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ABSTRACT 

 

Adam C. Gold: Impacts of coastal stormwater pond nitrogen cycling on downstream water 

quality  

(Under the direction of Michael Piehler) 

 

 This thesis investigates the impacts of stormwater pond nitrogen cycling on downstream 

water quality by using long-term stream water quality monitoring data and nitrogen cycling data 

from within stormwater ponds collected on Marine Corps Base Camp Lejeune in North Carolina.  

A comparison of water quality before and after watershed development and stormwater wet pond 

implementation showed that wet ponds did not mitigate the negative effects of development on 

water quality.  Additionally, wet ponds were shown to be sources of suspended solids and algae 

and sinks for nitrate.  Summer measurements of net N2 fluxes from the sediment-water interface 

from a chronosequence of pond sediments showed net nitrogen fixation throughout the summer. 

Also, the response of net sediment N2 fluxes to nitrate loading was negatively correlated with 

pond age. 
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PREFACE 

 

 This thesis consists of two complete and separate manuscripts written with the intent of 

publishing both in scientific journals.  The overarching research topic of the thesis is the water 

quality impact of stormwater wet ponds in the coastal plain of the southeastern US.  The goal of 

the thesis is to provide insight for more effective management of wet ponds in the southeastern 

coastal plain by investigating both the watershed-scale effects and internal nitrogen dynamics of 

wet ponds.  Chapter one focuses on the effectiveness of watershed-scale wet pond 

implementation to mitigate the water quality effects of stormwater from increased impervious 

area.  Chapter two investigates nitrogen dynamics in wet ponds during summer and fall and the 

effects of pond age and location in pond on net N2 fluxes.  All research was conducted on Marine 

Corps Base Camp Lejeune in Jacksonville, NC. 
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CHAPTER 1: WATER QUALITY BEFORE AND AFTER WATERSHED-SCALE 

IMPLEMENTATION OF STORMWATER WET PONDS IN THE COASTAL PLAIN 

 

1. Introduction 

 

 Nearly 80% of the US population lives in urban areas, and this percentage is increasing 

(US Census Bureau, 2010).  Concomitantly, the amount of impervious area is increasing due to 

the expansion of urban and sub-urban areas (Terando et al., 2014).  Specifically, the coastal plain 

of the southeastern US is predicted to experience urban expansion over the next 50 years 

(Terando et al., 2014).  Despite known negative impacts of stormwater runoff from urban areas 

on coastal stream hydrology and water quality, research on stormwater mitigation techniques in 

coastal regions is very limited when compared to extensive research in non-coastal regions (Ex. 

DeLorenzo, 2012; EPA, 2014; Lewitus, 2008; Merriman et al., 2016; Serrano and DeLorenzo, 

2008).  Coastal stormwater managers apply similar stormwater control measures (SCMs) as 

managers in non-coastal areas and have the same priorities for water quantity and quality 

(Collins et al., 2010).   To test the assumption that stormwater management in coastal systems 

and non-coastal systems can be approached the same way, it is necessary to determine the effects 

of prevalent types of SCMs, particularly wet ponds, on the water quality of coastal watersheds. 

 The effects of increased watershed impervious area on streams are well-studied and 

predictable in most geographic regions of the US, including coastal systems (Ex. O’Driscoll et 

al., 2009; O’Driscoll et al., 2010).  As watershed impervious area increases, more runoff is 

generated from storm events, and evaporation and infiltration within the watershed decreases.  

Typically, the total volume of water leaving a watershed increases due to an increase in 
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stormflow and a decrease in baseflow (Booth and Jackson, 1997; O’Driscoll et al., 2010; Paul et 

al., 2001; Walsh et al., 2005), although the effect of increased impervious area on baseflow 

dynamics can vary (Price, 2011).  Changes in catchment hydrology due to development 

generally leads to lower stream biota diversity, increased loading of nutrients and other 

pollutants, and channel incision or enlargement (Goetz et al., 2008; Paul et al., 2001; Walsh et 

al., 2005).  Similar effects have been observed in urban areas within the southeastern coastal 

plain of the US (O’Driscoll et al., 2009; O’Driscoll et al., 2010; Sanger et al., 2013).   

 Conventional stormwater management has focused on the objectives of flood mitigation 

and pollutant removal (Burns et al., 2012; Walsh et al., 2016), and most SCMs have focused on 

detaining stormwater and slowly releasing it to lower peak flows (Collins et al., 2010).  The most 

prevalent kind of SCM is a wet pond, which is designed to hold a large volume of runoff and 

retain a permanent pool of water (Collins et al., 2010).  Wet ponds are primarily intended to 

mitigate increased surface runoff from impervious surfaces during storms by lowering peak 

stormflows and extending the hydrograph (Hancock et al., 2010), but the effects of these ponds 

on downstream water quality are not well constrained.  In some cases wet ponds have been 

shown to offer valuable ecosystem services, such as increased biodiversity (Hassall and 

Anderson, 2014; Moore and Hunt, 2012), carbon sequestration (Moore and Hunt, 2012), and 

nutrient and suspended sediment retention (Bettez and Groffman, 2012; McPhillips and Walter, 

2015; Rosenzweig et al., 2011).  Conversely, some studies have shown that wet ponds failed to 

meet regulatory goals for stream channel protection (Hancock et al., 2010), increased nutrient 

loading at times (Duan et al., 2016; Rosenzweig et al., 2011), created longer periods of erosive 

stormflow (Tillinghast et al., 2011), increased heavy metal concentrations (Stephansen et al., 
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2014; Wium-Andersen et al., 2013), and grew harmful algae and bacteria (DeLorenzo, 2012; 

Lewitus et al., 2008).    

 The implementation of wet ponds may have distinctive effects on water quality in coastal 

watersheds in the southeastern US due to the landscape’s high water table, low relief, soil type, 

and biogeochemistry. Many coastal watersheds in the southeastern coastal plain have soils and 

natural hydrologic and biogeochemical processes that produce blackwater streams - streams 

characterized by large amounts of dissolved organic matter and low concentrations of 

chlorophyll-a and suspended sediments (Meyer, 1990).  The optical properties, nutrient 

concentrations, and suspended sediment concentrations of the blackwater naturally found in 

coastal streams is significantly different than the water funneled into wet ponds from impervious 

surfaces (Piehler et al., in prep).  Few studies have investigated the effects of watershed-scale 

implementation of wet ponds on coastal stream water quality, but many of the SCMs in coastal 

NC counties are wet ponds or dry ponds (NCDEQ, 2017).  Previous research on coastal 

stormwater management has focused on water quality in tidal and brackish water or on single 

SCMs (Ex. DeLorenzo, 2012; Lewitus, 2008; Merriman et al., 2016; Serrano and DeLorenzo, 

2008). Improving and broadening the understanding of watershed-scale stormwater management 

in coastal areas will have clear implications for coastal water quality, public health, and estuarine 

ecology.   

 Another unresolved issue is how pollutant removal functions of coastal wet ponds may 

change over time.  Wet ponds fill in with vegetation and sediment over time, but the 

establishment of vegetation in deeper parts of the ponds is discouraged (Mitsch and Jørgensen, 

2004). The excavation of in-filled areas every few years in wet ponds and wetlands is required to 

maintain water storage capacity and sediment and phosphorus removal (Hunt and Lord, 2006; 
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Merriman and Hunt, 2014).  This wet pond maintenance, like most SCM maintenance, is often 

overlooked but recommended (Blecken et al., 2015).  Understanding how stream water quality 

from a coastal watershed outfitted with stormwater wet ponds changes over time will inform 

plans for excavation to maximize nutrient and suspended sediment removal and demonstrate the 

need for maintenance in coastal wet ponds.  Few studies have investigated how the pollutant 

removal function of SCMs changes over extended periods of time (ex. Merriman and Hunt, 

2014; Merriman and Hunt, 2016), and none have been conducted on wet ponds in a coastal 

watershed.  

 Here I examined the effects of watershed-scale wet pond implementation and increased 

development on coastal stream water quality by analyzing a time series of nutrient, total 

suspended solids, and chlorophyll-a concentration data.  Assessing the efficacy of coastal wet 

ponds through analysis of data before and after wet pond implementation offers a unique 

opportunity to understand the role these structures play in shaping coastal water quality and 

mitigating the negative effects of increased development.  Our data span seven years, 

encompassing before, during, and after increased development and concurrent implementation of 

wet ponds in a developed coastal watershed and parallel sampling in a minimally developed 

reference coastal watershed aboard US Marine Corps Base Camp Lejeune in coastal North 

Carolina.  

The goals of this study were to: 

1) Quantify the changes in stream chemistry that occurred due to increased development and 

the watershed-scale implementation of wet ponds. 

2) Identify trends in stream nutrient and suspended sediment concentrations after 

development and the implementation of wet ponds. 
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3) Determine if wet ponds were functioning as sources or sinks for nitrogen and phosphorus, 

suspended sediments, and chlorophyll-a 

4) Assess implications for future coastal stormwater management and wet pond 

management along the US Southeastern coast and other similar systems.  

2. Site Description 

 Study watersheds sampled were located aboard US Marine Corps Base Camp Lejeune in 

Jacksonville, NC in the coastal plain of North Carolina (Figure 1).  Camp Lejeune is the largest 

US Marine base in the world, employing 170,000 people and covering an area of 640 km2 

(http://www.lejeune.marines.mil/About.aspx).  Camp Lejeune surrounds the New River Estuary, 

and has installed over 200 wet ponds to mitigate negative hydrologic impacts of increased 

impervious area on coastal streams. The New River Estuary, like many other estuaries in NC, has 

experienced intense eutrophication in the past due to high levels of nutrient loading (Mallin et 

al., 2005), so understanding the effects of stormwater management on nutrient dynamics is 

imperative. The two study streams drain into the New River Estuary but did not experience 

significant tidal fluctuations or any salinity during the study period.   

 The developed watershed (70 ha, 28% mean imperviousness (Xian et al., 2011)) for this 

study is located in a residential neighborhood called Tarawa Terrace on the northern boundary of 

the estuary (Figure 1). Between January 2009 and March 2011, the existing homes were 

demolished and completely rebuilt.  This development increased the mean imperviousness of the 

watershed by 5.2% (Figure 2).  Seven wet ponds were constructed during this time period, 

covering 2.4 ha (3.4% of the watershed area) and receiving nearly all surface water drainage 

from the watershed (97 % of watershed area, 68 ha).  By the end of the study, all wet ponds were 

fringed with marsh vegetation, mainly cattails (Typha spp.), and each pond had alligator weed 

http://www.lejeune.marines.mil/About.aspx
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(Alternanthera philoxeroides) established at the permanent pond surface that reached into the 

open water, covering approximately 30% of the pond surface. 

