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ABSTRACT

LAURIS M. BAUM: A Cyclic Cosmology
(Under the direction of Professor Paul H. Frampton)

It is speculated how dark energy in a braneworld can help reconcile an infinitely

cyclic cosmology with the second law of thermodynamics. A cyclic model featuring

dark energy with a phantom (w < −1) equation of state leads to a turnaround at a

time just before a would-be Big Rip at one end of the cycle and a bounce just before

a would be crunch at the other. At the turnaround, both the volume and entropy

of our universe decrease by a gigantic factor while very many independent small

contracting universes are spawned. The entropy of our model decreases to nearly zero

as it approaches the turnaround after which it increases by only a vanishing amount

during the contracting stage, empty of matter. Shortly after the bounce, the entropy

increases by a large factor during inflationary expansion. We next examine the content

of the contracting universe (cu) and its entropy Scu. We find that in addition to

dark energy, the universe contains zero photons on average (with the unlikely single

photon, if present immediately after the turnaround, having infinitesimal energy that

blue shifts eventually to produce e+e− pairs). These statements are independent of

the equation of state ω = p/ρ of dark energy provided ω < −1. Thus Scu = 0 and if

observations confirm ω < −1 the entropy problem is solved. We discuss the absence

of a theoretical lower bound on φ = |ω+1| and then describe an anthropic fine tuning

argument that renders unlikely an extremely small φ. The present bound φ < 0.1

already implies a time until turnaround of (tT − t0) & 100 Gy. The requirement that

our universe satisfy a CBE-condition (Comes Back Empty) imposes a lower bound on

the number Ncp of causal patches which separate at turnaround. This bound depends
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on the dark energy equation of state w = p/ρ = −1 − φ with φ > 0. More accurate

measurement of φ will constrain Ncp. The critical density ρc in the model has a lower

bound ρc ≥ (109GeV)4 or ρc ≥ (1018GeV)4 when the smallest bound state has size

10−15m, or 10−35m, respectively.
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CHAPTER 1

INTRODUCTION

1.1 General Background

One of the longest standing issues in cosmology has been what is the overall

nature and history of the universe in the broadest sense? Did it spring forth from

one initial big bang? Has it always existed more or less as it is today? Or has it

perhaps gone through an infinite cycle of expansions and contractions? Or something

altogether different?

In 1916, Albert Einstein published his theory of general relativity containing

the famous Einstein equation (Gµν ≡ Rµν − 1
2
Rgµν) = 8πGTµν . One of the popular

assumptions of the time, based on the general observational data available and the lack

of understanding of what nebulae actually were, was the notion of a static and largely

uniform universe. When Einstein began to look into the implications of his equation

for the universe as a whole, he quickly realized that it was not possible to obtain

a static solution with a uniform distribution of matter so, in 1917, he introduced a

cosmological constant term Λgµν into his field equation to get (Gµν − 1
2
Rgµν)+Λgµν =

8πGTµν (taking Λ = 8πG̺ in order to balance out the attractive force of gravity) and

created a static, closed model of the universe. However, this proposal did not turn

out to be tenable as it was unstable to even the smallest of perturbations and it was

ruled out by later astronomical data which revealed an expanding universe.

Interestingly, over two centuries earlier similar discussions had occurred based

upon Newtonian theory. In 1692 Richard Bentley gave the first series of Boyle Lec-

tures. At the lectures, a consensus was reached among those present that the universe



must be infinite if it was to have any chance of not collapsing into a point due to the

force of gravity (although they were wrong because under Newtonian gravitation an

infinite universe would actually collapse back on itself in the same time as a finite

universe would) [1]. Furthermore, they agreed that it would have to be perfectly

arranged otherwise even the smallest perturbation would lead to collapse. Newton

concurred with their findings. Later in 1917, Willem de Sitter introduced an alterna-

tive construction for a static universe making use of the cosmological constant. His

model contained no matter at all, much to the consternation of Einstein who had

originally hoped that his theory of general relativity would have a single unique so-

lution that was our universe. It was not until six years later that Arthur Eddington

and Hermann Weyl were to discover that serious confusions (perhaps aided by the

prejudice of the day for a static universe) had led to the mistaken conclusion that de

Sitter’s model actually represented a static universe when it was, in fact, a model of

an expanding universe [1]. After considerable initial interest, de Sitter’s theory even-

tually fell by the wayside as the static universe was disproven and the mass density

was radically too low to be realistic. It did not re-emerge until decades later when,

in 1980, interest began in inflationary theory.

In 1922 mathematician and meteorologist Alexander Friedmann came up with

his famous solutions to the Einstein equation [2]. For calculational simplicity he took

the universe to be homogenous and isotropic, neither of which appeared to be obser-

vationally troubling. In his 1922 paper he discovered cases for expanding universes

having closed spatial geometries. In some of these cases the universe would expand to

a maximum size before turning around and crunching back into a point. In a second

paper, in 1924, he found cases for infinite open universes having a hyperbolic geome-

try which are know as the Friedmann world models. From the time-time component

of the Einstein equation came the the Friedmann equation ( ȧ
a
)2 + κ

a2 = 8πG
3

̺ (some-

times written using Hubble’s constant H, the expansion rate of the universe, with
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H ≡ ȧ
a
) and from the space-space components came 2 ä

a
+ ( ȧ

a
)2 + κ

R2 = −8πG̺ where

a(t) is the scale factor for the expansion, κ characterizes the geometry of the universe

and is usually normalized to ±1, 0 (κ = −1 ⇔ open, κ = 0 ⇔ flat, κ = 1 ⇔ closed)

and ̺ is the total energy density. Taking the difference between the two equations of

Friedmann provides an equation for the acceleration: ä
a

= −4πG
3

(̺ + 3p). Paired with

the Robertson-Walker spacetime metric ds2 = −dt2 + a2(t)[ dr2

1−κr2 + r2dΩ2], we have

the Friedmann-Roberston-Walker (FRW) model of the universe. If we include and

separate out the cosmological constant term, the Friedmann equation gets modified

to ( ȧ
a
)2 + κ

a2 = 8πG
3

̺ + Λ
3
. We can also provide a measure of the rate of change of the

expansion, known as the deceleration parameter, q = −aä
ȧ2 . Although he did not in-

vestigate the particular case, at a certain critical density the limiting case of his open

hyperbolic or closed models produces a flat Euclidean model of infinite extent. The

FRW model was not generally given much regard at first since most data appeared

to show a generally static universe, but this would soon change.

In fact, there had already been hints. In 1868, Sir William Huggins had noted

a Doppler shift appearing in some starlight. Then in 1912, Vesto Melvin Slipher had

obtained data showing that spiral nebulae were red-shifted in a way consistent with

expansion, however, since nobody knew what the nebulae were and nobody imagined,

in particular, that they were actually distant galaxies, the data were not given much

thought (although as far back as the 18th century some, such as Kant, Lambert,

Swedenborg, and Wright, actually had philosophized that perhaps these nebulae were

actually distant galaxies much like our own). Furthermore, Arthur Eddington already

recognized in 1923 that Slipher’s data would fit in with an expanding de Sitter model

universe.

During the mid to late 1920’s, astronomers began taking general notice that the

nebulae were red-shifted. When Sir Edwin Hubble discovered the Cepheid variables

within the Andromeda Nebulae in 1925, he conclusively demonstrated for the first

3



time that the spiral nebulae were in fact extra galactic systems and thus settled at

least the second half of what had become known as ‘The Great Debate’- what is

the size of our galaxy and are the spiral nebulae members of our galaxy or separate

‘island universes’ well beyond it? This led the Belgian civil engineer, priest and later

astrophysicist Georges Lemâıtre, in 1927, to independently derive the Friedmann

solutions (they were not yet widely known) and to propose that the universe might

not fit the static model but might instead have burst forth from a primeval atom.

This was the original big bang proposal. None of Lemâıtre’s models for the Big Bang

universe ultimately provided useful though as he ended up having to construct highly

convoluted models in order to force them to be in agreement with both observational

data for the age of the universe and an early and highly erroneous value for the Hubble

constant which was off by an order of magnitude [1].

A couple of years later, in 1929, Hubble announced that almost all galaxies (the

neighboring Andromeda is a notable exception) were moving away from us faster the

farther away from us they were and that they were all receding away from each other.

Then, in 1931, he went on to demonstrate this with data and Eddington brought

to general light Lemâıtre’s work. It was then that the expanding universe solutions

of the Friedmann equations finally began to attract considerable attention. One of

the Eddington/Lemâıtre models described a closed but ever expanding universe that

started out as an Einstein static universe and then later expanded at an ever increasing

rate due to the presence of a positive cosmological constant. As objects within this

universe were ultimately being expanded away from one another at faster than the

speed of light, Eddington believed that the galaxies would eventually become casually

disconnected from one another, each forming their own separate island universe [1,3].

Such ideas soon fell out of fashion since there was not even a hint of observational

evidence suggesting the possibility, but they were to awaken again decades later when,

in 1998, new observational data arrived on the scene [3].
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It now appeared as if though the universe might be a dynamic one in which

wherever one stood it would look as if everything else was receding away in all direc-

tions. Astronomers characterize the redshift of distant objects by z = λobserved−λemitted

λemitted

with λemitted the wavelength of the light as emitted by the source and λobserved the

wavelength of the light when it reaches the Earth. The scale factor of the universe at

the time (t1)light was emitted from an object of redshift z is given by a(t1) = 1
1+z

. In

the special relativistic Doppler shift formula one gets 1+z = (
1+ v

c

1− v
c

)
1
2 and although the

Doppler shift deals with relative velocity between two objects, the redshift is usually

thought of as a Doppler shift in the sense that the wavelength as we receive it may

appear to be longer or shorter than it was as it was emitted from the object. Some

suggest to interpret it as infinite sums of infinitesimal shifts along the path [4]. For

galaxies that are not too far off, astronomers can ignore the complications of general

relativity and simply use v = cz or, for the Hubble law, v = Hd where d(t) = a(t)r

with r being the co-moving radial coordinate and d(t) taken as the physical distance.

This gives the linear formula whereby a galaxy’s recession velocity is proportional to

its distance to us. The value of H at the present time is H0 ≃ 70km/s/Mpc.

