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ABSTRACT 

Sierra A. Bainter: Estimation Approaches for Generalized Linear Factor Analysis  
Models with Sparse Indicators  

(Under the direction of Patrick J. Curran) 
 

Substance use research involves a number of methodological challenges that require 

advanced data analysis techniques. Generalized linear factor analysis (GLFA) is a general latent 

variable modeling framework useful for substance use research that can be applied to continuous 

or categorical measures. Unfortunately, substance use data is characterized by a large proportion 

of zeros (sparseness), and sparse endorsement can cause maximum likelihood estimation of 

GLFA models to fail. However the extent of estimation problems caused by sparseness has not 

previously been well studied. Because of the great need to improve reliability for estimating 

models with items with low endorsement, in this study I evaluated Bayesian estimation as an 

alternative to maximum likelihood estimation for GLFA models with sparse, categorical 

indicators. I found that the use of priors in Bayesian estimation eliminated extreme parameter 

estimates, improved estimate efficiency, increased empirical power to detect true effects, and 

provided meaningful results when models do not converge using ML estimation. I also found 

that the gains in efficiency and empirical power using Bayesian estimation depend on specifying 

adequately concentrated priors (i.e. adequate information to constrain inferences), and the 

increased overall efficiency and empirical power were also tied to a trade-off with overall 

unbiasedness. In sum, my proposal to use Bayesian estimation with prior information to estimate 

GLFA models with sparse indicators provides a much needed alternative for substance use 

researchers who wish to make inferences with sparse data. 
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CHAPTER 1: INTRODUCTION 

Research aimed at understanding the developmental factors of substance use and 

addiction is characterized by a number of methodological challenges. Specifically, a 

developmental investigation demands a longitudinal approach to separate causes from 

consequences of substance use, substance use outcomes are categorical, measures may have 

different meanings at different ages as age norms change, and it is important to consider 

influences from multiple levels (e.g. family and peer contexts, biological risk) which may 

operate over different time intervals (i.e. early versus proximal influences) and which may also 

change over time (Chassin, Presson, Lee, & Macy, 2013). All of these important considerations 

create demands for complex data collection and analysis, and many sophisticated statistical 

approaches have been developed for these problems involving specialized statistical models (e.g. 

Bauer et al., 2013; Bauer & Hussong, 2009; MacKinnon & Fairchild, 2009). 

Additionally, studying the development of substance use requires collecting data on 

individuals before outcomes develop, and it is well known that substance use data is 

characterized by a large proportion of zeros, or non-users. For example, cocaine use among 8th 

graders is rare, below 2% (Johnston, O’Malley, Miech, Bachman, & Schulenberg, 2015), and 

even in large samples endorsement will be sparse —defined here as low endorsement 

frequencies for individual items or categories. Yet, researchers cannot completely avoid research 

with sparse items because it is important to study cases such as twelve-year-olds using drugs. 

Research in psychology is notoriously underpowered in general (Maxwell, 2004), and this 

problem of low statistical power is compounded in substance use research by the additional 
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challenges of studying rare behaviors and the need for complex data analysis techniques (Curran 

& Hussong, 2009). 

An enduring problem for substance use researchers is collecting a sample large enough to 

observe sufficient numbers of cases of rare behaviors, such as early alcohol involvement or use 

of illicit drugs besides marijuana (Chassin, Presson, Lee, & Macy, 2013). This need has 

encouraged data sharing and spurred the development of approaches to simultaneously analyze 

data from independent studies (Hussong, Curran, & Bauer, 2013). However, what constitutes a 

sample that is “large enough” depends on the requirements of the appropriate statistical analysis 

technique. Given that sparseness is a significant issue in substance use research, lack of statistical 

procedures appropriate for sparse data substantially limits the inferences that can be made by 

substance use researchers. 

Generalized linear factor analysis (GLFA; Bartholomew, Knott, & Moustaki, 2011; 

Skrondal & Rabe-Hesketh, 2004) is a broad class of models useful for research in the 

development of substance use disorders, encompassing traditional factor analysis and item 

response theory models. GLFA models may be recast as growth curve models to analyze 

longitudinal data or embedded in more comprehensive structural equation models (e.g. 

moderated nonlinear factor analysis, Bauer & Hussong, 2009). Although theoretically useful for 

addressing research questions related to substance use, a number of simulation studies have 

found that common estimation approaches for GLFA models – maximum likelihood and limited-

information approaches – perform poorly in conditions that are characterized by sparseness 

(Forero & Maydeu-Olivares, 2009; Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009; Olsson, 

1979; Muthén et al., 1997, Rhemtulla, 2012). This is because the desirable properties of 

currently-available estimators are based on large-sample theory, which necessarily breaks down 

when observations are limited (Wasserman, 2005). For GLFA models with sparse categorical 
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indicators (e.g., substance use), sparseness depends not only on overall sample size but also 

endorsement frequencies for individual items and individual categories.  

Though less familiar to social science researchers, GLFA estimation can also be 

approached from a Bayesian framework. In comparison to current estimation approaches, 

Bayesian estimation does not necessarily rely on large-sample theory and has a number of 

potential advantages for limited-data settings (Gelman et al., 2013). The potential advantages to 

Bayesian estimation are counterbalanced by a number of computational challenges and some 

aspects of Bayesian estimation, especially the specification of prior distributions, are subject to 

controversy. Though not previously studied for sparseness in GLFA models with categorical 

indicators, theory suggests that Bayesian estimation may be a beneficial alternative for GLFA 

when available estimation approaches break down.  

Because of the great need to improve reliability for estimating models with sparse item 

responses, for my dissertation I investigated Bayesian estimation as an alternative estimation 

approach for GLFA models with sparse categorical indicators. In the next sections I will present 

the generalized linear factor analysis model for categorical indicators, survey traditional 

estimation approaches as well as Bayesian estimation methods, and discuss how sparseness is 

expected to influence each estimator. Next I will introduce the methods, design, and results for 

my dissertation project. I close by discussing implications of this work and future directions.  

Generalized Linear Factor Analysis 

 In this section I review generalized linear factor analysis (GLFA; Skrondal & Rabe-

Hesketh, 2004), a general psychometric modeling framework that is well-suited for research 

questions related to substance use. I present this general framework because it unifies two 

common psychometric modeling techniques: factor analysis and item response theory. 
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Historically, factor analysis (FA) was developed to explain dependence among continuous items
1
 

(e.g. scores on a battery of ability tests) by positing that they arise from one or more unobserved 

latent factors. Similarly, item response theory (IRT) was historically motivated to measure 

(unidimensional) latent ability from categorical test items. The historical distinction between FA 

and IRT has gradually blurred as FA has been extended to categorical items and IRT has been 

expanded to multiple latent dimensions, and both models can be derived as special cases of 

GLFA which is appropriate for categorical or continuous indicators.  

 Using notation adopted from the generalized linear model (McCullagh & Nelder, 1989), a 

univariate GLFA model for responses to item i for respondent j (
ijy ) consists of three 

components: (1) a linear predictor (
ij ), (2) a conditional response distribution, and (3) a link 

function g to relate the linear predictor to the probability of response.   

 For continuous
ijy the linear predictor is defined as an item intercept i  plus a factor 

loading i expressing the regression of item i on the continuous latent factor 
j  

 

2| ~ ( , )

, )~ (

ij j ij i

ij i i j

j

y N

N

  

  

  

   . 1 

Here the response distribution of 
ijy conditioned on 

j  is univariate normal, and 
2

i  is the item-

specific residual variance. Specifying uncorrelated item-specific residual variances leads to the 

important property that the indicators are assumed independent, conditioned on the latent factor. 

For continuous indicators the identity link function is used, ( )ij ijg   , which directly relates the 

linear predictor to the conditional response distribution for each item i. 

                                                 
1
 Note that I use the terms “item” and “indicator” interchangeably. 
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 Because the factor scores 
j are unobserved they are modeled as randomly varying over 

individuals, and in order for the parameters in this model to be identified, restrictions must be 

imposed on  , , and i . The model is usually scaled either by fixing one item loading per 

factor to 1 and its intercept to 0, or by setting the mean and variance of the latent factor to 0 and 

1, respectively. 

 Without adapting the conditional response distribution and link function, applying the 

GLFA model to categorical indicators creates an automatic misspecification − the categorical 

responses cannot be linear functions of the continuous factors. Ignoring the categorical nature of 

the data results in biased estimates, standard errors, and fit statistics (e.g., Dolan, 1994). As the 

number of categories increases, categorical variables approach continuity and bias generally 

decreases (Dolan, 1994; Rhemtulla et al., 2012). However in general with categorical data 

having four categories or fewer, continuous modeling strategies are not an optimal choice 

(Dolan, 1994; Rhemtulla et al., 2012).  

 In order to model categorical responses, the GLFA model is adapted in two important 

ways. First, a normal conditional response distribution is no longer appropriate. For binary items 

(e.g. yes/no or true/false item responses) a Bernoulli response distribution can be specified for 

each item as  

 | ~ ( )ij j ijy Ber  . 2 

Further, the identity link function is no longer appropriate for relating the linear predictor to the 

expected value of
ijy . Instead, a function is needed to map the range of the linear predictor (-∞ to 

∞) onto the permissible range for the conditional response distribution, which can only take on 

the values [0, 1]. One natural choice is the logit (inverse logistic) function, defined as  

 1( ) ln (1 )ij ij ijg         3 
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and plotted in Figure 1. Also plotted in Figure 1 is the probit function, which can be scaled to 

form a similar curve and is derived from the inverse cumulative distribution function of the 

normal distribution. Because the distributions align so closely, the choice of function usually 

depends on convenience. In this case, choosing the logit link for the GLFA yields 

 
1

ln
ij

i i j

ij


 



 
   

 




 , 4 

and 
j  is specified as in Equation 1. Equivalently this model is expressed as  

 
1

1 exp[ ( )]
ij

i i j


  




  5 

which is an alternative expression of the well-known 2PL IRT model (Takane & de Leeuw, 

1987). Using this specification for binary indicators, uncertainty is modeled only through the 

response distribution (rather than through residual variances). This completes the model 

specification for binary indicators, and as before, the model implies that all indicators are 

mutually independent given scores on
j .  

 The preceding specification follows a factor analysis parameterization for the item 

parameters. Equivalently, each item parameter can be expressed using an IRT parameterization. 

Whereas the IRT is a nonlinear model for probabilities and estimates item difficulty and 

discrimination, the GLFA is a linear model for the logit (or probit) and estimates item threshold 

parameters and factor loadings. Parameters in the IRT and GLFA models can be directly 

transformed from one parameterization to the other; only their interpretations differ (see Wirth & 

Edwards, 2007 for conversion formulas). In the next section I discuss estimation approaches that 

have been developed for GLFA and consider challenges caused by sparseness. 
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Figure 1. Cumulative density functions for logit and scaled probit link functions  
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GLFA Estimation and Challenges with Sparseness 

 There are two families of traditional estimation approaches for GLFA models that include 

categorical indicators. These are limited-information estimators (e.g., modified weighted least 

squares methods, Jöreskog & Sörbom, 2001; Muthén, du Toit, & Spisic, 1997; polychoric 

instrumental variable estimator, Bollen & Maydeu-Olivarez, 2007) and full-information 

maximum likelihood (ML) estimation. For many properly specified models with moderately 

large samples, differences between estimators should be negligible (Forero & Maydeu-Olivares, 

2009); however there are a number of key strengths and weaknesses to each approach. Limited-

information estimators are computationally faster than ML, especially for models with multiple 

correlated latent variables, and have well-established tests for model fit (Wirth & Edwards, 2007; 

Forero & Maydeu-Olivares, 2009). Some limited-information approaches may also be less 

sensitive to mild misspecification (Bollen & Maydeu-Olivarez, 2007). For these reasons, limited-

information estimation methods are in widespread use (e.g. the default estimator in Mplus, 

WLSMV, is limited-information, see Muthen & Muthen, 2014). 

 While more computationally challenging, ML estimation is statistically preferable to 

limited-information approaches for the problem of sparse endorsement because limited-

information estimators are sensitive to bivariate sparse frequencies
2
 whereas ML estimation is 

sensitive to univariate (item-level) sparse frequencies (Wirth & Edwards, 2007). Previous 

research using simulation studies has shown that ML performs better than limited information 

approaches in conditions characterized by sparseness (Forero & Maydeu-Olivares, 2009). For 

this reason, I limit my focus to compare ML to Bayesian estimation in this project.  

                                                 
2
 Specifically, the polychoric correlation coefficients that are used in limited-information estimation approaches are 

sensitive to low frequencies in bivariate contingency tables (Olsson, 1979; Savalei, 2011).  
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Maximum Likelihood Estimation 

Maximum likelihood is a natural estimator choice for GLFA because of its well-known 

properties; ML estimation is both asymptotically efficient and consistent for correctly specified 

models under weak regularity conditions – mainly that the true values do not lie at the boundary 

of the parameter space and that the number of parameters does not increase with sample size (see 

e.g. Skrondal & Rabe-Hesketh, 2004, Ch. 6). 

The likelihood function following from the GLFA model specification, marginalized over 

the latent scores 
j , can be written as 

   
1 1

( | | ,) ( )
N P

j i ij j i j

j i

L y df   
 

 
  

 
     6 

where the vector   contains model parameters (  and  ) ,   contains parameters governing 

the univariate normal distribution of 
j , and i denotes parameters for the conditional response 

distribution if for each item i.  

For continuous 
ijy , the response distribution for each  item if  is normal, which results in 

a simplified individual log-likelihood function which is relatively computationally simple, and 

maximum likelihood estimation can be carried out using well-established algorithms to minimize 

the log-likelihood function, notably the expectation-minimization (EM) algorithm (Dempster, 

Laird, & Rubin, 1977). 

However, the model specification for categorical 
ijy does not lead to a simplified 

likelihood function. No analytic solution exists to integrate the likelihood in Equation 6 over
j , 

and approximations to the integral must be obtained instead. For categorical indicators, the 

model is estimated by finding the observed proportions of each full pattern of item responses and 

estimating a multinomial distribution for the probability of each response pattern governed by 
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the item parameters (
i and i ). ML estimation for GLFA with categorical indicators was 

originally introduced in the IRT framework by Bock and Lieberman (1970) and reformulated by 

Bock and Aitkin (1981), employing a strategy equivalent to the EM algorithm. 

 ML estimation for models with categorical indicators requires integration over a P-

dimensional distribution, where P is the number of latent factors or traits. This integral is 

generally approximated using quadrature techniques. Quadrature-based integration in its simplest 

form essentially estimates the area under the curve using a series of rectangles (or trapezoids), 

making the integral much easier to compute. Besides rectangular numerical integration, Gauss-

Hermite integration is another common approach to approximation which uses weighted 

polynomials between points. The number of points used to approximate the area for each 

dimension is termed the number of quadrature points; these may or may not be equally spaced. 

These algorithms may be constructed as adaptive, determining optimal placing for each 

quadrature point, or quadrature points may be fixed. Because quadrature-based integration is 

needed for each latent dimension, the total number of quadrature points increases exponentially 

with the number of factors (Wirth & Edwards, 2007). This computationally intensive integration 

has to be repeated at each iteration of the EM algorithm. Common defaults for the algorithm and 

number of quadrature points per dimension vary, for example rectangular numerical integration 

with 15 adaptive quadrature points (in Mplus; Muthén & Muthén , 2014) or Gauss-Hermite 

integration with 49 fixed quadrature points (in FlexMIRT; Houts & Cai, 2013).  

