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Abstract 
SARAH CHRISTINE LEE: Open systems in community ecology: dispersal, diversity, 

and ecosystem properties 
(Under the direction of John F. Bruno) 

 

A large fraction of community ecology has focused on processes that operate within 

communities to control species richness; however, most natural localities are open to 

dispersal.  Dispersal can mediate community structure and functioning by introducing novel 

species and promoting coexistence at multiple spatial scales.  Using experiments, I tested the 

effects of dispersal in complex, multi-trophic communities.  Results suggest that dispersal of 

novel species is an important determinant of species richness, community composition and 

ecosystem properties across a range of environmental conditions.  Dispersal also promoted 

coexistence in a network of communities with different environmental conditions, possibly 

by subsidizing failing populations with individuals of successful populations.  Together, 

these results broaden our understanding of community and ecosystem-level effects of 

dispersal beyond terrestrial plant communities and highlight mechanisms of coexistence that 

may be unique to mobile animals. 
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INTRODUCTION

A large fraction of community ecology has focused on processes that operate within 

communities to control species richness (e.g., disturbance, predation, and competition for 

resources; Tilman 1982; Huston 1999).  However, most natural localities are open to input of 

organisms from the surrounding environment via dispersal.  The ecologically relevant unit of 

dispersal is a “propagule,” which is a colonizing organism or vegetative structure capable of 

establishing a self-sustaining population.  Depending on a species’ life history, a propagule 

can be a pregnant female, a mating pair, seeds, or spores.  By linking disjunct populations, 

dispersal of propagules between communities can control the dynamics of populations, 

communities, and ecosystems. Experimental evidence also suggests that the spatial 

characteristics of a group of interacting communities (a metacommunity, sensu Wilson 1992) 

can mediate species composition (Gonzalez 1998), interspecific interactions (Kareiva 1987; 

Bengtsson, 1989) and energy fluxes (Polis et al. 1998).  Theoretical investigations have 

identified mechanisms that may structure metacommunities (Holyoak et al. 2005 and 

references therein); among these, dispersal-mediated mechanisms are of particular interest.  

Each species’ dispersal ability, combined with the spatial distribution of habitat, 

determines the rate at which each species immigrates to a given patch (Nathan & Muller-

Landau 2000).  In this context, “patch” refers to a discrete area of habitat (Leibold et al. 

2004).  Post-arrival, whether a species becomes a member of the resident local community 

may depend on the degree of species saturation.  Saturation occurs when local processes limit 

the number of species in a community (Terborgh & Faaborg 1980; Cornell & Lawton 1992; 
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Kneitel & Chase 2004; He et al. 2005).  Theoretically, species can be excluded via local 

processes such as competition, predation, parasitism, or disturbance; however, resource 

partitioning and interspecific competition are frequently invoked as processes that act in 

concert to keep species richness at a saturation point (Ricklefs and Schluter 1993 and 

references therein).  Local processes do not limit species richness of an unsaturated 

community; instead, unsaturated communities are limited by the availability of propagules 

and open to colonization by new species.   

Propagule limitation occurs where species that could coexist in a locality are absent 

because propagules do not arrive at that locality in sufficient numbers; this can result in 

unsaturated communities.  Propagule limitation can result from geographic barriers to 

migration or dispersal; for example, oceans are physical barriers to terrestrial organisms and 

surrounding land prevents dispersal of freshwater fishes.  Biological barriers can also 

generate propagule limitation.  Interspecific interactions such as predation can increase 

propagule mortality while species’ intrinsic reproductive limitations can interact with 

stochastic population dynamics to prevent successful colonization via Allee effects (Taylor & 

Hastings 2005) Whether or not communities are likely to ever reach saturation remains an 

unresolved yet fundamental ecological question with direct consequences for our 

understanding of important phenomena, such as species invasions and climate-driven range 

expansions 

One approach to determining whether or not communities are saturated is to 

graphically examine the relationship between richness sampled at “local” and “regional” 

scales.  The advantages and shortcomings of this approach have been discussed intensively 

(Cornell &  Lawton 1992; Huston 1999; Srivastava, 1999; Loreau 2000; Shurin et al. 2000; 
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Mouquet et al. 2003; He et al. 2005; Hillebrand 2005).  Another approach is to 

experimentally determine whether local species richness is limited by propagule availability 

(Tilman 1997; Turnbull et al. 2000; Foster & Tilman 2003).  If local richness increases when 

propagule supply is experimentally increased, the community is propagule-limited or 

unsaturated.  In this case, dispersal is critical because presumably propagule limitation would 

disappear if all species in a region could disperse to all local communities.   

Even if a local community is not propagule-limited, dispersal between communities 

can mediate meta-scale (i.e., including multiple habitat patches linked by dispersal) 

community structure (Tilman 1994; Kneitel & Chase 2004). A metacommunity is defined as 

an interactive group of local communities linked by dispersal of one or more species (Wilson 

1992).  For example, similar species may coexist at the metacommunity scale via source-sink 

dynamics (Brown & Kodric-Brown 1977; Mouquet & Loreau 2003). Early formulations of 

source-sink effects focused on the role of rapid (i.e., on the same time scale as competitive 

interactions) dispersal in allowing fugitive species to persist in a multi-patch system by being 

superior colonizers (Levin 1974).  Dispersal can also reduce extinction rates in target 

communities, thus increasing species richness at equilibrium (rescue effect, sensu Brown & 

Kodric-Brown 1977).  Rescue effects operating on population demography are referred to as 

mass effects (Shmida & Ellner 1984).  Mass effects occur where input of individuals from 

habitats where there is positive population growth (i.e., “sources”) can maintain populations 

in “sinks” that would otherwise go extinct.  The result is species remain present in patches 

where they would otherwise be rapidly excluded (Shmida & Ellner 1984; Pulliam 1988).  At 

the community level, sources and sinks can be generated by spatial heterogeneity in either 

fitness or abiotic environmental conditions such that competitive rankings vary across a 
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metacommunity (Amarasekare & Nisbit 2001).  Thus source-sink dynamics refer to spatial 

heterogeneity and dispersal mediating coexistence by maintaining different competitive 

outcomes among local habitats and providing spatial refuges from competitive exclusion 

(Muko & Iwasa 2000).  

 For my dissertation research, I explored the consequences of propagule 

limitation and dispersal in heterogeneous landscapes for community structure and ecosystem 

properties.  This research addresses fundamental gaps in our understanding of communities 

open to dispersal and advances our basic understanding of the factors limiting species 

richness.  Despite evidence that propagule supply can determine structure and function of 

some marine communities (Roughgarden et al. 1988; Connolly & Roughgarden 1998), there 

are no experimental tests of community-level propagule limitation in marine systems.  I also 

investigated the effects of dispersal and environmental heterogeneity on species coexistence 

at multiple spatial scales. 

 
Chapter 1: Propagule supply controls grazer community structure and primary production 

in a benthic marine ecosystem 

Early theories of species diversity proposed that communities at equilibrium are 

saturated with species due to limited niche space (MacArthur 1965); however, propagule-

addition experiments in terrestrial plant communities suggest that propagule-limitation is 

widespread and that many communities are naturally unsaturated (Tilman 1997; Foster & 

Tilman 2003; Mouquet et al. 2004).  Although most relevant research has been focused at the 

population level (Turnbull et al. 2000), experiments in plant communities suggest that many 

communities are unsaturated and that species richness can be increased by adding propagules 

of new species.   
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Together with my advisor, I experimentally tested for community saturation and 

measured the effects of propagule supply on community structure in a benthic marine system 

(Lee & Bruno 2009).  We manipulated propagule supply (arrival of individuals of numerous 

species) of mobile grazers in experimental mesocosms over multiple generations and, unlike 

all previous tests, we examined the cascading effects of propagule supply on prey 

(macroalgae) biomass.  We found little evidence for saturation, despite the absence of 

processes such as disturbance and predation that are thought to alleviate saturation in nature.  

Increasing propagule supply increased the total number of species and made rare species 

more abundant.  Perhaps surprisingly, given the strong effect of propagule supply on species 

richness, supply-related changes in body size and composition suggest that competitive 

interactions remained important.  Grazer supply also had strong cascading effects on primary 

production, possibly due to dietary complimentarity modified by territorial behavior.  These 

results indicate that propagule supply can directly influence the diversity and composition of 

communities of mobile animals.  Furthermore, the supply of consumer propagules can have 

strong indirect effects on prey and on fundamental ecosystem properties. 

 

Chapter 2: Effects of propagule supply and resource availability on local species richness 

in mobile marine grazer communities 

In many ecological communities, biodiversity and the demography of individual 

species are strongly determined by propagule availability (Gaines & Roughgarden 1985; 

Caley et al 1996; Hughes & Tanner 2000; Clark et al. 2007; Stohlgren et al. 2008; Lee & 

Bruno 2009).  Experimental evidence indicates that the strength of propagule limitation of 

biodiversity can vary with habitat productivity (Huston 1999; Foster et al. 2004), presumably 
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because the factors regulating species richness and abundances shift along gradients of 

resource availability.  To date these experiments have been conducted almost exclusively in 

terrestrial habitats, likely due to the relative ease of obtaining and manipulating plant seeds.  

However, large-scale associations between oceanographic regime, recruitment rates, and 

community dynamics (Connolly et al. 2001; Menge et al. 2003; Navarrete et al. 2005,) 

suggest that the strength of propagule limitation in marine habitats depends on environmental 

context.   

Together with my advisor, I tested the environmental context-dependency of 

propagule supply effects by manipulating primary productivity (i.e. rate of algal prey growth) 

and grazer propagule supply in a flow-through mesocosm system.  We also examined 

secondary effects of grazer propagule supply on algal prey communities.  Increasing light 

availability increased both algal biomass and species richness.  Despite this increase in food 

availability and diversity, algal resource availability had no effect on grazer propagule 

limitation.  Instead we found that grazer propagule supply had strong positive effects on 

grazer richness, at all resource levels.  These results highlight important differences in 

resource use between sessile producers and mobile grazers and suggest fundamental 

differences in how consumers and plants respond to resource enrichment.    

 

Chapter 3: An experimental test of source-sink dynamics in a multi-trophic-level 

metacommunity 

Models of source-sink dynamics predict that dispersal can promote local species 

coexistence in heterogeneous environments by subsidizing populations in “sinks” that would 

otherwise go extinct without individuals from habitats where there is positive population 
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growth (i.e., “sources”, Brown & Kodric-Brown 1977; Shmida & Ellner 1984; Mouquet & 

Loreau 2003; Mouquet et al. 2005).  Species turnover (i.e., beta richness sensu Lande 1996) 

between local communities may also be influenced by dispersal because increased dispersal 

homogenizes species composition and eliminates spatial refugia for poor competitors.  

Metacommunity species richness appears to be maximized at low to intermediate dispersal 

when local communities are dominated by the best local competitor and declines as weak 

competitors at the metacommunity are driven extinct in all habitats.  The effect of dispersal 

on species richness across spatial scales is mirrored by changes in composition; dominance 

shifts from good local competitors to good metacommunity competitors with increasing 

proportion of dispersal (Mouquet & Loreau 2003). Together with several colleagues, I 

examined source-sink dynamics in a model community with multiple trophic levels to test 

the effects of source-sink dynamics on species richness at multiple spatial scales.   

We generated population sinks by manipulating temperature (a factor known to 

influence competition and persistence in this system) and coupled sources and sinks by 

directly manipulating immigration. As predicted, increasing the amount dispersal among 

local communities with differing temperature regimes promoted local coexistence and 

homogenized composition within metacommunities.  Even with 50% of the individuals in 

communities dispersing every few generations, we did not see negative effects of dispersal 

on local diversity or diversity across the entire metacommunity, possibly because the rate of 

competitive exclusion of superior competitors at the metacommunity level was small enough 

that extinction did not occur in local “sinks” before another dispersal event occurred.  Our 

results support the hypothesis that source-sink dynamics can promote local coexistence in the 

presence of metacommunity-scale heterogeneity and highlight the need for future 
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investigations of source-sink effects in communities shaped by dispersal between varying 

habitats. 

