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1 Abstract

The evolution of urban areas plays a major role in crafting public policy and spurring
investment. Gentrification, involving the “transformation of a working-class or vacant area
of the central city into middle-class residential or commercial use”1 , is inherently inter-
twined with neighborhood ascent and descent. We propose an agent-based model to study
the existence and dynamics of gentrification, centered on a two-dimensional lattice with
wealth and an inherent amenities interacting via particular feedback processes. Various
parameter regimes beget distinct sets of dynamics, including that of wealth hotspots – as
consistent with empirical observation. We then derive a continuum model of partial differ-
ential equations (PDE) from the agent-based model and analyze the instability regime of
the continuum system; the resultant regime agrees with observations of simulation of the
discrete model.

2 Introduction

Gentrification is well-documented as a major factor in modern urban development. This
residential phenomenon is associated with major increases in housing prices and upgrades of
local amenities, leading to an emigration of low-income residents and an influx of wealthier
community members. This wealthier contingent is generally whiter, more educated, and
younger compared to the low-income residents they replace2.

While the existence of gentrification is a hot topic in political circles, its underlying
causes and effects are wildly disputed. An inability to study the problem experimentally
and the potential for a wide variety of motivating factors complicate any deep under-
standing of the issue. Hamnett (1991) suggested three main drivers for gentrification –
the existence of middle-class potential gentrifiers, an availability of urban housing, and a
tendency among these potential gentrifiers to prefer to live in an urban setting3. Other
proposed drivers of gentrification include falling crime rates in inner city neighborhoods4,5,
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demanding work schedules and lack of free time among the young middle class6, proximity
to social amenities, such as coffee shops, beer gardens, bike shares, gyms and restaurants7,
and increased racial tolerance among Millennials8.

Further obfuscating an empirical understanding of gentrification is the potential pres-
ence of inherently chaotic dynamics9–11. Despite this, the majority of theoretical analysis
of gentrification has focused on binary divisions – blacks and whites, flows of capital and
flows of people, macro-forces of capital accumulation – concentrating on subsets of the
potential dynamics involved in gentrification2,12.

Typically, modeling gentrification involves agent-based models that allow virtual simu-
lation in lieu of experiment; the seminal ”Schelling model” of residential segregation utilized
an agent-based model inhabiting an 8x8 lattice with two classes of agents to represent an
arbitrary binary social division13,14. The Schelling model found that segregation was ram-
pant even in situations where agents were willing to inhabit neighborhoods that consisted
of up to two thirds of the other group13,14.

Extensions of the Schelling model to examine a variety of issues related to residential
segregation and gentrification focused on similar agent-based approaches15–18. However,
the discrete nature of the agent-based model prevents the implementation of various ana-
lytical techniques to better understand such a system.

Hasan and Rodriguez (under review) proposed a model of gentrification using parabolic
PDEs19. Their work, centered on the assumption that wealth diffuses but is also advected
by an amenity-driven velocity field, showed that relevant parameter regimes exist that
lead to wealth hotspots. This model, however, suffers from the lack of a derivation from
underlying first principles.

PDEs are a valuable tool to model the spatiotemporal dynamics of ecological and
sociological systems20,21, and the derivation of PDE systems from agent-based models has
proven to be effective in a range of mathematical applications, particularly in mathematical
biology22–24. Short et. all (2008) considered agent-based and continuum (PDE) models of
criminal behavior and showed that the two systems were in agreement in the limit of large
system sizes25.

In this paper we use a similar approach to model gentrification, starting from first princi-
ples. We begin with an agent based model based on basic assumptions about gentrification
and show that this agent-based model exhibits qualitative similarity to the dynamics of
gentrification seen in actual cities. We then derive a system of PDE from this agent-based
model, and show that the resultant reaction-advection-diffusion system exhibits qualita-
tive similarity to our discrete model for relevant values of our parameters. Thus, analysis
of our continuum model is an effective tool to examine the dynamics of the agent-based
model. We examine the existence of hotspots and the parameter regimes under which they
occur, to be able to decompose the variety of factors involved in the incipient stages of
gentrification.
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3 Discrete Model

This section is devoted to the introduction of a discrete model for the dynamics of wealth
in a given community — measured in dollars as incomes or net worth — and an intrinsic,
dimensionless amenities, meant to encompass the variety of spatial factors involved in
gentrification – from proximity to work to the density of coffee shops and restaurants6,7.

