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Abstract
Gennette D Gill: Analysis and Optimization for Pipelined Asynchronous Systems .

(Under the direction of Montek Singh.)

Most microelectronic chips used today—in systems ranging from cell phones to desktop computers

to supercomputers—operate in basically the same way: they synchronize the operation of their millions

of internal components using a clock that is distributed globally. This global clocking is becoming a

critical design challenge in the quest for building chips that offer increasingly greater functionality,

higher speed, and better energy efficiency.

As an alternative, asynchronous or “clockless” design obviates the need for global synchroniza-

tion; instead, components operate concurrently and synchronize locally only when necessary. This

dissertation focuses on one class of asynchronous circuits: application specific dataflow systems (i.e.

those that take in a stream of data items and produce a stream of processed results.) High-speed stream

processors are a natural match for many high-end applications, including 3D graphics rendering, image

and video processing, digital filters and DSPs, cryptography, and networking processors.

This dissertation aims to make the design, analysis, optimization, and testing of circuits in the

chosen domain both fast and efficient. Although much of the groundwork has already been laid by

years of past work, my work identifies and addresses four critical missing pieces: i) fast performance

analysis for estimating the throughput of a fine-grained pipelined system; ii) automated and versatile

design space exploration; iii) a full suite of circuit level modules that connect together to implement a

wide variety of system behaviors; and iv) testing and design for testability techniques that identify and

target the types of errors found only in high-speed pipelined asynchronous systems.

I demonstrate these techniques on a number of examples, ranging from simple applications that

allow for easy comparison to hand-designed alternatives to more complex systems, such as a JPEG

encoder. I also demonstrate these techniques through the design and test of a fully asynchronous GCD

demonstration chip.
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Chapter 1

Introduction

1.1 Goals and Solution Strategies

The goal of my work is to support the design of high-performance application specific dataflow

systems (i.e. those that take in a stream of data items and produce a stream of processed re-

sults.) The ability to design such processors quickly and efficiently will likely be important

to sustaining the current level explosive growth of consumer electronics, multimedia applica-

tions, and high-speed networking. My work identifies and addresses several key challenges in

designing these systems.

1.1.1 Challenges to Designing Application Specific Dataflow Systems

One particular challenge is that application specific processors have short design cycles, be-

cause bringing new application specific hardware to market quickly is vital when improved

algorithms and new standards are constantly being created.My work handles this challenge

in several ways. First, it employs the benefits of asynchronous or “clockless” design. The

removal of the clock improves the circuit’s efficiency by eliminating the power requirements

of propagating a global clock signal. Further, the modular nature of asynchronous design can

increase designer productivity and therefore reduce production time and the associated pro-

duction costs. Next, this dissertation presents both fast performance analysis and automated



system-level optimization for asynchronous dataflow systems. These methods aim to decrease

design times both by improving the speed of the algorithms themselves and by automatically

and systematically completing tasks that designers often spend long hours performing in ad

hoc ways.

Another specific challenge is providing low-level support for the design of high-performance

dataflow systems. Designers want to have some assurance that the systems they create will

operate correctly and be practical to implement at the circuit level. This dissertation presents

new testing approaches that are specific to asynchronous pipelined systems, which can expose

errors caused by manufacturing defects. My work also includes a suite of new circuit-level

designs, which can be connected together modularly to implement a wide variety of system

functionality.

1.1.2 Solution Strategy

In order to make the problem of analyzing and optimizing pipelined asynchronous circuits

more tractable, I focus on a special class of asynchronous systems: those with hierarchically

composed pipelined architectures. Such structures are quite common when the system is de-

signed using high-level translation methods (e.g., Tangram/Haste [45], Balsa [14]) because

high-level specification languages tend to be hierarchically block-structured. Moreover, even

when the design approach is ad-hoc, designers often tend to implement systems with hier-

archical structures. In particular, I target architectures that are hierarchical compositions of

sequential, parallel, conditional, and iterative operators. By focusing on this special but prac-

tically useful class of systems, this work is able to leverage information about their hierarchy

to provide fast runtimes while still maintaining accuracy.

1.1.3 Thesis Statement

The problem of analyzing and optimizing pipelined asynchronous systems can be made tractable

by restricting the domain to hierarchically constructed systems.

2



The key insight is that restricting to the hierarchical nature of these systems can be ex-

ploited to make analysis and optimization faster. This dissertation will show that the set of

hierarchical systems is expressive enough to implement a variety of practical systems. The

results will also show that the resulting analysis method is fast and accurate enough to be used

repeatedly in an optimization loop. Finally, the resulting, optimized systems can be practically

realized in hardware.

1.2 Introduction to Asynchronous Design

1.2.1 Definition

Figure 1.1 illustrates the fundamental difference between asynchronous design and synchronous

design. While the synchronous system has one global clock that must propagate to the entire

chip, the asynchronous design uses handshakes to synchronize local communications. The

switch from global clocking to local, as-needed synchronization can potentially offer ease

of design due to increased modularity, faster speed because of more concurrency, and lower

energy consumption because switching activity occurs only when and where needed.

global 

clock 

local 

handshaking 

Figure 1.1: Comparison between synchronous and asynchronous design

paradigms
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1.2.2 Current Uses

As an indicator of asynchronous design’s current commercial success, Handshake Solutions,

a Philips subsidiary, has sold more than 750 million asynchronous microprocessor chips for

use in low-power applications such as cell phones, pagers, smart cards, and cryptochips used

in E.U. passports. In addition, Intel and Sun Microsystems have used asynchronous circuits

in small targeted speed-critical circuits inside their commercial processors.

1.2.3 Future Applications

Asynchronous design will have a significant role in the design of future systems. In future

multi-core systems, on-chip networks that connect hundreds or thousands of heterogeneous

cores will likely be asynchronous in nature, leading to a globally asynchronous locally syn-

chronous (GALS) architecture. Recently, a new style of clocked design has received much

attention from researchers: synchronous elastic design or latency-insensitive synchronous de-

sign. These styles borrow the notion of elasticity (achieved via asynchronous handshaking)

and apply it to clocked design to obtain synchronous elastic systems. Finally, asynchronous

design will likely play a key role in the emerging technologies of nanoelectronic, quantum

and biologically-inspired (e.g., DNA self-assembled) computing, in all of which timing issues

are fundamentally too complex to be addressed by global clocking.

1.3 Past Work and Current Challenges

The overall goal of my line of research is to create a fully automated toolflow for the design

of high-throughput asynchronous circuits that begins at a designer specification and ends with

a gate-level hardware specification. Figure 1.2 shows an example design flow, which gives

context for the work presented in this dissertation. If fully automated, this design flow will

achieve the goals of creating efficient, high-performance circuits with low designer-time cost.

This section goes step-by-step through the design flow to explain how each step helps achieve

4



the overall goals, describe the current work that has been done in each area, and outline the

remaining work that this dissertation will add to the design flow.

Pipeline 
Transform 

Behavioral 
Specification 

Performance 
Analysis 

Design Space 
Exploration 

Designer hints 

Pipelined 
Microarch. 

Pipelined  
Component Library 

Netlist 

Design for 
Test Hardware 

Pipeline Construct 

Chosen Microarch. Performance Estimate 

Circuit Params 

Tech 
Mapper 

Figure 1.2: The ideal design flow to reduce designer effort.

1.3.1 High-level Code to Low-level Designs

In the design flow of Figure 1.2, the designer first gives a high-level behavioral specification

for the circuit. Next, that control-driven specification is turned into a data-driven pipelined

architecture. My work does not focus on this transformation step, because much current and

ongoing work done by others has effectively targeted this area. Specifically, Hansen [19] has

used Haste [45] as the input language for creating a data-driven system from a high-level

5



specification. Work done by Budiu [8] used C as the input language to create a hardware

specification in which data flows directly from producer to consumer. Kapasi takes a different

approach to specifying data flow hardware by introducing new language constructs that are

tailored to data flow design [24]. Though Chapter 3 of this dissertation does give one possible

algorithm for converting a specification written in a high-level language to a pipelined system,

this is offered only for completeness and does not limit the work of this dissertation to using

only that one approach for the first pipeline transform step of the design flow.

1.3.2 Design-space Exploration

Automated design-space exploration is key to reducing designer effort. In the design flow of

Figure 1.2, design space exploration takes a non-optimized pipelined circuit as an input and re-

turns an optimized version of the circuit. Since my work targets high-throughput systems, the

final circuit should be optimized to meet some throughput goal, possibly with additional con-

straints on other cost functions such as delay or energy. The design space exploration should

ideally take place with little to no direct intervention on the part of the designer. Currently,

many circuit designers use time consuming ad hoc techniques based on designer knowledge

and experience. More systematic approaches presented by Beerel et al. [3], Prakash et al. [47],

and Smirnov et al. [1] remove bottlenecks by strategically adding buffer stages to the circuit.

Other approaches target latency rather than throughput. One such approach is the CASH com-

piler by Budiu and Goldstein [8], which translates an ANSI C program into data-flow hard-

ware. A different approach by Theobald and Nowick [63] targets generation of distributed

asynchronous control from control-dataflow graphs, with the objective of optimizing commu-

nication between the controllers, and between a controller and its associated datapath object.

To my knowledge, a system-level design space exploration system that focuses on throughput

does not currently exist. My work on constrained optimization for pipelined systems aims to

fill this gap in the currently offered set of optimization solutions.

6



1.3.3 Performance Analysis

Performance analysis is an integral part of design space exploration, because optimization

often requires repeated analysis to monitor the effects of changes to the circuit. As seen in

Figure 1.2, the design space exploration method uses performance analysis repeatedly, which

indicates that fast and accurate performance analysis is important to making the design ex-

ploration work. Several innovations in the area of performance analysis of pipelined circuits

serve as the basis of the work of this thesis. The idea that the throughput depends on the occu-

pancy of a pipeline, which is the foundation of much of the analysis-level work of this thesis,

was first introduced in a doctoral thesis by Williams [67] and later expanded upon by Green-

street [18] and Lines [31], though none of these works provided a system-level approach.

In addition, more general analysis methods [29][71] [36] can estimate the performance of

entire systems, proving that accurate system-level throughput estimates can be obtained for

pipelined asynchronous systems. Brining these ideas together, my analysis work provides a

fast analytic solution like that of Williams [67] while maintaining some of the versatility found

in past system-level analysis methods.

1.3.4 Circuit Components

The design space exploration step produces an optimized pipelined microarchitecture. To be

realized in practice, every component within the microarchitecture must be implemented by a

corresponding circuit component. Many pipeline circuit styles have already been developed,

which serve as the basis for implementing any high-throughput pipelined system.[61, 15,

42, 59, 55, 72] Micropipeline styles that achieve high-speed while maintaining low control

overheads enable the construction of fast and efficient asynchronous pipelines. My work in

this area adds on to MOUSETRAP, a high-speed, low-overhead pipeline implementation [55].

Existing MOUSETRAP circuits can be used to implement a variety of structures, but are not

expressive enough to implement all the possible behavior in the set of circuits that the design

flow can produce. My work fills that gap by introducing five new pipeline circuit elements that

7



can, together with existing circuits, implement common hierarchical structures. These circuits

can be composed together modularly to form a wide variety of structures and behaviors.

1.3.5 Testability

Finally, the design flow incorporates the design for testability. Incorporating testing into a

design flow is vital to the success of any design flow, because designers are hesitant to use

a technology that cannot be tested. Luckily, much work has already been done in the area

of testing for asynchronous pipelines. Pagey et al. [43] proposed methods for generating

test patterns to test stuck-at faults in traditional micropipelines. Another approach that was

adapted for use with micropipelines is by [27], which focuses on test sequence generation for

testing both stuck-at and delay faults inside C-elements—circuits that are often used as local

synchronizing elements in asynchronous systems. My work on testing is based most closely

on the work of Shi et al. [53], which is specifically targeted to testing high-speed asynchronous

pipelines. My testing work focuses on achieving high fault coverage while trying to keep the

design-for-test overheads low.

1.4 Contributions

The work of this thesis focuses on one type of asynchronous circuits—high-throughput steam-

ing systems that are hierarchical in nature—in order to provide a great depth of resources for

designing these types of circuits. Contributions range from high-level abstractions for circuit

modeling to low-level circuits that are used as the basis for circuit design.

1.4.1 Modeling and Abstractions

Chapter 3 presents the models and abstractions that are used throughout the rest of the dis-

sertation. In particular, it gives a method for obtaining the local performance metrics of a

8



system, defines the structure of a hierarchical system, and formalizes use of canopy graphs for

performance analysis.

1.4.2 Performance analysis

Chapter 4 addresses the problem of system-level performance estimation. Although deter-

mining the performance of an arbitrary asynchronous system is NP-hard, my solution focuses

instead on analyzing a special subclass: systems that are hierarchically composed of basic

pipeline stages using sequential, parallel, iterative, and conditional operators. This restricted

class is actually still quite rich, and includes most commonly used system topologies. By ex-

ploiting hierarchy, my algorithm achieves an expected linear running time. Results show that

non-trivial examples with over 100 stages can be analyzed in less than 10 milliseconds.

1.4.3 System-Level Optimization

Chapter 5 presents optimization methods that leverage the fast analysis method presented in

Chapter 4. Identification and elimination of bottlenecks is an important part of any design flow

that aims to produce high-throughput systems. This thesis includes (i) a bottleneck detection

algorithm that leverages performance analysis to pinpoint the parts of an asynchronous sys-

tem that limit throughput, and (ii) a bottleneck alleviation algorithm that reports all potential

bottlenecks to the designer and suggests modifications. A specific challenge is to overcome

the performance bottleneck due to algorithmic loops. I have introduced a systematic approach

for improving the throughput of algorithmic loops by allowing multiple problem instances to

be computed concurrently within a single loop hardware (i.e., multi-token loops).

1.4.4 Testing and Design for Testability

Chapter 6 presents a testing approach to uncover timing violations within asynchronous pipelines.

While the general problem of delay fault testing has challenged researchers for decades, my
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approach targets a subclass of much interest to asynchronous designers: relative timing con-

straint violations. In particular, certain asynchronous circuits achieve high performance by

making local timing assumptions. I have introduced the first practical method for testing

for violations of these relative timing assumptions in pipelined systems. The approach is

minimally-intrusive and includes both test application and test vector generation.

1.4.5 Circuit-Level Design

Chapter 7 presents the low-level pipeline stages that form the basis for implementing pipelined

asynchronous systems. My component library includes circuit-level designs of all commonly

used building blocks (i.e., design primitives), including pipeline stages, forks/joins, condition-

als and loops, arbitration stages, etc. These designs were carefully constructed so as to obtain

high throughput and low latency.

1.4.6 Case Studies

To demonstrate and evaluate these circuits, Chapter 8 presents asynchronous case study chip

that implements Euclids iterative GCD algorithm; it was fabricated at IBM foundry in a 130nm

CMOS process. The chip is one of only a few high-speed asynchronous chips that have been

demonstrated so far, achieving the equivalent of 1 GHz operation, and robustness to wide

variations in supply voltage (0.5-4V) and temperature (-45-150C), and has helped validate my

design and test approaches. In addition, the chapter uses the analysis and optimization of a

JPEG encoder as a detailed example of the steps taken to produce a final, optimized circuit.

The results show a 40x improvement for this example.2

1.5 Dissertation Organization

The remainder of this document is organized as follows. First, Chapter 2 gives background

information on performance analysis, optimization, and testing for asynchronous systems.
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Next, Chapter 3 describes the abstractions and models that will be used throughout this dis-

sertation. It also introduces new notations and definitions relevant to asynchronous design that

are extensions upon previous work.

Chapter 4 introduces my analysis method. It first presents the analysis of the four hi-

erarchical components considered in this dissertation—sequential, parallel, conditional, and

iteration—and then describes how to bring them together to form a system-level, hierarchi-

cal analysis method. Chapter 5 goes on to present an optimization method that builds off of

the analysis. It first describes a set of transformations that can potentially improve perfor-

mance, then gives a method for detecting the location of bottlenecks within a system, and

finally defines a framework for iteratively applying optimizing transformations to remove all

the bottlenecks of a system.

Chapter 6 describes a testing method that applies to pipelined asynchronous systems.

Chapter 7 provides low-level support for design by specifying a suite of five circuits that—

together with circuits from past work—can be used to implement a wide variety of asyn-

chronous systems. This chapter can serve as a reference for those who wish to implement any

of the hierarchical structures described in this dissertation. Finally, Chapter 8 gives two case

studies in asynchronous design. The first one, a system that calculates the greatest common di-

visor of two numbers, was fabricated in silicon and tested extensively. It serves as an example

of the kind of performance that one can expect from pipelined asynchronous systems.
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Chapter 2

Background on Asynchronous Design

2.1 Asynchronous Pipelines

In a pipelined asynchronous system, parts of the circuit synchronize locally using a request-

acknowledge handshake protocol. These handshakes control the flow of data into and out

of registers, which are usually implemented as latches. A pipeline operates correctly if the

handshaking protocol prevents data from being lost or overwritten while still allowing for the

flow of data between stages.

Figure 2.1 shows the basic structure of a self-timed pipeline. Each pipeline stage consists

of a controller, a storage element (“data latch”), and processing logic. Typically, a stage

generates a request to initiate a handshake with its successor stage, indicating that new data

is ready. If the successor stage is empty it accepts the data and performs two further actions:

(i) it acknowledges its predecessor for the data received and, (ii) initiates a similar handshake

with its own successor stage. Many variations on this basic protocol have been developed, and

a variety of asynchronous pipeline controller implementations exist.

2.1.1 Data Encodings within Asynchronous Pipelines

Pipeline styles can also be categorized based on the data encoding employed. Using data

encodings to improve robustness or reduce energy consumption is an active area of research



Figure 2.1: A simple self-timed pipeline

[38, 34], so this section will not provide a full description of possible data encodings. Instead,

it will give some idea of the main types of data encodings used.

Bundled Data

A simple yet effective approach is the bundled data encoding, which is also known as single-

rail. Each data bit is represented by exactly one wire, with one additional wire for the request

bit. While the data bits are processed by a block of logic within the stage, the request bit

must go through some matched delay—a set of gates that slows the outgoing request so it

stays coherent in time with the data. This style is simple and practical, but it does not take

advantage of function blocks that have variable delays.

Dual-Rail Encoding

Dual-rail data encoding uses two wires per data bit, so that the request signal is essentially

built in to the encoding. Table 2.1 shows one possible dual-rail representation that encodes

both the value of the data and the presence of new data.

This encoding scheme allows the stage to indicate completion as soon as it is finished,

though detecting this completion can add extra overhead.
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Table 2.1: Dual rail data encoding.

Dual-rail code

0 0 data not ready

0 1 0 request

1 0 1 request

1 1 unused

2.1.2 Asynchronous Handshaking Protocols

two-phase Protocols

Two phase protocols have handshaking cycles that are made up of two events. Specifically,

the value of the request changes once and then the value of the acknowledge changes once

to complete the handshake. As a result, 2-phase protocols use transition based encodings: a

transition on a line rather than the value of the line indicates an event.

four-phase Protocols

Four phase protocols have handshaking cycles that are made up for four events. Typically,

the request goes high and the acknowledge goes high as a response. Then the request goes

low to a reset value, and the acknowledge also resets to a low value. This protocol has more

events than a two-phase protocol, but the logic implementations are often simpler, because

level-based logic is a simpler design style than transition-based logic.

2.1.3 Asynchronous Pipeline Styles

Many different implementations for asynchronous pipelines have been developed, which use

different combinations of data encodings and handshaking protocols. [61, 15, 42, 59, 55,

72, 67] In this dissertation, I use the following four circuit styles as examples whenever the

circuit-level details of a pipeline stage need to be demonstrated.
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Figure 2.2: Sutherland’s Micropipeline with Muller C-element.

Sutherland’s Micropipelines

Suterland’s Micropipeline style [61] is a two-phase controller that uses bundled data. As

shown in Figure 2.2, it uses the Muller C-element [40] as the control circuit. Since the output

of the C-element to the latch uses transition signaling, the latch is a special transition sensitive

latch. When the pipeline line is in operation, every transition on the request wire—either high

to low or low to high—indicates that a new data is available. The next stage will send back a

corresponding acknowledge signal when it has finished processing the previous data.

MOUSETRAP Pipelines

MOUSETRAP [55], shown in Figure 2.3, is a two-phase pipeline style that uses static logic.

Since MOUSETRAP uses transition signaling for the requests and acknowledges, every tran-

sition on a request wire indicates new data is ready and every transition on an acknowledge

wire indicates that old data can be overwritten. Thus, when the request and acknowledge go-

ing into a stage are the same, the stage becomes “empty” and when they are different the stage

becomes “full”. The latches that hold data begin transparent and become opaque just after

new data arrives. The latches themselves do not use transition signaling, since the xnor acts
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Figure 2.3: The MOUSETRAP pipeline style.

as a transition to level converter.

GasP Pipelines

GasP [59] is a four-phase pipeline style that uses static logic. The data latches in a GasP

pipeline begin closed, and must open and then close again upon receiving each new data item.

The most distinctive feature of GasP is that a single wire, called the state conductor, is used

to transmit both the request and acknowledge signals between a pair of adjacent stages. A low

signal on the state conductor wire indicates that the previous stage is“full” and a high signal

indicates that it is “empty”.

The controller for GasP is a self resetting NAND, as shown in Figure 2.4. When both of

the inputs to the NAND go high, it goes low. After some delay, this low transition triggers the

NAND to reset back to high. Specifically, two possible reset paths, r1 and r2, can cause the

NAND to go high again. Path r1 consists of one pull up transistor and one inverter (inva). Path

r2 consists of one inverter (invb) and one pull down transistor. The time, treset, to reset the

NAND is the smaller of the two times: treset = min(tpull up + tINVa↓, tINVb↑ + tpull down).

16



reqN-1 reqN 

ackN 
ackN-1 

dataN-1 dataN 

Figure 2.4: The GasP pipeline style.

High-Capacity Pipelines

The high-capacity (HC) pipeline [54] is a four-phase pipeline style that uses dynamic logic.

It is latchless. Instead, the dynamic logic of each stage has an “isolate phase”, in which its

output is protected from further input changes. Specifically, during the isolate phase, the logic

is neither precharging nor evaluating.

An HC pipeline stage simply cycles through three phases. After it completes its evaluate

phase, it enters its isolate phase and subsequently its precharge phase. As soon as precharge

is complete, it re-enters the evaluate phase again, completing the cycle.

2.2 Performance Analysis for Asynchronous Pipelines

2.2.1 Performance Metrics for Pipeline Stages

There are three metrics typically used to characterize the performance of a self-timed pipeline:

forward latency, reverse latency, and cycle time. The forward latency is simply the time it

takes one data item to flow through an initially empty pipeline. Thus, if the latency of Stagei
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Figure 2.5: The high capacity pipeline style.

is Fi, then the latency of the entire pipeline is:

LPipeline =
∑

i

Fi (2.1)

Similarly, the reverse latency characterizes the speed at which empty stages or “holes” flow

backward through an initially full pipeline. The reverse latency of the entire pipeline is simply

the sum of the stage reverse latencies:

RPipeline =
∑

i

Ri (2.2)

The cycle time of a stage, denoted by Ti, is the minimum time that must elapse after a data item

is produced by that stage before the next data item will be generated. Since a complete cycle

of a stage typically consists of transmitting a data item forward followed by propagating a

hole in the reverse direction, the following relationship holds for most handshaking protocols:

T Stagei
= Fi + Ri (2.3)

18



The maximum throughput a stage can support is simply the reciprocal of its cycle time. The

cycle time of a linear pipeline is limited by the cycle time of its slowest stage:

tptPipeline = 1
/

max
i

(Ti) (2.4)

2.2.2 Canopy Graph Analysis

The classic work on performance analysis of asynchronous pipelines by Williams and Horowitz

[67] introduces the “canopy graph” to characterize the performance of a pipelined ring. Our

approach builds upon this to handle more general systems.

Ring Performance Analysis

One useful metric of ring performance is the number of times any data item crosses a par-

ticular stage in the ring per second; we will refer to this measure as the ring frequency. The

performance of the ring is highly dependent on its occupancy, i.e., the number of data items

revolving inside it. When the number of data items is small, the ring frequency is low, and

the pipeline is said to be “data limited.” On the other hand, when nearly every stage of the

pipeline is filled with data items, the performance is once again limited, because holes are

needed to allow data items to flow through the pipeline. In this scenario, the pipeline is said

to be congested, or “hole limited.”

Data Limited Operation. If there are k data items in the ring, then in the time a particu-

lar data item completes one revolution around the ring (i.e.,
∑

i Fi), all k items would have

crossed each ring stage. Therefore, the maximum ring frequency attainable is proportional to

the ring occupancy:

Ring Frequency ≤ k
/

∑

i

Fi (2.5)

Hole Limited Operation. If the ring is filled with data items in nearly all stages, then the
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Figure 2.6: The upper bounds on the maximum ring frequency: shaded area

represents operating region

ring frequency is limited by the number of holes in the ring. If there are h holes in the ring,

then in the time a particular hole completes one revolution around the ring (i.e.,
∑

i Ri), all

h holes would have crossed the each stage, 0 in a direction opposite to data. Thus, if N is

the number of stages in the ring, then h = N − k, and we have the following bound on the

performance:

Ring Frequency ≤ (N − k)
/

∑

i

Ri (2.6)

Figure 2.6 shows a plot of the ring frequency versus its occupancy. The rising portion

of the graph represents the data limited region, where performance rises linearly with the

number of data items. The falling portion, similarly, represents the hole limited region, where

performance drops linearly with a decrease in the number of holes.

Limitations Due to a Slow Stage. If all the stages in the ring have similar forward and

reverse latencies, then the maximum attainable performance will be the frequency at which

the rising and the falling lines of Figure 2.6 intersect. This point represents a frequency that
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is the inverse of the cycle time of each ring stage: 1/T = 1/(L + R). However, if some

stages are slower than others, then the ring frequency will be limited by the cycle time of the

slowest stage. In the figure, the horizontal line represents the maximum operating rate that

can be sustained by the slowest stage in the ring [67]:

Ring Frequency ≤ 1
/

max
i

(Ti) (2.7)

The overall ring performance will always be constrained to lie under the canopy formed by

the three lines in Figure 2.6.

Linear Pipelines

The behavior of a linear pipeline, under steady-state operation, can be modeled as that of a

self-timed ring. In particular, in steady state, as one item leaves the right end of the pipeline,

another item enters on the left. As shown by Lines [31] and Singh et al. [57], the linear

pipeline’s throughput is correctly modeled as a canopy graph, with the same three constraints

on its operation (data limited, hole limited, and constrained by local cycle times).

However, there are two key differences that must be noted. First, the occupancy in a linear

pipeline can be fractional. That is, unlike a ring which always contains an integral number of

items, a linear pipeline can have an average occupancy that is non-integral (e.g., 4.5 items)

because of phase differences between entering and exiting items.

Second, a linear pipeline can actually operate in the entire region under the canopy. In

contrast, the operating point of a ring in steady state is typically on the boundary of the canopy.

The reason for this difference is that the ring analysis assumed that the ring is isolated and

operates autonomously without any interaction with the environment; therefore, it operates at

the maximum throughput possible for a given occupancy. On the other hand, a linear pipeline’s

operation is constrained by both the left and right environments, which can force it to operate

at a throughput below the maximum attainable throughput for a given occupancy.
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Figure 2.8: Sequential composition: a) structure, b) canopy graphs

Parallel and Sequential Composition

As shown by Lines [31], canopy graph analysis can also be applied to parallel and sequential

compositions of linear pipelines.

For the fork-join parallel structure of Fig. 2.7a, the throughput of the composition is con-

strained by the intersection of the canopy graphs of the branches. The reason is that the

operation of the fork-join pair is constrained so that (i) the throughput of each branch is the

same, and (ii) the number of tokens in each branch is the same (assuming they were initialized

empty). The result of the intersection of the constituent canopy graphs is also a canopy graph

as shown in Fig. 2.7b.

Similarly, when two pipelines are composed sequentially, as in Fig. 2.8a, the throughput

of the composition is constrained by the horizontal sum of the canopy graphs of the two

constituents. The reason is that, once again, the throughput of each pipeline must be the same,

22



but the total occupancy is now the sum of the occupancies of the two pipelines. That is, the

composition can attain any throughput that both of the pipelines can sustain, and for each such

throughput, the net occupancy is simply the sum of the two occupancies. The result is also a

canopy graph as shown in Fig. 2.8b.
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Chapter 3

Models and Abstractions

Throughout the thesis, most of the discussions and proofs will deal not with the complex,

underlying circuits but with the more abstract models. This chapter defines the models that

will be used throughout this thesis and defines how they relate to real systems. First Section

3.2 gives the models for the performance of an individual stage and presents a method for

mapping from a pipelined circuit to the abstract representation used in later chapters. Section

3.3 fully defines the set of hierarchical circuits that this thesis analyzes, and gives an example

of the steps from high-level code to a pipelined representation. Finally 3.4 defines and further

described the use of the canopy graph for modeling system-level performance information.

3.1 Background

3.1.1 Performance Metrics for Pipeline Stages

Three performance metrics are typically used to describe the performance of pipeline stages:

forward latency, reverse latency, and cycle time. Following are the classical descriptions of

these three performance metrics, adapted from the textbook by Sparsø. [58]



Forward Latency

The forward delay, also denoted as LF , is the difference between the time that a request is

received by an empty stage and the time that a request is received by the following stage.

Figure 3.1 illustrates the forward delay of one stage.

!"#$%& !"#'()
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Figure 3.1: Forward delay for a pipeline stage

Reverse Latency

The reverse delay, also denoted as LR, is the difference between the time that an acknowledge

is received by a full stage and the time that an acknowledge is received by the previous stage.

It is also often useful to think of the reverse delay as the time for one “hole” to travel in the

reverse direction of the flow of data. Figure 3.2 illustrates the forward delay of one stage.
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Figure 3.2: Reverse delay for a pipeline stage

Cycle Time

Cycle time, or T , is the time for a stage to progress from some state in relation to a data item

until the time it arrives at the same state with the subsequent data item. Figure 3.3 shows a

representation of the cycle time. Note that cycle time can cross stage boundaries, and that it

does not necessarily include the entirety of either the forward or reverse cycle time for the

stage.
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Figure 3.3: Cycle time for a pipeline stage

3.1.2 Abstractions for Asynchronous Pipelined Systems

One common representation for an asynchronous circuit is the Petri net, which has been used

in much past work [30][36][71]. Petri nets are capable of capturing the high concurrency

inherent to asynchronous systems. Moreover, timed petri nets, which assign a delay to every

event within the system, allow for thorough analysis of the timing of the asynchronous system.

[36].

The power of using a petri net model lies in its ability to represent all possible connec-

tions and configurations of a general asynchronous system. This kind of low-level modeling

of connections is necessary when analyzing systems with complex connections and irregu-

lar topologies. The work in this thesis, however, focuses on systems that are composed of

repeated instances of pipeline stages that are further organized hierarchically. For these pur-

poses, a timed petri net representation is not necessary; the essence of the system can be

captured by a more abstract, high-level representation.

3.1.3 System-level Performance Models

The most straightforward method for describing the performance of a pipelined system is to

give one number: the throughput. Variations on the single-number performance characteriza-

tion include reporting the cycle time, bounding the time separation of events, or finding the

global critical cycle time for the system [36][30][70][65]. Each of these metrics provides a

one-dimensional view of the performance of a circuit, in that a single performance number for

the entire system is reported.
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Williams and Horowitz [67] first introduced the use of a second dimension, occupancy,

to characterize the performance of a system. Here, occupancy is defined to mean the total

number of distinct data items that are contained in the entire pipelined system. This thesis

relies heavily on the throughput vs. occupancy graph, also known as the canopy graph, first

introduced for analyzing the performance of a pipeline ring. Later, Lines [31] and Singh et

al. [57] applied this model to sequential pipelines, and Lines [31] further used it for systems

consisting of a parallel operator. More details on the derivation and methods of this work can

be found in the background section 2.2.2 of this thesis.

3.2 Modeling Asynchronous Pipeline Stages

As described in Section 2.1.3, many different types of asynchronous pipelines exist. My

method for analyzing pipelines, however, is independent of the particular pipeline style used.

This section describes how to map an actual asynchronous pipelined stage onto a representa-

tion that is independent of implementation by abstracting away the unnecessary details while

retaining the necessary performance information.

3.2.1 Delay Models

The analysis method described in this thesis uses a fixed delay model. The commonly used

bundled data encoding, which was described in Section 2.1.3, is very accurately modeled

using fixed delays. Other data encodings, such as dual-rail, can have data-dependent execution

times for individual stages. Though this work does not directly address probabilistic delays,

it can still be used to perform worst case analysis by setting the fixed delays to be equal to the

worst case delay for each stage. Worst case analysis is a useful lower bound on performance.

[17]
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3.2.2 Performance Metrics for System-Level Analysis

Figure 3.4 shows the abstract model for an asynchronous pipeline stage that will be used

throughout the rest of this thesis. Each stage is represented by a box. This is a further abstrac-

tion of the pipeline stage shown in Figure 2.1, which removes the unnecessary details of the

stage’s controller, latch, and logic.

The connections between stages are represented by arrows. The direction of the arrows

indicates the direction of the flow of data while the flow of “holes” is implied to be in the op-

posite direction. The internal workings and even the handshaking signals have been removed

for simplicity and are indeed not necessary to perform analysis on this system.
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Figure 3.4: General model for a pipelined system.

Each stage is also annotated with the local performance metrics that are necessary for

performing analysis: forward latency, reverse latency, cycle time, and capacity. These four

metrics fully characterize the performance of each individual stage for the purposes of per-

forming system-level analysis. This notation for graphically describing a pipelined system

will be used throughout this thesis. For conciseness, the graphical representations often omit

the cycle time and capacity, as has been done in Figure 3.5. If not specified, cycle time is

assumed to be the sum of the forward and reverse latencies and the capacity is one.

This thesis uses the same definition of cycle time as give in background section 3.1.1.

However, the definitions of forward and reverse latency are slightly changed, capacity is a

newly defined term. The precise meaning of these terms is given in the following section.
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Figure 3.5: Model for a pipelined system used throughout this thesis.

Capacity

The capacity of a single stage to hold data is a feature of the chosen pipeline style. All

commonly used pipeline styles have a capacity of either one or one half data items per stage,

although other capacities are possible in theory. A capacity of one indicates that two stages

in a row can both contain distinct data items while a capacity of one half indicates that every

other stage can contain a distinct data item.

