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ABSTRACT 
 

MARIYA KHUZEM CHHATRIWALA: Defining diverse mechanisms that regulate the 
activity of Dbl-family guanine nucleotide exchange factors. 

(Under the direction of John Sondek) 
 

 Rho-family GTPases participate in a diverse range of critical cellular processes such 

as cytoskeletal rearrangement, gene transcription, and cell-fate determination; consequently, 

aberrant regulation of Rho-family GTPases has been implicated in diseases such as cancer 

and many developmental disorders.  Dbl-family guanine nucleotide exchange factors (GEFs) 

activate Rho-family GTPases by promoting exchange of bound GDP for GTP.  There have 

been 69 Dbl-family GEFs identified to date in the human genome, and while they vary 

significantly in size, domain architecture, and GTPase specificity, they all contain a Dbl-

homology (DH) domain followed almost invariably by a tandem pleckstrin-homology (PH) 

domain.  The DH domain is the core catalytic unit necessary for nucleotide exchange while 

the PH domain has been shown to be involved in lipid binding.     

  The work presented examines two mechanisms that regulate the exchange activity of 

Dbl-family GEFs by ultimately manipulating the ability of the DH domain to engage its 

cognate GTPases.  We show that the N-terminal DH/PH cassette of the GEF Trio requires 

direct contact between the DH-associated PH domain and its cognate GTPases Rac1 and 

RhoG for efficient exchange, adding to a growing number of GEFs that require their PH 

domain for full exchange activity.  In addition, we also investigate mechanisms through 

which Dbl-family GEFs may act as effectors of active small GTPases.  These studies add to 
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our knowledge of the components that regulate the activity of Dbl-family GEFs.
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CHAPTER 1: INTRODUCTION 

Small GTPase Signaling 

Overview 

Large and small GTPases, which are also known as G-proteins, are guanine 

nucleotide binding proteins that are active when bound to GTP and inactive when GTP is 

hydrolyzed to GDP [1] (see Figure 1).  Large G-proteins consist of Gα subunits that are 

activated by GPCRs and form a heterotrimer with Gβγ subunits until activated [2].  There are 

21 different Gα subunits expressed in the human genome that fall into four major groups: the 

Gs, Gi/o, Gq, and G12/13 families [3].  Once bound to GTP, Gα dissociates from Gβγ; both Gα 

and Gβγ are then free to bind and activate downstream effectors [2].  Small G-proteins 

belong to the Ras superfamily of small GTPases and are divided into five main branches: the 

Ran, Rab, Arf, Ras, and Rho families [4].  These small monomeric GTPases are 20 – 40 kDa 

in size [5], and together with the Gα subunits, comprise over 150 members in the human 

genome [4].     

Although there are significant structural differences that distinguish the various G-

proteins, they share a conserved GTPase domain originally identified in Ras isoforms, which 

will be discussed later in greater detail [1, 2].  The GTPase domain consists of a six-stranded 

β-sheet with five α-helices located on each side.  The GTPase domain of small G- proteins 

also contains two switch regions (residues 32 – 38 and 59-67 for switch I and II, respectively, 
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in Ras isoforms), while large G-proteins have three switch regions.  The switch regions are 

responsible for binding the guanine nucleotide and undergo structural rearrangement when 

GDP is replaced by GTP.  Effectors of GTPases preferentially bind to the GTP-bound form 

and use the conformation of the switch regions to distinguish activation states [1].  Active 

small GTPases participate in signaling pathways that control critical cellular processes 

ranging from vesicle trafficking to neurite outgrowth [6, 7].  Consequently, aberrant 

regulation of the activity of small GTPases has been implicated in maladies such as tumor 

formation and developmental disorders [8, 9].   

Most small GTPases, with the notable exceptions of Ran and Rerg, are lipid-modified 

to anchor them at various cellular membranes; localization of GTPases to membranes is 

critical for activation of downstream effectors in vivo [4, 10].  Additional forms of post-

translational modification such as carboxy-terminal methylation, ubiquitination, and 

phosphorylation can also regulate sub-cellular location and function of small GTPases [11-

19].  The activity of most small GTPases is further determined by three major classes of 

proteins.  GTPase-activating proteins (GAPs) enhance the intrinsic capacity of GTPases to 

hydrolyze GTP to GDP; guanine nucleotide dissociation inhibitors (GDIs) shield the prenyl 

group on GTPases from solvent and stabilize the cytosolic, inactive, GDP-bound state; and 

guanine nucleotide exchange factors (GEFs) catalyze the exchange of bound GDP for GTP, 

thereby activating the GTPases [10].  While GAPs and GEFs have been identified for 

members of all five families of small GTPases, GDIs have been found only for Rab-family 

GTPases and Rho-family GTPases [20, 21] (see Figure 1).   
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Ran and Rab GTPase families 

As previously mentioned, GTPases of the Ran family are not lipid-modified and their 

function does not depend on their ability to associate with a cellular membrane [4].  Only one 

Ran GTPase, Ran, has been identified in humans [22].  Ran is required to facilitate transport 

across the nuclear membrane, regulate spindle assembly, and control mitotic checkpoints 

[22-24].  The ability of Ran to transport cargo across the nuclear membrane is dependent on 

maintaining a high concentration of Ran-GDP outside the nucleus and a high concentration 

of Ran-GTP inside the nucleus.  To maintain these separate pools of inactive and active Ran, 

RanGAP1 is concentrated outside of the nucleus while the Ran GEF RCC1 is abundant 

inside the nucleus.  Active Ran binds importin-β that has entered the nucleus carrying cargo 

such as the microtubule organizing component, NuMA.  The Ran-GTP/importin-β complex 

is then transported back out into the cytoplasm where RanGAP1 inactivates Ran and releases 

importin-β, allowing it to bind more cargo [25].   

 Unlike Ran GTPases, Rab-family GTPases are prenylated and function at various 

membranes, including the plasma membrane and endosomal membranes [26, 27].  Rab 

GTPases are primarily involved in regulating vesicle transport and work with tethering 

factors to tether vesicles to their target membranes [28].  In addition, Rab GTPases can also 

participate in membrane trafficking and help determine the specificity of membrane targeting 

[29].  To date, there have been over 60 mammalian Rab GTPases identified [26, 30].  Mis-

regulation of Rab GTPases has been linked to Griscelli syndrome (characterized by dilution 

of hair pigmentation and uncontrolled activation of T-cells and macrophages), X-linked non-

specific mental retardation, and decreased resistance to invasion by pathogens [31]. 
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 GTPases of the Ran and Rab families are critical for cellular function, but the 

remainder of this work will focus on the mechanisms and proteins responsible for the 

regulation of Rho-family GTPases.  Ran and Rab GTPases are thought to cooperate with 

Rho-family GTPases in regulating cellular functions such as microtubule assembly [32] and 

cell adhesion [33]; however, the studies described subsequently do not examine these 

signaling pathways.  Thus, there will be no further discussion of the Ran and Rab GTPase 

families.   

Arf-family GTPases 

 The Arf family of GTPases is composed of Arf (ADP-ribosylation factors) proteins, 

Arl (Arf-like GTPases) proteins, and Sar (secretion associated and Ras-related) proteins[34, 

35]; of these three sub-types, Arf GTPases are the best characterized.  Arf GTPases are 

named for their ability to act as co-factors for cholera toxin during the catalysis of ADP-

ribosylation of Gs, but are best characterized for their ability to regulate vesicular trafficking 

and other membrane trafficking pathways [34].  Like most other small GTPases, members of 

the Arf family are post-translationally modified with a lipid moiety [4, 10, 36]; however, they 

are myristoylated (not prenylated) on a glycine at the N-terminus and not the C-terminus 

[36].  Inactive Arf GTPases are soluble and cytosolic because the myristoyl moiety is buried 

in an internal binding pocket found in Arf GTPases themselves.  Upon binding GTP, 

structural rearrangements expose the N-terminal lipid moiety, allowing it to insert into the 

plasma membrane [10, 35, 36].   

 The six mammalian Arf proteins identified are grouped into three families based on 

sequence homology and function [34, 37].  Arfs 1-3 control assembly of coat complexes into 
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budding vesicles, Arfs 4 and 5 have more ambiguous functions but are thought to regulate 

early Golgi transport, and Arf-6 likely regulates endosomal membrane trafficking and 

structural reorganization of membranes at the cell surface [34, 38].   

 Similar to the Rho-family GTPases (which will be discussed in detail later), the 

number of Arf GEFs exceeds the number of Arf GTPases.  The mammalian genome encodes 

fifteen exchange factors for Arf GTPase.  These GEFs are characterized by the presence of a 

Sec7 domain [37, 39] that consists of a cylinder composed of ten α-helices and is the core 

catalytic unit of the exchange factor [40, 41].  Arf GEFs can be grouped into five different 

families on the basis of domain architecture: the GBF/BIG, cytohesin, EFA6, BRAG, and 

Fbx families [37].  The cytohesin GEFs are arguably the most well defined of these families 

and currently consist of four members: cytohesin-1, cytohesin-2/ARNO, cytohesin-3/Grp-1, 

and cytohesin-4.  The four cytohesin proteins are 68% identical and are composed of a 

coiled-coiled (CC) domain, Sec7 domain, and pleckstrin-homology (PH) domain in that 

order [37].  PH domains are traditionally known for binding phosphoinositides and those of 

the cytohesin family of GEFs generally bind phosphoinositides with relatively high affinities 

and specificities.  Refer to the section labeled “PH domains: general introduction” for a 

detailed discussion of PH domain structure and function [42, 43].  The number of glycines 

found in the β1/β2 loop of PH domains in cytohesin GEFs significantly impacts the affinity 

and specificity for phosphoinositides [44].  The “3G” splice variants of the PH domains of 

ARNO, cytohesin-1, and Grp-1 can all bind phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 

with sub to low micromolar affinities and are capable of membrane targeting; the “2G” splice 

variants bind both PIP3 and phosphatidylinositol (4,5)-bisphosphate (PIP2), but with ~30-

fold lower affinity [44-47].   
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 The substrate specificity of the cytohesin GEFs remains somewhat controversial.  In 

vitro exchange data shows that although these GEFs are fairly promiscuous, they catalyze 

exchange most efficiently on Arf-1 [37, 48] while the EFA6 family of GEFs is more specific 

for Arf-6 [49].  However, other studies show that Arf-6, not Arf-1, preferentially associates 

with ARNO in vivo and that expression of ARNO results in activation of Arf-6 [50].  These 

two conflicting observations might be reconciled by recent data showing that while ARNO 

does not activate Arf-6, it will bind to active Arf-6 through its PH domain in a PIP3-

dependent manner as a way of translocating to a cellular membrane where it can then activate 

Arf-1 [48] (see Figure 2).     

Ras-family GTPases 

 The Ras family of GTPases includes (but is not limited to) the Ras, Rap, Ral, Tc21, 

Rheb, Rit, and Rin GTPases [4].  Ras proteins are the best characterized of these GTPases, 

mainly because of the high correlation between activating mutations in isoforms of Ras and 

the incidence of cancer.  Activated mutants of Ras isoforms have been identified in >20% of 

human cancers [5, 51] and the original Ras isoform was identified as a retroviral oncogene 

from a rat sarcoma virus [52].   

 There are four major Ras isoforms in mammals: H-Ras, N-Ras, K-Ras(A), and K-

Ras(B) [4, 51].  They are similarly and ubiquitously expressed, with the exception of K-

Ras(A) whose expression levels are ~20 fold less than K-Ras(B) (personal communication 

with Adrienne Cox) [51].  They are also highly conserved in sequence except in their hyper-

variable C-terminal regions, which undergo several post-translational modifications that 

dictate sub-cellular location and associated function.  More specifically, these Ras isoforms 
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contain a C-terminal “CAAX” (C, cysteine; A, an aliphatic residue; X, any amino acid) motif 

that is proteolyzed to remove the last three residues prior to farnesylation or 

geranylgeranylation and carboxymethylation of the new C-terminal cysteine.  In addition to 

isoprenylation, several Ras isoforms also require adjacent poly-basic residues in the hyper-

variable region or further palmitoylation of this region for proper membrane targeting [5, 51, 

53, 54].  Mutations that impair post-translational modification of Ras isoforms significantly 

impact function and often abrogate transformation potential [9, 51, 53].  Unfortunately, 

therapeutic agents that target lipid modification of Ras isoforms currently suffer from a lack 

of efficacy and specificity and often target Ras-superfamily GTPases. 

 The activity of Ras isoforms is also tightly controlled by GAPs and GEFs which 

modulate their nucleotide bound state.  To date, there have been approximately nine GEFs 

and eight GAPs identified which directly regulate the activity of Ras isoforms [51].   

GEFs for Ras GTPases are characterized by an ~ 250 amino acid Cdc25 domain 

(named after the yeast homolog of Ras isoforms) and an N-terminally adjacent 50 amino acid 

Ras exchanger motif (REM) domain [55-57].  Sos1 and -2, together with Ras-GRF1 and -2, 

and Ras-GRPs, comprise the three major families of exchange factors for Ras isoforms [55, 

56].  Activation of Sos1 and -2 is regulated through association with receptor tyrosine 

kinases (RTKs) via interaction with Grb2 or possibly through allosteric modulation by 

phospholipids; Ras-GRF1 and -2 and Ras-GRPs respond to calcium-dependent association 

with calmodulin or interaction with DAG, respectively [55, 58, 59].  Interestingly, Sos1 and -

2 and Ras-GRF1 and -2 also contain a DH/PH cassette, which is the catalytic exchange unit 

for Rho-family GTPases, and can activate the Rho-family GTPase Rac1 [8, 55, 60, 61].  
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Thus, Sos1 and -2 and RasGRF1 and -2 provide a direct link between the activation of Ras 

isoforms and Rac1. 

In comparison to Ras GEFs, signaling pathways regulating GAPs for Ras isoforms 

are less defined.  All known Ras GAPs are characterized by a 250 amino acid RasGAP 

domain, but do not share significant sequence homology outside of this region [55].  The 

tumor suppressor neurofibromin and p120 Ras-GAP are the two most extensively studied 

Ras GAPs [55, 62].  The neurofibromin gene is deleted in the genetic disorder 

neurofibromatosis [63] and p120 Ras-GAP is thought to associate with activated RTKs 

through its SH2 domain [64, 65], but little else is known about how they regulate activation 

of Ras under homeostasis.  Other Ras GAPs such as RASAL, GAP1IP4BP, and CAPRI, may 

be modulated by regulation of phosphoinositide or calcium levels as many of them contain 

either PH or C2 domains [55, 66].   

Activation of Ras isoforms regulates signaling events that modulate gene 

transcription [4, 67] and occurs in response to several different types of stimuli, including the 

activation of RTKs and GPCRs [67-70].  The mitogen-activated protein kinase (MAPK) 

pathway (Ras  Raf  MEK  ERK) is the canonical signaling pathway associated with 

activation of Ras GTPases  [4, 67, 70], but other effectors such as PI3K, RalGDS, Tiam1, 

and phospholipase C (PLC)-ε have also been identified and are critical for processes 

including tumor formation, cellular differentiation, and Schwann cell migration [67, 71-75].  

The interaction between active Ras isoforms and their effectors is mediated through well 

characterized motifs known as Ras-binding domains (RBDs) or Ras-association (RA) 

domains.  Solved structures of RBD/RA domains indicate a similar ubiquitin-like fold, 

consisting of a ββαββαβ motif; the domains are ~100 amino acids in length with vary degrees 
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of sequence homology [76, 77].  However, several studies now show that the presence, or 

predicted presence, of an RBD or RA domain does not necessarily guarantee a direct 

interaction with active Ras isoforms or closely related Rap isoforms [78].  For instance, 

although Tiam1 was shown to co-immunoprecipitate with active H-Ras from cells [73, 78], 

efforts to show a direct interaction between the RBD domain of Tiam1 and H-Ras-GTP using 

purified components have failed (personal communication with John Sondek).   

After Ras GTPases, the Rap GTPases comprise the most studied members of the Ras-

family of small GTPases.  Rap GTPases are involved in mediating cell adhesion, cellular 

differentiation, cell polarity, proliferation, neurite outgrowth, and synaptic function [79, 80].  

Five closely related isoforms of Rap (Rap1a, Rap1b, Rap2a, Rap2b, Rap2c) have been 

identified in the human genome; of these, Rap1a and Rap1b are the best characterized [4].  

Like Ras GTPases, Rap1a and -1b isoforms are lipid modified and membrane associated.  

They are found associated with the Golgi, endosomes, and the plasma membrane, but 

generally translocate to the plasma membrane upon activation [11, 81, 82].  Rap1a and -1b 

are >90% identical, with most differences within  the C-terminal polybasic tail, and little 

progress has been made in elucidating specific roles for the different isoforms of Rap1 [83-

85].  However, there is some evidence that Rap1a may be specific for T-cell proliferation and 

adhesion of lymphoid cells while Rap1b is required for platelet aggregation and is localized 

to the tips of neurites [85-87].   

Rap1a was originally identified as a gene that could counter transformation mediated 

by K-Ras(A) [88].  Both Rap1 isoforms, which each share approximately 50% sequence 

identity with Ras isoforms, are virtually identical to Ras GTPases in the switch regions with 

the notable exception of glutamine 61.  Residue 61 is a threonine residue in all Rap GTPases 
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[83].  As the switch regions mediate interactions with effectors, active Rap1 isoforms can 

also bind to the RBD domain of many of the same effectors as Ras GTPases.  These effectors 

include Raf and RalGDS, which are critical for mediating transformation downstream of Ras 

isoforms [4].  Both active Ras and Rap1 GTPases have also been shown to interact with 

Tiam1 in cells, but at different binding sites (see Figure 3) [73, 74, 89-91].  The Q61T 

substitution in Rap1a and -1b renders them inefficient substrates for most Ras GAPs [92], 

and it is thought Rap1 isoforms counteract the transforming effects of Ras GTPases by 

remaining active and sequestering its effectors at the cell membrane [4, 93].  However while 

active Rap1 isoforms may compete with Ras isoforms for effectors, Rap1 GTPases 

participate in signaling pathways distinct from Ras GTPases and have their own specific 

effectors such as Krit-1 [68, 79, 80, 94]. 

There are seven known GEFs for Rap isoforms in humans: C3G, MR-GEF, PDZ-

GEF, Epac/cAMP-GEF 1/2, and GRP3, RapGRP/CalDAG-GEF [93, 95-97].  In addition, the 

Cdc25 domain of PLC-ε may also activate Rap1a and -1b [98, 99].  The core catalytic unit of 

the Rap GEFs is conserved from Ras GEFs and is termed the Cdc25-homology domain 

(Cdc25-HD) [95, 100]; Rap GEFs also possess an REM domain which is critical for 

allosteric regulation of several Ras GEFs [101].  However, except for GRP3 and RapGRP, 

which can also catalyze nucleotide exchange on Ras GTPases, RapGEFs are specific for 

Rap-family members [55].  Most Rap GEFs catalyze exchange on both Rap1 and Rap2 

isoforms [95-97, 102].  In addition to the catalytic unit necessary for exchange on Rap, GEFs 

for Rap contain other domains that allow for precise spatio-temporal regulation of their 

activity in response to stimulation by Ca2+, cAMP, DAG, and association with RTK-
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interacting proteins [93, 95-97, 102].  Many Rap GEFs also have RA domains and this may 

allow them to function as signaling nodes connecting Rap and Ras GTPase activity [95]. 