 The French Creek watershed (835 ha, 1.2 % mean imperviousness (Xian et al., 2011)) 

was the reference watershed for this study (Figure 1).  The watershed has been partially cleared 

but contains large areas of woody wetlands and shrubs, has very low levels of imperviousness, 

and exhibits characteristics of an undeveloped blackwater coastal stream system (Figure 2).  This 

watershed encompasses a bombing range and some gravel roads.  The reference watershed is 

located on the eastern side of the New River Estuary and does not have any SCMs (Figure 1).  

This watershed maintained its hydrologic patterns and blackwater characteristics during this 

study.   

 

Figure 1. Location of study watersheds within North Carolina and hillshade with drainage network and wet ponds.  
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Figure 2. a) Soil drainage of the study watersheds b) 2011 National Land Cover Database percent imperviousness c) 

2006 - 2011 change in imperviousness.   

 

 The developed watershed’s soils are primarily well-drained and moderately well-drained 

(Soil Survey Staff, 2015), although the soil classification in the developed watershed 

incorporates the extensive development and storm sewer drainage (Figure 2).  There is a patch of 

very poorly-drained soil near the top of the watershed.  The outlet of the watershed is located 

next to the outlet of two wet ponds, and a third wet pond is located approximately .35 km from 

the watershed outlet within the stream network (Figure 1).  Four more wet ponds are located 

higher in the watershed.  Reference watershed soils are a mix of poorly-drained and well-drained 

soils (Soil Survey Staff, 2015), and the natural stream drainage network is unaltered (Figure 2).  

French watershed was selected as a reference in this study because of its proximity to the 

developed watershed, its low amount of impervious area, and its lack of disturbance during the 

time period of construction in the developed watershed, despite distinctions in watershed soil 

types and watershed area.  Although not considered a control, this study uses French as a 
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reference with the aim of comparing temporal trends in nutrient, total suspended solids, and 

chlorophyll-a concentrations in each watershed’s stream. 

3. Methods 

 Sampling occurred over a period of seven years, beginning in January 2008 and ending in 

June 2015 for both the developed and reference watersheds.  Water samples from each 

watershed’s stream were collected every two weeks during baseflow and throughout the course 

of one storm event each month.  Samples during storm events were collected using Teledyne 

Isco automatic water samplers programmed to collect samples after the stream velocity passed a 

certain threshold that was unique for each stream and paced to provide samples from the rising 

limb, peak, and falling limb of the storm hydrographs. Storm samples collected by Isco’s were 

transported as quickly as possible (always within 48 hours of the storm event) for sample 

processing at the University of North Carolina at Chapel Hill’s Institute of Marine Sciences 

(UNC IMS).  Water samples were analyzed for concentrations of nitrate-nitrite (NOx
--N, µM), 

ammonium (NH4
+, µM),  orthophosphate (PO4

3-, µM), total nitrogen (TN, µM), organic nitrogen 

(ON, µM), chlorophyll-a (chl-a, µg/L), and total suspended solids (TSS, mg/L).  All data were 

Log10-transformed before analysis to fit assumptions for parametric statistical testing.  A value of 

10-6 was added to all data before log transformation due to multiple values of zero (below 

detection limit) in the data set.  

 Water quality data for each stream were partitioned into three time periods based on the 

timing of construction in the developed watershed: Pre-Construction (Pre), Construction (Mid), 

and Post-Construction (Post) (Table 1). This delineation enabled comparison among time periods 

and between watersheds. This study focused on the differences between the Pre and Post periods. 

While changes in water quality were evident during the Mid period, this study does not offer 



9 

 

conclusions about this period because the effects of disturbance from the construction activities 

and the effects of wet ponds cannot be differentiated.  The Mid period was part of the data 

record, but was not explicitly analyzed as part of this study. 

 
Start End 

Tarawa 

Sample n 

French 

Sample n 

Pre January - 2008 December - 2008 27 94 

Mid December - 2008 March - 2011 - - 

Post March - 2011 July - 2015 256 234 

 
Table 1. Sampling dates for each period of development.  n represents the number of water samples collected for 

concentration measurements during each period. 

 

 A Student’s t-test (α  = 0.05) was performed on the Log10-transformed nutrient, TSS, and 

chl-a data to determine if there were significant differences in any of the water quality variables 

between Pre and Post development periods for both streams.  Nutrient, TSS, and chl-a 

concentration data from the developed stream were parsed into samples collected at baseflow 

and stormflow, and the same methodology above was used to determine if there were significant 

differences between time periods for both baseflow and stormflow for each water quality 

variable. 

 A linear model was created for each variable measured during the Post period for each 

stream using the date of sampling as the independent variable and unaltered concentration 

measurements as the dependent variable.  Concentration values were predicted for each variable 

for each stream using the corresponding linear model for the beginning and end of the Post 

period.  The predicted change in each variable for the reference stream was subtracted from the 

predicted change in each variable for the developed stream to remove natural trends in 

concentration data.  The reference stream did not experience significant anthropogenic 

disturbance during this study, so any trends in water quality variables in the reference stream 

during the Post period were assumed to be trends unrelated to development.  These trends in 
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concentration data could hypothetically be driven by changes in precipitation (ex. dilution vs. 

concentration) or temperature over the course of the Post period.  After trends exhibited by the 

undeveloped watershed were removed, the developed stream’s predicted change for each 

variable was divided by the developed stream’s predicted values for the beginning of the Post 

period and multiplied by 100 to calculate percent relative change. 

 Finally, a Student’s t-test (α  = 0.05) was performed on Log10-transformed nutrient, TSS, 

and chl-a concentration data to compare baseflow and stormflow concentrations during both the 

Pre and Post periods.  To investigate the role of wet ponds as a source or sink for various water 

quality variables, a paired Student’s t-test (α  = 0.05) was performed on Log10-transformed 

nutrient, TSS, and chl-a concentration data to compare water quality concentrations at baseflow 

from the developed stream and a developed watershed wet pond between mid-March 2015 and 

the end of June 2015.   

 All statistical analyses were performed in R (version 3.1.2).  Maps were created using 

Environmental Systems Research Institute (ESRI) ArcMap (version 10.2.2). Imagery, elevation 

data, and SCM data were provided by US Marine Corps Base Camp Lejeune. 

4. Results and discussion 

4.1 Impacts of wet pond implementation: Comparing Pre and Post periods 

 Stormwater managers in both coastal and non-coastal areas utilize similar SCMs and 

overall management goals (Collins et al., 2010), but the coastal plain presents distinct conditions 

for stormwater management such as flat topography, high water table, proximity to recreational 

and ecological resources, high cost of land, and complications associated with tidal influences 

(EPA, 2014).  To determine the efficacy of wet ponds in a coastal watershed, I examined 

changes in stream water quality using long-term data collection in 2 representative coastal plain 
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watersheds, one largely undeveloped and one that was further developed and outfitted with wet 

ponds during the study.  

 There were significant changes in the mean concentrations of all variables except NH4
+ in 

the developed (Tarawa) watershed’s stream between the Pre and Post periods (Figure 3).  In the 

less developed reference (French) watershed’s stream, mean chl-a and NH4
+  concentrations both 

significantly increased between the Pre and Post periods, but the magnitude and percent change 

in the mean chl-a concentration was smaller than in the developed stream and NH4
+ increased 

while the developed stream slightly decreased, but not significantly (Figure 3).  This multi-year 

data record indicates that the installation of the SCMs during the construction phase in the 

developed watershed did not result in water quality on-par with the Pre conditions. 

4.1.1. Nitrogen 

 Human modification of the nitrogen cycle has been extraordinary (Vitousek et al., 1997).  

In coastal areas, excessive nitrogen loading has led to impairments of many of the world’s 

estuaries (Bricker et al., 2007).  In areas where nitrogen loading to estuaries is excessive, any 

sinks and/or processes that remove nitrate from the system become increasingly important 

(Brush, 2009).  Coastal stream networks have been shown to be significant sinks for nitrogen, 

reducing the load delivered to estuaries (Thompson et al., 2000).  Wet ponds are presumed to be 

nitrogen sinks and enhance nitrogen removal, but there are few long-term measurements and 

fewer still in the coastal plain.  In nitrogen-sensitive, eutrophic coastal plain ecosystems, sinks 

for excess nutrients are ecologically and economically valuable (Piehler and Smyth, 2011).  In 

order to determine whether wet ponds are detrimental or beneficial to estuaries in terms of 

nitrogen processing, I analyzed a record of nitrogen concentrations before and after the 

installation of stormwater ponds. 
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 In this study, the mean developed stream NH4
+ concentration did not change significantly 

between Pre and Post periods (Figure 3). The mean concentration did significantly decrease 

during baseflow but not during stormflow between Pre and Post periods (Figure 4).  The 

reference stream showed a significant increase in the mean NH4
+ concentration of .22 + 1.05 μM, 

or 21.84 %, between Pre and Post (Figure 3, Table A.1).  The increase of the mean NH4
+ 

concentration in the reference stream and decrease in the mean baseflow concentration in the 

developed stream between Pre and Post indicates that wet ponds or the stream in the developed 

watershed may have functioned as NH4
+ sinks (Figure 3, Figure 4). Possible mechanisms for the 

observed decrease of baseflow NH4
+ concentration could include the storage of NH4

+ in pond 

vegetation (Mallin et al., 2002), uptake by pond phytoplankton (Lewitus et al., 2008), or the 

transformation of NH4
+ into NOx

- via nitrification in the pond or stream (Collins et al., 2010). 