 

Summary 

 Research presented here challenges long-held beliefs about processes limiting species 

richness in local communities.  These results broaden our understanding of propagule 

limitation beyond terrestrial plant communities and highlights mechanisms of coexistence 

that may be unique to mobile animals.  By determining how dispersal affects species 

coexistence in multi-trophic local and meta-communities, we may better understand and 

predict how changes in habitat distribution and isolation will affect the processes shaping 

natural communities. 
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CHAPTER 1: 

PROPAGULE SUPPLY CONTROLS GRAZER COMMUNITY STRUCTURE AND 
PRIMARY PRODUCTION IN A BENTHIC MARINE ECOSYSTEM 

 
 

Abstract 

Early theories of species diversity proposed that communities at equilibrium are 

saturated with species.  However, experiments in plant communities suggest that many 

communities are unsaturated and that adding propagules of new species can increase species 

richness.  We experimentally tested for community saturation and measured the effects of 

propagule supply on community structure in a benthic marine system.  We manipulated 

propagule supply (arrival of individuals of numerous species) of mobile crustacean grazers in 

experimental mesocosms over multiple generations and, unlike all previous tests, we 

examined the cascading effects of propagule supply on prey (macroalgae) biomass.  We 

found little evidence for saturation, despite the absence of processes such as disturbance and 

predation that are thought to alleviate saturation in nature.  Increasing propagule supply 

increased the total number of species and made rare species more abundant.  Perhaps 

surprisingly, given the strong effect of propagule supply on species richness, supply-related 

changes in body size and composition suggest that competitive interactions remained 

important.  Grazer supply also had strong cascading effects on primary production, possibly 

due to dietary complimentarity modified by territorial behavior.  Our results indicate that 

propagule supply can directly influence the diversity and composition of communities of 



 14 

mobile animals.  Furthermore, the supply of consumer propagules can have strong indirect 

effects on prey and on fundamental ecosystem properties. 

 

Introduction 

Elton argued over fifty years ago that “the number of different kinds of animals that 

can live together in an area of uniform type rapidly reaches a saturation point” (Elton 1950).  

Just as saturated liquids contain as much solute as can be dissolved without precipitation, 

saturated communities are thought to include the maximum number of species that coexist 

without local extinction Classical niche theory invokes resource partitioning and interspecific 

competition as processes that act in concert to keep species richness at a saturation point 

MacArthur 1965). Under this niche-based definition, resources are underutilized in 

unsaturated communities, allowing new species to colonize and persist until resident species 

monopolize all available resources.  Theory predicts that when species attempt to colonize an 

already saturated community, there is an unsustainable amount of overlap in resource use – 

inferior competitors will be driven extinct, returning the community to the saturation point.  

Thus defined, species diversity at saturation is the stable equilibrium point to which 

communities are naturally attracted.  Whether or not communities are likely to ever reach 

saturation remains an unresolved yet fundamental ecological question (Elton 1950; Terborgh 

& Faaborg 1980; Cornell and Lawton 1992; Loreau 2000) with direct consequences for our 

understanding of important phenomena, such as species invasions and climate-driven range 

expansions (Stachowicz & Tilman 2005). 

A community is predicted to be saturated given sufficient homogeneity of resources 

in space and time (Loreau 2000) and in the absence of external sources of mortality that 
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weaken competition, e.g., disturbance or predation (Caswell & Cohen 1993).  Even under 

these stringent conditions, a community will be open to colonization at equilibrium if it is 

isolated from propagules of novel species (MacArthur & Wilson 1967).  A propagule is the 

ecologically relevant unit of dispersal, defined as a colonizing organism or vegetative 

structure capable of establishing a self-sustaining population.  Depending on a species’ life 

history, a propagule can be a pregnant female, a mating pair, seeds or spores.  Propagule 

limitation occurs if species that could coexist in a locality are absent because propagules do 

not arrive at that locality in sufficient numbers, resulting in unsaturated communities 

(Chesson 1998). 

Community saturation can be tested directly by increasing propagule supply 

experimentally, i.e., by increasing or decreasing the number of potential colonists arriving at 

suitable habitat (Tilman 1997).  As supply is augmented and propagule limitation is relaxed, 

a subsequent increase in richness indicates that the local community was not saturated.  In 

contrast, failure to colonize or the competitive displacement of resident species indicates that 

richness was not limited by propagule supply and the community may have been saturated.  

Propagule-addition experiments in terrestrial plant communities suggest that propagule-

limitation is widespread and that many communities are naturally unsaturated (Tilman 1997; 

Foster et al. 2004; Mouquet et al. 2004; Gross et al. 2005), although most relevant research 

has been focused at the population level (Turnbull et al. 2000; Clark et al. 2007).  

Populations below carrying capacity can respond to increased propagule supply with 

increases in population size.  Thus population-level “saturation” occurs when supplying 

additional propagules does not increase a species’ abundance, whereas community-level 

saturation requires that species richness remains the same when propagules are added.   
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Virtually all community-level propagule addition experiments have focused on 

terrestrial plants (Tilman 1997; Foster & Tilman 2003; Foster et al. 2004; Mouquet et al. 

2004; Gross et al. 2005; but see Shurin 2000), thus the generality of these propagule supply 

experiments to other trophic levels or other systems remains unclear.  However, decades of 

research have demonstrated that propagule supply structures many marine populations 

(Gaines & Roughgarden 1985; Gaines & Bertness 1992; Doherty & Fowler 1994; Caley et 

al. 1996; Hughes & Tanner 2000) and can influence composition of marine communities 

(Sale 1991).  Research on rocky shores suggests that propagule supply correlates with 

changes in community structure and mediates interspecific interactions strength (Connolly et 

al. 2001; Menge et al. 2003; Navarrete et al. 2005) but covarying changes in environmental 

conditions make inference about community saturation impossible.  Despite empirical 

evidence that propagule supply influences marine community structure and theoretical 

analyses suggesting that propagule supply may determine diversity in some marine 

communities (Warner & Chesson 1985; Chesson 1998; Chave et al. 2002), the potential for 

saturation at the community level remains to be tested experimentally in a marine system.  

When propagule supply determines diversity and species’ relative abundances, effects 

of supply are likely to propagate through the ecosystem.  Experimental changes in diversity 

have predictable effects on ecosystem-level properties such as resource-use efficiency and 

total community biomass (Cardinale et al. 2006).  Therefore, supply-driven changes in 

diversity could also influence ecosystem functioning.  Evidence from plant communities 

supports this prediction; increasing propagule supply increased abundance, percent cover 

(Foster & Tilman 2003; Mouquet et al. 2004), and biomass (Zeiter et al. 2006) in 

manipulated communities.  Yet, it remains unclear how alleviating propagule limitation 
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among consumers will affect lower trophic levels and ecosystem properties.  Theoretical 

evidence suggests that plant biomass is strongly influenced by the rate of herbivore 

propagule supply and that the outcome of plant-herbivore interactions depends on relative 

supply rates (Loreau & Holt 2004).  Increasing rates of propagule supply could increase rates 

of consumption via at least three mechanisms: 1) by increasing the probability that a highly 

efficient grazer will establish a population (a sampling effect), 2) by increasing grazer 

complementary resource use via increases in species richness (Bruno et al. 2008), or 3) 

through facilitative interactions (Dethier & Duggins 1984). 

We manipulated the propagule supply of mobile marine mesograzers (Duffy 1989) in 

experimental communities to test for propagule limitation and local saturation of species 

richness and to measure the effects of propagule supply on trophic interactions and 

ecosystem properties.  Specifically, we tested (i) whether species richness was saturated in a 

model community of mobile marine grazers, if saturation was dependent on a persistent 

source of propagules, and (iii) whether grazer propagule supply has cascading effects on 

functioning at lower trophic levels.  We used communities of mobile grazers consisting 

primarily of crustaceans and mollusks feeding on a combination of macroalgae, microalgae, 

and algal detritus (Cruz-Rivera & Hay 2000) that disperse as juveniles and adults via drifting 

and rafting.  Our experiment integrates several research questions by examining fundamental 

constraints on local species richness in a model multi-trophic system open to immigration 

and emigration.  Spatial models have revealed that recurrent immigration can affect the 

stability of population sizes and consumer-prey interactions (Holt 2002; McCann et al. 2005), 

suggesting that a persistent supply of grazer propagules may have different effects than a 
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single addition of propagules.  We addressed this by concurrently manipulating the 

magnitude and frequency of propagule supply to the mesograzer community.  

 

Methods 

Experimental design 

All experiments were conducted at the University of North Carolina at Chapel Hill’s 

Institute of Marine Sciences in Morehead City, NC.  In July 2004 we established 54, 4L 

flow-through mesocosms supplied with gravel-filtered seawater from Bogue Sound, NC and 

shaded to reproduce field light conditions.  We manipulated magnitude (4 levels of 

Magnitude: Small, Med-Lo, Med-Hi, Large) and frequency of grazer propagule additions (2 

levels of Frequency: Single and Multiple) in a fully factorial design.  The experiment was 

performed in flow-through mesocosms to control potentially confounding factors such as 

sampling scale, habitat complexity and flow regime and to ensure homogeneity of resources.  

We also included control mesocosms in which no additional grazers were added to 

developing communities.  Six mesocosms were randomly assigned to each of the 9 

treatments and every mesocosm included an artificial seagrass mimic made of frayed 

polypropylene (Edgar 1991).  All mimics were pre-conditioned with seawater filtered by a 

100µm filter to prevent epifaunal colonization for 3 days preceding the experiment; this 

allowed epiphytic algal propagules to settle and provide food for grazers.  Grazers were 

collected from nearby habitats, added to a large holding tank and added to the experimental 

mesocosms according to the assigned treatments by volume (i.e., Med-Lo, Med-Hi, and 

Large treatments received 2, 4, and 8 times the volume of grazers added to Small treatments, 

respectively).  Samples of propagule additions were preserved and later identified (N=20).  
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Grazers were initially added in the Single and Multiple frequency mesocosms in volumes 

determined by assigned level of supply Magnitude.  Grazers were experimentally added to 

mesocosms in Multiple treatments weekly. Throughout the experiment, the ratio between 

supply magnitude treatments remained the same, although the total volume varied with 

availability. Some grazer propagules also colonized all mesocosms naturally via the sea 

water supply, thus providing a continual source of food for grazers and allowing grazer 

communities to develop in no addition controls.  At the end of six weeks (2-3 generations for 

most grazer species) all grazers were collected and preserved.  Algae that had settled and 

grown in the mesocosms were collected and wet mass measured after excess water was 

removed via spinning (Bruno et al. 2005).  Grazers were identified to lowest possible 

taxonomic group; some common species were lumped by genera due to the large number of 

juvenile individuals.  The number of gravid females was also recorded.  Samples were dried 

to constant mass at 60°C, ashed at 450°C, and massed again to obtain ash-free dry weights.  