It was at this time that Einstein suggested to remove the cosmological constant

from his equation and told George Gamow that the greatest blunder of his life had

been inserting it into his equation. However, the saga of the cosmological constant

was far from over. It was resurrected in the 1940’s and 1950’s when it was discovered

that the Hubble time was not consistent with the age of the Earth (producing an

Earth older than the universe itself!). The cosmological constant was removed again,

however, when it discovered that Hubble’s original estimate of his constant had been

off by an order of magnitude and the Hubble time actually had been consistent

to begin with, although this was still not the last that was to be heard from the

cosmological constant. It was ultimately discovered that it was a natural part of the

equation. However, taken as a vacuum energy, the expectation would have been for
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it to have either a massively large value or, through some method of cancelation, a

value of zero; anything but the vanishingly small and yet non-zero value that it is

now known (since 1998) to have.

After the discovery of the expansion of the universe by Hubble, two main

models for the universe emerged, the Steady State and the Big Bang.

The Big Bang model, which was promoted and expanded upon by Gamow,

was a model of a dynamic, changing universe which started out as a singularity and

then burst force across the entire volume of the universe from a primordial explosion

after which it went on to pass through a very hot radiation dominated stage before

proceeding to a matter dominated phase. In 1948, Gamow’s coworkers Raplh Alpher

and Robert Herman predicted, from their model, that there should exist a cosmic

microwave background (CMB) radiation of about 5K leftover from the cooling of

the surface of last scattering of the CMB (about 400,000 years after the alleged Big

Bang). At this time the universe was cool enough for electrons and protons to combine

into atoms and change from an opaque plasma to its present neutral and therefore

transparent form.

On the other hand, in the Steady State model of Fred Hoyle, Thomas Gold,

Hermann Bondi and others, new matter would be continually created as space ex-

panded so that the universe would be, overall, time independent. This model met the

Perfect Cosmological Principle which states the universe is homogenous and isotropic

in both space AND time (on the largest scales, the universe has a surprisingly uni-

form distribution of matter and looks now the same as it always has and always will).

Hoyle proposed a new C-Field that would have negative pressure to drive the expan-

sion and that would also create new matter. Hoyle despised the Big Bang model and

yet, ironically enough, was responsible for giving it its moniker, derisively referring

to it as “that big bang idea” on various BBC programs and lecture series throughout

1949 and 1950. The moniker soon stuck, but without any of the negative connotation.
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More recently, Andrei Linde tried to invoke eternal inflation featuring self-

reproducing universes in order to avoid a beginning [5, 6]. However, Arvind Borde

and Alexander Vilenkin demonstrated that a reasonable spacetime that eternally

inflated into the future had to posses an initial singularity [7]. The idea was revisited

by Aguirre in 2002 [8,9]. In more modern forms, eternal inflation or chaotic inflation

models of the universe have been introduced which while on smaller scales appear

more in line with the Big Bang model appear to have similarities to the Steady State

models when viewed on the grandest scales.

At first the community was split about fifty-fifty between the two competing

models (the Big Bang and the Steady State), but by the 1960’s the community had

shifted largely behind the Big Bang model as more and more astronomical data

hinted at a dynamic universe. For instance, quasars, seemed to show up in only very

ancient galaxies. By 1964 it was realized that stellar production could never give

the twenty-four percent by mass helium that was being seen throughout the universe

while primordial nucleosynthesis could; this was actually shown by the calculations

of Fred Hoyle and Roger Tayler in their 1964 paper in ‘Nature’.

In early 1964 came a revolutionary event when two Bell Labs radio astronomers,

Arno Penzias and Robert Wilson, just out of nearby Princeton graduate school, found

a pesky 2.7K source of systematic error in the experiment they were carrying out at

the Holmdel, NJ Bell Labs facility. By chance at a meeting they ran into someone

familiar with work going on at Princeton and had it suggested to them that they get

into contact with the gravitational physics group led by Robert H. Dicke.

Dicke was working on an oscillatory model for the universe and also indepen-

dently arriving at the idea of a relic cosmic background radiation. Also a member

of the group was Jim Peebles who worked out a clear prediction for a blackbody

spectrum for the CMB in 1965 (they later came across Gamow’s earlier little known

1950 research and prediction). It was the Princeton group that convinced Penzias
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and Wilson that is was the CMB that they had discovered (beating out the Princeton

group’s Peter G. Roll and David T. Wilkinson who had been setting up their own

experimental search at the time).

This was, for the most part, the death knell for the Steady State models

although there were still some further variants such as Zwicki’s tired light model and

the Quasi-steady State model introduced by Fred Hoyle and others in 1993. Both

appeared problematic and never caught on.

The Penzias-Wilson discovery had an impact on competing Big Bang models

as well. The uniformity of the CMB allowed it to rule out Oskar Klein and Hannes

Alfven’s localized explosion model for the Big Bang [1].

1.2 Cyclic Universe Background

However, one important class of cosmological model, of an entirely different

nature, has been skipped over so far.

In the early 1930’s, Tolman proposed an oscillatory model for the universe [10].

He, along with many others over the years, didn’t like the idea of having an initial

singularity or the requirement for initial conditions, both inherent with the Big Bang

model, and considered the possibility of an ever existing, past and future complete,

infinite cyclic cosmology. His proposal was based upon a mechanism naturally pro-

vided by a “closed” universe which provides a turnaround point after the universe

has grown to a certain size, leading then to collapse back in on itself. The cyclic idea

is it will then spring forth again and repeat an infinite number of times.

Tolman carried out the earliest extensive work on cyclic universes [10,11] and

was for long their most ardent supporter although various others such as Markov and

Dicke extensively investigated such models over the years too. However, these models

all ran into various issues which rendered them problematic.
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First, there is the second law of thermodynamics which leads to an entropy

conundrum. The entropy of the universe would increase with each cycle. Since the

greater the entropy in the universe the greater the maximum radius reached before

turnaround, each cycle would grow larger and longer than the previous one. Thus

tracing back in reverse from the current day one would get led back through ever

smaller cycles until one reached a singularity, exactly what one had hoped to avoid

[12]. These models of the universe would thus be future complete but could not be past

infinitely cyclic. Second, even if the entropy conundrum were not present, there would

still be the issue whereby large scale structure and black hole formation would lead to

serious problems during the contracting phase. For instance, black holes could grow

so large and copious during the contracting phase that it would cause a premature

bounce or cause the equations to break down. Finally, mix-master issues can occur

during the contracting stages which will cause wild oscillations of scale differentially

along the dimensions of space and create serious anisotropy issues [13–16]. On a side

note, in the late 1960’s Charles Misner tried unsuccessfully to use mix-master effects

to his advantage to get around the problems of causality and the uniformness of the

CMB for which inflation would later be proposed [14].

Ultimately, all of these early cyclic models were dropped as being futile. The

Big Bang emerged as the clear consensus model and, for all intents and purposes,

all cyclic cosmological models appeared to be dead. There was a brief revival of

such models by Markov in early to mid 1980’s [12, 17] but they also proved to be

problematic and the work on cyclic models was more or less abandoned once again.

However, extra-dimensional theories slowly began coming into vogue again, such as

String Theory, and then, in 1998, interesting astronomical data came to light [3] which

would revolutionize physics. It appeared as if most of the universe was currently made

up of an unknown energy called dark energy that was causing the universe to enter

into a period of accelerated expansion.
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At least since the time of Theodor Kaluza and Oskar Klein in the 1920’s, there

has been serious speculation that perhaps there are more dimensions than one of time

and three of space (in fact Gunnar Nordstrom, in 1914, had already attempted to

make use of an extra dimension when attempting to formulate his own theory of

gravitation and combine it with electromagnetism [18]). In 1921, Kaluza proposed a

theory [19] using an extra dimension of space, a 5th dimension, in an attempt to unify

Einstein’s theory of gravitation with Maxwell’s electromagnetism. Miraculously, by

simply adding an extra fifth dimension to Einstein’s theory of gravitation it automati-

cally produced the Maxwell equations of electromagnetism in addition to the Einstein

equations for gravitation! However, since we don’t observe any extra dimensions they

must be hidden and their effects suppressed in some way.

In 1926 Klein proposed [20] that the extra 5th dimension might be a compact-

ified dimension, a circular extra dimension appearing at each point in three dimen-

sional space, this becoming known as Kaluza-Klein reduction or compactification.

Imagining for simplicity only one instead of three standard spatial dimensions, the

extra compactified dimension cam be envisioned like a garden hose of vanishingly

small radius. Klein thereby solved the problem of why the extra dimension’s effects

appeared to be suppressed and why we don’t notice them. Additionally, it explained

why the electric charge is quantized [21].

However, Kaluza-Klein unification would not be the end of the story for nu-

merous technical issues not to mention entirely new forces and particles which came

to light. For decades it was thought that the only way in which extra dimensions

could tenably arise was through compactification into exceedingly small size.

However, in 1998 Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali

(ADD) proposed a new model in an attempt to explain the relative weakness of

gravity compared to the other forces. The ADD model made use of large, millimeter-

scale extra dimensions [22]. The following year, Lisa Randall and Raman Sundrum
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introduced their “RS1” model featuring two branes and a large, warped extra dimen-

sion [23]. Shortly afterward, they introduced their “RS2” model which contained an

extra dimension that was not only not compactified, but actually infinite in extent

as they sent the second brane in RS1 to infinity [24]. From the five-dimensional RS

model one can obtain an effective modified Friedmann equation in four-dimensions

that contains a new ̺2 (̺ ≡ density) term in addition to the usual ̺ term. This form

of modified Friedmann equation is not actually specific to this particular model but

more general [25].

In braneworld scenarios like RS1 one takes the standard model particles to be

constrained within a hyper-surface brane that lies within a higher-dimensional bulk.

Gravity (and perhaps exotic particles) can travel throughout the bulk. Such models

can arise, for instance, from within string theory such as through the strong coupling

limit of the E8XE8 Horava-Witten model [26]. Compacting six of eleven dimensions

onto a Calabi-Yau manifold leaves an effectively five-dimensional spacetime with two

four-dimensional boundary branes. In many models featuring two such branes, with

the standard particles confined to one of the two, changing the moduli controlling

the distance between the two branes within the bulk can effectively look, in four-

dimensions, like an expansion or contraction of space. For example, in the RS models,

if the brane moves as a function of w(t) this induces a FRW scale factor of a(t) = e−k|w|

[27,28]. In some models the brane separation needs to be constrained to provide the

proper spectrum of standard model particles and forces [25,29, 30].

