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ABSTRACT
HAE-YOUNG KIM: OPERATING CHARACTERISTICS OF GROUP
TESTING ALGORITHMS FOR CASE IDENTIFICATION IN THE

PRESENCE OF TEST ERROR.
(Under the direction of Dr. Michael G. Hudgens.)

Pooling of specimens to increase efficiency of screening individuals for rare diseases

has a long history, dating back to screening for syphilis in military inductees in the

1940s. Subsequently, specimen pooling has been applied to screening for many other

infectious diseases and has also found broader application in entomology, screening for

genetic mutations and many other areas. Currently the North Carolina Department of

Public Health and investigators from the University of North Carolina at Chapel Hill

have developed quick, cost effective methods to screen over 120,000 people annually

for recent HIV infection using highly sensitive, automated specimen pooling algorithms

as part of the Screening and Tracing Active Transmission (STAT) program. In this

dissertation, we research group testing methodology to help optimize the pooling algo-

rithm used in the STAT program and to assist in extending this innovative approach

to other settings or detection of other infectious diseases where the overriding issues

are identical but the specific conditions (e.g., disease prevalence) vary considerably.

This dissertation is comprised of three papers. In the first paper, we derive and

compare the operating characteristics of hierarchical and two-dimensional array-based

testing algorithms for case identification in the presence of testing error. The oper-

ating characteristics investigated include efficiency (i.e., expected number of tests per

specimen) and error rates (i.e., sensitivity, specificity, positive and negative predictive

values, per-family error rate, and per-comparison error rate). In the second paper, we

extend two-dimensional array to three-dimensional array-based algorithms when there

exist test errors. Efficiency and pooling measurement error rates of three-dimensional
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array-based algorithms are compared with hierarchical and two-dimensional array-

based algorithms in the presence of test error. In both the first and second papers,

the methodology is illustrated by comparing different pooling algorithms for the de-

tection of individuals recently infected with HIV in North Carolina and Malawi. In

the third paper, the optimal configuration of a two-dimensional array-based pooling

algorithm is considered. We derive p∗, the highest prevalence, where pooling with this

algorithm is better than individual testing. For the given prevalence less than p∗, we

determine the optimal algorithm configuration which minimizes the expected number

of tests per specimen.
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CHAPTER 1

INTRODUCTION

Pooling of specimens to increase efficiency of screening individuals for rare diseases has

a long history, dating back to screening for syphilis in military inductees in the 1940s

(Dorfman, 1943). Subsequently, specimen pooling or group testing has been applied to

screening for many other infectious diseases (Quinn et al., 2000; Pilcher et al., 2002;

Pilcher et al., 2004; Mine et al., 2003; Kacena et al., 1998; Centers for Disease Control

and Prevention, 2003) and has also found broader application in entomology (Venette

et al., 2002), screening for genetic mutations (Gastwirth, 2000), the blood bank and

pharmaceutical industries (Xie et al., 2001; Jones and Zhigljavsky, 2001), analytical

chemistry (Woodbury et al., 1995), information theory (Wolf, 1985) and many other

areas.

In the context of infectious diseases, group testing is typically used for (i) case identi-

fication, i.e., detecting all individuals having the disease of interest, and (ii) prevalence

estimation, i.e., estimating the proportion of individuals in the population having a

particular disease. This thesis is primarily motivated by examples of the former. For

example, currently the North Carolina Department of Public Health and investigators

from the University of North Carolina (UNC) at Chapel Hill have developed quick, cost

effective methods to screen over 120,000 people annually for recent HIV infection using

highly sensitive, automated specimen pooling algorithms as part of the Screening and



Tracing Active Transmission (STAT) program (Pilcher et al., 2002; Pilcher et al., 2005).

Likewise, the Center for HIV/AIDS Vaccine Immunology plans to employ similar test-

ing procedures as part of a global attempt to identify acute infections (NIAID Office of

Communications and Public Liaison, 2005). A similar specimen pooling strategy have

also been used to identify acute HIV in antibody negative males attending STD clinics

in Malawi.

In these applications, the problem is how to detect very rare cases of HIV infection

that elude detection by routine, standard antibody testing assays (Pilcher et al., 2005)

because they are in the pre-antibody “acute” phase of infection. The PCR-based nucleic

acid amplification assays that detect these persons are highly sensitive but (compared to

antibody tests) are expensive, time consuming, and have inadequate specificity (Daar

et al., 2001). In this case, group testing is used to enhance testing efficiency and

accuracy of high throughput screening for rare cases of acute HIV.

Here we explore aspects of group testing methodology to help optimize the pooling

algorithm used in the STAT program and to assist in extending this innovative approach

to other settings (e.g. other US states, Africa) or detection of other infectious diseases

(e.g., Hepatitis) where the overriding issues are identical but the specific conditions

(e.g., disease prevalence) vary considerably.

The rest of this thesis is organized as follows. Chapter 2 comprises a review of

a variety of topics related to group testing. These include acute HIV detection as a

motivating example; operating characteristics; Dorfman, hierarchical, square array and

multidimensional array algorithms; modeling of several pooling error rates; and optimal

pool size determination. In Chapter 3, we derive the efficiencies and error rates of two

dimensional square array pooling algorithms with and without master pool testing.

Chapter 4 provides the efficiencies and error rates of three dimensional array pooling

algorithms with and without master pool testing. We derive the optimal configuration

2



of a square-array algorithm in Chapter 5.
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CHAPTER 2

BACKGROUND

2.1 Fundamentals

The pooling of individual serum samples as a cost saving method for diagnosis of

infectious disease was first used for identifying individuals with syphilis. The basic

idea behind group testing is that for rare diseases, efficiency can be gained by pooling

specimens (e.g., urine, sera, or plasma) and testing these pools rather than individual

specimens. Here, efficiency is defined in the sense of minimizing the expected number

of tests required. A positive test suggests at least one of the specimens in the pool is

positive, while a negative test suggests that all specimens in the pool are negative. If

the group tests gives a positive result, individual sample is tested. If the group test

has a negative result, no more tests are needed. Thus, time and cost can be saved with

testing pooled samples rather than individual samples, especially when prevalence rate

is very low.

2.2 Motivating Example: Acute HIV Detection

Group testing has been applied to screening for many other infectious diseases includ-

ing HIV (Mine et al., 2003; Quinn et al., 2000; Pilcher et al., 2002; Pilcher et al., 2004;



Pilcher et al., 2005). The recent availability of highly sensitive nucleic acid amplifi-

cation tests (NAATs) has created important opportunities for both surveillance and

clinical testing of infectious diseases. The possible improvement that NAATs can pro-

vide for infectious disease diagnosis is exemplified by HIV. While health authorities

have repeatedly emphasized that a goal of HIV testing and surveillance should be to

increase detection of early infection, HIV testing has until very recently relied exclu-

sively on antibody tests that miss all acute infections, i.e., infections occurring within

approximately the last three months during which time individuals are antibody nega-

tive and believed to be highly contagious (Pilcher et al., 2004; Wawer et al., 2005). By

detecting acute HIV infections and distinguishing them from older infections, NAATs

allow for: early treatment of HIV, a strategy which might possibly ameliorate disease

pathogenesis; interventions to prevent secondary transmission; better understanding of

host-virus dynamics; and improved surveillance (Pilcher et al., 2005).

Unfortunately NAATs are usually considered insufficient for general use due to

expense and unacceptably high false positive rates (Pilcher et al., 2002; Klausner,

2004). This lack of specificity results in extremely low positive predictive value in low

prevalence settings such as acute HIV. However, NAATs in conjunction with specimen

pooling can dramatically improve efficiency, specificity, and positive predictive value

(Quinn et al., 2000; Pilcher et al., 2005). For instance, the NC STAT program has now

successfully demonstrated that a simple group testing strategy renders NAAT screening

much more accurate and cost efficient than testing of individual specimens for acute

HIV (Pilcher et al., 2002; Pilcher et al., 2005). This specimen pooling strategy have also

been used to identify acute HIV in antibody negative males attending STD clinics in

Malawi (Pilcher et al., 2004). Pilcher et al. (2004) concluded that the specimen pooling

algorithm has the advantage of being both highly cost efficient and highly specific when

used in populations with low expected HIV prevalence.
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2.3 Definitions and Operating Characteristics

In this section, we introduce several definitions and operating characteristics of testing

algorithms for case identification in the presence of test error. First, in the group

testing problem, stage refers to the number of sequential steps required by a particular

algorithm to identify all positive specimens. In this thesis, we will consider only 2 and

3 stage algorithms.

Define efficiency of a particular pooling algorithm to be the expected number of

tests per specimen required to identify all positive specimens. For a group testing

algorithm A, denote the efficiency by E(A).

Define pooling specificity to be the probability an individual is categorized as neg-

ative by a particular pooling procedure given that individual is truly negative (Litvak

et al. 1994; Johnson et al. 1991). Similarly, define the pooling sensitivity to be the

probability an individual is categorized as positive by a particular pooling procedure

given that individual is truly positive. Denote the pooling specificity and sensitivity for

A by Sp(A) and Se(A). For example, if I denotes individual testing, then Sp(I) = Sp

and Se(I) = Se.

Define the pooling positive predictive value of A to be the probability an individual is

truly positive given they are categorized as positive by A. Likewise, define the pooling

negative predictive value of A to be the probability an individual is truly negative

given they are categorized as negative by A. Denote the pooling positive and negative

predictive values of A by PPV (A) and NPV (A). The predictive values are simple

functions of Se(A) and Sp(A):

PPV (A) =
pSe(A)

q[1 − Sp(A)] + pSe(A)
,
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and

NPV (A) =
qSp(A)

p[1 − Se(A)] + qSp(A)
.

Additionally, we consider other error rates that have been proposed in the multiple

comparisons literature (Cook and Dunnett, 1998), but to our knowledge have not been

considered in the context of group testing. These quantities provide alternative metrics

for quantifying the degree of misclassification of negative individuals as positive and

positive individuals as negative.

Define the per-family error rate (PFER) to be the expected number of false positive

classifications and the per-comparison error rate (PCER) to be the expected number

of false positive classifications divided by the total number of specimens (Hochberg

and Tamhane, 1987). In Appendix A, we show that PFER(A) = nq{1 − Sp(A)}

for any pooling algorithm A, which immediately gives PCER(A) since PFER(A) =

nPCER(A) where n is the number of specimen to be tested.

Define the type II per-family error rate (PFER2) to be the expected number of

false negative classifications and the type II per-comparison error rate (PCER2) to be

the expected number of false negative classifications divided by the total number of

specimens. In Appendix A, we also show that PFER2(A) = np{1 − Se(A)} for any

pooling algorithm A, which gives PCER2(A) since PFER2(A) = nPCER2(A).

2.4 Dorfman Algorithm

Dorfman (1943) studied the application of a group testing procedure for screening

men called up for induction into the army for presence of syphilitic antigen. Case

identification (or classification) was the original motivation behind group testing, as

proposed by Dorfman (1943). Dorfman’s algorithm entailed pooling together biological

specimens from several individuals and testing these pools of specimens rather than
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testing each individual specimen. If a pool tested negative, all specimens in that pool

were declared negative. Otherwise, further testing on individual specimen from the

pool were employed to identify all positive individuals.

He derived the expected number of tests which is equal to one master pool plus

the number of individuals in the master pool which require individual testing. Using

notation from the Section 2.3, it is easy to see that the expected number of tests per

specimen is

E

(

T

n

)

=
1

n
+ 1 − qn, (2.1)

where T is the number of tests and n is the pool size. Dorfman’s original pooling

algorithm required simply testing all individual specimens within positive master pool

without considering classification errors. This pooling procedure is appealing in that,

for rare diseases, fewer number of tests are required on average to identify all cases

compared to individual testing. His method was applied to blood tests for syphilis and

found optimal group sizes, which minimize the expected number of tests per specimen,

for various fixed values of p and concluded that his method is more efficient when

compared to individual testing, for small values of p ranging from .01 to .15. Note

that optimal size n = 1√
p

of Dorfman’s procedure was obtained by Feller (1957), Wilks

(1962), Samuels (1978) and Turner et al. (1988).

Dorfman’s method has been modified and analyzed extensively. Sterrett (1957)

modified Dorfman’s original procedure by proposing that samples from a positive group

be tested individually only until the first positive sample is identified. Any remaining

samples at that time are tested as a group and this procedure continues until all samples

from the group that was first classified positive are exhausted. He used numerical analy-

sis to show that his method is more efficient than Dorfman’s by 6%, if the prevalence

rate is 0.01. Sobel and Groll (1959) suggested that once a positive group is obtained, it

might be more efficient to test a subgroup formed with samples from the original group,

8



rather than perform individual testing as both Dorfman and Sterrett procedures advo-

cate. If the subgroup tests positive, the remaining samples from the original positive

group are treated as if they were never tested. This is statistically accurate so long as

the population of items being tested is binomial. If the subgroup tests negative, it is

completely classified, and a new subgroup is drawn from the remaining members of the

original group. Sobel and Groll (1959)’s procedure is complicated since optimal group

(subgroup) sizes have to be determined at each stage of testing. Also, in its worst case,

it can require a very large number of tests to classify the entire population. Hwang

(1972) moved away from the assumption that the number of defectives is binomial and

developed a procedure based on an upper bound for the number of defectives or its

probability distribution. Johnson et al. (1991) generalized Dorfman’s pooling algo-

rithm in the presence of test error and extended to hierarchical algorithm. Lancaster

and Keller-McNulty (1998) and Venette et al. (2002) reviewed sampling method and

analyzed generalizations of Dorfman’s pooling algorithm.

2.5 Hierarchical Algorithms

A simple extension of Dorfman’s original procedure entails repeatedly dividing positive

pools into smaller, non-overlapping subpools until eventually all positive specimens are

individually tested. We refer to this approach as a hierarchical group testing algorithm

(Finucan, 1964; Johnson et al., 1991; Litvak et al., 1994). For example, the NC STAT

program (Pilcher et al., 2002) employs a three stage hierarchical algorithm as follows.

First, disjoint master pools of 90 specimens are tested. Second, positive master pools

are divided into subpools of 10 specimens each and these subpools are tested. Third,

specimens from positive subpools are individually tested. Similar hierarchical pooling

algorithms have been used for the detection of recent HIV infections in Malawi (Pilcher
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et al., 2004) and India (Quinn et al., 2000).

Johnson et al. (1991) considered hierarchical group testing algorithms in the pres-

ence of test errors. They derived the expected number of tests, pooling sensitivity

and pooling specificity for a hierarchical algorithm. They also allow sensitivity and

specificity to be dependent on the number of pool size of each stage.

Litvak et al. (1994) generalized some commonly used pooling procedures. They

presented group testing methods in which positive groups are split into several sub-

groups of almost equal size. Any subgroups that test positive are further split into

even smaller subgroups and this process continues until items are tested individually.

They called this method T2 and extended it as T2
+. T2

+ is same as T2 except that

each group that produces a negative outcome is retested at most r− 1 times where r is

the maximum number of times a group will be retested before being classified or split

further into smaller groups. If all r − 1 tests are negative, the group is classified as

negative (r = 2 in Litvak et al. (1994)). Otherwise, it is classified as positive. Litvak

et al. (1994) compared several such procedures with each other and with Dorfman’s

procedure for different values of test reliability. They concluded that T2 and T2
+ are

better than Dorfman’s procedure. They also concluded that if the purpose of screening

is to determine the infectious status of individuals and estimate prevalence, then T2 is

more competitive in this screening situation. However, if the goal is to screen donated

blood, T2
+ should be chosen, since this is the only procedure that reduces the FNPV .

Amos et al. (2000) and Gastwirth (2000) also re-derived efficiency in the presence of

test error for the hierarchical group testing algorithm. They discussed pooling methods

for identifying rare mutations and provided formulas for the optimal pool size as a

function of the mutation frequency and the specificity.
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2.6 Square Array Algorithms

Array based specimen pooling is an alternative to hierarchical group testing which

uses overlapping pools. While the corresponding pooling algorithms are more complex,

array based group testing can be very efficient. This approach is frequently employed

in genetics (Bruno et al., 1995; Amemiya et al., 1992; Barillot et al., 1991; Zwaal et al.,

1993), but remains largely underutilized in the infectious disease setting. In its simplest

form, n2 specimens are placed on an n × n matrix. Pools of size n are made from all

samples in the same row or in the same column. These 2n pools are then tested and,

assuming no false negative tests, all positive specimens will lie at the intersection of a

positive row pool and a positive column pool. Any ambiguities are resolved by testing

all specimens at these intersections.