 

Statistical analyses 

The effects of supply Magnitude, Frequency, and Magnitude x Frequency interaction 

on grazer abundance, richness, evenness, Shannon-Weiner diversity, ash-free dry weight and 

algal biomass were analyzed via separate, fully-crossed two-factor ANOVA (n = 6).  Effect 

size (ω2) was calculated for all significant treatments (Graham & Edwards 2001).  Response 

variables were transformed as necessary to meet the assumptions of ANOVA.  For species 

present in sufficient abundance, separate two-factor ANOVA testing the effects of supply 

Magnitude and Frequency on log-transformed total abundance and percent gravid females.   
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To compare species composition between experimental communities, we conducted 

multivariate analyses on a matrix of Bray-Curtis similarities generated from 4th root 

transformed abundances (Clarke 1993) The effects of supply Magnitude and Frequency on 

compositional similarity were investigated using analysis of similarities (ANOSIM) and 

protected pairwise tests were performed to test for differences between levels (N=6).  A 

hierarchical agglomerative cluster analysis with group average linking was performed on 

similarities to delineate samples with greater than 80% similarity in species composition. To 

visualize differences in composition among treatment levels, a non-metric multi-dimensional 

scaling algorithm was performed on similarities with 50 iterations and the 2-dimensional 

configuration that best preserved similarity rankings (i.e., had the lowest stress value) was 

used to generate an multi-dimensional scaling analysis (MDS) ordination plot. 

We tested the effect of our supply treatments on the body-size distributions of the 

four most abundant species (N=3).  Body-size distributions were obtained by counting the 

number of individuals retained by each of a nested series of sieves (2.8, 2.0, 1.4, 1.0, 0.71, 

0.50 mm).  Statistical comparison of body-size distributions by a 2-factor ANOSIM (factors 

= Magnitude, Frequency) performed on untransformed Euclidean distances. 

Although the identity of individuals in our random propagule additions is unknown, 

we used preserved samples to estimate the richness of experimental treatments.  Using 

EstimateS 8 (Colwell 2006), we generated sample-based rarefaction curves to estimate 

species richness as a function of accumulated samples and thus the number of species added 

in each propagule addition treatment (Figure A.2). 

 

Results 
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Supply effects on diversity and composition 

Final grazer diversity depended on the volume of propagules added (hereafter, 

Magnitude) and whether or not additions occurred once or recurrently (Frequency).  

Increasing the magnitude of propagule supply had a strong positive effect on grazer 

Shannon-Weiner diversity (Figure 1.1A) explaining nearly 40% of observed variation (Table 

1.1).  In protected post-hoc comparisons, communities receiving the greatest number of 

propagules had significantly higher diversity than all other treatments (P<0.05 for each of the 

following: Large vs. Med-High, Large vs. Med-Lo, Large vs. Small).  Grazer diversity was 

also higher in treatments receiving propagule additions weekly versus a single time, although 

the addition Frequency effect was weaker than the effect of magnitude (Table 1.1).  

Interestingly, the lack of significant interaction term indicates that the positive effects of 

supply magnitude were not dependent on a continuous supply of propagules.  The effect of 

propagule supply on diversity was due to concurrent increases in both the representation of 

less abundant species (i.e., greater evenness Figure 1.1B) and in species richness (Figure 

1.1C).  Communities receiving multiple propagule additions had more individuals than those 

receiving a single addition and this effect was greatest in high magnitude treatments (Figure 

1.1D, Table 1.1).   

Multivariate analysis of similarities in species composition among treatments 

indicated that supply also influenced species identity and relative abundances (ANOSIM: 

Magnitude, Global R = 0.25, P < 0.001; Frequency, Global R = 0.35, P < 0.001; Figure 1.2).  

Composition in the smallest magnitude treatments differed from composition in medium-

high and large supply treatments (protected post-hoc comparisons; Small vs. Med-Hi: R 

=0.33, P < 0.003; Small vs. Large: R = 0.64, P = 0.001).  These results were reinforced by 
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hierarchical cluster analysis; at 80% similarity, communities receiving the least propagules 

formed groups distinct from the majority of communities receiving the greatest volume of 

propagules (Figure 1.2A).  These composition differences among supply treatments were 

driven by rare species (i.e., those with abundance below 10% of total community 

abundance).  

In addition to overall differences in grazer community composition, propagule supply 

had significant population-level effects.  Nine species were absent in no-addition control 

communities despite the large number of individuals present in that treatment, indicating 

strong effects of propagule-limitation on species composition (Figure 1.1C).  Other abundant 

species tended to increase in population size as the magnitude and frequency of propagule 

supply increased (Figure 1.3B-I, Table A.1).  In contrast, two rare species, Jassa falcata and 

Microprotopus raneyi, were absent only in large supply treatments.  The most abundant 

taxon, ampithoid amphipods, was significantly less abundant in large magnitude supply 

treatments than in all other propagule magnitude treatments (Figure 1.4a, Tukey’s HSD, P < 

0.05).  This reduction in abundance had no significant effect on total ampithoid biomass 

(Magnitude: F3, 16 = 0.008, P > 0.99; Frequency: F1, 16 = 0.0008, P > 0.97; M×F: F3, 16 = 1.06, 

P > 0.39) because increasing the magnitude of propagule supply significantly increased the 

proportion of large-bodied ampithoids (ANOSIM: Magnitude, Global R = 0.20, P < 0.05, 

Figure A.2).  However, supply did not significantly affect body-size of three other abundant 

species, Dulichiella appendiculata, Elasmopus levis, or Paracerceis caudata.  There was a 

marginally significant positive effect of supply Magnitude on the proportion of gravid (i.e., 

egg-bearing) ampithoids (Magnitude: F3, 40=2.5, P=0.07; Frequency: F1, 40=0.004, P>0.95; 

M×F: F3, 40=0.52, P>0.65). 



 23 

 

Ecosystem properties 

Grazer propagule supply affected ecosystem properties at multiple trophic levels.  

Adding grazer propagules increased the final biomass of grazers, especially in those 

treatments receiving the largest and most frequent additions (Figure 1.1E, Table 1.1).  Grazer 

supply also had cascading effects on primary production via changes in grazing intensity 

(Figure 1.1F).  Final macroalgal biomass decreased with increasing magnitude of propagule 

supply, however frequency of additions had no significant effect (Table 1.1). 

 

Discussion 

Despite conditions that favored competitive exclusion, we found no evidence for 

saturation of grazer species richness or diversity – both were strongly dependent on the 

magnitude and frequency of propagule supply, indicating propagule limitation at the 

community level.  For species richness and diversity, comparison of communities receiving 

propagules at different frequencies (i.e., Single vs. Multiple) suggests that our communities 

were open to new species throughout our experiment.  The effect of recurrent propagule 

additions remained constant and positive across the gradient of diversity represented in the 

Single treatments (Figure A.2), as indicated by the lack of a significant interaction between 

supply Magnitude and Frequency treatments (Figure 1.1A-B).  In other words, initially high 

supply magnitude did not affect invasibility by subsequently added propagules.  In contrast, 

increased frequency of propagule additions had a disproportionate effect on grazer 

abundance and biomass in communities receiving the greatest magnitude of propagule supply 

(Figure 1.1D, Figure 1.1F), possibly due to stabilizing effects of recurrent immigration on 
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population dynamics at high immigration rates (Holt 2002).  These results demonstrate that 

the abundance and species richness of this experimental grazer community were propagule-

limited. 

Relieving propagule limitation caused significant changes in identity and relative 

abundances of grazer species.  Similar to studies in terrestrial plant communities, changes in 

community composition were largely driven by the absence of rare species in the no addition 

controls (Foster & Tilman 2003). In our communities, four rare species (each less than 10% 

total abundance) were absent in Control and Small Magnitude supply treatments either 

because they were not strongly represented in randomly drawn additions or because 

colonization rates might not have exceeded rates of stochastic extinction.  Of these, three 

species, Melita dentata, Gammarus mucronatus, and Lembos smithi, were also absent in field 

samples (see Methods), suggesting that they are locally rare.  Interestingly, results from our 

MDS analysis (Figure 1.2) suggest that whether propagule limitation is relieved by an 

increase in the number propagules arriving or by more frequent arrivals, the impact on 

community composition is essentially the same. 

By altering grazer species richness, composition and abundance, grazer propagule 

supply indirectly affected primary production (Figure 1.1E).  Algal standing stock declined 

with the magnitude of grazer propagule supply, but was not affected by supply Frequency.  

Several mechanisms might explain the effects of grazer propagule supply on algal biomass.  

It could be due increased per capita consumption driven by a shift from small- to large-

bodied individuals (Figure A.1); however, supply only affected the body size of ampithoid 

amphipods and not the three other most abundant species whose abundance decreased with 

increasing supply (Figure 1.3).  Alternatively, grazer assemblages may have consumed more 
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algae in high supply treatments because these assemblages were more diverse.  Negative 

effects of consumer diversity on prey or resource abundances are well-documented (Bruno et 

al. 2005; Cardinale et al. 2006; Duffy et al. 2007; Bruno et al. 2008) in experimental 

manipulations of species identity and richness.  Despite strong effects of Frequency on total 

grazer abundance and richness (Figure 1.1C-D), supply Frequency did not affect algal 

biomass in the largest Magnitude treatments.  We speculate that this may be due to 

antagonistic interactions among grazers that limit algal consumption.  An important group of 

grazers, ampithoid amphipods, construct and inhabit tubes that provide substrate for 

epiphytic algae. In the largest Magnitude treatments, our results suggest that there was strong 

intraspecific competition among ampithoids (see Propagule limitation in mobile grazers).  

Due to territorial behavior and interference competition, grazers may not have had access to 

algae growing on tubes, preventing algal biomass from dropping below ~10 g wet mass 

(Figure 1.1F).  Based on these results, we surmise that mobile grazer behavior may modify 

positive effects of species richness on resource use efficiency. 

 

Propagule limitation in mobile grazers 

Methodologically, we gave every opportunity for competitive exclusion to occur; the 

communities persisted for multiple generations in an environment free of disturbance and 

predation.  Still, our communities were unsaturated with species.  There are at least three 

possible explanations.  First, there may not have been enough time for species to be driven 

extinct by competitive exclusion.  In other words, we may be observing oversaturated 

communities that have not yet reached equilibrium.  But if time increased the probability of 

saturation, we would have expected to see that the effects of supply on diversity and richness 
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were weaker in communities receiving a Single addition (i.e., communities with the greatest 

time between propagule additions and the end of the experiment).  This was not the case; 

supply effects did not vary significantly with the frequency of propagule additions (non-

significant Magnitude x Frequency interactions, see Results).  The behavior and life histories 

of mobile mesograzers also suggest that our study was of appropriate duration.  Dispersal 

occurs rapidly and extensively in this guild; studies of mesograzer colonization observed a 

daily turnover rate of 30% of resident individuals in natural seagrass habitats (Edgar 1992).  

High mobility, combined with an experimental design that allowed emigration from 

mesocosms (and thus allowed both exploitative and interference competition to occur) 

suggest that competitive dynamics should occur rapidly in this system (Duffy & Harvilicz 

2001). 

A second possibility is that mobility and habitat selection behavior among these 

grazers increases the likelihood of propagule limitation because species leave suboptimal 

habitats that could nevertheless support viable populations.  Stream insects have been 

observed to abandon habitats and enter the water column in association with poor food 

quality (Kohler 1985); this behavioral response to resource limitation could weaken 

competition and prevent saturation. Ampithoid amphipods, the numerically dominant taxa in 

all treatments, were least abundant in communities receiving the most propagules (Figure 

1.3A).  As population sizes decreased, there was a concurrent shift to larger-bodied 

individuals (Figure A.1) such that total ampithoid biomass did not vary with propagule 

supply.  This result may be due to self-thinning via density-dependent mortality, as observed 

in sessile plant populations (Weiner 1990); however, it is more likely that shifts in abundance 

and size structure are driven by emigration to avoid strong intraspecific competition for food 
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or tube-building space.  As propagule supply increased there was also a trend toward greater 

representation of gravid ampithoid females (15.2% gravid in Small vs. 21.4% gravid in Large 

magnitude treatments, P > 0.07).  Previous work suggests that juvenile and small adult 

amphipods are more likely to abandon habitats than mature adults because smaller 

individuals are poor competitors (Franz & Mohamed 1989).  Together, our results suggest 

that increasing propagule supply may drive strong intraspecific competition and emigration 

from areas with unfavorable resources rather than interspecific competition that could lead to 

competitive exclusion and saturation. 

