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ABSTRACT
Huina Li: Modeling Multiphase Flow in Porous Medium Systems at Multiple

Scales
(Under the Direction of Cass T. Miller)

Problems involving multiphase flow and transport in porous media arise in

a number of scientific and engineering applications including oil reservoir engi-

neering and groundwater remediation. The inherent complexity of multiphase

systems and the marked heterogeneity over multiple spatial scales result in sig-

nificant challenges to the fundamental understanding of the multiphase flow and

transport processes. For many decades, multiphase flow has been modeled using

the traditional approach based on mass conservation and the generalized Darcy’s

law. The traditional approach, however, is subject to model errors and numerical

errors. The focus of this dissertation research is to improve models of flow and

transport in porous medium systems using numerical modeling approaches for a

range of scales including pore scale and continuum scale.

A major part of this research examines the deficiency of Darcy’s relationship

and its extension to multiphase flow using the lattice-Boltzmann (LB) approach.

This study investigates the conventional relative permeability saturation rela-

tion for systems consisting of water and non-aqueous phase liquid (NAPL). In

addition, it also examines the generalized formulation accounting for the inter-

facial momentum transfer and lends additional support to the hypothesis that

interfacial area is a critical variable in multiphase porous medium systems.

Another major part of the research involves developing efficient and robust

numerical techniques to improve the solution approach for existing models. In

particular, a local discontinuous Galerkin (LDG) spatial discretization method

is developed in combination with a robust and established variable order, vari-

able step-size temporal integration approach to solve Richards’ equation (RE).
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Effective spatial adaptive LDG methods are also developed to further enhance

the efficiency. The resulting simulator with both spatial and temporal adaption

has demonstrated good performance for a series of problems modeled by RE.
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Chapter 1

Introduction

1.1 Problem Description

Groundwater, and thus the entire subsurface hydrosystem, plays an essential

role in human life. In the United States, more than 50 percent of the total popu-

lation relies on groundwater as its drinking water source [248], and groundwater

contributed 20 percent of the total water consumption for the last five decades

[177]. Unfortunately, recent studies have shown that the quality of groundwater

continues to be threatened by many sources of contamination. To date, over

200 organic and inorganic chemicals in excessive amounts, including high lev-

els of dense non-aqueous-phase liquids (DNAPLs) and radioactive isotopes, have

been identified in groundwater supply systems [248]. The accumulation of con-

taminants in subsurface systems poses serious environmental and human health

problems. Prevention of the degradation of groundwater quality and remediation

of contaminated subsurface systems are significant challenges faced by the water

resources community. While there has been a great deal of effort to develop

remediation technologies, remediation methods still remain extremely expensive

and unpredictable in their success. The design of successful subsurface reme-

diation technologies requires a thorough understanding and accurate prediction

of the migration and distribution of contaminants. However, our understanding



of fluid flow and contaminant transport in subsurface systems has not advanced

sufficiently enough that most of the major aspects of the fate and transport of

contaminants in subsurface systems are well understood, especially when sub-

jected to remediation efforts.

The difficulties that prevent a thorough understanding of subsurface systems

are due to their intrinsic complexity and can be summarized in the following

aspects.

Multiphase, multispecies systems. Most subsurface systems have multiple

fluid phases and multiple chemical species. The system intricacies due to the

presence of juxtaposed phases include the existence and dynamics of interfaces

between fluid phases, fluid dynamics caused by complicated geometry of pores,

pendular rings of a wetting phase, ganglia of the non-wetting phase, and the

behavior of films [140]. The species, on the other hand, interact with one another

through, e.g., chemical and/or biological reactions, dissolution, volatilization,

adsorption and desorption. Moreover, each component can interact with other

systems, such as surface water systems, through physical boundaries [262].

Issue of scale. Understanding subsurface systems involves understanding var-

ious physical, chemical, and biological processes in a wide range of temporal and

spatial scales. The characteristic length of both of these scales can vary by or-

ders of magnitude. Dimensions of the temporal scale range from ten-thousand

years in risk-analysis for long-term isolation of radioactive waste [4] – through

year-by-year, seasonal, monthly, weekly, daily, and hourly scales for field systems

– to minutes and even seconds in certain laboratory experiments [262]. The

spatial scales range from nanometers when considering interactions between wa-

ter molecules and dissolved chemicals to hundreds of kilometers when assessing

and managing regional groundwater systems. From a groundwater hydrology

perspective, a commonly used hierarchy to describe the spatial scales includes

2



microscopic pore scale (10−5 – 10−3 m), macroscopic continuum scale (10−2 –

100 m) and field scale (101 – 104 m) [160, 60, 239]. Measurements of constitutive

variables on one scale may appear to have little relevance to other scales [91];

information obtained at scales for which processes are mathematically described

has to be incorporated into larger scale formulations amenable to field study.

Heterogeneity. Formation material properties of subsurface systems usually

exhibit a high degree of spatial variability at all spatial scales. The intrinsic

heterogeneity effects flow and transport processes in the subsurface, yet these

processes are extremely difficult to characterize. A good example is that the

intrinsic permeability of an aquifer can vary by orders of magnitude even within

a given stratigraphic unit. However, monitoring wells can only be placed at a few

locations to obtain the permeability data [303]. The combination of significant

spatial heterogeneity with a relatively small number of observations results in

uncertainty in obtaining sufficient information about subsurface systems and

uncertainty in predicting the flow and transport processes in these systems. As

a consequence, stochastic concepts have to be used to understand such systems

[219].

1.2 Modeling Flow and Transport in Porous Me-

dia - Scale Consideration

As groundwater contamination threats continue, increased emphasis is being

placed on understanding the various processes operating in subsurface systems.

The basic approaches to advance the understanding of subsurface systems in-

clude theoretical development, experimental investigations, and computational

modeling. Theoretical development provides a framework within which various

processes in the subsurface are described. The models that are intended for

practical computations necessitate understanding of theories in the context of

3



numerical approximations over a range of scales. Observations or experiments

are necessary in order to test the range of validity of theories and the accuracy

of computational approaches [264]. The immaturity of existing theories [147],

the high cost associated with the field characterization and experiments, and the

dramatic evolution of computer capabilities nowadays combine to make compu-

tational modeling approach essential. Mathematical modeling approaches have

provided powerful and indispensable tools to advance fundamental understand-

ing, predict the movement and fate of contaminants, and optimize the design of

the remediation processes. The success of the majority of groundwater applica-

tions, including site investigation and remediation processes, relies upon models

that accurately represent the real system of concern and can be efficiently solved.

A groundwater model can be defined as a simplified version of a real-world

groundwater system that approximately simulates the relevant excitation-response

relations of the real-world system [34]. Due to the fact that a wide range of

spatial scales are of concern, the groundwater model components are consid-

ered at different scales that cover microscopic pore scale, macroscopic continuum

scale, and field scale. Current modeling approaches are scale-dependent and at

each scale have their importance and limitations. Evolving the understanding of

porous medium systems involves advancing these modeling approaches at each

scale. Figure 1.1 illustrates a scale hierarchy associated with flow and transport

problems in porous media and the corresponding modeling components at these

scales. Brief descriptions of the groundwater models used at different scales are

provided next.

1.2.1 Microscopic pore scale

Porous media in a natural system are highly heterogeneous with a complex

pore structure. The pore-space provides the operating environment for the phys-

ical, chemical and biological processes that occur in porous media; the complex

topology of the pore space results in complex moving patterns of fluids, which

4



Figure 1.1: Hierarchical scales for multiphase systems in porous media. (a)
DNAPL/water dissolution and entrapment at the microscale; (b) DNAPL mi-
gration pattern at macroscale; (c) A field-scale view, photo taken by Douglas
Peebles [151].

are also influenced by fluid-solid interactions due to wettability, sorption, des-

orption and reaction, etc. In a multiphase system where, for instance, DNAPL

and water are present, each phase exists at its own distinct pressure, with sur-

face tensions along fluid-fluid interfaces supporting pressure differences between

the phases [60]. The processes in such systems are further complicated by fluid-

fluid interactions through fluid-fluid interfaces due to density difference, viscosity

difference and interphase mass transfer.

These mechanisms that dominate the distribution and movement of the flu-
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ids exist at the pore scale; thus the complex flow and transport processes in

a porous medium need to be resolved at the pore scale, where detailed infor-

mation, such as the pore morphology and topology, is available. This makes

the pore-scale modeling approach fundamental and essential. Pore-scale mod-

eling offers an important tool to understand pore-scale flow and transport pro-

cesses that influence the macroscopic behavior. In the last decade, the pore-scale

modeling approach has been vigorously studied and widely implemented in, but

not restricted to, groundwater hydrology and petroleum engineering and has

demonstrated its capability to simulate complex behavior of multiphase systems

and provide insight into microscopic mechanisms of processes in porous media

[209, 252, 159, 200, 68, 241, 187].

In general, pore-scale modeling include two major parts, the description of

the porous medium morphology and topology and the solution algorithm [277].

While vigorous work has been done to evolve the characterization of the pore

structure [2, 125, 196, 214, 43, 44, 127, 3], increasing emphasis has been placed on

developing accurate and efficient solution algorithms. These include pore network

modeling approaches and lattice Boltzmann approaches. These methods have

shown their capability to simulate complex behavior of multiphase systems, for

example, hysteretic saturation-pressure relations [238, 241] and fingering [187].

However, these pore scale modeling approaches are computationally intensive

and are not feasible to be used to simulate a system with a characteristic length

on the order of meters or longer. Therefore, consistent and appropriate upscal-

ing approaches should be implemented to manifest the microscopic processes at

larger scales.

1.2.2 Macroscopic continuum scale

The traditional modeling approach visualizes the porous medium and the

fluid phases as continua at a macroscopic level based on the concept of a rep-

resentative elementary volume (REV) [e.g., 60, 164, 219]. Continuum variables,
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such as porosity and fluid saturation, are defined as averages of microscopic

variables over an REV. By averaging, the actual pore structure of porous me-

dia is ignored and the intricate variations due to the microscopic heterogeneity

are smoothed out. In applying the continuum approach to account for exper-

imentally observed phenomena, macroscopic variables and coefficients, such as

porosity and permeability, are further introduced.

Continuum modeling approaches are based on mass conservation laws as gov-

erning equations, and Darcy’s law used as an approximation of momentum con-

servation. The additional information used to close the conservation equations

is known as constitutive relations. These relations serve as a passage to manifest

the microscopic mechanism at a macroscopic scale. A detailed introduction of

this approach is provided in §1.3.

1.2.3 Field scale

The field scale is the scale of practical concern for hydrologists and petroleum

engineers in real-world applications, such as groundwater site characterization,

pollution prevention, and monitoring network and remediation design. The tradi-

tional modeling approach at this scale is to apply the standard continuum model

directly at this scale, assuming the applicability of models for a homogeneous

system to a heterogeneous system. This approach, usually based on inconsistent

and over-simplified assumptions, is subject to significant errors [219, 91, 92].

Although subsurface systems are intrinsically deterministic, the physical and

chemical parameters that characterize them vary substantially in space and time

[219, 93, 133]. The impossibility of obtaining complete knowledge due to the

complexity of the underlying mechanisms leads to uncertainty in estimating or

predicting the flow and transport at the field scale. As a result, natural mul-

tiphase porous medium systems can be realistically modeled only by means of

stochastic concepts and methods [298, 132, 219, 69, 133]. The existing stochas-

tic models [72, 73, 178, 173, 71, 70, 303] are mostly based on deterministic

7



continuum models and consequently are subjected to any error existing in the

underlying deterministic models. Therefore, an evolution of the models at the

field scale involves advancing the traditional deterministic models and advancing

the stochastic approaches.

1.3 Modeling Flow and Transport in Porous Me-

dia - Standard Modeling Approach

Standard models currently used for practical applications are based on gov-

erning equations written at the porous medium continuum scale. A traditional

mechanistic modeling process is shown in Figure 1.2. The three basic steps

[34, 160] to construct a mathematically based mechanistic model are explained

as follows:

• Conceptual model. A conceptual model is a high-level, conceptual descrip-

tion of the system involving expert insight to identify the different processes

and mechanisms. The degree of abstraction depends upon the purpose of

constructing a model for a specific problem. The objective of this step is

to provide the simplest possible description of a system necessary for the

intended use.

• Mathematical model. A mathematical model transfers a conceptual model

to a mathematical formulation using conservation laws for mass, momentum

and energy and system-dependent closure relations. Appropriate variables

to be used in a particular problem must be selected based upon the available

data. The number of equations included in the model must be equal to the

number of the dependent variables. The mathematical model contains the

same information as the conceptual one, but expressed as a set of equations

amenable to analytical or numerical solutions [34].

• Numerical model. Although an ideal solution for a mathematical model is

8



Closure Relations

Mathematical Model

Numerical Model Estimated Parameters

Objective

cost

Simulation ProgramExperimental Observation

Analytical Solution

prediction
design
decision

error

estimate
parameter

Problem Description

validation
model

Model Application

Conceptual Model

Convervation Law

Figure 1.2: Modeling process.

to derive an analytical solution, the complexity of most problems of practi-

cal interest requires a solution approach based upon approximate numerical

methods. A numerical model transforms a mathematical model to an ap-

proximate discrete solution, which is implemented in a computer code.

The difference between the model output and “true” values in the real world

can be reflected in two aspects, the model error and the numerical error [122].

The model error is known as the disagreement between a real system and the

mathematical simplification or idealization. The numerical error measures the

difference between the model output and the true mathematical solution to the

model, which is arrived at using numerical approximations. Improving modeling

capabilities involves minimizing both the model error and the numerical error.

The following summarizes the traditional modeling approach from these two
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aspects.

1.3.1 Mathematical formulation of the traditional approach

1.3.1.1 Mathematical framework

The traditional approaches to model flow and transport in porous media are

based on continuum theory, which consists of two basis elements, the fundamental

conservation law and the functional forms of closure relations (equations of state

(EOS) and other constitutive relations).

The governing equations for multiphase flow are the following mass balance

equations for the individual phases

∂

∂t
(φραSα) +∇ · (ραqα) = Iα + Sα (1.1)

where φ is porosity; the subscript α specifies the fluid phase; ρα is the density of

phase α; Sα is the saturation, defined as the fraction of the pore volume occupied

by the phase α; qα is a vector of the volumetric flow rate per unit area for the α

phase; and Iα and Sα denote the interface mass transfer function and source/sink

function for α phase, respectively.

Momentum balance equations are not typically included in the standard mul-

tiphase flow formulations. Instead, the multiphase extension of the empirical

Darcy’s law introduced by Wyckoff and Botset [296] and Leverett [203] has been

used to relate the flux vector qα to the pressure gradient of the individual phase.

The extension of Darcy’s law is written as

qα = −
κκrα
µα

(∇Pα − ραg) (1.2)

where κ is the intrinsic permeability along the flow direction; κrα is the relative

permeability function accounting for the reduction of κ of the medium due to the

incomplete saturation by fluid phase α; µα is the dynamic viscosity of fluid α;

Pα denotes the pressure of fluid phase α; and g is the gravitational acceleration

vector.

10
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Figure 1.3: a) van Genuchten p-S relation; b) Mualem S-k relation.

Closure relations are necessary to make the system solvable. The relations

include equations of state, which are typically based on thermodynamic mod-

els [219], and constitutive relations that are empirical and system-dependent.

Typical and important constitutive relations are p-S-k relations, which describe

the relations among capillary pressure, fluid saturations, and relative permeabil-

ities. The p-S-k relations serve as projection operators to pass the microscopic

information to the macroscopic continuous level, while ignoring the detailed and

assumed unnecessary information, such as pore morphology.

Two of the most widely used p-S and S-k relations are the van Genuchten

[286] and Mualem [226] relations, whose functional forms are written as

Se =
θα − θr
θs − θr

=





(1 + |αvPc|nv)−mv , for Pc < 0

1, for Pc ≥ 0
(1.3)

κrw = S1/2
e [1− (1− S1/mv

e )]2 (1.4)

κrn = (1− Se)
1/2[1− S1/mv

e ]2mv (1.5)

where Se is the effective saturation, θr is the residual volumetric water content,

θs is the saturated volumetric water content, Pc is the capillary pressure defined

as Pn − Pw, αv and nv are experimental parameters, mv = 1 − 1/nv, and κrw

and κrn are the relative permeabilities for the wetting phase and the non-wetting

phase, respectively. These functional forms are shown in Figure 1.3.
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1.3.1.2 Limitations

Instead of solving a formal momentum conservation equation, the tradi-

tional modeling approach relies upon Darcy’s law and its common extension

to multiphase systems. The approach has been questioned in many theoretical

[156, 183, 184, 144, 147], experimental [111, 17] and computational investiga-

tions [113, 200, 284]. Limitations are reflected in many aspects, including the

hysteresis in both p-S and S-k relations and interfacial effects.

Hysteresis in p-S and S-k relations means that the value of capillary pressure

and relative permeability have infinitely many different values between an upper

and a lower bound, depending on the history of the system and the path along

which the particular state was reached [110]. This phenomenon is widespread

in nature and was observed by many researchers, for example, Killins et al.

[194], Brooks and Corey [52], Botset [49], and Hilpert et al. [162]. Two schematic

illustrations of hysteresis phenomena in p-S and S-k relations are shown in Fig-

ure 1.4.

Another aspect of multiphase systems that the traditional modeling approach

neglects is interfacial effects. It is clear that the existence of interfaces provides
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a means for the storage and exchange of mass, momentum and energy [142] and

controls many important properties of multiphase systems. However, interfacial

physics have not been explicitly accounted for in traditional modeling approaches.

An example of the interfacial effects would be the effect of the momentum transfer

caused by a viscous force across a fluid-fluid interface, which is referred to as

viscous coupling. Recent studies have shown that viscous coupling effects are

important over a broad range of porous media flow problems. Those include the

theoretical work by Hassanizadeh and Gray [154, 155, 156], Bachmat and Bear

[24], Gray [140], Kalaydjian [183], and Kalaydjian [184] and the experimental

work by Kalaydjian [184], Bourbiaux and Kalayjian [50], Bentsen and Manai

[40], Dullien and Dong [111], Avraam and Payatakes [17, 18, 19], Dana and

Skoczylas [95], and Liang and Lohrenz [206].

The existence of the above phenomena indicates that the simple extension of

Darcy’s law for multiphase flow is not capable of capturing microscale physics.

For example, in the extension of Darcy’s law, saturation is introduced as an

indicator of the presence of multiple phases in a macroscale continuum. How-

ever, configurations of the fluids can be different under a prescribed saturation,

which leads to different flow paths and mechanisms, and thus different values

of macroscale variables, such as the relative permeability of each fluid [252]. In

the last three decades, there has been vigorous theoretical work attempting to

develop a rigorous and consistent framework for formulating macroscale models

that better account for pore-scale physics [154, 156, 24, 33, 145, 140, 147, 221].

The development of these improved models requires improved theoretical, com-

putational and experimental investigations and justification, which must involve

a high-resolution description of the operative physical mechanism, at microscale.

1.3.2 Numerical methods

The resulting mathematical models are typically in forms of a set of partial

differential equations (PDE’s) with boundary conditions and initial conditions.
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Figure 1.5: Diagram of the development of a numerical method.

Usually, the solution of these PDE’s cannot be achieved without the use of nu-

merical methods, which are normally implemented in a computer program. From

an applied mathematics perspective, numerical methods are evaluated in terms

of numerical bench-marks, such as stability, convergence, and accuracy of the

scheme; from a computational science perspective the concern regarding a nu-

merical scheme involves computational efficiency and memory usage. Figure 1.5

shows steps involved in developing a numerical method. While certain standard

numerical approaches exist to treat different PDE’s according to their classifica-

tion as hyperbolic, parabolic, or elliptic PDE’s, special properties of multiphase

flow and transport equations require special attention in order to develop accu-
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rate and efficient numerical schemes. These special properties of PDE’s used to

model multiphase systems include their nonlinearity, regularity, coupling, sharp

fronts, and heterogeneity in parameters, which will likely continue to play a major

role in the evolution of multiphase modeling.

Numerical modeling of a subsurface system requires choosing spatial dis-

cretization, temporal discretization, a nonlinear solver and a linear solver. Par-

ticular interest has been focused on developing accurate and efficient schemes in

terms of spatial and temporal discretizations, as summarized below.

1.3.2.1 Spatial discretization

The most popular numerical methods to discretize PDE’s are finite differ-

ence methods. These methods express the solution in terms of nodal points and

replaces the derivatives by differences taken between those nodal points. They

provide solutions that conserve mass discretely over each cell, which is a desirable

property. However, finite difference methods are not as easily applied to irreg-

ular domains [201]. In addition, finite difference methods generate numerical

dispersion when applied to problems with sharp fronts [35].

Finite element methods and finite volume methods are both based on a con-

servative weighted residual integration, known as a weak formulation. Stan-

dard conforming finite element techniques can give high-order approximations in

space. However, when applied to flow problems, the resulting velocities are dis-

continuous across element interfaces and do not conserve mass over an element

[42, 300]. Other disadvantages of the standard finite element methods include

numerical oscillations (known as the Gibbs effect) when applied to problems with

discontinuities [62, 59, 88, 107] and complexity in dealing with hanging nodes.