 The mechanisms that regulate the activity and localization of the eleven Rap GAPs, 

are less well defined than those for Rap GEFs [92].  Putative GoLoco motifs, which bind to 

and can act as GDIs for large G-protein α-subunits [103], have been identified in three Rap 

GAPs, but recent work has shown that only one of these actually interacts with Gαi and 

functions as a true GoLoco motif [104-106].  Other Rap GAPs have C-terminal PDZ 

domains which can interact with various cellular membranes [92].  The recently solved 

structure of the 340 amino acid catalytic region of Rap1aGAP has revealed that Rap GAPs 

use mechanisms distinct from those of Ras GAPs and Rho GAPs to catalyze GTP hydrolysis 

[107].  As previously mentioned, Rho-family and Ras GTPases have a glutamine residue at 

position 61 (in Ras isoforms) which helps position a water molecule necessary for 

nucleophilic attack on the gamma phosphate of GTP.  GAPs for these GTPases provide a 

catalytic arginine which further helps stabilize the nucleophilic water [108].  In the case of 

Rap GTPases, which have a threonine at position 61, the associated GAPs inserts a catalytic 

asparagine residue whose carboxyamide group fulfills the role of the glutamine 61 by 

stabilizing the water molecule [107].  

Rho-family GTPases 

 The rho gene is the founding member of the Rho-family GTPases and was originally 

identified as a homolog of the ras gene in Aplysia.  It is evolutionarily conserved in yeast, C. 

elegans, Drosophila, rat, and humans [109].  The proteins encoded by the rho gene in 

Aplysia are closely related to the Rho-family GTPases RhoB and RhoC and are 35% similar 
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to H-Ras.  Subsequent structures solved of RhoA and other Rho-family GTPases indicate 

they are structurally distinguishable from Ras isoforms by a “Rho insert” that lies between β5 

and α4 [110].  However, many of the residues that regulate nucleotide binding and 

interactions with effectors are conserved between Ras isoforms and Rho-family GTPases.  

For instance, mutation of positions 12 or 61 to a valine or leucine, respectively, renders Ras 

isoforms constitutively active, while mutation of residue 17 in Ras isoforms causes them to 

act as a dominant negative by irreversibly interacting with GEFs.  Analogous mutations in 

Rho-family GTPases have the same effects [111-116].  In addition, most Rho-family 

GTPases are also targeted to various cellular membranes through lipid modification of the C-

terminus at the CAAX motif, similar to isoforms of Ras [21, 110].  

 Twenty-three genes, which can encode 26 Rho-family GTPases, have been identified 

in humans [110, 117].  These GTPases can be activated as part of signaling pathways 

downstream of plexins, RTK, GPCRs, Eph receptors, and pathogen invasion, and thus are 

subject to multiple modes of regulation [118].  Rho-family GTPase are best known for 

regulating rearrangements of the actin cytoskeleton necessary for diverse cellular processes 

including: cell polarization, vesicle trafficking, cell cycle progression, cellular differentiation, 

host-pathogen interaction, and neurite outgrowth [117, 119-121].  Consequently, aberrant 

regulation of the activation of Rho-family GTPases has been implicated in a host of diseases, 

including cancer and neurodegenerative disorders [122, 123].  The Rho-family GTPases can 

be divided into six major branches: Rho, Rac, Cdc42, Rnd, RhoBTB, and Miro [110, 117].  

Of these, the Rho, Rac, and Cdc42 branches are the best characterized, and will be the focus 

of this section.   
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 RhoA, -B, and -C isoforms are 85% identical in sequence, comprise the Rho 

subgroup of Rho-family GTPases, and generally share the same GEFs and effectors [110, 

117, 124, 125].  However RhoA, -B, and -C often reside in distinct sub-cellular locations, 

dictated by post-translational modification [125].  In addition, while both RhoA and RhoC 

can mediate transformation, increased expression of RhoC is more strongly associated with 

oncogenesis.  In contrast, RhoB may function as a tumor suppressor [110, 125].  The major 

cell function attributed to RhoA, -B, and -C activation is regulation of contractile actin and 

myosin filaments necessary for formation of stress fibers [113].  Well characterized effectors 

of Rho isoforms include Rho-associated kinase (ROCK), citron kinase, diaphanous, rhotekin, 

and PLC-ε [126]. 

 The Rac branch of Rho-family GTPases encompasses Rac1, Rac2, Rac3, and RhoG.  

The three Rac isoforms are 88% identical, while RhoG is 72% identical to Rac1 [110] (see 

Figure 4).  Similar to RhoA, -B, and -C, most of the variation in sequence of Rac isoforms 

occurs at the C-terminus, but the functional differences can be attributed to expression 

patterns instead of differences in sub-cellular location.  Rac1 is ubiquitously expressed, Rac2 

is primarily hematopoietic, and Rac3 is enriched in the brain [110].  Rac proteins regulate the 

formation of lamellipodia, but their function is also critical for neurite extension and 

formation of tight junctions [114, 120].  Common effectors of Rac1, -2, and -3 include p21-

activated kinases (PAKs) 1, 2, and 3, PI3K, MEKK1/4, IQGAP, and the WAVE/SCAR 

complex [126].  RhoG often signals in parallel with Rac isoforms and can be activated by 

some of the same GEFs [127, 128] but signals through different effectors [129].  The two 

major effectors identified to date for RhoG are kinectin, which is a scaffold protein involved 
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in microtubule assembly, and Elmo, which is one component of the bipartite Dock180/Elmo 

GEF for Rac isoforms [130, 131].   

 The Cdc42 branch of Rho-family GTPases consists of Cdc42, Tc10, Tcl, Wrch-1, and 

Chp [110, 117].  All of the Cdc42 family members are functionally similar in that they 

mediate the formation of filopodia [132], but some members signal through different 

effectors and are structurally distinct from the founding member, Cdc42.  N-WASP, a 

canonical effector of Cdc42 [132], activates actin polymerization through the Arp2/3 

complex [133].  Tc10 and Tcl also signal through N-WASP, but induce longer filopodia than 

Cdc42 and mediate distinct signaling pathways [134, 135].  Chp and its close relative Wrch-1 

are functionally similar to Cdc42, but contain an auto-inhibitory, polyproline-rich N-terminal 

extension that likely interacts with adaptor proteins such as Grb2 through their SH3 domains 

to relieve auto-inhibition [136-139].  In addition, both Chp and Wrch-1 use palmitoylation 

and not prenylation for membrane targeting [139, 140].  Finally, unlike the other Cdc42-like 

GTPases, Wrch-1 does not interact with N-WASP but instead is responsive to Wnt-1 and 

signals through activation of the PAK kinases [137, 138, 141].  In addition to regulating 

filopodia formation, Cdc42 has well established roles in maintaining cell polarity via the Par-

3 polarity complex and is critical for cell-cycle progression [120, 142].  Interestingly, Cdc42 

shares many important effectors with Rac1, -2, and -3, such as the PAKs, MEKK1/4, PI3K, 

and IQGAP [126].   

 As previously mentioned, aberrant activation of Rho-family GTPases has been 

implicated in a host of diseases including cardiovascular disorders, neurological illnesses, 

and cancer [7, 122, 123, 143].  Thus, under normal conditions, their activation state is 

precisely controlled by GAPs, GDIs, and GEFs [10].  While mutated forms of Ras isoforms 
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have been identified in human cancers, this is not the case for activating mutants of RhoA, -

B, or -C, the Rac branch of Rho-family GTPases, or Cdc42-like GTPases.  Instead, it is the 

changes in expression or activity of regulators of Rho-family GTPases that are associated 

with various diseases [8, 66, 92, 144].    

GAPs and GDIs both attenuate the activity of Rho-family GTPases, but do so using 

different mechanisms.  GAPs accelerate the relatively slow intrinsic GTP hydrolysis rate of 

Rho-family GTPases by supplying a catalytic arginine which establishes contacts with the 

main-chain carbonyl of glycine 12 (in Rac isoforms) and helps stabilize the GTP-hydrolysis 

transition state [145].  GDIs sequester already inactive Rho-family GTPases in the cytosol by 

shielding the prenyl group in a hydrophobic binding pocket and preventing translocation to 

various cellular membranes, which is critical for activation [146].  The mechanisms 

responsible for releasing Rho-family GTPases from GDIs remain poorly defined [8, 144].  

Thus far, only three human GDIs for Rho-family GTPases have been identified: RhoGDI, 

D4GDI, and RhoGDIγ.  RhoGDI is expressed ubiquitously, while D4GDI is exclusively 

hematopoietic and RhoGDIγ is expressed in lung, brain, and testis [144].  In contrast to the 

GDIs, between 60 and 70 proteins that contain a RhoGAP domain are expressed in humans, 

and they vary in GTPase specificity, size, and domain architecture [92, 147, 148].  The 

substrate specificity for most Rho GAPs has only been tested on RhoA, Rac1, or Cdc42, but 

it is possible that they function on atypical Rho-family GTPases as well [147].  The different 

domains present in Rho GAPs allow them to function as signaling nodes or scaffolds that 

integrate several signals with the inactivation of Rho-family GTPases.   

 Similar to Rho GAPs, the number of Rho GEFs greatly exceeds the number of Rho-

family GTPases [8].  Typically, GEFs are defined as proteins that interact preferentially with 
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the nucleotide-free form of the GTPase, in addition to catalyzing nucleotide exchange.  A 

more detailed explanation of the basic mechanism used by Rho GEFs to catalyze exchange is 

provided in the next section.  Several classes of Rho GEFs have been identified including 

GEFs related to either SmgGDS, Dock180, or Dbl [149, 150].  Of these, the Dbl-family 

GEFs are the best characterized biologically and structurally. 

Dbl-family GEFs 

Overview  

The first Dbl-family GEF was identified in 1985 as an oncogene from the DNA of 

human diffuse B-cell lymphoma (Dbl).  When transfected in to NIH 3T3 cells, this gene was 

able to transform the cells and produce foci [151].  In addition to transforming cells, the Dbl 

oncogene also functions as an exchange factor for RhoA and Cdc42 [152, 153].  The 

exchange activity of Dbl is dependent on the integrity of an ~200 amino acid domain known 

as a Dbl-homology, or DH domain [153].  In the past fifteen years, numerous evolutionarily 

conserved proteins that possess a DH domain and are generally capable of transforming NIH 

3T3 cells have been discovered.  These proteins comprise the large and biologically 

significant Dbl-family GEFs [154, 155].   

To date, 69 Dbl-family GEFs [8] possessing diverse domain architectures, varying 

tissue distributions, and various GTPases specificities and sub-cellular locations have been 

identified in the human genome [156, 157] (see Figure 5).  The exchange activity of the 

majority of Dbl-family GEFs is restricted to RhoA, -B, and -C, Rac1, -2, -3, RhoG, and 

Cdc42 [8].  One notable exception is P-Rex1 which can catalyze exchange on Tc10 (personal 

communication, Dr. Stephanie Hicks).  Although most Rho-family GTPases are expressed 
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ubiquitously, expression of Dbl-family GEFs is more cell and tissue specific [154, 157].  

Their number and variability makes Dbl-family GEFs similar to Rho GAPs in that they can 

integrate diverse signals, resulting in precise spatio-temporal activation of Rho-family 

GTPases in response to different stimuli.      

Dbl-family GEFs are defined by a DH domain, followed almost invariably by a 

tandem PH domain [8].  DH/PH cassettes comprise the core catalytic units of these exchange 

factors and are generally the minimum fragments necessary for cellular transformation [158].  

The DH domain forms the majority of the catalytic interface with the GTPase and is often 

sufficient for exchange in vitro [157].  The invariant position of the PH domain and 

observations that it is required for exchange in vivo and/or in vitro, suggest it also has a 

conserved function [8, 154, 159-161].  However, roles of DH-associated PH domains are not 

as well defined as those of DH domains and will be discussed in greater detail later.  The 

diverse domains surrounding the DH/PH cassette provide an additional level of regulation 

specific to each GEF and can participate in functions such as determining sub-cellular 

localization, auto-inhibiting the GEF by preventing access to the DH domain, and acting as a 

scaffold for various activators or effectors [8, 101, 162-164].   

DH domains  

The first structure of a DH domain solved in 1998 was that of β-Pix and revealed a 

long bundle of six alpha helices [165, 166].  Structures of DH domains solved since then 

show that this domain structure is highly conserved in other Dbl-family GEFs [60, 158, 166-

170].  There is also significant sequence conservation through α1a, α2b-d, and α5a-b.  These 

helices form the core of the DH domain and are denoted as conserved region (CR) 1, 2, and 
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3.  The nomenclature used here was defined by Rossman. et al. [166].  Residues in CR1 and 

CR3 mediate the majority of the interactions with the cognate GTPase which help stabilize 

the switch regions in a conformation that disrupts interaction with both the bound nucleotide 

and Mg2+.  When Rho-family GTPases are bound to GTP, the Mg2+ ion helps stabilize the 

bound nucleotide by interacting with the terminal gamma-phosphate on GTP [158].   

The functional importance of the interface between DH domains and their cognate 

GTPase has been verified through several mutagenesis studies [158, 161, 165].  Mutation of 

residues in α1, α5 (CR1, CR3) and α6 that make direct contacts with the cognate GTPase 

often significantly abrogate exchange activity without destabilizing the structure of the DH 

domain [166].  In addition, several residues in α5 are critical for determining substrate 

specificity.  An elegant study by Snyder et al. illustrates how rational mutation of these 

residues can switch GTPase specificity [167]. 

PH domains: general introduction 

 PH domains are the 11th most common domain in the human genome and are found in 

a wide variety of proteins including kinases, phospholipases, and exchange factors [43, 171].  

The name pleckstrin homology domain is derived from the observation that PH domains 

display homology to the protein kinase C (PKC) substrate, pleckstrin [172].  PH domains can 

have remarkably low sequence conservation yet retain high structural similarity [43].  They 

consist of a core seven strand β-sandwich with a C-terminal helix and three interstrand loops 

between β1 and β2, β3 and β4, and β6 and β7 that participate in the majority of interactions 

with lipid and protein binding partners [171, 172].   
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As previously mentioned, PH domains have been characterized as phosphoinositide-

binding modules [173, 174].  Structures of various PH domains reveal that they are generally 

electrostatically polarized, with a net concentration of positive charge.  It was hypothesized 

that this polarization could facilitate binding to negatively charged phosphoinositides and 

help translocate proteins to the plasma membrane [172, 173].  This claim was supported by 

the observation that several PH domains, including those of PLC-δ and Grp-1, bind specific 

phosphoinositides with high affinities in the low to sub-micromolar ranges and can function 

as membrane anchors and targeting signals [42, 175].   

However, the PH domains of PLC-δ and Grp-1 are notable exceptions to the rule, as 

most PH domains bind phosphoinositides with low affinities (>10 µM) and would be unable 

to independently target proteins to membranes [171, 176].  Instead, many PH domains that 

participate in low-affinity interactions with phosphoinositides also interact with other 

proteins [166, 171, 177].  The binding motifs for PH domains are not as conserved as they 

are for SH2 or SH3 domains, for example [171, 178, 179], but collectively these interactions 

show that PH domains can also mediate diverse protein/protein interactions.  Optimal 

exchange activity of Dbl-family GEFs often depends on integrating both the lipid binding 

and protein interaction capabilities of DH-associated PH domains.   

Functions of DH-associated PH domains 

Regulation of exchange activity through phosphoinositide binding 

 Given that the PH domains of PLC-δ and Grp-1 are capable of translocating and 

anchoring these proteins to the plasma membrane through interactions with phosphoinositide 

headgroups [43, 180], numerous studies have examined if DH-associated PH domains carry 
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out a similar function.  As Dbl-family GEFs also function at various cellular membranes in 

order to activate membrane bound GTPases [159, 181], loss of this localization would 

explain why truncation of the PH domain abolishes transformation ability.  However, 

individually, the majority of DH-associated PH domains (with the exception of the Sos1-PH 

domain) bind phosphoinositides with low affinities (>10 µM) and thus would be unable to 

target the exchange factor to the plasma membrane without assistance [171, 176, 182, 183].   

Data suggest that some Dbl-family GEFs require DH-associated PH domains for 

efficient translocation to the plasma membrane, but do not support a general and exclusive 

role for DH-associated PH domains as membrane anchors.  Replacing the PH domain of Lfc 

with a membrane targeting signal restores transformation activity that is lost when cells are 

transfected with the DH domain alone [184], but similar experiments using Vav1 DH yield 

contrasting results and do not restore its transformation potential [185].  In the case of Dbs, 

targeting its DH domain to membranes using a CAAX motif restores its ability to cause 

transformation, but does so only partially [186].  However, these studies did not specifically 

examine sub-cellular localization and several groups have shown that the DH/PH fragments 

of Dbs, Tiam1, and Sos1 retain their capacity to localize to the plasma membrane even when 

the PH domain is mutated to prevent binding of phosphoinositides [159, 160, 182].  Other 

domains with these GEFs may be    

In contrast to Dbs, Tiam1, and Sos1, two studies using immunofluorescence 

microscopy found that mutations introduced into the DH-associated PH domain of Dbl to 

prevent phosphoinositide binding also abrogate the membrane localization of Dbl  [187, 

188].  However, differences in sub-cellular localization between wild-type Dbl and Dbl 

mutants unable to bind phosphoinositides are not as pronounced as in similar experiments 
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performed with PLC-δ [189].  Recent studies investigating the role of the DH-associated PH 

domain of Asef saw much more dramatic changes in sub-cellular localization when the PH 

domain was removed [190].  Deletion of an entire domain, though, often has detrimental 

effects on protein stability and it is possible that truncation mutants of Asef lacking the PH 

domain were mis-folded and therefore, mis-localized.  Finally, new evidence suggests that 

the PH domain of Dbs may be able to translocate the GEF to the plasma membrane, but only 

through dimerization of the DH/PH cassette.  Thus, although individual DH-associated PH 

domains do not bind phosphoinositides with high affinity, they may be able to target Dbl-

family GEFs to the plasma membrane cooperatively [191, 192].  

Phosphoinositide-binding through the PH domain may not be the sole determinant of 

translocation to membranes, but it remains critical for exchange activity in vivo.  Although 

the phosphoinositide-binding deficient mutants of Dbs and Tiam1 are localized to cellular 

membranes, they are no longer able to cause cellular transformation [159, 160].  Similarly, 

Vav1 DH artificially targeted to the plasma membrane still lacks transformation potential 

[185].  Thus, DH-associated PH domains likely perform functions that require 

phosphoinositide binding, but are not restricted to dictating sub-cellular localization.    

In addition to translocating Dbl-family GEFs to the plasma membrane, it has been 

suggested that DH-associated PH domains act as sites for allosteric regulation by 

phosphoinositides.  As several GEFs, including Vav1, -2, and -3  and Sos1, are activated 

downstream of PI3K [193, 194], it was hypothesized that PI3K could regulate the activities 

of these GEFs by influencing the ratio of PIP2 to PIP3 in the cell.  Reports have claimed that 

interaction of PIP2 with the PH domains of Vav isoforms and Sos1 restricts access by the 

GTPase substrate to the active site while interaction with PIP3 has a positive effect on 
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exchange [193-195].  However, subsequent studies examining the structure of full-length 

Vav3 indicate that the GEF is unlikely to adopt a conformation in which the DH-associated 

PH domain blocks access to the DH domain [196].  Thus, phosphoinositides may regulate the 

exchange activities of Vav isoforms and Sos1, but not through allosteric modulation of the 

DH/PH cassette.  It has also been suggested that Tiam1 is allosterically regulated by 

phosphatidylinositol (4) phosphate (PI(4)P) or PIP2 through either its N-terminal PH domain, 

DH-associated PH domain, or both [197, 198].  Similarly, P-Rex1 was also found to be 

activated through PIP3 in vitro [199].  These results, though, are contradicted by experiments 

in which abrogation of phospholipid binding has no affect on the exchange activity of 

purified DH/PH fragments of Dbs, Tiam1 or intersectin in the presence of soluble 

phosphoinositide head groups or small unilamellar vesicles (SUVs) [176].   