A third possibility is that natural variability in propagule supply on short time scales 

keeps these communities unsaturated.  In marine systems, natural variability in propagule 

supply can have dramatic impacts on resident communities (Gaines & Roughgarden 1985; 

Doherty & Fowler 1994; Caley et al. 1996; Hughes & Tanner 2000).  However, experimental 

tests have focused predominantly on population-level effects of propagule limitation at a 

particular life stage (i.e., recruitment or settlement).  Further, among marine and terrestrial 

experiments there is usually a strong seasonal component to dispersal (e.g., when seeds or 

larvae are produced) and the period of dispersal is short relative to species generation times.  

Unlike plants and sessile marine species, for which dispersal is a single, predictable event in 

an individuals life, our experimental organisms may disperse multiple times, multiple 

dispersal events occur per generation, and there are several generations per season (France & 

Duffy 2006).  Because propagules are arriving on time scales similar to (or even shorter than) 

those of demographic processes, propagule supply strongly influences local community 

dynamics (Shurin & Srivastava 2005).  In other words, the equilibrial dynamics necessary for 

saturation to occur may be prevented in a community with near constant dispersal.  As a 
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consequence, we would expect to see similar unsaturated patterns in other systems where 

demographic rates are comparable to dispersal rates. 

It is important to recognize that in an unsaturated community, not all species will be 

able to colonize successfully.  Stochastic niche theory, which integrates the effects of 

propagule supply into a niche-based model of community assembly, predicts that the 

majority of propagules reaching a community will ultimately fail to produce viable 

populations due to demographic stochasticity (Tilman 2004).  Several rare species found in 

samples of our propagule additions were not found in any of our experimental communities.  

These results are consistent with the only other work manipulating propagule supply in a 

community of mobile animals, in which communities were not saturated but several added 

species were unable to invade (Shurin 2000).  Alternatively, novel colonists in propagule 

additions may exclude some resident species but still increase overall species diversity if the 

number of successful species is greater than the number of species lost.  Although our 

experimental communities did not reach an apparent richness limit, two species were absent 

only in large magnitude supply treatments.  Species released from propagule-limitation via 

experimentally increased supply may have suppressed competitive subordinates.  Resource 

availability may also have affected establishment (Tilman, 2004).  Algal biomass was low in 

communities receiving the greatest supply (Figure 1.1F) and these conditions may have been 

insufficient to sustain populations of Jassa or Microprotopus. Our results emphasize that lack 

of saturation does not infer lack of competition or population regulation in our communities, 

but instead that competitive exclusion does not decrease or limit species diversity.   

 

Conclusions 
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Our experiment suggests that propagule-limitation occurs even in relatively open 

systems in which dispersal occurs frequently and rapidly.  We also found strong cascading 

effects of propagule supply on lower trophic levels, which had not been documented 

previously. Our results suggest that supply alters ecosystem functioning by increasing 

consumption of resources and that these effects are strong enough to persist despite 

emigration.  Additionally, our findings reinforce the idea that population regulation and 

competition can shape unsaturated communities via changes in composition without limiting 

species richness and that propagule limitation does not preclude density-dependent 

interactions (Chesson 1998). These results emphasize the role propagule supply plays in 

maintaining diverse communities and suggest that supply effects at one trophic level may 

cascade throughout food webs.  
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Tables. 

Table 1.1.  Results of ANOVA and calculated effect size (ω2) 

Effects of propagule supply magnitude and frequency on grazer Shannon-Weiner diversity, 

species richness, Pielou’s evenness, abundance and biomass and algal production.  

 
Response Effect df F P ω2 
      
Grazer diversity Supply magnitude 3, 40 13.9 <0.0001 39.2 
 Supply frequency  1, 40 12.2 <0.01 11.3 
 M x F 3, 40 1.31 NS  
      
Grazer richness Supply magnitude 3, 40 3.2 <0.05 11.1 
 Supply frequency  1, 40 7.9 <0.01 11.6 
 M x F 3, 40 0.5 NS  
      
Grazer evenness Supply magnitude 3, 40 10.4 <0.0001 35.7 
 Supply frequency  1, 40 7.6 <0.01 6.7 
 M x F 3, 40 1.3 NS  
      
Grazer abundance Supply magnitude 3, 40 1.4 NS  
 Supply frequency  1, 40 14.5 <0.001 12.0 
 M x F 3, 40 4.7 <0.01 8.3 
      
Algal biomass Supply magnitude 3, 40 6.8 <0.001 25.5 
 Supply frequency  1, 40 1.8 NS  
 M x F 3, 40 2.0 NS  
      
Grazer biomass Supply magnitude 3, 40 7.48 <0.001 19.8 
 Supply frequency  1, 40 21.7 <0.0001 21.0 
 M x F 3, 40 4.37 <0.01 10.3 
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Figures. 

Figure 1.1.  Effects of propagule supply on grazer community structure and ecosystem 

properties  (means ±  S.E.). 

Magnitude treatments indicated along x-axis.  Frequency treatments indicated by symbol: , 

multiple; , single.  Controls in which supply was not augmented indicated by .  (A) 

Grazer Shannon-Weiner diversity, (B) Grazer Pielou’s coefficient of evenness, (C) Grazer 

species richness, (D) Total abundance of grazer individuals, (E) Grazer ash-free dry weight 

(AFDW), (F) Algal wet mass. 
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Figure 1.2.  Non-metric ordination of experimental communities based on species 

identity and abundance.   

Ordination derived from multi-dimensional scaling analysis of Bray-Curtis similarities 

(Stress = 0.2).  Samples enclosed within circles have greater than 80% similarity in 

composition (see Methods). (A) Communities coded by supply magnitude treatment, (B) 

Communities coded by supply frequency treatment. 
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Figure 1.3. Effect of propagule supply on individual species’ abundances (means ±  

S.E.).   

Results from 2-factor ANOVA (Factors = Magnitude, Frequency, N=6) performed on log-

transformed abundances indicated by asterisk  (*, P< 0.05; **, P< 0.01; **, P< 0.001).  Only 

significant tests are shown.  There were no significant Magnitude×Frequency interactions.  

Magnitude treatments indicated along x-axis.  Frequency treatments indicated by symbol: , 

multiple; , single.  Controls in which supply was not augmented indicated by .   
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CHAPTER 2: 

EFFECTS OF PROPAGULE SUPPLY AND RESOURCE AVAILABILITY ON 
LOCAL SPECIES RICHNESS IN MOBILE MARINE GRAZER COMMUNITIES 

 

Abstract 

Though the importance of propagule limitation in determining local species richness 

is widely recognized, how resource availability could affect the strength of propagule effects 

is less clear. Despite the central nature of this question, the effect of resource availability on 

propagule limitation has been tested exclusively with terrestrial plants. We tested the 

environmental context-dependency of propagule supply effects by manipulating primary 

productivity (i.e. rate of algal prey growth) and grazer propagule supply in a flow-through 

mesocosm system.  We also examined secondary effects of grazer propagule supply on algal 

prey communities.  Increasing light availability increased both algal biomass and species 

richness.  Despite this increase in food availability and diversity, algal resource availability 

had no effect on grazer propagule limitation.  Instead we found that grazer propagule supply 

had strong positive effects on grazer richness, at all resource levels.  These results highlight 

important differences in resource use between sessile producers and mobile grazers and 

suggest fundamental differences in how consumers and plants respond to resource 

enrichment. 
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Introduction 

Many ecological communities are unsaturated with regard to the number of species 

that could potentially inhabit them (Srivastava & Lawton 1998; Foster & Tilman 2003; 

Stohlgren et al. 2008; Lee & Bruno 2009).  Thus, in many cases, local species richness is 

ultimately determined by propagule availability instead of being limited by competition for 

resources, as is the prevailing paradigm (Stohlgren et al. 2008). Though the importance of 

propagule limitation has been demonstrated, experimental evidence indicates that the 

strength of propagule limitation varies with habitat productivity  (Foster et al. 2004; Stein et 

al. 2008), presumably because the factors regulating species richness shift along gradients of 

resource availability (Partel et al. 2000).  However, it has proven difficult to reconcile these 

results with theoretical predictions of how competition and resource availability should affect 

community responses. Consequently, the environmental context-dependency of propagule 

limitation remains unclear (Harrison & Cornell 2008) despite its importance in determining 

community assembly and invasion dynamics (Lockwood et al. 2005). 

The interactive effects of propagule limitation and resource availability on local 

species richness can generate at least three hypothetical relationships (Fig.1, also Foster et al. 

2004,).  First, propagule limitation could be constant across a resource gradient resulting in 

equal, positive effects of propagule addition at all resource levels (Fig.1a).  This hypothesis 

does not preclude effects of resource enrichment on local richness; rather it posits that no 

resource environment is more amenable to the establishment of novel species than another.  

Evidence from seed additions in grassland communities indicates that, while biomass 

removals and fertilizer additions can impact species richness, these effects do not modify 
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propagule limitation of richness (Wilsey & Polley 2003; Stevens et al. 2004; Gross et al. 

2005). 

A second group of general models of community assembly predict that propagule 

establishment should be more successful when per capita resource availability is greater 

(Tilman 1988; Davis et al. 2000; Tilman 2004) (Fig.1b).  Here, available resources reflect 

niches unoccupied by resident species, allowing novel species to survive vulnerable life 

stages.  Observed patterns of species invasions support these models and suggest that habitats 

with high resource availability are more likely to gain species via invasions (Burke & Grime 

1996; Davis et al. 2000; Davis & Pelsor 2001; Thompson et al. 2001; Jiang & Morin 2004).  

Short-term increases in resource availability have also strengthened the effects of 

experimental propagule addition on plant community richness.  Several studies have 

demonstrated that removing biomass from potential competitors (via clipping of live tissue) 

and increasing light availability (by removing litter) increases the positive effect of propagule 

additions on species richness (Lord & Lee 2001; Xiong et al. 2003; Foster et al. 2004).  In 

these cases, increasing resource availability enhanced propagule effects by decreasing local 

competitive intensity. 

There is also abundant evidence for a third hypothetical relationship, in which 

propagule effects on richness decline with resource availability (Fig.1c) and competitive 

intensity may increase with resource availability (Rosenzweig 1995; Waide et al. 1999; 

Dodson et al. 2000; Mittelbach et al. 2001; Rajaniemi 2003; Chase & Leibold 2002).  

Propagule additions in high productivity or fertilized habitats often have weaker effects on 

richness than additions to unenriched communities (Foster 2001; Houseman & Gross 2006). 

Diminished propagule effects in high productivity habitats are likely driven by the same 
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mechanisms driving ubiquitous patterns of suppressed species richness under high 

productivity conditions (Rosensweig 1995; Waide et al. 1999; Dodson et al. 2000; Mittelbach 

et al. 2001; Chase & Leibold 2002).  For example, propagules may be less successful in 

enriched habitats either because there is less environmental heterogeneity and thus fewer 

combinations of limiting factors and reduced niche dimension (Tilman 1982; Harpole & 

Tilman 2007) or because higher overall rates of population growth in high productivity 

habitats would result in more rapid competitive exclusion without any change in niche 

dimensions (Grime 1979; Huston 1999). 

