Asymptotic Likelihood-Based Prediction Functions

Thomas F. Cooley; William R. Parke
Econometrica, Vol. 58, No. 5. (Sep., 1990), pp. 1215-1234.

Stable URL:
http:/links.jstor.org/sici ?sici=0012-9682%28199009%2958%3A 5%3C1215%3AA L PF%3E2.0.CO%3B2-T

Econometrica is currently published by The Econometric Society.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal s'econosoc.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Dec 19 15:36:19 2006


http://links.jstor.org/sici?sici=0012-9682%28199009%2958%3A5%3C1215%3AALPF%3E2.0.CO%3B2-T
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/econosoc.html

Econometrica, Vol. 58, No. 5 (September, 1990), 1215-1234

ASYMPTOTIC LIKELIHOOD-BASED PREDICTION FUNCTIONS

By THoMaAs F. CooLEY AND WiLLIAM R. PARKE!

This paper develops asymptotic prediction functions that approximate the shape of the
density of future observations and correct for parameter uncertainty. The functions are
based on extensions to a definition of predictive likelihood originally suggested by
Lauritzen and Hinkley. The prediction function is shown to possess efficiency properties
based on the Kullback-Leibler measure of information loss. Examples of the application
of the prediction function and the derivation of relative efficiency are shown for linear-
normal models, nonnormal models, and ARCH models.

Kevyworbps: Prediction, predictive likelihood, predictive efficiency, nonnormal errors,
ARCH models.

1. INTRODUCTION

ALTHOUGH PREDICTION is often a primary goal of econometric research, prob-
lems of predictive inference have received relatively little attention in the
literature. A glance at any econometrics text reveals only a few pages devoted to
problems of prediction, the major concern being with problems of parametric
estimation and inference. This neglect may stem from the fact that no one
frequentist technique is accepted as universally appropriate for predictive
inference. In practice the prediction problem is approached by a diverse
collection of techniques whose properties are not always well understood.
Recent papers by Fair (1980) and Brown and Mariano (1983, 1984, 1985) have
furthered understanding of some common procedures for generating predic-
tions, but a unified basis for evaluating them is still missing. The Bayesian
viewpoint provides a consistent theory of prediction but implementation in
complex problems is often difficult. Our objective in this paper is to suggest a
class of likelihood based prediction functions that is widely applicable. The
likelihood concept proposed has the advantage that it puts predictive inference
on a consistent footing, a role similar to that played by the likelihood principle
of estimation. The use of a formal definition of predictive likelihood also
provides a reference point for the interpretation of existing approaches to
prediction.

The properties of commonly used prediction methods have been studied in a
number of papers that try to rationalize their performance in the context of
models with well defined characteristics. Bianchi & Calzolari (1980) and Fair
(1980) among others have studied the behavior of Monte Carlo predictors of
various sorts to ascertain the contribution of different sources of uncertainty to
prediction error. In a series of papers Mariano and Brown have compared the
asymptotic properties of deterministic predictors, which replace structural dis-
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turbances by their expected values, with stochastic predictors based on drawings
of the disturbances. The latter include straightforward Monte Carlo predictors
as well as stochastic predictors based on the use of sample period residuals.

The approach taken in the current paper is in the same spirit as the research
just cited. We emphasize accounting for the uncertainty due to stochastic
disturbances and, particularly, the uncertainty due to the use of estimated
parameters. In contrast to earlier research, however, we emphasize obtaining
analytic prediction functions that approximate the entire distribution of future
observations rather than focusing on the bias properties of alternative point
predictors. We do this because many interesting econometric prediction prob-
lems are characterized by predictive distributions that are nonnormal, and,
hence, not well characterized by the mean and variance alone. Prediction
functions that approximate well the distribution of future observations will be
important for obtaining accurate confidence intervals or probability statements
about predictions.

The basis for our approach to prediction functions is a definition of likelihood
due originally to Lauritzen (1974) and Hinkley (1979). Their definition has been
applied by Butler (1986) and Cooley, Parke, and Chib (1989). In this paper we
extend the Lauritzen-Hinkley definition in a way that permits direct application
to more complex econometric problems. We also introduce the concepts of
predictive consistency and first and second order predictive efficiency. These are
shown to be necessary to discriminate among alternative prediction functions.

In the next section we review the prediction problem and the most commonly
used predictors. The Lauritzen-Hinkley definition of predictive likelihood is
presented. Our asymptotic likelihood prediction function is presented in Section
3 and the relationship to mean-squared error prediction functions is discussed.
We introduce definitions of predictive consistency and efficiency based on the
Kullback-Leibler information measure in Section 4. Section 5 extends the
definition to cover the use of consistent, but possibly inefficient parameter
estimates. Finally, in Section 6, the usefulness of our prediction function is
illustrated in the context of regression models with nonnormal disturbances and
autoregressive conditional heteroskedasticity (ARCH) models.