See Table 1 for a brief summary of studies that have examined regulation of Dbl-

family GEF activity that is dependent on interaction with phosphoinositides through the DH-

associated PH domain. 

Auto-inhibition of Dbl-family GEFs 

 While DH-associated PH domains augment the activity of most-Dbl-family GEFs, 

there are several notable cases in which DH-associated PH domains restrict access to the DH 

domain and keep the GEF in an auto-inhibited state under basal conditions.  Biochemical 

data shows that p63RhoGEF and the C-terminal DH/PH cassette of Trio (Trio-C) are both 

significantly less active than the DH domain alone [200, 201].  The structure of the DH/PH 

cassette of Sos1 also shows the PH domain occluding the active site on the DH domain, and 

explains why this fragment has no exchange activity in solution [60].  The auto-inhibition of 
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both Trio-C DH/PH  and p63RhoGEF DH/PH is relieved through an interaction between 

active Gαq and a conserved region directly C-terminal to the PH domain [201, 202].  The 

molecular mechanisms that relieve the auto-inhibition of Sos1 DH/PH remain unclear, but 

some evidence suggests that the E3b1/Eps8 complex activates Sos1 downstream of H-Ras 

and PI3K [203, 204].  These aforementioned GEFs provide important examples of how DH-

associated PH domains can regulate the exchange activity by mediating protein-protein 

interactions (see Table 2).   

Nucleotide exchange assisted by PH domains 

 As previously stated, DH domains are followed almost invariably by adjacent PH 

domains.  While DH domains are often sufficient for the catalysis of nucleotide exchange, 

the structures of DH domains from β-Pix and the N-terminal DH/PH cassette of Trio (Trio-

N) have a disordered C-terminal (α6) helix [161, 165].  Subsequently solved structures of 

DH/PH cassettes reveal extensive interactions between portions of the PH domain and the C-

terminal helix [158, 166-168, 170].  Residues in the C-terminal helix of DH domains form 

functionally relevant contacts with the cognate GTPase and DH-associated PH domains 

likely stabilize this helix to ensure efficient nucleotide exchange.   

 In addition to stabilizing DH domains, DH-associated PH domains can also 

participate directly in the nucleotide exchange reaction.  The structures of Dbs DH/PH in 

complex with nucleotide-free Cdc42 or RhoA show direct contacts between the DH-

associated PH domain of Dbs and the cognate GTPases [166, 167].  The majority of the 

residues contributing to the interface between the PH domain and the cognate GTPase are 

found in the β3/β4 loop and the switch II region of the respective proteins.  Disrupting these 
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contacts results in loss of exchange activity both in vitro and in vivo SRF activation Rho 

signaling.  The structures of the DH/PH cassettes of LARG and PDZ-RhoGEF in complex 

with nucleotide-free RhoA also reveal contacts between their DH-associated PH domains and 

RhoA, albeit through residues in the C-terminal helix of the PH domain instead of the β3/β4 

loop [168, 205].  Biochemical data and sequence analysis suggest that other Dbl-family 

GEFs may use their DH-associated PH domain similarly to Dbs, LARG, and PDZ-RhoGEF.  

The residues in Dbs responsible for mediating the interaction between the DH-associated PH 

domain and Cdc42 or RhoA are conserved in several GEFs, including Trio-N, Dbl, and 

obscurin [166].  In addition, removal of the DH-associated PH domain of Trio-N results in at 

least a four-fold reduction in exchange activity [161, 200] (see Table 2). 

In contrast to Dbs, LARG, and PDZ-RhoGEF; Tiam1, intersectin, and collybistin in 

complex with their cognate GTPases show little or no contact between the PH domain and 

the GTPase [158, 167, 168, 205].  However, these structures do not account for the role of 

membranes in facilitating nucleotide exchange.  Furthermore, the region linking DH and PH 

domains has a high degree of conformational flexibility that might allow contact between the 

PH domain and the GTPase under more biological conditions [158, 166, 206] (see Figure 6).  

One possible scenario is that, at a membrane, binding to a phosphoinositide 

headgroup  enables flexible DH/PH cassettes to adopt a conformation allowing contact 

between the PH domain and the membrane-bound GTPases [160].  Thus, effective exchange 

in vivo would require DH-associated PH domains to engage the cognate GTPase and bind 

phosphoinositides; several studies show that residues in Dbs that bind phosphoinositides do 

not overlap with the residues that engage cognate GTPases [160, 176].  This model would 

also allow Dbl-family GEFs to use phosphoinositide levels to fine-tune their activity. 
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Dbl-family GEFs as effectors of small GTPases 

Guanine nucleotide exchange factors as effectors of active GTPases 

As previously mentioned, over 150 small and large G-proteins have been found in the 

human genome [2, 4].  They often participate in overlapping signaling networks and can 

directly modulate the activity of other GTPases.  For example, activation of RhoA 

downstream of various Gα subunits is well documented [207-210].  Cdc42 can also activate 

Rac1 in several different systems, while Rac isoforms can activate RhoA [211].  In addition, 

instances have also been identified of Rac1 acting downstream of RhoG or various Arf 

GTPases [50, 131, 212].  Finally, several studies show that isoforms of Ras can also activate 

Rac1 and other Rho-family GTPases, and activation of these Rho-family GTPases is required 

for transformation [73, 74, 123].   

The signaling components that facilitate the activation of one GTPase by another are 

complex and not completely elucidated, but exchange factors are logical mediators of these 

signaling pathways and there are several examples in the literature of exchange factors acting 

as a direct link between two GTPases.  For example, the Dbl-family GEFs Sos1 and -2 and 

RasGrf1 and -2 are also exchange factors for Ras isoforms, and thus couple signaling by 

Rac1 and Ras isoforms through mechanisms that are not completely understood [58, 213].  

H-Ras and Sos1 also participate in a positive feedback loop that regulates activation of H-

Ras. The exchange activity of Sos1 towards H-Ras-GDP is augmented when H-Ras-GTP 

binds to a site distal to the Cdc25 domain [101] (see Figure 7).  The Arf-1 GEFs ARNO and 

Grp-1 are activated downstream of active Arf-6 [46, 48].  Structural analysis shows that 

active Arf-6 can bind to the PH domain of Grp-1 and relieve auto-inhibition of the Sec-7 
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domain by a helical region C-terminal to the PH domain [46].  The interaction between Arf-6 

and Grp-1 is enhanced by PIP3.  Although exact structural details are not available, active 

Arf-6 likely interacts similarly with ARNO (see Figure 2).  Finally, ARNO can control the 

activation of Rac1 through interaction with the Dbl-family GEF β-Pix [212].  Thus there are 

numerous examples of exchange factors, including Dbl-family GEFs, acting as effectors of 

active GTPases.  In doing so, they facilitate cross-talk between different GTPases and 

provide an additional level of regulation.   

Dbl-family GEFs as direct effectors of heterotrimeric G-proteins  

 It is well established that RhoA can be activated downstream of Gα12/13 by the RGS-

domain containing family of Dbl-family GEFs, which consists of LARG, p115RhoGEF, and 

PDZRhoGEF [207-210].  All three of these GEFs possess an RGS domain which allows 

them to bind to Gα12 and Gα13 [210].  The RGS domain enhances the intrinsic GTP 

hydrolysis activity of Gα12 and Gα13 subunits [214-216], but also allows active Gα subunits 

to regulate exchange activity of RGS-family Dbl-family GEFs either allosterically or by 

translocating them to the plasma membrane [217].  Evidence suggests that p115RhoGEF 

interacts with Gα13 through its DH/PH cassette as well, and this interaction is also required 

for efficient activation of RhoA [218].  The mechanisms by which these interactions enhance 

activation of RhoA are not fully understood.   

Gαq also activates RhoA, but does so through the Dbl-family GEFs p63RhoGEF and 

Trio-C DH/PH [201, 202, 219, 220].  As previously mentioned, the binding site for Gαq lies 

in the highly conserved region just C-terminal to the PH domain and is alpha-helical [201, 

202].  Several groups have shown that the direct interaction between Gαq and p63RhoGEF or 
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Trio-C relieves auto-inhibition of the GEF by moving the PH domain away from the active 

site of the DH domain and is sufficient for enhancing exchange on RhoA [201, 202].   

 Dbl-family GEFs as effectors of small GTPases 

  Recent data suggests that Dbs can interact with active Rac1 through its DH-associated 

PH domain (see Figure 8).  The interaction between Rac1 and Dbs is nucleotide dependent 

and co-transfection of constitutively active Rac1 with the N-terminally truncated oncogenic 

form of Dbs augments transformation of NIH 3T3 cells by Dbs [221].  In addition, mutation 

of residues in the DH-associated PH domain of Dbs known to mediate interaction with its 

cognate GTPases or phosphoinositides do to affect interaction with active Rac1 [221].  

Interactions similar to those between active Rac1 and Dbs are seen between Scambio and 

active Rac1, -2, and -3 and Cdc42 [222].  Scambio and Dbs are evolutionarily related and 

belong to the same subset of Dbl-family GEF.  The PH domains of Dbs and Scambio also 

share significant sequence homology [159, 222] (see Figure 9).  Thus, it is possible the 

interactions mediating the interface between Dbs and active Rac1 are conserved in the 

interface between Scambio and active Rac isoforms.   

Several Ras-family small GTPases can also modulate the activation of Rac1 through 

Dbl-family GEFs.  Active Rap1a co-immunoprecipitates with Tiam1 and Vav2 and binds to 

their DH-associated PH domains [89, 90].  Vav2 and Tiam1 catalyze nucleotide exchange on 

isoforms of Rac, and this interaction is thought to ensure proper sub-cellular localization of 

these exchange factors during Rac1-mediated the activation of cell-spreading [89].  Tiam1 is 

also activated by Rap1a-GTP as part of the signaling cascade that activates the Par-3 polarity 

complex in neurons and epithelial cells [90, 223, 224] (see Figure 10).  Sequence analysis of 
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Tiam1 reveals the presence of a putative RBD domain and it is possible that active Rap1 may 

also interact with Tiam1 through its canonical effector binding region [73].  Finally, H-Ras 

may interact with Tiam1 through its RBD domain in a PI3K-independent manner; several 

reports have now shown that the interaction between Tiam1 and H-Ras is necessary for 

efficient activation of Rac1 in various cell types [73, 74].     

Mechanisms used by active GTPases to activate GEFs 

 Active GTPases activate GEFs through two major mechanisms, often used in 

combination: allosteric modulation of exchange activity or ensuring proper sub-cellular 

localization.  In the case of interactions between active H-Ras and the Cdc25 domain of Sos1 

or interactions between active Gαq and the p63RhoGEF or Trio-C, the active GTPases 

allosterically modulate the activity of the GEFs and activation of Trio-C and p63RhoGEF 

can be seen in vitro using purified components [101, 201].  In contrast, as previously 

mentioned, both Tiam1 and Vav2 are activated by Rap1a-GTP in vivo through regulation of 

sub-cellular localization [89].  However, these data do not exclude the possibility that active 

Rap1a can allosterically modulate the exchange activity of either Tiam1 or Vav2.  Finally, 

active Arf-6 activates ARNO both by translocating it to a cellular membrane and by relieving 

auto-inhibition [46, 48].  The mechanisms by which active Rac1 activates Dbs are unknown. 

Concluding remarks 

Dbl-family GEFs are controlled by many different regulatory mechanisms to ensure 

the precise spatio-temporal activation of Rho-family GTPases.  This body of work will focus 

on two important components of this regulation.  Chapter two of this thesis further examines 
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the ubiquity of using DH-associated PH domains as direct participants in the nucleotide 

exchange reactions by determining the role of the N-terminal DH-associated PH domain of 

Trio in regulating activation of its cognate GTPases.   

The third and fourth chapters of this thesis examine the role of Dbl-family GEFs as 

effectors of small GTPases.  Specifically, we investigate the nucleotide dependent 

interactions between active Rac1 and Dbs and active Rap1a and -1b and Tiam1.  A major 

caveat of the studies initially characterizing the interactions between active Rac1 and Dbs 

and active Rap1 and Tiam1 is that the interactions were examined using co-

immunoprecipitation assays [89, 90, 221].  These studies strongly suggested that Rac1 and 

Rap1 directly influenced the activity of Dbs and Tiam1, respectively, but it is unknown if 

these interactions are direct or mediated by other components in the cell; thus we further 

examine these interactions using purified components.  Together, these studies provide a 

greater understanding of the complex and varied mechanisms used to control Rho-family 

GTPase activity through their exchange factors.  
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GEF Type of phosphoinositide 
-dependent regulation 

Phosphoinositide- 
binding specificity 
and affinity 

References 

Lfc/GEF-
H1 

Membrane-translocation1 
Membrane anchor1 

Unknown [184] 

Asef Membrane-translocation PI(3,4,5)P3 
Affinity unknown 

[190] 

Dbs Membrane-translocation2 

Translocation-independent 
activity at membrane 

PI(4,5)P2; 11 µM 
PI(3,4,5)P3; > 50 µM  
PI(3)P; > 50 µM 

[160, 176, 191, 
225] 

Dbl Allosteric   
Membrane-translocation 
Translocation-independent 

activity at membrane 

PI(4,5)P2 
PI(3,4,5)P3 
Affinities unknown 

[187, 188] 

Vav 1, 2, 3 Translocation-independent 
activity at membrane 

Allosteric3 

PI(4,5)P2; 3-4 µM 
PI(3,4,5)P3; unknown 

[185, 193, 194] 

Tiam1 Translocation-independent 
activity at membrane 

Allosteric4 

PI(4,5)P2; >50 µM 
PI(3,4,5)P3; > 50 µM  
PI(3)P; 10 µM 

[159, 176, 197, 
226] 

Sos1 Allosteric PI(4,5)P2; 1.5 µM 
PI(3,4,5)P2; 0.5 µM 

[182, 193, 195, 
227] 

Intersectin Unknown PI(4,5)P2; 4.2 µM 
PI(3,4,5)P3; > 50 µM  
PI(3)P; > 50 µM 

[176] 

P-Rex1 Allosteric 
Membrane-translocation 

PI(3,4,5)P3 
Affinity unknown 

[199, 228] 

Table 1: GEFs that are regulated through interaction between the DH-associated PH domain and 
phosphoinositides. 
1. Conflicting studies suggest that the DH-associated PH domain of Lfc/GEF-H1 does not bind any 

phospholipids [229]. 
2. Conflicting studies suggest phosphoinositide binding does not influence sub-cellular localization [160]. 
3. Recent studies suggest that the domain architecture of Vav does not support a role for allosteric regulation by 

phosphoinositides [196]. 
4. Results showing allosteric regulation of Tiam1 DH/PH by phosphoinositides are contradicted by other studies 

[176].   
 



  31

 

GEF Cognate GTPases Role of DH-associated PH  
Domain. 

References

Asef Cdc42 Inhibitory; interacts with  
N-terminal SH3 domain 

[164] 

Trio-N Rac1, RhoG Assists nucleotide exchange; 
Interacts directly with cognate 
GTPase 

[230] 

Dbs Cdc42, RhoA, RhoG Assists nucleotide exchange; 
Interacts directly with cognate 
GTPase 

[166] 

p63RhoGEF RhoA, B, C Inhibitory; blocks active site on  
DH domain 

[201, 202] 

Trio-C RhoA  Inhibitory; blocks active site on  
DH domain 

[201] 

Kalirin Rac1, RhoG Inhibitory; blocks active site on  
DH domain 

[201] 

PDZRhoGEF RhoA Assists nucleotide exchange; 
Interacts directly with cognate 
GTPase 

[205] 

LARG RhoA Assists nucleotide exchange; 
Interacts directly with cognate 
GTPase 

[168] 

Sos1 Rac1 Inhibitory; blocks active site on  
DH domain 

[60] 

Tiam1 Rac1, 2, 3 Not involved in exchange [158] 
Intersectin Cdc42 Not involved in exchange [167] 
Collybistin Cdc42 Not involved in exchange [170] 

Table 2: DH-associated PH domains that regulate exchange in vitro either through intramolecular 
interactions or through direct interaction with cognate GTPases. 
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Figure 1: GTPase regulatory cycle. 
Both large and small GTPases (green) act as molecular switches that cycle between inactive states (left) bound 
to GDP (blue square with phosphates in yellow) and actives states (right) bound to GTP.  GTPase accelerating 
proteins (GAPs) enhance the intrinsic GTPase activity of GTPases to inactive them, while guanine nucleotide 
exchange factors (GEFs) activate GTPases by exchanging bound GDP for GTP.  Rho-family GTPases and Rab 
GTPases are also regulated by guanine nucleotide dissociation inhibitors (GDIs) which sequester inactive 
GTPases in the cytosol by providing a hydrophobic binding pocket for the C-terminal prenyl moiety (brown 
wavy line)  that is required for membrane localization [1].  Switch regions that change conformation based on 
the state of bound nucleotide are depicted in red.  For sake of simplicity, intermediate steps in the regulatory 
cycle have been omitted. 
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Figure 2: Active Arf-6 recruits GEFs for Arf-1 to the plasma membrane. 
The cytohesin GEFs, ARNO and Grp-1, are basally auto-inhibited (upper left) and recruited to plasma 
membranes (pink bar) through interaction with active Arf-6 and PIP3.  Recruitment releases auto-inhibition to 
allow ARNO and Grp-1 to activate Arf-1.   The domain architectures of ARNO and Grp-1 are identical and 
consist of an N-terminal coiled-coil (CC); an exchange-competent SEC7 domain associated with a pleckstrin 
homology (PH) domain; and a C-terminal helical region necessary for auto-inhibition [46, 48].   
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Figure 3: Tiam1 functions downstream of both H-Ras and Rap1a. 
Both active Ras and Rap1a activate Tiam1.  Co-immunoprecipitation experiments indicate that H-Ras interacts 
with Tiam1 through its canonical effector binding region, the RBD domain [73].  Active Rap1a has been shown 
to bind either the DH-associated PH domain or the coiled-coiled (CC) region [89, 91]. 
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Figure 4: Sequence alignment of Rac1 and RhoG. 
Identical residues between Rac1 and RhoG are highlighted in yellow, while similar residues are highlighted in 
pink.  The switch regions are indicated by red boxes. 
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Figure 5: Human Dbl-family GEF tree. 
This dendogram shows all of the 69 Dbl-family GEFs that have been identified in the human genome to date.  
Proteins are grouped according to sequence homology.  Dbl-family GEFs that have had all or portions of their 
DH/PH cassette structurally characterized are high-lighted in red.  (Adapted from Rossman et al. [8]) 
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Figure 6: The DH/PH cassette has a high degree of conformational flexibility. 
The DH/PH cassettes of Dbs (black), LARG (green), Tiam1 (blue) and Sos1 (magenta) were superimposed 
using the DH domains.  Except for Sos1, all fragments also contain bound GTPase (not shown for clarity).  
PDB entry codes are: Dbs, 1KZ7; LARG, 1X86; Tiam1, 1FOE; and Sos1, 1DBH.    
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Figure 7: Active Ras interacts with the REM domain of Sos1 to increase exchange on H-Ras-GDP. 
In a classic positive feedback loop, H-Ras-GTP binds to the REM domain of a fragment of Sos1 to enhance the 
capacity of the Cdc25 domain of Sos1 to activate H-Ras.  The two sites of H-Ras engagement are distant from 
each other and linked by conformational changes [101, 231].  The fragment of Sos1 depicted comprised only 
the Cdc25 and REM domains and is sufficient for exchange on H-Ras.    
 
