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ABSTRACT 
 

YUE ZHANG: REVISITING THE STATISTICAL RELATIONSHIP BETWEEN SOLAR 
ACTIVITY AND ASIAN MONSOON DURING THE HOLOCENE 

(Under the direction of Donna M. Surge) 
 

The relationship between the sun and terrestrial climate in the past has been 

controversial. Given the difficulty in understanding the underlying mechanism(s) of solar 

influence on the climate system, the empirical relationship between the sun and climate 

variables relies on statistical analyses. The tight link between proxies for solar irradiance and 

the Asian monsoon has gained wide consensus; however, this unresolved scientific issue is 

still under debate. Here, the nonlinear and nonstationary relationship between solar activity 

and Asian monsoon strength during the last 8,800 years is investigated with Ensemble 

Empirical Mode Decomposition (EEMD) and Wavelet Coherence (WTC). The results show 

the coherence between solar activity and Asian monsoon strength is low in time-frequency-

oscillatory mode representation. There is no causal relationship between solar activity and 

Asian monsoon strength during the Holocene that can be identified. This research provides a 

new insight into the sun-Asian monsoon interaction. 
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Revisiting the statistical relationship between solar activity 

and Asian monsoon during the Holocene1 

 

Abstract 

The relationship between the sun and terrestrial climate in the past has been 

controversial. Given the difficulty in understanding the underlying mechanism(s) of solar 

influence on the climate system, the empirical relationship between the sun and climate 

variables relies on statistical analyses. The tight link between proxies for solar irradiance and 

the Asian monsoon has gained wide consensus; however, this unresolved scientific issue is 

still under debate. Here, the nonlinear and nonstationary relationship between solar activity 

and Asian monsoon strength during the last 8,800 years is investigated with Ensemble 

Empirical Mode Decomposition (EEMD) and Wavelet Coherence (WTC). The results show 

the coherence between solar activity and Asian monsoon strength is low in time-frequency-

oscillatory mode representation. There is no causal relationship between solar activity and 

Asian monsoon strength during the Holocene that can be identified. This research provides a 

new insight into the sun-Asian monsoon interaction. 

 

 

                                                           
1It is a non-published work to be submitted to Climate of the Past. The authors are Y. Zhang (corresponding 
author), D. Surge, J. M. Lees, and J. M. Bane. 
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Introduction 

The Earth’s climate is controlled by external forcings and internal processes. As the 

heat engine of the Earth’s climate system, the sun is the most dominant external forcing and 

is considered to affect climate variability in the past, present and future (Beer et al., 2000; 

Crowley, 2000; Bond et al., 2001; Haigh, 2001; Shindell et al., 2001; Rind, 2002; Gimeno et 

al., 2003; Braun et al., 2005). Accurate reconstruction of past climate change is critical to 

projecting future climate changes (Gray et al., 2010). Thus, characterizing the contribution of 

solar activity to climate variability over disparate timescales has been a focus of study for the 

last several decades. However, long-term observation of solar activity is sparse. Telescopic 

observations of sunspot numbers extend from the present back to AD 1610, while satellite 

monitoring of total solar irradiance only began in 1978 (Solanki et al., 2004). Reconstructing 

the variation of solar activity over geological timescales (in particular, during the Holocene) 

relies on proxy records of solar activity, such as various cosmogenic radionuclides (e.g., 10Be 

and 14C). Similarly, climate variability that occurred before the era of instrumental 

observation is typically reconstructed using proxy records such as ice cores, tree rings, 

marine sediments, speleothems, archaeological and fossil shells, etc. Hence, dynamical links 

between solar activity and past climate variability are often proposed based on the statistical 

relationships between proxies for solar activity and those for past climate change (Legras et 

al., 2010; Yiou et al., 2010). 

 

The Asian monsoon is a subsystem of the climate system which modulates large-scale 

variations between the ocean and the continents. Billions of people live in Asia, and local 

agriculture, water resources and economic activity there are all influenced by Asian monsoon 
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precipitation. Given its practical implications for climate change and population, an 

understanding of the Asian monsoon system, especially the ability to better predict Asian 

monsoon variations from annual to decadal and longer, is imperative. Understanding the 

Asian monsoon system is intricately linked to knowledge about past changes of the Asian 

monsoon and the influence of natural forcings on Asian monsoon variations in the past. 

Motivated by this, many studies have focused on the interaction between solar activity and 

Asian monsoon strength during the Holocene. Neff et al. (2001) studied the coherence 

between atmospheric ∆14C (the ratio of radiocarbon 14C to 12C in the atmosphere) and δ18O 

(the ratio of 18O to 16O) values from a speleothem in Hoti Cave, northern Oman, that 

accumulated in the early Holocene. They suggested that decadal to centennial variability of 

rainfall and monsoon strength in the early Holocene was dominated by solar activity. 