 The mean NOx
- concentration increased by 1.97 + 4.85 μM in the developed stream, a 

51.8 % increase, between Pre and Post periods (Figure 3, Table A.1).  The mean concentration of 

NOx
- significantly increased during baseflow but not stormflow in the developed stream between 

Pre and Post (Figure 4). There was no significant increase of the mean NOx
- concentration in the 

reference stream (Figure 3).  The increased mean baseflow concentration of NOx
- in the 

developed stream could be caused by increased impervious and lawn area (Table A.4), which can 

increase NOx
- inputs from the atmosphere (Kaushal et al., 2011) and fertilizer (Osmond and 

Hardy, 2004).   The majority of nitrogen export in suburban areas occurs during low flows 

(Groffman et al., 2004, Shields et al., 2008), indicating that sources of nitrogen within the 

watershed are exported to the stream by high-frequency, low-intensity storm events that bypass 

stormwater infrastructure (Groffman et al., 2004).  Alternatively, channelization of the stream 

due to increased runoff or elevated wet pond discharge could disconnect the stream from its 
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floodplain, an important area for NOx
- removal (Newcomer-Johnson et al., 2014).  A third 

possible mechanism for the increase in the mean baseflow NOx
- concentration in the developed 

stream is the conversion of NH4
+ into NOx

- via nitrification (Collins et al., 2010) since the mean 

baseflow NH4
+ concentration decreased as well. No change in the mean stormflow concentration 

of NOx
- in the developed stream indicates that the ponds are not a source of NOx

- when flushed 

during storms (Figure 4). 

 The mean ON concentration in the developed stream increased by 7.15 + 10.38 μM, or 

57.93 %, between Pre and Post periods (Figure 3, Table A.1).  Mean baseflow concentrations 

and stormflow concentrations significantly increased (Figure 4).  No significant change in mean 

ON concentrations was observed in the reference stream (Figure 3). Wet ponds could be sources 

of ON during baseflow and when flushed during storm events.  Possible mechanisms for this 

increase could be vegetation and algal biomass supported by ponds.          

4.1.2. Phosphorus  

 Excess concentrations of phosphorus in freshwater, specifically orthophosphate (PO4
3-), 

can cause eutrophication issues much like those caused by nitrogen in ocean or estuarine waters 

(Correll, 1998).  The New River Estuary has historically experienced eutrophication issues with 

connections to phosphorus enrichment from sewage treatment plants (Mallin et al., 2005), so 

keeping phosphorus concentrations low is known to be important for maintaining the health of 

the estuary. Stormwater ponds are thought to remove phosphorus by enhancing settlement of 

phosphorus-sorbed suspended sediments (Nairn and Mitsch, 2000) or uptake by vegetation 

(Kadlec, 2016) and algae (Nairn and Mitsch, 2000).  Phosphorus removal is thought to be a 

major benefit of stormwater ponds, but SCMs have been known to become phosphorus saturated 
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over time (Hunt and Lord, 2006; Merriman and Hunt, 2014) and even become sources of 

phosphorus during low flows due to anoxic sediments (Duan et al., 2016).    

 Comparing before and after the implementation of wet ponds, the developed stream mean 

dissolved PO4
3- concentration decreased by .30 + .65 μM, or 32.24% (Figure 3, Table A.1).  

Mean stormflow and baseflow dissolved PO4
3- concentrations in the developed stream both 

significantly decreased. There was no significant change of the mean dissolved PO4
3- 

concentration in the reference stream (Figure 3).  The decrease in the developed stream mean 

dissolved PO4
3- concentration and no change in the reference stream indicates that wet ponds 

lowered the mean PO4
3- concentration within the stream, especially during storm events (Figure 

3, Figure 4).  These data show that wet ponds may be effective at reducing mean dissolved PO4
3- 

concentrations either by sorption to suspended sediments that settle out (Nairn and Mitsch, 2000) 

or uptake from wetland vegetation (Kadlec, 2016) and algae (Nairn and Mitsch, 2000).  

However, analysis could have been skewed since sample filtration removed sediment-sorbed 

phosphorus. This could explain the significantly lower mean concentration of dissolved PO4
3- if 

more PO4
3- was sorbed to sediments in the Post period than the Pre period. Future research 

should include measurements of total phosphorus in addition to dissolved phosphorus to 

determine if wet ponds are actually removing phosphorus or supplying it downstream attached to 

suspended particles.   

4.1.3. Chlorophyll-a  

 Nutrient management in coastal regions is most often focused on reducing excessive 

phytoplankton biomass as measured by chlorophyll-a.  Pristine blackwater coastal streams are 

generally understood to be sites with low phytoplankton biomass due to naturally low nutrient 

concentrations and high amounts of dissolved organic material (Meyer, 1992).  However, in 
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coastal streams with a developed watershed, increased nutrient loading can create large amounts 

of algae and negatively impact downstream water quality (Mallin et al., 2004; Wahl et al., 1997).   

 At our study sites, the mean concentration of chl-a increased by 8.23 + 14.56 μg/L in the 

developed stream and .64 + 1.93 μg/L in the reference stream, a 349.26 % and 76.35 % increase, 

respectively (Figure 3, Table A.1). The increase of the mean chl-a concentration in the 

developed stream was approximately thirteen times larger than the increase in the reference 

stream.  The mean chl-a concentration in the developed stream significantly increased during 

both baseflow and stormflow, although the increase in mean concentration was larger during 

stormflow (Figure 4). The larger increase of the mean chl-a concentration in the developed 

stream relative to the reference stream indicates that the increase in the developed stream was not 

solely due to environmental conditions. Additionally, the larger increase in mean concentration 

during stormflow compared to baseflow in the developed stream suggests that there is a flushing 

of chl-a from the watershed during storm events, likely from the wet ponds (Figure 4). Coastal 

wet ponds have been shown in the past to have high concentrations of algal biomass during 

certain seasons (DeLorenzo, 2012; Lewitus et al., 2008).   As a consequence of design, these 

ponds appear to provide optimal habitat for algal blooms: sufficient irradiance, low flow 

velocities, and nutrients that flow into ponds from large areas of the watershed after storm 

events.    

4.1.4. Total suspended solids  

 Wet ponds are designed to remove suspended solids by slowing down incoming water 

and allowing suspended solids to settle out of the water column (NCDENR, 2009). Suspended 

solids, such as sediments and organic matter, reduce water quality by increasing water column 

light attenuation (Bilotta and Brazier, 2008), changing water temperature (Bilotta and Brazier, 
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2008), and reducing dissolved oxygen concentrations by adding organic material to the water 

column and increasing sediment oxygen demand (Waterman et al., 2011).     

 In the present study, mean TSS concentration increased by 18.99 + 41.51 mg/L in the 

developed stream between Pre and Post periods, which is a 310.65 % increase (Figure 3, Table 

A.1).  After the construction period, the mean TSS concentrations were significantly higher in 

both baseflow and stormflow in the developed stream (Figure 4).  No significant change in the 

mean TSS concentration was observed in the reference stream between Pre and Post (Figure 3). 

The main purpose of wet ponds is typically to mitigate altered hydrology from development 

(Hancock et al. 2010) and capture suspended solids that are eroded from the watershed 

(NCDENR 2009).  It is surprising that the mean TSS concentration in the stream during the Post 

period was 310% higher than the Pre period (Figure 3, Table A.1).  Logically, TSS 

concentrations will increase while construction is ongoing, but once construction ceased, the wet 

ponds in this study did not maintain or reduce the mean TSS concentration downstream relative 

to the Pre period mean concentration.  This phenomenon has been documented in the Piedmont 

of North Carolina by Tillinghast et al. in 2011. They showed that lowering the peak flow from 

storm events using ponds can increase the amount of time that an SCM’s discharge exceeds a 

level that erodes downstream stream channels. An alternative hypothesis is that the wet ponds 

were actually sources of TSS due to sediment resuspension within the pond.   
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Figure 3. Nutrient, total suspended solid, and chlorophyll-a concentrations for the Pre and Post periods of 

development.  Full color boxplots indicate water quality variables that changed significantly between Pre and Post 

periods based on Student’s t-tests (α = .05). 
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Figure 4. Nutrient, total suspended solid, and chlorophyll-a concentrations from the developed stream for the Pre 

and Post periods of development for baseflow and stormflow water samples.  Full color boxplots indicate water 

quality variables that changed significantly between Pre and Post periods based on Student’s t-tests (α = .05). 

 

4.2. Trends in stream water quality after wet pond implementation 

 Comparing the relative change between the beginning and end of the Post period, 

concentrations in the developed stream decreased relative to the reference stream for chl-a, 

NH4
+, and ON and increased relative to the reference stream for NOx

-, PO4
3-, and TSS (Figure 5, 

Table 2).  During this 3 year period, chl-a decreased by 14.48 %, NH4
+ decreased by 48.76 %, 

and ON decreased by 1.71 % relative to the reference stream (Figure 5, Table 2).  Concentrations 

of NOx
- increased by 158.23 %, PO4

3- increased by 5.23 %, and TSS increased by 590.08 % 

(Figure 5, Table 2).  Predicted stream water chl-a concentrations decreased slightly through the 

Post period, which may be explained by an increase in pond vegetation cover over time.  An 
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increase in vegetation cover within the ponds over time could compete with algae for nutrients 

and light within the ponds, possibly also explaining the decrease in NH4
+ concentrations in the 

stream over time.  The increase in NOx
- concentrations predicted by the linear regression 

indicates the wet ponds became less effective at removing NOx
- as time went on, or channel 

incision and erosion decreased the stream’s ability to remove NOx
- by disconnecting the stream 

from its floodplain (Newcomer-Johnson et al., 2014).  There was no clear trend in ON 

concentrations between the beginning and end of the Post period.  Predicted concentrations of 

PO4
3- increased slightly through the Post period, which could mean that the sediments in the 

pond became saturated with PO4
3- within a few years and lowered the pond’s ability to remove 

PO4
3- (Hunt and Lord, 2006; Merriman and Hunt, 2014), or the dissolved oxygen concentrations 

within the pond decreased over time and allowed particle-bound phosphorus to be released 

(Duan et al., 2016).  Additionally, predicted TSS concentrations increased almost 6-fold during 

the Post period, indicating that the ponds were removing less TSS over time, having sediments 

become resuspended within the pond and exported, or scouring material from the streambed.   

