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ABSTRACT 

Suzette Applegate Baker: Essays in the Microeconomics of Medical Specialization (Under 
the direction of Gary Biglaiser) 

    This dissertation consists of two essays. In the first essay, I examine the interaction 

between medical specialization and patient referrals. I develop a model that 

demonstrates which doctors are likely to specialize, which doctors are likely to refer, 

and which doctors are likely to treat patients without a referral. I show that the 

introduction of more specialists -- and the corresponding need for more referring 

doctors -- can reduce the overall number of health care providers actually treating 

patients. Finally, I compare the socially optimal and joint profit maximizing (1) quantity 

of specialists, (2) price of specialist services, and (3) price of generalist services. I find 

that, when doctors collectively set prices for both specialist and generalist treatment. 

Depending on the parameters, the joint maximization problem can result in (a) too 

many specialists and two few generalists; (b) too many generalists and too few 

specialists; or (c) the optimal number of specialists and generalists. This ambiguous 

result shares similarities with the textbook model of the quantity decisions of a multi-

market monopolist. 

       The second essay considers the role played by fellowship programs in the training of 

medical researchers. Many hospitals hire senior researchers straight out of their own or 

another hospital's fellowship program. As a result, medical programs both "train" 
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fellows and provide a supply of medical talent for that hospital in the next period. Using 

an overlapping generation model, I derive three results linking the underlying features 

of the medical marketplace, the size of fellowship programs, and the quality of medical 

research. First, when the hospital's time horizon or discount rate increases, the hospital 

tends to employ more fellows each period. Second, when the fellow's outside option 

depends on their skill level, the hospital employs fewer fellows each period. Finally, 

when the fellow's outside option depends on their skill level and the number of other 

fellows in the private-sector market, the hospital employs more fellows than in the case 

where the outside option depends on the fellow's skill level only. 
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MEDICAL SPECIALISTS I: COORDINATION OF 

SPECIALISTS AND PATIENTS 

1.1 Introduction 

Specialization by physicians has transformed the way medical care is provided. By focusing 

on a single illness or injury, a specialist obtains a deep knowledge about that ailment and 

is able to keep abreast of the latest research. And, not surprisingly, many studies show 

that doctors with more knowledge provide higher quality care (see, e.g., Clark et al., 1997; 

Carbona et al. 2006). The problem, however, is that in order for patients and doctors to 

get the benefits of specialization, they need to be correctly matched. The question I address 

is: What factors influence the optimal degree of medical specialization, taking into account 

the cost of coordinating patients and physician-specialists.1 

According to a recent survey of U.S. patients, "[a]lmost 63 million adults~nearly three 

in lO~said they needed a new specialist in the previous year, with 46 million actually seeing 

a new specialist." (Th and Launer 2008 p. 2). The survey goes on to estimate that 86.5% 

of patients use primary care referral or another doctor's referral when selecting a specialist. 

The existing literature on specialization focuses on costs and benefits of team production, 

where each team member has a different skill essential to production of a good (Jones 2008, 

I Starting shortly after World War II, the United States began to see a rise in doctors who specialize 
in treating, say, one type of cancer in children or a specific problem related to ligament damage in the 
knee (Donini-Lenhoff and Hedrick 2000). Since then, the provision of medical services has become increas­
ingly fragmented, with doctors treating a smaller sliver of the range of possible illnesses and injuries. In 
2007, 86 percent of graduating medical students planned to become certified in a speciality or subspeciality 
(Association of American Medical Colleges 2007). 



Becker and Murphy 1992, Alchian and Demestz 1972). I study a di¤erent coordination

problem here �the matching of patients with a speci�c illness with a doctor who specializes

in that illness. This problem shares some similarity with the economic literature analyzing

the role of middlemen in facilitating consumer choice in other market contexts (see, e.g.,

Rubinstein and Wolinsky 1987). But the results from this literature do not translate well

into doctor/patient matching. Unlike consumers in other contexts, patients do not know

what they want. Their goal is to "become healthy," but they don�t know how to make that

happen. This di¤erence is important and serves as the launching point for my contributions

to the literature, which are fourfold.

First, in my model, the coordinating agent �the referring doctor �must have a special

skill, the ability to diagnose illnesses. As I explain, this requirement eliminates the risk of

mismatch but crowds out treatment. Second, I demonstrate that specialization drives up

the wages of all doctors, not just the specialists. The reason is that workers with unequal

talents, i.e., those who are excellent at treating one illness and bad at treating other illnesses,

perform tasks for which they have a comparative advantage. On the other hand, workers

who are equally good at treating all illnesses remain in the general market and provide

treatment no matter the injury. This reduces the risk associated with generalized care and,

as a result, patients will spend more for that service.

Third, as prices increase, the patients with the highest cost of seeking care forgo treat-

ment. The optimal amount of specialization balances the cost of this patient exit against

the gains from each additional patient-doctor match. Finally, I show that doctors acting

in concert but assuming full employment cannot set prices to simultaneously restrict the

amount of specialist services and generalist services.2 This result shares similarities with

2 In health care markets, prices are occasionally set by agreement between groups of doctors and insurance
carriers (Choudhry and Brennan 2001 p. 1143). In these agreements, individual doctors have little control
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the output decisions of a standard multi-market monopoly.

Illustrative of referring-doctor-as-middleman is the "Best Doctor, Inc." agency [www.bestdoctors.com].

This agency recruits doctors to help match patients who are facing a very serious illness with

the appropriate medical expert.3 These doctors don�t treat patients, but instead serve as an

information conduit �a mediator between patients and other experts. A second illustration

comes from the behavior of general practitioners. While some practitioners are willing to

provide more than generalized care, many are quick to refer. When choosing a primary care

physician, patients decide whether they want a "true" generalist who treats most illnesses

or a chief provider who oversees and coordinates, while specialists treat. Depending on

the size of the local market, true generalists may be crowded out by chief providers and

specialists.

The paper relates to the matching model literature (see, for example, Diamond 1982 and

Mortensen 1982). In those models, workers match with �rms. A successful match creates

a surplus, which can be divided between the two parties. One question is what wage rate,

if any, ensures a stable equilibrium. The equilibrium number of job vacancies and the level

of unemployment is then compared with the ones a social planner would pick. Demange

and Gale (1985) and Gale and Shapley (1962) study two-sided matching models. In these

models, an outcome is stable if no two parties from opposite sides of the market can gain by

deviating and forming a di¤erent partnership. The model here involves matching of patients

with doctors. The equilibrium concept is similar. Given a set of prices, an equilibrium exists

if no doctor and no patient want to change positions.

over the price of services (McGuire 2000; p. 481). With no control over price, McGuire suggests that
physicians exercise their market power by increasing the quantity of services above what the patient prefers.
See also Ma and McGuire (2002).

3According to their marketing materials, Best Doctors "gives members insight and information about
their diagnosis, the latest advances and where they can turn for state-of-the-art care when faced with a
serious medical problem." See www.bestdoctors.com.
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A second set of related literature concerns two-sided markets (Rochet and Tirole 2002;

Rochet and Tirole 2006). In these markets, a platform provider must ensure that both

consumers and producers use the service. With credit cards, for example, issuers must

consider how the interchange transfer fee will a¤ect the merchants�propensity to accept the

card for purchases and the consumers propensity to use the card. In the leading article on

the subject, Rochet and Tirole (2002) demonstrate that issuers might set a fee that results

in the overuse of credit cards as compared to the social optimum. In their model, merchants

too readily accept cards. The reason is that merchants make the decision whether to accept

credit cards anticipating that they will service the average card user, not the marginal user.

The average user will attach a higher bene�t to card use and, as a result, be willing to pay

more for the convenience of using his card. Praying on the merchant�s eagerness to attract

card-carrying customers, issuers set a higher than optimal transfer fee.

In the model developed here, there exists a similar potential for an overprovision of

services, speci�cally medical specialist services. This problem occurs when doctors collective

set prices. The expansion of specialist services decreases the price of specialist services,

while increasing the price of generalist services. The price is based on the average bene�t

a patient receives from treatment, rather than the marginal bene�t. As a result, under

some conditions, the boost in the price of generalist services more than compensates for

the possible decrease in the price of speciality services, making the expansion of speciality

services attractive.

A third related strand is the wide-ranging work on labor specialization and investment

in human capital. For example, Kim (1989) considers a situation where workers can invest

in both the depth and breath of human capital. As market size increases, workers want to

deepen their speci�c skill set, rather than increase the number of tasks they are capable of
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doing. The reason is that a large market contains more employers. With more employers,

there is a greater chance the worker will be matched with an employer who values �and

therefore rewards � the deep speci�c skill set. Along similar lines, Baumgardner (1988)

looks at the division of labor within service industries. He shows a trade-o¤ between in-

creasing returns to production in each activity and decreasing marginal revenue. A more

narrowly-focused worker is better at a speci�c task, allowing him to charge higher prices.

But specialization has a downside �fewer potential customers. The optimal degree of spe-

cialization trades o¤ the gains from specialization against the losses from weaker demand.

Along related lines, Bolton and Dewatripoint (1994) and Becker and Murphy (1992) point

out the amount of specialization depends heavily on the cost of coordination among special-

ists: the more specialists, the greater the coordination costs and the lower the net return

from an additional specialist.

