilized with 0.5 % Triton X-100 

and blocked in a solution of PBTA: 1X PBS, 1 % Tween-20 and 5 % w/v Bovine Serum 

Albumin (BSA). For microtubule preservation (Figure 3D), cells were pre-extracted in 

                                                
1 Elements of the work referenced in this chapter are under review for publication in: 
Sinnott R et al., Mechanisms that promote the liberation of mitotic-stress induced tumor cell 
death. (in submission) Cancer Research 
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BRB80 (80 mM PIPES pH 6.8, 1 mM MgCl2, 5 mM EGTA) and 0.5 % Triton X-100 for 

30 seconds, fixed in 0.5 % gluteraldehyde and quenched with 0.1 % sodium borohydride. 

Primary antibody incubations were performed in PBTA for 1 hour or overnight. 

Secondary antibodies were Invirogen Alexa Fluor (488, 546 and 648) conjugated anti-

mouse or anti-rabbit and used at a dilution of 1:2000 for 30 minutes at 37°C. Cells were 

then washed and mounted using ProLong® Gold AntiFade with 4',6-diamidino-2-

phenylindole (DAPI) reagent (Invitrogen).  Mitotic index was scored as the % of cells in 

mitosis by manual inspection using phospho-H3B (Ser10) and/or DAPI stain for 

condensed chromatin. Slides were imaged on an Axioimager upright microscope (Zeiss) 

equipped with a charge-coupled device (CCD) camera. 

 Immunoblotting:  Cells were lysed in boiling 2X Laemmli sample buffer as 

previously described [68, 69]. The primary antibodies used were from Santa Cruz 

(GAPDH, CASC1, PDE3B, Actin, Rabbit Myc-A14, Mouse Myc-9E10, GST), Epitomics 

(Cleaved Caspase-3), Covance (MAD2L1), Abgent (TRIM69, MAGE-A4), Sigma (β-

tubulin), Abcam (Pericentrin), Roche (HA), and Millipore (phospho-histone-H3 (ser10)). 

Stable cell line production: Cell lines stably expressing myc-TRIM69A or green 

fluorescent protein-histone H2B (GFP-H2B) were generated by retroviral transduction. 

Retrovirus was produced by transfection of 293GP cells with vesicular stomatitis virus G 

protein (VSV-G) and either pLPCX-myc-TRIM69A or pCLNCX-H2B-GFP (gift from 

Dr. Gray Pearson at UTSW). Cells were infected with virus overnight and transduced 

cells were selected with puromycin (pLPCX-myc-TRIM69A) or geneticin (pCLNCX-

GFP-H2B). 

 cDNA expression and plasmids: Cells were transfected with cDNA expression 
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vectors using Lipofectamine 2000 (Invitrogen) or Fugene 6 (Promega) according to the 

manufacturer’s protocol. Plasmids used: Tomato-H2B, pCMV-myc (Clontech), pCMV-

myc-TRIM69A, pCMV-myc-TRIM69B and pCMV-myc-TRIM69A (C50S/C53S). 

 High-content live–cell imaging: Cell lines were transduced with green 

fluorescent protein-histone H2B (GFP-H2B) using retrovirus mediated gene delivery as 

previously described [68-70]. Cells were imaged on a BD Pathway 855 imager using a 

20x high numerical-aperture objective [68, 69].  Single-cell lineage tracing was 

performed as previously described [68, 70].  Briefly, individual cells undergoing mitosis 

were monitored for mitotic transit time, which was calculated as the time between nuclear 

envelope breakdown and DNA decondensation. Mitotic fate was defined as either 

generation of two daughter cells, mitotic death or micronucleation.  Nuclear blebbing and 

pyknotic nuclei that ceased to move were considered dying cells.  

 siRNA Transfection: Reverse transfections conditions were performed as 

previously described [68, 69]. Control siRNA transfections were performed with either 

(Dharmacon) a pool targeting DLNB14 or a non-targeting siRNA pool [68-71]. 

shRNA Infections: Lentiviral pLKO.1 vectors expressing short hairpin RNA 

(shRNA) were obtained from The RNAi Consortium TRC) 

(http://www.broadinstitute.org/rnai/public) through Open Biosystems.  Virus was 

generated according to manufacturer protocol.  1 x 106 HCC366 cells were infected for 

12 hours and target mRNA knockdown was assessed 72 hours post infection by qPCR as 

indicated above.   

Tumor Xenografts. pLKO.1 vectors expressing short hairpin RNA (shRNA) 

were used to generate lentivirus to infect HCC366 cells. Target knockdown was assessed 
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72 hours post-infection. Cells were collected 96 hours post-infection and 2 x106 cells 

were injected into the flank of female NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ JAX®) 

mice. 3 x106 non-transduced cells were used for taxol studies. All mice were housed in 

sterile conditions according to an approved IACUC protocol and abiding by all UNC 

Animal Welfare guidelines. Tumor growth was monitored by caliper measurement at 

indicated time points. Overall health of mice was monitored regularly according to 

IACUC regulations. When tumor burden met IACUC limits or earlier, mice were 

sacrificed and tumors fixed in formalin. In paclitaxel experiments, mice were treated with 

20 mg/kg of paclitaxel 10 days post injection, at a frequency of two days per week for 4 

weeks.  

Hematoxylin and eosin staining (H&E): Tumors from xenograft mouse studies 

were excised, formalin fixed and paraffin embedded. Tissue was processed by routine 

microtomy into 5-6 micron sections for automated staining.  

siRNA screen: A genome-wide siRNA screen was performed in a 96 well format 

using a previously described Thermo-Fisher library targeting 21,127 unique genes [71]. 

A two-condition, triplicate analysis screen was performed in which HCC366 cells were 

transfected with siRNAs for 48 hours, followed by exposure to either vehicle or 10 nM 

paclitaxel for an additional 48 hours. Cell viability was then measured using Cell Titer 

Glo®. The screening protocol was identical to that previously described with the 

following exceptions: HCC366 cells were used at a final number of 1x 104, HCC366 cells 

were transfected with Dharmafect 2 complexed siRNAs in RPMI serum free medium and 

cells were treated at 48 hours post-transfection with either vehicle or paclitaxel and a 

final FBS concentration of 10 % [71]. 
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Quantitative PCR (qPCR): Cells were transfected with siRNAs for 72 hours.  

Total RNA was collected using the GenElute Mammalian Total RNA Miniprep Kit 

(Sigma). 2 µg total RNA was used in subsequent reverse transcription using the High-

Capacity cDNA reverse transcription kit (Applied Biosystems). Quantitative reverse 

transcription PCR (qRT-PCR) was performed with TaqMan gene expression assays and 

ribosomal protein L27 (RPL27) was used as the endogenous control. Probes spanned 

exon boundaries to avoid genomic contamination.  The ddCT method was used to 

calculate relative amounts of mRNA.  

 Colony formation assays: 1x105 HCC366 cells were reverse transfected with 

Dharmafect 2 in 24 well plates with either control or target siRNAs. 48 hours post-

transfection, cells were treated with either vehicle control or 10 nM paclitaxel.  96 hours 

post transfection 2x103 cells were trypsinized, counted in the presence of trypan blue, and 

replated in 6 well format.  Cells were fed biweekly and monitored for up to 3 weeks.   

Cells were then fixed with 3.7 % paraformaldehyde and stained with Geimsa.  Colonies 

were counted manually.  

 Microtubule Regrowth Assay – Cells were reverse transfected and seeded at 

2x104 (H1299) or 5x104 (HBEC).  Seventy-two hours post transfection cells were 

exposed to 11µM nocodazole for 1 hour to assure complete depolymerization.  Cells were 

then washed once with PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 

mM, MgCl2, 1 M Paclitaxel) and allowed to regrow for indicated time.  Cells were then 

permeabilized with 0.5 % Triton-X-100 for 1 min. Cells were subsequently fixed and 

immunostained as detailed above. 

 In vivo-polymerized tubulin assay. H1299s were reverse transfected and seeded 
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at 1.5 x 105. 72 hours post transfection cells were rinsed in PBS and lysed in microtubule 

stabilizing buffer (100 mM PIPES, 2 M glycerol, 0.1 M MgCl2, 2 mM EGTA, 0.5 % 

TritonX-100, 5 µM Paclitaxel). Aliquots of whole cell lysates were collected and the 

remaining lysates were centrifuged for 30 minutes at 4°C and 16,000 RCF. The 

supernatant (monomeric tubulin) was collected and pellet (polymerized tublin) 

resuspended in microtubule stabilizing buffer. Lysates were then analyzed by 

immunoblot. 

Analysis of Gene Expression Data Sets: Evaluation of CASC1 expression in 

The Cancer Genome Atlas datasets was performed through the CBioPortal [72].  Lung 

adenocarcinoma, breast and ovarian cases were provisional microarray data sets 

deposited by TCGA. Lung Squamous cases were previously reported [73].  Expression 

cutoff were based on z-score threshold of +/- 2.  Odds ratios were also calculated by cBio 

Portal. 

Immunoprecipitation:   293T cells were transfected in 3 µg of cDNAs using 

FuGENE®6.  24 hours post-transfection cells were lysed in a non-denaturing lysis buffer 

(20 mM TRIS pH 7.4, 50 mM KCl, 1 % NP40 and protease inhibitors (Sigma)). 

Following a 16,000 RCF spin for 30 minutes, soluble cell fractions were isolated and 

precleared with protein A/G beads (Invitrogen) and mouse or rabbit IgG for 1 hour. 

Lysates were then incubated with protein A/G beads for 3-5 hours with 1 µg antibody or 

control IgG.  Beads were subsequently washed (3 x 5 min) in lysis buffer. Bound proteins 

were released from A/G beads into 2x Laemelli sample buffer and resolved via SDS-

PAGE gel followed by immunoblotting.  

Protein Purification:  Recombinant pGEX4T1-GST-TRIM69A was expressed in 
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E.coli (BL21) in the presence of  ZnCl2. Bacteria were lysed with protein buffer (50 mM, 

Tris pH 7.7, 150 mM KCl, 0.1 % Triton X-100, 1 mM DTT) supplemented with 

lysozyme. GST-TRIM69A was isolated using glutathione-agarose (Sigma) and eluted 

with protein buffer supplemented with glutathione. 