Also totally unexpected were the implications of new astronomical observa-

tions carried out in the late 1990’s. In 1998 it was announced that the expansion

rate of the universe was actually increasing at the current time instead of remaining

constant or slowing down [3]. This was an entirely unexpected finding. The cause

for the increasing expansion rate became referred to as dark energy. Dark energy is

parameterized by an equation of state w = p
̺

with p the pressure and ̺ the density
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which goes as ̺ ∝ a−3(1+w) in the Friedmann equation. More specifically, ̺ goes,

depending upon whether it is radiation, matter, vacuum energy, or phantom energy

as:

radiation: p = ̺
3
⇒ ̺ ∝ 1

a4

matter: p=0 ⇒ ̺ ∝ 1
a3

vacuum energy: p = −̺ ⇒ ̺ ∝ constant

phantom energy: p < −̺ (taking, for one example, p = −4
3
̺ ⇒ ̺ ∝ a)

with the latter phantom form capable of eventually leading to exceptional causal

structure as will be employed in this dissertation.

With the discovery of dark energy and it’s potentially exotic nature, and with

renewed interest in extra-dimensions and the ensuing braneworlds and other con-

structions, it became natural to wonder if there might not be some way around the

problems which had derailed prior attempts at constructing consistent cyclic models

of the universe. Might the cyclic universe not be opened up again to possibility?

Work attempting to use some of the new possibilities began again, for instance

in a 2001 model without the need for inflation, the Ekpyrotic model [31]. Bouncing

braneworlds with an extra dimension of time such as [32] began to be investigated.

Also making use of branes and phantom energy [33], which examined the consequences

for cyclic cosmology.

After their initial Ekpyrotic model, Steinhardt and Turok began working on

a derivative model [34–42] which could avoid a big bang and thereby made progress

towards a cyclic model (although without resolving the entropy conundrum [43]).

1.3 Outline of a Cyclic Model

The rise of dark energy, only discovered in 1998 [3], proves to be a crucial

ingredient required to create a viable cyclic model of the universe. If the equation
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of state is w < −1 (current observations are centered around −1 with some slightly

favoring w < −1 [44]) then the universe may eventually enter a period of exceptional

causal structure. Within the realms of models following the standard Friedmann

equation, such a phantom dark energy would eventually lead to a Big Rip within a

finite amount of time and tear apart the fabric of spacetime [45].

The Big Rip and replacement of dark energy by modified gravity were explored

further in [46,47]. If one turns to a modified Friedmann equation (H2 = 8π
3M2

p
(̺− ̺2

2σ
))

where σ is a brane tension then at ̺b = 2|σ| one finds H = 0 as required at a

turnaround or bounce in cyclic cosmology. Such can arise in a variety of models, the

Big Rip can be avoided as well as any crunch to a singularity at the other end of the

cycle.

It is such ideas coupled to dark energy that provide new avenues to travel

down in the hopes of being able to construct cyclic models of the universe which may

be both future AND past complete.

We consider here a model where just before reaching the Big Rip a brane

contribution creates a turnaround at which time the scale factor deflates to a very

tiny fraction (f) of itself and only one casual patch is retained, while the other 1
f3

patches independently contract to separate universes.

The universe is causally fractionated into a tremendous number (more than

one googol, 10100) of independent patches. Contraction occurs with a much smaller

universe which returns almost empty and eventually bounces just before a singularity

would be hit and then enters into a brief period of standard inflationary expansion.

Inflation injects a huge amount of entropy and so begins the next generically iden-

tical cycle and the new idea of how to overcome the seemingly impossible entropy

conundrum.
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CHAPTER 2

TURNAROUND IN CYCLIC COSMOLOGY

2.1 Basics of Model

If the dark energy has a super-negative equation of state, ωΛ = pΛ

̺Λ
< −1,

it leads to a Big Rip [45, 48] at a finite future time where there exist extraordinary

conditions with regard to density and causality as one approaches the Rip. We next

explore whether these exceptional conditions can assist in providing an infinitely cyclic

model.

We consider a model where, as we approach, expansion stops just short of the

Big Rip due to a brane-like contribution. There is a turnaround at time t = tT when

the scale factor is deflated to a very tiny fraction (f) of itself and only one causal

patch is retained, while the other 1/f 3 patches contract independently to separate

universes. Turnaround takes place an extremely short time (< 10−27s) before the

Big Rip would have occurred, at a time when the universe is fractionated into many

independent causal patches [47].

There follows contraction which occurs with a very much smaller universe than

in expansion and with almost vanishing entropy because it is assumed empty of dust,

matter and black holes and where even photons have become infinitely redshifted.

On the other end of a cycle, a bounce takes place a short time before a crunch

into a singularity would have occurred (based on present day knowledge). After the

bounce, entropy is injected by inflation [49], where it is assumed that an inflaton field

is excited. Inflation is thus a part of the present model which is one distinction from



the work of [34–37]. For cyclicity of the entropy (S(t) = S(t+τ)) to be consistent with

thermodynamics it is necessary that the deflationary decrease by f 3 will compensate

for the entropy increase acquired during expansion including during inflation.

A possible shortcoming of the proposal could have been the persistence of

spacetime singularities in cyclic cosmologies [43], but to our understanding for the

model we outline this problem is avoided (provided that the time average of the

Hubble parameter during expansion is equal in magnitude and opposite in sign to its

average during contraction).

2.2 Friedmann Equation for Expansion Phase

Let the period of the Universe be designated by τ and the bounce take place

at t = 0 and turnaround at t = tT . Then we have the expansion phase for times

0 < t < tT and the contraction phase corresponds for times tT < t < τ . We employ

the following Friedmann equation for the expansion period 0 < t < tT :

(

ȧ(t)

a(t)

)2

=
8πG

3

[(

(̺Λ)0

a(t)3(ωΛ+1)
+

(̺m)0

a(t)3
+

(̺r)0

a(t)4

)

− ̺total(t)
2

̺c

]

(1)

where the scale factor is normalized to a(t0) = 1 at the present time t = t0 ≃ 14Gy.

To explain the notation, (̺i)0 denotes the value of the density ̺i at time t = t0. The

first two terms are the dark energy and total matter (dark plus luminous) satisfying

ΩΛ =
8πG(̺Λ)0

3H2
0

= 0.72 and Ωm =
8πG(̺m)0

3H2
0

= 0.28 (2)

where H0 = ȧ(t0)/a(t0). The third term in the Friedmann equation is the radiation

density which is now Ωr = 1.3 × 10−4. The final term ∼ ̺total(t)
2 is derivable from a

braneworld construct [23,24,33,50]; we use a negative sign naturally arising from neg-

ative brane tension (the negative sign can arise also from a second time-like dimension

that causes issues with closed time-like paths). In this third term, ̺total = Σi=Λ,m,r̺i.
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As the turnaround is approached, the only significant terms in Eq.(1) are the first

(where ωΛ < −1) and the last. As the bounce is approached, the only important

terms in Eq.(1) are the third and the last. (We shall later argue that the second

term, for matter, is absent during contraction.) In particular, the final term of Eq.

(1), ∼ ̺total(t)
2, arising from the braneworld construct is insignificant for almost the

entire cycle but becomes dominant as one approaches t → tT for the turnaround and

again for t → τ as once approaches the bounce.

2.3 Turnaround

Let us assume for algebraic simplicity that ωΛ = −4/3 = constant. This

value is already almost excluded by WMAP3 [51] but to begin we are aiming only at

consistency of infinite cyclicity. More realistic values are left for future investigation.

With the value ωΛ = −4/3 we learn from [46] that the time to the Big Rip is (trip −

t0) = 11Gy(−ωΛ − 1)−1 = 33Gy which is, as we shall discuss, within 10−27 second

or less of when turnaround occurs at t = tT . So if we adopt t0 = 14Gy then tT =

t0 + (trip − t0) ∼ (14 + 33)Gy = 47Gy. From the analysis in [45–48] the time when

a system becomes gravitationally unbound corresponds approximately to the time

when the dark energy density matches the mean density of the bound system. For

an object like the Earth or a hydrogen atom, water density ̺H2O is a practical unit.

With this in mind, for the simple case of ω = −4/3 we see from Eq.(1) that the

dark energy density grows proportional to the scale factor ̺Λ(t) ∝ a(t) and so given

that the dark energy at present is ̺Λ ∼ 10−29g/cm3 it follows that ̺Λ(tH2O) = ̺H2O

when a(tH2O) ∼ 1029. We can estimate the time tH2O by taking on the RHS of the

Friedmann equation only dark energy
(

ȧ
a

)2
= H2

0ΩΛa−β with β = 3(1 +ω). When we

specialize to ω = −4/3 it follows that

a(tH2O)

(a(t0) = 1)
=

(

(trip − t0)

(trip − tH2O)

)2

(3)
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so that (trip − tH2O) = 33Gy × 10−14.5 ≃ 103.5s ∼ 1 hour. [The value is sensitive to

ω.] It is instructive to consider an approach to the Rip using a more general critical

density ̺c = η̺H2O and to compute the time (trip−tη) such that ̺Λ(tη) = ̺c = η̺H2O.

We then find, using a(tη) = 1029η, that#1

(trip − tη) = (trip − t0)10−14.5η− 1
2 ≃ η− 1

2 hours (4)

which is the required result. We shall see that η > 1031 so the time in (4) is < 10−27s.

To discuss the turnaround analytically we keep only the first and last terms,

the only significant ones, on the RHS of Eq.(1) which becomes for the special case

ω = 4/3
(

ȧ

a

)2

= α1a − α2a
2 (5)

in which

α1 =
8πG

3
(̺Λ)0 α2 =

8πG

3

(̺Λ)2
0

̺c

(6)

Writing a = z2 and z = (α1/α2)
1/2sinθ gives

dt =
2
√

α2

α1

dθ

sin2θ
=

2
√

α2

α1
d(−cotθ) (7)

Integration then gives for the scale factor

a(t) =

(

α1

α2

)

sin2θ =
̺c

(̺Λ)0

[

1

1 +
(

tT −t
C

)2

]

(8)

where C = −(3/2πG̺c)
1/2. At turnaround t = tT , a(tT ) = [̺C/(̺λ)0] = (a(t))max.

At the present time t = t0, a(t0) = 1 and sin2θ0 = [(̺Λ)0/̺C ] ≪ 1, increasing during

subsequent expansion to θT = π/4.