2. PREDICTION FUNCTIONS

Suppose interest centers on predictions of a random variable y; defined over
the space Y. The m data period observations (y,:¢t=1,...,m) are denoted by
y;. The n future period observations that we wish to predict, (y,:t=
m+1,...,m +n), are denoted by y,. The most informative possible statement
about the future is the density f(y/8), where 8 is a vector of true parameters
contained in a parameter space @. Knowledge of f(y;/6) permits one to make a
variety of point forecasts (mean, median, or mode) and to construct confidence
regions for predictions. Because 8 is unknown, practical prediction procedures
most often generate point estimates of y, based on point estimates of § and in
some cases attempt to estimate the second moment of y;.
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We suppose that the model generating realizations of y, can be represented
as

.Vf=g(xfa uf’o)’

where x, is a vector of exogenous variables and u, is a vector of stochastic
disturbances.? A predictor is defined by making specific assumptions about us
and 6. Mariano and Brown define the deterministic predictor based on a
consistent estimate Bd of 8 to be

.szg(xfa(), Gd),

where the error term is set equal to its expected value. An alternative to the
deterministic predictor is the Monte Carlo predictor defined as

(2.1) yf=g(xf,uf,(3d),

where the u; represent draws from some specified distribution of u, and y,
represents the corresponding set of realizations of y,. A second form of Monte
Carlo predictor that is often used (Muench et al. (1974), Fair (1980)) is defined
by draws of both error terms and coefficients

(2.2) yf=g(xf,uf,5d),

where here éd denotes drawings from the asymptotic distribution of the esti-
mated coefficients.

Although interest typically focuses on the first and second moments of the
distributions generated by (2.1) and (2.2), the entire distribution is of interest as
an approximation to f(y/#). Indeed, the Monte Carlo procedure described by
(2.1) can be thought of as an attempt to capture the density?

(2.3) f(yflf)d)

by drawing the error terms. The second Monte Carlo procedure attempts to
weight the density (2.3) by drawings from the asymptotic distribution of the Bd s:

24)  [£(3718,) e~ /X007 / V0 4,

The obvious drawback to (2.1) is that it ignores the uncertainty introduced by
using Gd, while (2.2) appears to take accouat of it, but does so in a way that is

% Uncertain future exogenous variables and dependent observations both raise issues not covered
by this discussion. To focus attention on the problem of predicting y;, we assume that the
exogenous variables x, are perfectly predictable, and for notational simplicity we will subsume x
into the notation f(y,|0). Dependent observations could be handled in principle by explicitly
recognizing the conditioning f(yf|y,, 6) although Phillips (1979) points out that the distributional
dependence of the relevant termmal observations in y, and the data period parameter estimates 0d
may not be analytically trivial. We address this last issue in the context of the ARCH model in
Section 6.

3In order to preserve a consistent notation throughout we denote densities where parameter
estimates have been substituted for true values as conditional densities f(-|-) while recognizing
that this constitutes a slight abuse of notation.
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difficult to judge without reference to some theoretical standard. The proce-
dures developed in this paper have a lot in common with Monte Carlo methods.
They involve corrections to forecasting densities to account for parameter
uncertainty and will typically be implemented by simulation, but they are
motivated theoretically in the following sections.

An alternative to the approaches just discussed is to eliminate the unknown
parameters 0 by the use of sufficient statistics. This is the basis of the notion of
predictive likelihood that was originally suggested by Lauritzen (1974) and
Hinkley (1979). The Lauritzen-Hinkley concept recognizes the central impor-
tance of f(y,0) for problems of prediction, but uses sufficient statistics to
eliminate the unknown parameter 6. Let S,, S, and S, , be sufficient reduc-
tions of Y,,Y;, and their union respectively. Sufficiency ensures that the density
f(y,16) can be factored as

f( )’d|9) =f( Yd]Sd)f(Sdlo),

where f(y,|S,;) does not depend on 6. The Lauritzen-Hinkley definition of
predictive likelihood exploits the fact that S, . is a function of S, and §, that
does not depend on .

DerFiniTION 1 (Lauritzen-Hinkley): The predictive likelihood function is

F(ys16)£(S416)

plik(}’f|3’d) =f(yf’Sd|Sd+f)= f(S, 'flo)

This definition envisions treating plik (y/y,) as a likelihood function for the
future observations y;. In practical applications the plik could be used to order
future values by their plausibility and to obtain confidence intervals for y,. This
definition has been applied to several econometric problems by Cooley, Parke,
and Chib (1987), but its applicability is limited. There are some problems for
which there is no sufficient reduction of the data—probit models are one
example. There are many other examples where minimal sufficient statistics
exist but have unworkably complex distributions—Ilogit models are an example.
In the next section we develop an alternative definition that is applicable and
easily implemented in these situations.

3. ASYMPTOTIC PREDICTION FUNCTIONS

The limitations of the preceding definition of predictive likelihood are not
insurmountable. First, we know that maximum likelihood estimates are asymp-
totically sufficient. These provide a solution to problems that do not admit
sufficient statistics. Second, we can replace the (often intractable) exact distribu-
tions in the Lauritzen-Hinkley definition with asymptotic distributions. In Ap-
pendix A we show how to use a series of asymptotically valid approximations to
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arrive at the following definition:

DeriNiTION 2: The asymptotic predictive likelihood function is

(3.1)  plik® (yfléd) =f(yfléd) * exp {wl(yf; éd) + wz(yf; éd)},

where
wi(vy36) = = 373580 H(vaurs82) " V(v7384)’

wa(3382) = V3 0)0(0,) ~ St [ 1338, 3038 7).

V(ys; Od) is the log gradient function of f(y6) evaluated at y, and 8,,
H(yd+f, 6,) is the log Hessian of f(y4.46), and w(od) is the O(m™1") blas in the
MLE §,.

Despite a bit of notational complexity, (3.1) has a practical form that can be
implemented easily for common econometric prediction problems. The first and
second derivatives of the log density are usually not difficult to compute, and
(3.1) can often be incorporated into a Monte Carlo simulation strategy. This
definition applies strictly to models with independent observations.

The elements of (3.1) have the following intuitive justification. The first term
on the right-hand side of (3.1) is simply the prediction function that would
obtain if we knew the correct functional form of f( yfl()), but substituted
consistent estimates for the unknown parameters. We will refer to this as the
certainty equivalence (CEQ) prediction function (although it should be noted
that the term is wishful rather than descriptive as no equivalence exists). It is, as
noted in the previous section, the form one is approximating with the Monte
Carlo prediction procedures extensively analyzed by Mariano and Brown.