In vitro auto ubiquitinylation assay: The Enzo® Auto-ubiquitinylation kit was 

used to evaluate GST-TRIM69A for ubiquitinylation activity. Briefly, 0.1 µM ubiquitin 

activating enzyme (E1), 0.05 µg UbcH5b (E2) and 1µg recombinant GST-TRIM69A 

were incubated with 1 mM DTT, 5 mM Mg-ATP, 3 µg Flag-ubiquitin, 20 µg bovine 

ubiquitin and ubiquitin buffer (Enzo). Ubiquitinylation assay was maintained at 30°C for 

two hours and quenched by addition of 2x Laemelli buffer followed by incubation at 

95°C for 5 minutes. Negative control reactions were performed in the absence of E2 

enzyme. 
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Chapter III. Genome wide loss of function screen uncovers novel modulators of 

mitotic slippage 

Defining a screening platform for paclitaxel resistance.  

 Paclitaxel-based treatment has been fairly successful in ovarian patients; however 

response in NSCLC has been notoriously variable. The current standard of care, a 

combination paclitaxel and platinum-based cytotoxic regimen, results in a 30 % partial 

response at best with few to no patients exhibiting a complete response [15-19]. The 

molecular basis for this widespread intrinsic chemoresistance is not currently understood, 

however it can be recapitulated in NSCLC-derived cell lines. Exposing a panel of 

NSCLC-derived cell lines to escalating doses of paclitaxel reveals a cohort of 

chemoresistant cell lines, the HCC366, HCC1171, H2887 and HCC515s, that show 

minimal loss of viability in response to up to 1 µM paclitaxel (Figure 3A and B). While 

this cohort is able to evade apoptosis at high doses of paclitaxel, a low, clinically relevant 

dose of 10 nM is sufficient to produce abnormal mitotic spindles and the accumulation of 

micronucleated cells (Figure 3C). These observations indicate that although these cells 

are considered ‘resistant’, paclitaxel is hitting its biologically relevant target. This mitotic 

damage response was observed in all members of the resistant cohort as assessed by 

nuclear morphology (Figure 3D).  

Live-cell imaging of HCC366 cells engineered to express GFP-histone 2B, 

revealed a concentration dependent mitotic delay that was rescued by depletion of core 

SAC proteins MAD2 and BUBR1 (Figure 3E). Together, these data indicate that SAC 
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signaling remains intact and these resistant cells are capable of sensing and responding to 

mitotic stress. Although the SAC remains functional, micronucleated cells begin to 

accumulate at low doses of paclitaxel with a uniform mitotic slippage response at higher 

concentrations. In contrast, the paclitaxel-sensitive H1155 cell line undergoes a dramatic 

mitotic delay that resolves as either mitotic death or aberrant exit when treated with a 

damaging dose of paclitaxel (Figure 3E and F). Thus, paclitaxel-resistant HCC366 cells 

possess the capacity to bypass the SAC and may be considered a slippage-prone cell line. 

Further, live-cell imaging studies revealed that a majority of micronucleated HCC366 

cells are able to survive for up to 40 hours, post-mitotic slippage. Approximately 8 % of 

the micronucleated cells underwent apoptosis and 8 % underwent an additional round of 

division (Figure 3G). Together, these data indicate that mitotic damage has become 

uncoupled from tumor cell death. 

Finally, HCC366 cells were used to establish a xenograft mouse model to 

determine if the mitotic slippage event occurs in vivo. Indeed, micronucleated cells were 

found to accumulate in tumors following systemic treatment with 20 mg/kg paclitaxel 

(Figure 3H). Given the robust and uniform micronucleation response and resistance to 

cell death from high doses of paclitaxel, HCC366 cells represent an ideal screening 

platform to identify molecular components whose depletion will recouple mitotic stress 

to cell death.  

Genome wide loss of function screen 

 In order to identify the molecular components and mechanisms capable of 

uncoupling mitotic stress from cell death in an unbiased manner, we performed a genome 

wide siRNA screen in the presence and absence of a mitotic-damaging, yet sub-lethal, 
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concentration of paclitaxel (Figure 4A). This screen was performed by Angelique 

Whitehurst at UTSW using a Dharmacon siRNA library. The siRNA library, targeting 

over 21,000 genes, is arrayed in 96 well master plates, with each well containing a pool 

of 4 independent oligos targeting a single gene in the genome. Each library master plate 

was transfected in sextuplet allowing three replicates to be treated with vehicle and three 

replicates to be treated with 10 nM paclitaxel 48 hours post transfection. The 

concentration of paclitaxel was chosen because it is a damaging yet sublethal dose at 

which HCC366 mitotic cells uniformly undergo mitotic slippage from a brief delay. 

Forty-eight hours post treatment, wells were assessed for cell viability using the 

luminescent Cell-titer-glo assay, which measures total ATP. The raw luminescence 

values were normalized to the median values in each row to correct for any position 

effects. The raw data was manually cleaned by Angelique Whitehurst to remove any 

siRNA pools whose replicate values had a greater than 10 % range in either the vehicle or 

paclitaxel based arm of the screen. A cell viability ratio was then calculated as 

meanpaclitaxel/meanvehicle and used to calculate a z-score for each siRNA (Figure 4B and C). 

The z-score was calculated using the formula: z-score = (z – µ)/σ where z = the 

calculated cell viability ratio for an individual siRNA, µ is the average ratios for all 

siRNAs for each day of screening and σ is the standard deviation of all ratios for each day 

screening. To identify chemosensitizing siRNA, we were interested in those that had a 

ratio z < -2.5 and had at least a 15 % cell viability decrease in the presence of paclitaxel. 

As we are specifically interested in those siRNA that support deflection of mitotic stress 

induced death, we also eliminated those siRNA pools that caused a cell viability defect of 

15 % or greater in the presence of vehicle alone from further consideration. Finally, to 
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enrich for those genes that may have a therapeutic window, siRNA pools that impacted 

cell viability in a normal bronchial epithelial immortalized cell line, the HBEC3KT’s, 

were also removed from further analysis [74]. Ultimately, this analysis identified 49 

candidate siRNA pools that correspond to annotated genes in the GENE database (Table 

1). Depletion of the identified candidate chemosensitizers has minimal impact on cell 

viability on their own, but decreases cell viability by at least 15 % in the presence of 

sublethal dose of paclitaxel.  

 The identified chemosensitizers impact many diverse pathways, illustrating the 

global effect a drug or perturbagen can have on a cell system (Figure 4D and Table 1). 

The high interest chemosensitizers include a wide variety of proteins shown to regulate 

transcription. We identified MTPN, which regulates NF-kappa-B signaling [75], and 

SATB1, which is a transcriptional repressor that functions as a chromatin-remodeling 

factor and has been implicated in several tumorigenic settings [76-78]. Several genes that 

modify post translational modifications were also identified, including phosphatases, 

phosphatase inhibitors and components of the ubiquitin ligase cascade. These genes 

likely serve as nodes critical to regulating paclitaxel resistance. Further, we identified 

genes with more direct links to paclitaxel’s mechanism of action. We identified tubulin-

binding cofactor C (TBCC) and tubulin tyrosine ligase (TTL), which are proteins integral 

to tubulin protein folding and posttranslational modification, respectively [79, 80]. 

Further, there was a small cohort of genes that play a defined role in mitosis, such as 

ANAPC5, a critical component of the anaphase promoting complex, and CENPP, a 

mitotic centromere protein [81].  

 Interestingly, we also identified a large number of genes with unknown or 
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unannotated function and several ‘pseudogenes’. Pseudogenes have been considered 

junk, or non-functional DNA, for a long time; however, since the ability to perform 

genome wide RNAi functional screens has been developed, it has become increasingly 

apparent that these “junk” genes can be critical to regulating numerous processes [82]. 

They have been found to regulate tumor suppressors and oncogenes and can be 

deregulated in cancer. Here, we suggest that due to the broad network engaged in 

paclitaxel resistance, there are likely novel therapeutic entry points with which to push 

taxane therapeutic strategies forward.  

Secondary screening analysis  

  In order to identify the genes and processes most integral to paclitaxel resistance, 

we chose 23 candidates from a broad range of biology for additional secondary analysis. 

These candidate chemosensitizers were assessed for their ability to induce apoptosis, as 

measured by activation of caspase-3 and -7, and also their impact on mitotic progression 

and fate (Figure 5A and B). To monitor the impact of gene depletion on mitosis, a small 

scale, live-cell imaging screen was performed in HCC366 cells engineered to express 

GFP-H2B. Cells depleted of candidate chemosensitizers were evaluated for the amount of 

time spent in mitosis from nuclear envelope breakdown to cytokinesis, and the resulting 

mitotic fate was monitored. Further, to validate that the candidate siRNA pools were in 

fact knocking down their intended gene, target mRNA levels were also assessed (Figure 

5C).  

 This secondary screening analysis further stratified identified siRNAs into four 

categories (Figure 5D). Group I had little to no impact on mitotic progression or 

induction of apoptosis. Depletion of genes in group II caused a prolonged mitotic delay 



26 

but less than a two fold increase in caspase induction. Genes identified in group III 

increased cell death, however they did not significantly impact mitotic timing. Group IV 

had a significant increase in both mitotic timing and cell death. Depletion of group IV 

genes, in addition to increasing mitotic delay by at least 20 %, exhibited the greatest 

induction of apoptosis. Importantly, all four of group IV siRNA pools met our criteria for 

off-target validation by having at least two of the four independent siRNAs, or a second 

non-redundant pool, recapitulate the loss of cell viability phenotype of the screen (Figure 

5E). The four identified group IV chemosensitizing genes are ANAPC5, a core 

scaffolding component of the APC [81], CASC1, which had previously been implicated 

in lung tumorigenesis [83], PDE3B, a phosphodiesterase that has been recently identified 

to sensitize lung cancer cells to cisplatin [84], and TRIM69 [85], an uncharacterized E3 

ubiquitin ligase.  

Prolonged engagement of the SAC recouples mitotic damage to cell death 

 Live-cell imaging was used to determine how cells depleted of cohort IV genes 

responded to paclitaxel at the single cell level. This analysis revealed that while depletion 

of this cohort produces a mitotic delay, all mitotic cells eventually aberrantly exited 

mitosis into a damaged micronucleated state (Figure 6A). Within the constraints of our 

imaging analysis, we were able to observe 40-50 % of the post-mitotic micronucleated 

cells undergo subsequent cell death as indicated by nuclear blebbing and loss of 

movement. The cell death observed at the single cell level is sufficient to induce a 

population viability defect as indicated by a minimum 50 % reduction in colony 

formation assays (Figure 6B). Finally, depletion of this cohort prolonged a paclitaxel-

induced mitotic delay, as assessed by mitotic index, in three additional paclitaxel-
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resistant cell lines (Figure 6C). Together, these data indicate that ANAPC5, CASC1, 

PDE3B and TRIM69 are components that contribute to mitotic slippage in multiple 

genetic backgrounds. 