Finite volume methods, on the other hand, are known to be mass-conservative

and non-oscillatory [120], but unfortunately, they are low-order approximations.

A series of approaches has been considered over the years in hopes of com-

bining the flexibility and high order approximation of the finite element methods
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with the local conservation properties of finite difference discretizations. These

include control volume finite element discretizations [128, 288], mixed finite ele-

ment methods [63, 11, 66, 65, 101, 41, 300], and post-processing of pressure fields

obtained from conforming methods [90, 112]. It has been shown that control vol-

ume finite element method provides significant improvements in accuracy over

the classical finite element technique. In several works, mixed finite element dis-

cretizations have shown a number of benefits in comparison to conforming finite

element methods [225, 175], control volume finite element discretizations [112]

and the post-processing method [225]. Recent investigations have also shown

several advantages for combinations of mixed finite element methods and higher

order adaptive time integration via the method of lines [123, 220]. The dis-

advantages of control volume finite element and mixed finite element methods,

however, are the extra effort needed for constructing auxiliary meshes and for

hybridization, respectively.

1.3.2.2 Temporal discretization

The time discretization of the PDE’s describing multiphase systems is tradi-

tionally dominated by low-order time-marching methods. These include implicit

backward Euler, implicit Crank-Nicholson, explicit forward Euler and explicit

Runge-Kutta algorithms. However, there exist adaptive high-order time integra-

tion packages, for example, DASPK, for systems of ordinary differential equa-

tions (ODE’s) and differential algebraic equations (DAE’s). These time inte-

gration packages implement sophisticated variable-order, variable-step-size time

discretization with formal error control. A method of lines (MOL) procedure

allows us to reduce the PDE’s to a systems of ODE’s by applying the spatial dis-

cretization to the spatial parts of PDE’s so that the existing robust and mature

time integration methods can be used to perform the time integration.

In the most popular ODE/DAE solver DASPK, a fixed leading coefficient

backward difference formula (FLC-BDF) with complex variable-order, variable-
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step-size and error-controlled procedure is adopted. This approach advances the

approximate solution in time for less computational effort than a lower-order

method [281]. Recently, an object-oriented DAE’s toolkit (DAETK) was de-

veloped by Kees and Miller [190] based on DASPK. The object-oriented tech-

niques used to design the large and complex code make this time integrator

extensible, flexible and easy to use. The ODE/DAE solvers, combined with var-

ious spatial discretization, such as finite difference and mixed finite elements,

have been applied successfully for simulating various multiphase flow problems

[191, 123, 124] and advantages over low-order time integration methods have

been demonstrated.

1.4 Research Objectives

The overall goal of this work is to improve models of flow and transport

in porous medium systems using numerical modeling approaches for a range of

scales. This objective is being pursued along two lines: (1) using a pore-scale LB

approach to investigate viscous coupling phenomena and advance the traditional

continuum modeling approach; and (2) developing robust numerical methods

(discontinuous Galerkin methods) for existing continuum model formulations to

improve numerical accuracy and efficiency.

1.4.1 Pore-scale lattice Boltzmann approach to advance

the traditional continuum modeling approach

The deficiency of Darcy’s relationship and its extension to multiphase flow

motivated researchers to pursue a better model to account for the interfacial

viscous coupling phenomena. This led to a generalized formulation [154, 155,
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156, 24, 183, 184, 140] written as


 vw

vn



 = −



 κκr,ww/µw κκr,wn/µn

κκr,nw/µw κκr,nn/µn







 (∇Pw − ρwg)

(∇Pn − ρng)



 . (1.6)

where vi (i=w,n) is the Darcy velocity for the wetting phase and non-wetting phase,

Pi is the fluid pressure, and ρig is the body force. The generalized relative per-

meability coefficients include two conventional coefficients, κr,nn and κr,ww, and

two off-diagonal coefficients, κr,nw and κr,wn, indicating that for two-phase flow

systems, fluid flow will depend not only on the corresponding thermodynamic

forces of the fluid, but also on the influences of other irreversible processes. In

this formulation, the Onsager’s fundamental reciprocity relation [236, 237] was

applied at the macroscale so that the cross coefficients κr,nw and κr,wn are thought

to be equal. However, this model has not succeeded in resolving the complexity

of two-phase flow through porous media. The generalized flow theory fails in two

counts. First, the theory is of the Onsager type [184]; however, the controversial

issue regarding whether or not the two cross coefficients are equal has not been

settled [36, 37, 140, 20]. Second, the generalized relative permeabilities, as the

conventional relative permeabilities do, turn out to be strongly dependent on

many system parameters, including capillary number, equilibrium contact angle

and history of saturation [17, 18, 257].

Recently, a consistent and systematic approach, referred to as the thermo-

dynamically constrained averaging theory (TCAT) approach, has been proposed

[147, 221] for modeling multiphase flow. The approach is based upon a complete

and rigorous set of conservation equations that are closed with a set of relations

that account for the effects of interfaces formed at the junction of two phases,

rather than ad hoc empirical relations [140]. While there have been active re-

search efforts devoted to test this theory [223, 249, 89, 252, 148, 157, 158, 304],

the evolving theory still requires improved experimental and computational ap-

proaches for investigation and justification.

We believe that the viscous coupling phenomenon is essentially caused by
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many pore-scale intricacies in a multiphase system, such as the configuration

of wetting phase and non-wetting phase, fluid viscosities, the interfacial tension

and the fluid-solid interactions due to wettability, etc. These phenomena must

be understood at a microscopic pore scale, where detailed information, such as

the pore morphology and topology, are available and the interfacial physics of

fluids are explicitly accounted for.

The lattice Boltzmann method (LBM), an evolving and powerful pore-scale

modeling approach, has received increasing attention in computational fluid dy-

namics (CFD). In the LBM, fluid is represented by a distribution of particles

moving on a regular lattice. Upon collision at a node, the particles conserve

mass and momentum according to pre-specified mathematical rules given by the

discrete Boltzmann equation. Several nonlinear PDE’s in CFD, including the

Navier-Stokes equations, can be recovered using the LB approach. The LBM is

extremely appealing in porous medium simulation because: (1) it is well-suited

to simulate complex geometries [241]; (2) the multicomponent version of the

LBM is available, allowing the simulation of multiphase systems [263, 268, 269];

and (3) it is straightforward to implement on parallel machines since LB algo-

rithms require information about the distribution function at only nearby points

in space [186, 239].

A multicomponent fluids version of the LBM has been derived by Shan and

Chen [269, 268] and Shan and Doolen [271]. In this model, a nonlocal interaction

force between particles at neighboring lattice sites is introduced so that the global

momentum conservation is satisfied when boundary effects are excluded [271,

165]. This formulation has been implemented by Pan et al. [240, 241] to calculate

the intrinsic permeability for the single-phase flow and investigate hysteresis of p-

S curve in two-phase flow in a 3D porous medium. The code was then parallelized

for higher efficiency [243]. This provides a good tool to further investigate the

S-k relations and the viscous coupling effects in two-phase porous medium flow.

The specific objectives of this work are to:
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• review the research conducted to date on viscous coupling effects in two-

phase porous media flow systems from theoretical, experimental and com-

putational aspects;

• implement a multiple-relaxation time (MRT) LB model capable of simulat-

ing two-phase flow in a 3D porous medium system;

• validate the LB model by simulating two-phase flow where an analytical

solution that explicitly accounts for the interfacial stress is available;

• investigate the effect of capillary number, wettability and viscosity ratio

on the conventional relative permeabilities in co-current two-phase flow

through a sphere-pack porous medium;

• develop strategy for calculating the coupling coefficients and address ques-

tions related to their magnitudes and equality; and

• investigate the hypothesis advanced in the TCAT approach that interfacial

area is a critical variable in multiphase porous medium systems.

1.4.2 Improved numerical methods - discontinuous Galerkin

methods

Over the last decade, discontinuous Galerkin (DG) finite element methods

have received widespread and significant attention in CFD applications because

of their inherent robustness and many other computational advantages. These

CFD applications include a number of fields for hyperbolic PDE’s [86, 87, 14] and

more recently elliptic and parabolic problems [233, 254, 254, 14, 28, 135]. The

first DG method was introduced in 1973 by Reed and Hill [251] for hyperbolic

problems and later the Runge-Kutta DG (RKDG) method was developed for

hyperbolic problems [86]. Recently, these methods have been applied to elliptic

and parabolic equations; the examples include the method of Bassi and Re-

bay [26] and more importantly, the local discontinuous Galerkin (LDG) method

[87, 75, 58]. Simultaneously, but independently, various discontinuous Galerkin
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methods using interior penalty (IP) terms for elliptic and parabolic equations

were proposed and studied by Douglas and Dupont [109], Wheeler [289], Oden

and Baumann [233], Rivière et al. [254], and Rivière et al. [254]. An a priori

error estimates have been derived for most of the DG methods [255, 58] and

some numerical comparisons have shown the advantages of RKDG for multiple-

dimensional nonlinear hyperbolic PDE’s [88] and advantages of LDG over other

DG methods for a linear elliptic PDE [56].

The advantages of DG methods over the traditional counterparts are that:

• DG methods enforce the non-linear conservation laws locally on each ele-

ment, which results in locally mass-conserving velocity fields. DG methods,

however, achieve this without the use of auxiliary variables or the need for

hybridization.

• DG discretizations are inherently local and so well-suited for unstructured,

even non-conforming meshes. They easily allow for the order of approxima-

tion to vary from element to element [230, 25], so that higher order approx-

imations may be used where the solution is locally smooth. This flexibility

in handling general meshes and varying approximation orders makes DG

methods promising candidates for hp adaptive strategies [21, 254].

• DG methods are highly parallelizable. The mass matrix from a DG method

is block diagonal and becomes diagonal when orthogonal basis functions are

adopted. The stiffness matrix for an element only involves the element itself

and the elements sharing a face; the communication between processors is

thus minimized.

These features of DG methods are especially appealing for modeling sub-

surface problems and have been applied and studied in this field. For simple

problems that can be fit into the classification of PDE’s (hyperbolic, elliptic and

parabolic) and behave like the model problems used in developing these meth-

ods, we expect that DG methods can be directly applied with success. However,
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some special properties of subsurface systems, for example, heterogeneity, the

nonlinear nature, and coupling, require more attention and effort. While some

work has been done to solve various PDE’s that appear routinely in subsurface

systems [28, 254, 7, 121], there are a range of issues still remaining. For ground-

water flow problems, an example would be that the performance of various DG

methods for highly nonlinear parabolic problems like Richards’ equation have

not been fully investigated.

Richards’ equation has been used routinely to model air-water systems. The

challenge to solve Richards’ equation comes from the fact that it is parabolic(diffusive)

mathematically, yet can generate a sharp advective front that propagates through

the domain. This makes the standard treatment of hyperbolic shocks a poor solu-

tion scheme. Moreover, the difficulty of solving RE is only exacerbated by highly

nonlinear p-S-k relations and the heterogeneous intrinsic permeability that can

vary by orders of magnitude. In this work, we attempt to apply the LDG spatial

approximation combined with high-order time integration to solve some bench-

mark RE problems. In addition, we evaluate the performance of various DG

methods. The specific goals of this work are:

• to formulate a numerical solution for RE with LDG spatial discretization

combined with a robust, higher order temporal approximation in 1D;

• to develop robust and efficient spatially adaptive methods capable of ac-

commodating both h and p type adaption;

• to evaluate the robustness and efficiency of the proposed methods for a

range of common RE problems.

1.5 Organization

The dissertation consists of three major components to meet the research ob-

jectives. Chapter 2 investigates the viscous coupling effects for two-phase flow in

porous media using a three-dimensional parallel processing version of a two-fluid-
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phase LB model. Chapter 3 solves RE on a continuum scale using a combination

of a robust and established variable order, variable step-size backward difference

method for time integration with an evolving spatial discretization approach

based upon the LDG method. Chapter 4 develops adaptive LDG methods in

combination with sophisticated time integration, resulting in an improved nu-

merical simulator capable of adapting in both time and space. Each of these

chapters is similar to manuscripts for individual papers which have been either

published, or submitted for publication. Chapter 5 concludes the dissertation

with a summary of the results of this work and recommendations for further

research. A bibliography of the manuscripts associated with Chapter 2 through

Chapter 4 is listed below.

Chapter 2:

Li, H., C. Pan and C. T. Miller, Viscous coupling effects for two-phase flow

in porous media, Physical Review E, Volume 72, Number 2, 026705, page 1-14,

2005.

Chapter 3:
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Chapter 2

Pore-scale Investigation of

Viscous Coupling Effects for

Two-phase Flow in Porous Media

2.1 Introduction

Simultaneous two-fluid-phase (hereinafter two-phase) flow in porous medium

systems occurs routinely in nature and is of significant interest in many environ-

mental and industrial processes, including enhanced oil recovery and remediation

of hazardous waste sites by non-aqueous phase liquid (NAPL) spills. While the

use of the conservation of mass equation to represent the flow systems are funda-

mental, the closure relations employed to complement the balance are empirical.

The conventional closure of the system relies upon the use of relative perme-

abilities of each of two fluids from an extension of Darcy’s law for single-phase

flow, instead of a formal conservation of momentum. However, Darcy’s law is

strictly valid only for creeping single-phase flow [259]. For two-fluid-phase sys-

tems, the conventional view implies that the flows of the two fluids are essentially

uncoupled and that the pressure gradient and gravity are the only driving forces

for each individual fluid. The existence of viscous coupling between the two



immiscible fluids, due to the momentum stress being transferred across the fluid-

fluid interfaces [37, 38, 20], makes the simple extension of Darcy’s law highly

questionable. Another assumption of the conventional Darcy’s law under serious

challenge is that the relative permeability is a function of the corresponding fluid

saturation only. It has been posited that two-phase flow depends upon many

flow parameters, such as fluid saturations, capillary number, wettability, and the

viscosity ratio between the non-wetting and wetting phases. Viscous coupling of

the fluids is affected by each of these factors [114, 17, 18, 19].

The majority of theoretical approaches [102, 290, 154, 155, 156, 24, 140, 183,

184] intended to improve upon the traditional two-phase flow model have led

to a similar generalized model for two-phase flow that accounts for interfacial

viscous coupling effects. In the generalized model, the flow of each fluid phase is

a linear function of gradients of both phases, indicating that in two-phase flow

systems, fluid flow will depend not only on the corresponding pressure gradient

and body forces for the fluid of concern, but also on the corresponding terms for

the companion fluid. This model results in four generalized coefficients, which

are commonly referred to as generalized relative permeability coefficients. While

there have been various experimental studies showing that the coupling coeffi-

cients are important for a range of porous medium flow problems [17, 18, 19, 111],

measurement techniques of the generalized coefficients are highly distinctive and

the validity and reliability of the obtained results are in many cases questionable

[257, 95]. In addition, the model has not succeeded in resolving the complexity of

two-phase flow through porous media. The generalized flow theory fails on two

counts. First, the theory is of the Onsager type; however, the controversial issue

regarding whether or not the two cross coefficients are equal has not been settled

[20]. Second, the generalized relative permeability coefficients depend strongly

on capillary number, equilibrium contact angle, and the fluid saturation history

[17, 257], which is also the case with the traditional two-phase flow model.

Recently, a consistent and systematic approach, referred to as the thermody-
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namically constrained averaging theory (TCAT) approach, has been proposed for

modeling multiphase flow [147, 221]. The approach is based upon a complete and

rigorous set of conservation equations that are closed with a set of relations that

account for the effects of interfaces formed at the junction of two phases, rather

than ad hoc empirical relations [140]. One of the conclusions from this approach

is that the interfacial area between phases is an important variable that must be

incorporated into a complete two-phase flow model. While there have been active

research efforts devoted to test this theory [223, 249, 89, 252, 148, 157, 158, 304],

the evolving theory still requires improved experimental and small-scale com-

putational approaches to determine the appropriate microscale processes and

closure relations.

The overall goal of this work is to investigate quantitatively the viscous cou-

pling phenomenon of two-phase flow in a porous medium from a microscopic

pore-scale perspective, where detailed information, such as the pore morphology

and topology, is available. The specific objectives of this work are to

• review the research conducted to date on viscous coupling effects for two-

phase flow in porous medium systems from theoretical, experimental, and

computational efforts;

• advance a multiple-relaxation time (MRT) LB model capable of simulating

two-phase flow in three-dimensional porous medium systems;

• validate our model by simulating a simple case of two-phase flow in which

a theoretical solution that explicitly accounts for the interfacial coupling is

available;

• investigate the effect of capillary number, wettability, and viscosity ratio

on the conventional relative permeabilities in co-current two-phase flow

through a sphere-pack porous medium;

• develop and execute a strategy to calculate the coupling coefficients in the

generalized model; and

26



• investigate the hypothesis advanced in the TCAT approach that interfacial

area is a critical variable in multiphase porous medium systems.

2.2 Background

2.2.1 Theoretical developments

The traditional model describing the flow of two immiscible fluid phases under

steady-state conditions relies upon an extension of Darcy’s law, written as

vi = −
κκr,i
µi

(∇pi − ρig) (2.1)

where vi (i=w,n) is the Darcy velocity for the wetting phase and non-wetting phase,

pi is the fluid pressure, ρig is the body force, µi is the dynamic viscosity of

the fluid, κ is the intrinsic permeability determined by the pore structure of

the porous medium alone, and κr,i is the relative permeability that depends

upon fluid saturations, or fraction of the pore space occupied by each fluid, and

potentially other factors.

As viscous coupling effects have been increasingly recognized, several theo-

retical approaches have been adopted to describe viscously coupled multiphase

flow in porous medium systems. de la Cruz and Spanos [102], Hassanizadeh and

Gray [154, 155, 156], Bachmat and Bear [24], Gray [140], and Whitaker [290]

applied a volume averaging method to Stokes equation to arrive at a modified

theory that includes viscous coupling effects between two fluid phases. Kalayd-

jian [183, 184], on the other hand, used the ideas of irreversible thermodynamics

to develop analogous transport equations describing immiscible two-phase flow

in isotropic media.

These different theoretical approaches produced a similar final formulation

that we will refer to as the generalized two-phase flow model, which may be
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written as


 vw

vn



 = −



 κκr,ww/µw κκr,wn/µn

κκr,nw/µw κκr,nn/µn







 (∇pw − ρwg)

(∇pn − ρng)



 . (2.2)

The generalized relative permeability coefficients include two conventional coef-

ficients, κr,nn and κr,ww, and two off-diagonal coefficients, κr,nw and κr,wn.

One view of Eqn. (2.2) is that this expression is a macroscale application

of Onsager’s fundamental reciprocity relation [236, 237], which is the basis of

the thermodynamics of irreversible processes at the microscopic level. Accord-

ing to Onsager’s theorem, the cross coefficients, κr,nw and κr,wn in this case,

are symmetric given a linear relationship between the forces and fluxes for an

irreversible process. However, there has been diversity in opinions regarding

whether or not Onsager’s reciprocity relations of irreversible thermodynamics

for microscopic systems are applicable to macroscopic viscous coupling phenom-

ena. Among those who argue in favor of the applicability of Onsager’s theory to

coupled flows in porous media are Rose [258, 256], Kalaydjian [183, 184], Gun-

stensen and Rothman [149], and Auriault and Lewandowska [15]. Opposing

views, however, are to be found in Bentsen and Manai [40], Goode and Ramakr-

ishnan [137], Bentsen [36], Avraam and Payatakes [17, 18, 19], Dullien and Dong

[111], and Bentsen [37]. They argue that the nature of two-phase porous medium

flow is not amenable to the Onsager-type relation, due to the fact that the cou-

pling permeability coefficients are complex functions of the characteristics of the

flow systems and are dependent on many nonlinear pore-scale flow processes.

Recently, the TCAT approach has been advanced as a rigorous basis for the

development of models of flow and transport phenomena in porous medium sys-

tems [147, 221], which is the evolution of formal constrained averaging theory

work that has been ongoing for many years [146, 154, 139, 143, 145, 140, 141].

This approach starts from microscopic balance equations of mass, momentum,

and energy for two fluid phases, a solid phase, and the interfaces between the

phases. Averaging theorems and geometric constraints are used to simplify the
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Table 2.1: Summary of the experimental investigations of viscous coupling effects.

Investigators Dim. Medium Experimental method max(
κr,nw

κr,nn

)
κr,nw

κr,wn

= 1

Kalaydjian [184] 3 Capillary tube Co-current steady-state 70 % Yes

Bentsen and Manai [39] 1 Sandpack Co-current and counter-

current steady-state

>15% No

Liang and Lohrenz [206] 1 Sandpack Combination of steady-

state and unsteady-state

70% Yes

Dullien and Dong [111] 1 Sandpack Co-current steady-state 35 % No

Avraam and Payatakes 2 Pore network Co-current steady-state 120 % No

[17, 18, 19]

entropy inequality and guide the development of closure relations needed to yield

well-posed models. As a result of this work, the importance of fluid-fluid inter-

faces in multiphase systems has been distinguished and incorporated in model

formulations. Interfacial areas are considered as additional averaged macroscale

variables that represent additional information related to the microscopic state of

the system, such as the evolution of the distribution of fluids in the pore space.