 Some promising developments have recently been introduced to reduce the 

computational complexity of ML for models with multiple factors. Markov chain Monte Carlo 

(MCMC) algorithms can be used to assist the integration (see Wirth & Edwards, 2007; Cai, 

2010b). MCMC techniques are widely applied in Bayesian statistics to simulate the posterior 

distribution and will be discussed in more detail in the next section; however MCMC can also be 
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utilized as an integration aid in the traditional (frequentist) statistical framework. Another 

exciting development by Cai (2010a), termed the two-tier item factor analysis model, is a 

dimension-reduction reformulation technique for some models which significantly reduces the 

computational burden.  

Model Fit. Assuming a model is estimable, researchers must also be able to evaluate the 

usefulness of a model. There are many ways to evaluate a model’s usefulness. For GLFA, one 

strategy is to try to assess how closely a model fits or reproduces the observed data. Much work 

assessing model fit is based on comparing the deviance in the loglikelihood to the deviance in a 

saturated model with all means, variances, and covariances freely estimated. For continuous, 

normally distributed indicators, the difference between the deviances of these two models, F̂ , 

can be used to form the likelihood ratio test statistic as 

 ˆ( 1)T N F    7 

where N is sample size. For large samples and properly specified models, T has a central chi-

square distribution with degrees of freedom equal to the difference between the number of 

parameters in the saturated and hypothesized models. For misspecified models, T follows a non-

central chi-square distribution with non-centrality parameter λ. This statistic is often used as the 

basis of testing absolute goodness of fit (i.e., does the model fit the data?) and relative goodness 

of fit for comparing nested models (i.e., does model A fit worse than model B?). Other goodness-

of-fit statistics such as the RMSEA (Steiger & Lind, 1980) and Comparative Fit Index (Bentler, 

1990) are based on these deviance values. These and other fit indices for models with continuous 

indicators (normal and non-normal) have been heavily studied and are in widespread use.  

  It is difficult to extend these statistics to models with categorical indicators using ML 

estimation, though model fit tests are available for limited-information estimators. The 

unrestricted multinomial model for the frequency table of observed response patterns can be used 
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for the saturated model to compute the statistic; however the finite-sample properties of this 

statistic in realistic models are not acceptable (Koehler & Larntz, 1980). New promising 

developments are limited information methods for goodness-of-fit testing, especially the M2 for 

dichotomous responses (Maydeu-Olivares & Joe, 2006) and M2* for polytomous responses (Cai 

& Hansen, 2013). Instead of testing for goodness-of-fit against the entire multinomial 

distribution, these statistics collapse across cells to test against tables for the marginal 

distributions, yielding better Type I error control and better power (Cai & Hansen, 2013; 

Maydeu-Olivares & Joe, 2006). Despite the importance of assessing model fit, I do not focus on 

this issue in my project because I investigate estimator performance for properly specified 

models. 

Regardless of approach to ML estimation, practical constraints in finite samples affect the 

quality of the solution. 

General Performance of ML in Finite Samples. The desirable properties of ML 

estimation for GLFA models are based on large-sample (asymptotic) theory, and it is important 

to consider the quality of ML solutions in finite samples. Many factors including indicator type 

(categorical versus continuous), sample size, number of indicators, number of factors, 

magnitudes of factor loadings, and additional sources of model complexity (e.g. cross-loadings) 

are important for expected convergence to a proper solution (i.e., solution propriety) and stability 

of parameter estimates. For GLFA with continuous indicators, solution propriety generally 

increases with sample size, the number of indicators per factor, and the strength of factor 

loadings (Gagné & Hancock, 2006; see also Anderson & Gerbing, 1984; Marsh et al., 1998). 

Categorical variables necessarily contain less statistical information than continuous variables. 

Therefore, larger sample sizes are needed to obtain similar solution propriety when indicators are 
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categorical (Moshagen & Musch, 2014; Wirth & Edwards, 2007). Besides this, sparseness – as 

an issue distinct from sample size – is a concern for models with categorical indicators. 

Complications due to Sparseness. Sparse endorsement is expected under a variety of 

combinations of factor loadings and thresholds. Strictly following from the definition of 

marginal response probability in Equation 4 – high thresholds, low factor loadings, or a 

combination of both can lead to low probabilities of endorsement and therefore sparse observed 

frequencies in finite samples.
3
 Example trace lines for item characteristic curves with high 

thresholds that could lead to sparseness are plotted in Figure 2. Typically in applications the 

values of factor loadings and thresholds are not independent, for example items with a high 

threshold may commonly also have a high loading (e.g. a rare but extreme behavior or a very 

difficult test question). In substance use research, low endorsement for rare behaviors such as 

early drug use is more likely consistent with high thresholds coupled with substantial loadings, 

meaning a high level of the latent trait is required to endorse an item, rather than very low factor 

loadings, which would signify a weak relationship with the latent construct.  

 Though sparseness has not been specifically studied for ML estimation of GLFA models 

with categorical indicators, a limited literature suggests that ML estimation performance is poor 

in conditions characterized by sparseness – namely smaller sample sizes combined with smaller 

probabilities for item endorsement (Forero & Maydeu-Olivares, 2009; Moshagen & Musch, 

2014; Wirth & Edwards, 2007). Forero and Maydeu-Olivares (2009) found that ML estimation 

failed in small samples (200 observations) for binary items with low endorsement (10%), 

especially with fewer items per factor and low factor loadings. Moshagen and Musch (2014) 

found that ML estimation of GLFA models in smaller samples could yield highly distorted 

                                                 
3
 The reverse is also true, for example very low thresholds could lead to an item that is almost always endorsed and 

non-endorsement is sparse. 
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Figure 2. Item characteristic curves for one standard item and three items that could lead to 

sparseness.  
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 parameter estimates and standard errors in smaller samples, even when ML estimation 

converges.  

These previous simulation studies were not specifically motivated to study sparseness, 

and sparseness in these studies was confounded with other important factors. In Moshagen & 

Musch (2014), binary items had a 50% probability of endorsement, and sparseness was a result 

of small samples. The problems observed by Moshagen and Musch (2014) and Forero and 

Maydeu-Olivarez (2009) were also associated with models that were poorly-determined with few 

indicators per factor and low factor loadings. Research has not yet determined what levels of 

sparseness are problematic for ML estimation even in well-determined models (e.g. specific 

marginal probabilities or item frequencies), the impact of number or proportion of sparse items, 

the impact of sparseness for different item loadings, or the implications of different patterns of 

sparseness across latent factors. For example, it is not known if having half of all items sparse, 

spread across two factors, has a different impact compared to having all sparse items on one 

factor. Theory suggests that sparseness becomes an issue in ML estimation of GLFA models 

with categorical indicators in two key ways.  

First, it is likely more difficult to obtain stable parameter estimates for items with low 

endorsement in finite samples. One reason for this can be inferred from the issues of quasi-

complete or complete separation in logistic regression analysis with sparse outcomes (see 

Agresti, 2012, Ch. 6). This occurs when the outcome separates or nearly separates some 

combination of predictors with the result that discrimination is perfect, the maximum likelihood 

solution does not exist, and any obtained estimates will be untrustworthy. Similarly, sparseness 

may suggest parameter values near the boundary of the parameter space, which breaks the 

important regularity conditions for properties of the ML estimator (see e.g., Agresti, 2012, Ch 1).  
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 Secondly, probabilities of response patterns involving sparse items become small. 

Because the probabilities of each response pattern are modeled as a function of the independent 

item parameters, the sparse multinomial distribution is not directly estimated. Any empty cells in 

the multinomial table are not predicted. Many very small cells however may be difficult to 

predict by extreme model parameters, but this issue is largely unexplored. 

 Further, especially in models with categorical indicators, there is likely interplay between 

sample size, model complexity, sparseness, and estimation challenges. More complex models 

combined with modest sample sizes and rare endorsement are expected to compound the 

problem of sparseness, and it is easy to build models that are more complex than data can 

support. Models where estimation challenges arise are not needlessly complicated; examples 

include latent curve models with multiple indicators for improved measurement (see Bollen & 

Curran, 2006, Ch. 8), multiple-group models (see Bollen, 1989, Ch. 8), and moderated nonlinear 

factor analysis (Bauer & Hussong, 2008). These are just a few examples of theoretically justified 

increases in model complexity, especially for substance use research; yet increased complexity, 

when combined with categorical indicators and finite sample sizes, may lead to empirical 

underidentification and estimation challenges. Researchers currently facing these estimation 

challenges must combine items, collapse item categories (if more than two categories), or drop 

items, potentially sacrificing information. For example, Hussong, Huang, Serrano, Curran, & 

Chassin (2012) report combining items assessing drug use other than marijuana due to 

sparseness, and Hussong, Flora, Curran, Chassin, and Zucker (2008) report dichotomizing 

ordinal items because sparse endorsement led to estimation problems.  

 In sum, ML estimation is satisfactory for GLFA in some cases, but ML is not designed to 

work well for finite samples with sparse data. In many domains of psychology and especially 

substance use research, it is not always an option to avoid sparse items when the pool of items is 
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limited, sample size is limited, or items are particularly important to comprehensively measure a 

construct. For example, if the intended measure is a tendency towards self-harm, a rare behavior, 

it may be theoretically important to include some items about extreme self-harm behaviors, even 

if they have low base rates. Next I introduce Bayesian estimation as an alternative when ML 

estimation breaks down. 

Bayesian Estimation 

 Bayesian estimation is based on a historically distinct approach to statistical inference 

from frequentist-based methods such as ML. Some advantages for the estimation of GLFAs with 

categorical data may exist in a Bayesian framework
4
; however these potential advantages are 

balanced with an increase in methodological complexity. Further, these have yet to be studied 

specifically for the case of sparse items in GLFA. 

 In Bayesian statistics, parameters are random variables (rather than fixed, true values as 

in classical statistics). A Bayesian estimation approach requires selection of an appropriate prior 

distribution for each parameter in the model. The prior distribution ( )  is combined with the 

model likelihood function ; )L y  — the same likelihood maximized by ML estimation— to 

arrive at the posterior distribution ( | )y   via Bayes’ theorem: 

    
( ) ( ; )

( | ) ( ) ( ; ).
( ) ( ; )

L y
y L y

L y d

  
    
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 


    8 

It is on this posterior distribution that inferences are based; specifically detailed information is 

available about the distributions of individual parameters.  

 This is an important distinction between a Bayesian estimation approach and more 

traditional frequentist approaches. Because the posterior distribution of the parameters is 

                                                 
4
 The Bayesian approach I focus on is not the only possible approach. Maximum a posteriori (MAP or modal Bayes) 

estimation pairs prior distributions from Bayesian statistics with a method of estimation similar to ML estimation 
(Mislevy, 1985). I focus on “full” Bayesian inference and MCMC to describe the posterior distribution in part for its 
generality and potential to scale to higher dimensional problems.  
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available, standard errors or credible intervals (the Bayesian analogue to confidence intervals) 

are based on the percentiles of the posterior, which can have any distributional shape (e.g., 

symmetric, asymmetric, skewed). In contrast, a maximum likelihood approach assumes that the 

asymptotic distribution of a parameter estimate is normal, an assumption based on large-sample 

theory. Because it does not rely on large-sample theory, Bayesian estimation can be 

advantageous for fitting models to small samples. However, there are important tradeoffs and 

assumptions inherent in either approach. In a Bayesian analysis, inferences may be dependent on 

choices made about the prior distribution, whereas in ML estimation, asymptotic properties may 

not hold in finite samples. 

 Important components of a Bayesian analysis are: prior specification, model 

specification, posterior computation, and evaluating the posterior solution. The model 

specification does not differ in a Bayesian analysis, so I focus on the other three components in 

the next three sections. For this introductory material, I borrow from Bayesian Data Analysis by 

Gelman et al. (2013), to which I refer interested readers for further details on all aspects of 

Bayesian inference. 

 Prior Specification. Prior distributions for each model parameter can be used to express 

prior knowledge or information about parameter values, even if the information only concerns 

permissible parameter values. This prior knowledge is combined with the information in the data 

by Bayes’ theorem to arrive at the posterior distribution in a process known as Bayesian 

updating. The process of selecting priors is extremely flexible; priors may vary in distributional 

form and shape. Conjugate priors use distributions that, when combined with the likelihood, 

yield a posterior distribution of the same form. Conjugate priors have historically been useful for 

computational simplicity, but this restriction is not necessary and different parametric or non-
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parametric distributions may be chosen. The parameters (scale, location, etc.) governing the prior 

distributions of parameters are called hyperparameters. 

 Priors can be diffuse or have relatively more mass near a range of plausible values, and 

the level of diffusion in the prior is usually expressed by the hyperparameter values. Many flat 

priors do not have “proper” probability distributions, meaning they do not integrate to 1. For 

example a uniform distribution on the real line ( ( , )U   ) is improper. The use of improper 

priors can lead to an improper posterior distribution, invalidating inference, therefore using 

improper priors requires care to ensure that the posterior distribution is proper. Prior distributions 

and their hyperparameters can be chosen from prior knowledge, certain default values, or from 

the data (data-dependent priors). Priors may also have hyperpriors governing the distribution of 

the hyperparameters. Sometimes priors are labeled as informative/subjective or 

uninformative/objective for peaked and diffuse priors, respectively. However I avoid this 

labeling because it can be misleading as a flat prior may be highly informative for some 

purposes, and the level of information in a particular prior varies case-by-case (see Zhu & Lu, 

2004).  

 Flat priors can also be used to obtain results consistent with maximum likelihood 

estimation, using Bayesian estimation methods simply as a computational tool (Gelman et al., 

2013). With little prior information and adequate sample size, Bayesian and ML estimation 

converge on the same solution; this means that Bayesian estimation can be expected to perform 

as well as ML estimation when ML is converging to a stable solution (See Gelman et al., 2013, 

Ch. 4; Wasserman, 2005). Including prior information can improve an analysis by building on 

existing knowledge and is a way to be transparent about prior beliefs, incorporating hypotheses 

into the analysis. It is fairly common to at least restrict parameter values to their admissible 

range, for example constraining variances to be positive (Gelman et al., 2013). One concern is 
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that such restrictions may mask misspecification, because a negative variance may be a symptom 

of misspecification (Kolenikov & Bollen, 2012). 

 Although in some cases strongly concentrated priors may produce misleading results, this 

is not problematic for properly specified models
5
 as long as there is non-zero probability at the 

true values with enough data, even using relatively concentrated but inaccurate priors (Depaoli, 

2014). With limited sample sizes, parameter estimates are more sensitive to prior values (Berger 

& Bernardo, 1992; Kass & Wasserman, 1996). There are also hazards to relying on default priors 

of any kind, including default flat priors (Kass & Wasserman, 1996).  

 For Bayesian estimation of the GLFA model defined earlier, priors are needed for the 

parameters governing the distribution of the latent factors, factor loadings, item intercepts, and 

any thresholds. Priors are not assigned for any fixed parameters. An example prior specification 

for a univariate model with binary indicators is as follows: 

 
( ~  ( , )

( ~ ( , )
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U
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 
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where the model is scaled by setting the mean and variance of the latent factor to (0,1). However 

there is a reasonable basis to restrict these priors. General ranges and typical values of these 

parameters are known. If theory would strongly dictate that all items should be positively related 

to the latent variable, the prior distribution could favor positive values. Truncated priors may be 

used to constrain ranges for parameters. For example if the variance of   is estimated, a normal 

distribution truncated at zero (half-normal) would constrain estimated variance to positive 

values. Setting this variance to a large value (e.g. 100) for a half-normal distribution would form 

a very flat prior constrained to positive values, whereas a half-normal (0,1) distribution would 

express a prior .95 belief that values should be between 0 and 1.96. Because thresholds j  are 

                                                 
5
 The influence of concentrated prior distributions, correct and incorrect, for misspecified GLFA models is an 

important area of future research. 
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expected to range from about negative 4.5 to 4.5, a reasonable prior could be normal with 

variance focused in this range. With multiple ordered threshold categories, it is also necessary to 

constrain their order in the priors and estimation. More specific priors may also be specified for 

individual items, for example for a self-harm scale, thinking about harming oneself could have 

relatively lower prior probability ranges for thresholds than an item about repeatedly injuring 

oneself. 

