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ABSTRACT

Mark M. Janko: Challenges to Malaria Control in the Democratic Republic of Congo and Beyond
(Under the direction of Michael Emch)

Roughly 40% of the world’s population lives in areas where they are at risk of malaria infection. In

the last 15 years, the global health community has made considerable progress in reducing transmission.

Despite this progress, a number of challenges to further reductions remain. This dissertation addresses

three such challenges.

First, I focus on the ecology that serves as a backdrop to transmission, and focus on the role

agriculture may play. In doing so, I attempt to understand how agriculture affects both mosquito behavior,

as well as malaria risk in under-5 children in the Democratic Republic of Congo (DRC), a country with

one of the world’s highest malaria burdens. My findings from this work suggest that increasing exposure

to agriculture is associated with increased indoor biting among Anopheles gambiae mosquitoes, which

may be the mechanism driving the observed association between agriculture and increased malaria risk.

Second, I turn to address insecticide resistance, which may undermine the contributions that bed

nets have in reducing transmission. One challenge in monitoring insecticide resistance is the difficulty

in obtaining representative samples of mosquitoes. I make some progress in overcoming this limitation

using population-based survey data collected from 2009-2016 in 21 countries across sub-Saharan Africa,

and find that the effects of bed nets treated with different insecticides vary considerably, and that certain

countries need to transition away from using certain insecticides.

Finally, I attempt to understand how malaria spreads. To do so, I leverage genetic data on the

Plasmodium falciaprum malaria parasite from 28 neutral microsatellite markers drawn from malaria-

infected children living in the DRC. I consider different population genetics tools to identify whether or

not the malaria parasite population can be classified into smaller sub-populations, whether or not there

is evidence of isoloation-by-distance, and if there appears to be gene flow between geographically and

economically proximate regions. My results indicate that the malaria parasite population in DRC is best
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characterized as single population with weak evidence of isolation-by-distance, with no strong evidence

of gene flow or barriers to it. However, outliers were observed along DRC’s border.
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CHAPTER 1: INTRODUCTION

Bad air is not good

Malaria means bad air

Therefore it’s not good

This dissertation is essentially about two things. First, this dissertation is about malaria, a disease that

roughly 40% of the world’s population is at risk of getting each year. Second, although less obvious, it

is about how a geographer ought to study malaria or, for that matter, any other health outcome—that

is, what can geographers offer that other disciplines cannot or do not? This is neither a new nor an

idle question, but one asked 40 years ago in Melinda Meade’s seminal 1977 paper that developed the

theoretical framework that has motivated a large body of work in population health/medical geography

ever since (Meade, 1977). These two things, of course, are not mutually exclusive, with the nature

of malaria transmission being place-specific and spatially-varying, and geography being a discipline

organized (in some way) around notions of place and space. The objective of this introduction, then, is

to orient the reader towards both areas. With regard to malaria, this introduction will provide a broad

overview of transmission, the disease burden, the efforts that have led to its reduction in the last 15

years, and current threats to that progress. Three of these threats make up the substantive focus of this

dissertation, and I briefly mention each of these, leaving the details to chapters 2, 3, and 4, respectively.

With regard to geography, this introduction will provide a brief overview of the theoretical framework for

this dissertation, discuss how population health geographers have sought to answer scientific questions

in this framework, the inherent limitations in these approaches, and then move to introduce a modeling

framework that is more formally aligned with theory. Implementing this modeling strategy is largely the

focus of Aim 1, but it has relevance to Aims 2 and 3 as well. I now turn to the substantive focus of this

dissertation: malaria.
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1.1 Malaria

1.1.1 The Disease

Malaria is a curable and preventable disease caused by an infection with one of five species of the

Plasmodium parasite known to infect humans: P. falciparum, P. vivax, P. ovale, P. malariae, and P.

knowlesi. The first two of these species are the most prevalent worldwide, but in Sub-Saharan Africa,

Plasmodium falciparum is the predominant species. Worldwide, P. falciparum is also the deadliest.

Following initial infection, and before any symptoms first appear, there is an incubation period that varies

from 7 to 30 days, with P. falciparum infections tending to have shorter incubation times, and P. malariae

longer times. Subsequent clinical symptoms in cases of uncomplicated malaria include fever, sweats,

nausea and vomiting, chills, headaches, body aches, and general malaise (CDC, 2015). In more severe

cases, such as those cases that go untreated or misdiagnosed, malaria infection may spread to the brain

(causing cerebral malaria), lead to kidney failure or other major organ disease, severe anemia, respiratory

distress, and death (CDC, 2015). Importantly, clinical symptoms may never emerge in an individual,

meaning that infections can also be asymptomatic.

A malaria infection (of any species) is the result of a complex transmission cycle. At the most

basic level, malaria is transmitted by an infectious bite from any one of 30-40 species of (female)

Anopheles mosquito. Upon inoculation into a human host, the parasites multiply and grow, first in liver

cells and then in red blood cells, eventually destroying these red blood cells and releasing merozoites

(“offspring” parasites) that continue invading other red blood cells. During this blood stage of infection,

gametocytes—the sexual stage of the parasite life cycle—circulate in the blood and are taken up by an

Anopheles mosquito during a blood meal. Over the course of the next 10-18 days, these gametocytes

develop into sporozoites through a series of intermediary steps, and then eventually enter the mosquito’s

salivary glands, where a further blood meal by the mosquito can transmit these sporozoites to another

human, continuing the chain of transmission. Figure 1.1 below shows this life cycle in detail.

1.1.2 The Disease Burden and Malaria Control

Malaria is distributed across the tropical world, and the burden of disease is highest in sub-Saharan

Africa (see Figure 1.2). For example, nine of the ten countries with the highest share of the global malaria
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Figure 1.1: Malaria life cycle in human and mosquito

Source: CDC

burden (cases) in 2015 are in sub-Saharan Africa, while just five—Nigeria, the Democratic Republic of

Congo (DRC), Uganda, Mozambique, and Cote d’Ivoire—accounted for 50% of the total burden (29%

Nigeria, 9% DRC, and 4% in Uganda, Mozambique, and Cote d’Ivoire) (WHO et al., 2016). Malaria

mortality is similarly concentrated in sub-Saharan Africa, with nine of the ten countries reporting the

greatest share of deaths being in the region. Further, of the 429,000 (95% uncertainty interval [UI]

235, 000− 639, 000) estimated malaria deaths worldwide in 2015, five countries accounted for nearly

50% of them (Nigeria: 26%, DRC 10%, Mali 5%, Tanzania and Mozambique 4%) (WHO et al., 2016).

While 429,000 deaths represents stark evidence for the considerable work that remains to eliminate

malaria, it nevertheless represents considerable progress towards that end. In the year 2000, for example,

the WHO estimates there were more than twice as many malaria deaths worldwide (estimate 864,000;

3



Figure 1.2: Plasmodium falciparum endemicity in 2010

Source: Malaria Atlas Project

95% UI 655, 000 − 1, 087, 000)(WHO et al., 2016). This reduction is largely the result of a renewed

commitment to eliminating malaria, starting with the 1998 launch of the Roll Back Malaria campaign,

which set out an ambitious goal of halving the malaria burden by 2010 (WHO, 2005) by scaling up

interventions with insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and prompt

diagnosis and subsequent treatment using artemisinin-based combination therapies (ACTs).

This set of interventions essentially acts on two fronts. ITNs and IRS work to break the transmission

cycle through controlling the vector population with insecticides that either kill a mosquito attempting

to bite an individual sleeping under a net, or while resting on a sprayed surface. Additionally, ITNs

provide a barrier that both prevents an infected mosquito from transmitting malaria to an uninfected

human, or an uninfected mosquito from taking a blood meal from an infected human. Conversely, prompt

diagnosis and treatment reduces the parasite population, such that an individual successfully treated will

not transmit the parasite to a mosquito, thereby breaking the transmission cycle.

Although the scale-up of these interventions has been uneven across Africa, the reductions in

transmission previously observed point to their success, and recent estimates suggest that they averted

663 million cases between 2000 and 2015 (95% UI 542 − 753 million) (Bhatt et al., 2015). ITNs are

estimated to have led to the greatest declines, responsible for an estimated 68% of the reductions (95%

UI 62%− 72%), followed by treatment with ACTs and IRS, with 22% (95% UI 17%− 28%) and 10%
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(95% UI 5%− 14%), respectively (Bhatt et al., 2015). Importantly, this variability does not indicate that

one intervention is more effective than another, but may reflect the different times and scales different

interventions were deployed. Nevertheless, the impressive reductions in malaria transmission of the last

15 years will depend on the continued success of these interventions. This success, however, is by no

means certain.

1.1.3 Challenges to Malaria Control

Despite the dramatic reductions in transmission as a result of large-scale interventions worldwide, a

number of challenges may slow or reverse these important gains. In this dissertation, I focus on three.

Aim 1: Agriculture

The first of these challenges is the ecology that serves as the backdrop to transmission. Understanding

the ecology of malaria and its vectors is an essential component of successful control (Ferguson et al.,

2010). One of the most important factors influencing this ecology is environmental change, and in

particular agriculture, which is of concern since over half of global population growth from now until

2050 is expected to occur in Africa, and UN projections suggest the population could double, from 1.2

billion in 2015 to 2.5 billion in 2050, with much of this growth occurring in rural areas (Bongaarts and

Casterline, 2013; DESA, 2015; Jayne et al., 2014). Such growth places considerable demand on Africa’s

food supply, and governments are considering large-scale agricultural projects to meet this increased

need (Jayne et al., 2014; Ijumba and Lindsay, 2001). This is particularly important in the DRC, a country

with a high disease burden, and where the Food and Agriculture Organization of the United Nations

(FAO) has made agricultural development a top priority (FAO, 2017).

Such agricultural development has the potential to undermine malaria control efforts, however, since

expanding agriculture may produce habitats favored by An. gambiae mosquitoes, sub-Saharan Africa’s

most efficient malaria vector (Gimnig et al., 2001; Sinka et al., 2010). Work in this area is somewhat

limited, with some studies focusing on agriculture and its effects on the vector population, while others

have looked at agriculture and its effects on transmission. Few have attempted to investigate agriculture,

the vector population, and transmission simultaneously. Further, many of these studies are conducted

in a small number of sites, and may not be representative of the broader population, nor generalizable

across ecological zones. They also frequently lack data on other factors relevant to transmission (e.g.

bed net use), further limiting inferences on the agriculture-malaria relationship (Zhang et al., 2008).
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In this study, I make some progress in addressing these limitations by using population-based survey

data on under-5 children collected across the DRC, as well as entomological surveillance data collected

contemporaneously across six sites representing DRC’s different ecological zones. This aim, then, works

to understand possible mechanisms by which exposure to agriculture among both mosquitoes and humans

may give rise to increased (or decreased) risk of malaria.

Aim 2: Bed Net Effectiveness

The second challenge addressed in this dissertation relates insecticide resistance, and the ongoing

need to monitor the effectiveness of bed nets. Indeed, as noted previously, insecticides play a vital

role in bed nets, killing or repelling mosquitoes that come into contact with them, thereby helping to

maintain protective efficacy after holes develop in nets through normal wear and tear (Darriet et al., 1984).

However, resistance to pyrethroids, the only class of insecticides approved for use in bed nets, has been

reported across sub-Saharan Africa (Ranson et al., 2011). Importantly, the epidemiological consequences

of increasing levels of insecticide resistance are not clear, with nets failing to protect against malaria in

some settings of high insecticide resistance, but dramatically reducing the odds of infection in others

(Protopopoff et al., 2007, 2008; Henry et al., 2005).

As with agriculture, however, efforts to understand the potential effect of insecticide resistance

have been limited to a small number of study sites, and as such results are not generalizable to the

population. Moreover, surveillance efforts are challenged by the inability to representatively sample the

vector population, meaning that molecular surveys cannot characterize the prevalence of knock-down

resistance in the mosquito population. Molecular markers, however, are not able to detect all forms of

resistance, such as behavioral resistance, which occurs when mosquito behavior changes to avoid contact

with nets (Ranson et al., 2011; Russell et al., 2011). As a result, much more work is needed in this area.

Here too, I make some progress on addressing some of the limitations noted. In this aim, however, I

expand the geographic scope beyond the DRC, and investigate the effects of bed nets treated with different

insecticides using population-based survey data collected in 21 countries (including DRC) between 2009

and 2016. The rationale for doing so is simple: the burden of disease in Africa is disproportionately high,

as are the consequences to malaria control if bed nets lose their efficacy there.

Aim 3: Diffusion

Finally, I conclude this dissertation by returning to the DRC to begin to explore a fundamental

question: How does malaria move from place to place? At the most basic level, the spread of malaria
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is driven by two processes. Over short distances, malaria spreads by way of mosquitoes that transmit

the parasite among a local population. Over longer distances, however, malaria spreads through the

movement of people. Understanding human movement and its role in the transmission of vector-borne

pathogens has long been of interest in both geography and epidemiology (Prothero, 1977; Meade, 1977;

Anderson et al., 1992; Stoddard et al., 2009). That said, understanding such a process poses certain

challenges, chief among them the fact that we do not observe population movement in the data most

commonly available to the malaria research community. Instead, inferences about population movement,

and, more importantly, the spread of malaria, must be inferred from observations on the malaria parasite

itself (Carrel et al., 2015; Patel et al., 2014). In this aim, therefore, I use genetic data obtained from

malaria parasites infecting 496 children living in 262 communities across the DRC to begin to explore

the structure of the parasite population, and hypothetical routes through which it may spread.

The public health rationale for doing so are several-fold, all of them related to informing malaria

control. For example, concern is growing worldwide amidst reports of false-negative malaria rapid

diagnostic tests (RDT) results—that is, malaria infections that go undetected by RDT. False-negative

test results occur in malaria parasites that have deleted the Histidine Rich Protein 2 gene that codes

for the target antigen of the most widely-used RDTs. A recent study conducted in the DRC found that

approximately 6% of malaria infections in children under 5 years of age harbored this gene deletion,

and that the parasite population exhibited considerable spatial and genetic structure (Parr et al., 2016).

Importantly, the expansion of this parasite population threatens to undermine a cornerstone of malaria

control, since RDTs represent the primary mode of malaria diagnosis, and their use is designed to ensure

that only confirmed malaria cases are given antimalarial drugs. Similarly, antimalarial drug resistance has

long posed a challenge to malaria control, and was attributed with the rise in prevalence across Africa

in the 1980s and 1990s (WHO, 2005). Historically, drug resistant malaria has first arisen in Southeast

Asia before spreading to Africa, where it first emerges in the East, followed by the west, suggesting a

possible role for Central Africa in the spread (Wongsrichanalai et al., 2002; Taylor et al., 2013). For these

reasons, understanding how the parasite population is structured, and exploring the dimensions of human

movement and how it contributes to the spread of malaria, can help guide future malaria control efforts in

the presence of emerging challenges to control.

Given this brief introduction to the substantive aims of this dissertation, I now turn to discuss the

theoretical grounding that underlies much of my thinking regarding this work.
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1.2 Population Health/Medical Geography

1.2.1 Introduction

As noted, while the substantive focus of this dissertation is malaria, this work is conducted with

geography in mind. Of particular concern, moreover, are the theoretical underpinnings governing much

work in population health/medical geography. Specifically, forty years ago, in 1977, Melinda Meade

developed the ‘Triangle of Human Ecology,’ which has served as a core theoretical framework motivating

work in the discipline ever since. She opens this work by noting: “Health professionals frequently wonder

how medical geography differs from epidemiology, or what geographers do that health planners do not.

These are not idle questions” (Meade, 1977). Writing 16 years later, Kearns notes that “Geographers

have asked questions of who gets what, where, and why with respect to illness, which is also the central

goal of epidemiology (Kearns, 1993). Indeed, this question remains relevant today, as tools commonly

used by geographers are also used by public health professionals whose training is not necessarily

rooted in geographic thought. One such tool, the hierarchical model, also known as a mixed model,

random coefficient model, or multilevel model, is frequently deployed by population health/medical

geographers, and serves as the primary vehicle for inference in two closely related fields, and what Arcaya

and colleagues have described as two largely separate veins of inquiry: Neighborhoods and Health,

and Spatial Epidemiology (Arcaya et al., 2012). Interest in the former largely lies in trying to identify

associations between ecological exposures and individual health outcomes. Examples across a range of

publication outlets show efforts to understand herd effects of a vaccine or other type of intervention (such

as bednets) to prevent infectious diseases such as cholera or malaria (Ali et al., 2005; Messina et al., 2011;

Perez-Heydrich et al., 2014), or to understand associations between the neighborhood food environment

and an individual’s diet (Morland et al., 2002), above and beyond the effects of individual characteristics.

Conversely, spatial epidemiology is largely interested in one of three phenomena, depending on the type

of data at hand. In the case of point-referenced data, spatial prediction is frequently a central goal, with

perhaps the most common prediction goal being to estimate the prevalence of a disease across a study

domain using a finite set of points where prevalence has been measured (Banerjee et al., 2014). In an

areal data setting, the goal is typically smoothing, and proceeds by fitting a model with some variation of

a conditionally autoregressive (CAR) prior to borrow information from neighboring areas to produce a
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map that smooths over noise induced by data features such as small sample sizes within an area. In a

public health setting, these models are frequently fit to learn about variability in disease risk over space,

with a related aim to identify covariates associated with increased/decreased disease risk (Banerjee et al.,

2014; de Araújo et al., 2013; Lawson, 2013). Finally, in the case of point-process data, the central goal is

often to identify clustering, for example of disease cases around a point source (Banerjee et al., 2014).