The factor w,(yy; Bd) corrects the certainty equivalence prediction functlon
for parameter uncertainty. It typically puts more probability in the tails o
predlctlon function, where the log gradient V(yj; Od) is largest. Loosely, thls
increase in the dispersion of the prediction function relative to the CEQ density
recognizes that y,— y, will have a greater variance than y,— E( yf). We formal-
ize this idea in the next section.

The two terms of w,(yy; Od) correct for two related problems. The first adjusts
for asymptotic bias of order O(m ™) in the m.le., and the second adjusts for the
possibility that the second derivative matrix is not constant over y,. Both
elements could be derived by simply estimating the expectation of a Taylor
series approximation to g(y/8) = log(f(y,|60)):

g(7104) —2(y710) = V(373 84) (6, - 0)
+3(6, - 0)'Hf(yf; éd)(éd -9).

The expectation of this is zero for a linear-normal model, but in general it will
not be.
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These adjustments for parameter uncertainty can be contrasted with the most
commonly used technique for evaluating predictions—mean-squared error
(MSE) analysis. An asymptotic MSE analysis is based on a point forecast jv,
which is typically computed by simply setting unknown errors to zero. Because
mean-squared error analysis is concerned with only the second moment of
Ve~ )‘)f, the natural functional form for a prediction function is a normal density

(3.2) g(yf'éd)a "%(Yf“f’f)'Vf_l(Yf”)A’f),

where V; is the variance-covariance matrix of y,. The usual MSE treatment of
parameter uncertainty takes the derivatives Df— 3yf/60d to be constant even
though that generally will not be the case for models with nonlinearities in
parameters or dependent observations. Treating D, as constant over y, leads to
the approximate first and second derivatives

(33)  V(y56,) = (y,—9,)V7 ' Dy,
(34)  H;=~DiV;'D;.
Using (3.3) and (3.4), w,(y;; 6,) becomes

(35)  wi(vy30a) = =2y =9,V D H,+ Dy D) T DV (v, = ).

If we ignore any asymptotic bias in Bd and treat H; as constant over y;, then the
term w,(yy; 6,) in (3.1) is constant over ¥s. We can combine (3.2) and (3.5) using
the identity (Rao (1973, p. 33))

(36) =V =V Dy[Hy+ DD, T Dpvt = = [V, Dy D]
to form the mean squared error prediction function

A A \! _ -1 N
(3.7)  MSE(yl8,) aexp{~3(v;=9;)[V;~ DHi 'Df] " (v,-9,)},

which mcorporates the variance V; of y, and an approximate variance
-D:H; Df' due to parameter uncertainty, but fails to acknowledge both any
nonnormality of f(y,|8) and any nonlinearity in the parameter uncertainty. This
derivation empha31zes that (3.7) can be regarded as in the same family as
plik“ ( yflé)d) but subject to additional linearization.

4. PREDICTIVE EFFICIENCY

Having proposed a candidate prediction function we now discuss how to
evaluate it. Most common methods of evaluating forecasting errors (e.g. looking
at mean-squared errors) are based on the first two moments. This can only
make sense to the extent that predictive densities are well approximated by
normal distributions. The nonnormal distribution of the forecast errors for
many econometric models motivates us to adopt a measure of predictive
efficiency that is sensitive to the shape of the future density as well as its
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moments. That measure, the Kullback-Leibler information measure (Kullback
(1959)), provides a natural metric for evaluating candidate prediction functions.

In this section, we formalize the information measure of predictive efficiency
and then establish four results. First, we derive the information efficiency for
the CEQ technique. Second, we establish the order of the relative efficiency
gain that can be secured by adjusting the functional form to account for
parameter uncertainty. Third, we construct an expansion useful for calculating
the efficiency measure for particular prediction functions. Fourth, we show that
the predictive likelihood approach yields unambiguous efficiency gains for an
important class of location parameter models.

The Kullback-Leibler measure for a particular realized prediction function
f*(gs 8,) can be written as:

(41)  I(f,£*) = [[2(3/10) = g*(/16.)] F(3716) dyy,

where g(y;|6) =log(f(y;6)) and g*( yf|0d) log(f *(yfléd)) To abstract from
the dependence of (4.1) on the particular realizations of y, and 6, we will
compute the expected information loss due to parameter uncertainty

(42) (£, £*) = [1(f,£*)£(6416) db,,

where f(6,]6) is the density of 6.

The asymptotic properties of I(f, f*) will prove both workable and interest-
ing even though evaluating I(f, f*) itself may prove difficult for many typical
econometric applications.* Predictive consistency will be defined as’

(43)  I(f,f*) >0 as m — oo,

This requlrespbaswally that Bd be consistent and that f*( yfwd) converge to
f(y;0) as 6,— 6.

While a varlety of procedures, including CEQ and plik“ (y(|y,), are predictive
consistent, it is straightforward to demonstrate that, for nonnormal or nonlinear
models, the MSE prediction function (3.7) is not predictive consistent. This is
not surprising because MSE analysis is often used simply as a criterion for
evaluating the forecasting errors of point predictions without regard for func-
tional form (e.g. Baillie (1981)). Indeed, abstracting from nonlinear functional
forms is regarded as a virtue of the technique and MSE formula have been
derived for quite general dynamic models (Baillie (1980)). Advocates of the
MSE approach might respond to this failure to converge to zero information
loss in large samples by substituting a quadratic loss function for I(f, f*).