3.2.3 Determining Performance Metrics

Although the models used for analysis do not depend on the type of pipeline stage being used,

determining the values of the four parameters for each stage–which must take place before

analysis–does depend on the type of pipeline stage being used. In particular, one cannot

always assume that cycle time for a stage be calculated using the forward and reverse delays

only.

This section describes my technique for determining the necessary metrics. The remainder

of the thesis assumes that these metrics have already been determined, and the accuracy of the

performance analysis will, of course, depend on the accuracy of performance metric values

for each stage.
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Challenges to Determining the Performance of a Single Stage

A common method for finding the cycle time is simply summing the forward and reverse

cycle times [67, 58]. Though this method is it simple and elegant, it does not always give an

accurate local cycle time. The local cycle time often includes the delays of gates across two or

more pipeline stages, so summing the forward and reverse latencies is inaccurate when gates

in adjacent stages have differing delays.

As an example, see cycle time for the pipeline stage S0 shown in Figure 3.6. Compare the

sum of the forward and reverse latencies of the stage to the cycle time.

LF0 + LR0 = dL0 + dxnor0 + dL0

T0 = dL0 + dL1 + dxnor0

Note that the expressions are identical only if the delays of latches L0 and L1 are the same.

Therefore, if dL1 is greater than dL0, then the sum of the forward and reverse delays will be an

underestimate of the actual cycle time for S0.

L0 L1 

xnor0 xnor1 

Figure 3.6: Cycles cross stage boundaries.

Synchronization Point Method for Determining Performance Metrics

Despite this subtle difficulty in assigning performance metrics to individual stages, it is still

possible to assign local cycle times to individual stages. In particular, if the properties of

neighboring stages are known at the time of analysis, the difference in gate delays can be

taken into account when assigning performance metrics to every stage. If the connections

are not known (e.g. different parts of the system are designed and analyzed independently
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Figure 3.7: Synchronization points in various pipeline styles; a) Synchroniza-

tion point for GasP is a nand gate b) Synchronization point for MOUSETRAP is

a latch; c) Synchronization point for high capacity is the domino logic; d) Syn-

chronization point for Sutherland’s Micropipelines is the C element

before being composed together as modules), some additional information is retained for the

stages on the edge of the module. This section introduces the synchronization point method

for assigning performance metrics, which can be leveraged in either case.

To perform synchronization locally through handshaking, every pipeline style must have

a synchronization point: a location at which some set of signals from predecessor and suc-

cessor stages come together. The synchronization points of common pipeline styles that have

synchronization points are highlighted in Figure 3.7. The gates that comprise the synchro-

nization point are shaded in each example. In GasP, the incoming request from the previous

stage and the incoming acknowledge from the next stage synchronize at the nand. Similarly,

in Sutherland’s Micropipelines, the c-element is the synchronization point. In Mousetrap, the
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synchronization point is the latch, with the request coming into the latch from the predecessor

stage and the acknowledge coming coming from the successor stage. Similarly, in the high ca-

pacity pipeline style, domino logic–which plays a similar role to a latch–is the synchronization

point.

A more general model of a stage with a synchronization point is shown in Figure 3.8. Note

that the paths for both the forward and reverse latency pass through the synchronization point.

In addition, the model of Figure 3.8 makes apparent two previously undefined paths that pass

through the synchronization point of each stage: the response path and the revival path. The

response path is the path from an incoming request through the synchronization point to the

outgoing acknowledge. The revival path is the path from the incoming acknowledge through

the synchronization point to the outgoing req.

Reverse 

Forward 

Response Revival 

reqN 

ackN ackN-1 

reqN-1 

Figure 3.8: Abstract model for pipeline stage N with shaded synchronization

point

Forward Latency The definition of forward latency used in this thesis is the delay be-

tween a request signal entering the synchronization point of some stage, Sn, and a subsequent

request signal entering the synchronization point of the next stage, Sn+1. This is similar to

the definition of forward latency given in Section 3.1.1 except that the path that is used to

calculate the latency crosses what are generally considered to be the boundaries of a stage. In
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particular, the forward latency path excludes forward delays before the synchronization point

of Sn while including those before the synchronization point in Sn+1.

Reverse Latency The definition of reverse latency used in this thesis is the delay between

an acknowledge signal entering the synchronization point some stage, Sn, to it entering the

synchronization point of the previous stage, Sn−1. This is similar to the definition of reverse

latency given in Section 3.1.1 except that it crosses what are generally considered to be the

boundaries of a stage. In particular, it excludes reverse delays before the synchronization point

of Sn while including those before the synchronization point in Sn−1.

Response Latency Response latency is the time from when a stage receives a request to

the time that it sends an acknowledge. Figure 3.9 traces the response paths for several dif-

ferent pipeline styles. The response latency of a stage can be estimated counting the gate

delays that the path passes through. Alternatively, it can be measured for an individual stage

through simulation by sending a request into an empty stage and recording the delay before

an acknowledge is received.

Revival Latency Revival latency is the latency between receiving an acknowledge and send-

ing a request. Figure 3.10 traces the response paths for several different pipeline styles. The re-

vival latency of a stage can be estimated counting the gate delays that the path passes through.

Alternatively, it can be measured for an individual stage through simulation by sending an ac-

knowledge into a stage that has a data item waiting (i.e. in a full pipeline) and then recording

the time until a new request is generated.

Stage Model with Response and Revival Time To characterize the performance of a single

stage, then, the standard forward and reverse delay metrics are augmented by two additional

metrics: response latency and revival latency. Like the forward and reverse latency of a stage,

the response latency and the revival latency can be observed through the external signals of
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Figure 3.9: Response paths for various pipeline styles

the stage. That is, finding values for these metrics does not require knowledge of the particular

internal implementation of a stage.

Response and revival delay are not used directly during system-level analysis, but instead

will aide in finding the value of the local cycle time when stages are composed together. In

particular, a stage Sn is designated with a cycle time that is its revival time plus the response

time of its successor stage, Sn+1.

Tn = revivaln + responsen+1 (3.1)

Figure 3.11 illustrates how interstage cycle times form when several pipeline stages are
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Figure 3.10: Revival paths for various pipeline styles

joined together in a pipeline. The revival path of stage S0 combines with the response path of

stage S1 to create the cycle time TS0.

An even further abstracted version is shown in Figure 3.12; this notation will be used when

describing performance for an individual stage in later chapters. In the figure, the numbers

denote the latencies before and after the synchronization points. For example, stage S0 has a

forward delay of zero before the synchronization point and a forward delay of one after the

synchronization point, for a total forward delay of one. The cycle time of S0 is the revival

time of S0 summed with the response time of S1. In the example of Figure 3.12 the total cycle

time for S0 is four.
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Figure 3.11: A cycle time composed on one revival and one response time.
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Figure 3.12: Indicating revival and response times.

Models for Protocols with Complex Cycles Thus far, the modeled stages contain cycles

that cross only one stage boundary between two adjacent stages. Some pipeline styles, such

as PS0[67], have more complex cycles that can cross several stage boundaries. Most half-

capacity pipeline styles have some cycle that crosses at least two stage boundaries. In these

cases, the same notation can still be used, but several sets of response, revival, forward, and

reverse delays of stages must be added.

Figure 3.13 illustrates composing stages that have a cycle that crosses more than one stage

boundary. The cycle includes delays in stages S0 and S1 as well as S2. In many pipeline

styles, an additional cycle that passes through the same two synchronization points twice:

once to indicate that a data item is present and a second time to indicate that the data item

is no longer present. If four-phase handshaking is used, the first time through the cycle, the

request values are rising and the second time through they are falling. Figure 3.14 illustrates

such a cycle. The cycle time, T0 is the maximum of the two cycles shown in Figures 3.13 and
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3.14.

T0 = max(revival0+revival1+response1+response2, revival0+response1, revival0+

response1 + revival0 + response1)

S2!

Response2 

Revival2 

S0! S1!

Response0 Response1 

Revival0 Revival1 

Figure 3.13: A cycle time that crosses two stage boundaries.

S2!

Response2 

Revival2 

S0! S1!

Response0 Response1 

Revival0 Revival1 

Figure 3.14: A cycle that operates simultaneously with the one of Figure 3.13

Models for Asymmetric Stage Implementations Gates can sometimes have different

rising and falling delays, which further complicates finding performance metrics. To model

this occurrence using the synchronization point method, two copies of each set of delays

needs to be maintained. Figure 3.15 shows one setup for finding the performance metrics of

stages that have asymmetric delays and that have cycle times that cross more than one stage

boundary. Several different cycles exist within this system, and are indicated in the figure.

The cycle time T0 is the maximum length cycle of all the cycles shown.
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Figure 3.15: Stages with asymmetric rising and falling delays require further

information for analysis

3.2.4 System-level Use of Performance Metrics

Once each stage is characterized using synchronization point notation, stages that are com-

posed together can be assigned the four performance metric values that are needed to perform

system-level analysis: forward latency, reverse latency, cycle time, and capacity.

If the properties of neighboring stages are known at the time of analysis, every stage can

have the four metrics assigned. At times, however, parts of the circuit are designed modularly

and to be composed later with other circuit components. If this is the case, some assign-

ment of values can take place, though the response and revival times of some stages must be

maintained.

Figure 3.16 illustrates the entire process of assigning performance metrics to stages, be-

ginning with a pipelined circuit that uses the Mousetrap pipelining style. Either simulation

data or estimates using gate counts in the pipelined circuit of Figure 3.16(a) provide delay

numbers for the abstract representation of Figure 3.16(b). Finally, the forward latency, reverse

latency, and cycle time are calculated using the formulas presented in Section 3.2.3 to yield the

stages of Figure 3.16(c). In this example, stages S0 and S3 retain their respective response and

revival times so any further stages that are attached later can use this information to calculate
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(c) Pipeline stages with performance metrics

Figure 3.16: The process of assigning performance metrics to stages

performance metrics.

3.3 A Hierarchical Model for Asynchronous Systems

This thesis focuses on the set of pipelined circuits that are hierarchical. This section formally

defines hierarchical composition and introduces the kinds of hierarchical constructions that the

analysis method currently supports: sequential, parallel, conditional, and loop composition.

3.3.1 Definition of Hierarchical

For the purposes of this thesis, a given microarchitectural construct is hierarchically compos-

able if it has exactly one input port and one output port. Moreover, connections into or out of

a component other than at its unique entry and exit points will break its hierarchical nature. A
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component indicates a passive input port with an open circle, ◦, and an active output port with

closed a circle, •. These ports are connected to ports of other stages or blocks in the next level

of the hierarchy.

To be usable in the analysis method of Chapter 4, a hierarchically composable component

needs to have a defined set of inputs and outputs that can be obtained through dataflow anal-

ysis. This is analogous to performing live variable data-flow analysis, in order to find IN and

OUT sets of the components code [25]. In particular, the IN set is the set of data values that

are required as input to a component either because they are used within the component or

because they must be relayed to a successor. The OUT set of a component is the union of the

IN sets of all of its successors. These sets are used to determine the context of a component—

the set of values that need to be communicated between stages. In general, calculating the

IN and OUT sets for a system with arbitrary connections is a difficult problem. Each of the

components, however, has a formula for computing the IN and OUT sets when composed

hierarchically.

3.3.2 Supported Hierarchical Constructs

This section lists the hierarchical constructs that will be used throughout this dissertation: a

single stage, sequential constructs, parallel constructs, conditionals, and iteration. For each

construct, this section describes its behavior and illustrates its structure; this is sufficient in-

formation to understand the use of these constructs in the remainder of this dissertation. For

the reference of readers wishing to implement dataflow analysis using these components, an

equation for the IN set of each component is also listed. Given a system that has a known hi-

erarchical structure, using these equations obviates the need to run time-consuming dataflow

algorithms while ensuring that each stage receives all the necessary data and no unnecessary

data.
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S IN(S) OUT(S) 

Figure 3.17: A hierarchically composable single pipeline stage

A Single Stage

The single pipeline stage is the building block of all the hierarchical components. Figure 3.17

shows a graphical representation of a single stage. The stage has one passive port for input

and one active port for output.

The IN set of the stage, IN(S), is the set of values used in stage S in addition to the set of

values used by components connected at its output port, less the set of values that are assigned

new values by that stage (i.e. the killed values.) The out set of S can be computed only when

the next stage in the hierarchy is known, and is equivalent to the IN set of the component

connected at the output port. For reference, the equation for calculating the IN set of a single

stage is shown below:

IN(S) = use(S) ∪ out(S) ∩ ¬killed(S)

Sequential

The sequential component takes two other hierarchically composable components and at-

taches the output port of one to the input port of the other in sequence. Figure 3.18 shows

a graphical representation of the hierarchically composable sequential component. The two

blocks, c1 and c2, in the figure each represent any possible choice of hierarchical component.

c1 c2 

seq IN(seq) OUT(seq) 

Figure 3.18: A hierarchically composable sequential component

The overall behavior of this component is to first route data through component c1, and

then route the output of that computation to the input of c2. The IN set of the sequential
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component can be computed using the IN sets of the two component parts.

IN(seq) = use(c1)∪ (use(c2)∩¬killed(c1))∪ (out(seq)∩¬killed(c1)∩¬killed(c2))

Parallel

The parallel component takes two other hierarchically composable components and connects

them using fork and join stages. Figure 3.19 shows a graphical representation of the parallel

construct. The two outputs of the fork stage are attached to the respective input ports of the

sub-components, c1 and c2. Similarly, the two inputs of the join stage are attached to the

respective output ports of the sub-components.

fork join 

c1 

c2 

IN(c1) 

IN(c2) OUT(c2) 

OUT(c1) 

par 

IN(par) OUT(par) 

Figure 3.19: A hierarchically composable parallel component

Overall, the behavior of a parallel component is to route incoming data to both components

c1 and c2 simultaneously. The fork stage sends exactly one data item to c1 for each data item

it sends to c2, and the join stage waits to receive data from both c1 and c2 before it can send

data along further.

The IN set of a parallel component is a combination of the use sets of the two components

and the out set.

IN(seq) = use(c1) ∪ use(c2) ∪ (out(par) ∩ ¬kill(c1) ∩ ¬kill(c2))

Conditionals

A conditional (i.e. if/then/else ) construct can be implemented hierarchically in one of two

ways. A speculative conditional, as seen in Figure 3.20, is implemented as a parallel construct

with three branches: the two computation branches and one branch to compute the Boolean
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value. All branches operate in parallel, and both c1 and c2 produce data to send to the join

stage. The join stage has logic functionality that uses the value of the computed Boolean

to determine which values to send on and which to discard. In later chapters of this thesis,

the speculative conditional is not treated as a special case, but instead is analyzed just as any

parallel component.

IN(c1) 

IN(c2) OUT(c2) 

OUT(c1) 

fork join 

c1 

c2 

cond 

IN(cond) OUT(cond) 
B 

IN(B) 

Figure 3.20: A hierarchically composable parallel component with speculative

conditional

Conditionals can also be implemented non-speculatively. That is, the data is sent in either

the then path or the else path, but not both simultaneously. Figure 3.21, shows an implemen-

tation of a non-speculative conditional. The Boolean value must be pre-computed and passed

into the component, rather than being computed within the conditional.

IN(c1) 

IN(c2) OUT(c2) 

OUT(c1) 

split merge 

c1 

c2 

cond 

buffer 
Boolean Boolean 

IN(cond) OUT(cond) 

Figure 3.21: A hierarchically composable non-speculative conditional compo-

nent

The behavior of the conditional is to wait for the Boolean value and the data value before

sending the data to either component c1 or component c2. The Boolean value is also sent

along a buffered path with no computation to the merge stage, which uses it to select a data

value to send out.
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The IN set for a non-speculative conditional can be computed from the in sets of the two

sub-components, c1 and c2, and also includes the pre-computed Boolean value.

IN(cond) = use(c1) ∪ use(c2) ∪ (out(par) ∩ ¬(kill(c1) ∩ kill(c2))) ∪ Bool

Iteration

The loop component, which is discussed in more detail in Section 5.3.3 implements an al-

gorithmic loop. Figure 3.22 gives a graphical representation of a pipelined loop. The loop

connects a hierarchical component c1 to a loop interface that handles the entry and exit of the

data. The IN set for the loop is the same as the IN set for component c1.

if dist 

counter 

arbiter 

c1 

IN(c1) 

IN(c1) 

IN(c1) 
IN(loop) OUT(loop) 

loop 

Figure 3.22: A hierarchically composable data-dependent loop component

3.3.3 Example Usage

Algorithm for Converting High-Level Code to Hierarchical Blocks

Figure 3.23 gives an algorithm for converting high-level code that is written using hierarchi-

cal constructs into a pipelined representation that uses the hierarchical components described

in the previous section. This is a syntax-directed method that takes the parallel, sequential,

conditional, and loop constructs in the high-level code and converts them directly to the corre-

sponding pipelined component. This algorithm is presented as one possible way of generating

pipelined representations that use hierarchical components; generating the hierarchal compo-

nent representation from a high level specification is not the main focus of this thesis.
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Pipe (P : program).

begin

if P is a single assignment statement S then

output single stage(S)

else if P is the sequential block ‘‘P1; P2’’ then

compose sequential( Pipe(P1), Pipe(P2) )

else if P is the parallel block ‘‘P1 || P2’’ then

compose parallel( Pipe(P1), Pipe(P2) )

else if P is the conditional ‘‘if(B) then P1 else P2’’ then

compose conditional( Pipe(P1), Pipe(P2) )

else if P is a loop ‘‘for (n) P1’’ or ‘‘while (cond) do P1’’ then

compose loop( Pipe(P1), Pipe(cond) )

end

Figure 3.23: Our transformation algorithm

High-level Code Example

Figure 3.24 shows example high-level pseudocode that can be converted into a hierarchical

representation. It includes sequential, parallel, and loop constructs.

func compute(in context)

s1; s2;

for i = 1 to N

( s3; s4 ) || ( s5; s6 )

end

s7; s8;

return(out context)

Figure 3.24: Sample code written in a hierarchical high-level language

Parse Tree Representation

One possible parse tree for the code of Figure 3.24 is shown in Figure 3.25. This is the parse

tree generated by the algorithm of 3.23 given a left-to-right parse order. The parse tree serves

as an intermediate representation between the high-level code and a pipelined representation.
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; s1 

; 

|| 

; ; 

s4 s3 s6 s5 

s2 

s7 s8 

loop 

; 

; 

Figure 3.25: Parse tree for code in figure 3.24

Pipelined Hierarchical Component Representation

Finally, 3.26 shows the pipelined system that implements the high-level code of Figure 3.24.

The algorithm of Figure 3.23 generates the pipelined system directly from the parse tree.

Stepping through the algorithm, it first encounters a sequential operator, which generates the

pipeline stage s1 in sequence with the rest of the system. The algorithm then encounters two

more sequential operators and puts stage s2 and the loop in sequence. The algorithm then

recurses into the body of the loop, encountering and placing parallel and sequential operators

in turn. Finally, it reaches the last sequential operator, which leads to stages s7 and s8 being

placed in sequence at the end.

3.4 Modeling System Performance : Canopy Graphs

This thesis uses the canopy graph, a plot of throughput vs occupancy, to represent the per-

formance of a system. Though using these plots to describe system performance is not new

[67, 57, 31], a key insight of this thesis is that retaining the full canopy graph information for
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Figure 3.26: The result of hierarchical composition for the code of Figure 3.24

sub-circuits enables hierarchical composition of circuit performance. Detailed background

information on the canopy graph can be found in Section2.2.2.

This section first formally defines the canopy graph; this definition will be used through-

out the remainder of the thesis. It also describes the properties of canopy graphs and the

assumptions and limitations associated with using them. It then goes on to give an example of

the usefulness of calculating and storing an entire canopy graph as compared to calculating a

single value for throughput.

3.4.1 Definition and Notation for Canopy Graphs

A canopy graph is a set of throughput-occupancy pairs that represents the operating region

of a pipeline. By definition, the set of points within a canopy graph always form a convex

polygon when plotted as throughput vs occupancy. Moreover, every canopy graph can also be

defined in terms of a set of linear inequalities, which together yield a convex region.

Notation for Canopy Graphs The notation CP indicates that the operating region of

pipeline P is the set of points within CP . For sections of this thesis that discuss several

pipelines–such as P0, P1, P2–the shorthand notation C0 C1 C2 may also be used to refer to the

canopy graphs of the respective pipelines.
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Definition of Throughput The throughput of a circuit is the frequency with which the

pipeline takes in data and produces data. A pipeline that operates within as environment that

enters input and takes output at a constant rate will eventually settle into a steady rhythm

of producing and consuming data; this known as steady state operation. Unless otherwise

specified, the term throughput refers to the steady state throughput of a pipelined system,

rather than a brief spurt of high throughput or a temporary lull of low throughput.

Definition of Occupancy In general, the occupancy of a pipeline is the total number of

distinct data items that the pipeline contains. Note that if one incoming data item is forked

onto two parallel paths, the total occupancy of the pipeline does not increase, because a copy

of the same incoming data does not constitute a distinct data item. On the other hand, if a non-

speculative conditional has one data item in the then branch and another in the else branch,

these two data items are distinct and each is counted towards to the total occupancy of the

pipeline.

Within this thesis, the term occupancy refers more specifically to the steady state occu-

pancy of a pipeline. Although a snapshot of a pipeline at any discreet moment in time will

show it with an integer occupancy, the steady state occupancy is not necessarily an integer.

Consider a simple example of the linear pipeline shown in Figure 3.27, which shows four

snapshots of a pipeline under steady state operation. A circle within a stage indicates the

presence of a data item. At time 0, the pipeline contains three data items that are progressing

forward through the pipeline. One time unit later, one of the data items has left the pipeline,

but the environment has not yet provided a new one. At time 2, a new data item has entered

and one time unit later another has left. In the steady state, then, this pipeline is currently

operating at an occupancy of 2.5.

All throughput-occupancy points in the canopy graph for a pipelined circuit are valid op-

erating points, not just the ones with integral occupancies, because steady state occupancy can

be fractional.
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Figure 3.27: Snapshots of the operation of a pipeline with steady state behavior.

Definition of Operating Region The operating region of a circuit is the set of throughput-

occupancy pairs that it can potentially be induced to work at, under some set of environment

behaviors. For example, if the external environment provides inputs and receives outputs

quickly (i.e. as soon as the pipeline is ready) the throughput of a pipeline system will settle

into a steady rhythm of producing data; this is the maximum throughput of the pipeline. The

maximum value of the throughput, however, does not fully define the operating region.

If, instead, the environment maintains a fixed number of data items within the pipeline, the

system will settle into a different throughput. On the other hand, if the environment maintains

a fixed throughput by limiting incoming data, the occupancy will naturally shift. Taken as a

whole, these interactions between throughput and occupancy define the operating region of

the pipeline. The relationship between throughput and occupancy will be further explained in

Section 3.4.2.

3.4.2 Properties of Canopy Graphs

Every canopy graph shares three basic properties. All indicate that the throughput of a pipeline

depends on its occupancy. All are bounded by a set of line segments that can be defined in

terms of the type of interaction within the pipeline that limits the throughput, and all are

convex polygons.
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Figure 3.28: Canopy graph C with four limiting segments

Effects of Occupancy on Throughput

The throughput of a pipeline is affected by the total number of data items and also by the total

number of stages without a data item, or “holes”. The effect of occupancy on throughput is

described in Section 2.2.2, which gave background on the use of canopy graphs. This section

aims to generalize and give intuition about the relationship of occupancy and throughput in

pipelined systems. For reference, Figure 3.28 shows a generic canopy graph.

The throughput and occupancy of a pipeline are highly dependent on each other. In par-

ticular, the throughput may be limited by the lack of data within the system; this occurs when

the environment does not provide data as quickly as the pipeline can use it. Consider the case

of only one data item flowing through the system. The frequency with which the pipeline can

produce data when it is limited to contain only one data item is one over the total latency of the

pipeline. Adding a second data item will double the total number of data items and therefore

tend to double the throughput. This linear relationship between the data items and throughput

holds within the data limited region. In Figure 3.28, this relationship gives the shape of the

line segment labeled bforward.

The throughput can also be limited by a lack of holes, if the environment is providing data
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quickly yet not removing completed data items as fast as the system produces them. Holes,

in some ways, are the dual of data within a system. There are some key differences, however,

that lead the hole limited region to differ from the data limited region. For example, if a circuit

contains a parallel construct, the two branches of the construct will always contain the same

number of data items. The number of holes, however, is determined by the number of stages

minus the number of data items. Two parallel branches, therefore, can have a different number

of holes, even though they must always have the same number of data items. As a result, the

hole-limited region of the canopy graph can be more complex than the data-limited region as

different portions of the circuit begin to dominate at different occupancies.

Finally, the worst cycle time in the within the system system can also limit the through-

put; this the speed limit set by the pipeline itself that cannot be exceeded regardless of the

environment behavior. This occurs when neither data nor holes are lacking, but some stage or

set of stages create a cycle that limits throughput. This limit to the throughput is analogous

to previous methods that characterize circuit performance with single performance number

[29, 36, 71, 65]. When applied to a canopy graph, however, this shows not only a single

throughput number but also a range of occupancies that will allow the pipeline to reach that

maximum throughput. This occupancy or range of occupancies is known as the ideal occu-

pancy of the pipeline.

Bounded by a Set of Line Segments

Every canopy graph is bounded by a set of boundary line segments, B, which can be defined

based on the type of interaction within the pipeline that is limiting the throughput. The set of

boundary segments forms a function of throughput vs. occupancy, and the canopy graph is

the hypograph of this function, excluding points that have negative values. CB = {(k, tpt) :

k ∈ Rn ∧ k ≥ 0, tpt ∈ R ∧ tpt ≥ 0, tpt ≤ B(k)} ⊆ Rn [41]

Figure 3.28 shows an example canopy graph. The boundaries of this canopy graph consist

of the following types of limiting segments:
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1. forward segments bound the operating region in the data-limited region of the canopy

graph and are determined by the total forward latency of the system. Because the

throughput increases as a new data item enters, the slope of the forward line segments

is always positive. The line segment labeled bforward in Figure 3.28 is a typical forward

boundary segment.

2. top segments bound the operating region in the cycle limited region of the canopy graph

and are determined by the longest effective cycle time. Because the limiting cycle in

the pipeline does not depend on occupancy, the top segment always has a slope of zero.

The line segment labeled btop in Figure 3.28 is a typical top boundary segment.

3. reverse segments bound the hole-limited region and are determined by the maximum

occupancy and reverse delay of the system. Because adding an additional hole (i.e. re-

ducing the occupancy) will increase the throughput when the system is hole limited, the

slopes of the reverse segments are always negative. The line segments labeled breverse,0

and breverse,1 in Figure 3.28 represent the kind of line segments that can define the op-

erating region in the hole-limited region.

In a system that is initialized as empty, the forward segment of a canopy graph will cross

through the point at the origin. As a result, such systems will always have exactly one forward

segment and one or more reverse segments. In some cases, the top segment may be absent;

this is a degenerate case in which the top segment is a single point.

Convex Set of Points

This section states without proof that all canopy graphs for systems that are composed of the

hierarchical components that Section 3.3 describes will be convex. The conventional defini-

tion of convex is used here: for all points x and y that are in the set C, all points on a line

segment connecting x and y are also within C. [41]

Chapter 4 will later give a constructive proof of convexity by showing that each type of

52



canopy graph composition maintains this property. Note that this thesis does not claim to

prove that all pipeline operating regions can be defined by a canopy graph. In particular, no

general proof of operating region convexity is provided.

Intuitively, since the throughput first increases with increased occupancy, then levels off

with the maximum throughput, and then decreases with a decreased number of holes, this will

always define a canopy-like shape that is monotonically increasing and then monotonically

decreasing. Since both throughput and occupancy are also limited to be positive numbers, this

bounds the entire canopy graph to a convex shape.

3.4.3 Advantages of Canopy Graph Analysis

It may not be apparent that storing information about the occupancy and throughput together

will yield any advantage over simply storing the maximum throughput. From the viewpoint

of someone using a pipelined circuit as a black box, knowing the range of occupancies that

a pipeline could have as it operates at its maximum throughput seems quite irrelevant to un-

derstanding the overall performance. Input and output interfaces rarely seek to intentionally

control pipeline occupancy since operating the environment as quickly as possible will achieve

the best performance.

When analyzing entire systems of hierarchically composed components, however, storing

the canopy graph yields an advantage. In particular, the canopy graph stores enough informa-

tion to enable composing the performance information of sub-circuits to find the performance

of an entire system. The work of Lines [31] on pipelined parallel structures reveals an exam-

ple of this. Repeating the example from Section 2.2.2, note the throughput of pipeline A alone

and the throughput of pipeline B alone. Keeping these two one-dimensional values—whether

they are stored as throughput, time separation of events, or global maximum cycle time—does

not yield enough information to find the combined throughput. In this example, the reverse

segment of CA together with the forward segment of CB are both needed to compute the

throughput of the combined circuit.
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Figure 3.29: Parallel composition: a) structure, b) canopy graphs

3.4.4 Canopy Graph for a Single Stage

Chapter 4 will describe composing the canopy graphs of hierarchical components to charac-

terize the performance of entire systems. Before this can happen, however, the base case of the

canopy graph for a singe stage needs to be defined. Section 3.2 introduced performance mod-

els for individual stages and described how to derive them for different pipeline styles. These

performance metrics for an individual stage can be used together to create the canopy graph

for an individual stage, which in turn serves as the base case for system-level performance

analysis.

Figure 3.30 shows how to use the four performance metrics–forward latency, reverse la-

tency, cycle time, and throughput–to form the canopy graph for a single stage.

!"#$%&' !"(#$%)'

*'"'+,-,+./0'

/-/'"'#$1'

Figure 3.30: Canopy graph for a single pipeline stage
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3.4.5 Assumptions

This section has introduced several assumptions about pipelines and canopy graphs. To ensure

that these are not overlooked, they are listed below along with additional assumptions that hold

when using canopy graphs for performance analysis.

Steady-state Assumption

Canopy graph analysis applies when a system is in “steady state” operation. A system is said

to be in steady state when the frequency of items entering and exiting remains constant. A

pipeline may, for a short period, have a throughput and occupancy that is outside the set of

points in the canopy graph.

Empty Initialization

The pipeline is initialized to be empty; it begins without any data items present in the pipeline.

The causes every forward line segment to pass through the origin, thereby ensuring that there

is exactly one forward line segment. Though non-empty initialization is not explicitly covered

in this thesis, the analysis can be modified to accommodate non-empty initialization, since

none of the basics properties of the canopy graph described in Section 3.4.2 is violated by this

change.

Performance Model

The pipeline stages use a fixed delay model, in which each stage has the same performance

metrics regardless of the data passing through. This model is an accurate representation of

pipeline stages that use bundled-data in the handshaking protocol and can act as a predictor or

worst-case performance for stages that have data-dependent delays.
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Second-Order Effects

The delay model ignores second-order effects (e.g., the so-called Charlie and drafting ef-

fects [13, 69]). These can bring non-linearities to the boundaries of the canopy graph, which

often has the effect of rounding-off the top of the canopy graph and preventing the ideal max-

imum throughput from being reached in practice.
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Chapter 4

Performance Analysis

4.1 Introduction

This chapter presents an architectural-level approach for estimating the throughput of pipelined

asynchronous systems. Unlike many previous performance analysis methods which operate

on Petri nets[36][30][70], the proposed approach operates at a higher level of abstraction. In

particular, it uses the models for pipeline stages and system performance presented in Section

3.2. Low-level events (i.e., signal transitions, handshakes, etc.) are hidden, and only higher-

level information such as flow of data tokens and holes is used in the analysis. Using these

abstractions enables this approach to have fast running times and also to be more intuitive to

the user, while the results show that the method also gives accurate results.

This chapter presents methods for analyzing the performance of each of the hierarchical

components introduced in Section 3.3: sequential, parallel, conditional, and iteration. For

each of these hierarchical components, this chapter will give a method for determining per-

formance that relies on hierarchical composition of canopy graphs. Specifically, the result of

composing at each level of the hierarchy is always another canopy graph, which can in turn

be used at the next level of the hierarchy for further performance analysis.

This chapter also provides a four-part proof that the canopy graph property of convexity

is maintained through each hierarchical composition; this was earlier stated without proof



in Section 3.4. These proof shows that canopy graph composition for the given hierarchical

components will always produce another canopy graph. This property ensures that any system

that is a hierarchical composition of the four given components can be analyzed using the same

analysis method without any special cases.

The analysis approach presented in this chapter extends and generalizes previous work

[67] [18] [31] in pipeline performance analysis. The past work has shown that the perfor-

mance of some asynchronous pipeline constructs—rings, fork/join constructs, and sequen-

tially composed stages—can be characterized by relating throughput and occupancy using a

canopy graph. This paper generalizes the canopy graph analysis to systems with any topol-

ogy that is a hierarchical composition of a set of constructs found in high-level specifications:

sequential and parallel composition, conditional computation (“if-then-else”), and iteration

(“for” and “while” loops).

A key aspect of our work is the handling of choice and iterative loops. Choice is allowed

in the system via conditional constructs (i.e., “if-then-else”). Previous approaches that handle

choice typically are based on simulation or Markov chain analysis, and hence time-expensive.

In contrast, our approach is analytic, not iterative or based on successive approximation, and

therefore significantly faster. For loops, our approach can handle both basic single-token

loops, and also the recent approach of loop pipelining [16] which allows multiple data items

to be concurrently computed within the loop body.

The results indicate that an implementation of the algorithm described here gives through-

put estimates that agreed with Verilog simulations of the same examples to within 4%, which

indicates the validity of our analysis method. The runtime of the tool was practically negligi-

ble (less than 10 ms), even for examples with hundreds of stages.

The remainder of this chapter is organized as follows. Section 4.2 discusses previous work

in performance analysis, and focuses on the most general, Petri-net-based analysis methods

type of analysis methods. Section 4.3 presents our method, focusing on analysis of individual

composition operators, and Section 4.4 shows how to bring them together to create a complete
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hierarchical analysis method. Experimental results are interspersed throughout Sections 4.3

and 4.4. Those results are summarized, and results on additional larger examples are presented

in Section 4.5.