Despite the central nature of this question, the effect of resource availability on 

propagule limitation has been tested exclusively among terrestrial plants and revealed 

conflicting and inconclusive patterns.  Unlike plants, many animals exhibit behavior and 

consume living, demographically dynamic prey suggesting that the relationship between 

resource availability and propagule limitation may vary significantly between plant and 

animal communities.  Observational evidence suggests that propagule limitation is common 

in marine communities and tightly linked to productivity (Menge et al.1997; 2003); however, 

this relationship has yet to be tested experimentally. We tested the environmental context-

dependency of propagule supply effects by manipulating primary productivity (i.e., rate of 

algal prey growth) and grazer propagule supply in a flow-through mesocosm system.  We 

also examined secondary effects of grazer propagule supply on algal prey communities.  

Specifically we asked 1) is species richness of grazer communities limited by propagule 

supply and 2) how does propagule-limitation of species richness vary across a gradient of 

resource availability? 
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Methods 

Study system 

We manipulated propagule supply of a suite of small mobile grazers, dominated by 

amphipod and isopod crustaceans (hereafter referred to as mesograzers, Nelson 1979; Duffy 

1989) that feed on epiphytic algae.  Mesograzers are an important food source for secondary 

consumers (e.g., crabs and fish) and drive seasonal changes in macroalgal community 

structure (Duffy and Hay 2000). Mesograzers have short, overlapping generation times on 

the order of 3-4 weeks.  Unlike many marine organisms that disperse as minute larvae, the 

amphipods and isopods in our system brood their larvae and disperse primarily as juveniles 

and adults, thus allowing us to manipulate propagule supply by adding juveniles and adults 

collected from algae in the field. Thus, our manipulations of easily collected juveniles and 

adults are relevant to and represent realistic differences in propagule supply.  It is important 

to note that the gravel-filtration system removes most but not all mobile epifauna propagules; 

this baseline community is reflected in the Control treatments.  The filtration system mimics 

natural propagule limitation by restricting the abundance and species richness of Control 

communities, which are analogous to a collection of natural communities with strong 

biological or physical filters limiting immigration. 

 

Experimental design 

The experiment was conducted at the University of North Carolina at Chapel Hill’s 

Institute of Marine Sciences in July 2005.  We established 42, 4L flow-through mesocosms 

supplied with gravel-filtered seawater from Bogue Sound (34°42’W, 76°46’ N). To test 

whether the effects of propagule supply vary with resource availability, we manipulated 
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grazer propagule supply and algal resource availability in a fully factorial design.  In these 

mesocosms we manipulated the volume of grazers reaching each mesocosm (2 levels of 

grazer propagule supply: no addition and propagule addition).  We collected nearby seagrass 

and algal material and transferred the attached grazers to a seawater reservoir before adding 

them to propagule Addition treatments at the beginning of the experiment. We manipulated 

resource availability by limiting the growth of grazers’ primary food resource, epiphytic 

algae, via light reduction (3 levels of resource: Low, Medium, High).  Algal propagules and 

nutrients were supplied via constantly replenished water from Bogue Sound. Light was 

manipulated via window screening to an average of 950, 1400, and 2150 µmol photons m-2s-1 

under full sun in Low, Medium, and High treatments, respectively.  Summertime full sun 

levels at 1m depth in the field range from 1000-1500 µmol photons m-2s-1.  Therefore, our 

High light treatment represented higher availability than average field conditions.   Seven 

mesocosms were assigned to each of the 6 treatments and every mesocosm included an 

artificial seagrass mimic made of frayed polypropylene.  All mimics were pre-conditioned 

with seawater processed by a 100µm filter for 3 days preceding the experiment; this allowed 

epiphytic algal propagules to settle.  At the end of 4 weeks all grazers were collected and 

preserved.  Macroalgae that had settled and grown in the mesocosms was collected and 

excess water was removed via spinning.  Algae were identified to species and wet mass was 

recorded for each mesocosm.  Grazers were identified to lowest possible taxonomic group; 

some common species were lumped by genus due to the large number of juvenile 

individuals.  The number of gravid females was also recorded. 

 

Statistical analyses 
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Summary statistics of grazer community structure (total abundance, richness, 

evenness, Shannon-Weiner diversity) were calculated for all experimental communities 

based on grazer taxonomic identity and abundance. The effects of propagule supply, resource 

availability and supply-resource interaction on grazer abundance, richness, evenness, 

diversity and algal biomass were analyzed via separate two-factor ANOVA (n = 7) with 

resource availability as a continuous factor and propagule supply as a categorical factor in R 

(R Development Core Team 2008).  Effect size (ω2) was calculated for all significant 

treatments (Graham & Edwards 2001).  Response variables were transformed as necessary to 

meet the assumptions of ANOVA. For species present in great enough abundance, separate 

two-factor ANOVA were performed to test the effects of propagule supply and resource 

availability on square-root transformed total abundance and percent gravid females.   

To compare taxonomic abundances between experimental communities, we 

conducted multivariate analyses using analysis of similarities (ANOSIM) of Bray-Curtis 

similarity coefficients generated from 4th root transformed abundances (Clarke & Warwick 

2001). The effects of supply and resource availability on compositional similarity were 

investigated using analysis of similarities (2-factor ANOSIM, N=7). A hierarchical 

agglomerative cluster analysis with group average linking was performed on similarities to 

delineate samples with greater than 60% similarity in species composition after 

transformation. In order to visualize differences in composition among treatment levels, a 

non-metric multi-dimensional scaling algorithm was performed on similarities with 50 

iterations and the 2-dimensional configuration that best preserved similarity rankings (i.e., 

had the lowest stress value) was used to generate an ordination plot. 

 



 46 

Results 

Algal community response 

Total algal biomass strongly increased with increased light availability (ω2=51.1), 

making our light treatments a successful manipulation of resource availability to grazers 

(Table 2.1, Figure 2.2A).  Algal biomass also declined as grazer supply increased (Table 2.1, 

Figure 2.2A).  Algal species richness tended to increase with light (P =0.06, Figure 2.2C). In 

control communities both algal evenness  (J’) and diversity increased with light, whereas in 

communities receiving grazer propagules, algal evenness and diversity decreased with light 

(Figure 2.2).  Individual algal species responded differently to light and propagule supply 

(Figure 2.3, Table 2.1).   

 

Grazer community response 

Grazer species richness was controlled by grazer propagule supply and was virtually 

unaffected by light and algal resource availability (Table 2.1, Figure 2.4C).  In contrast, 

grazer abundance was dependent on the interactive effects of resource availability and 

supply; algal resource availability boosted grazer abundance, but only in communities to 

which grazer propagules were added (Figure 2.3A, Table 2.1). 

Abundance of the crustaceans Elasmopus levis, Paracerceis caudata, Dulichiella 

appendiculata, and the gastropod Bittium varium increased significantly with increasing 

propagule supply but were not affected by algal resource availability (Figure 2.5, Table 2.2).  

Supply effects on ampithoid abundance were dependent on resource availability; positive 

effects of supply were greatest in high resource treatments.  Unlike other species, 
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Amphilochus sp. abundance decreased with propagule additions and increased significantly 

with resource availability. 

Multivariate analysis of similarities in grazer species composition among treatments 

indicated that propagule supply strongly influenced species identity and relative abundances 

(ANOSIM: Global R = 0.61, P < 0.001, Figure 2.6B).  Resource availability had only 

marginal and statistically insignificant effects on composition (ANOSIM: Global R = 0.06, P 

< 0.12, Figure 2.A).  These results were reinforced by hierarchical cluster analysis; at 60% 

similarity, communities receiving propagule additions formed a single group, distinct from 

communities without added propagules. 

 

Discussion 

Grazer richness was strongly propagule-limited under all resource conditions; 

propagule additions uniformly increased grazer species richness by 50%.  There was no 

evidence that resource availability influenced grazer species richness (Figure 2.4C) or 

composition (Figure 2.6) despite strong positive effects of light manipulations on algal 

biomass and richness (Figure 2.2A, 2.2C, Table 2.1).  Our results support the view that no 

resource environment is more or less amenable to the establishment of novel species (Figure 

2.1A) and stand in stark contrast with experiments with primary producers where resource 

availability has had strong effects on local species richness (Worm et al. 2002; Hillebrand et 

al. 2007) and plant-based theoretical predictions (Figure 2.1B, 2.1C) that competitive 

exclusion and niche availability should vary with productivity (Grime 1979; Huston 1999; 

Tilman 2004). 
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We found that grazer abundance, but not species richness, responded to resource 

manipulations. We expected that resource availability might modify the effects of propagule 

supply via resource effects on population densities because resource competition can regulate 

amphipod and isopod population density on short time scales (Edgar 1990; Duffy 2001).  In 

fact, the effect of resource availability on grazer density was weak and dependent on 

propagule supply (Figure 2.4A, Table 2.1).  This result suggests that abundant algal resources 

did not lead to high rates of grazer population growth in the absence of additional propagules, 

refuting the hypothesis that increased resource availability enhances exclusion by 

accelerating population dynamics (Huston 1999, Figure 2.1C).  Although competitive 

exclusion might not occur in 1-2 generations, if competition were more intense in low 

resource availability habitats (as predicted by Davis et al. 2000; Tilman 2004, Figure 2.1B) 

or in high resource availability habitats (as predicted by Grime 1979; Huston 1999, Figure 

2.1C), we would expect to see grazer evenness decrease with resource availability as species 

were driven extinct. Instead, high productivity did not appear to increase dominance of any 

particular grazer species (Figure 2.4D), although there was evidence that abundance of  

single taxa, Amphilochus spp., was reduced in propagule addition treatments (Table 2.2, 

Figure 2..5).  It is possible that Amphilochus is competitively inferior to species that are 

propagule limited.  There is, however, no indication that Amphilochus were suppressed more 

strongly in any resource treatments (Table 2.2).  

 

Consumer-prey dynamics 

In many marine and aquatic ecosystems, light can limit macrophyte production 

(Binzer et al. 2006).  By increasing experimentally increasing light beyond ambient field 
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conditions, we increased both algal biomass and species richness (Figure 2.2, Figure 2.7).  

Surprisingly, the positive effect of light on algal resource abundance and diversity did not 

enhance grazer richness despite evidence that more diverse prey can support a more diverse 

suite of consumers (Duffy 2002; Olsen et al. 2007; Stachowicz et al. 2007). Instead of a 

bottom-up diversity effect, our results suggest that grazers exerted significant control on algal 

communities (Table 2.1, Figure 2.7). Changes in grazer community structure drive 

significant changes in producer diversity and standing biomass (Duffy et al. 2003; Raberg & 

Kautsky 2007; Bruno et al. 2008).  Grazer propagule supply significantly affected abundance 

of three algal species, probably because of light-driven shifts in the algal palatability and 

differences in grazer preference (Hillebrand 2005).  A meta-analysis of freshwater algal 

systems indicates that light effects on biomass diminished in the presence of grazing 

(Hillebrand 2005), which is clearly the case for Enteromorpha (Figure 2.5).  High light 

conditions favor easily ingested algae (Hillebrand 2005), which may also be low in food 

quality due to changes in algal tissue stoichiometry (Urabe et al 2002).  Nutritional 

requirements vary within the mesograzer guild; Ectocarpus siliculosus is the best growth 

medium for certain grazers, whereas mixed algal and animal diet most beneficial for others.  

Polysiphonia sp. and Enteromorpha flexuosa have less nutritional quality (Cruz-Rivera and 

Hay 2000).  Grazers appear to actively avoid consuming Polysiphonia (Figure 2.5, Duffy and 

Hay 2000), leading to high biomass in communities with grazer propagule additions.  Despite 

a shift to an unpalatable prey species, Polysiphonia, with increasing light and propagule 

supply, grazer abundance was highest in high light, propagule addition communities.  This 

provides further evidence that the type of resources available did not limit grazer 

communities and emphasizes the complexity of multitrophic systems. 
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Resource use by mobile animals 

Why did we find that resource availability had no effect on grazer species richness or 

propagule limitation? Possibly because of fundamental differences in how plants and animals 

use resources. Plants consume inorganic nutrients whose renewal rate is positive and donor-

controlled whereas animals consume dynamic resources that can be driven extinct (Ives et al. 