Fleitmann et al. (2003) measured the correlation between atmospheric ∆14C and speleothem 

δ
18O values from Qunf Cave, southern Oman, and reported that decadal to multi-decadal 

variations of monsoonal precipitation were controlled by solar activity after 8 kyr BP (before 

present, 0 year BP = AD 1950). Wang et al. (2005) estimated the link between atmospheric 

∆
14C and δ18O values from a Dongge Cave speleothem in southern China. They indicated 

that decadal to centennial variability of monsoon strength during the Holocene partly resulted 

from changes in solar radiation. According to the previous studies, the sun-Asian monsoon 

interaction has gained widespread acceptance (Wang et al., 1999; Hong et al., 2001; Neff et 

al., 2001; Agnihotri et al., 2002; Fleitmann et al., 2003; Staubwasser et al., 2003; Higginson 

et al., 2004; Clemens, 2005; Gupta et al., 2005; Wang et al., 2005; Xiao et al., 2006; Zhang et 

al., 2008; Cai et al., 2010). However, a careful scrutiny of the analyses in these studies calls 

this consensus into question.  
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The accumulation of 14C in the atmosphere results from the interaction between 

cosmic rays and atmospheric 14N. When solar activity strengthens, cosmic rays reaching the 

atmosphere are reduced and it further decreases 14C production (Gray et al., 2010). Hence, 

atmospheric ∆14C is generally regarded as an indicator of solar activity. However, solar 

activity is not the sole factor controlling the production of atmospheric ∆14C. Cosmic rays 

mainly consist of charged particles. When cosmic rays penetrate the atmosphere, the 

geomagnetic field deflects a large portion of cosmic rays. Therefore, variation of the 

geomagnetic field intensity is a major factor that can modulate the 14C production rate 

(Mazaud et al., 1991; Hughen et al., 2004). Once 14C is produced in the atmosphere, it is 

transported to other exchangeable carbon reservoirs through the global carbon cycle 

(Muscheler et al., 2007; Burke and Robinson, 2012). The ocean has substantial storage 

capacity of CO2 and it is the most important one of these reservoirs. Radiocarbon can be 

captured by ocean water through air-sea exchange of CO2. Because of the limited ventilation 

of the abyssal ocean, the carbon-enriched water in the deep ocean can be isolated from the 

atmosphere (Muscheler et al., 2000; Marchitto et al., 2007). Some isolated carbon in the 

abyssal ocean is too old to contain detectable 14C as a result of radioactive decay. 

Nevertheless, once deep water upwells because of reinitiated ventilation and a reorganized 

meridional overturning circulation, CO2 with low 14C that had been sequestrated in the deep 

ocean can be released into the atmosphere. Consequently, the atmospheric 14C inventory can 

be regulated by processes in addition to solar activity (Stocker and Wright, 1996; Rose et al., 

2010; Skinner et al., 2010). Because the annual production by both solar activity and 

geomagnetic field effect is relatively small in contrast to the global 14C inventory, the 
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influence of the carbon cycle on 14C variation can overcome the effect of solar activity 

(Bradley, 1999). Moreover, the terrestrial biosphere plays a key role in the global carbon 

cycle (Hahn and Buchmann, 2004; Naegler and Levin, 2009). Radiocarbon in fossil fuel is 

low owing to radioactive decay. Burning of fossil fuel makes 13C and 12C become more 

enriched in the atmosphere. Accordingly, human use of fossil fuel can also greatly reduce 

∆
14C over the globe (Suess, 1955). Hence, atmospheric ∆

14C is dominated by both 14C 

production rate, and climate-related, and human-induced processes (Kitagawa and van der 

Plicht, 1998). It is not a pure proxy for solar activity in the past. 

 

As a proxy for Asian monsoon activity, δ18O values from speleothem records reflect 

stable isotopic variations in local precipitation. These values characterize precipitation 

amount and, hence, Asian monsoon strength (Yuan et al., 2004; Dykoski et al., 2005; Wang 

et al., 2005). However, δ18O values in speleothems are also dominated by cave conditions 

(e.g., temperature and humidity), deposition processes, and the hydrological cycle. 

Speleothem carbonate is mainly precipitated from percolated groundwater, and formation 

largely relies on water evaporation and CO2 degassing associated with temperature and 

humidity in the cave (Bradley, 1999). The deposition process can be affected by factors 

which can modulate groundwater percolation or speleothem growth (Bradley, 1999). In 

addition, the percolated water in the cave is typically a mixture of groundwater, meteoric 

water, soil water, plant water and surface water. Thus, the isotopic composition of a cave 

water droplet does not merely reflect the δ
18O values of local precipitation. Measurements of 

the isotopic composition of precipitation in Asia reflect a complex spatio-temporal pattern, 

which results from heterogeneous air masses and moisture sources in this region and the 
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consecutive fractionation processes at water phase transitions (i.e., condensation and 

evaporation) in the hydrological cycle (Araguas-Araguas et al., 1998; Jouzel et al., 2000; 

Johnson and Ingram, 2004). Therefore, δ
18O values recorded in speleothems represent 

several factors rather than simply Asian monsoon strength (Lachniet, 2009). In summary, 

both ∆14C and δ18Ospeleothem values are composite signals, as opposed to pure indicators of 

climate variables. Accordingly, the direct comparison between two complicated signals may 

not clearly reveal the underlying mechanisms of solar influence on the Asian monsoon. 

