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ABSTRACT 
 

JUSTIN ENGLISH: Decoding the Yeast Stress Adaptation Circuit 
(Under the direction of Henrik Dohlman) 

 
 Cells must adapt to survive. To mount an appropriate adaptive response the cell must 

relay information from its surroundings to its adaptive machinery. This process, termed 

information transmission, is a universal property of biology. Determining how this 

information is transmitted, amplified, and interpreted throughout the cell is of paramount 

importance. By establishing how information is transmitted in biological systems we can 

identify new routes for intervention in disease progression. To this end, this thesis aims to 

resolve the information transmission mechanisms associated with the oft studied stress 

adaptation circuit of the yeast S. cerevisiae. The work herein considers two distinct properties 

of this stress circuit. First, a determination of the methods and mechanisms by which 

environmental information is conveyed. Second, an assessment of the consequences of this 

information on the reprogramming of cellular metabolism and protein expression. Combined, 

these two investigations uncover how yeast have engineered a dynamic system for 

responding to a broad range of cellular stress conditions. 
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CHAPTER I 

INTRODUCTION1

Organisms respond to changes in their environment to maintain balance or 

homeostasis. This process is known as adaptation. Adaptation is essential for the survival of 

all organisms, as their internal and external environments are in a constant state of flux. For 

example, every day we consume a wide variety of foods whose content and concentration are 

a diverse mix of chemical signals. A healthy individual is able to digest, absorb, and use 

these materials with no ill effect. This is possible as a result of adaptation. Our bodies can 

detect the presence of food, or rising concentrations of nutrients in our blood stream, and 

generate suitable responses to those stimuli. Such responses may include an increased 

production of saliva, bile, or insulin. Eating is an example of adaptation to an acute signal of 

external origin; we also adapt to the inverse, a chronic signal of internal origin. An example 

would be body heat. We generate heat as we convert the raw materials from food in to 

energy. Regulating this heat, our body temperature, is a continuous adaptive process that 

engages a multitude of complex systems including blood flow, sweat glands, and air intake. 

The number of systems that function through adaptive response is innumerable. From our 

immune system to social interactions our bodies are engaged in a continuous adaptive cycle; 

receiving chemical and physical stimuli and responding to them in an appropriate fashion. 

1 All Figures Contributed by Justin English 
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Adaptation, with respect to the long-term health of an organism, is not always 

beneficial. Stress occurs when an organism adapts to a challenge, but ultimately deteriorates 

its health in the process. For example, atherosclerotic lesions are caused by inflammation of 

blood vessel epithelium1,2. Inflammation is an adaptive response of the epithelial cell to the 

accumulation of lipids, macrophages, and shear forces against its extracellular matrix. This 

inflammation is a stressful adaptation that can eventually result in various diseases, from high 

blood pressure to a stroke or heart attack if the lesion becomes unstable and ruptures. The 

adaptive response mounted by the epithelial cell is not a disease, it is the best effort of this 

cell to respond to and survive in a changing environment. The cell is attempting to maintain 

balance, but this process results in a stress, both for the cell and the organism. 

While adaptation influences whole organisms, these adaptations originate from single 

cells. In the atherosclerosis example above, a handful of epithelial cells mount an adaptive 

response, resulting in a detriment to the organism. This example is just one of many instances 

where stressful cellular adaptations beget disease. We see the same patterns recur in 

diabetes3, immune dysfunction4, wound necrosis5, arthritis6, and ischemia7- just to name a 

few among many. The cells in these diseased tissues attempt to adapt to their environment 

and in turn generate a stress that develops in to the disease. To preempt or remedy disease 

progression it is vital that we understand how, when, and under what conditions cells make 

adaptive decisions. 

To adapt, a cell must transmit information dictating the changes in its environment to 

its adaptation machinery. New mechanisms of cellular information transmission are being 

discovered all the time8–10. The work of this thesis focuses on understanding mitogen 

activated protein kinase (MAPK) signaling pathways, one of the most pervasive and 
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conserved cellular information transmission mechanisms. MAPK pathways receive input 

information as signals from extracellular receptors and convert these signals in to adaptive 

output through activation of downstream substrates. Our understanding of these information 

transmission processes has allowed the development of many disease interventions. These 

successes are based primarily on traditional pharmacological approaches that focus on 

intervening at the input, or receptor, level. However, MAPK pathways process these simple 

signal inputs in to complex system outputs. While interference at the input level can 

modulate MAPK activity, a fine-tuned therapeutic approach can be developed by modulating 

single aspects of MAPK signaling pathways11–15. A current limitation for designing these 

interventions is our narrow understanding of how MAPK pathways process input 

information. In the following I will expand on these principles and then introduce new 

insights from my graduate research, delineating new mechanisms of MAPK information 

processing that regulate stressful adaptations. 

Cellular Information Theory and Transmission 

To adapt a cell must detect and transmit the presence of an extracellular cue to its 

internal adaptive machinery. This process is termed information transmission16,17. 

Information transmission occurs any time an input is delivered from its origin to a receiver to 

generate a related output. Information transmission is a fundamental principle of the natural 

world. An entire branch of physics is based on the process of information transmission, since 

at its core, information transmission is a fight against entropy. In 1877 Ludwig Boltzmann, 

during his studies of the molecular properties of gas, inadvertently birthed the field of 

information theory by establishing that entropy is a measure of the number of ways that 
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energy can be configured in a system. The background noise in any system is a sampling of 

these many configurations. A signal, or information, is the amplification of a meaningful 

subset of these configurations. Claude E. Shannon, during his time at Bell Labs in 1948, 

published “A Mathematical Theory of Communication”18, a seminal work in the field that 

expanded on the principles brought forth by Boltzmann to establish how a signal could be 

distinguished and transmitted in a system. 

Shannon’s work derived two key principles that have formed the foundation for all 

modern communication systems. First, he deduced that all information is encoded as 

interpretable symbols. Our alphabet is a suitable example as each letter is a symbol. Our 

alphabet, however, is a poor vehicle for rapidly transmitting information as no individual 

symbol conveys information in isolation. The word “no” is the smallest symbol combination 

possessing an isolated meaning. Shannon developed similar (though more complex) 

deductions to derive his second principle, that information has a specific symbol density. The 

rate at which information of a particular density can be conveyed in a system represents that 

systems bandwidth. Further details of Shannon’s work falls outside the scope of this 

dissertation, but the core principles established above have shaped how we view information 

communication in biological systems19–22. For example, deoxyribonucleic acid (DNA) is 

frequently cited to explain how the principles of information theory pertain to biology. 

Information is written in to DNA using a four symbol code; A, T, G, and C. This code is 

delivered to ribosomes to inform protein synthesis and each symbol is read in groups of 3, 

the codon. The codon represents the density of DNA communication in this system. The 

bandwidth of translation is thus the number of codons the ribosome can read per unit time. 

This example highlights a paradigm that defines all biological systems; specifically an input 
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containing some density of information is delivered and transformed to generate a related 

output at a particular rate. Adaptation, including stress and disease progression, depend on 

this paradigm. In the following I will address how cells leverage this information 

transmission paradigm to convert simple signal inputs in to complex system outputs through 

MAPK signaling pathways. 

Information Transmission in MAPK Signaling Pathways 

Cells use protein networks to transmit information. For environmental adaptation this 

process can be summarized in to 3 stages; an environmental cue is internalized as a 

cytoplasmic signal, that signal is converted into information of a given density, and that 

information is communicated to adaptive machinery to encode a response. This 

generalization applies to a multitude of specific signaling mechanisms. The cue can be 

internalized as a signal through receptor transduction, active transport, or changes in 

membrane energy potential. This signal can then be converted to communicable information 

by a host of second messengers and signaling pathways ranging from classic signals such as 

cyclic AMP, phosphotidyl inositol, and calcium influx to more recent discoveries such as 

proton influx23 and scaffold recruitment24–26. Each second messenger ultimately conveys 

signaling information to a signaling cascade that processes and stores this information for 

later communication to the cells adaptive machinery. There are many classes of signaling 

cascades, each of which perform crucial biological functions. Of these, mitogen activated 

protein kinase (MAPK) cascades are a canonical and widely studied example – and are the 

primary consideration of this thesis. 
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 A kinase, the active unit of a MAPK cascade, is a simple enzyme that binds 

adenosine triphosphate (ATP) and liberates its y-phosphate using a coordinated charge re-

distribution mechanism. Where kinases shine, from an information transmission point of 

view, is in their capacity to append this freed phosphate to specific residues of a bound 

protein substrate; a process referred to as phosphorylation. In so doing, kinases organize raw 

cellular energy in to an array of chemical signals. This organized phosphorylation represents 

a unique signature within the cell. However, as noted by Shannon and Boltzmann, for a 

signature to convey information it must be amplified above the stochastic noise of the 

system. To meet these signal propagation demands organisms utilize a startlingly elegant 

solution, MAPK cascades. 

The core architecture of a MAPK cascade is the same in all eukaryotes27,28, from 

yeast to humans. Each cascade is comprised of 3 kinases, which confer information to one 

another in series. The MAPK kinase kinase (MAP3K) is the first in the series. The MAP3K 

is the gatekeeper of activation for the cascade, and is activated by mediators of second 

messenger signals. Upon activation the MAP3K activates the MAPK kinase (MAP2K) by 

appending two phosphates on two distinct residues of the enzymes activation loop. Once 

activated the MAP2K repeats this process, phosphorylating and thereby activating the MAPK 

– the terminal signal integration point in the cascade.  

The sequential signal transduction mechanism of MAPK cascades serves two 

important information transmission functions. First, the cascade converts the disparate 

chemical signals input at the MAP3K level in to a single phosphorylation-based language 

carried through the cascade. Second, the cascade exponentially amplifies input information 

through basic enzyme kinetics. If a single MAP3K molecule is activated by an upstream 
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signal it will subsequently act upon multiple MAP2K molecules, which will then act on an 

even greater proportion of MAPK molecules. This process is referred to as ultrasensitive 

signal propagation29,30. Ultrasensitive MAPK signals, without external regulation, result in 

exponential signal amplification. Studies of synthetic, unregulated MAPK cascades 

corroborate these conclusions31. Thus, nature has devised a simple signal converter and 

amplifier for communicating extracellular signals.  

MAPK activation is essential for adaptation. The MAPK conveys the converted and 

amplified information of the upstream cascade to hundreds of downstream substrates32–34. 

This transmission step is what enables adaptive behavior. The MAPK conveys this 

information via substrate phosphorylation. Phosphorylation has been observed to amplify or 

weaken enzymatic activity, queue the substrate to be localized or degraded, and increase or 

decrease the affinity of the substrate to binding partners. Thus, by converting extracellular 

cues in to a universal phosphorylation signal and amplifying that signal, the MAPK cascade 

is able to reprogram molecular activity across the cell. This reprogramming impinges upon 

fundamental cellular processes such as transcription35, translation36, and metabolism37 to 

augment cellular behaviors.  

Ultimately, reprogramming causes the cell to either redefine or re-establish 

homeostasis. For example, the mammalian extracellular signal-regulated kinase (ERK) 

cascade is activated by numerous growth hormones, resulting in cell division or 

differentiation38. Thus, ERK signaling redefines homeostasis and pushes the cell toward a 

definitive state change. Conversely, the mammalian p38 MAPK cascade is activated by 

numerous cytotoxic agents, resulting in cell repair and ameliorative mechanisms39. Thus, p38 

signaling re-establishes homeostasis by restoring balance in the face of an environmental 
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challenge. Notably, the cell is able to delineate these vastly different adaptive programs using 

the same general information transmission system, the MAPK cascade. By determining how 

MAPKs transmit adaptive information we can identify ideal means for modulating these 

processes in the interest of therapeutic intervention.  

Two mechanisms dictate how MAPKs transmit adaptive information. The first is the 

substrate specificity of the MAPK. Each MAPK binds to and phosphorylates a specific panel 

of downstream substrates. Thus, the substrate interaction space for the kinase represents the 

adaptive machinery with which it can communicate. However, transient activation of the 

MAPK may only result in phosphorylation of the highest affinity substrates; whereas 

prolonged activation may result in saturation of the interaction space. Following the same 

kinetic logic, activation of a small number of MAPK molecules may minimally 

phosphorylate the substrate pool; whereas activation of all MAPK molecules may saturate 

the substrate pool. This potential for alternative outputs as a function of MAPK amplitude 

and duration was recently highlighted in a study of ERK activity40. By increasing ERK 

activity duration researchers were able to induce cell differentiation upon application of a 

proliferative stimulus. Therefore, the second mechanism mediating distribution of MAPK 

cascade information is the kinetics with which the MAPK is activated. The amplitude, 

duration, and frequency of MAPK activation represents its signaling profile41. Thus, much 

like telephone cables, the kinase-substrate affinities establish the connections in the 

communication network32; but the signaling profile of the kinase establishes the message 

transmitted on these cables. 
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The Computational Architecture of MAPK Signaling Pathways 

 MAPK substrate interaction networks have been generated under a plethora of 

signaling conditions, however in most instances the message originating at the nexus of these 

networks remains to be elucidated. To understand this message we must consider how it is 

generated; specifically by determining how the originating extracellular signal is converted, 

amplified, and applied to the MAPK. A suitable analogy for addressing this problem comes 

from mathematics. Specifically, an environmental input “x” is converted to a related output 

“y” through computation within the MAPK cascade “f(x)”. This computation is performed 

over time, generating a signaling profile curve representing the relationship between input 

and MAPK activity. 

From a strictly biochemical point of view the computational depth of a 3 kinase 

cascade is minimal (Figure 1.1). Each active kinase can have 3 variables that dictate the 

functional form of the pathway; abundance in the cell, binding rate, and catalytic rate. Over 

time, with ample ATP and a low rate of intrinsic dephosphorylation, all the kinase molecules 

in the cascade will arrive at a phosphorylated steady state. Thus, the system would truly only 

communicate one of two messages, on or off, a binary switch. A binary signal produces the 

lowest density of encoded information, and could never produce the flexible permutations of 

signal transduction necessary for life. For example, knowing that a hormone or cytotoxin is 

present in the environment is informative, but to mount an appropriate adaptive response the 

cell must also know the quantity of these cues. To this end, the cell utilizes numerous 

regulatory mechanisms to modulate MAPK cascade signals; tuning and controlling MAPK 

activity. 
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Figure 1.1. MAPK cascades convert and amplify input information in to adaptive 
outputs. An unregulated cascade represents the lowest order of computational 
complexity for this system. Through addition of single regulatory mechanisms, as 
illustrated for scaffolds, phosphatases, or feedback / feed-forward loops the 
dynamic range of these cascades can be greatly enhanced. It is not uncommon for a 
single cascade to possess several of these regulatory mechansisms in combination.
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Regulatory mechanisms act as additional variables in our mathematical analogy. 