A key ingredient in our model is that at turnaround, t = tT , our universe

#1note the correction to the exponent of η in Eq.(4) of [52]
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deflates dramatically with an effective scale factor a(tT ) shrinking before contraction

to â(tT ) = fa(tT ) where f < 10−28. This jettisoning of almost all, a fraction (1−f), of

the accumulated entropy need be permitted by the exceptional causal structure of the

universe in some fashion. We shall see later that the parameter η at turnaround lies

in the range η = 1031 to η = 1087 which implies a dark energy density at turnaround

(Planckian density of ̺Λ ∼ 10104̺H2O can be avoided) such that, according to the

Big Rip analysis of [46,47], all known, and yet unknown smaller, bound systems have

become unbound and the constituents causally disconnected. Recall that the density

of a hydrogen atom is approximately ̺H2O and we are reaching a dark energy density

of from 31 to 87 orders of magnitude higher.

According to these estimates, at t = tT the universe has already fragmented

into an astronomical number (1/f 3) of causal patches, each of which independently

contracts as a separate universe leading to an infinite multiverse. The entropy at

t = tT is thus divided between these new contracting universes and our universe

retains only a fraction f 3. Since our model universe has cycled an infinite number of

times, the number of parallel universes is infinite.

2.4 Deflation

A central assumption in our cyclic model is that almost all of the entropy is

jettisoned at turnaround by the retention of one causal patch. We cannot justify this

step rigorously but hope to convince the reader by the following physical argument.

Let us take a bounce temperature TB = 10p GeV with p > 3. This gives (see below)

η = 10(19+4p) and hence, from Eq.(4), (trip − tT ) ∼ 10−(19+4p) hours. The dark energy

density ̺c ∼ 10(19+4p)g/cm3 at turnaround implies the prior disintegration of all bound

systems with mean density ̺ < ̺c, which for p > 3 includes atoms, nuclei, nucleons

(1015g/cm3) and even smaller bound systems, if any. As shown in [45, 46, 48], at a

similar time, actually somewhat but not too much later, these constituents become
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causally disconnected. For such a density, a generic causal patch contains no quarks

or leptons, only dark energy together with a small number of highly infra-red photons.

Black holes are also absent, having been torn apart by the approach to the would-be

Big Rip e.g. [33]. The entropy of such a patch is essentially zero, by which we mean

S = O(101) compared to the earlier S > 1088. This dramatic decrease in entropy

is called deflation for obvious reasons. During contraction, as we shall describe, the

entropy remains constant at essentially zero because dark energy has zero entropy and

radiation contracts adiabatically. Although these heuristic arguments about deflation

seem clear, a more rigorous justification would certainly be most desirable.

2.5 Friedmann Equation for Contraction Phase

The contraction phase for our universe occurs for the period tT < t < τ . The

scale factor during the contraction phase will be denoted by â(t) while we always use

the same linear time t subject to the periodicity t + τ ≡ t. At the turnaround we

retain a fraction f 3 of the entropy with â(tT ) = fa(tT ). For the contraction phase,

the Friedmann equation is

(

˙̂a(t)

â(t)

)2

=
8πG

3

[(

(ˆ̺Λ)0

â(t)3(ωΛ+1)
+

(ˆ̺r)0

â(t)4

)

− ˆ̺total(t)
2

ˆ̺c

]

(9)

where we have defined

ˆ̺i(t) =
(̺i)0f

3(ωi+1)

â(t)3(ωi+1)
=

(ˆ̺i)0

â(t)3(ωi+1)
(10)

In contrast to Eq.(1), however, we have set ˆ̺m = 0 because our hypothesis is that

the causal patch retained in the model contains only dark energy and radiation but

no matter (including no black holes). This is necessary because during a contracting

phase dust or matter would clump, even more readily than during expansion, and

inevitably interfere with cyclicity. Perhaps more importantly, presence of dust or
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matter would require that our universe go in reverse through several phase transitions

(recombination, QCD and electroweak to name a few) which would violate the second

law of thermodynamics. We thus require that our universe comes back empty! Note

that any tiny entropy associated with radiation will be constant during adiabatic

contraction.

The contraction of our universe will proceed from one of the 1/f 3 causal

patches following Eq.(9) until the radiation balances the brane tension at the bounce.

2.6 Bounce

At the bounce, the contraction scale is given, using ̺c = η̺H2O, from Eq. (1)

as

a(τ)4 =

(

(̺r)0

η̺H2O

)

(11)

Now the model’s bounce at t = τ must be before the electroweak transition at tEW =

10−10s when a(tEW ) = 10−15, and after the Planck scale when a(tP lanck) = 10−32 in

order to accommodate the well established weak transition and to avoid uncertainties

associated with quantum gravity. With this in mind, here are three illustrative values

(A, B, C) for the bounce temperature TB:

• (A) At a GUT scale TB = 1017GeV, a(tB) = 10−30.

• (B) At an intermediate scale TB = 1010GeV, a(tB) = 10−23.

• (C) At a weak scale TB = 103GeV, a(tB) = 10−16.

From Eq.(11) and Eq.(4) for these three cases one finds

• (A) η = 1087 and (trip − tT ) = 10−87hr.

• (A) η = 1059 and (trip − tT ) = 10−59hr.

• (A) η = 1031 and (trip − tT ) = 10−31hr.
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Immediately after the bounce, we assume that an inflaton field is excited

and there is conventional inflation with enhancement E = a(τ + δ)/â(τ). Successful

inflation requires E > 1028. Consistency requires therefore f < E−1 to allow for the

entropy accrued during expansion after inflation. The fraction of entropy jettisoned

from our universe at deflation is thus extremely close to one, being less than one and

more than (1 − 10−28)3.

2.7 Entropy

Consider first the present epoch t = t0. The contributions of radiation to the

entropy density s follow the relation

s =
2π2

45
g∗T

3 (12)

Photons contribute g∗ = 2. The present CMB temperature is T = 2.73K ≡ 0.235meV ∼

1.191(mm)−1. Substitution into Eq.(12) gives a present radiation entropy density of

sγ(t0) = 1.48(mm)−3. Using a volume estimate V = (4π/3)R3 with R = 10Gly ≃

1029mm gives a total radiation entropy of Sγ ∼ 6.3 × 1087. Including neutrinos in-

crease g∗ in Eq.(12) from g∗ = 2 to g∗ = 3.36 = 2 + 6 × (7/8) × (4/11)4/3. This

increases Sγ = 6.3 × 1087 to Sγ+ν ∼ ×1088.

This total entropy is interpretable as exp(1088) degrees of freedom, or in in-

formation theory [53] to a number I of qubits where 2I = eS so that I = S/(ln2 =

0.693) ∼ 1088. This is well below the holographic bound which is dictated by the area

in terms of Planck units 10−64mm2 which gives Sholog(t0) = 4π(1029mm)2/(10−32mm)2 ∼

10123 or about 1035 times bigger. In [53] it is suggested that at least some of this dif-

ference may come from super-massive black holes. The entropy contribution from

baryons is smaller than Sγ by some ten orders of magnitude so, like that from the

dark matter, it is negligible.
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What is the entropy of the dark energy? If it is perfectly homogeneous and

non-interacting it has zero temperature and entropy. Finally, as we have already

estimated, the fourth term in Eq.(1), corresponding to the brane term, is negligible.

The conclusion is that at present Stotal(t0) ∼ 1088.

Now consider the entropy approaching turnaround at t = tT . We have esti-

mated that a(tT ) = 1029η and representative values for η = ̺c/̺H2O are 1031, 1059 and

1087. The temperature Tγ of the radiation scales as Tγ ∝ a(t)−1 so using the entropy

density of Eq.(12) a co-moving 3-volume ∝ a(t)3 will contain the same total radiation

entropy Sγ(tT ) = Sγ(t0) as at present; this is simply the usual adiabatic expansion.

The expansion from t = 0 to tT is not purely adiabatic because irreversible processes

take place. The first is inflation which increases entropy by > 1084. There are also

phase transitions such as the electroweak transition at tEW ∼ 100ps, the QCD phase

transition at tQCD ∼ 100µs, and recombination at trec ∼ 1013s. Furthermore, there

are irreversible processes that occur during stellar evolution. Although the expansion

of the radiation, the dominant contributor to the entropy, is adiabatic, the entropy of

matter increases in accord with the second law of thermodynamics. In our model, the

entropy of the matter increases between t = 0 and tT ∼ 47Gy. Setting the entropy

of the dark energy to zero and with the the radiation acting adiabatically, it is the

matter part, represented by ̺m, which would cause the entropy to rise from S(t = 0)

to S(tT ) = S(t = 0) + ∆S. It is this ∆S that was one of the plagues of previous

oscillatory model universes [2, 10, 11].

Our main point is that in order for entropy to be cyclic, the entropy which was

enhanced by a huge factor E3 > 1084 at inflation must then be reduced dramatically

at some point during the cycle so that satisfying S(t) = S(t + τ) becomes possible.

Since entropy increases during regular expansion and contraction, the only logical

possibility is to have the decrease occur right at the approach to and at turnaround

as accomplished by phantom dark energy and our causal patch idea. The second law
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of thermodynamics continues to obtain for other causal patches taken as a whole,

each with practically vanishing entropy at turnaround, but these are permanently

removed from the consideration of any particular universe under inspection, as they

all contract instead into separate universes.

During contraction, tT < t < τ , we are assuming the universe is empty of

matter until the bounce so its entropy is vanishingly small. Immediately after the

bounce, inflation arises from an inflaton field, assumed to be excited. We find the

counterpoise of inflation at the bounce and deflation at turnaround an appealing

aspect of the present model. And this would be furtherso, were the phantom dark

energy and inflaton be related or interacting, especially in a self-perpetuating manner.

2.8 Conclusion

The standard cosmology based on a Big Bang augmented by an inflationary

era is impressively consistent with the detailed data from WMAP3 [51] if dark energy,

most conservatively taken as a cosmological constant, is included. Objections to this

standard model are more aesthetic than motivated directly by observations (although

certain polarizations of the CMB, were they to be discovered, might well lead to some

discord). The first potential objection is the nature of the initial singularity and the

initial conditions. A second potential objection, if not universally shared either, is

that the predicted fate of the universe is an infinitely long expansion. Regardless of

whether or not one finds these issues more troubling than the nature of an infinitely

oscillatory cosmology, and there are many on either side of the aisle, we are driven by

the curiosity as to whether -and it is instructive to see as well- or not such a model

of the universe may even be possible even in theory. We have outlined here a cyclic

cosmology resting on phantom dark energy where these potential aesthetic objections

of some are ameliorated: the classical density and temperature never become infinite

and future expansion is truncated. Also, our proposal of deflation naturally leads

23



to a multiverse picture, somewhat reminiscent of that predicted in eternal inflation

(and perhaps even including the infinities of eternal inflation within our model’s own

infinities). Here though our new proliferation of infinite universes originates at the

opposite end of a cyclic cosmology, at its maximum rather than at its minimum size.
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CHAPTER 3

ENTROPY OF CONTRACTING UNIVERSE IN CYCLIC

COSMOLOGY

3.1 Entropy

To recapitulate, the most important new ingredient in our model is the idea

that the contracting universe has essentially zero entropy and comes back empty of

matter. Taking this model seriously #2 we continue on to examine more critically

some general features including its possibility of being tested.