Even when reasonable prior specification guidelines are given, and especially without 

useful prior information, a sensitivity analysis should be conducted to see whether the results are 

robust to prior specification (e.g. Song & Lee, 2012, Ch. 3). This can be done for example by 

perturbing the prior hyperparameter values or by considering other prior choices. After 

specifying the prior distributions for each parameter, a Bayesian analysis proceeds by describing 

the posterior, usually by MCMC simulation.  

Posterior Simulation. The posterior distribution is usually impossible to describe 

analytically. Consequently, Bayesian estimation of most interesting models, including GLFA, 

only became feasible with the introduction of Markov chain Monte Carlo (MCMC) simulation 

methods which provide an approach for generating samples from the posterior distribution 

(Tanner & Wong, 1987; Gelfand & Smith, 1990). Whereas traditional Monte Carlo algorithms 

take independent samples from a target distribution directly, Markov chain Monte Carlo methods 

generate correlated samples that asymptotically converge to the target posterior distribution. 

MCMC simulations are initialized with starting values and require a burn-in period of draws 

before the chain has reached the target distribution (i.e., the chain has converged). After 

convergence, subsequent draws will be approximately from the target posterior distribution. The 

posterior distribution is then summarized from these samples. For a clear overview of some 

common MCMC algorithms and practical issues in implementation, see Edwards (2010).  
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 Most existing work for Bayesian GLFA (both FA and IRT models) has focused on two 

types of MCMC algorithms: Gibbs and Metropolis-Hastings (Albert & Chib, 1993; Béguin &  

Glas, 2001; Edwards, 2010; Patz & Junker, 1999, Song & Lee, 2002, 2012; Lee & Tang, 2006). 

Gibbs sampling (Geman & Geman, 1984) is useful when it is impossible to sample from the full 

posterior for all parameters in a model ( ), but   can be partitioned into two or more 

conditional distributions in convenient forms for sampling. The Gibbs sampler is set up to 

sample iteratively from each of the conditional distributions of a subvector of   given the 

observed data y and current values of the other parameters. Under mild regularity conditions, 

these samples converge to the target stationary distribution, the posterior of   (Geman & 

Geman, 1984). Although simple to program and useful for many models, prior choice and model 

choice are restricted in order to arrive at a posterior that can be partitioned into convenient 

conditional distributions. For example, priors are usually restricted to the class of conjugate 

priors, and the choices for prior variance can have biasing influences on the posterior distribution 

(Gelman, 2006). Gibbs sampling for GLFA models is not sufficient on its own if categorical 

indicators are included (Lee & Song, 2012).  

 Metropolis-Hastings (MH; Metropolis et al., 1953; Hastings, 1970) is a much broader 

family of algorithms for posterior simulation, actually including Gibbs sampling as a special case 

(see Gelman et al., 2013, p. 318). MH algorithms sample a value from a convenient proposal 

distribution (e.g., normal) and accept that proposed value with probability carefully defined to 

form a chain that converges to the posterior. For GLFA estimation, more general MH algorithms 

are used in the MCMC chain to sample from any nonstandard distributions when Gibbs is not an 

option (Lee & Song, 2012). MH sampling for GLFA models can be implemented an infinite 

number of ways, making it much more general. However the rules controlling implementation 

require careful oversight and fine-tuning in order to effectively explore the parameter space, and 
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convergence for high-dimensional target distributions can be effectively impossible (Gelman et 

al, 2013). Often, MCMC algorithms are written specifically for a particular model and prior 

specification and even tailored to perform well for different data. Given these essential properties 

of MCMC, there are some major barriers to widespread use of MCMC techniques for Bayesian 

estimation for GLFA.  

 Gibbs and MH sampling depend on “random walk” behavior to converge to and explore 

the target distribution. This random walk, while accomplishing its designed purpose, is also 

inherently inefficient: simulations may zigzag erratically through the target distribution for many 

iterations. An alternative to Gibbs and MH algorithms designed to suppress random walk 

behavior is Hamiltonian Monte Carlo (HMC, sometimes called Hybrid Monte Carlo). HMC is 

based on methods for studying molecular dynamics in physics, specifically Hamiltonian 

dynamics (Duane, Kennedy, Pendleton, & Roweth, 1987).  Whereas other MCMC algorithms 

use a probability distribution to propose future states in the Markov chain, HMC algorithms use 

physical state dynamics, specifically Hamiltonian dynamics.   

 To understand the intuition of Hamiltonian dynamics – and by extension HMC– I borrow 

a description of the physical interpretation of Hamiltonian dynamics from Radford Neale (2010): 

In two dimensions, we can visualize the dynamics as that of a frictionless puck that slides 
over a surface of varying height. The state of this system consists of the position of the 
puck, given by a 2D vector q, and the momentum of the puck (its mass times its velocity), 
given by a 2D vector p. The potential energy, U (q), of the puck is proportional to the 
height of the surface at its current position, and its kinetic energy, K (p) is equal to 
|p|

2
/(2m), where m is the mass of the puck. On a level part of the surface, the puck moves 

at a constant velocity, equal to p/m. If it encounters a rising slope, the puck’s momentum 
allows it to continue, with its kinetic energy decreasing and its potential energy 
increasing, until the kinetic energy (and hence p) is zero, at which point it will slide back 
down (with kinetic energy increasing and potential energy decreasing). 
 

Whereas the physical interpretation of Hamiltonian dynamics is used to describe objects moving 

through space, these concepts can also be translated to describe the movement of parameters 

through the posterior distribution. In this interpretation, the position corresponds to the 
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parameters of interest, the potential energy relates to the probability distribution of the 

parameters of interest, and momentum variables are added for each parameter of interest to 

describe these dynamics.  

 The Hamiltonian dynamics are expressed by a system of differential equations that must 

be approximated, specifically by discretizing time and proceeding through time in steps. In each 

series of steps, the momentum, position, and potential energy for the system are updated. HMC 

algorithms simulate this process.
6
 Certain properties of Hamiltonian dynamics make it especially 

useful for MCMC; essentially during the simulation it represents and preserves volume of the 

posterior distribution, and uses this representation of the posterior distribution to guide 

exploration. Because of preservation of volume and simulation of momentum, HMC can be used 

to move more efficiently through the parameter space than Gibbs or MH sampling (Neal, 1993, 

Chapter 5). Although more efficient, HMC requires tuning of parameters to guide the chain, and 

this complicated tuning process has discouraged widespread implementation. However, the No-

U-Turn sampler (NUTS; Hoffman & Gelman, 2014) effectively automates this tuning process.  

 There have been many efforts to make software for general-purpose Bayesian estimation, 

most using combinations of MH and Gibbs sampling. Some programs have either been 

inflexible– not applicable to a wide range of models, data, or priors (e.g. Mplus) – or general at 

the risk that MCMC may be inefficient and fail to converge (see Carpenter et al., 2015). Use of 

MCMC in a canned statistical package is somewhat risky, as it is challenging to implement 

MCMC correctly, and further it is necessary to ensure that all aspects of the MCMC estimation 

were successful before making inferences (MacCallum, Edwards, & Cai, 2012). One recent 

attempt to create general software for Bayesian estimation is the Stan programming language 

                                                 
6
 Because many concepts of Hamiltonian dynamics and HMC are unfamiliar to non-physicists, a detailed description 

of HMC is beyond the scope of this project. I refer interested readers to Neal (2010) and Gelman et al. (2013, pp. 
300-308) for more details, however note that this material is necessarily technical. 
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(Stan Development Team, 2015), which uses Hamiltonian Monte Carlo for efficient posterior 

exploration and the NUTS sampler to automatically tune the algorithm.  

Posterior Evaluation. After MCMC sampling, it is necessary to evaluate the samples for 

convergence and summarize the posterior to make inferences. There are many techniques to help 

assess MCMC convergence (see Gelman et al., 2013, for a review). However it is generally 

impossible to know for sure that any single chain has converged, because methods for 

monitoring convergence assess necessary but not sufficient conditions for convergence. 

One good practice is to run multiple chains from different starting values and check that 

the chains appear to converge to the same solution (Gelman et al., 2013). A useful visual 

diagnostic tool is a traceplot which shows the iteration number plotted against the sampled 

values for a parameter; an example traceplot is shown in Figure 3. In these plots good mixing, 

lack of periodicity and clear movement from the starting values to a stable target distribution are 

all evidence of convergence.  

 

Figure 3: Example MCMC diagnostic trace plot 
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Because the draws from the posterior are not independent the “effective number of 

simulation draws” is less than the total number of draws. The number of effective draws depends 

on the autocorrelation of the simulation draws. Asymptotically the number of effective samples 

if there are n draws from m chains is 
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where t is the autocorrelation of the sequence  at lag t. Computing the effective sample size in 

practice requires estimating the infinite sum of the autocorrelations from a positive partial sum, 

1
ˆ

T

tt


  using variance and covariance information from within and between sequences (see 

Gelman, et al., 2013, pp. 284-87 for complete computational details). A measure of effective 

sample size is useful to measure efficiency of the chain and determine whether sufficient 

uncorrelated samples have been drawn for posterior inference. 

 Additionally, the potential scale reduction statistic ( R̂ ; Gelman and Rubin, 1992) can be 

computed to help monitor whether a chain has converged to the equilibrium distribution. The 

potential scale reduction statistic compares variability within a sequence to variability between 

other randomly initiated chains as 
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where var ( | )y


 is an estimate of the marginal posterior variance of the estimand, and W is an 

estimate of within-sequence variance (see Gelman et al., 2013, pp. 284-285 for full details).  

 If the value of R̂ is one, this is evidence of convergence, while values above one suggest that the 

chain has not converged. Importantly, all parameters in a model must show evidence of 

convergence before it is suitable to make inferences from the posterior distribution. 
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  Rather than a point estimate and large-sample based confidence intervals, Bayesian 

estimation produces posterior distributions for each parameter. Often it is useful to examine the 

posterior means and quantiles, including 95% posterior intervals to make inferences about each 

parameter.  

 Model Fit Assessment. Evaluating goodness of fit for Bayesian models is an active area 

of research. Posterior predictive checking (PPC; Gelman, Meng, & Stern, 1996) can be used to 

compare the value of any test statistic for the observed data to values computed for simulated 

data obtained from draws from the posterior distribution. The expectation is that, for well-fitting 

models, data simulated from draws from the posterior (which is based on the hypothesized model 

for y), should be similar to y. A posterior predictive p-value is often calculated as the proportion 

of simulated replications for which the test statistic equals or exceeds its realized value. Posterior 

predictive checking is popular in applied Bayesian analyses and has been demonstrated for 

GLFA models (Béguin & Glas, 2001). However, PPC has been criticized because the observed 

data will be more consistent with the posterior distribution, which it was used to compute, than 

random draws from the posterior (e.g., Yuan & Johnson, 2012). This double-use of the data is 

theoretically problematic and sacrifices power to detect misfit. Further, the posterior predictive 

p-values are not uniformly distributed under the proposed model, making their interpretation 

difficult (Bayarri & Berger, 2000). Yuan & Johnson (2012) propose an alternative methodology, 

involving comparisons of what they term pivotal discrepancy measures, which are uniformly 

distributed and have higher statistical power to detect misfit.    

 Advantages of Bayesian Estimation for Sparse GLFAs. Though Bayesian estimation 

has been profitably used to estimate complex GLFA models (e.g. Edwards, 2010; Song & Lee, 

2012), it has not been studied for the problem of estimating GLFA models with sparse, 

categorical indicators. However, theory suggests that Bayesian estimation should be a useful 
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alternative when ML breaks down. Incorporating prior information has been shown to be 

especially useful in sparse data settings (Dunson & Dinse, 2001; Peddada, Dinse, & Kissling, 

2007). Dunson and Dinse (2001) suggest a Bayesian method for studying tumor incidence rates, 

which are rare events and often difficult to predict because of small sample sizes. By 

incorporating historical data as prior information, their method leads to more interpretable results 

and can improve detection of small but biologically important changes in incidence rates 

(Dunson & Dinse, 2001; Peddada, Dinse, & Kissling, 2007).  

 Introducing priors to an analysis should be an advantage for dealing with sparseness in 

GLFA, both theoretically and computationally. The prior should have a stabilizing, shrinkage 

effect on parameters with little data available for their estimation. Often applied researchers 

prefer the unbiasedness property of maximum likelihood estimation, but in cases of sparseness, it 

may be better to prefer estimation with some bias in exchange for lower variance to avoid 

overfitting. This rationale (i.e., increased stability at the cost of some bias) is the same used for 

regularized regression methods such as ridge regression or lasso regression (Tibshirani, 1996), 

which are used in a frequentist framework but also have Bayesian interpretations (Park & 

Casella, 2008). The stabilizing effect of reasonable priors should also be beneficial for 

computational problems arising from sparse categorical data because the priors can be used to 

avoid improper solutions and aid convergence. 

 The prior may thus provide more information than the data for some parameters in some 

cases. This prior influence may be problematic for some circumstances and depending on the 

purposes for specific model inferences, however in general if reasonable priors are chosen, prior-

driven stabilization may be advantageous. In the case of thresholds nearing extreme values due 

to sparse data, shrinking these extreme values may be computationally advantageous and more 

reliable.  
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 In summary, Bayesian inference is remarkably flexible and can be adapted to provide 

good performance even in challenging or less than ideal circumstances with large models, small 

samples, missing data, or sparseness. As such, Bayesian estimation is a promising alternative to 

ML estimation for GLFA with sparse indicators; however it is important to evaluate 

computational challenges and sensitivity to prior specification.  

Current Research  

 Sparse categorical indicators commonly arise in substance use research due to finite 

sample sizes and the potential for extreme items. In the current work I evaluated the impact of 

sparseness on ML estimation of GLFA and investigated Bayesian estimation as an alternative to 

ML estimation for sparse indicators, to stabilize estimates and aid convergence. Although theory 

suggests that using priors to stabilize estimates may be preferable to ML estimation for sparse 

items in GLFA, it is not possible to compare these approaches analytically for finite samples. 

Therefore, to accomplish these aims, I conducted a simulation study centered on the following 

theoretically derived hypotheses: 

1. Maximum likelihood estimation for GLFA models with sparse, categorical indicators was 

expected to fail to consistently produce converged, reasonable solutions with a higher 

proportion of sparse items, decreasing probability of endorsement, and lower item 

loadings. Efficiency of solutions was expected to be poor even for converged 

replications. 

2. In conditions where maximum likelihood estimation performs well, I hypothesized that 

Bayesian estimation would perform as well or better, specifically in terms of efficiency of 

parameter estimates. 
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3. Bayesian estimation was expected to outperform maximum likelihood as sparseness 

increases in terms of convergence to reasonable solutions, efficient parameter estimates, 

and empirical power.  

I varied levels of item sparseness, item loadings, and patterns of sparse items for a two-factor 

GLFA model with binary indicators. Specifically, I studied 2 levels of sparseness, 2 factor 

reliabilities, and 3 patterns of sparse items in a simulation design with (2x2x3) 12 cells, in 

addition to examining 2 baseline (even endorsement) conditions, one for each level of item 

loading.
7
 In Study 1, I determined conditions where ML estimation is impaired due to 

sparseness. In Study 2, I examined Bayesian estimation where ML performs well and in a subset 

of conditions determined in Study 1 where ML estimation performs poorly. 