The paper closest to mine is Garciano (2000). He considers the problem of communica-

tion within organizations. In his model, workers specialize in the production of knowledge

or the transmission of knowledge. His key result is that harder problems are those most

likely to be referred up the chain of command. The higher up in the chain a worker is, the

more di¢ cult the problems the organization will ask him to solve. A pyramid scheme re-

sults. This organization form minimizes communication costs while ensuring that problems

can be solved (only hard problems are continually referred upward, which reduces the cost

of transmission). My model di¤ers because some "low-level" doctors decide to treat pa-

tients (i.e., solve the problem themselves), even though they could refer to a more quali�ed

doctor for treatment. Patients don�t complain about this practice because, in equilibrium,

the price adjusts to re�ect the lower quality of treatment generalists o¤er. In addition,

the "communication cost" is the cost to the patient of making an additional trip to the
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specialist.

Finally, there is some recent empirical work on medical specialists. Johnson (2009) �nds

that, over time, primary care physicians learn about the quality of specialists to which they

refer. As a result, she �nds some evidence that lower quality specialists are more likely to

drop out of the market. The sorting mechanism in Johnson�s framework is that referrring

physicians learn about specialist talent. In my model, fewer patients are treated because a

subset of doctors opt to focus on referring patients rather than treating them. Since fewer

doctors are available for treatment, some patients don�t receive any care whatsoever.

Part 1.2 develops the model. Part 3 explores the level of specialization that maximizes

social welfare. Part 3.1 considers corner solutions, where welfare is maximized by having ei-

ther no specialists, as many specialists as feasibly possible, or failing to use all the available

doctors. In part 4, doctors set prices. The prices set induce a certain number of referring

doctors, specialists, and generalists in equilibrium. Depending on the parameter con�gura-

tions, doctors set prices to induce too much or too little specialization as compared to the

social optimum. Part 5 concludes.

1.2 The Model

Patients are denoted by j. Each patient represents a point on the continuum [0; n]. Patients

are equally likely to have a type 1 illness or a type 2 illness. Over the entire continuum half

the patients have a type 1 illness, half the patients have a type 2 illness. Patients do not

know their illness type. Given this uncertainty, each patient decides whether to (1) seek

care from a generalist doctor; (2) go to a referring doctor, have their illness identi�ed, and

be rerouted to a medical specialist, or (3) forgo treatment. Assume that patients cannot

see a specialist without �rst getting a referral.

To understand the meaning of a "generalist" doctor, consider a patient with chest pain.
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The patient can go to a generalist, a primary care physician who has a reputation for solving

problems immediately. This doctor has devoted his resources to treating patients with a

broad range of illnesses. So, his initial action is to treat the patient as opposed to refer

to a specialist. The doctor might run tests and prescribe a better diet, exercise, vitamins,

and medicine. That treatment would be bene�cial and provide some relief. However,

this treatment might not be drastic enough. If instead the patient went to a primary

care physician known for referring patients, that doctor would have sent him to a leading

cardiologist. The cardiologist might have considered a more aggressive and newer treatment

option.

Denote doctors by i. Like patients, doctors fall on the continuum [0; n]. Doctors can

treat one patient per period. In the time it takes to do a treatment, a doctor can refer two

patients to specialists. That is to say, referrals take half the time of an actual treatment.

The outcome in monetary terms of medical treatment depends on the doctor�s skill

level. If the patient has a type 1 illness, �(i) is the patient�s monetary value associated with

treatment by doctor i. If the patient has a type 2 illness, 	(i) is the patient�s outcome from

treatment. Doctors have the same amount of human capital, spread di¤erently between

the two types of illnesses. Some doctors are equally good at treating both illnesses. Other

doctors have a high ability in treating one illness and a low ability in treating the other

illness. A doctor cannot have a high ability in treating both illnesses. To capture di¤erences

in ability, I assume that the outcome function for illness one, �(i), is linear and decreasing

in the doctor index. The outcome function for illness two, 	(i), is linear and increasing in

the doctor index. The bene�t functions are symmetric (�(1) = 	(n)).

Figure 1 represents the patient�s bene�t associated with treatment by each doctor i.

The vertical axis represents the patient�s bene�t from treatment for illness 1, �(i), and for
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illness 2, 	(i). The horizontal axis represents the doctors, indexed from 0 to n.

Patient’s Outcome

From Treatment

Ψ(i)

Θ(i)

0 n

Doctors

Figure 1: The Relationship Between Patient Bene�t and Doctor Skill Levels

1.2.1 Patient Payo¤s

Patients pay an out-of pocket price to the treating doctor. te is the price paid after getting

a referral and being rerouted to an expert doctor; tg is the price paid for treatment by

a generalist without the referring middleman. In addition to the out-of-pocket expenses,

patients face a cost, k(j), per doctor visit. Because of a less debilitating sickness, helpful
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family members, or a home located in an area with lots of medical services, some patients

�nd it easier to go to a doctor. Patients who reside close to zero on the continuum have

a lower cost per visit than patients who reside close to n. More speci�cally, I assume that

the cost function, k, is increasing and linear in j. If a patient sees a generalist, he makes

one trip to the doctor. A referral requires two doctor visits �one to the referring doctor

and a second to the specialist. The patient�s utility from treatment is v(�), where v0(�) > 0

and v00(�) < 0.

Patients are uncertain which specialist doctor they will be sent to after seeking a referral.

Likewise, patients are uncertain which generalist will treat them if they select generalist

treatment. They form expectations about these facts by looking at the pool of available

specialists and generalists.

If, for example, there are six referring doctors and twelve specialists, the patient seeking

a referral anticipates treatment by a doctor with the average skill level among the twelve

specialists. Similarly, if there are thirty generalists in the market, a patient seeking care

anticipates the care associated with the average generalist among these thirty physicians.

In short, each patient faces a lottery over possible outcomes, where each doctor in

the generalist pool or specialist pool has an equal chance of being selected.4 Generalist

treatment involves a compound lottery. First, there is a lottery over which illness the

patient has �type 1 or type 2. Second, there is a lottery over the possible outcomes from

treatment given the generalist pool.

To sum up, patient j0s utility depends on (1) the outcome from treatment, (2) the price

paid for medical services; (3) whether she sees a generalist or, via a referral sees a specialist;

4Suppose that the doctor interval [a; b] represents a specialist pool. The probablity of seeing a doctor of
skill level x or less is distributed uniformly over that range. The density is the same for each doctor in the
interval, re�ecting that a patient has an equal chance of seeing each doctor in the pool.
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(4) the skill level of the pool of doctors doing the treatment, and (5) the individualized cost

per visit.

Given a pool of type 1 specialists, [a; b], a patient who seeks a referral and is discovered

to have a type 1 illness receives expected utility

1

b� a
bR
a
v(�(i))di� te � 2k(j) (1)

Given a pool of type 2 specialists, [c; d], a patient who seeks a referral and is discovered to

have a type 2 illness receives expected utility

1

d� c
dR
c
v(	(i))di� te � 2k(j) (2)

Finally, given a pool of generalists, [e; f ], the patient�s expected utility from seeking gener-

alist treatment is

1

2(f � e)
fR
e
(v(�(i)) + v(	(i))) di� tg � k(j) (3)

The utility functions show that patients di¤er in the "net" bene�t from medical treatment.

Because k(n) > k(0), patients close to n have a lower net bene�t from treatment than

patients close to 0.

1.2.2 Doctor Payo¤s

Individual doctors are price takers. Referring doctors diagnose the patient�s illness, 1 or

2, and then send patients to specialists. Unlike patients, referring doctors know the skill

level of each specialist and route patients to the available specialist with the highest skill

level. The specialist cannot bypass the referring doctor and solve the matching problem

by signaling their practice area through advertisements or other marketing materials. The

10



patients don�t know what illness they have. As a result, they don�t know which specialist

to see.

Let �r;�g; �e be the probabilities that a doctor has patient demand for his services if

he chooses to be a referring doctor, generalist, or specialist respectively. In modeling these

probabilities, �rst consider markets for referring doctors and generalists. In these markets,

the probability that a doctor actually has a patient to treat depends on the number of

patients and the number of doctors. If the supply of doctors outstrips the demand for

doctors, the chance an individual doctor actually sees a patient is less than one, but greater

than zero.

To capture this easily, let �g =
# of patients seeking generalists

# of generalists doctors and �r =
# of patients seeking referrals

# of referring doctors .

If, for example, the number of patients in the market for generalist treatment is 80 and the

number of doctors is 100, the probability that an individual doctor sees a patient is 8
10 . If

the number of patients exceeds the number of doctors in a market, let � = 1:

If a doctor enters the referral market, he might refer one patient, two patients, or

no patients. Each draw from the pool of patients seeking referrals is independent. The

probability a referring doctor sees two patients is �r�r; the probability a referring doctor

sees one patient is 2�r(1��r); and the probability he sees no patients is (1��r)(1��r).

The specialist market is di¤erent. Because referring doctors know the skill level of the

specialist doctors, a specialist doctor will only be routed a patient if his skill level exceeds

the skill level of the weakest member of the specialist pool focusing on that illness. If the

supply of specialists exceeds the demand for specialists, the specialists closest to the middle

of the distribution of doctors are referred no patients.5

5Formally, we could denote the least-skilled specialist focusing on illness 1 as i and the least-skilled
specialist focusing on illness 2 as i: Then, for illness type 1, �e = 1 if i � i and �e = 0 if i � i (recall that
for type 1 illness, doctor 0 is the most skilled and doctor n is the least skilled). For a type 2 illness, it�s
reversed, �e = 1 if i � i and �e = 0 if i � i:
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Finally, let F be the fee that the specialist pays the referring doctor out of the payment

he receives from the patient, te.