  

Several studies have reported a strong correspondence between atmospheric ∆14C and 

δ
18Ospeleothem values (Neff et al., 2001; Fleitmann et al., 2003; Wang et al., 2005). However, 

this correspondence is suspect because a phase shift should exist between them if they clearly 

represent solar activity and monsoon strength respectively, and ∆14C should lead δ18Ospeleothem. 

The different components of the climate system have distinct response time to external 

forcing (IPCC, 2007). Modern observations show a lead-lag relation between solar irradiance 

and temperature. Solar irradiance is a flux of energy, while temperature is an index of the 

divergence of this flux. If the energy flux varies with some period, its time derivative has a 

phase shift. The daily maximum of solar irradiance occurs around noon, for example, while 

the daily maximum temperature occurs at about 3 pm. Moreover, the seasonal maximum of 

Northern Hemisphere solar irradiance occurs in late June, while the seasonal maximum 

temperature occurs at the end of July or in early August. If solar irradiance is close to a 

sinusoidal function, the phase change between solar irradiance and temperature is 

approximately 1/8 of the period (45 degrees), which is 3 hours for the diurnal cycle or 1.5 

months for the annual cycle (A. Ohmura, personal communication, 2011). In addition, 
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insolation variability caused by long-term changes in Earth’s orbital parameters leads the 

marine δ18O record (indicating ice volume variations) by 90 degrees on orbital time scales, 

which is 10,000 years for obliquity band and 6,000 years for precession band (Ruddiman, 

2007). As a weather system, the Asian monsoon’s response to variation of solar irradiance is 

much slower than that of temperature and much faster than that of ice sheets because of a 

series of complex physical processes and feedbacks. Hence, the phase angle between solar 

activity and Asian monsoon is expected to be between 45 and 90 degrees. Moreover, ∆14C 

should not be in phase with δ18Ospeleothem values, but rather should lead it. A strong 

correspondence may be unreasonable to expect.  

 

Haam and Huybers (2010) measured the linear and in-phase covariance between 

atmospheric ∆14C and stalagmite DA δ
18O from Dongge Cave with a novel methodology for 

maximum covariance test of time-uncertain series. They suggested that the correlation 

coefficient of 0.3 between solar activity and Asian monsoon strength reported by Wang et al. 

(2005) is insignificant at the 95% confidence level. This implies that there might be no causal 

relationship between solar activity and Asian monsoon strength during the Holocene. 

However, a nonlinear and nonstationary link between solar activity and Asian monsoon 

strength cannot be ruled out based solely on their analysis.    

 

Inspired by these two problems and the contradictory conclusion by Haam and 

Huybers (2010), it is necessary to quantitatively test the nonlinear and nonstationary 

relationship between solar activity and Asian monsoon strength during the Holocene using 

other statistical methods. This should provide new understanding about the mechanism of 
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solar influence on the Asian monsoon. The proxy records for both solar irradiance and the 

Asian monsoon (∆14C and δ18Ospeleothem) are composite signals superimposed by various 

underlying processes in the climate system. As proxy records, it is assumed that ∆14C and 

δ
18Ospeleothem time series contain information of past solar and Asian monsoon activity. If the 

Asian monsoon is paced unidirectionally by the sun during the Holocene, the sun should 

leave a signature in both the ∆
14C and δ18Ospeleothem records. ∆14C and δ18Ospeleothem time series 

should contain similar underlying processes with similar periods and appropriate phase 

relations. Following this rationale, time series for atmospheric ∆
14C, total solar irradiance 

(reconstructed from 10Be accumulated in ice cores), and δ
18Ospeleothem are decomposed into 

inherent components using Ensemble Empirical Mode Decomposition (EEMD), a newly 

applied procedure in paleoclimatology. Wavelet Coherence (WTC) is then employed to 

quantify the coherence and phase relationship between the corresponding processes from the 

EEMD results.  