These fields of inquiry are often divided theoretically. For example, Neighborhoods and Health

research is generally organized around the principle that place (i.e. context) matters for health (Kearns,

1993), and that particular characteristics of a place (e.g. its composition) influence health outcomes. From

a methodological perspective, place is largely defined as membership within a (often geographically-

referenced) unit of some sort, be it a school, hospital, county, village, or city. Spatial Epidemiology is also

interested in place, but with goals of prediction, smoothing, and clustering, it is the spatial arrangement

of these places that tend to be of greater interest. In the broadest sense, then, Neighborhoods and Health

tends to focus on estimating the effect a place’s characteristics have on individuals within that place,

while spatial epidemiology is concerned with spatial associations between places. Importantly, public

health researchers are paying increasing attention to the need to consider both.

Earlier work in this area was largely aspatial, with hierarchical models fit to geographic data without

geographic structure built into the model, with spatial methods being employed primarily for distance

calculations and spatial aggregations, and formal spatial modeling largely being done on aggregated data

(Auchincloss et al., 2012). The increase in software with the capacity to handle different correlation

structures, however, has led to an increase in modeling that can address both concerns. Perhaps the most

frequent (and often not explicitly mentioned) approach to incorporating both is to fit a hierarchical model

separate from a spatial model. For example, Carrel and colleagues fit a hierarchical model aspatially to

assess the relationship between rurality and HIV infection, but also provide a descriptive map of how

HIV prevalence has changed over time using Bayesian kriging (Carrel et al., 2016). Work such as this

is limited, however, in that the functional form of the two models are different, both in terms of the

correlation structure for the random effects, as well as the covariate information included. In the case of

the former, missing spatial random effects precludes learning about a spatial process after accounting for

covariates. In the case of the latter, covariate information is often missing in the spatial model, limiting

our ability to learn about important covariates, as well as the spatial process, since some of the spatial

structure can likely be explained by conditioning on relevant covariate information.
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Efforts to extend the basic modeling setting above have been done through comparing the two

approaches—typically by way of information criteria such as BIC—in an effort to more formally

understand contextual and spatial forces underlying health phenomena. Chaix and colleagues, for

example, conducted two studies in which hierarchical models implemented aspatially were compared to

spatial models on the aggregated data to learn about contextual and residual spatial effects on healthcare

utilization and mental health (Chaix et al., 2005a,b). In the study on mental health, the authors also work

in a geo-additive modeling framework with a smoothing term for longitude and latitude such that risk can

be predicted across the study area, but acknowledge that this framework does not provide inference for

the scale and range of the spatial process. Finally, other work is now emerging that identifies contextual

(i.e. place) effects on health while also learning about an underlying spatial process. An example of this

can be found in the work of Hajat and colleagues, who investigate associations between air pollution and

individual and neighborhood level socioeconomic status (Hajat et al., 2013). In that study, the authors

write down a hierarchical model to identify the contextual effect of SES on exposure to pollution, but

also incorporate spatial correlation in the random effects.

While this brief review by no means covers the vast amount of recent work in both Neighborhoods

and Health and Spatial Epidemiology, it does highlight a trend showing that model sophistication is

increasing to correspond with the complexity of the data we have at hand, as well as the complexity of

the spatial and contextual questions we wish to ask. Nevertheless, there are limitations and opportunities

to overcome them. In all of the modeling scenarios addressed above, for example, spatial random effects

were considered as part of an error process that persisted after accounting for covariate information,

the effects of which are assumed to be invariant over space. Yet, as I will argue, an exposure’s effect

on a health outcome may vary across space as well, possibly due to missing covariate information.

Furthermore, the methods used in Neighborhoods and Health and Spatial Epidemiology are built upon

the same modeling framework—the hierarchical model—suggesting that the two veins of inquiry would

benefit greatly through further integration of ideas. Given that Population Health/Medical geographers

are core members of the Neighborhoods and Health and Spatial Epidemiology research communities,

core theory from the discipline can help to integrate the ideas of space and place in a general and

flexible modeling framework. Doing so represents an initial effort to develop formal inferential goals

for Population Health/Medical geography, thereby extending the contribution geographers can make to

10



public health, as well as to the advancement of the closely related Neighborhoods and Health and Spatial

Epidemiology subfields.

In the following sections, I hope to make progress in this front. In 1.2.2, I briefly outline Meade’s

Triangle of Human Ecology, and how it connects to ideas common in Neighborhoods and Health

and Spatial Epidemiology. In Section 1.2.3, I then attempt to link Meade’s theoretical framework

to the effects of place and space on health. In this section, I pay particular attention to the role of

unmeasured confounding, and discuss the theoretical and practical contribution that spatially modeling

such confounding has in terms of moving us towards better understanding the processes promoting

or preventing health outcomes. In section 1.2.4, I turn to an empirical example, where my focus is to

understand the effect of two environmental risk factors on the probability of malaria infection among

children under 5 years of age in the DRC. Section 1.2.5.

1.2.2 Triangle of Human Ecology

Meade’s theory owes much of its intellectual origin to the work of Jacques May, who became

the “father” of Population Health/Medical geography in the United States with a series of publications

throughout the 1950s, beginning in 1950 with “Medical Geography: its methods and objectives,” in

which he acknowledged that “today we recognize that disease is a multiple phenomenon which occurs

only if various factors coincide in time and space” (May, 1950). He describes the multiple phenomena in

terms of causative agents—those agents such as Plasmodium parasites that actually cause disease—as

well as other agents that are necessary for the causative agent to interact with a susceptible human subject,

such as the Anopheles mosquito necessary for malaria transmission. While an infectious bite from an

Anopheles mosquito thus represents the causal mechanism by which transmission occurs, he goes on to

note geographical factors relevant for such occurrence. Geographical features are wide ranging, multiple,

and disease-specific, though he broadly characterizes those most relevant for human disease as being

related in some fashion to heat, light, and humidity.

Working in a data landscape that is starved by today’s standards, May followed this initial work with

a series of maps which, for the first time, showed the global distributions of various diseases (Meade and

Emch, 2010). Then, in 1959, he released The Ecology of Human Disease, the result of an intellectual

evolution in which he came to see that cultural and environmental conditions produced or limited health

and disease in different ways (May et al., 1959). In this body of work, the map is, not surprisingly,
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a central object in population health/medical geographic thought. At the same time, however, May’s

thoughts of disease evolved from an initial observation while working as a physician in southeast Asia

that his patients both experienced and responded to disease differently than did his patients back in

Europe. Following in the French tradition of geography at the time, he began to see disease as being a

function of population, environmental, and behavioral traits. In one immediately obvious sense, this work

represented the groundwork for what would later be organized into Meade’s theory. Such recognition

has further importance in that it points to the need for population health geographers to contribute to

understanding underlying diseases processes—i.e. understanding the ‘multiple phenomena’—and not

simply describe patterns. Indeed, as John Hunter noted: geographers are not to be “dot mappers,” but

have as one of their tasks the need to understand not just pattern, but process (Hunter et al., 1974).

Melinda Meade was a contemporary of Hunter (as well as a former student), and her work built

substantially upon his and May’s. In particular, her development of the ‘triangle of human ecology’ is

largely a coalescence of both May’s observations of multifactorial determinants of disease and Hunter’s

efforts to move the discipline to understand process. For example, in formalizing core dimensions of

population health geography, she argues that by considering health as adaptability, this in turn implies

that disease is the byproduct of the ways in which humans and their behavior, culture, socioeconomic

context and demographic characteristics interact with the environment, be it natural or built. Such a

conceptualization leads to the ‘triangle of human ecology’ represented in Figure 1.3 below. In this

arrangement, we can see the broader aspects of human, population, and cultural features present, with

disease-relevant features from each of these broader categories inside a triangle with differing intersections

corresponding to different levels of risk.

One of the key contributions of Meade’s theory that is perhaps overlooked, however, relates to spatial

structure. Specifically, she writes that “behavior, the observable aspect of culture, usually has spatial

expression” (Meade, 1977). Further, we can also easily imagine that other relevant features exhibit spatial

expression. Environmental features are certainly correlated in space, and population characteristics can

be as well. Importantly, such variability in these distributions and arguments as to their spatial structure

provide theoretical underpinnings from within Population Health/Medical Geography’s origins up to

current motivations behind studies in the Neighborhoods and Health and Spatial Epidemiology fields.

Indeed, May’s observation that people experienced different health outcomes in different places can

be thought of as an intellectual step towards thinking about the effects of a place on individual health
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Figure 1.3: Triangle of Human Ecology

outcomes (the organizing principal in Neighborhoods and Health), while Meade’s extension of this to

consider spatial expression is an intellectual step towards thinking about associations between places (the

organizing principal in Spatial Epidemiology). In this sense, then, space and place are integrally linked,

implying that efforts to understand both would benefit from being addressed simultaneously.

1.2.3 Linking Meade, Space, Place, and Spatially Varying Coefficients

From a methodological perspective, handling space and place simultaneously within a single mod-

eling framework requires working with hierarchical spatial models. As noted previously, the typical

implementation involves fitting a model in which only the intercept is spatially varying. A fuller model

would consist of models in which the effects of covariates are modeled as spatially varying as well, and

that fitting such models represents a core contribution geographers can make within public health broadly,

and within Neighborhoods and Health and Spatial Epidemiology specifically. Moreover, we can justify

this modeling framework both on theoretical grounds, as well as from a more classical epidemiological

perspective—that is, the perspective of causal inference.
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One reason for this relates to the multiple relevant factors for disease that May describes, and in

particular the practical challenge of gathering data on all of them. For example, in the case of malaria or

other vector-borne disease, data on the vector is generally not collected, and environmental characteristics

such as temperature and precipitation, important to many vector populations, are used in models of

disease risk instead. However, the vector population is itself heterogeneous, with, for example, different

species of Anopheles mosquitoes responsible for the transmission of malaria and exhibiting considerable

spatial structure. These different species, moreover, have their own habitat preferences, and respond

to the same environmental conditions in different ways. Thus, fitting a hierarchical model in which

covariate effects are considered invariant over space will not account for any confounding induced by the

unobserved and heterogeneous vector population.

Situations such as this can become particularly problematic if meaningful variation in effects is

naively masked. Indeed, to take an extreme example, consider a study domain defined over a region.

Now imagine that for people living in one half of this region, a given exposure is protective against a

health outcome, while over the other half of the region the exposure increases risk. If we fit a hierarchical

model in which we assume that the effect of the exposure on the outcome is invariant over space, we may

discover, wrongly, that the exposure is not associated with the health outcome, and the conclusions we

draw will be detrimental to half of the study population. In fact, we will have estimated a relationship that

we assume holds everywhere, but in fact holds nowhere—an “everywhere is nowhere” effect, in essence.

To take a more concrete example, consider the case study included in the paper introducing spatially

varying coefficient regression models (Gelfand et al., 2003). In that work, the authors set out to model

the selling price of homes based on various features of each home, such as the square footage, number

of bathrooms, and age. If the study region of interest is a large metropolitan area, however, each of

these features will affect the selling price of a home in different ways. For example, older homes will

have higher values in some areas than in others, meaning that the effect of age will vary over the region

as a function of, for example, the desirability of the neighborhood. From another perspective, without

information about the desirability of an area that a home is located in, regression models assuming

constant effects across the study region will fail to adequately capture the data generating process. From

a more theoretical, as well as practical, perspective, collecting such information is a challenge from the

start, given the difficulty in defining such terms as desirability and developing a means to measure it.

Indeed, conceptualizing place and features of it have long been challenges in Population Health/Medical

14



geography, with an ongoing need to re-examine the interplay between place and space (Kearns and

Joseph, 1993). Thus, even when measurements are made, they almost certainly fail to capture the full

dimension of the construct they aim to, and in this case spatially-varying effects may result as well.

While this is certainly a limitation that needs further work by population health scientists and others,

I argue here that, even though we cannot perfectly measure characteristics of a place, or even observe

them at all, we can still learn about key dimensions of them. Indeed, if we can imagine what component

of the hypothesized data generating process is unobserved, such as a vector population, or only partially

observed, such as behavior, we can then think through how it might induce a spatially varying coefficient

in other parts of the data generating process. Further, we argue that learning about this unobserved process

and its structure over space should be a fundamental goal of Population Health/Medical geography, as it

delivers local inferences about place effects on health while simultaneously learning about how these

place effects vary over space, thereby integrating both space and place into a rich and flexible modeling

framework. To demonstrate this, we turn now to an empirical example. In the tradition of May, who paid

particular attention to the importance of the role of heat and water to disease transmission, we take as our

example the effects of temperature and precipitation on malaria risk.

1.2.4 Spatially Modeling the Effects of Temperature and Precipitation on Malaria Risk

As can be seen in Figure 1.2, malaria exhibits considerable spatial heterogeneity, a phenomenon

which is a frequently described, but poorly understood (Bousema et al., 2010). It is thus naturally suited

to study within Meade’s framework, with risk factors that span behaviors such as bednet use, population

characteristics such as age, and environmental factors such as altitude, temperature, and precipitation.

As noted previously, the unobserved mosquito population is sensitive to these environmental conditions.

For example, An. arabiensis and An gambiae have similar larval habitats, but different biting behaviors,

with the former being relatively more zoophilic (Sinka et al., 2010). Given these similar habitats,

environmental conditions will clearly affect both species. For example, precipitation will increase the

number of available breeding pools, thereby leading to a possible decrease in competition between

vectors, or to a more rapid expansion of one population such as An. gambiae over An. arabiensis.

Further, while increased temperature is generally believed to increase development rates of the parasite,

and thus favoring transmission, this is not necessarily the case (Paaijmans et al., 2011). Given these

complexities, and given that we do not observe the vector population, its composition, or its behavior,
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we turn to work in a spatially varying coefficient framework and model the effects of temperature and

precipitation on malaria risk in 6,657 under-5 children sampled across 492 communities as part of the

2013-14 Demographic and Health Survey (DHS) administered across the Democratic Republic of Congo.

The details of these data and the model fit will be presented more fully in the next chapter, as well

as in Appendix I, where the full conditional distributions for all model parameters are derived. Here, I

simply note write down the basic model as follows:

Y = Xβ + Zθ + ε

Where Y is an 6, 657 × 1 vector of binary responses indicating each child’s malaria status, X is a

6, 657 × 3 design matrix with an intercept and two covariates: the average temperature (measured in

degrees Celcius) during the month of the survey, and total precipitation (in cm) the month prior to the

survey. β is a 3× 1 vector of regression coefficients linking covariates to response, Z is a 6, 657× 1, 476

random effects design matrix that maps a spatial random effect at location j, j = 1, . . . , 492 to individual

i, i = 1, . . . , n. The spatial random effects are thus represented by θ, a 1, 476× 1 vector. Finally, ε is

white noise process assumed to follow a standard normal distribution.

We adopt a probit specification and introduce latent normal variables for response Y. Working in a

Bayesian setting, we complete the model specification by assigning prior distributions to all unknown

parameters in the model. Specifically, we assign a diffuse, zero-centered normal prior for the regression

coefficients β. We model the spatial random effects as realizations from a zero-centered Gaussian process

with separable covariance structure. We assign a low-precision Inverse Wishart prior for the spatial

variance-covariance matrix, and use an exponential covariance structure with a uniform prior for the

spatial range. We fit the model using MCMC and run the sampler for 120,000 iterations, discarding the

first 20,000 as burn in and thinning the Markov chain to collect every tenth posterior sample. Inference

for all parameters is thus based on 10,000 posterior draws.

Subsequent to model fitting, we then take 10,000 draws from the posterior predictive distribution to

obtain estimates of the intercept and slope processes across the DRC. Doing so leads to the precipitation

and temperature surfaces seen in Figure 1.4, which show considerable variability in the effects of

each, especially in the precipitation process. The challenge, then, is to begin to develop hypotheses
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about what may be driving the heterogenetity observed. One possibility is that precipitation measures

are considerably noisy, and this may account for some of the variability observed. Beyond concerns

over measurement, we may further hypothesize that other factors may contribute to this heterogeneity,

such as different land cover types in the DRC. Indeed, as noted, temperature and precipitation are

largely used as measures since the vector population is unaccounted for in the model. In particular, An.

gambiae mosquitoes prefer transient pools of sunlit water, such as those created when land is cleared for

agricultural development, thus, regions of higher risk may be explained through understanding the role of

agriculture in transmission.

Still other reasons may explain this variability. In the model implemented here, for example,

demographic and behavioral covariates are not included in the model, and their inclusion would almost

certainly account for some of the spatial variability observed here. Thus, this initial model can be

considered the start of a larger model-building effort. For example, additional models would include

other covariates and consider different correlation structures to address different hypotheses about the

underlying data generating process, with model comparisons proceeding via different measures of fit,

such as DIC or out-of-sample based approaches.

Figure 1.4: Results from spatially varying coefficient regression model
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1.2.5 Discussion

Ultimately, the message from this introduction is that malaria is a complex disease that exhibits

considerable heterogeneity. This heterogeneity arises from multiple sources, including a vector population

that is heterogeneous both in its species composition and behavior, which changes as a function of human

interventions. Further, human behaviors are themselves heterogeneous, and environmental processes are

as well. Thus, efforts attempting to understand a heterogeneous disease process fundamentally need to

try to identify and understand the sources of such heterogeneity.

Population Health/Medical Geography, as delineated by Meade and her predecessors’ work, essen-

tially calls for the study of heterogeneity in its various forms. As it pertains to geography, then, the theme

of this dissertation is that the contribution geographers can make to public health is through investigating

variability. In this introductory example, and in the next chapter as well, spatially-varying coefficients

are one way to accomplish this goal. But variability over space can be investigated aspatially, such as

through analyses that stratify by geographical region, or through efforts to understand human movements.

These latter two approaches represent the theoretical and methodological underpinnings of chapters 2

and 3, respectively. With this in mind, I now turn to the substantive aims of the dissertation.
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CHAPTER 2: AGRICULTURE AND MALARIA RISK IN UNDER-5 CHILDREN

Understanding the ecology of malaria and its vectors is an essential component of successful control

(Ferguson et al., 2010). One of the largest factors influencing this ecology is land use and anthropogenic

land use change, such as agricultural development (Patz et al., 2004, 2000). Agriculture is of concern

since over half of global population growth from now until 2050 is expected to occur in Africa, and UN

projections suggest the population could double, from 1.2 billion in 2015 to 2.5 billion in 2050, with much

of this growth occurring in rural areas (Bongaarts and Casterline, 2013; DESA, 2015; Jayne et al., 2014).