Phatarfod and Sudbury (1994) evaluated the use of a two-dimensional array scheme.

Their idea was based on the observation that blood samples are often placed in a square

tray, and one could exploit this arrangement by compositing across rows and columns.

Tests were conducted on the row and column composite samples, and confirmatory

tests were conducted on sample units at the intersection of positive row and column.

They called this scheme as SA1 and derived the expected number of tests per specimen:

E(SA1) = 2
n

+ 1 − 2qn + q2n−1. (2.2)

A second scheme, SA2 which was proposed by Phatarfod and Sudbury (1994), proceeds

as for SA1 expect that if all rows test negative no further tests are done (n tests in all),

and if exactly one row tests positive then each individual in that row is tested (2n tests

in all). While SA2 requires one more stage than SA1, Phatarfod and Sudbury (1994)

showed SA2 requires fewer tests than SA1 and the Dorfman scheme for p ranging from

.000001 to .05. Phatarfod and Sudbury (1994) also considered rectangular m×n array
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schemes, e.g., the classical 8 × 12 array and concluded that these schemes also require

fewer tests than the Dorfman scheme.

Woodbury et al. (1995) noted that testing row and column pools, without further

testing, results in ambiguities in assigning true sample locations. In order to resolve

these ambiguities, they proposed pooling samples along diagonals of the array, wherein

the diagonals are wrapped around the array so that each diagonal pool contains the

same number of samples as each row and column pool.

Unfortunately, there are limitations in directly applying the array based procedures

proposed in the literature to the infectious disease setting. For example, several pro-

posed array pooling algorithms do not guarantee that all cases will be unambiguously

identified (Woodbury et al., 1995; Bruno et al., 1995). For instance, diagonal pooling

as suggested by Woodbury et al. (1995) will not resolve all ambiguities if all specimens

in the first row and first column are positive. Perhaps most importantly, with the

exception of Section 5 of Phatarfod and Sudbury (1994), the array based group testing

literature does not consider test error, i.e., false positive and false negative test results.

2.7 Multidimensional Array Algorithms

Berger et al. (2000) extended Phatarfod and Sudbury (1994) to higher dimensional

arrays. They proposed two natural three-dimensional extensions of the basic matrix

method to an L × M × N cubic array, the three-dimensional planar method and the

three-dimensional linear method.

For the three-dimensional planar method (called 3P ), in stage 1, each of the L

planar slices from front to back, the M planar slices from top to bottom, and the N

planar slices from left to right should be tested. In stage 2, each specimen located at

the intersections of three planes that all tested positive in stage 1 is tested individually.
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The efficiency of the 3P method is the sum of four terms, namely, the reciprocals of

LM , LN , MN and the quantity (1 − qLM − qLN − qMN + qL(M+N−1) + qM(L+N−1) +

qN(L+M−1) − qLM+LN+MN−L−M−N+1). For example, if L = M = N , then the expected

number of tests per specimen of algorithm 3P equals

3
N2 + 1 − 3qN2

+ 3qN(2N−1) − q3N2−3N+1. (2.3)

For the three-dimensional linear method (called 3L), in stage 1, for each of the MN

sites on the front face of the cube, test the group of size L on the line perpendicular

to this face through this site. Repeat for the LN groups of size M lying on similar

lines perpendicular to the top and the bottom faces and for the LM groups of size N

located on lines perpendicular to the left and right faces. In stage 2, test individually

each specimen located at the intersections of three lines that all tested positive in stage

1. They showed the extension of 3L to multiple dimensions, denoted by ML, yields

the family of maximally efficient positive testing procedures and the most efficient

multidimensional parallelepiped is a generalized cube. Berger et al. (2000) proved that

the efficiency of ML for a d- dimensional cube whose side have length s is

ds−1 + p + q(1 − qs−1)d. (2.4)

The optimal procedures proposed by Berger et al. (2000) are not necessarily clinically

feasible due to the requirement of extremely large numbers of specimens. For example,

the parameters s = 74 and d = 6 that maximize efficiency when p = .01 require

sd = 746 ≈ 164 billion items to be in the population to be screened.

Schuster (2002) indicated there exists a theoretical connection between the work of

Berger et al. (2000) and design theory. Design theory is the study of combinatorial

design, which is an arrangement of the elements of a finite set into subsets or arrays
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which satisfy certain regularity conditions. For example, thirty-six officers are given,

belonging to six regiments and holding six ranks. One wants to know that the officers

can be paraded in a 6× 6 array so that, in any line (row or column) of the array, each

regiment and each rank occurs exactly once. Design theory deals with this kind of

problem of arranging objects according to certain rules. Schuster (2002) showed how

design theory can be employed to determine optimal array algorithms which require

much smaller numbers of specimen than reported in Berger et al. (2000).

Roederer and Koup (2003) used various multidimensional array pooling algorithms

to identify T cell immune responses to vaccines or pathogens and used a Monte Carlo

simulation to optimize the construction of peptide pools that could identify responses to

individual peptide using the fewest numbers of assays and patient material. They found

that the number of assays required to deconvolute a pool increases by the logarithm of

the number of peptides within the pool. However, the optimum configuration of pools

changes dramatically according to the number of responses to individual peptides that

are expected to be in the sample.

2.8 Error Rates

A majority of the group testing literature assumes testing is done without error, i.e.,

assumes 100% sensitivity and specificity. For instance, Dorfman (1943) does not con-

sider classification errors. Phatarfod and Sudbury (1994) developed two dimensional

array methods without test errors except briefly in Section 5.

Some work has been done on group testing when there exists test error. Johnson

et al. (1991) considered test errors such as false negative and false positive rates to

generalize hierarchical group testing algorithms and developed pooling sensitivity and

specificity of hierarchical group testing algorithms. They also allowed sensitivity and
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specificity to depend on pool size.

Litvak et al. (1994) focused on HIV antibody tests and considered sensitivity and

specificity as inherent characteristics of the test kit that influence how accurately an

individual sample can be classified. They assumed the underlying test kits all have the

same sensitivity and the same specificity at each step of the testing and for all samples.

High incidence of false positives is commonly reported in HIV antibody screening of

blood samples. Litvak et al. (1994) calculated that when prevalence rate is 4 per

10,000 people and a test kit having a sensitivity and a specificity of 98% is used, the

false positive predictive value of test can be as high as 0.98.

Wein and Zenios (1996) attempted to capture the dilution effects. A dilution effects

is defined as the failure of the test to detect an infected sample when it is mixed with

a large number of negative samples. They developed a generalized linear model which

connects optical density or OD levels (the attribute that is observed and measured in

an ELISA test) with the antibody concentration in the pooled serum and later used it

in a dynamic programming algorithm to produce a testing strategy which minimizes

the total expected cost. Total cost is the sum of testing cost and the cost of incorrect

classifications. It should be noted that, unlike others, these authors allowed three

possibilities at each stage of testing: declare the group negative; require further testing,

and declare all members of the group positive.

Gupta and Malina (1999) modified Dorfman and Sterrett’s group testing protocols

in the presence of classification errors. They begin with a highly sensitive test to

achieve virtually 100% sensitivity. Specimens are tested in groups and individually

as prescribed by the modified Dorfman and Sterrett methods. They controlled the

incidence of false positives by repeating tests of grouped and individual samples that

are initially reactive. The number of retests is chosen carefully so as to bring the

overall incidence of false positives below some desired level, usually set close to 0. They
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also compared the modified Dorfman and the modified Sterrett procedures with their

modified individual testing and showed that the modified Dorfman and the modified

Sterrett are more efficient than the modified individual testing in the presence of test

errors and the modified Sterrett is slightly efficient than the modified Dorfman, but

harder to implement.

2.9 Optimal Pool Size

Feller (1957) and Wilks (1962) have presented text-book exercises which showed the

optimal pool size, n = 1√
p

of Dorfman algorithm. Finucan (1964) gave an approximation

to the optimal hierarchical scheme when there exist no test errors. Samuels (1978)

provided a simple method to obtain the optimal pool size for the Dorfman algorithm

without test errors, while correctly indicating the fault of the assumption of unimodality

used by Finucan and others. Turner et al. (1988) mentioned neither Wilks’ method

nor Feller’s approximation always lead to the optimal pool size. They used a calculus

based approach and Wilks’ suggestion to get the optimal pool size. Wu and Zhao (1994)

provided a concrete procedure to determine the precise optimal plan which minimizes

the expected number of tests per specimen for hierarchical group testing problem when

there exist test errors such as false negative and false positive.
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CHAPTER 3

HIERARCHICAL AND SQUARE

ARRAY ALGORITHMS

3.1 Introduction

The focus of this chapter is to research the utility of two-dimensional array-based group

testing algorithms for case identification in the presence of test error.

Array-based specimen pooling is an alternative to hierarchical group testing which

uses overlapping pools. In its simplest form, n2 specimens are placed on an n × n

matrix. Pools of size n are made from all samples in the same row or in the same

column. These 2n pools are then tested and, assuming no false negative tests, all

positive specimens will lie at the intersection of a positive row pool and a positive

column pool. Any ambiguities are resolved by individually testing all specimens at

these intersections. Phatarfod and Sudbury (1994) derived the expected number of

tests for two-dimensional array (i.e., matrix) group testing procedures. This approach

is also employed in genetics (Bruno et al. 1995; Amemiya et al. 1992; Barillot, Lacroix,

and Cohen 1991) . However, with the exception of Section 5 of Phatarfod and Sudbury

(1994), the array-based group testing literature does not consider test error.



In this chapter, we derive and compare the operating characteristics of hierarchical

and square array based testing algorithms for case identification in the presence of

testing error. We assume constant sensitivity and specificity for each test independent

of pool size for this chapter. The operating characteristics investigated include efficiency

(i.e., expected number of tests per specimen) and error rates (i.e., sensitivity, specificity,

positive and negative predictive values, per-family error rate, and per-comparison error

rate). The methodology is illustrated by comparing different pooling algorithms for the

detection of individuals recently infected with HIV in North Carolina and Malawi.

3.2 Assumptions

In order to derive operating characteristics of the various pooling algorithms considered,

we make the assumptions enumerated below. These assumptions are general enough

to apply to both the hierarchical and square array algorithms.

Assumption 1 All specimens are independent and identically distributed with proba-

bility p of being positive.

We refer to p as the prevalence and let q = 1 − p.

Assumption 2 Given a pool P containing at least one positive specimen is tested, the

probability P tests positive equals Se.

We refer to Se as the test sensitivity. Assumption 2 implies that the test sensitivity

is independent of the number of specimens within a pool and the number of positive

specimens therein. It follows that Se is also the sensitivity for a test of an individual

specimen, i.e., a pool of size 1. We do not consider here more elaborate models where

test sensitivity depends on the number of specimens within a pool, i.e., dilution effects

(Hwang, 1976; Wein and Zenios, 1996). The practical implication of Assumption 2 is
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that the results in this paper are applicable only to settings where the largest pool size

is not believed to suffer appreciable dilution effects. Determination of the maximum

allowable pool size will be application specific. For example, Litvak et al. (1994)

consider pool sizes up to 15 specimens when using an ELISA test to detect individuals

with HIV antibodies. Another example is given by detection of acute HIV in antibody

negative populations where NAATs are thought to be sufficiently sensitive such that

pools of size 90 or 100 are often used in practice (Quinn et al., 2000; Pilcher et al.,

2002; Pilcher et al., 2005).

Assumption 3 Given a pool P containing no positive specimens is tested, the proba-

bility P tests positive equals 1 − Sp.

We refer to Sp as the test specificity. Assumption 3 implies test specificity is inde-

pendent of pool size.

3.3 Hierarchical Algorithm

In this section, we present the efficiency and error rates of a hierarchical group testing

algorithm with S stages under Assumption 1-3. These results first appeared in Johnson

et al. (1991), but often go unrecognized in the literature and thus are restated here.

Consider a hierarchical algorithm where a master pool of size n1 = k1k2 · · · kS−1

is tested at first stage where k1k2 · · · kS−1 are positive integers. If the master pool

tests positive, then k1 pools of size n2 = k2 · · · kS−1 are tested, and so forth. Denote

this algorithm by A = DS(n1 : n2 : n3 : . . . : nS−1 : nS) where n1 = k1k2 · · · kS−1,

n2 = k2 · · · kS−1, · · ·, nS−1 = kS−1, nS = 1. Let Xsi be random variables that equal

1 if the ith pool in sth stage tests positive, and 0 otherwise for s = 1, . . . , S and

i = 1, . . . , n1/ns.
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3.3.1 Efficiency

Let the number of tests be T = T1 + T2 + T3 + . . . + TS where Ts is the number of

tests at the sth stage for s = 1, 2, 3, . . . , S. Then the expected number of tests given n1

specimens equals

E(T ) = 1 + k1E(X1i) + k1k2E(X2i) + . . . + n1E(XS−1,i).

From equation (6.18) of Johnson et al. (1991),

E(Xsi) = qn1(1 − Sp)
s +

∑s−1
j=1(q

nj+1 − qnj)Sj
e(1 − Sp)

s−j + (1 − qns)Ss
e , (3.1)

for s = 1, 2, . . . , S − 1.

From equation (3.1), it follows that for a two-stage hierarchical algorithm, i.e.,

S = 2, the expected number of tests per specimen for D2 is

E(D2) ≡ E

(

T

n1

)

=
1

n1

+ f(n1), (3.2)

where f(n) ≡ (1 − Sp)q
n + Se(1 − qn), is the probability a pool of size n tests positive

without any knowledge of the true status of the pool. For notational simplicity, we

suppress the dependence of f on the parameters p, Se, and Sp. For given values of p,

Se, and Sp, the optimally efficient two stage procedure is determined by the value of n

that minimizes (3.2). Special cases of (3.2) were also derived by Litvak et al. (1994)

and Gastwirth (2000). In particular, for n1 = 15, (3.2) reduces to the first equation in

Section 2.4 of Litvak et al. (1994). Similarly, if Se = 1, (3.2) reduces to equation (2) of

Gastwirth (2000).

For a three-stage hierarchical algorithm, i.e., S = 3, it follows from equation (3.1)
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that the expected number of tests per specimen for D3 is

E(D3) ≡ E

(

T

n1

)

=
1

n1

+
f(n1)

k2

+ Se
2(1 − qk2) + (1 − Sp)f(n1 − k2)q

k2 . (3.3)

Finucan (1964) showed that, in the absence of test error, n2 =
√

n1 is approximately

optimal with regards to minimizing the expected number of tests per specimen. Thus

in the Application below (Section 3.7) we primarily consider configurations of D3 where

n2 =
√

n1.

3.3.2 Error rates

From equations (6.15) and (6.16) of Johnson et al. (1991), the pooling sensitivity and

specificity of DS are

Se(DS) = SS
e , (3.4)

and

Sp(DS) = 1 −
∑S

s=1(q
ns−1 − qns−1−1)Ss−1

e (1 − Sp)
S−(s−1), (3.5)

where qn0−1 ≡ 0. It follows that the pooling sensitivity and specificity of the Dorfman

procedure (i.e., S = 2) are

Se(D2) = S2
e , (3.6)

and

Sp(D2) = 1 − (1 − Sp)f(n1 − 1). (3.7)

For n1 = 15, (3.6) and (3.7) reduce to equations (1) and (4) of Litvak et al. (1994).

For S = 3, the pooling sensitivity and specificity are Se(D3) = S3
e , and Sp(D3) =

1 − [(1 − Sp){(1 − Sp)f(n1 − k2)q
k2−1 + S2

e (1 − qk2−1)}]. Note because S3
e ≤ S2

e ≤ Se,

neither D2 nor D3 will ever improve over individual testing in terms of sensitivity.
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3.4 Square Array without Master Pool Testing

In this section, we derive the operating characteristics of a two-stage square array

testing algorithm in the presence of testing error, denoted by A2(n : 1). In particular,

consider the n × n square array set-up of Phatarfod and Sudbury (1994) where n2

specimen are placed on an n × n matrix. Pools are then made from all samples in

the same row or in the same column. These 2n pools (n row pools and n column

pools) are then tested and, assuming no test error, all positive specimens will lie at the

intersection of a positive row pool and a positive column pool. Therefore all specimens

at the intersection of a positive row and a positive column are subsequently tested.