 
 

.
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Figure 8: Activated Rac1 interacts with Dbl-family GEFs Dbs and Scambio to augment activation of 
RhoA.   
Rac1-GTP interacts with Dbs and Scambio most likely through their DH-associated PH domain.  The DH/PH 
cassette represents a fragment of either Dbs or Scambio.  The interaction between active Rac1 and either GEF 
augments its ability to activate RhoA, but the mechanism is unclear.  This figure was adapted from Cheng et al. 
[206, 221]. 
 
 
 
 

 



  40

 

 

 

Figure 9: Sequence alignment of DH-associated PH domains of Dbs and Scambio.   
The DH-associated PH domains of Dbs (residues 820 – 951) and Scambio (residues1261 – 1377) were aligned 
using Clustal X.  Conserved or identical residues are highlighted in grey.  The secondary structure elements of 
Dbs as defined by various structures of Dbs are highlighted as blue rods (helices) and arrows (strands) [166, 
206].  In addition, residues that bind phosphoinositides are shaded cyan (putative for Scambio) [160] and 
residues that participate directly in exchange on RhoA and Cdc42 are shaded in green [166].  Mutation of these 
residues has no effect on the ability of activated Rac1 to interact with Dbs.  By excluding the residues that bind 
phosphoinositides, RhoA, and Cdc42; and excluding the regions that are not solvent accessible when Dbs is in 
complex with nucleotide-free RhoA and Cdc42, I have determined the regions most likely to interact with 
activated Rac1 (highlighted by a thick red line in between the sequences of the Dbl-family GEFs) . 
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Figure 10: Active Rap1a activates Tiam1 as part of the signaling cascade involving the Par-3 polarity 
complex. 
The domain architecture of full-length Tiam1 is shown that the top of the figure.  Par-3 interacts with Tiam1 
through the N-terminal PH domain and tandem coiled-coiled region (CC) of Tiam1 [232].  Tiam1 also interacts 
with active Rap1a and -1b, but the interaction site on Tiam1 is not definitively determined.  Previous studies 
suggest that Rap1a augments the activity of Tiam1 in vivo by ensuring proper sub-cellular localization [89]. 
 



 

 

CHAPTER 2: THE DH AND PH DOMAINS OF TRIO COORDINATELY ENGAGE 

RHO-FAMILY GTPASES FOR THEIR EFFICIENT ACTIVATION 

Introduction 

Rho-family GTPases act as molecular switches that cycle between inactive GDP-

bound states and active GTP-bound states [120, 156, 162].  Once activated, Rho-family 

GTPases bind to their effectors to elicit a variety of downstream signaling responses, 

including: cytoskeletal reorganization, gene expression, cell cycle progression, membrane 

trafficking, cell adhesion, and cell migration [120, 233].  Given their involvement in many 

critical cellular processes, it is not surprising that aberrant regulation of Rho-family GTPases 

contributes to various diseases such as cancer [123], hypertension [143], and mental 

retardation [234].  It is generally appreciated that delineating the mechanisms involved in the 

activation of Rho-family GTPases might guide treatment regimens for a variety of human 

diseases.   

The activity of Rho-family GTPases is regulated mainly by three classes of proteins: 

1) GTPase activating proteins (GAPs) accelerate the hydrolysis of bound GTP; 2) guanine 

nucleotide dissociation inhibitors (GDIs) sequester prenyl groups added post-translationally 

to Rho-family GTPases and thus stabilize cytosolic, inactive forms of the GTPases; and 3) 

Dbl-family guanine nucleotide exchange factors (GEFs) catalyze the exchange of bound 

GDP for GTP, thereby activating the GTPases [1, 8, 122, 156]. 
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Not including splice variants, the human genome encodes 69 Dbl-family GEFs [8] of 

varying domain architecture, size, and GTPase specificity [8, 156].  All Dbl-family members 

contain a conserved Dbl-homology (DH) domain, followed almost invariably by a tandem 

pleckstrin-homology (PH) domain [8, 162].  The DH domain forms the majority of the 

interface with the GTPase and is often sufficient to catalyze nucleotide exchange [8, 157, 

158] and dictate GTPase specificity [8, 157, 167].  The PH domain is necessary for 

regulating exchange in vivo [58, 154, 159, 160, 235], and in many cases, in vitro [161, 167, 

168, 205, 236], but its exact functions remain unclear.   

DH-associated PH domains, like most PH domains, are traditionally characterized as 

phosphoinositide binding modules; but the ability of phosphoinositides to allosterically 

regulate the exchange activities of Dbl-family GEFs is, at best, controversial [159, 160, 176, 

194, 225].  In addition, in several instances, DH-associated PH domains are not necessary for 

recruiting GEFs to cellular membranes where they normally operate on membrane-resident 

GTPases.  This is true even though PH domain mutations abrogating phosphoinositide 

binding diminish the ability of Dbl-family GEFs to activate their cognate GTPases in vivo 

[159, 160, 191, 237].  Another possibility that finds growing support is that DH-associated 

PH domains facilitate exchange through direct interactions with cognate GTPases [166-168, 

205, 237].  For example, structures of Dbs DH/PH in complex with nucleotide-depleted 

Cdc42 or RhoA (henceforth, Dbs•Cdc42 or Dbs•RhoA, respectively) show direct contacts 

between the β3/β4 loop of the PH domain and its cognate GTPases [166, 167].  Mutational 

analysis has confirmed the catalytic importance of this interface both in vitro and in vivo and 

has identified His814, Gln834, and Tyr889 of Dbs as functionally significant for guanine 

nucleotide exchange [160, 166].  Given the highly conserved position of PH domains directly 
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adjacent to DH domains, it is likely that other Dbl-family GEFs also use their DH-associated 

PH domains to directly engage their cognate GTPases to facilitate guanine nucleotide 

exchange.  In particular, published data on the Dbl-family GEF Trio [161, 200] and the C. 

elegans ortholog of Trio, UNC-73 [237], provide strong circumstantial support for this 

hypothesis. 

Trio is a large, evolutionarily conserved Dbl-family GEF that is best characterized for 

its role in regulating neurite outgrowth [238-245].  Unlike most Dbl-family GEFs, Trio has 

two DH/PH cassettes (see Figure 11(a)); the first DH/PH cassette catalyzes exchange on 

Rac1 and RhoG [127, 246-248], while the second DH/PH cassette is specific for RhoA [246, 

247].  Physiological functions of the C-terminal DH/PH cassette remain relatively unclear, 

but the N-terminal DH/PH cassette is critical and often sufficient for regulating neuronal 

development through activation of RhoG, and possibly Rac1 [239, 243, 244].  Interestingly, 

although there is some discrepancy over the relative rates of exchange, the isolated N-

terminal DH domain of Trio does not exchange as effectively as the corresponding DH/PH 

cassette in vitro [161, 200].  Furthermore, deletion of the PH domain from the N-terminal 

DH/PH cassette of full-length Trio reduces its ability to induce neurite outgrowth in PC-12 

cells through activation of RhoG [200].  Finally, residues in the PH domain of Dbs that are 

functionally significant for exchange on its cognate GTPases are conserved in Trio (see 

Figure 11(b)).  Together, these data strongly suggest that the N-terminal DH/PH cassette of 

Trio might use its PH domain similarly to Dbs when catalyzing exchange on its cognate 

GTPases Rac1 and RhoG.   

Thus, to better understand the possible functional interplay between the N-terminal 

DH and PH domains of Trio specifically, and between DH and PH domains in general, we 
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determined the crystal structure of the N-terminal DH/PH cassette of Trio in complex with 

nucleotide-depleted Rac1 (henceforth, Trio•Rac1).  The complex recapitulates many of the 

interactions involving the PH domain previously seen in the Dbs / GTPase structures that are 

required for efficient guanine nucleotide exchange by Dbs.  Mutation of this interface in Trio 

confirms the necessary involvement of the N-terminal PH domain of Trio in directly 

engaging Rac1 and RhoG for their efficient activation in vitro and in vivo.  These studies 

further support the general capacity of DH-associated PH domains to be active participants in 

the exchange process and suggest a coherent model of guanine nucleotide exchange 

catalyzed by Dbl-family proteins that requires the direct and cooperative engagement of DH 

domains, as well as their associated PH domains, by Rho-family GTPases for their efficient 

activation.   

Experimental procedures 

Sequence alignment 

The sequences of Dbs (NP_079255), Trio (NP_009049), Duo (NP_003938), Dbl 

(NP_005360), Duet (NP_008995), PRex1 (NP_065871), p63RhoGEF (NP_891992), Lfc 

(NP_004714), neuroblastoma (NP_005263), and obscurin (NP_443075) shown in Figure 

1(b) were aligned using Clustal X [249].  The NCBI accession numbers are given in 

parentheses.   

Protein preparation for guanine nucleotide exchange assays 

Human Trio DH/PH (residues 1226 – 1535) (kindly provided by Dr. Yi Zheng, 

Cincinnati Children’s Hospital Medical Center ), was encoded as a fusion with an N-terminal 
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His6-tag in pET15a (Novagen), expressed in the BL21 (DE3) E. coli strain, and purified 

similarly to published protocols [166, 250].  Briefly, transformed cells were grown in LB 

media containing 0.1 mg/ml ampicillin at 37°C to an OD600 of 0.7 (mid-log phase) and 

induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 27°C for 5 hours.  

Harvested cells were resuspended in 50 mM NaH2PO4, pH 8.0, 300 mM NaCl (buffer A), 

and 5mM imidazole and lysed with an Emulsi-Flex C5 (Avestin).  Lysate was clarified by 

centrifugation at > 125,000 x g for 30 minutes prior to loading the supernatant onto a Ni2+-

Sepharose affinity column (GE Healthcare) equilibrated in buffer A containing 5 mM 

imidazole.  The column was washed with buffer A containing 55 mM imidazole and Trio 

eluted with buffer A containing 400 mM imidazole.  The protein was further purified using a 

26/60 Sephacryl-200 size exclusion column (GE Healthcare) equilibrated with 50 mM Tris, 

pH 8.0, 2 mM DTT, 2mM EDTA, 150 mM NaCl, and 5% glycerol.  Fractions containing 

Trio were pooled, concentrated, and stored at -80°C.   

Human Rac1 (residues 1-189, C189S) was expressed from pET21a (Novagen) in the 

BL21 (DE3) E. coli strain.  Transformed cells were grown and induced similarly to cells 

expressing Trio.  Harvested cells were resuspended in 10 mM MES, pH 6.0, 2 mM DTT, 

10% glycerol, 1 mM MgCl2 (buffer B) and 10 mM NaCl prior to lysis and clarification as 

described above.  Supernatant was loaded onto an SP-Sepharose Fast Flow 26/10 column 

(GE Healthcare).  Rac1 was eluted from the column using buffer B with an increasing 

gradient of NaCl from 10 mM to 600 mM and further purified using a 26/60 Sephacryl-200 

size exclusion column (GE Healthcare) equilibrated with 50 mM Tris, pH 8.0, 2 mM DTT, 

2mM MgCl2, 150 mM NaCl, and 5% glycerol.  Fractions containing Rac1 were pooled, 

concentrated, and stored at -80°C.   
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Human RhoG (residues 1-188, C188S) was expressed from the pGEX4TEV2 vector 

[251] with an N-terminal GST-tag in the BL21 (DE3) E. coli strain.  Transformed cells were 

grown in LB media containing 0.1 mg/ml ampicillin at 37°C to an OD600 of 0.7 (mid-log 

phase) and induced with 1 mM IPTG at 20ºC for 16 hours to 18 hours.  Cells were 

resuspended in buffer C (150 mM NaCl, 20 mM Tris, pH 8.0, 2 mM DTT, 1 mM MgCl2, 10 

µM GDP, and 5% glycerol) prior to lysis and clarification as described above.   Supernatant 

was loaded onto a GST-Sepharose affinity column (GE Healthcare) equilibrated in buffer C; 

the column was washed with buffer C, and RhoG eluted with buffer C containing 10 mM 

glutathione (reduced).  The GST tag was removed by cutting with TEV while dialyzing 

against buffer C overnight.  The protein was further dialyzed against buffer D (10 mM MES, 

pH 6.0, 2 mM DTT, 2 mM MgCl2, 10 µM GDP, and 5% glycerol) and applied to a Source-S 

16/10 column (GE Healthcare) equilibrated in buffer D.  RhoG was eluted with buffer D 

containing an increasing concentration of NaCl from 5 mM to 180 mM.  The fractions 

containing RhoG were then loaded onto a GST-Sepharose affinity column equilibrated in 

buffer C to remove residual amounts of GST-tagged protein.  The flow-through from the 

GST column was buffer exchanged into buffer C, concentrated, and stored at -80ºC.   

Mutations in Trio DH/PH and Rac1 were made using the Quikchange site directed 

mutagenesis kit (Stratagene) following manufacturer’s instructions.  Sequences were verified 

using automated sequencing.  Mutants of Trio and Rac1 were purified as described above for 

wild-type Trio and Rac1, respectively. 
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Guanine nucleotide exchange assays 

Nucleotide exchange was measured using a fluorescence based assay, similar to 

published protocols [166, 252], in which N-methylanthraniloyl (mant)-GTP was loaded onto 

the GTPase.  Spectroscopic analysis was carried out using a Perkin-Elmer LS 55 

spectrometer at 20°C.  The exchange assay mixture containing 20 mM Tris pH 7.5, 50 mM 

NaCl, 10 mM MgCl2, 1 mM DTT, 100 µM mant-GTP, and 2 µM GTPase was allowed to 

equilibrate with constant stirring.  Trio was then added at 50 or 400 nM for exchange assays 

with RhoG or Rac1, respectively, and nucleotide exchange was measured by monitoring the 

decrease in intrinsic tryptophan fluorescence (λex=295 nm, λem=335 nm) of the GTPase due 

to the binding of mant-GTP.  The data were fit to one phase exponential decay curves using 

the program GraphPad PrismTM in order to determine the rate of nucleotide exchange.   

Protein preparation for formation of Trio/Rac1 complex 

Human Trio DH/PH (residues 1226 – 1536) was cloned in a pPROEX-HTa vector 

(Invitrogen) using NcoI and XhoI cleavage sites, expressed as a fusion protein with an N-

terminal His6-tag in BL21 (DE3) E. coli strain, and eluted from a Ni2+-Sepharose affinity 

column (GE Healthcare) as described above.  The His6-tag was removed by cleavage with 

TEV while dialyzing (16 hrs) against a buffer containing 50 mM Tris, pH 8.0, 2 mM DTT, 

2mM EDTA, 150 mM NaCl, and 5% glycerol.  The removal of the His6-tag was confirmed 

using SDS-PAGE.  The protein was then stored at 4ºC until it was used to form a complex 

with Rac1. 

Rac177 was expressed from the pET15b vector (Novagen) in BL21 (DE3)s E .coli 

strain and protein was purified according to published protocols [158].  Minor variations 
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include that the pellet precipitated after saturation with 45% ammonium sulfate was 

resuspended in 20 mM Tris, pH 8.0, 2 mM DTT, 1 mM MgCl2, and 10 µM GDP and 

dialyzed extensively against buffer E (20 mM Tris pH 8.0, 10 mM NaCl, 2 mM DTT, 1 mM 

MgCl2, and 10 µM GDP) to remove the ammonium sulfate and increase the pH.  The 

resuspended pellet was loaded onto a Q-Sepharose Fast Flow 26/10 column (GE Healthcare) 

instead of a size-exclusion column.  Rac177 was eluted from the column using buffer E with 

increasing amounts NaCl from 10 mM to 600 mM.  The fractions containing Rac177 were 

pooled together and stored at 4ºC before being used to form a complex with Trio. 

Crystallization of the Trio/Rac177 complex 

The Trio/Rac177 complex was formed in the presence of an excess of nucleotide-free 

Rac177 in 20 mM Tris, pH 8.0, 2 mM DTT, 4mM EDTA, 200 mM NaCl, and 5% glycerol.  

The complex was purified on a 26/60 Sephacryl-200 size exclusion column equilibrated with 

20 mM Tris, pH 8.0, 2 mM DTT, 4 mM EDTA, 200 mM NaCl, and 5% glycerol.  Fractions 

containing purified complex were pooled together, dialyzed into a buffer containing 50 mM 

NaCl, 10 mM Tris, 2 mM EDTA, and 2 mM DTT, concentrated to ~21 mg/ml, and stored at 

-80ºC.   

Trio/Rac177 crystals were obtained by vapor diffusion at 18 °C.  Drops were formed 

by combining equal volumes of protein complex and reservoir solution (100 mM sodium 

cacodylate pH 5.5 – 6.5, 14 – 18% (w/v) PEG 8000 (FLUKA), and 300-500 mM calcium 

acetate).  Crystals typically appeared after 2 – 3 days and grew to final dimensions of 0.1 x 

0.1 x 0.05 mm after several days.  Crystals were cryoprotected by increasing the glycerol 

concentration of the drop to 21% (v/v) in 3% increments.  Cryoprotected crystals were then 
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suspended in a rayon loop (Hampton Research) and snap frozen in liquid nitrogen.  The 

crystals belong to the space group P21212 with unit cell parameters a = 97.492 Å, b = 

108.558 Å, and c = 53.416 Å.    

Data collection and structure determination 

A native data set was collected using a single frozen crystal at the SER-CAT 

beamline (ID-22, Advanced Photon Source).  Data were integrated and scaled using DENZO 

and SCALEPACK [253].  Phases were calculated by molecular replacement using the Trio 

DH/PH [169] and Rac1 [158] structures.  The calculations were performed using both 

AMORE[254] and PHASER[255] from the CCP4 suite of programs [256], which yielded 

identical solutions.     

Model building and structure refinement 

Electron density maps were calculated using CNS [257].  The interactive graphics 

program O was used for the majority of the model building [258], but the molecular graphics 

program COOT [259], was also used to add water molecules.  Most of the subsequent 

refinement was performed using CNS [257]; however, due the conformational mobility of 

the PH domain, CNS refinement was unable to produce clear density for this region of the 

molecule.  Thus, TLS refinement from the CCP4 program Refmac5 [260, 261] was used to 

improve the quality of the electron density maps.  Using Rac1, the DH domain, the PH 

domain, and the waters as TLS “groups” and employing tight geometrical restraints (matrix 

diagonal weighing term = 0.06), a final model with Rwork = 22.3% and Rfree = 24.9% was 

produced.  In addition, the torsion angles for every non-glycine residue are within the most 
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favored or allowed regions of the Ramachandran diagram, as determined by PROCHECK 

[262].  Please refer to Table 1 for refinement statistics. 