  

                                                 
7
 Note that this simulation design is not fully crossed, because baseline conditions with even endorsement on all 

items do not cross with the manipulations for sparse items. 
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CHAPTER 2: STUDY 1 – MAXIMUM LIKELIHOOD ESTIMATION 

Simulation Study Design 

Model Design 

To evaluate the impact of sparseness for ML estimation of GLFA models, I simulated 

data consistent with a two-factor GLFA with 5 binary indicators per factor. I chose a 

multidimensional model in order to study the effects of patterns of item sparseness across factors 

and bias and efficiency in the estimated correlation between factors. The correlation between 

factors was moderate, 
12 .3   for all conditions. Sample size was constant, N =500 for each of 

500 replications per condition. This value was chosen to be representative of a modestly large 

sample size, a sample with which substantive researchers would typically feel confident 

estimating and interpreting structural equation models. I did not vary sample size because this 

would confound marginal endorsement rates and cell frequencies, and there was no expected 

interaction between marginal endorsement and sample size. Larger sample sizes, holding 

constant the item parameters, should improve convergence, estimates, and standard errors. I 

manipulated item parameters to induce sparseness and determine conditions where ML 

estimation is meaningfully affected by sparseness. I examined parameter estimate convergence, 

bias, efficiency, confidence interval coverage, and empirical power as outcomes. 

Design Factors 

I examined model convergence, parameter estimate bias and efficiency, confidence 

interval coverage, and empirical power for the given model specification and sample size, for 

different item loading values and levels and patterns of item sparseness.  
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Item loadings. I evaluated the effects of sparseness for two item loading parameter 

values, 1.5i  and 2.0i  , corresponding to communalities of .41 and .55. These item loadings 

parameter values were informed by a review of parameters encountered in practice (e.g. 

Hussong, Flora, Curran, Chassin, & Zucker, 2008) and simulation studies for similar models 

(e.g. Cai, 2010; Edwards, 2010; Curran et al., in preparation).  

Item thresholds. I varied threshold parameters to induce sparseness, examining a 

baseline (even endorsement) condition and two conditions with high thresholds. For the baseline 

conditions endorsement was even on all items (all 0)i  .  To induce sparseness, I set threshold 

parameters to 3.85i  and 4.9i  (logit-scaled). For conditions with 1.5i  , this corresponds 

to marginal probabilities of p=.05 and p=.02, respectively, and for 2.0i   this results in 

marginal probabilities of p=.075 and p=.035.  The marginal probabilities of endorsement for 

different thresholds were derived by integrating over the distribution of η in Equation 4; this 

integration was done by simulating a large number of draws (i.e. 10
7
) from a standard normal 

distribution, and calculating the probability of response given each value of η using Equation 4. 

This yields expected marginal frequencies of 25; 10 (when 1.5i  ), and 37.5; 17.5 (when

2.0i  ) for the sample size of 500.  

Pattern of sparse items. In addition to baseline conditions with no sparse items, I 

examined three patterns of sparse indicators in the model. To determine if the effect of 

sparseness depended on the pattern of sparse items across factors, I compared two conditions 

with a total of four sparse indicators distributed differently across factors. In one condition, all 

four sparse indicators were on the same factor, and in a second condition two sparse indicators 

were distributed evenly on each factor. I also examined a high sparseness condition, with four of 

five indicators sparse on both factors. 



33 
 

Summary of simulation design. The simulation factors described formed a fractional 

factorial design, because all possible combinations of levels of each factor were not fully 

crossed. Fractional designs have been recommended to remove redundancy in simulation study 

designs, especially when higher-order interactions among the design factors are not of interest 

(Skrondal, 2000).There were a total of 14 conditions in the simulation design, and the conditions 

are summarized in Figure 4.  

 

Figure 4. Summary of simulation design and factorial design matrices for meta-models 

 

Figure 4. Descriptions of 14 simulation conditions. E.g., “2/5; 2/5 sparse” means 2 of 5 items 
sparse on factor 1 and factor 2, and “ν =  ” gives threshold. 
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Data Generation 

Data was generated in matrix form within R (R Core Team, 2015) from a distribution with 

fixed population values using the following three step algorithm. First, I generated random 

standard normal latent variable values for both factors from a bivariate normal distribution with a 

correlation =.30 between factors. Second, I calculated probabilities of responses given parameter 

values, latent factor scores, and the defined model and logit link function (i.e., Equation 4). 

Third, I simulated item responses as draws from a Bernoulli distribution with probabilities 

calculated in the previous step. If endorsement on any item was zero, the replication was 

discarded and replaced with a new replication until 500 replications were simulated with non-

zero endorsement for all items
8
. This resulted in a 500 x 10 (N x P) data matrix for each of the 

500 replications for each cell of the simulation design. Note that the design of the simulation 

study, with fixed population values, is consistent with a traditional (frequentist) specification, 

whereas a Bayesian specification would draw from a distribution of population values.  

Estimation 

I estimated the correct model for each replication using full information maximum 

likelihood as programmed in Mplus version 7 with a logit parameterization and default start 

values, convergence criteria, and the default integration method of adaptive numerical 

integration with 15 integration points. The default integration method and number of integration 

points is well-suited for a GLFA with 2 latent factors, though alternative methods of integration 

are preferable for more complex models with more latent factors (Wirth & Edwards, 2007). 

Estimation for each replication was automated using the MplusAutomation R package (Hallquist 

& Wiley, 2014). In order to estimate the model, the latent factors were identified by setting the 

                                                 
8
 Not allowing zero endorsement technically changes the population parameter for the probability of item 

endorsement. However, the impact is trivial because the probability of observing no endorsement for an item with 
2% probability of endorsement is less than <.0001 for a sample size of 500, even with 8/10 items sparse. 
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variance to unity for each factor and estimating all factor loadings
9
. The program syntax is 

provided in Appendix A.  

Evaluation Criteria 

I evaluated performance of maximum likelihood estimation in terms of convergence, 

bias, efficiency, confidence interval coverage, and empirical power. 

Convergence and extreme estimates. I monitored convergence of replications to proper 

solutions in each condition, as defined by the algorithm in Mplus. Convergence failures are 

reported as errors in the output file. However, Mplus may also give warnings and errors that do 

not necessarily indicate non-convergence (e.g., warning that an estimate has been fixed). I 

monitored all warnings and errors to screen for serious errors indicating nonconvergence versus 

ignorable warnings. Mplus may fix threshold estimates if they reach boundaries (e.g., logit 

thresholds outside [-15,15]) at certain points in the estimation routine, but estimates outside of 

this range may also be reported (Muthén & Muthén, 2014). In addition to convergence to proper 

maximum likelihood solutions, I also monitored solutions for extreme estimates which would 

seem suspicious in practice.  

Raw bias. Raw bias was calculated for all parameters
12), ,( i i   . Raw bias is calculated 

generally for parameter   by subtracting the true value from the rth estimate ˆ( )r and averaging 

across the total number of replications in the cell (R): 

 
ˆ
r

R

 
. 12 

Raw bias for estimates within each replication was computed for meta-models of the simulation 

design, and average bias was used to interpret bias for parameters within each condition.
10

 

                                                 
9
 This model specification is only locally identified (Bollen & Bauldry, 2010; Loken, 2005), as there is a sign 

indeterminacy for the factor loadings on one or both factors. For the estimation routines used in Mplus for these 
models and data, the sign indeterminacy is not an issue and leads to solutions with a majority of positive factor 
loadings.  



36 
 

Because the mean is sensitive to extreme values, I also calculated median bias and recorded 

minimum, 5
th

 quantile, 95
th

 quantile, and maximum values for parameters in each condition. 

Efficiency. I examined root mean square error (RMSE) as a measure of parameter 

estimate efficiency for each parameter, computed generally for parameter as  

 

 
1

2

ˆ
R

r

r

R





. 13 

RMSE is a measure of both sampling variability and squared bias, with larger values reflecting 

greater variability in estimates relative to the true value. When estimates are unbiased, the RMSE 

can be thought of as the empirical standard error. When bias is present, efficiency measured by 

RMSE reflects overall accuracy. Because RMSE is sensitive to extreme values, the median 

absolute deviation about the median (MAD) was also included as a robust measure of efficiency 

(Huber & Ronchetti, 2009), calculated for each parameter in replication r as 

  ˆ
kk rMAD Medi n Ma    14 

where 

 ˆ
k rM Median  . 

Confidence interval coverage. As an indicator of bias in standard errors, I computed 

95% confidence intervals for parameters in each replication and examined the proportion of 

estimated confidence intervals that contained the true population parameter. If parameter 

estimates and standard errors are unbiased, the 95% confidence interval should contain the true 

population value in 95% of replications. Collins, Schafer, and Kam (2001) consider coverage 

values that fall below 90% to be problematic.  

                                                                                                                                                             
10

 I do not include standardized bias as an outcome in this simulation because a key comparison is between 

thresholds for even endorsement 0)i  and sparse endorsement conditions, and standardized bias is not defined 

for parameters with a true value of zero. 
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Empirical power. Empirical power was computed by recording the proportion of 

significant estimates for each parameter according to a standard alpha level of .05. In simulations 

with properly specified models and a large number of replications, empirical power is a highly 

accurate estimate of power. 

Meta-Models 

I analyzed the factors of the simulation using a general linear model (GLM) predicting 

raw bias to examine interaction and main effects among the design factors. The GLMs used were 

weighted to account for the fractional factorial design of the simulation study. Two-way design 

tables for the three factors of the study are provided in Figure 4. Because the GLM has high 

power to detect significant effects, I used partial 2  values as an effect size measure to screen for 

meaningfully large effects. Partial 2 is computed as  

 Between

Between Within

SS

SS SS
  15 

where 
BetweenSS  and 

WithinSS  are the sums of squared deviations from the mean, representing 

between-group and within-group variability respectively. Corresponding to a conventional 

medium effect size (Cohen, 1988), I planned to examine significant effects that produced a 

partial 2 value of at least .06. I did not have specific hypotheses about systematic parameter 

estimate bias in these properly specified GLFA models. Meta-models were only used to 

investigate factors predicting bias. Because other outcome measures of interest did not vary 

within cells of the simulation design (i.e., RMSE, MAD), I investigated these outcomes 

descriptively.  

Results 

Tables 1 through 4 summarize results of all converged replications for each condition, 

organized with all results for conditions with medium item loadings in Table 1 and Table 2 
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(ν=3.85 and ν =4.90 conditions, respectively), and results for high item loading conditions in 

Table 3 and 4 (ν=3.85 and ν =4.90 conditions, respectively).  To simplify the presentation, 

results are grouped for item loadings and thresholds on items with 50/50 endorsement (λ, ν) and 

loadings and thresholds for sparse items (λ SP, ν SP). In the following sections I evaluate results 

for model convergence, parameter estimate bias, efficiency, confidence interval coverage, and 

empirical power. 

Model Convergence and Extreme Values 

 Model convergence rates are summarized in Table 5. In both baseline conditions (i.e. no 

sparse items) convergence was 100%, and in all 5% sparseness conditions, convergence was 

above 99%. Non convergence was generally not an issue and only notable in the 2% sparseness 

conditions. In the most extreme condition, with ν =4.90 for 8/10 items and 1.5i  , convergence 

was 91.2%. Of conditions with ν =4.90, convergence improved slightly with higher item 

loadings (98.8% with 2% sparseness for 8/10 items and 2.0i  ), but overall convergence rates 

were high. All convergence failures encountered were due to the estimator reaching a saddle 

point, meaning a stationary point that is not a local extremum of the likelihood.  



 
 

Table 1. Recovery of population generating values when λ = 1.5 with 5% endorsement for sparse items using ML estimation. 

 No Sparse Items (R=500) 

 True 
Mean  

Est 
Med  
Est 

SD 
Est 

Raw 
Bias RMSE MAD 

Min 
Est 

.05 Q 
Est 

.95 Q 
Est 

Max 
Est 

95% 
CI Sig 

ψ12 0.3 0.30 0.30 0.06 0.00 0.06 0.04  0.14  0.19 0.41   0.51 0.95 1.00 

λ 1.5 1.53 1.51 0.23 0.03 0.23 0.15  0.85  1.18 1.93   2.66 0.96 1.00 

ν 0 0.00 0.00 0.13 0.00 0.13 0.09 -0.42 -0.21 0.22   0.47 0.95 0.05 

 2/5; 2/5 Sparse Items (R=499) 

ψ12 0.3 0.30 0.30 0.08 0.00 0.08 0.05  0.07  0.15 0.41   0.55 0.94 0.95 

λ 1.5 1.54 1.50 0.31 0.04 0.31 0.18  0.74  1.11 2.10   3.45 0.95 1.00 

λ SP 1.5 1.60 1.52 0.53 0.10 0.54 0.30  0.35  0.92 2.52   5.73 0.96 0.99 

ν 0 0.00 0.00 0.13 0.00 0.13 0.08 -0.42 -0.20 0.21   0.46 0.96 0.04 

ν SP 3.85 4.02 3.87 0.70 0.17 0.72 0.34  2.75  3.24 5.25   9.78 0.95 1.00 

 4/5; 0/5 Sparse Items (R=500) 

ψ12 0.3 0.30 0.29 0.09 0.00 0.09 0.06  0.06  0.15 0.45   0.61 0.94 0.93 

λ 1.5 1.56 1.51 0.41 0.06 0.34 0.17  0.65  1.11 2.05   6.81 0.95 0.99 

λ SP 1.5 1.58 1.49 0.58 0.08 0.58 0.31  0.25  0.86 2.57   5.76 0.96 0.97 

ν 0 0.00 0.00 0.13 0.00 0.13 0.09 -0.46 -0.21 0.21   0.89 0.95 0.04 

ν SP 3.85 4.01 3.85 0.75 0.16 0.76 0.35  2.77  3.19 5.32 10.59 0.95 0.99 

 4/5; 4/5 Sparse Items (R=498) 

ψ12 0.3 0.30 0.30 0.11 0.00 0.11 0.07 -0.06  0.12 0.50   0.68 0.93 0.80 

λ 1.5 1.70 1.52 0.78 0.20 0.80 0.32  0.57  0.95 2.94   8.64 0.95 0.91 

λ SP 1.5 1.58 1.50 0.58 0.08 0.58 0.31  0.15  0.82 2.55   7.03 0.95 0.97 

ν 0 0.00 0.00 0.15 0.00 0.15 0.09 -0.84 -0.23 0.23   1.14 0.95 0.05 

ν SP 3.85 4.01 3.87 0.74 0.16 0.75 0.37  2.76  3.19 5.26 11.92 0.94 0.99 

Note. Med is the median estimate, SD Est is the empirical standard deviation of the estimate, .05 Q and .95 Q are the 5
th

 and 95
th

 
quantile estimates, 95% CI is the coverage for the 95% confidence interval, and Sig is the proportion of significant estimates. 
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Table 2. Recovery of population generating values when λ = 1.5 with 2% endorsement for sparse items using ML estimation. 