Addition of variables increases the dynamic range of the binary cascade, creating greater 

computational depth (Figure 1.1). This increase in computational depth is necessary for 

generating complex adaptive processes. A MAPK cascade and all its constituent regulatory 

mechanisms are referred to as a MAPK pathway. Numerous MAPK pathway components 

have been identified. For example, scaffolds are catalytically inactive proteins that 

simultaneously bind multiple pathway components42. In so doing, scaffolds can increase or 

decrease information transmission kinetics. Phosphatases also regulate MAPK cascade 

activity43–46. Phosphatases strip phosphates from peptides. If the rate with which a kinase 

phosphorylates a peptide is significantly lower than the dephosphorylation rate of a 

competing phosphatase the signal extinguishes. Thus, phosphatases can edit information 

transmission directly within the pathway or at the level of MAPK substrates. In this way, 

phosphatases filter low amplitude signaling events while increasing the dynamic range of the 

cascade. Lastly, feedback phosphorylation has been attributed to large increases in MAPK 

pathway computational complexity47–51. Through feedback MAPK pathways can exert 

differential computations on an input with respect to time, with early activation of the MAPK 

impinging on the computational equation to dynamically edit information transmission. A 

multitude of MAPK pathway regulators have been identified, each with unique activities and 

dose or time dependent behaviors43,47,48. Each serves to modulate the information 

transmission process, culminating in the controlled activation of just one protein, the MAPK. 

Through kinase cascades, cells have developed a mechanism to convert and amplify 

extracellular signals in to transmittable information. Through modulation of these cascades 

cells dynamically regulate the information transmission process to tune their adaptive 
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response. This behavior can be captured in the above f(x) = y analogy, however this analogy 

remains a dramatic over-simplification of the complexities of biological activity. It does 

however, provide a reasonable platform for approaching a difficult question. Namely, how do 

MAPK pathways encode environmental information in a way that is both dynamic and 

meaningful for adaptation? To answer this question one must begin carefully measuring “y” 

for all “x” values. In this way, a relationship can be established and a signaling profile for the 

system elucidated. Using this simple approach, several researchers have recently uncovered a 

wealth of information regarding how information transmission informs cell fate41,52. To 

repeat an above example, the duration of ERK activity dictates whether a cell will proliferate 

or differentiate to the same stimulus40. Further, the sum of total active ERK molecules 

functions as a signal integrator capable of establishing a threshold for cell proliferation53. 

Like-wise, signaling profiles of p53 have demonstrated that the frequency of signaling, either 

pulsed or steady, can result in entirely different cell fate and recovery mechanisms to the 

same DNA damage stimulus54. These experiments highlight the importance of elucidating 

total signaling profiles for a given information transmission circuit. It is no longer sufficient 

to simply assess whether a signal is on or off. 

The above examples of ERK activity represent a canonical signaling mechanism. 

Specifically, a graded signal dictates a switch-like cell fate decision. This rheostat to switch 

system is a logical process for determining if a change in cell fate is necessary. For example, 

the decision to divide is a major and irreversible decision. Thus, integrating environmental 

information as ERK activity duration can allow the cell to establish a decision making 

threshold48,55. This rheostat to switch decision making process exists for numerous biological 

systems.  However, in the face of strong cytotoxic events, decision making prior to action 
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may not be an affordable luxury. Under these circumstances the cell should commit to 

adapting as soon as possible to mitigate damage, and tune its response thereafter. This system 

would represent a switch that tunes a biological rheostat. No MAPK signaling profiles have 

yet been identified that possess this switch-to-rheostat characteristic. However, recent 

observations of the high osmolarity glycerol (HOG) MAPK pathway in S. cerevisiae have 

hinted at just this possible ordering of operations.  

HOG1: an Ancestral MAPK Pathway for Decoding Stress Adaptation 

The bakers yeast S. cerevisiae has been a workhorse of stress signaling research for 

decades56–60. Central to the capacity of yeast to respond to extracellular stress is the HOG 

MAPK pathway. The HOG pathway is activated by hyperosmotic stress through the 

independent activation of two receptors; Sln1 and Sho1. The Sln1 branch is comprised of a 

histidine kinase cascade conserved from bacteria. The Sho1 branch is a canonical MAPK 

signaling cascade. The HOG pathway is among the best defined in biology58. In the Sln1 

branch the receptor, Sln1, and two histidine kinases, Ypd1 and Ssk1, are coupled together at 

the membrane. During normal cellular conditions this complex is autophosphorylated via 

phosphorelay from Sln1 through Ypd1 to Ssk1. Upon osmotic shock autophosphorylation 

ceases and Ssk1 is activated. Upon activation Ssk1 phosphorylates Ssk2 and Ssk22, two 

downstream histidine kinases. Ssk2/22 phosphorylate and activate Pbs2, the MAP2K of the 

Hog1 cascade, which in turn phosphorylates and activates Hog1. In the Sho1 branch the 

receptor, Sho1, binds to two transmembrane mucin proteins Hkr1 and Msb2. Upon 

osmostress these mucins recruit a Rho GTPase (Cdc42) along with the GTPase activator 

Cdc24, a guanine nucleotide exchange factor, and a scaffold that brings Cdc42 and Cdc24 

together (Bem1)61. While this is occurring the p21-activated protein kinase (PAK) Ste20 is 
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likely to associate with the Bem1/Cdc42/Cdc24 complex. Cdc24 activates Cdc42, which in 

turn activates Ste20. The MAP3K Ste11 is then chaperoned to the cell surface by the scaffold 

Ste50, which contacts Cdc42 and brings Ste11 in to proximity with active Ste20. Ste20 

activates Ste11, and active Ste11 phosphorylates the MAP2K Pbs2, which again 

phosphorylates of the MAPK Hog1. Both branches have been described as having alternative 

mechanisms of regulation and activation kinetics. It is currently unclear whether this 2-

branch system acts synergistically or competitively for Pbs2, however each branch is capable 

of activating Hog1 in isolation. 

The Leading Edge of Hog1 Information Transmission 

As mentioned, the Hog1 pathway and the entire osmostress response circuit have 

been studied extensively. The diversity of these studies has lent to formation of multiple 

context specific conflicts, however the core sequence of events culminating in adaptation 

from this pathway have been consistently observed. Namely, activation of the pathway 

results in the rapid localization of Hog1 to the nucleus62–64. This process depends on 

phosphorylation of Hog1, but occurs for numerous doses of osmostress within minutes of 

activation and nearly all Hog1 molecules are transported. This accumulation suggests that 

phosphorylation of Hog1 is switch-like. Indeed several recent studies have demonstrated a 

switch-like accumulation of phosphorylated Hog165. This switch-like activation mechanism 

also results in the immediate blockade of the cell cycle, another switch-like event66. 

However, both the duration Hog1 remains in the nucleus and the quantity of transcriptional 

products produced during this time are dose-dependent62. Thus, the HOG pathway seems to 

function as a switch-to-rheostat information transmission system. As mentioned above, this is 
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an uncommonly observed organization of signal types. Thus far, a mechanism for how Hog1 

achieves this unlikely ordering of operations, and the biological consequences of such 

actions, have remained elusive. The goal of this thesis is to resolve the mechanisms 

underlying these observations and elucidate the biological consequences of the information 

conveyed by the Hog1 stress adaptive circuit. 

15



CHAPTER II 

MAPK FEEDBACK SETS A SWITCH AND TIMER 
FOR TUNABLE STRESS ADAPTATION IN YEAST1, 2 

Signaling pathways can behave as switches or rheostats, generating binary or graded 

responses to a given cell stimulus. Osmotic stress activates the MAPK Hog1 resulting in 

switch-like nuclear translocation and cell division arrest, but graded transcription and 

recovery. Here we consider how this pathway can simultaneously encode a switch and a 

rheostat. We demonstrate that Hog1 facilitates a bifurcated cellular response wherein Hog1 

activation and commitment to adaptation are switch-like, while protein induction and the 

resolution of this commitment are graded. We demonstrate that graded recovery is encoded 

through feedback phosphorylation and a gene induction program that is both temporally 

staggered and variable across the population. This switch-to-rheostat signaling mechanism 

represents an ideal stress adaptation system; with a broad range of inputs generating an all-in 

response that is later tuned to allow graded recovery of individual cells over time. 

1 Elements of the work referenced in this chapter have been published in: PENDING 
2 Figures contributed by: 

Justin G. English; 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 
James P. Shellhammer; 2.2c‐d  
Michael Malahe; 2.7b 
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Introduction 

Mitogen activated protein kinase (MAPK) pathways are dynamic signaling modules present 

in all eukaryotic cells. These modules are activated by an environmental input such as the 

introduction of a hormone or cytotoxic stress, which generates a signal that is transmitted by 

sequential phosphorylation of a protein kinase cascade to a terminal MAPK. Once activated, 

the MAPK phosphorylates numerous protein substrates throughout the cell—effectively 

transmitting the input signal as a distinct pattern of protein phosphorylations. This 

phosphorylation-encoded information confers a symphony of changes in protein activity, 

localization, and abundance – a process that ultimately decodes the input information into 

adaptive behavior. For example, human growth factors activate the ERK MAPK module, 

which initiates cell division38. Cytotoxic agents activate the p38 and JNK MAPK modules, 

resulting in apoptosis, inflammation, or autophagy67,68. By deciphering how the cell encodes 

and decodes information via MAPK modules, we can begin to understand the molecular 

mechanisms driving animal development, behavior, homeostasis, and disease. 

The high osmolarity glycerol (HOG) pathway of S. cerevisiae (yeast) has long been 

used to investigate how cells encode and decode environmental information into appropriate 

adaptive responses56,69. The HOG pathway has two distinct branches, each activated by 

osmotic stress. The first (Sln1 branch) is comprised of a 2-component system evolutionarily 

conserved in bacteria and yeast. The second (Sho1 branch) is activated by an integral 

membrane scaffold similar to numerous mammalian systems. These two branches converge 

on a shared MAPK kinase (MAP2K) Pbs2 and the MAPK Hog1. Hog1 activation triggers a 

cascade of signaling and transcription events that promote stress adaptation through osmolyte 

synthesis and other responses58. Notably, Hog1 was central in the discovery of the 
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mammalian stress adaptation MAPK JNK, demonstrating for the first time a conservation of 

MAPK function from yeast to humans70. 

MAPK signaling is a dynamic process with complexity that extends beyond mere 

activation and inactivation. Rather, MAPK modules are tunable communicators of 

information wherein the onset, amplitude, and duration of MAPK activation combine to 

generate a unique signaling profile41. These profiles directly affect how input information is 

encoded and ultimately decoded to change cellular behavior. For example, increasing the 

duration of ERK MAPK signaling causes the input normally used to encode cell division to 

instead initiate differentiation40. Appropriate responses to stress, mitogens, and other stimuli 

also hinge upon producing distinct signaling profiles52,54,71. However, it remains unclear how 

these signaling profiles are generated. Identifying the mechanisms that coordinate the onset, 

amplitude, and duration of MAPK activation will allow us to interpret, predict, and intervene 

in the information transmission processes of the cell. Such interventions may eventually 

include drugs that restore the MAPK signaling profile in disease states. 

The terms switch and rheostat are traditionally used to describe the relationship 

between input and output in signaling systems. A switch produces a binary, on or off, fate 

decision with no intermediary responses. A rheostat generates a graded output. Cell division 

uses switches to threshold checkpoints at the level of MAPK signaling72 and cell cycle 

progression48. Chemotaxis uses rheostats to flexibly track and dynamically adjust to signal 

amplitude and direction. In some cases a rheostat can beget a switch53. For example, 

activation of the MAPK Fus3 occurs in a dose-dependent manner, but leads to switch-like 

arrest of cell division and cell-cell fusion42,66,73,74. Conversely, several investigators have 

demonstrated that activation of Hog1 is switch-like, but ultimately leads to graded 
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outputs62,65,66. Unresolved are the direct biochemical mechanisms that can encode this 

unusual ordering of response types. 

Here we define the mechanisms encoding the Hog1 response and its consequences on 

downstream output. Our strategy employs a new method to ratiometrically quantify 

phosphorylation at multiple levels of the Hog1 signaling cascade over time and in response to 

a wide range of input concentrations. In so doing, we define a linear function that relates the 

stimulus dose to Hog1 activity duration, a profile we had previously characterized as dose-to-

duration signaling75. Dose-to-duration signaling can account for the ability of some cells to 

detect changes in a stimulus above that needed for saturation of receptors. We show that 

dose-to-duration signaling depends on Hog1 feedback, and that it allows Hog1 to encode 

both the switch and the rheostat. The Hog1 switch rapidly engages all cells in the adaptive 

process, but also allows individual cells to progress down a temporally graded adaptive 

program. Our findings reveal how a switch and rheostat can work simultaneously to ensure 

an appropriate response to an environmental stress. 

Results 

Hog1 is a switch-like timer that linearly transforms dose to duration  

Our goal for this work was to identify the exact dose-to-duration relationship between 

input strength, Hog1 activity, and signaling output. We additionally endeavored to define the 

proteins and processes that encode this dose-to-duration profile. Hog1 is activated when the 

MAP2K Pbs2 phosphorylates the activation loop residues T174 and Y17656. Accordingly, 

activation of Hog1 has traditionally been measured using antibodies raised against the 

phosphorylated activation loop of a homologous MAPK, p38. Alternatively, activation of the 
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kinase has also been measured by tracking the translocation of a Hog1-GFP fusion into the 

nucleus. Neither method provides simultaneous measurement of the timing and amplitude of 

MAPK activation. The anti-phospho-p38 method does not provide the stoichiometry of 

activated and inactivated states and does not fully differentiate between the mono- and 

dually-phosphorylated forms of the kinase (Figure 2.1). Measurements of nuclear 

translocation suffer from similar shortcomings. For example, monophosphorylation is 

sufficient for nuclear translocation but not for full activation of the kinase43,76. Conversely, 

Hog1 promotes stress resistance and mitophagy under conditions that do not normally lead to  

nuclear translocation77,78. Thus it remains unclear the extent to which Hog1 phosphorylation 

and nuclear translocation are correlated. Given these limitations we sought an alternative 

method that accurately measures the dynamics and stoichiometry of Hog1 phosphorylation. 