Such growth places considerable demand on Africa’s food supply, and governments are considering

agricultural projects to meet this increased need (FAO, 2017; Boserup, 2005; Jayne et al., 2014; Ijumba

and Lindsay, 2001). However, agricultural projects may reverse reductions in malaria transmission

over the past decade, since expanding agriculture may produce habitats favored by Anopheles gambiae

mosquitoes, sub-Saharan Africa’s most efficient malaria vector. Specifically, An. gambiae mosquitoes

prefer transient sunlit pools of water with little or no surrounding vegetation (Gimnig et al., 2001; Sinka

et al., 2010).

Few studies, however, collect data on both vector populations and malaria incidence, relying instead

on the relationship between the environment and transmission indicators. Findings from this work suggest

that agricultural development is associated with changes in mosquito indoor resting density, human biting

rates, sporozoite rates, entomological inoculation rates, larval abundance, reproduction rates, gonotropic

cycles, and vector capacity (Afrane et al., 2006, 2005, 2008; Munga et al., 2006; Lyimo et al., 1992;

Vittor et al., 2009; Ijumba et al., 2002). Such changes, however, do not necessarily increase malaria

risk. For example, increased larval density is associated with longer mosquito development times, and

different agricultural practices and crop types had varying effects on malaria risk (Lyimo et al., 1992;

Ijumba and Lindsay, 2001; Zhang et al., 2008). Importantly, these studies were conducted in a small

number of sites, are not representative of the broader population, nor generalizable across ecological

zones. They also lack data on key factors governing transmission (e.g. bed net use), limiting inferences
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on risk (Yang et al., 2008). Thus, given the diversity of vectors and of human ecosystems, much more

work in this area is needed.

In this study, we examine the relationship between agriculture, the mosquito population, and malaria

risk using a population-based survey of under-5 children living in the Democratic Republic of Congo

(DRC), a large, ecologically diverse country containing 47% of Africa’s potential agricultural land, and

accounting for 10% of global malaria deaths in 2015 (Jayne et al., 2014; WHO et al., 2016). We also use

contemporaneous entomological monitoring data collected over time across the DRC’s ecological zones.

Doing so allows us to consider possible mechanisms through which increases in agriculture may lead to

a hypothesized increase in malaria risk. Findings from this study can therefore provide insights into a

hypothesized but understudied driver of transmission.

2.1 Methods

2.1.1 Study Population

The study population for this analysis consists of rural, under-5 children sampled as part of the

2013-14 DRC Demographic and Health Survey (DHS), a population-based cluster household survey.

The sampling methods for the DHS are described elsewhere (Hancioglu and Arnold, 2013). The outcome

for this study is each child’s malaria status, as determined by polymerase chain reaction (PCR) analysis

of dried blood spots (DBS) according to a previously published protocol (Singh et al., 1999; Taylor et al.,

2011). A total of 8,808 DBS from children were available for this study. Spatial information and land

cover data were unavailable for 44 and 3 DHS clusters, respectively, reducing the sample to 7,997. The

DHS does not provide survey information on over-5 children, and these children were excluded. Finally,

we include only children living in rural areas because agriculture in DRC is predominantly rural. This

reduced the sample to 4,616 participants in 331 survey clusters, 4,612 of whom had no missing data.

Figure 2.1 shows a flow diagram for the study.

The outcome measure for this study is each child’s PCR-confirmed malaria status. DBS from the

survey were shipped from DRC to the University of North Carolina at Chapel Hill (UNC) for PCR

analysis. DNA was extracted from 9,790 children using Chelex, and PCR amplification for Plasmodium

falciparum lactate dehydrogenase (DNA) was done according to a previously published protocol (Singh

et al., 1999; Taylor et al., 2011). Of these, 978 blood spots were randomly selected for use in another
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project. No corresponding survey data was available for 112 blood spots, leaving 8,700 blood spots for

this study. Of these, 7,250 were samples from children under five years of age. These data were then

merged to the DHS spatial data, which reduced the sample to 6,661 children under five (owing to the lack

of spatial information for 44 survey clusters) with a PCR-confirmed result. Finally, given that interest

here is in agriculture, a predominantly rural phenomenon, we include only those children living in rural

areas, reducing the sample to 4,616 participants in 331 survey clusters, 4,612 of whom had no missing

data on covariates of interest. Figure 2.5 shows a flow diagram for the study.

Figure 2.5: Study Flow Diagram

2.1.2 Exposure to Agriculture

Agricultural cover was derived using the Moderate Resolution Imaging Spectroradiometer (MODIS)

Land Cover Type data product (MCD12Q1), which provides yearly estimates of land cover at 500-

meter resolution. In that dataset, two different classification schemes measure agricultural land cover,
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one from the International Geosphere-Biosphere Programme (IGBP), the other from the University of

Maryland (UMD). The IGBP measure includes two agricultural land cover classes, while the UMD

measure includes one. We consider both classification schemes, and estimate the percent agricultural

land cover within ten kilometers of each DHS cluster for each, then average the two to lessen the effect

any extreme measures in one classification may have on inference. We chose a radius of ten kilometers

since it represents the maximum flight distance of a female, human blood fed An. gambiae mosquito,

representing the maximum extent over which human and mosquito populations interact (Kaufmann and

Briegel, 2004).

2.1.3 Population, Behavioral, and Environmental Confounders

Population, behavioral, and environmental confounders are derived from the DHS and satellite

remote sensing sources. Data extracted from the DHS include child age, sex, individual and community

bed net use, altitude, and household construction materials—which represent both socioeconomic status

and paths/barriers to mosquito entry. Individual bed net use was measured as use of a net treated

with deltamethrin or alphacypermethrin, permethrin, or other kind of net. We consider net use in this

manner owing to high levels of observed insecticide resistance to permethrin and remaining efficacy of

deltamethrin and alphacypermethrin (AIRS, 2014; Levitz et al., 2017). Similarly, we calculate community

bed net coverage according to the proportion of other respondents in the community sleeping under

a deltamethrin- or alphacypermethrin-treated net, since these nets still possess a knockdown effect.

Household wall construction was coded as natural (no walls or cane/palm/trunks), rudimentary (e.g.

bamboo with mud), finished (cement), or other material according to the DHS. Roof construction was

dichotomized as either finished (e.g. metal) or not, owing to small sample sizes in the rudimentary (27)

and other (10) categories.

Precipitation and temperature were derived from multiple satellite platforms. We calculated the

average temperature (in Celsius) the month the survey was conducted using the University of East Anglia’s

Climate Research Unit (CRU) TS3.23 data product, together with data from the National Centers for

Environmental Prediction (NCEP) and the National Oceanic and Atmospheric Administration (NOAA).

Precipitation was measured as the total rainfall (in centimeters) the month prior to the survey using

Tropical Rainfall Monitoring Mission (TRMM) and CRU data. These measures were also calculated
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within a ten-kilometer radius of each survey cluster and averaged. Our measures of temperature and

precipitation are consistent with other work on malaria in DRC (Messina et al., 2011).

2.1.4 Entomological Monitoring Data

We consider the effect of agriculture on the vector population using entomological surveillance of

An. gambiae s.l. (An. gambiae, hereafter), An. paludis, An. moucheti s.l. (An. moucheti, hereafter), and

An. funestus s.l. (An. funestus, hereafter). In 2013, the Africa Indoor Residual Spraying (AIRS) Project

conducted two rounds of mosquito surveillance (in August and November) across four sites chosen to

represent equatorial, tropical, and mountainous ecological regions of the country. In 2014, three more

sites were added, yielding seven total sites for 2014 surveillance, which occurred in February, April, and

July. One of these sites was in an urban setting (Kinshasa), and was excluded since interest is in rural

transmission (AIRS, 2014). Figure 2.6 maps each site together with background malaria prevalence in

under-5 children. Mosquito collection occurred both indoors and outdoors using human landing catch

(HLC), and we assume those caught indoors were intending to bite, and treat them as indoor biting

mosquitoes.

In each site, eight households were chosen and HLC was performed in two of them each night for

four nights by two mosquito collectors between 1800 and 0600 hours. One collector performed HLC

indoors and the other outdoors. The two collectors switched places hourly to prevent mosquito attraction

bias. Collectors were given malaria chemoprophylaxis. Mosquito species identification was done

morphologically. Measuring agriculture, temperature, and precipitation around mosquito surveillance

sites followed the same protocol as that used for the DHS survey.

2.1.5 Statistical Analyses

Probit regression models implemented in a hierarchical Bayesian setting were used to assess 1) the

relationship between agriculture and mosquito indoor biting behavior, and 2) the relationship between

agriculture and malaria risk. Three separate models were fit for indoor biting behavior among An.

gambiae, An. paludis, and An. funestus mosquitoes. Insufficient numbers of An. moucheti mosquitoes

(2) prevented modeling. All three models included a random intercept that varied independently across

surveillance sites, and controlled for temperature, precipitation, and month of surveillance.
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Figure 2.6: Anopheles surveillence sites and background malaria prevalence

Three models were also fit to assess the relationship between agriculture and malaria risk using DHS

data. The three models addressed the survey sampling design, the unobserved vector population, and

variability in crop types, the latter two representing sources of bias. The first model incorporates an

independently varying random intercept to account for the correlation induced by the survey’s cluster-

sampling design. Such a model assumes unmeasured confounding exhibits no spatial structure. Given

that the vector population is dependent on environmental conditions, which are spatially structured, we

extend this model and incorporate spatial correlation in the intercept, thereby allowing for inference

of unmeasured confounding across the DRC. Notably, both specifications assume no unmeasured

confounding in the agriculture-malaria relationship. However, there may be variability in the effect due

to different crop types, and different vectors may respond to agriculture in different ways. We therefore

introduce a spatially varying coefficient process for the agriculture-malaria relationship (Gelfand et al.,

2003).
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All models are fit in a Bayesian setting. Continuous covariates (age, agriculture, temperature,

precipitation, community bed net coverage) are first centered and scaled, such that regression coefficients

represent effects per standard deviation increase in these variables. Regression coefficients are assigned

standard normal prior distributions, while spatial structure is modeled using a Gaussian process with

exponential covariance, consistent with other spatial models of malaria transmission (Hay and Snow,

2006; Hay et al., 2009). We implement the model using Markov chain Monte Carlo (MCMC) and run

the sampler for 120,000 iterations, discarding the first 20,000 as burn in and thinning the Markov chain

to collect every 10th posterior sample, such that final inferences are based on 10,000 posterior samples.

Performance for models on malaria risk is assessed using Brier scores, area under the ROC curve, and

DIC, with final inferences based on the best fitting model. Appendix I derives the full conditional

distributions for all model parameters.

2.2 Results

2.2.1 Effects of Agriculture on Mosquito Behavior

An. gambiae and An. paludis were the dominant vectors across all sites and over all time periods,

making up 48% and 51% of 5,713 Anopheles caught by HLC, respectively. An. funestus and An.

moucheti were relatively rare across all sites and over all collections. Further, relative abundance between

An. gambiae and An. paludis varies in some sites, with relatively more An. gambiae from November

through April, and more An. paludis during July and August. In the Kapolowe site, relative abundance

appears unrelated to season, with An. gambiae abundance declining over the monitoring periods. Table

2.1 shows the relative abundance of each species caught over time, while Figure 2.3 presents these relative

proportions over time at each site.

Table 2.1: Proportion of each Anopheles species by HLC collection period
Species Collection Period Total Caught

Aug. 2013 Nov. 2013 Feb. 2014 Apr. 2014 Jul. 2014
An. gambiae s.l. 0.44 0.79 0.58 0.61 0.17 2,744
An. funestus s.l. 0.03 0.01 0.02 0 (n=1) 0.01 71
An. moucheti s.l. 0 0 0 0 (n=2) 0 2
An. paludis 0.53 0.20 0.40 0.39 0.82 2,896
Total caught 455 606 2,143 895 1,614 5,713
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Figure 2.7: Relative abundance of Anopheles mosquitoes by HLC by site

Agricultural coverage across all six sites ranged from 3.7% to 25.3% (mean=15%, sd=7%), while

total precipitation ranged from 0 to 26.5 centimeters (mean=7.9, sd=94.8). Average temperature ranged

from 19 to 26 degrees Celsius (mean=24, sd=2). Results from probit models on indoor biting behavior

among An. gambiae mosquitoes suggest that increasing exposure to agriculture was associated with

increased probability of indoor biting with high posterior probability (estimate: 0.22, 95% uncertainty

interval [UI]: −0.21 − 0.68; Pr(estimate> 0) = 0.85), controlling for available confounders. Given

a 15% increase in agricultural cover, this estimate is associated with risk differences in indoor biting

ranging from 0.14 (95% UI: −0.19− 0.30) to 0.27 (95% UI: −0.22− 0.67), depending on factors such

as season (month of surveillance), temperature, and precipitation. Conversely, there was no indoor biting

response to agriculture among An. paludis mosquitoes (estimate: −0.01, 95% UI:−0.12−0.09). Among

An. funestus, increasing agriculture was associated with decreased indoor biting with high posterior

probability (estimate: −0.13, 95% UI: −0.37− 0.09; Pr(estimate< 0) = 0.88). However, An. funestus
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were not present in high abundance in any site. Table 2.2 presents full model results, with parameter

estimates and 95% uncertainty intervals for all three species.

Table 2.2: Results of hierarchical probit models assessing the effect of agriculture on indoor biting
behavior among Anopheles mosquitoes in DRC

An. gambiae s.l. An. paludis An. funestus s.l.
Variable estimate 2.5% 97.5% estimate 2.5% 97.5% estimate 2.5% 97.5%
Intercept -0.76 -1.08 -0.45 -1.30 -2.96 0.35 0.30 -1.58 2.16
Agriculture 0.22 -0.21 0.68 -0.01 -0.12 0.09 -0.13 -0.37 0.09
Precipitation -0.17 -0.25 -0.10 0.05 0.03 0.08 0.02 -0.12 0.08
Temperature -0.30 -0.40 -0.20 -0.02 -0.11 0.07 0.07 -0.12 0.26
August 2013 Reference
November 2013 0.75 0.47 1.03 -0.83 -1.33 -0.32 -0.34 -2.11 1.46
February 2014 1.02 0.74 1.30 0.52 0.24 0.80 0.44 -0.79 1.67
April 2014 1.20 0.95 1.44 1.76 1.39 2.11 -0.75 -2.37 0.85
July 2014 0.59 0.39 0.78 0.85 0.59 1.12 -0.24 -1.32 0.80

2.2.2 Effects of Agriculture on Malaria Risk

Table 2.3 presents descriptive statistics on the agricultural exposure and potential confounders

included in all models, together with their expected relationships on malaria risk. There was no difference

in the percent of agricultural land cover surrounding a community by overall malaria prevalence in under-

5 children, with malaria-infected and uninfected children exposed to 11.1% and 11.2% agricultural land

cover on average. There were also no differences on the temperature and precipitation measures, although

malaria prevalence was 7.5% higher among those living at altitudes under 1,000 meters. Other differences

included age, with malaria-infected children being slightly older. Individual bed net use also varied, with a

higher proportion of malaria-negative children sleeping under deltamethrin- or alphacypermethrin-treated

nets, and a higher proportion of malaria-positive children sleeping under permethrin-treated nets. Further,

malaria-negative children were exposed, on average, to higher levels of community bed net protection,

while malaria-positive children tended to live in poorer quality housing.

Among the three models fit, the model with an independently varying intercept yielded the best fit to

the data. Appendix II presents fit statistics. Further, while not the best fitting models, the spatial models

can be suggestive of potential future areas of concern, and we also include a discussion in Appendix II.

Table 2.4 presents results from the best-fitting model, including parameter estimates, 95% uncertainty

intervals, and the posterior probability that the exposure increases malaria risk. Values near 1 indicate
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Table 2.3: Descriptive statistics for variables included in hierarchical models
Malaria-positive Malaria-negative Expected relationship

Individual-level variables
Age (years) (mean) 2.9 2.6 +
Sex (% female) 48.2 50.1 +
Bed net use (% under net)
Delta/Alphacypermethrin 37.3 48.3 -
Permethrin 9.3 6.8 0
Other 2.1 1.1 0
Community-level variables
Household wall material (% living in HH)
Natural 13.7 21.8 +
Rudimentary 76.8 66.2 +
Finished 8.8 9.8 -
Other 0.6 2.2 0
Household roof material (% living in HH)
Natural 88.3 85.1 +
Rudimentary (n=27) 0.6 0.6 +
Finished 11.0 14.0 -
Other (n=10) 0.1 0.3 0
Community bed net use (%) 39.2 47.1 -
Altitude (% > 1000m) 12.4 19.9 -
Precipitation (cm) (mean) 16.2 16.5 +
Temperature (C) (mean) 24.7 24.4 +
Agricultural land cover (%) 11.1 11.2 +
Notes: n=4,612. Due to a small number of children sleeping in households with rudimentary or other roofing material,
these categories were collapsed into the reference category in model fitting. A + indicates that the variable of interest is
expected to increase risk, while a - indicates decreased risk. A 0 indicates no expected effect on risk.

high probability of increased risk. Values near 0 indicate high probability of decreased risk, while values

near 0.5 correspond to little or no effect. Increasing exposure to agriculture was associated with increased

malaria risk with a high posterior probability (estimate: 0.07, 95% UI: −0.04− 0.17, Pr(estimate> 0)

= 0.89). As before, a 15% increase in agricultural cover is associated with risk differences ranging from

0.00 (−0.00 − 0.01) to 0.03 (−0.01 − 0.07), depending on other risk factors such as bed nets treated

with deltamethrin or alphacypermethrin, age, housing quality, and altitude.

