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ABSTRACT 

Ian Robert Kroll: Assessing Estuarine-Scale Population Connectivity and Dynamics for the 
Management of Marine Fisheries 

(Under the direction of F. Joel Fodrie) 

In response to the degradation of coastal environments and their associated habitats, 

managers and policy makers have looked to utilize population dynamics and, more 

specifically, connectivity (i.e., import and export of larvae, juveniles, and adults) in order to 

rebuild stocks. As the majority of population bottlenecks are thought to result from critical 

periods experienced in earlier life stages, it is particularly important to discern movement 

patters during larval and juvenile stages. This study used two estuarine-associated model 

organisms, the Eastern oyster and the black sea bass, to examine connectivity at the larval 

and juvenile stages, respectively. A requisite to tracking larval dispersal of the Eastern oyster 

was to explore the utility of geochemical tagging methods within our study system, the 

Pamlico Sound. Strong environmental (e.g., temperature and salinity) gradients were present 

over regional (~ 35 x 15 km quadrants) scales and both larval and settler shells were able to 

generate distinct, multi-elemental signatures between putative natal and settlement sites. 

These methods were then applied, with a combination of larval outplanting techniques (i.e., 

stationary moorings and floating surface drifters), to show that larval dispersal is single-

source driven, generally follows wind-driven currents, and leads to high amounts of self-

recruitment. However, dispersal pathways are not uniform across the Sound and seasonal and 

annual dispersal patterns can be highly variable. Geochemical tagging of black sea bass 

showed that estuarine nurseries, such as oyster reefs, contribute over 89% of the juvenile 
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black sea bass to the adult stock; however, there is significant annual variation in 

contribution. The role of estuarine habitats becomes even more complex for the protogynous 

black sea bass, as fish exhibited carry-over effects (COEs) related to nursery habitats: 

juveniles that utilized estuarine nurseries transitioned from female to male six months earlier 

than juveniles that utilized offshore nurseries. This dissertation provides substantial support 

for the implementation of habitat-based management plans rather than single-species 

management practices, which cannot account for seasonal and annual variation inherent in 

dispersal pathways or variable reproductive (and dispersal) potential among subpopulations. 
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INTRODUCTION 

Global declines in coastal habitats, such as saltmarshes, seagrass beds, mangrove 

forests and shellfish reefs, have decreased the availability of nursery, foraging, and refuge 

habitats used by several marine fish and invertebrate (Aarts and Van Den 2003). In response 

to this, managers and policy makers have looked to utilize population dynamics and, more 

specifically, connectivity (i.e., import and export of larvae, juveniles, and adults) among 

subpoputions in order to rebuild stocks. However, most estimates of connectivity are based 

on theoretical models which are informed by a relatively small number of empirical studies 

(Cowen and Sponaugle 2009). Therefore, to create effective management plans that protect 

the distribution and abundance of ecologically and economically valuable species, further 

research is needed to not only identify dispersal pathways, but also quantify the contribution 

of specific subpopulations and habitats.     

Marine environments present a unique set of obstacles to studying species’ movement 

and distribution. First, nearly all marine organisms move within a three-dimensional space 

during some, if not all, of their lives. Furthermore, these movements are difficult to see in a 

relatively opaque sea. Additionally, many early-life histories include a larval stage, in which 

organisms are microscopic yet rely on large-scale physical processes (e.g., tidal and wave 

action) to disperse. Traditional terrestrial tagging equipment is also ineffective in marine 

systems, as sea water is highly corrosive. Additionally, only a small fraction of the ocean has 

been mapped and nearshore habitats are constantly undergoing changes due to anthropogenic 

disturbance as well as natural change. 
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As the majority of population bottlenecks are thought to result from critical periods 

experienced in earlier life stages (Limburg 2001), it is particularly important for managers to 

discern movement patterns during larval and juvenile stages.  Recent studies have 

demonstrated higher levels of self-recruitment and longer dispersal pathways than previously 

assumed (Almany et al. 2007; Puckett and Eggleston 2016); however, larval dispersal is 

highly dependent on physical factors (e.g., current patterns and tidal forcing), which fluctuate 

annually, seasonally, and even daily, causing dispersal distances to be highly variable among 

years or even among neighboring habitats within the same temporal scales (O’Connor et al. 

2007, Puckett et al. 2014, Qian et al. 2014). Juvenile connectivity, both between nursery 

habitats and from nursery to adult habitats, is also of particular interest, as resource 

availability can vary extensively among putative nursery habitats, exposing organisms to 

varied environmental conditions during an already vulnerable life stage (Anders et al. 1998). 

It is also necessary to attribute the role and contribution of juvenile habitats to the adult 

population in order to preserve essential nursery habitats and adult stock dynamics.  

Estuaries comprise a unique domain for connectivity studies, as they are characterized 

by high environmental spatiotemporal variation (e.g., multiple freshwater input sources) and 

encompass nursery and adult habitats for several commercially and ecologically important 

fisheries. The Eastern oyster provides an important model organism for the study of 

estuarine-scale larval connectivity because of their ecological role as a reef-building, 

foundation species, commercial fishery status, and metapopulation dynamics. Biophysical 

models have simulated the dispersal of oyster larvae (over their 2-3 week planktonic veliger 

phase) and found dispersal distances ranging from 5-40 km, which may limit both 

connectivity among and local retention within subpopulations (Puckett et al. 2014). However, 
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there are no empirical data on Eastern oyster larval connectivity and demographic rates 

across whole-estuarine scales, severely limiting our ability to managing historically 

overfished stocks.  

Although estuarine habitats, such as oyster reefs, were once thought to provide the 

only nursery ground to the majority of estuarine-associated organisms, recent syntheses have 

found that estuarine nursery utilization can be facultative, rather than obligate (Able et al. 

2005; Nagelkerken et al. 2015). As a result, there is the impetus to understand how organisms 

like the black sea bass, a socially, economically, and ecologically important member of the 

snapper-grouper complex, utilize estuarine nurseries and quantify the contribution of 

estuarine habitats to the adult. Additionally, usage of specific nursery habitats may confer life 

history benefits beyond the juvenile stage via carry-over effects (Norris 2005). As estuarine 

habitats are especially vulnerable to climate change and anthropogenic exploitation 

(Grabowksi et al. 2012), it is important to discern whether the utilization of offshore habitats 

will increase as estuarine habitat availability decrease and how this may impact population 

fitness, biomass, and structure (van de Wolfshaar et al. 2015).  

The use of the Eastern oyster and black sea bass as model organisms provides an 

ideal platform by which to examine connectivity at two critically important life stages within 

ecologically-prized estuarine systems. Examining oyster larval connectivity among estuarine 

subpopulations not only demystifies the metapopulation dynamics of invertebrate 

populations but also offers insight into a larval stage experienced by nearly all marine 

organism. Furthermore, understanding oyster larval connectivity is vital to the successful 

management of its own commercially-important fishery as well as the success of other 

shellfish and finfish species that rely on oyster reefs for nursery habitat (Grabowski et al. 
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2012). Assessing juvenile black sea bass connectivity is necessary to substantiate the 

contribution of estuarine nursery habitats to adult stocks while also evaluating their role in 

shaping population dynamics. As managers begin to move toward more habitat-based 

conservation approaches, there is an emerging need to understand the role of connectivity in 

sustaining marine populations at various life stages and across entire estuarine scales.
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CHAPTER 1: ENVIRONMENTAL EFFECTS ON ELEMENTAL SIGNATURES IN 
EASTERN OYSTER, CRASSOSTREA VIRGINICA, SHELLS: IMPLICATIONS FOR 

THE USE OF GEOCHEMICAL TAGGING TO ASSESS POPULATION 
CONNECTIVITY 

Introduction 

Researchers have long been interested in the complex larval dispersal patterns that 

govern early life history and distribution patterns of marine organisms (Young 1990). 

Current management strategies have only bolstered the impetus to discern population 

distribution patterns that are driven by larval dispersal, as successful marine reserve design is 

contingent upon the levels of larval input (e.g., immigration and self-recruitment) and export 

(e.g., spillover; Gerber et al. 2003, Gaines et al. 2010). Recently, there has been substantial 

progress in deciphering ranges of dispersal and the degree of self-recruitment within marine 

populations and ecosystems (Cowen et al. 2009, Puckett et al. 2014), which has allowed 

researchers to question traditional concepts of connectivity, i.e. to what degree marine 

populations are demographically open or closed. One of the key challenges in determining 

the role of larval connectivity in population dynamics and applying this knowledge to 

management is the ability to test predictions of larval connectivity, especially under variable 

environmental conditions. For example, larval dispersal is highly dependent on physical 

factors (e.g., current patterns and tidal forcing), which fluctuate annually, seasonally, and 

even daily, causing dispersal distances to be highly variable among years or even among 

neighboring habitats within the same temporal scales (O’Connor et al. 2007, Puckett et al. 

2014, Qian et al. 2014).  
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 Estuaries comprise an important domain for connectivity studies, as they are 

characterized by high environmental spatiotemporal variation (e.g., multiple freshwater input 

sources) and encompass varying geomorphological components (e.g., creeks, salt water 

inlets, and marshland). Estuaries also function as important nursery, juvenile, and even adult 

habitat for many marine organisms (Beck et al. 2001), resulting in the development of 

distinct subpopulations with varying amounts of larval exchange and connectivity. Finfish 

connectivity has been examined over many spatial scales, including intra- and inter-estuarine 

dynamics on both the east and west coasts of the United States (e.g., Able 2005, Fodrie & 

Levin 2008). However, invertebrate dispersal across estuarine scales has not been as 

intensively examined, with only a few studies exploring connectivity across estuarine 

environmental gradients (Becker et al. 2007, Cathey et al. 2012; Puckett et al. 2014 and 

references therein).    

 Bivalves, such as the Eastern oyster, Crassostrea virginica, provide an important 

model organism for the study of estuarine-scale larval connectivity because of their early life 

history characteristics and ecological role as a reef-building, foundation species. C. virginica 

also persists throughout a range of temperatures and salinities commonly found in estuarine 

systems (Davis 1958). Following successful fertilization, oyster larvae progress through an 

approximately 2-to-3 week planktonic veliger phase (Medcoff 1939) in which they begin to 

develop an aragonite-rich prodissoconch shell that is retained after an individual settles on 

suitable benthic habitat (most typically, gregariously on other adult oyster shells; Stenzel 

1964). Recently, biophysical models that simulated the dispersal of oyster larvae among a 

network of 10 reef units in Pamlico Sound, North Carolina (NC), USA reported that dispersal 

distance varied around 5-40 km which limited both inter-reserve connectivity and local 
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retention (Puckett et al. 2014). However, there are no empirical data on oyster larval 

connectivity and demographic rates within this reserve system. The present study, which 

evaluates the efficacy of geochemical signatures in shells of larval stage oysters and recent 

settlers in the waters of Pamlico Sound and beyond, is a key step in testing model predictions 

of larval connectivity for this and similar bivalve metapopulation. 

 Because of C. virginica’s calcium carbonate shells, geochemical tagging methods can 

be used to empirically assess larval dispersal and connectivity (Carson 2010, Fodrie et al. 

2011). Geochemical tags are based on unique physical and chemical environments 

experienced by organisms during their larval and post-larval life-history stages. As the 

organism grows, elements present in natal environments are accreted and stored in calcium 

carbonate structures (e.g., otoliths in fishes, shells in bivalves), usually through the 

substitution of anions2+ for Ca2+ or the entrapment of other contaminants (Bath et al. 2000). 

Environmental (e.g., temperature and salinity) variations have been shown to further affect 

the incorporation of trace elements into calcium carbonate structures (e.g., Bath Martin & 

Thorrold 2005, Becker et al. 2005, Strasser 2008b). These signatures can then be analyzed 

through the use of specialized mass spectrometry techniques to discriminate natal origin in 

both fishes and bivalves (Carson et al. 2013). Larvae are exposed to various environmental 

conditions, while also retained within an estuary, and can therefore be used to further 

understand the mechanisms of geochemical tagging, via the relationship between salinity, 

temperature and elemental concentrations, as well as the application of elemental signatures 

to assess connectivity. Applications of this approach may be used to assess connectivity, 

thereby improving management and restoration efforts for the species. 
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 The ultimate goal of this study was to develop geochemical tagging as an empirical 

tool to assess oyster larval connectivity. A requisite for achieving this goal was to first 

ground-truth tagging methods for oysters via spatially-implicit laboratory experiments with 

larval oysters, coupled with spatially-explicit field collections of recent settlers. In laboratory 

mesocosms, we conducted a fully crossed, 3-way, experiment to investigate the effects of 

temperature, salinity, and seawater concentrations of Mn and Pb on larval (prodissoconch) 

shell signatures (i.e., elemental ratio, X:Ca). Second, we collected recently settled oysters 

(hereafter “spat”) from sites within the Bogue-Back-Core-Pamlico Sound estuarine system in 

North Carolina (NC), USA, and examined signatures present in larval shells and outermost 

portions of settler shells. These geochemical signatures were used to examine natural 

elemental variability in shells, with respect to salinity and temperature, and to explore 

discriminatory ability and resolution between sample sites or regions.  

Methods 

Temperature, salinity, and trace metal manipulations 

 To investigate environmental effects on larval (prodissoconch) shell signatures, we 

manipulated temperature, salinity, and elemental concentration of the water surrounding 

developing oyster larvae. Individual tanks were set up with the following treatments: low 

(21°C) or high (26.5°C) temperature; low (12.5 ppt) or high (20 ppt) salinity; and ambient 

(no addition), mid spike (+16 ppb Mn/0.16 ppb Pb addition), or elevated spike (+32 ppb 

Mn/0.32 ppb Pb) in concentrations of aqueous Mn and Pb. These elements were chosen 

because of their previous use and importance in elemental tagging studies (e.g., Zacherl et al. 

2003, Strasser et al. 2008b). Temperature and salinity treatments were selected based on 

representative high and low observations in Pamlico Sound at the time of the experiment 



 

11 

(mid-September). Trace metal spikes were calculated to increase the ambient levels of Mn 

and Pb in seawater, as measured by Statham and Burton (1986) for Mn and Wu and Boyle 

(1997) for Pb, by 400% and 800% for mid and elevated spike levels, respectively. 

 Three-day old C. virginica larvae were obtained from the University of Maryland’s 

Horn Point Laboratory in Cambridge, Maryland, USA. These larvae were mass spawned 

from a total of 21 males and 28 females and reared in a hatchery system until shipment to the 

Institute of Marine Sciences (IMS) in Morehead City, NC. Upon arrival, larvae were divided 

equally into 2, 1.2 L aerated holding tanks filled with a 12.5 ppt seawater mix (ultrapure H2O 

added to filtered seawater from Bogue Sound, NC). Over the next 4 days, larvae were 

acclimatized, with one tank receiving a salinity increase of approximately 2 ppt per day, 

resulting in a final salinity of 20 ppt, while the other tank remained at 12.5 ppt.  

 After the acclimatization process was complete, larvae from both holding tanks, now 

7 days old, were divided equally into 72 “larval homes”, with approximately 1.6 x 104 larvae 

per home (21.2 larvae cm-3). Larval homes were constructed from hollow PVC tubing capped 

on each side with nitex cloth, with a 30 μm mesh opening, to allow for the flow of water and 

food into the home, but prevent larvae from escaping. Homes were then placed into 24 

aerated aquarium tanks (35 L), with 3 homes per tank. All tubing, PVC, air stones, and nitex 

were soaked in a HNO3 solution and then rinsed thoroughly with ultrapure H2O prior to its 

use in the experiment.  

 Temperatures were maintained at either high or low level by 150 W Aquatop 

aquarium heaters and salinity levels were established by mixing filtered seawater with 

ultrapure H2O until desired salinity was reached. Mn and Pb concentrations were spiked by 

the addition of 545 μl of Mn + 5.45 μl of Pb or 1090 μl of Mn + 10.90 μl of Pb from1000 ppt 
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Fisher Scientific reference standard solutions, for mid and elevated spike treatments, 

respectively. Individual treatments (temperature, salinity, and Mn/Pb spiking) were crossed, 

to produce a full factorial design with 12 total treatment combinations. Water changes were 

conducted every other day by removing one-third (~12 L) of water from the tank and 

replacing it with a freshly made mix. To account for trace element dilution when un-spiked 

water was added during water changes, tanks with mid or elevated spike treatments were re-

spiked with one-third of the original spike (182 μl of Mn + 1.82 μl of Pb or 363 μl of Mn + 

3.63 μl of Pb). Immediately following water changes, larvae were fed by depositing dilute 

Instant Algae Shellfish Diet 1800 (Reed Mariculture; Campbell, California, USA) into larval 

homes via syringe. The experiment ran for 7 days, until the larvae were 14 days old.  

 Dissolved oxygen, temperature and salinity were monitored daily with a HACH 

HQ40d dual input, multi-parameter portable water quality meter. Dissolved oxygen, pH, 

salinity and temperature measures remained consistent among the treatments throughout our 

laboratory experiments. Mean dissolved oxygen and pH were 8.68 ± 0.025 mg L-1 and 7.72 ± 

0.032, respectively. Mean salinity for high and low salinity treatments were 20.7 ±0.091 ppt 

and 12.8± 0.120 ppt, respectively. Mean temperature for high temperature treatments was 

25.7 ± 0.157 °C and 21.3 ±0.104 °C for low temperature treatments.  

 Although Pb and Mn were manipulated throughout the duration of the experiment, 

water chemistry was not analyzed. Previous mesocosm work has shown that salinity often 

affects the relative amounts of specific tracemetals in seawater (e.g., Mn and Sr), whereas 

temperature is a less consistent factor (Bath Martin & Thorrold 2005). Salinity fluctuations 

are often a result of freshwater inputs, which dilute seawater trace metal concentrations, and 

can therefore be corrected for with our replicable spiking procedure (Bath Martin & 
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Wuenschel 2006). While measurements of specific elements are possible (e.g., Pb), 

determining the bioavailability of these elements within specific environments can be more 

challenging (Eggleton & Thomas 2004). Furthermore, the addition of larval oyster food into 

our mesocosms may complicate traditional elemental detection methods (Bath Martin & 

Wuenschel 2006). However, larval diet was distributed uniformly to all tanks and thus, while 

the chemistry of the actual treatments was not verified, we do have reason to assume 

consistency among treatments. The larval diet used, Shellfish Diet 1800, was cultured in 

artificial seawater (with a deionized water base), which precludes any suspicions that it may 

contain above average levels of trace elements.  