 To determine if the prolonged mitotic delay is required for post-mitotic cell death, 

cohort IV genes were co-depleted with siMAD2 in the presence and absence of paclitaxel 

and assessed at both the single cell and population level. At the single cell level, co-

depletion with siMAD2 rescued the paclitaxel-mediated mitotic delay and nuclear 

blebbing, indicative of decreased cell death (Figure 7A). Co-depletion also prevented 

accumulation of cleaved caspase-3 at the population level as assessed by western blot 

analysis (Figure 7B). Taken together, these data indicate that engagement of the SAC and 

prolonged mitotic arrest is necessary for this cohort to re-couple mitotic damage to cell 

death.  

 We next measured the impact of depletion of cohort IV genes on the 

accumulation of MCL-1. MCL-1 is an anti-apoptotic protein that has been reported to be 

slowly degraded during a prolonged mitosis [65, 66]. We found that depletion of CASC1 

and TRIM69 resulted in reduced MCL-1 protein only in the presence of paclitaxel, 

suggesting that it is coupled to the prolonged mitotic delay. In contrast, depletion of 

PDE3B suppressed MCL-1 either in the absence or presence of paclitaxel. Depletion of 

PDE3B on its own induced minimal cleaved caspase-3 accumulation, which may be 

attributable to this observed loss of MCL-1. MCL-1 is reported to be targeted for 

degradation by several E3-ubiquitin ligases including HUWE1/Mule, FBXW7 and the 

APC/C [65, 66, 86].  FBXW7 and APC/C have been shown to act on MCL-1 during 

mitosis while HUWE1 has been reported to be primarily active during interphase. 
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Preliminary evidence suggests that co-depletion of HUWE1 and PDE3B rescues 

siPDE3B-induced cell death in the absence of paclitaxel (data not shown). This data 

suggests that PDE3B may target MCL-1 in a non-mitotic manner. Accordingly, depletion 

of ANAPC5, a core scaffolding component of the APC/C, stabilizes MCL-1. The 

accumulation of cleaved caspase-3 despite ANAPC5-mediated stabilization suggests that 

there are additional apoptotic signaling pathways engaged to couple mitotic slippage to 

cell death.  

 Based on these results, we hypothesize that mitotic slippage is a prominent pro-

survival mechanism in NSCLC, despite the resulting damaged and micronucleated cells. 

Thus, targeting precocious mitotic exit either directly through core checkpoint proteins, 

or indirectly through proteins implicated herein, may be a viable therapeutic option.  

 To begin addressing this hypothesis, we first examined direct inhibition of mitotic 

exit by depleting various APC/C subunits in the presence and absence of paclitaxel. 

Depletion of different APC/C subunits results in a range of caspase induction, suggesting 

that APC/C activity may be ‘tunable’ in order to find a therapeutically tractable level of 

inhibition. (Figure 8A). Furthermore, although the APC/C is essential and present in all 

cells, we find that tumor cells are more sensitive to ANAPC5 depletion as compared to 

normal cells (Figure 8B). To begin addressing the potential pharmacological benefit of 

direct inhibition of mitotic exit in combination with paclitaxel, HCC366 cells were 

treated with a combination of paclitaxel and proTAME. proTAME prevents association 

of CDC20 with the APC/C, thus directly inhibiting mitotic exit without impacting 

microtubule dynamics [87]. Here we found that combining proTAME with paclitaxel 

enhances both mitotic arrest, as assessed by accumulation of phospho-histone H3B, and 
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cell death, above the use of either agent alone (Figure 8C). Thus, a collaborative 

interaction exists between APC/C inhibition and paclitaxel in an otherwise paclitaxel 

resistant setting.  

Inhibiting mitotic slippage in vivo abrogates tumor growth 

 While ANAPC5 is a well documented component of the anaphase-promoting 

complex, CASC1, PDE3B and TRIM69 have no clearly defined roles in mitosis. Given 

PDE3B’s monogenic defects, we were particularly interested in further characterization 

of CASC1 and TRIM69. We next asked if inhibition of mitotic slippage, through stable 

depletion of CASC1 and TRIM69, would impact tumor cell growth in vivo. HCC366 

cells were stably depleted of either CASC1 or TRIM69 and injected into the flank of 

immune-compromised mice to establish a xenograft model. By three weeks post-

injection, tumors stably depleted of CASC1 and TRIM69 began to exhibit attenuation of 

tumor growth as evaluated by caliper measurement (Figure 9A and B). In an additional 

study, in which tumors from all mice were harvested at the same time, we observed a 

significant decrease in tumor volume in the shCASC1 and shTRIM69 tumors (Figure 

9C). These findings suggest that CASC1 and TRIM69 support tumor cell growth in vivo. 

The remainder of this project has focused on elaborating the contributions of CASC1 and 

TRIM69 to mitotic slippage.   

 Discussion. This unbiased, pan-genomic loss of function screen for paclitaxel 

chemosensitizers identified mitotic slippage as a dominant mechanism governing innate 

paclitaxel response. Groups I, II and III from the secondary screening analysis remain 

intriguing to the study of paclitaxel resistance. Microtubule targeted drugs are thought to 

be efficacious because cancer lines generally exhibit unrestrained proliferation. Group I 
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and II’s minimal induction of apoptosis suggests that the cell viability defect measured in 

the initial screen is likely due to other defects. For example, the observed viability defect 

may be due to an impact on proliferation. Thus, future investigation into additional genes 

that were not selected for further study herein is warranted. 

 Comparing groups II and IV, we see an un-coupling of mitotic delay and cell 

death. Depletion of all members of group II exhibit increased mitotic timing, yet minimal 

activation of caspase-3/-7 and apoptosis. In contrast, group IV recouples a minimum 20 

% increase in mitotic delay to cell death. This begs the question, why do chemoresistance 

cells survive following depletion of group II genes. There may be many technical reasons 

for the observed uncoupling of mitotic delay and cell death. The uncoupling could be due 

to off target effects, insufficient depletion, or possibly cell death from depletion of group 

II targets may have been outside of the timing of our assays. However, if this is an on 

target effect, a mechanistic understanding of how mitotic timing has become uncoupled 

from cell death would advance the study of mitotic slippage. It is possible that a delayed 

mitosis only becomes re-coupled to cell death through discreet mechanisms and specific 

types of mitotic damage. 

 Analysis of group IV genes, reveals a cohort of proteins that support mitotic 

slippage, and thus cell viability, in the presence of a damaging dose of paclitaxel. This 

study presents pharmacological evidence that directly targeting mitotic exit through the 

APC/C may collaborate with paclitaxel treatment. Further, our APC/C subunit studies 

suggest that APC/C activity may be ‘tunable’ and thus, a therapeutic window may exist 

for directly targeting mitotic exit. Finally, as exemplified by CASC1 and TRIM69, this 

screen and secondary screening analysis has revealed that indirect methods of targeting 
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mitotic slippage do exist. These findings suggest that tumor cells engage previously 

unappreciated mechanisms to rapidly exit mitosis and evade cell death. It is possible that 

exploitation of these indirect mechanisms may have a superior therapeutic window over 

directly targeting core mitotic exit machinery. 
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Figure 3. Defining a paclitaxel-resistant NSCLC screening platform 
 
(A) Indicated NSCLC cell lines were exposed to escalating doses of paclitaxel. Values 
represent the mean from a minimum of 3 independent experiments and error bars 
represent SEM. (B) HCC366 and H1155 cells were exposed to the indicated 
concentrations of paclitaxel for 48 hours and whole-cell lysates were immunoblotted with 
indicated antibodies. (C) HCC366 cells were exposed to paclitaxel for 24 hours followed 
by immunostaining for pericentrin (red), β-tubulin (green) and DAPI (blue, or grey in 
bottom panel). Arrows point to micronucleated cells. Scale bars represent 5 µm or 15 µm 
in bottom panel. (D) Indicated cell lines were exposed to paclitaxel for 24 hours and 
immunostained for DAPI. Scale bars represent 5µm. (E) Single-cell lineage tracing of 
HCC366 cells stably expressing GFP-H2B under indicated conditions. Each circle 
represents a single cell with the color of the circle representing mitotic fate. The bar 
indicates mean mitotic transit time of all cells under the specified condition. Left: Cells 
were exposed to the indicated doses of paclitaxel and imaged from 24 to 72 hours post 
drug exposure. 25 cells were evaluated for each condition. Right: Cells were transfected 
with indicated siRNAs and exposed to vehicle or paclitaxel 48 hours post transfection. 
Cells were imaged for 60 hours post vehicle or paclitaxel treatment. 50 cells were 
evaluated per condition. (F) Single cell lineage tracing of H1155 cells exposed to 
escalating concentrations of paclitaxel. 25 cells were evaluated per condition. Each circle 
represents a single cell with the color indicating fate of the mitotic cell. (G) Single-cell 
lineage tracing of HCC366 cells stably expressing GFP-H2B exposed to 10nM paclitaxel 
and imaged from 72 to 112 hours post drug exposure. 100 cells that were micronucleated 
at the start of imaging were evaluated. (H) H&E staining of HCC366 subcutaneous tumor 
xenografts treated with either vehicle or paclitaxel. Arrows indicate micronucleated cells. 
Scale bars represent 40 µm.   
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Figure 4.  

 

 

Figure 4. Pan-genomic loss of function screen in mitotic slippage prone HCC366 
cells. 
 
(A) Screening workflow for pan-genomic two-condition screen in HCC366 cells. (B). 
Histogram of cell viability ratios (treated/untreated). (C) Z-score distribution of ratios for 
each siRNA pool (D). Biological processes implicated by candidate chemosensitizers. 
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Table 1. High Interest Chemosensitizers 
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Figure 5. 