To generate a sense of how large-scale agricultural expansion may affect children under 5 in the

DRC, we plot the hypothetical probability of malaria infection for each child as a function of agriculture,

with coverage ranging from 0% to 75% (the minimum and maximum observed values in the data). Figure

2.4 shows this plot, where each unique child is shaded and stratified according to their risk based on

other covariates from the model. We further stratify these children according whether or not a child’s

risk fell into the lowest 25%, middle 50% (i.e. interquartile range), or highest 25% quantiles. Children

at the extremes—i.e. those at very low (green) or very high (red) risk for malaria based on other risk
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Table 2.4: Results for final hierarchical probit regression model on agriculture and malaria risk
Variable Estimate 2.5% 97.5% Pr(estimate>0)
Individual-level variables
Intercept -0.34 -0.51 -0.16 0
Age (years) 0.18 0.14 0.23 1
Female sex 0.03 -0.06 0.11 0.73
Bed net use

Delta/Alphacypermethrin -0.15 -0.25 -0.05 0
Permethrin 0.02 -0.17 0.21 0.58
Other 0.19 -0.18 0.56 0.84

Community-level variables
Household wall material

Natural Reference
Rudimentary 0.11 -0.04 0.27 0.92
Finished 0.05 -0.18 0.29 0.66
Other -0.26 -0.77 0.26 0.17

Finished Household roof material -0.12 -0.29 0.06 0.09
Community bed net use (%) -0.21 -0.31 -0.12 0
Altitude (living > 1000m) -0.30 -0.70 0.11 0.07
Precipitation (z-score) -0.07 -0.19 0.04 0.11
Temperature (z-score) 0.17 0.03 0.32 0.99
Agricultural land cover (z-score) 0.07 -0.04 0.17 0.89
Notes: Pr(estimate>0) indiates that the posterior probability that the regression coefficient is greater than 0, indicating
posterior probability of increased risk. Values near or at 0 indicate that the effect is protective, while values at or near 1
indicate that the covariate is a risk factor. Values near 0.5 indicate no effect

factors—exhibit a small increase in risk due to large-scale agricultural expansion. For those whose risk is

not at either extreme, however, dramatic increases in agriculture are accompanied by sizeable increases

in malaria risk, as high as 0.13 (−0.07 − 0.32), indicating increases in malaria risk due to potential

large-scale agricultural development may be offset through simultaneous investments in housing quality,

bed nets, and other interventions.
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Figure 2.8: Hypothetical changes in malaria risk due to agriculture among children under 5 in
DRC

Note: Shading indicates malaria risk based on other covariates, with green indicating low risk and red
indicating high risk. For visualization, we further stratify based on each childs risk falling in the 25%
(”Lowest 25%”), 25-75% (”Middle 50%”), and 75% (”Highest 25%”) quantiles. The black line
represents the mean trend lines within each quantile.

2.3 Discussion

The agriculture-malaria relationship is complex, involving interactions between individuals, vectors,

and the environment, all of which are highly diverse. To our knowledge, this is the first study attempting

to understand the agriculture-malaria relationship using a population-based survey while incorporating

available vector data from contemporaneous surveillance.

Results from entomological analyses suggest that increases in agriculture are associated with in-

creases in indoor biting among An. gambiae mosquitoes, but not among An. paludis, and was associated

with decreased indoor biting among An. funestus. Given the high abundance of An. gambiae, these

results suggest that the agriculture-malaria relationship may be mediated through effects on indoor biting
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among An. gambiae, and that while An. funestus showed a decreased probability of indoor biting with

increasing agriculture, it only accounted for 1% of the mosquito population. Important seasonal patterns

also existed among vectors, with the relative abundances of An. paludis and An. gambiae varying some

sites, while indoor biting behavior among both species also varied, peaking in April 2014.

Results from analyses of DHS data indicate increased malaria risk with increasing agriculture, and

that the relationship does not meaningfully vary over space due to confounding from the unobserved

vector population or crop types. Further, our findings suggest that exposure to large-scale agricultural

expansion will have a minimal effect on those at the most or least risk for infection based on other risk

factors, but could have profound effects on those not at either of these extremes. Such an effect is of

concern in the DRC, which has the largest proportion of potentially available cropland in sub-Saharan

Africa, as well as one of the world’s highest malaria burdens.

Considerable work remains to fully understand the relationship between agriculture and malaria

risk in sub-Saharan Africa. Work on adult populations is limited, with one study in the DRC finding

no effect (Messina et al., 2011). Additionally, the relationship between agriculture, temperature, and

precipitation needs additional examination. In this study, we treat them as confounders, but they may

also modify risk, and their roles are complex (Paaijmans et al., 2010, 2011; Krefis et al., 2011; Ageep

et al., 2009; Hernández-Avila et al., 2006; Stresman, 2010; Paaijmans et al., 2008). That complexity is

not fully captured here. It is also impossible to representatively sample the vector population, although

our population was sampled in different ecological zones.

Work is also needed to understand the role of An. paludis, which has received virtually no attention

in the malaria literature. Recent work to identify Africa’s predominant malaria vectors predicted that

An. gambiae was the dominant vector in DRC, which we do not dispute (Sinka et al., 2010). However,

work from the 1990s suggested that An. paludis may be an important vector in the DRC, and given

its observed presence and the country’s high malaria burden, further work is needed to understand its

role in transmission (Fontenille, 1999; Karch and Mouchet, 1992). Additional work is needed to try to

understand how different types of agriculture may affect transmission.

In conclusion, this work provides the first evidence that increased exposure to agriculture increases

malaria risk in children under 5 across rural and ecologically diverse settings, and may be due to increased

indoor biting among An. gambiae mosquitoes. This is an area of growing concern for public health as

transmission declines and as governments consider agricultural projects to respond to population growth,
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projects that should be accompanied by additional malaria control measures (Ferguson et al., 2010; Pates

and Curtis, 2005; Ijumba and Lindsay, 2001).
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2.4 From Agriculture to ITN effectivness

This paper sought to characterize the effect of agriculture on the Anopheles mosquito population

and on malaria risk. Doing so represented a contribution to efforts to understand the underlying ecology

of malaria transmission, a prerequisite for malaria control (Ferguson et al., 2010). That said, another

prerequisite to malaria control is that current interventions remain effective. Indeed, ITNs have been a

mainstay of all malaria control programs worldwide. Yet, insecticide resistance poses a serious threat,

and it has been observed across sub-Saharan Africa. This is of particular concern in light of our findings

from this work, where increasing agricultural land cover was associated with increased probability that

An. gambiae were caught biting indoors. If insecticide resistance renders certain bed nets ineffective, and

if the ecological changes such as agricultural development lead the most pernicious malaria vector to bite

indoors, then the loss of efficacy of ITNs due to insecticide resistance could be further compounded, and

the transmission declines we have observe over the course of the last 15 years could be reversed.

Addressing this concern is the subject of chapter 3. Further, given the role of ITNs as a cornerstone

of malaria control, we address this concern in 21 countries in sub-Saharan Africa.
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CHAPTER 3: BED NET EFFECTIVENESS BY INSECTICIDE IN UNDER-5 CHILDREN ACROSS
SUB-SAHARAN AFRICA

3.1 Introduction

Substantial investments in malaria control have greatly reduced malaria transmission since 2000, with

interventions over this time period averting an estimated 663 million cases worldwide (95% uncertainty

interval [UI]: 542 - 753) (Bhatt et al., 2015). Of the estimated cases averted, 68% (62% - 72%) have

been attributed to use of insecticide treated nets (ITNs), a cornerstone of malaria control that have led

to sustained reductions in transmission (Bhatt et al., 2015; Lindblade et al., 2006). ITNs possess two

different mechanisms of action: they act as a physical barrier to prevent contact between mosquito

and human, while insecticides provide an additional chemical barrier that can repel or kill susceptible

mosquitoes on contact by targeting the voltage-gated sodium channel in the insect’s nervous system

(Darriet et al., 1984; Lengeler et al., 2004; Davies et al., 2007). This latter mechanism, moreover, helps

maintain the net’s protective efficacy after holes develop (Darriet et al., 1984). Thus, the continued success

of ITNs largely depends on the continued effectiveness of insecticides, and the WHO has recommended

all insecticide-treated nets (ITNs) in use be long-lasting insecticidal nets (LLIN), which are designed to

retain insecticide activity for at least three years in field conditions, and are also of sturdier construction

(WHO et al., 2007; Graham et al., 2005). Nevertheless, resistance to pyrethroids, the only class of

insecticides approved for use in bed nets, has been reported across sub-Saharan Africa, the region with

the highest malaria burden (Ranson et al., 2011; Kelly-Hope et al., 2008; Trape et al., 2011; Pinto et al.,

2007; N’Guessan et al., 2007; Ranson et al., 2009; Hargreaves et al., 2000). Understanding the impact

that such resistance may have on malaria control is therefore of critical importance.

Insecticide surveillance efforts have led to a growing body of work on the links between pyrethroid

resistance, bed nets, and malaria transmission. This work has largely focused on identifying the molecular

markers responsible for resistance, estimating their prevalence, and understanding their effect on malaria

transmission. With regard to the former, two major mechanisms of insecticide resistance have been

34



identified: metabolic resistance and target-site resistance. The former is not as well understood, but is

thought to result from the over expression of certain enzymes that sequester or detoxify the insecticide

before it reaches the target site. Target-site resistance (also known as knock-down resistance, or kdr),

conversely, is the result of point mutations in the insecticide’s sodium channel target, and allow insects

to withstand exposure to insecticides without being knocked down (Ranson et al., 2011). Prevalence of

these molecular markers varies considerably over space and time, while additional evidence suggests

that increasing intervention coverage is exerting selection pressure on the gene expression and mutation

processes responsible for resistance, and prevalence of resistance often increases as a result (Ranson

et al., 2011; Czeher et al., 2008; Stump et al., 2004; Vulule et al., 1999; Protopopoff et al., 2008; Mathias

et al., 2011; Padonou et al., 2012; Yadouleton et al., 2010; Djogbénou et al., 2011).

The epidemiological consequences of such increases are not fully understood. For example, in the

highland province of Karuzi, Burundi, interventions with pyrethroid-based IRS and LLINs reduced

transmission intensity in children by 90%, despite increasing levels of insecticide resistance following the

interventions (Protopopoff et al., 2008, 2007). Additionally, results from village randomized controlled

trials in a region of Cote d’Ivoire with confirmed pyrethroid resistance among An. gambiae suggest that

nets treated with lambda-cyhalothrin maintained a protective efficacy of 56% against malaria (Henry

et al., 2005). Other work, however, suggests that the rise of insecticide resistance may lead to reverses

in recent reductions in malaria transmission. Results from a longitudinal study in Dielmo, Senegal, for

example, suggest that malaria incidence rebounded to near pre-intervention levels 27-30 months after the

introduction of deltamethrin-treated LLINs, during which time the prevalence of insecticide resistance

markers increased from 8% to 48%, and 37% of the An. gambiae population was resistant to deltamethrin

(Trape et al., 2011). Additionally, trials conducted in northern and southern Benin among regular users of

bed nets indicate that treated nets provide little or no protection in the presence of insecticide resistance,

whereas in areas where the mosquito population was susceptible to insecticides, sleeping under a treated

net reduced odds of malaria infection by 66% (Asidi et al., 2012). Another trial comparing different

intervention strategies (targeted LLIN distribution to children and pregnant women; universal LLIN

distribution; and combining either targeted or universal LLIN distributions with IRS) in areas of moderate

pyrethroid resistance in southern Benin indicates that neither universal distributions, nor distributions

combined with IRS, reduced malaria incidence or slow the emergence of kdr mutations (Corbel et al.,

2012).
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Monitoring insecticide resistance and developing countermeasures, such as when to change insecti-

cides used in nets, presents challenges. For example, recent recommendations suggest yearly monitoring

efforts take place at a minimum of 12 sentinel sites, with additional surveillance efforts in other sites and

at higher frequency recommended if resources permit (Kelly-Hope et al., 2008). However, insecticide

resistance is heterogeneous even across short distances (Ranson et al., 2009). In a surveillance study

conducted in 30 sites across Benin, for example, mortality following permethrin exposure varied from

25% to 100%, as did the kdr allele frequencies (0 - 0.91) in An. gambiae ss mosquitoes (Djogbénou et al.,

2011). One recommendation that addresses this limitation is to sample the local vector population before

any insecticide-based intervention begins, such that the proper insecticide(s) can be used (Ranson et al.,

2009). Logistically, this is likely impossible given the scope of mass bed net distribution campaigns. It

is also impossible to draw a representative sample of the mosquito population, greatly limiting under-

standing resistance across an entire country and at the population level. Additionally, while molecular

surveillance largely focuses on monitoring genetic mutations that confer resistance, resistance itself

comes in multiple forms, including behavioral resistance, in which mosquitoes change their behavior to

avoid contact with nets (Ranson et al., 2011; Mathias et al., 2011; Russell et al., 2011). This form of

resistance is not well understood, and it is unknown whether or not behavioral traits have a genetic basis,

meaning that, to date, molecular surveillance cannot detect behavioral changes (Ranson et al., 2011).

Further, epidemiological studies on the links between insecticide resistance and transmission have also

taken place in a limited number of sites, preventing generalizations to the broader population. Additional

strategies are therefore needed to complement current entomological surveillance efforts.

Two additional strategies have been proposed by the World Health Organization Pesticide Evaluation

Scheme (WHOPES), prospective, longitudinal studies and retrospective, population-based cross-sectional

surveys, both of which can provide an evidence base regarding the durability and insecticide activity

of nets under field conditions (WHO et al., 2011). An important advantage of using cross-sectional

surveys, moreover, is that they are often conducted for other purposes, and thus do not require the

additional resources associated with running a large longitudinal study. To our knowledge, however, large,

population-based surveys have yet to be used to understand the effects of different insecticide-treated

nets on malaria transmission. Therefore, in this study, our aim is to assess the effect bed nets treated

with different insecticides on the probability of malaria infection in under-5 children across sub-Saharan

Africa using national household surveys conducted between 2009 and 2016.
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3.2 Methods

3.2.1 Study Design and Data Sources

We obtained data on malaria and bed net use in children under 5 years of age from publicly available

Demographic and Health Surveys (DHS) and Malaria Indicator Surveys (MIS) conducted between 2009

and 2016. Briefly, DHSs are two-stage cluster household surveys designed to provide nationally and

sub-nationally representative estimates across a number of public health domain areas among children

under the age of 5, and women and men of reproductive age. MISs follow the same survey design, but

are more limited in scope than a full DHS. All surveys collect extensive demographic and socioeconomic

data from participants. Further details for these surveys are available elsewhere (Hancioglu and Arnold,

2013; DHS, 2017).

3.2.2 Outcome and Exposure Measures

The primary outcome in this study is the malaria status of each child, which was determined by

a rapid diagnostic test (RDT) using a heel- or finger-prick blood sample. The primary exposure is

whether or not a child slept under a bed net the previous night, coded according the insecticide used

in each net. We ascertained insecticide status using the bed net brand reported in the surveys. Each

child sleeping under a net was coded as sleeping under a net treated with deltamethrin, permethrin,

alphacypermethrin—the three most common insecticides—or other type of net. The latter category was

used in cases where no brand information was available, or in cases where the insecticide could not be

determined from the brand.

3.2.3 Potential Confounders

Potential confounders included in this analysis were also derived from DHS and MIS surveys. They

include: age in years, sex, whether or not the child lives in an urban or rural community, and wall

and roof construction materials. Wall construction materials were coded as natural (e.g. no walls or

cane/palm/trunks), rudimentary (e.g. wood with mud), or finished (e.g. cement/tin). Similarly, roof

construction material was coded as natural (e.g. no roof or thatch/palm leaf), rudimentary (e.g. wood

planks), or finished (e.g. metal or shingles). These categories represent different levels of barriers to
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mosquito entry, with natural construction materials providing little or no barrier to entry, and finished

materials providing the greatest barrier. Finally, we considered the possibility that community-level

coverage with each type of net may influence individual malaria risk.

3.2.4 Statistical Methods

Our statistical analysis consisted of mixed effects logistic regression, and we stratify by country

and year. All models incorporate survey sampling weights such that parameter estimates represent the

expected effect in the under-5 population in each country and year in which a survey was conducted. We

compared models including and excluding community-level coverage for each type of net using BIC. All

analyses were done using R 3.3.1 and Stata 14.2.

3.3 Results

A total 168,118 children younger of 5 years of age from 33 DHS and MIS surveys conducted in 21

countries from 2009 to 2016 across sub-Saharan Africa were included in this analysis. Figure 3.9 shows

a frequency plot of the surveys included in this study, together with sample sizes and type of survey.

A total of 92,698 (55%) children under 5 years of age slept under a bed net the previous night.

Among them, 45,401 (49%) slept under a deltamethrin-treated net, with 31,041 (33.5%) and 4,983 (5.4%)

sleeping under nets treated with permethrin and alphacypermethrin, respectively. A total of 11,273

(12.1%) children slept under a net with unknown brand or insecticide. Bed net insecticide use varied

across countries and over time. Deltametherin-treated nets were the most common nets in use in 22 of

the 33 surveys, while permethrin-treated nets were the most common in 9 surveys, although in some

cases both nets were widely used (e.g. Kenya, Mali, Uganda). Alphacypermethrin was the most common

insecticide used in the Malawi 2012 survey, although only 34% of nets were treated with this insecticide,

while deltamethrin and permethrin each made up 27% of insecticide coverage. Among the nine countries

with more than one survey, the primary insecticide in use changed across surveys in only two. In Burkina

Faso, 51% of nets in use were treated with deltamethrin in 2010, decreasing to 25% in 2014, with a

corresponding increase in coverage with permethrin-treated nets from 7% to 61%. Conversely, 50% of

nets used in Madagascar in 2011 and 2013 were treated with permethrin, but in 2016, deltamethrin was

the primary insecticide used, with coverage increasing from 14% to 82% between 2013 and 2016. In
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Figure 3.9: Frequency plot of surveys included in the study

Malawi, coverage with both alphacypermethrin and deltamethrin declined from 2012 and 2014, while

coverage with permethrin increased to 69%. Figure 3.10 shows the proportion of each type of insecticide

in use by country and year.