The simulated annealing omit map used to validate the interactions seen at the 

interface between Rac1 and the PH domain of Trio was generated from the final coordinates 

after omitting residues involved in this interface (residues 64 – 68, and 102 – 104 from Rac1 

and residues 1405 – 1411, 1429 – 1431, and 1469 – 1473 from Trio).   

All images of protein structures, with the exception of Figure 13, were generated 

using Pymol [263].  The images in Figure 13 displaying the theoretical anisotropic motion of 

the atoms [264] were generated using CCP4MG [265, 266].  Pymol [263] was also used to 

calculate buried surface areas. 

Protein Data Bank accession codes 

The atomic coordinates and structure factors (code 2NZ8) have been deposited in the 

Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers 

University, New Brunswick, NJ. 

Cell culture and transfection 

To introduce point mutations (H1410A, Q1430A, and Y1472F) into EGFP-Trio FL 

wild-type (human) (generously donated by Dr. Anne Debant, Centre de Recherche en 

Biochimie Macromoléculaire, Montpellier, France), a section of Trio containing the N-

terminal DH/PH cassette (Trio DH/PH-long) was sub-cloned into the pMCSG7 vector [267].  

Mutations were introduced using the Quikchange site directed mutagenesis kit (Stratagene) 

following manufacturer’s instructions and verified by automated sequencing.  The DH/PH 
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cassette of Trio was then digested from Trio DH/PH-long and sub-cloned into EGFP-Trio 

FL.   

PC-12 cells were cultured in DMEM containing 10% horse serum (HS), 5% fetal 

bovine serum (FBS), and 1x penicillin/streptomycin (100 units/ml penicillin; 0.1 mg/ml 

streptomycin) at 37˚C in the presence of 5% CO2.  For transfection, cells were seeded at a 

density of 500,000 cells per well on glass coverslips coated with rat-tail collagen type I (BD 

Biosciences) in 6-well dishes.  Cells were cultured for 18 hrs and then transfected with 1 µg 

of EGFP-C2 vector (Clonetech), EGFP-RhoG wild-type (human) (generously donated by Dr. 

Keith Burridge, UNC-Chapel Hill), or EGFP-Trio FL (wild-type and mutant forms) per well 

using Lipofectamine plus (Invitrogen) according to the manufacturer’s instructions.  Cells 

were fixed 48 to 72 hours post transfection for 10 minutes with 3.7% (v/v) paraformaldehyde 

in PBS, permeabilized with 0.3% Triton X-100, stained for actin with Alexa Fluor 546 

phalloidin (Invitrogen), washed, and mounted using Fluorsave Reagent (Calbiochem) 

according the manufacturer’s instructions.   

Image collection and data processing for neurite outgrowth assays 

Fixed cells were observed using an Olympus Fluoview 300 laser scanning confocal 

microscope with a 60X PL APO oil immersion objective when scoring for neurite positive 

cells.  Neurite outgrowth activity was determined by positively scoring transfected cells 

displaying one or more neurites greater than one cell body in length.  Cells found in large 

clumps (> 10 cells) were excluded from analysis.  Displayed results represent the average of 

3 independent experiments in which at least 100 cells per condition were counted for each 
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experiment.  In addition, the studies were blinded to conceal which slides contained cells that 

had been transfected with wild-type and mutant versions of Trio.  

Images were obtained using an Olympus Fluoview 1000 laser scanning confocal 

microscope with 60x PL APO oil immersion objective in 20 – 30 micron XYZ stacks.  Final 

images were processed in ImageJ [268] and represent a standard deviation projection of the 

compiled stacks.   
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Results 

Structure of Trio in complex with nucleotide-depleted Rac1 

A complex between the N-terminal DH/PH cassette of Trio (residues 1226 – 1536) 

and residues 1-189 (C189S) of Rac1 yielded poorly diffracting crystals.  Since several 

structures of Rho-family GTPases indicate that the C-terminal polybasic tail is not typically 

well-structured, nor directly involved in binding GEFs [166-168, 170], a truncated version of 

Rac1 lacking this region and ending at residue 177 (Rac177) was crystallized with the N-

terminal DH/PH cassette of Trio and used for structure determination of the Trio•Rac1 
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complex.  Previous work from this lab has shown that full-length non-prenylated Rac1 and 

Rac177  

exhibited identical capacities to bind guanine nucleotides and to be activated by the DH/PH 

cassette of Tiam1 in vitro [158].  Phases were determined for a native data set collected at the 

SER-CAT beamline (ID-22, Advanced Photon Source) using Trio DH/PH [169] and Rac1 

[158] as models for molecular replacement.  The final structure has an Rwork = 22.3% and an 

Rfree = 24.9% and incorporates data from 19.4Å– 2.0 Å (see Table 1 for data collection and 

refinement statistics).   

The overall domain architecture of the Trio•Rac1 structure is similar to that seen in 

other complexes of Dbl-family GEFs and their GTPases; the DH domain of Trio consists of a 

bundle of six α-helices while the PH domain consists of a core seven strand β-sandwich with 

three inter-strand loops and a capping C-terminal helix [8, 166, 167, 170, 171, 206, 269] (see 

Figures 12(a) and 14).  The majority of the interface between Rac1 and Trio, which buries 

~2500 Å2 of surface area, is mediated by the DH domain.  However, the complex also shows 

significant interactions between Rac1 and the PH domain of Trio that occur predominantly 

through residues in the β3/β4 loop and His1410 (see Figures 12(a) and (b)), similar to the 

interactions seen between Dbs and its cognate GTPases [166, 167].   

There is excellent electron density for Rac1, the DH domain, and the parts of the PH 

domain that contact Rac1 (see Figure 12(c) and Table 3).  In contrast, electron density is 

poor for the remainder of the PH domain, especially the β1/β2 and β6/β7 loops, which have 

not been modeled.  The unusually high average B-factor for the PH domain (see Table 3) 

suggests that it is inherently mobile.  To illustrate the predicted motion of the PH domain, we 

have displayed the thermal ellipses for each atom of the Trio•Rac1 structure (see Figure 13). 
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These ellipses represent the anisotropic B-values obtained after TLS refinement [260, 261] 

and indicate that a portion of the PH domain is highly mobile.  This observation is consistent 

with several reports that indicate many DH-associated PH domains have significant 

conformational mobility and are often difficult to model when crystallized [166, 170, 206].  

One notable exception to this generalization is the structure of Trio crystallized without 

bound GTPase [169].  However, in this case, the PH domain is locked into place by several 

crystal contacts.   

Interestingly, the anisotropic B-values and the corresponding thermal ellipses 

associated with residues of the PH domain that mediate the interface with Rac1, including 

those in the β3/β4 loop, are comparable to those for atoms in the DH domain and Rac1 (see 

Figure 13 and data not shown).  While the majority of the PH domain has few stabilizing 

interactions, the interaction of the β3/β4 loop with Rac1 appears to restrict its motion.  

Furthermore, a simulated annealing omit map generated from the final model after omitting 

residues in the interface between the PH domain and Rac1 and the final 2Fo-Fc map both 

show clear density for residues mediating this interface (see Figure 12(c)).  Thus, the 

interactions between the DH-associated PH domain of Trio and Rac1 illustrated in Figure 

12(b) are not modeling artifacts  

Comparison of Trio•Rac1 to Dbs•Cdc42 

Superimposition of the structures of Trio•Rac1 with the corresponding DH/PH 

portion of Trio in isolation indicates that an ~10° rotation of the PH domain with respect to 

the DH domain (toward Rac1) occurs upon complex formation.  This shift mimics a similar 

rearrangement within the DH/PH portion of Dbs upon engagement of Cdc42 or RhoA[166, 
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167] (see Figures 15(a) and (b)).  Consistent with sequence conservation between Dbs and 

Trio, the molecular interactions between the PH domain of Trio and Rac1 are analogous to 

those that mediate the interface between the PH domain of Dbs and Cdc42 (see Figures 

15(c) and (d)).  Specifically, the interactions between Asp65 (Rac1), His1410 (Trio, DH 

domain) and Tyr1472 (Trio, PH domain) mimic the interactions between Asp65 (Cdc42), 

His814 (Dbs, DH domain), and Tyr889 (Dbs, PH domain).  In addition, interactions between 

Asp65 (Rac1), Gln1430 (Trio, PH domain), and a bridging water molecule are recapitulated 

in the Dbs•Cdc42 complex.  Other similar interactions also occur within both structures, i.e., 

Ser1470 within the PH domain of Trio interacts with His103 of Rac1 while Lys885 of the PH 

domain of Dbs interacts with His103 of Cdc42.   

Functional analysis of the interface between the PH domain of Trio and Rac1   

To test the functional significance of the interactions between Rac1 and the PH 

domain of Trio, mutations designed to disrupt these interactions were introduced into the 

DH/PH fragment used for crystallization (see Figure 16) and purified mutant proteins were 

assayed for exchange activity on soluble wild-type Rac1 (residues 1-189, C189S) (see 

Figure 16(a)).  Relative to the equivalent wild-type DH/PH fragment of Trio, mutation of 

either His1410 to Ala, Gln1430 to Ala, or Tyr1472 to Phe significantly decreases exchange 

activity.  Similar to Dbs,[166] mutation of Tyr1472 to Phe produces the largest reduction in 

exchange activity.  Substitution of Tyr 1472 to Phe was previously assessed under similar 

conditions[169] and the two sets of measurements are consistent.  Unsurprisingly, 

complementary mutations within Rac1 designed to disrupt interaction with the PH domain of 

Trio reduced exchange by the wild-type fragment of Trio (see Figure 5(c)), further 
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confirming the functional importance of engaging Rac1 through the PH domain for catalyzed 

exchange.  The D65A and R66A mutations introduced in Rac1 lie within the switch region 

responsible for binding nucleotide.  However, rates of spontaneous exchange for these 

mutant forms of Rac1 were no more than two-fold higher than wild-type Rac1 (data not 

shown) and these small differences cannot account for the relatively large decrement in the 

capacity of Trio to activate them.  The spontaneous rate of exchange for Rac1 H103A was 

essentially identical to wild-type Rac1. 

In this study, Trio was crystallized in complex with nucleotide-depleted Rac1, but 

Trio also exchanges on RhoG both in vitro[169, 200] and in vivo [127, 200, 239, 248], and 

does so approximately three times more efficiently in vitro [169]  RhoG is 80% homologous 

to Rac1, 65% identical, and the residues in nucleotide-depleted Rac1 that are buried in the 

interface with Trio are 100% identical in RhoG (data not shown).  Consequently, mutants of 

Trio that have reduced exchange activity on Rac1 were also tested for activity on soluble, 

wild-type RhoG (see Figure 16 (b)).  Predictably, mutations within the PH domain of Trio 

also reduced its exchange activity on RhoG, with Trio Y1472F exchanging the least 

efficiently.  These data strongly suggest that the interface between Trio and RhoG is highly 

similar, if not identical, to its interface with Rac1.  Circular dichroism spectroscopy (see 

Figure 16(d)) and gel filtration chromatography (data not shown) confirmed that all mutant 

forms of Trio were properly folded and monodisperse.   

Wild-type Trio robustly activates RhoG through its N-terminal DH/PH cassette to 

promote neurite outgrowth in PC-12 cells [239].  Furthermore, mutant forms of Trio lacking 

the N-terminal PH domain exhibit a reduced capacity to both activate RhoG in vitro and 

induce neurite formation in PC-12 cells [200, 239].  While these studies indicate the 
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importance of the N-terminal PH domain of Trio for guanine nucleotide exchange of its 

cognate GTPases and the attendant morphological consequences, they do not address the 

underlying mechanistic causes for these results.  Therefore, to test the effects of disrupting 

specific interactions between the N-terminal PH domain of Trio and its cognate GTPases, the 

single substitutions described above were introduced into full-length Trio (3038 amino acids) 

and the capacity of these substituted forms of Trio to induce neurite outgrowth of PC-12 cells 

was quantified (see Figure 17).  Consistent with the inability of these mutant forms of Trio 

to activate Rac1 and RhoG efficiently in vitro, these singly-substituted forms of full-length 

Trio are also significantly compromised in their capacity to induce neurite outgrowth in PC-

12 cells.  Since these substitutions do not perturb the overall fold of the isolated DH/PH 

fragment of Trio, it is highly unlikely that they do so within the context of full-length Trio.     

Discussion 

The work presented here describes specific interactions between the N-terminal PH 

domain of Trio and Rac1 or RhoG that are essential for productive activation of these 

GTPases.  These interactions strikingly mimic the coordinate engagement of RhoA or Cdc42 

by the DH and PH domains of Dbs [166, 167].  Moreover, PH domain-mediated interactions 

between both Trio and Dbs, and their cognate GTPases, are required for efficient guanine 

nucleotide exchange in vitro and in vivo and indicate that the coordinate engagement of 

cognate GTPases by DH and PH domains necessary for efficient guanine nucleotide 

exchange might be more wide-spread than currently appreciated.   

For example, as predicted by sequence homology (see Figure 11(b)), the residues in 

the PH domain of Trio that mediate its interface with Rac1 are identical to the residues in the 
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PH domain of Dbs that mediate its interface with Cdc42 and RhoA [166, 167].  Interestingly, 

these residues are conserved in other GEFs, including: Duo, Dbl, neuroblastoma, and 

obscurin (see Figure 11(b)); and research has shown that Dbl also requires its DH-associated 

PH domain to catalyze exchange with maximal efficiency [153].  Therefore, while it is not 

conclusive that these GEFs also require direct engagement of their cognate GTPases by their 

DH-associated PH domains for full exchange potential, sequence conservation shared among 

this set of GEFs strongly suggests this possibility.   

While the residues of Dbs and Trio that mediate the interface between their PH 

domains and cognate GTPase are conserved only in a subset of Dbl-family GEFs, recent data 

shows that more distantly related Dbl-family GEFs also use their DH-associated PH domain 

to engage their cognate GTPases, albeit through different interactions.  For example, the DH 

domains of both LARG and PDZ-RhoGEF exchange less efficiently on RhoA than their 

respective DH/PH cassette [168, 205].  Not surprisingly, a comparison of the structure of 

LARG DH/PH to the structure of LARG DH/PH bound to nucleotide free RhoA (henceforth 

LARG•RhoA) reveals an ~30° rotation of the PH domain, allowing contact between the PH 

domain and the GTPase [168].  This rotation is similar to that seen with both Trio and Dbs 

upon engaging the nucleotide-free GTPase [206].  However, instead of allowing contact 

between the cognate GTPases and the β3/β4 loop of the respective PH domains, the 

LARG•RhoA structure and the structure of PDZ-RhoGEF bound to RhoA both reveal 

contacts between RhoA and residues in the αC helix of the PH domains [168, 205].  In the 

case of LARG•RhoA, mutational analysis has shown that these contacts are functionally 

significant.  The structure of LARG•RhoA and accompanying biochemical analyses also 

reveal functionally significant contacts between the GTPase and the β1 strand of the PH 
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domain which are mediated through Arg 986 in the αN helix of the PH domain [168].  The 

αN helix extends from the C-terminus of the α6 helix of the DH domain [168], and 

interestingly, similar contacts are seen between the GTPase and C-terminus of the α6 helix of 

Trio, Dbs, and PDZ-RhoGEF [166, 205].  In the cases of PDZ-RhoGEF and LARG, the in 

vivo relevance of contacts between the PH domain and the GTPase has not been pursued.  

LARG and PDZ-RhoGEF belong to a subset of Dbl-family GEFs that include Lfc and p114-

RhoGEF; further analysis is needed to determine if other members of this subset also require 

their DH-associated PH domains for maximal guanine nucleotide exchange.   

In contrast to Dbs, Trio, LARG, and PDZ-RhoGEF, crystals structures of the DH/PH 

cassettes of the Dbl-family GEFs Tiam1 [158], intersectin [167], and collybistin [170], in 

complex with their cognate GTPases show little or no contact between their PH domains and 

their cognate GTPase.  While these structures might indicate that not all Dbl-family GEFs 

use their DH-associated PH domain to engage cognate GTPases for effective exchange, it has 

been suggested that these structures might not precisely reflect the molecular details of the 

exchange process in vivo [159, 160, 166, 235].  Specifically, Dbl-family GEFs operate on 

membrane-resident GTPases and it has been proposed that biological membranes impose 

additional constraints on the conformational flexibility of DH/PH cassettes such that specific 

conformers are favored that could promote direct interactions between GTPases and DH-

associated PH domains necessary for full exchange activity [159, 160, 166].  Indeed, many 

DH-associated PH domains have been shown to bind various phosphoinositides with 

micromolar affinities [176, 226], and while these protein-lipid interactions are not normally 

considered sufficient to drive sub-cellular re-localization [171], they might provide points of 

membrane attachment that would favor conformers or orientations of DH/PH cassettes that 
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stabilize interactions between DH-associated PH domains and GTPases necessary for full 

catalytic exchange.  Studies of Tiam1 [159] and Dbs [160, 191] provide substantial support 

for this scenario.   

There is evidence that due to the conformational flexibility within the DH/PH 

cassettes, structural studies provide only a partial description of the exchange process.  For 

example, there are four independent copies of the DH/PH cassette of Dbs in the crystal 

structure of this fragment without bound GTPase [206].  In each of the four molecules, the 

position of the PH domain is different relative to the DH domain.  Much of this 

conformational flexibility is lost when Dbs engages a cognate GTPase as evidenced in the 

crystal structures of Dbs bound to either RhoA [167] or Cdc42 [166].  Similarly, the structure 

of collybistin in complex with Cdc42 shows two conformers of the DH/PH cassette within 

the asymmetric unit that differ by an ~35 degree rotation of the PH domain with respect to 

the DH domain [170].  Sos1 presents an extreme example.  In this case, the PH domain 

occludes the GTPase-binding site on the DH domain [60, 61], and the DH/PH fragment alone 

is incapable of activating GTPases in vitro (S. Soisson, personal communication).  However, 

Sos1 does activate Rac1 in vivo [58], and for this to occur, the PH domain must undergo a 

dramatic rearrangement from its position relative to the DH domain to allow binding and 

activation of Rac1.  Some evidence suggests that the E3b1/Eps8 complex activates Sos1 

downstream of H-Ras and PI3K [203, 204], but the molecular details of the Sops DH/PH 

rearrangement remain unclear.  In the case of Trio, we show here that portions of the PH 

domain that are not in direct contact with Rac1 are highly mobile in the crystal structure of 

the Trio•Rac1 complex.  This mobility does not manifest in the crystal structure of the 
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DH/PH fragment of Trio in isolation.  However, in this case, lattice contacts within the 

crystal clearly limit possible motion.   