% The expected value of I(f, f*) over the distribution of 5,, is typically about as difficult to derive
as is the expected value of 8, itself. For example, I(f,plik?) can be derived precisely for
linear-normal models and models with nonlinearities in variables as in Cooley, Parke, and Chib
(1989)

>The notion of m going to infinity prior to the forecast period requires that we contemplate
letting the sampling experiment run for longer periods before stopping data collection to make a
prediction.
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Among predictive consistent functions, the first-order predictive efficiency is
the scalar A,(f, f*) in the expansion

(44)  I(f.f*)=m™N(f, f*) +o(m™h).

We can derive the first-order predictive efficiency for the CEQ function under
fairly general assumptions:

PropPoSITION 1: We assume that: (i) the derivatives to order three of g(y;; )
with respect to 0 exist, (ii) the derivatives to order two are bounded by integrable
functions, and (iii) the third derivatives are uniformly bounded by a function with
finite expectation. Then the CEQ first-order prediction efficiency is given by:

(45) ’\l(f’f)= —%tr[V(OAd)EY(H(yf;O))],

where the variance-covariance matrix of m'/ z(éd —0) converges to V(éd) and
Ey(H(y;; ) is the expectation over Y of H(y;; 6).

Proor: Under these standard assumptions, we can expand

107,0) = [ [ (8(510) = 8(5116.))£(3,10)£(8.16) dy dé,

as the sum of two expressions. The first,

—f@ny(yf;B)(éd-B)f(yf;f))f(éd;ﬂ)dyf db,,

equals zero because V(y;; 8) is independent of éd —0 and [,V(y;; 0)f(y,|60) dy,
= (0. The second,

""f .[(0‘1~0)H(yf’0*)( 0)f(v;10)£(8,10) dy, dé,,
where 6* is between 6 and Bd, converges (multiplied by m) to (4.5). Q.E.D.

We now turn our attention toward efficiency improvements that can be
secured by accounting for parameter uncertainty. Proposition 1 states that
ignoring parameter uncertainty leads to I(f, F£)=0(m™"Y), and it will turn out
that the best improvement generally available is O(m~2). This bound on
relative prediction efficiency is meaningful (as are the well known bounds on
estimation efficiency) only if the class of alternatives is restricted by suitable
regularity conditions. We gain some insight into establishing appropriate regu-
larity conditions by considering a simple, but compelling example of supereffi-
ciency. The superefliciency example motivates us to require that any efficiency
gain occur over a neighborhood N in the parameter space rather than for just
certain true parameters. Given this last assumption, we show in Proposition 2
that the largest possible efficiency improvement is O(m~?). We then contem-
plate the efficiency improvement achieved by the particular case plik*( yflé)d)
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We begin by formally defining the predictive efficiency of f*(y,| Bd) relative to
f( .Vf|9d) as

(46)  I(f.f*) = = [R(yy:62)F(¥,10)£(8410) dy; 4,

where h(y;; @d) is defined as:

(47)  h(yr:0,) =g*(vs304) — (3 6,)-

Note that the efficiency measures are additive in the sense that I(f, f*) =

I(f, f )+ I( f f*). The second-order relative predictive efficiency is the scalar
A( f, f*) in the expansion

(4.8)  I(f,f*)=m7 A, (f, f*) +o(m™?).

The regularity conditions we will introduce rule out certain instances of
superefficiency. Consider the example of a prediction function f*(y| éd) =
f(y716%), where 6° is a fixed element of @. This choice entails zero information
loss if 6 happens to equal 6 but not for any other true parameters. It fails to
attain even predictive consistency for 6 + 6 because f*(y| 6,) = f( ysla®) for all
t‘)d regardless of the actual true parameters. To rule out such cases, we require
that the advantage of f*( yf|0d) over f( yfled) be reasonably uniform for true
parameters in a neighborhood N (that does not shrink with increasing m). We
1ncorp0rate this requirement via the average of I(f, f*) over all true parameters
0 in N, which we write as

@9 To= = [ [| [(338)7(08) ay; | 6.1 6) db @b

Our strategy will be to show that I, can be negative, favoring f* over f only if
I(f, f*) = O(m~?) almost everywhere in N.

We begin by showing that insisting on an efficiency improvement ICf, £ <0
imposes restrictions on candidate functions A(y;; Od) In particular there must
exist an « such that

(4.10) f[h(yf;é)]zf(yflé)dyf=O(m“’)

and

(411)  [[A(y;:8)] F(y08) dyp=0(m™),  k>2.

We can interpret these conditions in terms of the unit integral requirement
[y exp(h(yf,od))f(yfl 0, dy;= 1, which can be expanded as

(4.12) ][h vy30,) + 3(h(y380)) + ---]f(yfléd)dyf=0.

Typically, A( yf;od) will be proportional to ¥(8,) so that m times h( yf;éd) will
converge to a nondegenerate limit. In that case, (4.10) and (4.11) will be
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satisfied for @ = 2 and the first two terms of (4.12) will be of opposite signs and
will dominate the remaining terms. To obtain this result formally, we consider
an expansion

(413) Iy=m"%x+0(m™?%).

Proposition 2 establishes that, for A to be negative, favoring f* over f, @ must
satisfy a > 2.

Two technical assumptions bound the moments of the gradient function. To
the usual assumption

(4-14) fYV(Yf;o),V(YﬁB)f(YfW) deZO(l)

that the variance exists, we add the requirement
’ 2
(4.15) fy(V(yf; 0)V(y;30) +H(y;:0)) f(y/060) dy,= O(1)

that the fourth moment exists as well. This is important because (4.12) shows
that the square of A(y; 6,) will be important and h(y;;8,) involves the square
of the gradient.