 

 

Figure 5. Secondary screening analysis stratifies candidate chemosensitizers  
 
(A) HCC366 cells were transfected with indicated siRNAs for 48 hours.  Cells were then 
exposed to vehicle (black bar) or 10 nM paclitaxel (grey bar) for an additional 48 hours.  
Cleaved-caspase 3/7 activity was assessed by APO-ONE. Values were normalized to 
control transfected cells under the same treatment (vehicle or paclitaxel) condition.  Bars 
represent the average relative cleaved-caspase 3/7 activity over two experiments.  Error 
bars represent range.  (B) Lineage tracing of HCC366 GFP-H2B cells transfected with 
indicated siRNAs for 48 hours followed by exposure to 10 nM paclitaxel for 48 hours. 
Imaging commences following paclitaxel exposure. Bars represent the % change in 
transit time as compared to control transfected cells exposed to 10 nM paclitaxel from 2 
independent experiments, which counted at least 50 cells each (30 cells for RBM22). 
Error bars represent range. (C) HCC366 cells were transfected with indicated siRNAs. 72 
hours following transfection, RNA was harvested and target mRNA levels assessed by 
qPCR. Bars represent the average from 2 independent transfections. Error bars represent 
range.  (D) Graph of secondary screening results. The y-axis represents the % increase of 
mitotic transit time as compared to control-transfected cells exposed to 10 nM paclitaxel. 
The x-axis represents caspase-3/7 activity relative to control values at the same dose. 
Group I – black, Group II – Green, Group III – blue, Group IV – Red. 
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Figure 6. 

 

Figure 6. Pan-genomic screen reveals conserved regulators of mitotic slippage. 
 
(A) HCC366 cells were transfected with indicated siRNA pools and individual siRNAs 
for 48 hours followed by exposure to 10 nM paclitaxel for 48 hours. Whole cell lysates 
were immunoblotted with indicated antibodies. (B) Single-cell lineage tracing of 
HCC366 cells stably expressing GFP-H2B following transfection with indicated siRNAs 
and exposure to 10 nM paclitaxel 48 hours post transfection. Cells were imaged for 60 
hours post-treatment. Graph represents 50 cells assessed from 2 independent experiments. 
(C) Colony formation assay in HCC366 cells. Error bars are SEM for a minimum of 3 
independent experiments. (D) Chemoresistant NSCLC cells lines were transfected with 
indicated siRNAs for 48 hours before exposure to vehicle (black bar) or 10nM paclitaxel 
(gray bar) for an additional 24 hours. Cells were fixed and stained for DAPI and 
phospho-histone 3B (ser10). Mitotic index was scored manually. Bars represent the 
average from 3 independent experiments and error bars represent SEM. p-values 
calculated by unpaired students t-test. * indicates p-value < 0.05. ** indicates p-value <  
0.01.   
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Figure 7. 
 

 
 

Figure 7. Prolonged engagament of the SAC recouples mitotic damage to cell death 
 
(A) HCC366 GFP-H2B cells were co-depleted of siMAD2 in addition to indicated 
siRNA and monitored by live-cell imaging analysis as in figure 6 B. Left panel, box and 
whisker plot, bar represents mean mitotic transit time. Right panel, single cell lineage 
tracing. (B) HCC366 cells were transfected with indicated siRNAs for 48 hours before 
treatment with 10nM paclitaxel for an additional 48 hours as indicated. Whole cell lines 
were immunoblotted for indicated antibodies. (C) As in B. 
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Figure 8. 
 

 
 

Figure 8. Direct targeting of the APC/C collaborates with paclitaxel treatment. 
 
(A) HCC366 cells were transfected with indicated siRNAs for 48 hours before treatment 
with either vehicle of paclitaxel, as indicated, for an additional 48 hours. Whole cell 
lysates were immunoblotted for indicated antibodies. (B) Non-tumorigenic HBEC3KT 
(N) and NSCLC HCC366 (T) cell lines were transfected with indicated siRNAs for 48 
hours and exposed to 10 nM paclitaxel as indicated for a subsequent 48 hours. Whole cell 
lysates were collected and immunoblotted for indicated antibodies. (C) Left panel: 
HCC366 cells were treated with vehicle, 10 nM paclitaxel, 2.5 µM ProTAME as 
indicated for 24 hours.  Bars represent relative caspase 3/7 activity as assessed by APO-
ONE® for 9 independent experiments. Error bars represent SEM.  p values were 
calculated using a two-tailed unpaired student’s t-test. * indicates p- value < 0.05.  ** 
indicates p-value < 0.01. Right panel: HCC366 cells were treated with paclitaxel and 
ProTAME as in left panel. Whole cell lysates were immunoblotted with indicated 
antibodies.  
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Figure 9. 
 

 

 
Figure 9. CASC1 and TRIM69 support tumor cell growth in vivo. 
 
(A) mRNA expression levels of CASC1 and TRIM69 in HCC366 cells expressing 
indicated hairpins. Black bars represent CASC1 mRNA and grey bars represent TRIM69 
mRNA. Error bars represent range. (B) Tumor growth curves for mice harboring 
HCC366 cells expressing indicates shRNAs. Each point represents n=9 (shGFP), n=9 
(shCASC1) shCASC1 and n=7 (shTRIM69).  (C) As in B except mice were sacrificed 
and tumors excised at 96 days post injections. Left panel:  Average tumor mass. Error bar 
represent SEM; shGFP n=7 shCASC1 n=10 shTRIM69 n=8.  p-value calculated by two-
tailed unpaired t-test test.  ** indicates a p-value <0.01.  *** indicates a p-value < 0.0001.  
Right panel: Representative images of excised tumors. 
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Chapter IV. CASC1 regulates microtubule stability to support mitotic slippage 

CASC1 Introduction: 

 Several lines of evidence suggest that there exists an inheritable genetic 

susceptibility to developing lung cancer [88-90]. To uncover these genetic 

predispositions free from environmental influence, Gariboldi et al took advantage of 

inbred mouse strains known to have varying degrees of susceptibility to urethane induced 

lung cancer, and performed a genome wide genetic linkage analysis [91, 92]. This 

analysis identified a region on mouse chromosome 6, later named the pulmonary 

susceptibility 1 (PAS1) locus, as responsible for approximately 50 % of the genetic 

variation between the two mouse models. Quantitative trait locus mapping by Zhang et al 

identified six candidate functional genes including the adjacent genes Casc1 and Kras 

[83, 93]. Casc1 has a single polymorphism at codon 60 resulting in a mutation from an 

aspargine to serine. This missense mutation is sufficient to alter tumor cell growth both 

by colony formation assays and in xenograft mouse models. While the mouse Casc1 and 

human CASC1 proteins are 67 % identical and 81 % similar, the key codon 60 is not 

conserved in the human homolog. Although there are no known genetic polymorphisms 

in human CASC1 that correlate with lung tumorigenesis or progression, ectopic 

expression of either mouse Casc1 allele significantly limited tumor cell growth in the 

NSCLC A549 cell line [94]. 

 CASC1 remains a largely uncharacterized protein with no known functional 

domains aside from a predicted coiled-coil domain in the amino-terminal. Further, a 
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search of publically available protein interaction databases reveals no known interactors. 

One report finds that the mouse Casc1 protein co-sediments and co-immunoprecipitates 

with β-tubulin [95]. Additional evidence shows that overexpression of Casc1 results in an 

accumulation of binucleated cells suggesting an aberrant mitosis [95]. Given this 

previous association with lung cancer, and beginning characterization data, identification 

of CASC1 as a potential chemosensitizer in paclitaxel resistant NSCLC suggests CASC1 

may influence lung cancer biology. 

Results 

CASC1 supports cell viability and mitotic spindle integrity .  

To begin to address the role of CASC1 in chemoresistance, CASC1 was depleted 

in a panel of NSCLC-derived cell lines of varying paclitaxel responsiveness. We found 

that CASC1 is essential for tumor cell viability either alone, or in the presence of 

paclitaxel in a number of NSCLC genetic backgrounds. However, we find no induction 

of caspase-3 in a normal immortalized human bronchial epithelial cell line the HBEC3KT 

cells (Figure 10A). On the single cell level, CASC1 depleted cells exhibit various mitotic 

defects both in the absence and presence of paclitaxel. In the H1299 cells, where CASC1 

is required for cell viability, depletion results in increased accumulation of abnormal 

mitotic spindles, either multipolar or containing low tubulin density. Further, CASC1 

depletion exacerbated the paclitaxel-induced mitotic spindle damage in the HCC366 cells 

(Figure 10B). The H1155 cells are considered a paclitaxel sensitive cell line which is less 

adept at undergoing mitotic slippage [68, 71]. H1155 cells stably expressing GFP-H2B 

were depleted of CASC1 and assessed by live cell imaging. Here we found that depletion 

had little impact on cell viability or mitosis on its own, but in combination with 
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paclitaxel, induced a dramatic mitotic delay which was frequently coupled to cell death in 

mitosis and aberrant mitotic figures. Together, these data suggest that CASC1 functions 

to buffer paclitaxel induced mitotic damage and support mitotic fidelity. 

CASC1 stabilizes microtubule network.  

Studies of the mouse homolog of CASC1 suggest an association with β-tubulin 

through a basic amino acid domain. This basic region is well conserved in the human 

protein suggesting that CASC1 may collaborate with paclitaxel treatment through a direct 

impact on microtubules [93, 95]. To date, no impact of CASC1 association with tubulin 

has been described.  

To determine if CASC1 affects the microtubule cytoskeleton, we examined the 

microtubule network in H1299 cells where CASC1 impacts mitosis in the absence of 

paclitaxel. H1299 cells were depleted of CASC1 and assessed on the single cell level by 

immunofluorescence. This analysis revealed a diminished microtubule network in 

interphase (Figure 11A left). Differential centrifugation, which allows the separation of 

soluble and polymerized tubulin, confirmed that depletion of CASC1 results in a 

suppression of microtubule polymer formation (Figure 11A center). We also see a loss of 

acetylated tubulin, a general marker of microtubule stability, following CASC1 depletion 

(Figure 11A right).  

To begin to assess how CASC1 may impact microtubule dynamics, we performed 

a microtubule regrowth assay. In this assay the microtubule network is completely 

dismantled by treatment with a high dose of nocodazole. Following nocodazole 

treatment, the drug is washed out and timepoints are collected as the cells recover and 

repolymerize their microtubule network. In this setting we find that CASC1 depleted 
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cells have an impaired ability to regrow their microtubule network both in interphase 

(data not shown) and mitotic cells (Figure 11B). Together, these data suggests that 

CASC1 is a global regulator of microtubule stability.  

To further investigate how CASC1’s impact on microtubules may alter mitotic 

slippage, we examined BUBR1 positive kinetochores during mitosis. BUBR1 is a key 

sentinel protein monitoring microtubule-kinetochore attachment (Figure 1). Following 

CASC1 depletion, we find an increased number of BUBR1 positive foci in mitotic cells, 

indicating fewer microtubule-kinetochore attachments are being made (Figure 11C). 