Phos-tag is a metal-coordinating small molecule with a high affinity for 

phosphorylated serine, threonine, and tyrosine79. Addition of Phos-tag to acrylamide gels 

slows the migration of polypeptides in proportion to the number of phosphorylations on the 

molecule. Accordingly, we analyzed whole cell lysates using our modified method for Phos-

tag analysis. As compared to unstimulated cells, cells osmostressed with 550 mM KCl for 

five min exhibited slowed Hog1 migration (Figure 2.2a). Strains harboring integrated Hog1 

mutations T174A or Y176F exhibited faster migration, in accordance with a reduced number 

of phosphorylations on the polypeptide. Deletion of the MAP2K Pbs2 resulted in migration 

of Hog1 identical to that observed in unstimulated cells. Interestingly, we never observed 

accumulation of mono-phosphorylated Hog1 in wildtype cells. Strains lacking each of the 

phosphatases known to act on Hog1 likewise produced only the dually phosphorylated 

species, suggesting redundant functions of the MAPK phosphatases. These results 
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Figure 2.2. The Hog1 signaling profile is a linear function that converts dose-to-duration.

A. Validation of Phos-tag method for resolving dual-phosphorylated and activated (top band) or 
unactivated (bottom band) Hog1. Cells untreated (-) or treated for 5 min (+) with 550 mM KCl were 
lysed, resolved by Phos-tag SDS-PAGE, and immunoblotted with Hog1 antibodies. Hog1TA and 
Hog1YF, mutants lacking one of two phosphorylation sites; Hog1T100A, analogue sensitive mutant; 
ptc1∆ and ptc2∆, serine/threonine phosphatase mutants. ptp2∆ and ptp3∆, tyrosine phosphatase 
mutants; pbs2∆ and hog1∆, MAP2K and MAPK mutants, respectively.

B. Hog1 activation over time. Wildtype cells were treated with 550 mM KCl, lysed and probed by 
immunoblotting with Hog1 antibodies. Top, Phos-tag Bis-Tris SDS PAGE. Bottom, identical samples 
in the absence of Phos-tag.

C. Hog1 signaling profile. Wildtype cells were treated with the indicated doses of KCl. Percentage of 
dually phosphorylated Hog1 was calculated by dividing intensity of the upper band by the total 
intensity of all Hog1 bands in each lane. Data are means +/- SEM (n > 3).

D. Integration of the Hog1 signaling profile. Data from C are presented as mean area under the curve 
+/- SEM.
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demonstrate that the entire pool of cellular Hog1 is dually phosphorylated in response to 

osmotic stress.  

Our next objective was to define the Hog1 signaling profile; that is, the amplitude and 

duration of Hog1 activation as a function of time and dose of stimulus. We therefore 

performed eight time course experiments (Figure 2.2b-c) using a range of salt concentrations 

up to 650 mM, a dose past which cellular compression begins to restrict molecular 

diffusion80. From these experiments it is evident that Hog1 is activated processively and 

phosphorylated maximally in response to low doses of osmostress. In particular, we observed 

full activation of Hog1 between 50 mM and 150 mM KCl, doses that we had previously 

regarded as non-activating. While activation of Hog1 occurred rapidly at all doses tested, the 

duration of Hog1 activity was graded, with increasing stimulus concentrations producing 

longer periods of maximum phosphorylation. Additionally, deactivation of Hog1 was 

significantly slower than its activation and was relatively dose independent, with 95%-98% 

of the kinase dephosphorylating in a 10 min window. Integrating the area under each time 

series of Hog1 activity revealed a linear relationship between the dose of osmostress and the 

duration of total Hog1 activity (Figure 2.2d). Thus the activation of Hog1 is switch like, 

while the duration and deactivation of Hog1 are graded. This signaling profile allows Hog1 

to reliably convert input strength to Hog1 activity duration. As shown below, this 

relationship can be used to identify regulatory components and predict the behavior of Hog1 

under various experimental conditions. 

The Hog1 signaling profile is encoded by multiple upstream components 

23



0
25
50
75

100
125
150
175

KCl (mM)

wildtype
ssk1∆
rga1∆
hog1∆

0
20

0
40

0
60

0
80

0

re
la

tiv
e 

flu
or

es
ce

nc
e

C

0 200 400 600 800
0

800

1.6K

2.4K wildtype
ssk1∆
rga1∆

ar
ea

 (%
pp

H
og

1 
* m

in
)

KCl (mM)

D E

re
la

tiv
e 

flu
or

es
ce

nc
e

Hog1 activity duration (log)

∆ssk1
wildtype

rga1∆

B

- 100 - 50 50 100

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

∆EC50

∆Hill slope

ssk1∆
ssk2∆

nha1∆

rga1∆

ste50∆
sho1∆
rga2∆

ste20∆

bem3∆

A

cytoplasm

plasma membrane

ssk1

sln1

ssk22 ste11ssk2

pbs2

bem3

rga2 rga1

hog1

opy2ste50

ste20
nha1

cdc24cdc42

msb2 sho1 hkr1

1 2 3 4
0

25
50
75

100
125
150
175

Figure 2.3. The Hog1 signaling profile can be re-engineered through component gene deletions.
A. Diagram of the Hog1 signaling pathway. Colored circles correspond to data points in B. Gray 
circles, pathway component deletions without effect. Black circles, essential pathway components that 
were not evaluated. 
B. Summary of transcription reporter data. 8XCRE-LacZ Hill slope and EC50 for each mutant strain 
plotted relative to wildtype (black dot) and color coded as in A. Only significant (p < 0.05) changes 
are displayed. See Figure 2.3 for complete data set.
C. Transcription reporter data for wildtype, ssk1∆, rga1∆, and hog1∆ strains. Data are mean relative 
fluorescence +/- SEM (n > 4).
D. Integration of Hog1 signaling profiles for ssk1∆ and rga1∆ strains. Wildtype is shown for reference 
(see Figure 2.1). Data from Figure 2.3 are presented as mean area under the curve +/- SEM.
E. Comparison of transcriptional output to total Hog1 activity. Computational transformation of data 
in C, where X-axis values are replaced using Hog1 duration as determined in D for wildtype, ssk1∆ 
and rga1∆.
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Extensive effort has gone toward understanding how molecular signaling components 

encode, transmit, and decode information about environmental conditions53–55,66,81. One of 

the best known examples of an encoding component is the kinase scaffold Ste5, which is 

regulated via localization, feedback phosphorylation, and conformational changes that relate 

pheromone concentration to Fus3 MAPK activity51,74,82,83. Our studies of the Fus3 pathway 

were the first to suggest a dose-to-duration mechanism for MAPK signaling75. Above we 

demonstrate that Hog1 functions in a similar manner, converting input strength to total Hog1 

activity duration. Below, we identify components of the Hog1 pathway responsible for this 

conversion, reengineer the pathway through deletion of these pathway components, and use 

those reengineered pathways to demonstrate how downstream output is determined by the 

duration of MAPK activation. 

An input-output relationship has been established between Hog1 nuclear dwell time 

and transcriptional output62. We predicted that deletion of encoding components upstream of 

Hog1 would transform the functional dependence of Hog1 activity on salt concentration, 

leading to commensurate changes in downstream transcription. We therefore monitored 

pathway output using a Hog1-dependent promoter fused to the -galactosidase gene (CRE-

lacZ, CLZ). Using this reporter we conducted a screen wherein we individually deleted each 

of 15 non-essential upstream components of the Hog1 pathway and calculated dose-response 

curves for transcriptional output (Figure 2.3a-b). CRE-lacZ induction in wildtype cells 

requires a minimum of 200 mM KCl, and exhibits a Hill slope of approximately 3 (Figure 

2.3c). As compared to wildtype, deletion of SSK1, SSK2, SHO1, STE20, or STE50 increased 

the EC50 (Figures 2.3b and 2.4a). Deletion of SSK1 or SSK2 increased the Hill slope. These 

results reveal several components that act as potential encoders of Hog1 activity. In addition 
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Figure 2.4. The complete transcription and Hog1 activity quantifications for Figure 2.3

A. Rank order of change in transcription reporter Hill slope and EC50 for each mutant strain, relative 
to wildtype. Significant (p < 0.05) increases or decreases are annotated by green or red shading, 
respectively.  Data are mean relative fluorescence +/- SEM (n > 4).

B. Hog1 signaling profile in an ssk1∆ strain determined as described in Figure 2.2. Data are means 
+/- SEM (n = 3).

C. Hog1 signaling profile in an rga1∆ strain, determined as described in Figure 2.2 (n = 1).
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to these known pathway components we also assessed the contribution of the GTPase 

activating proteins for Cdc42; RGA1, RGA2 and BEM384,85. Cdc42 is essential for Sho1 

branch activity86. Of the Cdc42 regulators, deletion of Rga1 had by far the largest effect on 

transcription reporter activity, increasing the EC50 and decreasing the Hill slope 

substantially. These data reveal a unique and previously unrecognized role of Rga1 in the 

Hog1 signaling pathway. 

Our next step was to determine the functional relationship between Hog1-mediated 

transcription and Hog1 activation. Having identified several candidate encoders of 

transcription, we selected Ssk1 and Rga1 for in-depth analysis of Hog1 function. Ssk1 is 

essential for the Sln1 branch of the HOG pathway. Rga1 represents a novel regulator of the 

Sho1 branch of the pathway. Deletion of these components had the most prominent effects 

on both the Hill slope and EC50 for our transcriptional reporter. As shown in Figure 2.4b-c, 

deletion of SSK1 produced a delay in Hog1 activation. Deletion of RGA1 shortened the 

duration of Hog1 activity at low doses and prolonged activity at high doses. Integration of 

these signaling profiles revealed that both deletions affect the relationship between dose and 

duration for Hog1 activity (Figure 2.3d). Deletion of SSK1 preserved the linear relationship, 

but produced a steeper slope and x-intercept that was right-shifted as compared to wildtype. 

Deletion of RGA1 produced a sigmoidal relationship, with less total Hog1 activity at low 

doses and greater Hog1 activity at high doses. Thus, the Sln1/Ssk1 branch increases the 

dynamic range of the pathway by allowing Hog1 to become activated at low doses and limits 

the duration of Hog1 activation at high doses. The Sho1 branch establishes the linearity of 

the input-output relationship for the Hog1 pathway. 
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Having determined the contributions of Ssk1 (Sln1 branch) and Rga1 (Sho1 branch) 

to Hog1-mediated transcription and Hog1 activation, we next sought to determine the 

functional relationship between transcriptional output and Hog1 activity. Accordingly, we 

plotted transcriptional output as a function of the duration of Hog1 activation, as measured 

by the area under the curve, for wildtype, ssk1, and rga1 strains (Figure 2.3f). When 

plotted using this transformation we observed nearly identical induction and output EC50 

values for the wildtype and ssk1 strains (Figure 2.3f). When plotted using this 

transformation we observed nearly identical induction and output EC50 values for the 

wildtype and ssk1 strains (Figure 2.3f). However, the behavior of these strains differed 

from that of the rga1 strain. Part of this difference may be due to pre-adaptation in the 

rga1D mutant, given that basal transcription is elevated in this strain and suppressed in the 

ssk1D mutant87 (Figure 2.3e). Taken together, our results suggest that the Hog1 signaling 

profile is encoded differently by the two branches of the Hog1 pathway. Additionally, Hog1 

activity duration is insufficient to predict transcriptional output under conditions where 

integrity of the Sho1 branch is perturbed. 

Hog1 feedback phosphorylation encodes dose-to-duration signaling 

In our previous modeling analysis we postulated that dose-to-duration signaling is 

mediated by a feedback mechanism75. Theoretically, the MAPK may be the origin of this 

feedback, conveying information via phosphorylation to tune upstream pathway output. 

Positive feedback drives switch-like behavior, while negative feedback tunes oscillators and 

rheostats88. The Hog1 profile has features of both a switch and rheostat. Therefore, feedback 

in this pathway may a combination of positive and negative feedback loops (Figure 2.5a). 
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Indeed, we previously identified two feedback targets of Hog1 in this pathway49,50. To assess 

the overall contribution of Hog1 feedback we set forth to directly block all Hog1 catalytic 

activity. In so doing we predicted that we would disrupt the dose-to-duration relationship 

between input strength and Hog1 activation. To test this prediction, we blocked Hog1 

activity using a variant of the kinase (Hog1T100A)89 engineered to be sensitive to the ATP-

analogue 1-NA-PP190. This method of inhibition has several important advantages over 

mutations that permanently disrupt the catalytic activity of the kinase. In the absence of 

inhibitor the T100A mutation has no detectable effects on Hog1 activity. Conversely, the 

presence of the inhibitor has no effect on the wildtype kinase (Figure 2.6). Thus, cells 

bearing Hog1T100A will signal normally but are selectively inactivated within minutes of 

analogue addition. Such acute inhibition limits the opportunity for genetic adaptation or 

changes in basal activity of the pathway.  

For our experiment, cells were pre-treated for two minutes with 1-NA-PP1, then 

exposed to a range of salt concentrations and harvested at different times. As shown in 

Figure 2.5b, acute inhibition of kinase activity significantly decreased the amplitude and 

increased the duration of Hog1 activation (dual phosphorylation). As expected for such a 

signaling profile, we calculated a non-linear relationship between salt concentration and area 

under the curve for Hog1 activation (Figure 2.5c). In particular, we observed a requirement 

of Hog1 catalytic activity for switch-like activation of the kinase, indicative of a Hog1-

mediated positive feedback loop. We also observed a requirement of Hog1 catalytic activity 

for its own dephosphorylation, indicative of a Hog1-mediated negative feedback loop. Taken 

together, our results point to the existence of at least two feedback mechanisms: a positive 

feedback loop that ensures switch-like activation at all doses of stimulus and a negative 
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feedback loop that ensures graded inactivation over time.  We conclude that Hog1 feedback 

encodes both a rapid switch and a tunable rheostat.  

Hog1 feedback encodes dose as graded bits of patterned phosphorylation 

For Hog1 to encode dose-to-duration, some target of Hog1 must be regulated in a 

graded manner. Phosphorylation is the currency of MAPK signaling, and many MAPK 

substrates are phosphorylated at multiple sites. Such multi-site phosphorylation can be 

compared to the binary bit language of computing91. By this analogy, a single protein 

phosphorylation event shifts the bit state of the substrate amino acid from 0 

(unphosphorylated) to 1 (phosphorylated). The number of potential phosphorylation sites on 

a protein represents its bit length. For example, Hog1 can accept two phosphorylations and 

thus it has a bit length of 2, coding 22 or 4 bit states. However, we have demonstrated that 

Hog1 only persists in 2 of its 4 potential states, unphosphorylated or dually phosphorylated. 