 Considered together, these results indicate that wet ponds in the developed watershed 

became less effective at removing nutrients and TSS over time or negatively impacted the ability 

of the stream to remove nutrients and TSS.  Alternatively, sources of nutrients and TSS could 

have increased throughout the Post period.  To maximize NOx
-, PO4

3-, and TSS removal within 

the wet ponds, this study suggests that wet ponds in coastal areas undergo more frequent 

excavation. This is in line with the recommendations for wet ponds in the Piedmont of North 

Carolina and elsewhere that call for sediment excavation every few years to preserve water 

storage capacity and sediment, nitrogen, and phosphorus removal (Duan et al., 2016; Hunt and 

Lord, 2006; Sønderup et al., 2016).  While stream water concentrations of chl-a, NH4
+, and ON 
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decreased over the Post period, the increases in various water quality concentrations were much 

larger, percentage-wise, than the reductions (Table 2).  
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Figure 5. Time series of nutrient, TSS, and chl-a concentrations for both reference (green) and developed (blue) 

streams with linear fits for each period of construction.  Area between the dotted lines indicates the construction 

(Mid) period.  All y-axes use a square root scale, except TSS which uses a log10 scale. 
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Natural trends 

removed 

TSS 

(mg/L) 
NOx

- 

(µM) 
NH4

+ 

(µM) 
PO4

3- 

(µM) 
ON 

(µM) 
Chl-a 

(µg/L) 

Change 32.35 4.22 -2.66 0.42 -0.31 -1.72 

% change 590.08 158.23 -48.76 5.23 -1.71 -14.48 

Slope (conc/yr) 7.56 .99 -.62 .10 -.07 -.40 

Slope (perc/yr) 137.89 36.98 -11.39 1.22 -.40 -3.38 

 
Table 2.  Relative change, percent relative change, and the relative slope of nutrient, TSS, and chl-a concentrations 

at the beginning and end of the Post-Construction period.   

 

4.3. Stormwater wet ponds as a source of algae and sediments and a sink for NOx
- 

 Concentrations of water quality variables during baseflow and stormflow were compared 

for both Pre and Post periods in the developed stream.  During the Pre period, concentrations of 

all water quality variables, except for chl-a and TSS, were significantly different during baseflow 

and stormflow conditions (Figure 6).  During the Post period, chl-a and TSS concentrations 

became significantly different during baseflow and stormflow, and in both cases had higher 

stormflow concentrations than baseflow (Figure 6).  NOx
- concentrations during the Pre period 

were lower during baseflow than stormflow, but flipped during the Post period to have lower 

NOx
- concentrations during stormflow conditions (Figure 6).  Additionally, mean concentrations 

of chl-a and TSS were significantly higher and the mean NOx
- concentration was significantly 

lower in the wet pond than in the developed stream during baseflow over the sampling period 

(Figure 7).  These data indicate that wet ponds in the watershed were likely sources of both chl-a 

and TSS to the stream and sinks for NOx
-.  The variation in each parameter, except chl-a, was 

higher in the wet pond than in the developed stream (Table A.3).  The extremely low 

concentrations of pond NOx
- seem to contrast the fact that NOx

- concentrations significantly 

increased in the stream after the implementation of wet ponds (Figure 3).  Based on this 

observation, and the fact that almost all of the developed watershed drains to a wet pond, NOx
- 

may be effectively removed by the ponds, but NOx
- within the watershed may be infiltrating to 
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groundwater during small storm events and be released to the stream during baseflow.   It is also 

important to note that this comparison between a wet pond and the stream took place between 

March and the end of June, so it did not capture variability throughout all seasons. All other 

nutrients in the pond had mean concentrations higher than the stream, but the differences were 

not significant due to higher variability in nutrient concentrations within the pond.   The negative 

ecological effects of increased chl-a and TSS concentrations within coastal wet ponds should be 

considered in management decisions. 

 
Figure 6. Developed stream concentrations of nutrient, TSS, and chl-a during baseflow and stormflow conditions 

for the Pre and Post Periods.  Full color boxplots indicate a significant difference determined by a Student’s t-test (α  

= .05).  n = 15 for baseflow and 12 for stormflow during the Pre Period, and  n = 114 baseflow and 140 for 

stormflow during the Post period.   
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Figure 7. Developed stream and developed wet pond concentrations of nutrient, TSS, and chl-a.  Samples for both 

sites were taken within 15 minutes of each other.  Full color boxplots indicate a significant difference determined by 

a paired Student’s t-test (α  = .05).  n = 9 for each location.  

 

4.4. Implications for stormwater management in the coastal southeastern US 

 Conventional stormwater management has focused on narrow management goals (Burns 

et al., 2012) and relied on large, centralized SCMs, such as wet ponds, that collect water from 

large areas of the landscape (Collins et al., 2010).  While most centralized SCMs are made with 

the primary goal of mitigating the negative hydrologic effects of development, the results from 

this study show that this typical method of stormwater management in coastal areas may have 

some negative effects on downstream water quality.    

 Wet ponds may not be the best choice for stormwater management in the coastal 

southeastern US.  Overall, the installation of wet ponds that drained 97% of the watershed area 

was unable to mitigate the negative effects of increased development.  This is illustrated by the 

findings of this study that a wet pond was likely a source for TSS and chl-a between spring and 

summer and that water quality generally decreased further after watershed-scale wet pond 
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implementation with increased development.  Undeveloped watersheds on the coast of the 

southeastern US are drained by blackwater streams (Meyer 1990), but extensive impervious area 

that accompanies development does not allow precipitation to infiltrate into soils and undergo 

natural soil biogeochemical processes that supply streams with water rich in dissolved organic 

matter and low in suspended sediments (Piehler et al., in prep).  Rather, the water from 

developed coastal watersheds have less dissolved organic matter with complex molecular 

composition (Hosen et al., 2014), more broken-down, bioavailable dissolved organic matter 

(Hosen et al., 2014), more nutrients (Wahl et al., 1997), and more chl-a (Figure 3, Piehler et al., 

in prep) than natural watersheds.   The installation of wet ponds in the developed watershed did 

not mitigate many of these negative effects of development, but rather increased them.  

 Managing stormwater with low-impact development (LID) structures may help restore 

watershed biogeochemistry and stream water quality by restoring pre-development flow regimes, 

decreasing surface runoff, and increasing both evapotranspiration and infiltration (Burns et al., 

2012; Walsh et al., 2016).  Restoring flow paths and biogeochemistry is an optimal approach for 

improving the water quality of developed coastal watersheds due to importance of dissolved 

organic matter in streams (Meyer 1990).  LID may be more practical than wet ponds in settings 

represented by the study watershed due to the large amount of open and low-intensity developed 

area in the watershed (Table A.4) that could support LID infrastructure but not additional wet 

ponds.  Additionally, the higher cost of land and higher water table in coastal areas could make 

LID more tenable than wet ponds and other large, deep SCMs (EPA, 2014).  LID has improved 

stormwater quality (Dietz, 2007; Dietz and Clausen, 2008; EPA, 2014) and quantity (Jarden et 

al., 2016) in urban or suburban watersheds and could possibly minimize the negative water 
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quality impacts from wet ponds found in this study by decreasing open water area that can 

promote algae and sediment resuspension.  

 Concentrations of NOx
- , PO4

3-, and TSS increased in the developed stream relative to the 

reference stream during the period after wet pond implementation, and chl-a, NH4
+, and ON 

decreased.  These changes in stream water quality indicate that the function of wet ponds in the 

study watershed changed after they were implemented.  If other types of SCMs cannot be 

implemented to replace wet ponds, this study recommends frequent pond excavation to maintain 

the effective removal of various water quality variables.  However, this recommendation may be 

untenable for some communities due to the high price of maintenance for wet ponds, which are 

among the most expensive types of SCM to maintain appropriately (Houle et al., 2013).  If 

maintenance cost is not an issue, stormwater wet pond retrofits, such as the implementation of 

floating wetland vegetation (Tanner and Headley, 2011; Winston et al., 2013), could also be 

implemented to improve nutrient and suspended sediment removal within a wet pond. 

5. Conclusions  

 After a period of increased development and watershed-scale implementation of 

stormwater wet ponds in a developed watershed, stream water quality significantly changed and 

decreased overall.  Mean concentrations of chl-a, NOx
-, organic nitrogen, total nitrogen, and TSS 

in the developed stream significantly increased, while the mean PO4
3- concentration decreased, 

and the mean concentration of NH4
+ did not change.   Over a three year period after wet pond 

implementation, the stream water concentrations of NOx
-, PO4

3- , and TSS increased over time 

compared to the reference stream, indicating a reduction in pollutant removal efficiency for wet 

ponds, a negative impact on pollutant removal processes in the stream, or an increase in pollutant 

sources to the stream throughout the Post period.  Concentrations of chl-a, NH4
+, and ON in the 
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developed stream decreased over time after wet pond implementation, but the decreases were 

much smaller compared to increases of other water quality variables.  Comparing baseflow and 

stormflow water quality concentrations from the developed stream during the Pre and Post 

period as well as a wet pond within the developed watershed to the developed stream during a 

single spring and summer showed that the wet ponds were likely functioning as sources of chl-a 

and TSS to the stream and sinks for NOx
-.   

 This study demonstrates that the watershed-scale implementation of stormwater wet 

ponds may not be optimal for nutrient, TSS, and chl-a removal in coastal areas within the 

southeastern US. Distributed stormwater management, such as LID, may be a better method than 

wet ponds for mitigating the negative effects of development on coastal water quality, but further 

study of both traditional and LID stormwater structures at the watershed-scale is needed in 

coastal areas of the southeastern US.  In areas where distributed systems cannot be used our 

finding indicate that both stormwater pond retrofits and frequent pond excavation to maximize 

removal efficiency may improve nutrient removal performance.   
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CHAPTER 2: NITROGEN DYNAMICS IN COASTAL STORMWATER WET PONDS: 

SEDIMENT NITROGEN FIXATION AND A NITROGEN-CHLOROPHYLL-A 

TRADEOFF DURING THE SUMMER 

 

1. Introduction 

 

 The Coastal Plain of the southeastern United States is expected to undergo a steep 

increase in urbanization over the next 50 years with urban area nearly doubling by 2060 

[Terando et al., 2014]. With the expansion of urban area and the resulting increase in impervious 

surface area comes the need to manage stormwater created by impervious surfaces to protect 

coastal water quality, human health, and the ecosystem services provided by coastal waters.  

Specifically, elevated concentrations of nitrogen in stormwater can have negative impacts on 

coastal waters where nitrogen is typically the limiting nutrient for algal growth [Howarth and 

Marino, 2006].  Runoff containing pollutants has immediate impacts on sensitive and important 

coastal waters [Sanger et al., 2013], but effective stormwater management should, ideally, 

reduce these impacts.  