The studies presented here support earlier indications that the N-terminal PH domain 

of Trio is required for the activation of its cognate GTPases, and together with previous 

studies of Dbs [160, 166, 167], provide detailed mechanistic information regarding roles of 

DH-associated PH domains in directly engaging GTPases for their activation in vivo.  PH 

domains associated with DH domains might function in a variety of contexts to support 

activation of GTPases.  However, an attractive and parsimonious model posits that both of 

the two domains must engage cognate GTPases for their effective and regulated activation in 

vivo.  The inherent flexibility between DH and PH domains would be restricted under 

controlled cellular conditions, i.e., at membranes and upon the binding of specific 

phosphoinositides to the PH domain, which would favor productive engagement of both 

portions of the cassette with cognate GTPases.  Under extreme conditions, such as Sos1, the 

PH domain would move off the surface of the DH domain to allow access by GTPases [60, 

61] and this movement might also be controlled by membranes and phosphoinositide-binding 

to the DH-associated PH domain.  Alternatively, the conformation of the DH/PH cassette 

might be altered by interaction with currently unknown protein activators.  In all cases 

though, the DH and PH domains would act cooperatively to integrate various cellular inputs 

leading to Rho-family GTPases activation; the PH domain would not be a simple membrane 

localization device, but more properly thought of as an intrinsic component of the exchange 

process carried out by Dbl-family proteins reacting to various cellular conditions. 
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Data collection 
Wavelength (Å) 1.0712  
Resolution (Å) 19.4 – 2.0 
Total observations 213,443 
Unique reflections 39,416 
Completeness1 (%) 99.6 (99.8) 
I/σ1,2  38.1 (3.5) 
Rsym1,3 (%) 6.9 (52.4) 
 
Refinement statistics 
Resolution (Å) 19.4 – 2.0 
Reflections 
(working/test) 36932/1968 

Rwork
4

 (%) 22.3 
Rfree

5
 (%) 24.9 

R.m.s. deviations  
   Bond distances (Å) 0.009 
   Bond angles (°) 1.138 
Average B-factor (Å2)  

   Molecule 61.1 

   Rac1 39.4 

   DH domain 39.1 

   PH domain 143.6 

   Waters 51.4 

Ramachandran 
Statistics  

   Favorable (%) 99.8 
   Allowed (%) 0.2 
   Disallowed (%) 0.00 

 

Table 3: Data collection and refinement statistics for Trio•Rac1 

1 Values for the highest resolution shell are given in parentheses. 
2 I/σ is the mean signal to noise ratio, where I is the integrated intensity for a measured reflection and σ is the 
estimated error in the measurement. 
3 Rsym = 100 x ∑│I – <I>│/ ∑I, where I is the integrated intensity for a measured reflection. 
4 Rwork = ∑│Fo – Fc│/ ∑Fo, where Fo and Fc are the observed and calculated structure factor amplitudes, 
respectively 
5 Rfree is calculated similarly to Rwork using test set reflections. 
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Figure 11: Trio-related GEFs.   
(a) Crystallized fragment of Trio is highlighted within the domain architecture of full-length Trio.  (b) Residues 
of Dbs (arrows) that mediate contacts between its N-terminal PH domain and cognate GTPases are conserved in 
other Dbl-family GEFs, including Trio.  The relative position of these residues in context of the DH/PH cassette 
is indicated in Figure 3. 
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Figure 12: Crystal structure of the DH/PH fragment of Trio bound to nucleotide-free Rac1.   
(a) The N-terminal DH (yellow) and PH (blue) domains of Trio are bound to nucleotide-depleted Rac1 (green 
with switch regions in red).  Disordered regions are indicated with dotted lines.  (b) Atomic details of the 
interface between Rac1 and the PH domain of Trio.  Hydrogen bonds (2.6 – 4.0 Å) are indicated with dotted 
lines  (c) A simulated annealing omit map (left) contoured at 1.0σ and a 2Fo-Fc map (right) contoured at 1.2σ 
generated using the final coordinates highlight the electron density at the interface between Rac1 and the PH 
domain.   
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Figure 13: The DH-associated PH domain of Trio is inherently mobile 
The anisotropic motion of each atom is displayed as a thermal ellipse (left).  An identical image without the 
thermal ellipses is shown as a reference (right).  The interface between Rac1 and the PH domain of Trio, also 
depicted in Figures 12(b) and 12(c), is highlighted by the box.  
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Figure 14: Secondary structure of the DH/PH fragment of Trio.   
The crystal structure of the Trio fragment bound to Rac1 was used to define α-helices and β-strands according 
to nomenclature standardized for DH/PH cassettes [158].  Secondary structure assignments were made using the 
program DSSP [270], coupled with visual assessment.  Residues highlighted in red contribute to the interface 
between the PH domain of Trio and Rac1.  Residues in gray are disordered and were not modeled.   
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Figure 15: The PH domains of Trio and Dbs interact similarly with their cognate GTPases. 
DH/PH fragments of Trio (a) and Dbs (b) in complex with their cognate GTPases have been superimposed upon 
equivalent, unbound fragments (gray) using the DH domains.  (c and d) Lower panels highlight conserved 
interactions found in both GEF/GTPase complexes that require specific residues involving the PH domains.  
Color scheme is maintained from Figure 12.   

 
 



 

69

 

Fi
gu

re
 1

6:
 M

ut
at

io
ns

 th
at

 d
is

ru
pt

 th
e 

in
te

rf
ac

e 
be

tw
ee

n 
th

e 
PH

 d
om

ai
n 

of
 T

ri
o 

an
d 

R
ac

1 
di

m
in

is
h 

nu
cl

eo
tid

e 
ex

ch
an

ge
.  

 
R

es
id

ue
s w

ith
in

, o
r s

up
po

rte
d 

by
, t

he
 P

H
 d

om
ai

n 
of

 T
rio

 th
at

 fo
rm

 th
e 

in
te

rf
ac

e 
w

ith
 R

ac
1 

w
er

e 
m

ut
at

ed
 a

nd
 th

e 
ex

ch
an

ge
 a

ct
iv

iti
es

 o
f t

he
 m

ut
an

ts
 w

er
e 

m
ea

su
re

d 
on

 b
ot

h 
R

ac
1 

(a
) a

nd
 R

ho
G

 (b
). 

 (c
) R

es
id

ue
s o

f R
ac

1 
th

at
 in

te
ra

ct
 d

ire
ct

ly
 w

ith
 th

e 
PH

 d
om

ai
n 

of
 T

rio
 w

er
e 

al
so

 a
na

ly
ze

d.
  E

xc
ha

ng
e 

as
sa

ys
 (n

=2
) 

w
er

e 
ca

rr
ie

d 
ou

t a
s d

es
cr

ib
ed

 in
 M

et
ho

ds
.  

Ex
ch

an
ge

 ra
te

s a
re

 re
po

rte
d 

as
 a

 p
er

ce
nt

ag
e 

of
 th

e 
ex

ch
an

ge
 ra

te
 o

f w
ild

-ty
pe

 T
rio

 (a
 a

nd
 b

) o
r a

s f
ol

d 
ex

ch
an

ge
 o

ve
r 

th
e 

in
tri

ns
ic

 e
xc

ha
ng

e 
ra

te
 o

f t
he

 re
sp

ec
tiv

e 
m

ut
an

t o
f R

ac
1 

(c
). 

 P
ro

te
in

s (
5 
µg

) w
er

e 
su

bj
ec

te
d 

to
 S

D
S-

PA
G

E 
an

d 
st

ai
ne

d 
w

ith
 C

oo
m

as
si

e 
B

lu
e 

(in
se

ts
) t

o 
ve

rif
y 

pu
rit

y 
an

d 
co

nc
en

tra
tio

n.
  (

d)
 C

irc
ul

ar
 d

ic
hr

oi
sm

 sp
ec

tro
sc

op
y 

co
nf

irm
ed

 th
e 

pr
op

er
 fo

ld
in

g 
of

 T
rio

 D
H

/P
H

 fr
ag

m
en

ts
. 



  70

Figure 17: Mutations within, or supported by, the 
PH domain of Trio that reduce GTPase activation 
in vitro also reduce the capacity of full-length 
Trio to induce neurite outgrowth in PC-12 cells.   
(a) Neurite outgrowth in transfected PC-12 cells was 
assessed as described in Methods (*; p-values < 0.05 
in comparison to wild-type Trio using student’s T-
test).  (b)  Representative images of transfected PC-
12 cells show both GFP fluorescence (left) and 
filamentous actin stained with Alexa Fluor 546 
phalloidin (right).  All constructs were GFP-tagged 
at the N-terminus. 
 
 
 
 
 

 
 

 



 

 

CHAPTER 3: ACTIVATION OF DBS BY ACTIVE RAC1 

 

Introduction 

 Dbl-family GEFs are the major class of proteins responsible for activating the 

canonical Rho-family GTPases RhoA, -B, and -C, Rac1, -2, and -3, and Cdc42.  The 69 Dbl-

family GEFs found in the human genome are all characterized by the presence of a DH 

domain followed almost invariably by a tandem PH domain.  However, most also contain a 

variety of other regulatory domains such as coiled-coiled regions, SH3 domains, and FERM 

domains.  This variability makes Dbl-family GEFs key in integrating signals that result in the 

precise spatiotemporal activation of Rho-family GTPases [8]. 

Dbs (Dbl’s big sister) is a Dbl-family GEF originally identified as part of a screen to 

identify proteins that cause transformation of NIH 3T3 cells, as is the case for many Dbl-

family GEFs [271].  In addition to its DH/PH cassette, it contains a yeast 

phosphatidylinositol transfer protein (Sec14) domain at the N-terminus which binds lipids, 

two spectrin repeats, and an SH3 domain that is found C-terminal to the PH domain [272].  

While the roles of the spectrin repeats and SH3 domain remain relatively uncharacterized, the 

Sec14 domain and DH/PH cassette have well defined functions.  The Sec14 domain interacts 

with the PH domain of Dbs and auto-inhibits its activity by blocking access by the cognate 

GTPase to the catalytic DH domain.  The Sec14 domain also influences sub-cellular 

localization by binding to perinuclear structures near the Golgi apparatus [272].  Extensive 
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work on the DH/PH cassette of Dbs shows that it exchanges on RhoA, Cdc42, and possibly 

RhoG [129, 166, 221, 273].  Like most Dbl-family GEFs, the DH domain of Dbs provides 

the majority of its catalytic interface with its cognate GTPases, but the PH domain also 

participates directly in the exchange reaction [166, 167].  The PH domain of Dbs also weakly 

binds PIP2 and can cooperatively target Dbs to the plasma membrane [176, 191].  In 

addition, its ability to bind phosphoinositides is critical for exchange activity once at the 

plasma membrane [160].   

Recently, the PH domain of Dbs was shown to interact with active Rac1 using both 

co-immunoprecipitation and immunofluorescence assays [221].  Dbs interacts with the active 

form of Rac1, strongly suggesting that it functions as an effector of the GTPase.  This 

interaction is specific to active Rac1, and not Cdc42 or RhoA [221].  Furthermore, these 

results build on earlier studies which show that the PH domain of Ost, the rat homolog of 

Dbs, also interacts with active Rac1 [274].  Cheng et al. were also able to show that co-

transfection of active Rac1 with an oncogenic version of Dbs increases the ability of Dbs to 

transform NIH 3T3 cells [221].  Transformation by Dbs has been shown to be mediated 

through activation of RhoA [273]; however, transfection with constitutively activated RhoA 

does not result in transformation as robust as co-transfection of Dbs with active Rac1 [221].  

Thus, active Rac1 is cooperating with Dbs to enhance activation of RhoA.   

The interaction between active Rac1 and Dbs has been shown only when using co-

immunoprecipitation or immunofluorescence, leaving open the possibility that their 

interaction is mediated via some other protein or molecule.  It is also unknown if active Rac1 

allosterically modulates the activity of Dbs or Scambio, or if it increases activation in vivo by 

regulating sub-cellular localization.  The structure of PLC-β2 in complex with active Rac1 
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shows a direct interaction between Rac1-GTPγS and the PH domain of PLC-β2 [177], 

suggesting that such an interaction is also possible between active Rac1 and the PH domain 

of Dbs.  In the case of PLC-β2, active Rac1 functions to translocate PLC-β2 to the plasma 

membrane, thus activating it by determining sub-cellular localization [177].   

The ability of Dbl-family GEFs to act as effectors of some Rho-family GTPases 

while activating others indicates another important level of regulation in the complex 

signaling cascades involving Rho-family GTPases.  However, the molecular details behind 

the activation of Dbl-family GEFs by active Rho-family GTPases are not well understood.  

The goal of these studies is to examine these interactions by using the association between 

activated Rac1 and the Dbl-family GEF Dbs as a model system.   

Experimental Procedures  

Protein purification for surface plasmon resonance and ALPHA screen 

 Murine Dbs (623 – 956, wt or E639A) was expressed from the pGEX4TEV2 vector 

[251] with an N-terminal GST-tag in the BL21 (DE3) E. coli strain.  Transformed cells were 

grown in LB media containing 0.1 mg/ml ampicillin at 37°C to an OD600 of 0.7 (mid-log 

phase) and induced with 1 mM IPTG at 20ºC for 16 hours to 18 hours.  Cells were 

resuspended in buffer A (200 mM NaCl, 20 mM Tris, pH 7.5, 2 mM DTT and 10% glycerol) 

and lysed with an Emulsi-Flex C5 (Avestin).  Lysate was clarified by centrifugation at > 

125,000 x g for 30 minutes and the supernatant was loaded onto a GST-Sepharose affinity 

column (GE Healthcare) equilibrated in buffer A; the column was washed with buffer A, and 

Dbs eluted in buffer A containing 10 mM glutathione (reduced).  The fractions containing 
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Dbs were then buffer exchanged extensively into buffer A to remove the glutathione, 

concentrated, frozen, and stored at -80ºC. 

Human Rac1 (residues 1 – 177) was purified exactly as previously described [158].  

Tagless human Rac1 (residues 1-189, C189S) was expressed from pET21a (Novagen) in the 

BL21 (DE3) E. coli strain.  Transformed cells were grown in LB media containing 0.1 mg/ml 

ampicillin at 37°C to an OD600 of 0.7 (mid-log phase) and induced with 1 mM IPTG at 27ºC 

for 5 hours.  Harvested cells were resuspended in buffer B (10 mM MES, pH 6.0, 2 mM 

DTT, 10% glycerol, 1 mM MgCl2) containing 10 mM NaCl prior to lysis and clarification as 

described above.  Supernatant was loaded onto an SP-Sepharose Fast Flow 26/10 column 

(GE Healthcare).  Rac1 was eluted from the column using buffer B with an increasing 

gradient of NaCl from 10 mM to 600 mM and further purified using a 26/60 Sephacryl-200 

size exclusion column (GE Healthcare) equilibrated with 20 mM Tris, pH 8.0, 2 mM DTT, 

2mM MgCl2, 150 mM NaCl, and 5% glycerol.  Fractions containing Rac1 were pooled, 

concentrated, frozen, and stored at -80°C.   

Human RhoA (residues 1 – 190, C190S) was expressed from pProExHTb in BL21 

(DE3) E. coli strain as previously described [167] with minor variations.  Cells were grown 

in Zym-5052 [275] self-inducing media for 3 hours at 37ºC and then for an additional 16 – 18 

hours at 20ºC.  Self-inducing media does not require the addition of IPTG to start protein 

expression.  Harvested cells were resuspended in buffer C (20 mM Tris, pH 8.0, 200 mM 

NaCl) containing 10 mM imidazole.  Cells were lysed and clarified as described above prior 

to loading the supernatant onto a Ni2+-Sepharose affinity column (GE Healthcare) 

equilibrated in buffer C containing 10 mM imidazole.  The column was washed with buffer C 

containing 55 mM imidazole and RhoA eluted with buffer C containing 400 mM imidazole.  
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Fractions containing RhoA were dialyzed against 20 mM Tris, pH 8.0, 2 mM DTT, 2 mM 

EDTA, 200 mM NaCl, and 10% glycerol while cleaving with tobacco etch virus (TEV) 

protease to remove the N-terminal His6-tag.  The protein was further purified using a 26/60 

Sephacryl-200 size exclusion column (GE Healthcare) equilibrated with 20 mM Tris, pH 8.0, 

2 mM DTT, 2 mM MgCl2, 200 mM NaCl, and 10% glycerol.  Fractions containing RhoA 

were pooled, concentrated, frozen, and stored at -80°C.   

His6 – tagged human Rac1 (residues 1-189, C189S) was expressed from pProExHTb 

and purified exactly as described above for RhoA except that the His6-tag was not removed 

by cleavage with TEV protease.  Protein was concentrated and stored at -80ºC.   

Human PAK (residues 70 – 132) was expressed from the pGEX4TEV2 vector [251] 

in Zym-5052 media as described above for RhoA and purified as detailed above for Dbs with 

minor variations.  Fractions from the GST-Sepharose affinity column (GE Healthcare) 

containing PAK were pooled together and dialyzed extensively into buffer D (20 mM Tris, 

pH 8.0, 2 mM DTT, and 10% glycerol) with 10 mM NaCl.  Dialyzed fractions were then 

pooled and loaded onto a Source-Q 16/10 column (GE Healthcare) equilibrated in buffer D 

with 10 mM NaCl and washed extensively in same buffer.  Protein was then eluted in with 

buffer D using an increasing gradient of NaCl from 10 mM to 600 mM.  Fractions containing 

PAK were pooled, concentrated, frozen, and stored at -80°C.   

GST was expressed from the pGEX4TEV2 vector [251] in Zym-5052 media as 

described above for RhoA and purified as detailed above for Dbs with minor variations.  

Briefly, fractions from the GST-Sepharose affinity column (GE Healthcare) containing GST 

were pooled together and further purified using a 26/60 Sephacryl-200 size exclusion column 

(GE Healthcare) equilibrated with 20 mM Tris, pH 8.0, 2 mM DTT, 2 mM MgCl2, 200 mM 
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NaCl, and 10% glycerol to remove excess glutathione.  Fractions containing GST were 

pooled, concentrated, and stored at -80°C.   

Protein purification for guanine nucleotide exchange assays and determination of stable 

complex between active Rac1 and Dbs 

 Tagless human RhoA (residues 1 – 190, C190S or residues 1 – 178) and tagless 

human Rac1 (residues 1 – 189, C189S) were purified exactly as described above. 

 Dbs DH/PH (residues 623 – 967) with a C-terminal His6-tag was expressed from 

pET28a as described previously with minor changes [166].  Briefly, cells were grown in 

Zym-5052 self-inducing media containing 0.05 mg/mL kanamycin, instead of 0.1 mg/mL 

ampicillin, as described above for RhoA.  Harvested cells were resuspended in buffer E (20 

mM Tris, pH 7.5, 300 mM NaCl) containing 5 mM imidazole and were also lysed and 

clarified as detailed above.  The supernatant was applied to a Ni2+-Sepharose affinity column 

(GE Healthcare) equilibrated in buffer E containing 5 mM imidazole and eluted as described 

above for RhoA.  The protein was further purified using a 26/60 Sephacryl-200 size 

exclusion column (GE Healthcare) equilibrated with 20 mM Tris, pH 8.0, 2 mM DTT, 1 mM 

EDTA, 200 mM NaCl, and 5% glycerol.  Fractions containing Dbs were pooled together, 

concentrated, and frozen at -80ºC. 

 To purify a complex between Dbs DH/PH and RhoA (residues 1 – 178), Dbs was 

incubated with a four-fold molar excess of RhoA in 20 mM Tris, pH 8.0, 2 mM DTT, 4 mM 

EDTA, 150 mM NaCl, and 5% glycerol.  The complex was concentrated and separated from 

excess RhoA over a 26/60 Sephacryl-200 size exclusion column (GE Healthcare) 

equilibrated with 20 mM Tris, pH 8.0, 2 mM DTT, 1 mM EDTA, 150 mM NaCl, and 5% 
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glycerol.  Fractions containing the complex were pooled and concentrated before being flash 

frozen and stored at -80ºC.    