The contracting universe of the cyclic model contains phantom dark energy

with zero entropy and perhaps a small amount of radiation which could possess en-

tropy. The deflation at turnaround reduces entropy from a gigantic value O(> 1088)

to an extremely low value O(101). We will next proceed to study the entropy of the

contracting universe in our speculative scenario more quantitatively, now taking an

arbitrary ω = −1 − φ with φ > 0 such that ̺Λ ∝ a3φ.

The quantity φ is the most important parameter for observational discrimina-

tion between our cyclic model which takes dark energy to be phantom in nature and

one taking dark energy as the cosmological constant #3. The next test of φ 6= 0 will

likely come from the Planck Surveyor satellite [54]. One wonders, therefore, how dif-

ferent from zero φ is? There is no lower bound necessary on φ for our model to work

other than it must be non-zero. We already know that φ . 0.1 from the WMAP3

#2It was once memorably stated by Noble laureate Steven Weinberg [55] that “the problem is not
that theorists take their model too seriously but that they do not take it seriously enough”.

#3and from the Steinhardt-Turok cyclic model [34–36].



data [51]. If φ is truly infinitesimal, the test must, alas, await improved technology.

To restore optimism, at the end of this section will be provided an anthropic fine

tuning argument demonstrating that an extremely small value for φ is unlikely.

We have emphasized that the universe comes back empty of matter, including

black holes. The presence of matter during contraction causes apparently insuper-

able problems because accelerated structure formation will precipitate a premature

bounce or lead to other even more dire issues. Black holes, if present, will expand

and proliferate with the same consequences. But the presence of radiation must also

be carefully studied because, although at turnaround the photon energy is infinites-

imal (Eγ . 10−200eV ), the blue shifting during contraction leads to production of

e+e− pairs before the bounce. This is undesirable because, generically, they will cre-

ate problems with continued contraction. As we shall proceed to show, there are

fortunately no photons in the contracting phase of the cycle, only the presumably

innocuous dark energy.

Our cyclic model contains but one free parameter, ̺C , the common density at

which the universe both turns around and bounces. Since the bounce is independent

of ω, we begin with it and take as bounce temperatures TB = 10p GeV, so as to be

above the weak and below the Planck scales, with 3 ≤ p ≤ 17. Using the derivation

from section 2, this gives ̺C = η̺H2O where η = 10(19+4p) and ̺H20 = 1g/cm3 is the

density of water. The density of water being an easily imaginable unit somewhere

between the unimaginably small present mean cosmic density and the unimaginably

large critical density ̺C at turnaround and bounce.

Going now to the turnaround at time t = tT , the scale factor a(tT ) is given by

(since a(t0) = 1 and taking ̺0 = 10−29̺H2O)

a(tT )3φ = 1029η = 1048+4p (13)
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The present radiation temperature is (Tγ)0 = 2 × 10−4 eV, and so from Eq.(13) the

radiation temperature at turnaround is

(Tγ)T = 2 × 10−4
(

10(48+4p)
)−1/3φ

eV (14)

which is infinitesimal. Putting φ = 0.1, Eq.(14) gives 10−200 eV for p=3 and 10−390

eV for p=17; with φ = 0.01, the photon energy is 10−2000 eV for p=3 and 10−3900 eV

for p=17. In all cases, the photon wavelength is an astronomical number of orders of

magnitude longer than the present Hubble length.

To evaluate the entropy during contraction, we need to estimate how many

such photons there will be per causal patch at turnaround. The deflationary factor

multiplying entropy at turnaround must be much less than the inverse of the infla-

tionary increase (& 1084) of the early universe. We take the huge number of causal

patches to be 1090α where α ≫ 1 is a parameter to allow an arbitrarily larger number,

and α = 1 will give an overestimate of the contraction entropy.

At turnaround the scale factor is

a(tT ) =
(

10(48+4p)
)

1
3φ (15)

so taking the present volume as 1084cm3 and the present radiation density to be

̺r(t0) = 10−33g/cm3 = 1eV/cm3 gives us the radiation energy in one causal patch:

(Er)patch =
1

(100α)3

(

10(48+4p)
)− 1

3φ eV (16)

Comparison with Eq.(14) then gives the number of photons per causal patch

to be

nγ =
1

200α3
≪ 1 (17)

which is small even for the unrealistic case α = 1 and essentially zero for α ≫ 1.
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Thus, the entropy of the contracting universe (cu) vanishes Scu = 0 for any value of

the equation of state of the dark energy ω = p/̺ = −1 − φ since Eq.(17) has no φ

dependence.

3.2 Anthropic Fine Tuning Argument About φ

The time until turnaround is given, e.g. [46], by

(tT − t0) ≃
t0
φ

(18)

so, if we take for simplicity the origin of life to have occurred at t0, after the most

recent bounce we see from Eq. (18) that given small φ ≪ 1 then φ will measure the

fraction of the expansion phase taken to originate life. An anthropic argument is: it

is unreasonable for the fraction φ, assuming it is non-zero, to be extremely close to

zero.

The special case φ = 0 is the standard cosmological model with a cosmological

constant where there is no turnaround and the future lifetime is infinite so the origin

of life necessarily takes place after a vanishing fraction of the expansion lifetime. Such

an infinite expansion seems unaesthetic to some, but it is not a universal concern.

The vanishing fraction coincidence is puzzling however.

As soon as one commits to φ 6= 0, however, the anthropic type argument

emerges and it is unlikely that φ <<< 1. For example, if φ = 10−3 then the length of

the expansion phase is 104 Gy whereas life originated after only about 10 Gy which

is only 0.1% of the expansion time. If life plays a central role in our universe, as in

our understanding is the spirit of the anthropic principle, such a tiny value of φ is

strongly disfavored; one expects at least φ & 0.01 so the fraction before the origin of

life is & 1.0% of the total expansion time.

This encouraging argument makes it more optimistic that the next generation

of observations such as the Planck Surveyor [54] will succeed in detecting a φ 6= 0.
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CHAPTER 4

CONSTRAINTS ON DEFLATION FROM THE EQUATION

OF STATE OF DARK ENERGY

4.1 Background

Our model involves two key ideas: (i) that the universe deflate just prior to

the turnaround from expansion to contraction by disintegrating into a very large

number Ncp of causal patches (in our notation, note that Ncp = 1/f 3); (ii) that the

contracting universe be empty, meaning that one causal patch at turnaround must

contain no matter or black holes, only dark energy. This is called the CBE condition

(Comes Back Empty). Implementation of CBE requires, as we shall explain, a lower

bound on Ncp which depends on the length scale L characterizing the smallest bound

system. We shall consider both L = 10−15m for a nucleon then L ≥ 10−35m for a

PPP (Presently Point Particle) meaning a particle which at present is considered to be

point-like, such as a quark or lepton, but which might potentially have a characteristic

size greater than or equal to the Planck scale, if at least a few orders of magnitude

smaller than a nucleon.

In the foreseeable future, it is expected that the equation of state of dark energy

w, and hence φ, will be measured with higher accuracy by, for example, the Planck

Surveyor satellite [54]. What we shall show is that this measurement can, within this

model, constrain for a given w the number Ncp of causal patches at turnaround by

imposing a lower bound thereon.

In the present chapter, the times at which unbinding, causal disconnection and

turnaround occur are discussed. After that, the constraints on Ncp from measurement



of φ are derived followed by more discussion (also see Appendices A-C for more

technical material supplementing the main text here).

4.2 Times of Unbinding, Causal Disconnection and Turnaround

In this sub-section we analyze four relationships between cosmic times, in

addition to the present time t0, in the cyclic model expansion era: i) tunbound (at which

point a bound system will become unbound due to the large phantom dark energy

force with w < −1); ii) tcaus (at which point a previously bound system becomes

casually disconnected, meaning that no light signal could exchange before the would-

be Big Rip; this is how we estimate Ncp); iii) tT (at which point the turnaround

occurs); iv) trip (at which point a “would-be” Big Rip would have taken place).

There are three parameters: w (the equation of state of dark energy), ̺C (the

critical density when the total density in the system ̺tot is reached at t = tT ), f (the

deflation fraction parameter related to the number of causal patches by Ncp = (1/f 3)).

We proceed to analyze the model taking w to lie within the range

−1.10000 ≤ ω ≤ −1.00001 , (19)

and ̺C within

(103 GeV)4 ≤ ̺C ≤ (1019 GeV)4 . (20)

The choice of the lower bound on the range of w is motivated by current observations

[51, 56] while we are led to the upper bound by the cosmic variance uncertainty in

this measurement.
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Reserving details of their derivation to Appendix A, we shall here refer to the resultant

expressions:

• (trip − t0)

trip − t0 ≃
11 Gyr

|1 + w| . (21)

• (trip − tunbound)

trip − tunbound = α(w)P (22)

where [45]

α(w) =

√

2|1 + 3w|
6π|1 + w| (23)

and P denotes the period associated with the binding force which had been

constraining objects into a certain bound system before t = tunbound.

• (trip − tcaus)

trip − tcaus =

∣

∣

∣

∣

∣

1 + 3w

3(1 + w)

∣

∣

∣

∣

∣

(

L

c

)

(24)

where c is the speed of light and L stands for the length scale of the bound

system [45].

• (trip − tT )

trip − tT =
11 Gyr

|1 + w|10−14.5η− 1
2 (25)

where η is a scale factor of ̺C defined by ̺C = η̺H2O with ̺H2O being the

density of water, ̺H2O = 1g · cm−3.
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The numerical analysis for these relationships is presented in Appendices A and B.

As a result, we find the lower bound for ̺C ,

̺C & (1018 GeV)4, (26)

which is obtained by imposing that a presently point particle (PPP), having a size

10−33m = L, satisfy for time: trip > tT > tPPP
caus > tPPP

unbound. It should be emphasized

that this result is almost independent of the choice of w within the range of interest.