2005; Duffy et al. 2007). Plants that are superior resource competitors are those with the 

highest resource conversion efficiency, i.e., those that use fewer resources than their neighbor 

to obtain the same amount of new biomass (Tilman 1982; Ives et al. 2005).  Competitively 

dominant animals are often those with the greatest capture rate, which are able to use more 

resources than their neighbor, but not necessarily with greater conversion efficiency. Thus, 

despite higher grazer population growth rates in high resources, competition may have been 

alleviated under high resource conditions.  

Another potential difference between plant and animal systems arises from how niche 

heterogeneity is generated.  Differences in niche availability are hypothesized to drive both 

positive and negative effects of resource availability on propagule effects (Tilman 1982; 

2004).  In primary producer communities, niche heterogeneity can be generated by variation 

in limiting resource identity and resource patchiness (Harpole & Tilman 2007).  In mobile 

grazer communities, niche heterogeneity may be best characterized by algal prey diversity 

and composition.  In our experiment, the greatest levels of algal diversity tended to occur in 

high light treatments (Figure 2.2B, P = 0.06).  The trend for greater algal diversity in high 

productivity communities may have represented a wider range of niches for grazer species, 

however this did not translate to differences in grazer richness (see Consumer-prey 
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dynamics). Our results emphasize an important difference between animal and plant 

communities.  Niche dimensionality in animals is defined largely by what is present (i.e., 

which prey species, in what abundance, in what physiological condition) whereas in plants, 

emphasis is placed on what is absent (i.e. number of limiting resources, Harpole & Tilman 

2007) and resource consumption at the lowest resource levels is thought to determine species 

survival.  Consequently, the hypothesis that high primary productivity reduces animal species 

richness and propagule-limitation via reduced niche heterogeneity will apply in animal 

communities only if high productivity is negatively related to prey diversity or variability. 

 

Conclusions 

 In this experiment, propagule supply had strong positive effects on grazer richness at 

all resource levels.  These results highlight important differences in resource use between 

sessile producers and mobile grazers and suggest that the mechanisms maintaining 

productivity-richness relationships in grazer communities are likely to be distinct from those 

in plant communities.  Unlike plants, grazers consume resources that have their own 

interspecific interactions and demography.  Grazer resource use and competitive ability are 

also dependent on a complex behaviors, including territoriality, intraguild predation, and 

optimal foraging.  Our results emphasize that how grazer behavior modifies propagule 

limitation and resource competition remains an open question. 
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Tables. 

Table 2.1. Results of 2-factor ANOVA testing the effects of resource and supply on 

grazer and algal community structure 

 
 

Response Effect df SS F P ω2 

       
Grazer diversity      
 Resource 1 0.20 2.28 0.14  
 Supply 1 1.19 13.7 0.0006 37.3 
 Resource x Supply 1 0.07 0.83 0.37  
 Error 38 3.29    
       
Grazer richness      
 Resource 1 2.93 0.48 0.48  
 Supply 1 130 22.3 0.0001 35.1 
 Resource x Supply 1 0.81 0.14 0.71  
 Error 38 222    
       
Grazer evenness      
 Resource 1   NS  
 Supply 1   NS  
 Resource x Supply 1   NS  
 Error 38     
       
SqRt (Grazer abundance)      
 Resource 1 56 2.28 0.14  
 Supply 1 1200 49.2 0.0001 65.8 
 Resource x Supply 1 106 4.32 0.04 6.7 
 Error 38 930    
       
SqRt (total algal biomass)      
 Resource 1 69 36 0.0001 51.1 
 Supply 1 52 27 0.0001 19.1 
 Resource x Supply 1 0.81 0.42 0.52  
 Error 38 73    
       
Algal diversity      
 Resource 1 0.51 7.09 0.01 18.0 
 Supply 1 0.09 1.31 0.26  
 Resource x Supply 1 0.54 7.50 0.009 19.3 
 Error 38 2.74    
       
Algal richness      
 Resource 1 2.78 3.74 0.06 11.9 
 Supply 1 0.38 0.51 0.48  
 Resource x Supply 1 0.41 0.54 0.47  
 Error 38 28.3    
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Algal evenness      
 Resource 1 0.46 4.64 0.04 10.7 
 Supply 1 0.010 0.10 0.76  
 Resource x Supply 1 1.05 10.5 0.002 28.2 
 Error 38 3.80    
       
Ectocarpus      
 Resource 1 209 7.08 0.01 9.3 
 Supply 1 2190 74.4 0.0001 56.1 
 Resource x Supply 1 76.1 2.58 0.12  
 Error 38 1120    
       
SqRt (Polysiphonia)      
 Resource 1 6.23 3.92 0.05 9.8 
 Supply 1 15.6 9.86 0.003 14.7 
 Resource x Supply 1 4.21 2.66 0.11  
 Error 38 60.3    
       
SqRt(Enteromorpha)      
 Resource 1 46.3 47.3 0.0001 38.9 
 Supply 1 26.7 27.2 0.0001 11.0 
 Resource x Supply 1 38.8 39.6 0.0001 17.6 
 Error 38 37.2    
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Table 2.2. Results of 2-factor ANOVA testing the effects of resource and supply on 

grazer species (fixed, nominal effects) 

Response Effect df SS F P ω2 

       
SqRt (Elasmopus)      
 Resource 1 3.19 0.14 0.70  
 Supply 1 360 16.5 0.0002  
 Resource x Supply 1 57.9 2.64 0.1123  
 Error 38 833    
       
SqRt (Ampithoidae)      
 Resource 1 74.5 10.14 0.0029  
 Supply 1 611 83.27 0.0001  
 Resource x Supply 1 108 14.72 0.0005  
 Error 38 279    
       
SqRt (Paracerceis)      
 Resource 1 0.0002 0.00 0.99  
 Supply 1 60.72 9.05 0.0046  
 Resource x Supply 1 0.18 0.027 0.87  
 Error 38 255    
       
SqRt (Dulichiella)      
 Resource 1 0.47 0.08 0.78  
 Supply 1 554 97.7 0.0001  
 Resource x Supply 1 2.60 0.46 0.50  
 Error 38 773    
       
SqRt (Amphilochus)      
 Resource 1 26.6 5.63 0.0227  
 Supply 1 34.1 7.21 0.0107  
 Resource x Supply 1 5.89 1.25 0.27  
 Error 38 179    
       
SqRt (Bittium)      
 Resource 1 6.42 3.71 0.0613  
 Supply 1 104 60.2 0.0001  
 Resource x Supply 1 4.52 2.62 0.1139  
 Error 38 65.6    
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Figures. 

Figure 2.1. Three hypothesized relationships between resource availability and 

propagule limitation. 

 

 



 56 

Figure 2.2. Effects of propagule supply and light availability on algal community 

structure (means ±  S.E.).   

Resource availability treatments indicated along x-axis.  Propagule addition treatments 

indicated by symbol: , propagule addition; , no addition. (A) Algal wet mass, (B)  Algal 

Shannon-Weiner diversity, (C) Algal species richness, (D) Algal Pielou’s coefficient of 

evenness. 
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Figure 2.3. Effect of propagule supply on individual algal species (means ±  S.E.).  

Propagule addition treatments indicated by symbol: , propagule addition; , no addition. 
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Figure 2.4. Effects of propagule supply and resource availability on grazer community 

structure (means ±  S.E.).   

Resource availability treatments indicated along x-axis.  Propagule addition treatments 

indicated by symbol: , propagule addition; , no addition. (A) Grazer wet mass, (B) 

Grazer Shannon-Weiner diversity, (C) Grazer species richness, (D) Grazer Pielou’s 

coefficient of evenness. 
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Figure 2.5.   

Effect of propagule supply on individual grazer species (means ±  S.E.).  

Propagule addition treatments indicated by symbol: , propagule addition; , no addition. 

 

 



 60 

Figure 2.6. Non-metric ordination of experimental communities based on species 

identity and abundance.   

Ordination derived from multi-dimensional scaling analysis of Bray-Curtis similarities 

(Stress = 0.2).  Samples enclosed within circles have greater than 60% similarity in 

composition (see Methods). (A) Communities coded by resource availability treatment, (B) 

Communities coded by propagule supply treatment; , propagule addition; , no addition. 

 

 



 61 

Figure 2.7. Schematic summary of results 
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CHAPTER 3 

AN EXPERIMENTAL TEST OF SOURCE-SINK DYNAMICS IN A MULTI-
TROPHIC-LEVEL METACOMMUNITY 

 
 

Abstract 

Models of source-sink dynamics predict that dispersal can promote local species 

coexistence in heterogeneous environments by subsidizing populations in “sinks” that would 

otherwise go extinct without individuals from habitats where there is positive population 

growth (i.e., “sources”). Here we examine source-sink dynamics in a model community with 

multiple trophic levels. We generated population sinks by manipulating temperature (a factor 

known to influence competition and persistence in this system) and coupled sources and 

sinks by directly manipulating immigration.  We examined the relationship between dispersal 

and species richness, relative abundances, resource use and demographic synchrony.  As 

predicted, increasing the amount dispersal among local communities with differing 

temperature regimes promoted local coexistence and homogenized composition within 

metacommunities.  However, even with 50% of the individuals in communities dispersing 

every few generations, we did not see negative effects of dispersal on local diversity or 

diversity across the entire metacommunity.  Species dominance shifted from a strong local 

competitor in the absence of dispersal to a generally weaker competitor when 50% of the 

community underwent dispersal.  Basal resources (bacteria) were most abundant at 

intermediate dispersal levels (10%), indicating that resource use by bacterivores may have 
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declined in the presence of higher levels of dispersal.  Dispersal had a slight positive effect 

on temporal synchrony of communities. Our results support the hypothesis that source-sink 

dynamics can promote local coexistence in the presence of metacommunity-scale 

heterogeneity and highlight the need for future investigations of source-sink effects in 

communities shaped by dispersal between varying habitats. 

 

Introduction 

Metacommunity theory provides a predictive framework for understanding 

community structure and dynamics at multiple spatial scales (Leibold et al. 2004; Holyoak et 

al. 2005).  A metacommunity is defined as an interactive group of local communities linked 

by dispersal of one or more species (Wilson 1992).  The metacommunity perspective 

focuses, in part, on spatial mechanisms for coexistence.  Dispersal between local 

communities can promote local and metacommunity species coexistence by altering 

competitive outcomes.  For example, trade-offs between competitive and colonization ability 

allow poor competitors that are good dispersers to persist at the metacommunity level even 

though they cannot coexist at the local level with better competitors (Leibold et al. 2004; 

Mouquet et al. 2005).  However, given spatial heterogeneity within a metacommunity, 

species can coexist without invoking trade-offs in life history traits via source-sink dynamics. 

Dispersal can also promote species coexistence by altering outcomes of predator-prey 

interactions (Holyoak and Lawler 1996), allowing predators and prey to coexist across a 

metacommunity when they are unable to coexist within local patches.  

