
LARGE-SCALE IMAGE RETRIEVAL USING SIMILARITY PRESERVING BINARY
CODES

Yunchao Gong

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

the Department of Computer Science.

Chapel Hill
2014

Approved by:

Svetlana Lazebnik

Alexander C. Berg

Dinesh Manocha

Jan-Michael Frahm

Marc Niethammer

Sanjiv Kumar

c© 2014

Yunchao Gong

ALL RIGHTS RESERVED

ii

ABSTRACT

YUNCHAO GONG: LARGE-SCALE IMAGE RETRIEVAL USING SIMILARITY
PRESERVING BINARY CODES.

(Under the direction of Svetlana Lazebnik.)

Image retrieval is a fundamental problem in computer vision, and has many appli-

cations. When the dataset size gets very large, retrieving images in Internet image

collections becomes very challenging. The challenges come from storage, computation

speed, and similarity representation. My thesis addresses learning compact similarity

preserving binary codes, which represent each image by a short binary string, for fast

retrieval in large image databases.

I will first present an approach called Iterative Quantization to convert high-dimensional

vectors to compact binary codes, which works by learning a rotation to minimize the

quantization error of mapping data to the vertices of a binary Hamming cube. This ap-

proach achieves state-of-the-art accuracy for preserving neighbors in the original feature

space, as well as state-of-the-art semantic precision. Second, I will extend this approach

to two different scenarios in large-scale recognition and retrieval problems. The first

extension is aimed at high-dimensional histogram data, such as bag-of-words features

or text documents. Such vectors are typically sparse and nonnegative. I develop an

algorithm that explores the special structure of such data by mapping feature vectors to

binary vertices in the positive orthant, which gives improved performance. The second

extension is for Fisher Vectors, which are dense descriptors having tens of thousands

iii

to millions of dimensions. I develop a novel method for converting such descriptors to

compact similarity-preserving binary codes that exploits their natural matrix structure

to reduce their dimensionality using compact bilinear projections instead of a single large

projection matrix. This method achieves retrieval and classification accuracy comparable

to that of the original descriptors and to the state-of-the-art Product Quantization ap-

proach while having orders of magnitude faster code generation time and smaller memory

footprint.

Finally, I present two applications of using Internet images and tags/labels to learn

binary codes with label supervision, and show improved retrieval accuracy on several

large Internet image datasets. First, I will present an application that performs cross-

modal retrieval in the Hamming space. Then I will present an application on using

supervised binary classeme representations for large-scale image retrieval.

iv

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Professor Svetlana

Lazebnik, for her great support of my Ph.D. research. She introduced me to the area

of computer vision, shaped me as a serious researcher, taught me to always focus on

challenging problems, and to always try to make an impact. In particular, from her

I learned the benefits of critical thinking and striving for perfection. I have been very

lucky to have Lana as my advisor, and this dissertation could not have been accomplished

without her guidance. I am also grateful to my wonderful thesis committee members:

Professor Dinesh Manocha, Professor Alexander C. Berg, Professor Jan-Michael Frahm,

Professor Marc Niethammer, and Dr. Sanjiv Kumar.

During my doctoral studies, I had the good fortune to work with many world-class

researchers in industry. I thank Dr. Qifa Ke and Dr. Michael Isard for hosting me as an

intern at Microsoft Research Silicon Valley in 2011. Qifa not only served as my internship

mentor but also is a great friend who has given me many insightful suggestions about

my career. The internship with Dr. Sanjiv Kumar and Dr. Henry Rowley in 2012 was

truly memorable and productive. I am grateful for the wonderful summer of living in

New York City, the great research experiences, and the blueberries grown on the balcony

of Google NY. Dr. Thomas Leung introduced me to the area of deep learning through

my internship at Google Research Mountain View in 2013, and provided me with the

v

valuable opportunity to work on the world’s largest brain-simulation system. I also thank

Dr. Sergey Ioffe for serving as my mentor for my Google Ph.D. Fellowship, and for his

many helpful suggestions.

Great work cannot be done without great collaborators. I am lucky to have worked

with many smart colleagues. I especially thank Ruiqi Guo for his critical (and interest-

ing!) comments about my work throughout my doctoral studies. I also thank many other

collaborators and coauthors: Dr. Joseph Tighe, Dr. Sanjiv Kumar, Dr. Henry Rowley,

Dr. Qifa Ke, Dr. Michael Isard, Dr. Albert Gordo, Dr. Florent Perronnin, Dr. Vishal

Verma, Dr. Yangqing Jia, Dr. Thomas Leung, Dr. Sergey Ioffe, Dr. Alexander Toshev,

Dr. Julia Hockenmaier, Felix X. Yu, Liwei Wang, and Micah Hodosh.

I shared every moment in the past five years with Chenyao Zhang. I truly thank her

for sticking by my side, for her patience, and for her love. I believe that we will continue

the journey together hand in hand.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES .xiv

CHAPTER 1: Introduction .1

1.1 Overview of Contributions .6

CHAPTER 2: Related Works . 10

2.1 Approximate Nearest Neighbor Search . 10

2.1.1 Spatial Partitioning Tree and Locality Sensitive Hashing 11

2.1.2 Similarity Preserving Binary Codes . 13

2.1.3 Product Quantization . 19

2.2 Large-scale Image Retrieval and Recognition. 20

2.2.1 Internet Computer Vision and Beyond . 23

CHAPTER 3: Iterative Quantization for Learning Compact Binary Codes 26

3.1 The ITQ Formulation . 27

3.1.1 Dimensionality Reduction . 28

3.1.2 Binary Quantization . 30

3.2 Evaluation of Unsupervised Code Learning . 33

3.2.1 Datasets. 33

3.2.2 Protocols and Baseline Methods . 34

3.2.3 Results on CIFAR Dataset . 36

vii

3.2.4 Results on 580,000 Tiny Images . 39

3.2.5 Evaluation of Hashing Performance . 43

3.3 ITQ with a Kernel Embedding . 47

3.3.1 Random Fourier Features . 47

3.3.2 Results . 48

3.4 Discussion . 51

CHAPTER 4: Angular Quantization for Histogram Data . 53

4.1 Angular Quantization-based Binary Codes . 55

4.1.1 Data-independent Binary Codes . 55

4.1.2 Learning Data-dependent Binary Codes . 59

4.1.3 Optimization . 63

4.1.4 Computation of cosine Similarity between Binary Codes. 65

4.2 Experiments . 65

4.2.1 Datasets and Protocols. 65

4.2.2 Results on SUN and ImageNet . 67

4.2.3 Results on 20 Newsgroups. 68

4.2.4 Timing . 73

4.3 Discussion . 74

CHAPTER 5: Bilinear Hashing for Very High-dimensional Data. 75

5.1 Bilinear Binary Codes . 78

5.1.1 Learning Bilinear Binary Codes . 80

5.1.2 Learning with Dimensionality Reduction. 83

viii

5.2 Experiments. 86

5.2.1 Datasets and Features. 86

5.2.2 Experimental Protocols . 88

5.2.3 Baseline Methods . 89

5.2.4 Code Generation Time and Storage . 90

5.2.5 Retrieval on Holiday+Flickr1M . 91

5.2.6 Retrieval on ILSVRC2010 with VLAD . 95

5.2.7 Retrieval on ILSVRC2010 with LLC . 96

5.2.8 Image Classification . 97

5.3 Discussion . 100

CHAPTER 6: Combining Semantic Embeddings and Binary Codes 103

6.1 Semantic Binary Codes for Weakly Tagged Data. 104

6.1.1 Results on Tiny Images . 106

6.1.2 Results on NUS-WIDE Dataset . 108

6.2 Binary classeme . 112

6.3 Discussion . 118

CHAPTER 7: Hashing Revisited: Observations and Open Problems. 120

7.1 Why Do Binary Codes Work? . 121

7.2 Distance Function Matters . 123

7.3 Neighborhood Definition Matters . 130

7.4 Discussion . 137

ix

CHAPTER 8: Discussion and Future Directions . 138

8.1 Summary of Contributions . 138

8.2 Future Directions. 139

BIBLOGRAPHY . 142

x

LIST OF FIGURES

1.1 Visual search for shopping .2

1.2 Illustration of visual similarity. .3

1.3 Mapping images to binary codes. .4

2.1 Toy example of kd-tree and LSH.. 11

3.1 Toy example of ITQ . 27

3.2 ITQ optimization . 32

3.3 Main results for ITQ . 38

3.4 NN search results on CIFAR dataset for ITQ. 40

3.5 Semantic retrieval results on CIFAR dataset for ITQ. 41

3.6 NN search results on Tiny images for ITQ. 42

3.7 Overview of NN results on Tiny images for ITQ. 43

3.8 Qualitative results for ITQ . 44

3.9 NN search hashing results for ITQ . 45

3.10 Semantic hashing results for ITQ. 46

3.11 Kernel ITQ results. 49

3.12 Kernel ITQ with different radius results . 50

4.1 Quantization model in 3D . 56

4.2 cosine of angle between binary vertices . 59

4.3 Effect of rotation on Hamming weight . 62

xi

4.4 Results on SUN dataset . 69

4.5 Results on ImageNet120K . 70

4.6 Results on 20 Newsgroups . 71

4.7 Effect of projection on Hamming weight. 72

5.1 Memory of projections vs. dimensionality . 76

5.2 Visualization of the distribution of the VLAD descriptor . 84

5.3 Sample images from Holiday Dataset. 87

5.4 Results on Holiday dataset . 93

5.5 Results on ILSVRC with VLAD feature . 94

5.6 Results on ILSVRC with LLC feature . 98

5.7 Sample image retrieval results . 101

6.1 Logical flow of the PCA+ITQ and CCA+ITQ methods. 106

6.2 Semantic retrieval results on CIFAR. 108

6.3 Sample image retrieval results on CIFAR. 109

6.4 Sample image search results on NUS dataset . 113

6.5 Data flow of the binary classeme idea. 114

6.6 Qualitative results for text to image search 2 on NUS-WIDE 115

6.7 Sample image search results on ImageNet . 119

7.1 Analysis of the distribution on Hamming cube . 122

7.2 Nearest neighbor search results for different distance metrics. 125

xii

7.3 A comparison of different random hashing models. 127

7.4 Comparison of different random hash models. 128

7.5 Visualization of a toy dataset. 130

7.6 Analysis of the distribution of the neighbors . 133

7.7 Comparison of different methods on different neighborhood definitions. 134

7.8 The distribution of neighbors for different queries . 135

8.1 Sample results for finding Iconic images . 140

xiii

LIST OF TABLES

4.1 Semantic retrieval results on SUN dataset . 68

4.2 Semantic retrieval results on ImageNet120K dataset . 68

4.3 Semantic retrieval results on 20 Newsgroups dataset . 73

4.4 Timing for binary codes . 73

5.1 Code generation time for linear and bilinear projections. 90

5.2 Memory needed to store projections . 90

5.3 Running time on ILSVRC . 92

5.4 Image classification results on ILSVRC. 99

6.1 Image retrieval results on NUS-WIDE. 111

6.2 Image retrieval results on ILSVRC . 116

6.3 Image classification results on ILSVRC. 117

xiv

CHAPTER 1: Introduction

We interact with images every day. We use Google Image Search to find interesting

images, and we upload our personal photos to Facebook, which contains billions of images

contributed by its users. Mobile applications for image retrieval are available, including

Google Goggles, a mobile-image-search tool that provides real-time image search results.

Google Shopping also provides visually similar items (e.g., Figure 1.1) to improve the

shopping experience. Clearly, Internet photo collections have become one of the most

important parts of everyday life. However, how to organize such collections is still an

open problem in computer vision research, and in order to address it, we must first

address the problem of large-scale similarity search.

Today, image search and recognition research is being performed on ever-larger databases.

For example, the ImageNet database (Deng et al., 2009) currently contains around 15M

images and 20K categories. The main challenges for large-scale image retrieval are:

1. How to define similarity between images;

2. How to design compact representations for images, so we can store them;

3. How to design fast search schemes, so we can efficiently find similar images.

The first challenge, that of learning good visual similarity, is also one of the the most

fundamental one in computer vision. Typically, we assume images are represented as a

Figure 1.1: Image search for shopping applications – finding visually similar items. Image
taken from Google Shopping.

feature vector, and directly compute the distance between these vectors, which is referred

to as feature similarity. A good feature similarity should reflect semantic similarity : i.e.

that images containing the same objects or scenes should have smaller distance, and

images containing different objects or scenes should have larger distance, as shown in

Figure 1.2. Defining good feature representations reflecting this semantic similarity is

one of the major challenges of recognition in general, but it is not my primary focus.

For the most part of this thesis, I will assume that the feature representation is given

and fixed, and try to design binary codes that preserve both feature-space and semantic

similarity in that representation.

The second and third challenges are the main foci of this thesis. To address these

challenges, the vision community has recently devoted much attention to the problem

2

similar dissimilar

Figure 1.2: An illustration of visual similarity. Images containing same object should be
more similar to images containing different objects.

of learning similarity-preserving binary codes for representing large-scale image collec-

tions (Torralba et al., 2008b; Raginsky and Lazebnik, 2009; Wang et al., 2010a,b; Weiss

et al., 2008). Encoding high-dimensional image descriptors as compact binary strings can

enable large efficiency gains in storage and computation speed for similarity search; more-

over, these goals can be accomplished with much simpler data structures and algorithms

than alternative large-scale indexing methods (Chum et al., 2009; Jégou et al., 2010;

Kulis and Grauman, 2009; Nister and Stewenius, 2006). The basic idea of similarity-

preserving binary codes is illustrated in Figure 1.3. We want to map similar images to

similar binary codes (i.e., binary codes with a low Hamming distance), and dissimilar

images to codes with a high Hamming distance. Attempting to do this means trying to

transform data from a real space to a discrete Hamming space, a transformation that

preserves the semantic and spatial relationship between data points in the original space.

The conversion of high-dimensional vectors to a discrete representation, which is

referred to as locality-sensitive hashing (LSH) (Andoni and Indyk, 2008), has been studied

by the computer science theory community. These methods, which are based on the use

of random projections to perform spatial partitioning, mostly focus on establishing the

3

Binary
encoding

1011001011…0101

1110101101…0010

0001111000…1010

1111111001…0001

1010101010…1001

0001111110…1010

0101101001…1111

1001111000…1010

0001001001…0010

1001110010…1010

1101111000…0010

1101111001…0001

Similar images
||x – y||  0

Binary
encoding

0001111000…1010

1111111001…0001

1010101010…1001

0001111110…1010

0101101001…1111

1001111000…1010

0001001001…0010

1001110010…1010

1101111000…0010

1101111001…0001

0001111000…0010

0010011011…1111

Dissimilar images
||x – y|| is large

(a) Similar images have similar binary codes

(b) dissimilar images have dissimilar binary codes

Figure 1.3: Mapping images to similarity-preserving short binary codes, so distances
between images are measured by fast Hamming distance. (a) Similar images x and y
should have similar binary codes with small Hamming distance. (b) Dissimilar images x
and y should have binary codes with large Hamming distance. (Figure credit: Svetlana
Lazebnik)

4

underlying theoretical guarantees for using very large numbers of random projections

to preserve the geometry of high-dimensional data. Not all LSH schemes yield binary

embeddings of data, however. Torralba et al. (2008b) have introduced the binary coding

problem to the vision community and have compared several methods based on boosting,

restricted Boltzmann machines (Salakhutdinov and Hinton, 2009), and LSH. Such work

opens a new avenue for LSH and its applications in computer vision, especially because it

tries to answer the question of how to learn compact binary codes from real data, so that

such codes can be used in real applications. Considerable attention has been devoted to

this problem, subsequently (Weiss et al., 2008; Rahimi and Recht, 2007; Raginsky and

Lazebnik, 2009; Wang et al., 2010a) as well as applications that show the promise of

binary codes for vision problems (Frahm et al., 2010; Kuettel et al., 2012).

The goal of this thesis is to develop better binary coding algorithms for the conversion

of high-dimensional data points to similarity-preserving binary codes. I will consider two

scenarios to address these challenges. The first is unsupervised binary coding that does

not use labeled training data but only learns binary codes that approximate distances

(e.g., Euclidean distance or cosine similarity). I will propose three methods, in Chapter

3, Chapter 4, and Chapter 5, to address this problem. I will also consider a supervised

setting that uses labeled data to learn semantically-consistent binary codes that renders

semantically-similar images closer to each other in the Hamming space. I will tackle the

latter problem in Chapter 6. A detailed outline of the contribution of each chapter is

provided below.

5

1.1 Overview of Contributions

Many existing binary coding methods (Weiss et al., 2008; Wang et al., 2010a) start by

computing a lower-dimensional projection of the data using Principal Component Analy-

sis (PCA). As discussed in Weiss et al. (2008) and Wang et al. (2010a), the variance of the

data in each PCA direction is different: higher-variance directions, in particular, carry

much more information. Consequently, encoding each direction with the same number of

bits is bound to produce poor performance. Spectral hashing (SH) (Weiss et al., 2008)

and semi-supervised hashing (SSH) (Wang et al., 2010a) methods were intended to use

spectral and nonorthogonal relaxations to address the problem of imbalanced variance.

I also start with with PCA-projected data, but unlike these methods, I formulate the

problem of learning a good binary code in terms of directly minimizing the quantization

error of mapping this data to vertices of the binary hypercube. First, I show that simply

applying a random orthogonal transformation to the PCA-projected data, as suggested

by Jégou et al. (2010), already does a very good job of balancing the variance of differ-

ent PCA directions and outperforms both SH (Weiss et al., 2008) and non-orthogonal

relaxation (Wang et al., 2010a). Next, I propose an alternating minimization approach

for refining the initial orthogonal transformation to reduce quantization error. This ap-

proach, called iterative quantization (ITQ), has connections to the orthogonal Procrustes

problem (Schonemann, 1966) and to eigenvector discretization for multi-class spectral

partitioning (Yu and Shi, 2003). I conduct experiments on several large image datasets

and show that the proposed method achieves state-of-the-art performance. This approach

6

is described in Chapter 3.

My first extension to ITQ in Chapter 4 is motivated by the observation that ITQ works

poorly on high-dimensional sparse histogram data, which is commonly used in many

applications in image and document retrieval. The reason that ITQ does not work very

well for such data is that it directly minimizes the Euclidean distance between original

and binarized data. However, for histogram data, the values are usually nonnegative

and sparse, and cosine similarity is more appropriate than Euclidean distance. I propose

a novel angular quantization technique, in which the angle between two vectors is used

as a similarity measure, to learn binary codes from non-negative data. This proposed

technique works by quantizing each data point to the vertex of the positive orthant of the

binary hypercube with which it has the smallest angle. The number of these quantization

centers or landmarks is exponential in the dimensionality of the data, yielding a low-

distortion quantization of a point. Note that it would be computationally infeasible to

perform traditional nearest-neighbor quantization, as in regular ITQ, with such a large

number of centers. Moreover, even at run time, finding the nearest center for a given

point would be prohibitively expensive. Instead, I present a very efficient method to find

the nearest landmark for a point, i.e., the vertex of the binary hypercube with which it

has the smallest angle. In addition, because the basic form of my quantization method

does not take data distribution into account, I further propose a learning algorithm

that linearly transforms the data before quantization to reduce the angular distortion. I

experimentally show that this algorithm significantly outperforms other state-of-the-art

binary coding methods on both visual and textual data where histograms are used as

7

underlying representation.

My second extension of ITQ in Chapter 5 is motivated by recent the success of the

Fisher vector (FV) (Perronnin and Dance, 2007; Perronnin et al., 2010b) and vector of

locally aggregated descriptor (VLAD) (Jégou et al., 2010) – very powerful visual descrip-

tors that have achieved state-of-the-art performance for visual retrieval and recognition.

However, the dimensionality of FV and VLAD is extremely high and the feature is dense,

which makes it very hard to perform learning and retrieval. The high dimensionality also

makes mapping it to binary codes very inefficient. There are two major problems: first,

the projection matrix will be extremely large, and may not even fit in memory; second,

the projection speed will become extremely slow due to the multiplication with the huge

projection matrix. To solve these two problems, I propose a bilinear formulation that

uses two small projections to reconstruct the huge projection matrix. This approach ad-

dresses both the storage and projection speed problems. My experiments on large-scale

image retrieval and classification datasets (Jégou et al., 2008; Deng et al., 2009) have

demonstrated that my approach offers comparable performance to the original dense FV

or VLAD, with a much more compact representation and faster retrieval speed.

In Chapter 6, I present two applications for using labels from Internet image collec-

tions to learn semantically consistent binary codes: one for using noisy tags from Internet

images to learn semantic binary codes for web image retrieval, and the other for using

clean class labels from ImageNet to learn binary classeme representations (Torresani

et al., 2010) for novel class recognition. I show that my proposed binary coding methods

can be effectively combined with semantic embedding methods, and that the learned bi-

8

nary codes work as well as the original real embedding for large-scale retrieval problems

in Internet image collections.

Finally, in Chapter 7, I review and discuss current research on binary embeddings:

why it works, how to better evaluate it, its limitations, and tricky issues. I hope that

such self-reflection will provide insights that will benefit future research.

9

CHAPTER 2: Related Works

This chapter contains a survey of important works related to this thesis. In Section

2.1, I will present a survey on approximate nearest neighbor search and similarity pre-

serving binary codes. In Section 2.2, I review relevant work in our key application areas

of large-scale image classification and retrieval.

2.1 Approximate Nearest Neighbor Search

Nearest neighbor search (Shakhnarovich et al., 2006; Samet, 1990) is a fundamental

operation underlying many computer vision approaches. Brute-force search, which means

comparing a query point with every point in the database, becomes prohibitively expen-

sive as the dataset size and the dimensionality of the features grow. To reduce search com-

plexity, a number of algorithms and data structures have been proposed (Shakhnarovich

et al., 2006). These methods can be broadly categorized into two classes:

• Spatial partitioning methods such as trees (Bentley, 1975; Samet, 1990) and hash

tables (Andoni and Indyk, 2008), which are aimed at enabling sublinear-time sim-

ilarity search;

• Similarity preserving binary codes (Torralba et al., 2008b; Weiss et al., 2008), which

are typically aimed at making brute-force search more efficient.

(a) kd-tree

0

1

0

1
0

1

101

(b) LSH

Figure 2.1: A toy example of kd-tree and LSH scheme. (a) kd-tree partitions the space
by recursively partitioning the coordinates. (b) LSH partitions the space by random
projections. (Figure (b) is from Professor Rob Fergus’s slides.)

2.1.1 Spatial Partitioning Tree and Locality Sensitive Hashing

Tree- and hashing-based nearest neighbor search has been an active research area in

theoretical computer science, machine learning, and computer vision. These methods

partition the feature space into a large number of cells and try to achieve sub-linear

searches by reducing the search space.

Tree-based spatial partitioning methods have been applied to nearest neighbor search

problems and have achieved a certain degree of success. Among many successful methods,

kd-tree (Bentley, 1975; Samet, 1990; Muja and Lowe, 2009) is probably one of the most

widely used methods; it works by partitioning the coordinates recursively (see Figure

2.1(a)). During the construction stage, a tree is grown based on training data by splitting

the median of selected dimension and stored in the memory. During the search stage, a

query is passed to the tree and follows the spatial partition to a leaf node; next, a brute-

force comparison between the query and the points in the leaf node is performed to find

11

neighbors. However, kd-trees suffer from the curse of dimensionality and cannot handle

high-dimensional data (e.g., several hundred dimensions). A few other tree variants such

as k-means trees (Nister and Stewenius, 2006) and random projection trees (Freund et al.,

2007) have also been applied to nearest neighbor search in vision applications, but have

achieved limited success for high-dimensional data.

Locality sensitive hashing (LSH) (Andoni and Indyk, 2008; Datar et al., 2004; Gionis

et al., 1999; Chum and Matas, 2010) is considered to be an important breakthrough

for fast nearest neighbor searches in high-dimensional space (e.g., more than hundreds of

dimensions). One particular LSH scheme for approximating cosine similarity uses random

hyperplanes to partition the space into many cells; each cell is known as a bucket. An

illustration of this LSH scheme is shown in Figure 2.1 (b). During construction time,

LSH only needs to generate several random hyperplanes and no training is performed.

During indexing, points are mapped to hash keys as shown in Figure 2.1 (b) and points

with the same key are stored in the same bucket. During the query stage, a point is

first mapped to its key, which is used to locate the bucket. A brute-force comparison

between the query and points in the corresponding bucket is then performed, which

finds exact nearest neighbors. Many LSH variants have been proposed, for example LSH

for spherical data (Charikar, 2002), and min-hash (Broder, 1997). However, LSH is a

randomized algorithm and does not take any advantage of the data distribution.