The importance of taking interfacial areas into account, including the poten-

tial to remove hysteresis from capillary pressure-saturation closure relations, has

been demonstrated by several studies [252, 94, 159]. However, interfacial areas

are not explicitly a part of either the traditional multiphase flow model or the

generalized flow model.

2.2.2 Experimental investigations

Standard methods for measuring conventional relative permeabilities rely

upon steady-state, uniform flow and constant capillary pressure gradients for

both phases without gravitational effects. However, these approaches are unable

to discern the values of the diagonal coupling coefficients. Seeking a suitable

method to measure all four relative permeabilities in the general model is diffi-
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cult. Limited numbers of experimental studies have attempted to do so, and a

summary of these studies is reported in TABLE I.

Generally, three types of experiments are conducted to measure the perme-

ability coefficients: steady-state [184, 50, 40, 111, 17, 18, 19, 95], unsteady-state

(so-called immiscible displacement) [12, 185], and a combination of steady-state

and unsteady-state [206]. The immiscible displacement experiments are the least

time-consuming, allowing values of relative permeability and capillary pressure

to be determined dynamically. However, these approaches are subject to uncer-

tainties and measurement errors, which are caused by varying capillary pressure

gradients and saturation gradients.

Steady-state experiments, on the other hand, are more popular among ex-

perimental investigators because the fluid saturations, flow rates, and pressure

gradients in the system can be directly measured, making them seem more reli-

able. Several experiments, such as those by Dullien and Dong [111] and Zarcone

and Lenormand [302] on sand packs, were performed by applying external force

to only one fluid, so that the first two coefficients were determined and then alter-

nately the other two coefficients were determined. Another approach, in which

co-current flow is first applied by adding equal external forces to both fluids and

then counter-current flow by adding the opposite forces, were explored in, for

example, Bentsen and Manai [40].

A more systematic and complete set of experimental work was pursued by

Payatakes’ group [16, 17, 18, 283, 19, 284], who performed experiments on a

two-dimensional glass pore network model on a square lattice. Fluids with con-

stant flow rates were injected through the medium co-currently until steady-state

conditions were achieved. By varying the ratio of flow rates and pairs of fluids,

relative permeability coefficients as a function of capillary number, wettability,

viscosity ratio, and ratio of injecting flow rates were investigated, and a strong

correlation between the macroscopic permeabilities and the steady-state pore-

scale flow mechanisms was reported based on the capillary number in the flow

30



system.

As the importance of interfacial area has been increasingly recognized, exper-

imental measurement techniques have been developed to measure such quantities

[223, 265, 266]. However, due to the difficulty in determining the four relative

permeability coefficients in the generalized model and measuring the interfacial

area, to the best of our knowledge no experimental study has appeared that

has investigated the relationship between viscous coupling in two-phase flow and

interfacial area.

2.2.3 Computational simulations

Since experimental work that aims to explore all the related flow character-

istics is difficult to perform, current experimental studies on viscous coupling

effects are all limited to one- and two-dimensional systems. On the other hand,

numerical simulations, having benefited from the dramatic evolution of compu-

tational capabilities and new algorithms, have significant promise for helping

advance fundamental understanding of viscous coupling theory and for guiding

the design and interpretation of experimental studies. However, compared to

laboratory experimental approaches, investigative studies to investigate viscous

coupling using numerical means are extremely limited. Conventional numerical

investigations using, for example, finite-difference and finite-element methods

are even more scarce [258, 136] because of difficulties associated with pore-scale

simulation of multiphase flow using such techniques.

Recently, the lattice Boltzmann (LB) method [216, 161], a relatively new

method derived from its precursor, the lattice-gas cellular automata method

[130, 129], has grown in popularity in the field of computational fluid dynamics,

because it provides a means of simulating true flow mechanisms with a realistic

pore geometry for multiphase flow. It also allows more versatility in the choice

of parameters than can be had in experiments and provides detailed information

about flow processes at the microscale. However, only a few published stud-
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ies have investigated viscous coupling effects using these methods. Olson and

Rothman [235] attempted to estimate the coupling coefficient using a lattice-gas

model in a digitized rock geometry obtained by X-ray microtomography [195].

Langaas and Papatzacos [200] simulated co-current and counter-current steady-

state flows at different wettabilities, viscosity ratios, and driving forces using a

Bhatnagar-Gross-Krook (BGK), single-relaxation-time lattice Boltzmann model

for a two-dimensional, uniform pore space.

Gunstensen and Rothman [149] used a BGK color-gradient lattice Boltzmann

model to simulate two-phase flow in a three-dimensional porous medium. They

delineated regions of linearity and nonlinearity between Darcy velocities and and

forcing as a function of fluid saturations, and they observed Onsager reciprocity

in the linear region where a relatively high body force was applied. However, some

significant issues still remain unresolved: (1) the applicability of Onsager theory

in the nonlinear regime, which represents flow in the majority of hydrological

applications; (2) the consideration of porous medium systems with more realistic

pore structure than those considered to date; and (3) application of modern,

high-resolution LB methods. The studies mentioned above, although limited in

number, provide motivation for a more complete study.

Another important aspect of viscous coupling is to elucidate the role of in-

terfacial effects, as several researchers have realized [149, 17, 18]. By applying

the LB model at the microscopic pore scale, the interfacial area between fluid

phases can be readily determined. A marching cubes algorithm has been used

extensively as a tool to resolve graphical interfaces [305, 208, 103]. Recently, a

modified marching cubes (MMC) algorithm has been successfully implemented

and used to compute interfacial area using data sets obtained directly from LB

simulations [215]. This approach provides a means to investigate the dependence

of relative permeabilities on the interfacial area and to evaluate the validity of

evolving theories.
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2.3 Lattice Boltzmann Model

2.3.1 LB-MRT model

The LB method involves solving the microscopic Boltzmann equation, which

can be viewed as a discrete approximation of the incompressible Navier-Stokes

equations based on kinetic theory [182]. In the LB method, fluid flow is repre-

sented by the distribution functions of fluid particles moving on a regular lattice.

The so-called D3Q19 lattice was used in this work, where “D3” indicates three

dimensions, and “Q19” indicates a 19-dimensional space with corresponding ve-

locity vectors eσ,i (i = 0, 1, · · · , 18).

The evolution of the fluid particle distributions is governed by the discrete

Boltzmann equation [106]:

f(x + e, t+ 1)− f (x, t) = S

[
f (eq)(x, t)− f (x, t)

]
, (2.3)

where the bold-face symbols denote Q-dimensional column vectors, e.g.,

f (x, t) = [f0(x, t), f1(x, t), · · · , f18(x, t)]
T

is a vector of the distribution functions at lattice location x and time t. The

left-hand side of Eqn. (2.3) represents the advection term, denoting that the

fluid particles f(x, t) simply propagate in space according to the velocity e.

The right-hand side of Eqn. (2.3) represents the collision term, accomplished

by a multiple-relaxation-time (MRT) approximation of the particle distribution

functions towards their equilibria via a Q×Q full collision matrix S.

Equivalently, one can consider the collision process being carried out in mo-

ment space, instead of discrete velocity space. Given a set of discrete velocity

vectors e and corresponding distribution functions f (x, t), a vector of moments

mi(i = 0, 1, · · · , 18) can be constructed by a projection of the distributions f

through a linear transformation, i.e.,

m = M f ; f = M
−1m,
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where M is an integer transformation tensor, constructed via the Gram-Schmidt

orthogonalization procedure [197, 106, 198]. The moments are related to the

conserved (hydrodynamic) and non-conserved (kinetic) physical properties, in-

cluding the density, the momentum, the kinetic energy, the energy flux, and the

viscous stress tensor. Hence, Eqn. (2.3) can be written as

f (x + e, t+ 1)− f (x, t) = M
−1

Ŝ
[
m(eq)(x, t)−m(x, t)

]
. (2.4)

The corresponding collision matrix Ŝ = M ·S ·M−1 in moment space is a diagonal

matrix:

Ŝ = diag(0, s1, s2, 0, s3, 0, s3, 0, s3, s4, s5, s4, s5,

s6, s6, s6, s7, s7, s7) (2.5)

where si are the collision (or relaxation) parameters, indicating that the collision

process for each moment mi is accomplished by a linear relaxation towards its

equilibrium m
(eq)
i . The transformation tensor M and the functional forms of the

equilibrium moments m(eq) for the D3Q19 lattice are given in [197, 106].

The values of the collision parameters si that correspond to the conserved

moments are irrelevant because m(eq)(x, t) = m(x, t) for the conserved moments;

here we set them to be zero. Also, some of the collision parameters are set to

be identical values to preserve symmetry on the chosen lattice. The kinematic

viscosity ν is then defined as

ν =
1

3

( 1

s4
−

1

2

)
=

1

3

( 1

s6
−

1

2

)
. (2.6)

Note that the conventional BGK single-relaxation-time model is a special case of

the generalized LB-MRT model, where the collision matrix is S = (1/τ) I. Here

τ = 1/s4 is the single relaxation time and I is the identity matrix.

2.3.2 Two-phase LB model

A Shan-Chen multi-component LB model [268] was used in this work. We

provide a short description of the model below, and we refer readers to our
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previous work [241] for additional details. The evolution equation for fluid k

(wetting or nonwetting fluid) is

f k(x + e, t+ 1)− fk(x, t) = M
−1

Ŝk

[
m

(eq)
k (x, t)−mk(x, t)

]
. (2.7)

The macroscopic fluid density ρk, fluid velocity vk and common velocity v are

obtained by

ρk(x, t) =
∑

i f
k
σ,i(x, t),

vk(x, t) =
∑

i f
k
σ,i(x, t)eσ,i/ρk(x, t),

v(x, t) =
∑

k(ρkvks4,k)
/∑

k(ρks4,k).

To simulate multiphase flow in porous media, long-range interactions of the

form

F k = F k,f−f + F k,f−s + ρkgk (2.8)

are included, where F k,f−f is the fluid-fluid interaction force, F k,f−s is the fluid-

solid interaction force, and ρkgk is the gravitational force for fluid k. Note that

one can choose arbitrary values for the gravitational coefficient gk to replace

the desired fluid pressure gradient, which simplifies the handling of boundary

conditions.

The change in momentum due to interaction forces F k is included in the

equilibrium function m
(eq)
i,k (ρk,v

eq
k ), where ρkv

eq
k = ρkv + F k/s4,k [213]. In the

model, nearest neighbor interactions are used to define the inter-particle forces.

The fluid-fluid interaction force F k,f−f on fluid k at site x is the sum of the forces

between the fluid k particle at x, and the fluid k′ particles at neighboring sites

x′, given as

F k,f−f(x) = −ψk(x)
∑

x
′

G(x,x′)ψk′(x
′)(x′ − x) (2.9)

where ψk(ρk) is a function of local density and for simplicity ψk(ρk) = ρk is used

in this study. In Eqn. (2.9), G represents the strength of the interpartical force.

By choosing G properly, fluids can separate so that immiscible multiphase flow

behavior motivated by interfacial tension can be produced [271].
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The interaction force F k,f−s between the fluid k at site x and the solid at site

x′ is defined as

F k,f−s(x) = −ρk(x)
∑

x
′

Gks(x,x
′)(x′ − x). (2.10)

Again, one can choose the sign and the magnitude of coefficient Gks to distin-

guish the different wetting preferences of pure fluids. Detailed descriptions for

choosing these coefficients for the fluid-fluid and fluid-solid interaction forces in

the multiphase LB model were discussed in our previous work [241]. The overall

fluid momentum is defined as [270]:

ρu =
∑

k

∑

i

fkσ,i eσ,i +
1

2

∑

k

F k, (2.11)

where u is the overall fluid velocity, and ρ =
∑

k ρk is the total density of the

fluids.

The LB method is a computationally intensive approach. As a result, an

efficient parallel algorithm and implementation are critical for large-scale multi-

phase LB simulations. In this work, we adapted a LB implementation approach

proposed by Pan et al. [243], which utilizes an orthogonal recursive bisection

(ORB) decomposition that leads to excellent parallel efficiency by maintaining

an efficient workload balance among subdomains.

2.4 Model Validation

2.4.1 Comparison between BGK and MRT model

In the LB method, no-slip velocity boundary conditions are usually approx-

imated using the bounce-back scheme, which mimics the phenomenon that a

particle reflects its momentum in some way when colliding with a solid surface.

However, the actual position of a boundary is viscosity dependent when applying

the BGK model [134, 242]. While in the MRT model, the viscosity dependence

can be eliminated by individually adjusting the collision parameters.
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Figure 2.1: (Color online) Comparison of the measured permeability of a sphere-
pack porous medium as a function of fluid viscosities using BGK and MRT
models. The permeability results are normalized with respect to the value at
ν = 0.1.
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In order to illustrate the benefit of the MRT model over its BGK counterpart,

we performed a test for single-phase flow through a homogeneous sphere-pack

porous medium, labeled as GB1b. The porosity of the GB1b medium was 0.36

and the relative standard deviation of the spherical grain size was 10.1%; more

properties of the GB1b medium were given in [241]. We used a subset of the

entire GB1b sphere pack and discretized it using a 64×64×32 lattice. A mirror

image was created along the flow direction to enforce periodic boundary condi-

tion. The resulting medium contained about 150 spheres with 643 lattice nodes,

corresponding to 13 lattice nodes per average sphere diameter. This discretiza-

tion level was chosen based upon our previous investigations [241], which showed

that for the same sphere-pack porous medium, the simulated relation curve be-

tween capillary-pressure and saturation in a NAPL-water flow system approaches

convergence if the number of lattice nodes per average sphere diameter ζ ≥ 13.0.

In the MRT model, s4 and s6 were determined based on Eqn. (2.6), and

following the analysis by Ginzburg and d’Humières [134], we used

s1 = s2 = s5 = s4, s3 = s7 = 8(2− s4)/(8− s4) (2.12)

in order to minimize the permeability dependence on viscosity. By applying a

constant body force to the flow through the medium, we calculated the steady-

state Darcy velocity and estimated the saturated permeability of the medium

with respect to different fluid viscosities (i.e., τ = 0.6, 0.8, 1.0, 1.5) using both

the MRT and BGK models. As shown in Figure 2.1, the simulated permeability

obtained by the BGK model increases significantly with increasing viscosities, al-

though refining the discretization to 1283 mitigated the level of dependence. We

observed that the permeabilities obtained by the MRT model remained essen-

tially constant for both the 643 and 1283 discretization levels when the viscosity

changed by a factor of 10. Therefore, compared to BGK models, MRT models are

more suitable for application to multiphase flow systems, where fluids of varying

viscosities are present simultaneously, and where applying fine enough discretiza-
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tion of pore geometries to achieve the desired accuracy is often computationally

impractical.

2.4.2 Two-phase flow in a tube

We further validated the LB multiphase model by considering flows in a

simple geometry for which a theoretical solution is available. Our simulation was

performed in a three-dimensional tube with a square cross-section, filled with a

non-wetting phase (NWP) of viscosity νn and a wetting phase (WP) of viscosity

νw, as shown in Figure 2.2(a). The configuration of the interface between the

NWP and WP depends upon the radius of interface R, which is defined by the

pressure difference between the fluids.

Semi-analytical approximations of the solution that account for the inter-

facial stress balance between the NWP and WP were given by Ehrlich [114],

who exploited the solution to investigate viscous coupling effects on a bundle of

capillary tubes. Axial velocities for the NWP and WP are represented in polar

coordinates by the series

vn(r, θ) = −
∇pn − ρngn

µn

(

−
r2

4
+ a0 +

∞∑

j=1

[ajr
sjcos(sjθ)]

)

,

vw(r, θ) = −
∇pw − ρwgw

µw

(

−
r2

4
+ b0 +

∞∑

j=1

[(bjr
sj + cjr

−sj)cos(sjθ)]

)

(2.13)

where vi,(i=n,w) is the fluid velocity of the NWP/WP phases along the flow direc-

tion, µi is the dynamic viscosity, s is the number of the sides of the cross section

in polygon tubes (which is 4 for square cross-sections), and aj , bj , and cj are the

undetermined parameters. The series in Eqn. (2.13) have to be truncated to a

finite number at j = N so that a total number of 3N + 2 unknown parameters

(aj,j=0,N , bj,j=0,N and cj,j=1,N) need to be determined. We truncated the series

at N = 15, which led to a sufficiently small convergence error, according to the

results reported in Ehrlich [114]. Hence, we solved for 32 unknown a’s, b’s, and
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c’s from 32 equations constructed by applying a zero velocity boundary condi-

tion at the tube wall, and continuity of velocity and a stress balance across the

NWP-WP interface. We compared the velocity field obtained at N = 15 with

that obtained at N = 20, and found that the L2 norm of the difference between

the two solutions was less than 6×10−8, which confirmed the convergence of the

velocity field.

In the LB simulation performed to compare to this analytical solution, the

fluid-fluid interaction coefficient Gk′k was set to 0.001, determined from a simple

bubble test (see details in [241]) such that the desired phase separation was

produced. The fluid-solid interaction coefficients Gks were set to zero because

the interactions between both fluids and the wall were neglected in the analytical

solution. Initially, both the NWP and WP were placed within the tube as shown

in Figure 2.2(a); the system was allowed to reach steady state after the body

forces were imposed for both fluids. Periodic boundary conditions were applied

in the x direction along the channel length, and steady state was considered to

be achieved when the following criterion was satisfied:

√∑
x
[ux(x, t)− ux(x, t− 50)]2√∑

x
ux(x)2

< 10−5 (2.14)

where ux is the overall fluid velocity [defined in Eqn. (2.11)] along the flow

direction x.

Figure 2.2(b) plots the steady-state profile of vx in the middle plane of the

channel with a radius of interface R = 10, body forces gn = gw = 10−4, and a

viscosity ratio M = νn/νw = 2. A good agreement between the LB simulation

and the analytical solution is illustrated in Figure 2.2(b) using 322 lattice nodes

in the y-z cross-section. To further evaluate the difference between the numerical

LB solution and the semi-analytical solution, we calculated the L2 norm error of

velocity field, defined as

E2 =

√∑
x
[vx(x)− v∗x(x)]2

N3
l

, (2.15)

40



where v∗x is the Ehrlich’s semi-analytical solution defined in Eqn. (2.13), and N2
l

is the number of lattice nodes in the y-z cross-section. We observed a second-

order rate of convergence for single-phase flow, whereas for coupled two-phase

flow at M = 2, we obtained an order of convergence of 1.4, which we calculated

using linear regression to fit E2 with respect to Nl in log space. The lower order

of convergence for the coupled two-phase flow case was expected because of the

interfacial effect caused by the steep gradient in density across the fluid-fluid

interface [228, 68]. We have observed similar rates of convergence for two-phase

flow in a tube with M up to 5.

2.5 Two-phase Flow Simulations in Porous Me-

dia

2.5.1 Setup of the numerical system

We used the identical porous medium and discretization approach detailed

in §2.4.1. To determine if our simulations were adequately resolved, we made

spot checks by comparing the simulated relative permeabilities with 643 lattice

nodes to a finer discretization with 963 lattice nodes and found that at the

same saturation level the variation of the relative permeabilities between the

two discretization levels for both fluid phases in the conventional model was

within 5% in all cases.

We first determined the saturated permeability κ of the medium, which was

calculated from a steady-state Darcy’s velocity after applying a constant body

force for one phase and setting the density of the other fluid equal to zero at

all locations. It is important to note that the MRT model yields more accurate

predictions of both saturated and relative permeabilities than the standard BGK

model, which inherently has a relaxation-time dependent location of the no-slip

boundary and thus leads to a viscosity dependent permeability.
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Figure 2.2: (Color online) (a) Two-phase flow in a channel with square-shaped
cross-section; (b) Cross-sectional velocity profile for a phase viscosity ratio M
= 2 with 322 lattice nodes along the y-z plane; and (c) Error of the simulated
velocity vx profile with respect to the semi-analytical solution versus lattice size
Nl for single-phase flow and two-phase flow with a viscosity ratio M = 2.
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Simulation of immiscible two-fluid-phase flow was performed as follows:

• Initially, both a NWP and WP of equivalent density were uniformly-distributed

throughout the medium such that the desired WP saturation (denoted as

Sw) was obtained;

• The medium was bounded by walls along the y and z directions and a

periodic boundary condition was applied along the x direction;

• Co-current flow was simulated by adding body forces, as defined in Eqn.

(2.8), for both fluids along the flow direction. The reasons for using body

forces instead of imposing a pressure gradient as a driving force are that: (1)

using body forces can avoid capillary pressure gradients and thus saturation

gradients along the flow direction; and (2) body forces are convenient to

implement, since periodic boundary conditions can then be applied along

the flow direction; and

• The fluid-fluid interaction coefficient G and fluid-solid coefficients Gks were

chosen such that the fluids with an assigned viscosity ratio were separated

and the desired wettabilities were achieved [241]. For example, in a neu-

trally water-wet (NWW) system, the WP-solid and NWP-solid interaction

coefficients were set to be -0.01 and 0.01, corresponding to a contact angle

of approximately 65◦, while in the strongly water-wet (SWW) system, those

coefficients were set to be -0.02 and 0.02, corresponding to a contact angle

of approximately 25◦.