 

Data and methods 

Data 

Previously documented records of atmospheric ∆
14C, total solar irradiance, and 

δ
18Ospeleothem are used in this study (Figures 1-3). The atmospheric ∆

14C time series was 

reconstructed with a synthesized sample of tree rings, corals and marine sediments from all 

over the globe (Stuiver et al., 1998). There is an empirical relationship between total solar 

irradiance and the open solar magnetic field. Steinhilber et al. (2008) reconstructed the open 

solar magnetic field using the 10Be record in ice cores from GRIP, Dye 3 and the South Pole, 
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which is also dominated by solar activity. Total solar irradiance was computed based upon its 

functional relation with the open solar magnetic field (Steinhilber et al., 2009). A stalagmite 

DA was retrieved from Dongge Cave (25°17�N, 108°5�E, elevation 680m) in south China 

(Wang et al., 2005). The corresponding δ
18O record is dominated by isotopic variations in 

local meteoric water, which is further related to variations in precipitation amount 

characterizing Asian monsoon strength. The chronology of the Dongge Cave stalagmite was 

constructed using 230Th dating, and the typical age uncertainty is about 50 years. The time 

span of all records is from 8,800 year BP to 0 year BP. All the data linearly interpolated with 

a 10-year sampling interval. 

 

Ensemble empirical mode decomposition (EEMD) 

EEMD and WTC are used to analyze the time series. Empirical Mode Decomposition 

(EMD) is an adaptive data decomposition method with an a posteriori basis, which implicitly 

assumes the data is a superposition of several simple oscillatory components with 

significantly different frequencies (Huang, 2005; Huang and Wu, 2008). Each simple 

oscillatory component must satisfy two conditions. First, the number of extrema and the 

number of zero-crossings must be the same or do not differ more than one in the whole 

dataset. Second, the mean of the two envelopes, which are respectively represented by the 

local maxima and minima, must be zero at any point. Such a component is called an Intrinsic 

Mode Function (IMF), and it represents a physically meaningful underlying process in the 

data. With a sifting process, any complicated dataset can be decomposed into a series of 

IMFs from higher frequency to lower frequency, and a residue. Take signal ����  as an 

example. After the identification of all the local extrema, all the local maxima and minima 
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are connected respectively by two cubic spline curves to generate the upper and lower 

envelopes, where 	
 is the mean of the two envelopes and �
 is the first component that 

equals the difference between ���� and 	
.     

�
 � ����  	
 

However, the new extrema may be generated as a result of changing the local zero from a 

rectangular coordinate system to a curvilinear one. Hence, �
 needs to be sifted repeatedly to 

eliminate the riding waves (background signals) and make the time series more symmetric. 

�
 	� � �� 

After k times of sifting, 

���
 	� � �� 

The first IMF �
 is obtained  

�
 � �� 

The number of iterations, k, is determined by stoppage criteria (Huang, 2005). A typical 

stoppage criterion is a Cauchy type of convergence test that requires the normalized squared 

difference between two successive sifting processes:   

��� � ∑ |���
���  �����|����� ∑ ���
� �������  

to be smaller than a predetermined value. Once it satisfies this stoppage condition, the sifting 

ends. After satisfying the stoppage condition, the first IMF �
, the oscillatory component 

with the highest frequency, is obtained. Then, a residue �
 can be obtained by removing the 

first IMF �
 from the original data.  
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����  �
 � �
 
Because �
 still contains oscillatory modes with lower frequencies, the sifting process can be 

employed again after considering �
 as a new time series. 

�
  �� � �� 
This is repeated until the sifting process is stopped when no IMF can be extracted from the 

residue ��. 

���
  �� � �� 

Therefore, the original data can be represented with n IMFs and a residue ��. 

���� � ���
�

��

� �� 

The final residue can be considered to be a trend. Because the decomposition directly works 

in the temporal domain but not in the frequency domain and only relies on the local 

characteristics of the data, EMD can solve the nonlinearity and nonstationarity of the data. 

However, the EMD-produced results may have a mode-mixing problem, which is caused by 

signal intermittency (Huang and Wu, 2008).  

 

An IMF either contains signals with widely different scales or a signal with similar 

scale is distributed in different IMFs. To overcome this drawback, a white noise-assisted 

decomposition method, EEMD, was developed (Wu and Huang, 2005). After introducing a 

uniform background of white noise, the true signals can distribute in correct scales. In this 

new approach, white noise is added to the original data, and the noisy data is decomposed 
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with EMD first. Then, this procedure is repeated with distinct white noise time series. The 

final result in EEMD is defined as the ensemble mean of all corresponding EMD-produced 

IMFs. Though each time’s result is very noisy, the noise can be canceled out with averaging. 

Nevertheless, the EEMD results do not strictly satisfy the two conditions for IMF. Hence, 

one more sifting is done to eliminate the riding wave (Huang and Wu, 2008). 