 At the conclusion of these mesocosm incubations, larvae from each home were 

filtered using nitex cloth (30 μm) and then resuspended in 15 mL of water from their 

respective tank. A 0.5-1 mL subsample of each larval resuspension was removed and the 

number of whole larvae were counted. The remaining larval solution was then frozen at -

23°C until sample preparation for geochemical analysis. 

Spat settlement sampling and site prediction 

 We collected recently settled spat (see below) across the Bogue-Back-Core-Pamlico 

Sound (BBCPS) estuarine system of NC sites to assess whether unique elemental signatures 

existed among estuarine regions that could be used to accurately predict collection sites of 

individual spat. 

Study sites 

 Spat settlement collectors were constructed by affixing 2-3 wire strings, each 

containing 12 adult oyster shells, to private and public docks or stand-alone wooden pilings, 

throughout the BBCPS study system. Settlement collectors were deployed on June 7th and 
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21st and again on August 1st and 16th of 2012 and retrieved approximately 2 weeks after each 

deployment as part of an ongoing settlement sampling program (Eggleston and Puckett, 

unpubl.data). Recovered settlement collectors were frozen until individual spat could be 

counted and removed from adult oyster shells with a tungsten probe.  

Sample preparation and LA ICP-MS 

 Frozen larvae from the laboratory experiments were thawed and approximately 1000 

larvae were obtained representing each replicate home. The larvae were then rinsed with 

ultrapure H2O and shells were inspected for any remaining tissue. The process of freezing, 

thawing, and rinsing larvae appeared to remove most soft tissue, and therefore acid and 

peroxide-which could degrade shells-were not needed nor employed. If larvae were highly 

translucent (i.e., no tissue present), they were mounted as a concentrated mass on a labeled 

glass microscope slide covered in double-sided tape. This process continued until larvae from 

each home were mounted on a slide in haphazard order (i.e., each home was represented by 1 

mound of shells; total N=72). The slides then stored in a laminar flow hood until analysis. 

 Spat from the field settlement collections were thawed and placed individually in 2 

mL centrifuge tubes filled with 100 mL of 15% H2O2 solution buffered in 0.05 N ultrapure 

NaOH. Samples were sonicated for 10 min to remove organic material. The H2O2 solution 

was then removed and replaced with a 100 mL solution of 1% ultrapure HNO3 (OPTIMA 

grade; Fisher Scientific; Hampton, NJ). Samples were then sonicated for 5 additional min to 

dissolve any remaining tissue and surface contaminants. Spat were then rinsed three times 

with ultrapure H2O and dried overnight in a laminar flow hood. After drying, spat were 

mounted in haphazard order onto a glass microscope slide with double-sided tape and stored 

until analysis. 
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 Both larval and spat samples were analyzed using a Thermo-Fisher Element2 

inductively coupled plasma mass spectrometer with a Teledyne ATLex 300si-x 193nm 

Excimer laser ablation unit (LA ICP-MS). To correct for mass bias and instrument drift, 

National Institute of Technology Standards-certified standards (Reference Material 612, 614, 

and 616) were run at the beginning and end of every 4 slide sequence (~140 burns). 

Concentrations of the following elements were quantified from laboratory larval samples: 

48Ca, 55Mn, 88Sr, 138Ba, and 208Pb; and from field-collected spat: 26Mg, 48Ca, 55Mn, 63Cu, 88Sr, 

118Sn, 138Ba, and 208Pb. These elements were all analyzed in low-resolution mode, and were 

chosen because of their previous use in uptake and tagging studies of fish otoliths and 

bivalve shells (Bath Martin & Thorrold 2005; Strasser et al. 2008a,b; Fodrie et al. 2011).  

 Larval slide-mounts from the laboratory experiment were ablated three times in bulk, 

using side-by-side line transects of 150 μm with 40 μm spot size and 80% laser intensity. 

Line transects covered ~2-3 shell lengths, following Becker et al. (2005), and were used 

instead of burning several individual larvae to reduce the likelihood of pseudoreplication. 

determine elemental signatures of the spat collection sites, the outermost (most recently 

formed) section of the settler shell was also ablated twice with 150 μm end-to-end transects 

with 40 μm spot size and 80% intensity. The larval portion of settler shells was also analyzed 

to examine potential elemental variation in larval source signatures. Larval shell of each spat 

sample was identified and sampled in duplicate with side-by-side line transects of 110 μm 

with 40 μm spot size and 80% intensity. Isotope intensities for replicate burns were averaged 

and then converted into elemental ratios (X:Ca) for each home or spat/larval shell following 

Becker et al. (2007). For ease of comparison between laboratory and field experiments, and 

because X:Ca ratios can yield the same statistical results and significance as partition 
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coefficients in bivalves (Strasser et al. 2008b), we opted to only utilize and report X:Ca ratios 

in our analyses.  

Data analyses 

Temperature, salinity, and trace metal manipulations 

 A 2-way ANOVA was used to test the effects of salinity and temperature on 

elemental ratios for the elements that were not spiked during the laboratory experiment (Sr 

and Ba). Due to the large amount of zero values in certain cases (e.g., undetectable amounts 

of Ba), Sr ratios and Ba ratios were transformed using a Box-Cox transformation to meet 

assumptions of normality and homogenous variances. After ensuring no interactive effects of 

Mn and Pb spikes with Sr or Ba signatures, or nesting effects for homes within individual 

tanks (using intraclass correlation), all tanks were included in this analysis with individual 

larval homes treated as replicates (N=6) and temperature and salinity treated as fixed factors. 

 For spiked elements (Mn and Pb), a three-way ANOVA was used to test the effects of 

salinity, temperature, and spike level on elemental ratios. Mn ratios were transformed with a 

Box-Cox transformation, while Pb ratios were transformed logarithmically to meet 

assumptions of normality. After ensuring no nesting effects of individual tanks, homes were 

treated as replicates (N=6) temperature, salinity and spike level were treated as fixed factors. 

For all 4 elements, Tukey’s HSD tests were used post-hoc to explore differences among 

treatment groups 

Spat settlement sampling and site classification 

 Means and standard errors for field-collected larval and settlement shell Sr:Ca and 

Ba:Ca ratios were calculated and plotted by site to assess spatial variation in geochemical 

signatures among collection sites. Signatures from larval shells were used to examine 
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possible temperature and salinity gradients present among natal sites. Additionally, contour 

plots were used to explore how settler shell elemental concentrations of Mn, Sr, Ba, and Pb 

varied with temperature and salinity. Contour plots were created using the graphics package 

in R (version 3.0.3). Multiple regression models were then used to quantitatively assess the 

relationship between salinity, temperature and shell signatures in a natural environment. 

Because some collection sites did not produce any spat over a given collection period, spat 

were grouped only by site to increase the sample size and statistical power of our results. A 

logarithmic transformation of elemental ratio was used as the response variable. 

 Linear Discriminate Function Analysis (DFA) was performed on Box-Cox 

transformed ratios to examine spatial variability in settler shell geochemistry and to 

determine the viability of using geochemical fingerprints to assess connectivity in oyster 

populations. All 23 sites were used in preliminary DFAs, however the classification success 

was low, directing us toward independent examination of PS sites from the BBCS sites. 

Because of spatial autocorrelation in temperature/salinity, PS sites were then grouped by 

geographic quadrant within PS: Northwest (NW; WC, EH, StP), Northeast (NE; RD, HT), 

Southeast (SE; OK, CI, WB), and Southwest (SW; OR, SoP, SQ). Each quadrant contained a 

diagonal of approximately 35 km to the centroid of PS. BBCS sites were similarly broken up 

into 5 groups based on geomorphology and site location: Bay (JB, WM), Creek (WH, TC), 

Newport (NeU, NeM, NeL), North (NoU, NoM, NoL), and Sound (BoS, BaS). Jack-knifed 

classification matrices, without sample replacement, were compared to expected 

classification matrices, based on random chance, to assess classification success. Sites were 

additionally grouped based on similar temperature and salinity profiles, however 

classification success did not improve significantly over geomorphological quadrants so 
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analysis did not continue with these groupings. Because natal origins are unknown and 

modeled dispersal pathways for the area (e.g. Haase et al. 2012) have not been empirically 

validated, no DFA was performed on larval signatures.  

Results 

Temperature, salinity and trace metal manipulations 

 Of the initial 1.60 x 104 larvae per home, a mean of 8390 ± 920 larvae were 

recovered, with an average of 128 ± 22.5 actively moving larvae per home. While estimated 

larval survival was low (based on presence of moving larvae), 0.80 ± 0.14%, survival did not 

vary significantly by treatment (p=0.524) and was consistent with published values of C. 

virginica larval survival (Davis 1964). 

 We found a significant interactive effect of temperature and salinity on Sr 

concentrations in larval shells (F=4.23, df=3, p=0.041; Fig. 1.2). Highest larval Sr 

concentrations, 5.51 ± 0.752 mmol mol-1, were present in the low salinity (12 ppt), low 

temperature (21°C) treatment, representing an average increase of 35.1% over the mean 

concentrations of the other treatments. A similar pattern was observed in Ba concentration 

with a 572% increase in the low salinity, low temperature treatment as opposed to mean Ba 

concentrations of the other treatments combined. However, this trend was not statistically 

significant due to high variance within the treatment, cv=0.991 (F=1.02, df=3, p=0.383; Fig 

1.2b).  

 Larval shell Mn concentrations increased significantly with spike level. Mean 

concentration increased from 0.111 ± 0.015 mmol mol-1 to 0.568 ± 0.079 mmol mol-1 

between ambient [0] and mid [+] spike levels, and to 0.802 ± 0.236 mmol mol-1 at elevated 

[++] spike levels, with a 621% mean increase in concentration from ambient to elevated 
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treatments (F=59.6, df=11, p<0.001; Fig. 1.2). Temperature and salinity did not influence 

overall Mn concentration (F=1.46, df=3, p=0.228).  

 Larval shell concentration of Pb was highly variable, with no change in overall 

concentration with spike level and an overall mean of 0.034 ± 0.014 mmol mol-1 (F=1.02, 

df=2, p=0.361; Fig. 1.2). There was a significant interactive effect of temperature, salinity 

and spike level (F=3.369; df=11, p=0.0374) seen in the ambient and elevated Pb treatments. 

Specific comparisons for all examined elements and treatments are provided in Table 1.2.  

Settler signatures and site prediction 

 Both settler and larval shells from field-collected spat showed robust spatial 

variability in Sr signatures (Fig. 1.3a,b), while elemental concentrations of Sr were typically 

higher in larval shell than in settler shell (e.g., 73.9% increase in intensity from settler to 

larval shell at SQ). Strong Sr:Ca gradients were present, with increasing Sr settler shell 

concentrations when moving northward (e.g., from SQ to EH, a 30.2% increase) and 

eastward toward inlet openings (e.g., RD and HT, 31.1% increase from SQ). High larval 

Sr:Ca concentrations were present in the southern Pamlico Sound (e.g., SoP, OR, WB), mean 

4.72 ± 0.654 mmol mol-1 when  compared to concentrations in the northern Pamlico Sound 

(e.g., EH, StP, WC), mean 3.28 ± .0292 mmol mol-1. 

 Generally, settler shells displayed less explicit spatial variation with respect to Ba:Ca 

ratios, although there was a trend of higher intensities at sites closer to freshwater inputs 

(OR, NeU), with a combined mean of 0.044 ± 0.014 mmol mol-1 at these sites, when 

compared to the overall mean of 0.037 ± 0.016 mmol mol-1. Larval shell Ba:Ca was fairly 

homogenous along the North-South axis of the PS, however eastern sites near inlets (RD, HT 



 

20 

and even TC) exhibited higher Ba concentrations (e.g., a 127% increase when moving from 

SQ to RD).   

 Settler shell elemental concentrations varied greatly along natural temperature and 

salinity gradients (Fig. 1.4a-d). For Mn:Ca, greater concentrations (> 3.5 mmol mol-1) were 

found in settler shell collected from mid-salinity (26 ppt), mid-temperature (26 °C) sites, with 

concentrations declining at lower temperatures and higher salinities (<2 mmol mol-1; Fig. 

1.4a). A multiple-regression model verified this, as Mn concentrations were negatively 

correlated with salinity (p<0.001) and positively correlated with temperature (p<0.001), with 

an R2 value of 0.101. Sr concentrations were greatest (> 3.8 mmol mol-1) at low temperature 

(<22 °C) and low salinity (< 21 ppt) waters, with concentrations decreasing with increasing 

salinity and temperature (Fig. 1.4b). Multiple-regression analysis validated this, showing 

strong, negative correlations between Sr signatures and temperature (p<0.001) and salinity 

(p=0.007), with an R2 value of 0.091. Conversely, observed Ba concentrations were greatest 

(> 0.06 mmol mol-1) at either end of the temperature range (<18 °C or >28 °C) and at high 

salinity (<30 ppt; Fig. 1.4c). Pb concentrations were the greatest in higher salinity water (>24 

ppt), however concentrations varied across a wide range of temperatures (>16 °C and <29 

°C), with highest levels in mid temperature water (Fig. 1.4d). We found no significant 

correlations between Ba:Ca or Pb:Ca ratios and salinity and temperature.  

 Differences in settler shell geochemistry were not sufficient to discriminate among 

locations when including all sites in DFA (classification success of 18.3%). However, when 

considering only Pamlico Sound sites, jack-knifed classification success rose to 36.5% over a 

null expected classification success of 22.5%. When sites were divided into quadrants based 

on location within PS, we achieved an average classification success of 61.0%, a significant 
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increase over the null expected of 34.1% (Fig. 1.5a,b). Classification success for spat 

collection location varied greatly between sites and quadrants, ranging from 0-68% correct 

assignments. The strongest discriminating elemental ratios for quadrant divisions were Sr:Ca, 

followed by Mn:Ca and Mg:Ca. For BBCS sites, discriminatory ability did not increase 

substantially when examining them without Pamlico Sound sites (classification success of 

20.25%). When dividing southern sites into geomorphological regions (e.g., Bay, Creek), 

there was a marginal increase in average classification success to 34.9% (Fig. 1.5c). 

Discrimination was driven, in order of predictive ability, by Mn:Ca, Mg:Ca, and Sr:Ca ratios, 

based on forward stepwise variable analysis. When consolidating all the BBCS sites into a 

single “SS” grouping and including Pamlico Sound quadrants, jackknifed classification 

success rose to 76.5% over a null expected of 23.8% (Fig. 1.5d), however classification 

success was still highly variable among sites, ranging from 96% (SS) to 0% (NW). The 

strongest discriminating elemental ratios for these groupings were, again, Sr:Ca, followed by 

Mn:Ca and Mg:Ca, based on forward stepwise variable analysis (Fig. 1.6). For all grouping 

combinations, Pb:Ca was the least discriminatory element. 

Discussion 

 Geochemical tags, reflective of spatial gradients in environmental conditions, have 

been successfully used to identify natal origins, nursery use, and population-level 

connectivity patterns within a variety of teleost fishes (e.g., Patterson et al. 2005, Bradbury et 

al. 2011) and bivalves (Becker et al. 2007, Carson 2010, Cathey et al. 2012). The results of 

our study expand the use of elemental tags to the Eastern oyster by providing the foundation 

from which to empirically assess population connectivity among estuarine sub-populations. 

Our study shows that environmental conditions necessary to impart distinct signatures within 
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oyster shells are reliable over regional (35 km) spatial scales within a large estuarine 

complex. However, conditions of an individual site (i.e., temperature and salinity) can vary 

greatly across time and space. Consequently, this approach may be better suited to predicting 

environmental conditions within a site at a given time, rather than discriminating between 

specific collection sites. Here, we consider the utility of geochemical signatures in discerning 

environmental condition over various scales within an estuarine system.  

Environmental influence of trace metal signatures 

 It has been suggested that biological regulation of Sr ions has more influence on shell 

elemental concentration than salinity or kinetic effects of temperature (Gillikin et al. 2005, 

Strasser et al. 2008b). However, we observed significantly higher levels of Sr at low salinity 

and low temperatures in experimental larval oysters and field-collected settlers, supporting 

the utility of Sr as a marker of abiotic conditions experienced by an individual in tagging 

studies. If Sr incorporation into oyster shell is biologically regulated (as suggested by 

Strasser et al. 2008b), it follows that factors affecting metabolism (e.g., temperature) will 

likely impact Sr signatures. For example, cold water can lead to proportionally heavier 

calcium carbonate structures (Worthington et al. 1995) as well as altered precipitation rates 

and elemental incorporation (Bath Martin & Thorrold 2005). For oysters in our study, lower 

temperatures may have slowed larval growth, resulting in increased proportional 

accumulation of Sr within the settler shells (sensu Bath Martin & Wuenschel 2006) and 

thereby allowing the possibility of duel biotic and abiotic regulation of Sr signatures.  

 Positive correlations between temperature and Ba, and no correlation between salinity 

and Ba, have been seen in Olympic oysters along the Pacific coast of the United States 

(Carson 2010). Our laboratory experiments exhibited no significant correlations between 
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ambient Ba concentration and temperature and/or salinity. In the field however, higher levels 

of Ba were detected at lower temperatures, a trend also found in clams (Strasser et al. 2008b) 

and neogastropod shells (Zacherl et al. 2003). There was an anomalous spike in Ba at higher 

temperatures (>26°C) within the HT site, however this site also experienced the greatest 

variance in Ba concentrations (Fig. 1.3b). While the specific mechanisms remain unclear, we 

believe Ba signature can be used dependably to effectively discriminate between temporal 

environments in geochemical tagging studies.   

 Previous literature on the geochemistry of bivalve shells has been unable to define a 

specific relationship between Mn concentrations and temperature and salinity (Siegele et al. 

2001, Strasser et al. 2008b). Similarly, Mn elemental ratios in our laboratory experiment did 

not show temperature or salinity effects, however Mn elemental ratios did scale with 

increasing spike level. Mn can enter the marine environment via terrestrial runoff, particle re-

suspension, and as a product of redox reactions occurring in low-oxygen environments 

(Limburg et al. 2015). Therefore, we can expect that riverine inputs and localized 

phytoplankton blooms created hypoxic/anoxic zones that resulted in the strong 

discriminatory ability of Mn among our study regions. This also explains why higher 

concentrations of Mn were found within warmer, less oxygen-rich waters (e.g., OR).  