We can now de�ne the doctor�s expected payo¤ concisely as

EU =

8>>>>>><>>>>>>:

�e[te � F ] if specialist

�r�r2F + 2�r(1� �r)F if referring doctor

�gtg if generalist

9>>>>>>=>>>>>>;

1.2.3 Timing and Initial Results

The timing of the game follows: First, prices are set. Then, each doctor decides what to

do: become a specialist, become a referring doctor, or become a generalist. Also, patients

decide whether to seek a referral, go to a generalist, or forgo treatment. Finally, all patients

seeking care are treated and outcomes observed.

Assume that doctors do not set prices for now (i.e., take prices as given). Let s be

the number of specialists and s
2 the number of referring doctors needed to support those

specialists.

Proposition 1 For any value s 2 [0; 2n3 ] there exists a set of prices
�
t�e(s); t

�
g(s); F

�(s)
	

such that the following is one of many Nash equilibrium: (1) Patients in the interval [0; s]

seek referrals and treatment by a specialist; (2) Patients in the interval (s; n� s
2 ] seek treat-

ment from generalists; (3) Patients in the interval (n � s
2 ; n] forgo treatment; (4) Doctors

in the intervals [0; s2 ] and [n �
s
2 ; n] specialize; (5) doctors in the interval [

3s
4 ; n �

3s
4 ] pro-

vide generalist treatment; and (6) doctors in the intervals ( s2 ;
3s
4 ) and (n�

3s
4 ; n�

s
2) refer

patients.

Proof:
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Step One:

Find the value of t�g that makes the patient indexed by n� s
2 indi¤erent between seeing

a generalist, who he anticipates to be the average generalist in the market, and forgoing

treatment. This value is determined by

1

n� 3s
2

n� 3s
4R

3s
4

1

2
[v(�(i)) + v(	(i))] di� k(n� s

2
)� t�g = 0 (4)

Step Two:

Assume the last patient seeking a specialist has a type 1 illness. Find the value t�e that

makes this patient indexed by s just indi¤erent between seeing the average specialist in the

market for type 1 specialists and seeing the average generalist in the market. This value is

determined by

1
s
2

s
2R
0

v(�(i))di� t�e � 2k(s) = (5)

1

n� 3s
2

n� 3s
4R

3s
4

1

2
[v(�(i)) + v(	(i))] di� k(s)� t�g

Step Three:

The cost per visit, k(j), is smaller than k(s) for all j < s. As a result, for these patients,

the LHS of (5) is bigger than the RHS of (5). This means that, at the price, t�e, each patient

between [0; s] strictly prefers the average specialist in the pool to the average generalist

in the pool. Conversely, at the price t�e every patient in the interval (s; n] strictly prefers

treatment by the average generalist to the average specialist available in the market.

The cost per visit, k(j), is smaller than k(n � s
2) for j 2 (s; n �

s
2 ]. As a result, for

these patients, the LHS of (4) is bigger than the RHS of (4). So these patients do not want
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to deviate and forgo treatment. And since, as noted above, these patients do not want to

deviate and take the specialist treatment, they have no pro�table deviation. For patients

in the interval (n� s
2 ; n], the RHS of (4) is bigger than the LHS of (4). As a result, at the

price t�g , these patients can�t deviate and take generalist treatment without being made

worse o¤. And, as shown previously, these patients also do not want to deviate and take

specialist treatment, leaving them no pro�table deviation. Therefore these patients chose

to forgo treatment.

Step Four:

Moving to doctors, �nd the value of F that makes the following hold

t�g � 2�r�rF + 2�r(1� �r)F (6)

t�e � F � 2�r�rF + 2�r(1� �r)F (7)

2F � �gt�g (8)

t�e � F � �gt�g (9)

Equations (6) and (7) ensure that no generalist and no specialist want to deviate and

become a referring doctor, given the number of other doctors doing referrals. Equations

(8) and (9) ensure that no referring doctor and no specialist want to deviate and become

a generalist, given the number of other generalists in the market. As de�ned earlier, �r =

# of patients seeking referrals
# of referring doctors and �g =

# of patients seeking generalists
# of generalists doctors . In equilibrium, �r = �g = 1.

In addition, the price taking assumption means that a doctor deviation won�t change the
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market price. The previous four equations therefore reduce to

t�g � 2F (10)

t�e � F � 2F (11)

2F � t�g (12)

t�e � F � t�g (13)

Equations (10) and (12) can only be satis�ed simultaneously if F � =
t�g
2 . Given F

�, equations

(11) and (13) hold if t�e � 3
2 t
�
g, which is true if the utility uptick from specialist treatment

is su¢ ciently large.

A referring doctor or generalist doctor who switched and tried to snag a patient from

the specialists would reap no patients. The referring doctor recognizes that the deviating

doctor has a lower skill level than every specialist treating that illness and so routes them

no patients, making this deviation unpro�table.

Finally, a su¢ cient, but not necessary condition that ensures positive prices for medical

services is

k(n) � 1

n

nR
0

1

2
[v(�(i)) + v(	(i))] di

The lower bound on the price of specialist services is 32 t
�
g. The lowest possible value of

t�g occurs when no doctor specializes. The above inequality ensures this price is positive.

For
�
t�e; t

�
g; F

�	 as de�ned above, no doctor and no patient has a pro�table deviation,
making this equilibrium with s specialists a Nash equilibrium

15



I. Doctors

Type I Referring Generalist Referring Type 2

Specialist Doctors Doctors Specialist

0 s/2 (3s)/4 n­(3s)/4 n­s/2 n

II. Patients

Specialist Treatment Generalist Treatment No Treatment

0 s n­s/2 n

Figure 2: Equilibrium Allocation of Patients and Doctors

For any number of patients seeking treatment by medical experts, t�g, t
�
e, and F

� ensure

that supply equals demand in every market: the number of referring doctors equals one half

the number of specialists; the number of patients seeking referrals equals twice the number

of referring doctors and the number of patients seeking care without a referral equals the

number of generalist doctors. Figure 2 illustrates what the equilibrium looks like.

Within a given market, all doctors make the same amount. Despite di¤erential skill

levels among doctors, patients can�t observe those di¤erences and, as a result, pay for the
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"average" bene�t associated with a doctor in that market. Across markets, referring doctors

and generalists make the same amount, t�g. That must happen to equilibrate the number

of doctors in these two markets. If, say, the price of generalist services was greater than

the price of referring services, each generalist would switch markets and become a referring

doctor.

Specialists at least as much or more than generalists or referring doctors (the specialist�s

net payment, t�e �
t�g
2 must be greater than or equal to t

�
g). Referring doctors can identify

the skill level of specialists. This identi�cation means a generalist or referring doctor who

deviated to take advantage of the higher specialist wage would be routed no patients. The

specialist, in other words, is compensated for his higher skill level, but at the level of the

average specialist in his market.

Since referring doctors and generalists have the same payo¤, they could switch places

and it would still be an equilibrium. In other words, the lineup of doctors in proposition 1 is

not the only possible Nash equilibrium. Notice, however, the prices (t�g, t
�
e; F

�) depend on

the anticipated generalist pool. Because consumers are risk averse, they are willing to pay

more for generalist treatment by a doctor with a lower spread in outcomes.6 Among the

6Formally, this can be seen by noting that the patient�s expected utility if matched with doctor i for
generalist treatment is

1

2
v(�(i)) +

1

2
v(	(i))� tg � k(j)

The �rst and second derivatives with respect to i are

1

2
[v0(�(i)]�0(i) +

1

2
[v0(	(i)]	0(i)

1

2
[v00(�(i)]�0(i)2 +

1

2
[v00(	(i))]	0(i)2

Since v00 < 0, the second derivative is negative, making the expected utility concave in i. Setting the �rst
derivative equal to zero and solving yields

1

2
[v0(�(i)]�0(i) = �1

2
[v0(	(i))]	0(i)

Since �0(i) = �	0(i), this equality holds when �(i) = 	(i). This occurs for the doctor located at n
2
. Because

generalist treatment by this doctor results in the highest expected utility, the patient is willing to pay the
most for it and for treatment by doctors close to it:
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possible lineups of doctors with s specialists, the lineup in proposition 1 gives the highest

prices for all doctors and hence is a natural one to focus on.

A couple of further points are worth mentioning. First, patients with the lowest cost

per visit �those patients, say, near a cluster of doctors�are the most likely to seek referrals.

Second, patients with the highest cost per visit �those patient in, say, rural area �are the

most likely to forgo treatment. Third, doctors with the highest skill level specialize. Fourth,

doctors who aren�t very good at any one illness become generalists. Fourth, the doctors who

choose to do referrals don�t have the high skill level required to specialize, but aren�t good

enough at more than one illness to become generalists. These doctors do have an important

task in the model; they correctly diagnose and refer to the best available specialist.