 No Sparse Items (repeated from previous table for reference, R=500) 

 True 
Mean  

Est 
Med  
Est 

SD 

Est 
Raw 
Bias RMSE MAD 

Min 
Est 

.05 Q 
Est 

.95 Q 
Est 

Max 
Est 

95% 
CI Sig 

ψ12 0.3 0.30 0.30   0.06  0.00   0.06 0.04  0.14  0.19 0.41  0.51 0.95 1.00 

λ 1.5 1.53 1.51   0.23  0.03   0.23 0.15  0.85  1.18 1.93  2.66 0.96 1.00 

ν 0 0.00 0.00   0.13  0.00   0.13 0.09 -0.42 -0.21 0.22  0.47 0.95 0.05 

 2/5; 2/5 Sparse Items (R=495) 

ψ12 0.3 0.29 0.29   0.08 -0.01   0.08 0.06  0.07  0.16 0.42  0.53 0.94 0.96 

λ 1.5 1.55 1.50   0.33  0.05   0.33 0.19  0.74  1.10 2.16  3.38 0.96 1.00 

λ SP 1.5 1.90 1.53   2.41  0.40   2.41 0.44 -0.29  0.68 3.85 56.09 0.96 0.71 

ν 0 0.00 0.00   0.13  0.00   0.13 0.09 -0.52 -0.22 0.20   0.51 0.95 0.04 

ν SP 4.9 5.79 4.95   5.38  0.89   5.30 0.58  3.35  4.03 9.03 143.2 0.94 0.94 

 4/5; 0/5 Sparse Items (R=489) 

ψ12 0.3 0.29 0.28   0.11 -0.01   0.11 0.07 -0.04  0.12 0.47  0.74 0.92 0.80 

λ 1.5 1.64 1.52   0.59  0.14   0.44 0.18  0.31  1.12 2.68  5.49 0.95 0.91 

λ SP 1.5 2.29 1.47   5.10  0.79   5.14 0.47 -1.51  0.44 4.05 69.52 0.94 0.52 

ν 0 0.00 0.00   0.14  0.00   0.14 0.09 -0.65 -0.23 0.22  0.55 0.96 0.04 

ν SP 4.9 6.76 4.90 11.17  1.86 11.29 0.58  3.35  3.92 9.18 154.9 0.91 0.92 

 4/5; 4/5 Sparse Items (R=458) 

ψ12 0.3 0.30 0.28   0.16  0.00   0.16 0.10 -0.12  0.07 0.58 0.98 0.89 0.54 

λ 1.5 2.21 1.69   1.46  0.71   1.61 0.65  0.19  0.74 4.95 9.42 0.93 0.41 

λ SP 1.5 3.29 1.46 55.94  1.79 39.96 0.49 -2259  0.45 3.99 1751 0.94 0.50 

ν 0 0.00 0.00   0.19  0.00   0.19 0.10 -1.23 -0.31 0.28 0.97 0.97 0.03 

ν SP 4.9 11.92 4.89 133.9  7.02 93.59 0.61  3.34  3.90 9.16 5792 0.91 0.91 

Note. Section in gray is repeated from previous table to facilitate comparison. Med is the median estimate, SD Est is the empirical 
standard deviation of the estimate, .05 Q and .95 Q are the 5

th
 and 95

th
 quantile estimates, 95% CI is the coverage for the 95% 

confidence interval, and Sig is the proportion of significant estimates. 
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Table 3. Recovery of population generating values when λ = 2 with 7.5% endorsement for sparse items using ML estimation. 

 No Sparse Items (R=500) 

 True 
Mean  

Est 
Med  
Est 

SD 
 Est 

Raw 
Bias RMSE MAD 

Min 
Est 

.05 Q 
Est 

.95 Q 
Est 

Max 
Est 

95% 
CI Sig 

ψ12 0.3 0.30 0.30 0.06 0.00 0.06 0.04  0.13  0.21 0.40 0.50 0.94 1.00 

λ 2 2.03 2.00 0.28 0.03 0.28 0.18  1.23  1.61 2.53 3.67 0.96 1.00 

ν 0 0.01 0.00 0.15 0.01 0.15 0.10 -0.50 -0.24 0.25 0.52 0.95 0.05 

 2/5; 2/5 Sparse Items (R=500) 

ψ12 0.3 0.30 0.30 0.06 0.00 0.06 0.04  0.12  0.20 0.41 0.49 0.94 1.00 

λ 2 2.04 2.00 0.34 0.04 0.34 0.21  1.19  1.56 2.65 4.40 0.96 1.00 

λ SP 2 2.11 2.01 0.65 0.11 0.65 0.30  0.98  1.42 3.07 16.73 0.96 1.00 

ν 0 0.00 0.00 0.15 0.00 0.15 0.10 -0.64 -0.24 0.25 0.58 0.95 0.05 

ν SP 3.85 4.01 3.87 0.85 0.16 0.84 0.34  2.79  3.22 5.19 24.79 0.96 1.00 

 4/5; 0/5 Sparse Items (R=499) 

ψ12 0.3 0.30 0.30 0.07 0.00 0.07 0.04  0.08  0.19 0.42 0.51 0.95 0.99 

λ 2 2.07 2.01 0.40 0.07 0.37 0.19  1.05  1.59 2.68 6.00 0.96 1.00 

λ SP 2 2.07 2.01 0.49 0.07 0.50 0.29  0.70  1.4. 2.96 5.02 0.95 1.00 

ν 0 0.00 0.00 0.15 0.00 0.15 0.10 -0.66 -0.25 0.24 0.71 0.96 0.04 

ν SP 3.85 3.95 3.85 0.60 0.10 0.61 0.35  2.71  3.17 5.00 8.14 0.94 1.00 

 4/5; 4/5 Sparse Items (R=500) 

ψ12 0.3 0.29 0.30 0.08 -0.01 0.08 0.05  0.06  0.16 0.42 0.51 0.95 0.95 

λ 2 2.27 2.07 0.79 0.27 0.82 0.36  1.03  1.43 3.76 7.61 0.96 0.97 

λ SP 2 2.07 2.01 0.51 0.07 0.51 0.30  0.70  1.39 2.96 5.85 0.95 1.00 

ν 0 0.01 0.00 0.16 0.01 0.16 0.11 -0.59 -0.24 0.27 0.70 0.97 0.03 

ν SP 3.85 3.97 3.88 0.62 0.12 0.63 0.36  2.64  3.18 5.08 9.57 0.95 1.00 

Note. Med is the median estimate, SD Est is the empirical standard deviation of the estimate, .05 Q and .95 Q are the 5
th

 and 95
th

 
quantile estimates, 95% CI is the coverage for the 95% confidence interval, and Sig is the proportion of significant estimates. 
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Table 4. Recovery of population generating values when λ = 2 with 3.5% endorsement for sparse items using ML estimation. 

 No Sparse Items (repeated from previous table for reference, R=500) 

 True 
Mean  

Est 
Med  
Est 

SD  
Est 

Raw 
Bias RMSE MAD 

Min 
Est 

.05 Q 
Est 

.95 Q 
Est 

Max 
Est 

95% 
CI Sig 

ψ12 0.3  0.30  0.30 0.06  0.00 0.06 0.04  0.13  0.21 0.40 0.50 0.94 1.00 

λ 2  2.03  2.00 0.28  0.03 0.28 0.18  1.23  1.61 2.53 3.67 0.96 1.00 

ν 0  0.01  0.00 0.15  0.01 0.15 0.10 -0.50 -0.24 0.25 0.52 0.95 0.05 

 2/5; 2/5 Sparse Items (R=498) 

ψ12 0.3  0.30  0.31 0.07  0.00 0.07 0.05  0.11  0.19 0.40   0.50 0.96 0.99 

λ 2  2.05  2.00 0.36  0.05 0.37 0.22  1.23  1.53 2.69   4.15 0.95 1.00 

λ SP 2  2.31  2.02 1.46  0.31 1.42 0.40  0.62  1.30 4.02 29.70 0.96 0.93 

ν 0  0.00  0.00 0.15  0.00 0.15 0.10 -0.69 -0.24 0.25   0.60 0.96 0.04 

ν SP 4.9  5.47  4.97 2.47  0.57 2.42 0.57  3.49  3.99 8.12 53.14 0.95 0.95 

 4/5; 0/5 Sparse Items (R=491) 

ψ12 0.3  0.30  0.29 0.07  0.00 0.07 0.05  0.10  0.18 0.43   0.56 0.97 0.98 

λ 2  2.14  2.03 0.58  0.14 0.45 0.22  0.94  1.58 2.98   6.16 0.96 0.95 

λ SP 2  2.27  1.98 2.10  0.27 1.96 0.41  0.66  1.19 3.77 40.98 0.94 0.95 

ν 0  0.01  0.01 0.16  0.01 0.16 0.10 -0.59 -0.25 0.26   0.93 0.95 0.05 

ν SP 4.9  5.45  4.88 4.00  0.55 3.69 0.55  3.32  3.90 7.83 82.27 0.93 0.97 

 4/5; 4/5 Sparse Items (R=494) 

ψ12 0.3  0.30  0.29 0.10  0.00 0.1 0.07  0.04  0.15 0.47   0.63 0.93 0.89 

λ 2  2.65  2.18 1.46  0.65 1.57 0.62  0.57  1.28 5.32 12.82 0.95 0.69 

λ SP 2  2.29  1.99 2.55  0.29 2.29 0.40  0.21  1.18 3.70 95.50 0.95 0.95 

ν 0 -0.01 -0.01 0.19 -0.01 0.19 0.11 -0.88 -0.31 0.29   0.76 0.97 0.03 

ν SP 4.9  5.49  4.91 5.02  0.59 4.46 0.56  3.26  3.92 7.60 194.3 0.94 0.97 

Note. Section in gray is repeated from previous table to facilitate comparison. Med is the median estimate, SD Est is the empirical 
standard deviation of the estimate, .05 Q and .95 Q are the 5

th
 and 95

th
 quantile estimates, 95% CI is the coverage for the 95% 

confidence interval, and Sig is the proportion of significant estimates. 
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Table 5. Convergence rates and number of converged solutions without extreme 
parameter estimates in each condition. 

  1.5i   

  ν=3.85 ν=4.90 

 
No 

Sparse 
2/5 & 

2/5 
4/5 & 

0/5 
4/5 & 

4/5 
2/5 & 

2/5 
4/5 & 

0/5 
4/5 & 

4/5 
 

Converged (max=500) 500 499 500 498 495 489 458 

Given converged, all 
estimates in range: 

       

i [-15,15],
i [-8,8] 500 499 500 497 462 445 376 

  2.0i   

  ν=3.85 ν=4.90 

 
No 

Sparse 
2/5 & 

2/5 
4/5 & 

0/5 
4/5 & 

4/5 
2/5 & 

2/5 
4/5 & 

0/5 
4/5 & 

4/5 
 
Converged (max=500) 500 500 499 500 498 491 494 

Given converged, all 
estimates in range: 

       

i [-15,15],
i [-8,8] 500 499 499 500 479 483 467 

 
 

Parameter estimates were not automatically fixed to boundary values during estimation 

(e.g., thresholds to +/- 15). Parameters were occasionally fixed to their estimated value (i.e. no 

standard error is reported); this occurred in less than 1% of replications. Although convergence 

criteria were technically satisfied for most solutions, extreme values were frequently reported in 

conditions with sparseness. While any single set of thresholds for extreme values is necessarily 

arbitrary, it is illustrative to consider how frequently extreme estimates arose. As one measure of 

the number of extreme solutions, included in Table 5 are the numbers of replications that 

converged with threshold estimates between [-15,15] and item loadings between [-8,8]. In 

practice, estimates this large would be considered suspicious. For conditions with sparseness, 

extreme estimates were rare in the conditions with ν=3.85. In conditions with ν=4.90 and 

medium item loadings, solutions with extreme values were more common, for example 445/500 

(89%) with 4 sparse items on one factor and 376/500 (75%) with 4 sparse items on both factors.  
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Examining these extreme values further, I investigated loading estimates that 

corresponded to extreme threshold estimates and vice versa. I also looked for characteristics in 

the simulated data that were associated with extreme estimates. For the chosen ranges of extreme 

values, extreme thresholds and item loadings were almost equally common (49% extreme 

loadings, 51% extreme thresholds). Of note, high loadings were commonly observed with high 

thresholds: 75% of items with extreme threshold estimates also had extreme loading estimates.  

These ICCs were essentially step functions shifted high on the range of the latent variable. Low 

item loadings, implying essentially flat ICCs, were relatively rare and generally did not 

correspond to high threshold estimates. This means that items with low endorsement were 

generally estimated to be strongly related to the latent variable. High threshold and loading 

estimates often corresponded to observed endorsement of about 5 cases (1% for sample size of 

500).  

In summary, although convergence rates to proper ML solutions were high, there were a 

large proportion of replications with improbably high estimates in conditions with severe 

sparseness. These solutions would likely by met with suspicion in practice. All technically 

converged solutions were included with the results in Tables 1-4 and are included in subsequent 

sections describing bias, efficiency, coverage, and empirical power. Robust statistics (e.g. 

medians and MAD) are useful for considering performance without undue influence from 

extreme observations; however note that “extreme” estimates occurred frequently in conditions 

with high sparseness.  

 

Raw Bias 

Meta-model results predicting raw bias for each parameter are summarized in Table 6. 

There was no evidence of meaningful, systematic bias in any of the conditions studied, and none 
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of the simulation factors in the model predicted bias with a medium effect size or larger. All 

partial η
2
 values were less than .01. Estimates from all converged solutions are included in the 

meta-model results shown.  I also fitted the models excluding extreme values and the results did 

not differ meaningfully.  The lack of systematic bias can also be seen in Tables 1 through 4. 

Some mean estimates are biased due to extreme values; however median estimates were very 

close to the true values. 

Table 6. Results from meta-models fitted to raw bias of estimates using ML estimation 

 
Correlation ( 12 ) Loading (λ) Threshold (ν) 

Factor (df) 
F 

(6907) 
p η

2
 

F 
(69195) 

p η
2
 

F 
(69195) 

p η
2
 

Loading (1)  2.17 .14 <.001 4.35 .04 <.001 12.60 <.001 <.001 

Threshold (2) 2.86 .06 <.001 7.55 .00 <.001 11.16 <.001 <.001 

Pattern (3) 2.41 .07 .001 2.57 .05 <.001 3.97 .008 <.001 

Load*Sparse (2)  0.83 .43 <.001 3.04 .05 <.001 8.12 <.001 <.001 

Sparse*Pattern (2) 1.55 .21 <.001 4.81 .01 <.001 11.57 <.001 <.001 

Load*Pattern (3) 1.74 .16 <.001 2.18 .09 <.001 7.41 <.001 <.001 

Sparse Item (1)    1.99 .16 <.001 10.18 .001 <.001 

Note. GLM results for fractional design. η
2 

denotes partial η
2
. Denominator degrees of 

freedom shown below F in ( ). Loading is value of λ (1.5 or 2), Threshold is value of ν 
(0.0, 3.85, 4.9), Pattern is distribution of sparse items across factors, and Sparse Item is 
an item-level main effect for loadings or thresholds on sparse items. Meta-models 
include all converged solutions and do not exclude replications with extreme values. 

 
 

Efficiency 

Average RMSE and MAD for each parameter type in each condition are also shown in 

Tables 1 through 4. Because RMSE and MAD are summary statistics for parameters in each cell 

of the design (i.e., they do not vary within condition), I did not fit meta-models for measures of 

efficiency. Instead, I describe differences in RMSE and MAD qualitatively. Efficiency for the 

estimated correlation between factors 12 was identical for both baseline conditions (RMSE = 

0.06, MAD= 0.04), but RMSE/MAD for estimates of item loadings λ and thresholds ν  was 
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slightly higher in the medium item loading baseline condition (e.g. RMSE = .13 versus .15 for all 

ν). As expected, sparseness lead to decreased efficiency for all parameter estimates. In general, 

RMSE and MAD increased with higher thresholds (ν=4.90 versus ν=3.85) and with more sparse 

items (4 versus 8). For example, the loss of efficiency from baseline to the high sparseness 

condition (8/10 items sparse) was an increase in RMSE from .06 to .08 (33%; λ=2) or from .06 

to .11 (83%; λ=1.5) for the estimated correlation between factors, when sparseness was at the 

.05 level. This compares to a 167% increase in RMSE for the correlation estimate from the 

baseline to high sparseness condition at the ν=4.90 level (λ=1.5). 