 

Wavelet coherence (WTC) 

Wavelet analysis uses a zero-mean wavelet to fit a time series in both time and 

frequency domains (Grinsted et al., 2004). As a locally periodic wavetrain, the Morlet, a 

Gaussian-windowed complex sinusoid, is expressed as:  

��� � � !�
 "⁄ $%&'($�
�() 
where   and *�  are dimensionless time and frequency, respectively. Continuous Wavelet 

Transform (CWT) is defined as:  

+�,�-� � ./�- � ��0
1

�0�

�� 2�34  3� /�- 5 

This can be seen as a convolution of a time series with a scaled and normalized wavelet, 

where |+�,�-�|� and the complex argument of +�,�-� represent wavelet power and local 

phase, respectively. Wavelet Coherence (WTC) measures the coherence and phase 

relationships between two time series and is defined as:  

6���-� � 7�8-�
+�,9�-�:7���-�
|+�,�-�|�� · ��-�
|+�9�-�|�� 
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where �, a smoothing operator, defined as: 

��+� � �<=>?@ A��%B@8+��-�:C 

where �<=>?@ and  ��%B@ are the smoothing in Wavelet scale and in time. For the Morlet, the 

smoothing operator is defined as: 

D��%B@�+�|< � DE+��-� F �
��
)�<)GH

<
 

D��%B@�+�|< � DA+��-� F ��I�0.6s�CN� 

where �
 and �� are normalization constants, and ∏ is a rectangle function (Torrence and 

Webster, 1998). The value 0.6 is a scale decorrelation length, which is decided empirically 

for the Morlet (Torrence and Compo, 1998).  

 

Due to the non-localization of a wavelet in time domain, a Cone of Influence (COI) is 

introduced in the result to consider the edge effects. The significane level for WTC is 

computed with the Monte Carlo method. The coherence of each of 1000 surrogate data set 

pairs with the same AR1 coefficients is measured. Afterward, the significance level for each 

scale is computed based on the values outside the COI only (Grinsted et al., 2004). Before 

analyzing the paleoclimate data in this study, WTC was tested with a series of synthesized 

time series to check the validity of the resulting coherence and phase angles. The result of 

this test demonstrates WTC can capture the detailed common power and local phase relation 

between two time series. 
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Significance test 

Proxy records are generally contaminated by noise. A significance test of the IMFs is 

necessary to estimate whether an IMF represents the true signal or only consists of noise. Wu 

and Huang (2004) developed a test of statistical significance based on the characteristics of 

white noise and the orthogonality of the IMFs. For normalized white noise, O�, the energy 

density of the nth IMF P��Q� can be expressed as: 

R� � 1T�UP��Q�V�
1
��


 

The total energy is defined as: 

�O��
1

��

� �|W�|�

1
��


� T�R��
 

where X � √1, O� and W� are respectively represented as: 

O� � 6$ Z�W�$%�[��1
1

��

\ � �P��Q��

 

and 

W� � �O�$�%�[��1
1
��


 

Consequently, it is suggested that the energy density of an IMF and its average period satisfy 

a hyperbolic relationship:  

ln R�___ � ln �̀___ � 0 
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where R�___ equals the mean of R� if n a ∞. If an IMF’s energy density is located above the 

upper spread lines of the selected confidence levels, the null hypothesis that this IMF is not 

distinguishable from the corresponding IMF of a white noise can be rejected. In other words, 

the decomposition result is statistically significant. 

 

Here, each of the three records was decomposed into eight oscillatory components 

and a trend with EEMD (Figures 4-6). Then, another sifting was done on each IMF except 

the trend to confirm that the EEMD-produced results follow the conditions defining an IMF. 

Eventually, the statistical significance of each IMF (except IMF8 which is also a trend) was 

tested at 95% and 99% confidence levels (Figures 7-9). Empirically, the first IMF results 

from random noise; therefore, it is not considered in the discussion. However, it is still 

employed to compute the mean energy of the other IMFs.  

 

For atmospheric ∆14C, IMF4 through IMF7 are above the 95% and 99% confidence 

level lines, and are considered statistically significant. IMF2 and IMF3 located on the 95% 

confidence level line are still physically meaningful. For total solar irradiance, IMF2 through 

IMF7 are above 95% and 99% confidence level lines and are all statistically significant. For 

DA δ18Ospeleothem, IMF3 through IMF7 are above 95% and 99% confidence level lines and are 

statistically significant. IMF2 is located below the 95% confidence level line. Given the 

small deviation, it is still considered to be partially physically meaningful. 
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IMFs for total solar irradiance generally are more statistically significant than IMFs 

for atmospheric ∆14C. However, the estimation of which record best represents solar activity 

is beyond the scientific scope of this study. Therefore, the comparison between them is not 

discussed here. Because many similarities of the corresponding IMFs from both data can be 

identified with visual inspection, it is considered that both of them can represent solar 

activity during the Holocene.  