1.3 Welfare Analysis

Now consider the welfare e¤ects of specialization. How many specialists would a planner

want to have? The welfare associated with an equilibrium with s patients seeking referrals

is

W (s) =

Z s
2

i=0
v(�(i))di+

Z n

i=n� s
2

v(	(i))di+ ::: (14)

1

2

Z n� 3s
4

i= 3s
4

fv(�(i)) + v(	(i))gdi� :::

Z s

j=0
2k(j)dj �

Z n� s
2

j=s
k(j)dj
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Because of the symmetry of the patient outcome functions for type 1 and type 2 illnesses,

welfare can be rewritten as

W (s) = 2

Z s
2

i=0
v(�(i))di+

Z n� 3s
4

i= 3s
4

1

2
fv(�(i)) + v(	(i))gdi

�
Z s

j=0
2k(j)dj �

Z n� s
2

j=s
k(j)dj (15)

Welfare is concave.7 The �rst order condition is

v(�(
s

2
))� 3

8

�
(v(�(n� 3s

4
)) + v(	(n� 3s

4
))

�
�

3

8

�
(v(�(

3s

4
)) + v(	(

3s

4
)

�
+
1

2
k(n� s

2
)� k(s) = 0

Since �(n� 3s
4 ) = 	(

3s
4 ) and 	(n�

3s
4 ) = �(

3s
4 ), we can rewrite the FOC condition as

v(�(
s

2
))� 1

2

�
(v(�(

3s

4
)) + v(	(

3s

4
)

�
+
1

2
k(n� s

2
)

=
1

2

�
1

2
[v(�(

3s

4
)) + v(	(

3s

4
)]

�
+ k(s) (16)

The solution to (16) provides the optimal number of medical specialists, sW . To increase

the number of specialists by one unit requires an additional 1/2 unit of referral services,

leading to the rationing of 1/2 unit of patient care. The left hand side of (16) represents

7To see concavity, note that W 00(s) equals

1

2
�0(
s

2
)v0(�(

s

2
))� 9

16

�
�0(
3s

4
)v0(�0(

3s

4
)) + 	

0
(
3s

4
)v0(	(

3s

4
))

�
� 1

4
k0(n� s

2
)� k0(s)

Since �0( 3s
4
) = �	0

( 3s
4
), W 00(s) can be rewritten

1

2
�0(
s

2
)v0(�(

s

2
))� 9

16
�0(
3s

4
)

�
v0(�(

3s

4
))� v0(	(3s

4
))

�
� 1

4
k0(n� s

2
)� k0(s)

Notice that �0( s
2
) < 0 and k0 > 0. Since �( 3s

4
) > 	( 3s

4
), it must be true that v0(�0( 3s

4
)) < v0(	( 3s

4
). Taken

all together, the entire expression is negative.
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the marginal bene�t from adding a specialist. This bene�t has two parts: (1) the surplus

above what that matched patient would have received from a generalist treatment and (2)

the cost saving from having 1/2 a patient forgo treatment. The right hand side of (16)

re�ects the marginal cost of adding another specialist. The addition of a specialist means

that 1/2 a unit of patients are no longer treated by generalists, resulting in a utility loss.

And, the addition of a specialist comes at the cost of a unit of patients making an extra

doctor visit.8

1.3.1 Corner Solutions

Up to now, I have assumed an interior solution to the planner�s problem. Yet s is bounded

between 0 and 2n
3 . The optimal solution might lie at the corners: either all doctors serve

as generalists (s = 0) or every doctor who can feasibly serve as a specialist does (s = 2n
3 ).

In addition, the social planner might not want to employ all the doctors.

W 0(s) is the net additional bene�t from adding a specialist. Welfare is concave. If

W 0(0) < 0, social welfare will be decreasing as the social planner employs any more than

zero specialists. And so, it is optimal to have no specialists. Alternatively, if the marginal

gain from adding a specialist is still positive at s = 2n
3 (i.e., W 0(2n3 ) > 0), it makes sense

to employ the maximum number of specialists.9 These results are described in �gures 3

8 In this analysis, I only consider one class of welfare functions, where each patient is weighted by the social
planner equally. The results might di¤er with di¤erent weights for di¤erent patients (like, say, weighting the
patients with the highest bene�t from treatment the most). That is to say, the analysis might not be robust
to di¤erent welfare functional forms.

9This result can be easily derived. Set up the constrained maximization problem: max
s

W (s) subject to

s � 0 and s � 2n
3
. The Lagrangian is

eL =W (s)� �1[s� 2n

3
] + �2[s] (A1)

The relevant FOCs are
@eL
@s

= 0 (A2)

�1[s�
2n

3
] = 0 (A3)

�2[s] = 0 (A4)
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and 4. Figure 3 represents the situation where it is optimal to have the maximum number

of specialists (s = 2n
3 ). Note that the slope of the tangent line at

2n
3 is positive. Figure 4

represents the situation where it is optimal to have no specialists. Note that the slope of

the tangent line at 0 is negative.

�1; �2 � 0 (A5)

@ eL
@s
= W 0(s) � �1 + �2 = 0. Suppose W 0(s) < 0: For (A2) to hold �2 > 0. As a result, sW= 0; otherwise

(A4) won�t hold. Suppose W 0(s) > 0. For (A2) to hold �1 > 0. Given this positive multiplier, s� = 2n
3
or

else (A3) won�t hold.
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W’(2n/3)>0

W(s)

0 2n/3

Figure 3: Corner Solution with Maximum Specialists
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W(s)

W’(0)<0

0 2n/3

Figure 4: Corner Solution with No Specialists

The likelihood of either corner solution depends on the slope of the patient outcome

function and the cost of each visit, a logical outcome since this slope re�ects the gains from

specialization. In de�ning formally the proposition, the following de�nition is useful

k� = 2v(�(
n

3
))� 3(v(�(n

2
))

Notice that k� is increasing as the gains from specialization increase. That is, as �(n3 ) grows

with respect to �(n2 ), k
� gets larger. We have the following result:
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Proposition 2 (i) If k(0) > 1
2k(n), as the gains from doctor specialization vanish,

the social planner sets prices such that no doctor specializes . (ii) When k(2n3 ) � k� the

social planner sets prices such that every doctor who feasibly can specializes. (iii) When the

cost per visit is su¢ ciently high, the social planner sets the number of specialists equal to

zero and employs fewer than n doctors.

Proof:

Because of symmetry of the bene�t functions: 	(3s4 ) = �(n � 3s
4 )). Given this, W

0(s)

can be written as

v(�(
s

2
))� 3

4
(v(�(

3s

4
))� 3

4
v(�(n� 3s

4
)) +

1

2
k(n� s

2
)� k(s) (28)

Proof of (i).

W 0(0) < 0 if the following condition holds

v(�(0))� 3
4
(v(�(0))� 3

4
v(�(n)) < k(0)� 1

2
k(n) (29)

Suppose the gains from specialization vanish. That means that �(0) = �(n). The LHS of

the above equation must be less than zero. A su¢ cient condition for the inequality to hold

is that the RHS is positive, which happens whenever k(0) > 1
2k(n):

Proof of (ii)

W 0(2n3 ) > 0 if the following holds

v(�(
n

3
))� 3

4
(v(�(

n

2
))� 3

4
v(�(

n

2
)) +

1

2
k(n� n

3
)� k(2n

3
) > 0 (30)
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which reduces to

v(�(
n

3
))� 3

2
(v(�(

n

2
)) � 1

2
k(
2n

3
)

The LHS de�nes k�, which completes the proof.

Proof of (iii)

The welfare associated with employing one less doctor (the best generalist), but still no

specialists is

W (0) =
1

2

Z n�n
2
� 1
2

i=0
fv(�(i)) + v(	(i))gdi+ 1

2

Z n

i=n�n
2
+ 1
2

fv(�(i)) + v(	(i))gdi�
Z n�1

j=0
k(j)dj

This welfare is greater if the following condition holds true

1

n

Z n

i=0

1

2
fv(�(i)) + v(	(i))gdi� k(n) < 0

In that event, the social planner wants to employ no specialists and also restricts the num-

ber of generalists treating patients

Depending on the shape of the welfare function, we might or might not have corner

solutions. It depends on the shape of the utility function and its relationship to the size of

the cost of the patient visit.

1.3.2 Maximizing Joint Pro�t

Now suppose that the doctors collectively set prices to induce their most-preferred equi-

librium. Will they pick prices that result in too many specialists or too many generalists

when compared to the social optimum? In answering this question, I assume that each

doctor must earn a positive price in equilibrium. In other words, doctors can�t constrain
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the total number of doctors participating in the overall market (as generalists, specialists,

or referring doctors). Instead, the choice of prices simply shifts the proportion of doctors in

each practice.

Doctors maximize total pro�t by choosing an equilibrium with s referring doctors. Be-

cause of the "full employment" assumption, this choice determines the number of specialists,

the number of generalists and the number of referring doctors. Pro�t equals

�(s) = st�e(s) + (n�
3s

2
)t�g(s) (31)

Pro�ts are concave. Setting the �rst order condition equal to zero gives

t�e + s
@t�e
@s

+ (n� 3s
2
)
@t�g
@s

� 3
2
t�g = 0 (32)

Let sPM be the pro�t maximizing number of medical specialists. The following threshold

condition is used in the next proposition:

k =
(94s

W � 1
2n)k

0

2

Proposition 3 When doctors collectively set prices, three di¤erent outcomes are

possible. (1) If k(n� sW

2 ) > k doctors set prices to induce a level of specialization which is

more than the social optimum; (2) If k(n� sW

2 ) < k doctors set prices to induce a level of

specialization which is less than the social optimum; and (3) If k(n� sW

2 ) = k , doctors set

prices to induce a level of specialization which is the social optimum.