The conventional permeabilities for the NWP and WP were calculated fol-

lowing the extension of Darcy’s law defined in Eqn. (2.1). In order to calculate

the four generalized permeability coefficients, one set of steady-state data is in-

sufficient. Therefore, a second set of steady-state simulations was performed by

perturbing the body force of the NWP by 20% of that used in the first set,

while keeping the same body force for the WP. These conditions were important

to provide similar flow conditions, yet sufficiently different conditions to allow
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determination of the four generalized permeability coefficients with sufficient ac-

curacy.

In the following section, we first investigate the effects of capillary number,

wettability, and viscosity ratio on the conventional permeabilities of fluids. We

also calculate the generalized coefficients and investigate whether the generalized

coefficient matrix is symmetric or non-symmetric. Lastly, we investigate the

correlation of the relative permeabilities as a function of the interfacial area.

2.5.2 Results and discussion

2.5.2.1 Effect of capillary number

We first show the dependence of the relative permeability on capillary number

Ca, which describes the ratio of viscous forces to capillary forces:

Ca = vwµw/γ. (2.16)

The non-dimensional interfacial tension γ can be obtained using Laplace’s law

by means of a bubble simulation [241]. Figure 2.3 compares a series of snapshots

of the NWP motion under two capillary numbers 5 × 10−4 [Figure 2.3(a)–(d)]

and 5 × 10−5 [Figure 2.3(e)–(h)]. The corresponding Reynolds numbers of the

WP

Re = ρwvwD/µw (2.17)

were 0.17 and 0.017, respectively, indicating a Darcy flow regime. In Eqn. (2.17),

D is the average diameter of solid grain in the medium.

For both cases, the driving force for the NWP was kept constant while the

force for the WP in Figure 2.3(a)–(d) was one order of magnitude larger than

that in Figure 2.3(e)–(h). The saturation of the NWP for both cases was 6%,

which allowed us to track dynamically the movement of individual NWP regions.

As illustrated in Figure 2.3, the NWP was in the form of disconnected ganglia

and trapped in big pores due to the resistance of capillary forces. At higher Ca,
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(a) t=25000 (b) t=30000

(c) t=35000 (d) t=40000

(e) t=25000 (f) t=30000

(g) t=35000 (h) t=40000

Figure 2.3: (Color online) Snapshots of the non-wetting phase distribution under
a higher capillary number [Ca = 5×10−4, (a)–(d)] and a lower capillary number
[Ca = 5× 10−5, (e)–(h)]. The NWP region indicated by the arrow in (a) moves
through the porous medium driven by momentum transfered from the WP at
higher Ca, while it is unable to move at lower Ca.
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Figure 2.4: (Color online) Relative permeability vs. WP saturation Sw for co-
current two-phase flow with different Ca in a neutrally wet medium at M =
1.

we observed the motion of disconnected NWP regions that had overcome the

capillary resistance to movement. For example, the movement of a NWP region

initially in the upper left of Figure 2.3(a) was observed. However, this motion

was undetectable in case of a lower Ca [see Figure 2.3(e)–(h)], although in both

cases the driving body forces applied to the NWP were the same.

Strictly speaking, this is not a conventional steady-state scenario, although

the macroscopic saturation and flow rates of both phases remain constant. The

dynamic equilibrium of a moving disconnected NWP phase in “steady state”

was first observed by Avraam et al. [16]. It is obvious that there is an interfacial

momentum transfer from the WP, engulfing the disconnected NWP, to the NWP,

which results in the mobilization of the disconnected NWP at higher Ca.

The influence of Ca on the conventional relative permeabilities is shown in

Figure 2.4, in which two levels of Ca’s (Ca = 10−4 and Ca = 10−5) were com-
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pared in a neutrally wet porous medium. The body forces of the WP and NWP

were kept equal (gn = gw) and were adjusted according to the WP velocity in or-

der to achieve the desired Ca. This is similar to the way that the experiment by

Avraam and Payatakes [19] was performed in glass pore networks. We found that

both the NWP and WP permeability coefficients were increasing functions of Ca

for the fluid system. This trend was also observed by Avraam and Payatakes

[19] experimentally and by Langaas and Papatzacos [200] numerically.
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Figure 2.5: (Color online) Relative permeabilities as a function of Ca for co-
current, two-phase flow with M = 1 and Sw = 0.5.

In order to further investigate the effect of capillary number, we performed

simulations at Sw = 0.5 with different level of forcing and hence different Ca.

Figure 2.5 shows that when Ca is 10−4 or smaller, the flow rate and the driv-

ing force exhibit highly nonlinear relations for both phases; while when Ca ap-

proaches 10−3, the relative permeabilities are almost constant, indicating linear

flows at high levels of forcing. This finding agrees with Gunstensen and Roth-

man [149], despite differences between the porous media investigated and the LB
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(a) (b)

Figure 2.6: (Color online) Steady-state distributions of the NWP (a) a neutrally
wet medium; and (b) a strongly water-wet medium. Wetting-phase saturation
Sw= 0.509 in (a) and 0.508 in (b). Dark gray (red online) regions represent
the non-wetting fluid, and light gray (yellow online) regions represent the solid
phase. For clarity of illustration the wetting fluid is not shown.

simulators used. We note natural hydrologic two-phase flow systems are almost

universally in the nonlinear regime because typically Ca� 10−4.

2.5.2.2 Effect of wettability

Next, we studied the dependence of the relative permeability on wettability.

Steady-state NWP distributions are illustrated in Figure 2.6 for cases of neutrally

water wet (NWW) and strongly water wet (SWW) media. For the case of a

SWW medium, the NWP displaces the WP in the largest pores. Thus for the

same saturation conditions, the NWP correspondingly occupies a set of larger

pores on average for the SWW medium compared to the NWW medium. As a

corollary to this observation, the NWP has a larger specific interfacial area with

the solid phase, hence greater resistance to flow, in the NWW case than in the

SWW case, which is consistent with previous observations [111]. On the other

hand, the NWP becomes more disconnected in the SWW medium, as shown
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in Figure 2.6. The former mechanism appears to be dominant because the total

effect of these factors leads to a higher apparent NWP relative permeability in the

SWW system than in the NWW system, as shown in Figure 2.7. In particular,

a substantially higher NWP relative permeability was observed in the SWW

system than in NWW system at high NWP saturations, where the resistance

effect of the solid phase boundary to the movement of NWP clearly outweighs

the connectivity effect of the NWP in a SWW medium. This was also observed

in experimental work reported in Dullien [110] for dolomite media and Avraam

and Payatakes [18] for glass pore networks.
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Figure 2.7: (Color online) Relative permeability vs. WP saturation Sw for co-
current two-phase flow with different wettability with M = 1 and Ca = 10−5.

On the other hand, in a SWW system, due to the fact that NWP tends to

occupy larger pores, the average size of pore space occupied by the WP is smaller

for the SWW system compared to the NWW systems at a given saturation level.

This would suggest that the WP relative permeability for a SWW system would

be lower than the WP relative permeability in a corresponding NWW system.
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However, the WP is more connected in SWW media than in corresponding NWW

media. Based upon our observations, the net effect of these two off-setting mech-

anisms is a relatively small difference in the relative permeability of WP as a

function of changes in wettability for the two conditions that we analyzed. This

finding is in agreement with the experimental results reported in Avraam and

Payatakes [19].

2.5.2.3 Effect of viscosity ratio
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Figure 2.8: (Color online) NWP relative permeability measured by Avraam and
Payatakes [18] in a glass pore network with a contact angle of 40◦ and our simu-
lated results for a NWW system as a function of WP saturation Sw for co-current,
two-phase flow with different viscosity ratios at Ca = 10−5.

We further studied the dependence of the conventional relative permeabilities

on the viscosity ratio between fluid phases. As experimental measurements of

relative permeability data on three-dimensional porous medium systems are un-

available, we compared our simulations with Avraam and Payatakes [18]’s work,
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Figure 2.9: (Color online) WP relative permeability measured by Avraam and
Payatakes [18] in a glass pore networks with a contact angle of 40◦ and our
simulated results in a NWW system as a function of WP saturation Sw for co-
current, two-phase flow with different viscosity ratios at Ca = 10−5.

which was performed in a two-dimensional glass pore network. Figure 2.8 and

Figure 2.9 show these experimental data along with results of three-dimensional

LB simulations used to measure conventional relative permeabilities as a func-

tion of WP saturation for two viscosity ratios, M = 1.45 and M = 3.35. From

Figure 2.8, we observe that an increased viscosity ratio M leads to a significantly

increased NWP apparent relative permeability, especially when the saturation is

in the intermediate range. This is because the WP, which is flowing in relatively

small pore size connected paths and edges of the pore space, is strongly coupled

to the NWP, which is flowing in the larger regions of the pore structure. As a

result, the NWP experiences an apparent hydraulic slip, a so-called “lubricating”

effect on the flow of the NWP due to the WP film [110]. The greater the viscosity

of the NWP, or the ratio M , the greater the hydraulic slip becomes.
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This macroscopic trend in relative permeability can also be due to changes

in the NWP distribution as a function of M , as observed experimentally by

Avraam and Payatakes [18] in their two-dimensional glass network, in which they

found that a higher viscosity ratio favors a more connected NWP pathway and

hence greater NWP permeability. It is also consistent with the numerical study

done by Langaas and Papatzacos [200]. The different permeability values among

investigators are due to differences in capillary numbers among the systems,

medium morphology, fluid properties, or dimensionality effects.

On the other hand, the flow of a less viscous WP is effected less by the viscos-

ity of the NWP, therefore the WP relative permeability is relatively insensitive

to changes in M . This trend was clearly confirmed by our simulations and the

experimental work of Avraam and Payatakes [18], as shown in Figure 2.9.

2.5.2.4 Generalized permeability coefficients
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Figure 2.10: (Color online) Generalized relative permeabilities as a function of
WP saturation Sw for co-current two-phase flow with M = 1 and Ca = 10−5.
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The generalized permeability coefficients for the NWP and WP were calcu-

lated and are shown in Figure 2.10. The magnitude of the κr,nw coupling coeffi-

cient is comparable to the diagonal coefficient at intermediate saturations, which

indicates that the interfacial viscous coupling in two-phase flow is an important

phenomenon. Interestingly, κr,nw > κr,nn for Sw ≥ 0.5, which we attribute to the

disconnected nature of the NWP in this region. This indicates that in such an

instance the movement of the NWP phase is assisted by the WP. Since κr,wn > 0,

this coupling also assists the flow of the WP, but to a significantly lesser extent.

We hypothesize that these results are influenced by the distribution of interfacial

areas for each of the fluid phases.

We found that the cross coefficients are nonequal and κr,nw is generally greater

than κr,wn. This provides evidence against the applicability of the Onsager’s

theory in two-phase porous medium flow at macroscale. This observation is

consistent with the majority of the findings from recent investigations of viscous

coupling effects [111, 18, 19]. The non-symmetric cross coefficients are essentially

caused by the difference in microscopic morphology and topology of the two

fluids. In a SWW system with intermediate saturation, WP predominantly fills

the thin channels and small pores that the NWP is not able to enter, while the

rest of WP coexists with NWP in wider channels and larger pore spaces. Since

the coupling effects only occur at the interfaces between the fluids, the influence

of coupling on WP is smaller than that on NWP.

Our results, however, seemingly disagree with the computational study by

Gunstensen and Rothman [149], who found that the Onsager reciprocity holds.

However, Gunstensen’s numerical experiments were conducted in the linear flow

regime (i.e., where vw/n is a linear function of the forcing) by enforcing high

body forces, while our study was performed at Ca = 10−5. For this Ca the

flow rate and the driving force exhibit nonlinear relations for both phases, as

discussed earlier in §2.5.2.1. We verified this by spot-checking the four generalized

permeability coefficients at Sw = 0.5 with Ca = 10−3 using the same approach
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outlined in §2.5.1. We found that the coupling coefficients κr,nw and κr,wn differed

by only 10% and they were both significant compared to the diagonal coefficients.

This suggests that when capillary number is large, the generalized model is a

reasonable model and is superior to the conventional Darcy’s law.

The identification of the linear and nonlinear regimes and the dependence

of Onsager’s reciprocity on these regimes also indicates that there might be dif-

ferent flow mechanisms dominating the flow phenomena when fluid velocities

change significantly. While some studies have attempted to explain these flow

mechanisms based on experimental [18, 19] or computational [149] observations,

distinction of these mechanisms was based on many flow parameters in the spe-

cific media used in these studies and no unified indicator or potential variable

has been suggested. We believe further study along this line is important to

fully understand the complicated flow phenomena in multiphase porous medium

systems.

2.5.2.5 Effect of fluid-fluid interfacial area

We explored the effect of fluid-fluid interfacial area on relative permeabilities.

Unlike previous simulations, we removed the solid walls that bound the medium

along the y and z directions in order to eliminate the influence of the additional

solid-fluid interfaces. Thus, periodic boundary conditions were used in all three

directions, although the body force acted only in the x direction. Different

spatial distributions of both fluids at a fixed saturation were achieved by initially

distributing the fluids in different portions of the medium.

The resulting steady-state distributions of NWP are illustrated in Figure 2.11.

In Case 1 (Figure 2.11a), the WP occupied primarily the top half of the medium

and the NWP occupied primarily the bottom half; in Case 2 (Figure 2.11b), the

NWP was placed in the middle of the medium; while in Case 3 (Figure 2.11c),

the NWP was distributed uniformly throughout the medium. At steady state

in each configuration, the interfacial area for each configuration was calculated
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(a) (b)

(c)

Figure 2.11: (Color online) Steady-state distributions of NWP with different
initial phase configurations: (a) Case 1, (b) Case 2, and (c) Case 3. For all cases,
the WP saturation is 0.45–0.46.
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Figure 2.12: (Color online) Conventional relative permeabilities of NWP and
WP vs. fluid-fluid interfacial area per unit volume at constant fluid saturations
for (a) Case 1, (b) Case 2, and (c) Case 3.

using an MMC algorithm implemented by McClure et al. [215].

As a first attempt to investigate the effects of interfacial area, we evaluated

the relation between the conventional relative permeability and interfacial area,

holding fluid saturations essentially constant. Figure 2.12 indicates strong corre-

lations between the relative permeabilities for NWP and WP and the fluid-fluid

interfacial areas under the same saturation level. In Case 1, WP occupied the

top half of the medium and NWP occupied the bottom half; thus generally, each

phase flowed as a continuous phase and the interfacial area between the phases

was smaller than that in other cases. Therefore, the relative permeability for

each phase was higher in Case 1 than that in other cases. In Case 2, NWP still

flowed as a continuous but slightly more scattered phase, while WP was divided

into top and bottom parts, which led to a larger interfacial area between fluids

and hence slightly decreased NWP and significantly decreased WP permeabili-

56



ties. In Case 3, both the NWP and WP were the most disconnected. This was

reflected by an increase in the interfacial area. As a result, the NWP and WP

relative permeabilities decreased by 50% and 40% compared to Case (b), respec-

tively. The sensitivity of the WP relative permeability with respect to changes

in interfacial areas is especially striking. Based on the above results, we believe

that interfacial area is an important measure of the morphology and topology of

fluid distributions in macroscale porous medium systems, which is not accounted

for in either the conventional or generalized relative permeability models. This

provides additional evidence for the evolving TCAT approaches, which include

interfacial areas as natural quantities in macroscale models [147, 221].

2.6 Conclusions

The LB method is a useful approach for studying the complex behavior of

two-fluid-phase flow in porous media. Particularly, the ease of obtaining the lo-

cal parameters, such as permeability, saturation, and flux, makes it suitable for

use in exploring pore-scale physics within porous medium systems. In addition,

we believe that the multiple-relaxation-time (MRT) LB models are superior to

the BGK models for multiphase flow simulations, due to the fact that the MRT

models improve the numerical stability and yield a viscosity-independent veloc-

ity field, which is impossible to achieve using the standard BGK models. The

investigations of two-phase flow in a channel with a square-shaped cross-section

show good agreement with the analytical solution of axial fluid velocities using

the LB-MRT model.

Three-dimensional investigations of viscous coupling effects were carried out

for two-fluid-phase flow through a sphere-pack porous medium. Viscous coupling

effects were found to be important over a broad range of conditions, includ-

ing capillary number, wettability, and viscosity ratio. Qualitative trends in the

change of conventional permeability with the above parameters compare favor-

57



ably with the experimental results obtained by Avraam and Payatakes [18, 19].

The motion of disconnected NWP regions under higher Ca was captured, which

indicates that the prevailing assumption that disconnected parts of a non-wetting

fluid phase remain static is invalid under certain conditions.

The dependence of the permeability-saturation curve on the capillary number,

wettability, and viscosity ratio provides evidence against the sole dependence of

permeability on the corresponding fluid saturation posed in the conventional

extended form of Darcy’s law. An attempt to calculate the coupling coefficients

in the generalized formulation showed that viscous coupling effects contribute

significantly to fluid flow. In addition, those coupling coefficients were found to

be unequal, which implies that the Onsager’s reciprocity relation is not applicable

for describing multiphase flow in macroscale porous medium systems. We also

note that most of our studies were performed for Ca < 10−4, as Ca at this range

is of practical concern in subsurface systems. Other work found that Onsager

theory was valid at higher Ca (still sufficiently low to fall into Darcy flow regime),

which was confirmed by our study as well.

The evolving TCAT approach motivated us to further investigate the role

of interfacial area for two-phase flow in porous media. A strong dependence

of relative permeabilities on fluid-fluid interfacial area was found. For a fixed

saturation level, different flow topologies resulted in significantly different rela-

tive permeabilities. This suggests that the distinguishing feature of multiphase

flow systems—the existence of fluid-fluid interfaces, should be accounted for ex-

plicitly in a more complete model formulation. New models that overcome the

deficiencies of the conventional and generalized theories deserve further study.
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Chapter 3

Local Discontinuous Galerkin

Approximations to Richards’

Equation

3.1 Introduction

RE is the most common model used to describe water flow in the vadose

zone and perhaps the most popular model used to describe flow in multiphase

porous medium systems in general. RE is also of interest because while formally

a parabolic partial differential algebraic equation (PDAE) model, it can yield

solutions with sharp fronts in space and time under certain auxiliary conditions.

In such cases, traditional solution methods often fail to converge and exhibit

a general lack of efficiency. For this reason, RE serves as an excellent example

problem, which can be used to advance numerical solution approaches for difficult

systems of PDAE’s that arise from nonlinear conservation equations.

Because of the importance of RE, it has been the focus of considerable at-

tention over the last decade with the aim of developing more robust—meaning

reliable—and more efficient—meaning reduced computational work to achieve a

fixed level of accuracy—solution schemes. Advances have proceeded on reliable



and efficient time integration techniques [281, 222, 188, 191], spatial discretiza-

tion methods [41, 120, 294, 123], and nonlinear and linear solvers [245, 202, 282,

124]. Through this work, the method of lines (MOL) has emerged as a standard

technique for approximating RE [281]. The MOL approach formally decouples

the spatial and temporal approximations, which facilitates the application of

mature, adaptive time integration methods. Solution approaches based upon

variable order, variable step-size time integration have been developed for var-

ious spatial discretization approaches, resulting in substantial improvements in

robustness and efficiency compared to standard, low-order temporal approxima-

tions [191, 124, 217]. Recently, the reduction in computational effort for solving

RE due to the combination of these and other algorithmic and method advance-

ments was found to be on par with advancements due to improved computational

resources over the last decade [218].

Time integration, along with nonlinear and linear solver aspects of solving

RE are more mature than spatial discretization methods. On the other hand,

the coupling of advanced spatial and temporal discretization approaches seems to

be fertile ground for advancement. In particular, the efficient resolution of sharp

fronts in space is important because time integration methods have matured

to the point where it is common for spatial error to dominate temporal error.

Because of the very sharp fronts that can exist with RE, reducing spatial error

requires resolution of the spatial discretization in the vicinity of such features.

Concomitantly, smooth regions of the spatial domain may be most economically

approximated using relatively coarse discretization and higher order methods.

Discontinuous Galerkin (DG) methods are an evolving class of spatial dis-

cretization approaches that have significant promise for improving the efficiency

of spatial approximations for difficult nonlinear problems, such as RE. This is

so because DG methods are locally conservative, easily support local refinement

of both h and p types, and are readily extensible to multiple spatial dimensions.

Among DG methods for elliptic and parabolic problems, the local DG (LDG)
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method [87] has received considerable attention, including analysis of consistency

and stability [87, 14], and application to a wide range of physical problems in-

cluding compressible flow [26], incompressible flow [82], contaminant transport

in porous media [7, 98, 75, 76], and the Korteweg-deVries equations [297, 274].

The significant work accomplished on LDG methods notwithstanding, these

efforts have not focused on difficult, highly nonlinear parabolic equations; RE has

not been solved with LDG methods to the best of our knowledge. Furthermore,

the implicit temporal approximations that have been combined with DG spatial

discretizations have typically been backward Euler [254]. The combination of the

LDG method with higher order methods in time appears promising territory for

additional advances.

