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Abstract—World knowledge (assertions such as “you can slice an apple”) is useful in a variety of 
applications ranging from annotating video segments to generating motion plans for robots. While 
people generally already have this kind of knowledge, giving a machine this insight is a challenging 
problem. However, with the growth of the internet, there has been an increasing amount of data to 
learn from; people post more pictures and write more text every day. From these, one relatively 
untapped source of data lies in the domain of cooking, in the form of cooking recipes. As 
instructional texts, recipes hold information about states of objects and what changes they undergo 
to reach a goal, and thus present an opportunity to learn world knowledge for applications in 
automatic illustrations and video annotation. I will present a method to try and extract this 
information from these data.  

I.   INTRODUCTION 
With the growth of the internet, there has been an increasing amount of data to learn world 

knowledge from; people post more pictures and write more text every day. This is a great boon 
to the major problems in computer vision, like object classification, in that there exists more data 
for training state-of-the-art models. Specifically, the problem of object classification is this: 
given a set of images and labels, assign the correct labels to the correct images. Ultimately, this 
task is also a problem for language and the natural language processing community. Pictures are 
grounded in and described with words, so the two fields are naturally intertwined. 

State of the art methods do fairly well in solving this problem [9]; that is, given the main 
benchmark, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [19], which uses 
over a million images across a thousand different labels. 

The ILSVRC spans common categories such as cat and dog. However, what if we want to 
learn about more specific image categories? Or categories that have yet to be seen? These state-
of-the-art models only classify between a fixed number of categories (the thousand categories 
from the ImageNet Large Scale Visual Recognition challenge.) One example of such categories 
are transition states of objects, like how an “apple” can become a “sliced apple” (example images 
shown in Figure 1.) Where can we find information about these categories? 

From the available sources of data, there exist large databases of objects and their hierarchical 
and taxonomical relations to categories [16]. While they are expansive in the range of categories 
that they cover, they are ultimately expensive to create and maintain since they are crafted by 
hand. There are also objects which fit into categories that we don’t know about, so, we would 
like to look into an alternate source of data for learning. 
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One relatively untapped source of data on the web lies in the domain of cooking. Textual 
recipes are hosted on a wide range of sites, and the web is full of images of different meals and 
what goes into them. Furthermore, as instructional texts, recipes hold information about states of 
objects and what changes they undergo to reach a goal. We can denote these states as newly 
learned categories. 

There are two obvious applications that stem from the connection between learning the 
knowledge graph, and classifying images of those states. One is the ability to automatically 
illustrate a given text-only recipe. That is, being able to assign a semantically corresponding 
image to each step of a recipe. The other application goes in the other direction; that is, given a 
video (or a set of images) of a recipe being followed, annotate the frames in a way that also 
matches the composition semantically. Both may be useful in terms of helping people cook, but 
their real value lies in the insight we gain for instructional texts, which have further applications 
in fields such as robotics. 

I will present a method to try and extract the necessary knowledge graphs from online data, as 
well as a way to classify images based on them.  

 

II.   BACKGROUND AND RELATED WORK 
There exist several databases containing knowledge of the world, its structures, and different 

taxonomies, such as WordNet [16] and ImageNet [8]. WordNet specifically contains entries of 
words and their definitions, as well as a compilation of each words’ hypernyms and hyponyms 
(i.e. parents and children respectively for is-a relationships.) WordNet also includes sets of word 
synonyms, which are referred to as synsets. ImageNet is a database of over 14M images, which 
span over several different categories. ImageNet also uses the synsets from WordNet as 
categories with which to classify their images, and has over 20K synsets indexed. 

While these databases are expansive and contain a wide range of valuable information, they 
are expensive to create, as they are crafted by hand, and also do not contain much information on 
our categories of interest: transition states.  

There have also been attempts to create knowledge bases that learn automatically, like the 
Never Ending Image Learner [7] and the Never Ending Language Learner [6]. These databases 
generally learn set relations of objects similar to those found in the earlier WordNet and 
ImageNet (is-a and has-a relationships.) Example knowledge might be “cars have wheels”, or 
“apples are fruit”. However, there are few (if any) which attempt to portray the different states 
that an object can take, which is what our work focuses on. 

Figure 1. Two example images of different ingredient states (left: "apple", right: "sliced apple", 
"slices") 
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In terms of instructional tasks in general, there exist several studies on generating plans from 
natural language input [2, 5, 12]. In the space of learning from cooking recipes, one approach 
uses text only recipes to construct an action graph of the recipe [10]. Their method uses a 
Bayesian (i.e. probabilistic) approach, and their action graph depicts what actions should be 
performed on what ingredients in sequence. [17] also looks at a similar style of action graph, but 
looks specifically to recipes in Japanese. Our method is different from these in that our focus is 
on the different states of objects, instead of the actions that change them.  