 

IMF 

To investigate the relationship between corresponding underlying processes for solar 

activity and Asian monsoon strength, the period of each IMF was quantified. Prior to 

obtaining the period of an IMF, the instantaneous frequency of each IMF was calculated with 

a Hilbert transform-produced analytic function (Huang and Wu, 2008) (Figures 10-12). The 

Hilbert transform of a function ���� of LP class (pth powers of ���� must be integrable) is 

defined as: 

b��� � 1! c d ��e��  e fe
g

�g
 

where P is the Cauchy principal value of the singular integral. Considering the Hilbert 

transform as the imaginary part, the analytic signal can be expressed as:  

h��� � ���� � Xb��� � i���$%j��� 
i��� � ��� � b��
 �⁄  

k��� � tan�
 b� 
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where X � √1, i  and k  are instantaneous amplitude and phase. Instantaneous frequency 

then can be expressed as: 

* � fkf�  

Subsequently, a probability density function for each instantaneous frequency was estimated 

with a normal kernel function. The instantaneous frequency of each IMF (except IMF1) is 

approximately normally distributed. The frequency distributions of corresponding IMFs have 

similar shapes (Figure 13). For a given IMF, the frequency with the highest density value 

was selected as its mean frequency. The mean period of each IMF was then obtained 

according to the mathematic relation between period and frequency (Tables 1 and 2). The 

period of IMF8 is so long that it is considered a trend within the 8,800-year period under 

investigation. The periods of the corresponding IMFs from the three proxy records (i.e., ∆14C, 

total solar irradiance, and DA δ18Ospeleothem) are very similar. Given this, we hypothesize that 

the corresponding IMFs from the three records represent similar underlying processes within 

the data. Thus, WTC can be applied to each pair of the corresponding IMFs for coherence 

estimations. As a whole, the period of a given IMF is roughly half of that of the next IMF, 

which means EMD is a dyadic filter (Wu and Huang, 2004).  

 

Coherence and phase relationship 

The following data analysis is separated into two groups: (1) atmospheric ∆14C and 

DA δ18Ospeleothem; and (2) total solar irradiance (reconstructed from the ice core 10Be record) 

and DA δ
18Ospeleothem. In the WTC plots, the high coherence between two signals is 

represented by the area bounded by the thick contour, which is the 0.05 significance level 
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against red noise. The local phase relationship is expressed by the arrows. Arrows pointing 

right represent in-phase, while arrows pointing left are anti-phase. If the first signal leads the 

second one by 90 degrees, arrows point straight up. In contrast, a 90-degree lag corresponds 

to the arrows pointing straight down. For a lead-lag relationship, only coherence areas with 

proper phase angle (45-90 degrees; i.e., the range between the diurnal/seasonal cycle and ice 

volume, respectively) are identified. Due to the edge artifacts, high coherence areas outside 

the COI or penetrating the COI are not meaningful. Hence, only high coherence areas with 

correct phase angles are presented in following sections.  

 

∆∆∆∆
14C and δδδδ18Ospeleothem values 

For IMF2, high coherence appears at 22-48 yr around 900-1000 yr BP, at 24-60 yr 

around 2000-2350 yr BP, at 24-40 yr around 3500-3600 yr BP, at 20-32 yr around 3800 yr 

BP, at 256-374 yr around 5250-6100 yr BP, at 20-40 yr around 5400-5500 yr BP, at 40-64 yr 

around 6500 yr BP, and at 50-128 yr around 7950-8500 yr BP (Figure 14). For IMF3, high 

coherence occurs at 32-60 yr around 6400 yr BP, at 256-384 yr around 7200-8200 yr BP, at 

48-100 yr around 8000 yr BP, and at 40-56 yr around 8400 yr BP (Figure 15). For IMF4, 

high coherence is shown at 200-320 yr around 7200-8000 yr BP (Figure 16). For IMF5, high 

coherence is present at 64-96 yr around 750 yr BP and at 224-384 yr around 5100-5600 yr 

BP (Figure 17). For IMF6, there is high coherence at 100-192 yr around 4300-4750 yr BP 

and at 64-90 yr around 8000-8200 yr BP (Figure 18). IMF7 has no coherence (Figure 19). In 

sum, in time-frequency-IMF representation, the coherence between atmospheric ∆14C and 

DA δ18
Οspeleothem is low. 
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Total solar irradiance and δδδδ18Ospeleothem values 

For IMF2, high coherence is indicated at 24-56 yr around 7500-7600 yr BP (Figure 

20). For IMF3, high coherence appears at 48-64 yr around 4750-4900 yr BP and at 48-80 yr 

around 5800-6000 yr BP (Figure 21). For IMF4, high coherence appears at 128-200 yr 

around 1250-1500 yr BP (Figure 22). For IMF5, high coherence occurs at 300-448 yr around 

3500-4000 yr BP (Figure 23). For IMF6, no significant coherence is detected (Figure 24). 

For IMF7, there is high coherence at 340-426 yr around 5500-5900 yr BP and at 96-128 yr 

around 7200-7500 yr BP (Figure 25). Thus, in time-frequency-IMF representation, the 

coherence between total solar irradiance and DA δ
18

Οspeleothem is low. 