Thus Hog1 functions as a binary switch with just two potential states, on or off. Additionally, 

we have shown that feedback regulation is a critical component of dose-to-duration, and that 

feedback phosphorylation converts the Hog1 switch into a tunable rheostat. Here we consider 

how this switch-to-rheostat conversion might be accomplished via bit state encoding on 

feedback substrates. 

In our forward genetic screen we identified multiple components that affect Hog1 

activity, all of which contain consensus sites for MAPK phosphorylation. Even in this limited 

analysis of 15 pathway components, we counted over 100 potential MAPK phosphorylation 

sites. Discerning the phosphorylation state of each feedback site, and its individual 

contribution to dose-to-duration signaling is impractical. Additionally, no single feedback 
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loop is likely to encode the entire complex topography of the Hog1 signaling profile. 

However, the relative contribution of a single loop can be investigated in isolation. We and 

others have previously demonstrated that Ste50 is a substrate of Hog149,66,92, and contains 5 

documented sites for MAPK phosphorylation, amounting in 25 or 32 bit states. This rich 

diversity of Ste50 bit-states can be observed using Phos-tag, as demonstrated in Figure 2.7a. 

Upon treatment with a high dose of salt, Ste50 rapidly accumulates as a high-migrating 

species and then relaxes back to the original migration pattern over time. Since the 

phosphorylated species is absent in a pbs2 mutant, Ste50 feedback phosphorylation is 

dependent on Hog1 activity. 

We then considered whether the phosphorylation of Ste50 is graded. To that end we 

measured the bit states occupied by Ste50 over a range of doses and times. These data were 

then internally normalized for intensity and aligned computationally (see methods) to 

generate an average bit state occupancy histogram for each condition. As shown in Figure 

2.7b, Ste50 phosphorylation was indeed graded, occupying a smaller number of increasingly 

higher bit states as input strength increased. These phosphorylation events occurred rapidly, 

with obvious shifts after 2 min of stimulus addition. Peak Ste50 phosphorylation occurred by 

15 min for all doses, and returned to baseline by 30 to 60 min. This trend is highlighted via 

plotting of the median migration distance of all Ste50 molecules (Figure 2.8a). Integrating 

each median curve demonstrates a linear relationship between input strength and the 

accumulation of phosphorylated Ste50 (Figure 2.7c). Thus, Hog1 encodes dose as a pattern 

of graded bit state phosphorylations on the Ste50 scaffold. While Hog1 is phosphorylated as 

a switch, Ste50 is phosphorylated as a rheostat.  
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Figure 2.7. Hog1 encodes dose-to-duration signaling through graded phosphorylation

A. Ste50 phosphorylation over time. Wildtype and the indicated mutant strains were treated with KCl, 
processed via Phos-tag immunoblotting, and probed with Ste50 antibodies. 

B. Ste50 phosphorylation profile. Wildtype cells were treated as in A with the indicated concentrations of 
KCl. Each histogram represents > 2 biological replicates. Red, mean Ste50 distribution measured from 
unstimulated cells; black, mean Ste50 distribution measured for each dose-time in the variable matrix. 
Shading, +/- SEM (red and gray) or the positional confidence of our computational alignment for the 
data (blue). 

C. Integration of the Ste50 phosphorylation profile (see Figure 2.8a). Data are mean area under the curve 
+/- SEM.

D. Integration of the Hog1 signaling profile for the Ste505A strain. Wildtype is shown for reference (see 
Figure 2.2). Data from Figure 2.8b are presented as mean area under the curve +/- SEM.

E. Transcription reporter data for wildtype (black) and Ste505A (blue). Data are mean relative fluores-
cence +/- SEM (n > 4).

F. Comparison of transcriptional output to total Hog1 activity. Computational transformation of data in 
E, where X-axis values are replaced using Hog1 duration as determined in D for wildtype (black), and 
Ste505A (blue).
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A.  Average Ste50 migration. Data are means derived from the alignments in Figure 2.7c +/- SEM 
(n > 2). 

B. Hog1 signaling profile in the Ste505A strain (n = 1).
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Our next goal was to determine if graded feedback to Ste50 contributes to 

establishing the Hog1 dose-to-duration signal. To that end we replaced all documented Hog1 

feedback sites on Ste50 and determined the Hog1 signaling profile for this mutant. Ablation 

of Ste50 feedback phosphorylation modulated Hog1 activity duration, rather than signaling 

amplitude, and disrupted the linearity of the Hog1 dose-to-duration response (Figures 2.7d 

and 2.8b). In contrast, the CRE-lacZ profile for the Ste505A mutant was identical to wildtype 

(Figure 2.7e). This seemingly incongruous behavior appears to be a consequence of a 

reduced gene induction threshold in this mutant.  This reduction can be highlighted using the 

dose to duration conversion method outlined in Figure 2.3 (Figure 2.7f). Again, we discover 

that perturbation of components in the Sho1 branch results in a failure of Hog1 duration to 

predict gene induction. Thus the effects of the Ste505A mutant are largely masked in the 

reporter assay, but revealed through direct observation of Hog1 activity over time. 

Taken together, these data reveal a time- and dose-dependent increase in Ste50 

phosphorylation. As with activation of Hog1, the increase in phosphorylation is rapid and 

transient. In contrast to Hog1, the increase in phosphorylation occurs with a dose-dependent 

profile that is clearly graded. Thus the switch-to-rheostat conversion occurs at the level of 

Hog1-mediated phosphorylation. 

Hog1 activity duration coordinates a tiered adaptive program 

Switch-like signals usually underlie commitment to a binary developmental or 

adaptive output such as cell division93, neuronal potentiation and backfiring94,95, or cell 

differentiation96,97. These processes have high energy costs, are often irreversible, and 

produce a consistent set of outputs. Therefore, most switches are carefully regulated by 
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graded inputs that either (i) overcome dose thresholds to filter environmental noise or (ii) 

traverse a buffered signaling cascade before initiating the switch. In contrast, Hog1 employs 

an inverse switching regime, referred to here as a tunable bifurcated response, wherein 

commitment to adaptation is switch-like and the resolution of this commitment is graded. 

This hypothesis is supported by multiple observations. First, Hog1 is activated in a switch-

like manner, while substrate phosphorylation is graded. Second, the time that Hog1 spends in 

the nucleus dictates the sequential production of Hog1-regulated genes62.  Third, the 

occupancy of Hog1-regulated transcription factors to their gene promoters is time 

dependent98. Paradoxically, Hog1 activation does not correlate precisely with CRE-lacZ 

induction when the Sho1 pathway is perturbed. Here we build on this observation to 

determine if Hog1 activity duration encodes an alternative, graded adaptation program. 

We began by analyzing an existing microarray data set60 where cells were treated 

with a high dose of salt and monitored for gene expression under continuous stimulation. In 

this analysis we identified 4 gene clusters, each with distinct time-dependent activation 

thresholds (Figure 2.9a). All four clusters are highly enriched for genes regulated by Hog1 

and its canonical transcription factors Msn2, Msn4, Sko1, and Hot1 (Table 2.1). However, 

each cluster dictates progressively higher levels of energy commitment, as determined via 

gene ontology (GO) analysis (Figure 2.9b). Each cluster encodes its own progressive and 

unique set of general stress response elements, such as heat shock proteins, chaperones, and 

cytotoxic response elements. Cluster 1 encodes for catabolism of proteins and carbohydrates 

while driving strong induction of genes for osmolyte synthesis and energy storage. Cluster 1 

operates in isolation for the first 15 minutes of the stress response. Between 15 and 30 

minutes cluster 2 is engaged, demarcating a pronounced change in the cellular energy 
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Figure 2.9. Hog1 executes a tiered adaptive program over time.

A. mRNA content quantified from wildtype cells treated with 700 mM 
NaCl every 15 min post-stimulation (Guan et al., 2012) and sorted with 
respect to time until >2-fold Log2 change. Scale is Log2 fold change with 
respect to unstimulated cells.

B. Gene ontology (GO) analysis of clusters 1, 2, 3 and 4 from A. Numerals 
represent total number of unique genes in category. 

C. GFP-tagged protein abundance measured via flow cytometry. Candi-
date genes were selected at random from those listed in A and treated with 0, 350, or 650 mM KCl for 30 min. Displayed 
are 67 GFP fusion for which expression increased following stimulation. Change in median intensity and robust CV are 
reported as Log2 fold-change of 350 mM over 650 mM. The parent cluster for each protein is represented by the color key 
(right) in gray (cluster 1), yellow (cluster 2), orange (cluster 3), and red (cluster 4).39



landscape. Cluster 2 greatly increases synthesis of genes driving protein catabolism and 

energy storage while generating starvation mediators and components necessary for 

autophagy.  This starvation and survival profile is likely a consequence of the rapid 

conversion of freely available carbohydrates such as glucose and fructose to osmolytes such 

as trehalose and glycerol. Lastly clusters 3 and 4 ramp up amino acid synthesis, potentially to 

compensate for the pronounced protein catabolism and autophagy driven by clusters 1 and 2. 

We presume that sequential induction of these clusters would serve to tune the adaptive 

response by facilitating sufficient catabolism and stress mediation while optimizing for 

fitness after recovery. We propose that this step-wise pattern of gene induction is facilitated 

through dose-to-duration signaling.  

To directly assess the consequences of dose-to-duration signaling we next measured 

changes in the abundance of the proteins encoded by each of the gene clusters. Accordingly, 

we measured induction of an unbiased subset of 95 proteins from clusters 1-4. Each protein 

was expressed from the native gene locus as a GFP fusion and measured by fluorescence 

cytometry (Figure 2.9c). Cells were treated with 350 mM or 650 mM KCl, doses sufficient 

to activate Hog1 for 20 or 30 min, respectively. As predicted, the median production of 

proteins from cluster 1 was nearly identical following treatment with 350 or 650 mM KCl, 

while production of proteins from clusters 2, 3 and 4 were higher following treatment with 

650 mM as compared to 350 mM KCl. Collectively, these results indicate that translational 

output is graded even as Hog1 activation is switch-like. 

While the order of protein synthesis was graded, it was not uniform in all cells. For 

example, the 650 mM treatment group maintained tight population distributions for all 

proteins, while cells treated with 350 mM KCl exhibited an increasing coefficient of 
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variation (CV) for weakly induced proteins. Thus there is an apparent cell-to-cell variability 

in this system occurring at the level of signaling deactivation. In this context it is worth 

noting that Hog1 is fully activated, indicating that all cells respond maximally to osmotic 

stress. This is in striking contrast to the pattern of ERK activation and mitosis in Xenopus 

eggs72 where switch-like MAPK signaling was first characterized. In those experiments, 

measurements of whole cell populations indicated a graded response, while measurements of 

individual eggs uncovered a mix of unresponsive and fully responsive (switch-like) 

behaviors. Thus, in keeping with our proposal that Hog1 represents an inversion of the 

standard switch-like model, variability of this system appears to occur at the back-end of 

signal resolution, rather than at the outset of signal initiation. 

Collectively these results indicate that adaptive output is ordered, but not uniform in 

all cells. Rather, each cell progresses down a graded adaptation program encoded by Hog1 

duration, before deactivating stochastically. This stochastic deactivation introduces a noisy 

adaptive output at the level of individual cells that can be attributed to variable Hog1 

deactivation.  Thus, Hog1 appears to encode two rheostats, one at the level of MAPK 

duration and another at the level of MAPK deactivation. The first dictates induction of the 

cells adaptive program, while the second accommodates variable persistence of this program 

in individual cells. 

Discussion 

Hog1 has long served as a prototype for cellular stress adaptation systems. Here we 

elucidate the mechanism by which switch-like activation of Hog1 converts a linear input of 

osmotic stress stimulus to a graded adaptive response. We make three observations that 
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account for these seemingly incongruous behaviors, and reveal how they act to coordinate the 

stress response program. 

First, using a new method to quantify protein phosphorylation, we define the Hog1 

signaling profile and use these data to calculate a linear function for Hog1 activity, 

demonstrating that this pathway encodes a perfect dose-to-duration signal. We then identify 

encoder components of this function and use them to establish the relationship between Hog1 

activity duration and downstream gene induction. 

Second, we demonstrate that the relationship between Hog1 activity and transcription 

extends to induction of the cellular adaptive machinery. In particular, Hog1 exhibits a tunable 

bifurcated response, having features of both a switch and a rheostat. As a switch Hog1 

commits the cell to adaptation, regardless of input strength, ensuring the fastest possible 

response to stress. As a rheostat, Hog1 tunes recovery through sequential and variable 

production of proteins needed for adaptation. Two distinct rheostats facilitate this adaptation 

response. The first is a dose-to-duration rheostat encoding the persistence of maximum Hog1 

activity and a sequential gene induction program. The second is a stochastic rheostat 

encoding cell-to-cell variability in induced protein expression.  

Third, we demonstrate that Hog1 feedback is essential to the tunable bifurcated 

response. Without feedback neither the activation switch nor the graded adaptation response 

can be established. Ste50 is a major target of Hog1 feedback, a relationship we demonstrate 

here to be necessary to properly tune Hog1 activity. Further, we show that the total 

accumulation of phosphorylation on all Ste50 proteins is graded with respect to input 

strength. Thus, while Hog1 is phosphorylated as a switch Ste50 is phosphorylated as a 

rheostat.  
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MAPK signaling pathways are often characterized as being inherently switch-like 

74,99. This conclusion is derived from a viewpoint that MAPK signaling cascades function as 

ultrasensitive biochemical reactions with zero-order kinetics, a term that differentiates these 

reactions from more graded first-order Michaelis-Menten systems29,30. In contrast, we 

demonstrate that switch-like activation of Hog1 is largely dependent on feedback. When 

feedback is abrogated, Hog1 activation is graded. In this way, the Hog1 switch resembles 

other regulated switch-like systems, such as the Cdk1/Cdc25C positive feedback loop 

regulating mitosis commitment in Xenopus eggs100.  

Many investigators have commented on the relative merits of MAPK pathways 

operating as either switches or rheostats47,99,101,102. Whereas switches encode deterministic 

action, rheostats can scale their responses to input strength.  When a rheostat begets a switch, 

the system is designed to integrate information to engage a decision making process. We 

propose that the Hog1 system functions in the inverse, utilizing a switch initiate adaptation 

before integrating information and tuning the response over time. Moreover, we demonstrate 

that Hog1 confers graded feedback regulation, through bit state encoding of Ste50 

phosphorylation. While phosphorylation has been highlighted in this study, other 

modifications can regulate protein activity103. For MAPK pathways such modifications 

include ubiquitination104,105, acetylation106,107, methylation108, sumoylation109,110, and others. 