There has also been work in looking at cooking videos with accompanying recipe texts [13, 
14]. While they achieve the task of auto-illustrating recipes with images, their task is mainly that 
of alignment; they work on the assumptions that each source of images is directly connected with 
a recipe, and further, they use the speech in the video for aligning the recipe steps with video 
frames. 

There exist image and video based datasets specifically in the cooking domain, such as [18] 
and [4]. The first is a collection of videos of people performing basic cooking actions, and the 
second is a collection of images for different types of dishes. However, both have a different 
focus from our approach; that is, actions of people and specific dishes versus the states that 
ingredients go through. 

Lastly, understanding of instructional texts also have numerous applications, especially in the 
field of robotics. In the cooking domain, [3] demonstrates a robot which completes a baking task. 

 

III.   METHOD 
The following method can be divided into two main segments, one for dealing with the 

language in the textual recipes, and the other for the images of ingredient states. Each of those 
can be broken further into data collection and analysis. I will detail each of those in the following 
sections. 

 

A.   Data Collection (Recipes) 
Towards learning about all kinds of recipes and ingredients, we first want to collect text-based 

recipes. Specifically, we look at recipes which have at least one ingredient from a predetermined 
list of basic food items, like apple or tomato. We look on recipe.com and query for each 
ingredient, and scrape at most the top 500 recipes (to keep recipes which are unrelated to the 
query out of our collection), discounting repeat recipes. For 21 ingredients, this gives us over 
6,000 recipes. 

At first, we intended to find recipes which also include pictures of the instructions at each step. 
However, at the time of writing, there just aren’t that many cooking sites or blogs which post 
these kinds of recipes. Despite this, we also attempt to collect these recipes. We collect about 
1,000 recipes from two sites (kayotic.nl and visualrecipes.com), with about 14,000 step-by-step 
images. 
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B.   Recipe Parsing (Creating knowledge graphs) 
In looking at the recipe texts, we would like to extract objects, their different states, and the 

actions which move these objects through their states. Ultimately, our goal is to create a graph 
𝐺 = 𝐸, 𝑉  in which the vertices 𝑉 denote the states of each ingredient, and the edges 𝐸 denote 
the actions used to take objects from one state to another. To this end, we use the Stanford NLP 
pipeline [15] to do part-of-speech (POS) tagging as well as constituency and dependency parses 
on the 7K recipes. We first separate each recipe into their corresponding “Ingredients” and 
“Instructions” sections. We look at each sentence in the “Instructions” section as being a separate 
step in the instructional process, and run the pipeline on these sentences.  

 

Figure 3. A rough sketch of a knowledge graph for one ingredient.  

Figure 2. A sample of "apple" recipes from recipe.com  
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POS tagging returns, for each word, a certain POS (e.g. noun, verb, adjective, etc.) 

Constituency parses give us which words are grouped together in phrases, and which phrases are 
grouped together to make trees (e.g. “dog ran” as a verb phrase.) The dependency parses give us 
additional information on certain dependencies between pairs of words, where the most 
interesting relation to us is being a “direct object”. Out of these NLP tasks, we cannot be certain 
of their overall accuracy, as the model we use with the Stanford parser is trained on newswire 
text, which is not very representative of recipe texts.  

Ultimately, what we want to do is parse these sentences into “micro” steps, that is, steps which 
contain the smallest semantic increment in the whole instruction. Each micro-step should contain 
some action, along with the objects it acts on. From the micro-steps, we can create a graph of 
actions between object states. To do this, we first look for sentences that don’t have verbs, and 
toss them out, since we want steps with actions. Then, we look for the verb phrases in the 
remaining sentences; if we have a sentence with a conjunction (e.g. and), with a verb phrase as 
its parent, we split that sentence at the conjunction to make two smaller steps, since we want the 
smallest semantic increments. 

From our steps, we create a knowledge graph by following the chain of objects and actions that 
are acted upon them. First, we know that the states of the objects in the ingredient list must be 
states (by virtue of starting with them) and that they must be described “decently” to be starting 
states (for clarity of the recipe.) We then look for these states in the parsed micro-steps, and link 
each by the corresponding action in the micro-step. 
 

Figure 3. An example syntactic tree for the verb phrase "slice the apple". Constituency parses return 
groupings such as VP and NP. Visualization generated on < http://mshang.ca/syntree/>.  