4.2 Previous Work

My method focuses is on a special class of systems that typically result when high-level block-

structured language specifications are compiled into pipelined implementations. It is intended

to be integrated into a syntax-directed design flow to give fast performance estimates for

system-level optimization. Although there has been much previous work on performance

analysis of asynchronous systems, it does not adequately address the types of of systems that

this dissertation targets.

While simulation-based methods [9][37][70] give the most accurate performance results

for a given input dataset, they are too slow to be used as part of an optimization scheme in

which the analysis step may need to be run repeatedly.

Other methods [30][36][71] use marked graph representations and Markov analysis to

give bounds on the time separation of events. While these methods are generally faster than

simulation based methods, they often suffer a state space explosion problem that makes them

impractical for use on larger systems[71][30]. Work by McGee [36] avoids the state explosion

problem by exploiting periodicity, thereby allowing the technique to work on larger examples.

However, it is limited to relatively small systems in practice: run times on examples with as

few as 12 pipeline stages are prohibitively high (i.e. on the order of hours) for use in a system

optimization loop.

Previous analytic solutions target only a limited set of pipelined architectures. Williams

and Horowitz [67] give an analytical, graph-based method for predicting the throughput of a

computational ring. Greenstreet [18] analyzes rings with exponential delays, and Pang [44]

extends this work to asynchronous mesh structures. My work significantly extends the class
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of architectures handled by analytic methods.

Much previous work deals with models that have fixed or min-max bounded delays.

Hulgaard[22] and Chakraborty [10] both give minimum and maximum bounds on time separa-

tion of events, using unfolding techniques. The unfolding methods used make the approaches

unwieldy for large systems and also depend on the system being deterministic, thereby pre-

cluding choice in the system models.

McGee[35] also uses minimum and maximum delays, but avoids unfolding by exploiting

the periodicity of asynchronous systems, thereby allowing it to run efficiently on larger mod-

els. It analyzes marked-graph system representations in polynomial time and gives min-max

bounds of the time separation of events. Although some of these high-level constructs could

be modeled using marked graphs, choice cannot be modeled. In contrast, my analysis method

includes choice in the form of pipelined conditionals and data-dependent loops.

In summary, no previous work adequately addresses the challenges of analyzing large,

data-flow systems with choice.

4.3 Analysis Method

This method for estimating the throughput of pipelined systems leverages the hierarchy of the

original high-level code specification to allow analysis to take place in a single pass. Specifi-

cally, the algorithm first finds the throughput of the innermost nested constructs using canopy

graph based analysis. Next, it repeatedly composes the resulting canopy graphs to find the

throughput of the next higher level in the hierarchy.

This section presents four composition functions for use in the hierarchical algorithm that

handle the following commonly used high-level constructs: sequential composition, parallel

composition, conditional branches, and algorithmic loops. These correspond to the set of

hierarchical components described in Section 3. Each of these functions takes as input one or

more canopy graphs and computes the canopy graph of the composed pipeline. Each function
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Figure 4.1: A pipelined parallel construct

maintains the convex nature of the canopy graph.

Although the use of parallel and sequential constructs was presented in past work [31],

as described in Section 2.2.2, this chapter presents them along with additional formalism,

examples, and comparisons to Verilog simulation. This section also aims to give some in-

tuition about the phenomenon of slack mismatch. Slack matching—i.e., balancing pipeline

branches by adding buffer stages—has been shown to have a significant effect on the through-

put of asynchronous pipelined systems by reducing stalling in shorter pipeline branches [4].

This chapter does not present a comprehensive approach for slack matching, but instead gives

examples of slack mismatch that help demonstrate the way pipeline bottlenecks form from

interactions between canopy graphs.

4.3.1 Parallel Composition

Parallel constructs are used to specify fork-join concurrency in a system. In addition, con-

ditional (i.e. if/then/else) computation is often implemented using parallel constructs instead

of true choice; both the ‘then’ and the ‘else’ paths are computed in parallel and the correct

result is chosen by the join stage. Figure 4.1 shows a pipeline with fork-join concurrency. The

ellipses indicate that some number of stages are present, without having to show each stage

individually.
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Figure 4.2: A parallel construct from CORDIC

Canopy Graph Method

Given two pipelines—each with its own canopy graph—the canopy graph of the two pipelines

composed in parallel can be computed. This process involves canopy graph intersection; the

new canopy graph is the area under both original canopy graphs. Intuitively, intersecting

the two canopy graphs by plotting them on the same throughput vs. occupancy graph is

meaningful because the two paths must have the same steady state occupancy and throughput.

That is, when one item enters branch0 a corresponding item always enters branch1, and when

an item leaves branch0 a corresponding item always leaves branch1. This synchronization of

inputs and outputs between the two pipelines locks their throughput and occupancy together.

Looking at a specific example, the pipeline shown in Figure 4.2 represents part of a

CORDIC rotation algorithm for computing trigonometric functions. The canopy graphs for

its individual branches are shown in Figure 4.3. The canopy graph for the two branches com-

posed in parallel is the area under both canopy graphs. To show that the predicted canopy

graph is accurate, we also include data points from Verilog simulation of the system in Figure

4.3.

Slack Mismatch

Slack mismatch in a parallel construct can cause the overall maximum throughput in Cpar

to be less than that in either C0 or C1 due to stalling. Specifically, stalls occur when one of

the paths becomes full, thereby preventing data from entering either path. Our method for
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Figure 4.3: Canopy graph composition : fork/join
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Figure 4.4: Slack mismatch example

estimating throughput implicitly handles slack mismatch. When the parallel construct is not

slack matched, the peak value of the intersection region will be below the peaks of the canopy

graphs of the two branches.

As an example, consider again the pipelined system in Figure 4.2, this time with the last

eight buffer stages removed from branch1, changing the total number of stages to eight. The

canopy graphs for the two branches are shown in Figure 4.4. Note that the new canopy graph

produced has a lower throughput than either of the original canopy graphs, indicating slack

mismatch. Data from Verilog simulations, shown in the same graph, verifies that this parallel

construct exhibits degraded performance due to slack mismatch.
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Convexity Property

This section repeats a well-known proof [41] about the convexity of the intersection of convex

polygons, this time focusing on its application to the canopy graph intersection for character-

izing the performance of a parallel construct.

This proof is by contradiction and uses the definition of convexity presented in Section

3.4. Let points a and b represent any two points in C0 ∩ C1. By the definition of intersection,

both a and b belong to set C0 and C1. If C0 ∩ C1 were not convex, there would be an a and b

such that some point c on the line segment ab that does not belong to C0 and C1. This would

mean that c does not belong to one of the two sets C0 or C1. For whichever set c does not

belong to, this is a contradiction of that set’s convexity, contrary to the assumption that both

input canopy graphs C0 and C1 are themselves convex.

4.3.2 Sequential Composition

When two subsystems, p0 and p1, are composed sequentially, their throughput is constrained

to be the same and the occupancy of the composed system is simply the sum of the individ-

ual occupancies. The steady state throughput must be the same because any data item that

leaves p0 must subsequently enter p1, based on the definition of sequential composition. The

occupancy of the system as a whole is the sum of the individual occupancies because, based

our the definition of occupancy given in Section 3.4, each data item in p0 and p1 is distinct

and counted towards the total number of data items. This relationship between throughput

and occupancy of the two pipelines yields the following relationship for the combined canopy

graph. In particular, a throughput-occupancy point (tpt, k) is a member of set Cseq if there

exists a point (tpt0, k0) ∈ C0 and a point (tpt1, k1) ∈ C1 such that tpt0 = tpt1 = tpt and

k0 +k1 = k. For conciseness, the + operator designates that two canopy graphs are composed

in sequence.

In practice, the canopy graph for the composition of two pipelines is computed as follows:

for each throughput value that is attainable in both systems, sum the ranges of allowed occu-
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Figure 4.5: Sequential composition of a parallel construct

pancies for each subsystem at that throughput. This gives the allowed range of occupancies

for the sequentially composed construct at each throughput.

Figure 4.5 shows an example pipeline with one sequential construct composed in sequence

with a parallel construct. The canopy graphs for the stages in series and the parallel construct

are shown together in Figure 4.6. To demonstrate the method for sequential composition, the

figure indicates that points k1, k2, and k4 and points k3 and k5 respectively have the same

throughput for both canopy graphs. The canopy graph for the sequentially composed system

is shown in Figure 4.7. The figure indicates the points on the final canopy graph represent

additions of occupancies in the original two canopy graphs. In addition, the throughput-

occupancy points displayed in the figure were obtained through Verilog simulation; these

closely follow the shape of the predicted graph.

Convexity Property

This section shows that the sequential composition of two canopy graphs maintains the canopy

graph convexity property. Based on the definition of convexity, the canopy graph C0 + C1 is

convex if for any two points, a and b, that are a members of C0 +C1, all points that lie the line

segment between a and b are also members of C0 + C1.

Let the points a and b represent any two members of the set C0 + C1. Based on the

definition of the + operator for canopy graphs, there must be some point a0 in set C0 and a1

in set C1 for which a0.tpt = a1.tpt = a.tpt and a0.k + a1.k = a.k. A similar statement is
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Figure 4.8: A pipelined choice construct

true for the point b. Since sets C0 and C1 are canopy graphs, they are themselves convex.

This means that all points on line segments a0b0 and a1b1 must be included in sets C0andC1

respectively. The horizontal sum of these two line segments is line segment ab, which means

that all points in line segment ab are in C0 + C1.

4.3.3 Conditional Constructs

Canopy graph analysis can also estimate the throughput of pipelined conditionals that are

implemented with choice. Such conditionals implement if/then/else blocks by waiting for the

Boolean decision value to be ready before beginning computation on one of two paths. Figure

4.8 shows an example of a pipelined conditional. Both the split and merge stages receive the

Boolean input, to ensure that ordering is preserved as items exit.

For clarity of presentation, Section 4.3.3 uses two simplifying assumptions that will be

relaxed in subsequent sections: 1) the pipeline is slack matched, and 2) the values of the

Boolean data are not clustered (i.e., at a probability of 0.5, the Boolean values arrive in this

regular pattern: 0, 1, 0, 1...). Sections 4.3.3 and 4.3.3 relax these restrictions and handle slack

mismatch and clustering, respectively.

Canopy Graph Method

Let us first develop a relation between the throughputs and occupancies of the two branches of

a conditional. Consider a conditional that has probability p0 of branch0 being chosen and p1 of

branch1 being chosen. For every item that enters (or leaves) branch0, p1

p0
items enter (or leave)
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Figure 4.9: A conditional from CRC

branch1. For example, at a probability of p0 = 0.2, for every data item that enters branch0,

4 items enter branch1. Further, the data items must preserve their original order upon leaving

the conditional. Therefore, under steady-state operation, the occupancies of the two branches,

k0 and k1, must be proportional to their respective branch probabilities: k0

p0
= k1

p1
. Similarly,

the branch throughputs are proportional to branch probabilities: tpt0
p0

= tpt1
p1

.

These equations tell us that the steady-state behaviors of the two branches are constrained

such that their occupancies and throughputs, when divided by their respective branch prob-

abilities, are equal. This result suggests that the canopy graph of the combined system can

be computed by intersecting the canopy graphs of the two branches after appropriate scaling.

Specifically, the canopy graph for each branch is scaled so both its axes are divided by the

respective branch probability. The area underneath the intersection of the two scaled canopy

graphs represents the feasible throughput of the conditional construct.

Figure 4.9 is an example of a conditional found within the cyclic redundancy check (CRC)

algorithm. Suppose it is given that, for this conditional, p0 = 0.7 and p1 = 0.3. Figure 4.10

show the canopy graphs for branch0 and branch1 scaled by 1
0.7

and 1
0.3

, respectively. The

intersection of the two scaled graphs shows that the conditional has an overall maximum

throughput of 0.36 and a maximum occupancy of 23. Interestingly, these throughput and

occupancy values are higher than either of the branches on its own, because the two branches

operate on distinct data sets in parallel. Figure 4.10 also shows data points from a Verilog

simulation, which agree with the results of our analysis.

In general, the throughput of a conditional is dependent on the branch probabilities. The
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Figure 4.10: Canopy graph for CRC at p1 = 0.3

maximum throughput of each scaled canopy graph limits the throughput of the overall system,

as given by:

tptmax = min

(

tpt0
p0

,
tpt1
p1

)

(4.1)

Applying this equation to the example from Figure 4.9 yields the graph in Figure 4.11, which

shows the maximum throughput versus the probability of choosing branch1. Data points from

Verilog simulation are also shown on this graph, as a validation of Equation 4.1.
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������

�
Figure 4.11: Throughput depends on probability

The Effects of Slack Mismatch

Slack mismatch occurs in conditionals when one branch has too few buffer stages, which

causes it to become full and cause stalls. The amount of decrease in throughput due to slack
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Figure 4.12: Canopy graph for CRC at p1 = 0.3 with slack mismatch

mismatch depends on the probability of each branch being chosen. In particular, as the prob-

ability of choosing a branch increases, the frequency of data entering that branch increases,

thereby increasing the likelihood that it will become full and cause stalls.

A slack mismatch between the two branches of a conditional can be readily determined by

inspecting their canopy graphs. As an illustration, let us return to the example of Figure 4.9,

with the last four stages removed from branch0, thereby decreasing its total number of stages

to 12. Scaling the canopy graphs based on the probabilities p0 = 0.7 and p1 = 0.3 results

in the graph of Figure 4.12. The maximum throughput at which the two graphs intersect is

actually lower than the throughput of the slower branch, which indicates that slack mismatch

is introducing stalling in the system. In particular, stalling occurs when branch0 becomes full

and prevents data from entering branch1. The graph also shows data points from simulation,

thereby demonstrating that the throughput decreases according to our predictions.

Figure 4.13 shows the overall throughput of the slack mismatched version of the pipeline

of Figure 4.9 (i.e., four stages removed from branch0) as a function of the branch probability.

For comparison, refer to Figure 4.11 again for the throughput for the slack matched version.

The comparison shows that, as expected, throughput degradation occurs when branch0 is

likely to be chosen, and no throughput degradation occurs when branch1 is likely to be cho-

sen.1

1Notice that in the neighborhood of p1 = 0 our analysis deviates slightly from the simulation results; in this
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Figure 4.13: Slack mismatch leads to throughput degradation

Clustering of Boolean Values

This section introduces a more powerful modeling of choice that considers correlation be-

tween successive Boolean outcomes, which is captured in a metric termed the “cluster fac-

tor”. Intuitively, the clustering factor quantifies the average run lengths of 1’s and 0’s in a

sequence, normalized with respect to the base case given in Section 4.3.3 This quantity ef-

fectively models correlation between successive Boolean outcomes. A clustering factor of 1

indicates a negative correlation, which is the simple case considered in the previous sections.

A high cluster factor indicates a positive correlation, in which long runs of 1’s and 0’s may

occur. For zero correlation (i.e., independent outcomes) the clustering factor is related to the

probability. Specifically, the expected run length of ones for random, uncorrelated data is

E(run1) = 1/p0.2

During circuit operation, clustering prevents throughput from reaching the maximum value

predicted using the canopy graph method described in Section 4.3.3. The effective maximum

occupancy also decreases, since clustered Boolean values lead to uneven filling of the two

branches. However, the slopes of the canopy graph lines, which are determined by the for-

ward and reverse latencies of the pipelines, do not change due to clustering.

region, the steady-state assumption does not hold.

2Expected value is found by summing this infinite geometric series
∑

∞

n=0
pn

1
=

1

1−p1
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The reduced maximum throughput can be written as a modified version of maximum

throughput Equation 4.1, with the cluster factor now included. This equation as written con-

siders the situation in which the throughput of branch0 is higher. In this Equation, run is the

run length based on probability and cluster is an estimate for the clustering factor, based on

knowledge of typical input data sets.

tptmax =
cluster · (run0 + 1)

cluster · run0 · 1
tpt0

+ cluster − 1 · 1
tpt1

(4.2)

Applying this equation to the example of Figure 4.9 and assuming random, uncorrelated

Boolean values, the solid line in Figure 4.14 shows how the maximum throughput varies with

the probability of choosing branch1. For comparison, it also shows the maximum throughput

with a clustering factor of one (i.e., completely anti-correlated Boolean values). In addition,

the figure shows data from Verilog simulation, which is close to our predicted curve.

Clustering also affects the average maximum occupancy of the pipeline. Simple statistical

methods determine the expected maximum occupancy of a pipeline with clustering—the ex-

pected value is found by summing the probability of each occupancy occurring multiplied by

that occupancy.

Returning to the example of Figure 4.9, the canopy graph of the circuit is affected by

clustering. If p1 = 0.3 and the Boolean values are random and uncorrelated, Equation 4.2

predicts that clustering will reduce the throughput to 0.30. Figure 4.15 shows how the canopy

graph will be cut off at the value 0.30. In this example, the expected maximum occupancy

due to clustering is 22.75, which is only slightly lower than the non-clustered maximum occu-

pancy. Notice that the slopes of the boundary lines remain the same, although the throughput

is limited by the predicted value of 0.30.

Convexity Property

To prove that the canopy graph for a conditional is convex, it is sufficient to prove that the

scaling operation introduced in this section preserves convexity. Once the canopy is scaled,
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Figure 4.14: Clustering decreases throughput

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Occupancy

T
h

ro
u

g
h

tp
u

t

Figure 4.15: Clustering decreases max throughput
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the next operation is intersection, which has already been shown to preserve convexity in

Section 4.3.1. If the unscaled canopy graph is convex, then all points along a line between any

two points in a and b will be elements of that set. Scaling the canopy graph is the equivalent to

multiplying all points by the same constant multiple; this will not affect the linear relationship

between a, b, and the points in between.

4.3.4 Iterative Constructs

Loops in high level code are implemented as rings in hardware. Although the classic work by

Williams [67] studied the performance of rings, it finds the throughput within the ring whereas

our technique finds the throughput of items leaving a ring based on some condition.

Traditional hardware design methods typically allow only a single token inside a ring.

This limits the performance, but avoids the complications of allowing multiple data tokens

within the ring. As will be explained further in Section 5.3.3, my work presents an approach

to implementing for and while loops that operate on multiple tokens concurrently. This loop

pipelining technique handles the flow of control and data dependency challenges created by

allowing multiple tokens in the ring by including a special ring interface and duplicating data

values within the ring. A monitor in the interface prevents overfilling of the loop by limiting

its occupancy to some optimal value, k.

To analyze the performance of a loop, begin with the a canopy graph for the body of the

loop. For traditionally implemented loops that contain only one token, cut the canopy graph

off at occupancy 1. Similarly, for a pipelined loop with a maximum occupancy of k, cut

the canopy graph off at k. Since the canopy graph of an algorithmic loop should report the

rate at which tokens leave the ring, rather than the frequency of the data within the ring, the

canopy graph is simply scaled down by the number of iterations each token undergoes. If

the iteration count is variable or data-dependent, our approach approximates the throughput

using the expected number of iterations. The model for expected occupancy is that a weighted

coin-toss takes place at the beginning of each iteration.
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Figure 4.17: Canopy graph analysis for GCD

As an example, Figure 4.16 shows a pipeline ring that implements an iterative algorithm

for finding the greatest common divisor of two numbers. The ideal occupancy of this ring is

eight, so the interface will allow data items into the ring concurrently. The probability of a

token leaving after completing an iteration is 0.3, which means that the expected value of the

iteration count is 3.33. For the loop body, the same process given in Section 4.3.1 produces

to produces the canopy graph shown in Figure 4.17. The canopy graph is scaled down by the

expected iteration count, 3.33, and cut off at the max occupancy, eight. Figure 4.17 shows

the resulting canopy graph. The figure also shows data from Verilog simulation, which follow

closely with our predicted canopy graph.
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Convexity Property

As discussed in Section 4.3.3, convexity is maintained under scaling. The canopy undergoes

one further operation, which is cutting it off at some occupancy. This can be cast as the

intersection of two convex sets. Construct a set of points that is bounded by a square set of

points that has the domain from zero to the ideal occupancy of the ring, and range from zero

to the maximum throughput of the ring. Intersecting this new convex polygon with the canopy

graph will effectively cut off the occupancy at the ideal occupancy, and—since the intersection

of two complex polygons is itself convex—the result of this intersection must be convex.

4.4 Algorithm Description

CanopyGraph analyze( tree t )

if( currentNode == parallel )

return parallel(analyze(t.leftchild), analyze(t.rightchild))

if( currentNode == if )

return conditional(analyze(t.leftchild), analyze(t.rightchild))

if( currentNode == loop )

return loopize(analyze(t.leftchild), analyze(t.rightchild))

if( currentNode == sequence )

return sequence(analyze(t.leftchild), analyze(t.rightchild))

if( currentNode == leafnode )

return CanopyGraph( Lf, Lr )

Figure 4.18: Our analysis algorithm

The composition functions described in Section 4.3 come together to form a complete

algorithm for finding the throughput of a hierarchically composed pipelined system. Figure

4.18 the shows pseudocode for the algorithm, which generates the canopy graph for the whole

system by traversing the hierarchy.

The algorithm takes as input the description of a pipelined system in the form of a syntax

tree. The tree represents the hierarchy of the high-level description, and is also annotated

to indicate the delays of the stages in the pipelined implementation. In addition to the sys-

tem representation, the algorithm must also have access to the branching probability for each
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if/then/else construct and while loop conditional. The algorithm proceeds much like expres-

sion evaluation: two throughput expressions (i.e.canopy graphs) are combined based on their

parent operator.

Diffeq(x, y, dx, u, a)

1 while ( x < a )

2 (x1 := x+dx;

3 t1 := u*x;

4 t2 := t1 + y)

||
5 (t3 := 3*dx;

6 t5 := u*dx;

7 y1 := y+5)

8 t4 := t2*t3;

9 u1 := u - t4

<x1, u1, y1> = <x, u, y>

Figure 4.19: Differential equation solver

As an example, Figure 4.19 shows the high-level code for an iterative differential equation

solver, which has been parallelized. Figure 4.21 shows one possible pipelined representation

and Figure 4.20 shows an abstract syntax tree representation. The abstract syntax tree is

annotated with the pipeline stage it corresponds to, which indicates the stages forward and

reverse latency. The analysis of this example serves as an example of how the algorithm

exploits this hierarchical structure to find the canopy graph for the entire system in a single

pass. At each step shown, figures plot the data from Verilog simulation as points together with

the predicted canopy graph; this indicates the accuracy of our predictions at each level of the

hierarchy.

The algorithm traverses the tree; when it encounters the parallel operator, the algorithm

finds the two canopy graphs of the two branches {s2, s3, s4} and {s5, s6, s7}. These two

canopy graphs are shown together in Figure 4.22. Since the composition algorithm for parallel

structures, given in Section 4.3.1, calls for intersection of canopy graphs, the algorithm creates

a new canopy graph that is the intersection of these two. This graph is then composed in

sequence with the remaining stages, using the algorithm given in Section 4.3.2, to give the

77



�
� �� ��� ��

Figure 4.20: Abstract syntax tree

4/1 1/1

4/1

10/1 10/1 4/1

1/1

4/110/1

10/1 4/1
while

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

branch0

branch1

Figure 4.21: Pipelined implementation of Diffeq

78



Predicted

Simulated

branch
0

branch
1

T
h
ro
u
g
h
p
u
t

Occupancy

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 4.22: Parallel composition of branch0 and branch1

0 1 2 3 4 5 6 7

0.00

0.02

0.04

0.06

0.08

Occupancy

T
h

ro
u

g
h

tp
u

t

Figure 4.23: Canopy graph for loop body

graph shown in Figure 4.23. Finally, the method for finding the canopy graph of a loop, given

in Section 4.3.4, produces the canopy graph shown in Figure 4.24. In this way, our algorithm

can handle any system with arbitrary levels of nesting, by working from the bottom up.

4.5 Results

We have implemented the algorithm given in Section 4.4 in Java, and run it on several exam-

ples using a Pentium 4 2.4GHz CPU. Section 4.3 gave several examples of our method for

predicting the throughput of pipelined architectures, many of which were part of larger algo-

rithms. In this section, we summarize those results, and also add results for larger systems.
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Figure 4.24: Canopy graph for pipelined loop

We also add two new examples. Raytracing—a pipelined implementation of a ray-sphere

intersection algorithm—performs an iterative (i.e.loop pipelined) square root based on some

data-dependent condition. The other new example is multiplier that does a shift instead of a

full multiply if the multiplicand is a power of 2. The seven examples and the type of hierar-

chical composition they use are the following: 1) CORDIC: parallel and sequential 2) CRC:

conditional and sequential 3) GCD: nested parallel and loop 4) Sequential composition from

Figure 4.5: parallel, sequential 5) DIFFEQ: parallel, sequential, and loop 6) MULT: parallel

7) Raytracing: Conditional with nested loop

Table 4.1 compares the throughput found through switch-level Verilog simulation to the

throughput predicted by our method and gives the percent error. In the simulation, each in-

dividual pipeline stage is modeled at the gate level, and delays are assigned based on the

complexity of the logic present. Delays are normalized such that an individual stage has a for-

ward latency of 1; stages with more complex logic are modeled with commensurately higher

delays.

In the table, the throughput of CORDIC and CRC examples are reported for a section of

the pipeline, and the throughput for the entire system. For CRC, all results are shown for

p1 = .3. We find that our predictions are within 2.2% of simulated results for all examples.

Most notably, our method accurately predicts the maximum throughput of the large, complex
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raytracing example with negligible error. The largest error occurs in the sequential example

from Section 4.3.2, although the estimate is still quite accurate, as shown in Figure 4.7.

In addition to reporting the accuracy of our method, Table 4.1 also lists the size of each

example in number of pipeline stages and the approximate run time. Even for large examples,

the run time never exceeds 10 ms.

These results indicate that our method is sufficiently accurate and fast for use within a

system-level optimization loop.

4.6 Conclusion

This chapter presented a fast, accurate analytic method for estimating the throughput of

pipelined asynchronous systems. The analysis method derives its speed from the observa-

tion that many circuits have a naturally hierarchical structure consisting of a hierarchical

composition of sequential constructs, parallel (fork-join) constructs, conditional constructs

(if-then-else), and iteration (pipelined ‘for’ and ‘while’ loops). This class of systems is ex-

pressive enough that we could apply our technique to pipelined implementations of several

non-trivial examples, yet predictable enough in structure and operation that an analytic (rather

than simulation-based) analysis method is possible. The analysis method was accurate to

within 2̃% for the examples presented in this chapter.
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Table 4.1: Predicted throughput compared to simulation

Example Simulated Predicted Size Time %error

CORDIC cond 0.167 0.167 31 ∼ 10 ms ∼0

CORDIC cond mis 0.0909 0.0909 23 ∼ 10 ms ∼0

CORDIC full 0.0909 0.0909 44 ∼ 10 ms ∼0

CRC cond 0.352 0.357 27 ∼ 10 ms 1.4

CRC cond mis 0.292 0.286 23 ∼ 10 ms 2.0

CRC cond cluster 0.305 0.300 27 ∼ 10 ms 1.6

CRC full 0.333 0.333 67 ∼ 10 ms ∼0

DIFFEQ 0.0183 0.0182 10 ∼ 0 ms .5

GCD 0.0490 0.0500 21 ∼ 10 ms 2.0

raytracing .222 .222 168 ∼ 10 ms ∼0

MULT 0.0387 0.0384 13 ∼ 0 ms 1.9

sequential 0.110 0.107 109 ∼ 10 ms 2.2
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Chapter 5

Optimization and Trade-off Exploration

5.1 Introduction

Optimization and design space exploration are critical to any design flow that aims at produc-

ing high-performance systems. In the absence of a fast automated optimization tool, a designer

typically must contend with costly simulation to search for bottlenecks, a time-consuming and

error-prone procedure that can make the typical design-analyze-optimize cycle in the design

flow quite inefficient. The analysis method presented in Chapter 4 is fast and accurate enough

to be used repeatedly within the optimization or design space exploration portion of a toolflow.

Even with the full analysis information, however, optimization is not trivial. The component

or set of components that limit the speed of the system, also known as the system bottle-

necks, can be difficult to find and correct, because their causes are diverse and often subtle.

Merely finding local cycle times or analyzing canopy graphs of sub-systems individually is

not sufficient, because this will not always account for complex system-level interactions (e.g.,

systems with choice, feedback due to algorithmic loops, etc.).

For an optimization system to work well with the canopy-graph-based analysis method,

optimizing transforms must first be characterized in terms of their effects on the canopy

graphs. Section 5.3 lists and categorizes a set of optimizing transformations and describes

qualitatively how each will affect the canopy graph of a circuit. In addition, this section goes



into detail on two of the optimizations: loop unrolling and buffer insertion. In particular, It

introduces loop pipelining, which is a new microarchitectural optimization for reducing the

bottleneck caused by algorithmic loops, and discusses slack matching in depth.

The key to fast optimization is to keep and use, rather than discard, all performance in-

formation generated during intermediate steps of the analysis approach. Bottleneck detection

consists of pinpointing the precise portion of the architecture that is limiting the achievable

throughput. Once a bottleneck has been found, our technique systematically assists the de-

signer to apply certain structural transformations to alleviate the bottleneck. Section 5.4 ex-

plains my approach for using all the information generated during one analysis pass to locate

the stage or sets of stages that cause a bottleneck in the system.

Once the bottlenecks have been identified, the difficult task of choosing how to remove

them remains. Section 5.5 details two methods for removing bottlenecks once they have been

identified. The first is a user-guided method, which suggests optimizations using information

from the analysis method but relies on the user to choose and perform the optimizations. It can

be seen as a way for a designer to gain intuition and get expert advise about the best way to

complete hand optimization. The second method is automated by casting the problem as one

of constrained optimization: reach some throughput goal while minimizing some secondary

criteria such as energy or area.

5.2 Background on Optimizing Asynchronous Systems

5.2.1 Previous Work on Optimizing Transformations

Buffer Insertion

The slack matching methods presented by Beerel [3] and Prakash [47] give provably opti-

mal solutions, both in terms of fewest buffer stages added and maximum throughput attained.

However, since these methods are based on mixed integer linear programming (MILP) for-
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mulations, they can be slow for large examples. Moreover, neither of these methods handles

architectures with conditional computation.

The work by Venkataramani [66] does handle conditional execution in the form of con-

ditional Petri nets. The method is simulation-based and requires a gate level circuit as input.

The strategy is to simulate repeatedly to find bottlenecks, adding buffer stages each time. It

is not proven to find the optimal solution, either in terms of fewest buffer stages or maximum

throughput attained.

Loop Pipelining

Several approaches in hardware design have attempted to optimize iterative computation.

However, their main objective is to reduce the latency of the loop, as opposed to improving

its throughput. One such approach is the CASH compiler by Budiu and Goldstein [8], which

translates an ANSI C program into data-flow hardware. A different approach by Theobald

and Nowick [63] targets generation of distributed asynchronous control from control-data-

flow graphs, with the objective of optimizing communication between the controllers, and

between a controller and its associated datapath object.

The above approaches offer very limited throughput benefit, since they are mainly targeted

to improving a loop’s latency. In particular, the optimizations introduced by these approaches

focus on shaving off some delays from each loop iteration, and offer modest concurrency

increases: the tail-end of an iteration for a given data item is allowed to overlap somewhat

with the start of that same item’s next iteration, or the tail-end of an item’s last iteration

overlaps somewhat the start of the next item’s first iteration. Neither approach allows multiple

distinct data items to be truly processed concurrently. Hence, the throughput benefits of these

approaches are modest, and nowhere in the 2–10x range targeted by loop pipelining.

Like loop pipelining approach, work by Kapasi, Dally et al. [24] targets efficient imple-

mentation of stream algorithms. However, it does not address the critical challenge of pipelin-

ing loops and only addresses the problems related to conditional branches.
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5.2.2 Previous Work on Optimization and Bottleneck Removal

While there has been much work on asynchronous performance analysis, the problem of bot-

tleneck analysis has so far not been adequately addressed. A recent approach by Venkatara-

mani et al. [65] introduces the notion of a global critical path in a system, and uses simulation

and profiling to help the designer identify targets for optimization. Although the approach can

be useful in identifying bottlenecks, its reliance on simulation can make it time-consuming.

Other prior approaches do not directly target bottleneck identification, but focus instead

on finding a system’s peak achievable throughput. These include (i) simulation-based ap-

proaches [9, 37, 70]; (ii) Markov analysis methods [29, 36, 71]; (iii) methods based on graph

unfolding [22, 10]; and (iv) closed-form analytical solutions [67, 18, 44, 31]. The simulation,

Markov analysis, and graph unfolding methods all tend to require long running times. The

closed-form solutions, on the other hand, only apply to a limited set of architectures (e.g.,

rings, meshes, linear and simple fork-join pipelines). Recently, a graph-theoretic approach

was proposed that avoids graph unfolding to achieve quite fast runtimes [35]. However, all

of the aforementioned approaches that are not simulation-based cannot handle systems with

choice, thereby limiting their applicability to systems without conditionals or data-dependent

loops. Simulation-based approaches generally are able to handle choice, but require long

runtimes.

5.3 Transformations for Bottleneck Alleviation

This section describes optimizing transforms in terms of their effect on the canopy graph of the

system as a whole and introduces the notion of a TRIC: a TRansformation for Increasing the

Canopy. A circuit transformation is can be classified as a TRIC if it has the potential to expand

the canopy in some way (i.e.the transformation increases the throughput at some occupancy.)

Although many of the TRICs described in this section are in common use, this is the first time

that their effects on system canopy graphs has been described. Subsection 5.3.1 details eight
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different TRICs that can be used in system optimization. In addition, this section presents

novel work on two kinds of TRICS: buffer insertion and loop unrolling. Subsection 5.3.2

describes an automated method for applying the buffer insertion TRIC to improve throughput

in a circuit while Subsection 5.3.3 addresses the challenges of loop pipelining and describes

the benefits of loop unrolling.

5.3.1 Bag of TRICS

Each of these TRICs raises the throughput for some range of occupancies. Although many

of these TRICs has been used before, they have not previously been analyzed relative to their

effects on the canopy graph. This section describes how each TRIC affects the canopy graph

and lists the type of hierarchical component that each TRIC can apply to. This list is not

intended to be exhaustive but rather illustrative of describing common optimization techniques

in terms of their effects on the canopy graph.