 

Discussion 

Our results demonstrate a weak link between solar activity and the Asian monsoon 

strength over the last 8,800 years, which is exemplified by low coherence in time-frequency-

IMF representation. Previously reported causal links also rely on the frequency spectrum 

(Fleitmann et al., 2003; Wang et al., 2005; Cai et al., 2010). Wang et al. (2005) reported 

correlation at specific frequencies between detrended atmospheric ∆14C and DA δ18Ospeleothem 

values with bivariate spectral analysis (see supporting online material for Wang et al. (2005)). 

The phase spectrum between detrended atmospheric ∆
14C and DA δ18Ospeleothem values was 

not discussed. As a complement, the cross-coherence and phase spectrum between 

atmospheric ∆14C and DA δ18Ospeleothem raw data are also measured in the present study. For 

congruity, the SPECTRUM program using same parameters was applied (Schulz and 
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Stattegger, 1997; Wang et al., 2005). The correspondence between atmospheric ∆14C and DA 

δ
18Ospeleothem at each frequency is expressed with the squared coherency, which is estimated 

with Lomb-Scargle Fourier transform for unevenly spaced time series, associated with a 

Welch-Overlapped-Segment-Averaging procedure. The value of the squared coherency 

ranges between 0 and 1, in which 0 means no correlation and 1 presents highest correlation at 

the corresponding frequencies. Overall, the coherence between atmospheric ∆14C and DA 

δ
18Ospeleothem is not high. High coherence with 95% false alarm level only occurs at 57 and 20 

yr in which the squared coherency equals 0.45 and 0.54 respectively (Figure 26). For the 

phase spectrum (figure is not shown), ∆
14C leads DA δ18Ospeleothem values by -109 degrees at 

57 yr and 28 degrees at 20 yr. In sum, the spectral coherency between atmospheric ∆14C and 

DA δ18Ospeleothem is low, and the phase angles are not meaningful.  

 

Conclusions 

Insignificant covariance between atmospheric ∆
14C and DA δ18Ospeleothem record at the 

95% confidence level shows no linear and stationary relationship between solar activity and 

Asian monsoon strength during the Holocene (Haam and Huybers, 2010). However, any 

relationships between nonlinear and nonstationary processes hidden within the data were not 

estimated in Haam and Huybers (2010). Using an a posteriori and adaptive basis, EEMD 

decomposes the nonlinear and nonstationary records for solar activity and Asian monsoon 

strength into a series of physically meaningful underlying processes, and the coherence and 

phase between corresponding processes are inspected quantitatively with WTC. The results 

indicate nonlinear and nonstationary relationship between solar activity and Asian monsoon 
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strength over the last 8,800 years is insignificant. Our study supports that a causal 

relationship does not exist between solar activity and Asian monsoon strength during the 

Holocene. 
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Table 1. Periods for IMFs of atmospheric ∆
14C and DA δ18Ospeleothem record 

∆
14C δ

18O 

Components Period (year) Components Period (year) 

IMF2 73 ± 344 IMF2 72 ± 430 

IMF3 124 ± 553 IMF3 141 ± 566 

IMF4 258 ± 674 IMF4 238 ± 943 

IMF5 658 ± 1812 IMF5 575 ± 3017 

IMF6 864 ± 2591 IMF6 1206 ± 3810 

IMF7 2380 ± 4454 IMF7 2508 ± 14388 

IMF8 7393 ± 30769 IMF8 12211 ± 31746 
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Table 2. Periods for IMFs of total solar irradiance and DA δ
18Ospeleothem record 

Total solar irradiance δ
18O 

Components Period (year) Components Period (year) 

IMF2 79 ± 284 IMF2 72 ± 430 

IMF3 144 ± 522 IMF3 141 ± 566 

IMF4 286 ± 1411 IMF4 238 ± 943 

IMF5 818 ± 1757 IMF5 575 ± 3017 

IMF6 1448 ± 6849 IMF6 1206 ± 3810 

IMF7 2236 ± 11364 IMF7 2508 ± 14388 

IMF8 11241 ± 68966 IMF8 12211 ± 31746 
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Figure 1. Atmospheric ∆14C over the last 8,800 years (Stuiver et al., 1998) 
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Figure 2. Total solar irradiance over the last 8,800 years (Steinhilber et al., 2009)  
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Figure 3. Stalagmite DA δ
18O from Dongge Cave, China, over the last 8,800 years (Wang et 

al., 2005) 
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Figure 4. IMFs and the trend of atmospheric ∆
14C. In EEMD, the ratio of white noise’s stand 

deviation to that of the data is 0.5 and the ensemble number is 1000. 
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Figure 5. IMFs and the trend of total solar irradiance 
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Figure 6. IMFs and the trend of DA δ
18Ospeleothem 
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Figure 7. Significance test of IMFs of atmospheric ∆
14C. Since IMF1 is a random noise, it is 