 While Strasser et al. (2008b) found results similar to ours with respect to Pb 

concentration in larval clams-no effects of temperature or salinity-they also assert that Pb 

signatures are more strongly influenced by seawater Pb concentration than temperature or 

salinity (as in Pitts & Wallace 1994). However, we did not find a relationship between 

seawater Pb concentration and shell signature in the laboratory and settler shell patterns of Pb 

were similarly ambiguous. As a result, Pb was not an effective discriminator between 



 

24 

collection sites, or quadrants, and the addition of Pb to our final DFA model did not 

significantly enhance prediction ability. Pb enters the marine environment via anthropogenic 

pollutants, but as there are no explicit point sources for Pb within the BBCPS system, it was 

improbable Pb would have as much discriminatory power as other trace metals. Furthermore, 

Pb in the water column is often adsorbed to sinking particles and scavenged very quickly by 

sediments; therefore, it is unlikely that much of it is bioavailable (Bruland and Lohan 2003).  

 Our initial larval cleaning methodology included rinsing larvae with a mild acid 

solution, however, significant degradation of shell material was observed and remaining 

larvae were rinsed only with ultrapure H2O. While shells were examined visually for signs of 

remaining tissue, it is possible that residual organic matter or surface contaminants 

influenced observed elemental patterns. As individual tank environments were monitored and 

held constant (with the exception of treatment factors), it is unlikely that specific tanks, larval 

homes, or larvae would have higher contamination risks than others. Nevertheless, 

differences in cleaning methodology may limit some comparisons of shell chemistry of 

mesocosm larvae with the larval shell of field-collected spat, which were cleaned with nitric 

acid. To avoid possible contamination and/or standardization issues, future larval mesocosm 

studies might consider developing and employing a methodology that utilizes mild acid-

washing to clean larval shells.  

Application of elemental tagging to assess oyster larval population connectivity 

 Among the established Pamlico Sound quadrants, elemental tags showed high 

discriminatory ability and accurately assigned juvenile oysters to their region of collection 

with a resolution of ~35 km. Comparatively, oysters failed to provide the same 

discriminatory ability as other bivalves studied in an overlapping area of NC, i.e., ~12 km 
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resolution found by Cathey et al. (2012) for the hard clam, Mercenaria mercenaria, but did 

deliver close to the 20-30 km resolution found for mussel species Mytilus 

californianus and Mytilus galloprovincialis and the 25-75 km resolution found for the 

Olympia oyster Ostrea lurida in San Diego, CA, USA (Becker et al. 2007, Carson 2010). 

Several factors may be responsible for this dissimilarity in scales between hard clams and 

oysters, including differing ICP MS methods (dissolving shell in acid as in Cathey et al. 2012 

is more integrative and incorporates longer time periods whereas laser ablation in the present 

study targets specific points in time), potential variations in uptake at the organismal level, 

and sample site selection and variability. Predicted dispersal distances for C. virginica larvae 

range from 0.1 km to up to 110km (North et al. 2008, Puckett et al. 2014), so our results 

indicate that elemental tagging can be valuable for refining our understanding of estuarine-

scale larval connectivity for these species in the PS as well as in similar estuarine 

environments (e.g., Chesapeake Bay). 

 To create our Pamlico Sound quadrants (NW, NE, SE, SW), the area was divided into 

distinct regions with varying exposure to salt/fresh water influxes and temperature gradients 

which, based on our larval experiments, could directly affect individual elemental signatures. 

For example, SQ and OR sites within the “SW” quadrant both receive low salinity inflows 

from the Tar and Neuse Rivers, which likely elevated levels of Sr in settler shells collected 

from those sites. Laboratory results indicated elemental signatures of Mn were more 

dependent on seawater concentration than temperature or salinity. As terrestrial runoff, 

particle re-suspension, and redox cycling are major inputs of Mn in estuarine environments 

(Morris et al. 1982), many river-adjacent sites may have uniformly high Mn inputs that 

degrade signature uniqueness and discriminatory ability. As Sr and Mn offered consistently 
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high discriminatory ability, similar levels among sites within regional groupings provided 

greater uniqueness to the overall signature, however, at the scale of individual sites, site 

proximity and environmental similarity resulted in ambiguous elemental signatures.  

 Proximity to freshwater sources may also explain the low level of prediction accuracy 

within and among the BBCS and Pamlico Sound sites. When analyzed individually, the 

BBCS sites had very low prediction accuracy, driven by a large overlap in predicted site 

matching between the Newport and North Rivers. As the rivers are adjacent (~6 km apart) 

and experience comparable surrounding land usage, similar geochemical environments and 

signatures are to be expected. While including the Pamlico Sound sites (as quadrants) and the 

singular SS site into the geomorphological DFA (Fig. 1.5d) significantly improved 

classification accuracy, high between-site variability was likely an additional result of the 

connection between Pamlico Sound and the Newport and North Rivers.   

 In general, comparisons made between signatures in larval and settler shells should be 

interpreted with caution, as the composition of aragonitic larval shells and calcitic settler 

shells may favor the uptake of specific elements differently (Finch & Allison 2007, Strasser 

et al. 2008a,b). For instance, we found higher Ba and lower Sr concentrations in a majority of 

larval shells when compared to their corresponding settler shells (Fig. 1.3 b). Larval shell 

patterns also indicate a potential departure from traditional models of connectivity within this 

system. Recent work in the Pamlico Sound suggests that inter-reef connectivity is very low 

(~2%) and that local retention sustains the sub-populations (Pucket et al. 2014). However, the 

presence of north-south and east-west gradients in larval shell Sr and Ba, respectively (Fig. 

1.5), may indicate multiple larval sources among our study sites. Furthermore, high 
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variability within sites (e.g., OK) may indicate multiple natal sources exist even within a 

single area or site where spat have settled.  

 Given the differences we recorded in larval and settler shell from individual spat, our 

findings support previous work demonstrating the importance of a larval shell atlas for 

exploring larval connectivity, such as that utilized by Becker et al. (2007). This is necessary 

to expand our understanding of larval connectivity and identify potential dispersal corridors 

within the BBCPS system. Larval outplant experiments would also allow for exposure to 

other environmental factors not examined in our laboratory experiments, such as ultraviolet 

radiation, localized primary production, and oxygen concentration, which may affect element 

uptake (e.g., Eldson & Gillanders 2005). Finally, we recommend the coupling of 

geochemical tagging data (e.g., based on larval drifter studies) with expanded biological 

(e.g., surveys of adult oyster density and distribution), and physical (e.g., current and wind 

patterns) datasets to produce rigorous biophysical models, which can be used to predict 

dispersal and inform managers. 
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Figure 1.1. Map of spat settlement collection sites within Pamlico Sound, NC (triangles) and 
Bogue-Back-Core Sound (circles) study system. 
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Figure 1.2. Average X:Ca elemental ratios, determined by LA ICP-MS, for larvae exposed to high and low temperature and 
salinity and ambient [0] , mid [+], and elevated [++] concentrations of: a) Sr, b) Ba, c) Mn, and d) Pb. 
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Figure 1.3. Elemental ratios (±SE), X:Ca, of settler and larval components of collected spat shell, by site, for a) Sr and b) Ba. Sites 
are arranged moving east to west within the northern and southern Pamlico Sound and grouped by geomorphological features in 
the Bogue-Back-Core Sound 
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Figure 1.4. Contour plots showing the distribution of elemental ratios for a) Mn, b) Sr, c) Ba, 
and d) Pb over observed temperature and salinity gradients for all collected individuals 
throughout the Bogue-Back-Core-Pamlico Sound system. 
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Figure 1.5. Classification success determined by linear discriminant function analysis for a) 
individual sites within Pamlico Sound, b) regions within Pamlico Sound, c) geographic 
regions among southern sites (SS), d) and all groupings of sites where spat were collected. 
The colors represent the predicted collection sites and cumulative percentage correctly 
identified is displayed on the y axis.  
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Figure 1.6. Canonical score plots of the linear discriminant function analysis for C. virginica 
settler shells grouped into Pamlico Sound quadrants and adjacent southern sites (SS).  
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Table 1.1. Mean temperature (± standard error) and salinity (± standard error) measurements 
for spat collection sites over the collection periods in summer 2012.  

Site Temperature (°C) Salinity (ppt) 

BaS 26.7 ± 2.00 36.9 ± 1.27 

BoS 24.4 ± 1.33 35.0 ± 0.98 

CI 26.7 ± 1.67 24.5 ± 2.50 

EH 26.9 ± 0.44 20.1 ± 0.47 

HT 20.6 ± 3.34 31.0 ± 1.00 

JB 27.8 ± 0.62 35.5 ± 0.51 

NeL 25.6 ± 2.32 35.0 ± 1.04 

NeM 25.6 ± 0.87 26.0 ± 1.65 

NeU 24.5 ± 1.03 15.3 ± 2.75 

NoL 25.6 ± 1.76 36.0 ± 1.00 

NoM 27.4 ± 0.73 30.0 ± 1.32 

NoU 28.9 ± 0.95 33.7 ± 1.21 

OK 24.5 ± 0.41 25.0 ± 1.52 

OR 30.1 ± 0.36 20.7 ± 0.95 

RD 17.2 ± 1.52 26.0 ± 1.24 

SoP 27.6 ± 1.04 25.1 ± 1.92 

StP 24.8 ± 1.85 24.8 ± 2.52 

SQ 27.4 ± 1.21 18.6 ± 0.78 

TC 27.8 ± 0.62 36.0 ± 0.25 

WC 26.1 ± 0.56 15.7 ± 1.45 

WB 22.2 ± 1.11 25.0 ± 1.00 

WM 29.4 ± 0.72 35.0 ± 0.94 

WH 29.4 ± 0.05 35.0 ± 1.15 
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Table 1.2. Analysis of variance (ANOVA) table summarizing the effects of temperature (T), 
salinity (S), and Mn/Pb spike ([ ]) on C. virginica larvae in laboratory experiments (Note: 
N=number of larval homes).  

Element (X:Ca) Factor N df F p 

Sr T 36 1 2.18 0.142 

 S 36 1 2.60 0.108 

 T × S 18 3 4.23 0.041* 

Ba T 36 1 1.01 0.316 

 S 26 1 1.00 0.317 

 T × S 18 3 1.05 0.306 

Mn T 36 1 0.417 0.519 

 S 36 1 0.710 0.401 

 [ ] 24 2 56.9 <0.001* 

 T × S 18 3 1.46 0.228 

 T × [ ] 12 4 2.19 0.115 

 S × [ ] 12 4 2.62 0.0753 

 T × S × [ ] 6 11 2.15 0.119 

Pb T 36 1 0.731 0.393 

 S 36 1 0.096 0.757 

 [ ] 24 2 1.02 0.361 

 T × S 18 3 0.676 0.412 

 T × [ ] 12 4 0.177 0.838 

 S × [ ] 12 4 0.588 0.556 

 T × S × [ ] 6 11 3.37 0.0374* 
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CHAPTER 2: QUANTIFYING ESTUARINE-SCALE INVERTEBRATE LARVAL 
CONNECTIVITY: METHODOLOGICAL AND ECOLOGICAL INSIGHTS 

Introduction 

The ability to discern larval dispersal patterns is fundamental to the understanding 

and subsequent management of ecologically and commercially valuable marine species 

(Young 1990; Gillanders et al. 2003). For example, idealized marine reserve design depends 

on sufficient larval import (via immigration and self-recruitment; Jones et al. 1999; Puckett 

and Eggleston 2016) and export (e.g., spillover; Gerber et al. 2003; Gaines et al. 2010). 

Additionally, knowledge of system-specific larval import and export allows managers to 

allocate resources more effectively: in areas where local retention is higher than overall 

connectivity, efforts should focus on improving subpopulation demographics to bolster 

recruitment. Conversely, for sub-populations with relatively high connectivity and low local 

retention, local demographics become less coupled with recruitment and therefore less 

important (Almany et al. 2009; Figueira 2009; Puckett and Eggleston 2016). A greater 

understanding of larval connectivity can also aid in the understanding of year-class 

fluctuations in commercially important species (Hjort 1914). Knowledge of dispersal 

patterns, as well as the biological and physical parameters which control connectivity, will 

also become essential to predicting the effects climate change will have on the resiliency and 

persistence of future populations (Cowen and Sponaugle 2009).  

 Studies utilizing natural or artificial tagging methods have greatly enhanced our 

quantitative understanding of larval connectivity among sub-populations which, in turn, can 



 

41 

inform metapopulation dynamics (Thorrold et al. 2002; Levin 2006; Puckett et al. 2014). 

With the aid of improved technology (i.e., rapid and inexpensive genetic analyses and high-

resolution mass spectrometry), the use of natural tag methods has become more accessible 

and diverse (Durrant and Ward 2005). Recently, tagging studies have reevaluated the extent 

of geographic connectivity of marine fishes and invertebrates (Lopez-Duarte et al. 2012), and 

by demonstrating higher levels of self-recruitment than previously assumed, have helped 

change the paradigm of marine larval dispersal from passive long-distance to behaviorally-

mediated shorter-distance dispersal (Almany et al. 2007).  

Geochemical signatures stored within calcified structures, such as fish otoliths, 

gastropod statocysts, and bivalve shells, are particularly useful for examining marine larval 

connectivity as many marine organisms begin recording geochemical signatures from egg 

fertilization (Thorrold et al. 2002; Becker et al. 2007; Kroll et al. 2016). Furthermore, 

geochemical tags are valuable to connectivity studies because they are capable of discerning 

between environmentally variable locations (e.g, within or among estuaries) with potentially 

high spatial resolution (~12 kms; Cathey et al. 2012). A key component of these studies 

involves the generation of reference signatures (i.e., atlases) from known location to inform 

multivariate algorithms that assign settling larvae of unknown natal origin to their natal 

source. For larval connectivity studies, generating reference signatures is traditional 

accomplished through the outplanting of larvae to stationary moorings (Becker et al. 2007). 

However, as larval dispersal is believed to be highly dependent on current patterns (Haase et 

al. 2012), there is a need to understand how utilizing more mobile outplanting methods, such 

as floating surface drifters, may affect signature generation and predicted connectivity. For 

example, larvae attached to stationary moorings likely contain a concentrated signature of 
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natal sites, whereas drifter larvae contain a more integrated signature of the environments 

larvae are exposed to as they disperse. 

 Estuarine systems provide an ideal setting in which to develop geochemical tagging 

methods and explore connectivity as they are characterized by high environmental variation 

through time and space, encompass varying geomorphological components (i.e., oyster reefs, 

marshes, barrier islands), and function as important nursery, juvenile, and adult habitats for 

several marine organisms (Beck et al. 2001). Many vertebrate and invertebrate species form 

distinct subpopulations, with varying amount of larval exchange and connectivity, within 

estuarine systems (Kämpf et al. 2010; Vasconcelos et al. 2011; Cathey et al. 2012). While 

finfish connectivity has been examined over numerous spatial scales within estuaries of the 

US east and west coasts, as well as abroad (e.g., Able 2005; Fodrie and Levin 2008; Vinagre 

et al. 2011), we know relatively little about the scale of estuarine larval connectivity for 

invertebrates, and most of what is known is based on biophysical models (e.g., Reyns et al. 

2007; North et al. 2008; Narvaez et al. 2012; Puckett et al. 2014). The few studies that have 

begun to examine invertebrate larval connectivity in estuarine systems have determined that 

geochemical tagging methods are a viable tool for connectivity studies (Cathey et al. 2012; 

Kroll et al. 2016).  

 The goal of this study was to gain insight into the larval connectivity and dispersal of 

a commercially and ecologically important invertebrate, the Eastern oyster (Crassostrea 

virginica), within a large, wind-driven estuarine system. A requisite for achieving this goal 

was to develop an atlas of geochemical signatures (i.e., elemental ratio, X:Ca) from putative 

natal sites associated with an existing oyster reserve system within Pamlico Sound (PS), 

North Carolina (NC), USA. The secondary goal of this project was to evaluate the utility of 
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two different methodological approaches for developing the atlas by outplanting recently 

spawned oyster larvae to stationary moorings and surface drifters. We compared outplanting 

methods in their ability to represent distinct natal signatures or potential larval dispersal 

corridors. Geochemical signatures from outplanted larvae were used to predict the region of 

origin (NW, NE, SE, SW), within PS, of recently settled oysters (hereafter “spat”) collected 

from several sites across the Sound. Classification successes from discriminant function 

analysis predicted patterns of dispersal, and diversity indices were used to evaluate 

connectivity and outplanting techniques.  

Methods 

Study system and previous application of geochemical signatures 

Pamlico Sound, which extends 129 km north-south and 24-48 km east-west, is the 

largest lagoonal estuary along the eastern North American coastline and is protected from the 

Atlantic Ocean by a string of barrier islands. Circulation patterns in PS are primarily wind-

driven due to its broad and relatively shallow basin (mean depth ~4.5 m). Wind forcing 

varies greatly over short intervals, however, there are some regular seasonal patterns of 

southwesterly winds in the spring/early summer and northeasterly winds in late summer/fall 

(Eggleston et al. 2010). Pamlico Sound contains several important and highly productive 

nursery and adult habitats (e.g., oyster reef, seagrass) for many estuarine-dependent species. 

Historically, PS was one of the largest sources of commercially harvestable oysters along the 

U.S. east coast, however overfishing, poor water quality, disease, and habitat degradation has 

reduced their abundance by nearly two orders of magnitude within the last century (Lenihan 

et al. 1999). 
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 Previous connectivity studies within PS have been used to not only investigate 

dispersal patterns but also highlight the relationship between prevailing wind magnitude and 

direction and current magnitude and direction. Over a two-year timespan, Reyns et al. (2007) 

found that 70-96% of the variance in non-tidal current velocities occurred within the 

direction of primary wind flow, whereas tidal velocities increased with decreasing distance 

toward inlets. Floating surface drifters have also been used to empirically validate wind-

based dispersal models with high levels of success within the PS, indicating that net transport 

is primarily wind-driven (Haase et al. 2012). More recently, biophysical models have shown 

that location and date of spawning in combination with frequency of wind reversals and 

magnitude of wind direction significantly influenced larval dispersal patterns within PS 

(Puckett et al. 2014). 