Proof:

Assume the patient indi¤erent between specialist and generalist treatment has illness 1.
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From equations (4) and (5), the following can be derived:

t�g =
1

n� 3s
2

n� 3s
4R

3s
4

1

2
[v(�(i)) + v(	(i))] di� k(n� s

2
) (33)

t�e =
1
s
2

s
2R
0

v(�(i))di� 1

n� 3s
2

n� 3s
4R

3s
4

1

2
[v(�(i)) + v(	(i))] di� k(s) + t�g (34)

Plugging in t�g and t
�
e into the pro�t equation and doing some algebra gives

�(s) = 2

s
2R
0

v(�(i))di+
n� 3s

4R
3s
4

1

2
[v(�(i)) + v(	(i))] di� sk(s)� (n� 5

2
s)k(n� s

2
) (35)

From (15), we know

W (s) = 2

Z s
2

i=0
v(�(i))di+

Z n� 3s
4

i= 3s
4

1

2
fv(�(i))

+ v(	(i))gdi�
Z s

j=0
2k(j)dj �

Z n� s
2

j=s
k(j)dj (36)

Rearranging (36) gives

W (s) +

Z s

j=0
2k(j)dj +

Z n� s
2

j=s
k(j)dj =

2

Z s
2

i=0
v(�(i))di+

Z n� 3s
4

i= 3s
4

1

2
fv(�(i)) + v(	(i))gdi (37)

Subtract sk(s) + (n� 5
2s)k(n�

s
2) from both sides of (37). The result is

W (s) +

Z s

j=0
2k(j)dj +

Z n� s
2

j=s
k(j)dj � sk(s)� (n� 5

2
s)k(n� s

2
) =

2

Z s
2

i=0
v(�(i))di+

Z n� 3s
4

i= 3s
4

1

2
fv(�(i)) + v(	(i))gdi� sk(s)� (n� 5

2
s)k(n� s

2
) (38)
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Or

W (s) +H(s) = �(s) (39)

where H(s) =
R s
j=0 2k(j)dj+

R n� s
2

j=s k(j)dj� sk(s)� (n� 5
2s)k(n�

s
2). The derivative of (39)

equals

�0(s) =W 0(s) +H 0(s) (40)

At the optimal value, sW , W 0(sW ) = 0. If H 0(sW ) = 0, then, �0(sW ) = 0 meaning that

sW = sPM . Alternatively, if H 0(sW ) > 0, then, �0(sW ) > 0. Since � is concave it must be

that sPM > sW . Finally, if H 0(sW ) < 0, then, �0(sW ) < 0 and sPM < sW . After cancelling

common terms, H 0(sW ) equals

H 0(sW ) = 2k(n� s
W

2
)� sWk0(sW ) + 1

2
(n� 5

2
sW )k0(n� s

W

2
) (41)

Since k00 = 0, we know that k0(s) = k0(n � s
2) for any value of s

W . Solving for k(n � sW

2 )

gives the threshold condition

k =
(94s

W � 1
2n)k

0

2
(42)

If k(n� sW

2 ) > k then H
0(sW ) > 0 and sPM > sW . If k(n� sW

2 ) < k; H
0(sW ) < 0 and

sPM < sW . If sW � 2
9n, the RHS of (42) is always negative and doctors will choose prices

such that there is too much specialization relative to the optimal amount

Compare this result to the model of a monopolist producing substitutes goods in two

separate markets. It is well-known that this multi-market monopolist will restrict prices in

both markets. Indeed, he will do so more than the standard monopolist (Tirole 1987 p. 70).

At the same time, the e¤ect on output in each market is indeterminate. By raising prices in
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market A, the multi-market monopolist increases quantity in market B. At the same time,

the multi-market monopolist raises the price in market B, restricting output in that market.

The end result in terms of output is indeterminate. Depending on the parameters of the

model, the above proposition suggests the same style of result in my model. Doctors will

set prices to induce (1) too many specialists and too few generalists; (2) too few specialists

and too many generalists; or (3) the optimal number of specialists and generalists.

The key di¤erence in my model is that the total number of doctors employed is �xed at n.

By manipulating the prices, the doctors adjust how many doctors are doing each activity.

Unlike a multi-market monopolist, even if they wanted to, the doctors can�t restrict the

total supply of services. When the doctors induce more specialists, they necessarily induce

fewer generalists. When they set prices to induce fewer specialists, more generalists come

as a by-product.

Take an example. Say we have 100 doctors. Suppose doctors decide on prices such

that 20 patients demand specialist services. 10 referring doctors are required to support 20

specialists. That choice leaves 70 generalists treating patients. If the doctors restrict the

output of specialists to, say, 10 that leaves 85 generalists treating patients. By restricting

the output in the market for specialists, doctors increase the supply and lower the price

in the generalist market. If the generalist price increases a great deal with an increase in

the number of specialists, doctors will set prices that result in too much specialization. If,

on the other hand, the generalist price only increases a little bit with an increase in the

number of specialists (because the risk averse patients are, say, willing to pay very little for

the better generalist pool), doctors will set prices that result in too little specialization.

Whether doctors pick prices to induce too few or too many specialists turns on the cost

per visit for the last patient treated at the social optimum, k(n� sW

2 ). To see this, plug t
�
g
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and t�e into (32). Collecting terms, we have

1
s
2

s
2R
0

v(�(i))di� 1

n� 3s
2

n� 3s
4R

3s
4

1

2
[v(�(i)) + v(	(i))] di

� k(s) + (n� 3s
2
)
@t�g
@s

=
1

2
t�g � s

@t�e
@s

(43)

The LHS side of (43) is the marginal bene�t to the doctors of adding another specialist.

The RHS represents the marginal cost. Let�s say the social optimal has 20 doctors providing

speciality services. Suppose k(n� 20
2 ) is quite large. Given the inverse relationship between

this cost per visit and the generalist price, this means that 12 t
�
g is quite small.

Evaluated at the social optimum, then, the marginal cost is small and the marginal

bene�t remains unchanged (it doesn�t depend on k(n � 20
2 )). And so, the doctors select

more specialists than is socially optimal. The reverse holds if k(n � 20
2 ) is small. In that

case, the marginal cost of an additional specialist (again measured at the social optimum)

is big and the marginal bene�t unchanged, inducing the doctors to select fewer than the

optimal amount of specialists.

1.4 Conclusion

Medical specialization by doctors is important. The role of referring doctors in facilitating

specialization has not been the subject of much study by health economists. This paper

is a step toward �lling that void. To make the analysis tractable, the model ignores the

role of education and doctor investment in specialized skills. The skill level of each doctor

was taken as given. In a richer model, we might expect some doctors to make specialized

investments via fellowships or additional training. Those considerations are left for future

work.
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MEDICAL SPECIALISTS II: THE ROLE OF 

FELLOWSHIPS IN MEDICAL TRAINING 

2.1 Introduction 

Unlike many training situations, hospitals both train fellows and hire former fellows onto 

their staffs. Because, in staffing fellowship programs, the hospital partially determines the 

quality of its future workforce, the decisions about how many fellows to hire differs from the 

standard one studied in the literature. The hospital both provides educational benefits and 

reaps at least some of those educational benefits as employers. Yet any educational benefit 

provided to fellows might spillover - the fellows might cash in on their training themselves 

and not work for the hospital in the next period. This externality complicates the hospital's 

decision about how many fellows to employ in a given period. 

Fellowship programs in the United States playa large role in the advanced training 

of doctors. They are the last step in the training of specialists, lasting between one and 

three years. Most major-university hospitals have fellowship programs. The fellow has 

finished his residency and, in theory, works with a more senior doctor to learn the most 

advanced treatment and research in that area of medicine. Unlike residents, fellows can 

serve as attending physicians. They are fully registered and licensed. If need be, they can 

perform surgeries without supervision. They can help manage and train residents. More 

important, hospitals look to the fellowship programs to hire the next medical researcher in 

their practice. Fellowship programs, in other words, are the stream of medical specialist 



quality.

I start by investigating a single hospital and an overlapping generation of doctors. Each

period the hospital hires one seasoned medical researcher out of the pool of fellows who just

completed its fellowship program. Further, the hospital decides how many newly-minted

residents to bring into the fellowship program. The process repeats: each period the hospital

hires a senior doctor and matches them with a fresh set of fellows. The result from this

simple model is this: The longer the time horizon of the hospital has, the more fellows it

hires in any one period and, correspondingly, the higher the quality of the research produced

by the hospital. The longer time horizon gives the hospital a greater chance of recouping the

bene�ts from the fellowship training program. Likewise, the higher the hospital�s discount

rate �the more patient the hospital is �the more fellows it hires and the higher the average

quality of the seasoned doctor�s research.

Next, I consider the situation where the fellow can trade on their fellowship training by

treating patients in the private sector. I examine two cases. In the �rst case, the price for

treatment in the private sector is exogenous. In the second case, the price for treatment

services in the private sector is endogenous. More precisely, with an exogenous treatment

price, the price is independent of the number of fellows produced in the prior period, but

does depend on the quality of the fellow. In this circumstance, I show that the hospital

has less of an incentive to employ fellows. The reason: Program expansion increases the

odds that a fellow will be of high quality and, as a result, able to receive a lucrative outside

option. Therefore, by training additional fellows the hospital confers a positive externality

on the fellows.

With an endogenous treatment price, the price depends on (1) the number of fellows
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�owing out of the program in the prior period and (2) the fellow�s quality. With an en-

dogenous treatment price, program expansion drives down the price of treatment services

(by increasing the supply of fellows and, as a result, the number of doctors in the private

sector). The hospital has more of an incentive to employ fellows than in the exogenous price

case.