 Stormwater ponds are the most common type of stormwater control measure (SCM) in 

the US [Collins et al., 2010], and make up the majority (~ 60%) of SCMs in coastal NC counties 

[NCDEQ, 2017].  Wet ponds, one of the two types of stormwater ponds, collect water from a 

landscape and retains a permanent pool of water [Collins et al., 2010] with the main purpose of 

extending the storm hydrograph, reducing peak flows downstream, and reducing TSS loads 

[NCDENR, 2009; Hancock et al., 2010]. Wet ponds are widely acknowledged as a less effective 

means of reducing nitrogen loads from stormwater than other kinds of SCMs [Collins et al., 

2010], and wet ponds can have negative impacts on water quality, including increasing 
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concentrations of algae [Lewitus et al., 2008; DeLorenzo et al., 2012; Song et al., 2015; Gold et 

al., in prep] and harmful bacteria [DeLorenzo et al., 2012].  Their ability to protect streams from 

erosion and remove other kinds of nutrients is highly variable and lower than other types of 

SCMs [Gold et al., in prep; Collins et al., 2010; Hancock et al., 2010; Tillinghast et al., 2011; 

Houle et al., 2013; Koch et al., 2014].  

 Denitrification, the microbially-mediated transformation of nitrate into inert N2 gas and 

the concurrent oxidation of organic matter [Seitzinger et al., 2006], is thought to be an important 

nitrogen removal process in SCMs [Groffman et al., 2004, 2009; Zhu et al., 2004; Collins et al., 

2010; Bettez and Groffman, 2012].  Nitrogen fixation, the transformation of N2 gas into 

bioavailable nitrogen [Howarth et al., 1988], can be an important part of the sediment nitrogen 

cycle in low-nutrient water bodies [Scott et al., 2008; Newell et al., 2016b] or water bodies that 

are nitrogen limited due to large amounts of phosphorus relative to nitrogen [Howarth et al., 

1988].  Previous studies on SCMs in coastal areas have used methods that do not measure these 

processes or use acetylene reduction assays that significantly alter the microbial community 

[Fulweiler et al., 2015].  Most studies have calculated concentration changes between the inflow 

and outflow of SCMs, but very few studies have gone beyond the “black box” approach to 

directly quantify the processes of nitrogen removal and fixation within SCMs [ex. Scott et al., 

2008].   No studies, to our knowledge, have measured net N2 gas flux in coastal SCMs using 

intact core incubations, but this methodology is important for gaining a clear understanding of 

sediment nitrogen cycling.  An approach that investigates nitrogen dynamics within SCMs is 

necessary to better understand their impacts on water quality and inform management decisions 

[Collins et al., 2010], especially in nitrogen sensitive coastal areas.    



36 

 

   Pond and SCM maintenance have been suggested as necessary to maintain pollutant 

removal over time.  As they age, ponds fill in with sediments and vegetation, thus decreasing 

sediment and phosphorus retention in the pond [Hunt and Lord, 2006; Merriman and Hunt, 

2014; Sønderup et al., 2016].  Because of this in-filling, ponds are routinely excavated to 

maintain water storage volume and suspended sediment and phosphorus removal [Merriman and 

Hunt, 2014; Duan et al., 2016; Merriman et al., 2016].  While removal of suspended sediments 

and phosphorus are important for maintaining good water quality and reducing peak flows in 

some areas, these established practices of wet pond management may not adequately address 

removal of nitrogen or the effects of unique topography, soil type, and hydrology of coastal 

areas. Additionally, no studies have investigated intra-pond variation in nitrogen removal 

processes in coastal SCMs with different vegetation, water level (ex. fringing marsh, shallow 

water, deep water), and flow path position.  Vegetation can increase permanent nitrogen removal 

by oxygenating soils [Kreiling et al., 2011], thereby fueling coupled nitrification-denitrification 

in nutrient and organic-rich sediments, but this process remains unstudied in coastal wet ponds.  

SCM management would be enhanced by better understanding nitrogen processing in wet ponds 

of different ages and spatial variability within wet ponds.  Such knowledge could help maximize 

nitrogen removal and minimize maintenance costs. 

 This study directly measured summer net N2 fluxes from the sediments of five coastal 

wet ponds of different ages during ambient conditions and during nitrate-enriched conditions 

similar to those found during stormflow in the pond.  This study also measured net N2 fluxes 

from sediments in different locations within a single wet pond to determine the effects of depth 

and vegetation cover on nitrogen cycling.  Additionally, a six month time-series of nutrient, 

suspended sediment, and chlorophyll-a concentrations at the inlets and outlet of a single coastal 
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wet pond were monitored to determine removal efficiencies for each of these water quality 

variables.  

 

The objectives of this study were to: 

1. Quantify rates of net N2 flux from ponds spanning a range of ages.  

2. Quantify rates of net N2 flux in different areas of a wet pond. 

3. Determine concentration-based nutrient and suspended sediment removal 

efficiencies of a coastal stormwater wet pond. 

4. Discuss implications for coastal wet pond management and design. 

2. Methods  

2.1. Site Description  

 All data were collected on Marine Corps Base Camp Lejeune in Jacksonville, NC 

between June 2016 and January 2017.  ArcGIS was used to select five stormwater wet ponds 

spanning a range of ages from 3.25 to 10 years with similar land use and soil types (Figure 1).  

All ponds sampled are located in an on-base residential neighborhood, Tarawa Terrace.  A 

middle-aged pond (6.16 years old, Figure 2) was selected for more intensive study, comparing 

measurements from the forebay and main pond and different locations within each section 

(Figure 2).  
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Figure 1. The five stormwater wet ponds sampled, located on Marine Corps Base Camp Lejeune near Jacksonville, 

NC.  

 

Figure 2. Sample stormwater pond with different vegetation types, location of sediment cores, and location of study 

site.  Sample transects from the forebay (left transect) and main pond (right transect) were compared. 
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2.2. Five pond flux experiment 

 

2.2.1. Pond conditions 

 

 Pond ages were determined from a base-wide SCM shapefile and were rounded to the 

nearest month.  To calculate the percent cover of vegetation for each sample pond, aerial 

imagery from November 2015 was used to manually delineate marsh vegetation, floating 

vegetation, and open water area.  Sediment cores collected from the deep, main parts of each 

pond were analyzed for percent organic matter by loss-on-ignition.  Surface water samples from 

the main pools of the ponds were analyzed for nutrient concentrations (NO3
--N, NH4

+, PO4
3-, 

total nitrogen, and organic nitrogen) using a Lachat nutrient auto-analyzer, total suspended solids 

concentrations by weighing the amount of particulates on a glass fiber filter after filtering a 

known amount of water, and chlorophyll-a concentrations by analyzing sonicated water samples 

with a fluorometer. 

2.2.2. Gas and nutrient fluxes from the sediment-water interface 

 To measure net sediment N2 fluxes in ponds of different ages, three replicate sediment 

cores were collected using an extended sediment corer deployed from a canoe in the deep pools 

of five different wet ponds in the Tarawa Terrace neighborhood in late June 2016 (Figure 1).  

Sediment cores with overlying site water were transported immediately to the UNC Institute of 

Marine Sciences in Morehead City, NC and allowed to equilibrate for 24 hours in site-specific 

pond water.  Sediment cores were capped, excluding air bubbles, and connected to a flow-

through system.  The flow-through system moved site-specific pond water into the top of the 

overlying water of sediment cores and out through a tube approximately 2 cm above the 

sediment surface.  Water samples from each core outflow were analyzed for N2:Ar with a 

membrane inlet mass spectrometer, and net N2 fluxes were calculated for each core by difference 
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from dissolved gases in inflow water samples. Following initial incubation, nitrate was added to 

the feed water, raising it to a concentration of 30 µM NOx
--N that is similar to NOx 

concentrations measured in ponds during storm events (Piehler Lab unpublished data).  The 

incubation equilibrated for 12 hours before they were sampled again for analysis of N2 fluxes.  

Water samples from the feed water were collected and analyzed for nutrient concentrations at the 

same time as water samples were collected and analyzed for nitrate enriched net N2 fluxes. 

 The same gas flux methodology was used to measure sediment oxygen demand (SOD) 

(O2:Ar), the flux of oxygen into the sediment.  SOD was divided by the dissolved oxygen 

concentration of the water sample from each core to calculate normalized SOD, or the flux of 

oxygen into the sediment normalized by dissolved oxygen available in the water column.  This 

measurement was used to correct for variation in ambient inflow oxygen concentrations.  

 Finally, sediment nutrient fluxes were measured using the same flow-through system 

methodology.  Concentrations of NO3
--N, NH4

+, PO4
3-, and organic nitrogen were measured 

using a Lachat Quick-Chem 8000 Nutrient Auto-Analyzer.  

2.3. Single pond flux experiment 

2.3.1. Pond depth profiles 

 Measurements of temperature, dissolved oxygen, and turbidity were collected from 

surface and bottom water from both the forebay and main pond using a YSI 6600EDS-S water 

quality sonde.  Measurements were taken at the same time as pond sediment core extraction, 

approximately noon in August 2016.  Relative thermal resistance to mixing (RTRM) was 

calculated using temperature measurements from the top and bottom of the water column to 

determine if the ponds were stratified at the time of sampling (Equation 1, Wetzel, 2001).   
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(1) 𝝋 =  
(𝝆𝒛𝟐−𝝆𝒛𝟏)

(𝝆𝟒−𝝆𝟓)
 

In equation 1, φ = RTRM (dimensionless), 𝜌 indicates water density (kg/m3) at the bottom of the 

pond (z2), the top of the pond (z1), at 4 ˚C, and 5 ˚C. Water density was calculated from 

temperature measurements using an equation derived from reference table values from 

Hornberger et al. [1998] (Equation 2). 

(2) 𝜌 =  −.006𝑡2 +  .0383𝑡 + 999.92 

In equation 2, 𝜌 = density (kg/m3) and t = temperature (˚C).  Keeping with previous studies in 

stormwater ponds and shallow water bodies, a RTRM greater than 50 indicated pond 

stratification, and a RTRM less than 50 indicated mixed conditions [Chimney et al., 2006; Song 

et al., 2013]. 

2.3.2. Gas fluxes from the sediment-water interface 

 The flow-through core incubation method described above for measuring net sediment N2 

fluxes, excluding the nitrate addition, was repeated later in the summer (early August 2016) on 

cores from the middle-aged wet pond (6.16 years old, Figure 2). Three replicate cores from six 

different sites within the pond were extracted and analyzed to determine any relationship 

between net N2 fluxes and depth and vegetation type (Marsh, shallow with floating vegetation, 

and deep) within the pond’s forebay and main pond.   