 To increase larval supply and connectivity within PS, the North Carolina Division of 

Marine Fisheries has established and maintained several no-take subtidal oyster spawning 

sanctuaries (reserves) over the last 20 years. Within these reserves, ~2-m-tall, cone-shaped 

mounds were constructed from limestone riprap and oyster shell. In 2006-2008, oyster 

densities within and among reserve reefs fluctuated over both seasonal and annual times 

scales, indicating various levels of recruitment success and survival (Puckett and Eggleston 

2012). Hydrodynamic models have been used to predict dispersal from these reserves, 

suggesting that mean dispersal distances vary among reserves from 5-40 km (max distance c. 

100km), which can hinder both inter-reserve connectivity and local retention, as reserve areas 

range from 0.03-0.2 km2 and inter-reserve distances ranges from 10-120 km (Haase et al. 

2012; Puckett et al. 2014). Furthermore, natal location was the primary driving force for 
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nearly all aspects of dispersal, indicating the need to develop an atlas that incorporates site 

and region specific geochemical signatures.  

A recent study conducted by the authors found that there was substantial 

spatiotemporal variation throughout PS to successfully apply geochemical tagging methods 

to C. virginica shells and that geochemical signatures in shells could be utilized to 

discriminate between collection regions within PS (~ 35 x 15 km; Kroll et al. 2016). For this 

study, we used larval outplanting methods to develop an atlas of geochemical signatures at 

the following sites in PS (Fig. 2.1): Cedar Island (CI), Crab Hole (CH), Gibbs Shoal (GS), 

Middle Bay (MB), Ocracoke (OK), West Bay (WBa), and West Bluff (WBl). Sites were 

chosen because of their proximity to oyster reefs of high density, or broodstock reserves. To 

capture a wide range of dispersal pathways, we also sampled the following sites within the 

Sound for newly settled spat: Englehard (EH), Hatteras (HT), North Central (NC), Oriental 

(OR), Point Peter (PP), Rodanthe (RD), South Central (SC), and Wanchese (WC) (Fig. 2.1a). 

Following the regions used in Kroll et al. (2016), we bisected PS twice to create four, ~ 35 x 

15 km geographic regions (quadrants): Northwest PS (NW): CH, GS, EH, WC, PP; 

Northeast PS (NE): HT, NC, RD; Southeast PS (SE): CI, OK, WB; and Southwest PS (SW): 

MB, OR, WBl.  

Study species 

The Eastern oyster is an important model organism for the study of estuarine-scale 

larval connectivity because of its early life history characteristics and ecological role as a 

reef-building foundation species. Following successful fertilization, oyster larvae progress 

through an approximately 2-to-3 week planktonic veliger phase (Medcoff 1939), in which 

they begin to develop an aragonite-rich prodissoconch shell that is retained after an 
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individual settles on suitable benthic habitat (most typically, gregariously on other adult 

oyster shells; Stenzel 1964). Previous modeling studies have reported mean oyster larval 

dispersal range of ~5-40 km (Puckett et al. 2014). Recently settled spat are sessile for the 

remainder of their juvenile and adult life.  

Larval outplanting 

To (i) examine natal origins of settling C. virginica, (ii) identify larval connectivity, 

and (iii) compare larval outplanting methodology, we deployed larval “homes,” attached to 

stationary moorings and surface drifters during June 2013, June 2014, and August 2014. 

Outplanting times corresponded to known reproductive peaks of C. virginica within PS 

(Eggleston et al. 2011; Mroch et al. 2012). Larval homes were constructed from hollow PVC 

tubing capped on each side with 30 μm mesh, nitex cloth to allow for the flow of water, 

nutrients, and small phytoplankton into the home, yet prevent larvae from escaping. Three-

day old C. virginica larvae were obtained from the University of Maryland’s Horn Point 

Laboratory in Cambridge, Maryland, USA, acclimatized to local salinity, and then divided 

into homes, with approximately 1.6 x 104 larvae per home (21.2 larvae cm-3). For further 

detail on larval home construction and the acclimatization process, see Kroll et al. (2016).  

Stationary moorings were constructed with a cement base and marine rope attached to 

a surface float following Becker et al. (2007). Four larval homes were attached to PVC 

piping that rested ~ 1 m below the water’s surface. Sets of four larval homes were also 

attached ~ 1 m below the sea surface to Microstar Lagrangian Surface Drifters (hereafter 

“drifters;” Pacific Gyre; Oceanside, CA). Drifters were also equipped with uBlox GPS 

receivers and Globalstar Simplex telemetry software for remote tracking. Both drifters and 

moorings were equipped with a HOBO Water Temp Pro v2 data logger (Onsett; Bourne, 
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MA). Drifters and moorings were deployed at reserve sites for approximately one week (7 d) 

to incorporate the chemical signature of the (i) associated site (moorings) and (ii) dispersal 

pathway (drifters) within the prodissoconch shell. For certain replicates, drifter trials were 

terminated early in cases of inclement weather, drifter removal by fisherman, or if a drifter 

ran aground. 

In June 2013, stationary moorings were deployed at CH, CI, GS, MB, WB, and WBl. 

Drifters were deployed from CH, CI, GS, MB, WB. An additional drifter was deployed at 

WBl, however, the GPS signal was lost and the drifter was never recovered. Drifters and 

moorings were deployed from CH, CI, GS, OK, MB, WB, and WBl in June 2014, with all 

drifters successfully retrieved. In August 2014, drifters and moorings were deployed from 

CH, CI, GS, OK, MB, and WB. Additionally, in August 2014, a mooring, but no drifter, was 

deployed at WBl. All drifters, except MB, were successfully retrieved during this final trial. 

To focus resources on the regions with the highest concentrations and densities of oyster 

reefs (Puckett and Eggleston 2012; Peters 2014), no drifters or moorings were deployed 

within the NE region of PS during this study. During the drifter sampling periods, wind 

speed and direction was collected from PS monitoring station HCGN7 (35.2101 N, 75.6997 

W) maintained by the National Centers for Environmental Information (ncdc.noaa.gov). 

Upon recovery, larval homes were removed from drifters/moorings, resubmerged in 

water from each collection site, and transported back to UNC’s Institute of Marine Sciences 

(IMS) in Morehead City, NC. Larvae from each home were then filtered using nitex cloth 

and survival was measured, following Kroll et al. (2016), to compare differences in 

outplanting methods. Larvae were then frozen until sample preparation for geochemical 

analyses following Becker et al. (2007).  
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Spat settlement sampling 

Spat settlement collectors were constructed by affixing 2-3 wire strings, each 

containing 12 adult oyster shells, to the aforementioned stationary moorings at reserve sites, 

as well as private and public docks or stand-alone wooden pilings at EH, HT, NC, OR, PP, 

RD, and WC (consistent across all three trials). Although no outplanting was done in the NE 

region, we did collect spat from that region (e.g., HT, NC, and RD sites) because reefs do 

persist there and may function as larval “sinks” (Puckett et al. 2016). To ensure we collected 

spat that were larvae during our drifter/mooring deployment periods, settlement collectors 

were deployed during each larval home recovery (June 2013, June 2014, August 2014) and 

retrieved approximately 2 weeks later. Recovered shell-string oyster shells with recently 

settled spat were frozen until individual spat could be counted and removed from adult oyster 

shells with a dissecting microscope and tungsten probe, respectively.  

Sample preparation and LA ICP-MS 

Frozen larvae from homes and spat from field collections were thawed, cleaned (see 

Kroll et al. 2016 for respective cleaning methods), and mounted on a glass microscope slide 

in haphazard order. Larvae were mounted as a concentrated mass on a labeled glass 

microscope slide covered in double-sided tape (i.e., each home was represented by 1 mound 

of shells), whereas each spat was mounted individually. The slides were then stored in a 

laminar flow hood until analysis. 

 Both larval and spat samples were analyzed using a Thermo-Fisher Element2 

inductively coupled plasma mass spectrometer with a Teledyne ATLex 300si-x 193nm 

Excimer laser ablation unit (LA ICP-MS). To correct for mass bias and instrument drift, 

National Institute of Technology Standards-certified standards (Reference Material 612, 614, 
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and 616) were run at the beginning and end of every 4 slide sequence (~140 burns). 

Concentrations of the following elements were quantified from larval and spat samples: 

26Mg, 48Ca, 55Mn, 59Co, 63Cu, 88Sr, 112Cd, 118Sn, 138Ba, and 208Pb. These elements were all 

analyzed in low-resolution mode, and were chosen because of their previous use in uptake 

and tagging studies of bivalve shells (Strasser et al. 2008a,b; Fodrie et al. 2011; Kroll et al. 

2016).  

 Mounted larvae from drifter and mooring homes were ablated three times in bulk, 

using side-by-side line transects of 150 μm with 40 μm spot size and 80% laser intensity. 

Line transects covered ~2-3 shell lengths, following Becker et al. (2007), and were used 

instead of burning several individual larvae to reduce the likelihood of pseudoreplication. To 

determine elemental signatures of the spat collection sites, the larval shell (prodissoconch) 

section of the shell was ablated twice with side-by-side line transects of 110 μm with 40 μm 

spot size and 80% intensity. Larval shell transects extended from the umbo toward the 

outward edge of the larval shell following Strasser et al. (2008). Isotope intensities for 

replicate burns were averaged and then converted into elemental ratios (X:Ca) for each home 

or spat/larval shell following Becker et al. (2005).   

Data analysis 

Linear Discriminate Function Analysis (DFA) was performed on Box-Cox 

transformed larval ratios to determine whether distinct spatial signatures could be identified 

in larval shell geochemistry between sites, as well as between mooring and drifter 

approaches. Jack-knifed classification matrices, without sample replacement, were compared 

to expected classification matrices based on random chance to assess classification success. 

DFAs were conducted stepwise, with the least significant elemental ratio dropped, as 
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determined by the F-to-remove statistic, until all F-to-remove values >2. As an additional test 

of outplanted larval predictive ability, signatures from mooring-attached larvae were used as 

a reference to predict region of origin and termination for each drifter and then compared to 

actual region of origin and termination. Wind speed and direction was used to create wind 

rose diagrams and qualitatively compared to observed drifter movement by overlaying a 

vector field representing magnitude and direction of individual drifter movement (Fig. 2.1).  

Geochemical signatures of oyster larvae attached to drifters or attached to stationary 

moorings were each used to predict larval origin (at both the individual site and regional 

scale) for spat that settled on shell-string collectors. Separate connectivity matrices were 

generated for each sampling season, where matrix elements represented the proportion of 

larvae spawned from each row-referenced site that settled in a column-referenced site. Self-

recruitment was determined by calculating the proportion of sampled spat that had settled 

within their natal region, while connectivity was determined by the proportion of larvae 

settling within a region that was distinct from their natal region.  Predicted connectivity using 

outplanting attached to surface drifters was quantitatively compared to predictions using 

outplantings attached stationary moorings with Chi-squared goodness of fit tests. Lastly, 

Shannon-Wiener diversity indices (H’) and evenness were calculated for each region to 

examine the diversity of natal sources among settlers within individual sites and regions. 

Results 

Mooring and drifter deployments 

In June 2013, all drifters moved northward with the prevailing southerly directed 

winds. Drifters traveled a net distance of 2.6-21.6 km from their release location, with a 

mean drift distance of 14.2 ± 1.5 km during a 7 day deployment period (Fig. 2.1b). 
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Southwest winds, with an average speed of 18.3 ± 0.2 km h-1 and gusts of up to 56.4 km h-1, 

prevailed during this time although strong northeast winds were also present (Fig. 2.1b). 

Mean daily survival for larvae attached to drifters was estimated at 28.4 ± 7.0% and 34.1± 

4.02% for mooring larvae.  

During June 2014, drifters in the northern half of PS (CH, GS, and OK) moved 

southward with the prevailing northeast winds, whereas drifters in the southern half of PS 

(CI, MB and WBl) moved northward with prevailing winds out of the southwest (Fig. 2.1c). 

The WB drifter did not adhere to this pattern, moving southward and deeper into the 

relatively enclosed West Bay area (Fig. 2.1c). Drifters traveled a net distance of 13.1± 2.2 km 

with a range from 4-24.1 km. North winds of 19.4± 0.5 km h-1, with gusts of up to 46.7 km h-

1, prevailed during this sampling period (Fig. 2.1c). Mean daily larval survival was estimated 

at 24.4 ± 8.2% and 40± 6.2% for drifter and mooring larvae, respectively.  

In August 2014, all drifters moved southward from their deployment locations (Fig. 

2.1d), despite a prevalent southwest wind with an average speed of 14.0 ± 0.1 km h-1 and 

gusts of up to 37.1 km h-1. Drifter traveled net distances ranging from 5.21-47.8 km with an 

average of 16.5 ± 6.6 km. Mean daily survival for larvae attached to drifters was 32.3 ± 

10.3% and 44.1± 7.0% for mooring larvae.  

Self-recruitment and connectivity 

Geochemical signatures within settler shells were effective in discriminating 

geographic regions in PS (i.e., NE, NW, SW, SE) based on atlases developed for both 

drifting and stationary larvae. Our final DFA models included the following trace elements 

(as ratios to Ca): Mn, Mg, Cd, and Sn for larvae attached to drifters and Mn, Sr, Ba, and Sn 

for larvae attached to moorings (Fig. 2.2a-c). Geochemical signatures of regions varied 
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between years (June 2013 versus June 2014) and seasons (June 2014 versus August 2014). 

For example, both drifter and mooring larvae presented a trend of increasing average Mn 

concentration from NW to SE to SW in June 2013 and June 2014, though only significant in 

June 2013 drifters (p=0.042, F=4.53, df=2 from SE to SW in June 2013; Fig. 2.3a). However, 

in August 2014, Mn concentrations decreased from NW to SE to SW for both drifter and 

mooring larvae (p=0.031, F=4.96 df=2 for drifters and p=0.012, F=7.12, df=2 for moorings 

from NW to SE; Fig. 2.3a,b). Classification success for DFA models based on geochemical 

signatures from drifter larvae was 93%, 50%, and 88% (compared with the null expected of 

62%, 33%, and 50%) for June 2013, June 2014, and August 2014, respectively. Mooring 

larval models had a classification success was 92%, 77%, and 58% (over the null expected of 

56%, 64%, and 44%) for June 2013, June 2014, and August 2014, respectively. Larval 

signatures from stationary moorings did not effectively predict drifter origin or termination, 

with predicted origin accuracies of 43.9%, 30%, 46.2% and predicted termination accuracies 

of 57.1%, 20%, and 30.8% for June 2013, June 2014, and August 2014, respectively.   

When comparing mooring and drifter tracking methods, we noted regional 

consistencies between larval sources and degree of self-recruitment. For example, in June 

2013 and June 2014, the southern half of PS supplied the majority of larvae to the rest of PS. 

Accordingly, self-recruitment was highest in the southern regions because very few 

immigrants, via connections from the north, settled in southern regions (Fig. 2.4a,b,d,e). In 

August 2014, signatures of both drifting and stationary larvae suggested that the NW region 

of PS, may at times, be a more significant natal source than previously inferred from 

biophysical mod simulations (Puckett and Eggleston 2016) (Fig. 2.4c,f). Despite these broad 



 

53 

similarities, there were also notable differences in the results of mooring and drifter 

approaches with respect to self-recruitment and connectivity (Table 2.1).  

In June 2014, mooring signatures predicted connectivity in line with that of June 2014 

drifters: there were high levels of connectivity between the SE and other sites, with the SE as 

the primary source for NE larvae (82%; Fig. 2.4e). Larval signatures from moorings during 

June 2014 also predicted some level of self-recruitment within the SW PS (47%) and a SW 

larval source for NW (33%) and SE (57%) sites in PS. However, June 2013 mooring 

signatures predicted minimal self-recruitment in the SE (3% of spat; Fig. 2.4d) and high 

levels of connectivity between the SW and other sites in the SE, NE, and NW (i.e., 92%, 

90%, and 100% of spat showed SW natal signatures, respectively).  

In August 2014, drifters showed a shift in dominant larval flow from south-north to 

north-south, with high connectivity between the NW and all other sites. For example, NW 

origins were predicted for 64%, 99%, 99%, and 100% of spat within SW, SE, NW, and NE 

regions, respectively (Fig. 2.4c). We also noted elevated self-recruitment within the SW 

region (32% of spat). Although models based on mooring larvae predicted an increase in 

supply from the NW during this period, the SE was the primary source for all regions, with 

80%, 86%, 71%, and 88% of SW, SE, NE, and NW spat, respectively, being linked to SE 

origins (Fig. 2.4f). As opposed to previous mooring sampling periods, larval export from the 

SW was minimal (0% of spat in NE and NW and 3% of spat in SE).  

Shannon diversity indices in June 2013 depicted no diversity in larval source for all 

regions based on drifters (as there was only one, uniform source) and no diversity in larval 

sources for the NW region based on mooring sampling (Table 2.2). However, 2013 mooring 

methods did predict higher larval source diversity in other regions, with the highest source 
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diversity in the SW (H=0.40, 0.33, and 0.86 for NE, SE, and SW, respectively). In June 

2014, we saw much higher diversity in larval sources based on both tracking methods than in 

June 2013 (Table 2.2). Stationary mooring models, again, predicted higher connectivity than 

drifter models for all regions, except the NE (H=0.76 for drifter versus 0.64 for mooring 

models). In August 2014, drifter signatures predicted a single larval source for the NW 

region, with relatively low larval source diversity for NE and SE regions (H=0.09 and 0.07 

for NE and SE, respectively) and high diversity within the SW (H=0.76; Table 2.2). 

Conversely, August 2014 mooring signatures predicted high larval source diversity within 

the NE (H=0.60), low diversity in the NW (H=0.38), and moderate source diversity in the 

southern region (H=0.47 and 0.54 for SE and SW, respectively). 