Together, these data suggest that CASC1’s impact on microtubule stability directly 

supports mitotic spindle formation. 

CASC1 as an oncogenic dependency.  

To further assess the tumor-selective dependency of CASC1, we took advantage 

of an oncogenic progression model based on the normal bronchial epithelial cell line 

HBEC3KT [96]. Parental HBEC3KT cells, HBEC3KT cells following stable inhibition 

of p53 (HBE3KT-p53) and successively stable expression of oncogeneic KRAS 

(HBEC3KT-p53/+KRAS) were assessed for microtubule impacts and cell viability 

following depletion of CASC1. While CASC1’s impact on microtubule stability is 

maintained in the progression model, the apoptotic marker, cleaved PARP, only 

accumulated in the HBEC3KT-p53 and HBEC3KT-p53/+KRAS cell lines, suggesting 

that oncogenic alterations drive a dependency on CASC1 for cell viability (Figure 12A 

and B). In agreement with this hypothesis, we find that CASC1 is amplified in 15 %, 25 

% and 7 % of lung, ovarian and breast tumors respectively. This amplification has a 

strong tendency to co-occur with KRAS as these genes are found adjacent on human 
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chromosome 12 (Figure 12C and D). It has previously been reported, in this progression 

model, that p53 alterations are sufficient to drive altered microtubule stability [97]. 

Together, these data suggest that CASC1’s functional support of microtubule stability 

may be necessary to buffer oncogenic stress.  

Finally, we find that depletion of CASC1 induces damage to cells sufficient to 

drive stabilization of p53. In the normal HBEC3KT and HBEC30 cells this accumulation 

of p53 is sufficient to induce p21, suggesting a resulting delay in cell cycle progression. 

While CASC1 depletion in the tumor cells tested is able to stabilize p53, these cells are 

unable to induce p21 (Figure 12E). These data suggest a mechanism by which normal 

cells may survive CASC1 depletion as opposed to those tumor cells with a defective p53 

signaling cascade. 

CASC1 Discussion 

 The work presented here identifies CASC1 as a candidate chemosensitizer. We 

show that CASC1 is required for cell viability in multiple genetic backgrounds of varying 

resistance to paclitaxel including sensitive cell lines. Thus, the mechanisms identified in 

this work can potentially benefit paclitaxel based therapy regardless of resistance status. 

Further, we find that CASC1 depletion has minimal impact on normal bronchial 

epithelial background, in the absence or presence of paclitaxel, but becomes a 

dependency following the addition of an oncogenic stress such as loss of p53 or 

overexpression of oncogenic KRAS. Recent reports suggest that mitosis is damaged in 

altered KRAS genetic backgrounds [98, 99] and several groups have demonstrated 

mitotic damage induced by additional oncogenic alterations [100-104]. Given CASC1’s 

role in supporting mitotic fidelity and frequent amplification, we suggest that CASC1 
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functions to buffer mitotic defects induced by oncogenic changes. 

Further, we find that depletion of CASC1 stabilizes p53 and induces p21 

accumulation in normal but not tumorigenic backgrounds. The stabilization of p53 could 

be the result of several potential mechanisms. Several lines of evidence indicate that post 

mitotic failure, or an aberrant mitotic exit, cells may undergo a p53 and p21 dependent 

G1 arrest (Figure 2). This defect has been illustrated following treatment with paclitaxel 

[105-107]. As CASC1 supports mitotic spindle formation, it is possible that the 

accumulation of p53 is the result of a general, damaged mitotic exit. p53 has also been 

shown to accumulate in the nucleus post low dose paclitaxel treatment that interferes with 

microtubule dynamics [108]. Thus, it is possible that the p53 read out may be due to 

CASC1 interphase defects. Further, p53 accumulation could be due to CASC1-mediated 

genomic damage in the absence of paclitaxel.  

Regardless, the accumulation of p21 in the normal bronchial epithelial 

backgrounds, and not the tumor cells, suggests that, normal cells may exit the cell cycle 

in response to CASC1 depletion, where as tumor cells with defective p53 signaling 

networks continue to proliferate. Thus, as the tumor cells continue to proliferate, they will 

be more susceptible to subsequent paclitaxel treatment then the normal cells that have 

exited the cell cycle. This hypothesis is supported by previous findings that the loss of 

normal p53 function can sensitize cells to paclitaxel [109]. This suggests a mechanism by 

which CASC1 is specifically required for cell viability following loss of p53 in the 

oncogenic progression model and suggests targeting CASC1 may have a therapeutic 

window. 

 Finally, we find that CASC1 functions to support mitotic slippage and 
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microtubule stability throughout the cell cycle. Several lines of evidence have 

demonstrated that treatment with drugs that allow some microtubule connections to be 

made allow mitotic cells to slip out of mitosis faster than those that completely inhibit the 

microtubule network. This concept can be exemplified by treatment with paclitaxel 

versus nocodazole, [110-112]. Depletion of CASC1 decreases microtubule stability and 

polymer, thus, during mitosis, would decrease the ability to form kinetochore-

microtubule connections. Accordingly, siCASC1 mediated loss of polymerized 

microtubules increases BUBR1 at the kinetochores during mitosis. Recent evidence 

suggests that the number of unattached kinetochores directly correlates to the rate of 

mitotic slippage [111, 113, 114]. Together, suggesting that CASC1 supports microtubule 

stability required to satisfy, or diminish SAC signaling during mitosis and allow rapid 

mitotic exit.  
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Figure 10. 
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Figure 10: CASC1 supports mitotic fidelity 
  
(A) NSCLC cell lines were transfected with indicated siRNAs for 48 hours and treated 
with either vehicle or paclitaxel for an additional 48 hours. Whole cell lysates were 
immunoblotted with indicated antibodies. All cell lines were treated with 10 nM 
paclitaxel. siPLK1 was used as a positive control for cleaved caspase-3 in HBEC3KT 
panel. (B&C) Cells were transfected with indicated siRNAs for 48 hours then exposed to 
10 nM paclitaxel for 24 hours. Subsequently, cells were fixed and immunostained with β-
tubulin, pericentrin and DAPI. Scale bars are 5 µm.  Abnormal spindles were manually 
scored as mitotic cells with <1 or > 2 pericentrin positive foci.  Error bars represent SEM 
from a minimum of 3 independent experiments. p-values were calculated by two-tailed 
unpaired student’s t-test. ** indicates a p-value <  0.01 and *** indicates p-value < 0.001. 
(D) H1155 cells stably expressing GFP-H2B were transfected with indicated siRNAs for 
48 hours followed by exposure to 10 nM paclitaxel. Left panel: Single-cell lineage 
tracing was performed on 50 cells to measure length of mitotic transit time and mitotic 
outcome as previously described. Center panel: Box and Whisker plot of mitotic transit 
time is shown. p values were calculated with by Mann-Whitney test. Right panel: H1155s 
transfected and processed as in B&C. 
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Figure 11. 

 

Figure 11: CASC1 supports microtubule stability to satisfy the SAC 
 
(A) H1299 cells were assessed for CASC1 mediated impact on microtubules. Right 
panel: Cells were transfected as indicated for 72 hours followed by gluteraldehyde 
fixation and immunofluorescence processing. Center panel: H1299s were transfected as 
indicated and processed by an in vivo-polymerized tubulin assay. Right panel: H1299s 
were transfected and were immunoblotted as indicated. (E) Right panel: H1299s were 
transfected with indicated siRNAs for 72 hours. Cells were exposed to vehicle (no Noc.) 
or 11 µM nocodazole for 1 hour, followed by replacement with nocodazole-free medium 
for indicated times followed by an in vivo tubulin assay. Lysates were immunoblotted 
with indicated antibodies. Left panel: Microtubule regrowth assay was performed and 
cells were processed by immunofluorescence. (G) HCC366 cells were transfected as 
indicated for 72 hours. 
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Figure 12. 
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Figure 12. CASC1 is a tumor cell dependency 
 
 (A) Indicated cell lines were transfected with siRNAs for 72 hours before being 
processed by a microtubule regrowth assay and assessed by immunofluorescence. Red = 
pericentrin, Blue = DAPI, Green = β-tubulin. (B) Cell lines were transfected with 
indicated siRNAs for 48 hours followed by treatment with vehicle or 10nM paclitaxel for 
an additional 48 hours. Whole cell lysates were collected and immunoblotted for 
indicated antibodies. (C&D) Expression, amplification and co-occurance odds of CASC1 
and KRAS in indicated tumor types. Data collected from publically available cBioPortal 
for Cancer Genomics hosted by Memorial Sloan-Kettering Cancer Center. (E) Cell lines 
were transfected as indicated for 96 hours. Whole cell lysates were collected and 
immunoblotted with indicated antibodies. 
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Chapter V. TRIM69 is a centrosomal and microtubule associated protein that is 

essential for mitotic fidelity. 

TRIM69 Introduction: 

 TRIM proteins as E3 ubiquitin ligases. TRIM69 is a member of the TRIpartite 

Motif containing (TRIM) family of proteins characterized by an ensemble of three types 

of domains, a RING E3 ligase domain, one or two B box domains and a coiled-coiled 

domain [115, 116]. This specific architecture, referred to as a RBCC domain structure, is 

highly conserved in combination, order, and spacing. If one domain is missing in a TRIM 

family member, the remaining domain structure is conserved. This suggests that TRIM 

proteins have evolved to carry out a specific basic function common to all TRIM family 

members [117]. RING finger domains are primarily associated with E3 ubiquitin ligase 

activity, and while the presence of a RING domain does not dictate ubiquitin ligase 

function, the TRIM family has been broadly classified as a group of “single protein 

RING finger E3 ubiquitin ligases” [117]. 

 Ubiquitylation is a common post-translational modification broadly used to 

regulate cellular physiology. Ubiquitylation is used in eukaryotic cells to regulate protein 

stability as well as protein activity, subcellular localization and regulation of trafficking 

among additional processes. These differential signals are achieved through regulation of 

ubiquitin chain length and the lysine used to form the isopeptide bonds of the ubiquitin 

chain. For example degradative ubiquitin signaling is achieved through polyubiquitin 

chain conjugation specifically through ubiquitin lysine 48. Rapid ubiquitination and 
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subsequent degradation is essential in order to respond to cellular signals such as 

satisfaction of the spindle assembly checkpoint [118].  