Figure 4. An example dependency parse for the phrase "cut the apple into slices". In this case, we find 
that "apple" is the direct object of the verb "cut".  
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C.   Data Collection (Images) 
In terms of the visual representation of our model, we also collect images to describe the 

objects that we are learning about. 
To start, we collect images of base ingredients (e.g. “apple”, not “sliced apple”) from 

ImageNet. We retrieve the labels from the collected 7K set of recipes by looking at nouns and 
noun phrases. Specifically, for the base ingredients, we look only at the nouns (since bases 
should not use any modifying attributes.) We then use WordNet to determine if these nouns are 
“food”, by looking up the hypernym tree of each word and finding the “food” synset. We start 
with 180 different categories, and across these, we collect over 110K images. 

We plan to collect images for all classes of nouns and noun phrases found in the original 7K 
set, as well as determine which of these classes are not feasible for the task at hand (if the 
queried result images have little to no correspondence to the actual query.) 
 

D.   Image Classification 
From this, we would like to train a visual model to classify based on our labels. There are 

several methods to do this, but more recently people have had success with deep learning 
approaches [9]. We can also use models that have been pre-trained for ILSVRC as a starting 
point. This allows us to reuse some of their already-learned lower level features, and speed up 
the training. In particular, we look at the GoogLeNet Inception model [20], shown in Figure 6, as 
it is easier to implement with the deep learning framework we are working with (specifically, 
TensorFlow [1].) 

We fine-tune the Inception model to classify between the categories given by the nouns and 
noun phrases. Later, we may like to try a hierarchical approach to the classification; first, by 
classifying between the simple ingredients, then, on each of those subclasses, classifying 
between states (chopped, sliced, etc.) 

From the visual model, we can align the states in the knowledge graph with the classifications, 
such that we can parse a new recipe text and annotate each micro-step with a series of images. 

Figure 5. The architecture of the GoogLeNet Inception model.  From <http://www.gageet.com/wp-
content/uploads/2014/09/googlenet.jpg>  
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IV.   RESULTS AND DISCUSSION 
In terms of the knowledge graph, we get mixed results. As an example, let’s look specifically 

at the “apple” class of categories. Figure 1 shows some of the sample states that we find while 
parsing the “apple” recipes. We find states which we expect, such as “slices” and “chopped”, but 
we also find weird states that don’t seem to fit the schema, like “apple cinnamon flavored 
yogurt” and “place the apple in”.  

Errors like the first are a result of looking at any and all NPs that are related to the original 
“apple”, and may be trimmed by incorporating a maximum depth for the syntactic tree of each 
NP (i.e. by cutting off certain prepositional phrases.) Errors like the second are due to the 
inaccuracy of the StanfordNLP parser. This is because the models we use with the parser are 
trained on newswire text (e.g. CoNLL), whereas the evaluated text here are recipes. The text 
between news and recipes are ultimately very different; in recipes, sentences are often fragments 
and objects are often left unpronounced. 

For the image classification, we refer to preliminary results on training a classifier across 180 
categories of “base” ingredients (i.e. ingredients in their whole states.) We find that the Top-1 
error (with respect to classifying the image as the most probable class) from evaluation on these 
images to be 49.3%. While most classification papers present their Top-5 error as the standard 
metric by which to measure accuracy, we believe that the Top-1 error in this scenario is the most 
important, since the domain is restricted to a subset of the space of existing “objects”, and a 
slight change in ingredients can ruin an entire dish (e.g. a cherry looks like a tomato at a different 
scale, but most certainly does not taste like a tomato.) 

In terms of comparison, we actually do not do very well with respect to the other state-of-the-
art methods. Other methods achieve around 30-40% Top-1 errors [9]. Figure 7 shows some of 
the images which we misclassify.  
 
 

Figure 7. Examples of misclassified images. Left: most probable "banana", expected “apple”; right: most 
probable: "celery", expected “apple” 
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V.   FUTURE WORK 
I plan to extend this work by looking at videos as a source of data, and expanding on the 

complexity of our language analysis. The methods used will be mostly similar to those 
previously mentioned, however, using video frames in addition to images. I am currently not 
working with video due to time constraints, but there are several gains to be made in using them. 
For example, videos contain images of mixtures of ingredients that are harder to find in online 
queries. 

Furthermore, videos contain images of actions being performed on ingredients, whereas 
elsewhere on the web, it is harder to find ingredients in these “middle states”. As for language, I 
will look into quantifying phrases (i.e. phrases which specify how much of an ingredient to use), 
since quantities shown in video should be more precise. 

It will also benefit us to take our method outside of the cooking domain; generic “how-to” 
guides seem to be a valuable place to start, as most “how-to” content is user generated, and spans 
a wide range of topics (e.g. how to build a table.) Examples of this data can be found on websites 
like instructables.com.  

 

VI.   CONCLUSION 
Natural language understanding is a highly challenging problem, and there is still much left to 

be done. We show that cooking recipes can be parsed for information of transitional states of 
ingredients, which can be used for further image classification. We also show some challenges in 
developing an end-to-end framework for parsing and illustrating recipes. 
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