12

2.1.2 Similarity Preserving Binary Codes

Unlike tree-based methods and LSH, similarity preserving binary codes (Torralba

et al., 2008b; Weiss et al., 2008; Gong and Lazebnik, 2011b) do not necessarily offer

sub-linear search complexity. However, they can reduce memory requirements and the

running times of brute-force searches by significant, constant factors, and they do not

involve building and maintaining complex data structures.

The similarity preserving binary code idea was first introduced by Salakhutdinov and

Hinton (2009) for text retrieval, and then introduced to the vision community by Torralba

et al. (2008b). Both of these researchers used a deep neural network architecture to learn

binary codes and were able to show successful applications for text, image retrieval, and

scene parsing. A number of subsequent works that are surveyed in the following pages

focused on designing better models for learning binary codes. Most methods considered

here consist of the following three steps:

1. Projection learning, or finding a linear or nonlinear projection of the data;

2. Binary thresholding, or quantizing continuous projected data to binary vectors;

3. Similarity computation, or finding distances between query and database points.

I will discuss each of these steps in related methods in the next sections.

Step 1: Projection Learning

The first step of computing binary codes usually involves finding an intermediate

continuous embedding of the original data. This step corresponds to learning a linear or

13

nonlinear projection to reduce data dimensionality. One example is the angle-preserving

LSH scheme by Charikar (2002); Andoni and Indyk (2008) that uses hyperplanes to

preserve angles. Kulis and Grauman (2009); Kulis et al. (2009) generalized this LSH

formulation to the setting in which the similarity is given by a “black-box” kernel function.

Raginsky and Lazebnik (2009) used random Fourier features (Rahimi and Recht, 2007) to

approximate the Gaussian kernel. All of these methods are based on random projections.

With large numbers of random projections, these methods usually enjoy strong theoretical

guarantees for approximating the distance between the original points; however, when

the number of bits is small, they tend to be quite noisy. Therefore they might not be

appropriate for applications with limited storage budgets.

Several recent works have focused on designing compact binary codes by learning

projections from training data. Weiss et al. (2008) used the graph Laplacian as the

underlying intermediate representation. They proposed several relaxations of the graph

Laplacian decomposition step, and showed that PCA is a good choice of projection

method. However, the relaxations made in Weiss et al. (2008) are very restricted, as

they assume the data is sampled from uniform distribution, which does not hold for

real-world data. Kulis and Darrell (2009) proposed learning projections with binary

reconstructive embedding (BRE) that directly minimizes the Euclidean distance between

binary codes and original data through coordinate descent. Subsequent works by Wang

et al. (2010a,b) showed that PCA is a good projection method from an information-

theoretical perspective, and proposed several ways to adjust PCA projections for better

binary quantization (e.g., using non-orthogonal projection directions). Many later works

14

(Gordo et al., 2011; Jégou et al., 2011) also used PCA as an initial step for the projection

step. Gordo et al. (2011) proposed to directly threshold PCA projections, and have

obtained good performance with asymmetric distance computation (see below). Jégou

et al. (2011) also applied PCA in their image retrieval pipeline for fast indexing. Beyond

PCA, He et al. (2011) used a method similar to independent component analysis (ICA)

for learning hash functions; they showed that such projections usually do not need to be

coupled with an “adjustment” because ICA projections are learned to be independent.

Strecha et al. (2010) used linear discriminant analysis (LDA) and Liu et al. (2012) used

discriminative graph embedding to learn supervised hash codes that work better for

semantic retrieval. In my work, I start with PCA projections. In Chapter 3 I will show

how to adjust these projections for better preservation of similarities.

Step 2: Binary Thresholding

After the embedding, the next step is to binarize the data. For randomized embed-

dings, this can be done simply by appropriately thresholding the projected data (Andoni

and Indyk, 2008; Kulis and Grauman, 2009; Raginsky and Lazebnik, 2009). Random

projections followed by thresholding have strong theoretical guarantees (Andoni and In-

dyk, 2008). For PCA and related techniques, a more complex binarization scheme is

necessary to alleviate the problem of unbalanced variance discussed in Section 1.1. In

particular, as shown in Wang et al. (2010a), directly thresholding the PCA projections

will lead to poor codes, since directions with larger variance will be quantized to have the

same number of bits as the directions with smaller variance. Another approach, spectral

15

hashing (Weiss et al., 2008, 2012), allocated bits based on separable Laplacian eigenfunc-

tions, but the allocation function was heuristic and involved very restricted assumptions

about the data. The work by Liu et al. (2011) similarly used multiple bits per dimension

to address the imbalanced variance problem. Norouzi and Fleet (2012); Norouzi et al.

(2012a) proposed an elegant structured prediction framework to directly minimize the

error of quantization through structured learning, which was solved by optimizing the

upper bound of the structured loss. The methods Norouzi and Fleet (2012); Norouzi

et al. (2012a) do not split the projection learning and quantization stage, but instead

directly learn the hash functions, and have achieved superior performance. However, one

limitation is that such approaches usually involve many free parameters that must be

tuned.

In this thesis, I proposed approaches that directly try to minimize binary quantization

error by learning a rotation of PCA-projected data and have achieved state-of-the-art

performance. Some other approaches have also proposed other methods for thresholding.

Heo et al. (2012) proposed to use hyperspheres instead of hyperplanes to partition the

space. Some recent works (Kong and Li, 2012; Ge et al., 2013; Norouzi and Fleet, 2013)

adopted the rotation learning idea of ITQ and further improved it.

Step 3: Distance Computation for Binary Codes

At retrieval time, given a new query image, it is necessary to compute the distances

from that query to every image in the database. I will introduce three different distance

metrics for binary codes in this section: : Hamming distance, cosine similarity, and

16

asymmetric distance.

Most methods directly compute the Hamming distance between the respective binary

codes, which simply measures how many bits are different between two strings. Hamming

distance can be computed very efficiently using XOR and POPCOUNT operation in

CPU. For example, given two binary vectors b1 = 1001 and b2 = 0011, their XOR is

computed as:

1 0 0 1
⊕ 0 0 1 1

1 0 1 0,

and then the internal CPU operation POPCOUNT is used to count the number of 1s in

the resulting vector to obtain the Hamming distance. In practice, we can group 64 bits

together to a unsigned 64-bit integer, and during distance computation we can directly

perform operations on the integers.

The second method is cosine similarity between binary codes. The cosine of the angle

θ between two binary vectors b1 and b2 is defined as:

cos(θ) =
bT1 b2

‖b1‖2‖b2‖2
. (2.1)

The dot-product bT1 b2 can be obtained by bitwise AND followed by POPCOUNT, and

‖b1‖2 and ‖b2‖2 can be obtained by popcount and lookup table to find the square root.

Of course, if b1 is the query vector that needs to be compared to every database vector

b2, then one can ignore ‖b1‖2. Therefore, even though the cosine similarity is marginally

slower than Hamming distance, it is still very fast compared to computing similarity of

17

the original data vectors.

The third method is asymmetric distance (Dong et al., 2008; Gordo et al., 2011; Jégou

et al., 2011), in which the database points are quantized but the query data point is not.

Such an approach usually offers better performance than Hamming distance. However,

the query data structure is also more complicated and the search speed is not as fast

as that of Hamming distance. For a query x ∈ Rc (x has been rotated or transformed

by hash function without binarization) and database points b ∈ {−1,+1}c, the lower-

bounded asymmetric distance is simply the L2 distance between x and b: da(x, b) =

‖x‖22 + c − 2xTb. Since ‖x‖22 is on the query side and c is fixed, in practice, we only

need to compute xTb. We can do this by putting bits in groups of 8 and constructing a

1× 256 lookup table to make the dot-product computation more efficient.

The three different functions introduced above will be used in following chapters. In

particular, Hamming distance will be used in Chapter 3 and Chapter 6, cosine similarity

will be used in Chapter 4, and asymmetric distance will be used in Chapter 5.

If nearest neighbor lookup by linear scan is not satisfactory, it is possible to treat

the binary strings representing images as hash keys (Andoni and Indyk, 2008; Kulis and

Grauman, 2009) and to apply bucket-based sub-linear search. Finally, Norouzi et al.

(2012b) have also proposed a multi-indexing scheme to find exact k nearest neighbors

in Hamming space in sub-linear time. This scheme uses buckets to find a superset of

neighbors that contains exact kNNs, and then performs a local reranking to find exact k

nearest neighbors.

18

2.1.3 Product Quantization

Aside from similarity preserving binary codes, other methods have been proposed for

efficient large-scale image retrieval. One of these is product quantization (PQ) (Jégou

et al., 2011), in which the feature space is decomposed into a Cartesian product of

low-dimensional subspaces (or subsets of dimensions) and each subspace is quantized

separately. During the training stage, each subspace is clustered into k centers (i.e.,

quantizers). The Cartesian product of all these centers forms a very dense partitioning

of the whole space and provides very small quantization error. After the quantization

learning stage, given a new query point, asymmetric distance is computed between the

query and the database codes using a distance lookup table. PQ is very accurate for

approximating distances between points. However, the PQ data structure is usually

much more complicated than binary codes, and PQ itself does not yield a low-dimensional

feature representation. In addition, it must be coupled with asymmetric distance in order

to achieve good performance. Another limitation of PQ is that it needs the variance of

each dimension to be balanced. Without balanced variances, PQ will produce poor

results. Two recent works (Ge et al., 2013; Norouzi and Fleet, 2013) have shown that by

combining ITQ and PQ (Jégou et al., 2011), even better performance can be achieved.

However, when the data dimensionality gets much higher, learning and performing a

rotation to the data becomes extremely hard. Simply storing the rotation matrix becomes

infeasible since the matrix becomes huge. I will present an approach for efficiently learning

rotations for PQ in Chapter 5. I particularly considers PQ here because it is one of the

19

most accurate baselines in the literature.

2.2 Large-scale Image Retrieval and Recognition

The main applications of similarity preserving binary codes in my thesis are large-scale

image classification and retrieval. These in turn can serve as the bases for many other

applications where binary codes can be useful, such as location recognition (Hays and

Efros, 2008), scene parsing (Tighe and Lazebnik, 2010), object detection (Felzenszwalb

et al., 2008), image segmentation (Kuettel et al., 2012), 3D reconstruction (Frahm et al.,

2010), and many others.

Up until about a decade ago, most of the early research on visual recognition and

retrieval (Sivic and Zisserman, 2003; Lazebnik et al., 2006; Fei-Fei and Perona, 2005)

has focused on small-scale datasets, which usually contained only hundreds or thousands

of images. For example, the Caltech101 (Fei-Fei et al., 2006) and Caltech256 (Griffin

et al., 2008) datasets have been the most popular recognition benchmarks since 2004,

and many successful recognition models have been developed based on these small-scale

datasets. One of the most successful models is the bag of visual words (BoW) approach

(Csurka et al., 2004; Sivic and Zisserman, 2003), in which the local features of an image

are aggregated into a global high-dimensional visual descriptor. I will specifically develop

binary coding methods for BoW type data in Chapter 4. Several kernel approaches have

been proposed for training nonlinear support vector machine (SVM) classifiers on top

of BoW representations. For example, histogram intersection kernel (Barla et al., 2003)

and χ-square kernel have achieved success in recognition tasks.

20

Several large-scale datasets (Deng et al., 2009; Xiao et al., 2010; Torralba et al.,

2008a) have recently become the new benchmarks for recognition and retrieval research.

ImageNet (Deng et al., 2009) is arguably the most important web-scale image dataset;

currently, it contains around 15M images and 20K categories. All the images in that

database have been manually verified and labeled with WordNet (Miller, 1995) categories.

The SUN dataset (Xiao et al., 2010) is the largest dataset for scene recognition,with 397

categories and more than 100,000 images. The 80M tiny-images dataset (Torralba et al.,

2008a) is the largest publicly available dataset, though it suffers from poor image quality

and noisy annotations.

Once one moves to large-scale datasets like ImageNet, it becomes infeasible to train

nonlinear SVM classifiers, which have obtained state-of-the-art results on the smaller-

scale datasets of a decade ago. To overcome this problem, researchers have been de-

veloping efficient kernel-mapping functions (Rahimi and Recht, 2007; Perronnin et al.,

2011; Maji and Berg, 2009). These methods enable us to efficiently train linear SVM

in the approximated kernel space, significantly improving the scalability of large-scale

recognition and enabling us to handle millions or even billions of images. Rahimi and

Recht (2007) developed a random-projection-based mapping for approximating a Gaus-

sian kernel. Maji and Berg (2009) proposed a per-dimensional binning approach to

approximate the histogram intersection kernel that showed promising performance for

object-detection applications. Perronnin et al. (2010a) studied explicit embeddings for

large-scale supervised learning with BoW features. Gong and Lazebnik (2011a) compared

several data-independent and data-dependent feature-mapping algorithms and showed

21

that a data-independent mapping usually works comparably to (if not better than) a

data-dependent one. Both the nonlinear embedding methods and the feature coding

schemes result in representations that are extremely high-dimensional.

There are also many novel visual descriptors (Perronnin and Dance, 2007; Perronnin

et al., 2010b; Yang et al., 2009; Wang et al., 2010c) that directly incorporate nonlinearity

into the feature encoding scheme, which eliminates the need for nonlinear feature map-

ping. For example, Yang et al. (2009) proposed the use of sparse coding, and subsequent

work (Wang et al., 2010c) has further simplified the sparse coding step into a weighted

kNN coding. We will use the locality-constrained linear coding (LLC) features in Wang

et al. (2010c) and develop efficient binary coding methods for these feature vectors in

Chapter 5. Fisher vectors (Perronnin and Dance, 2007; Perronnin et al., 2010b) directly

encode nonlinear information through a Gaussian mixture model and have achieved state-

of-the-art performance for recognition problems. Jégou et al. (2010) proposed a simpli-

fied version of FV, called vector of locally aggregated descriptor (VLAD). It has achieved

comparable performance to FV but is much easier to implement and faster to construct.

Since Jégou et al. (2010), many works have further improved VLAD (Arandjelović and

Zisserman, 2013; Tolias et al., 2013; Delhumeau et al., 2013; Jégou and Chum, 2012). In

particular, Arandjelović and Zisserman (2013) showed that proper normalization, non-

linear transformation of SIFT descriptors, and codebook adaptation can considerably

improve the performance of VLAD. In addition, VLAD has been applied to other do-

mains such as video retrieval (Revaud et al., 2013). The dimensionality of VLAD is still

high, however (e.g., hundreds of thousands), and directly using it in real applications is

22

difficult. Several recent works have experimented with methods for compressing VLAD.

For example, Perronnin et al. (2011) have investigated binary coding methods includ-

ing spectral hashing (Weiss et al., 2008) and LSH (Andoni and Indyk, 2008). Jégou

et al. (2010) proposed a joint dimensionality reduction and coding method that first

performs PCA to reduce dimensionality, and then performs product quantization (Jégou

et al., 2011) to convert the data to the compressed domain. Subsequent works by Jégou

and Chum (2012) proposed several simple improvements, such as whitened PCA, which

further reduce the dimensionality and improve performance.

Throughout this thesis, I will perform retrieval and recognition using a variety of

visual descriptors. In Chapter 3, I will start with the relatively low-dimensional GIST

descriptor (Oliva and Torralba, 2001) which is the most commonly used feature for evalu-

ating binary coding methods. Accordingly, I will develop specific binary coding methods

for BoW type data in Chapter 4, and for very high dimensional descriptors (e.g. VLAD

and LLC) in Chapter 5.

2.2.1 Internet Computer Vision and Beyond

My thesis also has connections to approaches that model Internet images and accom-

panying text. I use the idea of mapping images and text to the same latent space (Gong

et al., 2013a). This process is usually referred to as cross-modal embedding. Canoni-

cal correlation analysis (Hardoon et al., 2004) has been widely applied to learning such

mappings or embeddings.. I will use CCA in Chapter 6 and demonstrate applications

of binary codes to modeling Internet images and text for cross-modal image retrieval in

23

noisily-tagged Internet image collections. Another popular way to obtain an intermedi-

ate embedding space for images is by mapping them to outputs of a bank of concepts

or attribute classifiers (Rasiwasia et al., 2007; Wang et al., 2009b; Farhadi et al., 2009).

This is related to the idea of classeme representation (Torresani et al., 2010). I will

also demonstrate an application that converts classemes to binary codes in Chapter 6.

There are many other applications as well for which cleanly labeled training data may

be scarce (Guillaumin et al., 2010; Quattoni et al., 2007; Wang et al., 2009a). This is a

weakly supervised setting (as opposed to the fully supervised setting (Deng et al., 2009;

Perronnin et al., 2010b)), where the idea is to use a large amount of noisy data to improve

the classification results on a small, clean training set. The methods I present in Chapter

6 are also useful for learning from weakly tagged data.

For completeness, let me conclude by mentioning a few other Internet vision tasks

that are not directly considered in my thesis but can serve as important applications for

similarity-preserving binary codes. Multilabel image annotation (Carneiro et al., 2007;

Li and Wang, 2008; Monay and Gatica-Perez, 2004) is one of the applications that rely

heavily on large databases. It differs from image classification in that it tries to assign

multiple keywords to one image instead of a single keyword. This makes the problem

considerably more challenging than single-label image classification, so a different way

to solve it is needed. Recently, a number of publications have focused on simple data-

driven schemes based on retrieving database images similar to a query, and transferring

the annotations from those images (Chua et al., 2009; Guillaumin et al., 2009; Makadia

et al., 2008; Verma and Jawahar, 2012; Wang et al., 2008). Some discriminative ranking

24

methods have also achieved success in annotation tasks involving Internet-scale datasets.

Perhaps the largest-scale discriminative image-annotation system in the literature is the

WSABIE (web scale annotation by image embedding) system proposed by Weston et al.

(2011). It uses a stochastic gradient descent to optimize a ranking objective function

and has been evaluated on datasets with 10M training examples. Because most of the

annotation methods use nearest neighbor as an important component, binary codes can

be used to improve their efficiency.

Finally, works in geometric vision use Internet images to reconstruct landmarks and

popular tourist sites (Agarwal et al., 2011; Frahm et al., 2010). Among these, the work

by Frahm et al. (2010) applied binary codes as an important component of its system.

25

CHAPTER 3: Iterative Quantization for Learning Compact Binary Codes

This Chapter details my Iterative Quantization (ITQ) algorithm, which will also serve

as the foundation for the methods of Chapters 4 and 5. ITQ was mainly inspired by the

work by Weiss et al. (2008) and Wang et al. (2010a), which both use principal component

analysis (PCA) to reduce the dimensionality of the data prior to binary coding. However,

since the variance of the data in each PCA direction is different (and in particular, higher-

variance directions carry much more information), encoding each direction with the same

number of bits is bound to produce poor performance.

In this chapter, I start with PCA-projected data and formulate the problem of learning

a good binary code in terms of directly minimizing the quantization error of mapping

this data to vertices of the binary hypercube. First, I show that simply applying a

random orthogonal transformation to the PCA-projected data, as suggested by Jégou

et al. (2010), already does a very good job of balancing the variance of different PCA

directions. Next, I propose an alternating minimization approach (Section 3.1), dubbed

Iterative Quantization (ITQ), for refining the initial orthogonal transformation to reduce

quantization error. Figure 3.1 illustrates the idea behind this method. In my experiments

(Section 3.2) it outperforms the methods of Raginsky and Lazebnik (2009); Wang et al.

(2010a); Weiss et al. (2008). In addition, this method also works very well for hashing-

based search. Finally, I will extend the ITQ approach to a kernel space (Section 3.3),

and show how to incorporate nonlinearity in the learning process. This chapter will only

−1 0 1
−1

0

1

Average quantization error: 1.00
(a) PCA aligned.

−1 0 1
−1

0

1

Average quantization error: 0.93
(b) Random Rotation.

−1 0 1
−1

0

1

Average quantization error: 0.88
(c) Optimized Rotation.

Figure 3.1: Toy illustration of my ITQ method (see Section 3.1 for details). The basic
binary encoding scheme is to quantize each data point to the closest vertex of the binary
cube, (±1,±1) (this is equivalent to quantizing points according to their quadrant). (a)
The x and y axes correspond to the PCA directions of the data. Note that quantization
assigns points in the same cluster to different vertices. (b) Randomly rotated data – the
variance is more balanced and the quantization error is lower. (c) Optimized rotation
found by ITQ – quantization error is lowest, and the partitioning respects the cluster
structure.

concern the unsupervised setting, that does not use labeled data to learn binary codes. In

Chapter 6, I will show applications that use label information to learn binary codes. This

work was originally published in Gong and Lazebnik (2011b) and Gong et al. (2013c).

3.1 The ITQ Formulation

The proposed method first applies linear dimensionality reduction to the data, and

then performs binary quantization in the resulting space. For the first step, discussed in

Section 3.1.1, I follow the maximum variance formulation of Wang et al. (2010a); Weiss

et al. (2008), which yields PCA projections. The major novelty of my method is in the

second step (Section 3.1.2), where I try to preserve the locality structure of the projected

data by rotating it so as to minimize the discretization error.

27

Let me first define notations. We have a set of n data points {x1,x2, . . . ,xn}, xi ∈ Rd,

that form the rows of the data matrix X ∈ Rn×d. The goal is to learn a binary code

matrix B ∈ {−1, 1}n×c, where c denotes the code length. Each row of B is denoted

as bi. For each bit k = 1, . . . , c, the binary encoding function is usually defined by

hk(x) = sgn(xwk), where wk is a column vector of hyperplane coefficients and

sgn(v) =


1, if v ≥ 0;

−1, otherwise.

For a matrix or a vector, sgn(·) will denote the result of element-wise application of the

above function. Thus, we can write the entire encoding process as:

B = sgn(XW), (3.1)

where W ∈ Rd×c is the matrix with columns wk. We assume that the points are zero-

centered, i.e.,
∑n

i=1 xi = 0.

3.1.1 Dimensionality Reduction

Following the formulation of Wang et al. (2010a); Weiss et al. (2008), we want to

produce an efficient code in which the variance of each bit is maximized and the bits are

28

pairwise uncorrelated. We can do this by maximizing the following objective function:

I(W) =
∑
k

var(hk(x)) =
∑
k

var(sgn(xwk)) ,

1

n
BTB = I .

As shown in Wang et al. (2010a), the variance is maximized by encoding functions that

produce exactly balanced bits, i.e., when hk(x) = 1 for exactly half of the data points

and −1 for the other half. However, the requirement of exact balancedness makes the

above objective function intractable. Adopting the same signed magnitude relaxation as

in Wang et al. (2010a), we get the following continuous objective function:

Ĩ(W) =
∑
k

E(‖xwk‖22) =
1

n

∑
k

wT
kX

TXwk

=
1

n
tr(W TXTXW) , W TW = I . (3.2)

The constraint W TW = I requires the hashing hyperplanes to be orthogonal to each

other, which is a relaxed version of the requirement that code bits be pairwise decor-

related. This objective function is exactly the same as that of Principal Component

Analysis (PCA). For a code of c bits, we obtain W by taking the top c eigenvectors of

the data covariance matrix XTX.

29

3.1.2 Binary Quantization

Let v ∈ Rc be a vector in the projected space. It is easy to show (see below) that

sgn(v) is the vertex of the hypercube {−1, 1}c closest to v in terms of Euclidean distance.

The smaller the quantization loss ‖ sgn(v) − v‖2, the better the resulting binary code

will preserve the original locality structure of the data. Now, going back to eq. (3.2), it

is clear that if W is an optimal solution, then so is W̃ = WR for any orthogonal c × c

matrix R. Therefore, we are free to orthogonally transform the projected data V = XW

in such a way as to minimize the quantization loss

Q(B,R) = ‖B − V R‖2F , (3.3)

where ‖ · ‖F denotes the Frobenius norm.

The idea of rotating the data to minimize quantization loss can be found in Jégou

et al. (2010). However, the approach of Jégou et al. (2010) is based not on binary codes,

but on product quantization with asymmetric distance computation (ADC). Unlike in my

formulation, direct minimization of quantization loss for ADC is impractical, so Jégou

et al. (2010) instead suggest solving an easier problem, that of finding a rotation (or,

more precisely, an orthogonal transformation) to balance the variance of the different

dimensions of the data. In practice, they find that a random rotation works well for

this purpose. Based on this observation, a natural baseline for my method is given by

initializing R to a random orthogonal matrix.