Early formulations of source-sink effects focused on the role of rapid (i.e., on the 

same time scale as competitive interactions) dispersal in allowing fugitive species to persist 
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in a multi-patch system by being superior colonizers (Levin 1974).  Dispersal can also reduce 

extinction rates in target communities, thus increasing species richness at equilibrium (rescue 

effect, sensu Brown & Kodric-Brown 1977).  Rescue effects operating on population 

demography are referred to as mass effects (Shmida & Ellner 1984).  Mass effects occur 

where input of individuals from habitats where there is positive population growth (i.e., 

“sources”) can maintain populations in “sinks” that would otherwise go extinct.  The result is 

species remain present in patches where they would otherwise be rapidly excluded (Shmida 

& Ellner 1984; Pulliam 1988).  At the community level, sources and sinks can be generated 

by spatial heterogeneity in either fitness or abiotic environmental conditions such that 

competitive rankings vary across a metacommunity (Amarasekare & Nisbit 2001).  Spatial 

heterogeneity would thus promote coexistence by maintaining different competitive 

outcomes among local habitats, thus providing spatial refuges from competitive exclusion 

(Muko & Iwasa 2000).  

Although several numerical models have examined source-sink dynamics for a single 

or two competing species (e.g., Pulliam 1984; Muko & Iwasa 2000; Hoopes et al. 2005), few 

have made clear predictions for species-rich communities.  A notable exception is Mouquet 

and Loreau’s (2003) investigation of the community structure and functioning in source-sink 

metacommunities with spatial heterogeneity.  Similar to previous work, this model predicts 

that local species richness is greatest at intermediate levels of dispersal.  They argued that 

without dispersal, the best competitor for local conditions dominates and at very high 

dispersal, the species that is most successful under all conditions dominates (i.e., the best 

metacommunity-scale competitor).  Species turnover (i.e., beta richness sensu Lande 1996) 

between local communities declines as increased dispersal homogenizes species composition 
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and eliminates spatial refugia for poor competitors (Mouquet & Loreau 2003; Mouquet et al. 

2005) – a result also supported by earlier models (Brown & Kodric-Brown 1977; Shmida & 

Ellner 1984). Metacommunity species richness appears to be maximized at low to 

intermediate dispersal when local communities are dominated by the best local competitor 

and declines as weak competitors at the metacommunity are driven extinct in all habitats.  

The effect of dispersal on species richness across spatial scales is mirrored by changes in 

composition; dominance shifts from good local competitors to good metacommunity 

competitors with increasing proportion of dispersal (Mouquet & Loreau 2003). There are few 

models of metacommunity dynamics for systems containing two or more trophic levels, 

although Caswell’s (1978) models show that the coexistence of predators and two competing 

prey can be enhanced by metacommunity dynamics. 

By changing species richness and composition, dispersal in source-sink systems is 

also predicted to affect ecosystem properties and demographic variability.  If good local 

competitors are also the species with the highest rate of intrinsic increase in a given 

environment, increasing dispersal will reduce productivity and abundance as species 

composition shifts toward predominance by good metacommunity competitors (Mouquet & 

Loreau 2003).  Even in the absence of a strong relationship between local competitive ability 

and reproductive rate, local biomass production may decline at high dispersal levels if 

biomass is maximized at highest species richness (Matthiessen & Hillebrand 2006).  

Regardless of whether production is decreasing or increasing, dispersal should also increase 

demographic synchrony in time and space (Levin 1974).  

Previous work examining the effect of dispersal on community structure at multiple 

scales has largely upheld the above predictions (Kneitel & Miller 2003; Cadotte 2006b, 
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Cadotte et al. 2006); however, there have been few experimental studies including spatial 

heterogeneity in biotic or abiotic conditions and thus allowing an examination of source-sink 

dynamics (Cadotte 2006a).  Of those including spatial heterogeneity, dispersal manipulations 

have focused on the effects of dispersal presence or frequency but not the proportion of 

community dispersing (Fox 2007).  This is an important distinction in tests of source-sink 

dynamics because many models and predictions are predicated on rapid dispersal altering 

competitive outcomes.  Robust tests of existing models of source-sink dynamics should 

manipulate dispersal without confounding effects of timing, for example by controlling  the 

proportion of a community that disperses without varying the frequency of dispersal events 

(e.g., once per generation vs. once per 10 generations).   

Here we examine source-sink dynamics in a model community with multiple trophic 

levels including a basal level of edible bacteria, nine species of protist bacterivores, and five 

species of omnivorous or predatory protists.  Environmental heterogeneity between local 

communities was introduced by creating controlled temperature differences among local 

communities, and the proportion of community members that dispersal was directly 

manipulated by mixing and transferring different volumes drawn from local communities. 

We used freshwater aquatic microcosms to test the following four hypotheses. As the 

proportion of dispersal between local communities increases , (Hypothesis 1) - local species 

richness is maximized at intermediate dispersal levels, beta species richness declines 

monotonically and metacommunity diversity declines at high levels of dispersal; (Hypothesis 

2) - species dominance and composition shift from good local competitors to good 

metacommunity competitors; (Hypothesis 3) - productivity and resource use declines; and 

(Hypothesis 4) -  and demographic synchrony increases.  
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Methods 

Biological communities 

Each local community was constructed by adding 100 mL of nutrient medium and two 

wheat seeds as a slow-release carbon source into loosely capped 200 mL Pyrex bottles.  

Nutrient medium was a 50:50 vol:vol mix of soil/water medium and Protist Pellet Medium  

(Carolina Biological Supply, Burlington, NC, USA) as described in McGrady-Steed et al. 

(1997). To standardize initial bacterial conditions, sterile medium was inoculated with a 

common suite of four bacteria (Serratia marcescens Bizio, Bacillus subtilus Ehrenberg and B. 

cereus Frankland and Frankland and Proteus vulgaris) 3 days prior to dividing the medium 

into the microcosms. All microcosms began with the same food web composition, and were 

established by sequentially inoculating microcosms with bacterivores (3 days after bacteria), 

followed by top predator/omnivores (3 days after bacteria) to allow for the establishment of 

sufficient prey prior to introducing consumers.  Bacterivores included Chilomonas sp., 

Tetrahymena thermophila, Paramecium tetraaurelia, Spirostomum teres, Colpoda magna, 

Halteria sp., and Colpidium striatum and predator/omnivores included Blepharisma 

americanum, Euplotes sp., Didinium nasutum, Stentor coeruleus, and Dileptus cygnus The 

bacterivore Uronema was present in many stock cultures of different species as an additional 

food source, and hence was added at small densities to all treatments.  Trophic positions were 

determined by published accounts (Foissner & Berger 1996), direct observation, and known 

culture requirements. All microcosms were housed in incubators without light to prevent 

colonization by algae. All protists came from either the Rutgers Display Garden Pond (New 
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Brunswick, NJ, USA) or the Carolina Biological Supply Company. Approximately once a 

week, 10 mL of the microcosm was removed and replaced with sterile nutrient medium to 

reduce the effects of accumulating waste products.  

 

Dispersal treatments 

All local communities had initially similar species compositions (see Methods: 

Biological communities).  Microcosms (local communities) were housed in unlighted 

incubators at four different temperatures (22, 24, 30, 32 °C).  Each metacommunity consisted 

of four local communities  with one local community at each temperature to introduce meta-

scale environmental heterogeneity (Fig.1). At 4 day intervals a proportion (by volume) of 

each local community was experimentally dispersed (Dispersal, 4 levels: no dispersal, 1%, 

10%, and 50%).  Dispersal events between local communities were accomplished by 

removing a fixed volume of each local community within a metacommunity, thoroughly 

pooling and mixing those volumes, and equally dividing and redistributing it between local 

communities.  There were 5 replicate metacommunities at each of the four dispersal  levels, 

for a total of 20 metacommunities and 80 local communities (bottles). 

 

Sampling  

To facilitate sampling, communities were initially assembled and sampled in two 

temporal blocks, staggered by 1 day apart.  No blocking effects were statistically detectable 

and blocks are not included in the analyses described below.  Communities developed for 5 

days after predator/omnivore additions before the first dispersal event occurred.  Sampling of 

communities began two days after the initial dispersal event (i.e., “Day 1” is the first 
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sampling event, 7 days after omnivore/predator addition). Thereafter, sampling occurred at 4 

day intervals, always 2 days after each dispersal event.  Density of each non-bacterial species 

was estimated for every local community by counting individuals from a small sample 

volume (0.09–0.30 mL, determined gravimetrically) removed from a thoroughly mixed 

microcosm. Protists were counted live using a Nikon SMZ-U dissecting microscope.  

Samples were diluted by a known amount if protest densities were too high to count 

accurately in the initial sample.  This occurred in two sorting blocks, offset by 1 day.  After 

31 days, population size of each protest species was determined for every local community 

and total microcosm volume was scanned for rare species.  Bacterial abundance was 

determined for each local community at the end of the experiment using acridine orange 

direct counts via fluorescence microscopy (Hobbie et al. 1977). All fixed samples were 

stored at 4°C until counts were performed by collecting cells (from formalin-fixed samples) 

directly on Irgalin black stained Nucleopore filters as previously described (Hobbie et al. 

1977).  Biomass of bacterivores and omnivore/predators was estimated using published 

values for average biovolumes (McGrady-Steed & Morin 2000; Fukami 2004; Cadotte et al. 

2006).   

 

Statistical analyses 

Local richness and abundances was the average of all four local communities within a 

metacommunity to avoid pseudoreplication.  Beta richness was defined as the difference in 

species richness at the metacommunity level and local richness (Lande 1996) and CV was 

calculated as the ratio of the standard deviation to the mean.  The temporal dynamics of 

dispersal effects on species richness at different spatial scales were examined using repeated 
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measures ANOVA.  The effects of proportion of dispersal on final richness, abundance, and 

biomass were tested with single factor ANOVAs.  

To compare species abundances between experimental communities, we conducted 

multivariate analyses using analysis of similarities (ANOSIM) of Bray-Curtis similarity 

coefficients generated from square root transformed abundances (Clarke & Warwick 2001). 

The effects of dispersal on compositional similarity of averaged local communities were 

investigated using analysis of similarities (ANOSIM, N=5).  

 

Results 

Species richness patterns 

Approximate equilibrium dynamics were reached 16 days (16-32 generations) after 

the first dispersal event (Fig.2).  Initial declines in richness at all spatial scales (i.e., local, 

beta, and metacommunity) stabilized by day 16.  Dispersal had a marginally significant effect 

on mean local species richness over time (Fig.2, Table 1), but did not affect beta or 

metacommunity species richness (Table 1). Dispersal also had strong effects on temporal 

variability in local richness and weak effects on spatial variability (P < 0.087, Table 1).   

In a final census, we found that increasing the proportion of dispersal drove greater 

homogenization of local communities within the metacommunity (i.e., beta richness declined 

in response to dispersal, Fig.3).  Local species richness was significantly less in no dispersal 

treatments than in any dispersal treatment in post-hoc comparisons; this effect was highly 

significant (Table 1).  Metacommunity species richness remained equivalent across dispersal 

levels (Fig.3, Table 1). 

Local and metacommunity composition 
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Relative abundances of each species changed with dispersal levels (Fig.4).   

Comparisons within each species reveal that Paramecium tetraurelia (a good competitor) 

decreased in relative abundance from no dispersal versus 1, 10 and 50% dispersal, and 

Halteria sp. (a weak competitor) increased such that the no dispersal and 50% dispersal 

treatments were significantly different (but neither is different from 1 or 10% treatments).  

We found, on average, a weak nonsignificant trend of protist species composition in 

response to dispersal (ANOSIM conducted on square-root transformed local densities: 

Global R = 0.085, P = 0.113) and post-hoc comparisons revealed that the strongest 

differences were between no dispersal and 50% dispersal treatments (P = 0.04).   

By the end of the experiment, dispersal had subtle effects on metacommunity-scale 

abundance of bacteria (Fig.5) as well as nonsignificant trends for the biomass of bacterivores 

(P = 0.0978) and omnivore/predators (P = 0.0686) within local communities (Table 1).  