 The ubiquitin cascade is a complex and highly regulated, multistep mechanism 

achieved through sequential action of three enzymes, the ubiquitin activating (E1), 

ubiquitin-conjugating (E2) and ubiquitin-ligating (E3) enzymes. First, in an ATP-

dependent manner, an E1 forms a thiol-ester bond with a free ubiquitin protein. The 

ubiquitin is then transferred to an E2 conjugating enzyme that then associates with an E3 

ligase to transfer ubiquitin to the final substrate. Specificity increases going down the 

ubiquitin cascade. While there are two isoforms of the E1 activating protein, there are 35-

40 potential E2 conjugating proteins and greater than 600 putative E3 ligases. E3 ligases 

are broadly classified based on their mechanism of transferring the activated ubiquitin 

from the E2 to the substrate. The primary E3 ligases families are the HECT (Homologous 

to E6Ap carboxy terminus) domain E3’s and the RING (really interesting new gene) 

finger-containing E3’s [119].  

 The HECT family, consisting of about 30 members, transfers the activated E3 to 

the substrate through a catalytic intermediate where the ubiquitin associates directly with 

the E3. The RING domain family proteins do not form an intermediate with ubiquitin but 

instead function as a rigid scaffold to bring an E2 and substrate into close proximity 

[119]. The RING domain coordinates two zinc ions through a conserved sequence of 

cysteine and histidine residues to form a characteristic ‘cross-brace’ structure. It has 

previously been demonstrated that mutation of the conserved cysteines can prevent zinc 

coordination and appropriate RING domain mediated associations [119, 120]. Mutation 

of conserved cysteines of the RING domain is used in localization studies of TRIM69 
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performed herein. RING family proteins can function as E3 ligases as part of large 

complexes, such as the APC/C and SCF (Skp1-Cullin-F-Box), or as in the case of TRIM 

proteins, as single protein ubiquitin ligases [119, 120].  

 TRIM protein function in pathological conditions. The TRIM family contains 

over 70 known members which have been implicated in a broad range of biological 

processes including development, differentiation, apoptosis and cell proliferation. A 

number of TRIM family proteins have previously been implicated in cancer and other 

pathological diseases [115]. TRIM18, or MID1, associates with microtubules throughout 

the cell cycle and targets the catalytic subunit of protein phosphatase 2 (PP2) for 

degradation [121]. Mutation of TRIM18 in the genetic syndrome, X-linked Opitz 

syndrome, results in decreased affinity for microtubules and altered PP2 activity which 

have been linked to characteristic defects in midline body structures, such as eye spacing, 

defects in the trachea or esophagus and cleft palate [122].  

 TRIM proteins have been implicated in either positively or negatively regulating 

oncogenesis in a context dependent manner [115]. TRIM19 or PML is subject to a 

chromosomal translocation which results in a fusion protein with the retinoic acid 

receptor-α (RARα). This PML-RARα fusion specifically occurs in acute promyelocytic 

leukemia (APL) [123]. In addition, recent work has identified TRIM proteins as forming 

functional complexes with members of the melanoma antigen (MAGE) family of cancer-

testis antigens [124].  

 Cancer-testis antigens (CTAs) are genes whose expression are typically restricted 

to the germline, but become aberrantly expressed in a wide variety of human tumors. 

CTAs are typically expressed in the immune-privileged testis, thus, their aberrant 
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expression in tumors was identified to illicit an immune response in cancer patients. Until 

recently, CTAs have largely been studied from the field of tumor immunology with the 

possibility of using CTAs as cancer vaccines to stimulate an anti-tumor immune 

response. However the functions of CTAs in tumorigenesis have gone largely unstudied 

[125]. If CTAs are identified to participate in specific molecular pathways, this would 

identify pathways engaged to support tumorigenesis. TRIM-MAGE associations are 

found to functionally enhance the basal activity of TRIM family proteins through a yet 

undefined mechanism [124]. For example, it was demonstrated that TRIM28, which is 

over expressed in gastric cancer, can associate with up to four MAGE family proteins 

which enhance TRIM28 mediated degradation of p53 [124]. Together, this demonstrates 

that TRIM family proteins can be usurped by cancer specific mechanisms to support 

tumorigenesis. As discussed below, we find that, like TRIM28, TRIM69 associates with 

MAGE family proteins. 

 TRIM69 is a testes enriched E3-ubiquitin ligase. TRIM69 was originally 

identified through a PCR screen of a mouse testis cDNA library in search of novel genes 

that regulate spermatogenesis. Shyu et al found that TRIM69 expression in the mouse is 

restricted to the germline, absent during embryogenesis and becomes expressed during 

the first round of spermatogenesis. This expression pattern suggests that TRIM69 may 

function in meiosis or later steps of spermatogenesis [126]. Accordingly we also find 

human TRIM69 expression enriched in, though not restricted to, the testis (Figure 13A). 

TRIM69 was identified as a member of the TRIM/RBCC family based on its conserved 

domain structure and amino terminal RING zinc finger (Figure 13B). There is protein 

evidence that two primary splice variants of TRIM69 are expressed with one, referred to 
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herein as TRIM69B, which does not contain the RING domain. While TRIM69’s cellular 

function has not been elucidated, it has been shown to contain a functional RING E3 

ubiquitin ligase domain which we and others have demonstrated is sufficient to induce 

autoubiquitylation (Figure 13C) [85]. Identification of TRIM69 as a candidate 

chemosensitizer, whose depletion had minimal viability defects on its own made TRIM69 

an intriguing gene to further characterize. 

Results: 

 TRIM69 supports mitotic fidelity.  To begin to determine the genetic penetrance 

of TRIM69 in supporting chemoresistance, depletion was evaluated in a panel of NSCLC 

patient derived cell lines of varying sensitivity to paclitaxel. TRIM69 was found to be 

required for cell viability in the presence or absence of paclitaxel in all but one tumor line 

tested and further, there is no observed induction of apoptosis in the normal HBEC3KT 

cells (Figure 14A). In addition to TRIM69 depletion causing a delayed mitosis, we find 

an accumulation of micronucleated cells in A549 and H1299 cells in the absence and 

presence of paclitaxel respectively, and an enhancement of paclitaxel-mediated 

multipolar spindles in HCC366 cells (Figure 14B). Depletion of TRIM69 in HCC366 

cells also increased the number of BUBR1 foci in mitotic cells, indicating that without 

TRIM69, fewer stable kinetochore-microtubule attachments are made (Figure 14C). 

These data support the hypothesis that TRIM69 functionally supports mitotic fidelity.  

 TRIM69 is a generally uncharacterized E3 ubiquitin ligase with two primary 

coding splice variants, -A which contains the amino terminal RING domain and the -B 

isoform that lacks the functional RING domain. To begin characterizing TRIM69, 

localization studies were performed through transient overexpression of TRIM69A, 



58 

TRIM69B and TRIM69A (C53S/C55S), a mutation of two conserved RING domain 

cysteines. TRIM69A was found to localize to microtubules in interphase and the spindle 

poles during mitosis. This localization is dependent, at least in part, on the RING domain 

as neither TRIM69B nor the RING domain mutant maintained microtubule or 

centrosomal accumulation (Figure 14D). TRIM69 association with microtubules induces 

microtubule bundling, a classic phenomenon observed with several microtubule 

associated proteins. The bundling resulting from overexpression of TRIM69A was 

sufficient to stabilize microtubules against nocodazole mediated depolymerization, 

indicating a more stable and likely crosslinked microtubule network (Figure 14E). 

Consistent with TRIM69A specifically impacting microtubule dynamics, exogenous 

expression of -A and not -B disrupts mitotic spindle formation and drives accumulation 

of micronucleated cells, indicating aberrant mitotic exit (Figure 14F). Finally, siRNAs 

targeting knockdown of only TRIM69A only, were assessed for their impact on mitotic 

progression. Depletion of TRIM69A, specifically, was sufficient to prolong a paclitaxel-

mediated mitotic delay in both the HCC1171 and HCC366 cells (Figure 14G). Taken 

together, these data suggest that the ubiquitylation activity of TRIM69A supports mitotic 

fidelity and, like many integral mitotic proteins, either depletion or over expression can 

have detrimental impacts on mitosis.   

 Given the link between a functional E3 domain and TRIM69 function, we next 

stably expressed myc-TRIM69A in H1299 cells to further study its regulation. At lower, 

stable levels of expression, TRIM69A is generally dispersed throughout the cytoplasm in 

interphase with a few strands associating with microtubules (data not shown). We found 

that TRIM69A is does not localize to centrosomes until entry in mitosis. myc-TRIM69A 
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remains at the spindle poles through cytokinesis (Figure 15A). Consistent with the 

observed localization, immunoprecipitation of endogenous pericentrin, a centrosome 

scaffolding protein, pulls down myc-TRIM69A (Figure 15B). Treatment with nocodazole 

was sufficient to disrupt myc-TRIM69A accumulation at the centrosome, indicating a 

microtubule-dependent recruitment (data not shown). Taken together, these data suggest 

that TRIM69A is recruited to the microtubule organizing centers (MTOCs) to support 

appropriate mitotic spindle formation.  

TRIM69’s interaction network.    

 Although both depletion and overexpression of TRIM69A results in mitotic 

errors, no overt spindle defects were observed following TRIM69A depletion. The 

exacerbated defects in the HCC366 cells are difficult to separate from paclitaxel damage, 

and although we observe segregation defects in the A549 and H1299 cells, chromosomes 

appear to align appropriately on the metaphase plate. Therefore, we used publically 

available databases, Mitocheck and the Broad, to identify potential TRIM69 interacting 

proteins and begin to assign a function to TRIM69. In agreement with TRIM69A’s 

observed localization, several potential interactors support the cytoskeleton network, 

are/or associate with core centrosomal proteins, or have been implicated directly in 

altering mitosis (Figure 15C). To begin placing TRIM69 within this interaction network, 

we depleted a cohort of candidate interactors from H1299 cells stably expressing myc-

TRIM69A and assessed myc-TRIM69A accumulation to the spindle poles. This analysis 

revealed that activity of two candidate interactors, MYPT1 and GNAI3, is essential for 

recruitment or maintenance of myc-TRIM69A at the spindle poles (Figure 15D). GNAI3, 

a Gialpha subunit, has been identified to localize to the centrosomes and its depletion 
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results in cytokinesis defects while its over expression results in a prolonged mitotic 

delay [127]. MYPT1, myosine phosphatase targeting subunit 1, forms a holoenzyme with 

the catalytic protein phosphatase 1 (PP1) and functions to target PP1 to substrates. In 

mitotic cells, MYPT1/PP1 has been found to be a negative regulator of PLK1 activity. 