Our primary goal is to develop robust and efficient numerical approximations

to RE and, more generally, nonlinear parabolic systems of PDAE’s arising from

conservation equations. The specific objectives of this work are (1) to formulate

a mass conservative LDG-MOL approximation to RE based upon a higher or-

der temporal discretization; (2) to derive an efficient solution algorithm for the

discrete approximation; (3) to examine a set of alternative LDG-MOL solution

approaches; (4) to evaluate the accuracy and robustness of the approximate so-

lutions for a range of test problems; (5) to recommend a solution approach based

upon the analysis performed; and (6) to recommend additional steps that might

yield further improvements for solving RE.

3.2 Background

3.2.1 Overview

We seek an approach for the solution of RE that faithfully produces an ap-

proximation with the desired accuracy for the minimum computational effort

necessary. This computational effort is often assumed to scale linearly with the
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size of the spatial and temporal domain, although most approaches fall far short

of this goal. However, if the number of unknowns required grows sub-linearly

with the size of the domain, then so too will the optimal scaling. For numerical

solutions to RE, several sources of error exist: spatial truncation, temporal trun-

cation, nonlinear solver, linear solver, and roundoff error. To advance toward the

optimal solution strategy, the dominant source of error should be reduced. The

dominant source of error for solutions to RE problems that involve sharp fronts

is frequently spatial truncation error, if state-of-the-art methods are used for all

solution components [281, 31, 124, 217]. With this focus in mind, we first con-

sider current approaches for solving RE, and then address spatial discretization

approaches that have the promise of supporting the advances we desire.

3.2.2 Approximation of RE

Attractive methods for solving RE must be robust, which means the ap-

proaches used should converge reliably across a broad range of discretizations.

While robustness is a prerequisite for an effective RE solution approach, effi-

ciency — meaning the computational effort required to achieve a given level of

accuracy — is often the focus of modern research. Robustness and efficiency

have proven to be surprisingly elusive for RE. The difficulties experienced have a

number of causes, including highly nonlinear, non-smooth closure relations, and

corresponding ill-conditioned Jacobians for some formulations. Several strategies

for addressing these difficulties and improving robustness and efficiency include

model formulation approaches [59, 191, 152], improved time integration methods

[281, 188, 191, 124, 217], variable transformations [293], spline approximation of

closure relations [260, 222], robust nonlinear solvers [202, 282, 276, 189], scalable

linear solvers [282], and local spatial grid refinement approaches [1, 261, 138]. As

a result of these advancements, it is currently expected that a solution to RE can

be attained for very coarse spatial discretizations. Moreover, a subset of these

advancements was shown to have dramatically improved efficiency over the last
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decade [218].

3.2.3 Spatial discretization approaches

Improved spatial discretizations are a key component needed to advance more

efficient approximations of RE. The spatial discretizations commonly used for

RE are low-order finite difference [e.g., 282, 188, 295] or finite element methods

[e.g., 59, 275, 181, 202]. However, finite difference methods are not well suited

to irregular grids, and standard conforming finite element methods can exhibit

significant local mass-balance error [59, 181, 123, 273]. Standard conforming

finite element methods also produce non-physical oscillations when applied to

problems with sharp fronts without lumping/diagonalization of the mass matrix

[59, 244, 181]. In addition, when used for spatially adaptive discretizations,

standard conforming finite element methods can result in hanging nodes.

In response to the shortcomings associated with these standard approaches,

control volume finite elements [128], mixed finite element methods (MFEMs) [63,

11, 66, 65, 101, 41, 299, 294], and post-processing of pressure fields obtained from

conforming finite element methods [90, 112] have been investigated. MFEMs

have shown benefits in comparison with both conforming finite element based

approximations [225, 175] and control volume finite elements [112], and have

been combined with higher order adaptive time integration [123, 220]. However,

standard MFEMs require hybridization to avoid indefinite linear systems [230],

and higher order mixed spaces can be difficult to construct [13].

3.2.4 Discontinuous Galerkin methods

Over the last 15 years, DG finite element methods have received increasing

attention in many fields for hyperbolic PDE’s [85, 84, 77, 86] as well as elliptic and

parabolic problems [29, 30, 233, 255, 254, 87, 81, 121]. The term discontinuous

Galerkin covers a wide range of finite element methods based on discontinuous
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approximations. While DG methods have been applied in either space or time

[180, 115, 116, 119], we here focus on DG spatial discretizations. In the scope

of elliptic or parabolic problems, this rich class of methods includes the method

proposed by Bassi and Rebay [26], the LDG method [87], the method of Baumann

and Oden [29, 30], and the so-called non-symmetric interior penalty Galerkin

method [255, 254].

The evolution of these methods has followed two major themes: methods

inspired by the original interior penalty method and those inspired by finite vol-

ume techniques for hyperbolic problems, including the LDG method. Since the

LDG method for second-order elliptic and parabolic problem rewrites the original

problem as a system of first-order equations by introducing an auxiliary variable,

it can be thought of as an MFEM approach. Not surprisingly, it shares desir-

able properties of mixed methods, such as producing locally mass-conservative

velocity fields. However, unlike standard MFEMs, the auxiliary variable can be

eliminated from the system by suitably choosing the traces of the fluxes across the

element interfaces. Moreover, unlike control volume finite element approaches,

no alternative meshes are needed. The LDG discretization is also inherently local

without the interelement continuity requirement, so it can easily handle compli-

cated geometries, is well-suited for unstructured, non-conforming meshes, and

can readily support hp-adaption strategies [83]. However since the LDG method

does not enforce interelement continuity, it requires more degrees of freedom to

compute a solution than a conforming finite element method for equivalently

discretized domains [97].

Time integration methods used with DG spatial discretization approaches

for hyperbolic or near hyperbolic problems have been primarily forward Euler

[64, 61] or TVD Runge-Kutta discretizations [85, 84, 86, 9, 150, 87, 88], with

the exception of diagonally implicit Runge-Kutta methods [27]. Implicit time

discretizations have been restricted to backward Euler [254]. To our knowledge,

higher order MOL approaches for temporal integration have not otherwise been
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investigated.

The LDG method has been applied to a wide range of problems of practi-

cal concern in porous media. These include pure diffusion problems [58, 78],

convection-diffusion problems [87], and Stokes equation [26, 81]. Notwithstand-

ing the good performance of the LDG method in these applications, open issues

for certain classes of problems still remain. For example, the performance of the

LDG method for nonlinear parabolic problems has not been fully investigated.

3.3 Approach

3.3.1 Overview

To meet the objectives of this work, we wish to advance and evaluate local

discontinuous Galerkin approximations to RE that are also higher order in time

using the method of lines (LDG-MOL). Both the LDG solution to RE and the

general LDG-MOL approach for nonlinear systems of PDAE’s are novel to the

best of our knowledge. Because of the unique, and somewhat subtle, aspects

of the formulation needed to produce a robust, efficient method, we present the

approach used in detail, including the model formulations, spatial approximation,

and temporal approximation.

3.3.2 Model formulations

Consider a general model of the form

∂G

∂t
=
∂H

∂z
+ f s, in Ω × [0, T ] (3.1)

where G and H are potentially nonlinear functions of the dependent variable φ,

the spatial coordinate z, and time t ∈ [0, T ]; f s is a source; Ω ∈ [0, zl] ⊂ IR1 is

the spatial domain with boundary Γ; and zl is the length of the domain. While

we restrict the systems of concern to IR1, straightforward extension to IR2 or IR3

is an advantage of the methods being considered [87].
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Three specific forms of Eqn. (3.1) were used in this work. Two of these models

were used to investigate convergence characteristics in detail for smooth, linear

problems, and the third model is RE, which was the focus of this work. Model I

is a transient diffusion equation, which we get by setting G = φ, H = D∂φ/∂z,

and f s = 0
∂φ

∂t
= D

∂2φ

∂z2
, in Ω × [0, T ] (3.2)

Equation (3.2) is used to describe saturated groundwater flow, species diffusion,

and heat transport for a wide a variety of systems under certain assumptions,

which can be described by continuum mechanics.

Model II is Poisson’s equation, which we get from Eqn. (3.1) by setting

G = 0, and H = dφ/dz

0 =
d2φ

dz2
+ f s, in Ω (3.3)

This equation is used to describe a variety of steady-state problems in science

and engineering, especially those originating from potential flow.

Model III is RE, which is a PDAE generalization of Eqn. (3.1) and which

has widespread applicability even in one spatial dimension [126, 285]. Although

other choices exist [281, 188, 59], we formulate a mass conservative form of RE

[32, 191, 124] as
∂(%θ)

∂t
+
∂(%q)

∂z
= f s, in Ω × [0, T ] (3.4)

where % is the density of water, θ is the volumetric water content in the porous

medium, and q is the Darcy velocity of the water phase.

Darcy’s law was used to relate q to the pressure head ψ

q = −K

(
∂ψ

∂z
+ ρd

)
(3.5)
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where

ψ =
p

%0g
(3.6)

% = %0e
γ(ψ−ψ0) (3.7)

ρ =
%(ψ)

%0
(3.8)

K = kr(ψ)Ks (3.9)

Ks =
%0gks
µ

(3.10)

ψ is the water pressure head, p is the water pressure, ψ0 is a reference water

pressure head, %0 is a reference density of water corresponding to ψ0, γ is a

compressibility coefficient for water, g is the gravitational acceleration constant,

d ∈ [−1, 1] accounts for the orientation of gravity relative to the spatial coordi-

nate z, K is the effective hydraulic conductivity, Ks is the saturated hydraulic

conductivity, kr is the relative permeability, ks is the intrinsic permeability of

the porous medium, and µ is the dynamic viscosity of water.

Closure of Equations (3.4) and (3.5) requires constitutive relations to express

θ and kr in terms of ψ. We chose the common van Genuchten [286] relation to

express θ, or effective saturation Se, as a function of ψ:

Se =
θ − θr
θs − θr

=





(1 + |αvψ|nv)−mv , for ψ < 0

1, for ψ ≥ 0
(3.11)

where θr is the residual volumetric water content, θs is the saturated volumetric

water content, αv is a parameter related to the mean pore-size, nv is a parameter

related to the uniformity of the pore-size distribution, and mv = 1− 1/nv.

The Mualem [226] relation was used to represent kr in terms of Se, and hence

ψ via Eqn. (3.11), as

kr(Se) =





S

1/2
e

{
1−

(
1− S1/mv

e

)mv
}2

, for ψ < 0

1, for ψ ≥ 0
(3.12)
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Combining Eqns (3.4) and (3.5), we write

∂(ρθ)

∂t
= −

∂u

∂z
+ f, in Ω, t ∈ [0, T ] (3.13)

u = −ρK

(
∂ψ

∂z
+ ρd

)
(3.14)

where u is the mass flux, and f = f s/%0.

The initial and boundary conditions for the RE model are

ψ = ψ0 in Ω, t = 0

ψ = ψb on ΓD, t ∈ [0, T ]

u = ub on ΓN , t ∈ [0, T ]

where ψ0 is the initial condition, Γ = ΓD∪ΓN with ΓD∩ΓN = ∅, ψb is a Dirichlet

boundary condition on the boundary ΓD, and ub is the mass flux specified on the

Neumann boundary, ΓN .

3.3.3 Spatial approximations

The LDG spatial approximations of focus in this work share some similarities

with standard Bubnov-Galerkin methods but also some notable differences. The

discontinuous nature of the methods leads to multiple values of the dependent

variable at element boundaries or interfaces and allows for straightforward spa-

tial adaption including the use of higher order elements and local resolution. The

multi-valued nature of the interfaces leads to more unknowns than a standard

Bubnov-Galerkin or low-order finite difference (FD) solution for an equivalent

discretization, but an appropriate weak formulation ensures local conservation

properties on the same mesh, which is a property lacking from standard con-

forming finite element methods.

While three models were used in this work, we only consider the detailed

formulation of the RE model, since all models follow as subsets of Eqn. (3.1)

and RE is the most complicated case considered. The detailed formulation of

Models I and II are simple subsets of the approach taken to approximate RE.
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For the spatial approximations, we detail the weak formulation, element interface

conditions, nonlinear approximations, and integration methods used in turn in

the sections that follow.

3.3.3.1 Weak formulation

We write Eqns (3.13) and (3.14) in an expanded form [10, 7]

∂m

∂t
= −

∂u

∂z
+ f, Ω × [0, T ] (3.15)

m = ρθ (3.16)

v =
∂ψ

∂z
+ ρd (3.17)

u = −ρKv (3.18)

where v accounts for the driving force due to pressure gradients and gravitational

forces.

We discretize Ω into ne non-overlapping intervals Ωj = [zj−1/2, zj+1/2], j =

1, . . . , ne, with centers zj = (zj−1/2 + zj+1/2)/2, and length ∆zj = zj+1/2− zj−1/2.

We construct a weak formulation using trial and test functions from the

broken Sobolev space H1 (Ωj) of the form

W (Ωj) = {w ∈ L2 (Ω) : w|Ωj
∈ P kj(Ωj) ⊂ H1(Ωj), ∀j} (3.19)

where P kj(Ωj) is the set of polynomials of degree at most kj on Ωj . Note that

the degree kj may vary from element to element. We fix the degree kj = k for

all quantities approximated, however this is not necessary [96, 97].

We use upper case letters M , Ψ, V , and U to denote trial solutions for

m,ψ, v, and u. We choose our trial and test functions to be Legendre polyno-

mials, which are denoted by N l
j , where l is a function index and j is an element

index.

We formulate a weak form of RE by multiplying Eqns (3.15)–(3.18) by test

functions N l
j and integrating Eqn. (3.15) and Eqn. (3.17) by parts over each
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element to obtain
∫

Ωj

N l
j

∂M

∂t
dz =

∫

Ωj

∂N l
j

∂z
U dz −N l

jU |
−
j+1/2 +N l

jU |
+
j−1/2 +

∫

Ωj

N l
jf dz(3.20)

∫

Ωj

N l
jM dz =

∫

Ωj

N l
jρθ dz (3.21)

∫

Ωj

N l
jV dz = −

∫

Ωj

(
∂N l

j

∂z
Ψ +N l

jρd

)
dz

+N l
jΨ|

−
j+1/2 −N

l
jΨ|

+
j−1/2 (3.22)

∫

Ωj

N l
jU dz = −

∫

Ωj

N l
jρKV dz (3.23)

where the superscript + denotes a limit from the right side of the element bound-

ary and a superscript − denotes a limit from the left side of the element boundary.

This distinction is necessary because of the discontinuous nature of the LDG spa-

tial discretization, which results in multiple values of the dependent variables at

element boundaries.

The trial solutions over an element are of the form

Ψ =
k∑

l=0

N l
jΨ

l
j (3.24)

M =

k∑

l=0

N l
jM

l
j (3.25)

V =
k∑

l=0

N l
jV

l
j (3.26)

U =
k∑

l=0

N l
jU

l
j (3.27)

where Ψl
j , M

l
j , V

l
j , and U l

j are the solution variables sought.

3.3.3.2 Element interface conditions

To account for the fact that space W allows discontinuities across elements,

the LDG approach requires special consideration of multiple-valued boundary

conditions to ensure local conservation properties and to enforce boundary con-

ditions appropriately. We term the treatment at these discontinuous boundaries
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element interface conditions, while we note that these conditions have also been

referred to as numerical fluxes in the hyperbolic conservation law literature [87].

Introducing singly defined values Û and Ψ̂ at element boundaries allows Eqns

(3.20)–(3.23) to be written as

∫

Ωj

N l
j

∂M

∂t
dz =

∫

Ωj

∂N l
j

∂z
U dz −N l

j |
−
j+1/2Ûj+1/2

+N l
j|

+
j−1/2Ûj−1/2 +

∫

Ωj

N l
jf dz (3.28)

∫

Ωj

N l
jM dz =

∫

Ωj

N l
jρθ dz (3.29)

∫

Ωj

N l
jV dz = −

∫

Ωj

(
∂N l

j

∂z
Ψ +N l

jρd

)
dz

+N l
j|
−
j+1/2Ψ̂j+1/2 −N

l
j |

+
j−1/2Ψ̂j−1/2 (3.30)

∫

Ωj

N l
jU dz = −

∫

Ωj

N l
jρKV dz (3.31)

The element interface conditions are of the general form

Ψ̂j+1/2 = 〈Ψ〉j+1/2 + C12[Ψ]j+1/2 (3.32)

Ûj+1/2 = 〈U〉j+1/2 + C11[Ψ]j+1/2 − C12[U ]j+1/2 (3.33)

where the interface operators are defined as

〈Ψ〉j+1/2 =
Ψ+
j+1/2 + Ψ−

j+1/2

2
(3.34)

[Ψ]j+1/2 = Ψ−
j+1/2 −Ψ+

j+1/2 (3.35)

〈U〉j+1/2 =
U+
j+1/2 + U−

j+1/2

2
(3.36)

[U ]j+1/2 = U−
j+1/2 − U

+
j+1/2 (3.37)

C11 in Eqn. (3.33) is a nonnegative penalty term that can be used to enhance

stability, accuracy, and enforce Dirichlet boundary conditions [58]. The choice of

C12 influences both the accuracy of the solution and compactness of the discrete

approximation [78, 97].
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For instance, choosing C12 = 0 leads to average fluxes at element interfaces

Ψ̂j+1/2 =
Ψ+
j+1/2 + Ψ−

j+1/2

2
(3.38)

Ûj+1/2 =
U+
j+1/2 + U−

j+1/2

2
+ C11[Ψ]j+1/2 (3.39)

while C12 = −1/2 gives

Ψ̂j+1/2 = Ψ+
j+1/2 (3.40)

Ûj+1/2 = U−
j+1/2 + C11[Ψ]j+1/2 (3.41)

On physical boundaries, we have

Ψ̂ = ψb, on ΓD (3.42)

Ψ̂ = Ψ, on ΓN (3.43)

Û = U + C11(Ψ− ψ
b), on ΓD, (3.44)

Û = ub, on ΓN (3.45)

where U and Ψ are the values taken from the interior of the domain and evaluated

at the boundary. From this formulation, it can be observed that C11 plays an

important role in enforcing first-kind boundary conditions for Ψ.

3.3.3.3 Nonlinear approximations

Both K and ρ are nonlinear functions of ψ and are components of u, which

must be evaluated on element boundaries where the approximation Ψ is multiple

valued. The highly nonlinear nature of RE can lead to sharp spatial gradients

in θ, hence Se and K, in some cases. If the sharp gradients are adequately

resolved in space, approximating these nonlinearities is a straightforward mat-

ter. However, this so-called adequate spatial resolution may lead to prohibitively

small element sizes and thus costly solves, which may not even be feasible for

some multidimensional domains. These difficulties are not unique to LDG meth-

ods. Inadequate spatial resolution is known to produce approximate solutions for
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which the rate of movement of a sharp front differs significantly from the solution

to the real problem. In an effort to extend the spatial discretization needed to

produce useful results, at least for application purposes, a variety of schemes can

be used to estimate K [222, 301, 131]. We detail four approximations that we

investigated to deal with this expected resolution problem.

Taking the arithmetic mean values of the conductivities at the element inter-

faces (KAI) is a straightforward approach, which can be written as

Kj+1/2 =
(K+

j+1/2 +K−
j+1/2)

2
(3.46)

We also consider a spatial integration approach (KINT), which integrates K

over two adjacent elements. The integration was carried out on each of the two

neighboring elements using Simpson’s rule, which is of the form

Kj+1/2 =

∫ zj+1/2

zj−1/2
K dz +

∫ zj+3/2

zj+1/2
K dz

∆zj + ∆zj+1

(3.47)

Another common approach is to upwind the conductivity using the upstream

value chosen from either the conductivity values at the element interfaces (KUI)

Kj+1/2 =





K−
j+1/2, if Ûj+1/2 ≥ 0

K+
j+1/2, if Ûj+1/2 < 0

(3.48)

or the upstream value based on element means obtained from Simpson integration

(KUINT)

Kj+1/2 =






1
∆zj

∫ zj+1/2

zj−1/2
K dz, if Ûj+1/2 ≥ 0

1
∆zj+1

∫ zj+3/2

zj+1/2
K dz, if Ûj+1/2 < 0

(3.49)

Given values of K at element interfaces computed using one of the strategies

summarized above, trapezoidal rule integration of the weak-form equation for

U can be accomplished. However, higher order integration of this weak form

equation requires approximations for K within an element. For such cases we

evaluated two approaches for computing K at the element interior. One is a
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linear approximation (LIN) based upon a Lagrange polynomial approximation,

which is commonly used by standard finite element approaches [59, 244]

Kj(z) =

1∑

l=0

LljK
l
j (3.50)

where K0
j = Kj−1/2, K

1
j = Kj+1/2, and Llj is the lth Lagrange polynomial on

Ωj . We also considered a more expensive, but potentially more accurate, direct

(DIR) evaluation, Kj(z) = K[Ψ(z)], where Ψ is approximated using the standard

Legendre polynomial trial solution.

It is also necessary to evaluate the nonlinear terms ρ and θ, which also de-

pend upon ψ. Because spatial gradients in ρ are generally small, this term is

straightforward to resolve. We evaluated ρ on element boundaries as

ρj+1/2 =
ρ+
j+1/2 + ρ−j+1/2

2
(3.51)

and when necessary on the interior of an element as ρj(z) = ρ[Ψ(z)]. Since only

local evaluations of θ are needed, we used a direct approach θj(z) = θ[Ψ(z)].