Beginning with the random initialization of R, I adopt a k-means-like procedure that

30

I call ITQ to find a local minimum of the quantization loss (3.3). In each iteration, each

data point is first assigned to the nearest vertex of the binary hypercube, and then R is

updated to minimize the quantization loss given this assignment. These two alternating

steps are described in detail below.

Fix R and update B. Expanding (3.3), we have

Q(B,R) = ‖B‖2F + ‖V ‖2F − 2 tr(BRTV T)

= nc+ ‖V ‖2F − 2 tr(BRTV T) . (3.4)

Because the projected data matrix V = XW is fixed, minimizing (3.4) is equivalent to

maximizing

tr(BRTV T) =
n∑
i=1

c∑
j=1

BijṼij ,

where Ṽij denote the elements of Ṽ = V R. To maximize this expression with respect

to B, I need to have Bij = 1 whenever Ṽij ≥ 0 and −1 otherwise. In other words,

B = sgn(V R) as claimed in the beginning of this section.

Note that scaling the original data X by a constant factor changes the additive and

multiplicative constants in (3.4), but does not affect the optimal value of B or R. Thus,

while my method requires the data to be zero-centered, it does not care at all about

the scaling. In other words, the quantization formulation (3.3) makes sense regardless of

whether the average magnitude of the feature vectors is compatible with the radius of

31

0 100 200 300 400 500
1.565

1.57

1.575

1.58

1.585

1.59
x 10

6

Number of iterations

Q
(B

,R
)

(a) Quantization error for 32-bit.

100,000 300,000 500,000
0

10

20

30

40

50

number of training data

ru
nn

in
g

tim
e

(s
ec

on
ds

)

PCA+ITQ
PCA+RR
PCA+Nonorth
SKLSH
SH

(b) Training time for 32-bit code.

Figure 3.2: The behavior of ITQ quantization error and training time for a 32-bit code.

the binary cube.

Fix B and update R. For a fixed B, the objective function (3.3) corresponds to the

classic Orthogonal Procrustes problem (Schonemann, 1966), in which one tries to find a

rotation to align one point set with another. In my case, the two point sets are given

by the projected data V and the target binary code matrix B. For a fixed B, (3.3) is

minimized as follows: first compute the SVD of the c× c matrix BTV as SΩŜT = BTV

and then let R = ŜST .

We alternate between updates to B and R for several iterations to find a locally

optimal solution. The typical behavior of the error (3.3) is shown in Figure 3.2 (a). In

practice, I have found that it is not necessary to iterate until convergence to achieve

good performance, and I use 50 iterations for all experiments. Figure 3.2 (b) shows the

training time for 32-bit code. I have found all the methods scale linearly with the number

of images. Although my method takes a slightly longer time, it is still very practical.

My ITQ framework has been inspired by the approach of Yu and Shi (2003) for

32

discretizing relaxed solutions to multi-class spectral clustering, which is based on finding

an orthogonal transformation of the continuous eigenvectors to bring them as close as

possible to a discrete solution. One important difference between Yu and Shi (2003) and

my approach is that Yu and Shi (2003) allows discretization only to the c orthogonal

hypercube vertices with exactly one positive entry, while I use all the 2c vertices as

targets. This enables us to learn efficient codes that preserve the locality structure of the

data.

3.2 Evaluation of Unsupervised Code Learning

3.2.1 Datasets

I evaluate my method on two subsets of the Tiny Images dataset (Torralba et al.,

2008a). Both of these subsets come from Fergus et al. (2009). The first subset is a

version of the CIFAR dataset (Krizhevsky, 2009), and it consists of 64,800 images that

have been manually grouped into 11 ground-truth classes (airplane, automobile, bird,

boat, cat, deer, dog, frog, horse, ship and truck). The second, larger subset consists of

580,000 Tiny Images. Apart from the CIFAR images, which are included among the

580,000 images, all the other images lack manually supplied ground truth labels, but

they come associated with one of 388 Internet search keywords. In this section, I will use

the CIFAR ground-truth labels to evaluate the semantic consistency of my codes.

The original Tiny Images are 32 × 32 pixels. I represent them with grayscale GIST

descriptors (Oliva and Torralba, 2001) computed at 8 orientations and 4 different scales,

33

resulting in 320-dimensional feature vectors. Because my method (as well as many state-

of-the-art methods) cannot use more bits than the original dimension of the data, the

evaluation is limited to code sizes up to 256 bits.

3.2.2 Protocols and Baseline Methods

I follow two evaluation protocols widely used in recent papers (Raginsky and Lazebnik,

2009; Wang et al., 2010a; Weiss et al., 2008). The first one is to evaluate performance

of nearest neighbor search using Euclidean neighbors as ground truth. As in Raginsky

and Lazebnik (2009), a nominal threshold of the average distance to the 50th nearest

neighbor is used to determine whether a database point returned for a given query is

considered a true positive. Then, based on the Euclidean ground truth, I compute the

recall-precision curve and the mean average precision (mAP), or the area under the recall

precision curve. In particular, given the predefined ground truth, we rank the database

items based on the learned codes, and compute recall and precision. To summarize the

curves in a compact form, we directly report the mean average precision (mAP), which

measures the area under precision recall curve. We first define average precision for one

query,

AveP =

∫ 1

0

p(r)dr ≈
n∑
k=1

P (k)∆r(k) (3.5)

where P (k) and r(k) are the values of the precision and recall. The mAP for Q different

queries are computed as MAP =
(∑Q

q=1 AveP(q)
)
/Q. Second, I evaluate the semantic

consistency of codes produced by different methods by using class labels as ground truth.

34

For this case, I report the averaged semantic precision of the top 500 ranked images

for each query as in (Wang et al., 2010b). This measure is reporting the percentage of

images having the same class label to the query within the 500 top ranked images. For

all experiments, I randomly select 1000 points to serve as test queries. The remaining

images form the training set on which the code parameters are learned, as well as the

database against which the queries are performed. All the experiments reported in this

chapter are averaged over five random training/test partitions.

I compare my ITQ method to three baseline methods that follow the basic hashing

scheme H(X) = sgn(XW̃), where the projection matrix W̃ is defined in different ways:

1. LSH: W̃ is a Gaussian random matrix (Andoni and Indyk, 2008). Note that in

theory, this scheme has locality preserving guarantees only for unit-norm vectors.

While I do not normalize the data to unit norm, I have found that it still works

well as long as the data is zero-centered.

2. PCA-Direct: W̃ is simply the matrix of the top c PCA directions. This baseline

is included to show what happens when we do not rotate the PCA-projected data

prior to quantization.

3. PCA-RR: W̃ = WR, where W is the matrix of PCA directions and R is a random

orthogonal matrix. This is the initialization of ITQ, as described in Section 3.1.2.

I also compare ITQ to three state-of-the-art methods using code provided by the authors:

1. SH (Weiss et al., 2008): Spectral Hashing. This method is based on quantizing the

values of analytical eigenfunctions computed along PCA directions of the data.

35

2. SKLSH (Raginsky and Lazebnik, 2009): This method is based on the random fea-

tures mapping for approximating shift-invariant kernels (Rahimi and Recht, 2007).

In Raginsky and Lazebnik (2009), this method is reported to outperform SH for

code sizes larger than 64 bits. I use a Gaussian kernel with bandwidth set to the

average distance to the 50th nearest neighbor as in Raginsky and Lazebnik (2009).

3. PCA-Nonorth (Wang et al., 2010a): Non-orthogonal relaxation of PCA. This

method is reported in Wang et al. (2010a) to outperform SH. Note that instead of

using semi-supervised PCA as in Wang et al. (2010a), the evaluation of this section

uses standard unsupervised PCA since I assume there is no class label information

available.

Note that of all the six methods above, LSH and SKLSH are the only ones that rely

on randomized data-independent linear projections. All the other methods, including

my PCA-RR and PCA-ITQ, use PCA (or a non-orthogonal relaxation of PCA) as an

intermediate dimensionality reduction step.

3.2.3 Results on CIFAR Dataset

Figure 3.3(a) compares all the methods based on their mean average precision for

Euclidean neighbor ground truth. Perhaps surprisingly, the natural baseline for my

method, PCA-RR, already outperforms everything except PCA-ITQ for most code sizes.

The only exception is SKLSH, which has a strongly upward trajectory and gets the

best performance for a code size of 256. This behavior may be due to the theoretical

convergence guarantee of SKLSH that when enough bits are assigned, Hamming distance

36

between binary codes approximates distance in the kernel space with high quality. LSH,

which is data-independent just like SKLSH, also improves as the code size increases,

and it almost reaches the performance level of PCA-RR at 256 bits. As for my proposed

PCA-ITQ method, it consistently performs better than PCA-RR, although the advantage

becomes smaller as the code size increases. Thus, adapting to the data distribution seems

especially important when the code size is small. In particular, doing the ITQ refinement

for a 64-bit code raises its performance almost to the level of the 256-bit PCA-RR code.

Figure 3.3(b) evaluates the semantic consistency of the codes using class labels as

ground truth. For each method, it shows retrieval precision for the top 500 returned im-

ages as a function of code size. As in Figure 3.3(a), PCA-RR and PCA-ITQ outperform

all the other methods, and PCA-ITQ has a small but consistent advantage over PCA-RR.

There are some interesting differences in the performance of the other methods, however.

Unlike in Figure 3.3(a), PCA-Direct works relatively well for the smallest code sizes (32

and 64 bits), while SKLSH works surprisingly poorly. This may be due to the fact that

unlike most of the other methods, SKLSH does not rely on PCA. My results seem to

indicate that PCA really helps to preserve semantic consistency for the smallest code

sizes. Even at 256 bits, while SKLSH had by far the best performance for Euclidean

neighbor retrieval, it lags behind most of the other methods in terms of class label preci-

sion. This underscores the fact that the best Euclidean neighbors are not necessarily the

most semantically consistent, and that it is important to apply dimensionality reduction

to the data in order to capture its class structure. Another observation worth making is

that the two methods lacking a solid theoretical basis, namely PCA-Direct and SH, can

37

Figure 3.3: Comparative evaluation on CIFAR dataset. (a) Performance is measured
by mean average precision (mAP) for retrieval using top 50 Euclidean neighbors of each
query point as true positives. Refer to Figure 3.4 for the complete recall-precision curves
for the state-of-the-art methods. (b) Performance is measured by the averaged precision
of top p ranked images for each query where ground truth is defined by semantic class
labels. Refer to Figure 3.5 for the complete class label precision curves for the state-of-
the-art methods.

38

actually decrease in performance as the number of bits increases.

Figures 3.4 and 3.5 show complete recall-precision and class label precision curves

corresponding to the summary numbers in Figures 3.3(a,b). To avoid clutter, these

curves (and all the subsequent results reported in this chapter) omit the two baseline

methods LSH and PCA-Direct. The complete curves confirm the trends seen in Figures

3.3 (a,b). What becomes especially apparent from looking at Figure 3.4(d) is that the

data-dependent methods (PCA-Nonorth, PCA-RR, PCA-ITQ) seem to hit a ceiling of

performance as code size increases, while the data-independent SKLSH method does not

have a similar limitation (in fact, in the limit of infinitely many bits, SKLSH is guaranteed

to yield exact Euclidean neighbors). Once again, the message seems to be that adapting

binary codes to the data can give the biggest gain for small code sizes.

3.2.4 Results on 580,000 Tiny Images

Figure 3.6 and Figure 3.7 show precision-recall curves and mAP for Euclidean neigh-

bor retrieval on the 580,000 Tiny Images. As explained in Section 3.2.1, there are no

ground truth class labels for this dataset, so it is not possible to evaluate class label

precision. The relative ordering of the different methods is largely consistent with results

on CIFAR, with PCA-ITQ getting an even bigger performance advantage at small code

sizes. Moreover, comparing Figure 3.6(d) with Figure 3.3(a), we can see that at 256

bits, SKLSH, PCA-Nonorth, PCA-RR, and PCA-ITQ converge to a higher level of mAP

performance than on the smaller CIFAR dataset. This may be because the larger dataset

samples the feature space more densely, making it easier to find good image matches.

39

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(a) Recall precision curve@32 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(b) Recall precision curve@64 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(c) Recall precision curve@128 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(d) Recall precision curve@256 bits.

Figure 3.4: Comparison with state-of-the-art methods on CIFAR dataset using Euclidean
neighbors as ground truth. Refer to Figure 3.3(a) for a summary of the mean average
precision of these curves as a function of code size.

40

0 100 200 300 400 500

0.2

0.3

0.4

Number of top returned images

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(a) Class label precision@32 bits.

0 100 200 300 400 500

0.2

0.3

0.4

Number of top returned images

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(b) Class label precision@64 bits.

0 100 200 300 400 500

0.2

0.3

0.4

Number of top returned images

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(c) Class label precision@128 bits.

0 100 200 300 400 500

0.2

0.3

0.4

Number of top returned images

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(d) Class label precision@256 bits.

Figure 3.5: Comparison with state-of-the-art methods on CIFAR dataset using semantic
labels as ground truth. Figure 3.3(b) shows the summary plot of average precision as a
function of code size.

41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(a) Recall precision curve@32 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(b) Recall precision curve@64 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(c) Recall precision curve@128 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(d) Recall precision curve@256 bits.

Figure 3.6: Results on the 580,000 Tiny Image subset. Ground truth is defined by
Euclidean neighbors.

42

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

Number of bits

m
A

P

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

Figure 3.7: mAP on the 580,000 Tiny Image subset. Ground truth is defined by Euclidean
neighbors.

Finally, Figure 3.8 shows image retrieval examples.

3.2.5 Evaluation of Hashing Performance

To fully realize the potential of binary codes for large-scale datasets, I would like to

be able to use them for hashing or indexing as opposed to exhaustive search. For this,

we would need a very small code (32 bits or less) to yield reasonably high precision and

recall among retrieved points that lie within a Hamming distance of 0 to 2 from the

query. Figure 3.9 shows the recall and precision of 8, 16 and 32-bit codes at Hamming

radii r = 0, 1, and 2 for several methods on CIFAR and 580,000 Tiny Images with

Euclidean neighbor ground truth. PCA-ITQ is almost always the best in terms of both

recall and precision. Furthermore, comparing Figure 3.9(a-c) with (d-f), we can find that

the recall of PCA-ITQ improves substantially when the dataset size is increased by an

43

(a) Query (b) PCA-ITQ (c) PCA-RR

Precision: 55.56% Precision: 44.44%

Precision: 55.56% Precision: 36.11%

Precision: 69.44% Precision: 63.89%

Figure 3.8: Image search (32-bit binary code) results on CIFAR. Red border means false
positive. (a) is the query image, (b) and (c) shows the retrieved nearest neighbor images
using binary codes produced by different methods.

44

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

r=0

r=1
r=2

(a) CIFAR, 8 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(b) CIFAR, 16 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(c) CIFAR, 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

r=0
r=1

r=2

(d) Tiny images, 8 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(e) Tiny images, 16 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(f) Tiny images, 32 bits

Figure 3.9: Hashing performance for different Hamming radii r with Euclidean neighbor
ground truth. (a-c) CIFAR dataset; (d-f) 580,000 Tiny Images dataset.

45

0 0.1 0.2 0.3 0.4 0.5

0.1

0.15

0.2

0.25

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SHr=0

r=1

r=2

(a) CIFAR, 8 bits

0 0.02 0.04 0.06

0.1

0.15

0.2

0.25

Recall

P
re

ci
si

on

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(b) CIFAR, 16 bits

Figure 3.10: Hashing performance on the CIFAR dataset with class label ground truth.
r is Hamming radius. Note the progressively decreasing recall from (a) to (c), and the
different vertical scale in (c).

order of magnitude.

Figure 3.10 reports hashing performance in terms of class label retrieval. In this case,

ITQ has good precision for 8 and 16 bits, but not for 32 bits. At first glance, this seems

to contradict the result of Figure 3.3(b) where ITQ has the highest class label precision

for the top 500 retrieved images for every code size. To explain this, note that some

query points have many matches in a small Hamming radius (corresponding to dense

areas of the feature space) and some queries have very few. The precision for a very

small Hamming ball is significantly reduced by the queries with many matches since the

matches usually do not all belong to the same class. Note that the same finding does not

hold for Euclidean neighbor precision since the queries having many matches in a small

Hamming ball also have many Euclidean neighbors. In any case, the semantic label recall

of all the methods is dismally low, indicating that a lot more research needs to be done

before similarity-preserving binary codes become truly useful for hashing.

46

3.3 ITQ with a Kernel Embedding

3.3.1 Random Fourier Features

A big limitation of PCA is that it can only capture linear structure in the data.

In order to introduce nonlinearity into the embedding process, I can use kernel PCA

(KPCA) (Scholkopf et al., 1997). Finding the KPCA embedding for n feature vectors

involves computing the n × n kernel matrix and performing eigendecomposition on it.

However, for large-scale image databases, these operations are prohibitively expensive,

so I have to resort to approximation schemes.

In this section, I am particularly interested in the Gaussian kernel, whose radius can

be used to control the neighborhood size for nearest-neighbor search. To approximate the

Gaussian kernel K(x,y) = exp(−‖x−y‖2/(2σ2)), I can use the explicit random Fourier

feature (RFF) mapping (Rahimi and Recht, 2007). For a data point x, each coordinate

of this mapping is given by

Φw,b(x) =
√

2 cos(xw + b) ,

where the random projection vector w is drawn from Normal(0, 1
σ2 I) and b is drawn from

Unif[0, 2π]. A D-dimensional embedding is given by

ΦD(x) = [Φw1,b1(x),Φw2,b2(x), . . . ,ΦwD,bD(x)].

The inner product of the mapped data approximates the Gaussian kernel as K(x,y) ≈

47

ΦD(x)ΦD(y)T . When D goes to infinity, the mapping becomes exact. In my experiments,

I use D = 3, 000. After the random Fourier mapping, I simply perform linear PCA on top

of ΦD(X) to obtain an approximate KPCA embedding for the data. Given the points

in my dataset, I first transform them using RFF, then perform KPCA to reduce the

dimensionality, and finally binarize the data in the same way as before.

Note that while I solely focus on approximation of the Gaussian kernel, there also

exist explicit mappings for other popular kernels (Maji et al., 2008; Perronnin et al.,

2010a).

3.3.2 Results

I first compare KPCA with ITQ to other baseline methods, including linear PCA with

ITQ. Results for Euclidean neighbor retrieval are reported in Figure 3.11 (a). One of the

advantages of RFF is that it allows us to learn binary codes whose dimension is higher

than that of the original data (320 in the experiments so far). Thus, I report results up to

1,024 bits for the kernel methods, and for PCA-ITQ, I report results up to 256 bits. For

RFF, I set the radius of the Gaussian kernel to the average distance to the 50th nearest

neighbor. From Figure 3.11(a), in terms of Euclidean neighbor retrieval, KPCA-ITQ

starts to have an advantage over PCA-ITQ beginning with 128 bits (though I have found

that it is possible to tune the radius of the Gaussian kernel to match the performance

of PCA-ITQ for shorter codes), and KPCA-RR seems to work the best for the longest

code sizes. Figure 3.11 (b) reports performance in terms of class label retrieval. For this

case, KPCA-ITQ is consistently better than PCA-ITQ or KPCA-RR.

48

Figure 3.11: Comparative evaluation of kernel ITQ on CIFAR dataset. (a) Performance
is measured by mean average precision (mAP) for Euclidean neighbor retrieval. (b)
Performance is measured by the averaged precision of top 500 ranked images for each
query where ground truth is defined by semantic class labels.

49

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

KPCA (4δ)
KPCA (2δ)
KPCA (δ)
KPCA (δ/2)
PCA

Figure 3.12: Performance of kernel ITQ (32 bits) with a ground truth radius δ equal to
half the distance to the 50th nearest neighbor. The numbers in parentheses show the
value of the kernel width σ used in the RFF mapping.

It is interesting to compare KPCA-RR/ITQ and SKLSH (Raginsky and Lazebnik,

2009), since the latter is also based on RFF. To obtain a c-bit code, SKLSH first computes

a c-dimensional RFF embedding of the data and then quantizes each dimension after

adding a random threshold. By contrast, my KPCA-based methods start with a 3,000-

dimensional RFF embedding and then use PCA to reduce it to top c dimensions. Based

on the results of Figure 3.11, this process makes an especially big difference for class label

precision.

Finally, I want to demonstrate the effect of the radius σ of the Gaussian kernel in

the RFF mapping. Intuitively, by tuning this parameter, it can control how the binary

codes approximate the neighbors: a smaller radius can give us better approximation for

very close neighbors, while a larger one can give us codes that better reflect the global

50

structure of the data. To demonstrate this, I use a ground-truth radius δ defined as

half the distance to the 50th nearest neighbor. This results in only very close points

(near duplicates) being defined as ground truth neighbors. Figure 3.12 shows recall and

precision of KPCA-ITQ for σ = [δ/2, δ, 2δ, 4δ]. The best performance is obtained for

δ and δ/2, which match the desired neighborhood size the most closely. By contrast,

KPCA-ITQ with a larger radius, or PCA-ITQ, which does not have a radius parameter,

work very poorly in this regime.

Let me summarize the benefits of using the RFF embedding in combination with

ITQ. First, it allows us to use more bits than original feature dimensions to get better

code accuracy. Second, it significantly improves class label precision, especially when

combined with CCA. Third, it has a tunable radius parameter that can be changed to

obtain much better performance on tasks such as near-duplicate image retrieval.

3.4 Discussion

This chapter presents the “Iterative Quantization” work that proposes to learn a rota-

tion to reduce quantization error, so as to learn better binary codes. This chapter makes

several useful findings. First, I show that the performance of PCA-based binary coding

schemes can be greatly improved by simply rotating the PCA-projected data. Even a

random rotation already works better than more elaborate schemes like non-orthogonal

relaxation (Wang et al., 2010a). Second, I demonstrate an iterative quantization method

for refining this rotation that fits the problem very naturally, judging from the significant

improvement it confers in practice. Unlike many other papers, I evaluate the performance

51

of my method both in terms of preserving Euclidean neighbors in the feature space and

in terms of retrieving semantically similar images. This evaluation reveals that methods

that do very well on the first task, like SKLSH, can actually do quite poorly on the

second one, thus underscoring the importance of looking at both criteria. The proposed

ITQ approach serves as a basis of my subsequent works. I will present extensions to this

approach in Chapter 4 and Chapter 5.

52

CHAPTER 4: Angular Quantization for Histogram Data

In many vision and text-related applications, it is common to represent data as a

Bag of Words (BoW) (Salton and McGill, 1986; Csurka et al., 2004; Sivic and Zisserman,

2003), or a vector of counts or frequencies, which contains only non-negative entries.

Furthermore, cosine of the angle between vectors is typically used as a similarity measure

for such data. This chapter presents an extension to the ITQ approach presented in

Chapter 3 by exploring the special data distribution of histograms.

A popular binary coding method for cosine similarity is based on Locality Sensitive

Hashing (LSH) (Charikar, 2002; Andoni and Indyk, 2008), but it does not take advantage

of the non-negative nature of histogram data. As I will show in the experiments, the

accuracy of LSH is limited for most real-world data. Min-wise Hashing is another popular

method which is designed for non-negative data (Broder, 1997; Li and Konig, 2011; Li

et al., 2011; Shrivastava and Li, 2012). However, it is appropriate only for Jaccard

distance (defined as the size of the intersection divided by the size of the union of the

sample sets) and it also does not result in binary codes. Special clustering algorithms

have been developed for data sampled on the unit hypersphere, but they also do not

lead to binary codes (Banerjee et al., 2005). To the best of my knowledge, this chapter

describes the first work that specifically learns binary codes for non-negative data with

cosine similarity.

The proposed technique, called Angular Quantization-based Binary Coding (AQBC),

works by quantizing each data point to the vertex of the positive orthant of the binary

hypercube with which it has the smallest angle. This is very similar to ITQ, but the

difference is the definition of landmark points. For ITQ, we define landmark points in

{−1,+1}d while in this approach, we define landmark points in {0,+1}d. Such a simple

change, will make binary thresholding significantly harder, as we can no longer simply

take the sign of data to obtain its binary codes as we did in ITQ. Furthermore, the num-

ber of these quantization centers or landmarks is exponential in the dimensionality of

the data. While this yields a low-distortion quantization of a point, it would be compu-

tationally infeasible to perform traditional nearest-neighbor quantization as in (Banerjee

et al., 2005) with such a large number of centers. Moreover, even at query time, finding

the nearest center for a given point would be prohibitively expensive. Instead, I present

in Section 4.1.1 a very efficient method to find the nearest landmark for a point, i.e.,

the vertex of the binary hypercube with which it has the smallest angle. Since the basic

form of my quantization method does not take data distribution into account, I further

propose in Sections 4.1.2 and 4.1.3 a learning algorithm that linearly transforms the data

before quantization to reduce the angular distortion. The experimental evaluation is pre-

sented in Section 4.2, followed by a discussion in Section 4.3. This work was originally

published in Gong et al. (2012).