We consider this community to be a two-dimensional lattice; for simplicity’s sake, we
consider a rectangular grid lattice with constant lattice spacing ` and time step δt, with
each lattice site s having a given wealth Ws(t) and amenities As(t).

If unmaintained, we expect amenities to decay in time with decay rate ω. However,
attractive features will increase proportionally to the wealth at a given site, due to in-
stitutional factors such as increases in property taxes and effectiveness of home owners
associations. Newer, wealthier residents may also demand improved or different goods and
services; prompting an influx of new retailers – who expand, provided residents have the
capital to sustain them26,27. We thus introduce φ as a parameter measuring the rate of
increase in amenities, per dollar, per unit time; as a result, we model this growth and decay
by

As(t+ δt) = As(t)(1− ωδt) + φWs(t)δt. (1)

Certain sources of investment – in particular, those originating in the private sector – are
highly sensitive to the likelihood of return on investment and thus on the level of current
wealth. Other sources, however, are more stable; public investment in infrastructure –
such as schools, parks, highways, and rail transit – play a role in the gentrification of
neighborhoods2,28. We model this stable, external investment by allowing our amenities
to grow at a constant rate Γ > 0.

As a phenomenon, gentrification does not occur at isolated sites; rather, a wealth
of literature shows that neighborhoods are often segregated by socio-economic class29–32.
Neighborhood amenities not only affect the site they are located at but adjacent sites as
well; we model this association by modifying our update rule to allow As to spread to its
neighbors. Specifically, we introduce a parameter η that varies between zero and unity
that measures the relative strength of neighborhood effects and alter our update rule:

As(t+ δt) =

[
(1− η)As(t) +

η

z

∑
s′∼s

As′(t)

]
(1− ωδt) + φWs(t)δt+ Γδt (2)

where z is the coordination number – denoting the number of sites adjacent to s – and the
sum is taken over all sites s′ that neighbor s.

We devise a similar update rule to model wealth, beginning with a stipulation similar
in form to (1). We expect wealth to decay in time at the same rate as amenities, and
reinvestment to occur proportionally to the wealth at that site. In lieu of a constant of
proportionality, we consider a proportionality function r(Ws;As):

3



Ws(t+ δt) = Ws(t)(1− ωδt) + r(Ws;As)Ws(t)δt. (3)

Different forms of r(Ws;As) may be adopted to better model particular municipalities
or underlying factors. As examples one may consider

r(Ws) = r̃

(
1− Ws

M

)
(4)

or

r(Ws;As) = r̃

(
1− Ws

M

)(
Ws

M
−As

)
(5)

where r̃ and M parameters.
We implement neighborhood effects in a similar manner as we have done for the ameni-

ties. Research has shown that property values, in particular, rise in accordance to their
proximity to quality schools and parks33,34 and highways35. We argue that neighborhood
effects are skewed towards sites with amenities As that are high relative to all neighbors
of a given site s′.

Our update rule for wealth is thus:

Ws(t+ δt) =

[
(1− η)Ws(t) + ηAs(t)

∑
s′∼s

Ws′(t)∑
s′′∼s′ As′′(t)

]
(1− ωδt) + r(Ws, As)Ws(t)δt.

(6)

3.1 Logistic Growth

From this point, we consider a logistic rate of reinvestment of the form:

r(Ws) = r̃

(
1− Ws

M

)
(7)

with r̃ a constant growth rate and M a carrying capacity. This choice of reinvestment rate
is motivated by our expectation of two distinct regimes:

1. Direct, external sources of investment — such as government funding and philan-
thropy — are targeted towards areas of lower wealth. These sources are highly mo-
tivated by return on investment; if low-wealth areas are seen to improve with direct
investment, investment will increase up to a certain point.