Thus, while the currency of MAPK modules remains phosphorylation, this modification is 

likely to be a precursor to other modifications that serve to further expand the bit lengths of 

substrate proteins. In fact, phosphorylation has been identified as a requirement for certain 

ubiquitination reactions111. And in at least one case, ubiquitination of a MAPK pathway 

component has been shown to dictate MAPK signaling specificity105. Just as protein 

44



induction occurs in a graded and sequential manner (Figure 2.9), different post-translational 

modifications may occur sequentially and thereby contribute to the graded output. 

Finally, Hog1 activity duration encodes a temporally graded protein induction 

program. The protein content of each step suggests that the cell is steadily progressing in its 

energy commitment to the stress adaptation process. Some cells progress further than others 

in this process, indicating differing needs of individuals in the population. We observed that 

perturbation of Sho1 branch components alters the relationship of Hog1 duration to gene 

induction. This observation may underlie reprogramming of the adaptive needs for those 

mutants. Indeed, deletion of RGA1 results in significant basal output of the reporter. This 

pre-adaptation may adjust the relationship between Hog1 activity duration and transcriptional 

output. Additionally, Ste505A is known to generate cross-talk between the Hog1 stress 

adaptation and Kss1 nutrient deprivation pathways 49,92. This crosstalk may introduce 

signaling interference in the MAPK transcriptional circuit. 

The results of our cytometry analysis indicate that each induced gene, or perhaps 

cluster of genes, exhibits a tiered (graded) relationship to Hog1 activity duration. Elucidation 

of these relationships would allow for a more complete predictive model of total system 

output. Comprehensive identification of Hog1 substrates, and establishing the consequences 

of those phosphorylation events, could eventually produce a complete predictive model of 

the pathway. Further, multiple MAPK signals are likely to regulate many of these same 

genes. Identification of all functions for all kinase signals, over a time-dose matrix, will be 

necessary to complete a deterministic model for a given cell stimulus. 

An ideal stress response system is one that responds immediately, in a strictly dose-

dependent manner, and in a manner that protects the population.  We propose that Hog1 
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meets this ideal. We have shown that Hog1 is activated rapidly and in a dose-to-duration 

manner, but with sufficient variability to accommodate a rapidly changing environment. 

Ultimately, our goal is to generate a universal function for this MAPK transduction pathway 

– wherein the encoding components for any input at any dose are known. This will require

development of new analysis techniques capable of quantifying the sum of modifications on 

signaling proteins. We expect that such efforts will eventually reveal new avenues for 

therapeutic intervention and control of disease networks.  

Experimental Procedures 

Strains 

All yeast strains in this study were derived from BY4741 (Table 2.2). Deletion of 

open reading frames was performed using standard methods, either with antibiotic or 

auxotrophic markers. PCR was used to validate all deletions. Strains used for flow cytometry 

were taken directly from the green fluorescent protein (GFP)-tagged library (Life 

Technologies) 

Cell Culture 

Cells were cultured using standard methods with minor modifications. Yeast were 

grown on yeast-peptone-dextrose (YPD) agar medium at 30oC for 3 days. Fresh, single 

colonies were isolated and grown overnight in synthetic complete + dextrose (SCD) liquid 

medium, diluted 1:500, grown for 6 hr, and diluted again to OD600nm = 0.001. Experiments 

were performed the following day when the culture reached OD600nm = 1. 
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Stress Treatment and Cell Lysis for Immunoblotting 

Cells were stressed and lysed as described previously50. Notable exceptions, dosage, 

and considerations for Phos-tag sample preparation follow. Cell cultures were split into 8 x 

75 ml volumes and 25 ml of SCD+KCl medium was added to a final concentration of 0, 50, 

150, 250, 350, 450, 550, or 650 mM KCl. Where noted 1-NA-PP1 ATP-analogue (Cayman 

Chemical, 10954) was applied to cells at 12 uM final concentration as described previously89. 

Time-points from each flask were taken as 10 ml samples, quenched in 5% (% w/v 

throughout) trichloroacetic acid (TCA), and held on ice until the end of the time course. 

Samples were then centrifuged at 3000 x g for 3 min, aspirated, washed in 1 ml 5% sodium 

azide, and frozen at -80oC.  

Cell pellets were thawed on ice, resuspended in 200 ul TCA lysis buffer (10 mM Tris-

HCl pH 8.0, 10% TCA, 25 mM NH4OAc), and lysed by vortexing at 4oC for 10 min. Lysate 

was centrifuged at 13000 x g at 4oC for 10 min, aspirated, and mixed with 100 ul 

resuspension buffer (0.1 M Tris-HCl, pH 8.5, 3% SDS). Each sample was then heated to 

90oC for 10 min, cooled at room temperature for 10 min, and centrifuged at 13000 x g for 1 

min. 60 ul supernatant was isolated and protein concentration was determined using the 

BioRad DC Protein Assay (500-0112) with detergent-compatible reagent. Each sample was 

diluted to a final concentration of 2 ug/ul in resuspension buffer and mixed 1:1 with 2x 

sample buffer (0.1% bromophenol blue, 2% SDS, 20% glycerol, 500 mM Tris-HCl pH 8.5, 

and 200 mM dithiothreitol). Samples were run immediately or stored for use in 1-2 days at -

80oC. 

Bis-Tris Acrylamide Gels, Phos-Tag, and Gel Transfer for Immunoblotting 
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Phos-Tag conjugated to acrylamide has been previously reported to function best in 

neutral pH conditions such as those found in Bis-Tris SDS-PAGE gels79,112.  We optimized 

the Bis-Tris gel formulation to properly resolve a wide range of protein sizes and 

phosphorylations from yeast whole-cell lysates. Reagents for each gel layer were added in 

the order listed and, importantly, were vigorously vortexed in a 14 ml screw-cap conical 

bottom tube for 5 sec where indicated. Resolving layer; 8% 29:1 acrylamide/bis-acrylamide 

(BioRad, #161-0156), 350 mM Bis-Tris pH 6.8 (Fisher Scientific, #BP301100), 20 uM Phos-

Tag (Wako Chemical Industries, #304-93521), 40 uM Zn(NO3)2, vortex, 0.05% ammonium 

persulfate (APS), vortex, 0.1% tetramethylethylenediamine (TEMED), vortex, pour 

immediately and very gently layer with isopropanol and polymerize for a maximum of 1 hr. 

Rinse resolving layer 5 times with deionized water and add stacking layer; 4% 29:1 

acrylamide/bis acrylamide, 350 mM Bis-Tris pH 6.8, vortex, 0.05% APS, vortex, 0.1% 

TEMED), vortex. Gels were cast, run, and transferred using the 1.5 mm BioRad Mini-

PROTEAN gel system (165-8006). Gels were used immediately or stored at 4oC in 350 mM 

Bis-Tris pH 6.8 buffer for up to 4 weeks. 

Prior to running, protein samples were heated at 70oC for 10 min, allowed to cool, 

and loaded to 15 ug of protein lysate per lane. Running buffer [50 mM Tris-HCl, 50 mM 3-

(4-Morpholino)propane sulfonic acid (MOPs), 0.1% SDS, 5 mM sodium bisulfite, pH 7.2] 

was added and each gel was run at a constant 150V for 1.5 hr. Upon completion the resolving 

layer was removed and equilibrated in transfer buffer [1x NuPage transfer buffer (Life 

Technologies, NP0006-1) supplemented with 20% methanol, 2.5 mM sodium pyrophosphate, 

and 5 mM sodium bisulfite] shaking at room temperature for 20 min to release 
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phosphopeptides from Phos-Tag. Wet transfer to an Immobilon-P PVDF membrane 

(Millipore) was then performed at 4oC for 20 hr at 20V. 

Immunodetection and Quantification 

All blots were incubated in blocking buffer (TBS-T; Tris buffered saline, 50 mM 

Tris, 150mM NaCl plus 0.05% Tween 20 with 5% non-fat dry milk) for 1 hr at room 

temperature. Membranes were then transferred to heat-sealable pouches, filled with 3 ml 

primary antibody solution (blocking buffer + primary antibody), sealed, and rocked gently 

for 14 hr at 4oC. The primary antibodies were directed against Hog1 (Santa Cruz sc-6815, 

1:500), phospho-p38 (Cell Signaling 9216, 1:500), Ste50 (gift of Roger Brent, 1:500) and 

Protein-A (Sigma-Aldrich P2921 1:50,000).  Blots were washed 4 x 15 min with TBS-T and 

probed with 5 ml goat anti-rabbit (Santa Cruz sc-2030, 1:50,000) or rabbit anti-goat (Santa 

Cruz sc-2922, 1:50,000) secondary antibody solution (blocking buffer + secondary antibody) 

for 1 hr with rocking at room temperature. Blots were again washed 4 x 15 min with TBS-T 

before incubating with 5 ml Clarity Western ECL Substrate (BioRad 170-5060) for 5 min in 

the dark. Blots were then developed on radiography film for qualitative images or using the 

BioRad ChemiDoc MP System (170-8280) for quantification of proteins. Briefly, ECL 

images were captured over time and sequentially integrated using a CCD camera. Images 

were acquired until all blot lanes contained saturated pixel intensities, and then hand selected 

exposure times occurring just prior to pixel saturation to maximize the dynamic range of each 

band for quantification. 
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Immunoblot image quantification was performed using Fiji113. Protein quantitation 

data are presented as a percentage determined by dividing the intensity value for the band 

identified as dually phosphorylated protein by the intensity value of all protein bands. 

Microarray Data Analysis, Transcription Factor Association, and Gene Ontogeny Analysis 

All microarray data were downloaded from the National Institutes of Health Gene 

Expression Omnibus database, accession number GSE32196. Data were clustered based on 

time to > Log22-fold change in mRNA expression relative to unstimulated cells. 

Determination of transcription factor association was performed using the “Rank by TF” 

algorithm from YEASTRACT114 scanning for binding plus expression evidence with 

standard statistical cut-offs calculated from whole genome background values. These genes 

were further clustered by their gene ontology classification using the “Functional Annotation 

Clustering” algorithm from DAVID115,116 and then grouped by hand into broad, 

distinguishable classes. 

Fluorescence-based Flow Cytometry and Data Analysis 

Cell culture and stress treatment were performed as above, but in 96-well plate 

format. Cells were treated with 0, 350, or 650 mM KCl final concentration and incubated at 

30oC for 30 min. After stress treatment cycloheximide was added to 10 ug/ml final 

concentration to halt protein translation. Cells were immediately centrifuged at 3000 x g for 2 

min. Cell pellets were resuspended and fixed with 2% paraformaldehyde, 1 M phosphate 

buffer (PB, 5:1 ratio of K2HPO and KH2PO4, pH 7.5), and 10 ug/ml cycloheximide. Fixation 

was carried out at room temperature for 15 min. Plates were then recentrifuged as before and 
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washed at room temperature 2 times in 150 ul PB + 75 mM lysine HCl to quench fixative. 

The cell pellets were then resuspended in 100 ul PB + 100 U benzonase (Sigma-Aldrich) and 

incubated at 37oC for 15 min to cleave free nucleotides. Pellets were again washed in 150 ul 

PB and then incubated with 0.5mg/ml wheat germ-agglutinin, a yeast bud scar stain117 

conjugated to Alex Fluor 594 (Invitrogen, W11262) for 15 min and rinsed 3 times in 150 ul 

PB. The fixed and stained cells were stored in the dark at 4oC. Prior to cytometry cells were 

sonicated in a 96-well plate sonicator (‘SonicMan’ Brooks Life Science Systems) at power 

30 for 15 sec at 4oC using a SL0096-P21-SS sonication head. 

Fixed cells were run on an LSRII flow cytometer (BD Biosciences) modified with a 

96-well plate HTS system (BD Biosciences). A maximum of 500,000 counts were processed 

per run. Data were gated and analyzed using FlowJo v.10 analytic software (Figure 2.10) 

and a custom statistical analysis for defining a unique  cut-off value for each protein 

analyzed. For this statistical analysis test populations for each cytometry data set were 

generated using random sampling with replacement up to the n of the data set. These test 

populations were paired and the student t-test was performed on each pair. This process was 

iterated 100 times, generating p-values for each pairing. These p-values were rank ordered 

and the 5th was taken as a cut off distinguishing the  value. This  value represents the p-

value threshold for a 5% false-positive assumption. The  value determination was repeated 

5 times, ranked, and the median of those values taken as the true  value for the data set. 

This was repeated for all cytometry samples. These  values were then used to set the unique 

p-value thresholds for t-tests between each treatment type. The t-tests were performed in both  

directions. A significant difference between cytometric data sets was assumed to exist only if 

the p-value threshold was met for both analysis directions. 
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Transcription Reporter Assay 

The pRS416-8XCRE-LacZ plasmid was used in these studies, as described 

previously118. Cells were transformed with the reporter plasmid using standard methods and 

evaluated as previously119, with several notable exceptions. Single colonies were isolated and 

cultured as noted above, except using SCD lacking uracil to maintain selection for the 

reporter plasmid. 96-well plates were preloaded with 40 ul SCD+KCl to achieve final 

experimental concentrations between 0 and 800 mM KCl. Each plate was loaded with 60 ul 

cell culture per well and incubated at 30oC for 90 min. Two technical replicates for four 

biological replicates were conducted per plate. The assay was stopped by addition of 20 ul 

development solution [135 mM piperazine-N,N’-bis(2-ethanesulfonic acid) sodium salt 

(PIPES), 0.25% Triton-X100, 0.5 mM fluorescein di--D-galactopyranoside (FDG, Marker 

Gene Technologies, 17817-20-8)] and incubated at 37oC for 6 hr. The OD600nm and 

485nm/580nm fluorescence ratio was measured for each plate using a Molecular Devices 

SpectraMax M5. 

Fluorescence values were normalized using OD600nm reads from unstimulated wells. 

Technical replicates were averaged and a minimum of four biological replicates were plotted 

in Prism 6 (GraphPad Software) and fit using a log(agonist) vs. response variable slope 

equation. Change in EC50 and Hill slope were assessed via two-tailed t-test with a p < 0.05 

cut off. 
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Ste50 Quantification, Data Alignment, and Statistical Comparison 

Ste50 was quantified as pixel intensity with respect to distance from an anchor point, 

a consistent non-specific band on the immunoblot. Experimental replicates (>2) were then 

paired and aligned in Python using a custom analytical program. Briefly, data set 2 was 

scanned past data set 1 pixel by pixel and 2 was subtracted from 1 for each alignment. The 

root mean-squared (RMS) sum of their intensities at each scanned position was then tallied. 