ProrosITION 2: The parameter A in (4.13) will be unambiguously positive unless
(4.10) and (4.11) are satisfied for a > 2 almost everywhere in N.

Proor: For notational simplicity we will use a scalar . To evaluate the
integral (4.9) over the Cartesian product N X @, we will integrate first over N
and then over @. For a given 6, € O, the integral over 6§ € N can be written as
the sum of two terms:

(16) = [ | [(oy:82)(0d) by |£(8,18)

_ [N{[Yh(yf; 6, [esor®=s0rba — 1] f(y,19,) dyf}f(éd|é) dé.

We can rewrite the first term in (4.16) as
(@17) [ 1(vy380)F(v,10,) dv [ £(816) dé,

where the second factor can be denoted P(N|6,).® The first factor in (4.17) is
unambiguously nonnegative because [ log(m/m*) 7 > 0 for any densities 7 and
m* with equality only for 7* = 7 almost everywhere. Expanding the exponential

6 The notation P(N |0:,) conditioning on 5,, is not completely well defined because 6 is not a
random variable. It does, however, furnish a convenient shorthand description of the process of
integrating over N. The same consideration motivates our later use of the notation Ey(-).
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function in square brackets in the second term in (4.16) yields:

(4.18) - /;/h(yf;éd)V(yf;éd)f(yfléd) dyffN(éd - 5)f(éd;§) deé
_%fyh(yf;éd)[v(yf;éd)z+H(yf;§d)]f(yf|éd)d})f

xf(ed—o f(6,;6)dé

plus terms involving third and higher powers of 8, — 6.
We can now combine (4.12), (4.17), and (4.18) to write (4.16) as the product of
P(N|6,) and

(4.19)  Vy (k) = Covy(h,V) Ey(6,-610,)
—Covy (h,V2+H) Ey (((3 —5)2|9d)

where E\(6,—0|6,) and E\((6, — 0)2|0d) denote the order m~! terms in the
asymptotic conditional mean and variance of Od — 6 over N and Covy (-) and
Vy(+) denote integrals over y,. The covariance inequality together with (4.10),
(4.14), and (4.15) implies that Con (h,V)=0(m=/?) and Covy (h,V?+ H) =
O(m~=%/?). The two elements of (4.19) involving these factors are thus both
O(m~%/2~1) while the unambiguously positive element Vy (k) is O(m~*). From
this, we deduce that the largest term in an expansion of (4.16) will be unambigu-
ously positive unless a > 2.

Integrating (4.16) over 6, € @ will then produce (4.9). This last integral will
be dominated by the unambiguously positive instances of e <2 if these have
measure greater than zero over 6, € 0. Q.E.D.

The proof of Proposition 2 gives some guidance in constructing h(y;; Bd) The
unambiguously nonnegatlve term Vy (h) should be as small as possible and the
covariances Covy (A, V) and Covy | (h,V*+H) should be as large as possible.
The functions V( Ve Od) and V( yf,()d) + H( yf,od) are clear candidates to form
h(yf,()d) under these criteria. The asymptotic predictive likelihood function
combines these two functions, weighting V( yf,Bd) by the asymptotic bias and
weighting V(y;; 6,)% + H( Yr; 6,) by the asymptotic variance.

A more direct approach to calculating the second-order relative efficiency of
plik“ ( yf|0d) and other prediction functions is possible if the conditions in
Proposition 2 are strengthened slightly. The main conclusion of Proposition 2 is
that reasonable candidate functions A(y;; Bd) will be well behaved after multipli-
cation by m. In practice, h(y;; 0d) will generally be constructed by weighting a
function of y, by either the variance or bias of 6,,, both of which are propor-
tional to m .

PROPOSITION 3: Assume that (i) the derivatives to order three of mh( Yrs 0) with
respect to 0 exist (we will denote derivatives by subscripts, e.g. hy(y;;0)), (ii) the
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derivatives to order two of mh( ¥s; 0) are bounded by integrable functions, (iii) the
third derivatives of mh(y;;0) are uniformly bounded by a function with finite
expectation, and (iv) (4.10) and (4.11) are satisfied for o = 2. Then

(420)  A,(f.f*) =3h> —why— 310 [V(6,) ke,

where

2o i 2 Y
ho= lim [ mho(y;0)f(y0) dyy,

hoo = lim [ mhoo(vy;0)f(v/i6) dyy,  and
m~ 'y is the O(m™") bias in 6,.
Proor: By expanding (y;;8), we can write

‘mzf@fy”(yf; 0.4)f(3,10)£(8,10) dy, db,

as the sum of three terms

—m? .
m? [ h(y7:0)£(3,10) dyy,
_me@fyha(Yf; 0)(8,—0)f(y10)£(6,10) dy; db,,

=32 [ [ (0= 0)hao(37:0%) (0~ 0)f(3,10)1(8,10) ds, .

where 6* is between 6 and 6. The first term can be approximated by A2 via
the unit integral requirement (4.12) and assumption (iv). The other two terms
converge in probability to the terms in (4.20). Q.E.D.

For the particular prediction function plik® (y| éd), the conclusion of Proposi-
tion 3 can be rewritten to avoid integrating the square of 4. We record these
results as:

ProposITION 4: (a) If the bias in 8, is o(m™") (perhaps, because 6, is corrected
for bias), then A,(f, pllk") can be written as:

(421)  —gvec(H;'){Ey[(vec H,)(vec H,)| - E,[V; ® H;® V]
+2Ey[H],, — Ey[(V} ® V)V } vec (H7Y),

where we are letting the arguments of H,, Hy, and Vf be implicit for notational
simplicity.
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(b) If, in addition, Ey[H;] and E,[(V; ® V/) ® V;1 are constant over 9, then
£ B 2 _ o,
(4.22) A, (f,plik?) = —éEY[(tr(Hd 'Hy)) ] + §Ey |V H 'HH; 'y .