54

4.1 Angular Quantization-based Binary Codes

4.1.1 Data-independent Binary Codes

We assume we are given a database containing n d-dimensional points {xi}ni=1 as

defined in Chapter 3. I first address the problem of computing a d-bit binary code of an

input vector xi. A c-bit code for c < d will be described later in Sec. 4.1.2. For angle-

preserving quantization, I define a set of quantization centers or landmarks by projecting

the vertices of the binary hypercube {0, 1}d onto the unit hypersphere. This construction

results in 2d−1 landmark points for d-dimensional data. Note that the vertex with all 0’s

is excluded as its norm is 0, which is not permissible in eq. (4.1). An illustration of the

proposed quantization model is given in Figure 4.1. Given a point x on the hypersphere,

one first finds its nearest1 landmark vi, and the binary encoding for xi is simply given

by the binary vertex bi corresponding to vi. Since in terms of angle from a point, both

bi and vi are equivalent, I will use the term landmark for either bi or vi depending on

the context.

One of the main characteristics of the proposed model is that the number of land-

marks grows exponentially with d, and for many practical applications d can easily be in

thousands or even more. On the one hand, having a huge number of landmarks is pre-

ferred as it can provide a fine-grained, low-distortion quantization of the input data, but

on the other hand, it poses the formidable computational challenge of efficiently finding

the nearest landmark (and hence the binary encoding) for an arbitrary input point. Note

1In terms of angle or Euclidean distance, which are equivalent for unit-norm data.

55

Figure 4.1: An illustration of my quantization model in 3D. Here bi is a vertex of the unit cube
and vi is its projection on the unit sphere. Points vi are used as the landmarks for quantization.
To find the binary code of a given data point x, I first find its nearest landmark point vi on
the sphere, and the correponding bi gives its binary code (v4 and b4 in this case).

that performing brute-force nearest-neighbor search might even be slower than nearest-

neighbor retrieval from the original database! To obtain an efficient solution, I propose

to take advantage of the special structure of our set of landmarks, which are given by the

projections of binary vectors onto the unit hypercube. The nearest landmark of a point

x, or the binary vertex having the smallest angle with x, is given by

b̂ = arg max
b

bTx

‖b‖2
s. t. b ∈ {0, 1}d. (4.1)

This is an integer programming problem but its global maximum can be found very

efficiently as I show in the lemma below. The corresponding algorithm is presented in

Algorithm 1.

56

Algorithm 1: Finding the nearest binary landmark for a point on the unit hypersphere.

Input: point x on the unit hypersphere.

Output: b̂, binary vector having the smallest angle with x.

1. Sort the entries of x in descending order as x(1), . . . , x(d).

2. for k = 1, . . . , d
3. if x(k) = 0 break.

4. Form binary vector bk whose elements are 1 for the k largest positions
in x, 0 otherwise.

5. Compute ψ(x, k) = (xTbk)/‖bk‖2 =
(∑k

j=1 x(j)

)
/
√
k.

6. end for
7. Return bk corresponding to m = arg maxk ψ(x, k).

Lemma 1 The globally optimal solution of the integer programming problem in eq. (4.1)

can be computed in O(d log d) time. Further, for a sparse vector with s non-zero entries,

it can be computed in O(s log s) time.

Proof : Since b is a d-dimensional binary vector, its norm ‖b‖2 can have at most d

different values, i.e., ‖b‖2 ∈ {
√

1, . . . ,
√
d}. We can separately consider the optimal

solution of eq. (4.1) for each value of the norm. Given ‖b‖2 =
√
k (i.e., b has k ones),

eq. (4.1) is maximized by setting to one the entries of b corresponding to the largest k

entries of x. Since ‖b‖2 can take on d distinct values, we need to evaluate eq. (4.1) at

most d times, and find the k and the corresponding b̂ for which the objective function

is maximized (see Algorithm 1 for a detailed description of the algorithm). To find the

largest k entries of x for k = 1, . . . , d, We need to sort all the entries of x, which takes

O(d log d) time, and checking the solutions for all k is linear in d. Further, if the vector

x is sparse with only s non-zero elements, it is obvious that the maximum of eq. (4.1) is

achieved when k varies from 1 to s. Hence, one needs to sort only the non-zero entries

of x, which takes O(s log s) time and checking all possible solutions is linear in s. �

Now I study the properties of the proposed quantization model. The following lemma

57

helps to characterize the angular resolution of the quantization landmarks.

Lemma 2 Suppose b is an arbitrary binary vector with Hamming weight ‖b‖1 = m,

where ‖ · ‖1 is the L1 norm. Then for all binary vectors b′ that lie at a Hamming radius

r from b, the cosine of the angle between b and b′ is bounded by
[√

m−r
m
,
√

m
m+r

]
.

Proof : Since ‖b‖1 = m, there are exactly m ones in b and the rest are zeros, and b′

has exactly r bits different from b. To find the lower bound on the cosine of the angle

between b and b′, we want to find a b′ such that bT b′√
‖b‖1
√
‖b′‖1

is maximized. It is easy

to see that this will happen when b′ has exactly m − r ones in common positions with

b and the remaining entries are zero, i.e., ‖b′‖1 = m − r and bTb′ = m − r. This gives

the lower bound of
√

m−r
m

. Similarly, the upper bound can be obtained when b′ has all

ones at the same locations as b, and additional r ones, i.e., ‖b′‖1 = m+ r and bTb′ = m.

This yields the upper bound of
√

m
m+r

. �

We can understand this result as follows. The Hamming weight m of each binary

vertex corresponds to its position in space. When m is low, the point is closer to the

boundary of the positive orthant and when m is high, it is closer to the center. The above

lemma implies that for landmark points on the boundary, the Voronoi cells are relatively

coarse, and cells become progressively denser as one moves towards the center. Thus the

proposed set of landmarks non-uniformly tessellates the surface of the positive orthant

of the hypersphere. Figure 4.2 shows the lower and upper bounds on angle for various

m and r. It is clear that for relatively large m, the angle between different landmarks is

very small, thus providing dense quantization even for large r. To get good performance,

58

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

m (log scale)

co
s(

b 1,b
2)

lower bound (r=1)
upper bound (r=1)
lower bound (r=3)
upper bound (r=3)
lower bound (r=5)
upper bound (r=5)

Figure 4.2: Bound on cosine of angle between a binary vertex b1 with Hamming weight m,
and another vertex b2 at a Hamming distance r from b1. See Lemma 2 for details.

the distribution of the data should be such that a majority of the points fall closer to

landmarks with higher m.

Algorithm 1 constitutes the core of my proposed angular quantization method, but

it has several limitations: (i) it is data-independent, and thus cannot adapt to the data

distribution to control the quantization error; (ii) it cannot control m which, based on

my analysis, is critical for low quantization error; (iii) it can only produce a d-bit code

for d-dimensional data, and thus cannot generate shorter codes. In the following section,

I present a learning algorithm to address the above issues.

4.1.2 Learning Data-dependent Binary Codes

I start by addressing the first issue of how to adapt the method to the given data

to minimize the quantization error. Similarly to the ITQ method described in Chapter

59

3, I would like to align the data to a pre-defined set of quantization landmarks using

a rotation, because rotating the data does not change the angles – and, therefore, the

similarities – between the data points. Later in this section, I will present an objective

function and an optimization algorithm to accomplish this goal, but first, by way of

motivation, I would like to illustrate how applying even a random rotation to a typical

frequency/count vector can affect the Hamming weight m of its angular binary code.

Since we are mostly interested in modeling histogram data that is counts and fre-

quencies, I propose to use Zipf’s distribution to generate synthetic data for illustration

purposes, as most real world histogram data follows this distribution (Manning and

Schütze, 1999; Zipf, 1935). Suppose, for a data vector x, the sorted entries x(1), . . . , x(d)

follow Zipf’s law, i.e., x(k) ∝ 1/kq, where k is the index of the entries sorted in descending

order, and s is the power parameter that controls how quickly the entries decay. The

effective m for x depends directly on the power q: the larger q is, the faster the en-

tries of x decay, and the smaller m becomes. More germanely, for a fixed s, applying

a random rotation R to x makes the distribution of the entries of the resulting vector

RTx more uniform and raises the effective m. Figure 4.3 (a) plots the sorted entries of

x generated from Zipf’s law with s = 0.8. Based on Algorithm 1, I compute the scaled

cumulative sums ψ(x, k) =
∑k

j=1

x(j)√
k

, which are shown in Figure 4.3 (b). Here the opti-

mal m = arg maxk ψ(x, k) is relatively low (m = 2). In Figure 4.3 (c), I randomly rotate

the data and show the sorted values of RTx, which become more uniform. Finally, in

Figure 4.3 (d), I show ψ(RTx, k). The Hamming weight m after this random rotation

becomes much higher (m = 25). This effect is typical: the average of m over 1000 random

60

rotations for this example is 27.36. Thus, even randomly rotating the data tends to lead

to finer Voronoi cells and reduced quantization error. Next, it is natural to ask whether

we can optimize the rotation of the data to increase the cosine similarities between data

points and their corresponding binary landmarks.

I seek a d × d orthogonal transformation R such that the sum of cosine similarities

of each transformed data point RTxi and its corresponding binary landmark bi is max-

imized. Note that after rotation, RTxi may contain negative values but this does not

affect the quantization since the binarization technique described in Algorithm 1 effec-

tively suppresses the negative values to 0. Let B ∈ {0, 1}d×n denote a matrix whose

columns are given by the bi. Then the objective function for my optimization problem

is given by

Q(B,R) = arg max
B,R

n∑
i=1

bTi
‖bi‖2

RTxi s. t. bi ∈ {0, 1}d, RTR = Id, (4.2)

where Id denotes the d× d identity matrix.

The above objective function still yields a d-bit binary code for d-dimensional data,

while in many real-world applications, a low-dimensional binary code may be preferable.

To generate a c-bit code where c < d, I can learn a d × c projection matrix R with

orthogonal columns by optimizing the following modified objective function:

Q(B,R) = arg max
B,R

n∑
i=1

bTi
‖bi‖2

RTxi
‖RTxi‖2

s. t. bi ∈ {0, 1}c, RTR = Ic. (4.3)

Note that to minimize the angle after a low-dimensional projection (as opposed to a rota-

61

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sorted index (k)

da
ta

 v
al

ue
 x

(k
)

(a)

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

sorted index (k)
Ψ

(x
,k

)

m=2

(b)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

sorted index (k)

af
te

r
ro

ta
tio

n
(R

T
x)

(k
)

(c)

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

sorted index (k)

Ψ
(R

T
x,

k)

m=25

(d)

Figure 4.3: Effect of rotation on Hamming weight m of the landmark corresponding to a
particular vector. (a) Sorted vector elements x(k) following Zipf’s law with q = 0.8; (b) Scaled
cumulative sum ψ(x, k); (c) Sorted vector elements after random rotation; (d) Scaled cumulative
sum ψ(RTx, k) for the rotated data. See text for discussion.

62

tion), the denominator of the objective function contains ‖RTxi‖2 since after projection

‖RTxi‖2 6= 1. However, adding this new term to the denominator makes the optimization

problem hard to solve. I propose to relax it by optimizing the linear correlation instead

of the angle:

Q(B,R) = arg max
B,R

n∑
i=1

bTi
‖bi‖2

RTxi s. t. bi ∈ {0, 1}c, RTR = Ic. (4.4)

This is similar to eq. (4.2) but the geometric interpretation is slightly different: I am now

looking for a projection matrix R to map the d-dimensional data to a lower-dimensional

space such that after the mapping, the data has high linear correlation with a set of land-

mark points lying on the lower-dimensional hypersphere. Section 4.2 will demonstrate

that this relaxation works quite well in practice.

4.1.3 Optimization

The objective function in (4.4) can be written more compactly in a matrix form:

Q(B̃, R) = arg max
B̃,R

Tr(B̃TRTX) s. t. RTR = Ic, (4.5)

where Tr(·) is the trace operator, B̃ is the c× n matrix with columns given by bi/‖bi‖2,

and X is the d × n matrix with columns given by xi. This objective is nonconvex in

B̃ and X jointly. To obtain a local maximum, I use a simple alternating optimization

procedure as follows.

(1) Fix R, update B̃. For a fixed R, eq. (4.5) becomes separable in xi, and I can solve

63

for each bi separately. Here, the individual sub-problem for each xi can be written as

b̂i = arg max
bi

bTi
‖bi‖2

(RTxi). (4.6)

Thus, given a point yi = RTxi in c-dimensional space, I want to find the vertex bi on the

c-dimensional hypercube having the smallest angle with yi. To do this, I use Algorithm

1 to find bi for each yi, and then normalize each bi back to the unit hypersphere: b̃i =

bi/‖bi‖2. This yields each column of B̃. Note that the B̃ found in this way is the global

optimum for this subproblem.

(2) Fix B̃, update R. When B̃ is fixed, I want to find

R̂ = arg max
R

Tr(B̃TRTX) = arg max
R

Tr(RTXB̃T) s. t. RTR = Ic. (4.7)

This is a well-known problem and its global optimum can be obtained by polar decom-

position (Chen et al., 2011). Namely, I take the SVD of the d × c matrix XB̃T as

XB̃T = USV T , let Uc be the first c singular vectors of U , and finally obtain R = UcV
T .

The above formulation involves solving two sub-problems in an alternating fashion.

The first subproblem is an integer program, and the second one has non-convex orthog-

onal constraints. However, in each iteration the global optimum can be obtained for

each sub-problem as discussed above. So, each step of the alternating method is guar-

anteed to increase the objective function. In practice, one needs only a few iterations

(less than five) for the method to converge. The optimization procedure is initialized by

first generating a random binary matrix by making each element 0 or 1 with probability

64

1
2
, and then normalizing each column to unit norm. Note that the optimization is also

computationally efficient. The first subproblem takes O(nc log c) time while the second

one takes O(dc2). This is linear in data dimension d, which enables us to handle very

high-dimensional feature vectors.

4.1.4 Computation of cosine Similarity between Binary Codes

We use the cosine similarity between binary codes introduced in Section 2.1.2 as the

similarity measure. The cosine similarity between two binary codes can also be very

efficiently computed using CPU efficient operations.

4.2 Experiments

4.2.1 Datasets and Protocols

To test the effectiveness of the proposed Angular Quantization-based Binary Codes

(AQBC) method, I have conducted experiments on two image datasets and one text

dataset. The first image dataset is SUN, which contains 142,169 natural scene images

(Xiao et al., 2010). Each image is represented by a 1000-dimensional bag of visual words

(BoW) feature vector computed on top of dense SIFT descriptors. The BoW vectors

are power-normalized by taking the square root of each entry, which has been shown to

improve performance for recognition tasks (Perronnin et al., 2011).

The second dataset contains 122,530 images from ImageNet (Deng et al., 2009),

each represented by a 5000-dimensional vector of locality-constrained linear coding (LLC)

features (Wang et al., 2010c), which are improved versions of BoW features. Dense SIFT

65

is also used as the local descriptor in this case.

The third dataset is 20 Newsgroups,2 which contains 18,846 text documents and

26,214 words. Tf-idf weighting is used for each text document BoW vector. The fea-

ture vectors for all three datasets are sparse, non-negative, and normalized to unit L2

norm. Due to this, Euclidean distance directly corresponds to the cosine similarity as

dist2 = 2 − 2 sim. Therefore, in the following, I will talk about similarity and distance

interchangeably.

To perform evaluation on each dataset, I randomly sample and fix 2000 points as

queries, and use the remaining points as the “database” against which the similarity

searches are run. For each query, I define the ground truth neighbors as all the points

within the radius determined by the average distance to the 50th nearest neighbor in

the dataset, and plot precision-recall curves of database points ordered by decreasing

similarity of their binary codes with the query. This methodology is similar to our

protocol in Chapter 3, and to that of other recent works (Raginsky and Lazebnik, 2009;

Weiss et al., 2008). Since my AQBC method is unsupervised, I compare with several

state-of-the-art unsupervised binary coding methods: Locality Sensitive Hashing (LSH)

(Charikar, 2002), Spectral Hashing (Weiss et al., 2008), ITQ (Chapter 3), Shift-invariant

Kernel LSH (SKLSH) (Raginsky and Lazebnik, 2009), and Spherical Hashing (SPH) (Heo

et al., 2012). Although these methods are designed to work with the Euclidean distance,

they can be directly applied here since all the vectors have unit norm. As in Chapter 3, we

also evaluate the semantic precision for binary codes in this section. For this evaluation,

2http://people.csail.mit.edu/jrennie/20Newsgroups

66

we use ITQ as the main baseline. We follow the experimental protocols mentioned above,

and use precision@50 to evaluate different methods. This metric reports the percentage

of images having the same class label to each query image within its 50 nearest neighbors.

4.2.2 Results on SUN and ImageNet

Precision-recall curves for Euclidean neighbor retrieval on the SUN dataset are shown

in Figure 4.4. For all the code lengths (from 64 to 1000 bits), my method (AQBC)

performs better than other state-of-the-art methods. For a relatively large number of bits,

SKLSH works much better than other methods, while still being worse than mine. It is

interesting to verify how much we gain by using the learned data-dependent quantization

instead of the data-independent naive version (Sec. 4.1.1). Since the naive version can

only learn a d-bit code (1000 bits in this case), its performance (AQBC naive) is shown

only in Figure 4.4 (c). The performance is much worse than that of the learned codes,

which clearly shows that adapting quantization to the data distribution is important in

practice. Figure 4.5 shows results for Euclidean neighbor retrieval on ImageNet. On

this dataset, the strongest competing method is ITQ. For a relatively low number of bits

(e.g., 64), AQBC and ITQ are comparable, but AQBC has a more clear advantage as

the number of bits increases. This is because for fewer bits, the Hamming weight (m)

of the binary codes tends to be small resulting in larger distortion error as discussed in

Sec. 4.1.1. I also found the SPH (Heo et al., 2012) method works well for relatively dense

data, while it does not work very well for high-dimensional sparse data.

Next, I evaluate the semantic retrieval precision on both datasets, and report the

67

code size 16 32 64 128 256 512 1024

ITQ 2.64 3.30 4.22 5.28 5.64 5.91 6.22
AQBC 2.22 2.95 3.58 4.36 5.00 5.97 5.46

Table 4.1: Semantic retrieval results (precision@50) on SUN dataset.

code size 16 32 64 128 256 512 1024

ITQ 6.37 8.33 11.09 12.95 14.09 14.84 15.15
AQBC 5.78 7.44 9.61 11.68 13.12 13.86 14.43

Table 4.2: Semantic retrieval results (precision@50) on ImageNet120K dataset.

results in Table 4.1 and Table 4.2. We can find the proposed AQBC method is usually

slightly worse than ITQ. This suggests that using cosine similarity might not have a very

significant advantage in terms of semantic retrieval on these datasets. The best distance

preserving approach might not be able to lead to the best semantic retrieval performance,

and it depends on specific applications.

4.2.3 Results on 20 Newsgroups

Euclidean neighbor retrieval results on the text features (Figure 4.6) are consistent

with those on the image features. Because the text features are the sparsest and have

the highest dimensionality, I would like to verify whether learning the projection R helps

in choosing landmarks with larger m as conjectured in Sec. 4.1.2. The average empirical

distribution over sorted vector elements for this data is shown in Figure 4.7 (a) and the

scaled cumulative sum in Figure 4.7 (b). It is clear that vector elements have a rapidly

decaying distribution, and the quantization leads to codes with low m implying higher

quantization error. Figure 4.7 (c) shows the distribution of entries of vector RTx, which

68

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(a) 64 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(b) 256 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC
AQBC naive

(c) 1000 bits.

Figure 4.4: Precision-recall curves for different methods on the SUN dataset.

69

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(a) 64 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(b) 256 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(c) 1024 bits.

Figure 4.5: Precision-recall curves for different methods on the ImageNet120K dataset.

70

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(a) 64 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(b) 256 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

ITQ
LSH
SKLSH
SH
SPH
AQBC

(c) 1024 bits.

Figure 4.6: Precision-recall curves for different methods on the 20 Newsgroups dataset.

decays more slowly than the original distribution in Figure 4.7 (a). Figure 4.7 (d) shows

the scaled cumulative sum for the projected vectors, indicating a much higher m.

I also evaluate semantic retrieval results on this dataset, and results are reported

in Table 4.3. Unlike in Section 4.3.2, the proposed AQBC method works better than

ITQ on this dataset for code sizes of up to 256 bits. Once again, this underscores the

dataset-dependent nature of the effectiveness of cosine similarity for semantic retrieval.

71

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sorted index (k)

da
ta

 v
al

ue
 (

x (k
))

(a)

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sorted index (k)
Ψ

(x
,k

)

m=37

(b)

0 200 400 600 800 1000
−0.04

−0.02

0

0.02

0.04

0.06

0.08

sorted index (k)

ro
ta

te
d

da
ta

 (
R

T
x)

(k
)

(c)

0 200 400 600 800 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

sorted index (k)

Ψ
(R

T
x,

k)

m=304

(d)

Figure 4.7: Effect of projection on Hamming weightm for 20 Newsgroups data. (a) Distribution
of sorted vector entries, (b) scaled cumulative function, (c) distribution over vector elements
after learned projection, (d) scaled cumulative function for the projected data. For (a, b) I show
only top 1000 entries for better visualization. For (c, d), I project the data to 1000 dimensions.

72

code size 16 32 64 128 256 512 1024

ITQ 48.20 56.08 59.22 57.46 57.28 58.03 58.55
AQBC 54.92 60.37 59.84 59.89 58.14 58.00 58.52

Table 4.3: Semantic retrieval results (precision@50) on 20 Newsgroups dataset.

(a) Code generation time (b) Retrieval time
code size SH LSH ITQ SKLSH SPH AQBC Hamming cosine

64 bits 2.20 0.14 0.14 0.33 0.21 0.14 + 0.09 = 0.23 2.4 3.4
512 bits 40.38 3.66 3.66 5.81 3.94 3.66 + 0.55 = 4.21 15.8 20.4

Table 4.4: Timing results. (a) Average binary code generation time per query (milliseconds) on
5000-dimensional LLC features. For the proposed AQBC method, the first number is projection
time and the second is quantization time. (b) Average time per query, i.e., exhaustive similarity
computation against the 120K ImageNet images. Computation of Euclidean distance on this
dataset takes 11580 ms.

4.2.4 Timing

Table 5.1 compares the binary code generation time and retrieval speed for different

methods. All results are obtained on a workstation with 64GB RAM and 4-core 3.4GHz

CPU. My method involves linear projection and quantization using Algorithm 1, while

ITQ and LSH only involve linear projections and thresholding. SPH involves Euclidean

distance computation and thresholding. SH and SKLSH involve linear projection, nonlin-

ear mapping, and thresholding. The results show that the quantization step (Algorithm

1) of my method is fast, adding very little to the coding time. The coding speed of my

method is comparable to that of LSH, ITQ, SPH, and SKLSH. As shown in Table 5.1(b),

computation of cosine similarity is slightly slower than that of Hamming distance, but

both are orders of magnitude faster than Euclidean distance.

4.3 Discussion

73

In this chapeter, I have introduced a novel AQBC method for generating binary codes

for non-negative frequency/count data. Such data appears very frequently in computer

vision and text retrieval applications. This approach extends the ITQ approach proposed

in the previous chapter, and is specifically designed for exploring the nonnegative dis-

tribution of the histogram data. Retrieval results on high-dimensional image and text

datasets have demonstrated that the proposed codes accurately approximate neighbors

in the original feature space according to cosine similarity.

However, I have also found one potential limitation of this approach: its semantic

retrieval accuracy varies on different datasets. On two image datasets, AQBC works

slightly worse than ITQ, and on the 20 Newsgroups text dataset, it works considerably

better than ITQ. This suggests that for different datasets, different similarity measure

might have a very big impact to semantic retrieval performance. It remains an open

problem to investigate what kind of metric is best for different kinds of data and features.

The methods I have presented in Chapters 3 and 4 can at most handle data with tens

of thousands of dimensions. However, in the vision community, for certain applications,

we need to use descriptors with hundreds of thousands or even millions of dimensions

(Perronnin et al., 2010b,a). In the next chapter, I will present an algorithm that explores

bilinear projections to handle such data efficiently.