The upshot of the model is that the hospital�s time horizon, its discount rate, and the

features of the non-academic, private sector market determine the size and scope of the

fellowship programs. The size and scope of the fellowship program a¤ects the quality of

medical research. And so, we get a positive relationship between a hospital�s concern about

the future and doctor quality and medical research. But this e¤ect doesn�t come from the

conventional story of the hospital wanting to maintain a good reputation. Instead, it arises

out of the unique training grounds associated with medicine.

I use an overlapping generation model (OLG), which has been called one of the two

building blocks of modern macroeconomics (La Croix and Michel 2002, p. 1). Macro-

economists have used the model to study the accumulation of capital (Diamond 1965),

the funding of education (Glomn and Ravikumar 1992; de la Croix and Monfort 2000),

tax versus debt �nancing of public expenditures (Diamond 1965, King 1992, Grossman

and Yanagawa 1993), and the impact of altruism on intergenerational transfers (Barro and

Becker 1989).

Samuelson (1958) is a foundational paper for this style of model. He shows that a pure

exchange economy can have multiple equilibria. In one equilibria, the interest rate equals

the growth rate of the population; in the second equilibria, there is no trade whatsoever.

Samuelson, then, argues that a social agreement to use money as a store of value can

eliminate the "no trade" equilibrium.
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In the other seminal OLG paper, Diamond (1965) �nds convergence of the capital in

an economy, but that convergence might be ine¢ cient. In other words, an economy under

perfectly competitive conditions can accumulate too little or too much capital. That result

has been the subject of an extensive follow-on literature (see, for example, Hu 1979; Nourry

2001; Fanti and Spataro 2006).

Micro-economists have picked up the overlapping generation model to examine a number

of issues. Tadelis (2002), for example, shows how a "market" for reputations that are distinct

from the employees of the �rm can maintain incentives for short-lived agents. Cremer (1986)

demonstrates how the development of social norms in an in�nitely-lived corporation can

encourage "good" behavior by short-lived agents. Cremer also provides a rationale for why

the youngest workers are often given the most di¢ cult tasks. The reason: If they shirk,

young workers are subject to more years of punishment at the hands of other workers in

the organization.

The paper proceeds as follows: Section 2 develops the benchmark model with a single

hospital and overlapping generations of doctors. Section 3 expands the model, containing

the results when the fellow�s outside option depends on his skill level and the price he gets

for treating people in the private sector. Section 4 concludes.

2.2 Benchmark Case

Consider a single hospital that lives for multiple periods. The hospital produces medical

research, which results from the combined e¤orts of senior researchers and medical fellows.

Because medical research is capital intensive, I assume that the hospital has the capacity

to employ at most one senior doctor to engage in research each period. The hospital can,

however, match or employ as many fellows as it wants to work with this senior doctor.

Senior doctors have either a high skill level �H or a low skill level �L. Let the skill level

34



be the hospital�s payo¤ from employing a doctor, with �H greater than �L. The payo¤ from

employing the seasoned doctor depends on the number of fellows matched with that doctor.

These payo¤s are increasing and concave in the number of fellows.1

In the �rst period, the senior doctor has a low skill level.2 The fellowship program

trains a discrete number of fellows, s 2 [0;m]. The hospital also observes the fellows in

action, which means the hospital can distinguish between fellows likely to have a high skill

level as a senior researcher and those likely to have a low skill level. Whether the training

program produces at least one high quality researcher depends on the number of fellows

in the program. To capture this in the easiest way, assume that each fellow transforms

into a high quality researcher with probability p. He becomes a low quality researcher

with probability 1� p. These probabilities are independent of the number of fellows in the

program.3 The independence assumption means that there is no negative e¤ect on fellow

training associated with "crowding" i.e., multiple fellows attempting to learn from a single

senior researcher. Under these assumptions, the probability that a pool of size s fails to

produce at least one high type is

probfno high type jsg = (1� p)s

This is the probability of "no successes" from a binomial distribution, where the draws are

1Obviously, employees of the hospital both treat patients and conduct research. I abstract away from
the treatment decision here. The same results apply if we view �H and �L as the hospital�s payo¤ from the
combination of treatment and research.

2 I make this assumption for simplicity. At the beginning there are no fellowship programs and hence no
training. As a result, the �rst doctor hired has low skill. Realistically, the �rst doctor could be a high type
or stochastically determined. If I allowed for this, the results would remain substantially similar.

3 I also assume that a fellow is equally likely to be a high type when matched with a high skill doctor or a
low skill doctor (that is, the value of p is the same). We might include di¤erent probabilities of producing a
high or low type fellow as a function of the senior doctor�s skill level (say p and p0, where p0 is the probability
of a high type when matched with a high type senior doctor, and p0 > p). While more realistic, this addition
to the model would complicate the notation without adding new insights.
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the number of the fellows in the pool. Clearly, this probability is decreasing in s.

The timing of the game follows:

1. The hospital hires a single seasoned doctor to engage in medical research.

2. The hospital decides on a number of fellows, s1, to assign to the seasoned doctor in

the fellowship program.

3. The period ends.

4. The hospital hires a single seasoned doctor out of the pool of fellows from the prior

period.

5. The hospital decides how many new fellows, s2, to assign to that doctor through the

fellowship program.

2.2.1 One Period Model

In a one period model, the hospital will choose the number of fellows, s1, to maximize

�L(s1)� ws1

Since the maximization problem involves selecting a discrete number of fellows, it is useful

to de�ne the following function

G(w; s1) = [�
L(s1)� ws1]� [�L(s1 � 1)� w � (s1 � 1)]

G(w; s1) represents the incremental gain in pro�t from moving from s1 � 1 fellows to s1

fellows. The concavity of �L(s) implies that the additional bene�t of increasing s by one
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unit is always decreasing.4 It follows that, for all s1,

G(w; s1) > G(w; s1 + 1)

At the maximum, es(w), the following condition must hold:
G(w; es1) � 0 � G(w; es1 + 1) (1)

This equation says that the hospital continues to employ fellows until the incremental gain

from adding one more fellow falls below zero.5 The relationship is illustrated in �gure �ve.

The pro�t function reaches its maximum at 5 fellows. Notice that G(5) �the di¤erence

in pro�t from employing �ve rather than four fellows � is positive. While G(6) � the

incremental pro�t from employing six fellows rather than �ve � is negative. Condition 1

picks out the maximum number of fellows, given the hospital�s choice is discrete.

4Note that �H and �L are continuous in s. The trouble is that the hopsital is restricted to selecting an
integer number of fellows. Concavity means that @�H

@s
> 0; @�L

@s
> 0; @�H

@s@s
< 0; and @�L

@s@s
< 0: The second

order conditions mean that the marginal improvement in payo¤ from an additional fellow is decreasing. In
the discrete choice case, this reduces to condition (1).

5For a full description of the conditions for maximization where the choice variable is discrete see Sah
and Zhoa (1998).
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Figure 5: Graph of the G-Function

2.2.2 N-Period Model

Suppose now that the hospital lives for n periods and discounts the future at a constant

rate �. What will happen to the number of fellows employed in period one? We solve by

backward induction. If the fellowship program in period n � 1 produced at least one high

type researcher, the hospital selects its newly minted fellows to maximize

�H(sn)� wsn
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Denote the solution to this equation as sHn . If the fellowship program failed to produce at

least one high type, the hospital maximizes

�L(sn)� wsn

Denote the solution to this equation as sLn . Plugging in the optimal number of fellows

generates the pro�t associated with employing a high type and low type respectively.

�H(sHn )� wsHn

�L(sLn)� wsLn

To make the model interesting, assume that, no matter the time period, the hospital prefers

to employ a high quality researcher when one is available (i.e., �H(sHt )�wsHt > �L(sLt )�wsLt

for all t). Take a step backward and consider the hospital�s choice of fellows in period n�1.

The expected payo¤ in period n is

V n(sn�1; s
H
n ; s

L
n) = [1� (1� p)sn�1 ][�H(sHn )� wsHn ] + (1� p)sn�1 [�L(sLn)� wsLn ]

In period n�1, there are two possibilities: either the pool of fellows in period n�2 produced

at least one high quality type or it didn�t. Denote the two possibilities as i 2 [H;L]. At

n� 1, the hospital will maximize

�i(sn�1)� wsn�1 + �V n(sn�1; sHn ; sLn) (2)
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The incremental pro�t function is

Gin�1(w; sn�1) = [�
i(sn�1)� wsn�1 + �V n(sn�1; sHn ; sLn)]�

[�i(sn�1 � 1)� w � (sn�1 � 1) + �V n(sn�1 � 1; sHn ; sLn)]

Under the same reasoning as above, at the maximum sin�1 the following condition must be

true

Gin�1(w; s
i
n�1) � 0 � Gin�1(w; sin�1 + 1)

The solution to this problem gives a set of fellow choices, fsLn�1; sHn�1g, depending on whether

the prior hospital inherited a high type or not from the prior period. Plugging these values

into equation (2) gives the maximum obtainable two period value, V n�1(sn�2; sLn�1; s
H
n�1).

This value is

V n�1(sn�2; s
L
n�1; s

H
n�1) = [1� (1� p)sn�2 ][�H(sHn�1)� wsHn�1]+

(1� p)sn�2 [�L(sLn�1)� wsLn�1] + �V n(sn�1; sLn ; sHn )]

Do the same analysis all the way back to time period one. In so doing, we see that the

hospital in period one wants to maximize

�L(s1)� ws1 + �V 2(s1; sH2 ; sL2 )
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The incremental pro�t function from this equation is

GL1 (w; s1) = [�
L(s1)�ws1+�V 2(s1; sH2 ; sL2 )]� [�L(s1�1)�w�(s1�1)+�V 2(s1�1; sH2 ; sL2 )]

(3)

The superscript, L recognizes that, in period one, we assumed that only low types were

available to the hospital. So, we can restrict attention to just GL1 (i.e., there is no G
H
1 ).