Further, PP1 is integral to checkpoint silencing and removal of BUBR1 from 

kinetochores [128-131]. These results indicate a functional connection between TRIM69 

and key mitotic proteins. Taken together, these studies have identified TRIM69A as a 

novel centrosomal component required for mitotic fidelity.  

TRIM69 protein stability is regulated by a CT-antigen.  

 TRIM E3 ubiquitin ligases have recently been identified to functionally associate 

with the melanoma antigen (MAGE) family proteins [124]. In addition to centrosomal 

and cytoskeleton related candidate interactors, TRIM69’s putative interaction network 

also identified MAGEA4. MAGEA4 has been found to be frequently over expressed in 

NSCLC and in our panel of cell lines we find expression of MAGEA4 in both HCC366s 

and H1299s (data not shown) [132]. Further, communication with Dr. Ryan Potts at 

UTSW uncovered an in vitro association between TRIM69 and both MAGEA4 and 

MAGEA12 (Figure 16A). These in vitro associations can also be detected in intact cells 

24 hours post co-overexpression (Figure 16B). In performing this analysis, we find that 

co-overexpression of MAGEA4 results in a loss of TRIM69 protein stability at 48 hours 

post co-overexpression, suggesting MAGEA4 may post-translationally regulate TRIM69 

(Figure 16C). In support of this hypothesis, depletion of endogenous MAGEA4 in H1299 

cells stably expressing myc-TRIM69A stabilizes myc-TRIM69A protein and enhances 

TRIM69A association to the microtubule network. The MAGEA4-mediated change in 
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TRIM69 protein accumulation, accordingly, stabilizes microtubules against nocodazole 

depolymerization, indicating that the protein stabilization is physiologically relevant 

(Figure 16D and E). Further, MAGEA4 depletion in both HCC366s and H1299s results 

in accumulation of mitotic cells. Taken together, these data suggests that TRIM69 

stability and thus, localization may be regulated by an aberrantly expressed cancer-testis 

antigen. Further, these data suggest that aberrant expression of cancer testis antigens may 

functionally support tumor cell mitosis. 

TRIM69 discussion  

 Through the work presented here, we have found that TRIM69 is recruited to the 

mitotic spindle poles during mitosis to support mitotic fidelity. Localization to 

centrosomes requires an intact RING finger domain and further, depletion of the isoform 

that contains the RING domain is sufficient to drive mitotic defects. Together, these data 

suggest that TRIM69’s E3 ubiquitin ligase activity is required to maintain mitotic 

fidelity.  

 Ubiquitylation events independent of the APC/C have been found to play critical 

roles in spindle formation and checkpoint silencing. For example, BRCA1 localizes to the 

centrosome during mitosis and ubiquitylates gamma tubulin to regulate centrosome 

splitting [133]. Recently, ubiquitylation of polo like kinase 1 (PLK1) was found to 

mediate degradation independent removal of PLK1 from kinetochores to facilitate 

checkpoint silencing [134, 135]. These studies demonstrate that E3 ligases can impact 

mitotic progression in ways independent of the APC/C. Now we have identified TRIM69 

as a novel functional E3 ubiquitin ligase that supports stable kinetochore-microtubule 

attachments.   



62 

 TRIM69 recruitment to the centrosome at the beginning of mitosis coincides with 

centrosome maturation. Centrosomes, as the microtubule organizing centers of the cell, 

undergo a process termed maturation at the onset of mitosis in order to expand 

microtubule nucleating capacity necessary for proper mitotic spindle formation [136]. 

Maturation is a dynamic process in which microtubule scaffolding proteins such as 

pericentrin accumulate at the centrosome and increase recruitment of microtubule 

nucleating proteins such as gamma-tubulin [136, 137]. Increased accumulation of gamma 

tubulin results in a dramatic increase in microtubule nucleation and thus, additional 

regulatory proteins are required to anchor microtubule ends to the centrosomes [138, 

139]. The centrosomal maturation process is regulated by series of protein kinases and 

phosphatases including, but not limited to, PLK1 and PP1. TRIM69s cell cycle dependent 

recruitment to the centrosome, its demonstrated ability to bundle microtubules, and 

association with PP1 regulatory protein MYPT1 suggests TRIM69 may be required to 

support microtubule activities at the MTOCs during centrosomal maturation.  

 Several candidate centrosomal associated proteins were evaluated following 

depletion of TRIM69 in an effort to uncover TRIM69s impact on mitotic spindle 

formation. Unfortunately, our candidate approach uncovered no frank centrosomal or 

spindle errors. We may have been limited due to our visual resolution or we may have 

not identified the correct candidate protein. While we have been unable to clarify 

TRIM69’s role at the centrosome, as with many critical mitotic proteins, we find that 

toggling TRIM69 expression or activity can have damaging impacts on mitotic outcome. 

TRIM69 depletion delays mitotic slippage, induces chromosomal segregation errors and 

engages cell death signaling programs. MAGEA4 may illustrate one mechanism engaged 
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by tumors to alter TRIM69 expression and alter mitotic slippage. Further, we see that 

recruitment of TRIM69 to the spindle poles relies, at least in part, on the activity of 

MYPT1 and GNAI3.  

 MYPT1 is one of several targeting subunits of protein phosphatase 1 (PP1)  [140]. 

During mitosis, MYPT1 directs PP1mediated dephosphorylation of key mitotic regulator 

PLK1 [131]. Further, PP1 has been shown to support mitotic checkpoint silencing [141]. 

The functional association between TRIM69 and MYPT1 suggests possible mechanisms 

by which TRIM69 may impact mitotic slippage and thus, warrants continued 

investigation into the TRIM69 association with PP1. 
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Figure 13. 

 
 
 
Figure 13. TRIM69A is a testes enriched E3 ubiquitin ligase. 
 
(A) Commercially prepared RNA from human tissue samples were assessed for TRIM69 
mRNA expression by qRT-PCR. (B) Domain structure of TRIM69. (C) In vitro auto 
ubiquitylation assay with purified TRIM69 in the presence and absence of the E2 
enzyme. 
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Figure 14. 

 

 
 
 
 
 
 
 
 
 
 



66 

Figure 14. TRIM69A supports mitotic fidelity 
 
(A) Indicated cell lines were transfected with indicated siRNAs for 48 hours followed by 
exposure to vehicle or 10nM paclitaxel for 48 hours. Whole cell lysates were 
immunoblotted for indicated antibodies. (B) Indicated cell lines were transfected with 
siRNAs for 72 hours then fixed and stained with indicated antibodies.  HCC366 and 
H1299 cells were exposed to paclitaxel for the last 24 hours of transfection.  Scale bars 
represent 10 µm for A549 and H1299 and 5 µm for HCC366. ** indicates a p-value < 
0.01 by two-tailed unpaired student’s t-test. (C) HCC366 cells were transfected with 
indicated siRNAs for 72 hours and immunostained with BUBR1.  Scale bar represents 5 
µm.  BUBR1 foci were counted by manual inspection. Each circle represents a single 
cell.  A minimum of 50 mitotic cells were evaluated per experiment for 3 independent 
experiments. p value was calculated by Mann-Whitney t-test.  ** indicates a p-value < 
0.05. (D) H1299 cells were transfected with cDNAs encoding myc-TRIM69A, myc-
TRIM69B, myc-TRIM69A (C50S, C53S) or a control vector encoding Tomato-H3B.  24 
hours post-transfection, cells were fixed and immunostained with indicated antibodies. 
Scale bars represent 5µm. (E) In vivo polymerized tubulin assay performed on H1299 
cells transfected with indicated cDNAs for 24 hours followed by exposure to 11 µM 
nocodazole for indicated times. (F) Cells transfected and stained as in D were manually 
scored for multi or micronucleation. Bars represent mean from 2 independent 
experiments and error bars represent range. (G) Left panel: Indicated cell lines were 
transfected with siRNAs for 48 hours followed by exposure to 10nM paclitaxel for an 
additional 24 hours. Cells were fixed and stained with anti-phospho-histone H3 (ser10) 
and DAPI. Mitotic index was scored by manual inspection. Bars represent mean from 2 
independent experiments and error bars represent range. Right panel: HCC366 cells were 
transfected with indicated siRNAs for 72 hours. Whole cell lysates were immunoblotted 
for indicated antibodies. 
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Figure 15. 

 

 

Figure 15. TRIM69A is a novel component of the MTOC 
 
(A) H1299 cells expressing myc-TRIM69A were fixed and immunostained with 
pericentrin, myc and DAPI.  Cells representing each stage in the cell cycle were 
identified based on nuclear morphology. Left panel: Representative images of cells 
during the cell cycle. Scale bar represents 5 µm.  Right Panel: Quantitation of cells where 
myc co-localized with pericentrin as assessed by manual inspection.  Bars represent the 
mean of 2 independent experiments and error bars represent range.  A minimum of 100 
mitotic cells was assessed per experiment.  (B) H1299 cells stably expressing myc-
TRIM69A were released from a double thymidine block for 3 hours followed by 
treatment with 100ng/mL nocodazole for 3 hours. Immunoprecipitation was performed 
using indicated antibodies. (C) Left panel: H1299 cells stably expressing myc-TRIM69A 
were transfected with indicated siRNA for 72 hours. Cells were fixed and stained for 
pericentrin, myc and DAPI. To quantify centrosome associated myc-TRIM69A, relative 
fluorescence of myc-TRIM69A at individual centrosomes (n>150 across 3 independent 
experiments) was measured with ImageJ and normalized for cytoplasmic fluorescence. 
Right panel: Representative images of mitotic cells transfected with indicated siRNAs. 
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Figure 16. 