Coalescing stages

Two adjacent, sequential pipeline stages can be grouped together into one stage, thereby re-

ducing the total forward latency by removing some latches from the forward path. As in-

dicated in Figure 5.1, the reduced forward latency leads to expansion of the canopy graph

to alleviate Type I bottlenecks. However, this transformation may also lead to an increased

maximum cycle time and also reduces the total effective occupancy. Additionally, this TRIC

applies only to adjacent leaf nodes composed in sequence.
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Figure 5.1: Coalescing
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Parallelization

As described in [20], sequential computations can sometimes be changed to occur in parallel,

based on the dependency graph of the computations. As indicated in Figure 5.2, this reduces

the forward latency by splitting one sequential path into two parallel paths. However, it also

reduces the occupancy of the system. Additionally, this TRIC applies only to nodes that are

currently composed in series and has the further restriction that the data dependencies between

the nodes must allow for parallel execution.

!""#$%&"'()
*
+,
#
-
*
$
#
.(

Figure 5.2: Parallelization

Stage Splitting

Stage splitting increases the level of pipelining by taking a high-latency stage and splitting it

into two, lower latency stages. As indicated in Figure 5.3 this leads to an increase in through-

put due to the decreased cycle time of the lower latency stages. It also increases the occupancy

of the system by adding a new stage. However, it also increase the forward latency because the

stage overhead (i.e. latches and stage controllers) increases due to the fine-grained pipelining.

Additionally, this TRIC applies only to leaf nodes.
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Figure 5.3: Stage Splitting

88



Loop Pipelining

Loop pipelining is a method for breaking up a high-latency loop, which essentially acts as a

single slow stage within the system. The details of the technique of loop pipelining are a con-

tribution of this thesis, and will be further detailed in Subsection 5.3.3. Although the details

are more complex than stage splitting, the result is similar and the illustration of Figure 5.3

that was used for stage splitting applies for loop pipelining as well. In particular, loop pipelin-

ing will worsen the forward latency of the loop improving the throughput and increasing the

maximum occupancy. This TRIC, of course, applies only to loop nodes.

Duplication with Wagging

A wagging buffer [5] improves throughput by sending data alternatingly along one path and

then the other. A node and all its children must be fully duplicated in order to apply the wag-

ging buffer method. As illustrated in Figure 5.4, applying this TRIC increases the throughput

as well as the occupancy. It has a second order effect of increasing the forward latency due

to the overheads of the wagging buffer, but this effect is constant regardless of the amount

of logic duplicated. Though this is not captured in the canopy graph, it should be noted that

this TRIC has a significant area overhead and therefore cannot be repeated limitlessly in the

presence of area restrictions. This TRIC can be applied at any type of node.
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Figure 5.4: Duplication with Wagging
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Loop Unrolling

Loop unrolling [16] improves throughput by increasing the number of algorithm iterations that

a data item completes during one trip through the ring, thereby decreasing the total number of

times that each item must cycle through ring. Loop unrolling is a type of duplication, and has

the same effects on the canopy graph as illustrated in Figure 5.4. Specifically, the throughput

and occupancy increase and a small overhead for forward latency occurs. Additionally, this

TRIC can be applied only to loop nodes.

Buffer Stage Insertion

Buffer stage insertion is a common technique for improving throughput, because it is used to
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Figure 5.5: Buffer Insertion

accomplish slack matching [3] [47]. As illustrated in Figure 5.5 adding buffers increases the

occupancy but also worsens the forward latency. It also increases the reverse latency, but as

long as the buffer has a revere latency that is no worse than the other stages in the pipeline,

adding this stage will not result in a decrease in throughput anywhere in the hole-limited

region. This TRIC can be applied at any type of node. Buffer insertion and its use to improve

throughput are further elaborated on in Section 5.3.2.

5.3.2 Buffer Insertion Details

When the TRIC buffer insertion is the only one made available to an optimization algorithm,

the problem reduces to the one of slack matching. Slack matching is the problem of determin-

ing the number and positioning of additional pipeline buffers in a pipelined design in order to
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reach some performance goal. Both a mixed integer linear programming solution, which is

NP-hard but optimal, and a heuristic algorithm, which is faster but not provably optimal, can

be created based on the analysis method of Chapter 4.

Slack Matching Problem

Buffer insertion is able to improve the throughput of the system if a lack of space for data

tokens, or a lack of slack, creates a bottleneck within the system. The essence of the problem

behind slack matching can be illustrated in a simple example. Consider the fork/join microar-

chitecture shown in Figure 5.6. Figure 5.7 shows the canopies of path0 and path1 plotted

together. The maximum throughput possible is the lower of the two peak throughputs, as indi-

cated on the graph. Since the throughput is constrained to lie under both canopies, the actual

throughput achieved is the point of intersection of the two canopy graphs; this point is lower

than the ideal maximum.

In this simple case, it is clear that one way to improve throughput is to add slack (i.e. one

buffer stage) to path1. Figure 5.8 illustrates how adding one buffer stage accomplished slack

matching.1 Adding an extra buffer stage adds to both the forward and the reverse latencies

of that pipeline, thereby decreasing the slope of both the forward and the reverse lines in

its canopy graph. More importantly, adding buffer stages lengthens the base of the canopy

because it allows greater occupancy. As a result, the two canopy graphs are now able to

intersect at a point which corresponds to the peak throughput of the slower pipeline, thereby

eliminating the overhead of slack mismatch.

For larger systems, the solution is not always as clear as it was for this small example. In

particular, adding a buffer stage increases the forward latency and the reverse latency along

at least one path. An increase in latency equates to shallower slopes in the resulting canopy

graphs, which can in turn create a new slack mismatch situation with a different part of the

circuit. Because fixing a local slack mismatch can have negative global consequences to sys-

1Calculations assume a fast buffer stage with forward and reverse latencies of 1.
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Figure 5.6: Slack mismatch in a fork/join construct
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ing

tem performance, finding the optimal placement for buffers that minimizes the total number

of buffers placed while meeting some goal throughput is a challenging problem.

MILP Formulation

Slack matching using canopy graph analysis seems to lend itself quite naturally to a linear

programming solution. The formulation of a linear programming problem requires a function

to minimize: in this case, the total number of buffer stages added (i.e. s1 + s2 + s3 ... + sn).

A linear programming formulation also requires a set of constraints to satisfy, in the form of

inequalities. In the case of slack matching the throughput is limited to be beneath the lines of

the canopy graphs. This section defines canopy graphs as a set of inequalities and formalizes

the composition functions that operate the canopy graphs. These representations explicitly

include the effects of slack matching buffers.

Although equations for calculating the sequential and parallel dynamic slack are given in
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the previous work by [31], they are reformulated here to do all of the following: (i) represent

non-trapezoidal canopy graphs, (ii) explicitly include the effects of slack matching stages, and

(iii) cast them in a form suitable for an MILP solver.

Canopy Graph Equations Inequalities of the following form can represent any canopy

graph, cgi. In particular, each canopy graph representation consists of one inequality in the

form of 5.1 that forms the horizontal cutoff line, one in the form of 5.2 that forms the positive

sloped forward line, and one or more in the form of 5.3 that represent the negative sloped

reverse lines.

tpti ≤
1

Ti

(5.1)

tpti ≤
k

Fi + si · fs

(5.2)

tpti ≤
−k

R + si · rs

+
Ni + si

Ri + si · rs

(5.3)

where Ti is the highest local cycle time of the stages in cdi, Fi is the sum of the forward

latencies of stages in cgi, Ri is the sum of the reverse latencies of stages in cgi, Ni is the

number of stages in the pipeline, si is the number of slack stages to add to cgi, and fs and fr

are the forward and reverse delays of a slack stage.

Composition Functions Canopy graph composition functions operate on the inequalities

that represent the canopy graphs. The conditional and loop transforms consist of scaling and

line intersection. Parallel composition consists of line intersection while sequential composi-

tion is equivalent to adding the inverse of two line functions. The following gives composition

functions in terms of forward and reverse delays, number of stages, and number of slack stages

added.

Conditional Composition. Conditional composition consists of scaling two canopy graphs

based on their probabilities, as discussed in Section 4.3.3. In order to represent canopy graph

cg3 that is formed by composing two canopy graphs, cg1 and cg2, in a conditional construct
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scale the canopy graph inequalities for cg1 and cg2 by dividing the right side of the inequalities

of Eq. 5.1–5.3 by the probability of each branch being chosen.

In addition, if clustering is present, as discussed in Section 4.3.3 further modifications are

needed: a new maximum throughput is added and the effective occupancy changes based on

the expected occupancy. In particular, the new maximum throughput is determined using the

probabilities of each branch being chosen along with the current maximum throughput of the

two branches, as given in Eq. 4.2. Also, the effect that new slack stages have on the increase in

occupancy will be changed based on the expected occupancy. That is, inequalities of the form

5.3 should be re-written as follows to take into account the expected occupancy equation.

tpti ≤
−k

R + si · rs

+
expected(pi, Ni + si))

Ri + ri · rs

(5.4)

Note that while the effective occupancy increase caused by adding slack stages decreases

based on the expected occupancy, the effect on the reverse latency remains the same. The

modified inequalities can be used in further hierarchical composition steps in the same way as

the original equations.

Loop Composition. Loop composition, discussed in Section 4.3.4, is accomplished by

scaling the canopy graph, cg1, of the loop body and applying a cutoff token capacity. To scale

the canopy graph inequalities, simply divide the right side of the inequalities that represent

canopy graph cg1, as shown in the inequalities of Eq. 5.1–5.3, by the expected number of loop

iterations. In addition, a cutoff line indicating the limited occupancy, based on the designer

specified loop capacity, must be added.

Ni ≤ Ki (5.5)

where Ki is the maximum occupancy of the loop represented by canopy graph i.

Parallel Composition. As shown in Section 4.3.1 two pipelines structures in parallel have

a combined canopy graph that in the area under both canopy graphs. In order to represent
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canopy graph cg3 that is formed by composing two canopy graphs, cg1 and cg2, in parallel, it

is sufficient to simply retain all of the inequalities of Eq. 5.1–5.3 and 5.5 of both cg1 and cg2.

Sequential Composition. As discussed in Section 4.3.2, putting two pipelined structures

in series causes the total number of tokens at each throughput to be added. The following

inequalities—Eq. 5.6, 5.7, and 5.8—represent part of the canopy graph, cg3, that is formed by

composing two canopy graphs, cg1 and cg2, in sequence. The are formed using the canopy

graph inequalities of Eq. 5.1–5.3 respectively.

tpt3 ≤
1

max(T1, T2)
(5.6)

tpt3 ≤
k

F1 + s1 · fs + F2 + s2 · fs

(5.7)

tpt3 ≤
k

R1 + s1 · rs + R2 + s2 · rs
+

N1

R1

+
N2

R2

(5.8)

Note that any occupancy cutoff line of form 5.5 introduced through loop composition can

actually be handled using inequality 5.8. In particular, the cutoff line has no reverse latency

R and is not affected by the number of slack stages s, so both of those terms are zero within

the inequality. To find all of the inequalities that represent canopy graph cg3, it is necessary to

perform these operations for each set of inequalities that represent cg1 and cg2.

Heuristic Algorithm

The heuristic algorithm performs slack matching by starting at the lowest level of the hierarchy

and then moving on to successive levels. At each level, it determines which of two branches

needs additional stages and then adds stages somewhere along that path, possibly descending

down the hierarchy. Because the algorithm uses no backtracking or exhaustive search, it is

faster than the MILP solution and other past slack matching algorithms [47, 3].

Heuristic. In order to understand the heuristic for adding stages, note that the area under

a canopy graph represents a set of conditions under which the circuit can operate. Any buffer

95



patho path1
path1

patho

patho

patho path1

path1

a) b)

c) d)

stages added to path0 stages added to path0

stages added to path0
stages added to path0

Figure 5.9: Key canopy graph intersections

stage addition that expands the area under the canopy graph—such that the resulting canopy

graph is a superset of the previous canopy graph—will never be detrimental to the performance

of the system. The heuristic for the placement of a buffer stage, therefore, is to compare

choices for stage placement based on which will expand the canopy graph most.

Four types of intersection calculations are important in determining the number of stages to

add and finding which stage placement will expand the canopy graph most. To describe these

intersection scenarios throughout this section, the terms “forward” and “reverse” generically

refer to the boundary lines of the canopy graphs in the data limited and hole limited regions

respectively.

The first interesting canopy graph intersection point is at the minimum number of buffer

stages needed to achieve a goal throughput for two paths, path0 and path1. Figure 5.9(a)

shows how adding slack stages to path0 creates an intersection between the two canopy graphs

at the desired throughput level. To find this number of stages, use the reverse line of path0,

the forward line of path1 and solve for the number of stages, s0, to add to path0.
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At some point, however, placing additional stages on path0 will cause the throughput to

degrade. Figure 5.9(b) shows the point at which placing additional buffer stages will decrease

throughput. Finding the number of stages is identical similar to the previous intersection point,

except the forward line of path0 and the reverse line of path1 are used.

At some number of added slack stages, the forward degradation point, the slopes of the

two forward lines will be identical, as illustrated in Figure 5.9(c). To find this number of

stages, set the two forward lines equal to each other and solve for the number of stages to add

to path0. Note that adding further slack stages will cause the combined canopy graph to have

a forward line with a shallower slope, thereby reducing the maximum throughput possible

at some occupancies. This condition will lead us to avoid placing stages along this path, if

possible, because it will cause the canopy graph to get smaller, which goes against the stage

placement heuristic.

Finally, Figure 5.9(d) shows that adding stages can cause the effective occupancies of

the two canopy graphs to be identical. At this point, the reverse degradation point, adding

further stages does not increase the maximum occupancy of the resulting canopy graph. This

condition will lead us to avoid placing stages along this path, if possible, because it will not

expand the canopy graph.

Algorithm. The slack matching algorithm uses the canopy graph expansion heuristic to

decide on slack stage placement. Pseudocode for this algorithm is shown in Figure 5.10. At

each level the algorithm calculates and stores the minimum and maximum number of stages

for one of the branches.

When placing stages at each level, it first descends down to the lowest level along that

path. It will add stages at that level in order to slack match unless adding a stage will cause

it to reach the maximum number of stages, the forward degradation point, or the reverse

degradation point. It repeats this at each level, up to the current level, until the minimum

number of stages has been added. 2

2 See Appendix A for a proof of existence of integer solutions for this method.
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For each level of the hierarchy

Calculate min and max for current level

Descend to lowest level of hierarchy

While min is not yet reached

Add stages till reaching max or degradation points

Move up to next level

Store max stages and degrade point for current level

Figure 5.10: Slack matching algorithm

5.3.3 Loop pipelining: a novel transformation for bottleneck alleviation

Loop pipelining and loop unrolling are a TRICs that can be applied when algorithmic loops

are the bottleneck for a system. I illustrate the challenge to be overcome in pipelining loops

with the simple code example shown in Figure 5.11. This example represents a generic code

fragment that iterates on every data set using a for loop. In the example, the symbols s1

through s8 represent statements.

A direct translation of this code into data-driven hardware typically yields the schematic

structure shown in Figure 5.12. Each statement in the code—s1 through s8—becomes a

pipeline stage. Statements s3 through s6 along with the for statement compose the loop

block. During operation, the environment supplies data sets to the system via the read block

and receives the outputs as they are completed via the write block.

A key observation is that the loop block has the same external interface as an individ-

ual pipeline stage, even though internally it contains an entire ring for iterative computation.

Specifically, the loop block accepts one data set from the predecessor stage, performs a cal-

culation, and passes the computed result on to a successor stage. It does not accept new data

until the results of the calculation have been accepted by the successor stage.

Interestingly, the presence of a loop in the compute body has the same effect on perfor-

mance as a single pipeline stage with long latency—it limits the throughput of the pipeline

as a whole. Figure 5.12 illustrates this bottleneck scenario by indicating the presence of data

with a dot. Stages downstream from the loop block are idle while the stages upstream from
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func compute(input)

s1; s2;

for i = 1 to N

s3; s4; s5; s6;

end

s7; s8;

return(result)

Figure 5.11: Sample code for a for loop

s1 for N

s5 s4

s3s6

s2 s7 s8

loop block

read() write()

Figure 5.12: A simple implementation of the

compute function

s2

i < N
s3

s4

s5

i++

s6

s7s1 s8interface

Figure 5.13: A loop pipelined implemen-

tation of the compute function

the loop block are stalled.

Loop Pipelining Approach

The key difference between my approach and previous work is to allow multiple data sets

into the ring concurrently. Allowing multiple data sets to enter reduces pipeline stalls in the

stages before the loop and reduces starvation in the stages after the loop. The net effect is

increased throughput for the system as a whole. Figure 5.13 shows the basic concept behind

transforming the code of Figure 5.11 into a pipelined loop that can hold multiple data sets.

In this example, the loop body holds three data sets, thereby reducing stalling before the loop

and starvation after the loop.

Allowing multiple data sets within the ring concurrently presents three challenges. i) Flow

control - managing the entry and exit of data sets in the ring and preventing collisions; ii)

congestion prevention - preventing the ring from becoming over full, which leads to slowing

down or stalling; iii) Data hazard prevention - allowing concurrency while preventing separate

data sets from overwriting each other’s values.

99



if if 

arbiterarbiter

countercounter

bouncerbouncer

������������������

Figure 5.14: My method of loop flow

control.
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Figure 5.15: Congestion prevention for

pipelined loops.

Flow Control. I resolve challenge of flow control by adding two stages to the interface

of the loop. A conditional split (i.e. a pipelined if construct) and an arbitration stage. The

arbiter prevents newly entering data from colliding with data already cycling in the ring. The

if checks the boolean condition and sends the data out of the ring or back in through the

arbiter. Together, these two stages of the ring interface manage the entry and exit of data sets

and prevent collisions. Figure 5.14 shows the use of these two stages.

Ring Congestion. Addressing the challenge of ring congestion requires some information

about the performance of the ring. In particular, as described in Section 2.2.2, every ring has

some ideal occupancy (i.e. number of data sets) at which it attains maximum throughput. This

ideal occupancy can be found through timing analysis of the ring or through simulation.

Two stages in the loop interface are used to enforce the ideal occupancy : the bouncer

and the counter. The counter dynamically keeps track of the number of data sets within the

ring; it is notified whenever a dataset leaves and whenever one enters. The bouncer uses the

information from the counter to determine if the ring is congested. It only allows a new data

set to enter when the ring is not congested. Figure 5.15 shows these two stages added to the

interface with arrows to indicate communication between them.

Data Hazards. In order to prevent data sets from interfering with each other (i.e. data

hazards) I replicate some of the variables to ensure sufficient storage when operating on many

concurrent data sets. In particular, each stage must store its own copy of the context—the
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func compute (b,c)

var a, i;

for i = 1 to N

a = b*2;

b = a+c;

end

return t6

Figure 5.16: Sample code with feedback

interface
i = 1bb

cc

bb

cc

ii

cc bbii

**

ii cc bb aa

cc

ii

bb

iiccbb

<N<N ++

+1+1

iiccbb

b cb c

b c ib c i

a b c ia b c i
b c ib c i

b c ib c i

Figure 5.17: Preventing data hazards

in pipelined loops.

collection of all variables needed by that stage or one of its successor stages. For example,

the code in Figure 5.16 contains a loop that uses four different pieces of data: a, b, c, and i.

Figure 5.17 shows a loop pipelined implementation of this code. Notice that since the counting

variable, i, can have a different value for each data set, the value is stored in every stage to

prevent collisions. Notice also that the value a is not stored in every stage; it is produced in

stage 2, consumed in stage 3, and not in any subsequent stages.

More formally, I solve the problem of data hazards by storing the context for each data

set locally in each stage’s storage element, and not in any centralized memory location. I

determine which variables need to be latched in each stage using live variable data flow anal-

ysis—a method for determining which values may be used later and which can be discarded.

In particular, the IN set of each stage is the set of data values that are required to go into a code

fragment either because they may be used inside, or because they may need to be relayed to a

successor of that fragment. Each stage must store its IN set, so all variables which are live at

that stage have a storage space.

Loop Unrolling

Unrolling the loop body to form a ring with a greater number of stages can greatly improve

performance. Intuitively, this improvement results from the duplication of hardware inside the

loop and a corresponding increase in the ring occupancy. Thus, the unrolled loop is able to
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perform more “work” per unit time. More formally, the ring frequency (at ideal occupancy,

cf. Equation 2.7) remains fairly unchanged when the loop is unrolled, but every “tick” at the

loop’s interface now represents a greater amount of work completed. In particular, if the loop

is unrolled u times, every time a data set crosses the interface stage, it indicates that u iterations

have just been completed on that data set, rather than just one. Therefore, ignoring overheads,

the loop’s effective computation throughput increases by a factor equal to the number of times

it is unrolled, u.

As a second-order effect, loop unrolling actually also has the benefit of somewhat reducing

the overhead of the special-purpose “helper” stages: the bouncer, the counter and the arbiter.

That overhead is now amortized over a larger ring. As a result, the latency of each data set

will tend to somewhat decrease and hardware utilization will slightly increase. One possible

negative effect of loop unrolling is that it can cause some data sets to be iterated over more

times than necessary, thereby requiring extra checks within the unrolled loop to preserve the

semantics of the computation.

Although loop unrolling is a common technique in both software and hardware optimiza-

tion, goals and performance effects are generally different. In software compilers, the primary

benefit of loop unrolling is to introduce more room to allow instructions to be reordered, with

the purpose of reducing stalls due to branch and data hazards. In hardware translation ap-

proaches, such as [8, 63], loop unrolling is used in conjunction with compaction to increase

concurrency within the loop body. However, these approaches do not allow an increase in

the occupancy of the loop, thereby obtaining limited throughput improvement. In contrast,

unrolling pipelined loops increases the loop occupancy by the same factor as the number of

times it is unrolled, thereby obtaining dramatically higher speedup.

Performance Benefit and Overheads

Previous work on performance analysis of rings allows us to predict the speedup obtained

by the use of our method. As discussed in Section 2.2.2 and shown in Figure 2.6, the ring
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frequency is proportional to the total number of data sets that are revolving inside the ring, as

long as the ring is not congested (i.e., “hole limited”). Therefore, the maximum speedup of

our approach is proportional to the ideal ring occupancy.

The speed improvement of our method is largely due to improved hardware utilization. A

ring that holds only one data set has a high amount of unused hardware at any given time. By

allowing multiple data sets, we are able to obtain high hardware utilization from the compo-

nents within the ring.

Our approach adds some overhead that decreases the actual speedup and increases total

area. Certain “helper” stages—such as the bouncer, counter and arbiter—increase the latency

of the ring and add a constant area overhead for each loop. Also, any counter implementation

must have some latency and therefore will not allow new data to enter immediately after old

data leaves. The effect is that the ring may be operating at an occupancy that is, on average,

slightly lower than the nominal occupancy. This results in a decrease in throughput only if

this slightly lower occupancy has a throughput lower than the maximum. The most notable

increase to area is the extra storage elements that are required in order to hold the entire

context at each ring stage. This overhead is necessary to allow each data set to hold its own

copy of the loop’s context, thereby enabling multiple data sets to coexist independently within

the ring.

5.4 Bottleneck Identification

Finding the causes for a system’s throughput limits is challenging because the throughput is

determined by complex interactions between its constituent stages. Using canopy graphs as

the basis for analysis can help expose the full range of causes for a bottleneck. The pipeline

identification algorithm takes the following inputs: a system’s hierarchical description, the

performance metrics associated with individual stages (i.e., forward latency, reverse latency,

cycle time, and capacity; see Section 3.2), and probability estimates for any choices within the
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system. It gives as output an expression that represents the parts of the system that limit the

throughput. More specifically, the output is an AND-OR expression of hierarchical nodes that

indicates, using AND-OR causality, which parts of the circuit work together to limit through-

put.

The bottleneck detection method consists of three basic steps. The first step is to determine

the canopy graph for the entire system, hierarchically from the bottom up, by applying the

analysis method of Chapter 4. Next, for each node in the tree that represents the system’s

hierarchy, the algorithm determines which of its child nodes is responsible for limiting its

canopy graph. Finally, the algorithm reports the set of nodes responsible for limiting the

overall system’s throughput.

5.4.1 Classification of Bottlenecks

To aid in alleviating bottlenecks, this section introduces categories based on the type of un-

derlying problem within the system that needs to be solved.

Type I: Forward Latency Dependent Bottlenecks. Latency dependent bottlenecks are

caused by a part of the system having a forward latency that acts as a bottleneck. If a forward

segment has been indicated as a limiting segment, this implies that a Type 1 bottleneck exists

at that system node.

Type II: Cycle Time Dependent Bottlenecks. Cycle time dependent bottlenecks occur

when the cycle time of one part of the system limits throughput. In terms of canopy graphs, if

a top segment is indicated by the bottleneck identification method, this implies that a Type 2

bottleneck exists at that system node.

Type III: Occupancy Dependent Bottlenecks. Occupancy dependent bottlenecks are

caused by part of the system having insufficient buffering or a high reverse latency. If a

reverse segment is indicated as a limiting segment, this implies that a Type 3 bottleneck exists

at that system node.
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5.4.2 Step 1: Compute Overall Canopy Graph

The first step in finding the bottlenecks is to find the canopy graph of the entire system by

applying the analysis method presented in Chapter 4. The analysis begins at the leaf nodes of

the tree and progresses upwards. Specifically, the canopy graph for a leaf node is determined

by the forward and reverse latencies of the individual stage at that node. Subsequently, the

canopy graph at each non-leaf node is found by composing the canopy graphs of its child

nodes. During analysis, the algorithm stores in each tree node the canopy graph computed at

that node; this information will be used in the next step of the algorithm.

5.4.3 Step 2: Find Limiting Segments

Once the canopy graphs have been computed for each node in the system’s hierarchical tree

representation, the next step is to determine which stages are responsible for the limiting

lines of the canopy graphs at each node. When more than one child limits its parents canopy

graph, the relationship between contributing children is one of two possibilities: 1) AND-

causality: the child is part of a group of stages which jointly limit the parent’s canopy and

must all be structurally modified to alleviate the bottleneck; or 2) OR-causality: though several

children contribute to limiting the parent’s canopy, changing any one of them will alleviate the

bottleneck. This method is applied to all the nodes in the system’s tree representation. The

result is an AND-OR tree that identifies the bottlenecks present throughout the system. This

method is now described in detail.

Given a node in the hierarchy tree, the method for computing which of its children is

causing the parent’s canopy to be limited depends on the type of composition represented by

the parent node. Each of the four cases is now discussed.
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Parallel Nodes

The forward segment of a canopy graph at a parallel node is limited by the child canopy graph

in which the forward segment has the most shallow slope. If the forward segments of the

two children have the same slope, both segments are added to the AND-OR tree using an AND

operator, which indicates AND-causality, i.e., both children must be structurally modified in

order to change the forward segment of their parent’s canopy. If only one child limits the

forward segment of the parent’s canopy, then that child alone is added to the AND-OR tree

(using a degenerate single-input AND operator).

Similarly, each reverse segment of a canopy graph is limited by one or both of its children.

If it is limited by both, the appropriate reverse segments of both are added to the AND-OR tree

using an AND operator. If only one child limits the reverse segment of the parent’s canopy,

then only that child is added to the AND-OR tree.

The top segment of the canopy graph at a parallel node is limited in one of two possible

ways. First, if any of its children have a top segment with the same limiting throughput value,

then that node is added (or those nodes are added) to the AND-OR tree using an AND operator.

Second, the throughput may instead be limited by a slack mismatch. Specifically, the for-

ward segment of one child intersects one of the reverse segments of the other child, thereby

limiting throughput of the composition, even though each child individually could have sup-

ported higher throughput. In this case, the offending reverse segment of one child and the

offending forward segment of the other child are both added to the AND-OR tree using an

OR operator. This case is one of OR-causality because, as shown later in Section 5.5, the

bottleneck can be removed by modifying either of the two children.

Conditional Nodes

The method for identifying bottlenecks at a conditional node is similar to the method for

identifying bottlenecks at a parallel node, for all segment types. Specifically, first the canopy

of each child is scaled by dividing it by the probability of that branch, as explained earlier in
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Section 4.3.3. Then, the conditional is treated as a parallel node, and the method described

above applied to all segments of the conditional’s canopy graph.

Sequential Nodes

The forward segment of a canopy graph at a sequential node is affected by the forward segment

of every child, so the forward segment of every child of the sequential node is added to the

AND-OR tree with an OR operator.

Similarly, each reverse segment of the canopy graph is affected by one reverse segment of

every child. Specifically, the reverse segment of the node spans some range of throughputs;

any child reverse segment that also falls within this range affects that segment of the parent’s

canopy. Each of these reverse segments is added to the AND-OR tree with an OR operator.

The top segment of sequential node is limited by the top segment of that child that has the

lowest throughput among all children. If more than one of the child nodes have top segments

at the same throughput, each of them is added to the AND-OR tree with an AND operator.

Loop Nodes

As described in Section 4.3.4, the canopy graph of a loop node is simply the canopy graph of

the loop’s body scaled down vertically by the expected iteration count. Thus, the forward, top

and reverse segments of the canopy of the loop node are limited, respectively, by the forward,

top and reverse segments of its child’s canopy graph. Hence, the child’s (i.e., the loop body’s)

segments are added to AND-OR tree (using a degenerate AND operator).

5.4.4 Step 3: Compute And-Or Bottleneck Formula

The AND-OR tree for the limiting segments represents the segments in the entire system that

affect the overall throughput. Figure 15 depicts an AND-OR tree for the simple example of

Figure 12. The nodes are annotated with the type of limiting segment and the operator of the

and-or tree. At each node in the tree, the responsibility can be placed upon the current node
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OR it can be passed on to the child nodes of the AND-OR tree. The final expression for this

system’s bottlenecks can be found by recursively combining the expressions for each node.

Figure 5.18 shows pseudocode for the algorithm that determines this final expression. At

each node, the expression for its child nodes are found and combined with the operator at that

node. The expression for the node itself is then added. Using the example of Figure 5.19,

at node n0 first the expressions for n1 and n2 are found and then the top segment of n0 is

appended to the expression with the OR operator. The final expression for the bottlenecks in

the system is topn0
+ (topn1

· (topn2
+ (topn3

· topn4
))).

Expression limitingSegments( node, segment )

for each child of node

expression += limitingSegments(child, childsegment)

expression += operator

expression = segment ”OR” expression

return expression

Figure 5.18: Pseudocode for generating limiting segment expression
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Figure 5.19: AND-OR tree for the system of Figure 5.22
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5.5 Bottleneck Removal

5.5.1 User-Guided Method for Bottleneck Alleviation

Determining which transform will alleviate a bottleneck in the system is non-trivial, because

each TRIC applies to only some types of bottlenecks and some types of nodes. Based on the

AND-OR tree of bottlenecks, as described in Section 5.4, our system reports a sum-of-products

form of possible TRICs. It then relies on the user’s knowledge of the design domain to choose

the TRIC that is most compatible with their needs (e.g. a designer might avoid excessive

duplication if area is a concern.)

Determining TRIC Applicability. Table I summarizes the rules that our tool uses when

determining which TRICs to suggest to the user. In the table, a check mark indicates that

the TRIC is a good candidate for removing that type of bottleneck, an X indicates that it will

exacerbate a given type of bottleneck, and a dash indicates that the TRIC will make little to

no change in that type of bottleneck.

Type 1 Type 2 Type 3

Coalescing
√

X X

Parallelization
√

- X

Stage Splitting X
√ √

Loop Pipelining X
√ √

Duplication -
√ √

Loop Unrolling -
√ √

Buffer Insertion X -
√

Table 5.1: TRICs applicability to the bottleneck types

Iterative Algorithm for Bottleneck Alleviation. The use of our tool for iterative bottleneck

elimination is described by the very high-level algorithm of Figure 5.20. First, the user picks

some goal throughput for the system. Next, the algorithm given in Section 5.4 is used to

identify the bottlenecks. Then choices of TRICs and the nodes on which to apply them are
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listed for the user. After applying one or more TRIC, the target throughput might not yet

have been met. Often, removing one bottleneck reveals another one, so the method must be

repeated until the goal throughput is met or surpassed.

while( throughput < goal )

Find bottlenecks

List possible fixes

Apply user design choice

Figure 5.20: Iterative algorithm for bottleneck alleviation

5.5.2 Automated Bottleneck Removal

Problem Domain

In order to find an optimized circuit, the search method needs the following inputs: a hier-

archical representation of a circuit, a goal throughput, a set of TRICs, and a cost function.

The desired output is a sequence of TRICs that, when applied to the circuit in the given order,

yield a new circuit that meets or exceeds the throughput goal while minimizing the given cost

function.

Input Circuit The bottleneck alleviation method presented in this Chapter requires a hier-

archical representation of the circuit to be optimized. The hierarchical representation consists

of individual pipeline stages—each of which has a forward latency, a reverse latency, a cycle

time, and a capacity—and operators that combine those stages. The operators supported are

sequential, parallel, conditional, and iterative composition operators. The supported hierar-

chical constructs are described in Section 3.3. Figure 5.21 depicts a block diagram of a circuit

to be analyzed and optimized. Each block represents a single pipeline stage. The hierarchical

regions are marked in order to highlight the nested, hierarchical structure of this circuit.

Within the framework, a tree represents each hierarchical circuit; the leaf nodes represent

individual stages and all other nodes are either parallel, sequential, conditional, or loop oper-
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ators. Figure 5.22 depicts the tree structure of a hierarchical system. Parallel and conditional

nodes have exactly two children, sequential nodes have two or more children, and loop nodes

have one child.
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Figure 5.21: Block level representation of a hierarchical system
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Figure 5.22: A tree representing system of Figure 5.21

Throughput Goal The framework requires a throughput goal for the circuit. The through-

put of the system as a whole will be computed using the method described in Chapter 4, and

then compared with the goal throughput.

Circuit Transformations (TRICs) In order to make changes to the given circuit, the

framework needs access to a set of TRICs (TRansformations for Increasing the Canopy graph),

such as the one presented in Section 5.3. For use in the solution framework, a TRIC must

specify both how it changes the circuit tree and the criteria for its applicability.
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TRIC Applicability to a Bottleneck Type Each TRIC can alleviate some set of bottle-

neck types. Section 5.4 gives three different categories of bottlenecks that can occur; these

are given the labels Type I, Type II, and Type III. Specifically, if a TRIC increases the area

under the forward segment of the canopy graph, that TRIC could potentially alleviate a Type

I bottleneck. Similarly, TRICs that affect the top and reverse segments of the canopy graph

can be applied to Type II and Type III bottlenecks respectively. Note that the framework itself

does not determine which bottleneck type each TRIC applies to, but instead requires that this

information be part of the TRIC specification.