 Again, the flow-through core incubation method was used to measure SOD of sediment 

cores from the single pond.  SOD was not normalized by dissolved oxygen concentration 

because all samples were collected from the same pond. 
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2.4. Single pond monitoring 

 To monitor concentration-based removal efficiencies for nutrients, TSS, and chlorophyll-

a, the 6.16 year old pond (Figure 2) was outfitted with Teledyne Isco automatic water samplers 

in each of the two forebays and the single outlet from the main pond.   Each forebay had two 

inlet pipes, one much larger than the other.  One ISCO in each forebay measured discharge from 

the larger inlet pipes. A ratio between the largest inlet pipes from both forebays was calculated 

based on the pipe diameter, and this ratio was used to weight and combine the two 

concentrations into one “inflow” concentration.   

 Water samples were collected once every two weeks at the inlets and outlet of the pond 

from July to the end of December 2016.  Additional water samples were collected by the Isco 

auto-samplers to span the rising, peak, and falling limbs of the hydrograph during five storm 

events. Water samples were analyzed for nutrient (NO3
--N, NH4

+, PO4
3-, total nitrogen, and 

organic nitrogen), total suspended solids, and chlorophyll-a concentrations.  Concentration data 

were used to calculate the removal efficiency of each water quality variable for each sampling 

date under the assumption that the wet pond’s stormwater input was approximately equal to the 

outflow. Wet ponds are not designed to reduce stormwater volume; this assumption is consistent 

with current NC regulations and wet pond design [NCDENR, 2009]. 

 Using the observed change in chlorophyll-a (chl-a) concentrations through the pond, a 

chl-a:carbon ratio [Cloern et al., 1995], and Redfield’s carbon:nitrogen ratio [Redfield, 1934, 

1958] was used to calculate a theoretical amount of nitrogen assimilated or remineralized by the 

observed change in chl-a.  This theoretical amount of nitrogen was deducted from the observed 

change in dissolved inorganic nitrogen (DIN, NOx + NH4) concentrations, and the resulting value 

was called “change in autochthonous DIN”.  A positive change in autochthonous DIN signifies 
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an increase in DIN from within the pond that is not related to algal decomposition (ex. 

remineralization of carbon in sediments, nitrogen fixation), and a negative change in 

autochthonous DIN signifies a removal of DIN that is not related to algal uptake (ex. 

denitrification, DNRA, anammox, macrophyte uptake). 

3. Results 

 

3.1. Five pond flux experiment 

 

3.1.1. Pond conditions 

 

 All ponds were fringed with marsh vegetation, mainly cattails (Typha spp.).  Floating 

vegetation in each pond consisted of alligator weed (Alternanthera philoxeroides), which was 

established at the permanent pond surface and reached into the open water. The percentage of the 

pond surface covered by vegetation exhibited a positive relationship with pond age (Figure 3A, p 

< .2, r2 = .5).  Sediment organic matter increased with pond age, but the relationship was not 

significant (Figure 3B, p < .22, r2 = .45).  Total nitrogen concentrations exhibited a strong and 

significant (α = .05) negative correlation with pond age (Figure 3C, p < .02, r2 = .91), and 

dissolved inorganic nitrogen:phosphorus (DIN:P) ratios decreased with age (Figure 3D, p < .12, 

r2 = .61).  All ponds had a DIN:P ratio of less than 5, indicating that they were nitrogen limited, 

assuming that nitrogen limitation consists of a DIN:P < 16.   
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Figure 3. a) Pond vegetation cover as a function of age b) Pond sediment organic matter as a function of age c) 

Concentrations of total nitrogen (TN) significantly correlated with pond age d) Pond DIN:P ratio as a function of 

age. Mean + SE. 

 

3.1.2. Gas and nutrient fluxes from the sediment-water interface 

 

 Net N2 fluxes during ambient conditions exhibited a weak negative relationship with age 

(Figure 4, p < .65, r2 = .08). During nitrate-enriched conditions, net N2 fluxes exhibited a strong 

and significant negative relationship with pond age (Figure 4, p < .05, r2 = .85).  During ambient 

conditions, nitrate concentrations were below detection limit (.051 µM).  In the nitrate-enriched 
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conditions, the fuel for denitrification was introduced, and the net N2 flux of younger ponds 

increased while the net N2 flux of older ponds decreased.  There were slight decreases in oxygen 

concentration within the cores (< 1 mg/L) between ambient and nitrate-enriched net N2 flux 

measurements. 

   

 
Figure 4. Net sediment N2 fluxes as a function of pond age for both ambient and nitrate-enriched conditions.  Mean 

+ SE. 

 

 Due to the experimental set up, the amount of nitrate in the inflow of each pond’s cores 

varied based on the amount of nitrate taken up over the 12 hour period between nutrient 

enrichment and sampling (Figure 5).  Ponds that had higher rates of nitrate removal within their 

inflow water had net N2 fluxes that became more negative between ambient and nitrate-enriched 

conditions (Figure 5, p < .001, r2 = .99).  Older ponds generally had increasingly negative net N2 

fluxes after nutrient enrichment compared to younger ponds (Figure 5).  Due to nitrate uptake 

that occurred in the feed water, cores were subjected to different concentrations of nitrate at the 
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time of sampling.  This added a realistic insight into the effect of nitrogen processing in the water 

column on sediment processing that varied with pond age.   

 

 
Figure 5. The change in net N2 flux between ambient and nitrate-enriched conditions as a function of the change in 

inflow water NOx concentrations during the 12 hours between enrichment and sampling.   

 

 Normalized SOD increased with age (Figure 6, Ambient: p < .01, r2 = .98, NOx: p < .02, 

r2 = .92), indicating an increase in microbial activity as ponds age.  Net N2 flux and normalized 

SOD had a weak, negative relationship that was not statistically significant (Ambient: p < .65, r2 

= .09, NOx: p < .15, r2 = .6).  SOD is a proxy for organic matter oxidation by the microbial 

community [Eyre et al., 2013], so the results imply that ponds have more microbial activity as 

they age. 
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Figure 6. The relationship between normalized SOD and pond age for ambient and nitrate-enriched conditions.  

SOD is a proxy for microbial activity.  Mean + SE. 

 

 During the flow-through core incubation with ambient site water, all but one pond 

released NH4 from the sediments, all ponds had extremely small NOx fluxes, all but one pond 

released ON from the sediments, and all but one pond released PO4 (Figure 7).  

  During the nitrate-enriched phase of the flow-through incubation, the sediments took up 

large amounts of NOx and all ponds released PO4 (Figure 7).  The eight year-old pond exhibited 

aberrant fluxes again, most notably a smaller uptake of NOx compared to the other ponds (Figure 

7).   
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Figure 7.  Nutrient fluxes from the sediment surface measured during the flow-through core incubation under both 

ambient and nitrate-enriched conditions. Mean + SE. 

 

3.2. Single pond flux experiment  

 

3.2.1. Pond depth profiles 

 

 The main pond during sampling had an RTRM of 60.82, indicating stratified conditions 

(Table 1).  The forebay was mixed with an RTRM of 26.93 (Table 1).  Both the main pond and 

forebay had higher dissolved oxygen concentrations in the top part of the water column and 

higher turbidity in the bottom of the water column (Table 1).   
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Table 1. Depth profile measurements from the top and bottom water of the single pond 

 RTRM Condition Depth (m) Temperature (˚C) DO (mg/l) DO (%) Turbidity, (NTU) 

Main 60.82 Stratified 0.463 28.09 3.61 46.1 3.9 

   2.385 25.92 0.71 8.8 22.7 

Forebay 26.93 Mixed 0.591 27.26 2.12 26.7 3.3 

   1.841 26.29 0.54 6.7 8.2 

 

3.2.2. Gas fluxes from the sediment-water interface 

 

 In the six-year-old pond, there were no significant differences in net N2 fluxes between 

zones within the forebay, but the shallow and deep sediments from the main part of the pond had 

significantly lower rates of nitrogen fixation than all other areas sampled (Figure 8, p < .05).  

Comparing the deep-main sediment core net N2 fluxes to the same site from almost a month 

earlier during the five pond flux experiment, the magnitude of nitrogen fixation increased five-

fold from a net N2 flux of -11.96 to -60.72 µmol N m-2 hr-1. 
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Figure 8. Rates of net N2 flux in different areas of the pond (forebay, main) and different vegetation covers (marsh, 

shallow, deep). Letters indicate significant differences (p < .05) based on a Tukey HSD post-hoc test. 

 

 In the single pond, net N2 flux and SOD showed a strong and significant negative 

relationship (Figure 9, p < .01, r2 = .88).  This relationship is opposite of what has been found in 

previous studies relating SOD and net N2 flux in other habitats [Piehler and Smyth, 2011; Eyre et 

al., 2013; Smyth et al., 2013] 
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Figure 9. Average net N2 flux as a function of Average SOD in the single pond flux experiment. Mean + SE. 

 

3.3. Single pond monitoring 

 

 The time series of nitrogen species and chlorophyll-a show effective removal (comparing 

inflow and outflow) of nitrogen throughout the entire sampling period and a shift in chl-a 

concentrations from net addition during the summer to net removal during the fall (Figure 10).  

Inflow concentrations of nitrogen species and chl-a increased substantially during the fall and 

then decreased during December. 
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Figure 10. Time series of Chlorophyll-a (µg/L), nitrogen species (µM), and TSS (mg/L) from the single pond.   

 Figure 11 shows a time series of the change in autochthonous DIN concentrations.  The 

change in autochthonous DIN shifted between slightly positive and slightly negative during the 

summer, indicating small magnitudes of autochthonous DIN production and removal, 

respectively.  Autochthonous removal increased substantially during the fall and decreased 

during late November and December. 

 
Figure 11. Time series of change in DIN concentration between inflow and outflow that is not explained by 

theoretical N uptake from observed change in chl-a concentration between inflow and outflow.  
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 Combining both baseflow and stormflow measurements of removal efficiency for each 

water quality variable over the study period showed that the pond was extremely effective at 

removing NOx (-93.74%), and effective at removing NH4 (-49.48%), total nitrogen (TN,-

43.77%), organic nitrogen (ON, -7.34%), and orthophosphate (PO4, -61.34%) (Table 2).  The 

pond increased concentrations of TSS (50.30%) and chl-a (289.56%) (Table 2).  There was 

significant variability between baseflow and stormflow measurements in TSS, with the pond 

increasing TSS concentrations by 108% during baseflow and decreasing TSS concentrations by 

76% during stormflow (Table 2). 