Discussion 

By combining oyster larval outplanting with geochemical tagging methods, reflective 

of spatial gradients in environmental conditions, we found that: (1) oyster larval dispersal 

pathways in PS generally follow the dominant wind flow present during the larval period; 

and (2) connectivity in PS is generally dominated by single-region larval sources over 2-3 

week periods, although the identity of that larval source varies over longer timescales (i.e., 

seasonally and annually). We also evaluated a novel methodological approach to assessing 

connectivity using geochemical tags by outplanting larvae in homes attached to surface 

drifters. To the best of our knowledge, no study, to date, has outplanted larvae on floating 

drifters and consequently examined how predicted connectivity may differ between larvae 

outplanted on stationary moorings (traditional approach) and those on floating drifters. We 

found several coarse consistencies in predicted connectivity between mooring and drifters, 

such as a dominant south-north larval flow in both June 2013 and June 2014. There were also 
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significant differences between outplanting methods across all sampling periods, particularly 

in August 2014, when connectivity based on larvae outplanted on drifters predicted a north to 

south flow of larvae while moorings predicted a south to north flow. Therefore, one should 

consider the utility of both drifters and stationary moorings in geochemical tagging studies to 

discern larval connectivity over estuarine scales of 50-150 km for wind-driven systems.   

Connectivity and ecological insights 

Two important goals of larval tracking studies are to determine levels of local 

retention (self-recruitment) and identify the number of sources that drive metapopulation 

connectivity (i.e., single source vs. multiple sources). Recently, hydrodynamic and now 

biophysical models have been used to advance our understanding of dispersal ranges and the 

degree of self-recruitment within marine populations (Botsford et al. 2009; Cowen and 

Sponaugle 2009; Puckett and Eggleston 2016). While many of these models have allowed us 

to question traditional concepts of connectivity (i.e., how demographically open or closed a 

population is), few studies have been able to validate these predictions with empirical studies 

(sensu, Botsford et al. 2009; Carson et al. 2013). Furthermore, models, alone, may not be 

able to effectively capture dispersal variability at the spatiotemporal scale over which it can 

occur in the natural environment (Qian et al. 2014). Previous biophysical models constructed 

by Puckett et al. (2014) and Puckett and Eggleston (2016) for the eastern oyster within the 

reserve networks in PS have depicted a network of several larval sources (at small <1 km x 1 

km reefs scales), with patterns of (1) self-recruitment that were generally higher for reefs in 

southern PS than northern PS and (2) connectivity, while generally low between reserve 

sites, was generally directed south to north. At larger 15 km x 35 km regional scales this 

study identified similar patterns of a south to north larval flow; however, both larval 
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outplanting methods used in our study predicted predominantly single-source (single-region) 

connectivity models.  

To contextualize our results with Puckett and Eggleston’s (2016) model (hereafter, 

PE), we decreased the resolution of their connectivity matrix to the regional (NW, NE, SE, 

SW) scale. Although grand mean self-recruitment rates for both studies was comparable 

(27.8-39.9% of spat in our study versus 34.2% of spat from Puckett and Eggleston 2016), 

several differences became apparent between regions and tracking methods. Over the 5 year 

simulation from 2006-2010, the PE model predicted largest, average self-recruitment 

occurred in the NW, with 39.6 ± 18.5% of spat settling in their natal region. While average 

self-recruitment for drifter models within the NW was consistent with the PE model (34.2 ± 

20.5% of spat), mooring models predicted self-recruitment in the NW to be considerably 

lower than the PE model (7.1 ± 4.0% of spat). Moreover, when combining our three 

sampling periods, the highest rates of self-recruitment for both mooring and drifter models 

occurred within the SE, with 58.4 ± 30.1% and 39.2 ± 25.6% of spat settling in their natal 

regions, respectively. In the PE model, SE self-recruitment rates were predicted to be 34.2 ± 

28.5%. The SW had the least disparity, as PE found self-recruitment at 38.6 ± 15.3% and 

drifter and mooring models predicted an average self-recruitment of 27.1 ± 9.0% and 37.0 ± 

19.0%, respectively.  

The differences between our empirically-derived models and the PE model highlight 

that elemental tagging methods cannot only be used to validate existing models but may also 

be necessary to fully discern broader connectivity trends within complex estuarine 

environments. The PE model examined existing and potential reserve sites, and while we 

were able to examine its results at the regional level, the model itself may be influenced by 
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the reproductive capability of the individual reserve sites. Therefore, site selection directly 

impacts predicted connectivity, whereas our use of elemental signatures across a larger scale 

allows us to account for all sources within a region as sites within the same quadrant are 

subject to similar environmental variability (Kroll et al. 2016). For example, previous 

monitoring has shown reef cover and oyster density is lower in the regions with the largest 

differences in PE versus drifter/mooring model-predicted local retention (i.e., SW) (Puckett 

and Eggleston 2012; Peters 2014). The inability of purely wind-driven models to account for 

biophysical mechanisms that reduce larval mortality within the vicinity of source regions 

(Cowen et al. 2000) and larval ability to orient and navigate toward chemosensory stimuli 

released by nearby reefs (Kingsford et al. 2002) may also contribute to the increased self-

recruitment seen within some regions of  our empirical study. Additionally, the use of drifters 

and moorings to examine larval connectivity may allow us to identify oyster larval dispersal 

patterns that are not purely wind driven, while the PE model relies on wind-forcing data to 

generate current velocities, and ultimately, computer particle (larval) velocity (Puckett et al. 

2014). Furthermore, the PE model, as well as other dispersal models (e.g., Cowen and 

Sponagule 2009), depict unidirectional current flow at each time step, whereas strategically 

placed drifters can reveal nuances in current patterns throughout the system (e.g., Haase et al. 

2012). For example, in June 2014, drifters in the north moved southward while drifters in the 

south moved northward, which is consistent with hydrodynamic seiching patterns observed 

in PS when winds switch directions (Luettich et al 2002; Haase et al. 2012).   
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Tracking methods 

The life history of marine bivalves may help us to understand why geochemical 

signatures of larvae outplanted and attached to moorings versus drifters predicted varying 

patterns of connectivity. During their larval phase, bivalves grow relatively quickly (~6 µm/d 

for C. virginica; Gallager et al. 1986) by accreting shell either laterally (continually 

extending to the outermost shell) or vertically (on top of other shell; Sprung 1984; His and 

Maurer 1988). Throughout this period of growth, oyster larvae may be transported from 0.1-

110 km (North et al. 2008; Puckett et al. 2014) and can be exposed to a series of different 

environmental conditions which affect shell geochemistry (Kroll et al. 2016). When ablating 

the larval shell of spat during LA ICP-MS, the laser may have only ablated the surface, or 

newest, layers of larval shell, resulting in signatures that are more similar to those of 

settlement location (i.e., stationary moorings) than to those of larval pathways (i.e., surface 

drifters).  

Despite the differences in connectivity predicted by geochemical signatures in larval 

attached to drifters and moorings, it is difficult to conclude that one method is superior to the 

other. Both methods were used to predict seasonal variability in larval dispersal pathways 

and sources (as shown by H’; Table 2.2), had comparable modeling classification success, 

and were able to discern spatiotemporal trends of elemental concentrations within oyster 

shell (e.g., Mn; Fig.2.3). Stationary moorings (i) consistently predicted higher overall 

diversity in larval sources than drifter-based models (Table 2.2), (ii) are the current standard 

for larval connectivity studies, and (ii) can successfully discriminate between sites at 

resolutions of 20-30 km (Becker et al. 2007). However, they were only able to predict 
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connectivity patterns that were consistent with wind patterns for two of the three sampling 

periods. 

Connectivity models often utilize floating surface drifters as a proxy for larval 

trajectories and dispersal pathways (e.g., Eggleston et al. 1998; Lugo-Fernández 2001; Haase 

et al. 2012). Attaching larvae to floating drifters allowed us to not only look at putative 

dispersal pathways, but also record the geochemical signatures associated with those 

potential pathways. There are, however, several caveats inherent in the use of drifters. Wild 

oyster larvae develop depth-regulation and swimming abilities, with speeds up to 2.5 mm s-1, 

and therefore may be subjected to forces other than the surface winds that control drifter 

movement (Kennedy 1996; Metexas 2001), but model simulations in well mixed PS suggest 

that depth regulating behavior has a relatively small effect on larval dispersal patterns 

compared to location and timing of spawning (Puckett et al. 2014). We also found 

significantly higher larval mortality within drifter homes, increasing the possibility of 

elemental contamination from shell degradation and decreasing the amount of larvae 

available for analysis. Furthermore, the cost of purchasing, operating, and maintaining 

drifters are significantly greater than those associated with stationary moorings and there is a 

risk of drifters being tampered with, lost, or removed during the study period.  

Reserve design 

Connectivity and larval tracking studies have been used successfully to inform 

management decisions and create new or evaluate existing marine reserve systems (Burgess 

et al. 2014). As the scale of our study was larger than just reserve sites, we were able to 

evaluate larval flow on a system-wide scale, rather than evaluate the efficacy of individual 

reserves within the PS system. Therefore, the results of our study provide key insights into 
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the early life history of the eastern oyster within this system, as well as build upon our 

foundation of knowledge for invertebrate larval connectivity and marine reserve design. We 

found that while some dispersal pathways traversed the Sound (~130 km), the highest 

amount of larval exchange would likely occur among reefs within the same (or adjacent) 

regions (~35 km). Connectivity also varied on both a seasonal and annual timescale: 

dispersal in June 2013 and August 2014 followed a single-source model, with different 

source regions, and dispersal in June 2014 seemed to be governed by multiple-sources. 

Additionally, as different regions may experience varied wind-forcing and current flow, 

dispersal pathways within PS will not always be uniform across space and time. This 

supports previous work for oysters, as well as for other marine reef-forming organisms, that 

promotes the implementation of reserves which account for variability in dispersal pathways 

without compromising self-recruitment within PS (e.g., Almany et al. 2009; Nicol and 

Possingham 2010; Puckett and Eggleston 2016). Improved accuracy in predictions of 

population connectivity from larval dispersal models, which can better incorporate multi-

directional wind forcing, are also essential to designing and siting successful reserves 

networks. While larval connectivity is an important factor for the success of reserves, intra-

reserve demographics should be carefully considered to ensure a reserve network design that 

meets the needs of the metapopulation, the management system, and its stakeholders.  
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Table 2.1. Chi-squared (χ2) statistics, degrees of freedom (df), and associated p-values (p) for 
connectivity matrix comparisons within and among tracking methods, by sampling period.  

Tracking method Sampling periods df χ2 p 

Drifter All 11 842 <0.001 

 June 2013/June 2014 11 136 <0.001 

 June/Aug 2014 11 521 <0.001 

 

Mooring 

 

All 

 

11 

 

477 

 

<0.001 

 June 2013/June 2014 11 178 <0.001 

 June/Aug 2014 11 184 <0.001 
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Table 2.2. Shannon-Wiener diversity indices (H’), evenness (J’), and richness as measures of 
larval connectivity within and among regions in Pamlico Sound for each tracking method, 
and by sampling period.  H’ values of 0 represent a single larval source whereas a value of 1 
would represent several larval sources. J’ values of 0 indicate one source contributed all the 
recently settled spat whereas a value of 1 would indicate several larval sources contributed 
the same amount of recently settled spat.   

Date Tracking method Region H’ J’ Richness 
June 2013 Drifter NE 0 0 1 
  NW 0 0 1 
  SE 

SW 
 

0 
0 

0 
0 

1 
1 

 Mooring NE 0.40 0.37 3 
  NW 0 0 1 
  SE 

SW 
 

0.33 
0.86 

0.30 
0.78 

3 
3 

June 2014 Drifter NE 0.76 0.69 3 
  NW 0.56 0.51 3 
  SE 

SW 
 

0.72 
0.61 

0.65 
0.55 

3 
3 

 Mooring NE 0.64 0.58 3 
  NW 0.87 0.79 3 
  SE 

SW 
 

0.96 
0.98 

0.88 
0.89 

3 
3 

August 2014 Drifter NE 0.09 0.13 2 
  NW 0 0 1 

  SE 
SW 

 

0.07 
0.76 

0.10 
0.70 

2 
3 

 Mooring NE 0.60 0.87 2 
  NW 0.38 0.54 2 

  SE 
SW 

0.47 
0.54 

0.42 
0.49 

3 
3 
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Figure 2.1. Map of a) all spat settlement collection sites within Pamlico Sound, NC and 
drifter deployment sites (D), termination sites (T), and average wind speed and direction for 
drifters deployed during b) June 2013, c) June 2014, and d) August 2014. Question marks (?) 
indicate last known location of lost drifters. Wedge size in wind roses corresponds to 
measured frequency of wind speed/direction. Arrows on wind rose diagrams correspond to 
length and direction of drifter path. 
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Figure 2.2. Linear discriminant function analysis results for classification of geochemical 
ratios for oyster larvae housed on surface drifters (black) and moorings (grey), by region 
(shapes), for a) June 2013, b) June 2014, and c) August 2014.  
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Figure 2.3. Distribution of manganese (Mn) in shells of larvae outplanted to a) surface 
drifters and b) moorings, by sampling period 
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Figure 2.4. Heat map of connectivity matrices showing predicted larval origin for settled 
oyster spat from each region within PS. Prediction origins are based on a) June 2013 drifters, 
b) June 2014 drifters, c) August 2014 drifters, d) June 2013 moorings, e) June 2014 
moorings, and f) August 2014 moorings. Brighter (lighter) colors indicate higher levels of 
connectivity between/within regions. 
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CHAPTER 3: CARRY-OVER EFFECTS FROM NURSERY HABITATS 
INFLUENCE REPRODUCTIVE LIFE HISTORY OF A COASTAL MARINE FISH 

Introduction 

Our understanding of how habitat selection affects the vital rates of organisms and 

drives population fitness is based primarily on studies that monitor organisms while they 

remain in a specific habitat (Kittredge 1938; Tupper and Boutillier 1997). However, most 

mobile species traverse multiple habitats over diel, seasonal, or ontogenetic scales, and 

therefore may experience several different environments throughout their lifetime (e.g., 

Polovina et al. 2004; Southwood 2008).  Carry-over effects (COEs), in which an event or 

process that occurs over a given life history stage can affect an individual’s future 

performance, often result from differences in habitat quality and resource availability 

(Harrison et al. 2011). Therefore, COEs indicate how past habitat utilization may influence 

lifetime growth, survival, or reproduction of individuals, and ultimately fitness of an 

individual or species (Searcy and Sponaugle 2001; Norris 2005). For example, copepod-rich 

diets available only in certain pre-adult habitats have been linked to earlier breeding and 

larger eggs within Pacific seabird populations (Sorensen et al. 2009). Because COEs are 

present within individuals and can manifest over protracted timescales (i.e., years), they are 

difficult to monitor within populations without detailed, paired information on both 

movements and vital-rate dynamics across many individuals (Harrison et al. 2011).  

Nurseries are spatially distinct habitats used by organisms during their juvenile life 

stages. Given the importance of juvenile habitats in the population ecology of mobile fauna 
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(e.g., Fodrie and Levin 2008), recent syntheses have attempted to codify robust, 

generalizable definitions of nurseries. For instance, Beck et al. (2001) defined nurseries as 

habitats that have a greater, on average, contribution per unit area to the production of 

individuals that recruit to adult populations than production from other habitats in which 

juveniles occur. Alternatively, the “effective juvenile habitats” designation highlights the role 

of expansive habitats that may support lower per-unit-area contribution to adult populations, 

but may yet be essential for sustaining adult populations (Dahlgren et al. 2006).  

Inherently, these contrasting definitions capture multiple reasons why nursery habitats 

are a model environment to examine COEs and their impacts on population dynamics. First, 

resource availability can vary extensively among putative nursery habitats, exposing 

organisms to different environmental conditions during their early life history (Anders et al. 

1998). Second, organisms may be particularly sensitive to environmental perturbations 

during early life-history stages with known sublethal effects on growth and rigor among 

diverse taxa such as insects (Taylor et al. 1998), amphibians (Pahkala et al. 2001) and fish 

(Shima and Swearer 2010). If multiple nursery habitats are available, highly productive 

nurseries may produce individuals characterized by advantageous COEs, such as increased 

growth rates, which over time may translate into lagged effects on overall fitness resulting 

from differential mortality or fecundity.  

Many marine organisms occupy multiple putative nursery habitats which are spatially 

distinct from adult habitats (Gillanders et al. 2003). Historically, most fishery species were 

thought to rely on inshore (e.g., estuarine) habitats for at least some portion of their life 

history (e.g, juvenile nursery grounds; Günter 1967; Stroud 1971). However, recent 

syntheses have highlighted that estuarine nursery utilization can be facultative, rather than 
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obligate, and that some fish may never access inshore habitats and, instead, exclusively 

utilize offshore (e.g., open coast) habitats (Able et al. 2005; Nagelkerken et al. 2015). As it is 

likely several species utilize both inshore and offshore nursery habitats, recent research has 

focused on species-specific studies to quantify nursery contribution to the adult population 

(Able and Fodrie 2015). The spatial separation and environmental differences between 

estuarine and offshore nursery habitats provide a valuable lens to assess whether COEs can 

arise across diverse juvenile habitats followed by ontogenetic migration to a common adult 

stock, as well as how COEs may influence overall population dynamics. 

 Here, we use geochemical signatures in fish otoliths to retrospectively determine 

proportional contributions of two putative nursery habitats, estuaries and offshore, to the 

adult stock of black sea bass (Centropristis striata), which serves as a major fishery along the 

mid-Atlantic Coast. We also compared juvenile and sub-adult growth rates and percent-male-

at-age for subpopulations of fish utilizing either estuarine or open-coast nursery alternatives 

(determined via otolith-based geochemical tags) to evaluate whether COEs were associated 

with juvenile habitat use. A requisite for evaluating nursery contributions was building a 

multi-year library of juvenile otolith geochemical signatures from fish collected in estuarine 

and open-coast environments.  

Materials and methods 

Study species 

Black sea bass is an economically and ecologically dominant marine fish found along 

the entire eastern United States coastline as well as into the Gulf of Mexico. Black sea bass 

are protogynous hermaphrodites, maturing first as female (~2 years) and then as male (~4 

years; SEDAR 2011). Adults typically live offshore in waters < 100m depth, and spawn 
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pelagic eggs throughout the spring and summer (Able et al. 1995). It was generally presumed 

that recently settled juveniles ubiquitously ingress into estuaries in spring and remain in their 

nurseries until egressing offshore in the fall of that year (September-November; Able et al. 