However, when there is testing error, one must allow for the possibility of positive row

pools and no positive column pools (or vice-versa). Thus we assume that the (i, j)th

sample is tested individually if either both the ith row and the jth column test positive,

the ith row tests positive but all columns test negative, or the jth column tests positive

but all rows test negative. Let Ri represent the test outcome of the ith row, and Cj

represent the test outcome of the jth column. Similarly, denote the true values by RT
i

and CT
j . Let Xij denote the test outcome of individual (i, j) and Yij denote the true

status of individual (i, j) such that RT
i = I[

∑

j Yij > 0] and CT
j = I[

∑

i Yij > 0]. We

will make the following additional assumption to derive efficiencies and error rates for

array pooling algorithms:

Assumption 4 Given the true status of ith row and jth column, the ith row and jth

column tests are conditionally independent of each other.

3.4.1 Efficiency

Let the number of tests be T = T1 + T2, where T1 = 2n corresponds to the row and

column testing and T2 =
∑

i,j T2ij corresponds to the possible subsequent individual
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testing where

T2ij =



































1 if Ri = 1 and Cj = 1

1 if Ri = 1 and
∑

Cj = 0

1 if
∑

Ri = 0 and Cj = 1

0 otherwise

. (3.8)

To derive the expected number of tests, by symmetry we write

E(T2ij) = Pr[Ri = 1, Cj = 1] + 2 Pr[Ri = 1,
∑

j

Cj = 0]. (3.9)

The first component of the right side of (3.9) equals

Pr[Ri = 1, Cj = 1] =
∑1

r,c=0 Pr[Ri = 1, Cj = 1|RT
i = r, CT

j = c] Pr[RT
i = r, CT

j = c].

Under Assumptions 1 - 4, direct substitution and some algebra yields

Pr[Ri = 1, Cj = 1] = (1 − Sp)
2q2n−1 + 2Se(1 − Sp)(1 − qn−1)qn + S2

e (1 − 2qn + q2n−1)

= Sef(n) + (1 − Sp − Se)q
nf(n − 1) ≡ g(n).

The second component of the right side of (3.9) can be written as

1
∑

r=0

n
∑

c=0

Pr[Ri = 1,
∑

j

Cj = 0|RT
i = r,

∑

j

CT
j = c] Pr[RT

i = r,
∑

j

CT
j = c]. (3.10)

For c ∈ {0, . . . , n}, let

β0(c) ≡ Pr[RT
i = 0,

∑

j

CT
j = c] =

(

n

c

)

(qn2−cn+c)(1 − qn−1)c, (3.11)

β1(c) ≡ Pr[RT
i = 1,

∑

j

CT
j = c] =

(

n

c

)

qn2−cn(1 − qn)c − β0(c), (3.12)
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γ0(c) ≡ Pr[Ri = 1,
∑

j

Cj = 0|RT
i = 0,

∑

j

CT
j = c] = (1 − Sp)(1 − Se)

cSn−c
p ,

and

γ1(c) ≡ Pr[Ri = 1,
∑

j

Cj = 0|RT
i = 1,

∑

j

CT
j = c] = SeS

n−c
p (1 − Se)

c,

where we define γ1(0) ≡ 0. Then it follows that

Pr[Ri = 1,
∑

j

Cj = 0] =
n

∑

c=0

{γ0(c)β0(c) + γ1(c)β1(c)} ≡ h(n),

such that the expected number of tests per specimen for A2 is

E(A2) ≡ E

(

T

n2

)

=
2

n
+ g(n) + 2h(n). (3.13)

Note if Se = Sp = 1, then h(n) = 0, g(n) = f(n) − qnf(n − 1) and f(n) = 1 − qn

such that E(A2) = 2/n + 1 − 2qn + q2n−1, which equals equation (2) of Phatarfod and

Sudbury (1994).

3.4.2 Error rates

For i ∈ {1, . . . , n} and j ∈ {1, . . . , n},

1 − Sp(A2) = Pr[Xij = 1|Yij = 0]

= Pr[Ri = 1, Cj = 1, Xij = 1|Yij = 0] + 2 Pr[Ri = 1,
∑

k Ck = 0, Xij = 1|Yij = 0]

= Pr[Xij = 1|Yij = 0, Ri = 1, Cj = 1] Pr[Ri = 1|Yij = 0] Pr[Cj = 1|Yij = 0]

+2 Pr[Xij = 1|Yij = 0, Ri = 1,
∑

k Ck = 0] Pr[Ri = 1,
∑

k Ck = 0|Yij = 0]

= (1 − Sp)f(n − 1)2 + 2(1 − Sp) Pr[Ri = 1,
∑

k Ck = 0|Yij = 0],

(3.14)

where the second equality is from the definition of algorithm A2 given by (3.8) and the

third equality holds by Assumption 4. Note that Pr[Ri = 1|Yij = 0] = Pr[Cj = 1|Yij =
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0] = f(n − 1). Next let

h(n|y) ≡ Pr[Ri = 1,
∑

k Ck = 0|Yij = 0]

=
∑1

r=0

∑n
c=0

{

Pr[Ri = 1,
∑

k Ck = 0|RT
i = r,

∑

k CT
k = c, Yij = 0]

×Pr[RT
i = r,

∑

k CT
k = c|Yij = 0]

}

,

(3.15)

β0(c|y) ≡ Pr[RT
i = 0,

∑

k CT
k = c|Yij = 0] = β0(c)

q
,

and

β1(c|y) ≡ Pr[RT
i = 1,

∑

k CT
k = c|Yij = 0] = Pr[

∑

k CT
k = c|Yij = 0] − β0(c|y)

=
(

n−1
c

)

(1 − qn)cqn2−nc−1 +
(

n−1
c−1

)

(1 − qn)c−1qn2−nc(1 − qn−1) − β0(c|y),

for c ∈ {0, ..., n} where β1(0|y) ≡ 0. Then

h(n|y) =
1

∑

r=0

n
∑

c=0

βr(c|y)γr(c), (3.16)

since γr(c) ≡ Pr[Ri = 1,
∑

k Ck = 0|RT
i = r,

∑

k CT
k = c, Yij = 0]. Thus, (3.14) is

equivalent to

Sp(A2) = 1 − {(1 − Sp)f(n − 1)2 + 2(1 − Sp)h(n|y)}. (3.17)

We can derive pooling sensitivity using several applications of Assumptions 1 and

2:
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Se(A2) = Pr[Xij = 1|Yij = 1]

= Pr[Ri = 1, Cj = 1, Xij = 1|Yij = 1] + 2 Pr[Ri = 1,
∑

k Ck = 0, Xij = 1|Yij = 1]

= S3
e + 2S2

e Pr[Cj = 0|Yij = 1]
∏

k 6=j Pr[Ck = 0]

= S3
e + 2S2

e (1 − Se) Pr[Ck = 0]n−1

= S3
e + 2S2

e (1 − Se){1 − f(n)}n−1.

(3.18)

3.5 Square Array with Master Pool Testing

We also consider a three-stage square array testing where we first test a master pool

of size n2. If the master pool tests negative, the procedure stops. Otherwise, the

procedure continues as in A2. Denote this square array testing procedure with master

pool testing by A2M(n2 : n : 1).

3.5.1 Efficiency

Let the number of tests be T = T0 + T1 + T2 where T0 = 1 corresponds to testing the

master pool, T1 corresponds to possible row and column testing and T2 corresponds

to possible individual testing. To compute the efficiency of A2M , let X0 be a random

variable that equals 1 if the master pool tests positive and 0 otherwise such that T1 =

2nX0 and E(T1) = 2nf(n2). Next write T2 =
∑

i,j T2ij where

T2ij =



































1 if X0 = 1, Ri = 1 and Cj = 1

1 if X0 = 1, Ri = 1 and
∑

Cj = 0

1 if X0 = 1,
∑

Ri = 0 and Cj = 1

0 otherwise
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such that the expected number of tests per specimen for A2M is E(A2M) ≡ 1
n2 +

2
n
f(n2) + E(T2ij), where

E(T2ij) = Pr[X0 = 1, Ri = 1, Cj = 1] + 2 Pr[X0 = 1, Ri = 1,
∑

j

Cj = 0]. (3.19)

It is straightforward to show the first part of the right side of (3.19) equals

Pr[X0 = 1, Ri = 1, Cj = 1] = (1 − Sp)
2qn2

(1 − Sp − Se) + Seg(n). (3.20)

Likewise, the second part of the right side of (3.19), i.e., Pr[X0 = 1, Ri = 1,
∑

j Cj =

0], can be written as

∑1
r=0

∑n
c=0

{

Pr[Ri = 1,
∑

j Cj = 0|X0 = 1, RT
i = r,

∑

j CT
j = c]

×Pr[X0 = 1|RT
i = r,

∑

j CT
j = c] Pr[RT

i = r,
∑

j CT
j = c]

}

,

which implies

Pr[X0 = 1, Ri = 1,
∑

j Cj = 0] = (1 − Sp)γ0(0)β0(0) + Se

∑n
c=1{γ0(c)β0(c) + γ1(c)β1(c)}

= (1 − Sp − Se)γ0(0)β0(0) + Seh(n).

Therefore the expected number of tests per specimen for A2M is

E(A2M) =
1

n2
+ (1 − Sp − Se)q

n2

{

2

n
+ (1 − Sp)

2 + 2(1 − Sp)S
n
p

}

+ SeE(A2).
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3.5.2 Error rates

To derive the pooling specificity of A2M , write

1 − Sp(A2M) = Pr[Xij = 1|Yij = 0]

= (1 − Sp)µ(n|y) + 2(1 − Sp)ν(n|y)
(3.21)

where

µ(n|y) = Pr[X0 = 1, Ri = 1, Cj = 1|Yij = 0]

= f(n2 − 2n + 1){(1 − Sp)q
n−1}2 + S2

e (1 − qn−1){(1 − Sp)q
n−1 + f(n − 1)},

and

ν(n|y) = Pr[X0 = 1, Ri = 1,
∑

k Ck = 0|Yij = 0]

= (1 − Sp)β0(0|y)γ0(0) + Se

∑1
r=0

∑n
c=1 βr(c|y)γr(c),

since γr(c) = Pr[Ri = 1,
∑

k Ck = 0|RT
i = r,

∑

k CT
k = c, Yij = 0, X0 = 1].

Applying Assumptions 1 and 2 several times, pooling sensitivity equals

Se(A2M) = Pr[Xij = 1, Ri = 1, Cj = 1, X0 = 1|Yij = 1]

+2 Pr[Xij = 1, Ri = 1,
∑

k Ck = 0, X0 = 1|Yij = 1]

= S4
e + 2S3

e (1 − Se){1 − f(n)}n−1.

(3.22)

3.6 Assessing Variability

Thus far we have presented expressions for different group testing algorithm parame-

ters such as the expected number of tests, pooling sensitivity and pooling specificity.

Formulae for pooling predictive values (PPV and NPV ) and the other error rates de-

scribed in Section 2.3 follow immediately. However, for a particular set of specimens,

the observed number of tests may differ from the expected number of tests due to sam-

pling variability. While the error rates for a particular set of specimens are not directly
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observable in the absence of a gold standard test, clearly these latent “observed” error

rates may also differ from the corresponding parameter values due to sampling variabil-

ity. Quantifying this uncertainty associated with the different operating characteristics

can be helpful in comparing different pooling strategies. For example, if two group

testing procedures have comparable expected number of tests, the one with smaller

variance may be preferable operationally.

Explicit expressions for the variance associated with the number of tests per speci-

men for D2, D3, A2, and A2M are derived in the Appendix B. In turn, large sample

probability intervals (PIs) for the observed number of tests per specimen can be com-

puted by appealing to the Central Limit Theorem. For instance, suppose N samples

are to be tested using D3(n :
√

n : 1) with N sufficiently larger than n. Then there

is an approximate (1 − α) probability that the observed number of tests per specimen

required to identify all N individuals as positive or negative will be in the PI

E(D3) ± z1−α/2

√

V ar(D3)

N/n
,

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution, E(D3) is given

by equation (3.3) and V ar(D3) follows from equation (B.2) in Appendix B.2. Similar

reasoning can be employed to obtain PIs for the observed number of tests using D2,

A2, and A2M .

The cumulative distribution functions (CDFs) for the observed pooling sensitivity,

specificity, and predictive values are derived in Appendix C. Using these CDFs, cor-

responding PIs can easily be determined. For instance, we show that for any pooling

algorithm A applied to N specimens, the CDF of the observed sensitivity (SO
e (A))
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equals

Pr[SO
e (A) ≤ s] =

N
∑

y=0

bsyc
∑

x=0

(

y

x

)

Se(A)x(1 − Se(A))y−x

(

N

y

)

py(1 − p)N−y,

where bsyc denotes the largest integer less than or equal to sy. Using this expression,

an approximate (1 − α) PI for the observed sensitivity is given by (sL, sU) where sL is

the largest value such that Pr[SO
e (A) ≤ sL] ≤ α/2 and sU is the smallest value such

that Pr[SO
e (A) ≥ sU ] ≤ α/2. PIs for pooling specificity and predictive values follow

analogously using the corresponding CDFs given in Appendix C.

3.7 Application

Using the results derived above, in this section we explore the operating characteristics

of individual testing, D2, D3, A2, and A2M for identification of acute HIV using

NAATs. For our first example, we consider a setting similar to the NC STAT program.

First, we assume prevalence of acute HIV is p = 0.0002 (Pilcher et al., 2005) and

NAAT has a 99% test specificity (Hecht et al., 2002) and 90% test sensitivity. Suppose

further we are limited to a master pool size of 100 due to dilution effects (Quinn et al.,

2000). Under these assumptions, Figure 3.1 depicts the efficiency, pooling sensitivity,

specificity, PPV and PFERs of individual testing, D2(n : 1), D3(n :
√

n : 1) (here

k2 =
√

n), A2M(n :
√

n : 1), and A2(
√

n : 1) as a function of the number of specimens

n. (Recall that D2(n : 1) denotes two-stage hierarchical testing with pools of size n

in the first stage; D3(n :
√

n : 1) denotes three-stage hierarchical testing with pools of

size n at the first stage and pools of size
√

n at the second stage; A2(
√

n : 1) denotes

two-stage
√

n ×√
n array testing; and A2M(n :

√
n : 1) denotes three-stage

√
n ×√

n

array testing wherein the first stage entails testing a master pool of size n.) The panel

(a) of Figure 3.1 indicates the two most efficient algorithms are D3 and A2M when
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n = 100. The expected number of tests per specimen for D3(90 : 10 : 1), the algorithm

currently employed by the NC STAT program, is 0.016. For N = 8, 505 total specimens

(Pilcher et al., 2002), the 95% PI for efficiency of D3(90 : 10 : 1) is (0.010, 0.021), which

contains the observed rate of 0.018 reported by Pilcher et al. (2002). Under these same

conditions, the expected number of tests per specimen is also 0.016 (95% PI: 0.008 to

0.024) for A2M(100 : 10 : 1). Panels (b) and (d) of Figure 3.1 indicate D3 and A2M

are also preferable with regards to pooling specificity and, especially, PPV . However

these two algorithms are also the least sensitive as depicted in panel (c) of Figure 3.1.

Panel (e) of Figure 3.1 indicates D3 and A2M are preferable with regards to pooling

PFER. We also see that other algorithms are better than individual testing with

regards to the efficiency, pooling specificity, PPV and PFER. Overall, these results

suggest by moving from D3(90 : 10 : 1) to A2M(100 : 10 : 1), could improve pooling

specificity, sensitivity, PPV , PCERs, and PFERs without sacrificing efficiency. In

particular, given the NC STAT program processes 120,000 specimens per year, this

change in pooling algorithm would result in a decrease in PFER2 from 6.5 to 5.1. In

other words, on average 1-2 additional acute HIV cases would be detected each year,

representing a 5-10% increase over the current detection rate (Pilcher et al., 2005).

As a second motivating example, we consider a setting similar to that described

by Pilcher et al. (2004), who employed D3(50 : 10 : 1) to identify acute HIV in

Malawi. They found 4.5% of antibody negative males attending STD clinics to be

NAAT positive. Assuming Sp = 0.99 and Se = 0.9 as before and p = 0.045, the expected

number of tests per specimen of D3(50 : 10 : 1) is 0.40. For N = 1, 361 total specimens

(Pilcher et al., 2004), the 95% PI for efficiency is (0.32, 0.49). However as seen in panel

(a) of Figure 3.2, there are more efficient algorithms in this setting. For example, using

A2M(100 : 10 : 1) results in 0.31 (95% PI: 0.23 to 0.38) tests per specimen on average

while D3(16 : 4 : 1) results in 0.32 (95% PI: 0.26 to 0.38) expected tests per specimen.
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Based on the other panels of Figure 3.2, we see the choice between A2M(100 : 10 : 1)

and D3(16 : 4 : 1) represents a trade-off in pooling sensitivity, specificity, PPV and

PFER. Table 3.1 provides a closer look at the operating characteristics of individual

testing, D3(50 : 10 : 1) and three alternative algorithms. Arguably D3(16 : 4 : 1)

provides the best balance of efficiency and error rates while being less susceptible to

dilution effects.