 In terms of RMSE, efficiency was worse for the uneven sparseness conditions, for 

example RMSE rose 33% from .33 to .44 for item loadings on non-sparse items (ν=4.90, λ  =1.5) 

and 113% from 2.41 to 5.14 for loadings on sparse items, however the differences in terms of 

MAD were less striking (.19 to .18, λ;  .44 to .47,  λ SP), reflecting that extreme values were more 

common in the uneven sparseness conditions, but median efficiency was comparable. 

Confidence Interval Coverage 

For nearly all conditions studied, 95% confidence interval coverage was between 94-

96%. The range widened slightly in conditions with ν=4.90 for 4/5 items on a single factor (93-

97% and 91-96% for high and medium item loadings, respectively) and in high sparseness 

conditions (93-97% for ν=3.85 on 8/10 items; 89-97% for ν=4.90 on 8/10 items). These results 

suggest that confidence intervals were not substantially biased by sparse items.  

Empirical Power 

 Empirical power to detect significant effects ( 12 , λ , λ SP,ν SP) was lower in conditions 

with sparseness. This effect differed by threshold, with lower power for ν=4.90 versus ν=3.85. 

Empirical power for all parameters was higher when λ =2, for example 80% versus 95% of 

correlation estimates were significant in the medium versus high item loading conditions with 
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ν=3.85. Focusing on item loadings and the correlation between factors, empirical power was 

80% or above for all conditions with ν=3.85. For conditions with λ =2, power fell below 80% 

only when ν=4.90 for 8/10 items (e.g., .69 for λ ). Empirical power was lowest with ν=4.90 in 

models with λ=1.5. For example, 54% significant correlation estimates with sparseness for 8/10 

items and 80% with uneven sparseness on 4/5 items on one factor (empirical power was higher, 

96%, for sparseness on 2/5, 2/5 items).  

Summary of Study 1 Results 

Taken together, the results of study 1 showed that ML performed as expected by theory 

under conditions of sparseness. There was no evidence of biased estimates or confidence 

intervals in these properly specified models. In general, convergence problems were infrequent 

in the conditions studied; however improbably extreme estimates were common even in 

technically converged solutions. Lower parameter estimate efficiency and decreased empirical 

power to detect significant effects were the main effects of sparseness. As expected, these effects 

were more severe with lower item loadings (λ=1.5), with more extreme thresholds (ν=4.90), and 

with a majority of sparse items on one or both factors. Given these results, it is clear that ML 

estimation begins to break down in conditions with a high proportion of sparse items. If 

researchers wish to make inferences from a model with a high proportion of sparse items, they 

are likely to obtain suspicious parameter estimates and to lack power to detect significant effects. 

From these results, I chose three conditions from Study 1 to investigate Bayesian 

estimation for GLFA models with sparse indicators in Study 2. Because I was interested in 

studying Bayesian estimation where ML performance is unacceptable, I chose two conditions 

where ML performance was worst. Specifically, from the models with λ=1.5, I chose the most 

extreme condition with 8/10 items having ν=4.90 (2% marginal endorsement), and the condition 
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with 4/10 items on a single factor having ν=4.90. I also selected a baseline condition as a 

comparison where ML performs well, with λ=1.5.  
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CHAPTER 3: STUDY 2 – BAYESIAN ESTIMATION 

 In Study 2 I evaluated Bayesian estimation for GLFA models with sparse, binary 

indicators. I compared Bayesian estimation to ML estimation on the same data sets for a subset 

of three conditions identified in Study 1: one where ML performs well and two where it performs 

poorly. I evaluated the performance of Bayesian estimation for these models under a variety of 

different priors. 

I performed Bayesian estimation for subsets of replications identified in Study 1 using the 

Stan programming language implemented in R, using Hamiltonian Monte Carlo and the No U-

turns sampler. The Stan programming language can be used with many interfaces, including R 

software, but is coded in C++ for efficiency. To write a Stan program, users define the statistical 

model and priors for each parameter, and the program adapts the sampling algorithm while still 

allowing a reasonable amount of flexibility in model and prior specification and oversight over 

the sampling. Using HMC in Stan, there is no computational advantage to choosing conjugate 

priors. Stan allows users to specify improper priors (i.e. integral of prior is infinity) and 

diagnoses improper posteriors automatically when parameters overflow to infinity during 

simulation (Carpenter et al., 2015). In contrast to other statistical programs that offer Bayesian 

estimation, using the Stan programing language allows the analyst flexibility in model and prior 

choice, oversight of MCMC convergence, and fast computation. The Stan program used to 

specify the GLFA model is provided in Appendix B.  
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Prior Specification 

Because it is risky to rely on default priors (e.g., Kass & Wasserman, 1996), a central aim 

of Study 2 was to evaluate different priors for the GLFA model and HMC/NUTS sampler. For a 

range of priors, I evaluated model convergence and bias and overall accuracy of parameter 

estimates, and I evaluated the sensitivity of posterior inferences based on prior input. I evaluated 

three general types of priors. First, I included a condition with flat priors for the intercepts and 

item loadings. These priors were normal with extremely high variance, essentially uniform on 

the admissible range for all parameters: 
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Second, I evaluated moderately concentrated priors, with increased probability for plausible 

values. 
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Note that the moderately concentrated prior is general for applications in psychology. A third 

prior specification was more concentrated and constrained all factor loadings and the covariance 

between factors as positive: 
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The variance in the concentrated priors specifies 95% prior probability that item intercepts lie 

within [-7, 7], and 97.5% prior probability that factor loadings lie within [0, 7]. These restrictions 

more heavily limit the posterior for conditions with sparse data.  
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Posterior Simulation 

The simulations were run using a large computing cluster for UNC Chapel Hill 

researchers located on UNC’s campus. For each condition and prior, replications were submitted 

in parallel in sets of 20. Each submission was allowed to run for 7 days; submissions that did not 

complete in this time were terminated. 

The method of identification used in Study 1 (setting each factor mean and variance to 0 

and 1, respectively), although only locally identifying the model (Bollen & Bauldry, 2010) lead 

to all solutions with a majority of positive factor loadings (i.e. sign indeterminacy was not an 

issue using ML estimation for this model and data in Mplus). However, sign indeterminacy does 

become an issue using the same scaling in the Bayesian framework. Specifically, solutions with 

either all positive factor loadings or all negative factor loadings are log-likelihood equivalent. 

Similarly, a solution with all positive loadings for one factor and all negative loadings for the 

other factor, and a negative covariance between factors, is equivalent. This sign indeterminacy 

can be resolved using the alternate scaling: by setting a single indicator to 1 for each factor and 

estimating the variance of each factor. Using Bayesian estimation in Stan, choice of scaling had 

an impact on the efficiency of posterior simulation. Although scaling to an indicator has the 

advantage of solving sign indeterminacy, the efficiency of posterior simulation greatly decreased 

using this scaling. Specifically, for the baseline condition with no sparse items and moderate 

priors, scaling to a latent factor resulted in small estimated effective sample size (e.g., less than 

10) for multiple parameters in approximately 10% of replications after 10,000 replications (half 

warm-up). Scaling by setting the factor variances to 1, however, resulted in higher estimated 

effective sample size (e.g., minimum 371) and sampling was twice as fast.  

In order to maximize efficiency in posterior simulation, the more efficient scaling was 

used for Bayesian estimation (setting latent factor variances to 1), and “flipped” solutions were 
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post-processed after estimation to the preferred scaling for inference. Post-processing to an 

inferential parameterization has been used in a similar modeling context with continuous 

indicators (Ghosh & Dunson, 2009). In pilot simulations, I did not encounter any replications 

where a single chain switched from one solution (e.g. all positive loadings) to an opposite 

solution (e.g. all negative loadings), however estimating multiple chains for the same data did 

result in multiple solutions. Different solutions for each chain was also manifested in high 

estimated R̂ . To avoid opposite solutions within replication, a single chain with 20,000 iterations 

(half warm-up) was run for each replication, and R̂ , which is calculated on split chains, was 

monitored for each chain to determine if any chains switched between solutions (i.e., R̂ above 1 

should signal switching within a chain). 

Evaluation Criteria 

Convergence Assessment. Convergence in an MCMC framework is theoretically 

guaranteed after infinite samples under certain assumptions, but with a finite number of MCMC 

samples it is impossible to guarantee convergence. Whereas ML has clear replications where 

models do not converge, for Bayesian estimation there are only degrees of confidence in 

convergence. Convergence was assessed by monitoring the estimated potential scale reduction 

factor and effective sample size estimates. Stan computes the potential scale reduction factor on 

split chains (Stan Development Team, 2015), so it is possible to monitor R̂ even for a single 

chain. I also monitored MCMC plots for a small sample of replications.  

For this simulation, effective sample size of at least 100 for all parameters was 

considered sufficient to interpret results for each replication. Replications with effective sample 

size below 100 for any parameter were not included in results tables. In practice, higher effective 

sample size may be preferable for any single replication (e.g. 1000 for increased precision for 

interpreting posterior intervals; see Gelman et al., 2013, p. 267).  However it is not currently 
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possible to automate sampling until a desired effective sample size is reached using the 

HMC/NUTS algorithm in Stan. 

Evaluation of bias, efficiency, coverage, and empirical power. The performance of 

Bayesian estimation under each prior specification was evaluated as in Study 1 based on 

posterior medians and posterior intervals. I assessed the performance of Bayesian estimation in 

terms of bias
11

, using a meta-model to test for systematic bias as a function of condition and prior 

specification. The efficiency (RMSE and MAD) of estimates, credible interval coverage, and 

empirical power are presented in subsequent sections. For each outcome, I also compare the 

performance of Bayesian estimation to the results using ML estimation. Finally, based on the 

results of Bayesian estimation for different prior specifications and encountered difficulties with 

MCMC estimation, I detail the advantages and potential limitations of Bayesian estimation for 

GLFA models with sparse, categorical indicators.  

Results 

Convergence 

 For all conditions reported here, R̂ was 1 for all parameters. Effective sample sizes for 

each condition, prior, and parameter are summarized in Table 7. Sampling did not complete 

within the time limit of 7 days for conditions with sparse items using flat priors, so results for 

these conditions are not reported. For the baseline condition with no sparse items, effective 

sample size was above 100 for all parameters in 498 replications using flat priors (99.6%), and in 

100% of replications using moderate or concentrated priors. The median and 5
th

 quantile of 

effective samples was similar across all prior specifications in the baseline condition.  

For conditions with sparseness, effective sample size differed substantially using 

moderate versus concentrated priors. Whereas 10,000 post-warmup iterations was sufficient to 

                                                 
11

 Although parameters are not considered constant in Bayesian analysis, it is common to evaluate Bayesian methods 
using frequentist operating characteristics (e.g. Gelman et al., 2013, Ch. 4.4).  



54 
 

achieve 100 effective samples per parameter for most replications using concentrated priors, 

effective sample size was much lower using moderate priors. To obtain a larger number of 

replications with sufficient minimum effective sample size, I repeated the simulation for 

conditions with sparseness and moderate priors with 40,000 post-warmup iterations. Minimum 

effective sample size remained less than 100 using moderate priors for 28% and 42% of 

replications with 4/10 and 8/10 sparse items, respectively. 

 

 
Table 7. Median, minimum, and 5th quantile number of effective samples for each 
condition, prior, and parameter. 

No Sparse Items 

 
Flat (R=498) 
10k iterations 

Moderate (R=500) 
10k iterations 

Concentrated (R=500) 
10k iterations 

 Med 
NEff 

Min 
 NEff 

.05Q 
NEff 

Med 
N Eff 

Min N 
Eff 

.05Q  
N Eff 

Med  
N Eff 

Min  
N Eff 

.05Q  
N Eff 

ψ12 3038 14 2362 3075 1670 2389 2909 1943 2299 

λ 3423 3 2319 3432 371 2367 3500 569 2463 

ν 3905 5 2807 3967 848 2831 3897 1794 2794 

4/5; 0/5 Sparse Items 
 

 
Moderate (R=361) 

40k iterations 
Concentrated (R=491) 

10k iterations 

ψ12    1500 3 11 930 80 210 

λ    6083 5 29 4225 50 220 

λ SP    2073 3 14 2271 179 727 

ν    9470 4 48 5055 139 1494 

ν SP    2329 3 26 2681 222 879 

4/5; 4/5 Sparse Items 
 

 
Moderate (R=292) 

40k iterations 
Concentrated (R=466) 

10k iterations 

ψ12    653 3 11 488 25 111 

λ    356 4 14 258 58 125 

λ SP    1408 3 14 2058 112 690 

ν    2097 5 48 1885 184 479 

ν SP    1614 3 249 2397 180 843 
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Posterior simulation (20,000 total iterations) for sets of 20 replications completed in 

approximately 10 hours or less running on a single Intel Xeon Processor (2.93 GHz). This means 

that estimation for single replications could be expected to run in about 30 minutes on a personal 

computer, for this model and sample size. Computational time was generally faster in baseline 

conditions relative to conditions with sparse items and for more concentrated priors. 

Because convergence is very different in the Bayesian and ML frameworks, it is 

problematic to directly compare “convergence rates” from the two frameworks. Even though 

effective sample size was lower than the specified cutoff for 9 and 34 replications with 4/5 sparse 

items on one or both factors, respectively, sampling for more iterations could be done to achieve 

the desired effective sample size. In these conditions with a high number of sparse items, using a 

concentrated prior specification, it is possible to examine solutions in cases where an estimate 

was not available using ML estimation, either by sampling for more iterations or by inspecting 

solutions with lower effective sample size.
12

 

In Study 1, using ML estimation, extreme values were frequently encountered in 

technically converged replications (unrelated to systematic bias) in the sparseness conditions 

studied here using Bayesian estimation. However, in this study using Bayesian estimation, 

extreme values were related to prior specification and bias in parameter estimates. Therefore, I 

save treatment of extreme values from Bayesian estimation for the next section on bias in 

parameter estimates. 

Raw Bias 

Meta-models predicting raw bias for each parameter are summarized in Table 8. Only 

replications with effective sample size greater than 100 for all parameters were analyzed. 

Because posterior sampling failed to complete in the time allotted for conditions with sparse 

                                                 
12

 For the concentrated prior specification, I separately examined results for all replications, including replications 
with effective sample size below my preferred cutoff. The results did not differ meaningfully for any outcome. 



56 
 

items using flat priors, only results for moderate and concentrated priors were included in the 

meta-models. 

There was a substantial effect of sparseness pattern on bias in correlation estimates 

(F(2,2604) = 151, p<.0001, η
2
 = .10). Bias in item loadings depended on a number of 

interactions between factors. There were no factors predicting substantial bias in threshold 

estimates.  To understand these patterns, I refer to the summarized results for each condition and 

prior (Tables 9 and 10).  

 

 
Table 8. Results from meta-models fitted to raw bias of estimates using Bayesian 

estimation for moderate and concentrated priors 

 
Correlation (ψ12) Loading (λ) Threshold (ν) 

Factor (df) 
F 

(2604) 
p η

2
 

F 
(26091) 

p η
2
 

F 
(26091) 

p η
2
 

Pattern (2) 151.00 <.0001  .10 3587.38 <.0001 .22 0.40    .67 <.0001 

Prior (1)  17.58 <.0001  .001 658.99 <.0001 .03 1155.08  <.0001    .042 

Pattern* 

Prior (2) 
   5.88   .003  .005 1005.97 <.0001 .07 0.01    .99 <.0001 

Sparse Item (1)    5946.87 <.0001 .19 679.73 <.0001    .025 

Sparse Item 

*Prior (1) 
   2489.96 <.0001 .09 0.33    .568 <.0001 

Sparse Item 

*Pattern (1) 
   1225.89 <.0001 .05 617.45 <.0001    .02 

Note. η
2 

denotes partial η
2
. Denominator degrees of freedom shown below F in ( ). 