Table 2. Mean removal, mean percent removal, and standard deviations for the two means for each water quality 

variable. 

 
Baseflow TSS NOx NH4 PO3 TN ON Chl-a 

Mean Change 6.96 -20.99 -55.40 -2.52 -81.08 -4.69 2.34 

SD 16.95 14.38 103.56 3.80 112.36 9.13 31.38 

Mean % Change 108.01 -92.75 -47.68 -58.49 -50.97 -12.82 256.25 

SD 156.61 12.70 48.16 30.14 35.89 29.53 275.50 

        

Stormflow TSS NOx NH4 PO3 TN ON Chl-a 

Mean Change -17.07 -9.52 -2.37 -1.47 -11.51 0.38 4.85 

SD 16.15 9.98 2.60 0.70 12.87 4.22 7.03 

Mean % Change -76.67 -95.74 -53.45 -67.59 -27.93 4.72 362.86 

SD 13.67 9.19 19.65 12.54 19.24 25.59 279.57 

        

Total TSS NOx NH4 PO3 TN ON Chl-a 

Mean Change -1.05 -17.41 -38.83 -2.19 -59.34 -3.11 3.13 

SD 19.92 13.95 88.30 3.16 97.82 8.14 25.90 

Mean % Change 50.30 -93.74 -49.48 -61.34 -43.77 -7.34 289.56 

SD 149.97 11.40 40.70 25.82 32.85 28.75 272.12 
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4. Discussion  

 

4.1. Wet pond conditions during summer 

 This study sampled multiple ponds during summer, but the high temperatures and pond 

stratification created extreme conditions that are likely unique to this season.  Stormwater ponds 

and other shallow water bodies experience long periods of stratification from late spring to early 

fall [Wilhelm and Adrian, 2008; Song et al., 2013] (Table 1).  Most of the nitrogen removed 

during this time is accounted for by an increase in phytoplankton biomass (Figure 11), which 

suggests that nitrogen from stormwater inflows was not influenced by pond sediments.  

Assuming some algae is retained within the pond, the production of algae combined with 

frequent summer stratification leads to a drawdown of dissolved oxygen in the bottom water by 

microbial activity (Figure 6) and extended hypoxic conditions at the sediment-water interface 

[Diaz and Rosenberg, 2008], promoting the release of sediment-sorbed phosphorus [Wilhelm and 

Adrian, 2008; Song et al., 2013; Duan et al., 2016].  Phosphorus likely builds up in the bottom 

water of the pond during the summer, further increasing nitrogen limitation, and when the pond 

mixes in the fall, there is a release of phosphorus [Song et al., 2013] and large increases of 

nitrogen and chl-a concentrations [Wilhelm and Adrian, 2008] (Figure 10).  Stormwater pond 

waters have been shown to be dominated by autochthonous processing of carbon rather than by 

watershed inputs [Williams et al., 2013], so the large increase in nitrogen and chl-a 

concentrations could be from the oxidation of organic matter and re-mineralization of nitrogen 

that was deposited on the pond bottom during the summer when the pond was stratified.  

Alternatively, watershed inputs of nitrogen from fertilizers could contribute to increase nitrogen 

and chl-a in the pond during fall.   
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4.2. Summer nitrogen dynamics 

4.2.1. Effects of pond age 

 Over time, the amount of organic matter in pond sediments increased (Figure 3B, Moore 

and Hunt, 2012).   This is likely caused by increased vegetation in the ponds as they age as well 

as phytoplankton production and subsequent deposition of algal material in the sediments (Figure 

3A).  As plants increase their areal extent over time, ponds experience a decrease in total 

nitrogen concentrations and an increase in nitrogen limitation (Figure 3C, Figure 3D).  

Combined with summer stratification [Song et al., 2013] (Table 1), summer nitrogen limitation 

in wet ponds becomes more extreme as the ponds age due to increased organic matter 

accumulation in the sediments, leading to more respiration and anoxic conditions.  This idea is 

supported by an increase in normalized SOD as the ponds age (Figure 6), indicating that older 

ponds have more microbial activity that would create more anoxic conditions and nitrogen 

limited conditions.   

 This extreme nitrogen limitation likely explained the nitrogen fixation observed during 

ambient conditions in all pond sediments in the five pond flux experiment. N2 fluxes shifted 

differentially based on age in response to nitrate enrichment (Figure 4).  Net nitrogen fixation in 

aquatic sediments has been measured in low nitrate or low inorganic nitrogen conditions [Scott et 

al., 2008; Fulweiler et al., 2013; Newell et al., 2016a, 2016b], but net sediment nitrogen fixation 

has not been measured before in coastal stormwater wet ponds.  Studies have measured 

denitrification or hypothesized that denitrification is an important removal mechanism for 

nitrogen in wet ponds [Groffman et al., 2004, 2009; Zhu et al., 2004; Collins et al., 2010; Bettez 

and Groffman, 2012], but results from this study suggest that this may not be true during the 

summer in coastal wet ponds.  While this study did not directly measure net sediment N2 fluxes 
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during other seasons, monitoring data suggests that denitrification could be important in the fall 

(Figure 11) and other seasons as well.  

 It is worth noting that increased nitrogen fixation in older ponds after the nitrate 

enrichment was in part due to the experimental design and the incorporation of water column 

processing within the feed water of the flow-through incubation set-up.  Much of the nitrate in 

the feed water was removed over the 12 hours between the nitrate addition and sampling (Figure 

5), so the younger pond sediments were exposed to higher concentrations of nitrate because their 

water column removed less nitrate over that time period.  This water column nitrate removal 

(Figure 5) shows that older ponds have more nitrate removal in the water column than younger 

ponds, which could be expected due to increased nitrogen limitation with pond age (Figure 3D).  

This water column processing is likely heterotrophic due to the absence of light throughout the 

incubation.  Given that older pond sediments were subject to lower nitrate concentrations at the 

time of sampling due to water column removal, the benthic heterotrophic nitrogen-fixers that are 

likely driving the net sediment nitrogen fixation may not have been inhibited by the nitrate 

concentrations they experienced in the older ponds.   

 Benthic heterotrophic nitrogen-fixers are less sensitive to levels of inorganic nitrogen 

than nitrogen-fixers found in the water column [Knapp, 2012], and they can fix substantial 

amounts of nitrogen at higher levels of inorganic nitrogen in dark, anoxic waters [Knapp, 2012; 

Farnelid et al., 2013; Foster and Fulweiler, 2014; Newell et al., 2016a]. One explanation for this 

phenomenon is that extremely low oxygen concentrations and high carbon availability, the 

conditions found in this study, may reduce the bacterial community’s sensitivity to inorganic 

nitrogen [McGlathery et al., 1998] and allow a select group of nitrogen-fixing benthic 

heterotrophs to dominate [Newell et al., 2016a].  This could explain the increase in net nitrogen 
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fixation between ambient conditions (0 µM NOx) and nitrate-enriched conditions in older ponds 

(10 - 20 µM NOx) that would have been expected to shift towards net denitrification due to the 

availability of nitrate [Scott et al., 2008].  In addition, the decrease in oxygen concentration in the 

core’s overlying water (an increase in SOD) could have caused the increased net nitrogen 

fixation between ambient and nitrate-enriched conditions (Figure 9 - intra-pond relationship).   

 In situ, nitrate-rich stormwater flows into the pond and likely takes time to mix with 

existing water before reaching the sediments.  In the summer, pond stratification appears to keep 

nitrogen from stormwater separated from the sediment-water interface during baseflow 

conditions (Table 1).  If nitrogen from stormflow reaches the sediment-water interface during the 

summer after a storm event, it is likely that nitrate removal within the water column would result 

in concentrations too low to inhibit benthic nitrogen fixers.  Evidence from this study suggests 

that wet pond sediments undergo net nitrogen fixation until the stratification ends in the fall.   

4.2.2. Effects of location within pond 

 The net sediment N2 fluxes from the forebay and main pond sediments of the stormwater 

pond were significantly different and were driven by SOD (Figure 9).  This difference in both 

SOD and net N2 fluxes is possibly a result of the forebay’s position upstream of the main pond, 

allowing suspended materials to settle out, increasing sediment organic matter [Zhu et al., 2004], 

and driving SOD.   

 The values of net N2 flux in both the forebay and main pond were an order of magnitude 

larger than those observed in the five pond flux experiment that took place earlier in the summer 

(late June compared to early August).  This large increase in net nitrogen fixation and the 

presence of stratification within the main pond later in the summer supports the idea that pond 
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stratification and associated water quality effects, which become more intense as the summer 

progresses, are the root causes of the net sediment nitrogen fixing seen in this study. 

4.3. Pond water quality monitoring 

4.3.1. Nitrogen - chl-a tradeoff during summer 

 During summer and early fall, the pond effectively removed all three nitrogen species, 

but generated large amounts of chl-a (Figure 10).  It is likely that summer pond stratification that 

led to sediment nitrogen fixation favored algal uptake of nitrogen in surface waters.  The 

relatively low autochthonous DIN production during the summer was likely from the 

remineralization of nitrogen from organic matter around the edges of the pond.  Autochthonous 

DIN removal could be the result of denitrification, DNRA, anammox, or plant uptake, which 

were not assessed.    