Biomass of omnivore/predators in local communities responded to temperature differently 

depending on the proportion of the community dispersing; in the absence of dispersal there 

were no predators in any 28 and 32°C microcosms (Fig.5).  This effect was ameliorated 

somewhat by dispersal.  In 10 and 50% dispersal treatments omnivore/predators were present 

in most microcosms. 

 

Discussion 

Our results largely support several the predictions of source-sink metacommunity 

theory (Mouquet & Loreau 2003; Mouquet et. Al 2005).  As predicted, increasing the 

proportion of dispersal between temperature regimes promoted local coexistence and 

homogenized composition within metacommunities (Hypothesis 1).  However, even with 
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50% of the community dispersing every few generations, we did not see negative effects of 

dispersal on metacommunity or local diversity (Fig.3).  Species dominance shifted from a 

strong local competitor (Paramecium) in the absence of dispersal to a generally weaker 

competitor (Halteria) when 50% of the community was dispersing (Hypothesis 2; Fig.4), 

suggesting that dispersal provided a refuge from competition for the competitively inferior 

Halteria.  Basal resources (bacteria) were most abundant at intermediate dispersal levels 

(10%), indicating that resource use by bacterivores may have declined in the presence of 

dispersal (Hypothesis 3; Fig.5), although there was not a clear relationship between dispersal 

and bacterivore or omnivore/predator production.  Local richness was most variable in the 

absence of dispersal (supporting Hypothesis 4), although there was no effect of dispersal on 

the temporal CV of local abundance (P = 0.777).  

A previous meta-analysis of dispersal experiments indicated that the presence of 

dispersal generally increases local richness and diversity and often drives decreases in 

metacommunity diversity (Cadotte 2006a).  Among studies, dispersal rate had a loosely 

unimodal relationship with local species richness, as predicted in source-sink models 

(Amarasekare & Nisbit 2001; Mouquet & Loreau 2003; Mouquet et al. 2005).  High levels of 

dispersal can depress richness by causing a metacommunity to function as one large 

community, thus removing spatial refugia (Levin 1974; Amarasekare & Nisbit 2001).  

Contrary to most other studies, our experiment included a very high level of dispersal: 50% 

of a local community dispersing once every 4-8 generations (Cadotte 2006a).  Nevertheless, 

we did not observe disproportionately high extinctions in response to this treatment.  One 

possibility is that mass effects were strong enough to overcome negative interactions that 

would cause extinction because there was only weak competitive asymmetry at the 
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metacommunity level (Amarasekare & Nisbit 2001).  In other words, if populations had 

strong local advantages in “source” populations then, even with global distribution of 

superior competitors, the rate of competitive exclusion of superior competitors at the 

metacommunity level was small enough that extinction did not occur in local “sinks” before 

another dispersal event occurred. 

Another possibility is that predators increased coexistence in high dispersal 

metacommunities. Experiments testing the effect of dispersal on predator-prey interactions 

have found that predators can both destabilize and stabilize coexistence (Huffaker 1958; 

Holyoak 2000, Cadotte & Fukami 2005) and may reduce the positive effects of dispersal 

(Kneitel & Miller 2003 but see Robinson & Edgemon 1989).  If metacommunities were 

functioning as single large communities, predators may have persisted because they 

functionally existed in a greater area with a larger prey base.  These effects should depend on 

how specialized and area dependent predators are (Holt 2002).  By the end of our 

experiment, omnivore/predator species were entirely absent from no dispersal communities 

in 28 and 32°C microcosms and from 1% dispersal, 32°C microcosms (Fig.5).  If 

omnivore/predators stabilized coexistence of bacterivore prey, then these effects were likely 

greatest in high dispersal treatments.    

In our experiment, equal proportions of predator and prey populations dispersed.  

Although this may be unrealistic in some systems, there are relevant analogues.  For 

example, in many marine systems both prey and predators disperse as minute larvae in the 

pelagic environment (e.g., seastar/gastropod predators and mussel/barnacle prey in rocky 

intertidal systems).  Our experimental test of source-sink models is particularly apt for these 

systems because (1) many larvae essentially enter a common pool of dispersers and are 
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redistributed by oceanographic forces (Roughgarden et al. 1988) and (2) larvae produced in 

favorable habitats (“sources”) may be transported to unsuitable habitats (“sinks”).  

Theoretical models of these systems suggest that spatial heterogeneity at the metacommunity 

level can promote coexistence where competitive outcomes are decided by lottery (Chesson 

1985; Iwasa & Roughgarden 1986; Muko & Iwasa 2000).  By directly manipulating 

dispersal, we remove the potential species to have differential dispersal rates, thus providing 

a strong test of lottery models in which dispersing individuals are chosen by random draw to 

occupy vacant sites (Shmida & Ellner 1984). 

In summary, direct manipulation of dispersal within model communities reveals that 

that dispersal effects may happen at relatively low proportions when dispersal occurs on 

similar time scales to species interactions.  Our results affirm that source-sink dynamics can 

promote local coexistence in species-rich, multi-trophic communities and highlight the utility 

of the metacommunity approach in complex systems.  Metacommunity models of marine 

communities characterized by multiple scales of interaction suggest that integrating the effect 

of dispersal on coexistence can improve marine reserve design (Guichard et al. 2004).  In 

order to reach two major goals of marine conservation (i.e., maximizing biodiversity and 

system productivity), it may be necessary to integrate metacommunity dynamics into our 

current understanding of marine systems. 
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Tables. 

Table 3.1.  Results of ANOVA on the effect of dispersal on species richness at different 

spatial scales, temporal and spatial variability, and abundance at different trophic 

levels. 

To test effects of richness and coefficients of variance (CV) over time, a repeated measures 

(RM) ANOVA was used. 

Response variable df. F P 
 

Mean local richness over time (RM ANOVA)    
 Dispersal 3 3.12 0.0556 
 Time 8 58.53 <0.0001 
 Dispersal × time 24 2.60 0.0007 
Beta richness over time (RM ANOVA)    
 Dispersal 3 3.74 0.0327 
 Time 8 10.80 <0.0001 
 Dispersal × time 24 0.51 0.1295 
Metacommunity richness over time (RM ANOVA)    
 Dispersal 3 0.29 0.8319 
 Time 8 45.92 <0.0001 
 Dispersal × time 24 1.33 0.2218 
Final mean local richness (ANOVA)    
 Dispersal 3 8.28 0.0015 
Final beta richness (ANOVA)    
 Dispersal 3 4.75 0.0149 
Final metacommunity richness (ANOVA)    
 Dispersal 3 1.12 0.3703 
Temporal CV of local richness (ANOVA)    
 Dispersal 3 6.97 0.0004 
 Temperature 3 1.53 0.2145 
 Dispersal × temperature 9 0.84 0.5866 
Spatial CV over time (RM ANOVA)    
 Dispersal 3 2.61 0.0870 
 Time 8 8.41 <0.0001 
 Dispersal × time 24 0.85 0.6611 
Log(Metacommunity final bacteria abundance) (ANOVA)   
 Dispersal 3 3.91 0.0286 
Metacommunity final bacterivore abundance (ANOVA)  
 Dispersal 3 2.49 0.0978 
Log(Metacommunity final omnivore/predator biomass) (ANOVA)  
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 Dispersal 3 2.88 0.0686 
Log(Mean local Omnivore/predator:Bacterivore biomass) (ANOVA)  
 Dispersal 3 3.0605 0.0584 
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Figures. 

Figure 3.1. Schematic of experimental design.   

Rectangles represent temperature treatments and circles represent individual bottles.  Each 

bottle contained a “local community”.  A metacommunity consisted of 4 bottles (one from 

each temperature treatment) that shared a fixed volume of individuals and medium during 

dispersal events. 
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Figure 3.2.  Mean (±  S.E.) local species richness over time.  

Sampling of communities began on “Day 1,” 5 days after predator/omnivore addition and 

two days after the initial dispersal event. 
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Figure 3.3. Final local, beta, and metacommunity species richness (mean ±  S.E.). 
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Figure 3.4. Final species relative abundances.   

Different letters indicate significant differences in protected post-hoc analyses. Abbreviations 

are as follows: Pt = Paramecium tetraurelia, Ch = Chilomonas sp., Ur = Uronema sp., Eu = 

Euplotes sp., Ha = Halteria sp., Di = Dileptus cygnus, Sp = Spirostomum teres,  Ci = 

Colpoda magna, St = Stentor coeruleus, Cs = Colpidium striatum. 
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Figure 3.5.  Final local and metacommunity level bacteria abundances, bacterivore 

biomass and omnivore/predator biomass (mean ±  S.E.).   

Right panel: Bar color refers to temperature treatment.  Left panel: Different letters indicate 

significant differences in protected post-hoc analyses. 
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APPENDIX:  SUPPLEMENTARY ANALYSES AND FIGURES TO 

CHAPTER 1 

Propagule supply controls grazer community structure and primary production in a 

benthic marine ecosystem 

 

This Appendix includes: 

Supplementary Table 

Supplementary Figures and Legends 

 

Table A.1. Results of 2-factor ANOVA testing the effects of supply size and frequency 

on individual taxa abundance and percent gravid females.   

Only significant tests are listed. 

 

Response Effect df SS F P ω2 

       
Log(Ampithoidae +1)      
 Supply size 3 5.8 4.8 <0.01 18.5 
 Error 40 15.9    
Log(Dulichiella +1)      
 Supply size 3 23.7 17.0 <0.0001 23.1 
 Supply frequency  1 52.8 113.8 <0.0001 54.2 
 Error 40 18.6    
Log(Elasmopus +1)      
 Supply frequency  1 5.7 16.8 <0.001 25.0 
 Error 40 13.6    
Log(Corophium + 1)      
 Supply frequency  1 6.8 10.8 <0.01 17.3 
 Error 40 25.4    
Log(Gastropoda +1)      
 Supply size 3 10.9 8.5 <0.001 31.4 
 Supply frequency  1 1.9 4.4 <0.05 4.7 
 Error 40 17.0    
Log(Paracerceis +1)      
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 Supply size 3 19.1 4.8 <0.01 16.3 
 Supply frequency 1 16.1 12.1 <0.01 15.9 
 Error 40 53.0    
Log(Polychaeta +1)      
 Supply size 3 14.2 10.3 <0.0001 33.6 
 Supply frequency 1 3.8 8.2 <0.01 8.7 
 Error 40 18.4    
Log(Caprellidae +1)      
 Supply size 3 10.6 4.0 <0.05 15.3 
 Error 40 35.0    
Log(Pelecypoda +1)      
 Supply size 3 21.8 14.8 <0.0001 33.1 
 Supply Frequency 1 18.9 38.6 <0.0001 30.0 
 Error 40 19.6    
% Ampithoidae gravid      
 Supply size 3 0.04 2.5 <0.07  
 Error 40 0.21    
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Figure.A.1  Effect of propagule supply Magnitude and Frequency on proportion of 

ampithoids in each size class (mean ±  1 S.E., N = 3) 
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Figure A.2.  Estimated number of species added and species richness observed in the 

field  

Final grazer species richness increased significantly with the estimated number of species 

added (R2=0.24, N=30, P<0.006; Supplement 3a).  The mean number of species included in 

four treatment levels of grazer propagule supply was estimated using rarefaction analysis of 

samples taken from the initial propagule pool (N=20).  In supply treatments receiving a 

single addition, small additions received an estimated 123.5 total individuals of 8.85 species; 

Med-Lo, 246.9 individuals of 10.25 species; Med-Hi, 493.8 individuals of 11.59 species; 

Large, 987.6 individuals of 12.8 species.  A) MaoTao expected species richness (± 1 standard 

deviation) as a function of accumulated samples. B) Relationship between observed species 

richness and estimated number of species added for Single frequency propagule additions. 
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