1995; Steimle et al. 1999). However, recent government surveys and anecdotal accounts 

from fishermen indicate that some juveniles do not move into the estuary, and instead reside 

in offshore areas throughout the juvenile stage. For instance, 1,890 juveniles (<180mm TL) 

were captured across 454 offshore trap sets during the 2014 Southeastern Fishery-

Independent Survey (SEFIS, C. Schobernd, NMFS, personal communication).  

Study area and sample collections 

The coastlines of North and South Carolina, from Cape Hatteras, NC to Georgetown, 

SC, are punctuated by multiple inlets and protected by a network of barrier islands extending 

from 35.255°N, 72.520°W to 32.204°N, 79.150°W. The continental shelf extends offshore 

for 45-160 km, reaching a depth of 100 m. To construct a library of juvenile geochemical 

signatures from putative estuarine and offshore nursery habitats, juvenile black sea bass 

(<180 mm TL) were collected during summer (May-August) of 2009-2014. Fish were 

sampled from multiple years to evaluate potential interannual variability (sensu Carson et al. 

2013).  

To create an atlas of signatures representative of estuarine juvenile habitats along the 

North and South Carolina coastlines, juveniles were collected from the following estuaries: 

Bogue Sound (34.724°N, 76.756°W), Radio Island (34.710°N, 76.680°W), Banks Channel 

(34.208°N, 77.797°W), and Towne Creek (33.336°N 79.186°W). Estuaries were chosen 

based on prominence, accessibility, and environmental diversity (e.g., temperature, salinity, 

riverine inputs). While we recognize that not every estuarine environment are represented by 
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these sites, previous studies have demonstrated that our sampling regime should be sufficient 

to develop a general estuarine signature that is distinct from that of offshore nurseries (Brown 

2006; Fodrie and Herzka 2008). Juveniles from 2009-2012 were collected from Bogue Sound 

and Radio Island, whereas 2013-2014 juveniles were collected from all four sites. Offshore 

juveniles from 2009-2012 were collected as part of a previous sampling effort from two 

cement artificial reefs constructed and managed by the NC Division of Marine Fisheries: 

AR-315 (34.6722°N, 76.7445°W) and AR-320 (34.6589°N, 76.807°W). Offshore juveniles 

from 2013-2014 were collected from the continental shelf-break (5-100 km offshore, 20-100 

m depth) during the NOAA Pisces cruise in July 2014 (Fig. 3.1).  

A total of 239 juveniles were collected: 141 from inshore, estuarine habitats and 98 

from offshore habitats (Table 3.1). Juveniles from 2009-2012 were sampled as part of NOAA 

survey programs and collected by hook and line or wire mesh fish traps (1 m x 0.4 m x 0.4 

m). Specimens from 2013-2014 were collected by hook and line or chevron traps (1.7 m X 

1.5 m X 0.6 m). Upon collection, fish were measured (SL and TL), weighed, and frozen until 

otolith extraction. The majority of 2009-2012 offshore juveniles were collected only ~3-4 km 

seaward of estuarine habitats (i.e., AR-315 and AR-320), however, these signatures were 

consistent with signatures from 2013-2014 when most fish were collected 50-100 km 

offshore (Fig. 3.2a). Black sea bass that used these offshore juvenile habitats appear to have 

geochemical signatures that are more distinct from signatures in the otoliths of fish that 

utilize estuarine habitats than the signatures observed at AR-315 and AR-320. Therefore, we 

are confident our sampling regime is robust against misclassification based on proximity of 

estuarine and AR collection sites.  
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Three-hundred and fifty adult black sea bass were collected offshore during the 

NOAA Pisces research cruise as part of the SEFIS program in July 2014. Collections were 

made during daylight hours using chevron traps (1.7 m X 1.5 m X 0.6 m) from 68 sites along 

the NC and SC coasts (Fig. 3.1). At each site, six traps fished for 90 minutes on soft (e.g. 

sand) or hard bottom (e.g. rock ledges, gorgonian reefs) habitats (site dependent). Captured 

adult black sea bass were weighed, measured (SL and TL), and gonads were examined to 

determine stage of sexual maturity (female, transitioning, or male; following Wuenschel et 

al. 2011). Fish were then frozen until otolith extraction.  

Otolith analysis 

Fish otoliths, or ear bones, contain geochemical records that reflect environmental 

signatures representative of putative nursery habitats (Thorrold et al. 1998). Sagittal otoliths 

were dissected using sterile scalpels and ceramic forceps and rinsed in ultrapure H2O 

(Barnstead Nanopure; Thermo Scientific). Otoliths were wiped with sterile kimwipes 

(Kimberly-Clark) to remove any organic (tissue) material and placed in plastic 

microcentrifuge tubes. Samples were sonicated in 15% H2O2 solution buffered in 0.05 N 

ultrapure NaOH for five minutes followed by a five-minute sonication in a 1% ultrapure 

HNO3
-
 (OPTIMA grade; Fisher Scientific). Otoliths were then rinsed three times with 

ultrapure H20 and left under a class-100 laminar flow hood overnight to dry. 

 Entire otoliths were encased in EpoThin® epoxy (Buehler), sectioned along the 

transverse plane using a Hillquist thin section machine, polished and mounted following 

Fodrie and Levin (2008). Mounted otolith sections were then cross sectioned using the saw to 

a width of 250 µm. Cross sections were again polished and rinsed using the aforementioned 

methods and stored until geochemical analysis. Both juvenile and adult specimens were 
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analyzed using a Thermo-Fisher Element2 inductively coupled plasma mass spectrometer 

with a Teledyne ATLex 300si-x 193nm Excimer laser ablation unit (LA ICP-MS). Otoliths 

were analyzed for the following elements: 7Li, 26Mg, 48Ca, 55Mn, 66Zn, 88Sr, 138Ba, and 208Pb. 

These elements were chosen because of their previous use in uptake and tagging studies of 

fish otoliths (Bath Martin and Thorrold 2005; Fodrie and Levin 2008).  

 To attain geochemical signatures representative of estuaries versus offshore, the 

outermost portions of otoliths from juveniles were ablated. One 150-µm line transect was 

vertically ablated on each margin (ventral and dorsal) of the otolith.  The distance from the 

core of the otolith to both ablation transects was measured for each juvenile sample. The 

average distance from core to transect was 1520 µm and 1420 µm for dorsal and ventral 

sides, respectively. Adult otoliths were then ablated with one 150-µm line transect positioned 

1520 µm dorsally from the core and one 150-µm line transect positioned 1420 µm ventrally 

from the core. All laser transects used a fluence of 4.45 J/cm2 with a 40-µm spot size, ablated 

at 10 µ/s. To correct for mass bias and instrument drift, National Institute of Technology 

Standards-certified standards (Reference Material 612, 614, and 616) were run at the 

beginning and end of every 24-otolith sequence (~48 burns). Isotope intensities for each burn 

were converted into elemental ratios (X:Ca) following Fodrie and Levin (2008).   

Age and growth  

Prior to laser ablations, adult otolith sections were illuminated with reflected light and 

images were captured with a binocular dissecting scope at 45x magnification with an 

attached digital microscope camera (DP72; Olympus). A micrometer microscope slide was 

included in the field view within each image for calibration. Growth bands were measured 

(µm) using ImageJ software (National Institutes of Health), from the core along the ventral 
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edge of the sulcus. Age and growth measures were made following the protocol set forth 

during the most recent ageing workshop for black sea bass (SC Department of Natural 

Resources 2009). Each otolith was read two times, with overall band size determined by the 

average of both reads. Total age was calculated by summing the number of growth bands and 

assuming a January 1 spawn date.  

Data analyses 

Elemental ratios recorded from juvenile otoliths were Box-Cox transformed to meet 

assumptions of normality and then analyzed using linear Discriminant Function Analysis 

(DFA) to create signatures for estuarine versus offshore nurseries. We performed separate 

DFAs for each year-class. DFAs were conducted stepwise, with the least significant 

elemental ratio dropped, as determined by the F-to-remove statistic, until all F-to-remove 

values were >2. The final model contained Li:Ca, Mg:Ca, Mn:Ca, Sr:Ca, Ba:Ca and Pb:Ca, 

for all years.  

 Jack-knifed classification success for assigning juveniles to their correct collection 

location (estuarine versus offshore) was determined for individual collection years before 

using juvenile signatures to predict nursery habitat for adults. Only 2010 and 2013 had 

sufficient intra-annual juvenile representation from both habitats for stand-alone DFA. Thus, 

adults born in 2009, 2011, and 2012 years were pooled and compared to pooled juvenile 

signatures generated by DFA across those years combined (2009+2011+2012). Notably, 

2009, 2011, and 2012 were similar based on precipitation and salinity during the sampling 

period (summer; ncdc.noaa.gov/cdo-web). Because not every site was sampled every year, 

classification success was additionally determined for juveniles collected during all years 

combined. We also used a series of regression trees to compare how orthogonal statistical 
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approaches predicted the nursery origin of adults that had successfully recruited to the adult 

stock (Cappo et al. 2005; Mercier et al. 2011).  

Juveniles collected from each year were paired with adults born in the same year 

(e.g., juveniles collected in 2009 and 5-year-old adults collected in 2014) to increase DFA 

accuracy. The multi-annual atlas (all-years pooled) was additionally used to predict 

collection location for all sampled adults. Juvenile fish collected in 2014 were used to 

highlight elemental differences between offshore and estuaries, however, they were excluded 

from this analysis because no collected adults were born this year (all specimens < 1 year). 

Because our juvenile samples were only collected 2009-2014 and adult collections occurred 

in 2014, any adults six years of age and older were excluded from our analysis (i.e., 73 of 

350 were excluded in assessment of nursery contribution and COEs).  

 To explore potential COEs resulting from juvenile habitat use, year one through five 

growth was compared using serial student’s t-tests for each age, between adults from 

estuarine versus offshore nurseries. Difference in %-male-at-age, between nursery habitat 

origins, was analyzed using both a likelihood ratio Chi-squared test and binomial logistic 

regression. After ensuring all assumptions were met regarding normality and 

homoscedasticity, an Analysis of Variance was used to examine potential effects of age, year, 

sex, and nursery habitat on log-transformed growth.  

Results 

Juvenile habitat utilization 

Differences in juvenile otolith geochemistry were sufficient to discriminate between 

estuarine and offshore nursery habitats when including all years in DFA, with a classification 

success of 75.3% (over a null expected success of 62%). Regression tree analysis provided 
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very similar results, with a classification success of 75.8%. Because of the comparable results 

between statistical approaches in this and all subsequent analyses, we only present DFA 

results hereafter. 

 Classification success increased when separating juveniles by year. For 2010, 2013, 

and 2014, classification successes were 93.3%, 90.9%, and 100%, respectively, and 75.5% 

for 2009+2011+2012 combined (Table 3.1; Fig. 3.2). Mn and Ba were the most influential 

elements contributing to discrimination among nursery sites for 2010; Sr and Mn for 2013; 

and Mg and Ba for 2014, as well as for 2009+2011+2012. For all years, combined, otoliths 

from juveniles collected offshore contained higher concentrations of Ba and Pb than inshore 

samples (Ba: t=2.47, p=0.014, df=140; Pb: t=2.93, p=0.004, df=140; Fig 2b), while Mg and 

Li were generally higher in the otoliths of fish collected in estuaries (Li: t=-0.367, p=0.712, 

df=140; Mg: t=-0.240, p=0.810, df=140; Fig. 3.2b). 

When using all sampled juveniles (2014 included), predicted overall nursery habitat 

contribution to the adult spawning stock was 91% and 9% for estuarine and offshore 

nurseries, respectively. However, we saw considerable variability in nursery habitat 

contribution when assignments were based on year-class. For adults born in 2010, 79% (87 

of 110) utilized estuarine nurseries, whereas 21% (23 of 110) used offshore nurseries. In 

2013, 100% (18 of 18) adults were linked to estuarine nurseries and none (0 of 18) were 

linked to offshore nurseries (Fig. 3.3). For 2009+2011+2012, combined, habitat utilization 

was 93% (139 of 149) and 6.7% (10 of 149) for estuarine and offshore nurseries, 

respectively. Collective nursery habitat contribution for 2009-2013 was 89% and 11% for 

estuarine and offshore fish, respectively.  
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Growth and sexual maturity 

We found no statistically significant differences in growth based on otolith increment 

analyses for years 1-5 between adults that had utilized alternate juvenile habitats, even when 

separating fish by year class (0.164<p<0.621). We did note was a non-statistically significant 

trend of higher growth among individuals that utilized estuarine habitats: estuarine juveniles 

showed a >5% greater mean growth than their offshore counterparts during the first year of 

life (t=-0.994, p=0.164, df=34; Fig. 3.4a). Further, there were no statistically significant 

differences in SL, TL, or weight within each age-class, or overall, for fish associated with 

either juvenile habitat (Fig. 3.4b). 

 The ratio of male-to-female adults, aged 2-5, was significantly higher for fish linked 

to estuarine nurseries (χ2=7.19, p=0.027, df=2; Table 3.2; Fig. 3.5). For adults associated 

with estuarine nursery habitats, adults were 57% female, 31% male, and 12% transitioning. 

For offshore-nursery associated adults, sampled adults were 74% female, 10% male, and 

16% transitioning. Male-to-female ratios between these two subpopulations of black sea bass 

were not driven by differences in age structure: mean fish age did not differ by the habitat 

used by juveniles (t=3.01, p=0.102, df=53). The age at 50% transition from female to male 

for black sea bass utilizing inshore nurseries was also significantly younger, by >6 months, 

than that of fish utilizing offshore habitats (based on 95% confidence intervals; Fig. 3.5). 

Both subpopulations experienced an older age at 50% transition, 4.6 yrs and 5.2 yrs for 

estuarine- and offshore-associated adults, respectively, than previously reported (3.8 yrs; 

SEDAR 2011).  
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Discussion 

Many terrestrial and aquatic organisms have complex life histories in which they 

utilize multiple habitats throughout various life stages (e.g., ontogenetic migrations). While 

sexual maturation and transition has been linked to habitat-specific resource availability 

(Bercovitch and Strum 1993; Grether et al. 2001), black sea bass exhibit carry-over effects 

from nursery habitats that ultimately affect the timing of sexual transition and composition of 

an adult population. Specifically, black sea bass that utilized estuarine nurseries expressed 

shorter times to final sexual maturation (female to male). This outcome has several 

implications for how we conceptualize the role of nursery habitats and the connection 

between juvenile and adult life history.  

Nursery habitat contributions 

Productive nursery habitats typically offer a wide range of food resources and refuge 

(Heck et al. 2003; Stoner 2003) and, as a result, juveniles are thought to primarily utilize 

these nursery habitats. For example, in marine communities, seagrass beds and oyster reefs 

within estuaries are frequently described as essential nursery habitats (Beck et al. 2001; 

Dahlgren et al. 2006). Deegan (1993) further emphasizes their importance, stating that “...fish 

faunas around the world are dominated in numbers and abundance by species which move 

into the estuary as larvae, accumulate biomass, and then move offshore.” Accordingly, we 

found that nearly 90% of our sampled adult black sea bass were linked to estuarine nursery 

habitats, indicating that estuaries encompass the majority, if not all, of the essential nursery 

habitat (Beck et al. 2001) and effective juvenile habitats (Dahlgren et al. 2006) for black sea 

bass. However, a 10% contribution from offshore nurseries is ecologically significant and 

reinforces what Able (2005) and others (e.g., Nagelkeren et al. 2015) have proposed in recent 
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years regarding the importance and viability of offshore nursery habitats. Similar to Able 

(2005), we found inter-annual variability in nursery habitat usage, indicating environmental 

or cohort-specific conditions may influence nursery utilization and production (see below). 

We encourage future studies to incorporate offshore nursery production when assessing the 

black sea bass stock and further examine potential sources of variability in nursery habitat 

utilization (e.g., geographic). 

Carry-over effects from nursery habitats  

Many studies have noted relationships between nursery habitat availability and 

juvenile abundance (Meyer et al. 1998; Fodrie and Levin 2008; Rosenfeld et al. 2011; Zobel 

et al. 2011), yet few are able to provide mechanisms, such as COEs, by which nursery 

habitats can influence population size and structure. Increased growth and therefore higher 

survival rates within more productive nursery habitats may result in greater nursery 

contribution to the adult stock (Beck et al. 2001). While we did not find significant evidence 

of larger first-year growth in juveniles utilizing estuarine habitats, this is not uncommon: 

growth differences among fish utilizing more vegetated and/or less disturbed nursery habitats 

are not routinely observed (Heck et al. 2003; Amara et al. 2007). Therefore, production 

differences between nursery habitats are more likely related to variability in survivorship 

than growth.  

As we cannot explicitly link differences in growth between black sea bass utilizing 

estuarine and offshore nursery habitats to differences in timing of female-to-male transition, 

we instead consider additional drivers with demonstrated potential for influencing sexual 

transition timing. There is strong evidence that fish experience thermosensitive periods in 

which 1-2°C temperature shifts during development can bias sex ratios, with warmer 
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temperatures (e.g., during summer months in estuarine nurseries) consistently resulting in a 

greater ratio of males (Conover and Kynard 1981; Ospina-Álvarez and Piferer 2008). Though 

this has never been applied to developmental periods of post-larval organisms (i.e., 

juveniles), it is possible that warmer temperatures within estuarine nurseries permanently 

alter levels of sex-hormones within hermaphroditic juvenile fish (Devlin and Nagahama 

2002).  

Sex determination in fish can also result from the presence of exogenous sex steroids 

produced by maturing females and adults just prior to a spawning event (Devlin and 

Nagahama 2002). Specific sex steroids, such as estradiol, have been shown to skew sex ratios 

from male to female-dominated in adult hermaphroditic fish by increasing the time spent as a 

female (Ruan et al. 1996) or causing a sex reversal to female after the fish has already 

transitioned (Chang et al. 1997). Juveniles utilizing offshore nursery habitats typically live in 

close proximity with maturing female and spawning populations which may increase their 

exposure to exogenous sex steroids and extend the duration of the female state before 

transitioning.  

Nearly all adult black sea bass live in offshore habitats and therefore estuarine-

associated juveniles must undergo an energetically taxing migration into and out of the 

estuary. In some areas, this distance can measure in the 10s of kilometers (Able et al. 2005) 

and includes inclement current and circulation conditions. Outward migration occurs in late 

summer to early fall, and is quickly followed by cooling water temperatures and the less 

energetically-favorable conditions of winter (Garvey et al. 2004). As adult males typically 

exert less energy than females in both gamete creation and fertilization (Wootton 1985), it is 
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possible that energetic requirements associated with migration into and out of the estuary 

also stimulate earlier transition to reach a more energetically-favorable sex. 