TRIC Circuit Changes Each TRIC must specify which set of circuit node types it can be

applied to. For example, the coalescing TRIC of Section 5.3, which combines the function-

ality of two stages into one stage, can be applied only to two leaf nodes that are composed

sequentially.

Each TRIC specifies its changes to the circuit in terms of changes to the circuit tree, and

the resulting circuit must always be representable as a hierarchical circuit tree. Examples of

possible changes that a TRIC can make to the tree include removing nodes, replacing nodes

with nodes of a different type, and adding nodes to a sequential construct. TRICs are not

allowed to generate any nodes with more than one parent, thereby preserving the tree structure

of the system specification.

Cost Functions Often, there are many different ways to modify a circuit to reach a through-

put goal. Therefore, the solution framework requires a cost function that includes some metric

other than throughput. Common cost metrics include the energy area product and energy times

time squared, or Eτ 2 [32]. For a cost function to be compatible with the solution framework,

it must be able to take the tree representing the circuit as input and output the total cost of

the circuit. In addition, the cost function must be meaningful when applied to any node in the

circuit tree. For example, applying the cost function to node n3 in Figure 5.22 should give the

cost of the sub-circuit including nodes n3, n5, and n6.
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Figure 5.23: A sample search tree

Output The framework outputs the set of TRICS to apply; this includes information about

which nodes each TRIC applies to and the order in which to apply the TRICS. It also outputs

the cost of the circuit for the given cost function, and the throughput prediction for the circuit.

Solution Space

Search Tree Structure The search space can be represented by a tree structure in which

each node corresponds to a circuit with the same behavior as the original input circuit. As an

example, Figure 5.23 shows an example search tree for the circuit in Figure 5.21. The root

vertex of the tree, C0 represents the original circuit specification input to the system. Each of

its children represent the result of applying a TRIC to that original specification. Specifically,

for every vertex Ci there is some set of transformations, TRICi, that potentially alleviate a

bottleneck in the circuit.

An edge from vertex Ci to vertex Cj exists if there is some transformation in the set TRICi

that changes the circuit corresponding to Ci to the circuit corresponding to Cj. The notation

Ci
τ→ Cj denotes that some TRIC, τ , when applied to the circuit represented at node Ci will

yield the circuit at Cj . The weight of the edge is determined from the given cost function.

Specifically, the weight of an edge from Ci to Cj is the change in the cost function between

the two circuits.

A path through the tree is a series of TRICs starting at the root vertex C0 and ending at

some vertex Ci. The notation C0
pi→ Ci indicates that some path pi exists from node C0 to
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node Ci. The tree consists of a set of vertices such that for every vertex there is some path

from the root node to to that vertex. There is an edge from one vertex to another if there is

a TRIC that could be applied to a bottleneck in the first circuit to produce the second. More

formally, the set of vertices, V , and edges, E, can be defined as follows:

V = {Ci | ∃piC0
pi→ Ci}

E = {(Ci, Cj) | ∃τCi
τ→ Cjs.t.τ ∈ TRICi}

Terminating Conditions Edges in the graph can have either positive or negative weights,

depending on the specific TRIC applied and the cost function being used. As a result, the

search space is non-monotonic, which makes it difficult to find heuristics for pruning the

search tree. Further, the search space can be infinite, because there can be arbitrarily long

sequences of TRICs to consider in the absence of methods to effectively bound the search

space.

The solution framework currently uses two terminating search conditions: reaching some

maximum depth and finding a prime solution. Specifically, the setting the maximum depth

places the restriction that path length from the root vertex C0 to any graph vertex be less than

d, that is ||p|| < d.

The second possible terminating condition is the prime solution. Intuitively, a prime solu-

tion is the first solution on a given path that reaches the given throughput goal, g. This limits

the vertex set V by placing a restriction on path p that no other solution path exists that is a sub-

set of p. More formally, Ci is a vertex in the search space iff ∀px|C0
px→ Cx

p′→ Ci, tpt(Cx) < g.

That is, Ci is a reachable vertex in the search space only if all the vertices that lie along the

path from C0 to Ci do not meet the goal. Note that since the search space is non-monotonic,

stopping the search at the prime solution can potentially prevent the search from finding a

lower cost solution further past a prime solution. The trade-off, which is worth this potential

loss in solution quality, is that using the prime solution prunes the search space to a more
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manageable, non-infinite size.

Solution Methods

Exhaustive Search An exhaustive search of the solution space is quite time consuming.

In an exhaustive search, every possible path is explored until reaching the terminating condi-

tion. Exhaustive search uses both solution depth and finding the prime solution as terminating

conditions, thereby pruning the search tree at some maximum depth and at every prime solu-

tion. Figure 5.24 is a graphical representation of this search. A search along a given branch

terminates at the prime solutions, shown as shaded circles.

Pseudocode for a recursive implementation of this algorithm is shown in Figure 5.25. The

exhaustive search method finds all the solutions within the search tree, and then the lowest

cost solution that meets the throughput goal is reported as the final solution.

Figure 5.24: Exhaustive search with prime solutions as the terminating condi-

tion

Greedy Search A greedy search of the solution space prioritizes the vertices of the search

tree based on which of the next vertices has the lowest heuristic function. If the node that

has the lowest heuristic function is a solution, (i.e. the throughput is greater than the goal

throughout) the search ends and the lowest cost solution found is returned. Figure 5.26 is a

graphical representation of a greedy search. Lightly shaded nodes are analyzed but not taken
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SolutionPath ExhaustiveSearch( TreeNode t, double goal )

for each t.getChild

if child.tpt >= goal

if lowCost > child.tpt

lowCostNode = child

else

ExhaustiveSearch( child, goal )

return lowCostNode.getPath

Figure 5.25: Code description of exhaustive search

while dark nodes are the nodes along the chosen path. The final node is the prime solution

along that path.

Pseudocode for a the greedy algorithm is shown in Figure 5.27. Greedy search can be

faster than an exhaustive search because fewer vertices are visited. However, the solution

obtained may not be the lowest cost solution. The greedy search is also bounded by prime

solutions: it continues until it finds the first solution along a path.

Figure 5.26: Greedy search evaluates a small number of nodes

Lookahead Search A lookahead search prioritizes vertices based on cost information from

nodes some depth, d, away from each given vertex. Greedy search can be called a special case

of lookahead search: lookahead 0.

Figure 5.28 is a graphical representation of three steps in a lookahead-2 search. The dark

shaded nodes represent nodes with the minimum value for the heuristic function at a given
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SolutionPath greedy( TreeNode t, double goal )

for each t.getChild

if child.heuristic < lowHeuristic

lowHeuristicNode = child

if child.tpt >= goal AND child.cost < lowCost

lowCostNode = child

if lowHeuristicNode.tpt >= goal

return lowCostNode.SolutionPath

else

return greedy( lowHeuristNode, goal )

Figure 5.27: Code description of greedy search

depth. The algorithm takes one step in the direction of the shaded node, and evaluates another

set of nodes in that direction. Pseudocode for a recursive implementation of this algorithm is

found in Figure 5.29. During the search, algorithm keeps track of the minimum cost solution

that it has found at any point in the search space. When the it finally terminates, it will return

this minimum cost solution, which may be different from the minimum heuristic solution.

A lookahead search can produce a more optimal solution than a greedy search while still

visiting a smaller number of nodes then an exhaustive search. Therefore, it can offer a speed

advantage over exhaustive search while still returning a result that is close to optimal.

Figure 5.28: Three steps in a lookahead-2 search
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SolutionPath LookAhead( TreeNode t, double goal, double depth )

for each t.getChild

expand Child lookDistance nodes ahead

record minCostSolution

record minHeuristicNode

if( minHeuristicNode.tpt >= goal )

return minCostSolution

else

return Lookahead( minHeuristicNode, goal, depth)

Figure 5.29: Code description of lookahead search

5.5.3 Advanced Tree Pruning Approaches

This section details two further enhancements to the techniques for searching the design space.

The first involves recognizing which sets of TRICS are commutative (i.e. the order of the op-

erations does not matter.) The second is identifying when one TRIC effectively undoes the

action of a previously applied TRIC; these TRICs are reciprocals. Both enable additional

pruning of the search space to eliminate redundant search paths, which leads to faster opti-

mization runtimes.

Commutative Transformations

Definition of Commutativity for TRICS Two TRICS are commutative if the order in

which they are applied does not affect either the structure or the performance of the resulting

circuit. Consider two TRICS τa and τb which transform graph vertices such that C0
τaτb→ Cx

and C0
τbτa→ Cy. If Cx and Cy are equivalent for all possible initial nodes C0, then the two

TRICS are commutative.

Commutativity of the Bag of TRICS The TRICS currently implemented in this tool are

coalescing, stage splitting, duplication, buffer insertion, and loop unrolling. When determin-

ing if the TRICS are commutative, it is necessary to consider the set of circuit hierarchy nodes

that is affected by the TRIC. TRICS that affect individual leaf nodes in the circuit hierarchy

118



will be commutative, since their effects on the circuit are strictly local.

Loop unrolling and duplication, however, have more global affects and are potentially not

commutative. Both create copies of some set of circuit nodes, thereby resulting in a change to

a large part of the circuit and limiting commutativity of subsequent TRICS. For loop unrolling,

I address this issue by marking the circuit nodes that have been affected by the loop unrolling.

When subsequent transformations are applied, the marking enables the framework to judge

that the transformation taking place after the loop unrolling is distinct from one taking place

before the loop unrolling.

In duplication, I address this issue by modifying the set of TRICS that can be applied

after duplication in order to restore the commutativity of the operation. In particular, once a

portion of the circuit has been duplicated, all TRICS that are applied to one duplicated circuit

component must also be applied to its matching duplicated component. This is not likely to

result in loss of solution quality because applying a TRIC to only one half of a duplicated

node will not improve overall throughput.

This conclusion is reached based on knowledge of the bottleneck identification method

used by the framework, as presented in Section 5.4. Specifically, after duplication takes place,

the canopy graphs (i.e.the throughput plotted vs. the occupancy) of the two duplicated paths

will henceforth be combined using the parallel operator. The parallel operator prescribes that

the canopy graphs of the two components are intersected with each other, as described in

Section 4.3.1.

If two different TRICS, τa and τb are applied to the duplicated nodes respectively, then

the new canopy graph becomes Ca ∩ Cb. On the other hand, if the same TRIC, τa, is applied

to both of the duplicated components, the resulting combined canopy graph is simply Ca;

similarly if the same TRIC, τb, is applied to both of the duplicated components, the resulting

canopy graph is equal to Cb. Based on the definition of intersection, it is impossible that

Ca ∩ Cb contains any points that are not contained in both Ca and Cb. Therefore, applying

either τa or τb to both nodes will result in a canopy graph that is a superset of the one obtained
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by applying τa to one of the duplicated components and τb to the other.

For this reason, the commutativity of duplication with other operations is preserved by

enforcing that TRICS applied to one duplicated component must always be applied in kind

to the other. Preserving commutativity allows the search space to be more effectively pruned

and therefore further reduces the execution time of the algorithm.

Exploiting Commutativity for Runtime Improvement Figure 5.30 shows a search tree

composed of the permutations of three TRICS: τa, τb, and τc. If the three operations are

commutative, the grayed nodes are removed from the search, assuming a left-to-right traversal

order for the tree.
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Figure 5.30: Recognizing commutative operations to prune the search space

To implement this pruning, a canonical representation is created for each path already

explored. The canonical representation is a lexicographical reordering of the search path such

that two paths that are equivalent under commutativity will also have the same canonical

paths. Pseudocode for the pruning algorithm using canonical paths representations to prune

the search space is shown in Figure 5.31. After the tool determines a set of possible next

TRICS, it creates a canonical representation for each one and adds the TRIC to the queue

of TRICS to be applied only if the canonical representation is not in the set of paths already

explored.
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CanonicalTest( CompositionNode node )

TRIC[] choices = bottleneckAnalaysis( node )

for each choice in choices

path += choice

canonical path = lexicographical order( path )

if( !previous paths.contains ( canonical path ) )

previous paths.add( canonical path )

TRICqueue.add( choice )

Figure 5.31: Exploiting commutativity to prune the tree

Reciprocal Transformations

Definition of Reciprocal for TRICS Applying one TRIC can potentially be the recipro-

cal of another; applying it will undo all the changes made by an earlier TRIC such that the

resulting circuit has the same structure and performance characteristics as the original circuit.

More formally, consider two TRICS τa and τb which transform vertices such that C0
τaτb→ Cx.

If Cx always equals C0 for all possible initial vertices C0, then τb is the reciprocal of τa.

TRICS as Reciprocal Transformations Of the TRICS currently used, there are two that

are reciprocals of each other. Specifically, coalescing and stage splitting, when applied succes-

sively to the same pipeline stage, will net no result change to the circuit. Although this set of

TRICS does not include any other reciprocal transforms, introducing new TRICS (e.g. trans-

formations to increase or decrease the level of parallelism) will likely create new pairs of re-

ciprocal transformations that, when taken together, reduce to an identity transformation (i.e.,

cancel each other out).

Avoiding Identity Transforms to Improve Runtime Figure 5.32 shows a search tree

pruned to avoid identity transforms. In this example, τa and τb together form an identity

transform. As a result, the tree vertex labeled as Cx is equivalent to the vertex labeled at C0,

and the shaded vertices will not be visited during a search. Notice that the path consisting

of the series of TRICS τa, τb, τc is no longer explored. This will not result in the loss of a
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possible solution, however, because the path consisting of only τc is equivalent.
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Figure 5.32: Pruning search space to avoid identity transforms

This optimization flags nodes within the hierarchical circuit that have been coalesced or

split by past TRICs. These flags are then checked when determining the set of possible TRICs

at a search node vertex. For example, if the bottleneck identification method lists coalescing

among the possible optimizing transformations on a circuit node that has already been split,

when that suggestion is checked against the flags it will be removed and not explored during

the search.

5.6 Results

This section presents the results of applying the optimization methods described in this chap-

ter. First Section 5.6.1 introduces the example circuits that are used to obtain these results.

Sections 5.6.2 and 5.6.3 describe the benefits of using the loop pipelining and buffer insertion

TRICs. Section 5.6.4 shows the use of bottleneck detection. Finally, Sections 5.6.5 and 5.6.6

respectively show the results for manual and automated application of optimizing transforms.
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5.6.1 Benchmarks

The following is a description of all the benchmarks used for the results in this section:

• BISECT: An iterative implementation of a bisection algorithm for finding the zero of a

polynomial that uses the POLY algorithm as a nested, internal loop.

• BTREE: The BTREE algorithm searches a binary tree residing in ROM for a given

input key. A key match returns the data value associated with the node that matches the

key. Behavior is highly data-dependent: the number of loop iterations depends on how

deep the input key’s node is in the tree.

• CORDIC: COordinate Rotation DIgital Computer is a a rotation algorithm for comput-

ing trigonometric functions.

• CRC: The cyclic redundancy check (CRC) algorithm calculates an 8-bit checksum for

a given block of input data. This algorithm has a fixed iteration count (16 iterations).

• GCD: An implementation of Euclid’s iterative algorithm for computing the GCD of two

integers.

• JPEG: A JPEG encoder that takes an 8x8 image and uses two nested loops to iterate over

the entire image and output a stream of encoded data. This particular implementation

comes from the work of Hansen [21].

• MULT: A multiplier that includes a conditional because it performs a shift instead of a

full multiply if the multiplicand is a power of 2.

• ODE: The ODE example is the ordinary differential equation solver from [73, 74, 63],

based on the Euler method. It receives as input the coefficients of a third degree ordinary

differential equation, along with an interval over which to integrate, initial conditions,

and a step size. Its output is the final value of the dependent variable. The number of

loop iterations depends on the size of the interval and the step size.
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• POLY: An iterative polynomial evaluation method based on Cramer’s rule.

• Raytracing: a pipelined implementation of a ray-sphere intersection algorithm—performs

an iterative (i.e.loop pipelined) square root based on some data-dependent condition.

• TEA: Tiny Encryption Algorithm (TEA) encrypts a 64-bit block with a 128-bit key. The

number of loop iterations depends on the number of encryption rounds chosen. For this

example, the number of rounds was fixed at 32 (16 loop iterations).

5.6.2 Results for Loop Pipelining and Unrolling

Experimental Setup. Since loop pipelining targets systems with iterative constructs, only

those benchmarks that include iteration are considered in these results. In particular, this

section presents results for the examples BISECT, BTREE, CRC, GCD, ODE, POLY, and

TEA. The benchmark examples were synthesized using the Haste/TiDE synthesis flow from

Handshake Solutions [45], a Philips subsidiary. Haste (formerly “Tangram”) is the only ma-

ture automated asynchronous synthesis flow available at present. While the control-dominated

architectures that Haste currently produces are not an ideal match for pipelined dataflow appli-

cations, this experimental setup allows the relative performance benefit of the loop pipelining

approach to be accurately estimated.

For each of the benchmark examples, three different implementations were synthesized:

(i) a baseline version (“Original”) that did not use loop pipelining approach; (ii) a second

version (“Pipelined”) that uses loop pipelining approach, but does not use loop unrolling; and

(iii) a final version (“Unrolled”) that employs a twofold unrolling for its loop along with the

loop pipelining approach. Simulation and area estimation tools from the Haste suite were

used to quantify the latency, throughput and area of the resulting implementations. Since the

performance of some of the examples is data-dependent, input streams containing as many as

100 data sets were used, and latency and throughput results were averaged over them.

Results. Tables 5.2–5.3 summarize the experimental results. Table 5.2 presents the
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Table 5.2: Synthesis Results: Performance Benefit

Algorithm/ Area Latency Throughput Normalized

Approach (µm2) (ns) (Mega items/s) Throughput

BISECT

Original 28928 1946 0.51 1

Pipelined 98420 15960 1.03 2.0

Unrolled 184400 16000 1.76 3.4

BTREE

Original 2900 40 24.65 1

Pipelined 7335 110 41.91 1.7

Unrolled 10840 75 79.62 3.2

CRC

Original 4405 66 14.99 1

Pipelined 10730 193 19.79 1.3

Unrolled 15080 137 40.21 2.7

GCD

Original 1770 108 9.11 1

Pipelined 4998 390 12.24 1.3

Unrolled 6574 277 23.51 2.6

ODE

Original 8931 571 1.75 1

Pipelined 15610 1338 3.61 2.1

Unrolled 25630 1156 7.07 4.1

POLY

Original 23661 367 2.71 1

Pipelined 53880 1300 5.19 1.9

Unrolled 99280 1226 8.80 3.2

TEA

Original 30390 1205 0.83 1

Pipelined 96720 2529 4.04 4.9

Unrolled 166500 1704 8.07 9.7

area, latency and throughput obtained for each of the benchmarks. The final column presents

the normalized throughput (relative to the “Original” version), to illustrate the performance

benefit of loop pipelining. Finally, Table 5.3 summarizes the area and latency overheads of

loop pipelining by normalizing with respect to the “Original” version.

Discussion. The results demonstrate that a substantial impact on throughput is achieved

by loop pipelining: up to 9.7x speedup. Without the use of loop unrolling, the loop pipelining

approach obtains a throughput improvement by a factor of 1.3 to 4.9. When a twofold loop

unrolling was applied along with loop pipelining, the speedup obtained was even higher: a
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factor of 2.6 to 9.7x.

In greater detail, algorithms that were pipelined into a relatively small number of stages

(CRC and GCD) had a limited potential for loop pipelining because the maximum capacity of

the self-timed ring structures in these cases was low. As a result, the throughput benefit was

around 1.3x (without unrolling). On the other hand, algorithms that were highly pipelined

(BISECT, ODE, and TEA), had larger ring structures which could accommodate a greater

number of data sets concurrently. For these benchmarks, the throughput increase was sub-

stantially higher: a factor of 2 to 4.9x (without unrolling).

As expected, the twofold unrolling led to a throughput increase in each case by a factor

of 1.7 to 2.0x, yielding an overall combined throughput benefit of 2.6 to 9.7x relative to the

original implementation.

Although loop pipelining approach results in a significant boost in throughput, there are

costs associated with the performance improvement. Shown in Table 5.3 are the increases in

total area consumed, and in the average latency per data set.

In terms of area, the pipelined version adds the overheads of loop control discussed in

Section 5.3.3. Each pipeline stage must latch data from the previous stage, so algorithms with

many stages or large contexts (e.g. BISECT) will see a large increase in area. By unrolling the

loop twofold, the total area of the implementation increased by a factor of 1.3–1.9x.

The average latency for a data set also increased when loop pipelining was used. This was

expected because, like most traditional pipelining approaches, loop pipelining approach in-

creases throughput at the expense of latency. The latency overhead in most of the benchmarks

was in the 1.4–3.6x range, except for the example that contained a nested loop, BISECT. For

BISECT, the latency overhead reported is substantially higher (8.2x) due to the compounded

overheads of its nested loops.

While the area and latency overheads may seem daunting, for most applications the main

performance measure is overall execution time. By increasing latency and chip area, a dra-

matic improvement in throughput results, reducing execution time by a large factor.
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Table 5.3: Area and Latency (Relative Overheads)

Pipelined Unrolled

Algorithm Area Latency Area Latency

(Norm.) (Norm.) (Norm.) (Norm.)

BISECT 3.4 8.2 6.4 8.2

BTREE 2.5 2.7 3.7 1.9

CRC 2.4 2.9 3.4 2.1

GCD 2.8 3.6 3.7 2.6

ODE 1.8 2.3 2.9 2.0

POLY 2.3 3.3 4.2 3.3

TEA 3.2 2.1 5.5 1.4

Table 5.4: Slack matching results

Stages Added Simulated tpt

Example Goal Tpt MILP Heuristic before after % speedup

CORDIC cond 0.167 8 8 0.0909 0.167 83.72

CORDIC 0.083 0 0 0.083 N/A N/A

CRC 0.357 3 3 0.292 0.352 20.55

ODE 0.0182 0 0 0.0183 N/A N/A

GCD 0.05 0 0 0.049 N/A N/A

raytracing 0.222 145 145 0.161 0.222 37.89

MULT 0.167 8 8 0.0387 0.167 331.52

5.6.3 Results for Slack Matching

Table 5.4 highlights the effectiveness of slack matching by comparing the throughput of the

systems before and after slack matching. In each case, the throughput increases as expected

due to the addition of slack stages. The table also compares the number of stages added using

the MILP and Heuristic algorithms. The heuristic algorithm placed stages optimally in each

of these examples, even though they were chosen to represent a wide range of hierarchical

structures, including nestings of parallel and sequential constructs as well as conditionals and

loops. This result emphasizes the assertion that the heuristic will often lead to a completely

optimal solution.

Note that some examples do not require any additional slack stages. These examples are

actually quite interesting, because they highlight the fact that the heuristic algorithm will suc-

cessfully avoid adding unnecessary stages. For example, the inner conditional of the CORDIC

algorithm, when analyzed separately from the rest of the system, requires 8 slack stages to op-
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erate at its maximum speed. However, when this conditional is nested within the rest of the

CORDIC system, the algorithm no longer chooses to place these stages. It successfully deter-

mines that other stages within the system act as a bottleneck and that placing additional stages

will not improve performance.

5.6.4 Results for Bottleneck Identification

The bottleneck identification method was applied to a set of examples that represent a range

of different topologies, as described below: 1) CORDIC: parallel and sequential 2) CRC: con-

ditional and sequential 4) ODE: parallel, sequential, and loop 5) MULT: parallel In addition,

these results report two different versions of the CORDIC example, one of which contains a

conditional and another which does not.

TRIC Bottleneck Type Node Type

Coalescing Type I Leaf node

Stage Splitting Type II & III Leaf node

Duplication Type II & III Any node

Buffer Insertion Type III Sequential node

Loop Unrolling Type II & III Loop nodes

Table 5.5: TRIC applicability

TRICs Used Section 5.3.1 gives examples of several different TRICS that can be used to

alleviate bottlenecks. For the experiments given here, the tool uses a set of five TRICs: coa-

lescing, stage splitting, duplication with wagging, buffer insertion, and loop unrolling. Table

5.5 shows the bottleneck types and circuit node types that each of the TRICs applies to. While

this is not an exhaustive set of possible circuit transformations, it is sufficient in that each type

of bottleneck is handled by at least one of the TRICs.

Bottleneck Identification. Table 5.6 shows the results of bottleneck identification. The

table reports the size of the example in terms of number of nodes in the hierarchical tree
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representation of the system. It also shows the predicted throughput of the system based our

analysis method, and for comparison shows Verilog simulation results for the same example;

this indicates that the analysis is quite accurate for these examples. Stage latencies were

chosen such that a FIFO stage has a forward and reverse latency of 1 ns each (i.e., a cycle time

of 2 ns). More complex stages had correspondingly longer latencies. The table further reports

the number of limiting segments found for each example, and the runtime on a 2.1 GHz Intel

Core 2 Duo machine.

Throughput (MHz) # Limiting Segments Found

Example Nodes Simulated Analysis Forward Top Reverse Time (ms)

CRC 26 286 292 16 1 12 42

Cordic Cond 30 90.9 90.9 12 2 9 21

Cordic 43 83.3 83.3 0 3 0 40

ODE 13 18.2 18.3 0 8 0 27

MULT 29 38.5 38.7 10 1 3 20

Table 5.6: Bottleneck identification: finding limiting segments

5.6.5 Results for Bottleneck Alleviation

Example Throughput Type

orig goal final # iterations I II III TRICS

CRC 286 342 345 4 1 0 3 coalesce; add buffers

Cordic cond 90.9 109 111 2 0 0 2 add buffers

Cordic 83.3 100 101 2 0 1 2 split stages

ODE 182 218 267 1 3 0 0 split stages; duplicate

MULT 38.4 46.2 62.5 6 5 0 1 coalesce; add buffers

Table 5.7: Iterative bottleneck alleviation

Bottleneck Alleviation. Table 5.7 shows the bottleneck alleviation results attained through

iterative application of the bottleneck identification method to reach a goal throughput. Each

of the examples presents a different challenge to removing bottlenecks. In order to highlight
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how examples of similar sizes can require a different number of iterations and different TRICS

to reach the same throughput, the goal throughput for the iterative algorithm shown in Figure

5.20 is set to to be the same for each example and iterate till the goal is reached.

In each example, the goal is 20% higher than the original throughput and performed some

number of TRICs to reach that goal throughput. For each example, there are many different

choices for eliminating bottlenecks; the results here represent one possible set of choices for

each example.

In every case, the system was able to reach the desired throughput through iterative ap-

plication of the manual bottleneck alleviation method method. The table reports the number

of iterations that completed before reaching the throughput goal, the type of bottlenecks that

were targeted, and the TRICs used for each example. Although the bottleneck identification

method greatly aids the designer in performing these optimizations, choosing from the set of

possible optimizations and then applying the optimization to the circuit is still in the hands

of the designer. Therefore the total amount of optimization that can take place is limited by

designer effort, and improving these examples much more than the 20% goal could be time

prohibitive for most design flows.

5.6.6 Results for Automated Constrained Optimization

Experimental Setup

Circuit Examples This section uses five examples of varied topologies and sizes. For each

example, Table 5.8 indicates which type of circuit constructs make up the specification, the

initial throughput as analyzed by the method of Chapter 4, and the number of nodes in the

hierarchical representation of the circuit.

Delay Models, and Area, Energy For these experiments, the estimates for delay, area, and

energy for each stage are based on an estimate of its complexity. The delay model estimates

the forward and reverse latency of a buffer stage at 1 ns, for a cycle time of 2 ns. Stages with
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Name Circuit Type Nodes Throughput

ODE parallel, sequential, and loop 22 0.018

MULT parallel 10 0.038

CORDIC parallel and sequential 39 0.083

CRC conditional and sequential 23 0.029

JPEG Loop, conditional, and sequential 40 0.00047

Table 5.8: Information about five circuit examples

logic have longer forward latencies, based on a rough estimate of the complexity of the logic

(e.g. one full adder has twice the forward delay of the buffer stage). Reverse latencies are not

affected by the presence of logic. Similarly, each stage is modeled with a normalized area of

one for each buffer stage and an energy of two for each buffer stage.

Experimental Results

Comparing solution methods. The running time and solution quality for any example

varies based on the type of search method used. Table 5.9 compares the the runtime of the

basic method described in Section 5.5.2 on a 2.1 GHz Intel Core 2 Duo machine. For each

example, the throughput goal is low enough to obtain meaningful results from the exhaustive

method while being high enough to highlight the differences between the methods. CORDIC,

CRC, and ODE have a 50% throughput improvement goal while MULT has a 2x throughput

goal and JPEG has a 20x throughput goal. This experiment uses the cost function of energy

over the square of throughput, which is equivalent to the common Eτ 2 metric [32]. It also

uses Eτ 2 as its search heuristic during the greedy and lookahead searches.

Table 5.9 shows results for each solution method. For easy comparison of relative solution

quality, the table shows costs normalized such that the cost of the exhaustive solution is 1 unit.

The lookahead method appears twice with two different lookahead depths, 1 and 3. For every

example, the exhaustive method is the most time consuming while the greedy method is the

least time consuming. In addition, the exhaustive method gives a lower cost solution than the

greedy solution for every example. Note that for some examples, the exhaustive method did
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not fully finish after running for over 2 hours. The result shown is the best out of the partial

set of results.

Based on these results, the lookahead 1 search seems to be the best tradeoff between

runtime and solution quality. It found the best solution possible for CRC and JPEG and is

within 4% of the best solution for ODE and MULT. On CORDIC, however, it yields a cost

that is 80% higher than the best solution. In addition, as the throughput goals get higher, the

error in the lookahead 1 search will likely increase as well.

Runtime Improvement with Tree Pruning Table 5.10 shows the runtimes with the addi-

tion of the pruning methods described in Section 5.5.3. Greedy is not included because it will

not benefit much from additional tree pruning. All the other search methods find the same

quality of solutions as those without pruning, but with at a much faster runtime. For easy

comparison of relative solution quality, the table shows costs normalized such that the cost of

the exhaustive solution is 1. The quality of the results, in terms of throughput and cost, in-

dicates that the advanced pruning methods introduced in Section 5.5.3 do not eliminate good

solutions from the search space.

Lookahead 1 search has the least amount of runtime benefit from the use of additional

pruning, since it was already searching a much smaller number of vertices than the other

methods. Both lookahead 3 and the exhaustive search method show large improvement in the

execution time with additional tree pruning. JPEG shows the most improvement, with the ex-

haustive and lookahead 3 searches improving by 2662x and 428x respectively. Although ODE

shows the least amount of improvement, the speed improvement is still quite high: exhaustive

and lookahead 3 search runtimes improve by 5x and 8.7x respectively.

Based on these results, the search method with the best tradeoff between execution time

and solution quality is lookahead 3. In all but one of the examples, it reached a solution with

the same cost as the exhaustive solution. In ODE, it was just 3.7% higher. For these reasons,

lookahead 3 used in the following experiments to gather all further results.
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Exhaustive 0.036 1.00 4.95 0.151 1.00 883 0.250 1.00 >7200 0.5 1.00 >7200 0.015 1.00 >7200

Greedy 0.036 1.07 0.07 0.103 2.09 0.07 0.167 2.12 0.05 0.5 1.02 0.07 0.013 1.04 0.20

Lookahead 1 0.036 1.04 0.06 0.154 1.02 0.22 0.182 1.80 0.14 0.5 1.00 0.58 0.015 1.00 15.3

Lookahead 3 0.036 1.04 2.45 0.151 1.00 15.7 0.250 1.00 28.2 0.5 1.00 507 0.015 1.00 495

Table 5.9: Comparison between search methods
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Exhaustive 0.036 1.00 0.99 0.151 1.00 21.5 0.250 1.00 66.9 0.5 1.00 17.6 0.015 1.00 2.70

Lookahead 1 0.036 1.04 0.06 0.154 1.02 0.20 0.182 1.80 0.14 0.5 1.00 0.43 0.015 1.00 0.39

Lookahead 3 0.036 1.04 0.28 0.151 1.00 4.22 0.250 1.00 11.7 0.5 1.00 5.11 0.015 1.00 1.16

Table 5.10: Speed improvement with additional tree pruning
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ODE 0.018 1.5 0.027 0.036 21175 0.031 17160 0.030 24 0.030 28 0.031 528

0.018 2 0.036 0.036 21175 0.038 26640 0.036 26 0.038 36 0.038 1008

MULT 0.038 2 0.077 0.151 2151 0.100 20700 0.077 44 0.077 44 0.077 1936

0.038 5 0.192 0.414 327 0.400 21725 0.200 50 0.200 100 0.200 4704

CORDIC 0.083 1.5 0.125 0.250 1392 0.128 57215 0.143 81 0.128 88 0.128 7304

0.083 2 0.167 0.333 801 0.274 61136 0.186 81 0.167 152 0.186 12636

0.083 3 0.250 0.500 364 0.404 55259 0.333 86 0.255 204 0.255 17748

CRC 0.286 1.5 0.429 0.500 196 0.500 7056 0.500 49 0.500 144 0.476 3360

0.286 2 0.571 0.571 266 0.571 19488 0.571 82 0.571 220 0.571 9676

JPEG 4.73E-04 20 9.47E-03 1.53E-02 420445 1.28E-02 1044108 1.28E-02 97 1.28E-02 136 1.28E-02 13386

4.73E-04 40 1.89E-02 2.22E-02 212625 2.22E-02 1096200 2.22E-02 105 2.22E-02 232 2.22E-02 24360

Table 5.11: Results using different cost functions and goal throughputs
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Varying Cost Metrics and Goals Based on the execution time and solution quality of the

examples in the previous sections, lookahead 3 is a efficient method for finding a high-quality

solution, if it is not necessary that the solution be completely optimal. Table 5.11 therefore

uses the lookahead 3 search method to find the solution for two different cost functions. Each

example is tested for two different throughputs: ODE, CORDIC, and CRC have goals of 50%

and 2x throughput improvement while MULT has goals of 2x and 5x throughput improvement

and JPEG has goals of 20x and 40x.

For each example, five different cost metrics are used with the search method. The search

heuristic used for each cost was simply the cost over throughput. In every case, the search-

based bottleneck alleviation method was able to find a solution that meets the throughput goal.

This indicates its ability to work with a variety of different cost functions.