6

At the maximum, sL1 , the following condition must hold:

GL1 (w; s
L
1 ) � 0 � GL1 (w; sL1 + 1) (4)

A close inspection of this condition provides the �rst result.

Proposition 1 A hospital with a n-period time horizon employs at least as many

and often more fellows in period one than a hospital with a one period time horizon (that

is, sL1 � es1).
Proof:

We want to show that sL1 - the maximum number of fellows associated with the n-period

problem �is greater than or equal to es1 �the optimal number of fellows from the one period
problem. Proving this result reduces to checking whether the following two conditions hold:

GL1 (es1 + 1) > G(es1 + 1) (a1)

GL1 (es1) > G(es1) (b1)

To see why, note that the maximization condition of the one period model implies that

6 In the latter parts of the paper, the superscript is dropped to simplify the notation.
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G(es1 + 1) � 0: Condition (a1) states that GL1 (es1 + 1) > G(es1 + 1). Given this inequality,
there are two possible cases.

In case one, GL1 (es1 + 1) > 0. If this is true, equation (4) teaches that es1 cannot be
the maximum value associated with GL1 . Moreover, because G

L
1 is concave, the incremental

pro�t function decreases as s1 increases. Therefore, in case one, concavity implies that the

maximum value, sL1 , must be bigger than es1.
In the second case, GL1 (es1+1) < 0 which means that es1 might be the maximum for the

n-period problem. But to be sure, we need to know that GL1 (es1) > 0. If so, then es1 is the
maximum associated with the n-period problem (this follows from equation (4)). Condition

(b1) states that GL1 (es1) > G(es1). Equation (1) tells us that G(es1) > 0. When condition (b1)
holds, then, it must be true that GL1 (es1) > 0. And so, es1 is the maximum in the n-period

problem. The proof thus reduces to checking for condition (a1) and condition (b1).

Start with condition (a1). We know that V 2(es1+1; sH2 ; sL2 ) = [1� (1�p)es1+1][�H(sH2 )�
wsH2 ] + (1 � p)es1+1[�L(sL2 ) � wsL2 ] + �V 3(�). We also know that V 2(es1; sH2 ; sL2 ) = [1 � (1 �
p)es1 ][�H(sH2 )�wsH2 ] + (1� p)es1 [�L(sL2 )�wsL2 ] + �V 3(�). Because (i) (1� p)es1 > (1� p)es1+1
and (ii) the pro�ts from employing a high type are always greater than the pro�ts from

employing a low type, it follows that V 2(es1 + 1; sH2 ; sL2 ) > V 2(es1; sH2 ; sL2 ):
After collecting terms and rearranging equation (3), we can write GL1 (w; es1 + 1) as

GL1 (w; es1 + 1) = G(w; es1 + 1) + �[V 2(es1 + 1; sH2 ; sL2 )� V 2(es1; sH2 ; sL2 )]
Because the second term is positive, it follows that GL1 (w; es1 + 1) > G(w; es1 + 1). As a
result, condition (a1) holds.

Turn now to condition (b1). Reasoning as above, we know that V 2(es1; sH2 ; sL2 ) = [1 �
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(1 � p)es1 ][�H(sH2 ) � wsH2 ] + (1 � p)es1 [�L(sL2 ) � wsL2 ] + �V 3(�) and V 2(es1 � 1; sH2 ; sL2 ) =
[1 � (1 � p)es1�1][�H(sH2 ) � wsH2 ] + (1 � p)es1�1[�L(sL2 ) � wsL2 ] + �V 3(�). Again, since (i)
(1� p)es1�1 > (1� p)es1 and (ii) employing the high type is always more pro�table, it must
be the case that V 2(es1; sH2 ; sL2 ) > V 2(es1 � 1; sH2 ; sL2 ). Rewrite GL1 (w; es1) as

GL1 (w; es1) = G(w; es1) + �[V 2(es1; sH2 ; sL2 )� V 2(es1 � 1; sH2 ; sL2 )]
The bracketed term must be positive, which implies that GL1 (w; es1) > G(w; es1) �condition
(b1) holds, which completes the proof�

In light of this proposition, we can also derive some results about the quality of medical

research in period one. The value of medical research in period one is �L(s1). This value

is an increasing function of the number of fellows employed. As such, the hospital with

an n-period time horizon provides better research in period one than a hospital with a

one-period time horizon.

The second insight from the benchmark model involves the relationship between the

discount rate and the number of fellows employed. As the discount rate gets bigger (the

hospital weighs future consequences more heavily), the number of fellows it employs in-

creases. Each additional fellow provides a kicker in terms of the likelihood of �nding a

high quality doctor in the next round. The bene�t of this kicker depends on how much the

hospital cares about the future. More formally we have the following proposition.

Proposition 2 When the hospital has an n-period time horizon, there is an increas-

ing relationship between the number of fellows employed and the discount rate.

Proof:

GL1 (w; s
L
1 + 1) is an increasing function of �. As � increases the cuto¤ point (where the
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incremental gain from one more fellow is just positive) increases. This means that for a

su¢ ciently large increase in �, the optimal number of fellows increases�

2.3 The Model with A Valuable Outside Option

Up until this point, we have assumed that senior researcher, no matter their quality, had

an outside option of zero. Why would this be so? In a more realistic setup, the high quality

fellows would have better outside options than the low quality fellows. Imagine that the

doctor can decide to work for the hospital or work in the private sector. In the private

sector, they treat patients. The value of this outside option depends on two factors: (1) the

price for treatment services and (2) the number of patients the doctor can treat. As noted

in the introduction, I focus on two cases. In the �rst subsection, the price for treatment

is independent of the number of fellows pumped by the hospital into the market. In the

second subsection, this assumption is relaxed. The cases correspond to situations where the

research hospital is one of many small producers of medical talent and a situation where

the research hospital is the single producer of medical talent in a particular �eld.

2.3.1 Exogenous Treatment Price

Suppose that the senior researcher can treat patients in the private sector for a price r per

unit. In addition, assume that low quality doctors can treat one patient per period. High

quality doctors can treat � patients per period, where � > 1. I restrict attention to a two

period model.

In period two, the hospital selects the size of its second period fellowship program to
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maximize

�H(s2)� ws2 if a high type is available

�L(s2)� ws2 if a high type is unavailable

Like above, denote the values of s2 that solve these equations as sH2 and s
L
2 respectively. In

this extension, the hospital has to pay the high skill researcher more to forgo their outside

option. In period two, the pro�t from employing a high type and low type respectively are

thus

�H(sH2 )� wsH2 � �r if a high type is available

�L(sL2 )� wsL2 � r if a high type is unavailable

To keep the model interesting, assume that the pro�t from employing a high type in period

two is always higher than the pro�t from employing a low type (the thinking, here, is that

the hospital could always choose a low type if it wanted to).7 In period one, the hospital

selects the size of its �rst period fellowship program to maximize

�L(s1)�ws1 + �
�
[1� (1� p)s1 ](�H(sH2 )� wsH2 � �r) + (1� p)s1(�L(sL2 )� wsL2 � r

�
) (5)

Denote the solution to this equation as s1. It is easy to show the relationship between the

number of fellows employed in the extension and the number of fellows employed in the

benchmark model. The next proposition formalizes that result.

7This assumption holds so long as � is not too large, more precisely that � < 1 + (�H�wsH2 )�(�
L�wsL2 )

r
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Proposition 3 In an environment where the senior researcher�s outside option is

positive, exogenously set, and depends on the fellow�s skill level, the hospital employs the

same number of fellows or fewer in period one than in the n-period model (that is, sL1 � s1).

Proof:

Denote as G1 the incremental pro�t function associated with equation (5). To prove

that sL1 � s1, we need to check for the following two conditions:

GL1 (w; s1 + 1) > G1(w; r; s1 + 1) (a2)

and

GL1 (w; s1) > G1(w; r; s1) (b2)

where s1 is the optimal number of fellows derived from equation (5). Start with condition

(a2). After some rearranging, we can write GL1 (s1 + 1) as
8

GL1 (s1+1) = G1(s1+1)+�
�
((1� (1� p)s1+1)�r + (1� p)s1+1r)� ((1� (1� p)s1)�r + (1� p)s1r)

�

Focus on the bracketed term. Because (i) (1� p)s1 > (1� p)s1+1 and (ii) �r > r, it follows

that the bracketed term must be positive; and so, condition (a2) holds.

Turn now to condition (b2). After similar rearranging as above, we can write GL1 (s1) as

GL1 (s1) = G1(s1)+�
�
((1� (1� p)s1)�r + (1� p)s1r)� ((1� (1� p)s1�1)�r + (1� p)s1�1r)

�

Like above, because (i) (1� p)s1�1 > (1� p)s1 and (ii) �r > r, the bracketed term must be

positive. This means that condition (b2) holds, which completes the proof�

8 In the remainder of the paper, I drop the arguments in G other than the number of fellows.
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The idea is that investing in additional fellows increases the chance that a fellow will

have a high type and thus a lucrative outside option. The gains from training, then, produce

a positive externality, captured by the senior researcher (they get a bigger share of the rents

from the hospital than they previously received). Anticipating the positive externality, the

hospital employs fewer fellows in period one.