2. Once a certain wealth threshold has been achieved, these external sources redirect
their focus towards different areas. In fact, those same government entities that
previously served as a source of wealth may now serve as a sink through various
agents, taxation chiefly among them.
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Table 1: Discrete Parameters

Parameter Interpretation

ω Wealth and amenities decay rate
δt Time step size
φ Rate of in amenities per dollar
η Power of neighborhood effects (between zero and unity)
Γ Amenities growth rate
r Wealth growth rate
M Wealth regulating factor

As such, we have the following update rule, where we have dropped the tilde:

Ws(t+ δt) =

[
(1− η)Ws(t) + ηAs(t)

∑
s′∼s

Ws′∑
s′′∼s′ As′′

]
(1− ωδt) (8)

+ r

(
1− Ws(t)

M

)
Ws(t)δt.

Equations (2) and (8) form the main components of our discrete system with logistic
rate of reinvestment. We employ no flux boundary conditions, so that no wealth or ameni-
ties is lost through the boundaries; all sources and sinks are contained within the governing
equations. The relevant parameters are summarized in Table 1.

3.1.1 Discrete Solutions

With this system, we have two spatially homogeneous solutions:

W s

As

 =

0

Γ
ω

 (9)

and W s

As

 =

 M
[
1− ω

r

]
Mφ
ω

[
1− ω

r

]
+ Γ

ω


Note that if ω

r = 1 our two solutions collide, whereas they are otherwise distinct.
As such, we can predict a transcritical bifurcation at this point, pending the stability
of these spatially homogeneous solutions. In order to determine whether these spatially
homogeneous solutions are stable, and to analyze the potential bifurcation about the point
ω
r = 1 we run simulations on this system for various parameter regimes as detailed below.
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3.2 Discrete Simulations

Simulations of our discrete system (2) and (8) are run in MATLAB on an 100x100 rectan-
gular lattice with spacing ` = 1 and time step δt = 0.01 with periodic boundary conditions.
By varying our parameters, we observe three distinct sets of dynamics:

1. Homogeneous destitution. In this case, both the amenities and wealth decay through-
out, and the entire domain quickly approaches our first spatially homogeneous solu-
tion given in (9). In particular, we observe homogeneous destitution persist in the
regime ω

r ≥ 1, considering only positive values of these parameters.

2. Homogeneous wealth. Here, amenities and wealth quickly converge to the second
solution given in (9). This regime materializes for 0 < ω

r < 1; while the homogeneous
wealth solution exists for ω

r > 1, it takes on negative values in this regime and
appears to be unstable to small perturbations; simulations with ω

r > 1 and with
the homogeneous wealth solution as initial condition eventually diverge as numerical
errors accumulate.

3. Wealth hotspots. In this regime, spatial homogeneity is not achieved in reasonable
time scales. Small pockets of wealth and amenities are surrounded by large areas
of destitution. These hotspots form early and quickly become circular. However,
achieving temporal stability can take significant time, with hotspots deforming and
merging in the process before returning to their circular state. The parameter regime
leading to hotspots appears to be 1−ε < ω

r < 1, where ε > 0 is small and may depend
on other parameters or initial conditions.

The time evolution for one set of parameters in each respective regime is displayed in
Figure (1).
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Figure 1: Output of the discrete simulation for η = 0.01, Γ = 0 in the three distinct
parameter regimes. Left, homogeneous destitution, r

ω = 0.9. Center, hotspots, r
ω = 1.1.