5.7 Conclusion

This chapter presented a framework for iterative bottleneck removal. The results show the

optimization framework can identify a series of circuit transformations that reach the desired

throughput goal while maintaining a low value for the given cost function. The framework

was able to achieve between 50% and 20x throughput improvement when using the Eτ 2 cost

metric on five example circuits without advanced pruning techniques. With the addition of ad-

vanced pruning and searching techniques, it was able to achieve between 2x and 40x through-

put improvement on all example circuits. When comparing the different search methods, the

results also indicate that lookahead 3 search offers a good trade-off between algorithm run

time and solution quality compared to greedy search and exhaustive search. The framework

can handle a variety of different cost metrics, and the results show successful optimization for

five different cost functions: Eτ 2, energy·area·, energy alone, area alone, and the energy-area

product. All execution times using advanced pruning techniques were less than two minutes

for all examples over all cost functions and throughput goals. The results as a whole indi-
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cate that our framework is capable of quickly providing high-quality solutions for minimizing

various cost functions while meeting a throughput goal.

137



Chapter 6

Testing and Design for Testability

6.1 Introduction to Testing Asynchronous Pipelines

Most asynchronous high-speed pipeline styles achieve high performance by making timing

assumptions, thereby sacrificing some timing robustness. Even if these timing assumptions

are verified during design, they may be violated in practice due manufacturing variations and

defects. Therefore, the ability to test for these timing violations in a fabricated chip containing

high-speed pipelines is critical to inspire confidence in the use of asynchronous hardware. In

short, the analysis and optimization methods for pipelined asynchronous systems presented in

Chapters 4 and 5 are of little practical use if the resulting systems cannot be tested for errors.

Timing violations are quite challenging to test, both in terms of test application and test

pattern generation. Many timing violations occur only under certain operating conditions that

seem difficult to create using typical low-speed testing equipment. In addition, a single timing

violation may cause errors on one or several wires at once, leading to non-deterministic error

behavior that is difficult to test.

Several approaches [26, 46, 53] for testing timing violations have been proposed earlier,

but they are intrusive, i.e., they require additional test circuitry to be added to the pipeline.

The extra circuitry has an area overhead typically proportional to the number of stages in the

pipeline. In addition, the added circuitry is typically on the critical path of each stage’s cycle,



thereby negatively impacting the pipeline’s performance.

This chapter presents a new approach to expose timing violations of asynchronous pipelines

that directly addresses the acknowledged challenges to exposing timing violations: activating

“at-speed” errors using low speed testing equipment and handling non-deterministic error

behavior. Moreover, my approach applies not only to linear pipelines, but also to any hierar-

chical composition of forks, joins, conditional constructs, and data-dependent loops. Finally,

the pattern generation approach maps timing violation testing to stuck-at-fault testing of a dual

circuit, thereby allowing us to leverage existing stuck-at ATPG tools.

A key distinguishing feature of this approach is the ability to handle errors on multiple

wires caused by a single timing violation, unlike [53] that assumes such errors mostly occur

singly. In particular, unlike stuck-at faults where the likelihood of multiple errors is usually

quite low, timing constraint violations due to setup or hold time violations can easily cause

errors in multiple data bits simultaneously. Therefore, the fault model of this chapter is signifi-

cantly more general. A key contribution of this approach is a method of test pattern generation

that can expose any combination of multiple errors due to such timing violations.

A significant benefit the testing approach presented in this chapter is that it is minimally-

intrusive, and hence low-overhead, yet it can create the operating conditions necessary to

expose timing violations using only low speed testing equipment. In fact, my approach is

non-intrusive for linear pipelines; no additional circuitry is required to be added in order to test

them. Although some additional circuitry must be added for full fault coverage of pipelines

that have forks and joins, the total number of extra gates added is proportional to the number

of forks and joins present, not to the total number of stages.

The remainder of the chapter is organized as follows. Section 6.2 discusses previous

work on asynchronous pipeline testing, including stuck-at-fault testing for MOUSETRAP. It

also provides background on three asynchronous pipeline styles which illustrate my testing

approach: MOUSETRAP [55], GasP [59], and high-capacity (HC) pipelines [54]. Section 6.3

proposes a classification of timing constraints into two key categories—forward and reverse—
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and proposes test strategies for timing constraint violations that occur when these constraints

are violated. Section 6.4 extends these testing strategies to paths containing forks and joins.

Section 6.5 applies the test strategy to linear MOUSETRAP pipelines, and introduces a test

pattern generation method which can test for timing constraint violations that cause errors

on an undetermined number of wires, and Section 6.6 then generalizes this work to handle

pipelines containing forks and joins. Finally, Section 6.7 offers conclusions and directions for

future work.

6.2 Previous Work and Background on Asynchronous Test-

ing

This section discusses previous work in the testing of asynchronous pipelines and presents

background on three high-speed asynchronous pipeline styles—MOUSETRAP, GasP, and high-

capacity (HC)—which are used in the remainder of the paper as illustrative examples.

6.2.1 Previous Work

Several methods have been proposed for testing asynchronous micropipelines. Pagey et al. [43]

proposed methods for generating test patterns to test stuck-at faults in traditional micropipelines,

but do not consider violations of the timing constraints within pipeline stages. A more recent

approach to testing micropipelines is by [27], which focuses on test sequence generation for

testing both stuck-at and timing violations inside C-elements.

Several authors [26, 46] have proposed full-scan approaches for testing micropipelines.

Though these full-scan methods test both stuck-at faults and violations of the bundled delay

constraint, they are high-overhead in both area and speed. Roncken et al. [49, 50] proposed

a more optimal approach that employs partial scan. Their approach targets faults in both the

control and datapath, and covers not only stuck-at fault testing, but also bridging faults as well

as IDDQ testing.
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Recently, van Berkel et al. [64] have proposed adding synchronous as well as LSSD modes

of operation to asynchronous circuits in order to make them testable. In addition, te Beest et

al. [62] present an approach that uses only multiplexers, instead of latches, to break feedback

loops, and thus leverage combinational test pattern generation without the overhead of scan

latches. Both of these approaches were proposed mainly in the context of the Tangram/Haste

design flow. Finally, Kondratyev et al. [28] have proposed a test approach for NCL circuits.

None of the above approaches, however, addresses the specific test needs of fine-grain

high-speed asynchronous pipeline styles. In particular, they are either specific to a particular

circuit style, or are intrusive and can cause unacceptable performance overheads.

An interesting case study of non-intrusive testing was the approach developed at Intel to

test the RAPPID asynchronous instruction length decoder [52, 51]. This approach had mini-

mal area and performance overheads, yet provided 94% stuck-at fault coverage. Of the faults

that were missed, a detailed analysis was made to classify them into benign and potentially

catastrophic faults. While this work included an initial analysis of timing constraint viola-

tions, it did not provide a comprehensive timing constraint violation test approach, focusing

instead mostly on stuck-at faults.

Very recently, Shi et al. [53] have presented an approach specifically targeted to testing

high-speed asynchronous pipelines. Testing of both stuck-at and timing constraint violations

is addressed. There are two limitations of their approach to exposing timing constraint vio-

lations: (i) it is intrusive and therefore has area and performance overheads, and (ii) it uses a

limited timing constraint model that assumes the fault will only affect a single bit.

The approach of this paper overcomes the limitations of [53] and provides a minimally-

intrusive fault testing strategy. It also handles a larger class of timing constraint violations, in

which a single fault can cause errors on one or more bits simultaneously.
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6.2.2 Background: Asynchronous Pipeline Styles

Throughout this paper, three different pipeline styles serve as illustrative examples: MOUSE-

TRAP, GasP, and high-capacity (HC) pipelines. These pipeline styles represent a range of im-

plementation design decisions. This subsection highlights the main features of each pipeline

style.

MOUSETRAP [55] is a two-phase pipeline style for static logic datapaths. Although it uses

transition signaling on the request and acknowledge lines, it uses level signaling to control the

latches. During the operation of a MOUSETRAP pipeline, all the latches begin as transparent

and only become opaque once data has been captured. Two simple one-sided timing con-

straints must be satisfied for correct operation: setup time and hold time. The former simply

requires that the data arrive at least one setup time before the latch closes; otherwise the data

may not be latched properly. On the other hand, the latter constraint requires that, once data

enters a stage, it should be securely captured at least a hold time before new data is produced

by the previous stage; otherwise, the data may be overwritten by new data.

GasP [59] is a static logic pipeline style that aggressively exploits timing assumptions in

order to provide very high performance. A key distinctive feature of GasP is that a single

wire, called the state conductor, is used to transmit both the request and acknowledge signals

between a pair of adjacent stages. This feature eliminates the redundant return-to-zero event

present in typical four-phase pipeline styles, and GasP is thereby able to combine some of the

benefits of four-phase and two-phase signaling. However, for correct operation, GasP requires

several timing constraints to be satisfied, some of which are complex 2-sided requirements.

The final pipeline style discussed in this paper is the high-capacity (HC) pipeline [54]. It

is a four-phase pipeline style that targets dynamic logic datapaths. It is latchless. Instead,

the dynamic logic of each stage has an “isolate phase”, in which its output is protected from

further input changes. A timing constraint must be satisfied to avoid premature termination

of a stage’s evaluation; this is similar to a setup constraint. Similarly, a hold time requirement

must also be met.
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The next section tabulates some of the constraints of the three pipeline styles, introduces

categories for their classification, and proposes a strategy for the testing of their violation.

6.3 General Approach for Testing Asynchronous Pipelines

This section introduces the test strategy for high-speed asynchronous pipelines. It focuses

on testing for timing constraint violations, since test methods for stuck-at faults have already

been proposed in [53].

Section 6.3.1 begins by identifying two key categories of timing constraints that must hold

for correct operation: forward and reverse constraints. Section 6.3.2 then gives functional

test methods for loading and unloading a pipeline that are most likely to expose these timing

constraint violations.

The test approach is generalized in Section 6.4 to handle forks and joins, which repre-

sents a first step toward handling systems with arbitrary topologies. Test pattern generation is

deferred till Section 6.5.

The test strategy is illustrated using examples of timing constraints from three different

pipeline styles: MOUSETRAP, GasP, and high-capacity (HC) pipelines.

6.3.1 Classification of Timing Constraint Violations

For the purposes of designing fault tests, I classify timing constraints into two key categories:

forward and reverse constraints.

A forward timing constraint is one that requires a downstream event to occur after an up-

stream event, i.e., in the same direction as the flow of data. More specifically, the pipeline

operates correctly only if a particular event in stage N occurs before a particular event in

stage N + 1. Typical examples of forward constraints include setup time requirements of

many pipelines: the latch in stage N +1 must “capture” a data item and be disabled only after

the output of stage N has been generated and stabilized. Such forward constraints typically
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Pipeline Style Timing Constraint

MOUSETRAP
tdataN−1

+ tsetupN
<

treqN−1
+ tLatchN

+ tXNORN↓

GasP

tdataN−1
+ tsetupN

<
treq

N−1
+ tinvaN

+ tNANDN
+

tresetN
+ tINVcN↓

HC
tdataN−1

+ tsetupN
<

treqN−1
+ taCN

+ tdelayN
+ tINVN

Table 6.1: Forward Constraint examples

prevent situations where a data item is not correctly transmitted from one stage to next. Vi-

olations of forward timing constraints are likely to manifest when a data item is allowed to

travel through an uncongested or empty pipeline; such a scenario allows downstream events

to occur unimpeded, thereby exposing violations of the forward constraint.

A reverse timing constraint, on the other hand, is one that requires an upstream event to

occur after a downstream event, i.e., counter to the flow of data. More specifically, the pipeline

operates correctly only if a particular event in stage N occurs before a particular event in stage

N − 1. Typical examples of reverse constraints are hold time requirements of many pipelines:

once a data item is received in stage N , the latch in stage N must be disabled before new data

is generated by stage N−1. Such reverse constraints typically prevent current data from being

erroneously overwritten by new data. Therefore, violations of reverse timing constraints are

likely to be exposed when one data item follows closely behind another.

In some pipeline styles, timing constraints exist that do not fit into either of these cat-

egories. For example, GasP has a timing constraint that relates two events within a single

pipeline stage. I have not yet devised a standard method for testing for violations of these

types of timing constraints.
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Figure 6.1: Examples of forward timing constraints.

6.3.2 Test Strategy for Linear Pipelines

Forward Timing Violations

Examples. Many pipeline styles have forward timing constraints, most commonly in the

form of the bundled data constraint. Table 6.1 gives the forward timing constraints for MOUSE-

TRAP, GasP, and HC pipelines. In this table, tdataN−1
and treqN

refer to the arrival times of

data and request from stage N − 1; tsetupN
is the setup time for the latch (or dynamic gate)

in stage N ; tresetN
is the time for the self-resetting NAND in GasP to reset itself; all other

terms are the delays associated with components identified in their labels. For clarity, Figure

6.1 represents these constraints graphically. For each pipeline, two paths are highlighted: p1

and p2. For correct operation, p1 must be longer than p2.

The constraints shown are closely related to the bundling assumption in that they require
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that the data bits do not arrive much after their associated request signal. These constraints

are actually less strict than the bundling constraint since there is some delay between the time

the request arrives and when the data is actually needed. In particular, strictly speaking, the

bundled data constraint requires that tdataN−1
< treqN−1

. However, the setup time constraints

shown in the table and the figure are somewhat more relaxed: in both MOUSETRAP and GasP,

the data must arrive at stage N one setup time before the latch closes; in HC pipelines, the

data must arrive one setup time before the evaluation phase ends (i.e., isolate phase begins).

Thus, the constraints identified are more properly referred to as setup time constraints.

Violations of these timing constraints actually manifest themselves as pipeline malfunction

only when there is a bubble in stage N , i.e., stage N is ready to process the new data from

stage N − 1. This is so because the above setup time constraints were derived assuming the

worst-case scenario that stage N is ready to capture the data arriving from the previous stage.

In each of the three pipeline styles, if stage N is not ready to receive new data, then more time

is available for that data to arrive from stage N − 1 and stabilize at stage N’s inputs before it

must be captured. In particular, in MOUSETRAP and GasP, if stage N is not empty, its latch

remains disabled. Similarly, in HC pipelines, if stage N is not empty it will not commence its

next precharge-evaluate cycle.

Testing Approach. The observation that stage N must be empty for a setup time violation

to manifest itself helps us construct a test for these forward timing violations. I first present a

scenario that exposes these faults, and then present a functional test strategy to efficiently test

an entire pipeline.

Figure 6.2 illustrates a scenario in which setup time violations are likely to be exposed.

Assume the scenario begins with the snapshot of the pipeline shown in Figure 6.2(a): stage

N is empty and stage N − 1 has data item d1. If the pipeline operates correctly, the data

item d1 flows to the right, as shown in snapshot (b). However, if the setup time constraint

between the two stages is violated, the data item d1 will not be properly captured (i.e., latched
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for MOUSETRAP and GasP, or evaluated for HC) by stage N . In the case of MOUSETRAP and

GasP, the data item d1 will be corrupted by any stale data that was previously in stage N ,

since some or all of the bits of d1 could not be properly latched. For HC pipelines, the result

in stage N could be all zeros (i.e., the result of the previous precharge), or partial evaluation

of some of the bits before evaluation was prematurely interrupted.

In order to test the entire pipeline for setup time violations, the above scenario must be

created at each stage in the pipeline. Once again, the recent test approach of [53] accomplishes

this goal by added circuitry to the pipeline for greater controllability, but the intrusiveness of

that approach causes loss of performance during actual operation.

The strategy, once again, is to create this error-exposing situation functionally, without the

need for intrusive circuitry. We start with an empty pipeline. Next, we feed one data item to

the pipeline. As the data item travels forward, it creates the condition shown in 6.2 for each

stage. Specifically, the setup time constraint between stages 1 and 2 is tested first, between 2

and 3 next, and so on all the way to the rightmost stages in the pipeline.

Reverse Timing Violations

Examples. Examples of reverse constraints can be found in many pipeline styles. Table 6.2

gives the reverse timing constraints for MOUSETRAP, GasP, and HC pipelines. In this table,

tholdN
is the hold time for the latch (or dynamic gate) in stage N ; all other terms are the

delays associated with components identified in their labels. For clarity, these constraints are

graphically shown in Figure 6.3. Once again, for each pipeline, two paths are highlighted: p1
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Table 6.2: Examples of reverse timing constraints: Analytical expressions.

Pipeline Style Timing constraint

MOUSETRAP
tXNORN↓ + tholdN

<
tXNORN−1↑ + tLatchN−1

+ tlogicN−1

GasP

tresetN
+ tINVcN↓ + tholdN

<
tpull upN

+ tNANDN−1
+ tINVcN−1↑+

tLatchN−1
+ tlogicN−1

HC

tdelayN
+ tINVN

+ tholdN
<

tNANDN−1
+ taCN−1

+ tdelayN−1
+

tINVN−1
+ tEvalN−1

and p2. For correct operation, p1 must be shorter than p2.

Each of the constraints shown in Table 6.2 and Figure 6.3 are hold time constraints. In

particular, the constraint for MOUSETRAP states that, once a data item enters stage N , that

stage’s latch must be disabled at least a hold time (tholdN
) before the previous stage can perturb

the data at stage N’s inputs. The constraint for GasP similarly ensures that stage N’s latch is

disabled at least a hold time before new data arrives from stage N . Finally, the constraint for

HC ensures that stage N , upon evaluating a data item, enters its isolate phase (during which

the dynamic logic in that stage is neither precharging nor evaluating) before stage N − 1 goes

through a complete new cycle of precharge and evaluation to generate a new data item.

Violations of these timing constraints actually manifest themselves as pipeline malfunction

only when a new data item is readily available for processing by stage N − 1. This is so

because the above hold time constraints were derived assuming the worst-case scenario of a

steady stream of input data. For instance, in MOUSETRAP, a violation of the above timing

constraint causes an actual pipeline malfunction only if there is actually a new data value or

request (or both) on the input to stage N − 1. Similarly in GasP and HC, a timing violation

causes an error only if there is new data available on the input side of the datapath of stage

N − 1.
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Testing Approach. The observation that a new data item must be waiting at the input side

of stage N − 1 in order for a hold time violation to manifest itself helps us construct a test for

these reverse timing violations. I first present a scenario that exposes these faults, and then

present a functional test strategy to efficiently test an entire pipeline.

Figure 6.4 illustrates a scenario in which hold time violations are likely to be exposed.

Assume the scenario begins with the snapshot of the pipeline shown in Figure 6.4(a): there

are two data items, d1 and d2 in stages N − 1 and N − 2, respectively, and there is a bubble

in stage N . If the pipeline operates correctly, the two data items remain distinct as they flow

to the right, taking the pipeline through the snapshots (b) and (c). However, if the hold time
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constraint between the two rightmost stages is violated, the data item d1 will be overwritten

by the item d2, as shown in snapshot (d).1

In order to test the entire pipeline for hold time violations, the above scenario must be

created at each stage in the pipeline. The recent test approach proposed in [53] accomplishes

this goal by adding circuitry to the pipeline to provide adequate controllability. However, that

approach is intrusive and creates overheads to the normal functioning of the pipeline, thereby

resulting in a loss of performance. Moreover, the intrusiveness of that approach also modifies

the timing constraint itself, thus perturbing the very constraint it is trying to verify.

The strategy instead is to create this error-exposing situation functionally, without the need

for intrusive circuitry. We start with an empty pipeline. Next, we fill the entire pipeline with

data, while withholding acknowledgments to the rightmost stage. We then add one bubble to

the right end of the pipeline by sending a single acknowledgment. As this bubble propagates

leftward through the pipeline, it sequentially creates the situation shown in Figure 6.4 for

each stage. Specifically, the hold time constraint between stages N − 1 and N is tested first,

followed by the constraint between stages N − 2 and N − 1, and so on all the way to the

1For simplicity of presentation, we assume that when a hold time violation occurs, a data item is completely

overwritten by the next data item. Strictly speaking, it is possible that only some bits of a data item are overwrit-

ten. Section 6.5 addresses this more general scenario.
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leftmost stages in the pipeline.

There are several key benefits of this new approach. First, unlike [53], this new approach

is non-intrusive, with no overhead to steady-state performance. Second, this approach can

test hold time faults for an entire pipeline in a single sweep, i.e., by propagating a single

bubble backward through the pipeline. In contrast, the approach of [53] must test for hold

time violations at each pipeline stage individually, thereby requiring significantly greater test

effort. Finally, much like the approach of [53], this new approach only requires low-speed

ATE, yet provides at-speed testing for timing constraint violations.

6.4 Test Strategy for Non-Linear Pipelines: Handling Forks

and Joins

Thus far, I have only discussed testing strategies for faults in straight pipeline paths. Here, I

describe extensions to the test strategy to handle pipelines with forks and joins, which is a first

step toward handling systems with arbitrary topologies.

6.4.1 Forward Timing Violations

Challenges. Testing forward timing violations offers some challenges. Specifically, setup

time violations between the join element and all of its immediate predecessors are difficult

to test. If data from one branch arrives at the join much after data from the other, only the

later-arriving data will expose setup time violations. The earlier-arriving data will have had

sufficient time to stabilize before the join reacts, thereby masking any setup time violations

between that branch and the join stage.

Testing Approach. To ensure testing of setup time faults between a join stage and each of

the branches that feed into it, one must be able to control which branch provides a data item

first. The strategy is to modify the pipeline by inserting extra circuitry immediately before
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each join, which allows the testing environment to directly provide data items to the input side

of the join, as shown in Figure 6.5.2 Specifically, multiplexors are added to both the control

and the data input of each join stage. This allows data to be fed into the join externally during

testing. They key idea is to provide data externally for each input interface of a join stage,

except for the input interface that is to be tested for setup time violations.

Testing takes place as follows. Assume we are testing the interface between the join stage

and the lower branch of the pipeline shown in Figure 6.5(a). First we initialize the pipeline to

be empty. Then we set the multiplexors in the circuitry of Figure 6.5(b) on the upper branch

of the join so that data is read from the testing environment and sufficient time is allowed for

this data to be read and stabilized. At this point, the setup time constraint between the upper

branch and the join stage is trivially satisfied because the join will not latch this data until

2In order to conserve the number of input pins used by the test environment, external data is typically supplied

bit-serially, and converted to bit-parallel on chip before being supplied to the circuit under test.

152



data also arrives from the lower branch; therefore, a potential setup time violation between

the lower branch and the join stage is now exposed and testable. The test proceeds by sending

a single data item into the pipeline from its left interface, which flows rightward through the

pipeline, effectively exposing setup time faults throughout the lower branch, through the join

and all the way through the right end of the pipeline. Finally, we read the output from the

pipeline and examine it for errors. The test is then repeated for the upper branch that feeds

into the join.

6.4.2 Reverse Timing Violations

Challenges. Testing reverse delays presents two challenges: (i) “unbalanced” branches, i.e.,

forked paths whose branches have unequal number of stages, are not fully testable using only

functional methods; and (ii) fork stages themselves are difficult to test robustly for hold time

violations. I discussed these challenges briefly before describing the testing approach I use.

Unbalanced branches: It is challenging to functionally test pipelines with forked paths

that reconverge if the branches have unequal number of stages, i.e., if the branched paths are

not “slack matched” [33]. In particular, the approach for exposing reverse timing constraint

violations, presented above for linear pipelines, relies on filling the entire pipeline with data

items, and then propagating a bubble backward through it. If unbalanced reconvergent forks

exist in the pipeline, then not all branches can be completely filled with data, and therefore

this functional test strategy cannot be directly applied to the longer of the branches.

In more detail, assume that a fork creates two branches, B1 and B2, which reconverge.

Assume branch B1 has N1 stages and branch B2 has N2 stages. Then, if N1 > N2 then

the first N1 − N2 stages of branch B1 cannot be made to hold data while the test pattern is

applied, rendering them functionally untestable using the method presented thus far. However,

it is important to note that the shorter of the two branches, B2, is still fully testable for reverse

timing violations, a fact that will be exploited by the new test approach.

Fork stages: If all fork branches are balanced, then the test approach for linear pipelines
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can be easily adapted to test for hold time violations throughout the non-linear pipeline, except

to test for faults between the fork stage and its immediate successors. This difficulty is because

of the unpredictability of the order of arrival of bubbles at the fork stage from each of its

successors. In particular, if one branch of a 2-way fork propagates a bubble towards stage N

faster than the other branch, then only the later-arriving bubble can actually expose a timing

constraint violation upon reaching the fork stage. The earlier arriving bubble will not be able

to expose a hold time violation because the fork stage, which is waiting for the other bubble to

arrive as well, cannot immediately generate a new data item. Therefore, to fully test for hold

time violations, greater controllability of pipeline operation is required in order to control the

order of arrival of bubbles at a fork stage from different fork branches.

Testing Approach. I now present the test strategy, which addresses both of the above chal-

lenges.

Unbalanced branches: This new approach avoids the problem due to unbalanced branches

by requiring that all reconvergent paths are balanced (i.e., slack matched). This is easily done

by either inserting buffer stages in the shorter branch, or by pipelining the longer branch more

coarsely using fewer stages. Fortunately, slack matching is already considered good design

practice for performance reasons [33], so requiring it for ease of timing constraint violation

testability is not too onerous a requirement.

Fork stages: If full testability is required for hold time violations between a fork stage and

all of its immediate successors, one then needs to modify the circuit in order to control the

order of arrival of bubbles at that fork stage. The strategy is to add a small amount of circuitry

to the pipeline, as shown in Figure 6.6. Specifically, on each of the branches, one adds an extra

pipeline stage, which is externally configurable to act as either a regular pipeline stage (i.e.,

capable of storing one data item or bubble) or as pass-though logic with no storage capability.

Essentially, we are configuring one branch to have N stages and configuring the other

branch to have N + 1 stages. Thus, we have deliberately made the branches unbalanced
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Figure 6.6: a) Extra circuitry for reverse delay. b) Generic implementation

during testing, a technique that allows the shorter branch to be fully testable. This procedure

is then repeated to test the other branch.

For example, assume we are testing the for timing violations between the fork stage and

the stage U in Figure 6.6. First we initialize the pipeline to be empty. Then, we set the external

control signals such that the extra circuitry in the upper branch behaves as pass-through logic,

but the extra circuitry on the lower branch behaves as a regular pipeline stage. Thus, during

this test, the upper branch is shorter than the lower one.

Next, we load a test sequence of eight data elements through the left interface of the

pipeline, without providing acknowledgments at the right interface, and wait for a sufficient

time for the pipeline to stabilize. At this point the upper branch is completely filled, whereas

the lower branch has one bubble in stage L.

Then, we remove one data item from the right end of the pipeline, thereby creating a

bubble that propagates leftward through the pipeline. Since there is already a bubble in stage

L, the fork will be ready to react quickly when the bubble reaches stage U , thereby exposing

any reverse timing violations between stage U and the fork stage.
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Errors are easily detected by reading out all of the data from the pipeline and examine it

for functional correctness. This testing procedure is then repeated to similarly test for reverse

timing violations between stage L and the fork stage.

6.5 Test Example I: Linear MOUSETRAP

This section applies the testing strategies for linear pipelines given in Section 6.3 to MOUSE-

TRAP. For each of the possible timing violations in a MOUSETRAP pipeline, either the forward

or reverse fault testing strategy is applied. A key contribution is a test pattern generation ap-

proach which can help expose these timing violations.

MOUSETRAP has two distinct timing constraints that must be satisfied for correct opera-

tion, one forward (setup time) and one reverse (hold time), as were listed in Tables 6.1 and 6.2.

A violation of the first constraint can lead to data corruption because the data fails to arrive a

setup time before the latch is disabled. A violation of the second constraint can lead to two

distinct failure scenarios: “control overrun” (reqN is overwritten by reqN+1) and “data over-

run” (dataN is overwritten by dataN+1). Test methods and pattern generation for testing these

timing constraint violations for linear MOUSETRAP are now presented.

6.5.1 Forward Timing Violations

Setup Time Fault. Violations of the setup time requirement are tested using the test ap-

proach for forward timing constraint violations introduced in Section 6.3.2. Specifically, we

initialize the pipeline to be empty, then feed test data to the pipeline from the input side, and

read the data from the output side of the pipeline to determine if a timing constraint violation

exists. Determining test data patterns to expose such faults, however, is not trivial.

Recent work [53] has introduced a method for test pattern generation to expose this type

of fault. Their method separately tests for setup time violations for each data bit for each

pipeline stage. Specifically, it suggests sending one test pattern to initialize that bit to 0, and
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then sending a second test pattern that checks for a stuck-at-0 fault on that bit. If there is a

setup time violation at that bit location, then the bit value will remain at 0 and behave as if it

were stuck at 0; otherwise, the bit is correctly set to 1 by the second test pattern. Thus, their

work nicely leverages stuck-at ATPG tools to help test for setup time violations.

There is, however, a significant limitation in the test pattern approach of [53]: it relies on

the assumption that the setup time fault will affect a single bit in the stage being tested. In

practice, however, if one of the lines coming out of a stage is corrupted due to a setup time

violation, the other lines coming out of it are likely to be corrupted as well. The combination

of multiple errors in one stage could easily lead to the fault’s not propagating to the end of the

pipeline.

This new approach overcomes this limitation of [53] and can correctly test for setup time

faults that may affect multiple bits simultaneously. In particular, this test pattern generation

strategy exposes a setup time violation for a particular bit (say, bit k) in a given stage (say,

stage N) regardless of whether or not other bits are also affected by that fault. The key idea

is to generate pairs of test data items (say, I1 and I2) which satisfy the following criteria: (i)

they generate values (say, D1 and D2) at stage N which differ in only the k-th bit, (i.e., other

bits receive values that are identical for I1 and I2) and (ii) they produce different outputs at

the right end of the pipeline. Thus, this test pattern suite is more constrained than the suite
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of [53]; this restriction guarantees that simultaneous errors on multiple bits, which are likely

in practice, are correctly handled.

Test approach. This test method consists of two steps: sending the first test data item

(I1) through an empty pipeline and removing it from the other end, followed by sending the

second test data item (I2). If criteria (i) is met, a setup time violation can only cause the bit k

to change, since all other bits are the same between I1 and I2 If criteria (ii) is met, then a fault

for bit k in stage N is propagated to the output, and is therefore functionally testable. This

procedure is repeated for all bits in all pipeline stages.

ATPG setup. This approach to generating the test pattern sequence (I1, I2) leverages

existing ATPG tools for stuck-at fault testing. Specifically, we map the problem of finding the

test patterns I1 and I2 that will expose a setup fault at bit k in stage N in the pipeline into an

equivalent problem of testing for a stuck-at-0 fault at the output of the dual circuit shown in

Figure 6.7. The block labeled “Hamming-1k” produces 1 if its inputs differ in only the k-th

bit; otherwise it generates 0.3 Therefore, any input pattern I1I2 that tests for output stuck-at-

0 fault also satisfies the conditions required for the sequence (I1, I2) to be a test pattern for

exposing a setup time violation in bit k in stage N . In particular, the inequality tester ensures

that the two input patterns will generate different pipeline outputs, and the Hamming distance

checker ensures that the intermediate values in stage N differ in only bit k. Finally, a test for

stuck-at-0 at the output of the AND gate effectively ensures that the test patterns I1 and I2 that

are generated satisfy the conjunction of these conditions.

Example. Figure 6.8 shows a two-stage pipeline with one level of combinational logic. To

check setup time faults for the bit o1, ATPG yields a test sequence consisting of the following

two data items: i1i2i3 = 011 followed by i1i2i3 = 010. Table 6.3 shows the correct and faulty

behaviors.

3The block tests if its inputs have a Hamming distance of 1, and the only different bit is bit k.
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6.5.2 Reverse Timing Violations

The reverse timing violation in MOUSETRAP occurs due to a violation of the hold time re-

quirement. This faults can manifest itself in two flavors: control overrun and data overrun.

Control Overrun. Control overrun occurs when the hold time constraint for MOUSETRAP

(see Table 6.2) is violated for the incoming req signal. That is, once a stage receives a data

item along with a request, it fails to disable its latch before a new request overwrites the current

request. Since this is a reverse timing violation, we use the testing strategy outlined in 6.3.2.

Specifically, we fill the pipeline with data and then insert one bubble at the right end of the

pipeline, which exposes faults as it propagates backwards.
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Table 6.3: Test patterns for checking setup time fault for line o1 in Figure 6.8.

The error behavior for control overrun is that two requests, and therefore two pieces of

data, are lost. This is because MOUSETRAP uses transition signaling. For example, Figure 6.9

indicates how six requests will be interpreted as only four requests in the presence of a fault.

One can test for this fault quite easily in a linear pipeline. First we fill the pipeline with

N data items, where N is the length of the pipeline, while withholding acknowledgments

from the right end of the pipeline. Then we present the N + 1-th data item to the pipeline,

although at this point it will not be accepted by the pipeline. Now, every stage in the pipeline

has new data available to its left. Next, we remove one item from the right end of the pipeline,

effectively introducing one bubble which flows leftward to expose any hold time faults. When

this bubble reaches the leftmost pipeline stage, the N + 1-th data item is accepted by the

pipeline. Thus, if there is no fault, the pipeline will once again contain N data items at this

point. If there were any hold time violations, then two items will have been lost for each

violation, and therefore only N − 2 or fewer items would remain in the pipeline. The correct
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S.No. Test Pattern Correct Faulty Comment

Behavior Behavior

(req0,ack3) (ack0,req3) (ack0,req3)

1 (1,0) (1,1) (1,1) apply 1st req

2 (0,0) (0,1) (0,1) apply 2nd req

3 (1,0) (1,1) (1,1) apply 3rd req

4 (0,0) (1,1) (1,1) apply 4th req

5 (0,1) (0,0) (0,0) add one bubble

6 (1,1) (0,0) (1,0) apply 5th req,

observe ack1

Table 6.4: Test pattern for control overrun

and faulty behaviors are easily distinguished: the correct pipeline is full and will not accept

any new data, but the faulty pipeline will accept two or more data items.

As an example, Figure 6.9 shows the behavior of a 3-stage linear pipeline that has a control

overrun fault in stage2. First we supply four data items along with their requests; then we

remove one item to cause error behavior. Specifically, req2 falls while en2 is still asserted,

thereby allowing an incorrect request through. This error is exposed when two subsequent

requests are acknowledged by the pipeline. Table 6.4 shows the test pattern that exposes this

error. In general, the test sequence for a control overrun fault in a linear N-stage pipeline

contains N + 3 test patterns.

Data Overrun. Unlike control overrun, data overrun does not result in the loss of requests.