74

CHAPTER 5: Bilinear Hashing for Very High-dimensional Data

To perform well on datasets such as ImageNet, extremely high-dimensional descriptors

are required, such as the Fisher Vector (FV) (Perronnin and Dance, 2007; Perronnin et al.,

2010b, 2011; Sanchez and Perronnin, 2011), Vector of Locally Aggregated Descriptors

(VLAD) (Jégou et al., 2010), or Locally Linear Codes (LLC) (Wang et al., 2010c). This

chapter focuses on learning high-dimensional binary codes that represent such descriptors

with high fidelity. Including the two methods presented in previous chapters, there has

been lots of work on learning compact binary codes (Gong and Lazebnik, 2011b; He et al.,

2011; Heo et al., 2012; Kulis et al., 2009; Kulis and Grauman, 2009; Liu et al., 2011;

Norouzi and Fleet, 2012; Norouzi et al., 2012a; Raginsky and Lazebnik, 2009; Torralba

et al., 2008b; Wang et al., 2010a; Weiss et al., 2008), but most existing methods can only

handle relatively low-dimensional descriptors such as GIST (Oliva and Torralba, 2001),

which are not sufficient for state-of-the-art applications.

In this chapter, I focus on descriptors having tens or hundreds of thousands of di-

mensions and seek to convert them to long binary strings. This motivation seems to

be counter-intuitive, as in the previous chapters, I have focused on learning extremely

short codes. However, as shown in Figure 5.1 (a), for relatively high-dimensional descrip-

tor, short codes are far from satisfactory performance (similar findings were reported in

Perronnin et al. (2010b); Sanchez and Perronnin (2011)). As discussed in Chapter 2, a

common step of many binary coding methods is performing a linear projection of the

16 64 256 1000 4000 16000 64000
0

0.2

0.4

0.6

0.8

1

code size

R
ec

al
l@

50

ITQ
Proposed

(a) NN search recall.

16 64 256 1000 4000 16000 64000

10
−1

10
1

10
3

10
5

code size

m
em

or
y

(M
B

)
fo

r
pr

oj
ec

tio
ns

ITQ (tractable)
ITQ (intractable)
Proposed

(b) Storage of projections.

Figure 5.1: Example on 50K Flickr images with 64,000 dimensional VLAD descriptor. (a)
recall of 10NN at top 50 retrieved neighbors using binary codes with different code size.
Short codes produced by ITQ do not work well, and cannot scale to higher dimensional
codes. The proposed method can easily produce long binary codes that works as well as
the original descriptor. (b) comparison of model storage (log scale). The storage rotation
matrix by ITQ can easily become intractable while the proposed approach maintains very
small model storage.

data (e.g., PCA or a Gaussian random projection). However, due to the high dimension-

ality of both the input feature vector and the resulting binary string, the storage and

computation requirements for even a random projection matrix become extreme. For

example, a 64, 000 × 64, 000 random projection matrix takes roughly 16GB of memory

and the projection step takes more than one second. As shown in Figure 5.1 (b), when

the dimensionality goes higher, the storage of the projection matrix can easily become

intractable. In other words, all the RAM is wasted storing the model parameters, and

there are no space left for data. Methods that require the projection matrix to be learned,

such as ITQ (Chapeter 3) and AQBC (Chapter 4), become even more infeasible, since

their training time scales cubically in the number of bits.

There are a few works on learning compact representations for high-dimensional de-

76

scriptors such as FV. For example, Perronnin et al. (2011) have investigated a few basic

methods, including simply thresholding the descriptor, LSH and SH. A more powerful

method is PQ (Section 2.1.3), which has produced state-of-the-art results for compress-

ing FV for large-scale image classification (Sanchez and Perronnin, 2011). As discussed

in Jégou et al. (2010), a random rotation is usually performed prior to PQ as a prepro-

cessing step. I will show in my experiments that, for high-dimensional descriptors whose

variance is highly imbalanced, the good performance of PQ heavily relies on this random

rotation, which is very expensive for high-dimensional data.

In Section 5.1, I first present a method for generating binary codes for high-dimensional

descriptors via a random bilinear projection. This method takes advantage of the natural

two-dimensional structure of descriptors such as FV, VLAD, and LLC and is inspired by

bilinear models used for other applications (Pirsiavash et al., 2009; Schönemann, 1968;

Ye et al., 2004). My bilinear formulation uses two small projection matrices to implicitly

represent a bigger projection matrix. Next, I propose a method for efficiently learning

the projection matrices from data. Section 5.2 demonstrates the promise of my method,

dubbed bilinear projection-based binary codes (BPBC), through experiments on two large-

scale datasets. For most scenarios I consider, BPBC produces little or no degradation in

performance compared the original continuous descriptors; furthermore, it matches the

accuracy of PQ codes, while having much lower running time and storage requirements

for code generation.

This work was originally published in (Gong et al., 2013b)

77

5.1 Bilinear Binary Codes

Most high-dimensional descriptors have a natural matrix or tensor structure. For

example, the matrix representation of a Fisher Vector has dimensionality k× 2l, where k

is the visual vocabulary size and l is the dimensionality of the local image features (the

most common choice is SIFT with l=128). An LLC descriptor with s spatial bins can be

represented as a k×s matrix. A HOG descriptor is a two-dimensional grid of histograms,

and this structure has been exploited for object detection (Pirsiavash et al., 2009).

Let x ∈ Rd denote our descriptor vector, and assume we can reorganize it as a d1×d2

matrix, with d = d1d2:

x ∈ Rd1d2×1 7→ X ∈ Rd1×d2 . (5.1)

As discussed above, the dimensions of visual descriptors adhere to some physical inter-

pretation, and the reorganization of the vectors into matrices must be based on these

interpretations (I have also tried to randomly reorganize the vectors into matrices, but

this produced inferior performance). I also assume that each vector x ∈ Rd is zero-

centered and has unit norm, as L2 normalization is widely used to preprocess visual

features and can usually improve performance (Perronnin et al., 2010b). In other words,

I assume my data is sampled on the high-dimensional hyper-sphere. I first discuss a

randomized method to obtain d-bit bilinear binary codes and then explain how to learn

data-dependent codes in Section 5.1.1. The method for learning reduced-dimension codes

will be discussed in Section 5.1.2.

78

To convert a descriptor x ∈ Rd to a d-dimensional binary string, I first consider the

framework of Chapter 3 that applies a random rotation R ∈ Rd×d to x:

H(x) = sgn(RTx). (5.2)

However, as discussed above, this operation is very expensive when d is large. Instead,

since x can be represented as a matrix X ∈ Rd1×d2 , to encode it efficiently, I propose a

bilinear formulation using two random orthogonal matrices R1 ∈ Rd1×d1 and R2 ∈ Rd2×d2 :

H(X) = vec
(

sgn(RT
1XR2)

)
, (5.3)

where vec(·) vectorizes its argument by concatenating its columns.

It is easy to show that applying a bilinear rotation to X ∈ Rd1×d2 is equivalent to

applying a rotation matrix of d1d2 dimensions to vec(X). This rotation is given by

R̂ = R2 ⊗R1, where ⊗ denotes the Kronecker product:

vec(RT
1XR2) = (RT

2 ⊗RT
1) vec(X) = R̂T vec(X)

follows from the properties of the Kronecker product (Laub, 2004). Another basic prop-

erty of the Kronecker product is that if R1 and R2 are orthogonal matrices, then R2⊗R1

is orthogonal as well (Laub, 2004). Thus, a bilinear rotation is simply a special case

of a full rotation, such that the full rotation matrix R̂ can be reconstructed from two

smaller matrices R1 and R2. While the degree of freedom of the bilinear rotation is more

79

restricted than that of a full rotation, the projection matrices are much smaller, and the

projection speed is much faster. In terms of time complexity, performing a full rotation

on x takes O((d1d2)
2) time, while the approach is O(d21d2 + d1d

2
2). In terms of space

for projections, full rotation takes O((d1d2)
2), and the approach only takes O(d21 + d22).

For example, as will be shown in Section 5.2.4, for a 64,000-dimensional vector, a full

rotation will take roughly 16GB of RAM, while the bilinear rotations only take 1MB of

RAM. The projection time for a full rotation is more than 1 second, vs. only 3 ms for

bilinear rotations.

5.1.1 Learning Bilinear Binary Codes

In this section, I present a method to learn the rotations R1 and R2 inspired by the

two-sided Procrustes analysis (Schönemann, 1968) and the methods of Chapter 3 and

Chapter 4. In Section 5.2.2, I will extend this method to learning of lower-dimensional

projection matrices.

Following Chapter 3 and Chapter 4, we want to find a rotation R̂ such that the angle

θi between a rotated feature vector R̂Txi = vec(RT
1XiR2) and its binary encoding (geo-

metrically, the nearest vertex of the binary hypercube), sgn(R̂Tx) = vec(sgn(RT
1XiR2)),

80

is minimized. Given N training points, we want to maximize the cosine of angle

∑N

i=1
cos(θi)

=
∑N

i=1

(
sgn(R̂Txi)

T

√
d

(R̂Txi)

)
(5.4)

=
∑N

i=1

(
vec(sgn(RT

1XiR2))
T

√
d

vec(RT
1XiR2)

)
=

1√
d

∑N

i=1

(
vec(Bi)

T vec(RT
1XiR2)

)
=

1√
d

∑N

i=1
tr(BiR

T
2X

T
i R1), (5.5)

where Bi = sgn(RT
1XiR2). Notice that (5.4) involves the large projection matrix R̂ ∈

Rd×d, direct optimization of which is challenging. However, after reformulation into

bilinear form (5.5), the expression only involves the two small matrices R1 and R2.

Letting B = {B1, . . . , BN}, my objective function is as follows:

Q(B, R1, R2) = max
B,R1,R2

N∑
i=1

tr(BiR
T
2X

T
i R1) (5.6)

s. t. Bi ∈ {−1,+1}d1×d2 , RT
1R1 = I, RT

2R2 = I.

This optimization problem can be solved by block coordinate ascent by alternating be-

tween the different variables {B1, . . . , BN}, R1, and R2. The update steps for each

variable are described below, assuming the others are fixed.

(S1) Update Bi. It is easy to check that the above program is independent for each Bi

81

when R1 and R2 are fixed. Thus we can solve for each Bi separately. I have

Q(Bi) = tr(BiR
T
2X

T
i R1) =

∑d1
k=1

∑d2
l=1B

kl
i Ṽ

lk
i , (5.7)

where Ṽ lk
i denote the elements of Ṽi = RT

2X
T
i R1. Q(Bi) is maximized by Bi = sgn(Ṽ T

i).

Each Bi is updated in this way independently.

(S2) Update R1. Expanding (5.6) with R2 and Bi fixed, we have the following:

Q(R1) =
∑N

i=1
tr(BiR

T
2X

T
i R1) (5.8)

= tr
(∑N

i=1
(BiR

T
2X

T
i)R1

)
= tr(D1R1) ,

where D1 =
∑N

i=1(BiR
T
2X

T
i). The above expression is maximized with the help of polar

decomposition:

R1 = V1U
T
1 , (5.9)

where D1 = U1S1V
T
1 is the SVD of D1.

(S3) Update R2:

Q(R2) =
∑N

i=1
tr(BiR

T
2X

T
i R1) (5.10)

=
∑N

i=1
tr(RT

2X
T
i R1Bi)

= tr
(
RT

2

∑N

i=1
(XT

i R1Bi)
)

= tr(RT
2D2) ,

where D2 =
∑N

i=1(X
T
i R1Bi). Analogously to the update rule for R1, the update rule for

82

R2 is:

R2 = U2V
T
2 , (5.11)

where D2 = U2S2V
T
2 is the SVD of D2.

We cycle between these updates for several iterations to obtain a local maximum.

The convergence of the above program is guaranteed in a finite number of iterations as

the globally optimal solution of each step is exactly obtained, each step is guaranteed not

to decrease the objective function value, and the objective is bounded from above. In my

implementation, I initialize R1 and R2 by random rotations, and use 3 iterations. I have

not found significant improvement of performance by using more iterations. The time

complexity of this program is O(N(d31 + d32)) where d1 and d2 are typically fairly small

(e.g., d1 = 128, d2 = 500). Figure 5.2 visualizes the structure of a VLAD descriptor and

the corresponding binary code before and after a learned bilinear rotation.

5.1.2 Learning with Dimensionality Reduction

The optimization method of the previous section is used to produce a d-dimensional

binary code from a d-dimensional feature vector. However, in many applications we want

be able to moderately reduce the dimensionality so as to reduce storage and processing

time, but still preserve enough discriminative power. This can be done by a simple

modification of (5.4). To produce a code of size c = c1 × c2, where c1 < d1 and c2 < d2,

I now look for projection matrices R1 ∈ Rd1×c1 , R2 ∈ Rd2×c2 such that RT
1R1 = I and

RT
2R2 = I. Each Bi is now a c1 × c2 binary variable. Consider the cosine of the angle

83

visual codewords

S
IF

T
 d

im
en

si
on

s

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(a) Original VLAD descriptor

visual codewords

S
IF

T
 d

im
en

si
on

(b) Sign of original descriptor

visual codewords

S
IF

T
 d

im
en

si
on

s

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(c) Bilinearly rotated VLAD

visual codewords

S
IF

T
 d

im
en

si
on

s

(d) Bilinearly rotated binary codes

Figure 5.2: Visualization of the distribution of the VLAD descriptor. I only show the top
32 SIFT dimensions and top 32 visual codewords. For (a) and (b), we can clearly find
some codewords have higher weights than others, and directly taking the sign will drop
the codewords with lower weights. In (c) and (d), the weights are much more uniform
after rotation, and after thresholding, the bit selection are much more informative.

84

between a lower-dimensional projected vector R̂Txi and its binary encoding, given by

sgn(R̂Tx):

cos(θi) =
sgn(R̂Txi)

T

√
c

R̂Txi

‖R̂Txi‖2
,

where R̂ ∈ Rd1d2×c1c2 and R̂T R̂ = I. This formulation differs from that of (5.4) in that it

contains ‖R̂Txi‖2 in the denominator, which makes the optimization hard as discussed

in Chapter 4. Instead, I follow Chapter 4 to define a relaxed objective function based on

the sum of linear correlations

Q(B, R1, R2) =
∑N

i=1

(
sgn(R̂Txi)

T

√
c

(R̂Txi)

)
.

The optimization framework for this objective is similar to that of Section 5.1.1: rewrite

R̂ as R̂ = R2 ⊗ R1, and efficiently solve for R1 and R2. For the three alternating

optimization steps, step (S1) remains the same. For steps (S2) and (S3), I compute the

SVD of Dk, k = 1, 2 as Dk = UkSkV
T
k , and let Rk be

R1 = V̂1U
T
1 , R2 = Û2V

T
2 , (5.12)

where V̂1 is the top c1 singular vectors of V1 and Û2 is the top c2 singular vectors of U2.

To initialize the optimization, I generate ck random orthogonal directions.

In this work, I adopt the lower-bounded asymmetric distance proposed in (Dong et al.,

2008) to measure the distance between the query and binary codes. This metric has been

85

introduced in Section 2.1.1, which can be computed efficiently using lookup tables.

5.2 Experiments

5.2.1 Datasets and Features

I test my proposed approach, bilinear projection-based binary codes (BPBC), on two

widely used large-scale image datasets. The first one is the INRIA Holiday dataset with

1M Flickr images (referred to as Holiday+Flickr1M) (Jégou et al., 2008). There are

1419 images in the Holiday dataset corresponding to 500 different scene instances, and

each instance has three images on average. There is a set of 500 query images, and the

remaining 919 images together with 1 million Flickr images are used as the database. I

use the SIFT features of interest points provided by Jégou et al. (2010), and cluster them

to 500 k-means centers. Then I represent each image by a 128×500 = 64, 000 dimensional

VLAD feature vector. The vectors are power normalized (element wise square root) and

L2-normalized as in (Perronnin et al., 2010b). Some sample images from Holiday dataset

are shown in Figure 5.3.

The second dataset is the ILSVRC2010 subset of ImageNet (Deng et al., 2009),

which contains 1.2M images and 1000 classes. On this dataset, I use the publicly available

SIFT features, which are densely extracted from the images at three different scales. I

cluster the features into 200 centers, and then aggregate them into dense VLAD feature

vectors of 25, 600 dimensions. These vectors are also power- and L2-normalized. In

addition, to evaluate my method on diverse feature types, I compute LLC features (Wang

86

Figure 5.3: Sample images from Holiday dataset.

87

et al., 2010c) on this dataset using a 5,000-dimensional visual codebook and a three-

level spatial pyramid. This results in a 105,000-dimensional feature vector that can be

naturally reorganized into a 5, 000 × 21 matrix. The statistics of VLAD and LLC are

very different from each other – the former are dense and have both positive and negative

values, while the latter are nonnegative and sparse. As a preprocessing step, I zero-center

the LLC descriptors and L2-normalize them (I have found no need to zero-center VLAD,

since they are already approximately zero-centered).

5.2.2 Experimental Protocols

To learn binary codes using the methods of Sections 5.1.1 and 5.1.2, I randomly

sample 20,000 images from each dataset as training set. To compare different methods,

I sample a set of images as queries, and use the rest as the database against which the

queries are run. For nearest neighbor search experiments, I define ground truth neighbors

as the top 10 nearest neighbors for each query based on original descriptors, and report

the recall of 10NN for different numbers of retrieved data points based on binary codes,

which follows the methodology of Jégou et al. (2010, 2008).

In addition, I evaluate the accuracy of different methods on semantic retrieval and

recognition tasks. For Holiday+Flickr1M, I report instance-level image retrieval per-

formance, and use the standard mean average precision (mAP) to evaluate retrieval

accuracy. For ILSVRC2010, I report precision@k as in Chapter 3, which evaluates the

precision of top k retrieved images in terms of semantic class labels. Finally, I perform

image classification experiments on the ILSVRC2010 dataset.

88

In this chapter, I will use both Hamming distance (symmetric distance, SD) and the

asymmetric distance (ASD, see Section 2.1.1) for evaluation. This is mainly because PQ

heavily relies on ASD, and to ensure a fair comparison, we also use both metrics for

binary codes in this chapter.

5.2.3 Baseline Methods

My main baseline is PQ, which is the state-of-the-art approach for encoding high-

dimensional descriptors. PQ groups the data dimensions in batches of size s and quantizes

each group with k codebook centers. In my experiments, I use s = 8 and k = 256

following Jégou et al. (2010). In practice, a random rotation is usually applied to the

data prior to PQ in order to balance the variance of different dimensions. This will be

referred to as RR+PQ in the following. At query time, PQ uses asymmetric distance

to compare an uncompressed query point to quantized database points. Namely, the

distances between the the code centers and corresponding dimensions of the query are

first computed and stored in a lookup table. Then the distances between the query and

database points are computed by table lookup and summation.

Besides PQ, I also consider LSH and the α = 0 binarization scheme proposed in

(Perronnin et al., 2011), which simply takes the sign of data (0 still maps to 0). Methods

like ITQ are not appropriate as baselines here because they scale poorly to the high-

dimensional data used in my experiments (as demonstrated in Figure 5.1).

89

Feature dim. LSH PQ RR+PQ BPBC

128×10 0.12 2.8 2.92 0.08
128×100 9.35 26.5 35.85 0.54
128×200 29.14 47.3 76.44 0.86
128×500 186.22 122.3 308.52 3.06
128×1000 – 269.5 – 9.53

Table 5.1: Code generation time (ms) for LSH, PQ, and my bilinear method. The VLAD
feature dimension is l × k.

Feature dim. LSH PQ RR+PQ BPBC

128×10 6.25 1.25 7.50 0.063
128×100 625 12.5 637 0.10
128×200 2500 25.0 2525 0.22
128×500 15625 62.5 15687 1.02
128×1000 62500 125 62625 3.88

Table 5.2: Memory (MB) needed to store the projections (or codebooks), assuming each
element is a float. The VLAD feature dimension is l × k.

5.2.4 Code Generation Time and Storage

First, I evaluate the scalability of my method compared to LSH, PQ, and RR+PQ

for converting d-dimensional vectors to d-bit binary strings. All running times are eval-

uated on a machine with 24GB RAM and 6-core 2.6GHz CPU. Table 5.1 reports code

generation time for different VLAD sizes, and Table 5.2 reports the memory require-

ments for storing the projection matrix. For relatively low-dimensional data, LSH can

still efficiently perform the projection step, while for higher-dimensional data (128×1000

descriptor size), the d × d projection matrix used in LSH and RR+PQ takes 61GB, so

it cannot be stored in the RAM of most machines and it is extremely hard to perform

operations on it. My bilinear formulation is orders of magnitude faster in terms of pro-

90

jection time, and the projection matrices are very small. PQ without random rotation

is much more scalable, but my method still has the lowest time and memory overhead

(plus, as my subsequent experiments will show, PQ without random rotation can fail on

some datasets).

5.2.5 Retrieval on Holiday+Flickr1M

I report the results on the Holiday+Flickr1M dataset with 64,000-dimensional VLAD.

I use the predefined 500 Holiday queries, which are guaranteed to have close neighbors

(image from the same instance) in the database. For 64,000-dimensional features, evalu-

ating RR+PQ is prohibitively expensive, so instead I try to combine the bilinear rotation

with PQ (denoted as BR+PQ). For BPBC with dimensionality reduction (Section 5.1.2),

I use bilinear projections R1 ∈ R500×400, R2 ∈ R128×80. This reduces the dimensionality

in half.

Figure 5.4 (a) shows the recall of 10NN with different numbers of retrieved images.

Surprisingly, PQ without rotation fails on this dataset; BR+PQ is slightly better, but

is still disappointing. This is due to many Flickr images being relatively blank (e.g.,

sky and sea images) and having few interest points, which leads to VLAD with entries

that are mostly zero, which in turn results in significantly imbalanced distribution which

hampers PQ quantization. Bilinear rotation appears to be insufficient to fully balance

the variance in this case, and performing the full random rotation is too expensive.1

1Jégou et al. (2010) report relatively strong performance for RR+PQ on Holiday+Flickr1M, but they
use lower-dimensional VLAD (d = 2, 048 and d = 8, 192) followed by PCA compression to 32-128
dimensions. These parameter settings are motivated by the goal of (Jégou et al., 2010) to produce
extremely compact image codes. By contrast, my goal is to produce higher-dimensional codes that do

91

bits SD (binary) ASD (binary) ASD (PQ) Eucl. (est.)

12,800 0.33 4.48 4.59 ∼120
25,600 0.60 11.29 11.28 ∼241

Table 5.3: Retrieval time per query (seconds) on ILSVRC2010 dataset with 1.2M images
and different code sizes. This is the time to perform exhaustive computation of distances
from the query to all the 1.2M images in the database. For Euclidean distance, the
original descriptors do not fit in RAM, so the timing is extrapolated from a smaller
number of distance computations. The actual timing is likely to be higher due to file
I/O.

However, as will be shown next, BR+PQ works similarly to RR+PQ on ILSVRC2010,

all of whose images are object-centric and have much more balanced descriptors to begin

with. On the other hand, all versions of BPBC show good performance. For a code size

of d/2, learned rotation works much better than random, while for the full-dimensional

BPBC, learned and random rotations perform similarly. Asymmetric distance (ASD)

further improves the recall over symmetric distance (SD).

Next, Figure 5.4 (b) reports instance-level image retrieval accuracy measured by mean

average precision (mAP), or the area under the recall-precision curve. Both learned

and random BPBC work very well, and can produce comparable results to the original

descriptor. PQ without rotation works poorly, and BR+PQ is more reasonable, but still

worse than BPBC. This is consistent with the results of Figure 5.4.

92

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of retrieved points

R
ec

al
l

BPBC (learned, ASD)
BPBC (learned, SD)
BPBC (random, SD)
BPBC (learned, SD, 1/2)
BPBC (random, SD, 1/2)
sign (SD)
BR + PQ (ASD)
PQ (ASD)

(a) Recall of 10NN.

Method Rate mAP

VLAD (float) 1 39.0

α = 0 (SD) 32 25.6
PQ (with bilinear rotation, ASD) 32 24.0

PQ (w/o rotation, ASD) 32 2.3

BPBC (learned, ASD) 32 40.1
BPBC (learned, SD) 32 40.1
BPBC (random, SD) 32 40.3

BPBC (learned, SD, 1/2) 64 38.8
BPBC (random, SD, 1/2) 64 38.6

(b) Instance image retrieval results.