The results above suggest either D3 or A2M are generally preferable for detection of

acute HIV. Thus, we also consider how D3 and A2M compare for prevalences ranging

from 10−5 to 10−1. As in the examples above, we assume Se = 0.9, Sp = 0.99, and the

maximum allowable pool size is 100 due to dilution effects. Under these assumptions,

for each prevalence we found the values of n ∈ {4, 9, 16, 25, . . . , 100} that minimize

E{D3(n :
√

n : 1)} and E{A2M(n :
√

n : 1)}. The expected numbers of tests per

specimen, pooling specificities, sensitivities, and PPV s at these optimal values of n are

depicted in Figure 3.3. These results indicate A2M is generally the preferable algorithm

for prevalence less than 0.01.

The examples above assume that prevalence, test sensitivity, and test specificity

are known exactly, which will rarely be the case in practice. To account for such

uncertainty one can use a Bayesian analysis where priors are placed on p, Se and Sp

(e.g., see Dendukuri and Joseph (2001)). Alternatively one can employ a “sensitivity

analysis” wherein the operating characteristics of the pooling algorithms are examined

over a range of values for p, Se and/or Sp. For example, suppose investigators in Malawi

are interested in the effect of the assumed values of Se and Sp on the efficiency, pooling

sensitivity and pooling PPV of D3(16 : 4 : 1). Then a graphical display such as Figure

3.4 can be used to show E(D3), Se(D3) and PPV (D3) over a bivariate range of values

of Se and Sp. Note Figure 3.4 includes the special case of no test error, i.e., Se = Sp = 1.

For this case, panel (a) demonstrates that D3 will actually be less efficient than in the
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presence of test error. Panels (b) and (c) demonstrate the more general phenomenon

that pooling sensitivity, specificity and predictive values equal 1 when Se = Sp = 1.

3.8 Discussion

We derived several operating characteristics of hierarchical and square array-based test-

ing algorithms for case identification in the presence of testing error. Using these

results, we showed that the NC STAT program’s currently implemented pooling algo-

rithm D3(90 : 10 : 1) is approximately optimal among the algorithms considered here

with respect to the expected number of tests per specimen. However, moving to the

array-based pooling algorithm A2M(100 : 10 : 1) would generally improve pooling error

rates, in particular the expected number of false negatives (PFER2), without result-

ing in a decrease in efficiency. Our results also suggest moving from D3(50 : 10 : 1) to

D3(16 : 4 : 1) in the Malawi setting would lead to substantial improvement in efficiency

as well as pooling error rates.

There are several areas of potential future research related to this work. First, we

assume constant sensitivity and specificity independent of pool size. This assumption

is not necessarily realistic and is highly dependent on individual disease and assay

characteristics. For HIV, the sensitivity of NAAT is likely inversely related to the

number of specimens per pool; as such, the applications above should be interpreted

with caution. Incorporating previously proposed methods of Hwang (1976) and Wein

and Zenios (1996) that allow sensitivity and specificity to be a function of pool size could

be considered for future research. Second, we have only considered two dimensional

square array algorithms. Generalizations to n × m arrays with m 6= n should be

straightforward, however Berger et al. (2000) suggest m = n will be most efficient

in the absence of test error. Likewise, the proposed square array methods could be
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extended to higher dimensional arrays in the presence of testing error. The efficiency

of higher dimensional arrays should simplify to the results given in Berger et al. (2000)

when Se = Sp = 1.

In summary, our results confirm that group testing algorithms can increase efficiency

and confer remarkable accuracy (predictive value) across a broad range of prevalence

in the presence of testing error. This ability of group testing algorithms to enhance

the accuracy of low prevalence disease screening is likely under-appreciated by clinical

laboratories. Of course, in clinical laboratory practice, functional constraints may affect

the pooling algorithm choice. For example, both the master pool size and the number

of test stages can affect the turn-around time for results. For investigators attempting

to evaluate the potential use of group testing algorithms for a particular application,

results such as ours can help estimate the trade-offs to be expected in terms of efficiency,

accuracy and turn-around time.
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TABLE 3.1: Comparison of operating characteristics for individual testing and four
potential pooling algorithms to be used in Malawi for detection of acute HIV.

A E(A) Sp(A) PCER(A) Se(A) PCER2(A) PPV (A) NPV (A)

IT∗ 1.00 0.9900 0.0096 0.9000 0.0045 0.8092 0.9953
D3(50)] 0.40 0.9972 0.0028 0.7290 0.0122 0.9247 0.9874
D3(16)† 0.32 0.9989 0.0010 0.7290 0.0122 0.9696 0.9874
A2M(49)‡ 0.34 0.9995 0.0005 0.6810 0.0144 0.9836 0.9852
A2M(100)§ 0.31 0.9991 0.0009 0.6596 0.0153 0.9721 0.9842

∗IT: Individual Test
]D3(50) : D3(50 : 10 : 1)
†D3(16) : D3(16 : 4 : 1)
‡A2M(49) : A2M(49 : 7 : 1)
§A2M(100) : A2M(100 : 10 : 1)
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FIGURE 3.1: (a) Expected number of tests per specimen, (b) pooling specificity, (c)
pooling sensitivity, (d) pooling PPV , (e) pooling PFER, and (f) pooling PFER2 for
different algorithms assuming test sensitivity Se = 0.9, test specificity Sp = 0.99, and
prevalence p = 0.0002. The N denotes the three stage hierarchical pooling algorithm
employed in the NC STAT Program. Note pooling specificity for individual testing
equals Sp = 0.99 and is not shown in panel (b).
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FIGURE 3.2: (a) Expected number of tests per specimen, (b) pooling specificity, (c)
pooling sensitivity, (d) pooling PPV , (e) pooling PFER, and (f) pooling PFER2 for
different algorithms assuming test sensitivity Se = 0.9, test specificity Sp = 0.99, and
prevalence p = 0.045. The N denotes the three stage hierarchical pooling algorithm
employed in Malawi.
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FIGURE 3.3: (a) Expected number of tests per specimen, (b) pooling specificity, (c)
pooling sensitivity, and (d) pooling PPV for optimally efficient configurations of D3
and A2M assuming test sensitivity Se = 0.9, test specificity Sp = 0.99, and a maximum
allowable pool size of 100.
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FIGURE 3.4: Contour plots of (a) expected number of tests per specimen, (b) pooling
sensitivity, and (c) pooling PPV for D3(16 : 4 : 1) assuming p = 0.045 as a function
of test sensitivity (Se) and test specificity (Sp). The • denotes the values of Se and Sp

assumed in Table 3.1.
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CHAPTER 4

THREE-DIMENSIONAL ARRAY

ALGORITHMS

4.1 Introduction

The focus of this chapter is to research aspects of three-dimensional array-based group

testing algorithms for case identification in the presence of test error.

Array-based algorithms were proposed by several researchers. Phatarfod and Sud-

bury (1994) derived the expected number of tests for two-dimensional array (i.e., ma-

trix) group testing procedures. Berger et al. (2000) extended this work to higher

dimensional arrays assuming no test errors, i.e., no false negative or false positive tests.

In this chapter, we extend Berger et al. (2000)’s results to allow for imperfect

testing. We derive efficiency and pooling measurement error rates such as specificity

and sensitivity for three dimensional array-based pooling algorithms when there exist

test errors. Algorithms with and without master pool testing are considered. Our

results are compared with previously derived operating characteristics for hierarchical

and two-dimensional array-based group testing algorithms in the presence of test errors.



4.2 Preliminaries

4.2.1 Notation

In addition to the notation introduced in Section 2.3 and Section 3, we need to define the

following notation in order to derive the operating characteristics of three-dimensional

array-based algorithms.

Let Xi1,i2,i3 denote the test outcome of individual (i1, i2, i3) and Yi1,i2,i3 denote the

true status of individual (i1, i2, i3) for i1 = 1, . . . , L, i2 = 1, . . . ,M and i3 = 1, . . . , N .

For i1 = 1, . . . , L, let Xi1++ denote the test outcome for the pool of size MN corre-

sponding to the i1
th planar slice from front to back. Define X+i2+ for i2 = 1, . . . ,M

and X++i3 for i3 = 1, . . . , N similarly. Denote the corresponding true values by Yi1++,

Y+i2+ and Y++i3 .

4.2.2 Assumptions

In addition to Assumptions 1-3 in Section 3.2, we make the following additional as-

sumption:

Assumption 5 Xi1++, X+i2+ and X++i3 are conditionally independent of each other

given the true status of Yi1++, Y+i2+ and Y++i3.

4.3 Three-Dimensional Array Without Master Pool

In this section, we derive the efficiency and error rates of a three-dimensional (L×M ×

N) array-based testing algorithm in the presence of test errors. This algorithm entails

planar slices of a three-dimensional array and thus is denoted A3P ([L : M : N ] : 1).

For this method, in stage 1, each of the L planar slices from front to back, the M

planar slices from top to bottom, and the N planar slices from left to right are tested.
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In stage 2, each specimen is tested individually if at least two of the three planar slices

containing this sample test positive. Figure 4.1 shows A3P with L = M = N = 3. In

this example, the total number of specimens is 27 and the black dots denote 9 (= MN)

specimens in one of L planar slices.

4.3.1 Efficiency

Let the number of tests of A3P be T = T1 +
∑

i1,i2,i3
T(i1,i2,i3) where T1 = L + M + N

corresponds to pool testing (i.e., planar slices) and

T(i1,i2,i3) =



















































1 if Xi1++ = 1 and X+i2+ = 1 and X++i3 = 1

1 if Xi1++ = 1 and X+i2+ = 1 and
∑N

i3=1 X++i3 = 0

1 if Xi1++ = 1 and
∑M

i2=1 X+i2+ = 0 and X++i3 = 1

1 if
∑L

i1=1 Xi1++ = 0 and X+i2+ = 1 and X++i3 = 1

0 otherwise

corresponds to the possible subsequent test of the (i1, i2, i3)
th sample. In other words,

the (i1, i2, i3)
th sample is tested individually if at least two of the three planar slices

containing this sample test positive.

The efficiency, or expected number of tests per specimen, of A3P equals

E(A3P ) =
L + M + N

LMN
+ E(T(i1,i2,i3)),

where

E(T(i1,i2,i3)) = gA3P (L, M, N) +
∑

j∈{L,M,N} hA3P (L, M, N ; j), (4.1)
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gA3P (L, M, N) ≡ Pr[Xi1++ = 1, X+i2+ = 1, X++i3 = 1],

hA3P (L, M, N ; N) ≡ Pr[Xi1++ = 1, X+i2+ = 1,
∑

i3
X++i3 = 0],

hA3P (L, M, N ; M) ≡ Pr[Xi1++ = 1,
∑

i2
X+i2+ = 0, X++i3 = 1],

and

hA3P (L, M, N ; L) ≡ Pr[
∑

i1
Xi1++ = 0, X+i2+ = 1, X++i3 = 1].

Below we derive explicit forms for gA3P and hA3P . First let q1 = qLM + qLN + qMN ,

q2 = qL(M+N−1) + qM(L+N−1) + qN(L+M−1), and q3 = qLM+MN+LN−(L+M+N)+1. Then

gA3P (L, M, N) =
1

∑

l=0

1
∑

m=0

1
∑

n=0

{Pr[Yi1++ = l, Y+i2+ = m, Y++i3 = n]

× Pr[Xi1++ = 1, X+i2+ = 1, X++i3 = 1|Yi1++ = l, Y+i2+ = m, Y++i3 = n]}

= (1 − Sp)
3q3 + (1 − Sp)

2Se(q2 − 3q3) + (1 − Sp)S
2
e (q1 − 2q2 + 3q3)

+ S3
e (1 − q1 + q2 − q3).

To derive hA3P (L, M, N ; N), we use the following decomposition.

hA3P (L, M, N ; N) =
1

∑

c1=0

1
∑

c2=0

N
∑

r=0

{Pr[Yi1++ = c1, Y+i2+ = c2,
∑

i3

Y++i3 = r]

× Pr[Xi1++ = 1, X+i2+ = 1,
∑

i3

X++i3 = 0|Yi1++ = c1, Y+i2+ = c2,
∑

i3

Y++i3 = r]}.

For r ∈ 0, · · · , N , let

β00(L, M, N ; r) ≡ Pr[Yi1++ = 0, Y+i2+ = 0,
∑

i3
Y++i3 = r]

=
(

N
r

)

(qLMN−r(LM−L−M+1))(1 − qLM−L−M+1)r,

β01(L, M, N ; r) ≡ Pr[Yi1++ = 0, Y+i2+ = 1,
∑

i3
Y++i3 = r]

=
(

N
r

)

(qLMN−r(LM−M))(1 − qr(L−1))r,
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β10(L, M, N ; r) ≡ Pr[Yi1++ = 1, Y+i2+ = 0,
∑

i3
Y++i3 = r]

=
(

N
r

)

(qLMN−r(LM−L))(1 − qr(M−1))r,

β11(L, M, N ; r) ≡ Pr[Yi1++ = 1, Y+i2+ = 1,
∑

i3
Y++i3 = r]

=
(

N
r

)

(qLMN−r(LM))(1 − qLM)r

−{β00(L, M, N ; r) + β01(L, M, N ; r) + β10(L, M, N ; r)},

γ00(N ; r) ≡ Pr[Xi1++ = 1, X+i2+ = 1,
∑

i3
X++i3 = 0|Yi1++ = 0, Y+i2+ = 0,

∑

i3
Y++i3 = r]

= (1 − Sp)
2(1 − Se)

rSN−r
p ,

γ01(N ; r) ≡ γ10(N ; r)

≡ Pr[Xi1++ = 1, X+i2+ = 1,
∑

i3
X++i3 = 0|Yi1++ = 0, Y+i2+ = 1,

∑

i3
Y++i3 = r]

= (1 − Sp)Se(1 − Se)
rSN−r

p ,

and

γ11(N ; r) ≡ Pr[Xi1++ = 1, X+i2+ = 1,
∑

i3
X++i3 = 0|Yi1++ = 1, Y+i2+ = 1,

∑

i3
Y++i3 = r]

= S2
e (1 − Se)

rSN−r
p ,

where β01(L, M, N ; 0) ≡ 0, β10(L, M, N ; 0) ≡ 0, β11(L, M, N ; 0) ≡ 0, γ01(N ; 0) ≡ 0,

γ10(N ; 0) ≡ 0, and γ11(N ; 0) ≡ 0. Then it follows that

hA3P (L, M, N ; N) =
∑1

i=0

∑1
j=0

∑N
r=0 γij(N ; r)βij(L, M, N ; r). (4.2)

Similarly one can show

hA3P (L, M, N ; L) =
∑1

i=0

∑1
j=0

∑L
r=0 γij(L; r)βij(M, N, L; r),

and

hA3P (L, M, N ; M) =
∑1

i=0

∑1
j=0

∑M
r=0 γij(M ; r)βij(L, N, M ; r).
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Note if Se = Sp = 1, then γij(N ; r) = γij(M ; r) = γij(L; r) = 0 for i, j ∈

{(0, 0), (0, 1), (1, 0), (1, 1)}. Therefore,

E(A3P ) = L+M+N
LMN

+ 1 − q1 + q2 − q3,

which is equivalent to the result given in Section 2.2.1 of Berger et al. (2000). Note if

L = M = N , then

E(A3P ) =
3

N2
+ 1 − 3qN2

+ 3qN(2N−1) − q3N2−3N+1.

which equals equation (2.3).