Instead, data becomes corrupted. Specifically, this hold time violation causes data item DN to

be overwritten partially or entirely with data item DN+1. In MOUSETRAP, data overrun occurs

when the hold time constraint is violated only for the latches that capture the data bits and not

for the tiny latch that captures the associated request; this scenario is quite possible because

data can arrive from the previous stage much earlier than its associated request.

ATPG setup. The test for data overrun is more complex than that for control overrun

because test patterns must be generated carefully to expose data corruption, as opposed to

simply detecting loss of data items. As with setup time faults, if a data overrun fault affects one

data bit of a stage, it is likely to affect other bits of the same stage as well. Therefore, testing
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S.No. Test Pattern Correct Behavior Faulty Behavior Comment

req0 ack9 d0 ack0 req9 d9 ack0 req9 d9

1 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) send 1st item,

recv 1st item

2 0 0 (0,0,0,0) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 2nd item

3 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) send 3rd item

4 0 0 (0,0,0,0) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 4th item

5 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) send 5th item

6 0 0 (0,0,0,0) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 6th item

7 1 0 (1,1,1,1) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 7th item

8 1 1 (1,1,1,1) 1 0 (0,0,0,0) 1 0 (0,0,0,0) recv 2nd item

9 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) recv 3rd item

10 1 1 (1,1,1,1) 1 0 (0,0,0,0) 1 0 (0,0,0,0) recv 4th item

11 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 0 (1,1,1,1) recv 5th item

12 1 1 (1,1,1,1) 1 0 (0,0,0,0) empty: req9 same recv 6th item

13 1 0 (1,1,1,1) 1 1 (1,1,1,1) empty: req9 same recv 7th item

Table 6.5: Test pattern for control overrun on a forked path

sequences must be generated for data overrun faults in a manner similar to those generated for

setup time faults in Section 6.5.1.

Interestingly, the ATPG approach of Figure 6.7 also directly applies to generating tests for

the reverse timing violation. Suppose we are testing stage N for a data overrun fault. In order

to begin testing, we must fill the pipeline up to and including stage N with some data; these

values do not affect the testing of stage N . The next two data items fed into the pipeline are

the same patterns generated by the method of Figure 6.7: I1 followed by I2. Then, one item

is removed from the right end of the pipeline, and a bubble propagates backward exposing the

error caused by the timing violation for bit k in stage N . If the pipeline operates correctly,

stage N will correctly latch the value D1; otherwise it will latch the value D2. The correct and

faulty scenario are therefore easily distinguished at the output of the pipeline.

6.6 Test Example II: Non-Linear MOUSETRAP

This section describes how to test for timing constraint violations in MOUSETRAP in the pres-

ence of forks and joins. Setup time faults and data overrun faults use the same test pattern

generation methods as their linear counterparts described in Section 6.5. For control overrun

162



faults, however, we must use a different test pattern than the one given for linear pipelines.

6.6.1 Setup Time Fault

Since the setup time fault is a forward timing violation, we use the testing strategy introduced

in Section 6.4.1. Specifically, for full fault coverage we add logic that allows the join stages

to be tested. Test patterns for forked paths can be generated in the same way as for straight

paths, as described in Section 6.5.1.

6.6.2 Control Overrun

Since control overrun is based on a reverse timing constraint, testing forked paths faces the

challenges given in Section 6.4.2. Specifically, we must ensure that forked paths are balanced

and add logic to allow testing of the fork stages.

The input patterns for testing control overrun faults for straight pipelines given in Sec-

tion 6.5.2 will not work in the presence of forks. Recall the the linear pipeline test relied on

being able to detect if the pipeline has lost two (or more) data items after being filled. How-

ever, if the fault occurs on only one branch of a fork, the branch without the fault will not lose

any data items, and will thereby prevent the loss of data in the other branch from being exter-

nally observable. In particular, the correctly functioning branch will not allow more data items

from being accepted from the environment even though the faulty branch contains bubbles.

For better fault coverage in pipelines with forks, I propose a different strategy. Instead

of determining if the pipeline has lost any data items due to timing constraint violations by

trying to feed it more items, we determine any losses by reading out the entire contents of

the pipeline and counting the number of items read. If fewer than N items emerge from an

originally filled pipeline, then some data has been lost due to control overrun.

Figure 6.10 shows an example of a forked pipeline to be tested. Table 6.5 shows a test

pattern that we use to test for control overrun faults. In the correct scenario, all N of the

acknowledges (ack9) sent to the right interface of the pipeline lead to further requests coming
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out of the pipeline (req9). In the faulty scenario, only N − 2 of the acknowledges lead to new

requests being generated.

d9
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Figure 6.10: A non-linear MOUSETRAP pipeline

6.6.3 Data Overrun

Since data overrun is based on a reverse timing constraint, we use the test setup given in 6.4.2.

Specifically, we must ensure that forked paths are balanced and add logic to allow testing of

the fork stages. Test patterns for forked paths can be generated in the same way as for straight

paths, as described in Section 6.5.2.

6.7 Conclusions and Possible Extensions

In this chapter, I presented a strategy for exposing timing constraint violations in high-speed

asynchronous pipelines, including pipelines with forks and joins. I showed that our test-

ing strategies are applicable by giving examples from three different pipeline styles: GasP,

MOUSETRAP, and HC. This testing strategy is non-intrusive for linear pipelines and minimally-

intrusive for pipelines containing forks and joins. In addition, all of these tests can be con-

ducted using low-speed testing equipment.

I also demonstrated one specific application of this strategy. Using MOUSETRAP as an

example, I showed how our testing strategies work for both straight paths and paths with forks

and joins. We also showed how to generate test patterns for MOUSETRAP that are robust to
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the non-deterministic nature of errors caused by timing constraint violations. This method

leverages past ATPG tools.

There are several natural future opportunities to this work. Although many delay con-

straints are either forward or reverse constraints, there are still other kinds of timing con-

straints to identify and develop test strategies for. By testing pipelines with forks and joins,

this work took one step towards testing pipelines with arbitrary topologies. We still need to

incorporate testing of more complex pipeline stages, such as data dependent conditional forks.

In addition, one could apply the testing strategies presented here to circuits with non-trivial

combinational logic.

Finally, there is a subtle limitation of the current test approach for MOUSETRAP: the setup

fault test approach will actually not be able to expose a setup violation in a stage if data

has accumulated positive margins in prior stages. In particular, positive timing margins in

prior stages sometimes rescue a small timing violation in a later stage, very much like time

borrowing in synchronous systems, allowing the pipeline to still operate correctly. While this

feature makes MOUSETRAP even more robust, if the intent of the test strategy, however, is to

expose even these types of violations, then this setup fault test strategy needs to be enhanced

further.
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Chapter 7

Circuit Designs

7.1 Introduction

In previous chapters, all the pipelined circuits introduced and discussed were assumed to have

efficient and robust implementations. Moreover, these implementations were also assumed to

be capable of modular composition with other stages (i.e. preceding and succeeding stages

need not be aware of the internal behavior or implementation). This chapter introduces the

implementation of five types of special-purpose pipeline stages: conditional split, conditional

select, conditional join, merge without arbitration, and an arbitration stage.

Together with pipeline stage designs introduced in previous literature [55], these stages

form a comprehensive suite of circuits that can be combined modularly to create any of the

hierarchical circuits described in previous chapters. The circuits presented here represent one

possible set of circuits that can be used to implement any of the hierarchical, dataflow circuits

that are the focus of this thesis.

Section 7.2 first presents background work on the MOUSETRAP pipelines that the new

circuits are designed to work with. Section 7.3 then goes on to describe the behavior of

components that are needed to implement each type of construct used by analysis algorithm

of Chapter 4: sequential, parallel, conditional, and iterative constructs.

The remaining sections detail each of the five new components. In particular, each com-



ponent is described using gate-level diagrams, and the operation of the component is given in

detail. In addition, many of the components have several different implementations that rep-

resent tradeoffs between speed and robustness. Each circuit includes a synchronization point

performance analysis, which will yield the performance metrics necessary to complete the

type of analysis presented in Chapter 4. The description of each implementation also includes

the forward and reverse timing constraints, which are an important part of the testing method

introduced in Chapter 6.

7.2 Background

The work of [55] presents the MOUSETRAP pipeline style. MOUSETRAP is a two-phase

pipeline style that uses transition signaling. A transition from high to low or from low to

high on the request line indicates that a new data is present, and a similar transition on an

acknowledge line indicates that the data has been received and stored.

7.2.1 Linear MOUSETRAP Pipeline Stage

The MOUSETRAP linear pipeline has a very simple implementation, which uses only one

xnor as the control element. Figure 7.1 shows a linear pipeline stage implementation, as first

described in [55].

The forward and reverse delay metrics for a MOUSETRAP stage are given below.

Forward Latency: tlatch + tlogic

Reverse latency: txor + tlatch

7.2.2 MOUSETRAP Fork

Figure 7.2 shows a MOUSETRAP stage that is capable of sending requests to and processing

acknowledges from two successor stages. The MOUSETRAP fork stage takes one incoming
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Figure 7.1: A basic MOUSETRAP stage from [55]
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ack0

ack1
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ackP 

Figure 7.2: A MOUSETRAP fork stage from [55]

request from its predecessor stage and forks the outgoing requests to its successor stages. In

the figure, the same request signal reqN is sent to both of the successor stages.

The fork combines the incoming acknowledges from the successor stages with a c-element.

As a result, the latch controller will not signal the latch to become transparent until after both

acknowledges have arrived.

7.2.3 MOUSETRAP Join

Figure 7.3 shows a MOUSETRAP stage that can receive requests from two predecessor stages

and send a combined request on to a successor stage. The MOUSETRAP join stage combines
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Figure 7.3: A MOUSETRAP join stage from [55]

together the incoming requests from two separate stages using a c-element. The outgoing

request does not change until both of the incoming requests have changed. The logic within a

particular join stage will determine what calculations take place using the joined data.

7.3 Circuit Usage

7.3.1 Stage Description

This chapter introduces a set of five new pipeline stages which, together with the MOUSETRAP

stages presented in Section 7.2, create a full suite of pipeline stages capable of implementing

all the hierarchical constructs presented in Section 3.3. In particular, these new stages are

needed to implement both speculative and non-speculative conditionals as well as pipelined

loops. The names and a brief description of the behavior of each stage is listed below.

• conditional split: A conditional split stage is analogous to a router: it receives a data

item from an input channel, and a Boolean value (select) from a second input channel.

Based on the value of select, the data item is sent to one of the two output channels.

In some applications, the Boolean select value and the data value could be bundled

together onto the same channel (i.e., the data itself includes the routing information).

In yet other applications, the select could be simply be a value provided by the system
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without any handshaking (e.g., a global or external input, or a local value that changes

infrequently). In these special cases, our proposed circuit implementation for the more

general case can be simplified/optimized.

• conditional select: A conditional select stage is similar to an event multiplexer: it has

two data input channels, and a third input channel that supplies a Boolean value (select).

It has one output channel. The behavior is to first read the select channel; then, based on

the value of select, read one of the two data channels, and send the result to the output

channel. A value that is not selected is stored to be later sent out when the corresponding

Boolean value arrives.

• conditional join: A conditional join is similar to a conditional select, except that all

input channels are read even though data from only one of them is forwarded; data from

the remaining input channels is discarded. Thus, the handshake behavior is identical to a

simple 3-way pipeline join stage. The datapath operation is identical to a combinational

multiplexor. This simple implementation waits for both inputs to arrive before sending

out one and discarding the other.

• merge without arbitration: This pipeline stage has two input channels and one output

channel. Data is read from whichever input channel has new data, and then sent to the

output. No arbitration is provided; it is assumed that the input channels are mutually

exclusive.

• arbitration stage: This pipeline stage performs arbitration between two input channels,

and produces results on two output channels. Only one input channel is read at any time,

and its value is sent to its corresponding output channel. This circuit can be combined

with the merge without arbitration circuit above to produce a merge with arbitration.
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S IN(S) OUT(S) 

Figure 7.4: A hierarchically composable single pipeline stage

7.3.2 Implementing Hierarchical Constructs

With the introduction of these new stages, all of the hierarchical constructs of Section 3.3

can be realized. This section lists the supported hierarchical constructs and describes their

implementation using MOUSETRAP stages. Figures from Section 3.3 are repeated here for the

reader’s convenience.

Single Stage

The single stage construct

Figure 7.4 shows a single pipeline stage. A single MOUSETRAP stage [55], as described in

Section 7.2, implements the single stage hierarchical component.

Sequential

c1 c2 

seq IN(seq) OUT(seq) 

Figure 7.5: A hierarchically composable sequential component

Figure 7.5 shows a sequential component. This component does not need any special-

purpose stages as part of its implementation, because all pipeline stages can potentially be

composed together in sequence.

Parallel

Figure 7.6 shows a parallel component. The fork and join stages displayed in the Figure are

implemented by the MOUSETRAP fork and join stages [55] presented in Section 7.2.
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Figure 7.6: A hierarchically composable parallel component

Conditionals
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IN(cond) OUT(cond) 
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Figure 7.7: A hierarchically composable parallel component with speculative

conditional

The MOUSETRAP fork components [55] along with the new conditional join component

can be used together to form the speculative conditional found in Figure 7.7. In particular,

the MOUSETRAP fork stage [55] needs to be modified to have three rather than two parallel

outputs, so it can be used as the fork stage of the speculative conditional. In addition, the

conditional join—which was designed for use in a speculative conditional—will take signals

from all three paths as input and send out the data that is selected by the Boolean value.

IN(c1) 

IN(c2) OUT(c2) 

OUT(c1) 

split merge 

c1 

c2 

cond 

buffer 
Boolean Boolean 

IN(cond) OUT(cond) 

Figure 7.8: A hierarchically composable non-speculative conditional compo-

nent
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The implementation of a non-speculative conditional, as seen in Figure 7.8, requires two

of the newly designed stages. In particular, the conditional split and conditional select are

designed to work together to implement an if-then-else construct without speculation. The

conditional split first sends data along one of two paths, based on a Boolean value, thereby

splitting one data stream into two. Subsequently, based on that Boolean value, the conditional

select receives data from the correct path, thereby recombining the two data streams into one.

Iteration

if dist 

counter 

arbiter 

c1 

IN(c1) 

IN(c1) 

IN(c1) 
IN(loop) OUT(loop) 

loop 

Figure 7.9: A hierarchically composable data-dependent loop component

As seen in Figure 7.9, the loop interface is made up of several stages, each of which

requires a different implementation. A new data item entering the loop first arrives at the

distributor stage, which sends the new item into the loop if the counter indicates that it is not

already full. This joining of information between the incoming data and the counter can be

implemented as a MOUSETRAP join stage.

The arbiter of the loop interface prevents collisions between data items that are entering

the loop and data items that are already within the loop. It is implemented using two of the

new stages that this section introduces: the arbitration stage and the merge without arbitration.

In particular, the arbiter first chooses whether the new data arriving into the loop or the old

data cycling through the loop arrived first. It then sends a signal out on exactly one of its

outputs. The merge without arbitration takes in this signal and sends the data into the loop.
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Finally, a conditional split implements the behavior of the if block in Figure 7.9. Specifi-

cally, it takes in a Boolean conditional that determines whether the data item is ready to leave

and sends that item either out of the loop or back to the arbiter. Additionally, every time a data

item leaves the ring, a signal should be sent to the counter that acts as a decrement.

7.4 Conditional Split

7.4.1 Behavior

A conditional split stage is similar to a router: it receives a data item from an input channel,

and a Boolean value (select) from a second input channel. Based on the value of select, the

data item is sent to one of the two output channels. This stage waits for both the Boolean

select input and the data input to be ready. It toggles only one of the outgoing request lines,

depending on the Boolean value. The data input is simply copied to all of the output channels.

7.4.2 Non-optimized Implementation

A basic non-optimized implementation is shown in the figure 7.10. In this implementation,

a C-element combines the incoming data and Boolean requests. The Boolean input value, B,

is used to invert one of the incoming acks, ack0 or ack1, to produce the appropriate requests

on req0 and req1. Negative edge triggered flip flops are used to latch outgoing requests; this

prevents changes on the ack0 and ack1 lines from producing spurious requests. The latches

in the data path (not shown) can be controlled with the same signal, enable, that controls the

incoming request latch.

Performance Metrics

For performance analysis, the forward latency path of the conditional split included the C-

element and the latch, then the xnor controller that changes the enable signal, and finally one

174



L 

FF 

FF 

c

ack0

ack1

req0 

req1 

ackP 

reqD 
reqB 

Bool 

enable 

Figure 7.10: Conditional split circuit diagram
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Figure 7.11: Conditional split abstract analysis model

of the two flip flops. The forward latency can be expressed as follows:

Forward latency: tc-elem + tlatch + txnor + tff

The reverse path goes through the controller xor and xnor and finally the latch.

Reverse latency: txor + txnor + tlatch

Using the synchronization-point notation of Section 3.2 gives the values of Figure 7.11.

These values can be used in the analysis and optimization techniques presented in this thesis.

One simple way to improve the cycle time, and therefore improve the throughput, of this

component is to break the conditional into two separate stages. The first stage handles combin-

ing the incoming signals, and the second stage handles the outgoing signals. The overhead of

this optimization is increased latency and area, but there is no penalty in terms of robustness.

Timing Constraints for Testing

The setup time constraint is less restrictive than that of a typical MOUSETRAP stage, as given

in Section 6.3.2, because the extra C-element delay decreases the risk of a timing violation.

tdataN−1
+ tsetupN

< treqN−1
+ tc-elemN

+ tLatchN
+ tXNORN↓

The hold time constraint remains identical to the one for a typical MOUSETRAP stage,

given in section 6.3.2, since the path for closing the latch remains identical to that of the

original stage design. tXNORN↓ + tholdN
< tXNORN−1↑ + tLatchN−1

+ tlogicN−1

Reverse Path

The remaining three designs optimize the forward path of the circuit, i.e., the logic that con-

trols the outgoing requests. However, the reverse path—which handles the acknowledgments
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Figure 7.12: The reverse path for all conditional split circuits

sent to the previous stage—remains the same. For reference, Figure 7.12 displays only the

reverse path of the conditional split. The wire labeled a in the figure serves as an input for the

forward path implementations in the following sections.

7.4.3 Options and Optimizations

Basic logic implementation

I generated a circuit with a more optimized forward path by modeling the behavior of the

circuit and synthesizing using Petrify [11]. Boolean equations are provided below in Figure

7.13; gate-level circuit implementations can be produced directly from these equations. The

signal req is the combination of the incoming Boolean and data requests after they have been

combined using a C-element, which is similar to the non-optimized design. The signal a is the

xor of the two incoming ack signals, which is also similar to the non-optimized implementa-

tion. To produce the signals req0 and req1, the circuit uses the signals req, a, and the Boolean

clause to compute the output signals req0 and req1.

Using this implementation, the following revised forward latency holds:

Forward latency: tc-elem + tand + tor + tand + tor
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req = C-element (reqD, reqB)

req0 = b’ (req req1’ a’ + req’ req1 a) + r0 (req’ a’ + req a + b);

req1 = b (req req0’ a’ + req’ req0 a) + r1 (req’ a’ + req a + b’);

a = ack1 ack0’ + ack1’ ack0;

Figure 7.13: Basic logic minimized expression for conditional split

Generalized C-element implementation

A generalized C-element implementation, generated using petrify [11], for the forward path

is shown in Figure 7.14.

req = C-element (reqD, reqB)

[0] = b’ (req req1’ a’ + req’ req1 a);

[1] = b’ (req req1 a’ + req’ req1’ a);

[req0] = r0 [1]’ + [0]; // mappable onto gC

[3] = b (req a’ r0’ + req’ a req0);

[4] = b (req’ a r0’ + req a’ req0);

[req1] = req1 [4]’ + [3]; // mappable onto gC

Figure 7.14: Generalized C-element implementation of a conditional split

Using this implementation, the following revised forward latency holds:

Forward latency: tc-elem + tand + tor + tand + tc-elem

7.5 Conditional Select

7.5.1 Behavior

A conditional select stage is similar to an event multiplexer: it has two data input channels,

and a third input channel that supplies a Boolean value (select). It has one output channel.

The behavior is to first read the select channel; then, based on the value of select, read one

of the two data channels, and send the result to the output channel. The circuit begins with

the latches opaque. It waits for the Boolean input, and then makes the selected request latch

transparent. When the selected request arrives, it triggers the request to be sent to the next

stage, and closes the latches once more.
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Figure 7.15: Conditional select circuit diagram

7.5.2 Non-optimized Implementation

A basic non-optimized implementation is shown in Figure 7.15. Request latches are held

opaque by nor gates until the Boolean arrives. Data request latches become transparent only

when all of the following are true: the Boolean has arrived, the Boolean value selects the given

data path, and the next stage is ready. The gate that most closely corresponds to the controller

xnor in a normal mousetrap stage is shown grayed. The data path can be constructed using

multiplexors with the boolean input as the select line. The latches can be controlled with the

next ready signal, just as in a normal mousetrap stage.

Performance Metrics

The conditional select has differing forward and reverse latencies for the incoming Boolean

and the incoming data paths.

Forward latency (data): tlatch + txor

Forward latency (Boolean): txnor + tnor + tlatch + txor

Reverse latency (data): txor + tnor + tlatch

Reverse latency (Boolean): txor + tnor + tlatch + txor
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Figure 7.17: Synchronization

point model for the Boolean

path of the conditional select

Using the synchronization-point notation of Section 3.2 gives the values of Figure 7.16

for the data path and Figure 7.17 gives the values for the Boolean path. In particular, the

synchronization point–the point at which an incoming request synchronizes with an incoming

acknowledge–is at each of the latches. The Boolean value entering the stage goes through an

xnor and a nor gate before reaching this synchronization point, while the incoming request

for req0 and req1 arrive immediately at the latches. These values of Figure 7.16 can be used

in the analysis and optimization techniques presented in this thesis.

Timing Constraints for Testing

The setup time constraint for the data path is identical to that of a regular MOUSETRAP stage,

because no additional stages stand between the incoming request and the latch where the

signals synchronize.

The hold time constraint is more restrictive than for a regular MOUSETRAP stage given in

Section6.3.2, since the path for closing the latch contains additional gates.

tholdN
+ txor + txor + tnor < txnor + tlatch + tlogic

7.5.3 Options and optimizations

Logic Minimization

The logic to open and close the latches—shown in Figure 7.15 using an xor, an xnor, and a

nor—can also be implemented using a two-level sum-of-products form to reduce delays.
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Figure 7.18: Conditional select optimized for constant Boolean value
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Figure 7.19: Conditional select optimized for forward latency with the assump-

tion that the Boolean value arrives before the data.
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Figure 7.20: Data-path setup for a conditional select

Global Boolean Value

In some systems, the Boolean value may be a global constant that is assumed to be stable, and

will therefore not have any associated request. In this case, the circuit is simpler (one xnor

gate is removed), as shown in Figure 7.18.

Early Acknowledge for Boolean

The circuit can also be changed to produce the acknowledgment for the Boolean value early,

before the data has arrived. The modified circuit, seen in Figure 7.19, latches the Boolean

value to use when the data later arrives. This version has a higher forward latency in cases

where the Boolean value arrives after the data, and should only be used when the designer

knows that the Boolean value will always be available before the data.

7.5.4 Data path

Figure 7.20 below shows one bit of the data path for the conditional select. This data path im-

plementation can be used with either the optimized or non-optimized circuit implementations.

The operation of the data path is as follows. First, the Boolean value selects which incom-

ing data to use. When both the data and Boolean requests are present, the latch enable signal

makes data latch opaque. This protects the data from being overwritten by new incoming data.
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Figure 7.21: Conditional join circuit diagram

7.6 Conditional Join

7.6.1 Behavior

A conditional join is similar to a conditional select, except that all input channels are read

even though data from only one of them is forwarded; data from the remaining input channels

is discarded. Thus, the handshake behavior is identical to a simple 3-way pipeline join stage.

The datapath operation is identical to a combinational multiplexor. It waits for the Boolean

input and all data inputs to be ready and acknowledges all inputs once the data is latched. The

combinational logic after the latches multiplexes the data based on the Boolean input, and the

unused data item is simply discarded.

7.6.2 Gate level implementation

Figure 7.21 shows an implementation of the conditional join. C-elements combine all incom-

ing requests into one request. Combinational logic consists of a multiplexor.
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Figure 7.22: Conditional join abstract analysis model

Performance Metrics

Forward latency: tc-elem + tc-elem + tlatch

Reverse latency: txnor + tlatch

Using the synchronization-point notation of Section 3.2 gives the values of Figure 7.22.

These values can be used in the analysis and optimization techniques presented in this thesis.

Timing Constraints for Testing

The setup time constraint is less restrictive than that of a typical MOUSETRAP stage, as given

in Section 6.3.2, because the extra two c-element delays decrease the risk of a timing violation.

tdataN−1
+ tsetupN

< treqN−1
+ tc-elemN

+ tc-elemN
+ tLatchN

+ tXNORN↓

The hold time constraint is identical to that of a regular MOUSETRAP stage, since the path

closing the latch to protect the data is identical.

7.6.3 Options and Optimizations

The selection of data values can also take place before the latches. This reduces the total

number of latches, but also creates the timing assumption that the data will arrive in time to

be selected before the latches become opaque.
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Figure 7.23: Circuit diagram for merge without arbitration

7.7 Merge without Arbitration

7.7.1 Behavior

This pipeline stage has two input channels and one output channel. Data is read from whichever

input channel has a new incoming request and then sent to the output. No arbitration is pro-

vided; it is assumed that the input channels are mutually exclusive. An incoming request

on either req0 or req1 will trigger a toggle on the outgoing request line. This toggle will

quickly make the latches opaque, so any new incoming request will not be processed until the

acknowledge from the succeeding stage has been received.

7.7.2 Gate level implementation

Figure 7.23 shows an implementation of a merge without arbitration. An xor is used to com-

bine the two incoming requests, such that a toggle on exactly one incoming request line will

lead to a toggle on the output request. The latch control works similarly to a normal mousetrap

stage.
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Figure 7.24: Merge without arbitration abstract analysis model

Performance Metrics

Forward latency: txor + tlatch

Reverse latency: txnor + tlatch

Using the synchronization-point notation of Section 3.2 gives the values of Figure 7.11.

These values can be used in the analysis and optimization techniques presented in this thesis.

Timing Constraints for Testing

The setup time constraint is less restrictive than that of a typical MOUSETRAP stage because

the extra xor delay decreases the risk of a signal arriving to the latch before the circuit is ready.

tdataN−1
+ tsetupN

< treqN−1
+ txorN

+ tLatchN
+ tXNORN↓

The hold time constraint remains identical to the one for a typical MOUSETRAP stage,

since the path for closing the latch is identical to that of the original stage design.

7.7.3 Datapath

The datapath used with the merge without arbitration depends on the previous stages used in

the system. Often, an arbitration stage just before the merge stage will perform the merging

of the datapath. In this case, the data can simply be latched with the signal enable shown in

Figure 7.23.

If the datapath has not already been merged, however, the two incoming datapaths are

multiplexed to give one output data value. Two possible datapaths that are capable of merging

incoming data are shown in Figures 7.25 and 7.26 respectively. The circuit of Figure 7.25
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Figure 7.26: Implementation of the data path for a merge using C-elements
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uses flip-flops to hold the state of the outgoing request while the circuit of Figure 7.26 uses

c-elements.

7.8 Arbitration Stage

7.8.1 Behavior

This pipeline stage performs arbitration between two input channels, and produces results on

two output channels. Only one input channel is read at any time, and its value is sent to its

corresponding output channel. This circuit is essentially a 2-phase wrapper around a mutex

element, which is a circuit that can reliably break ties between two incoming signals. This

implementation of a two-phase arbiter is adapted from Erik Brunvand’s thesis [7]. It allows the

earlier request that arrives on either channel to pass through, and ignores subsequent requests

until the current handshake cycle is complete. Based on which incoming request is received

first, it sends a request out on one of the two request lines.

7.8.2 Gate level implementation

The first set of latches begins transparent, while the second set begins opaque. When a request

arrives, the first latch becomes opaque, the second becomes transparent, and the mutex to be

unresponsive to new incoming requests. The ack returning from the next stage re-enables the

mutex so more incoming requests can be processed.

Performance Metrics

Forward latency: tlatch + txor + tmutex + tlatch

Reverse latency: txnor + tmutex + tlatch

Using the synchronization-point notation of Section 3.2 gives the values of Figure 7.28.

The synchronization point of this arbitration stage is the second latch that the request passes
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Figure 7.27: Arbitration stage built around a mutex
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Figure 7.29: Datapath for arbitration stage

through, so all delays in Figure 7.28 are relative to that point.

Timing Constraints for Testing

The setup time constraint is less restrictive than that of a typical MOUSETRAP stage, and also

more complicated because the path to shut the latch includes an additional mutex element.

tdataN−1
+ tsetupN

< treqN−1
+ txnor + tmutex

The hold time constraint is more restrictive for the arbitration stage than it is for other

MOUSETRAP stages. Specifically, because the reset path includes a latch in addition to an xor,

the time between data arriving and the latches becoming opaque to protect the data is higher

than in a regular MOUSETRAP stage.

tXNORN↓ + tmux + tholdN
< tXNORN−1↑ + tLatchN−1

+ tlogicN−1

7.8.3 Datapath

Depending on the next stages used in the system, the arbitration stage may either maintain

two separate data paths and requests, or it may merge the data paths. If two separate data

paths are required, then the data latches on paths 0 and 1 will use the latch enable signals LE0
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and LE1 respectively. Merging of the two data paths can be accomplished using the merge

without arbitration stage described in Section 7.7.

7.9 Conclusion

This section presented a set of five new pipeline circuits that, together with existing MOUSE-

TRAP circuits [55], can form any of the hierarchical components handled by the analysis and

optimization methods of Chapters 4 and 5. For each component, the section gave performance

metrics, which can be used as inputs to the analysis method. If new types of connections or

constructs are eventually added to the analysis approach, then new stages in the same style

may need to be added as well.

Additionally, each stage is has information about its timing constraints listed, to aide in

testing for timing constraint violations. Although the testing methods of Chapter 6 have not

been extended specifically to these new stages, their timing constraints are in line with the

kinds of constrains that it can test.
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Chapter 8

Case Study

8.1 GCD Circuit Design

8.1.1 Introduction

This section presents the design of a greatest common divisor (GCD) chip as a case study to

investigate some of the potential benefits of pipelined asynchronous design. We are currently

witnessing a trend where mobile applications increasingly require chips that can deliver high

performance when needed, but that are ideally also capable of operating robustly on scaled-

down supply voltages when battery life is at a premium [48]. While researchers believe that

asynchronous technology can deliver chips to satisfy this need, very few concrete demonstra-

tions of high-performance yet robust asynchronous designs exist [12]. The goal of the GCD

case study was to design, fabricate, test and evaluate a medium-complexity chip, and to report

whether the goals of high performance, voltage and temperature robustness, and testability

can be achieved while expending reasonably low designer effort.

The GCD chip implements a modified version of Euclid’s iterative algorithm. A total of 98

self-timed stages, connected into the shape of a ring, implement the iterative algorithm. Each

trip through the 98 stages represents eight algorithmic iterations (i.e., an eight-way unrolled

loop). This level of fine-grain pipelining results in a fairly high performance, equivalent to

a 1 GHz clocked ASIC. However, unlike a synchronous implementation, the asynchronous



nature of this design results in good robustness to temperature and voltage variation.

The design was fabricated in a 0.13µm CMOS process, using standard cells and with full

testability support. Since the design is clockless, its performance is measured and reported

in terms of the number of GCD algorithmic iterations completed per second. A total of 24

parts were received and all were tested. At nominal temperature and voltage (1.5V and 27◦C),

the fabricated chips complete about 8 giga algorithm iterations per second (equivalent to 1

GHz clock speed). Testing was performed over a wide range of supply voltages (0.5–4.0V)

and temperatures (-45–150◦C), and all of the parts were found to be functionally correct.

The asynchronous nature of the implementation allows the performance to gracefully vary

with changing operating conditions, without the need for clock re-calibration. For example, at

nominal temperature and 0.7V, which is less than half of the nominal voltage, the performance

slows down to 1.4 giga iterations per second, but the chip still remains functionally correct. At

a temperature of 150◦C but nominal voltage, the performance slows to 6.7 giga iterations per

second, though functional correctness is still maintained. Finally, the implementation required

a fairly modest designer effort—the entire physical design entailed 5 person-weeks of effort—

which likely would not have been possible but for the inherent modularity of asynchronous

components and the timing robustness of their interaction.

8.1.2 Overview of Design

This section presents an overview of the GCD chip’s implementation, including the high-level

algorithmic specification, the overall architecture, and brief details on its pipelined implemen-

tation.

Figure 8.1 shows the overall architecture of the core of the GCD chip, along with a picture

of its layout. The design is organized as a self-timed ring, which iteratively computes the

GCD function, and a special interface which allows the design to communicate with, and to

be controlled by, its external environment.

Figure 8.2(a) shows the basic GCD algorithm that was used as the starting point for our
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Figure 8.1: Overall architecture of GCD chip

implementation. The result is computed by repeatedly subtracting the smaller number from

the bigger one until both numbers are equal. The end value is then the result of the compu-

tation. Several modifications were made to this basic algorithm to reduce its implementation

complexity. These modifications will be introduced in the following sections.

The operand width was chosen to be 8 bits for this implementation. However, the GCD

algorithm, the overall ring structure, and the interface design presented here actually apply

to operands of any length. The motivation for choosing 8-bit operands was to keep design

effort reasonable, since all placement and routing was performed manually. The choice of

8-bit operands, however, results in a non-trivial datapath—24 bits wide—since two operands

and one intermediate result are transfered between successive stages.

Ring Architecture: Loop Unrolling

The algorithmic loop was unrolled eight times before implementation. That is, the datapath

fragment implementing one algorithmic iteration was replicated eight times within the ring.

Therefore, when a data item completes one revolution around the ring, it effectively executes
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input (a, b)

while (a != b)

if (a > b)

a := a - b

else

b := b - a

end while

output (a)

(a) basic algorithm: data-

dependent iteration count

input (a, b)

while (true)

if (a > b)

a := a - b

else

b := b - a

end while

output (a)

(b) modified algorithm: in-

finite looping

Figure 8.2: Basic GCD algorithm before and after simplification of the ring in-

terface

eight iterations of the GCD algorithm’s while loop.