Figure 5.4: Results on the Holiday+FLickr1M dataset with 64,000-dimensional VLAD.
(a) Recall of 10NN. “Random” refers to the method of eq. (5.3) with two random
matricesand “learned” refers to the methods of Sections 5.1.1 and 5.1.2. “SD” denotes
symmetric (Hamming) distance, and “ASD” denotes asymmetric distance. “1/2” refers
to reducing the code dimensionality to d/2 with the method of Section 5.1.2. (b) Instance-
level retrieval results (mAP). “Rate” is the factor by which storage is reduced compared
to the original descriptors.

93

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of retrieved points

R
ec

al
l

BPBC (learned, ASD)
BPBC (learned, SD)
BPBC (random, SD)
BPBC (learned, SD, 1/2)
BPBC (random, SD, 1/2)
sign (SD)
RR + PQ (ASD)
BR + PQ (ASD)
PQ (ASD)

(a) Recall for 10NN.

Method Rate P@10 P@50

VLAD (float) 1 17.73 7.29

α = 0 (SD) 32 13.15 3.87
PQ (with full rotation, ASD) 32 18.06 7.41

PQ (with bilinear rotation, ASD) 32 16.98 6.96
PQ (w/o rotation, ASD) 32 11.32 3.14

BPBC (learned, ASD) 32 18.01 7.49
BPBC (learned, SD) 32 18.07 7.42
BPBC (random, SD) 32 18.17 7.60

BPBC (learned, SD, 1/2) 64 17.80 7.25
BPBC (random, SD, 1/2) 64 16.85 6.78

(b) Categorical image retrieval results.

Figure 5.5: Results on ILSVRC dataset with 25,600-dimensional VLAD. (a) Recall of
10NN. “Random” refers to the method of eq. (5.3) with two random matrices and
“learned” refers to the methods of Sections 5.1.1 and 5.1.2. “SD” denotes symmetric
(Hamming) distance, and “AS with D” denotes asymmetric distance. “1/2” refers to
reducing the code dimensionality to d/2 with the method of Section 5.1.2. (b) Semantic
precision for different number of retrieved images.

94

5.2.6 Retrieval on ILSVRC2010 with VLAD

As discussed in Section 5.2.1, my VLAD descriptors for the ILSVRC2010 dataset

have dimensionality 25,600. Random rotation for this descriptor size is still feasible,

so I am able to evaluate RR+PQ. I randomly sample 1,000 query images and use the

rest as the database. For BPBC with dimensionality reduction, I construct bilinear

projections R1 ∈ R200×160, R2 ∈ R128×80, which reduces the dimensionality in half. Figure

5.5 (a) displays the recall of 10NN with increasing number of retrieved points for both

descriptor sizes. The basic PQ method on this dataset works much better than on

Holiday+Flickr1M (in particular, unlike in Figure 5.4, it is now better than α = 0).

This is because the images in ILSVRC2010 are textured and contain prominent objects,

which leads to VLAD with fairly balanced variance. Furthermore, RR+PQ is feasible

for the VLAD dimensionality I use on ILSVRC2010. We can see from Figure 5.5 (a)

that the improvement from PQ to RR+PQ is remarkable. In fact, RR+PQ now becomes

comparable to full-dimensional BPBC with asymmetric distance2. Recall from Tables 5.1

and 5.2, however, that BPBC has a much lower memory footprint and a much faster code

generation time than RR+PQ. The relative performance of the other BPBC variants is

the same as in Section 5.2.5.

Next, I evaluate the semantic retrieval accuracy on this dataset. Figure 5.5 (b) shows

not lose discriminative power. Indeed, by raising the dimensionality of the code, I are able to improve
the retrieval accuracy in absolute terms: the mAP for my BPBC setup (Figure 5.4 (b)) is about 0.4 vs.
about 0.2 for the PQ setup of (Jégou et al., 2010).

2In their original work Jégou et al. (2010) have claimed that a random rotation is not needed prior to
PQ. By contrast, I have found for high-dimensional data like VLAD, this operation is very important
to guarantee good performance. This is because the conclusions of Jégou et al. (2010) are mainly drawn
from low-dimensional data like SIFT and GIST, whose variance is roughly balanced.

95

the average precision for top k images retrieved. I can observe that RR+PQ and most

versions of BPBC have comparable precision to the original uncompressed features. In

particular, using ASD as opposed to SD does not give any gains in semantic precision

for my method. This finding points to a potential advantage of my method over PQ for

applications where semantic precision is the main focus: ASD is required for PQ but not

for my method, and I have seen from Table 5.3 that ASD computation is more than ten

times slower than SD.

Table 5.3 compares the retrieval speed for symmetric (Hamming) vs. asymmetric dis-

tance computation for two code sizes. As one would expect, directly performing Hamming

distance using XOR and popcount gives extremely fast retrieval speed. Unlike BPBC

codes, PQ codes cannot be compared using Hamming distance. The speed of ASD for

PQ vs. My method is comparable, and much slower than Hamming distance. However,

note that for binary codes with ASD, one can first use Hamming distance to find a short

list and then do re-ranking with ASD, which will be much faster than exhaustive ASD

computation.

5.2.7 Retrieval on ILSVRC2010 with LLC

To demonstrate that the BPBC method is applicable to other high-dimensional de-

scriptors besides VLAD, I also report retrieval results on the ILSVRC2010 dataset with

LLC features. As discussed in Section 5.2.1, the features have dimensionality 5000×21 =

105000. To reduce dimensionality, I use bilinear projections R1 ∈ R5000×2500, R2 ∈ R21×21,

which yields a code size of 52,500.

96

Figure 5.6 (a) reports the recall for 10NN on this descriptor. Most of the trends

are similar to those of Section 5.2.6. Full-dimensional BPBC with ASD once again has

the best performance, together with BR+PQ (because LLC is my highest-dimensional

descriptor yet, evaluating RR+PQ is once again infeasible). Learned rotation works sig-

nificantly better than the random one. Also, it is interesting to mention that for LLC

feature, one side of the matrix has only 21 dimensions. I have found further reducing the

dimensionality of this side makes the learning unstable, while keeping it as a full rotation

leads to more stable results. Next, Table 5.6 (b) reports the semantic precision analo-

gously to Table 5.5 (b). As in Table 5.5, BR+PQ and different versions of BPBC work

similarly. By comparing Table 5.5 and 5.6 (b), we can see that LLC features have higher

absolute precision than VLAD, which confirms that even extremely high-dimensional

features and codes, far from overfitting, are necessary to obtain better performance on

very large-scale many-category datasets. Figure 5.7 shows some sample image retrieval

results.

5.2.8 Image Classification

Finally, I demonstrate the effectiveness of my proposed codes for image classification

with LIBLINEAR SVM (Fan et al., 2008). Due to the computational overhead of SVM

training and parameter tuning on original descriptors, I randomly sample 100 classes from

the ILSVRC2010 dataset. I use 25,600-dimensional VLAD and five random splits of the

dataset into 50% for training, 25% for validation, and 25% for testing. Following Sanchez

and Perronnin (2011), I sample 200 points per negative class to speed up the training

97

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of retrieved images

R
ec

al
l

BPBC (learned, ASD)
BPBC (learned, SD)
BPBC (random, SD)
BPBC (learned, SD, 1/2)
BPBC (random, SD, 1/2)
sign (SD)
BR + PQ (ASD)
PQ (ASD)

(a) Recall of 10NN.

Method Rate P@10 P@50

VLAD (float) 1 21.50 10.06

sign (SD) 32 10.99 2.58
PQ (with bilinear rotation, ASD) 32 21.41 10.11

PQ (w/o rotation, ASD) 32 12.67 4.20

BPBC (learned, ASD) 32 21.78 10.11
BPBC (learned, SD) 32 21.54 10.11
BPBC (random, SD) 32 21.73 10.35

BPBC (learned, SD, 1/2) 64 21.22 9.96
BPBC (random, SD, 1/2) 64 21.27 9.88
BPBC (learned, SD, 1/5) 160 21.57 10.09
BPBC (random, SD, 1/5) 160 20.93 9.54

(b) Categorical image retrieval results.

Figure 5.6: Retrieval results on ILSVRC dataset with 105,000-dimensional LLC features.
(a) Recall for 10NN. “Random” refers to the method of eq. (5.3) with two random
matrices and “learned” refers to the methods of Sections 5.1.1 and 5.1.2. “SD” denotes
symmetric (Hamming) distance, and “ASD” denotes asymmetric distance. “1/2” refers to
reducing the code dimensionality to d/2 with the method of Section 5.1.2. (b) Categorical
image retrieval precision.

98

Method Rate Classification accuracy

VLAD (float) 1 44.87±0.30

α = 0 32 41.10±0.34
PQ 32 44.05±0.33

RR+PQ 32 44.64±0.13

BPBC (learned) 32 44.34±0.21
BPBC (random) 32 44.27±0.19

BPBC (learned, 1/2) 64 43.06±0.20
BPBC (random, 1/2) 64 41.28±0.20

Table 5.4: Image classification results on 100 classes randomly sampled classes from the
ILSVRC2010 dataset. The set of classes is fixed but results are averaged over five different
training/validation/test splits. The visual feature is 25,600-dimensional VLAD. “Rate”
is the factor by which storage is reduced.

process, which does not sacrifice accuracy too much. For different methods, I validate

the SVM hyperparameter C on a grid of [2 × 10−5, 2 × 102] with order-of-magnitude

increments. Like Sanchez and Perronnin (2011), I train the SVM on PQ decoded vectors

or my binary codes (for 100 classes, all the training data can fit in memory) and test on

un-quantized vectors (after rotation or projection). In particular, as described in Sanchez

and Perronnin (2011), the training data is compressed using PQ and decoded using the

same codebook during LIBLINEAR optimization, and the test data is not compressed.

Thus, SVM training time is comparable for all the methods with the same dimensionality.

Classification results are reported in Table 5.4. The full-dimensional BPBC incurs

very little loss of accuracy over the original features, and the learned and random ro-

tations work comparably. The performance of reduced-dimension BPBC degrades more

noticeably, and the learned projection works better than the random one. RR+PQ

outperforms the best version of BPBC by about 0.3%, but it is not clear whether the

99

difference is statistically significant. Interestingly, PQ without RR still produces reason-

able classification results, while its performance on all other tasks was severely degraded.

Evidently, the SVM training can absorb the quantization error, whereas nearest-neighbor

search without a supervised learning stage cannot. Similar reasoning applies to α = 0

binarization, whose performance is also fairly good for this task.

An interesting question is as follows: instead of starting with d-dimensional data

and reducing the dimensionality to d/2 through binary coding, can we obtain the same

accuracy if we start with d/2-dimensional features and maintain this dimensionality in

the coding step? To answer this question, I perform classification on 12,800-dimensional

VLAD for the same 100 classes and obtain an average accuracy of 43.08%. This is

comparable to the accuracy of my 12,800-dimensional binary descriptor learned from the

25,600-dimensional VLAD. On the other hand, when I learn a 12,800-dimensional code

starting with a 12,800-dimensional VLAD, I get an accuracy of 41.63%. Thus, starting

with the highest possible dimensionality of the original features appears to be important

for learning binary codes with the most discriminative power.

5.3 Discussion

This chapter has presented a novel bilinear formulation for learning binary codes that

exploits the natural two-dimensional structure of many existing descriptors. This work

differs from the ITQ and AQBC methods described in previous chapters in that it targets

learning very high-dimensional binary codes. This is because for applications where very

high-dimensional VLAD descriptors are used, very short codes lead to poor performance.

100

Figure 5.7: Sample image queries on Holiday+Flickr1M and ILSVRC2010 dataset using
proposed BPBC approach.

To my knowledge, this is the first work that provides an efficient learning framework

for generating a high-fidelity binary representation suitable for retrieval and recognition

with extremely high-dimensional descriptors.

This work opens several interesting avenues for future research. As recent progress

in recognition shows that using descriptors with millions of dimensions can lead to even

better performance (Lin et al., 2011; Sanchez and Perronnin, 2011), it will be interesting

to apply the BPBC approach on such data. It will also be interesting to design efficient

indexing structures (e.g., min-hash (Chum et al., 2009)) on top of my high-dimensional

binary codes to enable more efficient retrieval of such descriptors, as well as to explore

101

faster ways to train classifiers. As has already been shown in this chapter, the pro-

posed bilinear projections can also be combined with PQ to improve its robustness and

efficiency.

Chapters 3, 4, and 5 have already presented my three novel approaches for learning

similarity preserving binary codes. In the next chapter, I am going to present applications

for using binary codes to speed up large-scale image retrieval applications in Internet

image collections, as well as for learning semantic binary embeddings for image retrieval.

102

CHAPTER 6: Combining Semantic Embeddings and Binary Codes

Chapters 3-5 have focused on learning binary codes from data in an unsupervised

way, without using labeled data for learning the similarity between images. So far, this

thesis has not addressed whether it is possible to use labeled data to obtain binary codes

that better reflect semantic similarity between images – images belonging to the same

object category having similar binary codes, and images belonging to different object

categories having different binary codes (recall Figure 1.2). In this chapter, I present

two applications that learn semantically consistent binary codes. The underlying idea is

simple: I first use a supervised dimensionality reduction method to learn a semantically

consistent low-dimensional embedding, and then apply binary coding methods on top of

the embedding to obtain binary codes. I show that this approach can lead to very good

accuracy for retrieval in Internet image collections. In particular, the binary codes can

achieve accuracy as high as that of the original real-valued semantic embedding.

The first application I present in Section 6.2 is modeling Internet images with noisy

tags, such as those on Flickr. Some previous works (Wang et al., 2009b,a; Quattoni et al.,

2007; Gong et al., 2013a) have investigated using such data to improve recognition and

retrieval. I adopt the canonical correlation analysis (CCA) (Hotelling, 1936) to learn the

semantic embedding, and then apply ITQ to learn binary codes on top of the embedding.

I found CCA works very well for modeling images and tags, and can lead to significant

performance improvement over unsupervised baselines. In addition, the binary codes

obtained by ITQ work as well as the continuous CCA embedding, but with much smaller

memory footprint and faster retrieval speed.

The second application that I present in Section 6.3 is using ITQ to learn binary

classeme features (Torresani et al., 2010). The idea of classemes is to train large numbers

of visual classifiers and then use their outputs on a new test image as a high-level feature

for novel category recognition. My idea is to first learn the classeme representation, and

then apply ITQ to binarize the embeddings. This chapter is based on my previous work

(Gong et al., 2013c).

6.1 Semantic Binary Codes for Weakly Tagged Data

Weakly tagged data are abundant on the Internet. For example, there are billions

of noisy tagged images on Flickr, and they provide a great source for learning visual

representations. In this section, I show how to learn binary codes in a supervised setting

using CCA, which has proven to be an effective tool for extracting a common latent space

from two views (Foster et al., 2010) and is robust to noise (Blaschko and Lampert, 2008).

CCA learns a joint latent space for images and tags where their correlation is maximized.

We can use this latent space to perform image-to-image and cross-modal retrieval (i.e.,

using text to retrieve images or images to retrieve text).

I assume that each training image descriptor xi ∈ Rd has associated with it a label

vector yi ∈ {0, 1}t, where t is the total number of labels (search keywords, tags) available,

and a given entry of yi is 1 if the image is associated with the corresponding label and 0

otherwise. Note that the labels do not have to be mutually exclusive and may be noisy.

104

The label vectors form the rows of a label matrix Y ∈ {0, 1}n×t. The goal of CCA is

to find projection directions wk and uk for feature and label vectors to maximize the

correlation between the projected data Xwk and Y uk:

C(wk,uk) = wT
kX

TY uk

s.t. wT
kX

TXwk = 1, uTk Y
TY uk = 1 .

Maximizing the above objective function involves solving the following generalized eigen-

value problem to get wk and uk :

S11 S12

S21 S22


w1

u1

 = λ

S11 0

0 S22


w1

u1

 , (6.1)

in which S11 = XTX, S12 = XTY , S22 = Y TY , S21 = Y TX. The leading generalized

eigenvectors of (6.1) then give us a sequence of directions wk and uk that span the

solution space. For a c-bit code, I form projections Ŵ ∈ Rd×c for images and Û ∈ Rt×c

for tags:

Ŵ = [λp1w1, . . . , λ
p
cwc] (6.2)

Û = [λp1u1, . . . , λ
p
cuc], (6.3)

where λpi is the pth power of the corresponding eigenvalues (Chapelle et al., 2002). Then

I can obtain the embeddings for images as V = XŴ , and for tags as T = Y Û . Finally,

105

Visual feature
X

tag
Y

CCA

Embedded
visual feature

V = XW
ITQ Small codes

X

PCA

X Y

Figure 6.1: Logical flow of the PCA+ITQ and CCA+ITQ methods. Projecting the
data with PCA corresponds to the unsupervised binary coding method ITQ described in
Chapter 3, and projecting it with CCA corresponds to the supervised method described
in this chapter.

I use the ITQ method from Chapter 3 to rotate the data in the latent space to obtain

binary codes for images and the tags. A logical flow of the proposed method is shown in

Figure 6.1.

6.1.1 Results on Tiny Images

I first evaluate the proposed combination of CCA with ITQ on the CIFAR and Tiny

images datasets described in Section 3.2.1. Recall from Section 3.2.1 that the CIFAR

dataset comes with manually verified keywords, while the 580,000 Tiny Images subset

comes with noisy keywords that have not been verified by humans. These two different

kinds of annotation allow us to explore the power of the CCA embedding given both

“clean” and “noisy” supervisory information. For the “clean” scenario, I use a setup

analogous to that of Section 3.2.3: namely, I set aside 1000 query images from the

106

CIFAR dataset and use the remaining CIFAR images as the training set and the database

against which the queries are run. The labels in the training set are used to train the

CCA embedding as described above. For the query images, the class labels are used

only for benchmarking. For the “noisy” scenario, I learn the CCA embedding from all

the Tiny Images that are disjoint from the CIFAR dataset using their unverified search

keywords as the supervisory information. Then I apply the resulting embedding to the

CIFAR dataset, split it into query images and reference database as in the clean scenario,

and use the “clean” ground-truth labels for benchmarking.

As a baseline, I use the semi-supervised approach of Wang et al. (2010a), in which

the label information of the n data points is used to construct an n × n matrix S that

modulates the data covariance matrix. I set Sij = 1 if two data points xi and xj have

the same label, and 0 otherwise. Then I find the projection matrix W by taking the

eigendecomposition of XTSX. Note that Wang et al. (2010a), which assumes that few

labeled images are available, regularizes XTSX by adding to it a small multiple of the

covariance matrix XTX. In my case, I have found this regularization to be unneces-

sary. I then take the data-dependent embedding W and perform ITQ refinement. I call

the resulting method SSH-ITQ. Note that in Wang et al. (2010a), the semi-supervised

embedding is combined with nonorthogonal relaxation (SSH-Nonorth), however, just as

in Section 3.2, I have found that SSH-ITQ works better than SSH-Nonorth, so I only

reproduce the SSH-ITQ results here.

Figure 6.2 shows the averaged precision at top 500 retrieved images for the “clean”

and “noisy” versions of the CCA and SSH embeddings. For reference, I also include the

107

16 32 64 128 256

0.2

0.3

0.4

number of bits

P
re

ci
si

on
@

50
0

CCA (clean)
CCA (noisy)
CCA−ITQ (clean)
CCA−ITQ (noisy)
PCA−ITQ
SSH (clean)
SSH (noisy)

Figure 6.2: Average precision for top 500 retrieved images for supervised data embeddings
based on clean and noisy labels.

performance of the unsupervised PCA embedding. We can see that CCA-ITQ with clean

labels achieves the highest performance, while CCA-ITQ with noisy labels still gives a

big improvement over the unsupervised PCA-ITQ. On the other hand, SSH produces

a very small improvement over PCA, and there is almost no difference in the power of

the SSH embeddings learned from clean and noisy data. Finally, Figure 6.3 shows the

results of my methods on some sample queries. We can clearly see that when labels are

incorporated, the results are much more semantically consistent.

6.1.2 Results on NUS-WIDE Dataset

Next, I test my method on the NUS-WIDE dataset (Chua et al., 2009), which is the

largest publicly available multilabel dataset with ground truth annotations. This dataset

108

(a) Query (b) PCA-ITQ (c) CCA-ITQ

Precision: 55.56% Precision: 90.00%

Precision: 55.56% Precision: 94.44%

Precision: 69.44% Precision: 100%

Figure 6.3: Image search (32-bit binary code) results on CIFAR. Red border means false
positive. CCA leads to consistently better performance than PCA.

109

was collected at the National University of Singapore. It also originates from Flickr,

and contains 269,648 images. The dataset is manually annotated with 81 ground truth

concept labels, e.g., animal, snow, dog, reflection, city, storm, fog, etc. One important

difference between NUS-WIDE and other datasets is that NUS-wide images may be

associated with multiple ground truth labels. For the tags, I use the list of 1,000 words

provided by Chua et al. (2009); on average, each image has 5.78 tags and 1.86 ground

truth annotations. Each ground truth concept is also in the tag dictionary.

I extract the following features to represent the images:

• GIST (Oliva and Torralba, 2001): I resize each image to 200× 200 and use three

different scales [8, 8, 4] to filter each RGB channel, resulting in 960-dimensional

(320× 3) GIST feature vectors.

• SIFT: I extract six different texture features based on two different patch sampling

schemes: dense sampling and Harris corner detection. For each local patch, I

extract SIFT (Lowe, 2004), CSIFT (van de Sande et al., 2011), and RGBSIFT

(van de Sande et al., 2011). For each feature, I form a codebook of size 1,000 using

k-means clustering and build a two-level spatial pyramid (Lazebnik et al., 2006),

resulting in a 5000-dimensional vector. I will refer to these six features as D-SIFT,

D-CSIFT, D-RGBSIFT, H-SIFT, H-CSIFT, and H-RGBSIFT.

• HOG (Dalal and Triggs, 2005): To represent texture and edge information on a

larger scale, I use 2 × 2 overlapping HOG as described in (Xiao et al., 2010). I

quantize the HOG features to a codebook of size 1,000 and use the same spatial

110

Method Image to Image Tag to Image

Original Feature (4500D) 31.36 –
CCA (512D) 43.63 42.54

CCA-ITQ (32 bits) 35.81 35.06
CCA-ITQ (64 bits) 39.28 38.21
CCA-ITQ (128 bits) 41.13 40.05
CCA-ITQ (256 bits) 42.30 41.55
CCA-ITQ (512 bits) 43.41 42.06

Table 6.1: Image retrieval results (average class label precision at top 20 returned images)
on NUS-WIDE.

pyramid scheme as above, once again resulting in 5,000-dimensional feature vectors.

• Color: I use a joint RGB color histogram of 8 bins per dimension, for a 512-

dimensional feature. Then I perform PCA to each feature, and reduce their dimen-

sionality to 500, and finally concatenate all the features into a 4500 dimensional

feature vector as our global feature.

Since the NUS dataset has both images and tags, I perform two tasks: image-to-

image search, and tag-to-image search. For image-to-image search, I still follow the

standard image retrieval evaluation, that report Precision@k, which is the percentage of

correct images within top k retrieved images for every query. For tag-to-image retrieval,

I simply use the tags to retrieve nearest image data points in the common CCA space

(resp. binary space obtained by CCA-RR or CCA-ITQ), and also use the same metric

to evaluate different methods. I randomly split the dataset into 219,648 training and

50,000 test images. As before, I learn the joint embedding using the training images,

and test retrieval accuracy on testing dataset. In the test set, I randomly sample and fix

111

1,000 images as the queries, 1,000 images as the validation set, and retrieve the remaining

images.

I report the results in Table 6.1, comparing retrieval results on original features,

on CCA embedded space, and on the binary codes learned from CCA+ITQ. From the

results, we can find that by performing CCA, we can obtain substantially better retrieval

results than original feature. After CCA, performing ITQ to convert the data to binary

codes can still obtain decent retrieval results. For a 64-bit binary code, the performance

is slightly worse than that of the original embedding, but when we use a 256-bit code, the

performance becomes comparable. I show qualitative image retrieval results in Figure

6.4, and tag-to-image retrieval results in Figures 6.6. It is interesting to mention that by

using different keywords, we are able to find images that reflect the fine-grained meaning

of the multiple keywords, as shown in Figure 6.6.

6.2 Binary classeme

Finally, I present an application of ITQ to learning binary classeme features (Bergamo

et al., 2011; Rasiwasia et al., 2007; Torresani et al., 2010; Wang et al., 2009b). The idea

of classeme is to train large numbers of visual classifiers and then use their outputs on a

new test image as a high-level feature for novel category recognition. I first train a set of

classemes from pre-defined categories, and then apply ITQ to binarize these classemes.