4.3.2 Error Rates

In this section, we derive the pooling specificity and pooling sensitivity of A3P . For

i1 ∈ {1, . . . , L}, i2 ∈ {1, . . . ,M} and i3 ∈ {1, . . . , N}, the pooling false positive rate

(i.e., 1-pooling specificity) is

1 − Sp(A3P ) = Pr[Xi1i2i3 = 1|Yi1i2i3 = 0] (4.3)

= Pr[Xi1++ = 1, X+i2+ = 1, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 0]

+ Pr[Xi1++ = 1, X+i2+ = 1,
N

∑

j=1

X++j = 0, Xi1i2i3 = 1|Yi1i2i3 = 0]

+ Pr[Xi1++ = 1,
M

∑

j=1

X+j+ = 0, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 0]

+ Pr[
L

∑

j=1

Xj++ = 0, X+i2+ = 1, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 0].
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Therefore by Assumption 5,

1 − Sp(A3P ) = (1 − Sp){gA3P |y(L, M, N) +
∑

j∈{L,M,N} hA3P |y(L, M, N ; j)},

where

gA3P |y(L, M, N) ≡ Pr[Xi1++ = 1, X+i2+ = 1, X++i3 = 1|Yi1i2i3 = 0],

hA3P |y(L, M, N ; N) ≡ Pr[Xi1++ = 1, X+i2+ = 1,
∑N

j=1 X++j = 0|Yi1i2i3 = 0],

hA3P |y(L, M, N ; M) ≡ Pr[Xi1++ = 1,
∑M

j=1 X+j+ = 0, X++i3 = 1|Yi1i2i3 = 0],

and

hA3P |y(L, M, N ; L) ≡ Pr[
∑L

j=1 Xj++ = 0, X+i2+ = 1, X++i3 = 1|Yi1i2i3 = 0].

gA3P |y(L, M, N) can be expressed as

gA3P |y(L, M, N) = (1 − Sp)
3q3b + Se(1 − Sp)

2(q2b − 3q3b)

+ S2
e (1 − Sp)(q1b − 2q2b + 3q3b) + S3

e (1 − q1b + q2b − q3b),

where q1b = qLM−1 + qLN−1 + qMN−1, q2b = qL(M+N−1)−1 + qM(L+N−1)−1 + qN(L+M−1)−1,

and q3b = qLM+MN+LN−(L+M+N).

To derive hA3P |y(L, M, N ; N), we use the following decomposition.

hA3P |y(L, M, N ; N) =
1

∑

c1=0

1
∑

c2=0

N
∑

r=0

{Pr[Yi1++ = c1, Y+i2+ = c2,
N

∑

j=1

Y++j = r|Yi1i2i3 = 0]

× Pr[Xi1++ = 1, X+i2+ = 1,
N

∑

j=1

X++j = 0|Yi1++ = c1, Y+i2+ = c2,
N

∑

j=1

Y++j = r, Yi1i2i3 = 0]}.
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Define

β00|y(L, M, N ; r) ≡ Pr[Yi1++ = 0, Y+i2+ = 0,
N

∑

j=1

Y++j = r|Yi1i2i3 = 0] =
β00(L, M, N ; r)

q
,

β01|y(L, M, N ; r) ≡ Pr[Yi1++ = 0, Y+i2+ = 1,
N

∑

j=1

Y++j = r|Yi1i2i3 = 0] =
β01(L, M, N ; r)

q
,

β10|y(L, M, N ; r) ≡ Pr[Yi1++ = 1, Y+i2+ = 0,
N

∑

j=1

Y++j = r|Yi1i2i3 = 0] =
β10(L, M, N ; r)

q
,

β11|y(L, M, N ; r) ≡ Pr[Yi1++ = 1, Y+i2+ = 1,
N

∑

j=1

Y++j = r|Yi1i2i3 = 0]

=

(

N − 1

r

)

(qLMN−r(LM)−1)(1 − qLM)r

+

(

N − 1

r − 1

)

(qLMN−r(LM))(1 − qLM)r−1(1 − qLM−1),

− {β00|y(L, M, N ; r) + β01|y(L, M, N ; r) + β10|y(L, M, N ; r)}

where β01|y(L, M, N ; 0) ≡ 0, β10|y(L, M, N ; 0) ≡ 0, and β11|y(L, M, N ; 0) ≡ 0. Then it

follows that

hA3P |y(L, M, N ; N) =
1

∑

i=0

1
∑

j=0

N
∑

r=0

γij(N ; r)βij|y(L, M, N ; r).

Similarly one can show

hA3P |y(L, M, N ; L) =
∑1

i=0

∑1
j=0

∑L
r=0 γij(L; r)βij|y(M, N, L; r)

and

hA3P |y(L, M, N ; M) =
∑1

i=0

∑1
j=0

∑M
r=0 γij(M ; r)βij|y(L, N, M ; r).
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Pooling sensitivity can be derived as follows.

Se(A3P ) = Pr[Xi1i2i3 = 1|Yi1i2i3 = 1]

= Pr[Xi1++ = 1, X+i2+ = 1, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 1]

+ Pr[Xi1++ = 1, X+i2+ = 1,
N

∑

j=1

X++j = 0, Xi1i2i3 = 1|Yi1i2i3 = 1]

+ Pr[Xi1++ = 1,
M

∑

j=1

X+j+ = 0, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 1]

+ Pr[
L

∑

j=1

Xj++ = 0, X+i2+ = 1, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 1]

= S4
e + S3

e{Pr[X++i3 = 0|Yi1i2i3 = 1]
∏

k 6=i3

Pr[X++k = 0]

+ Pr[X+i2+ = 0|Yi1i2i3 = 1]
∏

k 6=i2

Pr[X+k+ = 0]

+ Pr[Xi1++ = 0|Yi1i2i3 = 1]
∏

k 6=i1

Pr[Xk++ = 0]}

= S4
e + S3

e (1 − Se){Pr[X++k = 0]N−1 + Pr[X+k+ = 0]M−1 + Pr[Xk++ = 0]L−1}

= S4
e + S3

e (1 − Se)[{1 − f(LM)}N−1 + {1 − f(LN)}M−1 + {1 − f(MN)}L−1],

where f(n) ≡ (1 − Sp)q
n + Se(1 − qn).

4.4 Three-Dimensional Array With Master Pool

In this section we derive the efficiency and error rates of a three-dimensional array-based

testing algorithms where we first test a master pool containing all LMN samples. If the

master pool tests negative, the procedure stops. Otherwise, the procedure continues as

in A3P . We denoted this algorithm by A3PM(LMN : [L : M : N ] : 1).
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4.4.1 Efficiency

Let the number of tests be T = T0 + T1 + T2 where T0 = 1 corresponds to testing

the master pool, T1 corresponds to testing of planar slice pools, and T2 corresponds

to the possible subsequent individual testing. To compute the efficiency of A3PM , let

X0 be a random variable that equals 1 if master pool tests positive, and 0 otherwise

such that T1 = (L + M + N)X0 and E(T1) = (L + M + N)f(LMN). Next write

T2 =
∑

i1,i2,i3
T(i1,i2,i3) where

T(i1,i2,i3) =



















































1 if X0 = 1, Xi1++ = 1 and X+i2+ = 1 and X++i3 = 1

1 if X0 = 1, Xi1++ = 1 and X+i2+ = 1 and
∑N

i3=1 X++i3 = 0

1 if X0 = 1, Xi1++ = 1 and
∑M

i2=1 X+i2+ = 0 and X++i3 = 1

1 if X0 = 1,
∑L

i1=1 Xi1++ = 0 and X+i2+ = 1 and X++i3 = 1

0 otherwise

.

The expected number of tests per specimen for A3PM is

E(A3PM) =
1

LMN
+

L + M + N

LMN
f(LMN) + E(T(i1,i2,i3)),

where

E(T(i1,i2,i3)) = gA3PM(L, M, N) +
∑

j∈{L,M,N} hA3PM(L, M, N ; j), (4.4)

gA3PM(L, M, N) ≡ Pr[X0 = 1, Xi1++ = 1, X+i2+ = 1, X++i3 = 1],

hA3PM(L, M, N ; N) ≡ Pr[X0 = 1, Xi1++ = 1, X+i2+ = 1,
∑

i3
X++i3 = 0],

hA3PM(L, M, N ; M) ≡ Pr[X0 = 1, Xi1++ = 1,
∑

i2
X+i2+ = 0, X++i3 = 1],
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and

hA3PM(L, M, N ; L) ≡ Pr[X0 = 1,
∑

i1
Xi1++ = 0, X+i2+ = 1, X++i3 = 1].

It is straightforward to show

gA3PM(L, M, N) = (1 − Sp)
3qLMN(1 − Sp − Se) + SegA3P (L, M, N),

hA3PM(L, M, N ; N) = (1 − Sp − Se)γ00(N ; 0)β00(L, M, N ; 0) + SehA3P (L, M, N ; N),

hA3PM(L, M, N ; L) = (1 − Sp − Se)γ00(L; 0)β00(M, N, L; 0) + SehA3P (L, M, N ; L),

and

hA3PM(L, M, N ; M) = (1 − Sp − Se)γ00(M ; 0)β00(L, N, M ; 0) + SehA3P (L, M, N ; M).

4.4.2 Error Rates

In this section, we derive the pooling specificity and pooling sensitivity of A3PM .

To derive the pooling specificity of A3PM , let

1 − Sp(A3PM) = Pr[Xi1i2i3 = 1|Yi1i2i3 = 0]

= Pr[X0 = 1, Xi1++ = 1, X+i2+ = 1, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 0]

+ Pr[X0 = 1, Xi1++ = 1, X+i2+ = 1,
∑N

j=1 X++j = 0, Xi1i2i3 = 1|Yi1i2i3 = 0]

+ Pr[X0 = 1, Xi1++ = 1,
∑M

j=1 X+j+ = 0, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 0]

+ Pr[X0 = 1,
∑L

j=1 Xj++ = 0, X+i2+ = 1, X++i3 = 1, Xi1i2i3 = 1|Yi1i2i3 = 0].

(4.5)

Therefore by Assumption 5,

1 − Sp(A3PM) = (1 − Sp){gA3PM |y(L, M, N) +
∑

j∈{L,M,N} hA3PM |y(L, M, N ; j)},
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where

gA3PM |y(L, M, N) = Pr[X0 = 1, Xi1++ = 1, X+i2+ = 1, X++i3 = 1|Yi1i2i3 = 0],

hA3PM |y(L, M, N ; N) = Pr[X0 = 1, Xi1++ = 1, X+i2+ = 1,
∑N

j=1 X++j = 0|Yi1i2i3 = 0],

hA3PM |y(L, M, N ; M) = Pr[X0 = 1, Xi1++ = 1,
∑M

j=1 X+j+ = 0, X++i3 = 1|Yi1i2i3 = 0],

and

hA3PM |y(L, M, N ; L) = Pr[X0 = 1,
∑L

j=1 Xj++ = 0, X+i2+ = 1, X++i3 = 1|Yi1i2i3 = 0].

One can show

gA3PM |y(L, M, N) = (1 − Sp)
3qLMN−1(1 − Sp − Se) + SegA3P |y(L, M, N),

hA3PM |y(L, M, N ; N) = (1 − Sp − Se)γ00(N ; 0)β00|y(L, M, N ; 0) + SehA3P |y(L, M, N ; N),

hA3PM |y(L, M, N ; L) = (1 − Sp − Se)γ00(L; 0)β00|y(M, N, L; 0) + SehA3P |y(L, M, N ; L),

and

hA3PM |y(L, M, N ; M) = (1 − Sp − Se)γ00(M ; 0)β00|y(L, N, M ; 0) + SehA3P |y(L, M, N ; M).

Pooling sensitivity of A3PM equals

Se(A3PM) = Pr[Xi1i2i3 = 1|Yi1i2i3 = 1] = Pr[X0 = 1, Xi1i2i3 = 1|Yi1i2i3 = 1] = SeSe(A3P ).

4.5 A3PM2: An alternative to A3PM

In this section, we consider an alternative algorithm to A3PM , which we denote as

A3PM2. The difference between A3PM and A3PM2 is the definition of the possible

subsequent test of the (i1, i2, i3)
th sample.
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For A3PM2, T(i1,i2,i3) is defined as

T(i1,i2,i3) =











0 if X0 = 0 or (
∑

i1
Xi1++ = 0 and

∑

i2
X+i2+ = 0 and

∑

i3
X++i3 = 0)

1 otherwise
.

In other words, the (i1, i2, i3)
th sample is tested individually if the master pool tests

positive and at least one of the planar slices containing that specimen tests positive.

Intuitively, A3PM2 would be expected to be less efficient and specific but more sensitive

than A3PM , since individual specimens will be tested more often under A3PM2 than

A3PM . Derivations of efficiency and error rates of A3PM2 are not shown in this paper,

but the corresponding R programs are available from the authors.

4.6 Simulation Results

We conducted a simulation study to confirm the derived efficiencies and error rates

of A3P and A3PM . Number of simulation was 10,000,000. For each simulation, we

assumed LMN samples to be tested using A3P ([L : M : N ] : 1) (or A3PM(LMN :

[L : M : N ] : 1)). The L × M × N array Y was simulated by generating independent

Bernoulli random deviates with success probability p for each entry in the array. For

i1 = 1, · · · , L, Yi1++ was created from Y by taking the maximum of the MN elements

of the corresponding planar slice. Test outcomes of each pool were then generated by

letting,

Xi1++ = Yi1++δi1 + (1 − Yi1++)γi1 ,

where δi1 ∼ Bernoulli(Se) and γi1 ∼ Bernoulli(1−Sp). Y+i2+, Y++i3 , X+i2+, and X++i3

were created similarly. The observed efficiency and pooling error rates were computed

from the simulated data.

Figure 4.2 summarizes the first set of simulation results of A3P with L = M =
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N = 3, Se = 0.88 and Sp = 0.92. A second set of simulations of A3P with L = M = 3,

N = 4, Se = 0.90 and Sp = 0.90 and a third set of simulations of A3P with L = 4,

M = N = 5, Se = 0.95 and Sp = 0.80 yielded similar results (not shown). We also

conducted three sets of simulation study of A3PM with same values as A3P and the

derived results were close to the simulated results in all cases (results not shown). These

results demonstrate excellent agreement between the derived operating characteristics

and those observed from simulated data.

4.7 Application

Using the results derived above, in this section we compare the operating characteristics

of three-dimensional array-based algorithms with two-dimensional array and hierarchi-

cal algorithms for identification of acute HIV using nucleic acid amplification tests

(NAATs) in conjunction with specimen pooling. A brief description of the different

algorithms considered is given in Table 4.1.

As a first motivating example, we consider a setting similar to the NC STAT pro-

gram. We assume prevalence of acute HIV is p = 0.0002 (Pilcher et al., 2005) and

NAAT has a 99% test specificity (Hecht et al., 2002) and 90% test sensitivity. We also

assume the master pool size is less than or equal to 100 due to dilution effects (Quinn

et al., 2000). For each algorithm in Table 4.1, the optimal configuration was selected

that minimizes the expected number of tests per specimen. For instance, the optimal

configurations of A3PM and A3PM2 were determined by computing the efficiency for

all possible positive integers (L, M, N) such that 8 ≤ L × M × N ≤ 100. For both

A3PM and A3PM2 the most efficient configuration is (L, M, N) = (4, 5, 5). Similarly,

D3(100 : 10 : 1) and A2M(100 : 10 : 1) were determined to be the optimal configu-

rations of D3(N2 : N : 1) and A2M(N2 : N : 1) for 2 ≤ N ≤ 100. Table 4.2 shows

53



the operating characteristics of the optimal configurations of each algorithm as well as

D3(90 : 10 : 1), the algorithm employed by Pilcher et al. (2005). These results suggest

moving from D3(90 : 10 : 1) to A3PM(100 : [4, 5, 5] : 1) or A3PM2(100 : [4, 5, 5] : 1)

would improve efficiency, pooling specificity, sensitivity, PPV and NPV of the NC

STAT HIV detection program.

For our second example, we consider a setting similar to that described by Pilcher

et al. (2004), who employed D3(50 : 10 : 1) to identify acute HIV in Malawi. They

found 4.5% of antibody negative males attending STD clinics to be NAAT positive.

Assuming Sp = 0.99 and Se = 0.9 as before and p = 0.045, the expected number

of tests per specimen for D3(50 : 10 : 1) is 0.40. Table 4.3 shows the most efficient

configuration for each algorithm in Table 4.1 given the master pool size can be no larger

than 50. For example, using A3PM(48 : [4, 4, 3] : 1) results in 0.33 tests per specimen

on average while D3(16 : 4 : 1) results in 0.32 expected tests per specimen. Based on

the results in Table 4.3, D3(16 : 4 : 1) appears to yield the best balance of efficiency

and error rates while at the same time being least susceptible to dilution effects.