Results from mixed effects logistic regression models indicate that excluding community-level bed

net coverage (by insecticide) yielded better fit in 25 out of 33 models, and that the effects of sleeping

under a net treated with a given insecticide did not meaningfully differ between the models considered.

Table 3.5 shows the effects of sleeping under a bed net treated with different insecticides by country and

year for both the full and reduced models, as well as the malaria prevalence at the time of the survey.

Additionally, Figure 3.11 maps the odds ratio of each insecticide using the most recent survey, and

therefore represents the current best estimate of the effectiveness of each insecticide at the population

level.

The effect of using nets treated with different insecticides varied considerably across the different

surveys and across different transmission contexts. In some countries, certain insecticides appear to confer

little to no protection against infection. In Nigeria, for example, none of the three major insecticides
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Figure 3.10: Proportion of nets treated with different insecticides by country and year

were associated with meaningful reductions in odds of infection, both in the 2010 and 2015 surveys,

where malaria prevalence declined from 51.4% to 45.1%. Among those children sleeping under a

deltamethrin-treated net in 2010, the odds of infection were only 6% lower than a child not sleeping

under a bed net (OR 0.94, 95% UI 0.74 - 1.19). By 2015, this small effect had disappeared (OR 1.00,

95% UI 0.84 - 1.19). Among those sleeping under a net treated with permethrin, the odds of infection

ranged from 0.90 (0.60 - 1.36) in 2010 to 1.28 (0.89 - 1.83) in 2015. For alphacypermethrin, a possible

protective effect in 2010 (OR 0.79, 95% UI 0.36 - 1.72) disappeared in 2015 (OR 0.96, 95% UI 0.49 -

1.89), although considerable imprecision accompanies both estimates. Likewise, in Guinea, none of the

three major insecticides in use were associated with reductions in odds of infection during the time of the

survey, while in neighboring Liberia, the protective effect of deltamethrin—the primary insecticide in use

in both the 2009 and 2011 surveys—appears to have disappeared from 2009 to 2011 (see Table 3.5).

Conversely, insecticides in other countries in West Africa had protective effects. In Cote d’Ivoire,

which had an estimated malaria prevalence of 41.5% at the time of the survey in 2011, children sleeping

under deltamethrin- and permethrin-treated nets had similar levels of protection (deltamethrin OR 0.73,
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Table 3.5: Results from stratified logistic regression models
Reduced Models Full Models

Deltamethrin Permethrin Alphacypermethrin Deltamethrin Permethrin Alphacypermethrin

Malaria OR OR OR OR OR OR Favored
Country/Year Prevalence (%) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) Model (BIC)
Angola 2011 13.5 0.71 NA NA 0.73 NA NA Reduced

(0.47 - 1.11) (0.47 - 1.12)
Benin 2011 24.6 0.72 0.87 0.72 0.85 0.87 0.94 Full

(0.51 - 0.99) (0.68 - 1.12) (0.38 - 1.38) (0.60 - 1.20) (0.68 - 1.11) (0.49 - 1.81)
Burkina Faso 2010 76.2 1.04 0.89 0.81 1.12 0.85 0.82 Reduced

(0.87 - 1.25) (0.61 - 1.29) (0.61 - 1.09) (0.92 - 1.35) (0.58 - 1.24) (0.61 - 1.10)
Burkina Faso 2014 61.3 0.84 0.95 0.61 0.85 0.54 0.60 Reduced

(0.68 - 1.05) (0.76 - 1.18) (0.38 - 0.96) (0.68 - 1.06) (0.43 - 0.67) (0.38 - 0.94)
Burundi 2012 12.8 0.67 0.40 0.79 0.75 0.40 0.80 Reduced

(0.46 - 0.98) (0.18 - 0.89) (0.51 - 1.22) (0.51 - 1.10) (0.18 - 0.88) (0.52 - 1.23)
Cameroon 2011 30.0 0.82 1.13 0.58 0.80 1.08 0.56 Reduced

(0.64 - 1.05) (0.75 - 1.70) (0.24 - 1.38) (0.62 - 1.04) (0.71 - 1.62) (0.24 - 1.33)
Cote d’Ivoire 2011 41.5 0.73 0.72 NA 0.64 0.74 NA Full

(0.57 - 0.94) (0.54 - 0.95) (0.49 - 0.94) (0.56 - 0.98)
DRC 2013 30.9 0.71 1.17 0.49 0.73 1.15 0.51 Reduced

(0.59 - 0.85) (0.78 - 1.76) (0.18 - 1.33) (0.61 - 0.88) (0.75 - 1.75) (0.19 - 1.39)
Gambia 2013 2.6 0.49 NA NA 0.45 NA NA Reduced

(0.28 - 0.86) (0.25 - 0.80)
Ghana 2014 36.4 1.07 0.79 1.13 0.96 0.69 1.03 Reduced

(0.83 - 1.39) (0.38 - 1.64) (0.71 - 1.81) (0.74 - 1.24) (0.33 - 1.46) (0.64 - 1.66)
Guinea 2012 46.8 1.24 1.13 1.02 1.11 1.07 1.02 Full

(0.89 - 1.73) (0.52 - 2.48) (0.69 - 1.53) (0.79 - 1.56) (0.48 - 2.4) (0.68 - 1.52)
Kenya 2015 12.9 0.46 0.74 NA 0.46 0.76 NA Full

(0.35 - 0.59) (0.60 - 0.92) (0.35 - 0.59) (0.61 - 0.94)
Liberia 2009 36.6 0.87 0.70 NA 0.86 0.69 NA Full

(0.69 - 1.11) (0.45 - 1.10) (0.68 -1.10) (0.43 - 1.09)
Liberia 2011 44.7 0.97 0.92 1.39 0.94 0.99 1.47 Reduced

(0.75 - 1.24) (0.34 - 2.46) (0.90 - 2.17) (0.73 - 1.21) (0.37 - 2.62) (0.92 - 2.35)
Madagascar 2011 8.7 0.85 0.61 0.93 0.77 0.54 0.71 Reduced

(0.43 - 1.71) (0.35 - 1.06) (0.46 - 1.86) (0.37 - 1.59) (0.31 - 0.97) (0.33 - 1.55)
Madagascar 2013 10.0 1.05 1.03 1.06 0.89 0.82 0.90 Full

(0.70 - 1.60) (0.70 - 1.54) (0.45 - 2.54) (0.59 - 1.35) (0.55 - 1.20) (0.39 - 2.1)
Madagascar 2016 5.1 1.01 0.96 2.76 0.87 0.88 2.56 Reduced

(0.68 - 1.51) (0.36 - 2.56) (0.52 - 14.71) (0.58 - 1.30) (0.34 - 2.32) (0.41-16.11)
Mali 2012 47.0 0.92 1.08 NA 0.90 1.10 NA Reduced

(0.74 - 1.14) (0.84 - 1.39) (0.72 - 1.11) (0.85 - 1.42)
Mali 2015 23.4 0.85 0.65 1.07 0.85 0.67 1.09 Reduced

(0.72 - 1.02) (0.31 - 1.39) (0.46 - 2.52) (0.72 - 1.01) (0.32 - 1.43) (0.46 - 2.58)
Mozambique 2011 38.2 0.95 1.02 NA 0.90 0.96 NA Reduced

(0.73 - 1.23) (0.79 - 1.32) (0.69 - 1.18) (0.74 - 1.24)
Malawi 2012 43.3 0.69 0.95 0.81 0.69 0.96 0.83 Reduced

(0.40 - 1.17) (0.64 - 1.43) (0.56 - 1.18) (0.40 - 1.18) (0.65 - 1.44) (0.57 - 1.21)
Malawi 2014 37.2 0.58 0.50 0.71 0.58 0.48 0.76 Reduced

(0.26 - 1.28) (0.32 - 0.79) (0.41 - 1.22) (0.26 - 1.29) (0.31 - 0.75) (0.44 - 1.32)
Nigeria 2010 51.4 0.94 0.90 0.79 0.94 0.87 0.82 Reduced

(0.74 - 1.19) (0.60 - 1.36) (0.36 - 1.72) (0.74 - 1.19) (0.58 - 1.32) (0.38 - 1.79)
Nigeria 2015 45.1 1.00 1.28 0.96 0.98 1.23 1.00 Reduced

(0.84 - 1.19) (0.89 - 1.83) (0.49 - 1.89) (0.82 - 1.16) (0.86 - 1.77) (0.51 - 1.95)
Senegal 2011 2.7 0.80 0.57 0.75 0.73 0.53 0.88 Full

(0.50 - 1.30) (0.20 - 1.62) (0.17 - 3.42) (0.44 - 1.21) (0.17 - 1.63) (0.22 - 3.48)
Senegal 2012 3.3 0.57 0.53 0.65 0.55 0.70 1.00 Reduced

(0.35 - 0.94) (0.28 - 1.01) (0.07 - 5.64) (0.34 - 0.91) (0.36 - 1.33) (0.11 - 9.34)
Senegal 2014 1.1 0.59 0.94 1.04 0.68 0.93 1.70 Reduced

(0.25 - 1.39) (0.34 - 2.55) (0.20 - 5.51) (0.25 - 1.84) (0.29 - 2.94) (0.73 - 3.97)
Senegal 2015 0.6 0.74 0.44 1.83 0.63 0.45 0.81 Reduced

(0.29 - 1.86) (0.14 - 1.40) (0.36 - 9.19) (0.26 - 1.52) (0.15 - 1.34) (0.22 - 3.04)
Tanzania 2011 9.4 NA 0.99 0.95 NA 0.95 0.93 Full

(0.76 - 1.29) (0.28 - 3.2) (0.73 - 1.24) (0.28 - 3.10)
Tanzania 2015 14.4 1.22 1.00 0.19 1.07 0.88 0.24 Reduced

(0.87 - 1.71) (0.79 - 1.26) (0.04 - 0.82) (0.77 - 1.49) (0.70 - 1.11) (0.05 - 1.11)
Togo 2013 38.2 0.70 0.44 NA 0.65 0.41 NA Reduced

(0.57 - 0.85) (0.09 - 2.06) (0.54 - 0.80) (0.09 - 1.90)
Uganda 2009 51.9 0.60 0.59 0.44 0.59 0.60 0.43 Reduced

(0.45 - 0.80) (0.40 - 0.86) (0.26 - 0.75) (0.45 - 0.79) (0.41 - 0.88) (0.25 - 0.73)
Uganda 2014 29.9 0.86 1.12 0.84 0.86 1.05 0.86 Reduced

(0.66 - 1.13) (0.84 - 1.50) (0.48 - 1.47) (0.65 - 1.13) (0.79 - 1.40) (0.48 - 1.54)
Notes: n = 168,118. All models adjust for child age (in years), sex, urban/rural status, and household wall and roof construction materials. The full model controls for community
coverage with each type of net. NA indicates that the insecticide was either not in use, or present in such small numbers that there was no variability between net use and malaria
outcome. All odds ratios are comparisons to a child not sleeping under a bed net of any kind.
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95% UI 0.57 - 0.94; permethrin OR 0.72, 95% UI 0.54 - 0.95). In Benin in 2011, against a background

malaria prevalence of 24.6%, deltamethrin was similarly protective (OR 0.72, 95% UI 0.51 - 0.99),

although permethrin-treated nets were less so (OR 0.87, 95% UI 0.68 - 1.12).

Figure 3.11: Odds of malaria infection by insecticide use from each country’s most recent survey

Green borders identify those countries in which a protective effect was observed at the 0.05 level.

Similar patterns appear in Central and East Africa. In Uganda, all three insecticides appear to be

losing efficacy based on the 2009 and 2014 surveys, particularly with regard to permethrin. This effect

occurs against a backdrop of increased LLIN use among under-5 children, with LLIN coverage in this

population going from 32% to 42% between surveys, and prevalence that decreased from 52% in 2009 to

30% in 2014. In neighboring Democratic Republic of Congo (DRC), where prevalence was 31% in 2013,

deltamethrin-treated nets are associated with 29% lower odds of infection (OR 0.71, 95% UI 0.59 - 0.85),

whereas permethrin-treated nets do not appear to confer any protective benefit (OR 1.17, 95% UI 0.78 -

1.76), while in nearby Burundi, both deltamethrin and permethrin are associated with considerably lower

odds of infection (deltamethrin OR 0.67, 95% UI 0.46 - 0.98; permethrin OR 0.40, 95% UI 0.18 - 0.89).

More broadly, nets treated with different insecticides appear to have very limited efficacy across

large parts of sub-Saharan Africa, although care must be taken in interpreting many these estimates, since

in many surveys only a small number of individuals slept under a net treated with a given insecticide.

This is particularly relevant for alphacypermethrin. In some cases, background malaria transmission

levels can further contribute to this uncertainty. For example, Senegal’s malaria prevalence was very low

across all four surveys, ranging from 0.6% in 2015 to 3.3% in 2012, with a total of 61 and 254 cases,

respectively. As such, imprecision for the estimates in Senegal likely results from very few cases of
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malaria as well. The varying degrees of imprecision can be seen in Figure 3.12, which plots the odds of

malaria infection according to insecticide use for all surveys, together with 95% uncertainty intervals.

Nevertheless, for a number of countries, there are clear indications as to which insecticides are

associated with reduced odds of malaria infection, and which are not. Specifically, deltamethrin-treated

nets appear to reduce odds of infection in Angola, Benin, Burkina Faso (2014 survey), Burundi, Cameroon,

Cote dIvoire, DRC, Gambia, Kenya, Malawi, Mali (2015), and Togo. Conversely, in Ghana, Guinea,

Madagascar, Mozambique, Nigeria, Tanzania, and Uganda (2014), there does not appear to be a protective

effect. Similarly, permethrin appears to be ineffective across a number of countries, namely: Benin,

Burkina Faso, Cameroon, DRC, Liberia, Mozambique, Nigeria, Tanzania, and Uganda (2014). In

Burundi, Cote d’Ivoire, Kenya, and Malawi (2014), the nets were associated with 26 - 60% reductions

in odds of infection. Finally, the role of alphacypermethrin-treated nets is much less clear owing to

imprecision, although protective effects are evident in Burkina Faso, Tanzania, and Uganda (2009) (see

Figure 3.12 and Table 3.5).
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Figure 3.12: Odds of malaria infection by insecticide use

The alternating colors used here are to help facilitate visualization, with each change
in color corresponding to a change in country.
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3.4 Discussion

The spread of insecticide resistance threatens to undermine a pillar of malaria control, and in many

parts of sub-Saharan Africa, countries likely need to switch insecticides. Determining which insecticide

to use, and when to switch, requires a comprehensive understanding of insecticide resistance and its

consequences on bed net effectiveness. Further, since bed net distribution decisions are made at the

country level, it is important to understand the consequences of insecticide resistance country-wide and

at the population level. However, current insecticide resistance monitoring efforts cannot be generalized

to a country’s population. Additionally, many of these monitoring efforts focus on molecular markers

of resistance, which do not necessarily translate to reduced efficacy. They are also unable to address

potential changes in mosquito behavior.

To address some of these limitations, we leveraged large, population-based surveys DHS and MIS

surveys conducted across sub-Saharan Africa between 2009 and 2016. This approach has a number of

strengths. First, DHS and MIS surveys provide detailed data on malaria status, bed net use, and bed

net characteristics, together with important demographic and socioeconomic characteristics, for one of

the populations at highest risk of malaria—children under 5 years of age. Second, the data are publicly

available, such that researchers or government agencies can readily access the data to monitor bed net

effectiveness in the presence of observed insecticide resistance. Further, while our analysis provides

country-level estimates, the surveys are representative regionally within countries as well, facilitating a

more detailed understanding within a given country if necessary.

Important limitations exist as well. First, bed net brand reporting was not consistent across all

surveys. For example, the permanet brand was not reported in a manner that allowed us to distinguish

between Permanet 2.0 and Permanet 3.0, the latter of which incorporates piperonyl butoxide (PBO), a

synergistic compound that works to inhibit the metabolic enzyme that slows uptake of the insecticide in a

mosquito (Moores and Bingham, 2005; Bingham et al., 2011). Additionally, bed net use was assessed

based on whether or not a child slept under a net the night before, which is subject to reporting bias.

Furthermore, considerable imprecision accompanied many of our estimates, owing to a small number

of children sleeping under nets treated with certain insecticides, especially in low malaria prevalence

settings (e.g. Senegal). We also lack data on the adult population in each of these countries, precluding
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any inferences on the large majority of a country’s residents. Finally, given the cross-sectional nature of

these surveys, we cannot discount the role of residual confounding.

Despite these limitations, to our knowledge this study is the first to assess the effect of bed nets

treated with different insecticides on malaria transmission using population-based data. Our results

provide evidence against and in favor of different insecticides in different countries, evidence that can be

used to complement ongoing entomological surveillance efforts within countries. In Nigeria, for example,

a number of studies have documented target-site and metabolic resistance to permethrin and deltamethrin

in a range of settings (Awolola et al., 2005, 2009; Kristan et al., 2003; Djouaka et al., 2008). These results

are consistent with our findings here, in which neither net appeared protective against malaria. In a study

conducted from May to September 2011 in a southern area of Cote d’Ivoire, high levels of resistance

to both permethrin and deltamethrin were reported. Conversely, in the 2011 Cote d’Ivoire DHS, bed

nets treated with both insecticides were associated with lower odds of malaria infection, suggesting that

insecticide resistance may be more localized than widespread (Edi et al., 2012).