(c) If H(yy; 0) is globally negative semi-definite, then A( £, plik?) is unambigu-
ously negative.

Proor: Appendix B.

Proposition 4 applies to the classic location parameter prediction problem
where f(y/0) is of the form g(y;— 6) so that we know the form of the densxty
for y;, but not its location. An example, considered in Section 6 of this paper, is
a regression model with fat-tailed error terms. Part (c) shows an unambiguous
efficiency gain if log(q(y, — 6)) is any symmetric convex function (e.g. yy follows
a t distribution). We consider this case and other examples applying Proposi-
tions 3 and 4 in Section 6.

5. INEFFICIENT STATISTICS

In practical problems, interest will often center on data period parameter
estimates that are consistent and asymptotically normal, but not asymptotically
efficient. (Consider, for example, two stage least-squares.) Let 8, be such an
estimate with

m'/2(8, - 6) 5 N(0,V(8,)),

where 1(6,) — V(Od) is a positive semi-definite matrix. Let H,,, denote V' +
H;, where mV,, is a consistent estimate of V(6,). We can then extend our
asymptotic predlctlve likelihood definition to cover prediction functions based
on 6,

(5.1) plik (yflyd) =f(yf|éd) " €Xp {Wl()’fQ éd) + Wz(Yf; éd)}’

where
wi(v7382) = = 39y 0a) H (va38) " V(3364)

Wz()’f;éd) = V(Yf§éd)¢’(éd) - %tr [H(Yf;éd)H(Yd;éd)_l]'

This definition is motivated further in Appendix A. This prediction function
possesses many of the important features of (3.1), taking due account of the fact
that the estimate 6, is not asymptotically efficient.

In particular, plik®(y,| Bd) may well secure an efficiency gain over the corre-
sponding plug-in function f= f( il 6,) also based on the inefficient estimates 6,.
In terms of first-order efficiency, direct extensions of Propositions 1 and 2 show
that A(f,plik®) = A,(f, f) and that plik® ( ¥sly,) is first-order inefficient relative
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to plik®(y/|y,) to the extent that
M F) = —‘tr[Ey H(yf,o))(V(Od) V(Od))]

is positive. Extensions of Propositions 3 and 4, on the other hand, would suggest
that the CEQ f(y/| 6,) may be second-order inefficient relative to plik® Yyl 8,).
Thus, from a practical standpoint, if sufficient motivation exists to favor calcula-
tion of only inefficient parameter estimates, plik® (yf|5d) still incorporates a
useful adjustment for parameter uncertainty.

6. EXAMPLES

The definition of asymptotic predictive likelihood and the concept of predic-
tive efficiency developed above are useful only to the extent that they sharpen
our understanding of practical prediction problems. In this section we consider
examples that extend well known results for linear-normal models to models
with nonnormal disturbances and to ARCH models.

ExampLE 1 (Linear-Normal Model): Before considering more complex mod-
els, it is helpful to examine the asymptotic efficiency concepts for a linear
regression model because Definitions 1 and 2 coincide and exact information
losses can be computed. We write that model as

(6.1) y,=x,8+¢,, g;~N(0,0?),

for regressors x;, parameters 8, and known o2 . Cooley, Parke, and Chib (1989)
show that, for a single future observation, pllk"( vl Hd) o exp(— '2‘8f 2/(0?+12)),
where the variance component 72 =o%x;(x,x,)"'x} corrects for parameter
uncertainty. The oompanson between the two efficiencies I(f,f)=ir2/c?
and I(f,plik?) = 3 log(1 + 72/o?) can be put into the present framework by
expanding the second of these as 372/0?— 3(r%/a?)*+ ---. The first-
order asymptotic efficiencies equal 3lim, ., m72/ad? in both cases. Cor-
recting for parameter uncertainty secures the second-order efficiency gain
Llim,, _ m*(72/0*)?, which is reflected in the curvature of the log function.
That efficiency gain is likely to be most important for difficult forecasting
problems where the first-order efficiency loss is also important.

ExampLE 2 (Nonnormal Model): Suppose that the errors are drawn from a ¢
distribution with v degrees of freedom, where o and v are known. (For the
variance to exist we require that v > 2.) The predictive likelihood function takes
account of the relatively fat tails in the ¢ distribution. If we let { denote
Va1 = X1 Bd)/a then for a single future observation

~-(v+1)/2

n 1 N N
(6.2)  plik” (Yf|Bd) X ;(1 +{%/v) " €Xp {W1( Vs ed) + Wz(Yﬁ od)},
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where
1 (v+1)* xHzlx}
2 v (a+2w)

2

wi(ys364) = -

and
. (v+1) xHj'x;
WZ(yfa 0d) = v (1 +{2/V)

The correction for parameter uncertainty w,(yy; 6,) increases the dispersion of
the plik by adding to the density in the tails, where {? is greatest. Relative to
the linear-normal model in Example 1, however, the true density already has fat
tails, and the denominator (1 +¢?/v)* in w(y;; B,) moderates the extent of the
correction in the extreme tails. The term w( Yfs [f 4) adds a lesser correction for
a nonconstant second derivative matrix.