A flowchart of the proposed binary classeme idea is shown in Figure 6.5.

For the experiments of this section, I use the ILSVRC2010 subset of ImageNet con-

taining 1.2 million images from 1000 categories. I represent images using FV descriptors,

112

77.78% 97.22% 86.11%

50.00% 91.67% 72.22%

(a) Query.

77.78%

(b) Visual feature.

77.78%

(c) CCA.

80.56%

(d) CCA+ITQ.

Figure 6.4: Sample image search results on NUS-WIDE for compare Visual features,
CCA, and CCA+ITQ. Red border means false positive.

113

ImageNet
Images

SVM
Classifiers

Output as
Classeme

Threshold to
binary codes

ITQ

Figure 6.5: Data flow of the binary classeme idea. We first train classifiers from ImageNet
images, and then pass the classifier output to ITQ.

which are computed as follows. Images are resized to have an area of 100,000 pixels (if

larger). SIFT (Lowe, 2004) and color descriptors (Perronnin et al., 2010b) are extracted

from 24 × 24 patches every 6 pixels at 5 scales (by resizing the image by a factor
√

2

between two scales). The dimensionality of both SIFT and color descriptors is reduced

to 64 by PCA. For each descriptor type, a Gaussian Mixture Model with 16 components

is trained. Given an image, a 2048-dimensional FV is computed for SIFT and color by

taking the gradient with respect to the mean and standard deviation parameters. The

FVs are power- and L2-normalized as suggested in (Perronnin et al., 2010b). The final

descriptor is the concatenation of the SIFT and color FV’s, and is 4096-dimensional.

To learn the classemes, I randomly pick 950 classes from ILSVRC2010 and train

LIBLINEAR SVM classifiers (Fan et al., 2008) on them. I use all the positive training

data for each class, and randomly sample the same amount of negative training data from

the remaining classes. The regularization parameter C of LIBLINEAR SVM is set to 2.

Then the output scores of the 950 classifiers are used as classeme features to recognize

the remaining 50 categories. To convert classemes to binary codes, I simply run ITQ (or

any other binarization method) on top of the classifier outputs without any additional

dimensionality reduction.

114

(a) river (b) river reflection

(c) reflection city (d) city

(e) city building (f) city night

Figure 6.6: Example tag-to-image search results on NUS-WIDE.

115

Method Dimensionality FV Precision@50

Fisher Vector 4096 × 32 bits 33.40
classeme 950 × 32 bits 39.24

classeme-Threshold 950 × 1 bits 31.54
classeme-ITQ 950 × 1 bits 38.98
classeme-RR 950 × 1 bits 37.06
classeme-SH 950 × 1 bits 22.66
classeme-LSH 950 × 1 bits 36.27
classeme-SKLSH 950 × 1 bits 33.35

Table 6.2: Image retrieval results (average class label precision at top 50 returned images)
on 50 classes from ILSVRC2010.

For my first experiment, I want to see how well binary classeme work as a representa-

tion for image retrieval. There are a total of 68,295 images in our 50 “testing” categories.

I set aside 1,000 of those as “queries” and find their nearest neighbors among the re-

maining 67,295 images. Table 6.2 compares the average class label precision of the top

50 returned images for a number of coding methods. First of all, we can see that the con-

tinuous 950-dimensional classeme give better retrieval performance than the low-level FV

features. Binarizing the classeme by directly thresholding them drops the performance

significantly. However, binarizing them with ITQ results in almost no degradation (I

have randomly sampled five other 950/50 class splits, and found that classeme-ITQ is

consistently about 0.5% worse than the uncompressed classeme). For comparison, the

table includes a number of other binary coding methods, all of which are worse than

ITQ. Qualitative image retrieval results are shown in Figure 6.7.

Next, I would like to use classeme for novel category recognition, as suggested in Berg-

116

Percent of training set
Method 1% 5% 10% 50% 100%

Fisher Vector 35.55 52.21 57.11 66.21 69.16
classeme 38.54 51.49 56.18 64.31 66.77

classeme-Threshold 34.17 47.93 51.16 56.75 58.72
classeme-ITQ 40.58 53.32 56.62 61.12 62.68
classeme-RR 37.33 50.39 54.06 58.83 60.55

Table 6.3: Image classification results (%) on 50 classes from ILSVRC2010 using classeme
trained on Fisher Vectors. Standard deviations are around 1%.

amo et al. (2011); Torresani et al. (2010). The motivating scenario is as follows: suppose

we have already learned visual models for a number of categories using a large amount of

training data, and then we are given a much smaller amount of training data for a never

before seen category. Can we leverage our previous knowledge to quickly and efficiently

learn a model for the new category?

In my experimental setup, I use the classifiers for the 950 categories as “previous

knowledge.” For the remaining 50 categories, I set aside 80% of the data for training,

10% for validation, and 10% for testing. I randomly sample different amounts of training

data from the 80% training set for five trials, and train LIBLINEAR SVMs on the binary

classeme features. The regularization parameter of linear SVM is tuned on the valida-

tion set using the grid of [0.0002, 0.002, 0.02, 0.2, 2, 20]. Table 6.3 shows the resulting

classification accuracies. As before, the classeme-ITQ representation outperforms all the

other binary embeddings. More interestingly, classeme-ITQ works better than continu-

ous classeme or Fisher vectors for small training set size, where the higher-dimensional

features may be overfitting. For larger training sizes, overfitting is no longer an issue,

117

and the original Fisher vectors work the best. Thus I conclude that ITQ-based binary

classeme may be well suited for recognition of novel categories when a very small amount

of training data is available.

6.3 Discussion

This chapter has presented two applications that combine semantic embeddings and

binary codes. From the results, we can find that reasonably short binary codes (e.g. 256

bits) work as well as the continuous embedding for image retrieval. This confirms that a

low-dimensional Hamming space has strong enough fidelity for capturing complex visual

similarity between natural images. In the future, it will be more interesting to go beyond

modeling images and tags, and study mapping images and sentences.

118

Precision: 63.89% Precision: 94.44% Precision: 83.33%

Precision: 66.67% Precision: 86.11% Precision: 97.22%

(a) Query.

Precision: 50.00%

(b) Fisher Vector.

Precision: 80.56%

(c) classeme.

Precision: 72.22%

(d) classeme+ITQ.

Figure 6.7: Sample image search results on ImageNet (50 testing categories). I qualita-
tively compare Fisher Vector, classeme, and binary classeme (950 bits) obtained by ITQ.
Red border means false positive. Note that in some of the examples, classeme-ITQ has
lower precision than the continuous classeme.

119

CHAPTER 7: Hashing Revisited: Observations and Open Problems

Before I conclude the thesis, it will be interesting and important to review several

methodological problems. Many papers on similarity preserving binary codes have been

published. Almost all of them claim they have achieved state-of-the-art performance.

However, I have found that the evaluation of different methods might have interesting

and tricky issues. For example, for certain methods (Heo et al., 2012), it is not clear why

the performance is significantly improved by using hyperspheres instead of hyperplanes

as hash functions. In my own work described in Section 3.2.3, I have observed that the

performance of ITQ hits a ceiling after 128 bits, however, I did not explain why that

was the case. After a few years of research, I have taken notice of such issues, and I

would like to take the opportunity to review them here. More importantly, I hope the

discussion and experiments contained in this chapter will help make this line of research

more systematic in the future.

The first question I am going to answer in Section 7.1 is “why can very short binary

codes represent the similarity relationships among millions of images?” For example, a

64-bit code only has 64 levels in Hamming space, how can only 64 different distance levels

distinguish so many points? The second question I am going to investigate in Section

7.2 is “which hashing algorithm is the best?” This question naturally arises when people

want to apply hashing algorithms to their problem, however, every new paper shows

better performance than before. I will show that it is important to properly define the

ground truth distance metric in order to correctly compare different methods. Finally

in Section 7.3, I will also show that ground truth neighborhood definition also makes a

very big difference in the evaluation of different methods. In particular, defining ground

truth neighbors based on a fixed radius (εNN) or a fixed number of neighbors (kNN) will

make a very big difference in terms of the relative performance of different methods, and

needs to be investigated in the future.

7.1 Why Do Binary Codes Work?

One might be curious why binary codes work well for image retrieval, especially when

the number of data points in the dataset is large. If we use 64 bits, each query will only

have 64 different distances (from 0 to 64) to all the other database points. How can

only 64 distance levels distinguish so many points? This section is dedicated to giving

an explanation to this question.

First of all, assume we have a c-bit binary code, corresponding to 2c binary vertices

serving as landmark points for quantization. The number of landmark points grows

exponentially in the number of bits, and it should be sufficient for providing accurate

quantization of the data points (Chapter 4). Assuming a uniform distribution of the data

out of n total data points, on average n
2c

points will be mapped to each vertex. Now,

let’s compute the number of binary vertices having Hamming radius r to a given query

vertex. For every vertex, there are Cr
c other binary vertices having Hamming distance r

to it. Thus, there are

n

2c
Cr
c =

n

2c
c!

r!(c− r)! (7.1)

121

0 10 20 30 40 50 60
0

0.5

1

1.5

2
x 10

18

distance to query

nu
m

be
r

of
 v

er
tic

es

(a) Theoretical distribution

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

x 10
5

distance to query

nu
m

be
r

of
 v

er
tic

es

(b) Empirical distribution on CIFAR dataset

Figure 7.1: (a) Analysis of the number of binary vertices having Hamming distance r
to any binary vertex on 64-dimensional binary cube. (b) Empirical distribution of the
number of data points having Hamming distance r to any data point on 64-dimensional
binary cube. Result is generated using ITQ.

122

data points having Hamming distance r to every binarized query point. This means

the number of points within a small Hamming radius to a query is very small, and it

exponentially increases when r grows to c/2, and then decreases again when r grows from

c/2 to c, which is shown in Figure 7.1 (a). This means the binary codes actually provide

very fine-grained partitioning for near neighbors, and most of the points in the database

will be lying far away from a query. To confirm this analysis, I show the empirical

distance distribution on the CIFAR dataset in Figure 7.1 (b) using a 64-bit binary code.

We can find the empirical distance distribution is similar to that of Figure 7.1 (a).

7.2 Distance Function Matters

This section is mostly inspired by the experimental findings in Section 3.2.3, that the

performance of ITQ hits a ceiling after 128 bits. At the time of performing that work, I

did not have an understanding of why adding more bits does not improve performance

anymore. This motivated me to investigate the relationship between different hashing

methods and the way I measure ground truth distance in the original feature space. Most

existing methods are evaluated based on Euclidean distance. However, I will show in this

section that evaluation using the Euclidean metric might be misleading and might cause

several subtle problems.

Let us use two ways to define the ground truth distance in the original feature space:

Euclidean distance and cosine similarity. Note that using the cosine similarity is equiv-

alent as normalizing the descriptors to unit L2 norm and then using the Euclidean dis-

tance. This normalization is a standard practice in recognition applications and usually

123

improves sematic accuracy. Let us also define ground truth neighbors in two ways: using

a radius equal to the average distance to the 50th nearest neighbor, and using 100 nearest

neighbors for each query.

To evaluate the different ground truth distance functions and neighborhood defini-

tions, I perform nearest neighbor search experiments on the GIST1M dataset, which is

from Jégou et al. (2011). This dataset contains 1 million images randomly downloaded

from Flickr. The images are represented by a 960-dimensional GIST descriptors, and

the descriptors are zero-centered and normalized. As baselines, we use LSH and ITQ, as

well as binary reconstructive embedding (BRE) (Kulis and Darrell, 2009) and spherical

hashing (SPH) (Heo et al., 2012). The linear version of BRE produces binary codes

by thresholding linearly projected data, just like ITQ. SPH uses hyperspheres instead

of hyperplanes to partition the space: points within a all are mapped to 1, and points

outside are mapped to zero.

Most existing binary coding methods claim they are approximating L2 distance, so

we would naturally expect them to work the best for L2 distance. The results are

surprising: it seems all methods produce better results on the ground truth defined by

cosine similarity instead of the L2 distance. Shouldn’t all methods work the best for

whatever they argue they are approximating? Based on the objective functions of ITQ,

BRE, and SPH, they are indeed trying to preserve L2 distances. Then why do they

all produce better results on the cosine neighbors instead of L2 neighbors? Our second

observation is that SPH works the best for kNN on L2 distance, while ITQ works the best

for knn on cosine similarity. Why do different methods perform differently for different

124

32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of bits

m
A

P

ITQ
LSH
BRE
SPH

(a) L2 distance radius NN.

32 64 128 256
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of bits

m
A

P

(b) cosine similarity radius NN.

32 64 128 256
0

0.1

0.2

0.3

ITQ
LSH
BRE
SPH

(c) L2 distance kNN.

32 64 128 256
0

0.1

0.2

0.3

number of bits

m
A

P

ITQ
LSH
BRE
SPH

(d) cosine similarity kNN.

Figure 7.2: Nearest neighbor search results for different distance metrics. (a) Results for
different methods for L2 distance based radius NN. (b) Results for different methods for
cosine similarity based radius NN. (c) Results for different methods for L2 distance based
kNN. (d) Results for different methods for cosine similarity based kNN.

distance functions? Third, For ITQ evaluated using L2 distance, after 128 bits, it hits a

ceiling, but continues to improve for cosine. What is the reason for this behavior?

To answer these questions, let’s first compare and analyze three theoretical models for

LSH. In particular, we are interested in the hash function they define, and the distances

they are approximating. Here I define σ(·) as the hash function that produces binary

codes for a vector, and define h(·) as the projection function.

125

Angle-LSH: The method proposed by Charikar (2002) that approximates angle:

σ(x) = sgn(h(x)), (7.2)

h(x) = xR,

where R is drawn from random Gaussian.

L2-LSH: The method by Dong et al. (2008), which preserves the L2 distance:

σi(x) = bhi(x)c mod 2, (7.3)

hi(x) =
xRi + bi

T
, i = 1, 2, . . . ,m

where Ri ∈ Rd is a random projection vector drawn from Gaussian N(0, I), and bi ∈ R

is a scalar drawn from uniform distribution [0, T).

SKLSH: The method by Raginsky and Lazebnik (2009) which preserves shift-invariant

kernel values defined on top of L2 distance:

σi(x) = sgn(cos(hi(x)) + ti) (7.4)

hi(x) =
xRi + bi

T
, i = 1, 2, . . . ,m

where Ri is randomly drawn from a Gaussian N(0, I), bi is drawn from uniform [0, 2Tπ],

and ti from uniform [−1, 1].

The above formulations share many similarities. Both L2-LSH and SKLSH have very

126

−15 −10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

h
i
(x)

σ i(h
i(x

))

1

0

(a) Angle LSH.

−15 −10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

h
i
(x)

σ i(h
i(x

))

1 1 1 1 1

0 0 0 0

(b) L2 LSH.

−15 −10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

h
i
(x)

σ i(h
i(x

))

0 0 0 0

1 1 1 1 1

(c) SKLSH.

Figure 7.3: A comparison of different random hashing models. (a) Angle-LSH, which
partitions one projection direction into two parts. (b) L2-LSH, which uses mod to split
one projection direction into many parts. (c) SKLSH, which uses sign of cosine to split
one projection direction into many parts.

similar projection steps, that map the data by a random projection Ri with a shift bi, and

then scale the projected data by a scalar T , where T is considered as the window size in

L2-LSH or bandwidth in SKLSH. The major difference is how to generate binary strings

from the projected data. Angle-LSH simply takes the sign of the data, and splits the

data into two parts. L2-LSH uses mod to generate bits, while SKLSH uses sign of cos(·).

The latter two are indeed intuitively very similar, as they are both trying to produce

multiple cuts on data projected onto single directions. The only difference is SKLSH

has a shift in y-axis which produces different sizes for 0 and 1. Figure 7.3 illustrates

the cuts produced by all the methods on individual projection directions. With a single

cut, Angle-LSH can only preserve the angle, but not the magnitude of the data. This is

because single cut LSH only partitions the data on the hypersphere. For multi-cut LSH,

it partitions each direction into several parts, which handles magnitude naturally. SPH

enjoys similar idea to multi-cut in that it uses hyperspheres to partition the space into

multiple regions. However, a single cut method is used in most binary coding formulations

including ITQ and BRE, and this formulation can only preserve angle, and the magnitude

127

32 64 128 256 512 1024 2048 4096 8192
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of bits

m
A

P

Angle LSH
L2 LSH
SKLSH

Figure 7.4: Performance comparison of different random hash models on GIST1M. We
define ground truth neighbors using L2 distance and εNN.

of the data is completely lost. A real world experiment on GIST1M (GIST descriptors

are not normalized) comparing these three hash models are shown in Figure 7.4. We can

find angle-LSH is not able to capture L2 distance, and its performance saturates after

256 bits. Other methods work better and better when using more bits because they are

approximating the L2 distance.

Next, I would like to analyze my ITQ method in detail. ITQ maps data from an

arbitrary distribution to {−1,+1}c, which is a set of points on the hypersphere (i.e., a

set of points with constant norm). Such a mapping will never be able to approximate

the original distance well. For ITQ, the quantization error is directly formulated as

minimizing the Euclidean distance between a set of rotated original vectors and their

quantized binary vectors:

‖bi − xiR‖22, (7.5)

128

where bi = sgn(xiR). Expanding the above expression we have:

‖xR− b‖22 = m2
1 + 1− 2xTRTb = m2

1 + 1− 2m1 cos(θ), (7.6)

where θ is the angle between x̂R and b, and m1 is the magnitude of x. It is clear that

rotating the data by R can only reduce the angle between x and b, and increase cos(θ).

Suppose that after the rotation, the rotated data become exactly binary valued, which

means there is no error in the angle part (θ = 0 and cos(θ) = 1). We will still get a

nonnegative error term:

m2
1 + 1− 2m1 = (m1 − 1)2 ≥ 0. (7.7)

This means that binarization by taking the sign of projected data is not able to preserve

the magnitude of the data. The above analysis clearly shows why the performance of

ITQ saturates after 128 bits. We choose ITQ as an example, due to its simplicity. For

other more complicated methods, analogous arguments also hold. The SPH approach

is harder to discuss as its hash function is not supported by a strong theoretical model.

However, by using hyperspheres with different centers , it might be able to capture the

magnitude of the data.

To conclude, many existing methods may be paying too much attention to how to

better optimize their respective loss functions, while the correct form of the hash func-

tion is largely ignored. In particular, the mod (·) function in L2-LSH or the sgn(cos(·))

function in SKLSH are the key for preserving L2 distance. However, in most recogni-

129

(a) Toy data. (b) KNN (c) εNN

Figure 7.5: (a) Toy dataset with three Gaussians. (b) The resulting 50NN graph. Notice
the rightmost point x, it is far away from other data, but is still connected to many
points. (c) εNN graph (ε is equal to average distance to 50NN). Notice that x is not
connected to any other point.

tion applications that I have examined, cosine similarity (equivalently, normalizing the

descriptors) leads to the highest semantic accuracy. Therefore, binary coding methods

that preserve the magnitude of the data or L2 distance seem to have limited utility from

the viewpoint of applications in computer vision. In general, when considering the ap-

propriate definition of feature space distance, one needs to take the ultimate recognition

application into account.

7.3 Neighborhood Definition Matters

Given a fixed distance function, next I study the impact of different neighborhood

definitions:

ε Nearest Neighbor: for each query x, its neighbors are points having distance smaller

than a distance threshold ε.

k Nearest Neighbor: for each query point x, it’s neighbors are the k points nearest to

it. This definition does not consider whether the distance is small or not.

130

In my previous experiments and in most works by others, different methods are eval-

uated using ε nearest neighbor. The evaluation on k nearest neighbor is lacking. I will

first visualize the distribution of these two different neighborhood structures in Figure

7.5. I show a toy example of three Gaussians, and their corresponding kNN and εNN

graphs in Figure 7.5 (a), (b), and (c), respectively. We can see that for εNN, close points

have more edges and faraway points have no neighbors. For kNN, since each point is

forced to find its nearest k neighbors, the absolute distances do not matter too much.

Queries lying far away from the data point cloud will still be connected to their k closest

neighbors (e.g. point x in the figures).

Next, I show the statistics on the GIST1M dataset in Figure 7.6. I first show the

histogram of distances for two different neighborhood definitions in Figure 7.6 (a). We

can clearly find that for kNN, even for the first neighbors of each query, the distances

already become quite big. This means algorithms that are very good at preserving small

distances will not necessarily be good at preserving kNN. In addition, I show the distance

distribution histograms for different k in Figure 7.6 (b). This figure further confirms that

even 1NN of some points might have quite big distances that are comparable to random

NN. I also show the number of neighbors for each query in Figure 7.6 (c), from which

we can find for εNN, some queries might get lots of neighbors, while for others, they

might not have any neighbors within the given radius. With these statistics in mind,

next, I compare different algorithms on GIST1M dataset using these two neighborhood

definitions as ground truth in Figure 7.7. For kNN, I use k=1 and k=100. For εNN, I

define ε as the average distance to 50th nearest neighbors, and also show results for ε/3.

131

For all cases, I use cosine similarity.

From these results, we can have the following main observations: (1) ITQ works

extremely well for εNN, while for other distance metrics, its advantage is not that signifi-

cant; (2) SPH works quite well for kNN, but poorly for εNN; (3) overall, the performance

of different methods on kNN is much worse than on εNN. To explain these observations, I

analyze the statistics of the neighbors in Figure 7.8. First of all, in Figure 7.8 (a), we can

find that for εNN, some queries are lying in a dense area of the data distribution, so they

have lots of neighbors, while some are lying in a sparse area so they do not have neigh-

bors. Parts (b) and (c) of the figure show: the number of Hamming neighbors retrieved

for each query within a Hamming radius of 2 (red), how many of them are correctly

retrieved as εNN (green), and how many of them are correctly retrieved as 100NN (blue)

for ITQ and SPH. The neighbors retrieved by ITQ in Figure 7.8 (b) follow the general

pattern of the data distribution: queries in dense area get lots of neighbors retrieved,

and most of them are ground truth; queries in sparse area get no neighbors. By contrast,

SPH in Figure 7.8 (c) produces a more balanced pattern, even for points in a sparse area.

This suggests the underlying partition geometry of different methods: ITQ tends to map

points in the same dense area to the same bucket (it avoids partitioning dense areas);

while SPH tends to equally partition the space.

The above visualization helps to explain our previous observations. ITQ better pre-

serves neighbors in dense areas with very small distances. Since most neighbors retrieved

for εNN are in the dense area, ITQ will produce better results, which explains the first

observation. However, when we define ground truth using kNN, the situation changes.

132

0 0.5 1 1.5 2
0

10

20

30

Euclidean distance

N
ei

gh
bo

r
di

st
rib

ut
io

n

εNN
1NN
Smallest distance
Largest distance

(a) Histogram of distance

0 0.5 1 1.5 2
0

20

40

distance

nu
m

be
r

of
 p

oi
nt

s

1NN
50NN
randomNN

(b) Histogram of distance distributions

0 20 40 60 80 100
0

2K

4K

6K

Query indexes

nu
m

be
r

of
 n

ei
gh

bo
rs

εNN
1NN

(c) # of neighbors per query

Figure 7.6: (a) The histogram of distances of different neighbors. (b) Histogram of
distances for k nearest neighbors with different k. RandomNN is the distance between
query to random points in the database. (c) The number of neighbors for each query
point. ε is defined by average distance to 50th nearest neighbors.

133

32 64 128 256 512 960
0

0.1

0.2

0.3

0.4

0.5

number of bits

m
A

P

ITQ
LSH
BRE
SPH

(a) 1NN

32 64 128 256 512 960
0

0.1

0.2

0.3

0.4

0.5

number of bits

m
A

P

ITQ
LSH
BRE
SPH

(b) 100NN

32 64 128 256 512 960
0

0.2

0.4

0.6

0.8

1

number of bits

m
A

P

ITQ
LSH
BRE
SPH

(c) ε/3

32 64 128 256 512 960
0

0.2

0.4

0.6

0.8

1

number of bits

m
A

P

ITQ
LSH
BRE
SPH

(d) ε

Figure 7.7: Comparison of different methods based on different neighbor definition on
GIST1M. (a, b) Ground truth is defined by 1NN and 100NN. (c, d) Ground truth is
defined by points within ε/3 or ε to queries.

Since ITQ tends to map all points in dense areas together, there is not too much discrim-

ination between them, which mixes the target close neighbors with many other points,

so the top kNN returned become a choice between many points. Since SPH tends to

partition the dense areas more, it might provide better discrimination for kNN retrieval.