Although all larvae were assigned a January 1 spawn date, spawn dates likely range 

from December to early April (Hood et al. 1994) and may contribute to observed differences 

in time of sexual transition. Gulf Stream processes primarily control across-shelf transport in 

the south Atlantic, however, environmental conditions, such as sea surface temperature and 

seasonal wind-forcing, also affect larval distribution along the coast (Hare et al.1999; 

Stegmann et al. 1999).  Northeast winds, which prevail in early winter, encourage the 

movement of larvae from offshore spawning grounds to inshore (estuarine) nurseries. 

However, northwest winds, which are more common in later winter, can cause off-shelf 

advection of larvae, which may result in increased offshore nursery utilization (Hare et al. 

1999). Northeast winds in the first half of the spawning season followed by northwest winds 

in the later half may result in older fish utilizing estuarine nurseries while younger fish 

recruit to offshore nurseries. Thus, the observed earlier transition time from female-to-male 

in estuarine-associated fish may be an artifact of the presumed January 1 spawn date for all 

fish. Although spawn dates can be more accurately estimated with daily growth rings present 

in juvenile otoliths (Panella 1971; Campana and Neilson 1985), the readability of daily 

growth rings significantly decreases in post-juvenile fishes (e.g., adult black sea bass) . 

Further research is needed to examine whether this pattern in timing of sexual transition will 

remain after assessing actual spawn dates for fish utilizing estuarine and offshore nursery 

habitats. Similarly, future studies may also want to consider other potential may arise as a 

result from the widely used assumption of a universal spawn date.   
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Conservation considerations of COEs for exploited species 

Commercially and recreationally important species typically experience increased 

harvest pressure with age. Hermaphroditic species are especially vulnerable to overfishing, as 

high harvest pressure can affect fecundity through sperm and/or egg limitation or by shifting 

the age of sexual transition (Alonzo and Mangel 2004; Provost and Jenson 2015). Black sea 

bass have a long history of overfishing, including a disproportionally high extraction rate of 

males (SEDAR 2011). The fishery was recently declared rebuilt in 2013, however, relics of 

overfishing and skewed sex ratios likely still exist within the population in the form of 

uneven adult sex ratios. Current federal regulation prohibits commercial and recreational 

fishing of black sea bass < 279 mm and < 330 mm (TL), respectively. However, none of our 

collected fish were male at < 279 mm and only 17% of fish were male at < 330 mm, 

indicating that anywhere from 83-100% of males within the spawning stock are vulnerable to 

harvest. Moreover, as the smallest male we collected was 280 mm TL, current regulation 

practices may place the stock in danger of sperm-limitation.  

Estuarine nurseries not only contribute a much greater percentage of black sea bass to 

the adult stock than offshore nurseries, but also may buffer against severe sperm limitation 

by increasing the availability of males. As estuaries face numerous conservation threats, such 

as human development and climate change, the loss of these nursery habitats may have 

multiple implications for black sea bass: not only will essential nursery/effective juvenile 

habitat availability decline but fish will also lose access to the associated COEs which may 

be essential to maintaining population structure. Additionally, population models used for 

black sea bass, and other estuarine-associate fish species, conventionally only consider one 

nursery population. Incorporating estuarine and offshore subpopulations, and their associated 
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reproductive ecology, may not only increase the accuracy and strength of models, but also 

explore the effects of estuarine habitat degradation and lead to more effective management of 

critical species.  
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Figure 3.1. Map of southeastern United States displaying collection sites for black sea bass 
during the July 2014 leg of the South Eastern Fisheries Independent Sampling efforts about 
the NOAA ship Pisces. 
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Figure 3.2. Canonical score plot of a) the linear discriminant function analysis for C. striata 
juveniles grouped by nursery habitat, displayed vertically by year and b) influence of key 
elements on canonical score.  
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Figure 3.3. Determined contribution of estuarine and offshore nurseries to the adult 
population of C. striata, by year-class.  
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Figure 3.4. (a) Mean growth rates (±SE) of juvenile through adult and (b) mean sizes (SL; 
±SE) of adult C. striata that utilized estuarine or offshore nursery habitats.   

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

O
to

lit
h 

gr
ow

th
 in

cr
em

en
ts

 ±
SE

(𝘂𝘂
m

)

Estuary
Offshore

0

50

100

150

200

250

300

350

2 3 4 5

St
an

da
rd

 le
ng

th
 ±

SE
 (m

m
) 

Age (yr)



 

95 

 
Figure 3.5. Logistic growth projection (±SE) representing predicted percent male for each 
nursery type fit to observed percent male at age for C. striata, by year.  
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Table 3.1. Number of juveniles collected and classification success, using discriminant 
function analysis, for C. striata from estuarine and offshore nurseries during 2010, 2013, 
2014 and 2009+2011+2012 combined. 

  
2009+11+12 2010 2013 2014 

Collected Estuary 31 52 6 52 

Percent Correct 74.2% 98.1% 66.7% 100% 

  
 

   
Collected Offshore 49 8 27 14 

Percent Correct 79.6% 37.5% 96.3% 71.4% 
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Table 3.2. Number of females, males, and overall percent males for each age class by 
predicted juvenile habitat.  

Age Habitat Females Males % Male 

2 Estuarine 16 0 0 

 Offshore 2 0 0 

3 Estuarine 26 7 20.5 

 Offshore 1 0 0 

4 Estuarine 48 35 42.1 

 Offshore 19 7 26.9 

5 Estuarine 44 68 60.7 

 Offshore 2 0 0 
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CHAPTER 4: INTEGRATING CARRY-OVER EFFECTS FROM JUVENILE 
HABITATS INTO POPULATION MATRIX MODELS REVEALS NURSERY 

CONTROL OF ADULT STOCK STRUCTURE 

Introduction 

Traditional methods in fishery stock assessment attempt to model commercially 

important populations with the goal of maximizing long-term harvest yields while sustaining 

the populations (Shertzer et al. 2008). Models typically incorporate parameters for a 

population’s survivorship, growth, fecundity, and carrying capacity with individuals modeled 

uniformly: demographic parameters are assumed to apply to all individuals of the same 

species at the same stage. This practice results in models that are not habitat specific, despite 

the discovery of several habitat-related bottlenecks that can affect adult stock dynamics 

(Levin and Stunz 2005; Caddy 2014). In marine environments, most mobile species traverse 

many habitats over diel, seasonal, or ontogenetic scales and therefore may experience several 

different environments throughout their lifetime (e.g., Polovina et al. 2004; Southwood 

2008). Furthermore, within a population, some individuals utilize different habitats than 

others during the same life stage, as multiple, alternative habitats are often available (Able et 

al. 2005). While there is broad qualitative recognition of the importance of specific habitats 

in supporting fishery production (e.g., nurseries; Beck et al. 2001), the great majority of 

models currently do not account for the relationship between habitat utilization and fishery 

population dynamics.  

The need to manage marine resources, yet impracticality of conserving all habitats, 

motivates researchers to provide quantitative links between habitat availability and the vital 
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rates of organisms (Tupper and Boutillier 1997; Mangel et al. 2006; Fodrie et al. 2009). For 

example, research has shown that decreasing habitat quality and increasing levels of 

anthropogenic disturbance can negatively influence growth rates (Amara et al. 2007) while 

increasing habitat cover, complexity, and configuration can bolster organism survival (Hovel 

2003). Differences in predation and survival among individuals utilizing alternative habitats 

may also increase with the amount of time spent in a specific habitat (Irlandi et al. 1995). As 

the majority of population bottlenecks are thought to result from critical periods experienced 

in earlier life stages (Limburg 2001), it is particularly important to understand how habitat 

utilization during this time can affect vital rates to provide clear, quantitate links between 

habitat and overall population dynamics and structure.   

Nurseries, used by organisms during their juvenile life stages, are spatially distinct 

from habitats used during other life stages and have a widely-accepted importance in the 

population ecology of mobile fauna (e.g., Beck et al. 2001; Dahlgren et al. 2006; Fodrie and 

Levin 2008). Nursery habitats may also provide a unique opportunity to examine how habitat 

effects can scale to the population level through the presence of carry-over effects (COEs). 

Carry-over effects, in which an event or process that occurs over a given life history stage 

can affect an individual’s future performance, often result from differences in habitat quality 

and resource availability found early in life (Harrison et al. 2011). Therefore, COEs indicate 

how past habitat utilization may influence lifetime growth, survival, or reproduction of 

individuals, and ultimately fitness of an individual or species (Searcy and Sponaugle 2001; 

Norris 2005). Black sea bass, a hermaphroditic member of the economically and ecologically 

important snapper-grouper complex, exhibit COEs related to nursery habitat: fish that utilize 

estuarine nurseries transition from female to male ~6 months earlier than fish that utilize 
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offshore nurseries (Kroll et al. 2017). This difference in female stage duration not only 

represents a tangible link between juvenile habitat and adult population structure but also 

provides the foundations for a population model that explicitly incorporates habitat into vital 

rates and life-history.   

Here, we use stage-based demographic models (Lefkovitch 1965) to “scale up” 

previous findings and further explore how juvenile habitat utilization, through the presence 

of COEs, can affect the population dynamics of black sea bass. More specifically, we used 

the difference in female-to-male sexual transition times associated with estuarine versus 

offshore nursery habitats to: (1) construct models with habitat-specific vital rates for fish that 

utilize alternative nursery habitats (i.e., estuarine or offshore); (2) determine which vital rates 

(growth, survivorship, or fertility) population stability (λ) is most sensitive to; (3) simulate 

how shifts in nursery habitat utilization can impact population structure and reproduction; 

and (4) evaluate how a change in sexual transition time, resulting from juvenile habitat 

utilization, can affect fertility and ultimately population growth for black sea bass.  

Methods 

Study species 

Black sea bass (Centropristis striata) is an economically and ecologically important 

marine fish found along the entire eastern United States coastline as well as into the Gulf of 

Mexico. Black sea bass are protogynous hermaphrodites, maturing first as female (~2 yrs) 

and then as male (~4 yrs; SEDAR 2011). Adults typically live offshore in waters < 100m 

depth, and spawn pelagic eggs throughout the spring and summer (Able and Fahay 1998). It 

was generally presumed that recently settled juveniles ubiquitously ingress into estuaries 

until egressing offshore in the fall (September-November; Able and Fahay 1998; Steimle et 
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al. 1999). However, recent government surveys and scientific studies indicate that a 

significant portion of juveniles (~10-20%) do not move into the estuary, and instead utilize 

offshore nurseries throughout the juvenile stage and ultimately recruit to the adult stock 

(Kroll et al. 2017). Furthermore, Kroll et al. (2017) demonstrated that though there are no 

apparent demographic differences among fish while they are occupying either estuarine or 

offshore juvenile habitats, there is evidence that black sea bass utilizing estuarine nursery 

habitats can transition from female to male roughly six months earlier than fish which utilize 

offshore nursery habitats (4.6 versus 5.2 yr for estuarine and offshore fish, respectively). 

Model construction and parameterization 

Stage-based population projection matrices are useful models for populations with 

spatially-dynamic demographics that may allow us to account for distinct subpopulations 

based on variability in juvenile habitat utilization (Caswell 2001). Lefkovich matrix models 

expand upon traditional age-based Leslie models, using discrete ontogenetic stages to 

examine the population-level consequences of alternative life histories during specific life 

stages (Fodrie et al. 2009). Matrix population models also lend themselves to sensitivity, 

elasticity, and life table response experiments, in which potential variations in population 

growth can be related to nursery-associated vital rates (Caswell 2000). 

We developed two classes of stage-based population models (following Fodrie et al. 

2009) to explore how the use of estuarine versus offshore nursery habitats effect population 

growth, sex-ratio, fertility, and overall fitness of black sea bass stocks. We elected for size, 

rather than age, based models as the progression of the black sea bass life cycle is more 

closely tied to body size than age (Wenner et al. 1986). We defined four different stages 

based on the following size classes: larvae (L); juveniles (J); mature females (F); mature 
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males (M) (Fig. 4.1). Size limits for juveniles (15-170 mm) were calculated using percent-

mature-at-age data from SEDAR (2011) and von Bertalanffy (VB) growth curves populated 

with black sea bass data collected as part of a government-sponsored Southeastern 

Independent Fisheries Survey program (Kroll et al. 2017). Size limits for stages F (170-300 

mm and 170-350 mm for estuarine and offshore-associated models, respectively) and M 

(300+ mm and 350+ mm for estuarine and offshore-associated models, respectively) were 

also calculated using VB growth curves paired with percent-male-at-age data from Kroll et 

al. (2017) (Table 4.1).  

 Models were analyzed using a one-month time step to match the approximate 

duration of the larval stage and allow temporal resolution to capture differences in timing of 

sexual transition between fish utilizing estuarine versus offshore nursery habitats. Using 

entries specific to each juvenile habitat, the two matrices were constructed to display the 

change in population structure from time t to t + 1: 

�
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where Gi (stage growth) is the probability of surviving and advancing form stage I to stage 

i+1, Pi (stage survivorship) is the probability of surviving and remaining in the same stage, 

and FF (fertility) is the reproductive contribution adult females make towards stage L. Both 

Pi and Gi were calculated from survival (pi) and growth (γi) probabilities (Caswell 2011): 

Pi = pi(1-γi)      (1) 

and Gi = piγI      (2) 

where pi = e(-z
m

)     (3) 

and γi = [(1-pi)pi
(d

i
-1)]/(1- pi

(d
i
))   (4) 
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where zm is the monthly mortality rate and di is the duration of the ith stage (Crouse et al. 

1987).  

To calculate stage durations (di), we again used standard length and otolith band size 

data from Kroll et al. (2017) to parameterize the following relationship between standard 

length (SL) and otolith radius:  

ln(SL)=0.073+0.0886 ln(otolith radius)  (5) 

Otolith growth could then be used to calculate average growth (SL) rate following Hood et 

al. (1994) and stage-duration for each size class.  

 Instantaneous natural mortality rates (M) for all stages were derived following 

Charnov et al. (2012), with the updated Hoeningnls estimator recommended by Then et al. 

(2015): 

Mest=4.89tmax
-0.916     (6) 

where tmax is the maximum age, 12 yrs (SEDAR 2011). Both upper and lower mortality 

bounds were used in our simulations, with the final models incorporating the values that were 

best tuned for λ~1 (a stable population). Fishing mortality (F) was assumed to be zero for 

stage L and stage J, as federal and state mandates prohibit fishing within those size limits. A 

fixed F, scaled for our monthly time steps (Z=0.11; SEDAR 2011), was added to M estimates 

for stages F and M to obtain monthly mortality (zm).  

 Average individual fertility (FF) in the female stage was calculated as: 

   FF = v[(1+PF)f]      (7) 

where f is average monthly fecundity of adults, calculated based on the spawning stock 

biomass (SSB) per individuals reported in SEDAR (2011), PF is calculated in eqn. 1, and v is 

egg viability derived by Watanabe et al. (2003).  
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To simulate the consequences of varying estuarine versus offshore juvenile habitat 

contribution, we created a combined model, using an integrated female duration (dF) that 

reflected the relative degree to which either juvenile habitat was used (i.e., from all juveniles 

residing in estuaries to all juveniles residing offshore). Additionally, as protogynous fishes 

are especially vulnerable to sperm limitation (Heppell et al. 2006), we were interested in 

simulating how the decreased fertility associated with increased offshore nursery habitat 

utilization and therefore a shorter male, and longer female, phase (due to later female-to-male 

transition) would additionally stress populations. Because sperm limitation has been shown 

to reduce fertility by as much as 30% (Alonzo and Mangel), we ran simulations at 1.00, 0.85, 

and 0.70 FF for both upper and lower limits of zF. All simulations were projected over a 

period of 30 yrs (2.5 generations) using an initial population vector drawn from SEDAR 25 

(2011).  

Perturbation analyses 

Two prominent forms of perturbation analysis are commonly used to examine the 

effects of individual vital rates on overall population structure: prospective and retrospective 

analysis (Caswell 2000). Here, we employ prospective analysis (sensitivity and elasticity 

metrics) to examine how population stability (λ) changes in response to specific changes in 

one or more vital rate for each matrix model. Sensitivity and elasticity were calculated as 

follows: 

Sij=(viwj)/<w,v>     (8) 

Eij=(aij/λ)cSij      (9) 

where w and v are the right and left eigenvectors associated with the dominant eigenvalue, wj 

and vi are the jth and ith elements of the first right and eigenvector, respectively, <w,v> is the 
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scalar product of those vectors and aij are the individual matrix entries (Caswell 2000). 

Sensitivity and elasticity analysis was run for all models, including experimental matrices 

with varying zx, dF, and FF. 

 Retrospective analysis (life table response experiments [LTREs]) was additionally 

used to examine how observed variation of each vital rate is expressed in the overall 

variation of λ, or how each vital rate individually contributes to the overall population 

growth rate. Contributions (Cij) were calculated for each vital rate as follows: 

Cij = (aij
(k)-aij

(.))×Sij|(M(K) +M(.))/2    (10) 

where aij
(k) is the value of matrix entry aij in the kth matrix and aij

(.) is the average value of 

matrix entry aij from all matrices. Sij is the sensitivity of λ to matrix entry aij evaluated using 

the average of the kth and overall average matrices (M) (Caswell 2000). Sensitivity, 

elasticity, and LTERs were also run for the estuarine and offshore models at reduced (85% 

and 70%) fertilities. 

Results 

Simulations, using the upper (zL=0.99, zJ=0.49, zF=0.26, and zM=0.20) and lower 

(zL=0.96, zJ=0.47, zF=0.20, and zM=0.18) mortality estimates, resulted in population growth 

(λ mo-1) that ranged from 0.96-1.04, with an average of 0.99 ± 0.02 for both estuarine and 

offshore nursery associated models. All simulations that resulted in λ<1 involved zJ=0.49, 

while all simulations where λ>1, used zJ=0.47. Populations with no net growth/decline 

(λ=1.00) were tuned for both matrix classes with the following vital rates: zL=0.99, zJ=0.47, 

zF=0.26, and zM=0.18.  