Proposition 4 provides the information efficiency calculations for this model.
If we let I' denote lim,,, _, ., mxf(x{,xd)_lx;, then

. 1 v(y+1)
M F) = AR

2(1_52/”)-

This figure ranges from the value of 1I" for Example 1 (v = ®) to « for v =2,
revealing the extent to which fatter tails (smaller v) lead to a more difficult
forecasting problem. The second-order relative efficiency

s o 1+ (46 (r+4)(v+2)v
O e Y PR Y (RAESY (R pRE
(v—1) 3+6/(v+4) r

(v+6)_v (v+6)°

X1+

is clearly negative so that the predictive likelihood correction for parameter
uncertainty lowers the information loss.

Unknown error distribution parameters such as o° and v also present
interesting forecasting problems. If o2 in Example 1 is unknown, a direct
analysis of the sampling distribution of { = (y;—x,B,)/s, where s is the sample
period estimate of o, shows the appropriate prediction function to be of the
functional form of a ¢ distribution. Definition 1 yields precisely this result using
a x? distribution for the sample variance s> (Cooley, Parke, and Chib (1989)).
The advantage of plik®(y|s?) is that only g( ¥s; 0) and its derivatives are needed
because Definition 2 is based (see Appendix A) on the asymptotically valid
normal approximation m'/2(s2—¢%) > N(0,2). For the simple model v~
N(0, 0?) that abstracts from uncertainty about S,

plik® (yf|s2) o« —3y7/s* = 3(m+1) _l(yfz/sz - 1)2.

2
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This function is identical to the first two terms in a series expansion of the
logarithm of a ¢ density for y;, expanding — 3(v + Dlog(1 + (y?/s%)/v) about
— 1+ Dlog(1 + 1/v). The correction for parameter uncertainty in
plik?(y|s?) thus captures the essential features of a ¢ distribution.

The information efficiency calculations for this model are a special case of
those for Example 3 below. We simply note here that plik®( yf|sz) will be
second-order efficient relative to the CEQ f( yf|s2) to the extent that a ¢
distribution is more appropriate for (y;—x,8,)/s than is a normal distribution.

ExampLE 3: The most interesting features of models with unknown error
distribution parameters can be demonstrated in the context of the autoregres-
sive conditional heteroskedasticity (ARCH) model. Following Engle (1982), we
emphasize the essential aspects of this model using a simple ARCH model
without regressors,

Vi ~N(0, 77t)a

where n,=z,a for z,=(1,y% ,...,y%,) and a=(ay,qa,,...,a,). This model
emphasizes the dispersion of the future density rather than its mean.

This model also illustrates the complications introduced by dependent obser-
vations.” An extension of Definition 1 is not possible because, while one might
consider enlarging the notation to condition on both a sufficient statistic S, and
the last few values in y,, this model does not admit sufficient statistics.
Definition 2, on the other hand, presents no difficulties of this sort because the
asymptotically sufficient maximum likelihood estimates are readily available and
the corrections for parameter uncertainty w(y;;6,) and wz(yf;éd) are con-
structed from density function derivatives that readily admit a dependence on
the terminal values of y,. The justification for such an extension rests largely on
the efficiency results in Propositions 1, 2, 3, and 4, which are then conditional
on the last few values in y,. We can, for example, derive efficiency results for
ARCH model predictions conditional on the realized value of z,,.

The predictive likelihood function again approximates the functional form of
a ¢ distribution.® For one period ahead (so that f denotes m + 1),

log (plik® (yylyy» &4)) & = 5 == = = =——5—

In this approximation to a ¢ distribution, the “degrees of freedom”

2
Lo
2 z;Hy sz}

Vm

7 Another simple example is the AR(1) model (Cooley and Parke (1987)).

8 We omit the term w,( ¥f36,) on two grounds. First, the asymptotic bias is not known for the
ARCH model, making an analytic implementation impossible. Second, the two terms in w(y;6,)
cancel for Example 2 and will largely offset in this case as well.

Our calculations are all conditional on the last few values of y,. As Phillips (1979) notes, this
introduces a minor dependency between the distribution of 6, and the last few values of y,.
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will be proportional to the data period sample size because H, ., grows at rate
m, but will also depend on the particular z, vector. That vector appears in both
the numerator nf = (zfo?d)2 and in the denominator, which essentially equals
V(z;d,). If, for example, the elements of &, are negatively correlated so that
de}f has negative off-diagonal elements, v,, will be smaller (and the correction
for parameter uncertainty will be greater) for a vector z, with a single large
element than for z; with more equally sized elements.

The formal information efficiency calculations also reflect the dependence of
v,, on z,. The first-order information efficiency is

Al(f’f) = %Vo;_l’
where v, =lim,, ., m~ 'y, depends on z;. Proposition 3 shows that
A (f,plik?) = —23 /6472,

The efficiency gain from correcting for parameter uncertainty thus depends on
both the data period sample size and the particular vector z;.

Predictive likelihood forecasts two or more periods ahead for an ARCH
model recognize that the variance of y,,,, depends on the realization of y,, ;.
This dynamic aspect of the problem is incorporated into

m+n y31+i 1
log(pllka(yflydaéd)) a __2— Z S _{/ZfHd—-:fZ),‘{’
i=m+1 Mm+i 8
where { is the n X 1 vector with elements {;=(y2.;/Mmsi = D>/ Mpsi» i=
1,...,n. If n=2, then y,,,, appears (via z,) in both the 2 X 2 matrix z,H;,z}
and in 7n,,,,. This joint predictive density for y,,,; and y,,., thus makes the
dispersion for y,,,, a function of the entire range of values for y, ., weighted
by their predictive likelihoods.

7. CONCLUSIONS

The asymptotic predictive likelihood approach analyzed in this paper is
closely related to Monte Carlo forecasting approaches discussed in Section 2.
Monte Carlo procedures account for parameter uncertainty by drawing coefli-
cients from an asymptotic distribution. The predictive likelihood approach, on
the other hand, suggests a correction to the forecasting density. The correction
can be implemented easily using stochastic simulation with a weighting deter-
mined from the correction terms in Definition 2. Consequently, although the
calculations in the examples seem cumbersome, implementing these prediction
functions via simulation is quite feasible.