For a nucleon with L ≃ 10−15m, the corresponding lower bound is

̺C & (109 GeV)4 . (27)

4.3 Given w, the constraints on Ncp

In the chapter, as in [45], various bound systems have been discussed including

galaxies, the Earth-Sun system, the hydrogen atom and a nucleon. Each may be

characterized by a present length scale L0.

For the CBE condition we must insist that the smallest bound systems, whose

present length scale is L(t0) = L0, are disintegrated before turnaround which means

that the size of a generic causal patch Lcp (to be defined below) must be smaller than

L(tT ) at the turnaround, namely

Lcp ≤ L(tT ) = L0

(

a(tT )

a(tunbound)

)

. (28)

We remind the reader that the CBE condition is mandatory because if the

contracting universe contains matter it will not generally contract sufficiently and will

undergo a premature bounce. Even if a causal patch contains only one very infra-red

photon, this can blue-shift to an energy sufficient to create e+e− pairs before the
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bounce, again disallowing sufficient contraction for infinite cyclicity.

We have already demonstrated that the mean number of low-energy photons

per causal patch is very much less than one and therefore almost every patch contains

no photons. There will always be a vanishing but strictly non-zero number of patches

which fail to cycle but it can clearly be seen that this will not overwhelm the overall

infinity and will not ruin the model as was verified by direct calculation in [57, 58].

The probability of a successful universe is equal to one. The total number of universes

has always been, and always will be constantly infinite and equal to ℵ0 (Aleph-zero).

ℵ0 is a countable infinity, exemplified by the number of primes, integers or rational

numbers.

To enable infinite cyclicity we must have the CBE condition, Eq.(28), for the

smallest bound systems. The smallest bound systems we know of are nucleons with

L0 = 10−15m.

To be general, we consider PPPs. We allow a bound state scale for PPPs to

be anywhere between the present upper limit of about (1TeV)−1 = 10−18m and the

Planck scale of 10−35m. As we shall see shortly, the lower bound on Ncp is so sensitive

to where L0 is chosen within these twenty orders of magnitude that its presentation

requires us to plot log10 log10 Ncp against the equation of state of dark energy.

The present Hubble length rH(t0) is given by

rH(t0) =
1

H0
(29)

which, at the turnaround, would naively become

rH(tT ) = rH(t0)a(tT ) (30)

since by definition a(t0) = 1.
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Figure 1: Constraint on w and Ncp coming from the CBE condition (Comes Back Empty), corre-
sponding to inequality (28). The black band in this figure has been created by varying the length
of smaller bound systems from Lp(t0) = 10−33m to Lp(t0) = 10−15m; the bottom edge corresponds
to the lower value of Lp(t0). The region below the black band is forbidden by the CBE condition.

In our cyclic model, the size of a causal patch Lcp is instead defined by

Lcp =
rH(tT )

Ncp
(31)

and therefore Eq.(31) can be calculated for different values of L0, see Appendix C.

The results are illustrated in Figure 1 where we plot log10 log10 Ncp versus w = −1−φ.

From this figure we see that a measurement of w in the range anticipated for

the Planck surveyor will provide a lower bound on Ncp. For example w = −1.05

implies Ncp & 10630 for disintegration of nucleons and Ncp & 101000 for disintegration

of PPPs having a bound scale at the Planck length.

Since we know the entropy of the present universe is at least S(t0) & 10102

[59, 60] one must impose

Ncp & 10102 (32)

and, by requiring only the dissociation of nucleons, we see from Figure 2 that this
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Figure 2: Constraint for −2 ≤ w ≤ −1.1 and Ncp coming from the CBE condition (Comes Back
Empty), corresponding to inequality (28). The black band in this figure has been created by varying
the length of smaller bound systems from Lp(t0) = 10−33m to Lp(t0) = 10−15m; the bottom edge
corresponds to the lower value of Lp(t0). The region below the black band is forbidden by the CBE
condition.

implies that

w & −2. (33)

Of course WMAP data [51] already guarantees this condition but it is inter-

esting that our cyclic model would be impossible if Eq.(33) had been violated.

4.4 Discussion

We have deduced that the parameters ̺c, w and Ncp in cyclic cosmology are

already constrained by existing data. For example, one requires w & −2 for the CBE

aspect to work, and this has already been experimentally verified. As better and

more accurate cosmological data become available, further light shall be shed upon

the viability of the theory.

In particular, the accurate measurement of the equation of state w = −1 − φ

is of special interest. Fortunately the Planck Surveyor [54] is anticipated to acquire

improved accuracy on w in the near future. As we have discussed, this will provide a
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lower bound on the number Ncp of causal patches necessary to dissociate the smallest

bound systems at turnaround and hence to solve the entropy problem and, via CBE,

enable the possibility of infinite cyclicity.

It is amusing that the physical conditions at the approach of deflation are so

extraordinary that it is natural to ask whether the systems presently regarded as

point particles may be composite because the phantom dark energy density grows to

unimaginably large values and can disintegrate bound systems down to arbitrarily

small scales. We have conservatively limited our attention to systems bigger than the

Planck length. However, although this requirement seems dictated by considerations

of quantum gravity, it is possible that the dark energy will dissociate even smaller

systems should they exist.

A potential advantage of cyclic cosmology is that it removes the initial sin-

gularity associated with the Big Bang, about 13.7 billion years ago, and allows that

time never began, although whether this seems more aesthetic and reasonable or not

is open for debate. One might argue that is actually less aesthetic in some ways

and might lead to even more puzzling questions. The previous attempts to create a

consistent infinite cyclicity were stymied between about 1934 [11] and 2002 [34–37]

primarily because of the entropy problem and the second law of thermodynamics.

The discovery of the accelerated expansion rate of the universe and the concomitant

necessity of dark energy have permitted somewhat more optimism that the cyclic

cosmology might potentially be, after all, on the right track.
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CHAPTER 5

OPEN QUESTIONS

One open question is whether or not phantom dark energy with equation of

state w = p
̺

< −1, a strict requirement for the model, is extant. Phantom energy

violates the dominant energy condition#4 and most attempts have met with instabil-

ities, wrong sign spatial kinetic terms or other serious issues and to this day phantom

energy remains problematic [61,62] at a microscopic level, at least unless their is only

a limited time of w < −1 [63].

That said, the avenue is far from closed and there have been some promising

recent attempts within string theory [64] and elsewhere appearing to demonstrate

stability in certain cases [65] and most interestingly it was recently shown [66] that

it is actually all but impossible to create an inflationary cosmology that agrees with

current measurement if one accepts that theories need to rely upon more than four

dimensions and they do not include phantom energy!!!

Another open issue is how to underwrite by a mathematical equation deflation

from a(t) to â(t) = f a(t) at turnaround that both avoids problems with fracturing

spacetime geometry and concomitant issues while, with certainty, still preventing any

patches from coming back into casual contact. The inverse f−1 must be larger than

the cube root of a googol, 1034. The partitioning of patches with specific boundaries

and center points has long been an open issue as well for the author. It is hoped

#4The dominant energy condition includes the weak energy condition, Tµνtµtν ≥ 0 ∀ timelike
vectors tµ, as well as the additional constraint that T µνtµ is a non-spacelike vector (TµνT ν

λ tµtλ ≤ 0)
or, more simply in the case when dealing with a perfect fluid as here, simply that we have ̺ ≥ |p|.



that the BGV theorem [43] is violated due to the extraordinary nature of spacetime

during approach to the turnaround and certain other overall conditions, allowing for a

straightforward solution (as presented, but with a minor, yet significant, modification)

to the open questions that arise with this specific version of deflation.

A further issue is how to calculate entropy in the extreme spacetime back-

ground at turnaround? No directly applicable mathematical framework exists in

present literature.

The cyclic universe outlined in this dissertation has been in the scientific lit-

erature for over two years and so far no fatal flaw has been demonstrated.
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APPENDIX A

DERIVATION OF FORMULAS AND NUMERICAL

ANALYSIS

A.1 The formula for (trip − t)

We begin by writing down the Friedman equation for times (t0 < t < tT which

correspond to the expansion phase [52],

H2(t) ≡
(

ȧ(t)

a(t)

)2

=
8πG

3

[

̺0
Λ

[a(t)]3(1+w)
− [̺tot(t)]

2

̺C

]

, (34)

where we have set Ω0
r = Ω0

m = 0. Taking into account the rapid acceleration when

t0 < t < tT (or trip), we may neglect the last term proportional to ̺2
tot ∼ [a3(1+w)]2,

so that
(

ȧ(t)

a(t)

)2

≃ H2
0

Ω0
Λ

[a(t)]3(1+w)
. (35)

Setting the boundary condition a(trip) = ∞ and employing the equation of

state w < −1, Eq.(35) can readily be solved for an arbitrary time t satisfying t < trip

to get

trip − t = (H0

√

Ω0
Λ)−1 2

3|1 + w|a(t)−
3|1+w|

2 . (36)

A.2 The formula for (trip − t0)

Taking t = t0 at which point a(t0) = 1 and using current observational val-

ues [56], H0 = 73 km · s−1 ·Mpc−1 and Ω0
Λ = 0.76, we find the time interval (trip − t0)

from Eq.(36) to be [45]

trip − t0 ≃
11 Gyr

|1 + w| . (37)

In Table 1 we list the values of (trip − t0) for 37 specific choices of w in the range

−1.10000 ≤ ω ≤ −1.00001.
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w (trip − t0) [Gyr]

−1.10000 110
−1.09000 122
−1.08000 137
−1.07000 157
−1.06000 183
−1.05000 220
−1.04000 275
−1.03000 366
−1.02000 550
−1.01000 1100
−1.00900 1222
−1.00800 1375
−1.00700 1571
−1.00600 1833
−1.00500 2200
−1.00400 2750
−1.00300 3666
−1.00200 5500
−1.00100 11000
−1.00090 12222
−1.00080 13750
−1.00070 15714
−1.00060 18333
−1.00050 22000
−1.00040 27500
−1.00030 36666
−1.00020 55000
−1.00010 110000
−1.00009 122222
−1.00008 137500
−1.00007 157143
−1.00006 183333
−1.00005 220000
−1.00004 275000
−1.00003 366667
−1.00002 550000
−1.00001 1100000

Table 1: Values of (trip − t0) for −1.10000 ≤ ω ≤ −1.00001.
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A.3 The formula for (trip − tT )

Putting t = tT in Eq.(36) and dividing both sides by (trip − t0), we find a

relationship independent of both H0 and Ω0
Λ:

trip − tT
trip − t0

= [a(tT )]−
3φ

2 . (38)

We shall recall here that the turnaround-time tT is characterized by ̺Λ(tT ) = ̺C ,

derived from examining a solution H2 = 0 of Eq.(34), which allows us to rewrite

Eq.(38) as

trip − tT
trip − t0

=

√

̺0
Λ

̺C

, (39)

where we have calculated the right-hand side using

[a(tT )]−3φ =
̺Λ(t0)

̺Λ(tT )
=

̺Λ(t0)

̺C
. (40)

Following from the first chapter, we may introduce a unit of energy density,

̺H2O, in such a way that the critical density ̺C is scaled by a factor of η

̺C ≡ η · ̺H2O . (41)

The present dark energy density ̺0
Λ can be expressed in terms of ̺H2O = 1g/cm3 as

̺0
Λ = 10−29̺H2O . (42)

This immediately leads us to

̺0
Λ

̺C
=

10−29̺H2O

η · ̺H2O
= η−110−29 . (43)
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Hence we have

trip − tT = (trip − t0) · 10−14.5 · η−1/2 . (44)

In Tables 2 to 4, choosing η = 1029, 1057, 1093, respectively, corresponding to ̺C ≃

(103 GeV)4, (1010 GeV)4, (1019 GeV)4 in units of ̺H2O, we list the values for the time

interval (trip − tT ), which turn out to be at most of order O(10−7 s).