3.3.3.4 Integration methods

Solution of the LDG approximation to RE involves integration of Eqns

(3.28)–(3.31). Computation of the integrals over an element can be accom-

plished by converting the trial solution to a natural spatial coordinate z̃, such

that Ω̃j ∈ [−1, 1]. Transformed polynomial functions are of the general form

N l
j(z) = Ñ l

j [F
−1(z)] (3.52)

where the affine mapping F from Ω̃j to Ωj is described by

F (z̃) =
z̃∆zj

2
+ zj (3.53)

F−1(z) =
2 (z − zj)

∆zj
(3.54)

The resulting transformed integrals can then be computed for each element

using analytical or numerical means. The left-hand side of Eqns (3.28)–(3.31)
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and the right-hand side of Eqn. (3.28) can be easily integrated analytically. For

Models I and II and some approximations of RE, the remaining right hand side

integrals can also be integrated analytically. For cases in which analytical inte-

gration was not convenient, we used Gauss-Lobatto quadrature up to 10 points.

For Eqns (3.30) and (3.31) for RE, we computed the integrals on both sides of

these equations using the same quadrature scheme. Two-point Gauss-Lobatto

quadrature corresponds to the trapezoidal integration rule, which yields simple

forms of the integrals involving only values at element boundaries, while higher

point quadrature schemes may increase accuracy. These effects were investigated.

3.3.4 Temporal approximation

We used an adaptive step-size, variable order, fixed leading coefficient back-

ward difference formula (FLC-BDF) method [51, 191] to meet the objectives of

this work and to produce a robust and efficient simulator based upon the LDG

spatial discretization method. The DAE integrator used estimates and controls

local truncation error. It has been applied to solutions based upon various spatial

approximations and shown to be advantageous compared to low-order or non-

adaptive counterparts in other cases [191, 123, 124]. We detail this approach in

the sections that follow.

3.3.4.1 Discrete form

The semi-discrete systems obtained from using LDG approximations for the

spatial derivatives can be written abstractly as a set of DAE’s

{F(t,y,y′)} = {0} (3.55)

where F represents a set of equations that depend on time t, a set of dependent

variables y, and a set of first-order derivatives with respect to time of these

dependent variables, y′. At time level n + 1, an ith order FLC-BDF converts
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Eqn. (3.55) to the fully discrete system

{
R(tn+1,yn+1, αn+1yn+1 + βn+1)

}
= {0} (3.56)

where αn+1 depends on i and the step-size, βn+1 is a function of the solution

at the i previous time levels [124], and R is referred to as the residual function.

Following this notation, we can identify the solution variable y for RE as y =

{Ψ M}T and rewrite Eqns (3.28)–(3.31) as

{Rs,j} = [Aj]{αMj + βj} − {Sj(Ψ)} (3.57)

{RM,j} = [Aj]{Mj} − {M̃j(Ψ)} (3.58)

where subscript j identifies quantities associated with the jth element. Vector Mj

contains degrees of freedom {M l
j |l = 0, . . . , k} in the jth element. Equation (3.57)

corresponds to Eqn. (3.28), in which the flux variable U is approximated using

Eqns (3.30) and (3.31), and Eqn. (3.58) corresponds to Eqn. (3.29). In Eqns

(3.57) and (3.58), matrix Aj is diagonal with entries {∆zj/(2l+1)|l = 0, · · · , k},

Sj(Ψ) is the LDG spatial operator given by the right hand side of Eqn. (3.28),

and M̃j is the vector corresponding to the right hand side of Eqn. (3.29).

We combine the local residuals into a global expression and write

{Rs} = [A]{αM + β} − {S} (3.59)

{RM} = [A]{M} − {M̃} (3.60)

While the resulting system currently has 2ne(k+1) equations, it can be reduced

to a system of ne(k+1) unknowns through a straightforward linearization process

given below.

3.3.4.2 Algebraic solution

The discrete systems given by Eqn. (3.59) and Eqn. (3.60) were solved using

Newton’s method with a quadratic and cubic line search, formulated as

{
Jn+1,sn

}
{∆y} = −

{
Rn+1,sn

}
(3.61)
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where ∆y = yn+1,sn+1 − yn+1,sn and sn is a nonlinear iteration index. The

Jacobian matrix J was formed by numerically differentiating Eqn. (3.56) with

respect to y

[Jn] =

[
∂Rn

∂y

]
(3.62)

The Newton iteration form for Eqns (3.60) and (3.59) is


 A −D

αA −S′









∆M

∆Ψ




 =





−RM

−Rs




 (3.63)

where D = ∂M̃/∂Ψ, which is a block-diagonal matrix, and S′ = ∂S/∂Ψ. The

Jacobian matrix shown in Eqn. (3.63) has a simple structure, namely, the blocks

A and αA are diagonal, and −D is block diagonal. A simple manipulation of the

system converts the Jacobian matrix into a block upper-triangular matrix


 A −D

0 −S′ + αD









∆M

∆Ψ




 =





−RM

αRM −Rs




 (3.64)

We then solve the system

[−S′ + αD] {∆Ψ} = {αRM −Rs} (3.65)

and update ∆M with

{∆M} =
{
A−1

}
({D} {∆Ψ} − {RM}) (3.66)

To determine convergence of the nonlinear system, we use either the `2 norm

of the relative residual or the weighted root mean square (WRMS) norm of the

correction term

||∆y||2WRMS =
1

neq

∑

j

(
∆yj

εryj + εa

)
(3.67)

where neq is the size of the nonlinear system, and εr and εa are the relative and

absolute tolerance for the DAE integrator. The WRMS convergence test was

used unless noted otherwise.

The linear systems resulting from Newton’s method were relatively small and

banded, so we used a banded lower-upper decomposition solver to solve the linear

systems of equations resulting from the LDG-MOL approach.
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3.4 Results

3.4.1 Overview

The purposes of the computations performed were to investigate the conver-

gence rates and computational efficiency for LDG and LDG-MOL formulations

for a range of models with a special focus on RE. As a number of investigations

have indicated [222, 124, 31], there are several aspects of solution algorithms for

RE that can affect these measures. Aspects investigated in this work include the

following: spatial order, element interface conditions, nonlinear approximations,

integration methods, and temporal integration order. We detail the problems

and methods considered, efficiency measures, and computational results in the

sections that follow.

3.4.2 Test problems

We investigated convergence rates and computational efficiency for LDG

methods using Models I–III and set of five test problems. The purpose of con-

sidering Models I and II was to evaluate convergence rates independent of the

difficult nonlinearities associated with Model III (RE). All models are subsets

of a general formulation and Model I and II are special forms of the RE model,

which physically correspond to transient and steady-state flow in a homogeneous,

water-saturated porous medium, respectively. Given this correspondence, we de-

tail all test problems using notation associated with the RE model, for which the

methods used have been detailed.

Table 3.1 lists analytical solutions and simulation details for Problems I and

II. Problem I is a smooth, linear, transient application of Model I, which is

formally parabolic. Problem II is a smooth, linear, steady-state application de-

scribed by Model II, which is formally elliptical. Dimensionless forms of these

problems were solved using periodic boundary conditions as well as Dirichlet
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Table 3.1: Summary of simulation conditions for Problems I and II

Functions Problem I Problem II

φ(x, t) e−4π2t sin(2πx) sin(2πx)

φ(x, 0) sin(2πx) sin(2πx)

D 1.0 1.0

f - 4π2 sin(2πx)

Ω [0, 1.0] [0, 1.0]

t [0, 0.02] -

boundary conditions. These problems were analyzed because they possess suf-

ficient regularity to support a careful analysis of convergence characteristics of

the methods.

Table 3.2 summarizes the simulation details for Problems III–V, which are

applications of RE. Problem III is a standard test problem [250, 281, 191, 217]

in which the auxiliary conditions lead to a moderately sharp infiltration front

propagating through the domain without the development of saturated condi-

tions. Problem IV models vertical infiltration with hydrostatic equilibrium as

the initial condition, auxiliary conditions, and constitutive relation parameters

that together result in an extremely steep infiltration front in both space and

time [217]. Problem V involves the symmetric horizontal redistribution of a high

saturation region introduced as an initial condition. Problems III and IV were

used to evaluate computational efficiency and Problem V was used to evaluate

symmetry properties of the various LDG-MOL methods investigated.

3.4.3 LDG schemes

We investigated many combinations of element interface conditions, nonlin-

earity approximations, trial solution polynomial orders, and integration methods.

Table 3.3 summarizes a representative and illustrative set of these combinations
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Table 3.2: Summary of simulation conditions for Problems III–V

Variable Problem III Problem IV Problem V

θr (-) 1.020× 10−1 9.300× 10−2 9.300× 10−2

θs (-) 3.680× 10−1 3.010× 10−1 3.010× 10−1

αv(m
−1) 3.350× 100 5.470× 100 5.470× 100

nv 2.000× 100 4.264× 100 4.264× 100

Ks(m/day) 7.970× 100 5.040× 100 5.040× 100

ρ0(kg/m3) 9.982× 102 9.982× 102 9.982× 102

d (-) 1.0 1.0 0.0

γ(1/m) 4.797× 10−6 4.797× 10−6 4.797× 10−6

Ω (m) [0, 0.3] [0, 10] [0, 10]

t (day) [0, 0.25] [0, 0.25] [0, 3.0]

ψ0 (m) -10.0 -z -10.0 for [0,4)∪(6,10]

0.1 for [4,6]

ψb(0) (m) -10.0 0.0 -10.0

ψb(zl) (m) -0.75 0.1 -10.0

that will be discussed. These schemes are identified with labels of the form Aa-

Fb, with a = 0, 1, 2, 3 distinguishing the Gauss-Lobatto quadrature points used

for the integrals that appear in Eqns (3.28)–(3.31), and b = 0, 1 corresponding

to the flux choices Ψ+, U− and (Ψ− + Ψ+) /2, (U− + U+) /2, respectively.

A0-F0 and A0-F1 were used to evaluate the convergence rates of the LDG

method for smooth problems. To minimize numerical integration error, high-

order Gauss-Lobatto quadrature was used. A1, A2, and A3 were studied to

evaluate a candidate set of LDG schemes suitable for solving RE. A1 used a

trapezoidal quadrature rule for all the spatial integrals involved in the flux ap-

proximations. Although the trapezoidal integration is less accurate than a higher

order integration, A1 together with one-sided numerical fluxes (A1-F0) bears the
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Table 3.3: Spatial schemes

Label Number of quadrature points Interface conditions Order, k

A0-F0 QM : 10; Q1: 10; Q2: 10 Ψ+, U− 0–3

A0-F1 QM : 10; Q1: 10; Q2: 10 Ψ
−

+Ψ
+

2
, U−

+U+

2
0–3

A1-F0 QM : 5; Q1: 2 ; Q2: 2 Ψ+, U− 1

A2-F1 QM : 5; Q1: 3; Q2: 2 Ψ
−

+Ψ
+

2
, U−

+U+

2
1

A3-F0 QM : 5; Q1: 3; Q2: 3 Ψ+, U− 1

most compact stencil, which can be advantageous in terms of computational ef-

fort. A2-F1 used Simpson’s rule for Eqn. (3.30), the trapezoidal rule for Eqn.

(3.31), and average numerical fluxes. A3, used Simpson’s rule for both Eqns

(3.30) and (3.31) and one-sided numerical fluxes. We restricted the spatial in-

tegration order to be no higher than third order (Simpson’s rule) and the LDG

spatial order to be linear, since we found that increasing either the integration

order or the approximation order did not lead to significant improvement of the

accuracy. This should be expected as the solution for RE typically lacks sufficient

smoothness needed for achieving global improvement by using uniformly higher

order approximations.

In addition to the spatial schemes summarized above, we also evaluated the

set of nonlinear approximations summarized in §3.3.3.3. The penalty term C11 =

1 was only applied when needed to enforce Dirichlet boundary conditions. As a

further basis for comparison, we solved Problem III and IV using a cell-centered

FD-MOL [217] approach based on arithmetic mean conductivity approximations.

The temporal integration methods used in FD-MOL were identical to those used

in the LDG-MOL method.

To evaluate the effect of higher order temporal integration on numerical effi-

ciency, we compared efficiency of the LDG-MOL approach as a function of the

maximum order of temporal integration allowed within the DAE integrator. The

low-order time integration method was equivalent to a backward Euler adap-
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tive (BEA) strategy, which has been examined for other spatial discretization

approaches [191, 124]. We consider BEA to be superior to the fixed time-step

method or heuristic adaption strategies that are routinely used to solve RE,

because the step-size is automatically adjusted to meet the requested error tol-

erances without significant computational overhead [123].

3.4.4 Efficiency Measures

In order to evaluate the approaches considered in this work, we used a variety

of methods to quantify the error in the numerical approximations and the com-

putational effort required to compute these approximations. We considered three

classes of error: spatial, temporal, and total spatial-temporal, and we considered

two measures of computational effort.

To compute the error in a numerical solution, one needs a reference solu-

tion that is either analytical and exact in nature or a highly resolved numerical

solution that has small error, and measures of the differences between the approx-

imate and reference solutions. For Problems I and II, analytical solutions were

used as the reference solutions. For Problems III and IV, dense grid solutions

were computed using continuous cubic-spline approximations of cell-centered FD-

MOL solutions [217] computed using a uniform grid spacing consisting of 36,451

nodes and εa = εr = 10−8. To evaluate temporal approximation error, the refer-

ence solution was computed using an identical spatial approximation to the case

for which the comparison was desired, but highly resolved in time by selecting

εa = εr ≤ 10−8. Problem V was only used to evaluate symmetrical properties of

the solution and was not evaluated for computational efficiency.

The error between approximate numerical solutions and the reference solution

was quantified in terms of differences in Ψ using discrete Lm (m = 1, 2) norms

with high-order (ten-point) numerical quadrature

εLm =
(
∑ne

j=1
∆zj

2

∑10
q=1 |Ψ

n
j,q − ϕ

n
j,q|

mgq)
1/m

zl
(3.68)
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where the superscript n denotes the time level, Ψn
j,q is the approximate solution

evaluated at quadrature integration points on element Ωj , ϕ
n
j,q is the reference

solution at the corresponding points, and gq is the corresponding Gauss-Lobatto

quadrature weight. Ten-point quadrature was sufficiently accurate to ensure that

the approximate error integrals were insensitive to this selection. To evaluate

norms of temporal error alone, εt,Lm , Eqn. (3.68) was modified by substituting

the consistent reference, time-resolved solution Φn
j,q in place of the fully resolved

reference solution ϕnj,q.

We also considered Lm error norms computed using midpoint quadrature,

since this is commonly used for FD approximations

εcLm
=

(
∑ne

j=1 ∆zj |Ψn
j − ϕ

n
j |
m)1/m

zl
(3.69)

where Ψn
j is the approximate solution at the element center at time level n, and

ϕnj is the corresponding reference solution.

We evaluated error in the L2 norm for Problem I and II in order to compare

our results with available theoretical and computational results [26, 87, 83, 88,

78]. While both L1 and L2 error measures have been used in the RE literature

[261, 281, 222, 292, 217], L1 errors were used to evaluate Problems III and IV.

The relative performance of the methods under consideration was similar for

both the L1 and L2 error norms.

We used two approaches to evaluate computational effort: the number of de-

grees of freedom (ndofs) in the solution and the central processing unit (CPU)

time. The former approach adjusts for the increased number of degrees of free-

dom required by LDG methods in comparison to traditional FD and conforming

finite element methods. This approach was used to judge the convergence charac-

teristics between methods on an even footing. We also evaluated efficiency using

CPU time as a measure of work, which implicitly assumes a similar efficiency of

implementation among the methods compared.
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3.4.5 Computational results

3.4.5.1 Problems I and II

Problems I and II were examined to evaluate the spatial error as a function

of the LDG scheme used. These problems possess the underlying smoothness

needed to support a meaningful investigation. Because the focus of these sim-

ulations was on spatial error, all simulations for Problem I were performed us-

ing highly resolved time integration methods, which were achieved by setting

εa = εr = 10−12. Problem II is an elliptical problem, which did not require time

integration.

Figure (3.1) illustrates the spatial error in Ψ and the convergence rates ob-

served using LDG-MOL scheme A0-F0 with C11 = 0 and periodic boundary

conditions. Similarly, Table 3.4 summarizes the convergence rates achieved for

Problem I using several different schemes for both Ψ and U with Dirichlet bound-

ary conditions. These convergence rates were consistent with the error analysis

and numerical results given in the literature, in which the order of convergence

for the LDG method varies with definitions of the numerical fluxes [83], element

interface conditions, and use of the C11 penalty term [83, 88, 78]. For scheme

A1-F0, A2-F1, and A3-F0, which use linear approximations, schemes based on

average numerical fluxes had convergence rates of order 1 for both Ψ and U , while

approximations with one-sided numerical fluxes resulted in convergence rates of

1.5 and 2 for Ψ and U , respectively.

The convergence rates obtained for Problem II matched those obtained for

Problem I in general. This was expected, since temporal integration error was

minimized in Problem 1. An exception to this general correspondence was cases

where C11 = 0, which were not applicable since the LDG method for elliptic

problems requires C11 > 0 [88, 56]. We further note that the linear system

resulting from the LDG method is symmetric for linear problems like Problem I

and II [14, 56].
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Figure 3.1: LDG convergence rates for scheme A0-F0 applied Problem I.

Table 3.4: Convergence rates for Problem I

Schemes Convergence rate (for Ψ; U)

A0-F0 with C11 = 0 k + 1; k + 1 (even)

k + 1/2; k + 1 (odd)

A0-F0 with C11 = 1 k + 1; k + 1

A0-F1 with C11 = 0 k + 1; k + 1 (even)

k; k (odd)

A0-F1 with C11 = 1 k + 1; k + 1 (even)

k + 1; k (odd)

A1-F0 with C11 = 0 1.5; 2 (k=1)

A2-F1 with C11 = 0 1; 1 (k=1)

A3-F0 with C11 = 0 1.5; 2 (k=1)
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Figure 3.2: Pressure head profiles for Problem III for t = 0.05, 0.10, 0.15, 0.20
and 0.25 days.

3.4.5.2 Problem III

Table 3.5 summarizes the numerical experiments we performed to solve RE

using the LDG schemes listed in Table 3.3 for Problem III. Runs 1–7 facilitated

investigations of the spatial approximation schemes, while Runs 8c–29c allowed

us to compare the high-order LDG-MOL approach to the BEA LDG-MOL ap-

proach.

Figure (3.2) shows results from Runs 1b–3b and illustrate significant varia-

tions of smoothness for this problem, which is typical for many problems modeled

by RE. Figure (3.2) also shows that the LDG-MOL method was capable of resolv-

ing solutions for RE adequately using a relatively coarse discretization (ne=100).

Among the schemes we investigated, A1-F0 generated more diffusive solution

than A2-F1, because of the uniform use of low-order trapezoidal rule integra-

tion. A2-F1, which used Simpson’s rule for integration in Eqn. (3.31), generated
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Table 3.5: Summary of discrete approximation conditions for Problem III

Run† Spatial scheme Temporal ne εa = εr

method

1[a-d] A1-F0, KINT MOL 50, 100, 200, 400 10−6

2[a-d] A2-F1, KINT MOL 50, 100, 200, 400 10−6

3[a-d] A3-F0, DIR-KAI MOL 50, 100, 200, 400 10−6

4b A3-F0, LIN-KAI MOL 100 10−6

5b A3-F0, DIR-KINT MOL 100 10−6

6b A3-F0, DIR-KUI MOL 100 10−6

7b A3-F0, DIR-KUINT MOL 100 10−6

[8-12]c A2-F1, KINT BEA 200 10−2, 10−3, 10−4,

10−5, 10−6

[13-18]c A2-F1, KINT MOL 200 10−2, 10−3, 10−4

10−5, 10−6, 10−10

[19-23]c A3-F0, DIR-KAI BEA 200 10−2, 10−3, 10−4,

10−5, 10−6

[24-29]c A3-F0, DIR-KAI MOL 200 10−2, 10−3, 10−4

10−5, 10−6, 10−10

† alphabetical qualifier corresponds to the spatial discretization given by ne
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Figure 3.3: Comparison of the LDG and FD methods for Problem III.

solutions with sharper fronts, although some small undershoots appeared ahead

of the infiltration front at this discretization level. These small undershoots were

caused by the choice of average numerical fluxes and the relatively coarse spatial

discretization. As we refined our spatial discretization level (e.g. ne = 800), these

undershoots vanished. Moreover, including a moderate penalty term C11 = 0.1

also suppressed these small oscillations at coarser grids (e.g. ne = 200). A3-F0,

which used the more accurate DIR conductivity approximation, generated the

most accurate solutions.

The accuracy of the these LDG schemes as a function of ndofs is shown in

Figure (3.3), along with a comparison to the FD method. While we quantify

the accuracy mainly based on the same norm εL1
, we also show error norm εcL1

for the FD solution since it is commonly used in the literature. The different

LDG schemes generated comparable convergence rates, and increased accuracy

was observed following the order: A1-F0, A2-F1, FD, and A3-F0.
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Figure 3.4: Computational efficiency for Problem III using the LDG method: (a)
temporal error for Runs 8c–17c and 19c–28c, and (b) total error for Runs 8c–17c
and 19c–28c.