 This nitrogen - chl-a tradeoff during the summer presents a problem for water quality 

managers because labile phytoplankton biomass can be easily washed downstream during storms 

where it degrades and draws down dissolved oxygen concentrations.  Denitrification is the 

preferred nitrogen removal pathway in the wet pond because bioavailable nitrogen is 

permanently removed from the system.  The wet pond provided ideal habitat for algae to grow 

during the summer, and this algal growth in the pond essentially pushed the biogeochemical 

cycles upstream that would normally occur farther downstream in the estuary.  By moving algal 

growth upstream, the nitrate incorporated into algal biomass in the pond bypassed important 

denitrifying habitats, such as salt marshes and streambeds, that could permanently remove nitrate 

instead of causing eutrophication.  Furthermore, the decomposition of this labile carbon 

downstream could decrease the health, stability, and denitrification efficiency of these important 

denitrifying habitats.   
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4.3.2. Autochthonous DIN removal during fall 

 The increase in nitrogen concentrations and Chl-a concentrations during the fall likely 

resulted from an increase in loading from the pond’s watershed and the remineralization of 

nutrients resulting from pond mixing.  The fall increase in autochthonous DIN removal suggests 

that microbial processing of nitrogen via sediment denitrification or anammox increased and 

plant uptake by duckweed (Lemna L.) increased.  Pond turnover in the fall could increase 

denitrification or anammox by supplying the sediments with nitrate, and a proliferation of 

duckweed observed during fall sampling indicated that duckweed was utilizing nutrients in the 

pond.  Duckweed was not measured because water samples were filtered before analysis.  Other 

mechanisms for DIN removal were less likely during this time as macrophytic plant uptake was 

waning, and DNRA has been shown to be minor relative to other nitrogen removal pathways in 

freshwater sediments [Scott et al., 2008].  Anammox was also unlikely due to low rates, relative 

to denitrification, found in estuarine environments [Koop-Jakobsen and Giblin, 2009]. This 

supports the idea that denitrification and uptake by duckweed accounted for the observed 

autochthonous nitrogen removal.  

4.3.3. Nutrient and pollutant removal 

 Over the 6 month monitoring period, the wet pond achieved its regulatory goal (based on 

NCDENR, 2009) of removing more than 25% of TN (-43.77% change, Table 2) but did not meet 

its regulatory goal of removing 85% of the TSS that flow into it (50.30% change, Table 2).  I did 

not measure total phosphorus as a part of this study, but the pond removed substantial amounts 

of orthophosphate (-61.34%, Table 2).    
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4.4. Implications and suggestions for coastal wet pond management 

 The net nitrogen fixation measured in stormwater wet pond sediments illustrates that the 

common design of large, deep stormwater wet ponds may not be the most effective solutions for 

improving the water quality of urban stormwater in coastal areas of the southeastern US, 

especially during the summer. While the pond removed many of the water quality pollutants 

discussed above, it also converted a large amount of nitrogen into algal biomass during the 

summer that is likely exported during storms, contributes to a buildup of organic matter and 

phosphorus during the summer, and is possibly remineralized and released during the fall.  Large 

amounts of algal biomass in stormwater wet ponds have been documented on the southeastern 

US coast [Lewitus et al., 2008; DeLorenzo et al., 2012], suggesting that the nitrogen - chl-a 

tradeoff commonly occurs along the southeastern US coast.   

 Due to the negative effects on water quality from wet ponds in coastal areas, this study 

recommends using alternative kinds of SCMs to manage coastal stormwater.  Using SCMs with 

shallower water or no standing water at all could possibly decrease the amount of chl-a exported 

downstream during the summer and decrease the concentrations of nitrogen during the fall 

because of the lack of stratification.  More work is needed on seasonal nitrogen cycling within 

wet ponds and in alternative SCMs, such as stormwater wetlands and bioretention cells that 

could be used to replace the water quantity and quality control of wet ponds. 

 Results from this study and others suggest that the net sediment nitrogen fixation 

observed during the summer in coastal wet ponds is caused by pond stratification.  Also, water 

quality issues during the summer and fall, such as algal blooms, may be caused by summer 

stratification and a lack of permanent nitrogen removal by pond sediments.  A direct solution to 

this stratification is to increase pond mixing to break up the thermocline and re-connect the 
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sediment-water interface with oxygenated water and nitrogen from stormwater inflows.  

However, exposing sediments to too much oxygenated water could reduce the pond sediments’ 

carbon storage capability and reduce denitrification.  A possible compromise for carbon storage, 

nitrogen removal, and phosphorus removal would be to mix the pond periodically to create 

alternating low and high-oxygen conditions, or design ponds to be shallower to discourage 

stratification.   

 Another management action that could improve pond function is more frequent 

excavation. Frequent excavation is often associated with greater water storage capacity, 

suspended sediment removal, and phosphorus removal, but this study suggests that frequent 

excavation could also reduce the amount of nitrogen in ponds during the fall.  Excavating 

organic-rich and phosphorus-rich sediments from ponds could reduce anoxic conditions and 

phosphorus buildup in bottom water during the summer, which could decrease net nitrogen 

fixation during summer and reduce the amount of carbon and nitrogen re-mineralization after 

pond turnover in the fall.  

5. Conclusions 

 Stormwater wet ponds are generally considered important places for denitrification, the 

permanent removal of nitrogen from the environment, but this study shows that this may not be 

the case in coastal areas of the southeastern US during the summer months. Based on net 

sediment N2 fluxes from five wet ponds in early summer and one pond in late summer, this study 

found that stormwater wet pond sediments in coastal areas of the southeast US are possible spots 

of net nitrogen fixation during the summer.   

 Based on the five pond survey, all ponds had net sediment nitrogen fixation during 

ambient conditions.  After a nitrate addition, rates of net nitrogen fixation were significantly 
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correlated with pond age, with older ponds having higher rates of net nitrogen fixation and 

younger ponds shifting towards net denitrification.  Additionally, nitrate removal in the water 

column was significantly correlated with pond age, and older ponds had higher removal.  In the 

single pond study, the pond’s forebay had significantly larger rates of net sediment nitrogen 

fixation.  Rates of net nitrogen fixation between the five pond study at the beginning of summer 

and the single pond study towards the end of summer increased by an order of magnitude.  In all 

cases, the cause of this net nitrogen fixation was most likely pond stratification that exacerbated 

anoxic conditions, phosphorus release, and nitrogen limitation at the sediment-water interface.  

Monitoring data showed that during the summer, almost all DIN removed from the pond was 

converted into algal biomass and exported downstream, essentially creating a nitrogen - chl-a 

trade-off.  Nitrogen concentrations in the pond substantially increased in the fall, possibly due to 

the remineralization of organic matter after pond turnover. This increase in nitrogen 

concentrations spurred large amounts of autochthonous DIN removal, which was most likely 

denitrification and uptake by duckweed.  The removal efficiency of the pond met North Carolina 

stormwater guidelines for nitrogen but not for total suspended solids. 

 Stormwater wet ponds may not be the most effective solutions for improving or 

maintaining water quality in coastal areas because they do not appear to provide any permanent 

nitrogen removal during the summer.  Rather, they undergo net sediment nitrogen fixation, 

transform nitrogen from stormwater into large increases in algal biomass, and possibly increase 

nitrogen concentrations in the fall after pond turnover.  These pond functions are likely due to 

persistent thermal stratification during the summer.  This study recommends the use of 

alternative SCMs with shallow water or no standing water instead of wet ponds in coastal areas, 

increased pond circulation and aeration in existing coastal ponds to decrease stratification and its 
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effects, and frequent pond excavation to reduce anoxic conditions, phosphorus release, and 

nitrogen limitation in pond sediments.  
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APPENDIX 

 

  Developed % Change Reference % Change 

Chl-a 8.23 + 14.56 μg/L 349.26 .64 + 1.93 μg/L 76.35 

NH4
+ 

-0.71 + 8.60 μM -13.61 .22 + 1.05 μM 21.84 

 NOx
- 

1.97 + 4.85 μM 51.80 - - 

ON 7.15 + 10.38 μM 57.93 - - 

PO4
3- 

-.30 + .65 μM -32.24 - - 

TSS 18.99 + 41.51 mg/L 310.65 - - 

 
Table A.1. Change in mean concentrations of water quality variables between the Pre and Post period and the 

percent change from the mean concentrations for the Pre period.  Only variables that significantly changed are listed. 

 

Tarawa TSS NOx
- NH4

+ PO4
3- ON Chl-a 

3/8/2011 5.48 2.67 5.45 8.07 18.26 11.87 

6/18/2015 40.34 5.79 2.95 8.39 21.70 9.84 

Change 34.86 3.13 -2.50 0.31 3.44 -2.03 

% change 635.69 117.21 -45.90 3.87 18.83 -17.12 

       

French TSS NOx
- NH4

+ PO4
3- ON Chl-a 

3/8/2011 8.55 0.39 -0.87 0.41 26.51 2.23 

6/18/2015 11.05 -0.70 -0.72 0.30 30.26 1.92 

Change 2.50 -1.09 0.16 -0.11 3.75 -0.31 

% change 29.25 -279.82 -17.92 -26.48 14.15 -14.02 

       
Table A.2. Predicted values for the beginning and end of the Post, the change over the Post period, and the percent 

change over the Post period for each stream. 
 

  F Statistic P-Value 

Chl-a 2.0936 0.3163 

NH4
+ 38.1077 8.618e-05 

NOx
- 124.7187 1.489e-06 

ON 25.3087 0.0003381 

PO4
3- 37.7774 8.875e-05 

TSS 6.704 0.01433 

 

Table A.3. Results of F-test between the variance of Developed and a Developed stormwater wet pond for each 

water quality variable (α = .05) 
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Fig. A.1. Monthly Precipitation for both watersheds for Pre-construction (Pre), Construction (Mid), and Post-

Construction (Post).  
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Developed    

 2006 2011 Change 

Barren Land 0 0.76 0.76 

Cultivated Crops 2.80 2.80 0 

Developed, High Intensity 0.64 1.40 0.76 

Developed, Low Intensity 37.32 36.43 -0.89 

Developed, Medium Intensity 9.94 21.02 11.08 

Developed, Open Space 30.32 25.35 -4.97 

Evergreen Forest 15.41 10.06 -5.35 

Shrub/Scrub 3.44 2.16 -1.27 

Woody Wetlands 0.13 0 -0.13 

    

Reference    

 2006 2011 Change 

Barren Land 4.66 4.90 0.25 

Deciduous Forest 0.06 0.06 0 

Developed, Low Intensity 2.81 2.63 -0.18 

Developed, Medium Intensity 0.01 0.15 0.14 

Developed, Open Space 2.09 2.14 0.04 

Emergent Herbaceuous 

Wetlands 17.50 17.77 0.27 

Evergreen Forest 6.64 6.59 -0.05 

Herbaceuous 12.82 12.71 -0.11 

Mixed Forest 0.78 0.78 0 

Open Water 0.24 0.33 0.10 

Shrub/Scrub 22.83 22.67 -0.16 

Woody Wetlands 29.55 29.26 -0.29 
 

Table A.4. Land cover for each study watershed in percent watershed area and the change between 2006 and 2011. 
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