Figure 4.3 shows the operating characteristics of the optimal configurations of D3,

A2M , and A3PM for prevalences ranging from 10−5 to 10−1. For this example, we

assume Se = 0.9, Sp = 0.9, and the maximum allowable pool size is 100. Under these

assumptions, for each prevalence we found the values of n that minimize E{D3(n :
√

n :

1)}, E{A2M(n :
√

n : 1)}, and E{A3PM(n : [L, M, N ] : 1)}, where n = LMN for

A3PM . The expected numbers of tests per specimen, optimal master pool size, pooling

sensitivities, specificities, PPV s, and NPV s at these optimal values of n are depicted

in Figure 4.3. These results indicate A3PM is generally the preferable algorithm with

regards to efficiency and PPV for prevalence less than 0.001.
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4.8 Discussion

We derived several operating characteristics of three-dimensional array-based testing

algorithms for case identification in the presence of testing error. Using these results,

we showed that moving the NC STAT algorithm, from D3(90 : 10 : 1) to A3PM(100 :

[4, 5, 5] : 1) or A3PM2(100 : [4, 5, 5] : 1) would improve efficiency, pooling specificity,

sensitivity, PPV and NPV . For the Malawi example, D3(16 : 4 : 1) is most efficient

and sensitive. This result shows that moving from D3(50 : 10 : 1) to D3(16 : 4 : 1) in

the Malawi setting would improve efficiency and pooling error rates. It indicates that

the choice of optimal algorithm will be context specific and that no single algorithm

can be universally recommended.

There are several areas of potential future research related to this work. First,

we have considered three-dimensional array-based algorithms. The proposed methods

could be extended to higher dimensional arrays in the presence of test errors. Second, we

derived the operating characteristics of a three-dimensional planar algorithm. However,

Berger et al. (2000) also proposed a multi-dimensional linear method where pools are

formed along lines instead of planar slices. The higher dimensional linear array-based

algorithms could also be generalized to allow for test error.
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TABLE 4.1: Description of group testing algorithms.

Algorithm Description
DS S stage hierarchical algorithm
A2 Two dimensional square array without master pool
A2M Two dimensional square array with master pool
A3P Three dimensional planar array without master pool
A3PM Three dimensional planar array with master pool
A3PM2 Three dimensional planar array with master pool:

Definition of the possible subsequent test of the (i1, i2, i3)
th

sample is different from the A3PM
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TABLE 4.2: Comparison of operating characteristics for the most efficient D3, A2M ,
A3PM , and A3PM2 to be used in NC STAT for detection of acute HIV assuming pool
size less than 100, test sensitivity Se = 0.9, test specificity Sp = 0.99, and prevalence
p = 0.0002.

A E(A) Sp(A) Se(A) PPV (A) NPV (A)
D3(90 : 10 : 1)* 0.016 0.999983 0.729 0.896 0.999946
D3(100 : 10 : 1) 0.015 0.999983 0.729 0.895 0.999946
A2M(100 : 10 : 1) 0.016 0.999995 0.787 0.969 0.999957
A3P ([4, 5, 5] : 1) 0.014 0.999995 0.864 0.972 0.999973
A3PM(100 : [4, 5, 5] : 1) 0.014 0.999998 0.778 0.988 0.999956
A3PM2(100 : [4, 5, 5] : 1) 0.015 0.999996 0.797 0.975 0.999960

* D3(90 : 10 : 1) is the algorithm used in Pilcher et al. (2002).
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TABLE 4.3: Comparison of operating characteristics for the most efficient D3, A2M ,
A3PM , and A3PM2 to be used in Malawi for detection of acute HIV assuming pool
size less than 50, test sensitivity Se = 0.9, test specificity Sp = 0.99, and prevalence
p = 0.045.

A E(A) Sp(A) Se(A) PPV (A) NPV (A)
D3(50 : 10 : 1)* 0.40 0.9972 0.729 0.925 0.987
D3(16 : 4 : 1) 0.32 0.9989 0.729 0.970 0.987
A2M(49 : 7 : 1) 0.34 0.9995 0.681 0.984 0.985
A3P ([4, 4, 3] : 1) 0.36 0.9990 0.710 0.970 0.987
A3PM(48 : [4, 4, 3] : 1) 0.33 0.9991 0.639 0.970 0.983
A3PM2(48 : [4, 4, 3] : 1) 0.33 0.9991 0.640 0.970 0.983

* D3(50 : 10 : 1) is the algorithm used in Pilcher et al. (2004).
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FIGURE 4.1: Three dimensional planar algorithm (A3P ) with L = M = N = 3. The
black dots denote 9 (= MN) specimens in one of L planar slices.
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FIGURE 4.2: Results of simulation study. (a) Expected number of tests per spec-
imen, (b) pooling specificity, (c) pooling sensitivity for A3P assuming L = M =
N = 3, test sensitivity Se = 0.88, test specificity Sp = 0.92, and prevalence
p ∈ {0.0001, 0.001, 0.01, 0.1}.
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FIGURE 4.3: (a) Expected number of tests per specimen, (b) optimal master pool size,
(c) pooling sensitivity, (d) pooling specificity, (e) pooling PPV and (f) pooling NPV
for optimally efficient configurations of D3, A2M , and A3PM assuming test sensitivity
Se = 0.9, test specificity Sp = 0.9, and a maximum allowable pool size of 100.
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CHAPTER 5

OPTIMAL CONFIGURATION OF

A SQUARE ARRAY GROUP

TESTING ALGORITHM

5.1 Introduction

Pooling of blood samples as a cost saving method was first used for screening of syphilis

in 1943 by Dorfman’s two-stage hierarchical pooling algorithm (Dorfman, 1943). Subse-

quently, multistage hierarchical (Finucan 1964; Johnson et al. 1991; Litvak et al. 1994)

and array-based (Phatarfod and Sudbury 1994; Berger et al. 2000) pooling algorithms

were proposed to detect all individuals having the disease of interest. In order to min-

imize the expected number of tests per specimen, it is necessary to know the optimal

configuration of these algorithms.

Several researchers have derived the optimal pool size of two-stage hierarchical pool-

ing algorithms to minimize the expected number of tests per specimen (Feller, 1957;

Wilks, 1962; Samuels, 1978; Turner et al., 1988). Finucan (1964) and Wu and Zhao

(1994) derived the optimal number of stages and the optimal pool size at each stage for



multistage hierarchical pooling algorithms. Wu and Zhao (1994) also considered the

presence of test errors when they derived the optimal pool size and number of stages

for hierarchical pooling algorithm. To our knowledge, no analogous research has been

done on the optimal configuration of array-based algorithms.

The outline of this chapter is as follows. In Section 5.2, we summarize Turner et al.

(1988), Samuels (1978) and Wu and Zhao (1994)’s results on the optimal pool size

of hierarchical algorithms. In Section 5.3, we derive the optimal pool size of a two-

dimensional array-based algorithm for a given prevalence. We conclude with a short

discussion in Section 5.4.

5.2 Hierarchical algorithms

5.2.1 Turner et al (1988)

Turner et al. (1988) proposed a calculus based approach to determine the optimal

pool size of a two-stage hierarchical algorithm assuming no test error. They considered

minimizing the expected number of tests per specimen of algorithm D2 without testing

error. Mathematically, this problem can be stated as follows: For a given real number

p ∈ (0, 1), find the positive integer n that minimizes the function

fD2(q, n) =











1 if n = 1

1
n

+ 1 − qn if n > 1
(5.1)

where q = 1− p. For simplicity, Turner et al. (1988) considered the related problem of

finding the positive integer n that minimizes gD2(q, n) = 1
n
− qn. Turner et al. (1988)

proved three theorems concerning the function gD2:

Theorem The equation gD2(q, n) = 0 has no solution if q < c, one solution if q = c,

and two solutions if q > c, where c = 1
e

1
e .
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Theorem The equation g′
D2(q, n) = ∂gD2(q,n)

∂n
= 0 has no solution if q < b, one solution

if q = b, and two solutions if q > b, where b = e−4e−2
.

Theorem If q < 1
3

1
3 , there is no positive integer n for which gD2(q, n) < 0.

Based on these three theorems, they made the following conclusions:

• Individual testing is more efficient than D2 if 0 < q < 1
3

1
3 .

• gD2(q, 3) = 0 and gD2(q, n) > 0 for any positive integer n 6= 3 if q = 1
3

1
3 . Thus, f

is minimized for either n = 3 or n = 1 when q = 1
3

1
3 .

• gD2 has local minimum near p−
1
2 if q > 1

3

1
3 ≈ 0.693361.

5.2.2 Samuels (1978)

Samuels (1978) also derived optimal pool size of D2. In contrast to Turner et al. (1988),

Samuels’ approach relied on studying the difference between the expected number of

tests per specimen for two successive group sizes. He also showed that for all p < 1− 1
3

1
3 ,

the optimal group size is either 1+bp−1/2c or 2+bp−1/2c, where bxc denotes the integer

part of x, and, when the optimal group size is used, the expected number of tests per

specimen is between 2p1/2 − p/2 and 2p1/2 + 4p3/2. He also showed that for every value

of p, fD2(q, 3) < fD2(q, 2), i.e., pools of size 2 are never optimal.

5.2.3 Wu and Zhao (1994)

Wu and Zhao (1994) extended the results of Turner et al. (1988) and Samuels (1978)

to multistage hierarchical algorithms with test error. Using an approach similar to

Samuels, Wu and Zhao provided a simple procedure to determine the optimal number

of stages, number of sub-pools per stage, and pool size for each sub-pool.
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5.3 Square array-based algorithm

In this section, we derive the optimal pool size of a two-stage array-based algorithm.

In particular, consider the n×n square array set-up of Phatarfod and Sudbury (1994),

denoted by A2, where n2 specimen are placed on an n × n matrix. Pools are then

made from all samples in the same row or in the same column. These 2n pools (n row

pools and n column pools) are then tested and, assuming no test error, all positive

specimens will lie at the intersection of a positive row pool and a positive column pool.

Therefore all specimens at the intersection of a positive row and a positive column are

subsequently tested.

Denote the expected number of tests per specimen of algorithm A2 by

f(q, n) ≡











1 if n = 1

2
n

+ 1 − 2qn + q2n−1 if n > 1
(5.2)

where q = 1 − p, and prevalence rate, p ∈ (0, 1). The problem is to find the positive

integer n that minimizes f(q, n) for given real number q ∈ (0, 1). Moreover, we would

like to find q∗ and n∗ such that:

[1] If 0 < q < q∗, then f(q, n) > 1 for all integers n > 1, indicating individual

testing is more efficient than A2.

[2] If q > q∗, then A2 is more efficient than individual testing and f(q, n) has a

global minimum at the positive integer n∗ for fixed q.

5.3.1 Lower and Upper bounds for q∗

In this section, we derive lower and upper bounds of q∗ using a calculus approach similar

to Turner et al. (1988). These bounds are then used in Section 5.3.2 to determine q∗.

The problem of interest is to find smallest q ∈ (0, 1), say q∗, where A2 is more effi-
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cient than individual testing, i.e., find minimum value of q ∈ (0, 1), such that g(q, n) < 0

for some integer n ≥ 2, where

g(q, n) ≡ f(q, n) − 1 =
2

n
− 2qn + q2n−1.

Lemma 1 For given integer n ≥ 3, there exists a unique q ∈ (0, 1) such that g(q, n) =

0.

Proof : The lemma follows by noting that g(0, n) = 2
n

> 0, g(1, n) = 2
n
− 1 < 0, and

∂g(q,n)
∂q

= qn−1{(2n − 1)qn−1 − 2n} < 0 for n ≥ 3. �

Lemma 2 n = 2 is never optimal, i.e., n∗ 6= 2 for all q ∈ (0, 1).

Proof : The lemma follows by noting that g(1, 2) = 0 and ∂g(q,2)
∂q

< 0 for q ∈ (0, 1).

In other words, f(q, 2) > 1 for all q ∈ (0, 1), then a 2 × 2 square array is never more

efficient than individual testing. �

Lemma 3 For a given integer n ≥ 3, qL(n) = {1−
√

1 − 2
n
} 1

n is a lower bound to the

solution of g(q, n) = 0.

Proof : We know q2n−1 > q2n, therefore g(q, n) > 2
n
− 2qn + q2n. Next, solve 2

n
−

2qn + q2n = 0. By the quadratic formula, the positive solution is qn = −b−
√

b2−4ac
2a

,

where a = 1, b = −2, and c = 2
n
. Therefore, qL(n)2n − 2qL(n)n + 2

n
= 0, where

qL(n) = {1 −
√

1 − 2
n
} 1

n . �

Lemma 4 {qL(n) : n = 3, 4, · · · } has a minimum value at qL(4).

Proof : By direct evaluation, qL(3) > qL(4) < qL(5) < qL(6), i.e., qL(4) is a local

minimum. Below we show qL(4) is the global minimum by showing ∂qL(n)
∂n

> 0 for

n ≥ 6. Let l = log qL(n), a(n) =
√

1 − 2
n

such that

∂l

∂n
= − 1

n2
log(1 − a(n)) − 1

n3

1

(1 − a(n))a(n)
.
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Then ∂l
∂n

> 0 if and only if

−n log(1 − a(n)) > 1
(1−a(n))a(n)

. (5.3)

Below we show (5.3) holds for n ≥ 6. First, we use the fact that

−3
2
x > log(1 − x) (5.4)

for x > 0.5828 (Wolfram, 1998). For n ≥ 6, a(n) ≥
√

2
3

= 0.8165. Therefore, by (5.4),

−n log(1 − a(n)) >
3

2
a(n)n.

Thus it is sufficient to show

3

2
a(n)n >

1

(1 − a(n))a(n)
(5.5)

for n ≥ 6. Noting that 1 − a(n) = 2/n

1+
√

1−2/n
, equation (5.5) is equivalent to

6 − 12
n

> 2(1 +
√

1 − 2
n
) (5.6)

for n ≥ 6, which holds since 6− 12
n
≥ 4 and 2(1 +

√

1 − 2
n
) < 4 for n ≥ 6. Thus ∂l

∂n
> 0

for n ≥ 6. Therefore, ∂qL(n)
∂n

= qL(n) ∂l
∂n

> 0 for n ≥ 6, since qL(n) is always greater

than 0. Therefore, min{qL(n) : n = 3, 4, · · · } = qL(4). �

Lemma 5 For a given n, qU(n) = {1−
√

1− 4
n

2
} 1

n is an upper bound to the solution of

g(q, n) = 0.

Proof : By Lemmas 3 and 4, a lower bound of q∗ is qL(4) = {1 −
√

1 − 1
2
} 1

4 ≈ 0.7357.

Therefore, the range of an upper bound of q∗ is 0.7357 < q < 1. We know q2n−1 < 2q2n
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for 0.7357 < q < 1, since q2n−1(1 − 2q) < 0 for 0.5 < q < 1. Therefore g(q, n) <

2
n
− 2qn + 2q2n for 0.7357 < q < 1. Next, solve 2

n
− 2qn + 2q2n = 0. By the quadratic

formula, the positive solution is qn = −b−
√

b2−4ac
2a

, where a = 2, b = −2, and c = 2
n
.

Therefore, 2qU(n)2n − 2qU(n)n + 2
n

= 0, where qU(n) = {1−
√

1− 4
n

2
} 1

n . �

Lemma 6 {qU(n) : n = 3, 4, · · · } has a minimum value at qU(6)

Proof : The proof parallels the proof of Lemma 4. �

Let qL ≡ qL(4) = {1−
√

1 − 1
2
} 1

4 ≈ 0.7357 and qU ≡ qU(6) = {1−
√

1− 4
6

2
} 1

6 ≈ 0.7718.

From Lemma 3 - 6 it follows that qL < q∗ < qU . Figure 5.1 depicts g(q, n) for q = qL,

q = qU , and q = q∗, with the value of q∗ based on the results in the section below.

5.3.2 Determining q∗

In this section, we determine q∗ by studying the difference between the expected number

of tests per specimen for two successive group size. First, we define

∆(q, n) = f(q, n + 1) − f(q, n) = 2qn(1 − q) − q2n−1(1 − q2) − 2

n(n + 1)
(5.7)

for n ≥ 2. The purpose of ∆(q, n) is to compare the efficiencies (the expected numbers

of tests per specimen) at n + 1 and n for a given q. If we can determine n such that

∆(q, n − 1) < 0 and ∆(q, n) > 0, then we know n is a local minimum of f(q, n).

Differentiating ∆(q, n) with respect to q

∂∆(q,n)
∂q

= 2nqn−1(1 − q) − 2qn − (2n − 1)q2n−2(1 − q2) + 2q2n

= qn−1{2n − 2(n + 1)q − (2n − 1)qn−1 + (2n + 1)qn+1},
(5.8)

and setting ∂∆(q,n)
∂q

= 0 yields

2n − 2(n + 1)q − (2n − 1)qn−1 + (2n + 1)qn+1 = 0. (5.9)
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We use (5.9) to prove that n = 3 is never optimal.