Pattern is distribution of sparse items across factors (none, 4/10, 8/10), and Sparse Item 

is an item-level effect for loadings or thresholds on sparse items. Meta-models include 

all solutions with effective sample size ≥ 100 for all parameters. 

 



 
 

Table 9. Recovery of population generating values using Bayesian estimation for baseline condition 

 Flat Prior (R=498) 

 True 
Mean  

Est 
Med  
Est 

SD 
Est 

Raw 
Bias RMSE MAD 

Min 
Est 

.05 Q 
Est 

.95 Q 
Est 

Max 
Est 

95% 
CI Sig 

ψ12 0.3 0.30 0.30 0.06 0.00 0.06 0.04  0.14  0.19 0.40 0.50 0.96 1.00 

λ 1.5 1.56 1.54 0.24 0.06 0.25 0.16  0.86  1.20 1.98 2.83 0.95 1.00 

ν 0 0.00 0.00 0.13 0.00 0.13 0.09 -0.43 -0.21 0.22 0.47 0.95 0.05 

 Moderate Prior (R=500) 

ψ12 0.3 0.30 0.30 0.06 0.00 0.06 0.04  0.14  0.19 0.40 0.50 0.96 1.00 

λ 1.5 1.56 1.54 0.24 0.06 0.25 0.16  0.86  1.19 1.98 2.81 0.95 1.00 

ν 0 0.00 0.00 0.13 0.00 0.13 0.09 -0.43 -0.21 0.22 0.48 0.95 0.05 

 Concentrated Prior (R=500) 

ψ12 0.3 0.30 0.30 0.06 0.00 0.06 0.04  0.14  0.19 0.40 0.50 0.96 1.00 

λ 1.5 1.55 1.54 0.24 0.05 0.24 0.16  0.85  1.19 1.96 2.76 0.95 1.00 

ν 0 0.00 0.00 0.13 0.00 0.13 0.09 -0.43 -0.21 0.22 0.47 0.95 0.05 

Note. Med is the median estimate, SD Est is the empirical standard deviation of the estimate, .05 Q and .95 Q are the 5
th

 and 95
th

 
quantile estimates, 95% CI is the confidence coverage for the 95% credible interval, and Sig is the proportion of significant estimates. 

  

5
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Table 10. Recovery of population generating values using Bayesian estimation with moderate and concentrated priors. 

 4/5; 0/5 Sparse, Moderate Prior (R=361) 

 True 
Mean  

Est 
Med  
Est 

 
SD 
Est 

Raw 
Bias RMSE MAD 

Min 
Est 

.05 Q 
Est 

.95 Q 
Est 

Max 
Est 

95% 
CI Sig 

ψ12 0.3  0.25  0.24 0.10 -0.05 0.11 0.06 -0.04  0.10 0.42   0.68 0.84 0.93 

λ 1.5  2.56  1.57 2.86  1.06 1.46 0.20  0.47  1.16   10.87 12.41 0.84 1.00 

λ SP 1.5  1.79  1.42 1.26  0.29 1.29 0.55 -2.26  0.35 4.58   6.85 0.86 0.90 

ν 0  0.00  0.00 0.21  0.00 0.18 0.10 -1.33 -0.28 0.27   1.42 0.95 0.05 

ν SP 4.9  5.65  4.90 1.97  0.75 2.10 0.62  3.38  3.95   10.32 13.83 0.88 1.00 

 4/5; 0/5 Sparse, Concentrated Prior (R=491) 

ψ12 0.3  0.26  0.26 0.09 -0.04 0.10 0.06  0.05  0.13 0.41 0.70 0.93 1.00 

λ 1.5  1.76  1.57 0.68  0.26 0.50 0.19  0.41  1.17 3.52 5.27 0.93 1.00 

λ SP 1.5  1.39  1.35 0.56 -0.11 0.57 0.38  0.22  0.55 2.39 3.41 0.95 1.00 

ν 0 -0.01  0.00 0.14 -0.01 0.14 0.09 -0.67 -0.24 0.22 0.52 0.95 0.05 

ν SP 4.9  4.91  4.79 0.71  0.01 0.71 0.44  3.39  3.99 6.26 7.94 0.96 1.00 

 4/5; 4/5 Sparse, Moderate Prior (R=292) 

ψ12 0.3  0.21  0.19 0.11 -0.09 0.14 0.07 -0.09  0.06  0.42   0.68 0.75 0.79 

λ 1.5  6.82  9.20 4.47  5.32 6.95 2.32  -10.96  0.86 11.83 12.64 0.51 0.99 

λ SP 1.5  1.79  1.44 1.26  0.29 1.29 0.59 -4.98  0.39  4.49   6.32 0.86 0.89 

ν 0  0.00 -0.01 0.42  0.00 0.42 0.17 -1.54 -0.77  0.66   1.44 0.93 0.07 

ν SP 4.9  5.66  4.93 1.94  0.76 2.08 0.68  3.36  3.92 10.23 14.22 0.87 1.00 

 4/5; 4/5 Sparse, Concentrated Prior (R=466) 

ψ12 0.3  0.24  0.23 0.10 -0.06 0.12 0.07  0.04  0.10 0.44 0.72 0.92 1.00 

λ 1.5  2.77  2.79 1.17  1.27 1.73 0.97  0.25  0.95 4.65 5.46 0.88 1.00 

λ SP 1.5  1.39  1.34 0.57 -0.11 0.58 0.40  0.19  0.54 2.42 3.25 0.95 1.00 

ν 0 -0.02 -0.01 0.20 -0.02 0.20 0.12 -0.67 -0.35 0.30 0.63 0.93 0.07 

ν SP 4.9  4.93  4.80 0.74  0.03 0.74 0.47  3.34  3.95 6.34 7.97 0.96 1.00 

Note. Med is the median estimate, SD Est is the empirical standard deviation of the estimate, .05 Q and .95 Q are the 5
th

 and 95
th

 
quantile estimates, 95% CI is the confidence coverage for the 95% credible interval, and Sig is the proportion of significant estimates. 

5
8
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Table 9 summarizes results for the baseline model with no sparse items, organized by 

prior specification. Results for conditions with sparse items are in Table 10. As in Study 1, 

results are grouped for item loadings and thresholds on items with 50/50 endorsement (λ, ν) and 

loadings and thresholds for sparse items (λ SP, ν SP). With no sparse items, there was no evidence 

of bias in any parameter under any of the three priors studied. Correlation estimates were 

downwardly biased when the models included sparse items, and this bias was more pronounced 

with more sparse items. For example, the mean correlation estimate was .26 and .24 (raw bias 

−.04 and −.06) with 4/10 and 8/10 items sparse, respectively, using concentrated priors.  

Factors predicting bias in item loadings included the number of sparse items in the 

model, prior specification, and whether the item loading was for a sparse item. The effect of 

number of sparse items differed by prior specification (F(2,2604) = 1005.97, p<.0001, η
2
 = .07), 

and the item-level effect of loading on a sparse item also depended on prior specification 

(F(1,2604) = 2489, p<.0001, η
2
 = .09). These effects are illustrated in Figure 5, where median 

estimates for item loadings are plotted for each prior, condition, and for loading on sparse 

(versus non-sparse) items. The median estimate is only negligibly biased in the condition with 

4/10 items sparse. With 8/10 items sparse, bias was substantial for the item loadings on non-

sparse items, especially using the moderate prior specification.  

 Altogether, estimates were more biased using the moderate prior specification than with 

the more concentrated priors. However, extreme estimates were uncommon. Considering the 

ranges for what were considered extreme estimates from Study 1, there were no threshold 

estimates outside of +/- 15; item loadings outside of +/- 8 were only observed using moderate 

priors with 4/5 items sparse on both factors.  
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Figure 5. Median estimates of depending on condition, prior, and whether item was sparse 

 

Figure 5. Median estimates for  for moderate (Mod) and concentrated (Conc) priors in 
conditions with differing numbers of sparse items and for items with sparse endorsement. The 

true value of  is 1.5 and marked on the y-axis. 
 
 

Efficiency 

 With no sparse items, parameter estimate efficiency as measured by RMSE and MAD 

was essentially the same using each prior specification; the efficiency of parameter estimates 

also closely matched efficiency using ML estimation for this baseline condition. As expected, in 

conditions with sparse items, RMSE and MAD were larger with more sparse items, but smaller 

with more concentrated priors. As an example of decreased efficiency with more sparse items, 

using moderate priors, RMSE was .11 with 4 sparse items on one factor and .14 with 4 sparse 

items on both factors (compared to .06 RMSE in the baseline condition). The substantial 

λ 
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difference observed in efficiency for moderate versus concentrated priors was partially related to 

bias and partially related to variance. In the high sparseness condition, RMSE for item loadings 

was 1.29 (sparse item) and 6.95 (non-sparse item) using moderate priors, compared to 0.58 

(sparse item) and 1.73 (non-sparse item) for concentrated priors.  

 Comparing efficiency of estimates across estimators, performance differed by parameter 

estimate. Figure 6 and Figure 7 compare MAD and RMSE in both sparseness conditions for each 

parameter using ML estimation and Bayesian estimation with a concentrated prior. For item 

loadings on non-sparse items, RMSE and MAD was higher using Bayesian estimation. For all 

other parameters, RMSE and MAD was higher using ML estimation or about equal. Note that 

different subsets of replications are included in this comparison, because the ML results are 

restricted to models that converged and Bayesian results are restricted to replications that met the 

minimum effective sample size for all parameters. Replications that did not converge using ML 

estimation were not the same replications with below threshold effective sample size using 

Bayesian estimation.  

Credible Interval Coverage 

 For the baseline condition, coverage was between 95-96% for all parameters and all 

priors; this aligns with the coverage observed using ML. Coverage fell below 90% for several 

parameters in the sparseness conditions using moderate priors, as low as 51% coverage for item 

loadings on the non-sparse items in the high sparseness condition, which was related to high bias 

for this parameter estimate. With concentrated priors, coverage rates were comparable to those 

observed for ML estimation for the same conditions: 93-96% versus 91-96% for Bayesian and 

ML estimation, respectively with 4/5 items sparse on a single factor; 88-96% versus 89-97% for 

Bayesian and ML estimation, respectively with 4/5 items sparse on both factors.  

 



 
 

Figure 6. MAD for ML and Bayesian estimation using concentrated priors for conditions with sparseness 
 

 

 
Figure 6. Median absolute deviation for parameter estimates using ML and Bayesian estimation with a concentrated prior 
specification. Results shown with 4/5 sparse items on one factor (Left) and with 4/5 sparse items on both factors (Right). Note that the 
results for ML estimation include only converged solutions and results for Bayesian estimation include solutions with above threshold 
effective sample size for all parameters, so the solution sets do not exactly overlap.  
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Figure 7. RMSE for ML and Bayesian estimation using concentrated priors for conditions with sparseness 
 
 

 

Figure 7. Note that the y-axes are different between plots, due to the extremely large discrepancy in RMSE values for each condition . 
Root-mean-square-error for parameter estimates using ML and Bayesian estimation with a concentrated prior specification. Results 
shown with 4/5 sparse items on one factor (Left) and with 4/5 sparse items on both factors (Right). Note that the results for ML 
estimation include only converged solutions and results for Bayesian estimation include solutions with above threshold effective 
sample size for all parameters, so the solution sets do not exactly overlap. 
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Empirical Power 

 Empirical power for different estimates is summarized in the last column of Table 9 and 

Table 10 for the baseline condition and conditions with sparse items. In the baseline condition, 

empirical power was 1.00 for true effects (correlation estimates and factor loadings) using all 

prior specifications. In the sparseness conditions, empirical power differed by prior specification. 

With concentrated priors, power to detect true effects was 1.00 for all parameters, matching 

empirical power in the baseline conditions. Using the moderate prior specification, empirical 

power differed by parameter, however in all cases empirical power was higher using Bayesian 

estimation than was observed for ML estimation. For example, power to detect the correlation 

between factors was 0.80 and 0.54 with 4/5 items sparse on one factor and two factors, 

respectively using ML estimation. This compares to 0.93 and 0.79 in the same conditions using 

Bayesian estimation (moderate priors).  

Summary of Study 2 Results 

 Taken together, the results showed that the use of priors in Bayesian estimation can 

stabilize estimates in GLFA models with sparse, categorical data. The use of a concentrated prior 

specification eliminated extreme parameter estimates, improved estimate efficiency, and 

increased empirical power to detect true effects. Results also suggest that Bayesian estimation 

can be a useful alternative when models do not converge using ML estimation, although more 

iterations of posterior sampling may be needed to ensure an adequate number of effective 

samples. The gains in efficiency and empirical power using Bayesian estimation were found to 

be dependent on prior specification, with concentrated priors offering substantial improvement 

over more diffuse priors. However, increased overall efficiency and empirical power were tied to 

a trade-off with overall unbiasedness. Bayesian estimation performs similarly to ML estimation 

in a baseline condition with a moderate sample size and high endorsement on all items. 
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CHAPTER 4: DISCUSSION 

 I have evaluated a method for improving GLFA estimation with sparse, categorical 

indicators. Prior information about typical parameter values in psychological research is utilized 

in a Bayesian framework to decrease variability in parameter estimates, eliminate extreme 

estimates, and improve empirical power to detect true effects. In the first simulation study, I 

evaluated the performance of ML estimation in a range of GLFA models with sparse indicators. 

In the second study, I evaluated Bayesian estimation in conditions where ML performs poorly 

and in a comparison condition where ML performs well. Next, I will discuss how the simulation 

results align with my hypotheses about the performance of ML and Bayesian estimation for 

models with sparse indicators and compare the two approaches. Subsequently I will discuss the 

unique contributions of the present work and summarize my recommendations for applied 

researchers. I will end by reviewing limitations of the present work and provide 

recommendations for future research. 

Performance of ML Estimation for Sparse Items 

Because previous research has suggested that categorical estimation methods break down 

under conditions of sparseness (e.g., Forero & Maydeu-Olivares, 2009; Rhemtulla et al., 2012; 

Wirth & Edwards, 2007), I hypothesized that as the extent and severity of sparse items increased, 

ML estimation would start to break down and fail to reliably produce converged, reasonable 

solutions. I also hypothesized that efficiency would decrease in conditions with sparseness. I 

discuss results for each factor varied in the simulations.  
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Item Loadings. I studied two levels of item loadings: 1.5 and 2.0. The impact of extreme 

thresholds varied by factor loading condition; with higher factor loadings the impact of extreme 

thresholds was minimized. Because marginal endorsement level and item loading are 

confounded (i.e., the same threshold yields different endorsement rates for different values of λ), 

this result is due in part to higher factor determinacy and in part to higher marginal endorsement 

rates. However, this general pattern of results is consistent with earlier work studying ML 

estimation for GLFA with categorical indicators in limited samples (Forero & Maydeu-Olivares, 

2009; Moshagen & Musch, 2014). These results are also consistent with research for GLFA 

models with continuous indicators (Gagné & Hancock, 2006; Marsh et al., 1998), which shows 

that stronger factor loadings improve the quality of solutions in finite samples, in terms of 

convergence and parameter estimate efficiency.  