Prospective analyses, used to discern how λ responds to changes in individual vital 

rates, showed similar trends for both estuarine and offshore models and among all mortality 
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and fecundity values: population growth was most sensitive to changes in juvenile growth 

rate (GJ) and least sensitive to changes in female fecundity (FF) (Fig. 4.2a,d), whereas 

elasticity was highest for female stage survival (PF) and lowest for larval stage survival (PL) 

(Fig 4.2b,e). Retrospective analyses, which used LTERs to determine which vital rates 

contributed most to variation in λ, was consistent with the prospective analysis in that female 

stage survival (PF) contributed highly to overall variation for both estuarine and offshore 

models (Fig. 4.2c,f). Growth of juveniles (GJ), which our models had the highest sensitivity 

to, also showed some contribution to variation in λ. However, these analyses diverged as 

changes in female fecundity (FF), although not strongly represented by sensitivity and 

elasticity measures, were also shown to cause significant variation in overall growth for both 

models. Differences in estuarine versus offshore models were most apparent in our 

retrospective analysis: the contribution of female fecundity (FF) to variation in λ was greater 

for offshore associated populations, while the contribution of female stage survival (PF) was 

greater for estuarine association populations. This indicates that changes in female fecundity 

may be capable of generating larger differences in the population stability of offshore models 

than in that of estuarine models.   

Our primary objective was to examine the effects of female stage duration (dF), 

representative of COEs from nursery habitats, on overall population structure of the black sea 

bass. Using a series of simulated, combined matrices, which integrated the use of both 

estuarine and offshore nurseries (to varying degrees ranging from all estuarine to all 

offshore), we found that λ does not fluctuate notably as dF moves from 100% estuarine to 

100% offshore nursery habitat contribution (1.00<λ<1.00; Table 4.2). However, over a 30-yr 

time frame, we found a significantly larger (> 400%; t=-26.1, df=8. p<0.0001;) number of 
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mature males that result from a dF associated with a population where all juveniles utilized 

estuarine nurseries (260 ± 9.48 males) versus a dF associated with a population where all 

juveniles utilized offshore nurseries (62.2 ± 2.28 male) (Table 4.2). Conversely, the mean 

number of mature females over the same time period did not fluctuate significantly with dF 

(t=0.022, df=6, p=0.508). 

Changes in the availability of males in a sex-changing species can also affect the 

population structure and stability through sperm limitation (Alonzo and Mangel 2004). Under 

high mortality scenarios (zF= 0.26), both 0.85 and 0.7 FF caused estuarine and offshore 

populations to decline (λ<1). At 0.85 FF, male populations fell to zero by year 25 and year 19 

for estuarine and offshore models, respectively. At 0.70 FF, male populations declined to zero 

by year 11.8 and year 8.3 for estuarine and offshore models, respectively. Under low 

mortality scenarios (zF= 0.20), populations only declined at 0.70 FF as the male population 

fell to zero by year 67 and year 58 for estuarine and offshore models, respectively (Fig. 4.3). 

Discussion 

The concept that habitat selection and utilization of marine fishes can affect 

individual vital rates and, consequently, adult fishery stocks, is not novel (Thrush et al. 1996; 

Quinn and Peterson 1998). However, stock assessment and other population models are still 

largely unable to account for the effects of varied habitat utilization or habitat-associated 

impacts. Here, we used the existence of newly discovered COEs to quantitatively link 

juvenile habitat to adult stock dynamics and demonstrate the utility of considering habitat to 

effectively manage black sea bass populations. Although estuarine and offshore 

subpopulations showed similar stabilities (λ=1.00), sensitivities, and elasticities, modeling 

the population as a whole overlooks a key insight as to how habitat can affect stock 
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dynamics: the number of mature male were 4xs greater in estuarine rather than offshore 

nursery associated models over the course of 2.5 generations. As nursery habitat contribution 

fluctuates annually (Kroll et al. 2017), this trend reveals that some cohorts may be more 

susceptible to sperm limitation and reduced fecundity and subsequently require management 

strategies more targeted toward male survival. LTERs also highlight differences in the 

contribution of individual vital rates (Cij) to the regulation of λ: female fecundity (FF) 

contributed more in offshore-associated populations whereas female stage survival (PF) had 

greater effects in estuarine-associated populations. Modeling the stock as a uniform 

population neglects these nuances and may overlook the vulnerability of black sea bass 

populations to unfavorable sex-ratios and sperm limitation.   

Model parameterization and uncertainty 

Our heuristic approach to vital rate selection minimizes the uncertainty inherent in 

stage-based matrix population models while also providing an empirical framework that can 

be generalized to other species with similar life-histories. The monthly mortality rates (zM) 

were calculated based on methods used by the National Marine Fisheries Service in stock 

assessment models and were compared to values empirically derived from field studies 

within similar habitats (Fodrie et al. 2009). Stage durations were based on a combination of 

field data collected by both government surveys (SEDAR 2011) and in a previous study 

performed by the authors (Kroll et al. 2017). Based on the same study, which found no 

evidence of larger growth within the first year (and beyond) in fish utilizing estuarine versus 

offshore nurseries, our model assumed that all fish simultaneously transition to the mature 

female stage, regardless of juvenile habitat utilization. However, growth differences among 

fish utilizing habitats of varying quality are not routinely observed (Heck et al. 2003; Amara 
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et al. 2007), indicating that perceived production differences between nursery habitats may 

be more linked to survivorship than individual growth. 

 The structure of our matrix models allowed us to directly assess the population-level 

consequences associated with alternative juvenile habitat utilization by altering female stage 

durations. We did not vary juvenile mortality by habitat although sensitivity analyses indicate 

changes in the stage growth of juveniles may have a significant impact on population 

survival. Therefore, future studies may want to consider additional vital rate differences that 

may exist between, or result from, either habitat. Additionally, measuring vital rates, such as 

mortality, among alternative habitats would also be beneficial because habitat-associated 

COEs, while providing an important pathway through which to link habitat and population 

dynamics in this study, are an emerging field of study (Harrison et al. 2011) and there is no 

guarantee that they will be easily identifiable or even present in all habitats. 

 Although both estuarine and offshore models presented stable (λ=1.00) populations, 

forward projections consistently produced a low number of adult males. Mature males 

represented < 1% of our modeled population, which is considerably lower than the 

equilibrium sex ratio (3:1 female to male) expected for protogynous hermaphrodites (Allsop 

and West 2004) and the number of mature males recorded during past sampling efforts 

(~46% of the adult population; SEDAR 2011). To correct for this, we initially employed 

three strategies: (1) increase male stage duration (dM) by 2 yrs (24 mo), (2) increase model 

projection time from 30 to 60 yr, and (3) increase juvenile duration by 4 mo. Both strategies 

1 and 2 had little impact on the overall population and require an unrealistic increase in the 

male stage duration (>15 yr) or an 120 yr model projection time to attain a female to male 

ratio close to 3:1.  Increasing the juvenile stage (strategy 3) caused a net decrease in 
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population stability from λ=1.00 to λ=0.83. While these manipulations did not substantially 

bolster our male population estimates, our prospective and retrospective analyses may 

provide some insight as to why: our model was most sensitive to juvenile and female stages, 

so altering the male stage duration and overall projection time should not have a large effect 

on the population. However, altering juvenile stage duration, even by only 4 mo, did have 

cascading effects on population stability.  

An additional strategy used to bolster the number of males was to decrease dF by 1 yr 

and extended dM. This was motivated by data in government surveys, which report ~1 yr 

shorter female stage durations (dF) than those recorded by Kroll et al. (2017), and past 

research, which suggests females transition earlier when male counts are low (Heppell et al. 

2006). Reducing dF resulted in an increased number of males for both estuarine and offshore 

associated models (1.43x104 and 5.19x103 males, respectively), however, the populations 

became less stable than when using initial dF values (λ= 1.06 and1.05 for estuarine and 

offshore, respectively). Despite increased λs, the pattern of increased males associated with 

estuarine nursery utilization (176% greater than the offshore nursery model) was still present, 

validating our assumptions that estuarine-habitats support greater availability of males.  

Developing habitat-based management  

An increasing body of literature asserts ecosystem-based fisheries management 

(EBFM), rather than single-species management, as the premier strategy for ensuring 

sustainable use of marine resources (e.g., Pikitch et al. 2004; Fulton et al. 2014; Möllmann et 

al. 2014). An intrinsic part of EBFM is the identification and conservation of critical marine 

habitats, with the expectation that conserving habitat will translate into increased fish 

abundance. Despite growing momentum for EBFM, several fisheries management plans still 
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include catch limits and size restrictions to ensure a sufficient number of juveniles reach 

sexual maturity (e.g., recruitment; Botsford et al. 1997).  However, in protogynous 

hermaphrodites, size limits often increase harvest pressure on adult male fish, increasing the 

likelihood of skewed sex-ratios, sperm limitation, and ultimately lower female fertility (Yund 

2000; Heppell et al. 2006).  

Understanding the link between nursery habitats and adult stock dynamics is essential 

to the management of black sea bass because the availability and utilization of estuarine 

versus offshore nurseries encourages population stability for an historically overfished 

species. Kroll et al. (2017) used elemental fingerprinting to link ~89% of adult black sea bass 

to estuarine nurseries, however, contribution from offshore nurseries varied from 0-20% 

annually. Thus, in years where offshore nursery contribution is higher, cohorts will transition 

later, leaving fewer males available for breeding. In the simulated case where nursery 

utilization shifts from all-estuarine to all-offshore, our models predicted a 64-76% decrease 

in male population and rapid population decline (λ<1).  This population decline is 

exacerbated under higher mortality conditions (e.g., when size-limits displace fishing 

pressure onto adults) and under conditions of reduced fertility (e.g., sperm-limitation). As 

estuarine habitats face numerous conservations threats, such as climate change and coastal 

development (Lotze 2006), the loss of estuarine nursery habitat may not just drive juveniles 

to offshore nurseries but also distort stock structure, decrease overall population fecundity, 

and ultimately lead to population collapse. Management strategies that focus on conserving 

these nursery habitats may not only ensure the success of juvenile cohorts, but also help 

maintain the population stability of the black sea bass, as well as many other protogynous 

hermaphroditic members of the snapper-grouper complex.  
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Figure 4.1. Life-cycle diagram used to construct stage-based population matrix models for 
two black sea bass subpopulations separated by juvenile habitat alternative: estuarine (est) 
and offshore (off). L: larvae; J: juvenile; F: female; M: Male. Pi is the probability of 
surviving to remain in the same stage duration and Gi is the probability of surviving and 
advancing to the next stage during 1 time step. FF is female fertility (contribution of 
offspring to the L stage).  
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Figure 4.2. Sensitivity (A, D), elasticity (B, E), and contribution (C, F) of each matrix element to changes in λ for fish associated with 
estuarine(A-C) and offshore (D-F) nursery habitats. Bar colors correspond to models with 0, 15, and 30% reductions in female stage 
fecundity (FF)
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Figure 4.3. Population growth (λ) resulting from 0, 15, and 30% reductions in female stage 
fecundity (FF), using two potential female stage mortalities (zF), for estuarine and offshore-
associated populations.  
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Table 4.1. Name, size classification, source and associated vital rates for each mode stage. f: fecundity; zhigh: upper bound mortality; 
zlow: lower bound mortality; and d: stage duration 

Stage Size (mm) Source f zhigh zlow d 

L 0-15 Berlinsky et al. (2000) 0 0.96 0.99 1.3 

Jest 15-170 SEDAR 25 0 0.47 0.49 14 

Joff 15-170 SEDAR 25 0 0.47 0.49 14 

Fest 170-300 von Bertalanfy (VB) growth curve based on data from Kroll et al. (2016) 7260 0.20 0.26 39.5 

Foff 170-350 VB curve based on data from Kroll et al. (2016) 7260 0.20 0.26 45 

Mest 300+ Kroll et al. (2016) 0 0.18 0.20 89.2 

Moff 350+ Kroll et al. (2016) 0 0.18 0.20 83.7 
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Table 4.2. λ; F: number of females (x103); and M: number of males resulting from a single model, ran over 30yrs, with varying 
estuarine and offshore nursery habitat utilization (reflected in female stage duration, dF). 

    Year 

    5 10 15 20 25 30 

Prop. est Prop. off dF λ F M F M F M F M F M F M 

1 0 39.5 1.00 544 56.8 564 58.8 584 60.9 604 62.3 624 64.6 644 67.3 

0.9 0.1 40.1 1.00 544 65.5 564 67.9 584 70.3 604 72.7 624 75.1 644 77.6 

0.8 0.2 40.6 1.00 544 75.5 564 78.3 584 81.1 604 83.9 624 86.6 644 89.5 

0.7 0.3 41.2 1.00 544 87.2 564 90.3 584 93.5 604 96.7 624 99.9 644 103 

0.6 0.4 41.7 1.00 544 101 564 104 584 108 604 112 624 112 644 119 

0.5 0.5 42.3 1.00 544 116 564 120 584 124 604 129 624 133 644 137 

0.4 0.6 42.8 1.00 544 134 564 138 584 143 604 149 624 153 644 159 

0.3 0.7 43.4 1.00 544 154 564 160 584 166 604 171 624 177 644 182 

0.2 0.8 43.9 1.00 544 178 564 184 584 191 604 198 624 204 644 210 

0.1 0.9 44.5 1.00 544 205 564 212 584 220 604 228 623 236 643 243 

0 1 45 1.00 544 237 564 246 584 254 604 263 623 272 643 281 
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CONCLUSION 

Discerning the complex connectivity patterns within marine environments is essential 

to the management of ecologically and commercially valuable marine species (Young 1990; 

Gillanders et al. 2003). While estuarine habitats are regarded as some of the most productive 

nursery habitats for several important species (Beck et al. 2001), degradation, due to 

anthropogenic influences, continues to occur (Lotze 2006). A major barrier to protecting 

these habitats is the lack of empirical studies which examine the complex, estuarine-scale 

connectivity patterns during critical early life stages (e.g., larval and juvenile). Understanding 

the larval connectivity of the reef-forming Easter oyster, for example, is essential to 

delineating source-sink dynamics within metapopulations and protecting dispersal pathways. 

Additionally, the ability to ascertain how and to what extent juvenile fishes utilize estuarine 

habitats is required to predict how declines in habitat availability may impact population 

structure. To properly manage estuarine habitats, and the fisheries that rely on them, we must 

understand what drives connectivity within these systems and identify potential links 

between estuarine habitat utilization and adult stock dynamics.  

A requisite to tracking estuarine-scale connectivity among sub-populations of the 

Eastern oyster was to explore the utility of geochemical tagging methods within our study 

system, the Pamlico Sound (Chapter 1). Strong environmental (e.g., temperature and salinity) 

gradients were present over regional (~ 35 x 15 km quadrants) scales and both larval and 

settler shells were able to generate distinct, multi-elemental signatures between putative natal 

and settlement sites. These methods were then applied, with a combination of larval 
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outplanting techniques (i.e., stationary moorings and floating surface drifters), to show that 

larval dispersal is single-source driven and that pathways generally follow wind-driven 

currents (Chapter 2). However, dispersal pathways are not uniform across the Sound and 

seasonal and annual dispersal patterns can be highly variable. Furthermore, self-recruitment 

occurs at rates up to three times higher than could be predicted by traditional modeling 

simulations (Puckett and Eggleston 2016). To conserve oyster reefs within this system, 

reserve networks should be designed to protect primary larval-sources, such as reefs present 

in the SE quadrant, while also bolster cross-regional dispersal.  

 The understanding of how organisms utilize juvenile habitats within estuarine 

systems, and whether these habitats can confer life history advantages, is essential to the 

conservation of estuarine-associated species. Here, we determined that estuarine nurseries, 

such as oyster reefs, contribute over 89% of the juvenile black sea bass to the adult stock 

(Chapter 3), however, there is significant annual variation in contribution. The role of 

estuarine habitats becomes even more complex for the protogynous black sea bass, as fish 

exhibited carry-over effects (COEs) related to nursery habitats: juveniles that utilized 

estuarine nurseries transitioned from female to male six months earlier than juveniles that 

utilized offshore nurseries. By incorporating this difference in female stage duration into a 

population model, we were able to explore the population level effects of estuarine nursery 

utilization and form a novel link between juvenile habitat and adult stock dynamics (Chapter 

4). When nursery habitat utilization moves from all-offshore to all-estuarine, we see an over 

400% increase in the availability of breeding males, indicating that estuarine nursery habitats 

may be necessary to buffer against potential sperm limitation that result from current 

management practices.   
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Through the quantitative evaluation of oyster reef and black sea bass connectivity, 

this dissertation provides substantial support for the implementation of ecosystem based 

fisheries management (EBFM). Single-species management practices, such as catch limits 

and size restrictions, do not account for seasonal and annual variation inherent in dispersal 

pathways or the fact that reproductive (and dispersal) potential may vary among 

subpopulations. For example, as the majority of tracked oyster larval connectivity occurred 

within adjacent regions, the implementation of marine reserves, spaced ~5-40 km apart, may 

better protect oyster larval dispersal than existing harvest limitations or farther-spaced 

reserves. Furthermore, estuarine reserves would also aid in the conservation of mobile fish 

species by not only protecting juvenile fish while they are utilizing these nursery habitats, but 

also by increasing their exposure to COEs, which are essential to the maintenance of black 

sea bass stock structure and fertility. 

This work also demonstrates the necessity of an improved modeling framework for 

the establishment and maintenance of successful reserve networks. Current oyster dispersal 

models not only underestimate the degree of self-recruitment among subpopulations, when 

compared with our empirical study, but also do not account for the multi-directional wind 

forcing which may drive the high levels of spatiotemporal variation (e.g., regional, seasonal, 

and annual). Similarly, the contribution of estuarine nurseries to the adult sea bass stock, and 

therefore juvenile exposure to COEs, also vary over seasonal and annual timescales. 



 

130 

Therefore, assuming uniform habitat utilization (as most population models do) can be 

deleterious in years when higher percentages of fish utilize offshore nurseries and cohorts 

become more vulnerable to skewed sex-ratios or other habitat-related population effects. As 

several marine organisms utilize multiple nursery habitats, other COEs likely exist, our 

model can be expanded to quantify the links between a suite of fisheries and their associated 

habitats. 
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