Lemma 7 n = 3 is never optimal, i.e., n∗ 6= 3 for all q ∈ (0, 1).

Proof : If n = 3, then (5.9) equals

6 − 8q − 5q2 + 7q4 = (q − 1)(7q3 + 7q2 + 2q − 6) = 0 (5.10)

which has two real solutions, q = 1 and q ≈ 0.6409 (by cubic formula). Equation

(5.10) is positive for q ∈ (0, 0.6409) and negative for q ∈ (0.6409, 1). Therefore, ∆(q, 3)

has a maximum at q = 0.6409 for 0 < q < 1. Since ∆(0.6409, 3) < 0, it follows that

f(q, 4) < f(q, 3) for all q ∈ (0, 1). That is, 4× 4 square arrays are always more efficient

than 3 × 3 arrays. �

Figures 5.2 and 5.3 show ∆(q, n) of A2 for 0 < q < 1. That n = 2 and n = 3 are

never optimal can be seen in Figure 5.2.

Lemma 8 For fixed integer n, ∆(q, n) is unimodal, the roots r1(n) and r2(n) of ∆(q, n) =

0 exist if n ≥ 4 and these two roots satisfy r1(n) < qmax,n < r2(n), where qmax,n is the

value of q that maximizes ∆(q, n) for given n.

Proof : From equation (5.8) it follows that ∂∆(q,n)
∂q

= 0 has one solution at q = 0. Other

solutions must satisfy

e(q) ≡ 2n − 2(n + 1)q − (2n − 1)qn−1 + (2n + 1)qn+1 = 0. (5.11)

Now e(q) has one root at q = 1, i.e., e(1) = 0. We also know e(0) = 2n and

e′(q) = ∂e(q)
∂q

= −2(n + 1)q − (2n − 1)(n − 1)qn−2 + (2n + 1)(n + 1)qn. (5.12)
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In particular, e′(1) = 2(2n − 1) > 0. Thus e(q) is positive at q = 0, equals zero at

q = 1 and is increasing at q = 1, implying there exists at least one q ∈ (0, 1) such that

e(q) = 0. Below, we show that there is exactly one such q. First, note that

e′′(q) = ∂2e(q)
∂q2 = −(2n − 1)(n − 1)(n − 2)qn−3 + (2n + 1)(n + 1)nqn−1 > 0, (5.13)

if and only if

q >

√

(2n − 1)(n − 1)(n − 2)

(2n + 1)(n + 1)n
= c.

Thus e(q) is strictly concave for q < c and strictly convex for q > c. Since e′(0) < 0

and e′(1) > 0, this implies e(q) = 0 has only one solution for q ∈ (0, 1). Therefore, for

fixed n, ∆(q, n) is unimodal. We also know ∆(0, n) < 0 and ∆(1, n) < 0. It can also

be shown that ∆(q = n
n+2

, n) > 0 for n ≥ 5, implying an existence of qmax,n. Therefore,

∆(q, n) has a maximum at qmax,n and two roots of ∆(q, n) = 0 exist for 0 < q < 1. �

Lemma 9 r2(n) of A2 is increasing for n ≥ 4.

Proof : If ∆(q, n) = 0, then 2qn(1 − q) = q2n−1(1 − q2) + 2
n(n+1)

and

∆(q, n + 1) = q2n(1 − q2)(1 − q) +
2(q− n

(n+2)
)

n(n+1)
. (5.14)

By using (5.8), we can show that ∆′(q = n
n+2

, n) > 0, implying n
n+2

< r2(n) for n ≥ 4.

Therefore, ∆(q = r2(n), n + 1) > 0, which implies r2(n) is increasing for n ≥ 4. �

Lemma 10 r1(n) of A2 is increasing for n ≥ 5.

Proof : From Lemma 9, we know n
n+2

< r2(n). First note

∆(q = n
n+2

, n) = 2
n(n+1)

[( n
n+2

)n+12(n + 1){1 − ( n
n+2

)n(n+1
n

)} − 1]. (5.15)
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It can be shown that ∆(q = n
n+2

, n) > 0 for n ≥ 5, which implies r1(n) < n
n+2

.

Therefore, ∆(q = r1(n), n + 1) < 0 by (5.14), indicating r1(n) is increasing for n ≥ 5.

�

In the lemma below, for a fixed q, we say f(q, n) is a decreasing function of n if

∆(q, n) < 0, i.e., f(q, n) > f(q, n+1). Likewise, we say f(q, n) is an increasing function

of n if ∆(q, n) > 0.

Lemma 11 For a given q, let u be the smallest integer n ≥ 4 for which r2(n) > q, and

v be the smallest integer n ≥ 4 for which r1(n) > q. (A) If q > r2(4), then f(q, n) is

decreasing for 4 ≤ n ≤ u, increasing for u ≤ n ≤ v, and decreasing for n ≥ v. (B) If

r1(4) < q < r2(4), then f(q, n) is increasing for 4 ≤ n ≤ v, and decreasing for n ≥ v.

(C) r1(5) < q < r1(4), then f(q, n) is decreasing for n = 4, increasing for n = 5 and

decreasing for n ≥ 6. (D) If q < r1(5), then f(q, n) is decreasing for n ≥ 4.

Proof : Lemma 9 and Lemma 10 prove the following results. (A) If r2(4) < q, then

r2(4) < q < r2(u) ≤ r1(v) or r2(4) < q < r1(v) ≤ r2(u) by definition of u and

v. Therefore, ∆(q, n) < 0 for 4 ≤ n ≤ u and ∆(q, n) > 0 for u ≤ n ≤ v and

∆(q, n) < 0 for n ≥ v. (B) If r1(4) < q < r2(4), then r1(4) < q < r1(v) ≤ r2(4)

or r1(4) < q < r2(4) ≤ r1(v) by definition of u and v. Therefore, ∆(q, n) > 0 for

4 ≤ n ≤ v and ∆(q, n) < 0 for n ≥ v. (C) If r1(5) < q < r1(4), then ∆(q, n) < 0

for n = 4, ∆(q, n) > 0 for n = 5 and ∆(q, n) < 0 for n ≥ 6. (D) If q < r1(5), then

∆(q, n) < 0 for n ≥ 4. �

Lemma 12 r2(4) < qL < q∗ < qU < r2(5).

Proof : It can be shown that ∆(q = qL, 4) < 0 and ∆(q = qU , 5) > 0, implying

r2(4) < qL and qU < r2(5). By Lemma 3 - Lemma 6, we know qL < q∗ < qU .

Therefore, r2(4) < qL < q∗ < qU < r2(5). �
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Lemma 13 n = 4 is never optimal, i.e., n∗ 6= 4 for all q ∈ (0, 1).

Proof : By Lemma 12, ∆(q, 4) < 0 for all q ≥ q∗, implying 5×5 square arrays are more

efficient than 4× 4. If q < q∗, then individual testing is more efficient than A2 for any

configuration. Therefore, 4 × 4 square arrays are never optimal. �

Lemma 14 Table 5.1 is valid.

Proof : Table 5.1 follows immediately from Lemma 11 and Lemma 12. �

The Contraction Mapping Theorem is a useful fixed point theorem. We apply this

theorem to prove Theorem 1 below.

Contraction Mapping Theorem (Devaney 1992; Devaney 2003) : Let I be a

closed real interval, i.e., I has one of the following forms: [a, b], [a,∞), (−∞, b], or

(−∞,∞). A contraction mapping on I is a function f : I → I such that |f ′(x)| ≤ K <

1 for some contraction constant K. For any contraction mapping I, (i) f has a unique

fixed point s in I; and (ii) for any x0 ∈ I, the simple iteration xn+1 = f(xn) gives a

sequence converging to s.

Lemma 15 (Devaney 1992; Devaney 2003) . Let G be a contraction mapping on the

interval [0,1] with contraction constant K. Then

|qc − q∞| ≤ Kc

1 − K
|q1 − q0|,

for any sequence {qc} where qc = G(qc−1) for c ∈ {1, 2, 3, · · · } and q0 ∈ [0, 1].

Lemma 15 is used in the proof of Theorem 1.

Theorem 1 q∗ ∈ (0.7502000 ± 10−7).
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Proof : Consider g(q, n) for a given n. Now g(q, n) = 0 if and only if

q = { 2

n
(2 − qn−1)−1}1/n ≡ G(q),

with derivative G′(q) ≡ ∂G(q)
∂q

= 21/n(n − 1)qn−2(n(2 − qn−1))−(n+1)/n. We have 0 <

G(q) < 1 for all q ∈ [0, 1], so G maps [0, 1] into itself. Since ∂G′(q)
∂q

> 0 for q ∈ (0, 1),

|G′(q)| ≤ 21/n(n− 1)n−(n+1)/n < 1 on [0, 1]. Thus the function G is a contraction map-

ping on [0, 1] with contraction constant K = 21/n(n − 1)n−(n+1)/n ∈ [0, 1]. Therefore,

we can use the Contraction Mapping Theorem for the function G. If q0 = 0, then

q1 = G(q0) = 1
n

1/n
. By Lemma 15, |qc − q∞| ≤ Kc

1−K
( 1

n
)1/n. Suppose now we require a

bound on the number of iterations needed to determine q∞ to six decimal places, i.e.,

we want |qc − q∞| ≤ 10−7 = 0.0000001, i.e, q∞ ∈ (qc ± 0.0000001). By the above, it is

enough to ensure that Kc

1−K
( 1

n
)1/n < 10−7, that is

c >
log{10−7( 1

n
)−1/n(1 − K)}

log K
.

By Table 5.1 and Lemma 13, n∗ = 5 when q = q∗. Then K ≈ 0.6660 and c > 41.57,

thus 42 iterations will be enough. For q0 = 0, q42 = 0.7502000. �

5.3.3 Determining n∗

In this section, we determine the array size n∗ that minimizes the expected number of

tests per specimen for a given q > q∗. In other words, our goal is to find n∗ such that

n∗ = min
n∈{1,2,3,··· }

f(q, n) for fixed q ∈ (q∗, 1). (5.16)

From Table 5.1, f(q∗, 5) = 1. Since f(q, n) is a decreasing function of q for fixed

n > 1, f(q, 5) < 1 for q > q∗. Therefore, f(q, n∗) < 1 for q > q∗. Also, by Table 5.1 we
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know f(q, n) decreases from n = 2 to n = n∗, then increases to n = v and decreases

thereafter. Since f(q, n∗) < 1 and limn→∞ f(q, n) = 1, it follows that n∗ from Table

5.1 is the solution of (5.16), i.e., n∗ is the global minimum of f(q, n) if we treat f(q, n)

as a function of the positive integers. Instead, if we think of f(q, n) as a function of

the positive real numbers and solve

f ′(q, n) =
∂f(q, n)

∂n
= − 2

n2
− 2qn ln q + 2q2n−1 ln q = 0, (5.17)

then n∗ and v will be close to the two positive solutions to this equation. In particular,

if ñ is the smallest positive real solution to (5.17), then n∗ = bñc or n∗ = dñe, where

dñe denotes the smallest integer greater than or equal to ñ. However, there does not

appear to be a closed form for ñ. Therefore, we use an approximation of f ′(q, n) to get

the lower and upper bounds of n∗.

Theorem 2 For fixed q ∈ [0.98, 1), an upper bound for n∗ is given by dρ(q)e where

ρ(q) is the smallest real root of the following quartic equation

{(4
q
− 1)(1 − q)2 ln q}n4+

{(2(1 − q) + (1 − q)2 − 4
q
(1 − q) − 2

q
(1 − q)2) ln q}n3+

{(1
q
− 1)2 ln q}n2 − 2 = 0.

(5.18)

For fixed q ∈ (q∗, 0.98), an upper bound for n∗ is given by dρ(.98)e.

Proof : Recall Newton’s generalized binomial theorem

(1 + y)k =
∑∞

c=0

(

k
c

)

yc = 1 + ky + k(k−1)
2!

y2 + · · · .
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for |y| < 1. Let y = −p and k = n, then

qn = (1 − p)n ≈ 1 − np + n(n−1)
2

p2.

Thus, f ′(q, n) can be approximated by

f ′
approx1(q, n) = − 2

n2 − 2(ln q){1 − np + n(n−1)
2

p2} + 2(ln q){1 − (2n − 1)p + (2n−1)(2n−2)
2

p2}

= − 2
n2 − 2(ln q){(n − 1)p − (n−1)(3n−2)

2
p2}

(5.19)

Let ρ(q) be the smallest positive real solution to f ′
approx1(q, n) = 0, which can be

determined by applying the quartic formula to (5.18). Below, we show f ′(q, n) ≥

f ′
approx1(q, n) for given q, indicating n∗ ≤ dρ(q)e. Let A(q) = B(q) − (n−1)(3n−2)

2
for

n ≥ 5, where B(q) = qn−1(1 + q + q2 + · · · + qn−2). Then,

∂{qA(q)}
∂q

= A(q) + qA′(q)

= qn−1(n + (n + 1)q + (n + 2)q2 + · · · + (2n − 2)qn−2) − (n−1)(3n−2)
2

= C(q) − (n−1)(3n−2)
2

where C(q) ≤ (n−1)(3n−2)
2

. Therefore, ∂{qA(q)}
∂q

≤ 0 implying qA(q) is a decreasing

function of q. At q = 1, qA(q) = − (n−1)(3n−4)
2

. Therefore,

−(n − 1)(3n − 4)

2
≤ qA(q) = q{B(q) − (n − 1)(3n − 2)

2
},

for q ∈ (0, 1). Thus

q{B(q) − (n − 1)(3n − 2)

2
} +

(n − 1)(3n − 4)

2
≥ 0,
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implying

qB(q) =
qn(1 − qn−1)

1 − q
≥ q

(n − 1)(3n − 2)

2
− (n − 1)(3n − 4)

2
.

Therefore,

qn(1 − qn−1) = qn − q2n−1 ≥ (n − 1)p − (n − 1)(3n − 2)

2
p2

implying f ′(q, n) ≥ f ′
approx1(q, n). We note that f ′

approx1(q, n) = 0 does not have a real

solution for p ≥ 0.03. In particular, numerical evaluation of the discriminant indicates

that all roots of the quartic equation (5.18) are complex for p ≥ 0.03. Therefore, for

p ≥ 0.03, the upper bound of n∗ is given by dρ(.98)e. �

Theorem 3 For fixed q ∈ (q∗, 1), a lower bound for n∗ is given by bµ(q)c where µ(q)

is the smallest real root of the following cubic equation.

{2(1 − q) ln q}n3 + (2 ln q)n2 + 2q ln q − 2 = 0

Proof : Again we apply Newton’s generalized binomial theorem, but now we use the

approximation qn ≈ 1 − np, which yields

f ′
approx2(q, n) = − 2

n2 − 2 ln q{1 − np} + 2 ln q{1 − (2n − 1)p}

= − 2
n2 − 2 ln q{(n − 1)(1 − q)}.

(5.20)

Let µ(q) be the smallest positive real solution to f ′
approx2(q, n) = 0, which can be

determined by the cubic formula. Below we show f ′(q, n) ≤ f ′
approx2(q, n) for given q,

indicating bµ(q)c ≤ n∗. We know

qn(1 − qn−1)

1 − q
= qn(1 + q + q2 + · · · + qn−2) ≤ n − 1.
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Therefore,

qn − q2n−1 ≤ (n − 1)(1 − q),

and f ′(q, n) ≤ f ′
approx2(q, n), since −2 ln q > 0. �

Table 5.2 shows µ(q), n∗, and ρ(q) for given values of p. Values for n∗ in Table 5.2

were determined by a finite search over the integers bµ(q)c to dρ(q)e. From this table,

we conjecture without proof that n∗ = bρ(q)c for p ≤ 0.01. The results in Table 5.2

agree with those in Table 1 of Phatarfod and Sudbury (1994), except n∗ = 476 (475 in

Phatarfod and Sudbury) for p = 0.0001 and n∗ = 751 (750 in Phatarfod and Sudbury)

for p = 0.00005. By Theorem 2, we know that f ′
approx1(q, n) = 0 does not have a real

solution for p ≥ 0.03. Therefore, for p ≥ 0.03, n∗ can be determined by a finite search

over the integers bµ(q)c to 18, where 18 is the value of dρ(.98)e. Table 5.3 gives n∗ for

p ∈ [0.03, p∗).