   

Loading of various GTPases with guanine nucleotides 

 Purified GTPases were incubated in buffer G (1 mM MgCl2, 150 mM NaCl, and 20 

mM Hepes, pH 7.5) with 7.5 mM EDTA in the presence of a 10 mM excess of GDP or 

GTPγS for 40 minutes at room temperature.  MgCl2 (20 mM) was added to stop the exchange 

reaction.  For use in guanine nucleotide exchange assays or ALPHA screens, a HiTrap 

Desalting column (GE Healthcare) was used to remove excess nucleotide and buffer 

exchange the protein into buffer G (for the guanine nucleotide exchange assays) or 2 mM 

MgCl2, 200 mM NaCl, 20 mM Hepes, pH 7.5, and 2mM DTT (for the ALPHA screens) 

before concentrating and freezing for storage at -80ºC.   

Radioligand binding assay to check efficiency of guanine nucleotide loading 

 Various amounts of purified GTPases were loaded with GTPγS35 (Perkin Elmer) at a 

10-fold molar excess of the highest amount of protein used.  Guanine nucleotide loading 

reactions were carried out in triplicate at a final volume of 50 µL as described above.  

Reactions were diluted in 4 mL of buffer H (150 mM NaCl, 25 mM MgCl2, and 20 mM Tris, 

pH 7.5) before being applied nitrocellulose filters.  Filters were washed twice with buffer H 

and soaked in scintillation fluid before counting samples to determine nucleotide loading. 
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Surface plasmon resonance 

GST-tagged proteins were immobilized on an anti-GST antibody covalently coupled 

to a CM5 sensor chip (Biacore), generating approx. 1000 RUs of surface.  Rac1, RhoA, and 

Cdc42 (data not shown) were loaded with GDP or GTPγS and buffer exchanged into 150 

mM NaCl, 20 mM Tris, pH 7.5, and 2mM MgCl2 (except where indicated).  The sensor chip 

was equilibrated in the same buffer (except where indicated).  GTPases at various 

concentrations were flowed over the GST-ligand surface for the indicated times, and allowed 

to dissociate for 60 s.  Curves were normalized by subtracting binding to the negative control 

of GST.   

Guanine nucleotide exchange assays 

 The exchange assays measuring activation of RhoA by Dbs were performed as 

described previously with minor variations [166, 201, 236].  RhoA was loaded with Bodipy 

fluorescein (FL)-conjugated GDP (Bod-GDP, Molecular Probes) as described above and 

buffer exchanged into buffer J (20 mM Tris, pH 7.5, 200 mM NaCl, 10 mM MgCl2, 5% 

glycerol, and 2 mM DTT).  Bod-GDP has a high level of fluorescence when bound to a 

GTPase.  For the exchange reactions, the indicated concentration of RhoA – Bod-GDP was 

allowed to equilibrate with 10 µM cold GDP before adding indicated amounts of the 

exchange factor.  The rate of decrease in the fluorescence of the Bod-GDP (λex = 500 nm, λem 

= 511 nm) is indicative of the rate of loading of GDP in place of Bod-GDP.  These assays 

were performed with a Perkin-Elmer LS 55 spectrometer.  Rates of exchange were 

determined by fitting the data to a single exponential decay curve using the program 
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GraphPad Prizm, and reported as a multiple of basal GDP loading in the absence of an 

exchange factor. 

Determination of a stable complex between Dbs or Dbs/RhoA (residues 1- 178) and active 

Rac1 

 All proteins were buffer exchanged into buffer K (150 mM NaCl, 20 mM Tris, pH 

7.5, 2 mM DTT, 2 mM MgCl2) using a HiTrap desalting column (GE Healthcare).  

Normalized protein amounts were applied to a Superdex-75 analytical gel filtration column 

(GE Healthcare) equilibrated in buffer K and eluted in same buffer. 

ALPHAscreen 

 The His6-tagged binding partner and GST-tagged binding partner were incubated 

together (at the indicated concentrations) for 30 minutes in 20 mM Hepes, pH 7.5, 1 mM 

MgCl2, 5% glycerol, and 150 mM NaCl at room temperature.  Donor beads conjugated to 

glutathione (final concentration 20 µg/mL) and accepter nickel chelate beads (final 

concentration 20 µg/mL) (Perkin Elmer) were incubated with the protein interaction partners 

for another 30 minutes in the absence of light.  Protein interaction was assessed by measuring 

the emission at 580 nM after excitation at 670 nM in the Pherastar microplate reader.   
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Results 

Surface plasmon resonance detects a weak interaction between Rac1-GTPγS and Dbs 

DH/PH 

Surface plasmon resonance was used to test if Dbs interacts specifically with Rac1 in 

a nucleotide dependent manner.  We found that the DH/PH cassette of Dbs interacts with 

GTPγS-loaded Rac1 (and not Rac1-GDP), but only at high concentrations of Rac1-GTPγS 

(see Figure 18).  When investigating the interaction between active Rac1 and Dbs DH/PH, 

we noticed a high level of non-specific interaction between Rac1 and the negative control, 

GST.  We were unable to reduce this non-specific interaction, while still maintaining the 

interaction between Rac1-GTPγS and Dbs DH/PH, by varying the running buffer (see Figure 

19).  We also removed the polybasic tail of Rac1, purifying only residues 1-177 and verified 

that this region was not responsible for interacting non-specifically with the unconjugated 

carboxy methyl dextran matrix on the surface plasmon resonance chip (see Figure 20).  

Radioligand binding assays were used to verify that both Rac1 (residues 1-189) and Rac1 

(residues 1-177) were loaded with GTPγS with > 95% efficiency (data not shown).    

Dbs and Rac1-GTPγS do not form a stable complex 

 Rac1-GTPγS incubated with equimolar amounts of either Dbs DH/PH or Dbs 

DH/PH•RhoA was applied to a size exclusion column to determine if the proteins would 

elute as a stable complex.  We found that Rac1-GTPγS does not form a stable complex with 

either Dbs DH/PH or Dbs DH/PH•RhoA (see Figure 21).  Rac1-GTPγS, Dbs DH/PH, and 

Dbs DH/PH•RhoA were analyzed alone to establish retention times for these proteins alone.   
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Rac1-GTPγS does not modulate the guanine nucleotide exchange activity of Dbs or Scambio 

in vitro 

 We wanted to determine if Rac1-GTPγS could allosterically modulate the exchange 

activity of Dbs DH/PH on RhoA in vitro, analogous to the modulation of p63RhoGEF by 

Gαq, despite the weak binding affinity between Dbs DH/PH and Rac1-GTPγS.  We 

compared the level of exchange by Dbs DH/PH on RhoA in the absence and presence of 

increasing concentrations of Rac1-GTPγS and saw no significant differences (see Figure 22).   

The ALPHAscreen does not detect an interaction between Dbs and Rac1-GTPγS   

 The ALPHAscreen (Amplified Luminescent Proximity Homogeneous Assay) 

(PerkinElmer) was also used to determine if purified Dbs interacts with Rac1-GTPγS.  The 

interaction between active Rac1 and PAK was used as a positive control and proof of 

principle for the ALPHAscreen.  We were unable to see an interaction between Dbs DH/PH 

and active Rac1 using the ALPHAscreen (see Figure 23) 

Co-immunoprecipitation of Dbs with active Rac1 is not reproducible 

Attempts to co-immunoprecipitate active Rac1, 2, or 3 specifically with the DH-

associated PH domain of Dbs were not successful (data not shown). 

Discussion 

 Previously published co-immunoprecipitation data and transformation assays strongly 

suggest that active Rac1 can interact with Dbs to positively regulate its exchange activity on 

RhoA [221, 222].  However, attempts to reproduce and examine the physical interaction 
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between Dbs and active Rac1 using purified proteins have been unsuccessful, and our data 

would suggest that while Dbs may interact with active RhoA, the interaction would have to 

be mediated by some other component in cells.  This component may be phosphoinositides, 

as is the case with active Arf-6 and ARNO.  However, the interaction may also require some 

other unidentified component or be too transient to allow physical characterization.   
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Figure 18: Rac1-GTPγS interacts specifically but weakly with wild-type Dbs DH/PH. 
(a) Sensograms showing the interaction between Rac1 or RhoA (pre-loaded with GDP or GTPγS) and Dbs 
DH/PH wild-type. (b) Sensograms showing the interaction between Rac1-GTPγS and GST (negative control), 
PAK (positive control), or Dbs DH/PH wild-type.  Concentrations of the GTPases are indicated. 
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Figure 19: Optimizing buffer conditions to reduce non-specific binding to GST by Rac1-GTPγS. 
Sensograms showing the interaction between Rac1 (loaded with GTPγS or GDP where indicated) and Dbs 
DH/PH wild-type.  The buffer in condition 1 was varied (variations indicated in red) to try and reduce non-
specific binding by Rac1 to GST. 
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Figure 20: Removal of the polybasic region from Rac1 does not affect interaction between Rac1-GTPγS 
and GST or Dbs DH/PH. 
Sensograms showing the interaction between Rac1 (residues 1-177) loaded with GTPγS and the indicated 
ligands as described in the methods section.   
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Figure 21: Rac1-GTPγS does not form a stable complex with Dbs DH/PH or Dbs DH/PH•RhoA 
Various protein combinations were applied to a Superdex-75 analytical gel filtration column (GE Healthcare) as 
described in the methods section.  The retention times for the various peaks resulting from the different loaded 
samples are labeled. 
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Figure 22: Modulation of the exchange activity of Dbs on RhoA by active Rac1. 
Exchange by Dbs on RhoA was measured in the presence of increasing concentrations of Rac1-GDP or Rac1-
GTPγS as described in the methods section.  Rates of exchange are measured relative to exchange by wild-type 
Dbs DH/PH on Bod-RhoA.   
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Figure 23: The ALPHA screen does not detect a direct interaction between active Rac1 and Dbs DH/PH. 
(a) The ALPHA screen was used to show an interaction between active Rac1 and PAK as a proof of principle. 
(b) The ALPHA screen did not detect any interaction between active Rac1 and Dbs DH/PH.  In both cases, the 
concentration of both binding partners was varied at the same time so that equimolar amounts of each protein 
were used for every assay point. 



 

 

CHAPTER 4: ACTIVATION OF TIAM1 BY ACTIVE RAP1A 

Introduction 

 The Par-3 polarity complex, which consists of Par-3, Par-6, and PKC-ζ, regulates 

critical cellular processes such as dendritic spine morphogenesis, polarization of T-cells, and 

formation of tight junctions [90, 223, 224].  Several studies have now shown that activation 

of the Par-3 polarity complex results in robust activation of Rac1 by the Dbl-family GEF 

Tiam1 [90, 223, 224, 232]. 

 Par-3, like Par-6, belongs to the partitioning defective class of proteins that are 

evolutionarily conserved from C. elegans to humans [276].  Par-3 is a large protein of ~1300 

amino acids that has several splice variants.  The protein is characterized by the presence of 

three PDZ domains used to mediate protein-protein interactions.  The PDZ domains are 

flanked by a conserved region at the N-terminus whose function is relatively unknown and an 

atypical PKC (aPKC) binding region followed by coiled-coiled regions at the C-terminus 

[223, 232, 276].  The first PDZ domain of Par-3 interacts with Par-6, while the kinase 

domain of PKC-ζ interacts with Par-3 through the aPKC binding region [232].  Finally, co-

immunoprecipitation studies have also shown that Par-3 interacts with Tiam1; the binding 

interface is mediated through the C-terminal region of Par-3 (third PDZ domain to the C-

terminus) and the N-terminal PH domain and tandem coiled-coiled region of Tiam1 [90, 223, 

232] (see Figure 24).  Signaling cues responsible for activating the Par-3 polarity complex 
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are not completely elucidated, but several studies have shown that active Cdc42 interacts 

with the polarity complex through Par-6 and is necessary for the signaling activity of the 

complex [90, 232, 276].   

 Recently, studies have also identified the Ras-related GTPases Rap1a and -1b as key 

regulators of the Par-3 polarity complex.  Active Rap1 isoforms mediate the activity of the 

Par-3 polarity complex by interacting with Tiam1 [90], which is an effector of H-Ras [73].  

Activation of Rap1 is known to be critical for several processes that the Par-3 polarity 

complex is also involved in, such as neuronal polarization, T-cell polarization, and formation 

of tight junctions [79, 80, 90]; thus, its interaction with the Par-3 polarity complex is not 

surprising.  Two separate labs have now been able to use co-immunoprecipitation to show an 

interaction between active Rap1a or -1b and Tiam1; the interaction is nucleotide dependent, 

suggesting that Tiam1 functions as an effector of Rap1 isoforms [89, 90].   

 The mechanisms by which active Rap1 isoforms activate Tiam1 are not completely 

elucidated, but deletion analysis has suggested that Rap1a and -1b interact with Tiam1 

through the DH/PH cassette of the Dbl-family GEF.  This interaction is thought to mediate 

proper sub-cellular localization of Tiam1 and ensure tight regulation of the activity of Rac1 

in the context of cell spreading [89].  Interestingly, the Par-3 polarity complex also exacts 

precise spatio-temporal control on the activation of Tiam1 by influencing sub-cellular 

localization and likely activating Rac1 in the presence of appropriate effectors [224]. 

 The goal of these studies is to determine if active Rap1a interacts directly with Tiam1 

as a bona fide effector.  If Tiam1 does interact directly with active Rap1a, we will also 

delineate the regions of Tiam1 responsible for mediating this interaction and further 

investigate the mechanisms used by active Rap1a to activate Tiam1.  Several examples now 
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exist in the literature of GEFs acting as effectors of GTPases, and the results of these studies 

will provide a better understanding of the mechanisms that link the activation of two 

GTPases via a Dbl-family GEF (see Figures 2, 7, 8, and 10).   

Experimental Procedures 

Cloning of GST-tagged constructs of Tiam1  

The following constructs of Tiam1 were cloned into pMCSG7 containing an N-

terminal GST-tag followed by a TEV cleavage site (henceforth referred to as pLIC-GST) 

using standard cloning techniques: DH/PH (residues 1022 – 1406), PH to PH (residues 421 – 

1406), PH to CC (residue 421 – 595), PH to CCext (residues 421 – 772), PH to RBD (residue 

421 – 842), RBD to PH (residues 755 – 1406), and PDZ to PH (residues 834 – 1406).. 

Protein purification 

GST-Tiam1 DH/PH was amplified from pLIC-GST in the BL21 (DE3) E. coli strain.  

Transformed cells were grown in Zym-5052 [275] self-inducing media supplemented with 

0.1 mg/mL ampicillin for 3 hours at 37ºC and then for an additional 16 – 18 hours at 20ºC.  

Cells were resuspended in buffer A (200 mM NaCl, 20 mM Tris, pH 8.0, 2 mM DTT and 

10% glycerol) and lysed with an Emulsi-Flex C5 (Avestin).  Lysate was clarified by 

centrifugation at > 125,000 x g for 30 minutes and the supernatant was loaded onto a GST-

Sepharose affinity column (GE Healthcare) equilibrated in buffer A.  The column was 

washed with buffer A, and Tiam1 was eluted with buffer A containing 10 mM glutathione 

(reduced).  The fractions containing Tiam1 were further purified using a 26/60 Sephacryl-

200 size exclusion column (GE Healthcare) equilibrated with 20 mM Tris, pH 8.0, 2 mM 
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DTT, 200 mM NaCl, and 10% glycerol.  Fractions containing Tiam1 were pooled, 

concentrated, and stored at -80°C.   

GST-Tiam1 PH to PH was also expressed from pLIC-GST in the BL21 (DE3) E. coli 

strain.  Transformed cells were grown exactly as described for GST-Tiam1 DH/PH.  

Harvested cells were resuspended in buffer B (1 M NaCl, 20 mM Tris, pH 8.0, 2 mM DTT, 

10% glycerol) and lysed and clarified as described above.  The supernatant was treated with 

0.5% PEI for 30 minutes on ice to remove excess DNA bound to the GST-Tiam1 PH to PH 

and the lysate was clarified again by ultracentrifugation as described above.  The resulting 

supernatant was applied to a GST-Sepharose affinity column (GE Healthcare) equilibrated in 

buffer B.  The column was washed with buffer B, and Tiam1 was eluted with buffer B 

containing 10 mM glutathione (reduced).  The fractions containing Tiam1 were further 

purified using a 26/60 Sephacryl-300 size exclusion column (GE Healthcare) equilibrated 

with 20 mM Tris, pH 8.0, 2 mM DTT, 200 mM NaCl, and 10% glycerol.  Fractions 

containing Tiam1 were pooled, concentrated, and stored at -80°C.   

GST-Tiam1 PH to CC, PH to CCext, PH to RBD, RBD to PH, and PDZ to PH were 

all expressed from pLIC-GST in the BL21 (DE3) E. coli strain.  Transformed cells were 

grown in LB media containing 0.1 mg/ml ampicillin at 37°C to an OD600 of 0.7 (mid-log 

phase) and induced with 0.1 mM IPTG at 27ºC for 5 hours (PH to CC and PH to CCext) or at 

19ºC for 16-18 hours (PH to RBD, RBD to PH, and PDZ to PH).  Harvested cells were 

resuspended in buffer C (2 mM DTT, 20 mM Tris, pH 8.0, 10% glycerol, and 200 mM NaCl 

for the PH to CC construct or 1M NaCl for all of the other constructs) and lysed and clarified 

as described above for GST-Tiam1 DH/PH.  The supernatant was applied to a GST-

Sepharose affinity column (GE Healthcare) equilibrated in buffer C.  The column was 
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washed with buffer C, and the various pieces of Tiam1 were eluted with buffer C containing 

10 mM glutathione (reduced).  The fractions containing Tiam1 were further purified using a 

26/60 Sephacryl-200 size exclusion column (PH to CC, PH to CCext, and PH to RBD) or 

26/60 Sephacryl-300 size exclusion column (RBD to PH and PDZ to PH) equilibrated with 

20 mM Hepes, pH 7.5, 2 mM DTT, 200 mM NaCl, and 10% glycerol.  Fractions containing 

Tiam1 were pooled, concentrated, and stored at -80°C.   

His6-tagged Tiam1 PH to PH was expressed from pPROEX-HTb in the BL21 (DE3) 

E. coli strain.  Transformed cells were grown in LB media containing 0.1 mg/ml ampicillin at 

37°C to an OD600 of 0.7 (mid-log phase) and induced with 0.1 mM IPTG at 27ºC for 5 hours.  