2.3.2 Endogenous Treatment Price

Let the demand for medical treatment be linear and equal to A � Br. Suppose that the

only doctors treating patients come out of the fellowship program from the hospital. The

supply of treating physicians in period two is thus determined by (1) the size of the period

one fellowship program and (2) the realization of the random variable, X, which re�ects

the number of high types in the pool. For a given value of s1 and a realization of high types

X (which will be a number between 0 and s1), the supply of treatment is

s1 � 1 if X = 0 or X = 1

(X � 1)�+ [s1 �X] otherwise

To illustrate the mechanics behind this supply schedule, consider the case where the pool

fails to produce a high type (X = 0). In that case, there are s1 � 1 low quality doctors

treating in the private sector and one low quality doctor working for the hospital. Suppose

that X = 1 (the pool produced exactly one high quality type). In that case, the hospital

hires the one high quality type and the remaining s1 � 1 low quality fellows work in the

private sector. Suppose that X=2. In that case, one high quality type works in the hospital;

one high quality type treats � patients in the private sector, the remaining s1�2 low quality

fellows treat one patient that period. Finally, suppose that the pool produces all high types
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(X = s1) There, the hospital hires a high type and the remaining s1 � 1 high types each

treat � > 1 patients. With this supply schedule in hand, we can derive the equilibrium

price by setting supply equal to demand. And so,

r� =
A� (s1 � 1)

B
if X = 0 or X = 1

r� =
A� [(X � 1)�+ [s1 �X]]

B
otherwise

The equilibrium price will depend on demand parameters and three other things. First, it

will depend on s1 �the number of fellows in the program and hence the number of doctors

treating patients in the private sector. Second, it will depend on X �the realized number

of doctors with a high skill level. Third, it will depend on � �the number of treatment

procedures the high-skilled researcher can do. As each of these values increase, there is an

increased supply of treatment and, as a result, a decrease in the equilibrium price.

At the time the hospital decides on the size of its fellowship program, the value of X

is unknown and hence the equilibrium price, r�(X; s1) is also unknown. The hospital will

select s1 to maximize its expected pro�t, which can be written as

�L(s1)� ws1 + �
�
s1
0

�
(1� p)s1 [�L(sL2 )� wsL2 � r(0; s1)] + (6)

�

�
s1
1

�
p(1� p)s1�1[�H(sH2 )� wsH2 � �r(1; s1)] + :::�

�
s1
s1

�
ps1 [�H(sH2 )� wsH2 � �r(s1; s1)]

Denote the solution to this equation as s1.

By increasing the size of the training program, the hospital reduces the equilibrium price

(in expectation). This results in a lower outside option, meaning that the hospital must

pay less to attract the medical talent (whether low or high quality). When the treatment
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price is endogenous, there are thus two bene�ts to increasing pool size: (1) it increases the

chance of getting at least one high quality researcher in the second period and (2) it drives

down the outside option price, increasing the payo¤ whether or not the training program

produces a high type. This, in turn, drives the hospital to increase the size of the pool

relative to the environment where the treatment price is exogenous. More formally, we have

the following �nal result.

Proposition 4 In an environment where the treatment price is endogenously set,

for any value of s1 such that r > maxfrC(s1 � 1); rC(s1)g, the hospital selects at least as

many or more fellows in the �rst period as in the environment where the treatment price is

exogenous. That is, we have s1 � s1.

Proof:

Let G be the incremental pro�t function associated with equation (6). Applying the

method from proposition 1, we need to check two conditions:

G(s1 + 1) > G1(s1 + 1) (a3)

G(s1) > G1(s1) (b3)

Start with condition (a3). Recall that G1(s1 + 1) is de�ned as

G1(s1 + 1) = G1 + �[(1� (1� p)s1+1)[�H(sH2 )� wsH2 � �r] + (1� p)s1+1(�L(sL2 )� wsL2 � r)]

��[(1� (1� p)s1)[�H(sH2 )� wsH2 � �r] + (1� p)s1(�L(sL2 )� wsL2 � r)]
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Likewise, we can de�ne G(s1 + 1) as

G1(s1 + 1) = G1+

�

26664
 
s1+1X
X=1

�
s1+1
X

�
pX(1� p)s1+1�X [�H(sH2 )� wsH2 � �r(X; s1 + 1)

!
+

(1� p)s1+1(�L(sL2 )� wsL2 � r(0; s1 + 1))

37775

� �

26664
 

s1X
X=1

�
s1
X

�
pX(1� p)s1�X [�H(sH2 )� wsH2 � �r(X; s1)

!
+

(1� p)s1(�L(sL2 )� wsL2 � r(0; s1))

37775

Generate a new variable, H(s1 + 1). Do so, by replacing in G1(s1 + 1) all the values of

r(X; s1+1) and r(X; s1) with r(0; s1). Since r(0; s1) is bigger than r(X; s1) and r(X; s1+1)

for all values of X, it follows that H(s1 + 1) < G(s1 + 1) (basically, we have increased the

cost of the outside option in every state of the world). If H(s1 +1) > G1(s1 +1), it follows

that G(s1 + 1) > G1(s1 + 1). Since we replaced all the di¤erent values of r(X; s1) with a

common value, we can rid ourselves of the factorials and write H(s1 + 1) as

H1(s1 + 1) = G1+

�f(1� (1� p)s1+1)[�H(sH2 )� wsH2 � �r(0; s1)]+

(1� p)s1+1(�L(sL2 )� wsL2 � r(0; s1)g

� �f(1� (1� p)s1 [�H(sH2 )� wsH2 � �r(0; s1)]

+ (1� p)s1(�L(sL2 )� wsL2 � r(0; s1))g

Note that H(s1 + 1) is equivalent to G1(s1 + 1), when the outside option price, r equals

50



r(0; s1). Move back now to G1(s1 + 1) and take its derivative with respect to r

@G1(s1 + 1)

@r
= ��

�
(1� (1� p)s1+1)�� (1� p)s1+1 + (1� (1� p)s1)�+ (1� p)s1

�

Rearranging and collecting terms, the derivative reduces to

�
�
(1� p)s1+1(�� 1)� (1� p)s1(�� 1)

�

Because (1 � p)s1 > (1 � p)s1+1 and � > 1, it follows that @G1(s1+1)
@r < 0. If it turns out,

then, that r > r(0; s1), it must be true that H(s1+1) > G1(s1+1) There are two reasons.

As noted, H(s1 + 1) is equivalent to G1(s1 + 1) when G1(s1 + 1) is evaluated at r(0; s1).

Second, G1(s1 + 1) is decreasing in r. Denote the threshold value that makes this true as

rC(s1). Condition (a3) holds whenever r > rC .

Move now to condition (b3). We can write G1(s1) as

G1(s1) = G1+

�f(1� (1� p)s1)[�H(sH2 )� wsH2 � �r] + (1� p)s1(�L(sL2 )� wsL2 � r)]g

� �f(1� (1� p)s1�1)[�H(sH2 )� wsH2 � �r] + (1� p)s1�1(�L(sL2 )� wsL2 � r)g
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Doing the same manipulation as above, compute H(s1) as

H1(s1) = G1+

�f(1� (1� p)s1)[�H(sH2 )� wsH2 � �r(0; s1 � 1)]

+ (1� p)s1(�L(sL2 )� wsL2 � r(0; s1 � 1))g

� �f(1� (1� p)s1�1)[�H(sH2 )� wsH2 � �r(0; s1 � 1)]+

(1� p)s1�1(�L(sL2 )� wsL2 � r(0; s1 � 1))g

Focus again on G1(s1) and take its derivative with respect to r

@G1(s1)

@r
= ��

�
(1� (1� p)s1)�� (1� p)s1 + (1� (1� p)s1�1)�+ (1� p)s1�1

�

Rearranging terms again, we see that this derivative equals

�(
�
1� p)s1(�� 1)� (1� p)s1�1(�� 1)

�

which must be less than zero because (1 � p)s1�1 > (1 � p)s1 and � > 1. Because the

derivative is negative, if r > r(0; s1 � 1), it follows that H(s1) > G1(s1). Denote this

value rCC(s1 � 1). Condition (b3) holds whenever r > rCC . As a result, condition (a3)

and condition (b3) both hold whenever r � maxfrC(s1 � 1); rC(s1)g, which completes the

proof�

2.4 Conclusion

The medical fellowship program is a unique labor market. The hospital uses fellows to

enhance the research of the current senior doctors on its sta¤. At the same time, the
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hospital understands that it is training the next generation of researchers. Yet, because of

constraints on capital, the hospital will not be able to hire all of the fellows as researchers.

Some will go to the private sector. As a result, the hospital will have trouble capturing all

the returns to its investment in the fellowship program. On the one hand, the larger the

program is, the more likely the hospital is to �nd at least one high quality researcher in

the fellow pool, pushing the hospital toward an expansive program. If, however, the high

quality researcher can trade on that quality in the private sector, the hospital will be forced

to pay him more to come on board. This fact reduces the bene�t from having a high skilled

researcher in the pool and limits the incentive to expand the pool. If the hospital�s program

provides the bulk of treating physicians in a speci�c area, this e¤ect is muted. By expanding

the program, the hospital drives down the price received for services in the private sector,

reducing the value of the outside option. This, in turn, limits the amount of surplus the

high quality researcher can extract from the hospital. Interestingly, the more physicians the

hospital supplies to the private sector, the better its research is each period.
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