The positional alignment scoring the lowest RMS value was then chosen as the best-fit 

alignment. Data set 3 was then scanned against the first two and fit similarly. All potential 

data-set alignment orders were tested for all data sets and each produced identical 

alignments, this was done to ensure no alignment bias was injected due to operational 

ordering. The alignments were then averaged and a standard error (SE) was generated and 

displayed as black shading. For each alignment the anchor value was omitted to ensure only 

real data influenced the alignment. The anchor was then reinserted for each aligned dataset 

and the mean distance between anchors was computed. This mean was set at X=0 for each 

graph and the anchor SE was displayed with blue shading. The median of each alignment 

was then computed and used to generate the plots in Figures 2.7 and 2.8. 

Dose-to-Duration Conversion Calculations 

Transcriptional reporter curve fits were converted from dose to Hog1 duration using 

functions fit to the Hog1 area plots. These functions were generated using the analytical 

software Eureqa (Nutonian) by randomly sampling basic and exponential mathematical 

functions. Approximately 1e11 formulations were evaluated and the function with the 

highest score (size vs. R2) was selected for each strain. 
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  Plasmid Synthesis and Mutagenesis

Pbs26A construct was purchased through nucleotide synthesis by GenScript.
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Table 2.1 

Transcription factor (TF) binding and interaction analysis. Percent value represents number of query 

set gene promoters associated with TF. p-value calculations and cut-offs determined as outlined on 

YEASTRACT. Significance of gene set (left) to transcription factor (top) association indicated as 

highly significant (**, p < 1E-5), significant (*, p < 1E-5), or non-significant (p > 0.01). 67 random 

genes were selected from the yeast genome as a negative control. 

Msn2 Msn4 Sko1 Hot1 Hog1
random (67) 51.56% 

(0.245) 
37.50% 
(0.346) 

21.88% 
(0.016) 

1.56% 
(0.152) 

9.38% 
(0.003) 

All microarray 
(252) 

95.63% 
(0**) 

87.30% 
(0**) 

46.83% 
(0**) 

17.86% 
(0**) 

10.71% 
(1.2E-09**) 

C1 (107) 98.10% 
(0**) 

94.39% 
(0**) 

57.94% 
(0**) 

28.97% 
(0**) 

13.08% 
(5.4E-07**) 

C2 96.40% 
(0**) 

87.39% 
(0**) 

37.84% 
(6.3E-12**) 

11.71% 
(8.3E-12)** 

10.81% 
(2.4E-05**) 

C3&4 85.29% 
(1E-06**) 

64.71% 
(1.8E-4*) 

41.18% 
(8.0E-08**) 

2.94% 
(0.052) 

2.94% 
(0.27) 

flow cytometry (67) 94.03 
(0**) 

82.09% 
(1E-15**) 

49.25% 
(9.3E-14**) 

14.93% 
(9.24E-11**) 

13.43 
(2.55E-05**) 
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Table 2.2 

Strains used in this study. 

Strain Genotype Background Reference
BY4741 MATa, his31, leu2, met15, 

ura3 
BY4743 Brachmann et al., 

1998 
JGE001 Hog1T100A BY4741 This study
JGE002 ssk1::KanMX4 BY4741 This study 
JGE003 ssk2::KanMX4 BY4741 This study 
JGE004 ssk22::KanMX4 BY4741 This study 
JGE005 pbs2::KanMX4 BY4741 This study 
JGE006 msb2::KanMX4 BY4741 This study 
JGE007 hkr1::KanMX4 BY4741 This study 
JGE008 rga1::KanMX4 BY4741 This study 
JGE009 rga2::KanMX4 BY4741 This study 
JGE010 bem3::KanMX4 BY4741 This study 
JGE011 ste20::KanMX4 BY4741 This study 
JGE012 ste11::KanMX4 BY4741 This study 
JGE013 opy2::KanMX4 BY4741 This study 
JGE014 ste50::KanMX4 BY4741 This study 
JGE015 hog1::KanMX4 BY4741 This study 
JGE016 ptc1::KanMX4 BY4741 This study 
JGE017 ptc2::KanMX4 BY4741 This study 
JGE018 ptp2::KanMX4 ptp3�::LEU2 BY4741 This study 
JGE019 ptp2::KanMX4 BY4741 This study 
JGE020 ptp3::LEU2 BY4741 This study 
JGE021 Hog1T174A BY4741 This study
JGE022 Hog1Y176F BY4741 This study
JGE023 Ste505A; S155A, S196A, S202A, 

S248A, Thr341A 
BY4741 Nageic et al., 2012 
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CHAPTER III 

SPECTATING THE SYMPHONY OF YEAST STRESS ADAPTATION 
THROUGH BIOINFORMATICS1, 2 

For cell adaptation, as for a symphony, harmony is essential. Maintaining harmony in 

these complex systems requires a conductor. The conductor does not play. Instead, the 

conductor establishes a tempo upon which harmonious actions are linked. In the same 

fashion, the work of the previous chapter establishes Hog1 as a conductor of yeast 

osmoadaptation. This observation then begs the question, what is the opus that Hog1 

conducts? 

Soon after the discovery of Hog1 it was assumed that its sole purpose was to 

coordinate glycerol production120, thereby reestablishing osmotic balance. Since that time, 

microarray analyses have demonstrated that Hog1 engages a dynamic gene regulatory 

network60,121. By setting this gene induction symphony to the timing of the conductor, as was 

done in Figure 2.9, a compelling motive for the actions of the cell were uncovered. As Hog1 

signaling duration increases the cell engages an increasing number of stress adaptation and 

survival genes. In this way Hog1 generates sufficient adaptive output for the needs of the cell 

without engaging unnecessary systems. However, this conclusion is likely imperfect and our 

understanding of this complex system is narrow. Microarray is a woefully ineffective 

interpreter of cellular action, much like listening to music through a very thick wall. For 

1 All figures contributed by Justin G. English   
2 Metabolomics data collection performed with James P. Shellhammer 
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example, through fluorescent cytometry analysis we determined that only 60% of the largest 

mRNA induction events after osmostress result in increased protein abundance. This is not a 

rare occurrence, in fact it falls in line with numerous similar reports122–125. Thus, mRNA 

production does not necessitate an increase in protein abundance. The possible reasons for 

this are myriad but the conclusion remains the same; if we wish to understand how the cell 

reprograms its adaptive machinery then it is to that machinery we must focus our attention. 

Hog1 modifies the production priorities of the cell during osmoadaptation. While the 

mechanics underlying changes in production are complex, the results are quite simple; the 

cell generates what it needs to respond and survive. To understand this process we must 

observe it. Thus, in the first section of this chapter we combine proteomic and metabolomic 

data sets to determine how Hog1 sets the cells adaptive priorities. In light of this question, we 

also sought to understand how the needs of individual cells may differ within the population. 

To this end we repeated our analysis of the flow cytometry data in Chapter II using a cell age 

discriminator. This experiment demonstrates that cell age directly alters both the basal and 

stress induced protein landscape in yeast. Through these analyses a small window, a single 

note, in the complex actions of the cell population are uncovered. While incomplete, these 

approaches hold promise for unlocking the cells stress-adaptive symphony. 

Stress Induced Metabolic Restructuring in Yeast 

If phosphorylation is the information currency of the cell then metabolites are its 

energy currency. Metabolites are chemicals that have been ingested or synthesized by the cell 

for the purposes of energy storage or expenditure. ATP is a canonical example. There are 

numerous chemical synthetic routes for synthesizing ATP. The most common in humans is 
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via cellular respiration. In this process oxygen, adenosine diphosphate (ADP), and sugar 

molecules are processed within the mitochondria to create ATP and carbon dioxide. This 

conversion stores the energy locked within sugar on to a cellular metabolite useable by 

numerous enzymes, such as kinases126. The synthesis of metabolites is a rapid and constant 

process; a balancing act guiding the survival of every organism. In fact, a human being turns 

over their body weight equivalent in ATP every single day127. Though of course, the mass is 

not lost, instead a small amount of energy is consumed to convert the ATP to adenosine 

diphosphate (ADP) and back to ATP. An iterative recycling of energy storage substrates. 

ATP is but one example of thousands of cellular metabolites continually synthesized 

and consumed by the cell. Many of these are intermediary chemical substrates, the building 

materials fed in to complex enzymatic cascades, which lead to terminal metabolic products. 

By measuring how stress alters the abundance of terminal metabolites and their enzymatic 

processors we can begin to visualize the biological needs of a cell under distress. To this end, 

we conducted a metabolomic analysis of yeast via mass spectrometry before and after stress 

induction. Untreated cell cultures and cultures treated with 500 mM KCl for 15 minutes were 

snap frozen, lysed, and analyzed by mass spectrometry. The resulting output was then 

matched and quantified against a simultaneously processed panel of 297 terminal 

metabolites. Through this analysis we identified an astounding 181 (60%) terminal 

metabolites that undergo significant changes in abundance after only 15 minutes of 

osmostress. We then compared this metabolomics study to a similar proteomic experiment 

wherein the changing abundance of 296 proteins was quantified128. Comparison of these two 

datasets provides insight on how Hog1 signaling can reprogram the cells enzymatic 

framework. Here we will focus on three major themes of this analysis; production of 
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Figure 3.1. Rank order analysis of change in metabolite (top) and protein (bottom) concentrations
after osmostress. Only statistically significant hits from each screen are displayed. Data is
fold-change relative to measurements from unstimulated cells. Purple; products and enzymes
of lipid catabolism. White, mature lipids and lipid synthesis enzymes. Red, polyamines. Green, 
glycerol. Orange, acetyl-CoA. Blue, trehalose.
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osmolytes, conversion of lipids to energy, and the synthesis of a unique family of amino acid 

derivatives known as polyamines. 

Yeast osmoadaptation requires the synthesis of osmolytes to restore turgor63. 

Metabolic research of the Hog1 pathway has focused primarily on glycerol production63,129–

131; indeed the pathways namesake, HOG, stands for “high osmolarity glycerol”. Glycerol is 

presumed to function as the primary osmolyte for restoring cell turgor. Our metabolomic 

screen, coupled with bioinformatic analysis, corroborates that glycerol production increases 

after osmostress (Figure 3.1). Relative to unstimulated cells glycerol increases by 2.5 fold. It 

has been proposed that Hog1 directly increases the activity of enzymes that accelerate the 

conversion of respiration (glycolysis) by-products in to glycerol. Curiously, the branches of 

glycolysis necessary to generate these by-products appear inactive (Figure 3.2). Indeed, the 

end product of glycolysis, pyruvate, is reduced in osmostressed cells, as are many of the 

enzymes necessary to generate and process pyruvate. If glycerol is not being produced 

through glycolysis by-products, where is it originating? 

The Krebs cycle is substantially activated after osmostress (Figure 3.3). Acetyl-CoA 

is necessary to fuel energy production through the Krebs cycle132. In our analysis we noted a 

considerable increase in Acetyl-CoA (2.4 fold) (Figure 3.1). Acetyl-CoA is generated 

through sugar or lipid catabolism. To produce acetyl-CoA from sugar glycolysis must 

synthesize pyruvate, which is then processed in to acetyl-CoA. As noted above, glycolytic 

activity is down in cells following osmostress. However, we noted that lipid catabolism, 

lipolysis, is significantly increased. The concentration of complex, intact triglycerides and 

lipids decrease after osmostress; while degraded lipid sub-species and the enzymes involved 

in lipid catabolism rise after osmostress (Figure 3.1). The process of lipolysis liberates 
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glycerol from glycerolipids before processing fatty acids to produce Acetyl-CoA and 

hydrocarbons133. The observation that lipolysis, and not glycolysis, is increased during 

osmostress suggests that Hog1-mediated glycerol production may in fact be a result of 

lipolysis.  

The yeast genes GPD1 and GPD2, both glycerol-3-phosphate dehydrogenases 

indicated on Figure 3.2, have been described as osmostress mediators120,134. Both are 

required for quick recovery from osmotic stress. The rationale for involvement of GPD1 and 

GPD2 has been through their role converting glycolysis by-products in to glycerol. We 

propose here that this conclusion is false. We observe that numerous glycerol containing 

molecules and processing enzymes increase following osmostress (Figure 3.2). GPD1 and 

GPD2 are among these, and are important not only for the synthesis of glycerol precursors, 

but for converting glycerol derivatives in to other metabolites. Without GPD1, GPD2, and 

other glycerol processing enzymes identified in our analysis glycerol would accumulate. A 

stockpile of glycerol would slow the overall rate of lipolysis. This would then decrease 

production of acetyl-CoA, a metabolite essential for energy production via the Krebs cycle. 

From a biochemical standpoint glycerol production via lipolysis is a more logical 

conclusion than synthesis of glycerol as an osmolyte. The resting concentration of glycerol in 

cells is 21 mM134. The 2.5 fold increase observed in our study would amount to 52.5 mM of 

glycerol. The osmolality (osM) of a non-ionic compound is equivalent to its concentration, so 

the observed production of glycerol would increase intracellular osmopressure by 0.032 osM. 

However, we applied 500mM KCl, constituting an approximate 1 osM increase in 

extracellular osmopressure. It is therefore unlikely that glycerol production is serving as a 

potent osmolyte in this scenario. Glycerol is instead the by-product of lipolysis for the 
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purposes of energy. This analysis, while rational, brings up several questions. Why is the cell 

catabolizing lipids and processing acetyl-CoA for energy? The Krebs cycle is strongly 

activated in our system, but it is largely inferior for energy production when compared to 

glycolysis. The cells are floating in media containing approximately 2% glucose and ample 

oxygen. Why is glycolysis not operating to provide the cell with its energy needs? The 

answer appears to be that the cell is prioritizing use of its carbohydrates for synthesis of two 

actual osmolytes, trehalose and glycogen. 

Trehalose is an absolutely fascinating molecule135–139. Trehalose is a critical 

dehydration stabilizer in all living organisms. It has been proposed to compensate for water 

loss due to its unique volume and hydrogen bond capacities. Trehalose is simply two alpha-

linked glucose molecules. However, in this conformation trehalose fills a volume 2.5 times 

greater than all other sugars, by weight. Trehalose protects organelle integrity under 

osmostress conditions. This is achieved by replacing the lost water molecules necessary for 

maintaining protein folds and lipid layer organizations with trehalose-mediated hydrogen 

bonds. Through this trehalose-mediated mechanism several organisms, including 

Tardigrades and Selaginella can survive complete dehydration and “come back to life” upon 

application of water. Trehalose has also been identified as a significant survival component 

of wild mushrooms and other fungi. 