A.4 The formula for (trip − tunbound)

Let us next consider a time tunbound at which a gravitationally bound sys-

tem will become unbound due to an extraordinarily rapid expansion of the universe.

Roughly speaking, a bound system in circular orbit at radius R with mass M becomes

unbound when

4π

3
R3̺Λ(tunbound)|1 + 3w| ≃ M , (45)

where the left-hand side comes from the Tµν-term in the right-hand side of the Einstein

equation.

Putting t = tunbound in Eq.(36) and rewriting the overall factor (H0

√
Ω)−1 in

terms of ̺0
Λ and the gravitational constant G getting (H0

√
Ω)−1 = (8πG/3 · ̺0

Λ)−1/2,

we may express a time interval (trip − tunbound) as

(trip − tunbound) = (8πG/3̺0
Λ)−1/2 2

3|1 + w| [a(tunbound)]
− 3|1+w|

2

= (8πG/3)−1/2

√

1

̺0
Λ

2

3|1 + w|

√

̺0
Λ

̺Λ(tunbound)

= (8πG/3)−1/2 2

3|1 + w|

√

1

̺Λ(tunbound)
. (46)
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η = 1029

w (trip − tT ) [s]

−1.10000 3.4 × 10−11

−1.09000 3.8 × 10−11

−1.08000 4.3 × 10−11

−1.07000 4.9 × 10−11

−1.06000 5.7 × 10−11

−1.05000 6.9 × 10−11

−1.04000 8.6 × 10−11

−1.03000 1.1 × 10−10

−1.02000 1.7 × 10−10

−1.01000 3.4 × 10−10

−1.00900 3.8 × 10−10

−1.00800 4.3 × 10−10

−1.00700 4.9 × 10−10

−1.00600 5.7 × 10−10

−1.00500 6.9 × 10−10

−1.00400 8.6 × 10−10

−1.00300 1.1 × 10−9

−1.00200 1.7 × 10−9

−1.00100 3.4 × 10−9

−1.00090 3.8 × 10−9

−1.00080 4.3 × 10−9

−1.00070 4.9 × 10−9

−1.00060 5.7 × 10−9

−1.00050 6.9 × 10−9

−1.00040 8.6 × 10−9

−1.00030 1.1 × 10−8

−1.00020 1.7 × 10−8

−1.00010 3.4 × 10−8

−1.00009 3.8 × 10−8

−1.00008 4.3 × 10−8

−1.00007 4.9 × 10−8

−1.00006 5.7 × 10−8

−1.00005 6.9 × 10−8

−1.00004 8.6 × 10−8

−1.00003 1.1 × 10−7

−1.00002 1.7 × 10−7

−1.00001 3.4 × 10−7

Table 2: Values of (trip − tT ) for −1.10000 ≤ ω ≤ −1.00001 with η = 1029 fixed.
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η = 1057

w (trip − tT ) [s]

−1.10000 3.4 × 10−25

−1.09000 3.8 × 10−25

−1.08000 4.3 × 10−25

−1.07000 4.9 × 10−25

−1.06000 5.7 × 10−25

−1.05000 6.9 × 10−25

−1.04000 8.6 × 10−25

−1.03000 1.1 × 10−24

−1.02000 1.7 × 10−24

−1.01000 3.4 × 10−24

−1.00900 3.8 × 10−24

−1.00800 4.3 × 10−24

−1.00700 4.9 × 10−24

−1.00600 5.7 × 10−24

−1.00500 6.9 × 10−24

−1.00400 8.6 × 10−24

−1.00300 1.1 × 10−23

−1.00200 1.7 × 10−23

−1.00100 3.4 × 10−23

−1.00090 3.8 × 10−23

−1.00080 4.3 × 10−23

−1.00070 4.9 × 10−23

−1.00060 5.7 × 10−23

−1.00050 6.9 × 10−23

−1.00040 8.6 × 10−23

−1.00030 1.1 × 10−22

−1.00020 1.7 × 10−22

−1.00010 3.4 × 10−22

−1.00009 3.8 × 10−22

−1.00008 4.3 × 10−22

−1.00007 4.9 × 10−22

−1.00006 5.7 × 10−22

−1.00005 6.9 × 10−22

−1.00004 8.6 × 10−22

−1.00003 1.1 × 10−21

−1.00002 1.7 × 10−21

−1.00001 3.4 × 10−21

Table 3: Values of (trip − tT ) for −1.10000 ≤ ω ≤ −1.00001 with η = 1057 fixed.
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η = 1093

w (trip − tT ) [s]

−1.10000 3.4 × 10−43

−1.09000 3.8 × 10−43

−1.08000 4.3 × 10−43

−1.07000 4.9 × 10−43

−1.06000 5.7 × 10−43

−1.05000 6.9 × 10−43

−1.04000 8.6 × 10−43

−1.03000 1.1 × 10−42

−1.02000 1.7 × 10−42

−1.01000 3.4 × 10−42

−1.00900 3.8 × 10−42

−1.00800 4.3 × 10−42

−1.00700 4.9 × 10−42

−1.00600 5.7 × 10−42

−1.00500 6.9 × 10−42

−1.00400 8.6 × 10−42

−1.00300 1.1 × 10−41

−1.00200 1.7 × 10−41

−1.00100 3.4 × 10−41

−1.00090 3.8 × 10−41

−1.00080 4.3 × 10−41

−1.00070 4.9 × 10−41

−1.00060 5.7 × 10−41

−1.00050 6.9 × 10−41

−1.00040 8.6 × 10−41

−1.00030 1.1 × 10−40

−1.00020 1.7 × 10−40

−1.00010 3.4 × 10−40

−1.00009 3.8 × 10−40

−1.00008 4.3 × 10−40

−1.00007 4.9 × 10−40

−1.00006 5.7 × 10−40

−1.00005 6.9 × 10−40

−1.00004 8.6 × 10−40

−1.00003 1.1 × 10−39

−1.00002 1.7 × 10−39

−1.00001 3.4 × 10−39

Table 4: Values of (trip − tT ) for −1.10000 ≤ ω ≤ −1.00001 with η = 1093 fixed.
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Using Eq.(45) we can further rewrite the right-hand side as

(trip − tunbound) =

√

2|1 + 3w|
3|1 + w|

√

R3

GM

=

√

2|1 + 3w|
6π|1 + w| P , (47)

where in the last line we have used a relationship from classical gravitational systems,

P = 2π

√

R3

GM
, (48)

in which P denotes the period for a circular orbit of radius R around a system of

mass M bound by a gravitational force. Thus we reach the expression [45] for the

time interval (trip − tunbound),

(trip − tunbound) = α(w)P , (49)

where

α(w) =

√

2|1 + 3w|
6π|1 + w| . (50)

Similarly to Eq.(45), even for binding forces other than gravity, we can roughly

estimate an unbinding time tunbound. For simplicity, we shall derive here a relationship

similar to Eq.(45) focusing on an electromagnetically bound system, e.g., a hydrogen

atom H , in which the electron is constrained to a circular orbit of radius R by the

Coulomb force around a proton. This can be done just by taking into account the

balance problem between the Coulomb force FC and the dark energy force Fw. We

find that the system will become unbound when

FC ≃ Fw(tunbound) ,

→ e2

4πǫ0

1

R2
≃ G

memeff(w, tunbound)

R2
, (51)
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where meff(w, tunbound) denotes an effective “mass” arising from the dark energy den-

sity at t = tunbound,

meff(w, tunbound) =
4πR3

3
̺Λ(tunbound)|1 + 3w| . (52)

Using the expression for the period associated with the electromagnetic force

Pem = 2π

√

meR3

~cα
, (53)

we can rewrite Eq.(51) as

̺Λ(tunbound)|1 + 3w| ≃ 3π

GP 2
em

, (54)

which leads immediately to the formula for (trip − tHunbound) in the case of an H atom.

As a result, we find it takes the same form as Eq.(49),

trip − tHunbound = α(w)Pem . (55)

It is straightforward to show that for other binding forces, e.g. strong forces,

etc., the form of Eq.(55) is unchanged except for replacing Pem with the appropriate

one associated with the binding force.

Choosing typical bound systems – galaxy, Sun-Earth, and hydrogen atom –

and supplying the corresponding values for the period P (Pem)

Bound System P L

Typical Galaxy 2.0 × 10 yr 1.6 × 104 pc

Sun-Earth 1 yr 1.5 × 108 km

Hydrogen Atom 10−16 s 0.5 × 10−10 m

we calculate the values of (trip − tunbound) for each bound system by taking values of
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w from the range −1.10000 ≤ ω ≤ −1.00001. The result is summarized in Table 5.