As bed net distributions continue to take place, maintaining the efficacy will be of paramount

importance. A key component to this effort will be monitoring the insecticide resistance landscape. DHS

and MIS surveys, which are conducted regularly within countries, can serve as a key tool in this effort.
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3.5 From Human Interventions to Human Movement

While the previous two chapters have addressed challenges to malaria control that largely involve

the potential reaction of a mosquito population to human interventions such as agriculture or bed net use,

and the effects of such interventions on people themselves, this next chapter focuses on another challenge

to malaria control, namely: how does it spread? The process by which a disease spreads throughout a

country is largely governed by human movement, and as such the fundamental task in understanding

how parasites move is by understanding how people move. Understanding this process, however, is

complicated by the lack of data on human movement, and we thus turn to molecular and population

genetic tools in an effort to make inferences about it. In particular, as we will see, while data on human

movement would allow us to infer parasite movement, the data environment we work in requires us to

make inferences about human movement by looking at parasite movement.
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CHAPTER 4: EXPLORING SUBPOPULATION STRUCTURE AND GENE FLOW OF MALARIA
PARASITES

4.1 Introduction

How does malaria move from place to place? Over short distances, parasite transmission occurs

by way of mosquitoes moving through a local population, biting different individuals at different times.

Mosquito movement is limited to their local environment, however, suggesting that the spread over larger

geographic distances occurs as a result of the movement of individuals (Kaufmann and Briegel, 2004).

Understanding such movement is important in the context of malaria control. For example, the movement

of infected individuals can reintroduce malaria to settings where it had been eliminated, or lead to the

spread of drug-resistant parasites or other parasite population of public health concern (Ferguson et al.,

2010; Anderson and Roper, 2005; Roper et al., 2004; Lynch and Roper, 2011).

An important challenge to understanding how malaria spreads, however, is that data on human

movement are generally unavailable, and either consist of coarse, census-based estimates of migration

between countries, or are constructed from mobile phone records (Tatem and Smith, 2010; Tatem et al.,

2014; Ruktanonchai et al., 2016). The former of the two does not allow for inferences about how malaria

may spread within a country (an important consideration for national malaria control programs), while the

latter will yield a biased view of human movement in settings where mobile phone use is not widespread

(such as the DRC), or differs by geography or demographics. Alternatively, population movements can

be inferred by measuring genetic markers and estimating associations across geography.

Work to understand parasite population structure in the DRC is limited, but growing. In a survey

of 166 parasites drawn from the Demographic and Health Survey (DHS) conducted in the DRC in

2007, for example, 44% of the parasites harbored the haplotype associated with chloroquine failure,

although no geographic clustering was apparent (Antonia et al., 2014). A study investigating clustering

of sulfadoxine resistance using a sample of 151 parasites from the 2007 DHS found mutations associated

with drug resistance were clustered in the northeast of the country, and called for future work to identify
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mechanisms by which this parasite population may spread (Taylor et al., 2013). More recently, work

to understand the distribution of the parasite population harboring the pfhrp2 gene deletion found the

parasite population was clustered in eastern DRC and in Kinshasa, and was differentiated from parasites

that did not harbor the deletion (Parr et al., 2016).

Understanding how these parasites may spread, however, requires understanding underlying processes

such as gene flow, which in the case of malaria occurs as a result of human movement. Unfortunately,

studies such as those above rely on genetic markers that are under selection, which can yield a distorted

view of this process (Anderson et al., 1999; Holderegger et al., 2006). Conversely, one study from the

DRC that did use neutral markers hypothesized that the Congo River serves as a corridor through which

parasites move, although results did not show clear evidence in support of this hypothesis, with some

samples located both near and far from the river appearing to be genetically related, and vice versa (Carrel

et al., 2015). One important limitation of this and other studies, however, is that, while they all draw on

population-based survey data, they nevertheless rely on a small number of samples obtained from the

larger survey, and these are sometimes drawn from a small number of sites. As a result, to date there has

not yet been a study that attempts to understand malaria gene flow using data both from across the country,

and from the full parasite population available from the surveys. This study attempts to overcome these

limitations by analyzing 28 neutral microsatellite markers on malaria parasites infecting 608 children

over 5 years of age living in 301 survey clusters sampled as part of the 2013-14 Demographic and Health

Survey (DHS) conducted in the DRC.

4.2 Methods

4.2.1 Study Population

Samples were collected from children between the ages of 5 and 15 as part of the 2013-2014 DRC

DHS. Heel- or finger-prick blood samples from each child were taken and analyzed by rapid-diagnostic

test (RDT), as well as by light microscopy, and then used to prepare dried blood spots (DBS), which were

then shipped to the University of North Carolina-Chapel Hill (UNC) (Doctor et al., 2016). Malaria DNA

was extracted from DBS, and a real-time PCR assay with a limit of detection of 100 parasites/µL was

then used to identify infections with P. falciparum malaria using previous published protocols (Doctor

et al., 2016; Plowe et al., 1995). Over-5 children were used as this study was also used to develop and test
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a new lab protocol (see next section), and over-5 children do not contain survey information other than

the survey cluster from which they were sampled, and are thus of greater use as an experimental dataset.

These children were identified by subsetting the full DHS dataset to include only those samples with

a blood sample (i.e. all children), and then further subsetting those who did not have an age specified

(indicating that they were children over 5 years of age).

4.2.2 Microsatellite Analysis

Among those children with PCR-confirmed infections, 28 neutral microsatellite loci located across

the P. falciparum genome were targeted for amplification using Molecular Inversion Probes (MIPs).

MIPs have recently been designed to capture and re-sequence targeted regions of the malaria genome,

and allow for cost-effective sequencing of 10s to 100s of candidate markers in one reaction. For each

microsatellite locus, we defined each unique nucleotide length detected from the MIPs assay as an allele

for use in population genetic analyses (Hathaway et al., in preparation).

4.2.3 Population Genetic Analyses

To explore possible genetic differentiation in the malaria parasite population, we proceeded in two

ways. First, we sought to ascertain whether or not the population is made up of multiple, partially isolated

subpopulations using Principal Components Analysis (PCA) and the Bayesian mixture model approach

developed by Pritchard and colleagues (Pritchard et al., 2000). Second, we explore differentiation under

the assumption of isolation-by-distance, in which genetic dissimilarity among parasites increases as a

function of the geographic distance between them. Inference was based Mantel tests, a global measure of

isolation-by-distance (IBD), and by GST , a measure of genetic differentiation between two pre-defined

populations (Mantel, 1967; Nei, 1973). We use the latter because global measures of IBD may mask

underlying processes of gene flow or barriers to it, while GST -based methods allows for exploring where

potential gene flow (or barriers to it) may exist.

The GST -based analysis requires that sub-populations be defined a priori, and we choose these

sub-populations to reflect hypothesized regions of population movement, as follows. The DRC has a

number of urban centers scattered throughout the country, with the largest being Kinshasa (population 10

million), Lubumbashi (1.8 million), and Kisangani (1.6 million), Goma (1 million), and Bukavu (870,000).

Economic migration occurs largely between these large urban centers and the rural areas surrounding
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them. As such, we compare malaria parasites between: Kinshasa city and surrounding rural Kinshasa,

Kongo Central, Kwilu, and Mai-Ndombe provinces; Lubumbashi and Tanganyka, Haut-Lomani, and

rural Haut-Katanga provinces; Kisangani and rural Ituri, Bas-U’ele, and Haut-U’ele provinces; Goma

and rural North Kivu; Bukavu and rural South Kivu.

While the population assignments above reflect prior beliefs about routes of economic migration

and/or circulation regionally within the DRC, we extend the above analysis to consider long-distance

population movement, which may occur between major urban centers or along the Congo River, which

originates along the DRC-Zambia border and winds its way north across the equator before turning south

towards Kinshasa and further out into the Atlantic Ocean. We thus make comparisons between Kinshasa

and Tshopo province, which are connected via the Congo River and where Kisangani is located. We

further compare parasite populations from Kinshasa and both North and South Kivu (where Goma and

Bukavu are located), which may be connected by the river or other network. Finally, we compare two

unconnected sites—Lualaba and Haut U’ele and Itrui provinces—which are on opposite sides of the

country and not connected via the river network, and may therefore exhibit a pattern of differentiation.

Figure 4.13 presents a provincial map together with the locations of DRC’s major cities and river network.

Finally, inferences from both Mantel- and GST -based methods were obtained using randomization-

based procedures consisting 10,000 simulations. PCA, Mantel tests, and GST tests were conducted in R

3.3.1, while Bayesian estimation of the number of sub-populations was done using MavericK 1.0 (Verity

and Nichols, 2015).
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Figure 4.13: DRC Provinces, major cities, and river network

4.3 Results

We identified 608 children over the age of 5 living in 301 survey clusters who were infected with P.

falciparum malaria by PCR, out of a total of 1,622 over-5 children sampled in the DHS. Among these

608 children, 1,199 infections from 496 (82%) children living in 262 survey clusters were successfully

amplified across multiple loci using MIPs. Samples failing to amplify across all loci had lower para-

sitemias (i.e. parasite density), on average (difference in mean CT = 2.4, p < 0.01). As a result, for 39

(13%) survey clusters, no data from MIPs was available. Figure 4.14 shows a map with the locations of

the original 608 children, and whether or not MIPs data was obtained from all, some, or none of the kids

living in those locations.

Results from PCA and MavericK-based analyses suggest that the parasite population is not meaning-

fully structured into distinct sub-populations in the DRC, although individuals from two communities (98

and 292) do appear to be different from the population as a whole. Figure 4.15 shows pairwise plots of
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the first three principal components from PCA, showing these outliers against a backdrop of no distinct

grouping. Figure 4.16 maps these outliers, which occur along the southern border with Angola, and

in Tanganyka province near the Tanzanian border. Figure 4.17 plots estimates of the model evidence

from the Bayesian analysis, which shows the posterior probability that the overall population is made up

of between one and five sub-populations (denoted K). Overwhelmingly, the evidence supports a single

population (i.e. K=1 has the highest posterior probability).

Results from Mantel tests showed weak evidence of isolation by distance, with increasing genetic

dissimilarity associated with increasing distance. Figure 4.18 plots the observed correlation between

genetic and geographic distance against 10,000 permutations of the genetic and geographic distance

matrices, together with a plot of genetic versus geographic distance.

Restricting analyses to between major population centers and surrounding areas provides weak

evidence of possible gene flow. For example, comparing the capital city of Kinshasa to its rural surrounds

showed that the observed GST (0.016) fell in the lower tail of the distribution of values generated by

randomly assigning parasites to the two populations, but that it was still within the range of what would

be expected in the absence of strong gene flow. Similar results held for the other comparisons of interest,

although it should be noted that the comparison between Goma and surrounding areas was not possible

owing to lack of data from Goma. Figure 4.19 shows results from GST -based analyses for Kinshasa,

Kisangani, Lubumbashi, and Bukavu.

Interestingly, sites that were increasingly disconnected geographically yielded similar results to those

presented above. For example, comparisons between Kinshasa and Tshopo province, between Kinshasa

and North and South Kivu, and between Lualaba and Haut U’ele and Ituri all showed no strong evidence

of gene flow or differentiation. Figure 4.20 shows these comparisons.
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Figure 4.14: Spatial coverage of MIPs panel
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Figure 4.15: Pairwise plots of first 3 PCA axes

Point labels represent the community ID from which study participants originated.
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Figure 4.16: PCA Outliers

Figure 4.17: Evidence from Bayesian Mixture Model

Plot shows clear evidence in favor of a single population (K=1).
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Figure 4.18: Mantel test of isolation by distance

Figure 4.19: GST -based tests of population structure between urban centers and surrounding
regions

Blue arrow = observed GST statistic.
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Figure 4.20: GST -based tests of population structure between increasingly disconnected regions

Blue arrow = observed GST statistic.
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4.4 Discussion

To our knowledge, this is the first study to attempt to use a population-based sample of the malaria

parasite population to understand its sub-population structure and possible mechanisms of gene flow

in the DRC. Our results indicate that the malaria population is best characterized as single population

that exhibits weak isolation-by-distance, and that no barriers appear present based on results from

permutation-based GST tests. One possible explanation for weak evidence of gene flow would be the

country’s poor infrastructure. However, the lack of evidence of a clear barrier between populations that

are completely disconnected from the transportation network (e.g. Lualaba and Haut-U’ele/Ituri) argues

against such a mechanism. Rather, it may be the case that transmission in the DRC is too high to measure

gene flow, with high levels of heterozygosity and the accompanying high genetic variability meaning that

noise dominates any potential signal in the data. Alternatively, despite the poor infrastructure and low

mobility, the parasite population may spread across the country at a rate faster than the mutations occur

at the 28 loci under investigation here, thereby hindering the detection of barriers to gene flow.

Importantly, this study has a number of limitations. First, there is evidence of bias favoring ampli-

fication of higher-density infections, limiting the generalizability of the sample to the broader parasite

population. This bias also resulted in considerable missing data, in which 18% of the original sample

could not be analyzed. Second, this study relied on data sampled from over-5 children, and as such this

parasite population may not be comparable to the broader parasite population, such as children under

5 or adults, although it is unclear why this may be. Finally, molecular markers may not be adequate

instruments to infer population movement, and thereby understand malaria gene flow or barriers to it,

owing to the high levels of genetic variability noted above. Nevertheless, the MIPs protocol used here

allows for genotyping of malaria parasites at scale, both in terms of number of samples and number of

loci. As such, it may still prove useful for other objectives in molecular surveillance, for example of

known drug-resistant or other mutations of public health importance.
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CHAPTER 5: CONCLUSION

5.1 Summary of Aims 1-3

Malaria transmission is characterized by heterogeneity, which, as noted in the introduction to this

dissertation, is frequently described, but not fully understood (Bousema et al., 2010). In this dissertation, I

have attempted to focus on key gaps in our knowledge surrounding this heterogeneity, gaps that represent

current challenges to malaria control. In Aim 1, I addressed our need to understand the underlying

ecology of malaria transmission in the DRC, a prerequisite for malaria elimination (Ferguson et al.,

2010). Specifically, I focused on one feature of this ecology—agriculture—and sought to characterize

its effect on both the vector population and children under 5 years of age. The results of this work

indicate that increases in agriculture in a community increases the probability of malaria infection, and

that increased indoor biting among An. gambiae mosquitoes may be the mechanism behind the increased

risk. Importantly, this work provided further evidence showing the bed nets treated with permethrin

are ineffective at reducing malaria risk (Levitz et al., 2017). As a result, if ecological changes such as

agricultural expansion lead An. gambiae—the most pernicious malaria vector—to bite indoors more

frequently, then monitoring the continued success of bed net interventions takes on further salience.

Additionally, we observed a vector—An. paludis—that is present in high abundance, although its role in

transmission is largely unknown.

Understanding the effectiveness of bed nets was the focus of Aim 2 of this dissertation, with

particular interest in the potential for insecticide resistance to render bed nets an ineffective tool for

reducing transmission. Further, given that bed net interventions are a cornerstone of malaria control, and

that there is only one class of insecticides—pyrethroids—approved for use in bed nets, I extended the

scope of this dissertation to focus on sub-Saharan Africa, rather than just the DRC. In doing so, I again

turned to population-based surveys, and used information about the brand of bed net survey participants

slept under to identify the insecticides those nets were treated with, and estimate their effects across 21

countries at various times from 2009 to 2016. Results showed that many countries need to discontinue
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use of certain insecticides (such as permethrin in the DRC), while in other countries (i.e. Nigeria), none

of the insecticides in use appear to be reducing transmission. Importantly, the evidence in favor (or

against) these conclusions varies by country, either owing to the background transmission dynamics, low

numbers of children sleeping under nets treated with certain insecticides, or both.

This aim also demonstrated a previously unidentified utility of DHS and MIS surveys, namely their

ability to help monitor bed net effectiveness at the population level. This is important because it is

impossible to draw a representative sample of the mosquito population, which immediately hinders any

efforts to make country-level decisions about bed net interventions based on evidence from entomological

surveillance of insecticide resistance. Additionally, current efforts to understand insecticide resistance

largely focus on characterizing the prevalence of molecular markers associated with insecticide resistance.

As noted, however, use of molecular markers cannot fully describe insecticide resistance, since genotypes

(i.e. presence of certain markers) do not necessarily translate to phenotypes (failure of insecticide to kill

the mosquito). To be sure, this is not to say that the use of DHS or MIS surveys should be used in place

of entomological surveillance efforts. Rather, the two should be considered as complimentary efforts

with the same end goal in mind. Indeed, one approach that may hold particular promise is to design

entomological surveillance to correspond to the administration of DHS or MIS surveys, such that we

can update our knowledge of the insecticide resistance landscape at the same time that we update our

knowledge about the effects of different insecticides.

Finally, Aim 3 sought to address another challenge to malaria control: understanding how malaria

spreads from place to place. Over long distances, such as between rural villages and urban centers, such

spread occurs as a result of human movement, but data on human movement is generally unavailable in a

reliable way. Inferences about this process, however, can often be inferred from the parasite population

itself, and we thus used molecular and population genetic methods to attempt to understand if the parasite

population was structured in any way, and what possible corridors or barriers to movement might give

rise to this structure. We considered the Congo River as a potential corridor, and further explored the

possiblity that malaria may spread between urban centers and surrounding rural areas as a result of

economic migration. We further attempted to identify potential barriers to the spread of malaria by

comparing parasite populations that had no apparent connection to the transportation network or other

geography, and were on opposite sides of the country. The results from this aim were largely inconclusive.