We next investigated the performance of different approaches of evaluating K

values. Since A3, unlike A1 or A2, included interior points in Eqn. (3.31), either

the LIN or DIR approach was used to estimate K values that were not located

on element interfaces. A comparison of results from Run 3b and 4b indicates

that using the DIR approach reduced the L1 error by nine times compared with

estimating K using the LIN approach.

In order to compare different methods for evaluating interface conductivity

values, we solved Problem III using algorithm A3-F0 with DIR for the same

discretization (ne = 100) with KAI, KINT, KUI, and KUINT. We found that

among these interface conductivity evaluation methods, KUINT produced the

most diffusive solutions and hence significantly larger errors; KAI was the most

accurate; and KINT and KUI resulted in errors that were two times and three

times larger than KAI, respectively.

Figure (3.4) shows the computational efficiency of the high-order LDG-MOL
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approach compared to the corresponding BEA approach for results from Runs

8c–29c. The fifth-order LDG-MOL approach was significantly more efficient than

the first-order LDG-MOL approach. For example, the CPU time required for

scheme A3-F0 to reach εt,L1 = 10−3 was approximately an order of magnitude less

for the high-order method compared to the low-order method. Figure (3.4) also

shows that the low-order method can require orders of magnitude more CPU time

compared to the high-order method to reach the point where the temporal error is

insignificant compared to the spatial error; increased temporal accuracy beyond

this point is wasteful for any method. Compared to A3-F0, A2-F1 produced

higher spatial error, which means that temporal error was less significant for the

overall solution and less accurate temporal accuracy was justified for this case.

3.4.5.3 Problem IV

Table 3.6 summarizes the numerical experiments we performed to solve RE

using the LDG schemes listed in Table 3.3 for Problem IV. Runs 30–32 facilitated

comparisons of different LDG schemes; Runs 32b–36b provided a basis for com-

parison of K estimation approaches; and Runs 37c–58c allowed us to evaluate

temporal integration approaches.

Figure (3.5) compares solutions obtained using three different algorithms for

Problem IV, corresponding to Runs 30b–32b, and Figure (3.6) shows the cor-

responding convergence rates for each of these schemes and the FD method.

The infiltration fronts were steep for this problem with only two or three ele-

ments spanning the front, providing a rigorous test for any numerical method.

The maximum errors produced at the front dominated the overall errors, and

all three approaches were able to resolve the solution using a relatively coarse

grid (ne = 100). The low-order integration of algorithm A1-F0 produced a solu-

tion with flat segments. Algorithms A2-F1 and A3-F0 provided more accurate

resolution of the steep front, and A3-F0, together with DIR-KAI K estimation,

resulted in a solution that was significantly more accurate than an equivalent FD
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Table 3.6: Summary of discrete approximation conditions for Problem IV

Run† Spatial scheme Temporal ne εa = εr

method

30[a-d] A1-F0 KINT MOL 50, 100, 200, 400 10−4

31[a-d] A2-F1 KINT MOL 50, 100, 200, 400 10−4

32[a-d] A3-F0 DIR-KAI MOL 50, 100, 200, 400 10−4

33b A3-F0, LIN-KAI MOL 100 10−4

34b A3-F0, DIR-KINT MOL 100 10−4

35b A3-F0, DIR-KUI MOL 100 10−4

36b A3-F0, DIR-KUINT MOL 100 10−4

[37a-41]c A2-F1, KINT BEA 200 10−2, 10−3, 10−4,

10−5, 10−6

[42a-47]c A2-F1, KINT MOL 200 10−2, 10−3, 10−4,

10−5, 10−6, 10−10

[48a-52]c A3-F0, DIR-KAI BEA 200 10−2, 10−3, 10−4,

10−5, 10−6

[53a-58]c A3-F0, DIR-KAI MOL 200 10−2, 10−3, 10−4,

10−5, 10−6, 10−10

a `2 relative residual convergence test
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Figure 3.5: Pressure head profiles for Problem IV for t= 0.05, 0.10, 0.15, 0.20,
and 0.25 days.
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Figure 3.6: Comparison of the LDG method and FD method for Problem IV.
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method.

We used A3-F0 with DIR to investigate different conductivity evaluation

techniques in Runs 32b and 33b and found that the DIR-KAI approach had 20%

less error than the LIN-KAI approach. This trend agreed with results found

for Problem III, although a larger difference between the two approaches was

observed for Problem III. Runs 32b and 34b–36b were used to investigate the

effect of different interface conductivity evaluation methods. We found that KAI

and KUI produced results with comparable accuracy; the L1 error generated by

KINT was 1.5 times larger than the error observed using KAI or KUI, while

KUINT produced more diffusive results and larger error. This trend was also

observed for Problem III. However, when these different interface conductivity

evaluation methods were tested with A2-F1, we found that the KAI or KUI

approach generated conductivities that were too small to mobilize the infiltration

front adequately, while KINT was a universally robust—albeit sometimes less

accurate—technique.

In order to analyze the mass-conservation properties of the LDG-MOL method,

we modified this test problem with a Neumann boundary condition ub(zl) =

−5.0 (m/day), a condition that allows us to simplify the mass balance calcula-

tions. We tested the mass balance errors using approximation conditions iden-

tical to Runs 30-32b. The global mass balance errors using A1-F0, A2-F1, and

A3-F0 are all less than 3.0× 10−8, indicating excellent mass conservation of the

LDG-MOL approach.

Figure (3.7) shows temporal error and total error at t = 0.25 days obtained

from Runs 37c–58c. As with Problem III, the higher order temporal approach led

to more rapid convergence rates and a more efficient method than the equivalent

low-order LDG-MOL approach. For a temporal error tolerance εa = 10−2, the

WRMS nonlinear solver convergence test performed poorly and was replaced by

an `2 relative residual convergence test. As a result, the CPU time used by both

DAE/MOL and BEA were greater for this value of εa than those observed when
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Figure 3.7: Computational efficiency for Problem IV using the LDG method:
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εa = 10−3.

When more accurate solutions were sought, we observed significantly more

efficient solutions using high-order methods compared to first-order methods.

As with Problem III, these differences became relatively less significant for those

cases in which the spatial error was larger, such as was observed using algorithm

A2-F1. Because of the steep fronts that characterized Problem IV, spatial error

for this case was more significant than for Problem III, hence there were re-

duced benefits of high accuracy temporal integration for Problem IV compared

to Problem III.

3.4.5.4 Problem V

Table 3.7 summarizes the numerical experiments we performed to solve RE

for Problem V. This small set of simulations was performed to investigate the

effect of the algorithm and the K estimation approach selected on the symmetry

of the computed solution. The reference solution for this problem is symmetric,

and it is desirable to have methods that preserve such features of a solution when

they exist.

Table 3.7: Summary of discrete approximation conditions for Problem V

Run† Method ne

59b A1-F0 KINT 100

60b A2-F1 KINT 100

61b A3-F0 LIN-KINT 100

62e A2-F1 KINT 2000

63b A2-F1 KUINT 100

64b A2-F1 KAI 100

65b A2-F1 KUI 100

Figure (3.8) shows the LDG-MOL solution obtained from Runs 59b–61b, to-
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Figure 3.8: Comparison of LDG schemes for Problem V at t= 3.0 days.

gether with a reference solution obtained on a denser grid using A2-F1 (Run

62e). One-sided numerical fluxes in A1-F0 and A3-F0 resulted in asymmetric

results. Moreover, at the coarsest discretization level (ne=100), they produced

overshoots on one side of the wetting front. Compared to full quadrature integra-

tion by A3, the trapezoidal rule used in A1 tended to decrease the magnitude of

the oscillations. We also found that the magnitude of these oscillations decreased

as we discretized our problem using finer grids. However, a large number of el-

ements was needed for the oscillations to vanish due to the extreme sharpness

of the solution. The scheme with averaged element interface conditions, A2-F1,

was able to resolve this problem with symmetric and oscillation-free solutions at

the coarse grid level shown in Figure (3.8).

In terms of the conductivity evaluation techniques, we found from Runs 60b

and 63b–65b that KAI and KUI performed poorly for this problem when used

together with A2-F1. This agreed with our results from Problem IV, where KINT

was the most robust conductivity evaluation technique. We attribute this result
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as well to the extremely sharp fronts that characterize this problem and thus

the need for very fine spatial discretization to adequately resolve this feature.

Averaging K over a larger region extends the range of spatial discretization

for which reliable solutions can be obtained, thus enhancing robustness—even

though such approaches are inherently less accurate in a fully resolved case.

3.5 Discussion

The above results show that variations of the LDG-MOL method were able

to resolve a range of RE test problems efficiently and robustly. For the infil-

tration problems represented by Problems III and IV, we found that all three

LDG schemes—A1-F0, A2-F1, and A3-F0—generally performed well. Among

these schemes, A1-F0 used a less accurate integration method but bore the most

compact stencil, which is appealing for computationally demanding simulations

and multidimensional problems. A3-F0 was the most accurate scheme among

the several schemes we tested. It allowed a more accurate conductivity rep-

resentation and demonstrated the potential advantage of using a higher order

spatial method over a standard FD method. On the other hand, the FD method

produced oscillation-free solutions for every discretization level. The extremely

sharp fronts associated with some of these test problems lack the smoothness

needed to capitalize fully on uniformally high-order methods, hence the LDG-

MOL approaches evaluated in this work showed only moderate improvements

compared to FD methods for such cases.

One potential shortcoming of using the one-sided element interface conditions

was that at coarse discretization levels, it relied upon the correct choice of the

numerical fluxes to obtain good results for some problems. If numerical fluxes

were chosen from the opposite direction (Ψ− and U+ in our case), undershoots

appeared in some cases. While the magnitude of the oscillation eventually van-

ished with finer discretizations, the restriction of using highly refined grids is
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not practical in many real applications. This drawback was illustrated in Prob-

lem V. At a coarse discretization level, A1-F0 and A3-F0 generated oscillations

on one side of the wetting front. On the other hand, the scheme with average

numerical fluxes resolved the solution without oscillations, which made it more

robust than the other two algorithms. We also note that the trapezoidal rule for

the flux equation used in A2 was necessary, since the combination of A3 and F1

introduced undershoots in some cases.

For the interface evaluation techniques we investigated in this work, we found

that KAI, KUI, KINT, and KUINT performed well with Problem III, which was

relatively smooth. However, KINT was superior when applied to problems with

very sharp fronts.

Comparison between a high-order LDG-MOL approach and its first-order

counterpart demonstrated the advantage of the high-order temporal discretiza-

tion methods over low-order ones. The relative performance of the high-order

LDG-MOL approach also depends on the target accuracy and the balance of

spatial and temporal error for a particular problem. For problems that are suffi-

ciently resolved in space, we found that the high-order integration method led to

much more efficient solutions than a first-order approach. As the spatial accuracy

decreased for less accurate schemes or for more difficult problems, the improve-

ment in terms of total error provided by high-order methods in time decreased,

reflecting the increased importance of spatial errors. Overall, the high-order

LDG-MOL achieved the same level of error at no more, and usually significantly

less, computational expense than its low-order counterpart.

Sharp spatial gradients are a common feature for unsaturated flow problems

described using RE. As a result, uniformly high-order approximations or uni-

formly spaced grids can be wasteful in term of computational work. It has been

shown that adaptive finite element methods, which increase the order of approxi-

mations where a solution is smooth and refine the mesh size where the solution is

not smooth, are more advantageous than non-adaptive approaches in many cases
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[171]. On the other hand, LDG approximations are essentially local without con-

tinuity restrictions across element boundaries, which makes them well-suited for

adaptive strategies. Such topics are deserving of further study.

3.6 Conclusion

In this work, we solved a one-dimensional RE problem using the LDG method

combined with a high-order temporal integration method that adapted both step-

size and approximation order based upon a formal error estimate. Based upon

this work, we draw the following conclusions:

• LDG-MOL methods can provide robust and efficient solutions to RE, even

for especially difficult problems. MOL was used as a way to introduce a

sophisticated temporal approximation for RE, which is capable of efficiently

controlling the temporal error to an insignificant level compared to the

spatial error.

• The choice of element interface conditions, numerical quadrature methods,

and conductivity evaluation methods had a significant impact on the perfor-

mance of the LDG solutions to RE. The scheme with higher order quadra-

ture and one-sided numerical fluxes (A3-F0) produced the most accurate

solution in some cases, but the scheme with trapezoidal integration for the

flux equation and average numerical fluxes (A2-F1) was more robust.

• The tradeoffs between robustness and accuracy are a result of extremely

sharp fronts that can develop for certain applications of RE. This feature

also affects the relative magnitude of advantages of high-order temporal

integration compared to traditional low-order approaches. Therefore, we

expect that an hp implementation of the LDG method combined with an

MOL approach will deliver improved performance for RE.
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Chapter 4

Adaptive Local Discontinuous

Galerkin Approximations to

Richards’ Equation

4.1 Introduction

Groundwater flow in variably saturated porous media is modeled by non-

linear conservation laws, and their accurate and efficient solutions are of great

importance. Solutions of the resulting partial differential equations (PDE’s) of-

ten exhibit a range of localized structures, such as steep infiltration fronts, along

with smooth transition regions. A good example is Richards’ equation, which

has been extensively used in modeling water-air systems in porous media, under

the assumption that the air phase remains at constant pressure. RE is a highly

nonlinear parabolic equation under unsaturated conditions, but degenerates to a

PDE of elliptic type when the soil matrix is fully saturated and water is consid-

ered incompressible. As a result, its solution combines dynamically moving sharp

fronts and smooth regions, which poses significant challenges to the robustness

and efficiency of many numerical methods.

Because of the difficulty associated with obtaining accurate and efficient so-



lutions for RE, there have been ongoing efforts to improve temporal and spatial

integration techniques [281, 222, 188, 191, 41, 120, 294, 123, 205], as well as

nonlinear and linear solution methods [245, 202, 282, 124]. Among these areas,

temporal discretization methods along with nonlinear and linear solver aspects of

solving RE, have been considered well-established compared to spatial discretiza-

tion. The implementation of variable order, adaptive time integration method

using a method of lines (MOL) framework to approximate RE, which dynamically

changes the time-step size and approximation order with formal error control, is

considered a milestone.

Advancing spatial discretizations is a primary focus of current active research.

A number of spatial discretization methods, including finite differences, mixed

finite elements, and discontinuous Galerkin finite elements have been combined

with the advanced time integration methods through the method of lines and

have demonstrated advantages of adaptive high-order time integration as opposed

to low-order counterparts. However, these spatial methods are largely domi-

nated by non-adaptive, fixed-order approaches. Although a fine, non-adaptive

discretization may provide accurate numerical solutions to certain RE problems,

the high computational costs associated may be prohibitive for complex mul-

tidimensional and large-scale simulations. Because of the time-dependent local

structure typical for RE, it is ideal that an ultimate numerical RE solver include

adaption in discretization size and order with error control in both space and

time. While there has been effort on constructing adaptive spatial discretization

methods, joint use of variable discretization size and order in both spatial and

temporal domain has received little attention.

Adaptive finite element methods, whereby the discretization size and/or ap-

proximation order changes dynamically during a simulation, offer greater flex-

ibility and improved efficiency for approximating solutions with varying local

structure. Three adaptive strategies frequently employed are mesh refinement

(h-refinement), order variation (p-refinement), and combinations of h and p re-
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finement (hp-refinement). On the other hand, the LDG method has received

increasing attention in computational fluid dynamics because of a number of at-

tractive features including mass conservativity, ease to extend to multiple spatial

dimensions, and hp well-suitedness, which are common for DG methods. Since no

interelement continuity is required, solutions can be defined on non-conforming

meshes. In addition, polynomials of arbitrary order can be used for each element,

making this method well-suited for hp refinement. While the hp LDG method

seems attractive, the realization of an effective hp method for practical compu-

tations of RE is a non-trivial task. Compared to a uniform discretization ap-

proach, the additional burden includes developing error indicators/estimators to

efficiently guide the adaption approach, constructing effective remeshing strate-

gies with data structures capable of managing discretization changes, and pro-

jecting solutions from one mesh to another efficiently while maintaining mass

conservation.

Here, we extend our previous work on LDG-MOL for RE and present two

adaptive LDG-MOL methods to approximate RE. Our objectives are (1) to for-

mulate adaptive LDG-MOL methods, which dynamically adapts the mesh as well

as the time steps; (2) to address necessary algorithmic components in the adap-

tive methods; and (3) to evaluate the accuracy and efficiency of the approximate

solutions for a range of test problems.

4.2 Background

4.2.1 Overview

There exist two types of conceptual paradigms for building spatially and

temporally adaptive discretizations to solve a PDE system, an MOL approach

and Rothe’s approach. The MOL is a popular approach, which first discretizes

a PDE spatially to formulate a system of semi-discrete ODE’s or DAE’s. Then,
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one can bring the existing mature time integration technology to bear on the

semi-discrete ODE/DAE systems [191, 217]. In contrast to the MOL approach,

a time discretization approach can be first applied to the PDE system to generate

a semi-discrete elliptic problem on which the elliptic solution technology can be

applied [31, 278] (Rothe’s method). While coupled space-time discretizations

exist [118, 117, 211], they tend to be more difficult to construct and are subject

to strong stability requirements for the original and dual problems [117]. While

we believe Rothe’s method and coupled space-time approaches have significant

merits in advancing PDE solution techniques, we focus on the MOL approach

and discuss the relevant background in the subsections that follow.

4.2.2 Temporal adaption

While there continues to be ongoing effort to improve temporal integration

methods [174], it is a common belief that temporal integration methods are ma-

ture compared to spatial discretization methods. The evidence partially lies in

the popularity of robust, efficient, and well-established packages that use vari-

able order, variable step size with formal error control [51, 210, 287, 281, 191,

124, 217, 205]. The mature temporal integration approach is commonly used

within the MOL framework, which formally decouples the temporal and spatial

approximations such that the temporal integration can be handled by sophis-

ticated algorithms and codes designed to solve systems of ordinary differential

algebraic equations. For a more detailed description of this method and review

of the method within the MOL context, see [51, 190, 217].

4.2.3 Spatial adaption

A number of water flow and solute transport problems in subsurface systems

exhibit localized features, such as penetration of sharp wetting fronts during

infiltration and sharp concentration fronts during convection-dominant solute
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transport. These localized features impose local spatial resolution requirements

that typically change with time and space. While a fixed fine mesh may provide

acceptable numerical solutions for such problems, high computational cost may

be prohibitive for large-scale multidimensional simulations with realistic auxiliary

conditions.

Dynamic mesh adaption provides a powerful means for reducing computa-

tional time and memory consumption when solving evolutionary partial differen-

tial equations. The approach is especially useful when the solution exhibits local-

ized behavior as in the case of a moving front where the change in solution occurs

over a small fraction of the domain. The generation of the adaptive mesh is often

guided by an error measure which quantifies the local spatial truncation error,

which, together with a mesh adaption strategy, forms a feed-back process leading

to economical discretizations for solution approximation. While a dynamically

adaptive mesh offers appealing advantages over a pregenerated, fixed mesh, dif-

ficulties caused by computational overhead, added storage, and additional error

due to mesh manipulation arise in designing dynamic mesh adaptation.

Many types of spatial adaptive approaches exist: (1) h methods, which refines

the mesh by subdividing it into finer ones while maintaining the fixed-order

approximations [108, 246, 217]; (2) p methods, which change the order of the

approximation over elements while maintaining the same mesh pattern [280, 8,

53]; (3) r methods, which relocate a fixed number of grid points over the domain

to minimize the error measure [55]; and (4) m methods, which switch spatial

approximation methods in different regions to achieve improved performance

[99, 97]. Combinations of these methods are also common, such as rh methods

[199, 234], mh methods [97, 48], and hp methods [105, 231, 247, 23, 166]. hp

methods have received particular attention over the last two decades.

A successful numerical model with mesh adaption contains three major com-

ponents: (1) a solver to approximate the continuous spatial and temporal op-

erator using discrete algebraic equations; (2) a method for identifying solution
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errors or other measures for resolution; and (3) a strategy to dynamically alter

the mesh to control/minimize the truncation error. The following subsections

provide brief discussions on methodologies relevant to our work from these three

aspects.

4.2.3.1 LDG-MOL solver

Discontinuous Galerkin (DG) finite element methods have made their way

into the main stream of computational fluid dynamics with a wide variety of

applications [88, 7, 26, 29, 75, 79, 172, 207, 297]. As one of the most popular

methods in the DG method family, the LDG method has received considerable

attention including consistency and stability analysis [87, 14] and application to

a wide range of physical problems including compressible and incompressible flow

[26, 82, 205], and contaminant transport in porous media [7, 98, 75, 76]. The LDG

method originated from a mixed setting as a mixed finite element method and has

several attractive properties including local mass conservation, flux continuity,

and the ability to handle complex geometries and unstructured, non-conforming

meshes. In particular, the discontinuous nature of DG methods enables the

LDG method as well as other DG methods to readily accommodate adaption

with both h and p type. Vigorous efforts have been ongoing on to develop hp

adaptive DG/LDG methods for a number of applications [47, 45, 267]. However,

a particular shortcoming of the LDG method as well as other DG methods is

that they require more degrees of freedom when computing a solution compared

to a continuous Galerkin (CG) finite element method with an equivalent order

of approximation. In response to this shortcoming, m methods that couple DG

and CG methods have been suggested [99, 97, 100].