The information measure of predictive efficiency derived in Section 4 helps to
identify the effects of specification and estimation on predictive accuracy.
Predictive consistency requires the correct functional form for the model
First-order efficiency rests on the efficiency of the estimated parameters.
Asymptotic estimation bias and corrections for parameter uncertainty affect
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second-order efficiency. This is one explanation of why parameter uncertainty
appears not to matter much in many applications and is usually neglected.
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APPENDIX A
MOTIVATION FOR PREDICTIVE LIKELIHOOD DEFINITIONS

In situations where sufficient reductions of the data do not exist, we can exploit the fact that
well-behaved maximum likelihood estimates are asymptotically sufficient (Cox and Hinkley (1974 p.
307)). Replacing the sufficient statistics S, and S, in Definition 1 by the MLE’s 0d and od+f
leads to the alternative definition:

f(y,le)f(édlo)
£(8a+s16)
where f(5d|0) and f(@d+ |@) are exact finite sample distributions of the MLE’s. For econometric

problems of any complexity these exact finite sample distributions are intractable. This considera-
tion leads us to:

(A1) plik! (v184) =F (7, 041844f) =

F(y/18) £2(8,418)
£(64.4410)

where f(-| - ) denotes an asymptotic density. 0d+f in the denominator of (A.2) is determined

jointly by Gd and y; just as S, in Definition 1 is a function of S, and y;. The predictive likelihood
value measures the joint compatibility of y, and 0,, with a common ()d "

. A further simplification eliminates the need to compute 0,, +y for each possible ys. We can relate
6, and 9d+f via

(A3) V(YaariBars) = V(Varr: 0a) = H(Yass:0)(Bass—64) + O (m=172).

Using the fact that V(yd+f,04+f) 0 and V(y,;8,) = 0 (by the definitions of 0d+f and 6,) and the
independence of y, and yy,

(A4)  bgup=0,— [H(v447:0)] 'V (57364) +0,(m=32).
We use the asymptotic distributions
(Asa)  g°(8,10) = —3(8s—vs—0)'H(ys0)(6,—v—0),
(A.5b) ga(éd+f|9) == %(9d+f— asr— 0)H(yauss 9)(9d+f— Yarr—9),

where ¢ is the O(m™1) bias and Yy45=Wa+o0(m™1). We match these quadratic forms with a
Taylor series approximation to g(y/|6):

(A6)  2(y/10) =g(v/164) - V(vs384) (8- 6)
+%(éd—0)’H(Yf;éd)(éd—0) +0,(m=32),

’

(A2)  plik?(y8,) =
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Finally, substituting (A.4) into (A.5a), adding (A.6), and subtracting (A.5b) leaves three terms
that are not constant with respect to Vgt

3V(y7300) H™ (Yarys )V (vy362) + V(vy:0a)wa + 3(8a — 0)'H(3y36,) (8, - 0).
The first is the basis for w(ys; 6,;) using the estimate H( Ya+fs 8,) of H(y,,;6). The second and
third terms yield w,(y; 8,) via the estimate —H(y,;0,)=" of E[(6,— 0X8, — 6)].

Equation (5.1) requires a suitable joint estimate 04,y based on 6, and y; The analytic
tractability of the approximate density

£(6410) acexp{—3(6,-6)V,;;'(6,—6)}
suggests letting the joint estimate éd +r be computed by maximizing
&(04.7710) =2(¥/16) — 3(8, - 0) V" (8- 6)
over 9 for fixed y, and 6,. An asymptotic expansion similar to (A.3) shows that
(A7) b=+ [V = H(y36,)] 7 V(5y30,) + 0, (m2).

(5.1) follows from the previous analysis with (A.4) replaced by (A.7).

APPENDIX B
PrROOF OF PROPOSITION 4
We would like to apply Proposition 3 for
(B.1) h=3VHV+ 5 tr HHy
For simplicity, we are letting the function arguments be implicit. Let Z =vec H; !, and note that

Hpl,=Hi'+o,(m™").
The term 3h* equals 3Z'E[ A1Z, where

(B.2) A=(V'eV)VeV)+VeVe(vecH) +(vecH)®V®V+ (vec H)(vec H)'.

Note that VHV'VHV = Z'(V' ® V'XV ® V)Z (Neudecker (1969)).° Generalizing Pfanzagl (1973, p.
997), E[(V' ® V')V], can be written as

E[(VeV)VeV)]+E[(V'eV)(vecH)]
+E[(vecH)(V® V)] +E[VOeH®V]
so that
(B.3) E[A)=E[(vec H)(vec H)]| -E[VV®e H® V] +E[(V'® V)V],.
The term 2 tr[V(8,)hg,) equals 1Z'E[ B]Z, where
(B.4) B=2(vecH)(vecH) +G®V+V ®G +F
and G and F denote the third and fourth derivative matrices. Differentiating E[ H] twice yields
E[H)oo=E[F]1+E[G®V]+E[V'®G']+E[(vecH)(vec H) ]| +E[V'®@H® V].
E[B] thus reduces to
(B.5) E[B]=E[(vec H)(vec HY —V'®@ H® V]| + E[ H 5.
Subtracting twice (B.5) from (B.3) yields (4.21). Parts b and c are immediate consequences of
(4.21). Q.E.D.

® There are several possible arrangements of higher order derivatives. We are working with
arrangements that are compatible with a square fourth derivative matrix.
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