5.4 Discussion

In this chapter, we studied the optimal configuration of A2. In particular we showed

for prevalence greater than 0.2498, individual testing is more efficient than A2. For

prevalence less than 0.2498, the optimal pool size for A2 can be determined by a simple

finite search between the lower and upper bounds given in Theorems 2 and 3. We also

showed that 2 × 2, 3 × 3, and 4 × 4 arrays are never optimal.
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FIGURE 5.1: g(q, n) vs. n of A2 for q = (1 −
√

1
2
)

1
4 , q = 0.7502, and q = (

1−
√

1
3

2
)

1
6 .

4 6 8 10 12 14

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

n

g(
q,

n)

q=0.7502
q=(1−sqrt(1/2))^(1/4)
q=((1−sqrt(1/3))/2)^(1/6)

78



FIGURE 5.2: ∆(q, n) vs. q of A2 for n = 2, 3, 4, 5, 6.

0.0 0.2 0.4 0.6 0.8 1.0

−0
.3

0
−0

.2
5

−0
.2

0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

0.
05

q

∆(
q,

n)

A2

n=2
n=3
n=4
n=5
n=6

79



FIGURE 5.3: ∆(q, n) vs. q of A2 for n = 5, 6, 7, 8, 9.
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TABLE 5.1: The behavior of f(q, n) and optimal pool size n∗ for a given q

q f(q, n) n∗
q∗ < q ↑ to 2, then ↓ to n∗, then ↑ to v, then ↓ to f(q, n) = 1 ≥ 5
r2(4) < q < q∗ ↑ to 2, then ↓ to 5, then ↑ to v, then ↓ to f(q, n) = 1 1
r1(4) < q < r2(4) ↑ to 2, then ↓ to 4, then ↑ to v, then ↓ to f(q, n) = 1 1
r1(5) < q < r1(4) ↑ to 2, then ↓ to 5, then ↑ to v, then ↓ to f(q, n) = 1 1
q < r1(5) ↑ to 2, then ↓ to f(q, n) = 1 1

v is the smallest n ≥ 4 for which r1(n) > q.
q∗ = 0.7502000.

81



TABLE 5.2: Optimal array size n∗ of A2 for given prevalence p. n∗ is bounded between
bµ(q)c and dρ(q)e according to Theorems 2 and 3.

p µ(q) n∗ ρ(q)
0.02 13.868 16 17.663
0.01 21.847 25 25.536
0.005 34.508 38 38.572
0.001 100.318 106 106.241
0.0005 159.061 166 166.239
0.0001 464.485 476 476.075
0.00005 737.134 751 751.508
0.00001 2154.76 2178 2178.75
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TABLE 5.3: The optimal array size n∗ of A2 for given prevalence p

p n∗
> .2498 1
[0.1447, 0.2498] 5
[0.1019, 0.1446] 6
[0.0772, 0.1018] 7
[0.0611, 0.0771] 8
[0.0500, 0.0610] 9
[0.0419, 0.0499] 10
[0.0357, 0.0418] 11
[0.0309, 0.0356] 12
[0.0300, 0.0308] 13
< 0.0300 bµ(q)c ≤ n∗ ≤ dρ(q)e
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APPENDIX A

Per-Family Error Rates

In this section, we prove the following lemma concerning the per-family error rates

(PFER and PREF2). This result holds for any pooling algorithm.

Lemma: For any pooling algorithm A, PFER(A) = nq{1−Sp(A)} and PFER2(A) =

np{1 − Se(A)}.

Proof: Suppose the pooling algorithm A is applied to n specimens. For i = 1, . . . , n,

let Yi = 1 if the ith specimen is positive and 0 otherwise. Let Xi = 1 if the ith specimen

tests positive by the algorithm A, and 0 otherwise. Then W =
∑

i(1 − Xi)Yi is the

number of false negatives and Z =
∑

i Xi(1 − Yi) is the number of false positives such

that

PFER(A) = E{
∑

i Xi(1 − Yi)}

= nE{Xi(1 − Yi)}

= n Pr[Xi(1 − Yi) = 1]

= n Pr[Xi = 1, Yi = 0]

= n Pr[Xi = 1|Yi = 0] Pr[Yi = 0]

= nq{1 − Sp(A)}.

Similarly, one can show PFER2(A) = np{1 − Se(A)}. �
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APPENDIX B

Efficiency Variance

In this section, we derive E(T 2) for D2, D3, A2 and A2M , where T is the number of

tests required to classify all specimens as positive or negative. In turn, one can compute

V ar(T ) = E(T 2) − {E(T )}2 using E(T ) as given in Sections 3.3, 3.4, and 3.5 of the

main paper.

B.1 Dorfman algorithm (D2)

Letting T = 1 + T2 for D2, then E(T 2) can be expressed as

E(T 2) = 1 + 2E(T2) + E(T2
2)

= 1 + 2n1 Pr[X1i = 1] + n1
2 Pr[X1i = 1]

= 1 + 2n1f(n1) + n1
2f(n1)

= 1 + (2n1 + n1
2)f(n1).

(B.1)

B.2 Three-stage hierarchical algorithm (D3)

Letting T = 1 + T2 + T3 for D3, then E(T 2) can be written as

E(T 2) = 1 + 2E(T2) + 2E(T3) + 2E(T2T3) + E(T2
2) + E(T3

2)

= 1 + 2k1f(n1) + 2n1 Pr[X2i = 1] + 2E(T2T3) + k1
2f(n1) + E(T3

2).
(B.2)
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We may express E(T2T3) and E(T 2
3 ) as

E(T2T3) = n1k1{f(n1 − k2)(1 − Sp)q
k2 + S2

e (1 − qk2)}

and

E(T 2
3 ) = k2

2{k1 Pr[X2i = 1] + k1(k1 − 1) Pr[X2i = 1] Pr[X2j = 1]},

where Pr[X2i = 1] = {S2
e (1 − qk2) + (1 − Sp)f(n1 − k2)q

k2}.

B.3 Square array without master pool (A2)

Letting T = 2n + T2 for A2 where T2 =
∑

i,j T2ij, then E(T 2) can be written as

E(T 2) = E(4n2 + 4nT2 + T2
2)

= 4n2 + 4n3E(T2ij)

+n2E(T2ij
2) + [n4 − {n2 + n2(n − 1)2}]E(T2ijT2ij′) + {n2(n − 1)2}E(T2ijT2i′j′).

(B.3)

Note that E(T2ij) = E(T2ij
2) = g(n) + 2h(n). E(T2ijT2ij′) and E(T2ijT2i′j′) of equation

(B.3) can be expressed as

E(T2ijT2ij′) = Pr[Ri = 1, Cj = 1, Cj′ = 1] + Pr[Ri = 1,
∑

j Cj = 0]

+ Pr[
∑

i Ri = 0, Cj = 1, Cj′ = 1]
(B.4)

and

E(T2ijT2i′j′) = Pr[Ri = 1, Ri′ = 1, Cj = 1, Cj′ = 1] + 2 Pr[
∑

i Ri = 0, Cj = 1, Cj′ = 1].

(B.5)
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The first parts of the right sides of equations (B.4) and (B.5) equal

Pr[Ri = 1, Cj = 1, Cj′ = 1]

=
1

∑

c1=0

1
∑

c2=0

1
∑

r=0

Pr[Ri = 1, Cj = 1, Cj′ = 1|RT
i = r, CT

j = c1, C
T
j′ = c2]

× Pr[RT
i = r, CT

j = c1, C
T
j′ = c2]

= (1 − Sp)
3q3n−2 + (1 − Sp)

2Seq
2n(1 − qn−2) + 2(1 − Sp)

2Seq
2n−1(1 − qn−1)

+ 2(1 − Sp)S
2
eq

n(1 − qn−1 − qn + q2n−2) + (1 − Sp)S
2
eq

n(1 − qn−1)2

+ S3
e (1 − 3qn + q2n + 2q2n−1 − q3n−2)

and

Pr[Ri = 1, Ri′ = 1, Cj = 1, Cj′ = 1]

=
1

∑

c1=0

1
∑

c2=0

1
∑

r1=0

1
∑

r2=0

Pr[Ri = 1, Ri′ = 1, Cj = 1, Cj′ = 1|RT
i = r1, R

T
i′ = r2, C

T
j = c1, C

T
j′ = c2]

× Pr[RT
i = r1, R

T
i′ = r2, C

T
j = c1, C

T
j′ = c2]

= (1 − Sp)
4q4n−4 + 4(1 − Sp)

3Seq
3n−2(1 − qn−2) + 2(1 − Sp)

2S2
eq

2n(1 − qn−2)2

+ 4(1 − Sp)
2S2

eq
2n−1(1 − 2qn−1 + q2n−3)

+ 4(1 − Sp)S
3
eq

n(1 − qn − 2qn−1 + 3q2n−2 − q3n−4)

+ S4
e (1 − 4qn + 4q2n−1 + 2q2n − 4q3n−2 + q4n−4).
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Pr[Ri = 1,
∑

j Cj = 0] of equation (B.4) equals h(n) in Section 3.4.1. The last parts of

the right sides of equations (B.4) and (B.5) equal

Pr[
∑

i

Ri = 0, Cj = 1, Cj′ = 1]

=
1

∑

c1=0

1
∑

c2=0

n
∑

r=0

Pr[
∑

Ri = 0, Cj = 1, Cj′ = 1|
∑

RT
i = r, CT

j = c1, C
T
j′ = c2]

× Pr[
∑

RT
i = r, CT

j = c1, C
T
j′ = c2].

For r ∈ 0, · · · , n, let

β00(r) ≡ Pr[
∑

RT
i = r, CT

j = 0, CT
j′ = 0] =

(

n

r

)

(qn2−r(n−2))(1 − qn−2)r,

β01(r) ≡ Pr[
∑

RT
i = r, CT

j = 0, CT
j′ = 1] =

(

n

r

)

(qn2−r(n−1))(1 − qr − qn−1 + qn−2+r)r,

β11(r) ≡ Pr[
∑

RT
i = r, CT

j = 1, CT
j′ = 1] =

(

n

r

)

(qn2−rn)(1 − qn)r − (β00(r) + 2β01(r)),

γ00(r) ≡ Pr[
∑

Ri = 0, Cj = 1, Cj′ = 1|∑RT
i = r, CT

j = 0, CT
j′ = 0]

= (1 − Sp)
2(1 − Se)

rSn−r
p ,

γ01(r) ≡ Pr[
∑

Ri = 0, Cj = 1, Cj′ = 1|
∑

RT
i = r, CT

j = 0, CT
j′ = 1]

= (1 − Sp)Se(1 − Se)
rSn−r

p ,

and

γ11(r) ≡ Pr[
∑

Ri = 0, Cj = 1, Cj′ = 1|
∑

RT
i = r, CT

j = 1, CT
j′ = 1] = S2

e (1−Se)
rSn−r

p ,

where we define β01(0) ≡ 0, β11(0) ≡ 0, γ01(0) ≡ 0 and γ11(0) ≡ 0. Then it follows that

Pr[
∑

i

Ri = 0, Cj = 1, Cj′ = 1] =
n

∑

r=0

{γ00(r)β00(r) + 2γ01(r)β01(r) + γ11(r)β11(r)}.
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B.4 Square array with master pool (A2M)

Letting T = 1 + 2nX0 + T2 for A2M where T2 =
∑

i,j T2ij, then E(T 2) can be written

as

E(T 2) = E(1 + 4n2X0
2 + T2

2 + 4nX0 + 2T2 + 4nX0T2)

= 1 + 4n2f(n2)

+n2E(T2ij
2) + [n4 − {n2 + n2(n − 1)2}]E(T2ijT2ij′) + {n2(n − 1)2}E(T2ijT2i′j′)

+4nf(n2) + 2n2E(T2ij) + 4n3E(T2ij).

(B.6)

Note that E(T2ij) and E(T2ij
2) are same as equation (3.19) in Section 3.5.1. E(T2ijT2ij′)

and E(T2ijT2i′j′) of equation (B.6) can be expressed as

E(T2ijT2ij′) = Pr[X0 = 1, Ri = 1, Cj = 1, Cj′ = 1] + Pr[X0 = 1, Ri = 1,
∑

j Cj = 0]

+ Pr[X0 = 1,
∑

i Ri = 0, Cj = 1, Cj′ = 1]

(B.7)

and

E(T2ijT2i′j′) = Pr[X0 = 1, Ri = 1, Ri′ = 1, Cj = 1, Cj′ = 1]

+2 Pr[X0 = 1,
∑

i Ri = 0, Cj = 1, Cj′ = 1].
(B.8)

The first parts of the right sides of equations (B.7) and (B.8) equal

Pr[X0 = 1, Ri = 1, Cj = 1, Cj′ = 1]

= (1 − Sp)
3qn2

(1 − Sp − Se) + Se Pr[Ri = 1, Cj = 1, Cj′ = 1]

and

Pr[X0 = 1, Ri = 1, Ri′ = 1, Cj = 1, Cj′ = 1]

= (1 − Sp)
4qn2

(1 − Sp − Se) + Se Pr[Ri = 1, Ri′ = 1, Cj = 1, Cj′ = 1].
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The second and third parts of the right side of equation (B.7) equal

Pr[X0 = 1, Ri = 1,
∑

j

Cj = 0] = (1 − Sp − Se)γ0(0)β0(0) + Seh(n)

and

Pr[X0 = 1,
∑

i

Ri = 0, Cj = 1, Cj′ = 1]

= (1 − Sp − Se)γ00(0)β00(0) + Se

n
∑

r=0

{γ00(r)β00(r) + 2γ01(r)β01(r) + γ11(r)β11(r)}.
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APPENDIX C

CDFs for pooling error rates

In this section, we derive the cumulative distribution function (CDF) of the observed

pooling sensitivity, specificity, PPV , and NPV for any pooling algorithm A. Suppose

the pooling algorithm A is applied to N specimens. For i = 1, . . . , N , let Yi = 1 if the

ith specimen is positive and 0 otherwise. Let Xi = 1 if the ith specimen tests positive

by the algorithm A, and 0 otherwise.

C.1 Pooling Sensitivity and Specificity

The observed sensitivity can be written

SO
e (A) ≡

�
XiYi�
Yi

,

where the summations are from 1 to N . Note the denominator
∑

Yi is Binomial(N, p)

where p is the prevalence. Also note that

∑

XiYi|
∑

Yi ∼ Binomial(
∑

Yi, Se(A)),
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where Se(A) = E(Xi|Yi = 1). Therefore,

Pr[SO
e (A) ≤ s] = Pr[

∑

XiYi ≤ s
∑

Yi]

=
∑N

y=0 Pr[
∑

XiYi ≤ sy|
∑

Yi = y] Pr[
∑

Yi = y]

=
∑N

y=0

∑bsyc
x=0

(

y
x

)

Se(A)x(1 − Se(A))y−x
(

N
y

)

py(1 − p)N−y,

where bsyc denotes the largest integer less than or equal to sy.

Similarly, the CDF of the observed specificity equals

Pr[SO
p (A) ≤ s] =

∑N
y=0

∑bsyc
x=0

(

y
x

)

Sp(A)x(1 − Sp(A))y−x
(

N
y

)

(1 − p)ypN−y.

C.2 Pooling PPV and NPV

The observed PPV can be written

PPV O(A) ≡
�

XiYi�
Xi

,

where again the summations are from 1 to N . Note the denominator
∑

Xi is Binomial(N, p1)

where p1 = Se(A)p + (1 − Sp(A))q. Also note that

∑

XiYi|
∑

Xi ∼ Binomial(
∑

Xi, PPV (A)).

This follows since

Pr[Yi = 1|Xi = 1] = Se(A)p
Se(A)p+(1−Sp(A))q

= PPV (A).
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Therefore,

Pr[PPV O(A) ≤ s] = Pr[
∑

XiYi ≤ s
∑

Xi]

=
∑N

x=0 Pr[
∑

XiYi ≤ sx|
∑

Xi = x] Pr[
∑

Xi = x]

=
∑N

x=0

∑bsxc
y=0

(

x
y

)

PPV (A)y(1 − PPV (A))x−y
(

N
x

)

p1
x(1 − p1)

N−x,

Similarly, the CDF of the observed NPV equals

Pr[NPV O(A) ≤ s] =
∑N

x=0

∑bsxc
y=0

(

x
y

)

NPV (A)y(1 − NPV (A))x−y
(

N
x

)

(1 − p1)
xpN−x

1 .
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