In our analysis trehalose synthesis is the strongest metabolic hit of all metabolites in 

the cell (Figure 3.1). Trehalose increases by 32 fold relative to unstimulated cells in 15 

minutes. The scope and scale of enzymatic reprogramming for production of trehalose has 

not been previously appreciated. As predicted in our GO analysis from Figure 2.9, our 

metabolomics analysis uncovered a frenzy of biomass catabolism. Glucose, fructose, and 
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Figure 3.4. Carbon metabolism process of the cell. Sugar is processed for glycolysis or starch synthesis.
Lines represent processing enzymes, circles represent metabolites. Red, increased abundance. Green,
decreased abundance. 66



sucrose fall in abundance while the catabolic enzymes necessary for processing these 

nutrients in to complex starches, and ultimately trehalose, enrich (Figure 3.4-3.5). Alongside 

trehalose synthases a number glycogen-synthase enzymes are upregulated. Glycogen is an 

enormous starch-like energy storage molecule comprised exclusively of hundreds of linked 

glucose molecules (Figure 3.6)140. Hydration of glycogen can immediately release free 

glucose for use. Unfortunately, our metabolomics screen was unable to detect the glycogen, 

and thus we fail to determine if its abundance also increases alongside trehalose. However, 

the proteomic profile suggests this likely. Glycogen is normally synthesized as a carbon 

reservation mechanism during times of carbohydrate starvation. In this context, the cell may 

believe it is starving due to the rampant conversion of glucose to trehalose. However, 

glycogen may also serve as an additional osmolyte. Regrettably an alternate analysis will be 

necessary to assess this possibility. 

Through our combined metabolomics and proteomic analysis we have determined 

that the cell is engaged in wholesale aggregation of energy molecules in to starchy 

osmolytes. This behavior underlies the immediate need of the cell to re-establish 

homeostasis. It therefore appears that the cell forgoes efficient energy metabolism via 

glycolysis, and suffices on the ATP produced through lipid energy sources. This observation 

coincides with the extreme drop in ATP levels in our analysis, to a level undetectable. 

The majority of metabolic restructuring events after osmostress appear to be those 

related to nutrient catabolism, energy prioritization, and osmotic balance. However, we also 

noted a distinct enrichment of a unique class of molecules known as polyamines (Figure 

3.7). These molecules include putrescine, cadaverine, spermidine, and spermine141. 

Grotesque as these may sound, they serve critically important but poorly understood roles in 
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Figure 3.6. 2D Cross-sectional view of the metabolic molecule glycogen. Each unit on each chain is a molecule
of glucose. Protein at center is glycogenin, the enzyme involved in linking glucose to form glycogen.
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the process of cell stress adaptation, growth, and survival142–144. Their synthesis and 

production mechanisms are conserved among all eukaryotes; including plants, yeasts, and 

humans. Wildly enough, a study of salmon has found direct links between polyamine 

turnover and p38 signaling, the homolog of Hog1 in higher order animals145. Similar studies 

in human systems have since been conducted using polyamine precursors146. 

Notably, osmostress causes depletion of Spe1 (Figure 3.7), the synthase responsible 

for converting ornithine to putrescence. One would assume, then, that polyamine 

concentrations should decrease rather than increase during osmostress. However, the 

accumulation of polyamines induces translation of a Spe1-specific ubiquitin ligase147. 

Through this degradation mechanism polyamines self-regulate their own abundance. What 

role then are these carefully regulated molecules playing in the osmoadaptive process? This 

question remains to be answered, however hints from the literature suggest several possible 

mechanisms. The addition of polyamines to yeast, flies, worms, and mice induces autophagy 

and extends the lifespan of each organism148,149. Inversely, the abundance of polyamines in 

all organisms decreases with respect to that organism’s age150. As osmostress induces 

polyamine production in yeast three questions surface. Does osmostress affect autophagy, 

cell aging, or both? 

Certain forms of autophagy in yeast have been attributed to Hog1 activity. However, 

autophagy has been observed under non-osmostressed conditions77. These observations 

suggest Hog1 may play alternative roles in regulating nutrient availability and starvation 

responses. Indeed, the breadth of control that Hog1 exercises over the cells energy stores 

during osmostress indicates a potentially potent interplay between these two pathways. As 

glucose and other sugars are the principal foods of yeast, this would make logical sense. It 
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would be important for individual cells invading a piece of fruit, for example, to rapidly 

determine whether the rush of osmotic pressure in their extracellular space was a cytotoxin or 

a life giving nutrient. Perhaps, however, a distinction is unimportant. The only role of Hog1 

may be to coordinate re-establishment of cellular turgor. To accomplish this goal Hog1 

induces production of the trehalose synthase enzyme network, converting sugar to osmolyte. 

Perhaps polyamine synthesis, and subsequently autophagy, occurs when free sugar or energy 

from lipolysis is no longer available to meet the cells stress response needs. If the cell runs 

out of raw material, polyamine synthesis and autophagy could provide a relatively simple 

biomass generating solution. It remains to be determined whether osmostress induces 

autophagy by way of Hog1 and polyamines, however we propose that it may very well do 

just that. 

Polyamine concentrations are closely related cell age143,150,151. As mentioned above, 

older cells contain a lower abundance of polyamines compared to their younger counterparts. 

As with all biological systems, some balance of states and costs must be associated with this 

correlative decline. Indeed, the capacity of polyamines to extend cell life suggests that it 

would be disadvantageous to deplete them, unless depletion carried with it significant 

advantages for that cell. Perhaps maintaining high levels of polyamines requires a large 

investment of nutrients or energy. Additionally, polyamines are cations that bind directly to 

DNA. Perhaps young cells are more capable of mitigating damage or defects caused by these 

interactions than older cells. Lastly, perhaps older cells lose polyamine concentrations with 

age only if they exist in a low stress environment – weighing the benefit of maintaining an 

adaptive safety net against the detrimental costs of high polyamine synthesis. Direct 

experiments to answer these questions remain to be completed, however data are available 
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from our studies to address how old and young cells may differ in their capacities to mount a 

stress adaptive response. Through analyzing these data we may gain a better understanding of 

how age, metabolism, and polyamines are linked. 

Weak or Wise?: the Alternative Stress Adaptive Network of Aged Yeast 

Age can be an organism’s weakness and its strength. As we age we accumulate 

damage, disease, and disabilities; both within our bodies and cells. However, we also 

accumulate experience, expertise, and endurance to see us through future challenges. There 

are numerous methods for approximating the relative age of an organism. However, doing so 

for an intact, individual cell has proven to be far more difficult. This challenge has been 

overcome for the observation of individual yeast cells. As yeast divide, roughly once every 

two hours, they produce a chitinous scar on their cell wall. The sugar composition of this scar 

is unique with respect to the rest of the extracellular surface152,153. Wheat germ agglutinin 

(WGA) is a lectin synthesized by T. vulgaris for protection of the plants offspring from, 

among other parasites, yeast. Fortuitously, or perhaps ingeniously, WGA binds to high-

abundance sugars of the yeast bud scar. Conjugates of WGA to fluorescent dyes have 

recently become commercially available, making it possible to rapidly quantify the number 

of bud scars on a yeasts surface117. This measurement can be used to correlatively determine 

the age of individual cells in a population. By applying fluorescently conjugated WGA to 

cells prior to our flow cytometric analyses, as outlined in the previous chapter, we were able 

to determine both the age and abundance of stress adaptive protein accumulation in 

73



individual cells. Analysis of this data sheds light on the question of whether old cells may be 

weak or wise to environmental stressors. 

As in Chapter II, we measured induction of an unbiased subset of 95 proteins from 

the microarray clusters 1-4 in Figure 2.9. Each protein was expressed from the native gene 

locus as a GFP fusion and measured by fluorescence cytometry. Cells were treated with 350 

mM or 650 mM KCl, fixed, and stained with fluorescent WGA. As a control yeast stained 

with WGA, but lacking GFP, were observed first. These cells produced similar fluorescent 

intensity and population distribution profiles (Figure 3.8). Roughly 60% of our screened 

stress proteins demonstrated age-dependent expression patterns (for contrast, see Figure 3.9, 

a homogenously expressed protein). In the following we group these expression patterns in to 

classes and present representative cytometry examples for each. 

Many stress proteins exhibit higher basal expression in older cells (Figure 3.10 – 

3.13). In these four examples the proteins in question are Glk1, Gsy1, Gph1, and Dcs1. Glk1 

is a glucokinase responsible for the first step in the irreversible maturation of glucose-6-

phosphate, the substrate of trehalose and glycogen synthesis154. Gsy1 and Gph1 both mature 

glycogen155,156. Dcs1 inhibits the enzymes that degrade trehalose157. Presumably, the 

increased basal expression of these proteins in older cells may underlie a higher capacity for 

mediating stress.  

 Multiple instances were observed where the expression level of the young cell rose to 

meet that of the older cell after osmostress – with higher osmostress bringing more of the 

young cells in to line with that of the old (Figure 3.14 – 3.17). In these 4 examples the 

proteins in question are Hsp26, Tsl1, Hsp30, and Mbf1. Hsp26 chaperones unfolded 

proteins158. Hsp30 down-regulates Pma1, an essential proton pump with significant effects on 
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Figure 3.8. Age distribution analysis of yeast population. Y axis is a linear modal
normalization of data. X axis is a biexponential scale of GFP fluorescence. Black,
all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
There is no GFP-tagged protein in this analysis. 
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Figure 3.9. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Hor7. 
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Figure 3.10. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Glk1. 
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Figure 3.11. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Gsy1. 

78



Figure 3.12. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Gph1. 
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Figure 3.13. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Dcs1. 80



Figure 3.14. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Hsp26. 
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Figure 3.15. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Tsl1. 
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Figure 3.16. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Hsp30. 
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Figure 3.17. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Mbf1. 

84



Figure 3.18. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Glc3. 
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Hog1 signaling159,160. Tsl1 is an essential enzyme in the production of trehalose161,162. Mbf1 

is a transcriptional coactivator that specifically mediates DNA damage163,164. Thus, in this 

expression pattern class, aged cells appear pre-prepared to mediate stress – expressing 

quantities of proteins at levels young cells must synthesize to achieve when stressed. 

We also observed a single instance where osmostress caused older cells to take on the 

protein intensity distribution of the younger population (Figure 3.18). This protein is Glc3, a 

glycogen maturation enzyme. It may stand to reason that in this scenario, aged cells are 

producing more of the enzyme than is necessary under either of the stress conditions. In line 

with this observation, few young cells produce this molecule, even after high osmostress. 

There were also multiple instances where both populations responded to osmostress, 

but the older population produced more of the gene product on average than the young 

population (Figure 3.19 – 3.22). In these examples the proteins in question are Fmp43, Rcn2, 

Sur1, and Gip2. These represent another set of glucose and glycogen synthesis enzymes, 

similar to those observed for the high basal expression populations. However, Rcn2 is a 

functional outlier, a regulator of calcineurin involved in the yeast mating response with 

unknown cellular function. Deletion of this gene makes yeast sensitive to treatment with salt. 

The final categorical class are those where 350 mM osmostress produces a 

significantly different expression profile than either 0 or 650 mM. In these examples, a 

greater portion of old cells maintain a consistent expression profile at all doses, however both 

populations take on the same expression profile at high doses (Figure 3.23 – 3.29). In these 

examples the proteins in question are Arg1, Arg3, Arg4, Sed1, Bap2, Tmt1, and Aco2. Arg1, 

3, 4, and Bap2 represent a core group of enzymes occupied with the synthesis of arginine, 

ornithine, and leucine; the precursor molecules to polyamine synthesis. Tmt1 and Aco2 are 

86



both involved in the regulation of aconitate, a critical process for the progression of the Krebs 

cycle. Sed1 is a glycoprotein generated during extreme stress conditions. 

Our observations suggest two possibilities for the stress-adaptive capacity of old cells. 

Aged cells may be weak or wise to the dangers of their environment. Both perspectives carry 

scientific and theoretical merit. Aged cells on average produce a greater number of stress-

mediating enzymes. This behavior may underlie a chronic instance of stress for these cells, 

wherein the environment they share with young cells is perceived differently. Whereas the 

young cells demonstrate minimal adaptive output until a stress is observed, the aged cells are 

perpetually responding in a stressed manner. This chronic stress may slow the reproductive 

efficiency of older cells, reducing their evolutionary fitness relative to young cells. However, 

the inverse may also be true. Aged cells may be acting through experience. An aged cell has 

witnessed a greater diversity of environmental microenvironments and life stages than young 

cells. From this viewpoint, overexpression of stress adaptive proteins may represent the 

comfortable and safe equilibrium that the aged cell has established through trial and error. 

This theory is supported by the observation that young cells frequently rise to meet the 

expression levels of aged cells upon osmostress. The converse, old cells shifting expression 

to mirror that of young cells, was only observed to occur once, weakly, from 95 instances of 

protein expression measurements. In this way, aged cells may be better adapted to the variety 

of potential environments the cell may witness. While this work is insufficient to draw a 

definitive conclusion, the preponderance of evidence suggests old cells may act wisely, rather 

than weakly. 

Through this analysis we have identified a number of unique, age dependent stress 

adaptive protein expression patterns. These patterns, while masked in a whole population 
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Figure 3.19. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Fmp48. 
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Figure 3.20. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Rcn2. 
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Figure 3.21. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Sur1. 
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Figure 3.22. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Gip2. 91



Figure 3.23. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Arg1. 92



Figure 3.24. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Arg3. 93



Figure 3.25. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Arg4. 94



Figure 3.26. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Sed1. 
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Figure 3.27. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Bap2. 
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Figure 3.28. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Tmt1. 
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Figure 3.29. Age distribution analysis of yeast cell population. Y axis is a linear
modal normalization of data. X axis is a biexponential scale of GFP fluorescence.
Black, all cells. Cyan, young cells (low WGA signal). Red, old cells (high WGA signal).
The GFP-tagged protein in this analysis is Aco2. 
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analysis, were easily discerned through addition of a single experimental variable. This 

analysis represents the tip of a cell population variability iceberg. We omitted from this 

analysis considerations such as cell cycle stage, volume, pH, and cytoplasmic glucose 

concentrations. All of these variables are measurable in the context of this experiment. It is 

likely that through a multi-dimensional approach a greater picture of the cells dynamic 

response program may be uncovered. For now, however, we must suffice with a conclusion 

that cell age results in a significant increase in the machinery necessary to respond to stress. 