Right, homogeneous wealth, rω = 1.3.
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4 Continuum Limit

In order to examine the dynamics of the system in greater detail, we derive a continuum
system from the agent-based model. We begin by rewriting equation (2) as

As(t+ δt) =

[
As(t) +

η`2

z
∆As(t)

]
(1− ωδt) + φWs(t)δt+ Γδt. (10)

where ∆As(t) is the discrete spatial Laplacian:

∆As(t) =

(∑
s′∼s

As′(t)− zAs(t)

)
/`2. (11)

We now subtract As(t) from both sides, convert Ws(t) into a wealth density W (t) by
dividing by `2, and divide through by δt. Taking limits as δt, `2 → 0, and requiring that
D = `2/δt and ϕ = `2φ remain constant, we arrive at our continuous amenities equation:

∂A

∂t
=
ηD

z
∆A− ωA+ ϕW + Γ. (12)

By performing a series of similar – if slightly more involved – operations, we arrive at
our continuous equation for the wealth density (see appendix for details):

∂W

∂t
=
ηD

z

[
∆W − 2∇ · (W∇ logA)

]
+ r

(
1− W

M

)
W − ωW. (13)

Equations (12) and (13) combine to form a system that serves as a continuous corollary
to the agent-based model; they are of the general form of a reaction-diffusion system, sys-
tems that often beget pattern formation36. The amenities diffuse spatially while decaying
in time; simultaneously, higher levels of wealth and external sources lead to investment in
the amenities of a community. Wealth also diffuses spatially and decays in time; wealth
reinvestment occurs if the level of wealth is below a certain carrying capacity, that, if
exceeded, leads to an additional sink of wealth.

4.1 Dimensionless Equations

To better understand the intrinsic properties of the system, we non-dimensionalize using
the characteristic time scale τ ≡ 1/ω and length scale `c ≡

√
D/ω, arriving at the following

scaled variables:

Ã =
ω

ϕM
A, W̃ =

1

M
W, x̃ =

√
z

`c
x, t̃ = ωt. (14)

Our dimensionless equations are thus

∂W

∂t
= η [∆W − 2∇ · (W∇ logA)] + ρ(1−W )W −W, (15)

∂A

∂t
= η∆A−A+W + γ,

8



where ρ ≡ r/ω and γ ≡ Γ/(ϕM).
This non-dimensionalization has reduced our parameter space from the original eight

dimensional parameters to three non-dimensional, and our three dimensionless parameters
have clear interpretations in terms of our dimensional variables. Our originally dimension-
less parameter η measures the strength of neighborhood or diffusive effects in the discrete
and continuous simulations, respectively. The parameter ρ ≡ r

ω measures the relative rates
of investment and decay; ρ > 1 implies excess wealth should be available in the domain
while ρ < 1 suggests decay may overwhelm investment. Finally, the parameter γ is a
external rate of investment in amenities that is spatially and temporally homogeneous.

In this dimensionless system, our spatially homogeneous solutions are (W,A) = (0, γ)
(homogeneous destitution) and (W,A) = (1− 1

ρ , 1−
1
ρ +γ) (homogeneous wealth). In terms

of our dimensional parameters, these solutions are

W
A

 =

 0

Γ
φM

 W
A

 =

 1− ω
r

1− ω
r + Γ

φM

 (16)

Note the resemblance between the solutions of the continuum equations above and the
equilibrium solutions of the discrete system in (9). Again, depending on the stability of
spatially homogeneous solutions about ρ ≡ r

ω = 1, we can predict a transcritical bifurcation
at this point. More importantly, the resemblance between these equilibrium solutions
suggests that results of analysis of the continuum model will carry over to the agent-based
model, particularly as it pertains to analysis of the stability of these solutions.

4.2 Numerical Simulation

Numerical simulation is performed via the finite element method using a triangular mesh.
Equations are solved on a grid with Neumann (no flux) boundary conditions.

Simulations of our continuum system exhibit striking similarity to their counterpart in
the discrete system. In particular, systems with ρ < 1 exhibit decay to the homogeneous
destitution solution, while taking ρ > 1 will either lead to hotspots or homogeneous wealth
for ρ sufficiently close to unity and larger ρ respectively. These three regimes correlate
with the dynamics of the discrete system, both in terms of the observed dynamics and the
parameters that give rise to them.