For example, Principal Components Analysis and results from a Bayesian mixture model showed no
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signs that the parasite population was structured into distinct sub-populations, although there were two

outliers near the border. Additionally, while there was weak evidence in support of isolation by distance

across the DRC, analyses using permutation-based GST ’s did not show strong evidence in favor of gene

flow where it was expected, nor did we observe strong evidence of barriers to gene flow where it was

expected. One reason for this may be that the high levels of malaria transmission in the country lead to

high levels of heterozygosity in the parasite population. As a result, such high genetic variability leads to

noise that overwhelms any potential signal. This is not to say that the molecular approaches employed

have no future in understanding malaria transmission, as one key strength of the molecular methods used

is that it allows for parasite genotyping at scale, and as such these methods can be readily employed

to monitor molecular markers of public health importance, such as those associated with resistance to

different anti-malarial drugs.

5.2 Future Work

This dissertation represents another contribution to a growing body of work in the DRC, work that

has been ongoing since the first DHS was conducted in 2007. Before that time, our knowledge of malaria

prevalence across the country was based on a map from 1953. When the 2007 DHS was done, the leftover

dried blood spots allowed those who came before me to test adults aged 15-59 for malaria and update that

map for the first time in over 50 years, and do so using a population-based sample. Working with these

data has allowed us to begin to understand, among other things, the distribution of molecular markers

of drug resistance in the DRC, the burden of malaria in pregnancy, and the structure of the parasite

population (Antonia et al., 2014; Taylor et al., 2013, 2011; Carrel et al., 2015). This dissertation, then,

has served to update our knowledge of malaria transmission, both by using the latest round of the DRC

DHS, but also by addressing other gaps in our knowledge, primarily in the DRC, but beyond it as well.

Nevertheless, important gaps remain. For example, none of this dissertation focused on malaria in an

adult population. Such information is not likely to be collected any time soon across the malaria-endemic

world, since the malaria rapid diagnostic testing done in DHS and MIS surveys focuses only on the

under-5 population. In the DRC, however, adults have recently been tested for malaria by PCR using the

leftover dried blood spots used for HIV serology, meaning that the studies presented in this dissertation

can be redone, this time focusing on the adult population in the DRC.
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Further work is also necessary to understand the links between agriculture and malaria. In particular,

we do not yet understand the role of agriculture around urban areas, and its effects may be different from

those identified in rural areas owing to the fundamentally different ecology of cities. Additionally, in

the work conducted in this dissertation, I did not attempt to identify different types of crops, and instead

sought to incorporate the possibility that different crop types have different effects on malaria risk through

specifying a model with a spatially-varying coefficient process. This process, however, is likely not

sensitive enough to identify the effects of crop variability within a location, since the coefficients varied

spatially between locations. Future work will need to address this limitation, preferably by focusing on

collecting data on different crop types.

With regard to Aim 2, future work should focus on trying to address possible misclassification bias

that may have occurred in using bed net brand to identify the insecticides used, since some bed net brands

are obscure and appear to be country-specific brand names with no clear manufacturer. Additionally,

none of the surveys used identified whether or not bed nets were treated with piperonyl butoxide (PBO),

a synergistic compound that works to maintain the efficacy of the insecticide. As a result, estimates

where we conclude certain insecticides are effective may not be the result of the insecticide alone, but

the result of the insecticide in combination with PBO. Ascertaining this was beyond the scope of this

dissertation, as it would likely involve extensive conversations (and in-country visits) to various malaria

control programs, but given the importance of bed nets to malaria control, future work should address

this concern.

With regard to Aim 3, I sought to understand population structure of the malaria parasite population,

and possible corridors and barriers to gene flow that may give rise to such structure. Unfortunately,

we could draw no firm conclusions, and the best evidence available suggests that the DRC is best

characterized as one, large population of parasites. As noted, this may be due to high levels of transmission.

As transmission declines, however, it will become increasingly important to understand how the parasite

spreads, such that these transmission reductions can be maintained. In that sense, then, continued

molecular surveillance efforts must continue, possibly through exploring other markers that may prove

useful in measuring gene flow.

Finally, while the substantive focus of this dissertation has been on malaria and challenges to malaria

control, population health/medical geography has served as a backdrop against which I conducted this

work. In particular, I began this dissertation with a question that was asked 40 years ago, namely:
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what can geographers offer that other disciplines cannot or do not? My answer to this question largely

centered around the argument that the fundamental goal of population health/medical geography should

be to characterize and understand heterogeneity, an effort which, to a large degree, requires reorienting

our thoughts around how to model data. The example I outlined (and implemented in much greater

detail in chapter 2) suggested that effects of exposures on outcomes may vary over space, and that

identifying this variability can facilitate public health by allowing us to hypothesize why we observe such

variability. Moreover, I sought to connect this objective to the core objective in epidemiology, namely

the identification of causal relationships between exposures and health outcomes. In epidemiology, this

effort is largely driven by careful construction of directed acyclic graphs (DAGs) to control for potential

confounding. In a sense, then, observing relationships that vary spatially can provide insights into where

a given DAG fails to capture the data generating process.

Importantly, population health/medical geographers may be able to provide further insights into

the utility of a given DAG through spatially modeling the DAG itself. Indeed, recent work in spatial

statistics has extended spatially varying coefficient models to include variable selection steps over space,

allowing us to understand where an exposure (or set of exposures) influences a health outcome, and

where it does not (Boehm Vock et al., 2015). As with spatially-varying coefficient models, this effort

would serve to help learn about unmeasured confounding and its spatial dimensions. Such an effort fits

well within Meade’s framework, and further compliments epidemiology’s objectives. Moving in this

direction, however, will require population health/medical geographers to develop considerable statistical

expertise (particularly in Bayesian statistics), to pursue collaborations with statisticians, or both.

Ultimately, and even in the absence of adopting the modeling philosophy outlined here, population

health/medical geographers have much to offer in pursuing this future work. Indeed, understanding how

humans interact with their environments is a core goal of geography in general, and, when health and

disease is of interest, an explicit focus of population health/medical geographers.
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APPENDIX I: DERIVATION OF FULL CONDITIONALS FOR AIM 1

6.1 Introduction

The following walks the reader through the construction of the data and probit models used in

Chapter 2. I begin by writing down the basic structure for the data and model for a single individual in a

single spatial location, and then build up to a model for all individuals across all locations. I then discuss

the prior distributions used in the analysis, and finally present derivations of the full conditionals for

all model parameters. The motivation for doing so is as follows. First, there is the practical benefit in

showing how these models “work.” Second, the presentation of statistical methods—including spatially

varying coefficient regression—is, not surprisingly, done in statistics journals. These outlets are generally

readable only by statisticians, meaning that the vast majority of individuals applying statistical methods

cannot easily access material on methods for which there is not a software/“black box” implementation.

At present, there is not yet a package that can flexibly fit “multilevel” spatial models (although WinBUGS

remains an option here in some settings), or spatially-varying coefficient models specifically. Thus, those

wishing to implement these types of models must code them from scratch, which requires knowing

what the model actually looks like “under the hood.” Thus, it is my hope that walking through the

details here will help future students who may have interest in working with multilevel spatial models

or spatially-varying coefficient regression models. Finally, it’s kinda fun to think through this stuff (i.e.

write down a model that I think will increase our understanding of how nature works, and then see if it

does).

6.1.1 Motivation for Probit model

Our outcome of interest is each individual’s PCR-diagnosed malaria status, a binary indicator taking

the value 1 if an individual is infected with malaria, and 0 otherwise. Typically, binary data are handled

using logistic regression. However, spatial models for point-referenced data become computationally

intensive very quickly as the number of spatial locations increases. This computational burden is further
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increased due to the lack of conjugacy between the prior distributions for model parameters and the

data likelihood in logistic regression. As such, we adopt a probit specification in which we introduce

latent variables that are assumed to follow a normal distribution with unit variance. Such a specification

also has a scientific rationale. For example, we can think of these latent variables as a propensity to

become infected with malaria, with values above 0 indicating increased propensity to become infected

with malaria, and vice versa. To see this connection, observe that we can represent the probability of

malaria infection, given covariates, as coming from a linear model:

P (Y = 1|X) = P (Xβ + ε > 0) (6.1)

= P (Xβ > −ε) (6.2)

= P (ε < Xβ) (6.3)

= Φ(Xβ) (6.4)

where Φ(·) represents the CDF of a standard normal distribution, and where the move from (1.1.2) to

(1.1.3) is possible due to the symmetry of the normal distribution.

The modeling tasks in this aim are more complex than this simple illustration. For example, in our

problem we are interested in introducing random effects, up to and including both a spatially varying

intercept and spatially varying slope. Further, individuals are not uniquely located in space, but are nested

within DHS survey clusters. As such, our intercept and slopes vary over the set of spatial locations (DHS

clusters), not individuals, requiring us to map cluster-specific random effects to each survey respondent.

We can accomplish this mapping through careful construction of the design matrix for the random effects.

Further, this construction will then allow us to construct a separable spatial model, in which slopes and

intercept are correlated with each other within spatial locations, but independent across locations, while

each given slope/intercept is spatially-structured across locations.

I now turn to showing how the data are constructed, which will then allow me to write down the

general form of the models fit in this aim.
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6.2 Model Structure

6.2.1 Model for a single individual

I begin by writing down the structure of the model for one individual i within one spatial location s.

We have:

Yis =

(
Xis

)


β0

β1
...

βp


+

(
Zis

)(
θs

)
+ εis (6.5)

Here, Yis is the response for individual i (i in 1 . . . n) at location s (s in 1 . . . q). The design matrix for

the constant intercept and slope is given by
(
Xis

)
, a row vector of dimension p. The p× 1 vector

β contains regression coefficients that are invariant over space and link the covariates to the response.

The random effects design matrix is of the same general form as the design matrix for constant intercept

and slope, differing only in that our interest here is in a random intercept and, in one model, a spatial

random slope, meaning that Zis is either a scalar 1, when only a random intercept is introduced into the

model, or vector-valued and of dimension 1× 2, when we introduce the agriculture covariate to model a

spatially varying effect. This can easily be extended up to the case where all coefficients vary spatially, in

which case the design matrix for the spatial random effects in this step would be the same as the constant

intercept and slopes. The random effects θs that vary across locations are then easily recognized through

the index s. For a single individual with a single random effect, θs is a scalar, but vector valued as

additional random effects are incorporated. Again, this vector would increase in dimension if additional

covariates were to be modeled as spatially varying. Finally, εis represents pure white noise error for

individual i at location s, and is assumed to follow a standard normal distribution.

6.2.2 Model for individuals within one location

Given the model for one individual in one location, we now construct a model for all individuals

within one location. We do this simply by stacking individuals within a location as follows:
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Let Ys be the vector of all individual responses within location s, and Xs and Zs be the design

matrices for these same individuals, such that:



Y1,s

Y2,s
...

Yns,s


︸ ︷︷ ︸

Ys

=



X1,s

X2,s

...

Xns,s





β0

β1
...

βp


︸ ︷︷ ︸

Xsβ

+



Z1,s

Z2,s

...

Zns,s


(
θs

)

︸ ︷︷ ︸
Zsθs

+



ε1,s

ε2,s
...

εns,s


︸ ︷︷ ︸

εs

(6.6)

Here, ns is the nth individual in location s, while θs is as before, consisting of a scalar or vector of

random effects for location s, depending on the model being fit. I now write down a model for the full

data.

6.2.3 Model for all individuals in all locations

With a model for each individual i within a spatial location s in hand, we must now extend this for

a model for all individuals across all spatial locations. For the response variable, design matrix for the

constant intercept and slope, and white noise error, we simply continue stacking the data as before. If

we were to do this for the random effects design matrix, however, we would be inducing random effects

for each individual, rather than for each spatial location. Thus, we need now to write down a random

effects design matrix that will map spatial random effects to each survey respondent within a spatial

location. We can do this by constructing a block-diagonal matrix Z such that each block is the design

matrix Zs from before, meaning that the overall random effects design matrix Z is n× kq, where k is

either 1 (model with only a random intercept) or 2 (model with a random intercept and slope). We can

write this model down as follows:



Y1

Y2
...

Yq


︸ ︷︷ ︸

Y

=



1 X1

1 X2

...
...

1 Xq





β0

β1
...

βp


︸ ︷︷ ︸

Xβ

+



Z1 0 0 0

0 Z2 0 0

... 0
. . .

...

0 · · · · · · Zq





θ1

θ2
...

θq


︸ ︷︷ ︸

Zvec(θ)

+



ε1

ε2
...

εq


︸ ︷︷ ︸

ε

(6.7)
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Now, we can see the general form of the latent model can be expressed as follows:

Y = Xβ + Zvec(θ) + ε (6.8)

where Y is an n× 1 vector of latent normal responses, X is an n× p matrix of covariates, β is a p× 1

vector of regression coefficients linking the covariates to the response, Z is an n× kq matrix that maps

the random effects to each respondent as described above, while vec(θ) stacks the random effects into a

kq × 1 vector as follows:

vec(θ) =



θ1

θ2
...

θq


Writing down the random effects in this way allows us later to write down a separable spatial model,

in which we can learn about the correlation between intercepts and slopes within a spatial location, the

correlation between slopes across locations, as well as between intercepts across locations. The implicit

assumption here, then, is that the correlation between an intercept and slope within a location is not

spatially structured. Further, the model with only a random intercept (spatially correlated or otherwise),

are a special case of this specification. Finally, ε is an n× 1 vector of random error assumed to follow a

zero-centered normal distribution with unit variance.

6.3 Prior Distributions

In a Bayesian analysis, our model specification is only complete after we have assigned prior

distributions for all model parameters. In this section, I briefly outline the construction of these prior

distributions.

6.3.1 Prior distribution for β

Prior distributions for regression coefficients are often specified as a low-precision normal centered

around zero. Such a specification is considered as non-informative, meaning we have no strong prior
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knowledge about the size of an effect, and allow the model to explore a large parameter space centered

around the null value of 0. While this prior is generally a “default” choice, malaria has been studied

for over 100 years, with a vast literature from which we can draw prior knowledge and incorporate it

into our model where appropriate. Further, we know a lot about regression and effect sizes in general.

Consider, for example, the classic example of the effect of smoking on probability of death due to lung

cancer. Assume that the probability of death due to lung cancer in non-smokers is 0.01, and is 0.5 in

smokers. On the logit scale, this equates to a log odds ratio of 5. This effect size can be thought of as an

upper bound on the size of an effect of an exposure on a health outcome, since smoking is arguably the

greatest risk factor for death/disease. For these reasons, I choose a standard normal as a default prior for

all regression coefficients, after centering and scaling continuous covariates so as to make modeling scale

free. A prior such as this is desirable since it restricts the model to sample only reasonable values of the

posterior distribution—that is, effect sizes that are plausible.

6.3.2 Prior distribution for vec(θ), φ,H

For the spatial random effects, we assume these are generated by a mean-zero Gaussian process. We

write down this process for the model with a spatially varying intercept and slope, noting that the model

for just a spatial random intercept and an independently varying intercept are special cases:

vec(θ) ∼ Nkq

(
0,Σ(φ)⊗H

)
(6.9)

where Σ(φ) is a q × q matrix of pairwise distances between locations, with the decay in their correlation

governed by range parameter φ. The spatial variances and the covariance between the intercept and

slope at a location is introduced through the k × k spatial variance-covariance matrix H, which has

the variances for the spatial intercept and spatial slope on the diagonals and their covariance on the

off-diagonal. For our purposes, k is either 1 or 2, depending on the model being fit. The ⊗ denotes the

Kronecker product. In the case of a model with just a spatially-varying intercept (i.e. k = 1), H is a

scalar, denoted σ2, and represents the variance of the spatial random intercept. In the case of a model

in which the intercept varies independently, H is again a scalar, σ2, with Σ(φ) being replaced with a

q-dimensional identity matrix.
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The above specification has 2 unknown parameters, which I assign the following prior distributions.

For the common spatial range parameter φ, I assign the following uniform prior:

U

(
3

0.1×max(distances)
,

3

0.1

)

, which yields a prior range of between 100 meters and roughly 225 kilometers. I choose to be more

informative about the range parameter owing to identifiability concerns and a preference for learning

about the spatial variance over the range (Banerjee et al., 2014). Further, I adopt an exponential correlation

function, as this is the most commonly used spatial correlation function used in geostatistical modeling

of malaria transmission (see, for example, the work conducted by the Malaria Atlas Project).

For the variance-covariance matrix H, I assign an Inverse Wishart prior distribution, that is:

f(H) ∼ InvWish(k + 1,B0) (6.10)

where B0 is a 2× 2 identity matrix. This specification has the appealing feature that the marginal prior

distribution of the correlation parameters is U(−1, 1) (Gelman et al., 2014).

In the case where there is only a random intercept (i.e. k = 1 in 1.3.1), the variance parameter

(spatial or otherwise), is assigned a conjugate IG(2, 1) prior distribution.

6.4 Full Conditional Distributions for all Model Parameters

Given the model formulation developed in section 1.2 and the prior specifications presented in 1.3, I

now turn to deriving the full conditionals for all model parameters.

6.4.1 Full Conditional for Latent Variables Y

Let Yis be the latent variable for individual i at spatial location s. These Yis are sampled from their

full conditional distribution

f(Yis|Y ∗
is,Ω) ∝ f(Y ∗

is|Yis,Ω)f(Yis|Ω) (6.11)
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where Y ∗
is is an indicator of malaria status as defined earlier, and Ω is a vector of model parameters.