Whether this difference represents weakness or wisdom, it is clear that no single expression 

pattern of the stress adaptive network exists for all cells. 

Discussion 

The analyses in this chapter represent panoramic snapshots of cell activity. Each 

describes a static point in a fluid response mechanism. By leveraging an integrated 

bioinformatic approach each picture comes together as a part of the whole, hinting at the 

intentions and actions of the cell after stress. This approach proved very informative. 

Through a combined analysis of metabolomic and proteomic data sets we have highlighted a 

previously unrecognized mechanism for synthesis of glycerol and energy from lipids during 

osmostress. This analysis also identified starch synthesis as the primary mechanism of yeast 

osmoadaptation. Additionally, it uncovered the previously unknown synthesis of polyamines 

as a potentially critical mechanism in osmostress recovery. Lastly, we demonstrate that the 

age of a cell dictates stress preparedness for the individual – a feature that may explain the 

stochastic variability observed in protein expression from the previous chapter. 
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The picture painted in this chapter highlights the value of combining functionally 

relevant -omics analyses. However, to understand the entire adaptive program we must push 

further. A coupled time and dose dependent analysis using multiple experimental platforms 

will be essential to transition from predictions to determinations. The tools, platforms, and 

analysis techniques are available. It requires only that we obtain the data and look carefully 

for the answers. 

Experimental Procedures 

Metabolomics Screen and Bioinformatic Mapping 

Cells were cultured and stressed, or not, as outlined in Chapter II using 500 mM KCl 

for 10 minutes with James P. Shellhammer. Samples were then centrifuged at 3000 x g for 3 

min, decanted, and snap frozen in liquid nitrogen. This experiment was repeated in triplicate. 

All frozen pellets were then delivered to Metabolon, Inc. for lysis and mass spectrometric 

analysis via LC-MS/MS (+ESI), LC-MS/MS (-ESI), and GC-MS. Individual flight counts for 

each metabolite were normalized to Bradford protein assay quantifications performed on 

each sample to account for cell number variability. These values were then normalized to 

metabolite standards run in parallel to our experimental set. An ANOVA statistical analysis 

was then applied to identify significant fold change between treated and untreated cell 

populations. 

Statistically significant hits were isolated and applied to metabolomics pathway maps 

using the KEGG2 “Search&Color” pathway mapper165,166. Red nodes indicate a significant 

increase in fold induction, green nodes indicate a significant decrease in fold induction. 

Significant fold change of metabolic enzymes was annotated to these maps128, with raw data 
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and statistics obtained through direct communication with the authors Tobias Walther and 

Florian Froehlich. Red lines or identification boxes indicate a significant increase in fold 

induction, green lines or identification boxes indicate a significant decrease in fold induction. 

Individual maps were pruned and linked together to highlight points of interest and do not 

represent complete metabolic pathways. 

Fluorescence-based Flow Cytometry and Data Analysis 

Cell culture, stress treatment, staining, and analysis were performed as outlined in 

Chapter II. Data were gated and analyzed using FlowJo v.10 analytic software as outlined in 

Chapter II. An additional gate was applied to isolate cells for low (young), medium (middle), 

or high (old) WGA staining as indicated in Figure 3.30. The medium population was 

excluded from further analysis for simplification, however we note that this population 

possessed significant heterogeneity in many of the age-related protein expression patterns. 

Unique behavioral classifications were first identified through statistical analysis of the 

median fluorescence intensity values between young and old cell populations, as outlined in 

Chapter II. Significant hits were then hand categorized through visual analysis and reported.  
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CHAPTER IV 

CONCLUSIONS AND FUTURE DIRECTIONS1 

All cells adapt. The adaptive process underlies development and division as well as 

deterioration and disease. In deciding to adapt, a cell must determine whether to redefine its 

homeostatic balance or return to it. While many studies have focused on decoding the 

circuitry of the former, this thesis considers the later. Using a multifaceted approach we 

assessed the capacity of the cell to respond to environmental danger from the very beginning 

to the very end of this circuit. Chapter II defines how information is converted, amplified, 

and distributed to the cell to engage adaptation. Chapter III assessed how this transmitted 

information manifests in to the functional reorganization of the organism. In this chapter, I 

will consider how these observations can guide future investigations. 

Functional Characterization of MAPK Signaling 

In Chapter II the signaling profile of the Hog1 MAPK was elucidated through 

rigorous quantification and dissection of the signaling cascade over a range of inputs and 

times. This focused, comprehensive analysis resulted in the discovery of an unanticipated and 

consistent relationship between dose and signaling duration. Surprisingly, this signaling 

profile was orchestrated by a rarely observed switch-to-rheostat mechanism. To establish this 

1 All figures contributed by Justin G. English 
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mechanism the MAPK engages in signaling feedback, essential for the maintenance of a 

dose-to-duration relationship. Investigation of this mechanism uncovered a perplexing 

example of graded bit-state phosphorylation on the protein scaffold Ste50. The requirement 

of graded feedback on Ste50 for proper signal encodement is unlikely to be the only example 

in this pathway. Indeed, through uncoupling of Ste50 feedback we do not recapitulate the 

drastic disruption of the Hog1 signaling profile exhibited when Hog1 catalytic activity is 

impaired (Figure 2.5). Identification of other Hog1 feedback substrates, and their 

contributions to the Hog1 signaling profile will provide us with additional examples of how 

biological systems integrate and communicate environmental information. In this way, the 

studies of the simple signaling architecture paradigms in yeast can greatly inform how we 

approach studies of human health and disease. 

In Chapter II we observed that the Sln1 and Sho1 branches function like a clutch and 

throttle. Hog1 is sluggish to activate without Sln1, but fails to amplify its signal without 

feedback toward, presumably, the Sho1 branch. It stood to reason then, that Pbs2 may be 

dynamically regulated over dose and time – disengaging the clutch for the throttle. In this 

analogy Ste11, observed as upregulated after osmostress in our mass spectral data analysis, 

may serve to goose the throttle. Under these circumstances Pbs2 would act as a gearbox. If 

this is true, is Pbs2 shifting? Through measurements of Pbs2 protein abundance and 

phosphorylation status it appears it may very well be (Figure 4.1). Both Pbs2 abundance and 

phosphorylation are highly dynamic with respect to both dose and time in these 

measurements. This data could represent the capacity of the Hog pathway to coordinate 

pathway activation power to establish dose-to-duration. Note that the low abundance of the 

Pbs2-TAP strain at time 0 is real and was isolated to the presence of the epitope tag. This 
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Figure 4.1. Adundance and phosphorylation dynamics of the MAP2K Pbs2.
A.  Fold-change in Pbs2 abundance over time. Wildtype cells were treated with the indicated doses 
of KCl, lysed, and probed by immunoblotting with anti-Pbs2 (Santa Cruz, sc-6812). Data is relative 
to unstimulated cells (n=1).
B. Pbs2 phosphorylation over time. Pbs2-TAP tagged cells were treated with 550 mM KCl, lysed 
and probed by immunoblotting with anti-protein A antibodies. Top, Phos-tag Bis-Tris SDS PAGE. 
Bottom, identical samples in the absence of Phos-tag. 
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phenotype disappears when assessing Pbs2 in wildtype strains with protein specific 

antibodies, as seen in Figure 4.1a. 

Our analysis of Pbs2 underscores the need to continually assess the dynamics of 

pathway components with respect to both dose and time. Pbs2 represents yet another 

potential point of regulation, alongside Ste50, for programming the Hog1 circuit. It stood to 

reason that feedback phosphorylation on Pbs2, represented by the phospho-dynamics of the 

molecule, could generate the observed shifting of Pbs2 abundance. However, substitution of 

6 MAPK phosphorylation consensus sites on endogenous Pbs2 had no effect on Hog1 

activity (Figure 4.2). However, I have not yet directly measured how Pbs2 abundance 

changes over time and dose in this mutant. Perhaps the gearbox regulates signaling properties 

outside the scope of Hog1 dose-to-duration. Or perhaps we have not yet stripped a sufficient 

number of regulatory sites from Pbs2, a protein possessing ~12 S/T/Y sites. 

In an endeavor to identify further points of regulation we conducted a screen for 

dynamic abundance and phosphorylation accumulation on other pathway components. While 

several interesting phenotypes were observed. For example, the receptor Sho1 (Figure 4.3), 

exhibited dynamic abundance and phosphorylation dynamics. Both the relative abundance 

and phosphorylation ratio of this receptor increases with time after osmostress. This 

phenotype may represent a potential mechanism for mediating the duration of the Hog1 

response to osmostress. Indeed, a previous study from our laboratory determined that a single 

amino acid substitution could uncouple Hog1 feedback phosphorylation to this receptor50. 

This mutant was sufficient to perturb the duration of Hog1 at a single dose of osmostress. 

Thus, further consideration of how the Hog1 dose-to-duration response may be encoded on 
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this molecule would be informative, and may reveal an inherent ability of the pathway to 

further tune input amplitude for the purposes of duration encodement. 

But let’s cast a wider net. A truly comprehensive analysis of the proteome will be 

necessary to unlock the complete network of regulatory mechanisms serving to encode the 

Hog1 signaling profile. The approach likely to achieve the greatest success, and stand to be 

most informative, would be a combination of proteomic analyses. The use of Phos-tag 

provides the next level of protein-state clustering necessary to understand communication 

networks. Mass spectrometry can identify the frequency of a phosphorylation or other post-

translational modification among the total population of a given protein. However, mass 

spectrometry cannot determine the ratio of these posttranslational modifications, or their 

relationship, across whole peptides. Here I propose that sorting of whole cell lysate with 

Phos-tag gel electrophoresis prior to mass spectrometry would cluster whole proteins in to 

phospho-patterned sub-groups. The gel could be cut and dissolved to retrieve the peptides 

from these sub-groups. Each sub-group could be digested, isobaric tag for relative and 

absolute quantitation (iTRAQ) labeled, pooled, sorted by size, and analyzed via mass 

spectrometry. In this way not only the relative phosphorylation frequency, but the ratio and 

relationship of these phosphorylation events on the observed peptides could be assessed. This 

information could be used to understand how information is appended to these molecules as 

bits of patterned phosphorylation, providing clearer insights on how the cell system is 

regulated and information is communicated under normal signaling conditions. This process 

could then be repeated under a plethora of stimulus conditions. Each stimulus would generate 

its own protein network signature, and these could be overlayed to identify nodes of 

information transmission. This approach would have the added benefit of revealing the 
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downstream components, enzymes, and adaptive machinery Hog1 is specifically responsible 

for regulating. In this way the above experiments would address two considerations at once. 

How Hog1 programs its own activity, and how this program then facilitates downstream 

adaptive reprogramming. 

Regulatory hits from the above analysis would represent high priority targets for in-

depth analysis of phosphorylation, abundance, and localization dynamics. By decoupling the 

regulatory mechanisms controlling these targets a toolbox of encoding components for the 

Hog1 circuit can be compiled. Once this toolbox is established combinations of regulatory 

components can be synthetically controlled, removed, induced, or otherwise impinged upon 

to exert exacting control over the cells adaptive machinery. The ultimate goal would be to 

generate sufficient control over the system to program desired outputs for any given input to 

the system. This thesis work has demonstrated that such control is possible through mutation 

of Ste50 and deletion of pathway components. However, the dynamic range of this system 

can be greatly improved through identification and control of additional regulatory 

components.  

Age, Adaptation, and Polyamines 

In Chapter III it was determined that the replicative age of yeast has a pronounced 

effect on the readiness of the cell for stress adaptation. Unclear from this analysis is an 

understanding of whether this readiness underlies the weakness or wisdom of that particular 

cell toward stress. Metabolomic analysis after stress indicated that polyamine levels rise 

substantially, and previous reports have demonstrated that polyamine levels are in decline 

within older yeast. One would perhaps assume then that older yeast, containing less of a 
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strongly stress induced metabolite, may be weakened toward future stress. Indeed, the elderly 

often fail to heal or fully recover from serious insult or injury. Perhaps then the metabolites 

that are over-expressed in aged yeast are compensatory, the minimum unit necessary for 

survival if stress were to befall them. However, the converse is also possible. Yeast are not 

human tissues, and it may hold that old yeast accumulate sufficient experience and 

environmental considerations to tune their adaptive and metabolic networks to an optimally 

safe level. Several experiments could be conducted to address this uncertainty. Specifically, 

to determine the duration of Hog1 activity in cells based on age and polyamine levels. 

Addressing how age and Hog1 activity duration correlate can be approached in two 

ways. Yeast stressed and fixed over time could be simultaneously stained with WGA as well 

as fluorescently conjugated anti-ppHog1 and Hog1 antibodies. Analysis of these cells by 

fluorescent cytometry would provide a ratio of active Hog1 in individual cells, the age of 

those cells, and perpetuity of Hog1 activity over time in these individual cells. This 

experiment could then be repeated with direct application of polyamines to yeast, as 

described previously148, to assess whether cell age, polyamine content, or both factors 

increase Hog1 activity duration in individual cells. 

Alternatively, live cell imaging in a flow chamber may be appropriate for this 

analysis. Hog1 shuttles to the nuclease after activation and remains there for a period of time. 

This observation is commensurate with our duration observations in Chapter II. An exact 

correlative analysis would need to be conducted to ensure that the durations for various doses 

over time were identical; or at the very least proportional. With this information in hand it 

would be possible to monitor Hog1-GFP in individual cells stained with WGA in real-time 

after stress exposure. Considerations would need to be made for how WGA staining may 
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increase the Hog1 response, as WGA itself is a yeast specific cytotoxin. However, this 

analysis could provide information unattainable through flow cytometry, such as the relative 

variability of the response duration in individual cells or whether cells of differing ages 

localize Hog1 differently over time. This experimental platform could also be coupled with a 

fluorescently-tagged version of an induced protein product to specifically monitor the time 

between Hog1 activation and protein production. It stands to reason that the timing of this 

event may also be altered by cell age, as it is by reprogramming of the cells signaling 

circuitry (Figure 2.3e). 

Synthesizing the above ideas, on could apply Phos-tag and mass spectrometry to cell 

populations that have been sorted relative to their age range. In this way discrete, similar cell 

populations could be analyzed. Through this analysis proteins with dynamic but opposing 

regulatory influences could be revealed. This analysis could also provide clear mechanisms 

for how old and young cells alternatively address the task of adapting to stress. 
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