A.5 The formula for (trip − tcaus)

After t = tunbound, objects that had been previously constrained within bound

systems become free to move far apart and will end up causally disconnected starting

at time t = tcaus. Such a time, tcaus, can be defined, taking c = 1, by

L

a(tcaus)
=

∫ trip

tcaus

dt

a(t)
, (56)

where L denotes the length scale at which two objects separate at t = tcaus, and the

right-hand side stands for the co-moving distance of light which arises from traveling

at light speed c during a time-interval tcaus < t < trip. Noting that dt = da/(aH) and

rewriting H(a) from the Friedman equation in terms of a function of a, we calculate

more explicitly the right-hand side of Eq.(56) as follows:

L

a(tcaus)
=

∫ a(trip)

a(tcaus)

da

a2H(a)

= (H0 · Ω0
Λ)−1

∫ ∞

a(tcaus)

da a−1/2(1−3w)

= (H0Ω
0
Λ)−1 2

|1 + 3w| [a(tcaus)]
−|1+3w|/2 . (57)

Taking t = tcaus in Eq.(36) and dividing both sides by the resultant expression,

we can continue calculating to get

L

a(tcaus)

1

(trip − tcaus)
=

3|1 + w|
|1 + 3w|

(

[a(tcaus)]
3|1+w|

[a(tcaus)]|1+3w|

)1/2

=
3|1 + w|
|1 + 3w|

1

a(tcaus)
. (58)
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( trip − tunbound)
w Typical Galaxy [Gyr] Sun-Earth [yr] Hydrogen Atom [s]

−1.10000 0.22 1.13 1.13 × 10−16

−1.09000 0.25 1.25 1.25 × 10−16

−1.08000 0.28 1.40 1.40 × 10−16

−1.07000 0.31 1.59 1.59 × 10−16

−1.06000 0.36 1.84 1.84 × 10−16

−1.05000 0.44 2.20 2.20 × 10−16

−1.04000 0.54 2.73 2.73 × 10−16

−1.03000 0.72 3.61 3.61 × 10−16

−1.02000 1.07 5.38 5.38 × 10−16

−1.01000 2.13 10.6 1.06 × 10−15

−1.00900 2.37 11.8 1.18 × 10−15

−1.00800 2.66 13.3 1.33 × 10−15

−1.00700 3.04 15.2 1.52 × 10−15

−1.00600 3.55 17.7 1.77 × 10−15

−1.00500 4.26 21.3 2.13 × 10−15

−1.00400 5.32 26.6 2.66 × 10−15

−1.00300 7.08 35.4 3.54 × 10−15

−1.00200 10.2 53.1 5.31 × 10−15

−1.00100 21.2 106 1.06 × 10−14

−1.00090 23.5 117 1.17 × 10−14

−1.00080 26.5 132 1.32 × 10−14

−1.00070 30.3 151 1.51 × 10−14

−1.00060 35.3 176 1.76 × 10−14

−1.00050 42.4 212 2.12 × 10−14

−1.00040 53.0 265 2.65 × 10−14

−1.00030 70.7 353 3.53 × 10−14

−1.00020 106 530 5.30 × 10−14

−1.00010 212 1061 1.06 × 10−13

−1.00009 235 1179 1.17 × 10−13

−1.00008 265 1326 1.32 × 10−13

−1.00007 303 1515 1.51 × 10−13

−1.00006 353 1768 1.76 × 10−13

−1.00005 424 2122 2.12 × 10−13

−1.00004 530 2652 2.65 × 10−13

−1.00003 707 3536 3.53 × 10−13

−1.00002 1060 5305 5.30 × 10−13

−1.00001 2120 10610 1.06 × 10−12

Table 5: Values of (trip − tunbound) for −1.10000 ≤ ω ≤ −1.00001.
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In the end we reach the expression [45]

trip − tcaus =

∣

∣

∣

∣

∣

1 + 3w

3(1 + w)

∣

∣

∣

∣

∣

L

c
. (59)

Similarly to the previous section, we take values of w in the range −1.10000 ≤

ω ≤ −1.00001 and calculate the values of (trip − tcaus) for typical bound systems such

as galaxies, the Sun-Earth, a hydrogen atom, and summarize in Table 6.
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(trip − tcaus)
w Typical Galaxy [Myr] Sun-Earth [day] Hydrogen Atom [s]

−1.10000 0.40 0.044 1.27 × 10−18

−1.09000 0.44 0.048 1.40 × 10−18

−1.08000 0.49 0.054 1.55 × 10−18

−1.07000 0.55 0.060 1.75 × 10−18

−1.06000 0.64 0.070 2.01 × 10−18

−1.05000 0.75 0.083 2.39 × 10−18

−1.04000 0.93 0.102 2.94 × 10−18

−1.03000 1.22 0.134 3.87 × 10−18

−1.02000 1.81 0.198 5.72 × 10−18

−1.01000 3.57 0.391 1.12 × 10−17

−1.00900 3.96 0.434 1.25 × 10−17

−1.00800 4.45 0.488 1.40 × 10−17

−1.00700 5.08 0.557 1.60 × 10−17

−1.00600 5.92 0.649 1.86 × 10−17

−1.00500 7.09 0.777 2.24 × 10−17

−1.00400 8.86 0.970 2.79 × 10−17

−1.00300 11.7 1.29 3.72 × 10−17

−1.00200 17.6 1.93 5.57 × 10−17

−1.00100 35.2 3.86 1.11 × 10−16

−1.00090 39.2 4.29 1.23 × 10−16

−1.00080 44.0 4.83 1.39 × 10−16

−1.00070 50.3 5.52 1.59 × 10−16

−1.00060 58.7 6.44 1.85 × 10−16

−1.00050 70.5 7.72 2.22 × 10−16

−1.00040 88.1 9.65 2.78 × 10−16

−1.00030 117 12.8 3.70 × 10−16

−1.00020 176 19.3 5.56 × 10−16

−1.00010 352 38.6 1.11 × 10−15

−1.00009 391 42.9 1.23 × 10−15

−1.00008 440 48.2 1.39 × 10−15

−1.00007 503 55.1 1.58 × 10−15

−1.00006 587 64.3 1.85 × 10−15

−1.00005 704 77.2 2.22 × 10−15

−1.00004 880 96.5 2.77 × 10−15

−1.00003 1170 128 3.70 × 10−15

−1.00002 1760 193 5.55 × 10−15

−1.00001 3520 386 1.11 × 10−14

Table 6: Values of (trip − tcaus) for −1.10000 ≤ ω ≤ −1.00001.
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APPENDIX B

CONSTRAINT ON ̺C FROM CAUSALITY

There exists a lower bound on the value of ̺C coming from the causal discon-

nection condition for smaller bound systems such as the hydrogen atom and nucleon.

We study here the lower bound on ̺C calculating (tT −tcaus) numerically as a function

of w and ̺C for each bound system with a size. 10−10m.

Imposing the condition tT > tH,N
caus where H, N denote the hydrogen atom

and nucleon, respectively, we may obtain physical constraints on η and w from the

following inequality:

(tT − tcaus)
H,N =

|1 + 3w|(LH,N/c)

3|1 + w|

[

1 − 3.12 × 1011.95/LH,N√
η|1 + 3w|

]

≥ 0 , (60)

which follows from Eqs.(44) and (59). In Fig 3 we show the constraints on the model

parameters η and w, coming from the causal disconnection condition (60). Here we

have taken LH = 0.5 × 10−10m, LN = 10−15m, and [56] c = 2.9979 × 108 m s−1, yr =

3.1556 × 107 s.

From this figure, we find a lower bound on the value of η, or equivalently on

the critical density ̺C ,

η & 1054 ↔ ̺C & (109 GeV)4 , (61)

where we have calculated ̺C = (1.44 × 10x/4−4.5 GeV)4 with x = log10 η.

If we extend a similar study to a bound PPP system, for which we set a scale

that is slightly above the Planck scale, LPPP ≃ 10−33m, we find a stronger lower
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Figure 3: The lower bound on η coming from the causal disconnection conditions, tT > tHcaus

(dashed line), tT > tNcaus (dashed-dotted line), tT > tPPP
caus (solid line), for 1029 ≤ η ≤ 1093 and

−1.10000 ≤ w ≤ −1.00001. The regions below these three lines are forbidden by causality.

bound on η (see the solid line illustrated in Fig. 3),

η & 1090 ↔ ̺C & (1018 GeV)4 . (62)

It is interesting to note that the result on these lower bounds is fairly insensitive to

the choice of w within the range of interest.
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APPENDIX C

COMES-BACK-EMPTY CONDITION

At t = tT we require that at deflation, immediately prior to turnaround of the

cyclic universe, almost very causal patch comes back empty which demands that the

deflation factor f satisfies f−3 & 10102 in order to solve the entropy problem since the

present entropy is at least 10102 [59, 60].

This requirement can be met by imposing that one causal patch be less than

the size of the smallest bound systems (Lp(tT )):

rH(tT )

Ncp
≤ Lp(tT ) , (63)

where the subscript p denotes a bound system whose size L0 at present lies in the

range 10−33m ≤ L0 ≤ 10−15m. Noting that

rH(tT ) = rH0
a(tT ) , (64)

Lp(tT ) = Lp(t0)
a(tT )

a(tunbound)
, (65)

we can rewrite the condition (63) as

a(tunbound) ≤ Ncp
Lp(t0)

rH0

. (66)

Looking at Eqs.(46), (49) and (55), we see that the left hand side of Eq.(66) can be

reexpressed as

[

√

2|1 + 3w|
4π

Pp(H0

√

Ω0
Λ)

]
2

−3|1+w|

≤ Ncp
Lp(t0)

rH0

, (67)

where the period Pp, associated with a certain smaller bound system p we are con-
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cerned with, can be expressed as Pp ≃ Lp(t0)/c.

Taking log10 log10 of Ncp makes it easier to plot the inequality (67). A plot

of the (w, log10 log10 Ncp)-plane varying the value of Lp(t0) in the range of interest,

10−33m ≤ Lp(t0) ≤ 10−15m is shown in Figure 1 (see page 34). We have used [56]

rH0
= 1.232 × 1026m and Ω0

Λ = 0.76.
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APPENDIX D

CONVENTIONS AND ADDITIONAL BASIC FORMULAS

metric: -+++.

Greek indices such as µ and ν run over the 4 space-time dimensions [0,1,2,3 or t,x,y,z].

Latin indices such as i and j run over the 3 spacial dimensions [1,2,3 or x,y,z].

Full indices run over 5-dimensional space-time [0,1,2,3,4 or t,x,y,z,w].

T µ
ν = diag(̺,−p,−p,−p).

The Roberston-Walker metric: −a(t)2( dr2

1−κr2 + r2dθ2 + r2 sin2 θdφ2).

d(̺a3) = −pd(a3) from µ = 0 of T µν
;ν = 0 by the first law of thermodynamics.

ds2 = −dt2 + a2(t)dσ2, where dσ2 = γij(u)duiduj is the metric on the spatial
coordinates and γij is maximally symmetric.
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