There are two possibilities for the observed indicator Y ∗
is, either Y ∗

is = 0 (i.e. the respondent does not

have malaria), or Y ∗
is = 1, the respondent has malaria. If Y ∗

is = 0, then,

f(Y ∗
is|Yis,Ω) = P (Y ∗

is = 0|Yis,Ω) =

 1 Yis ≤ 0,

0 Yis > 0.
(6.12)

Thus, f(Yis|Y ∗
is,Ω) ∝ I(Yi ≤ 0)f(Yis|Ω). Similarly, for the case where Y ∗

is = 1, then,

f(Y ∗
is|Yis,Ω) = P (Y ∗

is = 1|Yis,Ω) =

 0 Yis ≤ 0,

1 Yis > 0.
(6.13)

Thus, f(Yis|Y ∗
is,Ω) ∝ I(Yis > 1)f(Yis|Ω). Given these two quantities, we can write down the full

conditional for the latent variable as:

f(Yis|Y ∗
is,Ω) ∼

 N(Xisβ + Zisθs, 1)[Yis ≤ 0]

N(Xisβ + Zisθs, 1)[Yis > 0]
(6.14)

where we can see that the latent variable is distributed according to a truncated normal distribution,

truncated from above by 0 when the latent variable is negative (lower propensity for malaria), and

truncated from below by 0 when the latent variable is positive (higher propensity for malaria).

6.4.2 Full Conditional for β

The full conditionals for β depend on the distribution of the latent variables, which we assume (as

noted earlier) follow a normal distribution as follows:

f(Y|Ω) ∝ exp

{
− 1

2

[{
Y −

(
Xβ + Zvec(θ)

)}T
(6.15)

×
{

Y −
(
Xβ + Zvec(θ)

)}]}
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where, as before, Ω is a vector of model parameters. Note that we omit the inverse of the pure noise

variance here since we are specifying the model to have unit variance. Next, note that the full conditional

distribution for β depends only on the distribution for the latent variables and the prior, such that:

f(β|rest) ∝ f(Y|Ω)f(β|σ2β = 1) (6.16)

=exp

{
− 1

2

[(
Y −Xβ − Zvec(θ)

)T(
Y −Xβ − Zvec(θ)

)]}

× exp

{
− 1

2
(β −m)T I−1(β −m)

}
(6.17)

Let γ = Y − Zvec(θ). Then:

f(β|·) ∝ exp

{
− 1

2

(
γ −Xβ

)T(
γ −Xβ

)}
× exp

{
− 1

2
(β −m)T I−1(β −m)

}
(6.18)

∝ exp

{
− 1

2

[
βT
(

XTX + I−1

)
β − 2βTXTγ − 2βTm

]}
(6.19)

= exp

{
1

2

[
βT
(

XTX + I−1

)
β − 2βT (XTγ + m)

]}
(6.20)

Observe that expression (A.4.10) has the general form exp
{
− 1

2

(
βT (A)β − 2β(B)

)}
, which is the

kernel of a multivariate normal distribution with mean A−1B and variance A−1. Thus, we can write

down the full conditional for β as:

f(β|·) ∝ Np

(
Eβ,Vβ

)
, (6.21)

where Eβ =
(
XTX + I

)−1(
XTγ + m

)
and Vβ =

(
XTX + I

)−1
.

6.4.3 Full Conditional for vec(θ)

As with the full conditional for β, the full conditionals for vec(θ) depend on the latent variables

owing to the conditional nature of the model. As noted, we model the spatial random effects via a

zero-centered Gaussian process. We model the variance as separable, such that correlation between

intercept and slope within a location is separate from correlations between intercepts and between slopes
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across locations. Recall that the prior is specified in 1.3.1 as:

f(vec(θ)|φ,H) ∼ Nkq

(
0,Σ(φ)⊗H

)

where ⊗ denotes the Kronecker product. To obtain the full conditional distribution, we combine the

likelihood and prior:

f(vec(θ)|rest) ∝ f(Y|Ω)f(vec(θ)|H, φ) (6.22)

∝ exp

{
− 1

2

(
Y −

(
Xβ + Zvec(θ)

))T
(6.23)

×
(

Y −
(
Xβ + Zvec(θ)

))}
exp

{
− 1

2
vec(θ)T

(
Σ(φ)⊗H

)−1

vec(θ)

}
Let µ = Y−Xβ. Then we can combine likelihood and prior:

= exp

{
− 1

2

[(
µ− Zvec(θ)

)T(
µ− Zvec(θ)

)
(6.24)

+ vec(θ)T
(

Σ(φ)⊗H

)−1

vec(θ)

]}
= exp

{
− 1

2

[
µTµ− µTZvec(θ)− vec(θ)TZTµ+ vec(θ)TZTZvec(θ) (6.25)

+ vec(θ)T
(

Σ(φ)⊗H

)−1

vec(θ)

]}
∝ exp

{
− 1

2

[
− µTZvec(θ)− vec(θ)TZTµ (6.26)

+ vec(θ)T
(

ZTZ + (Σ(φ)⊗H)−1

)
vec(θ)

]}
= exp

{
− 1

2

[
vec(θ)T

(
ZTZ + (Σ(φ)⊗H)−1

)
vec(θ)− 2vec(θ)TZTµ

]}
(6.27)

As with the full conditional for β, we see here the kernel of a multivariate normal distribution:

f(vec(θ)|·) ∼ Nkq(Evec(θ),Vvec(θ)) (6.28)

where

Evec(θ) =

(
ZTZ +

(
Σ(φ)⊗H

)−1)−1

ZTµ (6.29)
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and

Vvec(θ) =

(
ZTZ +

(
Σ(φ)⊗H

)−1)−1

(6.30)

Note that in the case where we only have a spatially varying intercept (k = 1), the kronecker

operation between Σ(φ) ⊗H is replaced with σ2Σ(φ). In the case where we have an independently

varying intercept, this is further reduced to σ2Iq.

6.4.4 Full Conditional for H

The full conditional for the spatial variance-covariance matrix H for the random effects does not

depend on the data likelihood, but on the prior distribution of vec(θ). The prior for the variance-covariance

matrix H is specified as Inverse Wishart:

f(H) ∼ InvW (λ0,B0) (6.31)

where λ0 is scalar and B0 is 2× 2. To write down the full conditional distribution for H, I rely on the

following matrix properties:

1. vec(A)T (D ⊗B)vec(C) = tr(ATBCDT ) (By google)

2. tr(ABCD) = tr(BCDA) + tr(CDAB), i.e. the cyclic property of the trace function

3. det(AB) = det(A)det(B)

4. tr(A+B) = tr(A) + tr(B)

5. det(A)n = det(An)

6. det(A⊗B) = det(A)mdet(B)n, for An×n and Bm×m

The full conditional for H is as follows:

f(H|θ, φ) ∝ f(θ|Σ(φ),H)f(H) (6.32)
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∝ |Σ(φ)⊗H|−1/2 exp

(
− 1

2
vec(θ)T (Σ(φ)−1 ⊗H−1)vec(θ)

)
(6.33)

×|H|−(λ0+p+1)/2 exp

(
− 1

2
tr(B0H

−1)

)

Using Matrix Property I above, we can rewrite the first line in (4) above as a trace function:

∝ |Σ(φ)⊗H|−1/2 exp

(
− 1

2
tr(θTH−1θΣ(φ)−1)

)
(6.34)

×|H|−(λ0+p+1)/2 exp

(
− 1

2
tr(B0H

−1)

)

where θ is 2× q matrix of spatial intercepts and slopes. Note that since Σ(φ) is symmetric, Σ(φ)T =

Σ(φ), so I exclude the transpose from property 1. This holds for the inverse of the matrix as well. I now

look at the kronecker product coeffient in (1.4.24), where I use property 6 above to assign the proper

exponent to the determinant of H, and then drop Σ(φ), which is absorbed in the proportionality. Doing

this, and then combining the terms in the exponent, we have:

|H|−q/2|H|−(λ0+p+1)/2 exp

(
− 1

2

(
tr(θTH−1θΣ(φ)−1) + tr(B0H

−1)
))

(6.35)

Now, iteratively using the cyclic property (property 2 above) in the first trace function in the exponent, as

well as properties 3 and 5 for the product of determinants, we can write down the full conditional as:

|H|−(q+λ0+p+1)/2 exp

(
− 1

2
tr(B1H

−1) + tr(B0H
−1)

)
(6.36)

where B1 = θΣ(φ)−1θT . Finally, using property 4 above, we can write the full conditional as:

|H|−(q+λ0+p+1)/2 exp

(
− 1

2
tr((B1 + B0)H

−1)

)
(6.37)

which is the kernel of an Inverse Wishart distribution with degrees of freedom equal to q + λ0 and scale

matrix B̃ = B1 + B0.

In the case where we are dealing only with a random intercept, for which we specified a IG(2, 1)

prior distribution, the full conditional distribution is also inverse gamma. For the spatial random intercept,
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we have:

f(σ2|·) ∼ IG
(

2 + q/2,
vec(θ)TΣ(φ)−1vec(θ)

2
+ 1

)
(6.38)

and for the independently varying intercept, we have:

f(σ2|·) ∼ IG
(

2 + q/2,
vec(θ)T vec(θ)

2
+ 1

)
(6.39)

6.4.5 Full Conditional for φ

As with the spatial variance, the range parameter φ does not depend on the likelihood function. We

can write the full conditional for φ as follows:

f(φ|rest) ∝ f(vec(θ)|H, φ)f(φ) (6.40)

∝ |Σ(φ)⊗H|−
1
2 exp

{
− 1

2
vec(θ)T

(
Σ(φ)⊗H

)−1

vec(θ)

}
(6.41)

× 1

3/.1− 3/(0.1×max(distances))

There is no distributional form here, and a Metropolis step is therefore necessary to update φ. This is

done by mapping φ to the real line and using a Normal proposal density and using Pilot Adaptation to

tune the variances of the proposal density.

6.4.6 Posterior Predictive Distribution for Intercept/Slope Processes

Given posterior samples of spatial intercept and slope parameters at observed spatial locations,

interest naturally turns to predicting these quantities at unobserved locations—that is, we would like to

learn about the underlying spatial surface in the intercept and slope process. This can be done through

composition sampling of the posterior predictive distribution.

As a happy aside, here I note that one elegant consequence of working with spatial models imple-

mented using a Gaussian process relates to the oft-pluralized ”geographies” that a geographer might

study (e.g. ”I study the geographies of struggle.”). As a geographer myself, I frequently struggle to

figure out how many geographies these geographers are talking about, and am always tempted to ask the
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simple question: ”How many geographies do you study?”. Simple questions, however, are often the most

difficult to answer, and asking it would, of course, make such a question of me equally valid (provided I

ever said ’geographies’), but working with Gaussian processes allows me simply to say ”it’s uncountable”

and move on. Conversely, if I find myself wanting to be more specific, I can also say that it’s arbitrary,

and that I can draw finite-dimensional realizations of any size I wish from the process, meaning that

the number of geographies is entirely up to me. Thus, models incorporating Gaussian processes have

the nice property of allowing me to ask the question while at the same time not have to count anything

myself. Which is good, because counting is hard.

Turning back to the substantive issue at hand, let θ∗ denote the intercept and slope at an unmeasured

location. The posterior predictive distribution, then, is:

f(vec(θ∗)|vec(θ),H, φ) (6.42)

To derive this quantity, I begin by writing down the joint distribution f(vec(θ∗), vec(θ)) and then use

multivariate normal theory to construct the conditional of interest. The joint distribution can be written

as:

vec([θ, θ∗]) ∼ N


 0kq

0kq∗

 ,

Σ(φ)q×q ⊗H Σ(φ)Tq∗×q ⊗HT

Σ(φ)q∗×q ⊗H Σ(φ)q∗×q∗ ⊗H


 (6.43)

where 02q is the mean for the spatial random intercepts and slopes at observed locations with length 2q,

and 02q∗ is the 2q∗-length vector of mean spatial random intercepts and slopes at predicted locations.

The variance-covariance matrix consists of four components/submatrices. The (1,1) entry represents

the variance-covariance matrix for the intercepts and slopes at observed locations, while the (2,2) entry

represents the variance-covariance matrix for the intercepts and slopes at unobserved locations. The

off-diagonal entries [(2,1) and (1,2)] represent the variance-covariance matrices for the intercepts and

slopes between observed and unobserved locations.

Given the multivariate normal structure written here, we can immediately write down the conditional

distribution of vec(θ∗).

f(vec(θ∗)|vec(θ),H, φ) ∼ N(Evec(θ∗),Cvec(θ∗)) (6.44)
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where

Evec(θ∗) = [Σ(φ)q∗×q ⊗H][ΣT
q∗×q ⊗HT ]−1vec(θ) (6.45)

(6.46)

and

Cvec(θ∗) =
[
Σ(φ)q×q ⊗H

]
− (6.47)[

Σ(φ)Tq∗×q ⊗HT
][

Σ(φ)q∗×q∗ ⊗H
]−1[

Σ(φ)q∗×q ⊗H
]
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APPENDIX II: SUPPLEMENTARY MATERIALS FOR AIM 1

All models implemented in Chapter 2 were run for 120,000 iterations, with the first 20,000 discarded

as burn-in and the Markov chain thinned such that inference about model parameters is based on 10,000

posterior samples. Model convergence was assessed by inspecting traceplots of model parameters, and

final inferences are based on the best fitting model, as assessed by Brier score, area under the ROC curve,

and DIC. Table 7.6 below shows these fit statistics, showing that the model with just a random intercept

and no spatial correlation yielded the best fit.

Table 7.6: Fit statistics for hierarchical probit regression models on agriculture and malaria risk
Random Intercept Spatial Random Intercept Spatial Random Intercept

Fit Statistic and Slope
Brier Score 0.160 0.161 0.159
ROC curve 0.839 0.836 0.838
DIC 4687 4695 4715

Spatial models were initially compared by randomly withholding a third of the spatial locations and

predicting those data out-of-sample. Performance was identical across both models, as can be seen above,

and all models were re-fit to the full data, with final inferences presented in the manuscript being based

off of the model incorporating a random intercept, as it had the lowest DIC.

While the non-spatial model exhibited the best fit to the data, we show results for the spatial processes

from both models here, as these can be suggestive of potential areas of future concern. Supplementary

Figure 7.21 below shows the spatial intercept surface, together with corresponding uncertainty.

Considerable variability in the spatial random intercept process persists after accounting for other

risk factors, with areas of the DRC exhibiting both strong increased and decreased risk of infection,

particularly in northern regions. Notably, however, these estimates are accompanied by considerable

imprecision, preventing definitive conclusions about areas of increased or decreased residual risk.

Figure 7.22 below shows the spatial intercept and slope surfaces for the model incorporating both a

spatially varying intercept and a spatially varying slope for the effect of agriculture on malaria risk.
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Figure 7.21: Spatial process from the ‘spatial random intercept’ model

Incorporating the spatial random slope leads to slight attenuation in the intercept process, although

the spatial pattern broadly remains. Further, there is slight evidence of possible attenuation of the effect

of agriculture in two places in DRC, one in the central-northern region, which is largely forest, and the

other in central DRC in what is largely Savannah. This latter area also shows pockets of increased risk.

In both cases, however, inferences on the intercept and slope processes are accompanied by considerable

imprecision.

Much of this imprecision could potentially be controlled through use of a stronger prior for the

variance of the random effects. Indeed, for all models an Inverse Gamma distribution with shape

parameter equal to 2 and rate parameter equal to 1 was used. This specification is highly non-informative,

as the variance of this parameter is infinite. Much stronger prior information is likely warranted here.

This is especially true since this variance parameter governs the range of values that the random effects

can take on, and these random effects are adjustments to the intercept and slope processes. As such,

we can think of specifying this prior in the same way that we specify the variance of the regression

coefficients (β). Future work in this area should consider a specification with a much more informative

prior that reflects the range of values that the random effects can take on, and in so doing lead to shrinkage

in the random effects, and more precise estimates. Worth noting, moreover, is that control of the variance

can be done through both the shape and rate parameters, with the variance governed by a quadratic in
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Figure 7.22: Spatial process from the ‘spatial random intercept and slope’ model

both parameters. More specifically, the variance for an Inverse Gamma distributed random variable is

given by:

β2

(α− 1)2(α− 2)

One can simply plug in values for α and β to obtain the variance of the prior variance desired.
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of epidemiology, 162(2):171–182.

Corbel, V., Akogbeto, M., Damien, G. B., Djenontin, A., Chandre, F., Rogier, C., Moiroux, N., Chabi,
J., Padonou, G. G., and Henry, M.-C. (2012). Combination of malaria vector control interventions
in pyrethroid resistance area in benin: a cluster randomised controlled trial. The Lancet infectious
diseases, 12(8):617–626.

Czeher, C., Labbo, R., Arzika, I., and Duchemin, J.-B. (2008). Evidence of increasing leu-phe knockdown
resistance mutation in anopheles gambiae from niger following a nationwide long-lasting insecticide-
treated nets implementation. Malaria Journal, 7(1):189.

Darriet, F., Robert, V., Vien, N. T., Carnevale, P., Organization, W. H., et al. (1984). Evaluation of the
efficacy of permethrin impregnated intact and perforated mosquito nets against vectors of malaria.

Davies, T., Field, L., Usherwood, P., and Williamson, M. (2007). Ddt, pyrethrins, pyrethroids and insect
sodium channels. IUBMB life, 59(3):151–162.
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pública de méxico, 48(5):405–417.

Holderegger, R., Kamm, U., and Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: implications
for landscape genetics. Landscape Ecology, 21(6):797–807.

Hunter, J. M. et al. (1974). The geography of health and disease: papers of the first Carolina Geographical
Symposium (1974). University of North Carolina at Chapel Hill, Dept. of Geography.

Ijumba, J. and Lindsay, S. (2001). Impact of irrigation on malaria in africa: paddies paradox. Medical
and veterinary entomology, 15(1):1–11.

86



Ijumba, J., Shenton, F., Clarke, S., Mosha, F., and Lindsay, S. (2002). Irrigated crop production is
associated with less malaria than traditional agricultural practices in tanzania. Transactions of the
Royal Society of Tropical Medicine and Hygiene, 96(5):476–480.

Jayne, T. S., Chamberlin, J., and Headey, D. D. (2014). Land pressures, the evolution of farming systems,
and development strategies in africa: A synthesis. Food Policy, 48:1–17.

Karch, S. and Mouchet, J. (1992). Anopheles paludis, vecteur important du paludisme au zaı̈re. Bulletin
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