This explains the second observation. For the third observation, based on the theory of

Dong et al. (2008), LSH-based methods are much better at preserving close neighbors (in

134

0 20 40 60 80 100
10

0

10
5

Sorted query Indices

nu
m

be
r

of
 n

ei
gh

bo
rs

 (
lo

g
sc

al
e)

Ground truth ε neighbors

(a) Ground truth ε NN.

0 20 40 60 80 100
0

2000

4000

6000

8000

Sorted Query Indices

nu
m

be
r

of
 n

ei
gh

bo
rs

 (
lo

g
sc

al
e)

Hamming neighbor < 2
Retrieved εNN
Retrieved kNN

(b) ITQ

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Sorted Query Indices

nu
m

be
r

of
 n

ei
gh

bo
rs

 (
lo

g
sc

al
e)

Hamming neighbor < 2
Retrieved εNN
Retrieved kNN

(c) SPH

Figure 7.8: The distribution of neighbors for different queries (y-axis in log scale). The
curves are sorted based on the ground truth density of neighbors for each query. (a)
The distribution of ground truth neighbors. (b) For ITQ, we can see it retrieves most
neighbors for points lying in the dense area, while for points in the sparse area, it does
not produce any neighbors. (c) For SPH, we can find the neighbors retrieved for different
queries are quite balanced.

135

terms of distance), while they do worse for neighbors with larger distances. As discussed

earlier, kNN contains lots of neighbors that are far away from each query. This explains

why the performance of all methods on εNN is much better than on kNN.

The main insight from this section is the definition of ground truth neighbors makes

a huge difference for the performance of different methods. In particular, no existing

method dominates on all measures. I argue that for a particular application with partic-

ular neighbors, we should apply specific algorithms that optimize for that. Most existing

methods are approximating small distances (corresponding to εNN), and among these,

ITQ works the best. For kNN search, it is not clear which method is always the best.

SPH tends to favor kNN, but it lacks strong theoretical guarantees. The current per-

formance on kNN neighbors is still not satisfactory, and how to improve it is an open

problem.

Finally, it is important to note that during our previous evaluations in Chapter 3,

Chapter 4, Chapter 5, and Chapter 6, we have also evaluated different methods using se-

mantic neighbors (neighbors belonging to the same class). However, I have not addressed

this neighborhood definition in this chapter, since semantic neighbors heavily rely on the

specific application and specific dataset. Although the performance of different meth-

ods according to semantic neighbor retrieval is hard to characterize analytically, it is

ultimately crucial to evaluate different methods using this metric in real applications.

136

7.4 Discussion

This chapter revisits the problem of learning similarity preserving binary codes. I

started with the question of “why only 64 distance levels for 64-bit code can distinguish

millions of points?”, and provided a justification using synthetic and real data. I then

revealed two potential problems in the evaluation of different binary coding algorithms.

In particular, I showed that the definitions of ground truth distance and neighborhood

structure in the feature space can greatly affect the absolute and relative performance of

different methods. This suggests that most existing works including my own are not very

complete. No method will always work better than others for all metrics. I believe this

line of research is still preliminary, and the problems I have raised need more investigation

in the future.

137

CHAPTER 8: Discussion and Future Directions

8.1 Summary of Contributions

The main contributions of this thesis are as follows:

• Iterative Quantization (ITQ), presented in Chapter 3, is a state-of-the-art approach

for learning binary codes for high-dimensional descriptors. It is simple, parameter-

free, and very powerful. A few recent works (Norouzi et al., 2012a; Heo et al.,

2012) use ITQ as a strong baseline, and some recent very successful methods (Ge

et al., 2013; Norouzi and Fleet, 2013) are built on top of ITQ. In addition, several

well-known papers, such as the ECCV2012 best paper (Kuettel et al., 2012), also

rely on ITQ as a fast binary coding scheme for the handling of huge datasets.

• The angular quantization approach of Chapter 4 (AQBC) extends ITQ to high-

dimensional sparse histogram data, which helps to further improve performance for

bag-of-words features. It also provides new insights into the problem of learning

binary codes for data not uniformly sampled on the hypersphere.

• The bilinear projection approach of Chapter 5 (BPBC) is the first one to address

the scalability problem of encoding very high-dimensional dense descriptors. It

achieves retrieval and classification performance performance almost as good as

that of the original dense descriptor while being much more compact.

• The applications of Chapter 6 show how to learn semantic binary codes from noisy

tagged Internet images or large amounts of manually labeled images. I also report

promising image retrieval results using very compact binary codes on Internet-scale

datasets.

• In Chapter 7, I review and reconsider the hashing problem and current research,

and make several observations on methodological issues relating to evaluation.

8.2 Future Directions

To conclude the thesis, I would like to discuss my ideas on promising future research

directions. For algorithmic development, I believe there is space for developing better

fast indexing and coding methods for large-scale image retrieval. For example, several

recent works (Ge et al., 2013; Norouzi and Fleet, 2013) combine the idea of ITQ and PQ

to achieve state-of-the-art performance for indexing large image collections. It will be

interesting to investigate whether other, potentially more flexible transformation models

instead of rotation can be used (e.g., without orthogonality) to optimize quantization

error. It will also be interesting to incorporate special structural constraints into the

learning process, for example learning sparse projections with L1 regularization (Tibshi-

rani, 1994), or finding group sparsity structure for groups of variables. Such constraints

might further improve the performance of hashing and also provide additional efficiency

gains. It may be worthwhile to go back to the original motivation of learning binary

codes by a deep auto-encoder, as suggested in Salakhutdinov and Hinton (2009). Due

to the recent great success of deep convolutional neural networks (CNN) (Krizhevsky

139

Figure 8.1: Sample results for finding Iconic images for “love” concept.

et al., 2012), it is promising to combine binary codes with deep CNN. For example, we

might want to combine the supervised Hamming distance metric loss (Norouzi et al.,

2012a) with the CNN architecture in Krizhevsky et al. (2012) to learn binary codes from

large amounts of labeled or weakly labeled images. Another idea is to learn unsuper-

vised binary codes from large amounts of unlabeled Internet data by using very deep

auto-encoders with convolutional layers.

Next, let me discuss applications to which binary codes can be applied in the future.

First, one interesting avenue for future research is to apply binary coding methods to

large-scale multi-label image annotation (Barnard and Forsyth, 2001; Makadia et al.,

2008; Guillaumin et al., 2009), in particular because the state-of-the-art performance

for image annotation is achieved by nonparametric nearest-neighbor methods. To my

knowledge, to date nobody has considered addressing this problem by applying binary

codes as the underlying fast indexing method. Another interesting future application

is mining Internet image collections. For example, finding “iconic images” of a visual

concept (Berg and Berg, 2009; Raguram and Lazebnik, 2008) might require the mining

of very large amounts of Internet images, involving operations such as clustering and

140

nearest-neighbor search. Using binary codes as an underlying representation can not

only speed up the mining significantly but also allow us to handle much larger datasets.

Some preliminary results (Figure 8.1) suggest that we can indeed find very interesting

iconic clusters from millions of Internet images.

141

BIBLOGRAPHY

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and Szeliski,
R. (2011). Building rome in a day. Commun. ACM, 54(10):105–112.

Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communication of the ACM.

Arandjelović, R. and Zisserman, A. (2013). All about VLAD. In IEEE Conference on
Computer Vision and Pattern Recognition.

Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005). Clustering on the unit hyper-
sphere using von Mises-Fisher distributions. Journal of Machine Learning Research.

Barla, A., Odone, F., and Verri, A. (2003). Histogram intersection kernel for image
classification. In ICIP (3), pages 513–516.

Barnard, K. and Forsyth, D. (2001). Learning the semantics of words and pictures. In
International Conference on Computer Vision.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517.

Berg, T. L. and Berg, A. C. (2009). Finding Iconic Images. In IEEE International
Conference on Computer Vision and Pattern Recognition.

Bergamo, A., Torresani, L., and Fitzgibbon, A. (2011). Picodes: Learning a compact
code for novel-category recognition. Neural Information Processing Systems.

Blaschko, M. B. and Lampert, C. H. (2008). Correlational spectral clustering. IEEE
Conference on Computer Vision and Pattern Recognition.

Broder, A. Z. (1997). On the resemblance and containment of documents. In In Compres-
sion and Complexity of Sequences (SEQUENCES97, pages 21–29. IEEE Computer
Society.

Carneiro, G., Chan, A., Moreno, P., and Vasconcelos, N. (2007). Supervised learning of
semantic classes for image annotation and retrieval. In IEEE Transaction on Pattern
Analysis and Machine Intelligence.

Chapelle, O., Weston, J., and Schölkopf, B. (2002). Cluster kernels for semi-supervised
learning. In Advances in Neural Information Processing Systems 15, pages 585–592.

Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms. ACM
Symposium on the Theory of Computing.

Chen, X., Bai, B., Qi, Y., Lin, Q., and Carbonell, J. (2011). Sparse latent semantic
analysis. Siam Data Mining Conference.

Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y.-T. (2009). NUS-WIDE:
A real-world web image database from National University of Singapore. In Proc.
of ACM Conf. on Image and Video Retrieval (CIVR’09), Santorini, Greece.

142

Chum, O. and Matas, J. (2010). Large scale discovery of spatilly related images. IEEE
Transaction on Pattern Analysis and Machine Intelligence.

Chum, O., Perdoch, M., and Matas, J. (2009). Geometric min-hashing: Finding a (thick)
needle in a haystack. In IEEE Conference on Computer Vision and Pattern Recog-
nition.

Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. (2004). Visual catego-
rization with bags of keypoints. In In Workshop on Statistical Learning in Computer
Vision, ECCV, pages 1–22.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In
In IEEE Conference on Computer Vision and Pattern Recognition, pages 886–893.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth
annual symposium on Computational geometry, pages 253–262. ACM.

Delhumeau, J., Gosselin, P.-H., Jégou, H., and Pérez, P. (2013). Revisiting the VLAD
image representation. In ACM Multimedia, Barcelona, Spain.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. IEEE Conference on Computer Vision and
Pattern Recognition.

Dong, W., Charikar, M., and Li, K. (2008). Asymmetric distance estimation with sketches
for similarity search in high-dimensional spaces. SIGIR.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear:
A library for large linear classification. Journal of Machine Learning Research.

Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. (2009). Describing objects by their
attributes. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1778–1785. IEEE.

Fei-Fei, L., Fergus, R., and Perona, P. (2006). Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object cat-
egories. In Computer Vision and Image Understanding.

Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical model for learning natural
scene categories. In IEEE Conference on Computer Vision and Pattern Recognition.

Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008). A Discriminatively Trained,
Multiscale, Deformable Part Model. In IEEE Conference on Computer Vision and
Pattern Recognition.

Fergus, R., Torralba, A., and Weiss, Y. (2009). Semi-supervised learning in gigantic
image collections. Neural Information Processing Systems.

Foster, D. P., Johnson, R., Kakade, S. M., and Zhang, T. (2010). Multi-view dimension-
ality reduction via canonical correlation analysis. Tech Report. Rutgers University.

143

Frahm, J.-M., Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H.,
Dunn, E., Clipp, B., Lazebnik, S., and Pollefeys, M. (2010). Building Rome on a
cloudless day. In European Conference on Computer Vision.

Freund, Y., Dasgupta, S., Kabra, M., and Verma, N. (2007). Learning the structure of
manifolds using random projections. Neural Information Processing Systems.

Ge, T., He, K., Ke, Q., and Sun, J. (2013). Optimized product quantization for approx-
imate nearest neighbor search. IEEE Conference on Computer Vision and Pattern
Recognition.

Gionis, A., Indyk, P., Motwani, R., et al. (1999). Similarity search in high dimensions
via hashing. VLDB, 99:518–529.

Gong, Y., Ke, Q., Isard, M., and Lazebnik, S. (2013a). A multi-view embedding space
for modeling internet images, tags, and their semantics. International Journal of
Computer Vision.

Gong, Y., Kumar, S., Rowley, H. A., and Lazebnik, S. (2013b). Learning binary codes
for high-dimensional data using bilinear projections. IEEE Conference on Computer
Vision and Pattern Recognition.

Gong, Y., Kumar, S., Verma, V., and Lazebnik, S. (2012). Angular quantization-based
binary codes for fast similarity search. Neural Information Processing Systems.

Gong, Y. and Lazebnik, S. (2011a). Comparing Data-Dependent and Data-Independent
Embeddings for Classification and Ranking of Internet Images. In IEEE Conference
on Computer Vision and Pattern Recognition.

Gong, Y. and Lazebnik, S. (2011b). Iterative quantization: A procrustean approach to
learning binary codes. IEEE Conference on Computer Vision and Pattern Recogni-
tion.

Gong, Y., Lazebnik, S., Gordo, A., and Perronnin, F. (2013c). Iterative quantization: A
procrustean approach to learning binary codes for large-scale image retrieval. IEEE
Transaction on Pattern Analysis and Machine Intelligence.

Gordo, A., Perronnin, F., Gong, Y., and Lazebnik, S. (2011). Asymmetric distances for
binary embeddings. IEEE Transaction on Pattern Analysis and Machine Intelli-
gence.

Griffin, G., Holub, A., and Perona, P. (2008). The caltech 256. In Caltech Technical
Report.

Guillaumin, M., Mensink, T., Verbeek, J., and Schmid, C. (2009). TagProp: Discrimi-
native metric learning in nearest neighbor models for image auto-annotation. Inter-
national Conference on Computer Vision.

Guillaumin, M., Verbeek, J., and Schmid, C. (2010). Multimodal semi-supervised learn-
ing for image classification. IEEE Conference on Computer Vision and Pattern
Recognition.

144

Hardoon, D., Szedmak, S., and Shawe-Taylor, J. (2004). Canonical correlation analysis;
an overview with application to learning methods. Neural Computation, 16.

Hays, J. and Efros, A. A. (2008). Im2gps: estimating geographic information from a
single image. In in IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8.

He, J., Radhakrishnan, R., Chang, S.-F., and Bauer, C. (2011). Compact hashing with
joint optimization of search accuracy and time. IEEE Conference on Computer
Vision and Pattern Recognition.

Heo, J.-P., Lee, Y., He, J., Chang, S.-F., and Yoon, S.-E. (2012). Spherical hashing.
IEEE Conference on Computer Vision and Pattern Recognition.

Hotelling, H. (1936). Relations between two sets of variables. Biometrika, 28:312–377.

Jégou, H. and Chum, O. (2012). Negative evidences and co-occurrences in image retrieval:
the benefit of PCA and whitening. In ECCV - European Conference on Computer
Vision, Firenze, Italy.

Jégou, H., Douze, M., and Schmid, C. (2008). Hamming embedding and weak geometric
consistency for large-scale image search. European Conference on Computer Vision.

Jégou, H., Douze, M., and Schmid, C. (2011). Product Quantization for Nearest Neigh-
bor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1):117–128.

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local descriptors
into a compact image representation. In IEEE Conference on Computer Vision &
Pattern Recognition, pages 3304–3311.

Kong, W. and Li, W.-J. (2012). Double-bit quantization for hashing. AAAI Conference
on Artificial Intelligence.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech Report.
University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Neural Information Processing Systems.

Kuettel, D., Guillaumin, M., and Ferrari, V. (2012). Segmentation propagation in ima-
genet. European Conference on Computer Vision.

Kulis, B. and Darrell, T. (2009). Learning to hash with binary reconstructive embeddings.
In in Proc. Neural Information Processing Systems, pages 1042–1050.

Kulis, B. and Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable
image search. In International Conference on Computer Vision.

Kulis, B., Jain, P., and Grauman, K. (2009). Fast similarity search for learned metrics.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(12):2143–
2157.

145

Laub, A. J., editor (2004). Matrix Analysis for Scientists and Engineers. SIAM.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. IEEE Conference on Computer
Vision and Pattern Recognition.

Li, J. and Wang, J. (2008). Real-time computerized annotation of pictures. In IEEE
Transaction on Pattern Analysis and Machine Intelligence.

Li, P. and Konig, C. (2011). Theory and applications of b-bit minwise hashing. Commu-
nications of the ACM.

Li, P., Shrivastava, A., Moore, J., and Konig, C. (2011). Hashing algorithms for large-
scale learning. Neural Information Processing Systems.

Lin, Y., Cao, L., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., and Huang, T. (2011).
Large-scale image classification: Fast feature extraction and SVM training. In IEEE
Conference on Computer Vision and Pattern Recognition.

Liu, W., Kumar, S., and Chang, S.-F. (2011). Hashing with graphs. International
Conference on Machine Learning.

Liu, W., Wang, J., Ji, R., Jiang, Y., and Chang, S. (2012). Supervised hashing with
kernels. Proceedings of Computer Vision and Pattern Recognition.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision.

Maji, S. and Berg, A. (2009). Max-margin additive classifiers for detection. International
Conference on Computer Vision.

Maji, S., Berg, A., and Malik, J. (2008). Classification using intersection kernel support
vector machines is efficient. IEEE Conference on Computer Vision and Pattern
Recognition.

Makadia, A., Pavlovic, V., and Kumar, S. (2008). A new baseline for image annotation.
In European Conference on Computer Vision.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language
processing. MIT Press.

Miller, G. A. (1995). Wordnet: A lexical database for english. COMMUNICATIONS OF
THE ACM, 38:39–41.

Monay, F. and Gatica-Perez, D. (2004). PLSA-based image auto-annotation: Constrain-
ing the latent space. In ACM Multimedia.

Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision Theory
and Application VISSAPP’09), pages 331–340. INSTICC Press.

146

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In
IEEE Conference on Computer Vision and Pattern Recognition.

Norouzi, M. and Fleet, D. (2012). Minimal loss hashing for compact binary codes.
International Conference on Machine Learning.

Norouzi, M. and Fleet, D. (2013). Cartesian k-means. IEEE Conference on Computer
Vision and Pattern Recognition.

Norouzi, M., Fleet, D., and Salakhutdinov, R. (2012a). Hamming distance metric learn-
ing. Neural Information Processing Systems.

Norouzi, M., Punjani, A., and Fleet, D. J. (2012b). Fast search in hamming space with
multi-index hashing. In Computer Vision and Pattern Recognition (CVPR) 2012.
IEEE.

Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: a holistic represen-
tation of the spatial envelope. International Journal of Computer Vision.

Perronnin, F. and Dance, C. R. (2007). Fisher kernels on visual vocabularies for image
categorization. IEEE Conference on Computer Vision and Pattern Recognition.

Perronnin, F., Liu, Y., Sanchez, J., and Poirier, H. (2011). Large-scale image retrieval
with compressed fisher vectors. In IEEE Conference on Computer Vision and Pat-
tern Recognition.

Perronnin, F., Sanchez, J., , and Liu, Y. (2010a). Large-scale image categorization
with explicit data embedding. IEEE Conference on Computer Vision and Pattern
Recognition.

Perronnin, F., Sanchez, J., and Mensink, T. (2010b). Improving the fisher kernel for
large-scale image classification. European Conference on Computer Vision.

Pirsiavash, H., Ramanan, D., and Fowlkes, C. (2009). Bilinear classifiers for visual
recognition. Neural Information Processing Systems.

Quattoni, A., Collins, M., and Darrell, T. (2007). Learning visual representations using
images with captions. IEEE Conference on Computer Vision and Pattern Recogni-
tion.

Raginsky, M. and Lazebnik, S. (2009). Locality sensitive binary codes from sift-invariant
kernels. Neural Information Processing Systems.

Raguram, R. and Lazebnik, S. (2008). Computing iconic summaries of general visual con-
cepts. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08.
IEEE Computer Society Conference on, pages 1–8. IEEE.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. Neural
Information Processing Systems.

Rasiwasia, N., Moreno, P., and Vasconcelos, N. (2007). Bridging the gap: Query by
semantic example. IEEE Transactions on Multimedia.

147

Revaud, J., Douze, M., Schmid, C., and Jégou, H. (2013). Event retrieval in large video
collections with circulant temporal encoding. In CVPR - International Conference
on Computer Vision and Pattern Recognition, Portland, United States. IEEE.

Salakhutdinov, R. and Hinton, G. (2009). Semantic hashing.

Salton, G. and McGill, M. J. (1986). Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA.

Samet, H. (1990). Applications of spatial data structures.

Sanchez, J. and Perronnin, F. (2011). High-dimensional signature compression for large-
scale image classification. In IEEE Conference on Computer Vision and Pattern
Recognition.

Scholkopf, B., Smola, A. J., and Muller, K.-R. (1997). Kernel principal component anal-
ysis. In Proceedings of the International Conference on Artificial Neural Networks
(ICANN-1997), pages 583–588, Berlin.

Schonemann, P. (1966). A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31.

Schönemann, P. (1968). On two-sided orthogonal Procrustes problems. Psychometrika.

Shakhnarovich, G., Darrell, T., and Indyk, P., editors (2006). Nearest-Neighbors methods
in Learning and Vision: Theory and Practice. MIT Press.

Shrivastava, A. and Li, P. (2012). Fast near neighbor search in high-dimensional binary
data. European Conference on Machine Learning.

Sivic, J. and Zisserman, A. (2003). Video Google: A text retrieval approach to object
matching in videos. In International Conference on Computer Vision.

Strecha, C., Bronstein, A. M., Bronstein, M. M., and Fua, P. (2010). Ldahash: Im-
proved matching with smaller descriptors. IEEE Transaction on Pattern Analysis
and Machine Intelligence.

Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, 58:267–288.

Tighe, J. and Lazebnik, S. (2010). SuperParsing: Scalable Nonparametric Image Parsing
with Superpixels. In European Conference on Computer Vision.

Tolias, G., Avrithis, Y., and Jégou, H. (2013). To aggregate or not to aggregate: selective
match kernels for image search. In International Conference on Computer Vision,
Sydney, Australia.

Torralba, A., Fergus, R., and Freenman, W. (2008a). 80 million tiny images: a large
dataset for non-parametric object and scene recognition. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence.

148

Torralba, A., Fergus, R., and Weiss, Y. (2008b). Small codes and large image databases
for recognition. IEEE Conference on Computer Vision and Pattern Recognition.

Torresani, L., Szummer, M., , and Fitzgibbon, A. (2010). Efficient object category
recognition using classemes. European Conference on Computer Vision.

van de Sande, K. E. A., Gevers, T., and Snoek, C. G. M. (2011). Empowering visual
categorization with the gpu. IEEE Transactions on Multimedia, 13(1):60–70.

Verma, Y. and Jawahar, C. V. (2012). Image annotation using metric learning in semantic
neighbourhoods. In European Conference on Computer Vision.

Wang, G., Hoiem, D., and Forsyth, D. (2009a). Building text features for object image
classification. IEEE Conference on Computer Vision and Pattern Recognition.

Wang, G., Hoiem, D., and Forsyth, D. (2009b). Learning image similarity from Flickr
groups using stochastic intersection kernel machines. International Conference on
Computer Vision.

Wang, J., Kumar, S., and Chang, S.-F. (2010a). Semi-supervised hashing for large-scale
image retrieval. IEEE Conference on Computer Vision and Pattern Recognition.

Wang, J., Kumar, S., and Chang, S.-F. (2010b). Sequential projection learning for
hashing with compact codes. International Conference on Machine Learning.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010c). Locality-constrained
linear coding for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3360–3367. IEEE.

Wang, X.-J., Zhang, L., Li, X., and Ma, W.-Y. (2008). Annotating images by mining im-
age search results. IEEE Transaction on Pattern Analysis and Machine Intelligence,
30(11):1919–1932.

Weiss, Y., Fergus, R., and Torralba, A. (2008). Spectral hashing. Neural Information
Processing Systems.

Weiss, Y., Fergus, R., and Torralba, A. (2012). Multidimensional spectral hashing.
European Conference on Computer Vision.

Weston, J., Bengio, S., and Usunier, N. (2011). Wsabie: Scaling up to large vocabulary
image annotation. In IJCAI.

Xiao, J., Haysy, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). SUN Database:
Large-scale Scene Recognition from Abbey to Zoo. In IEEE Conference on Computer
Vision and Pattern Recognition.

Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spatial pyramid matching using
sparse coding for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1794–1801. IEEE.

Ye, J., Janardan, R., and Li, Q. (2004). Two-dimensional linear discriminant analysis.
Neural Information Processing Systems.

149

Yu, S. X. and Shi, J. (2003). Multiclass spectral clustering. International Conference on
Computer Vision.

Zipf, G. K. (1935). The psychobiology of language. Houghton-Mifflin.

150