Item Thresholds. The two levels of item thresholds I examined were ν=3.85 and ν=4.90, 

corresponding to expected frequencies of 25 and 10 when λ =1.5 and 37.5 and 17.5 when λ=2.0 

for the moderate sample size of 500. Sparseness had very little effect on bias in parameter 

estimates using ML estimation. Under the conditions studied, ML estimation converged in a high 

proportion of replications, and convergence never fell below 90%. However, as expected, 

sparseness led to suspiciously large parameter estimates in a substantial proportion of 

replications. Effects of sparseness were minimal with ν=3.85, but substantial with ν=4.90 on a 

high proportion of items on a single factor or on both factors. Moshagen and Musch (2014) also 

reported suspicious ML estimates despite high convergence rates, and the present results support 

their finding that achieving convergence to proper ML solutions does not necessarily indicate 

that results are trustworthy. Besides decreased efficiency and the presence of extreme parameter 

estimates, empirical power to detect true effects decreased in conditions with substantial 

sparseness, especially with ν=4.90 or a lower item loading. 
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Considering the broader literature on GLFA models, the issue of very low endorsement 

for categorical items is analogous to continuous items with very low variance. Continuous items 

with low variance can cause estimation problems related to empirical under-identification 

(Bentler & Chou, 1987; Rindskopf, 1984). With item variances near zero, there is too little 

information available to perform estimation. While this research is not intended to identify exact 

frequencies or marginal probabilities where sparseness becomes an issue, the general principle is 

that sparse endorsement can lead to items with insufficient information to perform ML 

estimation. I note that ML estimation performed reasonably well in more mild sparseness 

conditions for the models studied. However, smaller sample size, lower item loadings, fewer 

items per factor, and increased model complexity would all be expected to worsen the 

performance of ML (Forero & Maydeu-Olivares, 2009; Gagné & Hancock, 2006; Marsh et al., 

1998; Moshagen & Musch, 2014).  

This study does not unambiguously disentangle the relationship between sample size, 

endorsement rates, and endorsement frequency, because sample size was held constant 

throughout the simulation. However, it is clear that frequencies play a more important role than 

endorsement rates; a 5% probability of endorsement with N=100 will be more problematic than 

5% probability of endorsement with N=500. 

Patterns of sparseness. I studied the effects of sparseness in models with three patterns 

of sparseness: 2/5 items sparse on both factors, 4/5 items sparse on only one factor, and 4/5 items 

sparse on both factors. Just as the impact of sparseness was more pronounced with a higher 

threshold (ν=3.85 versus ν=4.9), the impact of sparseness was also dependent on the pattern of 

sparse items. The presence of extreme values and parameter estimate efficiency worsened with a 

high proportion of sparse items on one or both factors. As with the level of sparseness, the effect 

of the number of sparse items will also depend on the overall determinacy of the model; fewer 
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sparse items may be problematic with a smaller sample, lower factor loadings, and based on the 

other relevant factors identified (e.g. Forero & Maydeu-Olivares, 2009; Gagné & Hancock, 

2006). 

Empirical power was lower in models with a majority of sparse items on one or both 

factors. In these models item loadings, thresholds for sparse items, and the correlation between 

factors were substantial, true effects. Of these, item loadings and the correlation between factors 

are particularly meaningful in practice. For models with a high number of sparse items, empirical 

power to detect significant item loadings for both sparse and non-sparse items was low. Non-

significant factor loadings for indicators of a latent construct would be very troubling in practice; 

these items would typically be removed (e.g., Kline, 1994).  Power to detect a significant 

correlation between factors or significant factor loadings also fell to about .50 in the most severe 

conditions studied. Decreased power was a result of the large increase of variability in the 

estimates and associated increase in standard errors for ML estimation of models with sparse 

indicators.  

In sum, the general pattern of results in the first simulation was consistent with analytic 

theory and my hypotheses that ML solutions would perform poorly in conditions characterized 

by high sparseness, in terms of probability of endorsement and number of sparse items, even 

with a moderately large sample size and reasonably high item loadings.  

Comparing Bayesian Estimation to ML for Sparse Items 

In this study I examined Bayesian estimation as an alternative to ML estimation for 

GLFA models with sparse categorical indicators. First, I compared Bayesian and ML estimation 

for GLFA models with no sparse items. Second, I compared Bayesian estimation to ML 

estimation in two conditions where ML estimation failed. 
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Baseline Comparison. Results from the second simulation study also supported my 

hypotheses that Bayesian estimation would perform as well as ML estimation in baseline 

conditions where ML performs well. In a baseline comparison condition the performance of 

Bayesian estimation matched ML estimation using a variety of prior specifications. These 

findings are consistent with theory that Bayesian estimation and ML estimation are generally 

equivalent using flat priors, and also that prior information is inconsequential given sufficient 

information in the data (Gelman et al., 2013). These findings also demonstrate that there should 

be no disadvantage to choosing Bayesian estimation over ML for GLFA models, even if 

sparseness is not an issue. Although not studied here, Bayesian estimation may also be useful as 

an alternative estimator to ML for high-dimensional models and for assessing model fit (Béguin 

& Glas, 2001; Edwards, 2010).  

Comparison with Sparse Items. Results comparing Bayesian and ML estimation in two 

conditions where ML estimation was poor showed that Bayesian estimation could provide 

improved efficiency and empirical power and eliminate extreme estimates; however this 

performance was dependent on a reasonably concentrated prior and resulted in an increase in 

bias for some parameters. I did not expect Bayesian estimation to lead to such high bias using a 

moderate prior specification. The moderate prior (i.e. ( ) ~  (0, , 10)i i N     ) aided posterior 

simulation with sparse indicators in terms of sampling (compared to flat priors); however the 

prior information was not enough to limit relatively extreme estimates in the posterior 

distribution. The concentrated priors specifying high probability that item intercepts and loadings 

were less than 7 in magnitude, loadings were positive, and the correlation between factors was 

positive, contained a sufficient amount of information to limit extreme estimates.  

The bias in some parameter estimates resulting from Bayesian estimation had a notable 

pattern. With concentrated priors, the correlation estimate was underestimated, loadings for items 
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that were not sparse were overestimated, and factor loadings for items that were sparse were 

slightly underestimated. This pattern attributes relatively higher weight to non-sparse items; it is 

also interesting because ML estimation was more likely to yield extreme estimates (loadings and 

thresholds) for sparse items. In Bayesian estimation, less emphasis is based on unbiasedness and 

more emphasis is based on variance (Gelman et al., 2013, Ch. 4.5). Despite the tradeoff in bias, 

the overall efficiency of these parameter estimates, empirical power, and absence of extreme 

values were all an improvement over ML estimation.  

Posterior simulation was reasonably fast using at least moderately concentrated priors. 

Flat priors were problematic for posterior simulation in the conditions with high sparseness; this 

is not surprising because the likelihood in these conditions is not well-behaved (as we saw for 

ML estimation of these conditions) and posterior simulation using Bayesian estimation without 

any restriction on the prior distribution is computationally challenging. Note that because the 

simulation design drew from a population distribution with fixed values, the simulation was 

actually set up to be more consistent for a traditional estimation approach than a Bayesian 

approach. The fact that Bayesian estimation performed well despite the simulation design being 

more consistent with traditional methods demonstrates the satisfactory performance of Bayesian 

estimation even in theoretically sub-optimal conditions. 

Unique Contribution 

Sparse items commonly arise in psychological research due to limited sample sizes and 

rare behaviors such as substance use. Previous research has suggested that ML is the best 

estimation method available for GLFA estimation with sparse items (Forero & Maydeu-Olivarez, 

2009), but that the ML estimation may fail under conditions of sparseness (Forero & Maydeu-

Olivarez, 2009; Moshagen & Musch, 2013). This previous work was suggestive of the effects of 

sparseness, but the effects of sparseness in these studies were confounded by low item loadings 
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and few indicators per factor. To my knowledge, no previous studies have directly studied the 

effects of sparseness for ML estimation in well-determined GLFA models. 

In this study I found that in properly-specified, well-determined models, moderate 

sparseness had a small impact. More pronounced sparseness on a larger proportion of items, 

especially with lower factor loadings, led to problems using ML. These findings add to the prior 

literature (Forero & Maydeu-Olivarez, 2009; Moshagen & Musch, 2013, Wirth & Edwards, 

2007) that using currently available estimation methods, some models cannot be reliably tested 

using currently available estimation methods. This means that researchers may be forced to drop 

sparse items and that some research questions involving sparse items cannot be asked using 

currently available methods. Forero and Maydeu-Olivarez (2009) suggested that “future research 

should investigate if new estimators are able to yield adequate results in these conditions”. 

Bayesian estimation for GLFA models has been demonstrated previously (Albert & Chib, 

1993; Béguin & Glas, 2001; Edwards, 2010; Patz & Junker, 1999, Song & Lee, 2002, 2012; Lee 

& Tang, 2006). My work here builds on the prior research in three ways. First, this study is the 

first to study Bayesian estimation for GLFA models with sparse indicators. Previous studies have 

motivated the use of Bayesian estimation for reasons such as estimating high-dimensional 

models (Edwards, 2010) or for advantages for testing hypotheses related to fit (Béguin & Glas, 

2001). Second, previous research using Bayesian estimation for GLFA models used relatively 

flat prior distributions and did not incorporate prior information to stabilize parameter estimates 

as I do here. Béguin & Glas (2001) examine different prior distributions as a sensitivity analysis, 

and Edwards (2010) incorporated minimal prior information to aid convergence, but my study is 

the first to utilize prior information about the expected range for parameter estimates in 

psychology to stabilize estimates for MCMC. Third, previous research disseminating Bayesian 

estimation of GLFA models used a combination of Gibbs and Metropolis-Hastings MCMC 
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algorithms that were difficult to implement, requiring implementation using custom 

programming (e.g. Edwards, 2010, Patz & Junker, 1999) and offered less flexibility for prior 

specification. I demonstrate Bayesian estimation using Stan (Stan Development Team, 2015), 

which offers fast and efficient computation as well as flexible prior and model specification. 

In my study, I found that using prior information for Bayesian estimation of GLFA 

models with sparse indicators helped stabilize estimates and improve power compared to ML. 

This provides a new tool for researchers to address the limitations of currently available 

estimation methods for a challenging problem that often arises in psychological research.  

Recommendations for Applied Researchers 

Bayesian estimation of GLFA models as I demonstrate here requires introductory 

knowledge of Bayesian statistics and careful oversight to ensure that sampling is done correctly. 

It is difficult to imagine using Bayesian estimation for these models without this oversight and 

introductory knowledge. There are many helpful resources available specifically for Bayesian 

analysis using Stan (e.g., Stan Development Team, 2015; Gelman et al., 2013), which also 

includes an active online users group.  

Before constructing models and choosing an estimator, I recommend examining item-

level frequencies for sparseness. For well-determined models in moderate to large samples with 

moderate sparseness, it may not be necessary to take a Bayesian approach. However my results 

and previous research suggest that Bayesian estimation should not give results inferior to ML 

estimation, if done correctly. If sparseness is not an issue, results should be comparable using 

either estimator. However if a research question requires modeling sparse data, a Bayesian 

estimation approach can be useful to stabilize estimates and increase statistical power by 

incorporating prior information. For some research questions (e.g. illicit drug use, early alcohol 

use), investing the time and effort to take a Bayesian estimation approach may maximize a 
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researcher’s ability to draw inferences from data that is exceedingly difficult to collect. In 

practice it may be difficult to determine if ML estimates are “untrustworthy” – since extreme 

estimates may appear in converged solutions. However, if ML estimates appear unreasonable, 

this suggests that the researcher has prior information about parameter estimates (deeming 

estimates unreasonable requires knowledge about what is reasonable), which could be 

incorporated into a Bayesian specification.  

My results show that a Bayesian approach will be most helpful if adequate prior 

information is incorporated. This can include the expected direction of factor loadings, 

correlations between factors, and ranges of parameter estimates. The concentrated prior I suggest 

here I believe is reasonable for a variety of applications, but ultimately this choice will depend 

on knowledge of the content area. Bayesian estimation with flat priors will offer no benefit over 

ML estimation for GLFA models with sparse data.  

Applied researchers should also be aware of difficulties in MCMC estimation. 

Specifically, sign indeterminacy is an issue for the scaling I demonstrate here if prior information 

does not restrict the sign of the latent factors, and posterior inference required post-processing 

the solutions to an interpretable solution. It is important to monitor convergence diagnostics 

including plots, and statistics such as the effective sample size and potential scale reduction 

factor. The method of Bayesian estimation I demonstrate here can be adapted for many different 

models within the GLFA family with different types of indicators, numbers of items or factors, 

and by incorporating predictors, and could also be extended to more comprehensive structural 

equation models.  

Limitations and Future Directions 

 As in any line of enquiry, the present work answers some questions while also raising 

new ones. There are several remaining questions to be addressed by future research.  
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 Most notably, the models considered here were correctly specified. It is important to 

investigate if the use of priors to stabilize estimates could also have the unintended consequence 

of masking model misspecification. Related to this, an important line of research will be to 

investigate the utility of Bayesian methods for assessing model fit (e.g. posterior predictive 

checks, Bayesian model selection) in these models. Currently, methods for assessing model fit 

using ML estimation are limited. Limited-information methods for estimation provide tests for 

model fit, but are less appropriate for modeling sparse data (Wirth & Edwards, 2007; Rhemtulla 

et al., 2012).  

 In the simulation studies here, I studied a very small subset of all possible conditions. It is 

possible to predict how these results would extend to many different conditions based on theory. 

For example, with smaller factor loadings or fewer items, ML estimation would be expected to 

perform worse, and the benefit of Bayesian estimation may be greater, however this would still 

depend on the incorporation of sufficient prior information. I did not study different overall 

sample sizes, however I predict that the performance found here is tied in large part to the 

frequencies for sparse items rather than overall sample size. Extending these results to 

polytomous items with more response categories raises a number of interesting issues. 

Polytomous items contain more information than binary items; however they require estimating 

additional thresholds and the potential for varied mechanisms and patterns of sparseness raises 

additional complexity. Despite these unanswered questions, the present work is a unique 

contribution, providing an alternative to improve estimation for models with sparse endorsement. 
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APPENDIX A. EXAMPLE MPLUS PROGRAM FOR GLFA 

 

DATA: FILE IS data1.dat; 

VARIABLE: NAMES ARE dep1-dep5 drug1-drug5; 

categorical = dep1-dep5 drug1-drug5; 

 

model: 

[dep1$1*0]; 

[dep2$1*0]; 

[dep3$1*0]; 

[dep4$1*0]; 

[dep5$1*0]; 

 

[drug1$1*0]; 

[drug2$1*0]; 

[drug3$1*0]; 

[drug4$1*0]; 

[drug5$1*0]; 

 

dep by dep1* dep2* dep3* dep4* dep5*; 

dep@1; 

[dep@0]; 

drug by drug1* drug2* drug3* drug4* drug5*; 

drug@1; 

[drug@0]; 

dep with drug; 

 

analysis:  

estimator=ml; 
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APPENDIX B. STAN PROGRAM FOR GLFA – CONCENTRATED PRIORS 

 

# 2-factor GLFA for binary items 

data { 

  int<lower=0> N;  // number of ppl 

  int<lower=0> K;  // number of items 

  int y[N,K];      // Y matrix of P items for N ppl 

   

} 

transformed data { 

  vector[2] mu; 

  for (i in 1:2) mu[i] <- 0; 

} 

parameters { 

  vector[2] eta[N];  // eta for each person 

  real nu[K];        // int for item k 

  real <lower=0> lambda[K];    // loading item k 

  real <lower=0, upper=1> cov; 

} 

transformed parameters { 

matrix[2,2] sigma; 

sigma[1,1]<-1;      sigma[1,2]<-cov; 

sigma[2,1]<-cov;    sigma[2,2]<-1; 

} 

model { 

  nu~ normal(0,3.57); 

  lambda~normal(0,3.57); 

  eta ~ multi_normal(mu,sigma); 

  for (n in 1:N){ 

    for (k in 1:5){ 

      y[n,k]~ bernoulli_logit(-nu[k]+lambda[k]*eta[n,1]); 

              } 

    for (k in 6:K){ 

      y[n,k]~ bernoulli_logit(-nu[k]+lambda[k]*eta[n,2]); 

              } 

    } 

 } 
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