Harvested cells were resuspended in buffer D (300 mM NaCl, 10% glycerol, 20 mM Tris, pH 

8.0) with 10 mM imidazole and then lysed and clarified as described above.  The supernatant 

was treated with 0.5% PEI for 30 minutes on ice to remove excess DNA bound to the protein 

and the lysate was clarified again by ultracentrifugation as described above.  The resulting 

supernatant was applied to a Ni2+-Sepharose affinity column (GE Healthcare) equilibrated in 

buffer D containing 10 mM imidazole.  The column was washed with buffer D containing 55 

mM imidazole and His6-tagged Tiam1 PH to PH was eluted with buffer D containing 400 

mM imidazole.  Fractions containing Tiam1 were pooled and dialyzed into buffer E (200 

mM NaCl, 10% glycerol, 20 mM Hepes, pH 7.0, and 1 mM DTT) before being applied to a 

SP-Sepharose Fast Flow 26/10 column (GE Healthcare).  Tiam1 PH to PH was eluted from 

the column using buffer E with an increasing gradient of NaCl and further purified using a 

26/60 Sephacryl-300 size exclusion column (GE Healthcare) equilibrated with 20 mM Tris, 

pH 8.0, 2 mM DTT, 200 mM NaCl, and 10% glycerol.  Fractions containing Tiam1 PH to 

PH were pooled, concentrated, flash-frozen, and stored at -80°C.   
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Human Rap1a and Rap1b (residue 1-181, C181S) (henceforth soluble Rap1) were 

both expressed from pPROEX-HTa in the BL21 (DE3) E. coli strain.  Transformed cells 

were grown in LB media containing 0.1 mg/ml ampicillin at 37°C to an OD600 of 0.7 (mid-

log phase) and induced with 1 mM IPTG at 27ºC for 5 hours.  Harvested cells were 

resuspended in buffer F (200 mM NaCl, 10% glycerol, and 20 mM Tris, pH 8.0) with 5 mM 

imidazole.  The supernatant from lysed and clarified cells (as described above) was applied 

to a Ni2+-Sepharose affinity column (GE Healthcare) equilibrated in buffer F containing 5 

mM imidazole.  His6-Rap1 was eluted analogously to His6-Tiam1 PH to PH.  Fractions 

containing soluble Rap1a were further purified using a 26/60 Sephacryl-200 size exclusion 

column (GE Healthcare) equilibrated with 20 mM Tris, pH 8.0, 2 mM DTT, 200 mM NaCl, 

2 mM MgCl2 and 10% glycerol.  Fractions containing soluble Rap1a were pooled, 

concentrated, and stored at -80°C.   

RalGDS RBD (generously provided by Dr. Leslie Parise, UNC-Chapel Hill) was 

expressed from pGEX2T in the BL21 (DE3) E. coli strain.  Transformed cells were grown in 

Zym-5052 and purified exactly as described for GST-Tiam1 DH/PH above. 

Loading of Rap1a and -1b with guanine nucleotides 

Purified GTPases were incubated in buffer G (1 mM MgCl2, 150 mM NaCl, and 20 

mM Hepes, pH 7.5) with 10 mM EDTA in the presence of a 10-fold molar excess of GDP or 

GTPγS for 1 hour at room temperature.  MgCl2 (20 mM) was added to stop the exchange 

reaction.  For use in guanine nucleotide exchange assays or ALPHA screens, a HiTrap 

Desalting column (GE Healthcare) was used to remove excess nucleotide and buffer 

exchange the protein into buffer G for the guanine nucleotide exchange assays or 2 mM 
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MgCl2, 200 mM NaCl, 20 mM Hepes, pH 7.5, 5% glycerol, and 2mM DTT for ALPHA 

screens before concentrating and freezing for storage at -80ºC.  Efficiency of the loading 

reaction was verified by checking binding of Rap1a and -1b with its bona fide effector 

RalGDS RBD on a native gel. 

ALPHA screens 

 His6-tagged binding partner and GST-tagged binding partner were incubated together 

(at the indicated concentrations) for 30 minutes in 20 mM Hepes, pH 7.5, 1 mM MgCl2, 5% 

glycerol, and 150 mM NaCl at room temperature.  Donor beads conjugated to glutathione 

(final concentration 20 µg/mL) and accepter nickel chelate beads (final concentration 20 

µg/mL) (Perkin Elmer) were incubated with the protein interaction partners for another 30 

minutes in the absence of light.  Protein interaction was assessed by measuring the emission 

at 580 nM after excitation at 670 nM in the Pherastar microplate reader.   

Native gels 

 Proteins were applied to native gels (PHASTgel, GE Healthcare) in the indicated 

amounts according to the manufacturer’s protocol. 

Results 

The ALPHA screen does not detect a direct interaction between active Rap1a and Tiam1 

 Previous studies have suggested that Tiam1 interacts with Rap1a in a nucleotide 

dependent manner [89, 90].  The binding interface for this interaction has been mapped to the 

DH-associated PH domain of Tiam1 [89]; however, Tiam1 also contains an RBD domain 
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that might interact with active Rap1a.  To test if the interaction between active Rap1a and 

Tiam1 is direct, we purified soluble Rap1a with an N- terminal His6-tag and loaded it with 

GTPγS to mimic the active state.  The functionality of the GTPγS-loaded Rap1a was tested 

by confirming its ability to interact with RalGDS RBD in the ALPHA screen (see Figure 

25).  We also purified various GST-tagged fragments of Tiam1 encompassing the region 

from the N-terminal PH domain to the C-terminal PH domain (see Figure 26).  Although 

previous studies have been able to co-immunoprecipitate the PH to PH form of Tiam1 (full-

length Tiam1) with active Rap1, evidence suggests that full-length Tiam1 might be auto-

inhibited (unpublished data, Sondek Lab), potentially masking the binding site for Rap1a.  

Thus, we chose to use several fragments of Tiam1 to maximize the possibility of interacting 

with active Rap1a and potentially further delineate the region of Tiam1 responsible for this 

interaction.  However, the ALPHA screens performed as described in the experimental 

procedures section are unable to detect an interaction between any of the fragments of Tiam1 

and Rap1a loaded with GTPγS.  The weak interaction seen between fragments of Tiam1 

containing the N-terminal PH domain (except for the PH to PH fragment) and what appears 

to be Rap1a-GTPγS is actually an interaction between the fragments of Tiam1 and the nickel 

chelate acceptor beads (see Figure 27). 

Full-length Tiam1 and Rap1a do not interact in a nucleotide dependent manner, as assessed 

by native gel analysis 

Although we do not detect an interaction between active Rap1a and Tiam1 in the 

ALPHA screens, we wanted to confirm the lack of a specific, nucleotide-dependent 
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interaction using a native gel.  As with the ALPHA screens, the nucleotide bound state of 

Rap1 was confirmed by measuring a nucleotide-dependent interaction with the RBD domain  

of RalGDS (see Figure 28).  Again, we are unable to detect a specific, nucleotide dependent 

interaction between full-length Tiam1 and active Rap1a (see Figure 29).  Tiam1 PH to PH is 

unable to enter the resolving buffer of the native gel, but does appear to interact with some 

Rap1a-GTPγS and prevent it from entering the resolving buffer; however, the same effect is 

seen with Rap1a-GDP, suggesting that the interaction between Tiam1 and Rap1a is non-

specific. 

Discussion 

Our data conclusively shows that Tiam1 does not interact directly with active Rap1a, 

despite previous data suggesting otherwise and the presence of a putative RBD domain.  

Interestingly, these data support recent biochemical studies which also detect no interaction 

between the RBD domain of Tiam1 and either active Rap1a and -1b or Ras isoforms [78, 91]. 

While Tiam1 and active Rap1a may interact in a cellular context, the interaction is 

not direct and may be mediated by other components within the cell.  Since active Rap1a and 

Tiam1 interact as part of the Par-3 polarity complex, an attractive possibility is that while 

Rap1a does not interact directly with Tiam1, it might bind to another component of the Par-3 

polarity complex such as Par-3, Par-6, PKC-ζ, Cdc42, or Wrch-1.  Thus far, this possibility 

has not been tested.    
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Figure 24: Putative binding interface between Par-3 and Tiam1. 
(a) Domain architecture of Tiam1.  Region thought to interact with Par-3 is indicated.  (b) Domain architecture 
of Par-3.  Region thought to interact with Tiam1 is indicated. 
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Figure 25: RalGDS RBD interacts with Rap1a-GTPγS with a higher affinity than Rap1a-GDP. 
The ALPHA screen was used to ensure that GTPγS-loaded Rap1a had a higher affinity for RalGDS RBD than 
Rap1a-GDP.  The concentrations of GST and RalGDS RBD were held fixed at 1 µM. 
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Figure 26: Fragments of Tiam1 tested for interaction with Rap1a-GTPγS using the ALPHA screen. 
The domain architecture of the various GST-tagged fragments of Tiam1 tested for interaction with active Rap1a 
is depicted above.  The GST tag is N-terminal in all cases.  All fragments have been purified to near 
homogeneity (below).   
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Figure 27: Rap1a-GTP does not interact with Tiam1. 
The ALPHA screen is used to test if various fragments of Tiam1 interact with Rap1a-GTPγS.  All fragments of 
Tiam1 are tagged with GST, as is the RalGDS RBD.  The concentration of the GST tagged proteins was held 
fixed at 1 µM.  Fragments of Tiam1 that contain the N-terminal PH domain (with the exception of PH to PH) 
interact weakly with the nickel chelate acceptor beads.  Rap1-GTPγS is functional as it interacts robustly with 
RalGDS RBD.  The ALPHA screen was carried out as described in experimental procedures. 
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Figure 28: RalGDS RBD interacts specifically with the GTPγS-loaded form of Rap1a.   
Both Rap1a-GDP and Rap1a-GTPγS (0.2 nmoles) were incubated with 1X or 2X RalGDS RBD (molar 
concentrations) for 20 minutes at room temperature in the following buffer: 1 mM MgCl2, 150 mM NaCl, 20 
mM Hepes, pH 7.5, and 10% glycerol.  A gel-shift, indicating an interaction, is visible when RalGDS RBD is 
incubated with Rap1a-GTPγS but not Rap1a-GDP.   
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Figure 29: Tiam1 PH to PH does not interact specifically with Rap1a-GTPγS. 
Rap1a (0.2 nmoles) bound to GDP or GTPγS was incubated with the indicated amounts of Tiam1 PH to PH 
overnight at 4ºC before loading the proteins on a native gel.  Proteins were incubated in the following buffer: 1 
mM MgCl2, 150 mM NaCl, 20 mM Hepes, pH 7.5, and 10% glycerol. 
 

 

 



 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

Nucleotide exchange assisted by PH domains 

 Despite the conserved position of DH-associated PH domains, past work examining 

their function has been unable to assign them a conserved role.  DH-associated PH domains 

have been shown to function as membrane anchors, assist in translocation of Dbl-family 

GEFs to cellular membranes, serve as sites for allosteric modulation by phosphoinositides, 

and mediate interaction with other proteins within the cell [8, 184, 191, 193].  This work 

examines another emerging role for DH-associated PH domains: participating directly in 

guanine nucleotide exchange by forming direct contacts with the cognate GTPase.  

Functional characterization of the N-terminal DH-associated PH domain of Trio builds on 

earlier studies with Dbs, LARG, and PDZRhoGEF that show DH-associated PH domains can 

stabilize the interaction between the DH domain and the cognate GTPase by also 

contributing to functional interactions with the cognate GTPase [166, 168, 205].   

 In the cases of Dbs and Trio-N, mutational analysis has shown that the interface 

between the DH-associated PH domain and the cognate GTPase is functionally significant 

both in vitro and in vivo [160].  In contrast, studies have confirmed the functional 

significance of the DH-associated PH domains of LARG and PDZRhoGEF only in vitro 

[168, 205].  Both LARG and PDZRhoGEF directly link stimulation of G-protein-coupled 

receptors by agonists such as endothelin-1, angiotensin II, thromboxane 2A, and thrombin to 



  105

activation of RhoA and subsequent regulation of Ca2+ levels [205, 219, 277-279].  As alluded 

to, RhoA is critical for cardiac function and linked to functions such as Ca2+- independent 

contractility of the vascular smooth muscle [205, 280] and expression of endothelin-1, a 

potent vasoconstrictor [281].  Unregulated increases in contraction can result in hypertension 

and coronary spasms [143] while vasoconstrictors affect vascular tone and remodeling [143].  

Mutations to the DH-associated PH domain that affect nucleotide exchange by LARG and 

PDZRhoGEF in vitro most likely affect regulation of RhoA activation downstream of 

GPCRs in vivo.  In order to test this hypothesis one could assay for SRF activation, which 

has been used previously to test activation of LARG downstream of Gα12 and Gα13 [209].   

 Trio-N and Dbs are part of a larger subset of Dbl-family GEFs that include Dbl, Duo, 

Duet, and Obscurin.  Residues participating in the interactions between the PH domains of 

Dbs and Trio and their cognate GTPases are conserved in these Dbl-family GEFs (see Figure 

11).  One could use mutational analysis, coupled with in vitro exchange assays and 

transformation assays to determine if sequence analysis can be used to delineate the ubiquity 

of using DH-associated PH domains as direct participants in catalyzing nucleotide exchange.  

Similar analysis would be informative for other Dbl-family GEFs closely related to 

PDZRhoGEF and LARG.   

Unlike Dbs, Trio-N, LARG, and PDZRhoGEF, the crystal structures of several other 

DH/PH cassettes in complex with their cognate GTPases show no interaction between the 

DH-associated PH domain and the GTPase [158, 167, 170].  However, while the solved 

structures of Dbl-family GEFs in complex with cognate GTPases provide valuable 

information about the mechanisms regulating catalytic exchange, they do not take into 

account the contribution of cellular membranes to exchange activity.  Dbs DH/PH shows 
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contacts between the cognate GTPase and the DH-associated PH domain in vitro while 

Tiam1 DH/PH does not.  However, neither GEF requires its PH domain for proper sub-

cellular localization, even though both require the ability to bind phosphoinositides for 

function in vivo [159, 160].  This suggests that their DH-associated PH domains may play a 

similar role in vivo that is not apparent in vitro.  In addition, structural analysis has shown 

that DH/PH cassettes are highly flexible (see Figure 6) and can adopt a variety of 

conformations that would allow contact between the PH domain and the GTPase under the 

proper conditions [158, 166, 206].   

One possible model that is supported by all of the previously discussed data, and 

would function as a conserved mechanism of exchange for Dbl-family GEFs in a 

physiologically relevant setting, is depicted in Figure 30.  In this model, binding to a 

phosphoinositide headgroup would enable the flexible DH/PH cassette to adopt a 

conformation allowing contact between the PH domain and the membrane-bound GTPases 

[160].  Thus, effective exchange would require DH-associated PH domains to bind 

phosphoinositides and interact with cognate GTPases.  As DH-associated PH domains have 

different phosphoinositide binding specificities [176], this system would also provide a 

means of regulating exchange activity through fluctuating phosphoinositide levels. 

An intriguing study by Robbe et al. shows that Tiam1 DH/PH has a higher exchange 

activity on prenylated Rac1 inserted into lipid vesicles than it does on soluble Rac1 in the 

presence of lipid vesicles, supporting the model suggested in Figure 30.  However, as DH-

associated PH domains can bind phosphoinositides, albeit with low affinity, it is possible that 

the increase in exchange activity by Tiam1 on prenylated Rac1 in lipid vesicles is due to an 

increase in the effective concentration of Tiam1 near lipid vesicles.  To address this issue, the 
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Dbl-family GEFs can be physically attached to the membrane in biotinylated lipid vesicles 

via a streptavidin/biotin interaction (see Figure 31).  A flexible linker in between the 

streptavidin tag and the Dbl-family GEF would restrict localization without severely 

restricting the conformation of the DH/PH cassette and remove any variation in its effective 

concentration.  The streptavidin/biotin interaction is extremely tight (Kd ≈ 10-15 M) [282] and 

it is unlikely that the streptavidin-tagged Dbl-family GEF will dissociate back into solution 

once bound to the vesicle.  Mutations can then be introduced that abrogate phosphoinositide 

binding by the PH domain before using exchange assays to measure if these mutations 

diminish exchange activity on prenylated GTPases 

Although this system is novel to the study of exchange by Dbl-family GEFs, similar 

systems have been used previously to study the role of membranes in regulating the 

stimulation of Gαs, which stimulates adenylate cyclase, by β-adrenergic receptors, and in 

regulating the GAP activity of RGS proteins [283, 284].  Two obvious GEFs that lend 

themselves to analysis using this system are Dbs and Tiam1 as they represent two classes of 

Dbl-family GEFs: those that use their PH domains to catalyze exchange as determined by 

structural analyses and those that do not.   

As previously mentioned, both intersectin and collybistin in complex with their 

cognate GTPase Cdc42 show no contacts between their DH-associated PH domains and 

Cdc42.  If the PH domain does play a conserved role in regulating nucleotide exchange in 

vivo by interacting with phosphoinositides at the membrane, both intersectin and collybistin 

should behave analogously to Tiam1.  More specifically, one would not expect to see 

mutations abrogating phosphoinositide binding also have an effect on the sub-cellular 
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localization of these GEFs.  However, one would expect to see reduced exchange activity in 

vivo as assessed by transformation assays or a similar functional readout.   

Activation of Dbs by active Rac1 

Although we do not see an interaction between purified Dbs DH/PH and Rac1-

GTPγS, it is still possible that the two proteins interact but require another cellular 

component.  One possibility is that active Rac1 binds the DH-associated PH domain of Dbs 

only in the presence of phosphoinositides, similar to the interaction between active Arf-6 and 

ARNO [46, 48].  Thus, it would be beneficial to repeat the SPR or ALPHA screen 

experiments detailed in Chapter 3 to test an interaction between active Rac1 and Dbs DH/PH 

in the presence of PI(4,5)P2 (see Table 1).   

Regulation of Tiam1 and Par-3 polarity complex by active Rap1a 

 While active Rap1a does not interact directly with Tiam1, it is possible that the 

interaction is mediated either by a portion of Par-3 or another member of the Par-3 polarity 

complex.  We are currently in the process of cloning and optimizing purification protocols 

for sections of Par-3 and will test them for interaction with both active Rap1 and Tiam1. 

 Interestingly, recent data has emerged showing an interaction between active Rap1 

and STEF (also known as Tiam2).  Like Tiam1, STEF possesses an N-terminal PH domain 

followed by a coiled-coiled region, RBD domain, PDZ domain, and DH/PH cassette.  STEF 

has also been shown to be regulated by the Par-3 polarity complex.  Co-immunoprecipitation 

experiments suggest that the interaction between STEF and active Rap1a is mediated through 

the coiled-coiled region following the PH domain.  This interaction is not reproducible with 
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Tiam1 despite STEF and Tiam1 being closely related [91].  The studies that initially 

characterized an interaction between isoforms of active Rap1 and endogenous Tiam1 may 

have used antibodies that showed cross-reactivity with STEF.  A sequence alignment of the 

coiled-coiled regions of STEF and Tiam1 (see Figure 32) indicates that the regions are 

highly homologous, but not completely identical.  Thus, the residues in the coiled-coiled 

domain of STEF may be able to mediate an interaction with active Rap1a, unlike Tiam1.  We 

would like to use purified components to test if STEF interacts directly with active Rap1a.   

 



  110

 

 

Figure 30: Proposed model of nucleotide exchange.  
In the proposed model of nucleotide exchange, binding to phoshoinositides at a membrane locks the DH/PH 
cassette into a conformation that allows contact between the PH domain and the cognate GTPase (right).  
Mutations in the PH domain that abrogate binding to phosphoinositides (center) or the GTPase (left) both 
compromise exchange activity.  While most GEFs contain other regulatory domains, only the DH/PH cassette 
has been depicted.  Model adapted from Rossman et al [160]. 
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Figure 31: In vitro system for measuring exchange at a membrane.   
Prenylated GTPases will be reconstituted in phosphoinositide containing biotinylated vesicles.  DH/PH 
cassettes of Dbl-family GEFs linked to a streptavidin tag (purple) will be attached to the lipid vesicle via a 
streptavidin/biotin interaction.   
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Figure 32: Sequence alignment of the coiled-coiled regions of STEF and Tiam1. 
The coiled-coiled regions that follow the N-terminal PH domain of Tiam1 and STEF (residues 539 – 658 and 
residues 612 – 731, respectively) were aligned using Clustal X.  Identical residues are highlighted in grey, while 
similar residues are highlighted in pink. 
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