not considered in the discussion. However, here it is employed to compute the mean energy 
of the other IMFs. IMF4 through IMF7 are above the 95% and 99% confidence level lines, 
and are considered statistically significant. IMF2 and IMF3 located on the 95% confidence 
level line are still physically meaningful.  
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Figure 8. Significance test of IMFs of total solar irradiance. IMF2 through IMF7 are above 
95% and 99% confidence level lines and are all statistically significant. 
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Figure 9. Significance test of IMFs of DA δ
18Ospeleothem. IMF3 through IMF7 are above 95% 

and 99% confidence level lines and are statistically significant. IMF2 is located below the 95% 
confidence level line. Given the small deviation, it is still considered to be partially 
physically meaningful. 
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Figure 10. Instantaneous frequency of atmospheric ∆
14C IMF2-8 
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Figure 11. Instantaneous frequency of total solar irradiance IMF2-8 
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Figure 12. Instantaneous frequency of DA δ
18Ospeleothem IMF2-8 
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Figure 13. Comparison for frequency distribution of corresponding IMF2-8 (red: ∆14C, 
fuschia: total solar irradiance, blue: δ

18Ospeleothem) 
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Figure 14. WTC for IMF2 of atmospheric ∆
14C and DA δ18Ospeleothem. The area with the thick 

contour indicates high coherence. The contour means the 0.05 significance level against red 
noise. The local phase relationship is expressed by the arrows. Arrows pointing right are in-
phase, while arrows pointing left are anti-phase. The first signal leading the second one by 
90 degrees results in arrows pointing straight up, while a 90-degree lag corresponds to the 
arrows pointing straight down. High coherence appears at 22-48 yr around 900-1000 yr BP, 
at 24-60 yr around 2000-2350 yr BP, at 24-40 yr around 3500-3600 yr BP, at 20-32 yr 
around 3800 yr BP, at 256-374 yr around 5250-6100 yr BP, at 20-40 yr around 5400-5500 yr 
BP, at 40-64 yr around 6500 yr BP, and at 50-128 yr around 7950-8500 yr BP. 
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Figure 15. WTC for IMF3 of atmospheric ∆
14C and DA δ18Ospeleothem. High coherence occurs 

at 32-60 yr around 6400 yr BP, at 256-384 yr around 7200-8200 yr BP, at 48-100 yr around 
8000 yr BP, and at 40-56 yr around 8400 yr BP. 
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Figure 16. WTC for IMF4 of atmospheric ∆14C and DA δ18Ospeleothem. High coherence is 
shown at 200-320 yr around 7200-8000 yr BP. 
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Figure 17. WTC for IMF5 of atmospheric ∆14C and DA δ18Ospeleothem. High coherence is 
present at 64-96 yr around 750 yr BP and at 224-384 yr around 5100-5600 yr BP. 
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Figure 18. WTC for IMF6 of atmospheric ∆14C and DA δ18Ospeleothem. There is high 
coherence at 100-192 yr around 4300-4750 yr BP and at 64-90 yr around 8000-8200 yr BP. 
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Figure 19. WTC for IMF7 of atmospheric ∆
14C and DA δ18Ospeleothem. No coherence exists. 
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Figure 20. WTC for IMF2 of total solar irradiance and DA δ
18Ospeleothem. High coherence is 

indicated at 24-56 yr around 7500-7600 yr BP. 
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Figure 21. WTC for IMF3 of total solar irradiance and DA δ
18Ospeleothem. High coherence 

appears at 48-64 yr around 4750-4900 yr BP and at 48-80 yr around 5800-6000 yr BP. 
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Figure 22. WTC for IMF4 of total solar irradiance and DA δ
18Ospeleothem. High coherence 

appears at 128-200 yr around 1250-1500 yr BP. 
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Figure 23. WTC for IMF5 of total solar irradiance and DA δ
18Ospeleothem. High coherence 

occurs at 300-448 yr around 3500-4000 yr BP. 
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Figure 24. WTC for IMF6 of total solar irradiance and DA δ
18Ospeleothem. No significant 

coherence is detected. 
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Figure 25. WTC for IMF7 of total solar irradiance and DA δ
18Ospeleothem. There is high 

coherence at 340-426 yr around 5500-5900 yr BP and at 96-128 yr around 7200-7500 yr BP. 
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Figure 26. Coherency between atmospheric ∆
14C and DA δ18Ospeleothem. The oversampling 

factor is 3, factor for highest frequency is 1 and false alarm level is 95% (dashed line). A 
Welch I window with 50% overlapping is employed to divide the signal into 8 segments in 
which linear trend of each segment is removed. At 57 yr and 20 yr, ∆14C leads δ18O values 
respectively by -109 degrees and 28 degrees. 
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