Spatial dynamics for various sets of parameters corresponding to those used in the
discrete simulation can be seen in figure (2). The visible similarity indicates that our
continuum model is an accurate approximation of our discrete equations for small time
steps and spacing. Encouraged by the ability of our continuum system to predict results
of our discrete system, we turn to analysis of our continuum equations to attempt to
distinguish systems that exhibit hotspots from those that do.
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Figure 2: Output of the continuum simulation for η = 0.01, γ = 0. (a) Homogeneous
destitution, ρ = 0.9. (b) Hotspots, ρ = 1.1. (c) Homogeneous wealth, ρ = 1.3.
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4.3 Linear Order Analysis

To better understand the behavior of our system surrounding these equilibrium solutions,
we consider values of our variables slightly perturbed from their steady states. We start
with our homogeneous wealth solution (W,A) = (1− 1

ρ , 1−
1
ρ+γ) by analyzing perturbations

of the form

A(x, t) = 1− 1

ρ
+ γ + δAe

σteik·x,

W (x, t) = 1− 1

ρ
+ δW e

σteik·x,

By inserting these perturbations into our dynamical equations (15) and discarding nonlin-
ear terms, we arrive at the following eigenvalue equation:

−η |k|2 − ρ+ 1 2η|k|2(1−ρ)
1−ρ(γ+1)

1 −η |k|2 − 1

δW
δA

 = σ

δW
δA

 (17)

For our system, linear order instabilities exist if the determinant of this matrix is negative:

η2 |k|4 + η |k|2
[
ρ+

2− 2ρ

γρ+ ρ− 1

]
+ ρ− 1 < 0 (18)

This is true if our amenities reinvestment γ lies within the range

1

ρ
− 1 < γ <

−(ρ− 5)(ρ− 2)ρ− 4
√

(ρ− 1)3 + 4

(ρ− 2)2ρ
(19)

provided ρ > 1 or, for 0 < ρ < 1

γ 6= 1

ρ
− 1 (20)

If we additionally require that our amenities reinvestment γ be nonnegative, we find
that the inequality (19) is only satisfied for the bounded band given by 1 < ρ < 4− 2

√
2.

Thus, instabilities in our homogeneous wealth solution may exist for all reinvestments in
the range 0 < ρ < 4 − 2

√
2; in particular, this instability holds for almost all γ ≥ 0 if

0 < ρ < 1. This result reinforces the value of our model as the homogeneous wealth
solution (W,A) = (1− 1

ρ , 1−
1
ρ + γ), which implies uniform, negative wealth for 0 < ρ < 1,

is never attracting.
To gain a complete picture of the stability of solutions, we perform a similar linear

stability analysis on the solution (W,A) = (0, γ). We arrive at the following matrix
equation:
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Figure 3: Instability region of the homogeneous wealth solution. Values of the reinvestment
parameters γ and ρ lying in the shading region beget linearly unstable modes.

−η|k|2 + ρ− 1 0

1 −η|k|2 − 1

δW
δA

 = σ

δW
δA

 (21)

From this system, we find that our (0, γ) solution exhibits instabilities only if

ρ > 1 (22)

If this holds, unstable modes are given by all wavenumbers such that

|k|2 < ρ− 1

η
(23)

Taken together, equations (19) and (22) allow us to paint a broad picture of hotspots
dependent on our reinvestment parameters ρ and γ. For ρ < 1, there is insufficient invest-
ment in the neighborhood for anyone to maintain a modicum of wealth, and both wealth
and amenities decay in time until the neighborhood is destitute in wealth if not amenities.

Two situations arise in the regime 1 < ρ < 4 − 2
√

2, dependent on our amenities
reinvestment γ. For sufficiently small γ – as defined in (19) – some families are able to
retain their wealth; however, reinvestment is insufficient to allow wealth to prevail domain-
wide and wealth is concentrated in hotspots. On the other hand, larger values of γ allow
homogeneous wealth throughout for all ρ > 1.