There were two objectives of unrolling the algorithmic loop. First, unrolling allows a

greater number of distinct problems to be concurrently processed inside the ring, thereby

achieving an approximately 8-fold increase in overall work throughput. Second, replicating

the datapath of the ring allows the latency overhead of the interface to be amortized over a

large number of stages. That is, the slopes of the forward and reverse lines of the canopy

graph will not be much affected by the presence of the extra logic in the interface stage.

While loop unrolling techniques generally require careful management of the count of

iterations executed, the GCD algorithm is easily unrolled because it is unaffected by extra

iterations being performed. Once integer b becomes zero (see Figure 8.2(a)), the integer a will

maintain its value, regardless of how many extra iterations are executed.

Finally, the datapath of the entire ring was pipelined into a total of 98 stages, each imple-

mented using the MOUSETRAP style. Specifically, the datapath corresponding to each of the

eight iterations was divided into 12 pipeline stages. Two additional “corner turner” pipeline

stages perform routing of long datapath wires around the corners, and contain no additional

processing logic. Given that at least one hole is required for data to be able to move inside the

ring, a total of as many as 97 problem instances could be loaded into the ring for concurrent

execution. The high stage count also allows the interface’s latency to be amortized, allowing

an estimation of the internal stages’ latency to within 1% accuracy.
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Interface: Infinite Looping

The interface serves three functions: (i) ring initialization, (ii) testing for faults, and (iii) load-

ing of problems (i.e., operand pairs) into the ring, and draining of results from the ring after

computation.

An interface that exactly implements the behavior of the GCD algorithm shown in Figure

8.2(a) should be capable of dynamically managing the entry and exit of items into and out

of the ring. In addition, to achieve optimal throughput, the interface should maintain ideal

occupancy in the ring, i.e. neither under-utilized nor congested. The recent loop pipelining

approach [16] presents an interface design that implements this behavior precisely.

This work, however, opted for an interface that allows data items to continue to loop

around the ring until the operation is interrupted by the external environment. This inter-

face effectively modifies the original algorithm to contain an infinite loop, as shown in Fig-

ure 8.2(b). As discussed above, since the GCD algorithm is unaffected by extra iterations,

infinite looping does not affect the value of the results.

There were two motivations for using the simpler interface. First, it allows greater con-

trollability of the chip from the external environment, thereby simplifying the task of testing

the design for faults. Second, speed measurements can be made more easily using low-speed

external test equipment because the ring operates continuously because of the infinite loop.

Otherwise, each computation would be short-lived—on the order of tens of nanoseconds—

which would require complex on-chip circuitry for evaluation of the chip’s performance. By

turning the computation into an infinite loop, we enable steady-state observations of the chip’s

performance, and leverage existing work on analysis of self-timed rings to estimate internal

latencies and cycle times [68].

External Environment

The test environment must meet two requirements in order for it to interact correctly with our

chip’s interface. First, it must allow sufficient time for computations to be completed before
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draining the results. This requirement was easy to meet because our test environment was

several orders of magnitude slower than the GCD chip.

Second, the environment must be capable of handling results which emerge out-of-order.

In particular, since the ring is cut open for draining results at an arbitrary time by the envi-

ronment, the results drained are a cyclic permutation of the order in which problems were

loaded. The correctness of results is easily checked by our testing software, which checks

every possible cyclic permutation of the output data against the precomputed expected values.

8.1.3 Implementation of a Single Iteration

Datapath Design and Optimization

Figure 8.3 shows again the basic GCD algorithm of Figure 8.2(b) with infinite looping. The

body of the iterative loop is shown highlighted. A corresponding straightforward dataflow

implementation of the loop body is shown in Figure 8.3. Both (a−b) and (b−a) are computed

using two separate subtract units, and then the values of a and b are updated appropriately

depending upon the test (a > b).

The basic algorithm and dataflow implementation of Figure 8.3 have significant area over-

heads. In particular, assuming no resource sharing, this algorithm requires the use of two dis-

tinct subtract blocks because subtraction is performed in two different steps of the algorithm.

Further, the comparison test (a > b) is an expensive operation, whether it is implemented

directly as a comparator block, or as a subtract operation followed by a sign check.

The basic algorithm was modified to improve its area, as shown in Figure 8.4. The new

version of the algorithm requires only a single subtract operation. The second subtract op-

eration was eliminated through use of a relatively inexpensive swap operation: if a < b, the

current iteration swaps a and b, letting the next iteration performs the correct subtract opera-

tion. While this modification may increase the number of total iterations needed per compu-

tation, and hence lengthen the latency, the key goal in this work was high area efficiency and

high throughput. Furthermore, the expensive comparison operation (a > b), which required
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if (a > b) 

        a := a - b 

    else 

        b := b - a 
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Figure 8.3: Basic GCD algorithm, and the corresponding dataflow implementa-

tion of one iteration

the examination of all of the operand bits, is now replaced by the significantly simpler test

(s < 0), which requires only the examination of the sign bit. The net result is the much more

area-efficient implementation of Figure 8.4.

Pipelining an Iteration

The datapath corresponding to one algorithmic iteration, shown in Figure 8.4, was pipelined

into 12 stages. In particular, the subtract block was pipelined into 8 stages, while the con-

ditional swap operation, implemented by the multiplexers, was pipelined into 4 stages. Fig-

ure 8.5 shows the layout of one iteration.

Subtract. A simple pipelined ripple-borrow implementation was used for the subtract block.

This implementation is identical in architecture to a ripple-carry adder [23], but uses slightly

different logic in each stage: instead of a full adder, a “full subtractor” block is used. If X and
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     if (s < 0) 

         swap(a, b) 

     else 

         a := s 

Figure 8.4: Area-optimized GCD algorithm, and the dataflow implementation of

one iteration

Y are the operand bits at a given stage and Bin is the input borrow, then the result D and the

borrow output Bout generated at this stage are given by:

D = X ⊕ Y ⊕ Bin (8.1)

Bout = X · (Y + Bin) + Y · Bin (8.2)

Since the operands in this implementation are eight bits in length, the subtract block was

implemented using eight pipeline stages. The left portion of Figure 8.5 shows the layout of

the subtract block. By using a simple rotation of the datapath wires as they go from one stage

to the next, it was possible to simply tile the layout of one subtract stage eight times to obtain

a regular layout pattern.

Conditional Swap. The swap operation, implemented using multiplexers, was pipelined

into four stages. While multiplexing of single bits is easily accomplished within a single

pipeline stage, this design requires two 16x8 multiplexers, which represent too large a load to

be efficiently implemented as a single pipeline stage. In addition, the swap operation required
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8-stage pipelined subtract
4-stage compare and swap

Figure 8.5: Layout of one iteration

a significant amount of routing and rearrangment of the data bits so that the ordering of bits

at the output of an iteration matched the input order for the next, thereby further increasing

loading. Therefore, in order to keep the loading on the datapath manageable, the swap opera-

tion was spread across multiple pipeline stages. In particular, the first and the last stages were

functionally FIFO stages, but performed a significant portion of the routing and rearrangement

of data bits required in the design. The middle two stages performed the actual multiplexing

operations.

Stage Implementation: Details

This section presents details of the implementation of each pipeline stage. In addition, the

discussion highlights certain design decisions that were made to ensure robustness to timing

variations.

Figure 8.6 shows a gate-level implementation of each pipeline stage, including buffers that

were added for robustness. The logic will vary between stages, but the other gates do not.

Datapath. The datapath consists of standard level-sensitive D-type transparent latches and

static logic function blocks (either subtract logic or swap logic). These were implemented

using gates from a standard-cell library.

200



reqN

ackN-1

reqN+1

ackN

Data in

Data out

Stage N

En

Bit Latch

Data Latch

Handshake

Control

matched delay

logic

Figure 8.6: Implementation of a stage: delay matching and control buffering

Control. The control logic consists of the XNOR gate, its output buffers, and a matched

delay, all of which were implemented using standard gates. The controller’s output was am-

plified using two series inverters in order to provide adequate strength to drive the entire

datapath, whose width was 24 bits (8 bits each for a, b and s). A matched delay consisting of

four series inverters was used which, for all stages, adequately matched the worst-case delay

through the function logic.

Robustness Considerations. Two design decisions were made in order to ensure high ro-

bustness to timing variations.

First, buffer insertion did not employ the technique of control kiting [39, 72]. In kiting,

unbuffered control signals are used for producing the handshake signals, and the control is

buffered only to drive the datapath. Thus, when kiting is used, the datapath operates with a

skew with respect to the control, and the overhead of buffering is eliminated from the cycle

time. However, unless the datapath skew is exactly the same in neighboring stages, kiting has
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the disadvantage of reducing timing margins, thereby sacrificing robustness. Therefore, this

work did not use kiting, opting instead for higher timing robustness.

Second, as shown in Figure 8.6, the acknowledgements were delayed by two inverter

delays before being sent to the previous stage. This delay was added in order to provide

a healthier timing margin to the hold time constraint. In particular, this approach gives the

current stage additional time to make its latch opaque before the acknowledgement stimulates

the previous stage to generate the next data item.

Performance Impact. The cost of higher timing robustness was an increase in the cycle

time by four inverter delays: two inverters due to control buffering, and another two due to

the delayed acknowledgments.

8.1.4 Interface

The interface of the GCD chip performs several key tasks, including data insertion and re-

moval. For test purposes, it allows full controllability and observability of the request, ac-

knowledge, and data wires between the first and last ring stages. Finally, during steady-state

operation, the interface provides at-speed measurement of the ring’s throughput by allowing

handshake activity between the first and last stages to be externally observed. To facilitate

measurements using slower external equipment, a decimated version of the ring’s frequency

(divided by 64) is also provided.

Structure

The structure of the interface is shown in Figure 8.7. The interface connects the first ring stage,

Stage 1, with the last ring stage, Stage 98, and also provides the external off-chip environment

with full controllability and observability of this connection.

Specifically, the interface allows three pieces of information to be exchanged between the

first and last ring stages: (i) request, req, from the last stage to the first; (ii) acknowledgment,
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Figure 8.7: Detail of the chip interface

ack, from the first stage to the last; and (iii) data (16 bits) from the last stage to the first.

The interface allows the external environment to passively observe these three signals, as

well as to actively control them. In particular, copies of these signals (shown highlighted in

blue in Figure 8.7) are simply forked off to the environment for observability. In addition,

the interface contains a frequency divider—consisting of a series of six edge-triggered flip-

flops—that produces a frequency-decimated version of the request signal (frequency divided

by 64), which facilitates observation of the high-speed operation on slower test equipment.

To provide the environment with full control, multiplexers and latches are added to the

path of each signal. The latches are controlled by the environment, and allow the ring to be

stopped or restarted under external control. The multiplexers, also controlled by the environ-

ment, allow externally generated request, acknowledgment and data values to be substituted
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for the internal signals. Before the control input to any of the multiplexers is changed, the as-

sociated latch is temporarily disabled to ensure that no glitches generated by the multiplexers

are transmitted.

Finally, the request and acknowledge paths contain one inverter each, to ensure correct

polarity. These inversions are necessitated by transition signaling, when the ring is filled with

an odd number of items. For instance, if the ring is filled with only a single item, it should

toggle the request going into the first stage every time that item crosses the interface. On the

other hand, inversions should not be performed if the ring is to be run with an even number

of items. In this work, we chose to design the ring to be run with an odd number of items, so

inverters were required.

Operation

The operation of the chip consists of the following four phases in sequence: (i) initialization,

(ii) loading of problem instances, (iii) computation by the ring, and (iv) draining of results.

Below, the role of the interface is described during each of these phases.

Initialization. An externally-supplied reset signal initializes all of the pipeline stages in

the ring to be empty. In particular, all of the requests and acknowledgments are forced high,

which in turn asserts all the latch enables, thereby making all latches transparent and the

pipeline empty.

Loading of Problems. After initialization, the interface allows the external environment to

insert problems into it. To do so, first all of the three latches in the interface are made opaque

to cut the ring open and to prevent any glitches from propagating through the circuit. Next,

the three multiplexers are set to select inputs from the environment. Finally, the latches are

made transparent again to allow the inputs from the environment to enter the circuit. Each

problem instance is loaded into the ring by first providing the appropriate data bits, and then

toggling the value of the request to perform a handshake with the first stage of the ring.

Computation. Once all problems are loaded into the ring, the interface allows the environ-
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ment to seal the ring close by connecting the first and last stages together, thereby allowing

data to flow around the ring and computation to occur. Once again, to avoid glitches, the

interface latches are first made opaque. Then the multiplexers are set to transmit signals be-

tween the first and last ring stages. Finally, the interface latches are made transparent again,

effectively reconnecting the ring and allowing computation to occur.

Draining of Results. Once computation is completed, the results are drained under the

control of the external environment. For reasons discussed in Section 8.1.2, the environment

simply waits long enough to allow the results to be computed; there is no explicit checking of

the computation’s completion.

The draining of results takes place using the following sequence of steps. First, the latch on

the acknowledge path is made opaque. This action stops any further acknowledgment from the

first stage to reach the last stage, thereby freezing the ring’s operation. When the ring stops, the

data item stored in the last stage has been received by the first stage, but not acknowledged.

Therefore, two copies of that data item exist, at the beginning and end of the ring, which

is a situation that is checked by our test software.1 After sufficient time has been allowed

for the interface to stabilize, the environment disables the request and data latches as well.

Next, the multiplexer on the acknowledge path is set to allow the environment to generate the

acknowledgment for the last stage, and the acknowledge latch is made transparent. Finally,

the environment drains data items from the ring by toggling the acknowledgment to perform

successive handshakes with the last stage of the ring.

Metastability Issues

Our method of stopping the chip when it is running by cutting open the ring has some non-

zero probability of causing a metastable condition. In particular, metastability may arise if the

acknowledge from the first stage to the last one was in the process of transitioning just as the

1Alternatively, the ring can be stopped by freezing the request from the last stage to the first stage. This

scenario does not duplicate the last data item.
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latch on the acknowledge path became opaque under the environment’s control.

Two metastable scenarios are possible. In most cases, metastability will lead to the ac-

knowledge simply taking extra time to change to the correct value, but the change itself will

be monotonic. In such a situation no circuit malfunction will occur, provided the interface

allows sufficient time for the metastability to resolve before the environment drains data from

the ring. This indeed is the case since the external environment is orders of magnitude slower

than the chip. In rare cases, however, the metastable acknowledgment could theoretically

toggle several times before stabilizing. In such a situation, one or more data items may be

lost from the last stage of the ring. In order to estimate the likelihood of the latter harmful

metastable scenario, we performed over 60,000 tests on our fabricated chip; none resulted in

any loss of data.

Support for Testability

Our approach to testing the GCD chip is based on recent work on non-intrusive testing of

both stuck-at faults [53] and timing violations, using the method described in Chapter 6. This

section presents the role performed by the interface to support testing.

For stuck-at fault testing, the interface allows the environment to cut the ring open, initial-

ize it empty, and then test the transparent datapath using standard combinational test methods.

For testing timing constraint violations, the interface again allows the environment ade-

quate controllability to expose such violations and to functionally observe erroneous behav-

ior. In particular, the key idea behind testing for timing violations is to create the situation

that stresses the timing constraint using only low-speed test equipment. As described in Sec-

tion 6.3, setup time violations are exposed when a data item is introduced into an empty

pipeline; as it moves unhindered through the pipeline, it exposes setup violations through suc-

cessive stages. Creating this situation requires the ability to send all of the data bits of the test

pattern into the ring, in parallel with the associated request signal; the interface clearly allows

this test scenario to be realized. Similarly, hold time violations are exposed when a data item
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Figure 8.8: Fabricated chip layout and photomicrograph

is removed from an initially full pipeline. Once again, the interface allows the environment to

create this scenario as well.

8.1.5 Testing Setup

Layout and Fabrication

Our chip was implemented in a 0.13µm process (IBM 8RF CMOS). It was designed using the

Cadence tool suite, using a standard-cell library from the University of Washington.

Two versions of the GCD ring were fabricated on the same die: a slower version with

conservative timing margins and a faster version with slightly tighter timing margins. Each

version contains 50K transistors and occupies 1.5X.5mm2. Figure 8.8 shows the layout of the

completed chip and a photomicrograph of the fabricated die. Both versions were found fully

functional during testing. Results for the faster version are presented here; the throughput of

the slower version was about 15% lower.

Since the design was standard-cell, only coarse-grain gate sizing and delay matching could

be performed. In particular, ideal gate sizes were computed using Logical Effort [60], and

then standard gates were chosen from the library that most closely fit these calculations.
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Figure 8.9: Testing and evaluation setup

SPICE simulations were performed to estimate timing; all timing constraints were satisfied

with healthy margins.

Board Design and Operation

A custom test board, shown in Figure 8.9, has a socket where the GCD chip is inserted for

testing. The chip interacts with two TI MSP430 microcontrollers: the left microcontroller

manages data and control to the chip, and the right microcontroller reads results from the

chip, including the operating frequency at the interface. The microcontrollers communicate

with each other using a two-wire serial connection. The results are relayed to a PC via on-

board JTAG headers.

The operation of the board is in turn managed on the PC using a custom application written

in Java. The user inputs data on the PC and sends it to the left microcontroller through a USB

connection. The microcontroller then initializes the GCD chip, loads data into the ring, and

begins the ring operation. The operating throughput is measured by the right microcontroller

and reported to the PC. Finally, the left microcontroller opens the ring and drain the results,

which are sent to the PC for display and verification.
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Test Operation

The operation of the chip consists of the following four phases in sequence: (i) initialization,

(ii) loading of problem instances, (iii) computation by the ring, and (iv) draining of results.

During initialization, an externally-supplied reset signal initializes all of the pipeline stages

in the ring to be empty. Next the environment loads a set number of problem instances by tog-

gling the ingoing request signal while supplying the desired test patterns.

The environment begins the computation phase by setting the multiplexers in the interface

to transmit signals between the first and last ring stages. During the computation phase, the

external environment can observe the request and the toggling at the interface of the chip.

Since the ring was designed to operate in the gigahertz range, it also includes divide-by-64

circuitry that produces a signal slow enough for our testing equipment to read.

Finally, the environment drains the results. First it stops the computation by making the

interface latches opaque so no requests can cycle through the ring. Then it toggles the ac-

knowledgement signal to the last pipeline stage while reading out each resulting dataset one

by one.

Fault Testing

The test patterns generated for this circuit according to the approach of [53] gave over 98%

fault coverage. For testing violations of the two timing constraints of MOUSETRAP, a custom

tool implementing the the non-intrusive functional test presented in Chapter 6 was used. Test

patterns generated achieved 100% coverage for hold time violations and about 33% coverage

for setup time violations, yielding an overall 66% fault coverage.
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Figure 8.10: Throughput vs. occupancy for the fastest and slowest chips tested

8.1.6 Results and Discussion

Performance and Correctness

A total of 24 chip samples were tested, and all were found fully functional, with no faults

detected. Figure 8.10 presents the throughput measured at various ring occupancies. The

results for the fastest and slowest chips tested are shown. The fastest chip reported 1.01

billion toggles per second at the observable interface to the chip, which indicates that the chip

was completing about 8.08 billion GCD iterations each second, while the slowest chip was

about 10% slower.

Note that the shape of the graph of Figure 8.10 agrees with the expected performance of

a pipelined ring, as discussed in Section 2.2.2. Although individual stages within the chip are

not directly observable, their forward and reverse latencies can still be estimated. In particular,

the total forward latency is inversely proportional to the slope of the line in the data-limited

region, and the total reverse latency is inversely proportional to the slope of the line in the

hole-limited region. The forward latency of an individual stage is therefore estimated to be
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170ps and the reverse latency 300ps. Together, this gives a cycle time of about 470ps.

0

300

600

900

1200

1500

1800

2100

0 20 40 60 80 100

Occupancy (# data items in ring)

T
h
ro
u
g
h
p
u
t 
(M
e
g
a
 o
p
e
ra
ti
o
n
s
/s
e
c
o
n
d
)

Actual

Data Limited Operation

Hole Limited Operation

2069 MHz

1010 MHz

Figure 8.11: Estimating the ideal peak internal throughput

This indicates that each individual stages is capable of switching over 2 billion times

per second. If the chip could realize this in practice, the switching of each stage would be

2GOPS and the chip as a whole would be capable of completing over 16 billion GCD iterations

each second. This throughput is not realized in practice, however, because the ring’s testing

interface, which is substantially slower than the ring’s internal stages, acts as a bottleneck

If the interface were not a bottleneck, a careful analysis of the measured data, supported

by thorough SPICE simulations, shows that a throughput quite close to 2.1 GOps/sec will

indeed have been achieved. This is illustrated in Figure 8.11; for the fastest chip tested, the

forward and reverse lines intersect where the switching activity of a single stage is at a rate of

2069MHz.

Though it is perhaps counterintuitive that the forward path is quicker than the reverse

path—because the forward path contains computational logic while the reverse path does

not—these delays are in accordance with our estimates of the forward and reverse latencies of

a MOUSETRAP pipeline. In particular, the forward path contains one latch and the computation

logic. For this system, the complexity of the logic is about the same as the latch itself. Since
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Figure 8.12: Speed increases with increased voltage

the latches and logic each drive only one other component that is of about the same complexity,

their delays are very low, they can be sized to be very small, and they consume little power.

On the other hand, in the reverse path, the controller must drive all of the latches in the

datapath. To improve the drive strength and reduce step-up, buffers are added between the

xnor controller and the latches. In addition, the reverse path has additional buffers on the

acknowledge path to improve robustness. The final result is a reverse path that has a greater

delay than the forward path.

Robustness Tests

In addition to basic test and evaluation, the chips were subjected to extensive robustness tests

by varying temperature and voltage quite beyond nominal operating conditions. The results

below show performance when the occupancy is 45, which is within the peak performance

range of the canopy graph; the effect on performance at this occupancy is representative of

the effects at other occupancies.

Figure 8.12 demonstrates the effect of scaling the voltage on peak performance. Extensive
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Figure 8.13: Impact of voltage variation on power consumption

testing was performed over the range of 0.5V–4V. The throughput changed automatically with

the scaled voltage, and correct operation was observed throughout this range. Figure 8.14

shows power consumption (in milliWatts) for the chip. At nominal voltage, the peak power

consumption (measured at peak throughput) was 75 mW, and the power consumption in-

creases with increasing voltage.

Figure 8.15 plots Eτ 2 (i.e., energy consumed per data item processed, times the cycle

time squared), an energy-efficiency metric that is fairly invariant to voltage scaling [32]. In

this experiment, the chip is operating at peak throughput as the voltage is varied. This value

remains fairly constant, as expected, over the range 1V to 3V.

Finally, Figure 8.16 demonstrates the effect of temperature on the chip’s throughput. This

test was performed at nominal voltage. As expected, throughput decreases with an increase

in temperature. The chip was fully functional over the entire range of temperatures tested
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Figure 8.14: Power consumption varies with voltage

(−45◦C to 150◦).

8.2 JPEG Example

The goal of this section is to give a better understanding and intuition about the results of

applying the analysis and optimization methods described in Chapters 4 and 5. It goes into

greater detail on one of the examples already presented in Chapter 5: the JPEG encoder. This

benchmark a real-world example of non-trivial size, and is therefore an interesting example to

examine more carefully.

8.2.1 JPEG Benchmark Structure

The JPEG example used here is from a set of asynchronous benchmarks introduced by Hansen

[19]. This benchmark uses 8-bit arithmetic and is set to convert an image of 8 pixels by 8

pixels. Figure 8.17 shows a diagram of the hierarchy of the JPEG encoder. It includes nested
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loops, conditionals, and serial composition. For conciseness, the leaf nodes (i.e. individual

stages) are not included in this figure. The original, non-optimized implementation includes a

total of 46 pipeline stages.

Each of the nested loops in Figure 8.17 iterates a fixed number of times through the 8x8

image data. Following the loops are two conditionals in series, along with the logic to calculate

their Boolean values. The final part of the JPEG encoder is a series of stages that performs the

quantization step of the JPEG encoding algorithm.

The JPEG benchmark was also modeled at the gate level in Veriog; the tool for perfor-

mance analysis can also output a Verilog model of the hierarchical system. Delays were

assigned to the gates in the model based on the complexity of the operations (e.g. an 8-bit

multiply has higher delay than an 8-bit add). The types of stages used to model this example

include MOUSETRAP stages, forks, and joins [55], which were described in Section 7.2. In

addition, several of the circuits introduced in Chapter 7 were also used to implement the JPEG

example: conditional split, conditional select, merge without arbitration, and the arbitration
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Figure 8.16: Impact of temperature on performance
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Figure 8.17: The hierarchical structure of the JPEG example.

stage. This example serves as a demonstration of the performance and correctness of these

circuit components.

During Verilog simulation, the system is allowed to reach steady state operation by keep-

ing the environment at a steady tick for a total of 1000 data item entrances and exits, which

is quite sufficient for a system of this size. The system is then observed for a total of 10,000

item entrances and exits and the average throughput seen during this time is reported.
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Figure 8.18: Performance of the JPEG benchmark before optimizing.

8.2.2 Performance Results

Figure 8.18 shows the performance of this system before any optimization takes place. In

the figure, the line is the throughput as predicted by my analysis method. The predicted

performance is very low because the nested loop (the left-most nodes in 8.17 ) is expected to

act as a bottleneck during operation. In particular, each data item must loop 8 times through

each loop, leading to a total of 64 iterations through the combined nested loop.

The points in Figure 8.18 are data obtained through Verilog simulation. Notice that they

track very closely with the predicted performance of the system. Indeed, the maximum per-

formance predicted by the analysis method is 4.60E-4 and the performance achieved during

simulation is 4.65E-4. Assuming that the performance seen during Verilog simulation is the

correct performance, the analysis method here shows a percent error of only about 1%. This

shows that the performance analysis, even in non-trivial systems, is reasonably accurate.

8.2.3 Optimization Results

Because the main bottleneck is the loop, one of the first steps suggested by the bottleneck

identification method is loop unrolling. If the inner loop is unrolled one time (i.e. the body

of the inner loop is repeated twice) the performance is expected to double. Figure 8.19 shows

the analyzed performance of the system after applying the loop unrolling TRIC one time. For
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Figure 8.19: The performance of the JPEG benchmark after loop unrolling

comparison, the non-optimized performance is displayed again in the same chart. Verilog

simulation again confirms that the throughput after unrolling once indeed reaches to twice

the initial throughput. The throughput predicted by the analysis method is 9.19E-4 and the

throughput found through simulation is 9.46E-4. This is a percent error of about 2.9%. This

may be attributed to errors in modeling the circuit or to a possible over-estimate of the over-

heads associated with a pipeline loop.

To provide a challenge for the optimization framework, I next give it a goal throughput

of 40x the initial throughput, which would require it to attain the throughput of 1.84E-2. The

optimization method also needs a cost function to minimize during its search; in this case I

use Eτ 2 as the cost function. The optimization method performs a total of 13 steps in reaching

this goal, and in alleviates bottlenecks throughout the entire system. Figure 8.20 indicates the

areas of the circuit in which the optimization method applies TRICs. The areas are numbered

to show the order in which the TRICs were applied. In particular, the loop receives much

attention, with the first three TRICs going towards loop unrolling. Within the loop, splitting

of a slow stage also takes place. After the fifth TRIC, the loop ceases to be the bottleneck and

the attention is turned to the first conditional in the system, which needs to be slack matched.

Finally, a very slow, large multiplication at the end of the sequence of stages becomes the
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Figure 8.21: JPEG performance after 40x throughput improvement

bottleneck, so it is split and pipelined into a series of faster stages in using a sequence of

TRICs.

The final throughput of the system after all this optimization takes place is shown in Figure

8.21. The final performance achieved is 2.2E-2. Though this slightly overshoots the perfor-

mance goal, the optimization system found that this circuit is the best one for meeting the

goal throughput of 1.84E-2 while maintaining a low energy cost. For comparison, the results

before optimization are also shown on the same chart; the reader must look closely as the

initial throughput was much lower.
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8.3 Conclusion

This chapter first presented the design and analysis of a GCD chip as a case study in asyn-

chronous design. It was implemented as a self-timed ring using MOUSETRAP pipeline style [56],

and fabricated in a 0.13µm CMOS process. The chip was tested for stuck-at faults and tim-

ing constraint violations, and evaluated for performance over a wide range of supply voltages

(0.5V to 4V) and temperatures (from −45◦C to 150◦C). A total of 24 parts were received, and

all were tested to be functionally correct. The performance obtained was about 8 giga GCD

algorithmic iterations completed per second, which is equivalent to a 1 GHz clocked ASIC.

This case study bolsters our confidence that asynchronous design techniques can be useful for

the design of reliable ASICS that are fast, testable, and that can operate under a wide range of

conditions.

This chapter then went on to present a detailed example of the application of my analysis

and optimization methods to a JPEG benchmark. The benchmark was designed at the gate

level and simulated in Verilog, to provide a performance comparison that predicted by the

analysis method. The optimization method is demonstrated first by giving a detailed descrip-

tion of the application of just one TRIC and its affects on the canopy graph. I then set the

ambitious goal of 40x throughput, and illustrate which parts of the system are targeted for

bottleneck removal. This case study serves as an example of how the analysis and optimiza-

tion methods can be used in a real-world system to replace the tedium of repeated simulation

and hand optimization.
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Chapter 9

Conclusion

The goal of the work in this dissertation has been to support the design of fast and efficient

dataflow systems. I have identified some key missing pieces in this area, and this work has

taken several steps in the direction of creating fully-automated toolflow for the system-level

design of pipelined, asynchronous application specific circuits. In particular, it focused on

creating new algorithms that improve on the running time of performance analysis and opti-

mization methods, without sacrificing accuracy. It also delves into low-level support for these

designs by exploring testing procedures specific to pipelined asynchronous systems and by

presenting five circuit-level designs that can be used to implement pipelined asynchronous

systems.

Section 9.1 gives a more detailed summary of these contributions and the results obtained

when applying them to examples and Section 9.2 suggests some future directions for extend-

ing this work.

9.1 Contributions of This Work

9.1.1 Performance Analysis

In this dissertation, I presented a fast and accurate performance analysis method for pipelined

asynchronous systems. The results indicate that it is versatile enough to handle a variety of



system inputs, and that the runtime of the algorithm remained very fast (under 10 ms) for

even large examples. When compared to Verilog simulations of the same examples, the match

between the simulated results was within 2%.

The analysis method derives its speed from the observation that many circuits have a

naturally hierarchical structure. The class of hierarchical systems is expressive enough to

implement a wide range of pipelined implementations of several non-trivial examples, yet

predictable enough in structure and operation that an analytic (rather than simulation-based)

analysis method is possible.

9.1.2 System-level Optimization

This dissertation identified and classified a set of transformations that can improve through-

put, developed a method for identifying bottlenecks that leverages the speed of the analysis

method, and presented a system-level optimization method that iteratively applies transforma-

tions to remove bottlenecks. The system-level optimization problem was cast as a constrained

optimization problem: minimize some cost function while reaching some throughput goal.

The chosen solution method was a tree search, and includes two tree pruning methods that

significantly improve the runtime.

The framework was able to achieve between 2x and 40x throughput improvement on all

example circuits. It can handle a variety of different cost metrics, and the results show suc-

cessful optimization for five different cost functions: Eτ 2, energy·area·, energy alone, area

alone, and the energy-area product. When pruning techniques were used, all running times

were less than two minutes for every example, even for very ambitious throughput goals.

9.1.3 Testing

Because many asynchronous pipeline styles achieve high speed by making assumptions about

the order of local events, new kinds testing needed to be developed in order to expose errors

that can occur when manufacturing defects invalidate these assumptions. This work further

222



classified these timing constraints into commonly occurring two categories: forward con-

straints and reverse constraints. It presented testing methods that will work on any pipeline

style that contains these kind of constraints, and provided an example of how to apply testing

to MOUSETRAP pipelines in particular. The approach is minimally intrusive, in that very little

testing hardware needs to be added in order to achieve good fault coverage. The results show

that 70% to 100% fault coverage is possible using this method.

9.1.4 Case Studies

This work presented two case studies in the design of pipelined asynchronous systems. The

GCD chip case study was designed and fabricated in silicon, and tested for correctness. Its

measured performance matches well with the predicted canopy graph. When tested for cor-

rectness using the testing methods presented in this dissertation, all 24 parts were found to

operate correctly. The results also show that it is very robust to variations in voltage and

temperature.

The JPEG case study was simulated at the gate level in Verilog. It is used as a detailed

example of the process of applying analysis and optimization to a non-trivial circuit. The

optimization framework was able to achieve a 40x speedup for the JPEG example, and this

speedup is confirmed by detailed Verilog simulations.

9.2 Future Research Directions

This work has focused on hierarchical systems and fully leveraged this structure to improve

running times of the analysis and optimization methods. However, it is possible that many

of the methods presented here can be extended to systems that have topologies that are not

strictly hierarchical. In particular, if sub-systems have non-hierarchical aspects but the system

as a whole remains largely hierarchical, a hybrid approach could be applied: the canopy graph

of a sub-system is obtained through simulation and then hierarchically combined with the rest
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of the system-level performance information. Additionally, some non-hierarchical structures

may still have operation that is regular enough to be analyzed directly using similar methods.

The work presented here could also benefit from further generalizations. For instance, the

current system models the stages to have a fixed delay. A natural extension, then, is to include

other delay distributions. Also, more optimizing transforms can be collected and categorized,

to further improve the outcomes of the optimization framework. Finally, more work is needed

in the area of testing for asynchronous testing to further improve fault coverage and extend

testing to a more versatile set of systems.

Looking at the big picture, this entire work will be more useful if it is integrated into a

fully automated and easy-to-use design flow. Full design flows, both for asynchronous and

synchronous design, currently exist. [19, 2, 6] The goal is to integrate this work more fully

into an existing flow rather than create an entirely new automated tool.

Finally, this work should be applied to designs that are even larger and more extensive

than the ones presented in this dissertation. This will serve two goals. First, it will show the

applicability of these methods under more diverse situations and in real-world applications.

In particular, it would be useful to study the behavior of these systems during times when

the assumptions (e.g. the steady state assumption) are invalidated due to internal or external

pressures. This could lead to further extensions and revisions to the analysis and optimization

methods. Second, a large design project will serve as a proof of concept for these design

methods. Such a proof of concept will allow more designers to feel comfortable using these

techniques to create efficient, high performance circuits. I believe that this will have an impact

on the area of application specific circuit design, in that it will lead to faster design times, lower

costs, and better performance.
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