 

Figure 16. TRIM69 interacts with cancer testis antigen MAGEA4 
 
(A) Immobilized GST- and GST-TRIM69A were incubated with indicated proteins.  
Samples were subjected to SDS-PAGE and immunoblotted with myc antibody. 
Contributed by Dr. Ryan Potts. (B) HEK293 cells were transfected with indicated 
constructs for 24 hours. Cells were lysed and immunoprecipitations were performed as 
indicated. Lysates and immunoprecipitates were immunoblotted with indicated 
antibodies.  (C) HEK293 cells were transfected as in B, except lysates were taken at 48 
hours.   (D) H1299-mycTRIM69A cells were transfected with indicated siRNAs. 72 
hours following transfection, whole cell lysates were immunoblotted with indicated 
antibodies.  (E) H1299 myc-TRIM69 cells were transfected with indicated siRNAs for 48 
hours then exposed to nocodazole for 0 or 2 minutes as indicated. Whole cell lysates were 
then immunoblotted with indicated antibodies.  (F) H1299 and HCC366 cells were 
transfected with indicated siRNAs for 48 hours then exposed to 10 nM paclitaxel for 24 
hours.  Cells were subsequently fixed and immunostained with antibodies recognizing 
phospho-H3B and pericentrin and stained with DAPI. Mitotic Index was scored manually 
for 3 experiments. Error bars represent SEM. p values were calculated by unpaired 
student’s t-test. 
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Chapter VI. Summary 

  Understanding the mechanisms that promote escape from mitotic-stress induced 

tumor cell death is vital to improving the current standard-of-care cytotoxic regimens for 

multiple cancers, including breast, ovarian and non-small cell lung cancer. The work 

presented here undertook a global analysis to identify mechanisms of intrinsic paclitaxel 

resistance. Importantly, in Chapter 3 we find that the most potent method of re-coupling 

mitotic stress to cell death is to prolong a paclitaxel-mediated mitotic delay. Further, we 

find that even in the most resistant genetic backgrounds, prolonging a mitotic delay by as 

little as 20 % can be sufficient to allow loss of pro-survival proteins and engage cell death 

signaling.  

 Mitotic slippage is observed in many tumor types and genetic backgrounds, 

suggesting it is a tumor survival mechanism despite the resulting genomic damage. 

Oncogenic perturbations, such as mutation of KRAS or loss of Rb, can have damaging 

impacts on mitosis. Thus, we hypothesize that tumor cells with mechanisms to rapidly 

exit mitosis, can bypass an oncogene induced mitotic delay and escape apoptosis. Those 

cells that can undergo mitotic slippage would have a selective advantage in tumor cell 

evolution and would inherently be more resistant to anti-mitotic drugs. If this hypothesis 

is correct, it is possible that the mitotic slippage prone cells would be more sensitive to an 

imposed mitotic delay. Indeed, we find that those mitotic slippage prone cell lines, such 

as the HCC366 cells, are much more sensitive to enforcing a mitotic arrest, through 

treatment with proTAME, then those cell lines known to tolerate a prolonged mitotic 
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delay, such as HeLa cells (Figure 17). 

 Identification of ANAPC5 as synthetic lethal with paclitaxel suggested that 

targeting the APC/C may have a therapeutic window. Previous studies have found that 

directly targeting mitotic exit, through depletion of CDC20, is highly lethal to cancer 

cells and “...killed all cells that entered mitosis..” [142]. Here, we were able to combine 

the APC/C inhibitor proTAME with paclitaxel and show a cooperative mitotic and cell 

death defect in the slippage prone HCC366 cells. We further expanded our analysis to 

additional APC/C subunits and found varying induction of cell death in the presence and 

absence of paclitaxel. Our studies suggest that APC/C inhibition may be ‘tunable’ in 

order to achieve a therapeutic effect.  

 In addition to directly targeting mitotic exit, we have identified novel mechanisms 

that indirectly support mitotic slippage. The work presented in chapter 4 identified 

CASC1 as a novel regulator of microtubule stability and suggested that separate but 

parallel insults to the microtubule network can collaborate therapeutically. Without 

CASC1, there is a loss of microtubule polymer that we propose leads to an insufficient 

ability to establish microtubule-kinetochore attachments. This defect ultimately leads to 

increased MCC protein BUBR1 at unattached kinetochores and an increased robustness 

of SAC signaling.  

 Several studies now describe an eventual satisfaction of the SAC, or a more rapid 

mitotic slippage, when cells retain some microtubule polymer [110, 111]. It is possible 

that mitotic slippage prone cells are more reliant on a stable microtubule network in order 

to rapidly silence the spindle assembly checkpoint. In further support of this idea, altering 

tubulin isoform expression to a higher ratio of βIII-tubulin, as is observed in many 



71 

models of paclitaxel resistance, decreases over all network dynamicity leading, generally, 

to a more stable network. Thus, we suggest that tumor cells with a more stable 

microtubule network may be more resistant to anti-mitotic therapy.  

 In chapter 5 we find TRIM69 to be a novel E3 ubiquitin ligase that localizes to the 

spindle poles in a cell cycle dependent manner. TRIM69 ubiquitylation activity is 

required for proper localization and mitotic fidelity. Though we have been unable to 

define the direct function of TRIM69 at the centrosomes, we do find that toggling 

TRIM69 expression can have damaging impacts on mitosis. Further, we find TRIM69 

expression can be altered by a cancer-testis antigen, MAGEA4. These data suggest that 

re-expression of testis specific proteins can be functionally employed to buffer or support 

tumor mitoses. Further, we find a functional connection between TRIM69 and the 

centrosomal proteins MYPT1 and GNAI3. Over expression co-immunoprecipitation 

confirms that MYPT1 and TRIM69 can physically associate (data not shown). Given 

MYPT1s functional impact on PLK1 and association with PP1, one intriguing hypothesis 

is that TRIM69 may be regulating SAC silencing through impacting PP1 function.  

Future Directions: 

 CASC1 depletion is found to have a global impact on microtubule dynamics both 

in mitosis and interphase. Altering the dynamics of interphase microtubules disrupts 

transport of several signaling pathways including Hif-1α [143], the androgen receptor 

[144], retinoblastoma (Rb) [145] and can result in an increase in p53 nuclear localization 

and transcription [146]. It is possible that the therapeutic benefit derived from treatment 

with paclitaxel may not be solely through impacting mitosis [147]. CASC1-mediated 

disruption of microtubule dynamics may have additional non-mitotic impacts that also 



72 

support cell viability in the oncogenic environment. Critical future work will focus on 

defining CASC1’s interaction with tubulin, either with soluble heterodimers or with 

polymers. Defining which dynamic properties CASC1 alters and how it functions to 

support microtubule stability will further elucidate how CASC1 supports mitotic fidelity 

and tumor cell survival.  

 Similar to CASC1 having an impact on the cytoskeleton, examination of 

TRIM69’s potential interaction network reveals a number of cytoskeleton related 

proteins. TRIM69 associates with MPRIP, which binds MYPT1 to facilitate integration 

of RhoA and ROCK signaling to the actin cytoskeleton [148]. TRIM69 also associates 

with phostensin (PPP1R18), which directs PP1 association with F-actin [149, 150]. 

Further, TRIM associates with nexillin (NEXN) an F-actin interacting protein that has 

been implicated in motility [151]. Given this actin axis in the TRIM69 potential 

interaction network, future studies may be directed at determining if TRIM69 impacts the 

actin cytoskeleton. 

 How TRIM69 functions at the centrosome to support mitotic fidelity remains an 

open question. Future studies will, first and foremost, be directed at elucidating TRIM69s 

role in mitosis. Investigation into potential interactors at the centrosome that have not 

been evaluated yet, such as HAUS1 and MISP, are of primary interest. HAUS1 is a 

component of complex that supports centrosomal and mitotic spindle integrity [152]. 

MISP is a newly annotated gene that is found to interact with the actin cytoskeleton and 

astral microtubules to regulate proper positioning of the mitotic spindle. Depletion of 

MISP results in a mitotic delay with increased BUBR1 positive kinetochores [153]. Thus, 

TRIM69’s candidate interaction map reveals a wealth of potentially harvestable 
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information to help elucidate TRIM69’s role in mitosis. This interaction map will be 

exploited as a starting point for defining TRIM69s mechanistic impact on mitosis. 

 In addition to elucidating TRIM69s interphase and centrosomal networks, future 

studies into the functional interaction between TRIM69 and the MAGE family CT 

antigens are warranted. We initially hypothesized that a functional interaction between 

MAGEA4 and TRIM69 may enhance TRIM basal ubiquitylation activity as observed 

with other TRIM-MAGE complexes [124]. While these studies with TRIM69 have not 

been fruitful to date, they were carried out in the absence of a known substrate. If 

TRIM69’s mechanistic function at the centrosome or in interphase can be elucidated, 

evaluating MAGE proteins contribution to TRIM69’s activity would be intriguing. 

Regardless of canonical TRIM-MAGE functional interaction, we have identified that 

depletion of both MAGEA4 and MAGEA12 (data not shown) results in an increase in 

mitotic index illustrating a delayed mitotic progression. This preliminary evidence 

suggests that tumor cells can engage testis specific mechanisms to support tumor cell 

mitosis, either directly, or through association with TRIM proteins. 

Conclusion. 

 The work described here undertook a genome-wide loss-of-function screen in 

order to gain a mechanistic understanding of the uncoupling of mitotic damage from cell 

death. The primary finding from this study is that SAC signaling strength is tunable and 

can be altered to synergize with paclitaxel treatment. We have uncovered both direct and 

indirect molecular components that can alter SAC signaling, and in turn, APC/C activity, 

to collaborate with a sublethal dose of paclitaxel. Further, we have been able to illustrate 

this concept through both genetic depletion of our identified targets and pharmacological 
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inhibition of APC/C activity. 

 Finally, we posit that tumor cells evolve a reliance on mechanisms, such as 

CASC1 and TRIM69, in order to bypass mitotic-delay initiated death programs. In this 

manner, those tumors that harbor oncogenic changes that inflict collateral damage to 

mitosis, can survive, despite resulting genomic damage. This may be one reason for the 

widespread aneuploidy observed in patient tumors.  

 While some genetic alterations found in NSCLC patients are tractable for targeted 

therapy, a majority of patients continue to receive the paclitaxel based cytotoxic therapy. 

Unfortunately, the potential benefit of the standard of care regimen has not been achieved 

for NSCLC. The work described here identifies molecular components that could 

collaborate with paclitaxel treatment either to induce a response in resistant patients, or to 

lower the necessary therapeutic paclitaxel dose in responsive patients, to achieve better 

clinical outcomes.    
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Figure 17. 

 

Figure 17: Slippage prone cell lines are most sensitive to APC/C inhibition 
 
Indicated cell lines were treated with escalating doses of proTAME for 24 hours and 
assessed for caspase -3/7 activity using APO-ONE. Bar represents mean of 3 independent 
replicates. Error bar represents standard deviation. 
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