In the regime ρ > 4− 2
√

2, wealth reinvestment is sufficient to maintain wealth; this is
independent of amenity reinvestment provided amenity reinvestment is non-negative.
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Figure 4: Maximum eigenvalue is plotted for a set of parameters η = 0.1, ρ = 1.1, γ = 0.
The maximal wavenumber |k|∗ sets the final size of hot spots.
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Figure 5: Transcritical bifurcation in amenities, shown here for γ = 0. Red and blue
lines represent homogenous destitution and homogeneous wealth, respectively; solid and
dotted lines denote regions of stable and unstable solutions, respectively. As γ increases,
the instabilities in the homogeneous wealth solution disappear, with the hotspot region
1 < ρ < 4− 2

√
2 collapsing inward.
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5 Conclusion

Starting from basic sociological assumptions surrounding the spread of gentrification, we
derive an agent based model of this phenomenon. Namely, we consider a system wherein
wealth in a community begets an increase in community investment, and vice versa. To
this end we define the amenities of a community to be a measure of the results of this
investment; these amenities may include various factors such as coffee shops, parks, tapas
restaurants, and local festivals and events.

We argue that these amenities both diffuse spatially over time and decay temporally if
not maintained; reinvestments to maintain these amenities are proportional to the amount
of wealth at a given time. In particular, we focused on a logistic rate of reinvestment;
future analyses may consider the effects of different such rates. Similarly, wealth travels
up amenities gradients and concentrates in areas of high amenities. From this discrete
empirical model, justified on sociological observations, we derive a continuous model; the
resultant system of partial differential equations is of the general form of a reaction-diffusion
system. For corresponding parameters we observe similar dynamics in the discrete and
continuous model, and the homogeneous solutions of both discrete and continuum models
are clearly alike, in their respective parameter spaces.

In both discrete and continuous models, the interplay between wealth and amenities
creates a feedback loop that, for certain parameter regimes, leads to hotspot formation
evocative of those observed in true gentrified neighborhoods. For the logistic rate of rein-
vestment under consideration, this regime is 1 < r

ω < 4− 2
√

2 under the assumption that
there is no wealth-independent reinvestment in amenities. By recognizing the term r

ω as
the ratio of investment and decay rates, we are able to qualitatively interpret the relevant
regimes of this ratio. For 0 < r

ω < 1, decay dominates reinvestment throughout our do-

main and wealth vanishes throughout for large time scales. For r
ω > 4−2

√
2, reinvestment

sufficiently overcomes decay so that wealth approaches the solution 1 − ω
r in a spatially

homogenous fashion. The regime 1 < r
ω < 4− 2

√
2 begets hotspot formation with the size

of hotspots determined by something .
We have succeeded in designing a model that exhibits qualitative similarities with

empirical observations; areas of future work may involve analysis of the efficacy of our
model in mirroring actual gentrification. The difficulty in devising effective measures and
compiling empirical data sets is an immediate obstacle to accomplishing this; this goal is
additionally complicated by the wide variety of underlying factors of gentrification. We
have unified these in the ”amenities” metric but it is unclear what exactly these factors
are and how significant of a role each plays in combining to form amenities.

Despite this, a refined model of gentrification – tuned to empirical data – can be an
invaluable tool in both the urban planning of the public sector and the expansion strategies
of private entities. The ability to accurately predict the results of changes in investment and
policy has broad implications and would allow for more efficient distributions of resources.
This model serves as a basis to accomplish this task.
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Splitting amenities into public policy driven amenities and private investment driven
amenities is another avenue worth exploring; the contrast in effective time scales between
the two make this a natural division. The former would act on longer time scales and
concentrate mainly on areas of low wealth while the latter would play out in shorter periods
of time and invest mainly in areas where high returns on investment would be expected.

Another natural area of further inquiry would be to analyze different forms of the rate
of reinvestment r(Ws, As). Modifications of r(Ws, As) would lead to different equilibrium
solutions and sets of dynamics and could better factor in the myriad of causes of gentrifi-
cation in actual cities, as well as the unique domains of particular urban areas.

In summary, our model of gentrification effectively models the creation of wealth
hotspots seen in actual cities. Our ideas can serve as a basis for further inquiry into
the factors leading to gentrification, which continue to be elusive. Better understanding
of these factors can shape public policy to better serve those effected by this sociological
phenomenon.
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