The temporal approximations that have been combined with DG spatial dis-

cretizations have typically been forward Euler [61], total variation diminishing

Runge-Kutta discretization up to the third order [85, 84, 86, 7, 204], backward

Euler [254], and diagonally implicit Runge-Kutta discretizations [27]. Recently,
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the LDG method has been successfully combined with a fully adaptive FLC-BDF

time integrator using MOL [205] to solve RE.

There has been considerable work advancing the h or hp adaptive methods

within a DG framework to approximate PDE’s of hyperbolic type [167, 170,

169, 227], elliptic type [291, 80, 272], and parabolic type [168]. However, the

performance of adaptive DG methods for certain classes of problems, such as

nonlinear parabolic problems like RE, has not been fully investigated. While

formally a parabolic PDE model, RE can yield solutions with sharp fronts in

space and time under certain auxiliary conditions. Based on the characteristic of

RE and the good performance of spatially non-adaptive LDG-MOL methods for

RE, it is expected that the LDG-MOL solver together with an effective adaptive

technique will achieve improved performance for RE.

4.2.3.2 Error indicator/estimator

Insufficient spatial resolution is commonly recognized by error quantification

methods of a posteriori type. Depending on the characteristics of the problems

and available numerical techniques, these error quantification methods can be

heuristic error indicators or formal error estimators [179, 217]. A posteriori error

estimators can be derived by direct calculations using the finite element solution

and some data such as source terms, and boundary conditions [57]. This type

of error estimator for LDG methods has been developed for linear and nonlinear

elliptic problems [57, 54]. On the other hand, an implicit a posteriori error es-

timator requires solution of a local boundary value problem approximating the

residual equation. Such a posteriori estimators are more computationally de-

manding and only exist for limited range of problems [153] in a DG context.

In other cases, heuristic and inexpensive error indicators are often constructed,

usually using the first and second derivatives of domain variables [5, 212]. One

popular method used to construct an error indicator in the engineering com-

munity is to postprocess the approximated solution to obtain more accurate
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representations of the spatial gradient in terms of the solution variable and take

the difference of the postprocessed gradient and the gradient directly calculated

based on the solution. This method, commonly referred to as “gradient recov-

ery method”, can perform remarkably well for a wide range of applications [5].

Examples of such indicators can be found in Babuska and Rheinboldt [22], Kelly

[192], Zienkiewicz and Zhu [306]. Because most of the a posteriori error estima-

tors are restricted to model problems [212] error indicators have been exclusively

used in the RE literature, leading to meshes capable of capturing the evolution

of the variably saturated flow [74, 31, 217].

As solutions to RE involve sharp features evolving in both the spatial and

temporal domain, it is desirable that error indicators/estimators are able to ac-

count for the space-time behavior, as realized by a number of studies [31, 217].

The coupling of spatial and temporal behavior of the error indicators/estimators

occurs naturally in methods that couple space-time discretizations [117]. In other

cases, such error indicators/estimators inevitably include heuristics [217].

4.2.3.3 Adaptive strategies

h adaptive methods, originally designed for elliptic problems, have been the

most straightforward and widely used adaptive methods for solving problems in

sciences and engineering. An h adaptive strategy involves processing the error

information represented by error indicators/estimators to determine the refine-

ment/coarsening level on which a new mesh can be constructed. h remeshing

strategies are often oriented towards achieving a prescribed level of accuracy us-

ing a minimal number of elements with minimal computational cost. For Rothe’s

method, which discretizes the PDE of interest in time first to convert the PDE to

an elliptic problem, the accuracy control naturally leads to iteratively adapting

meshes and resolving until some prescribed error tolerance is met. However, for

RE problems with sharp front evolution in both time and space, neglection of the

solution evolution information in time may lead to inefficiencies [217]. For the
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MOL method with advanced temporal integration techniques, small time steps

needed to ensure the temporal accuracy often make spatial adaption at every

time step unnecessary and inefficient. To improve efficiency, the spatial adaption

can be performed at time steps much larger than the time steps used for inte-

gration [217]. In such cases, the accuracy control inevitably requires repeating

temporal integration over large time steps used for spatial adaption. Therefore,

care has to be taken in designing spatially adaptive strategies for RE to achieve

improved efficiency.

Compared to pure h adaptive methods, hp adaptive methods require the

choice of h or p type adaption for each element. Conceptually, it is more common

to believe that h refinements near singularities or steep fronts is more appropri-

ate. h refinement around the sharp regions succeeds due to a twofold effect. First,

the measure of elements where the local regularity is limited by sharp features

is reduced. Second, the measure of the elements where the solution is smooth

is increased, thereby rendering p refinement more effective, as the sharp features

become more localized [6]. In practice, it is a popular approach for elliptic prob-

lems to choose the order by selecting between p refinement and competitive h

refinement. However, this strategy becomes more expensive as the order of ap-

proximations increases [224] and possibly intractable for parabolic or hyperbolic

problems requiring many degrees of freedom and frequent spatial adaption. For

parabolic or hyperbolic PDE’s, decisions regarding h or p adaption for an ele-

ment often employs a regularity indicator to quantify whether the local solution

on the element is sufficiently “smooth.” While there are a variety of methods

to approximate the solution regularity in the hp literature [170, 6, 104], most of

them used ad hoc parameters based on the p convergence using different orders

of local approximations. On the other hand, the discontinuous feature of an DG

solution can be taken advantaged of and simple jump terms at the interelement

boundaries used to guide adaptive procedures [107, 224]. Good performance on

many applications notwithstanding [46, 30], hp methods have not been applied
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to RE to the best of our knowledge.

Adaptive methods requires data structures to store the mesh and manipulate

the mesh refinement and coarsening. The complexity of data structures for some

adaptive methods can be substantial [229]. A classic data structure that has

been widely used in adaptive finite element methods appeared in Demkowicz

[104], which employed singly linked lists to keep track of nodes and elements and

handle refinement/coarsening.

4.3 Approach

4.3.1 Overview

Our goal is to develop robust and efficient methods that have the flexibility

of adapting in both spatial and temporal domains. To achieve this goal, we pro-

pose two spatially adaptive methods capable of accommodating both h and p

type adaption, combined with variable order, variable step-size time integration

for solving RE. By using an MOL approach, the spatial discretization and adap-

tion are easily uncoupled from the adaptive global time integration. We use an

LDG spatial approximation because: (1) a non-adaptive LDG approach for RE

was shown to perform well [205]; and (2) it allows great flexibility for performing

both h and p adaption. The spatial adaption approach relies upon an effective

error indicator to identify elements where resolution is poor. Based on the error

indicator, elements can be marked with refinement or coarsening flags as appro-

priate, based on which a new mesh is constructed. A full hp adaption strategy

also requires a criterion on whether to apply h or p adaption. In principle, after

a region with relatively large error is identified, h refinement is performed where

the solution is non-smooth, while p refinement is performed where the solution

is smooth.

In this section, we first provide a summary of aspects of the problem formula-
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tion and the MOL-LDG approach, which are detailed in Li et al. [205]. We then

present our adaptive h and hp adaptive solution algorithms and address aspects

of our adaption approaches, including adaption procedures, various operators,

and implementation details.

4.3.2 Model formulations

RE is derived based on conservation of mass, Darcy’s law, and closure re-

lations expressing the relation among capillary pressure, water saturation, and

relative permeability (p-S-κ relations). We use a mass conservative form of RE

[32, 191, 124] that is applicable for modern DAE time integration methods. We

restrict the problem of concern to one dimension, although extensions of the

method being considered to higher dimensions are straightforward. We consider

∂(ρθ)

∂t
= −

∂u

∂z
, in Ω, t ∈ [0, T ] (4.1)

u = −ρK

(
∂ψ

∂z
+ ρd

)
(4.2)

with

ψ =
p

%0g
(4.3)

% = %0e
γ(ψ−ψ0) (4.4)

ρ =
%(ψ)

%0
(4.5)

K = kr(ψ)Ks (4.6)

Ks =
%0gks
µ

(4.7)

where % is the density of water, θ is the volumetric water content in the porous

medium, u is the mass flux, ψ is the water pressure head, p is the water pressure,

ψ0 is a reference water pressure head, %0 is a reference density of water corre-

sponding to ψ0, γ is a compressibility coefficient for water, g is the gravitational

acceleration constant, d ∈ [−1, 1] accounts for the orientation of gravity relative

to the spatial coordinate z, K is the effective hydraulic conductivity, Ks is the
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saturated hydraulic conductivity, kr is the relative permeability, ks is the intrin-

sic permeability of the porous medium, and µ is the dynamic viscosity of water,

Ω ∈ [0, zl] ⊂ IR1 is the spatial domain with boundary Γ; zl is the length of the

domain, and t ∈ [0, T ].

We chose the common van Genuchten [286] and Mualem [226] relations to

express θ (or effective saturation Se) and kr, respectively, as a function of ψ:

Se =
θ − θr
θs − θr

=





(1 + |αvψ|nv)−mv , for ψ < 0

1, for ψ ≥ 0
(4.8)

and

kr(Se) =





S

1/2
e

{
1−

(
1− S1/mv

e

)mv
}2

, for ψ < 0

1, for ψ ≥ 0
(4.9)

where θr is the residual volumetric water content, θs is the saturated volumetric

water content, αv is a parameter related to the mean pore-size, nv is a parameter

related to the uniformity of the pore-size distribution, and mv = 1− 1/nv.

The initial and boundary conditions for the RE model are

ψ = ψ0 in Ω, t = 0

ψ = ψb on ΓD, t ∈ [0, T ]

u = ub on ΓN , t ∈ [0, T ]

where ψ0 is the initial condition, Γ = ΓD∪ΓN with ΓD∩ΓN = ∅, ψb is a Dirichlet

boundary condition on the boundary ΓD, and ub is the mass flux specified on the

Neumann boundary, ΓN .

4.3.3 LDG-MOL approximations

The core LDG-MOL solution approach involves approximating the continuous

problem using a discrete LDG spatial approximation in space and a FLC-BDF

temporal approximation. Robust and stable nonlinear and linear solvers can

then be used to advance the solution in time. We provide a summary of the

spatial discretization, temporal discretization, and solver aspects of our approach
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relevant to this work in the subsections that follow. Detailed investigations on

various aspects of this approach can be found in Li et al. [205].

4.3.3.1 LDG spatial discretization

We write Eqns (4.1) and (4.2) in an expanded form [10, 7]

∂m

∂t
= −

∂u

∂z
+ f, Ω × [0, T ] (4.10)

m = ρθ (4.11)

v =
∂ψ

∂z
+ ρd (4.12)

u = −ρKv (4.13)

where v accounts for the driving force due to pressure gradients and gravitational

forces.

We divide Ω into ne non-overlapping elements Ωj = [zj−1/2, zj+1/2], j =

1, . . . , ne, with centers zj = (zj−1/2 + zj+1/2)/2, and length ∆zj = zj+1/2− zj−1/2.

A union of these elements

G =

ne⋃

j=1

Ωj (4.14)

is commonly referred to as a grid or mesh, based on which the spatial approxima-

tions are performed. The size and structure of the mesh controls the resolution

of the numerical method. A spatially adaptive method is to construct effec-

tive meshes providing sufficient resolution to various features in the solution and

consequently improve efficiency.

We construct a weak formulation on grid G using trial and test functions from

the broken Sobolev space of the form

W (Ωj) = {w ∈ L2 (Ω) : w|Ωj
∈ P kj(Ωj) ⊂ H1(Ωj), ∀j} (4.15)

where P kj(Ωj) is the set of polynomials of degree at most kj on Ωj . Note that

the degree kj may vary from element to element, allowing great flexibility in

performing p adaption.
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We approximate the continuous function m,ψ, v, and u by discrete trial so-

lutions M , Ψ, V , and U . We choose our trial and test functions to be Legendre

polynomials, which are denoted by N l
j , where l is a function index and j is an

element index.

We formulate a weak form of RE by multiplying Eqns (4.10)–(4.13) by test

functions N l
j and integrating Eqn. (4.10) and Eqn. (4.12) by parts over each

element to obtain
∫

Ωj

N l
j

∂M

∂t
dz =

∫

Ωj

∂N l
j

∂z
U dz −N l

j |
−
j+1/2Ûj+1/2

+N l
j|

+
j−1/2Ûj−1/2 +

∫

Ωj

N l
jf dz (4.16)

∫

Ωj

N l
jM dz =

∫

Ωj

N l
jρθ dz (4.17)

∫

Ωj

N l
jV dz = −

∫

Ωj

(
∂N l

j

∂z
Ψ +N l

jρd

)

dz

+N l
j|
−
j+1/2Ψ̂j+1/2 −N

l
j |

+
j−1/2Ψ̂j−1/2 (4.18)

∫

Ωj

N l
jU dz = −

∫

Ωj

N l
jρKV dz (4.19)

where the superscript + and − denote limit from the right and left side of the

element boundary, respectively. Û and Ψ̂ appearing in Eqns (4.16)–(4.19) are

singly defined values at element boundaries, which can affect the stability and

accuracy of the solution. We here choose one-sided values Ψ+ and U− for Ψ̂

and Û , respectively, while other possible options have also been investigated

[58, 78, 97, 205].

On physical boundaries, we have

Ψ̂ = ψb, on ΓD (4.20)

Ψ̂ = Ψ, on ΓN (4.21)

Û = U, onΓD, (4.22)

Û = ub, on ΓN (4.23)

where U and Ψ are the values taken from the interior of the domain and evaluated
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at the boundary.

Due to the orthogonal nature of Legendre polynomials, the solution V can be

readily resolved element by element in terms of Ψ by Eqn. (4.18). Furthermore,

U can be expressed in terms of V on each element using Eqn. (4.19) and then

eliminated from Eqn. (4.16). In addition, M in Eqn. (4.17) can be eliminated

from the system after applying the time integration method [see 191, 124, 205].

As a result, we only need to solve a linear system for the variable Ψ at each time

level.

There are three nonlinear functions in this RE formulation: two highly non-

linear functions K and θ, and a weakly nonlinear function ρ. As it has been

pointed out [205], conductivity evaluation methods is a critical component of a

robust algorithm. While many choices of evaluating conductivities at the element

boundaries exist [222, 205], we here only consider the arithmetic mean values of

the conductivities to evaluate K at the element interface.

When high-order integration is needed for Eqn. (4.19), K values in the ele-

ment interior are required. We consider two methods to approximate the interior

conductivity value: evaluating K using p-S-κ relations directly (DIR), and lin-

earizing the K values at the element interfaces (LIN). It is also necessary to

evaluate the nonlinear terms ρ and θ, which depend upon ψ as well. Because

the spatial gradients in ρ are generally small and evaluations of θ are local, we

evaluate ρ and θ using the functional dependence of these variables on Ψ directly.

The majority of the integrals in Eqns (4.16)–(4.19) can be computed analyt-

ically, while those containing general nonlinear p-S-κ relations are approximated

numerically, using the Gauss-Lobatto quadrature. We denote the quadratures

used in Eqn. (4.17) and Eqn. (4.19) by QM and QF , respectively.

4.3.3.2 Temporal discretization

We consider a variable order, fully adaptive time integration method for time

discretization. This method has received increasing attention in recent years and
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standard and mature packages are now available [210, 190]. This approach has

shown to be more robust and efficient than standard, low-order heuristic time

integration approaches in a number of studies [281, 191, 123, 124, 205].

We apply the FLC-BDF approach to approximate the temporal derivatives,

which adapts in step size and order with a formal error control. A full description

of this scheme is given in Brenan et al. [51], while detailed formulation together

with LDG spatial discretizations can be found in Li et al. [205].

4.3.4 Adaptive solution approaches

The goals of a successful spatially adaptive approach are twofold: (1) the

approach should lead to a discretization that corresponds to a solution with a

specified accuracy; and (2) the adaption should be achieved with a minimum

number of unknowns at minimal computational cost [232]. If the second criteria

is satisfied, a mesh generated by the approach should be an “optimal” mesh.

However, the highly nonlinear nature of RE, the lack of rigorous regularity and

convergence results for most numerical methods being used, together with the

limited computational resources to solve an optimization problem, largely defies

the pursuit of a truly optimal mesh.

With these considerations in mind, we propose two adaptive LDG-MOL ap-

proaches to approximate RE. They both use a simple but effective error indicator,

a remeshing strategy, and an LDG-MOL solution approach to solve RE. The first

approach is a straightforward adaptive strategy for finite element methods based

on estimation of errors for the already computed LDG approximations [104].

This approach uses a hierarchical mesh which is self-adaptive to arbitrary re-

finement level. The second approach is a novel and effective adaption approach

proposed by Miller et al. [217], which adapts spatially based on a local error indi-

cator reflecting the changes of the solution in both spatial and temporal domain.

It involves meshes at two levels: a coarse level with uniform discretization on

which a forward solve is applied to facilitate adaptive mesh generation, and a
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finer level with variably spaced elements on which a sufficiently accurate solu-

tion is obtained. We refer to the first and second approach K-level and two-level

spatial adaptive approaches, respectively. To facilitate the discussion on the two

methods, we first introduce a general adaptive framework to incorporate both

the K-level method and the two-level method.

A general adaptive approximation can be outlined using the following algo-

rithm starting from an initial solution Ψn=0 and an initial mesh Gn=0 , where n

denotes the time level and nT denotes the time level corresponding to T .

Algorithm 1 General adaptive framework

Require: Ψn=0 to be adequately resolved in space on Gn=0, and the operators

R,P, and S to be robust and sufficiently accurate

1: for n = 0 to n = nT do

2: Gn+1,0 ←R[Ψn(Gn)]

3: Ψn(Gn+1,0)← P[Ψn(Gn)]

4: Ψn+1(Gn+1)← S[Ψn(Gn+1,0)]

5: end for

Ensure: At each time level n, Ψn to be consistent and adequately resolved in

space and time within the bounds provided by the spatial error indicator and

temporal error criteria.

Three types of operators are used in Algorithm 1: R, P, and S. R represents

a remeshing operator, which generates a new mesh based upon error indicators

obtained from the solution Ψn; P is a projection operator, which introduces a

procedure to transfer a solution from one mesh to another. S represents the

solution process involving the LDG-MOL method with FLC-BDF temporal in-

tegration approach outlined in 4.3.3.

Line 1 defines a procedure to advance the approximate solution in time such

that the solution is obtained at a set of increasing macroscale time points tn

with time step ∆tn = tn+1 − tn. These time points tn are also the points when
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spatial adaption is executed. Due to the nature of RE for many sharp front

problems, large numbers of time steps varying over several orders of magnitude

are required to obtain a solution efficiently. Therefore, it is not computation-

ally practical to perform the spatial adaption strategy every time step. Instead

we perform the adaption only at so-called macroscale time points, which can

be uniform or non-uniform, depending on the characteristics of the solution and

the user’s requirement. Appropriately selected macroscale time steps are im-

portant to the performance of adaptive methods. In general, it is desirable

that these macroscale time steps be chosen in an adaptive fashion so that large

time-dependent characteristics of the solution are incorporated into the adaption

approach.

Line 2 defines a remeshing procedure to generate a new mesh G for the next

time level n+ 1 based on the solution at time level n. It implicitly assumes that

spatial truncation error dominates the total error so that reducing the spatial

truncation error by adaptively choosing the discretization size and order will sig-

nificantly decrease the spatial error as well as the total error. R operator defines

the central algorithm of the remeshing procedure, which involves two critical com-

ponents: error indicators/estimators and remeshing strategies. Adaptive algo-

rithms are typically based on an a posteriori error indicator/estimator computed

from the already computed solution Ψn. Based on effective error indicators, the

remeshing strategy should lead to a discretization that attempts to reduce the

dominant spatial error for solutions between tn and tn+1. For an hp finite element

method, the remeshing strategy also involves a procedure to choose h or p type

adaption. This is often done by incorporating a local regularity indicator and a

criterion to determine whether h or p type adaption should be applied.

Line 3 represents a projection procedure, which projects the solution at tn

on mesh Gn to a solution on mesh Gn+1,0, which provides an initial condition for

the solution approach from tn to tn+1. It is desirable for the operator P to be

inexpensive to compute and mass-conserving.
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Line 4 represents a solution procedure to solve the problem on a new mesh

Gn+1, which includes the spatial discretization approach and temporal integra-

tion outlined in 4.3.3. The FLC-BDF temporal integration adaptively controls

both the size of the time step and the order of the approximation to meet user-

prescribed tolerance and achieve efficiency [51]. It is desirable that the spatial

approximation is carried in a similar fashion such that a fully adaptive simulator

with formal temporal and spatial error control can be established. Towards this

direction, the solution procedure, allowing for refinement as well as coarsening,

is carried out iteratively, attempting to meet certain accuracy criteria. When

such iterations are needed, Gn+1,0 obtained from Line 1 becomes an initial mesh,

which is updated through each iteration until a prescribed error tolerance is met.

However, because of the decoupling of our spatial and temporal approximations

intrinsic for the MOL approach, we allow for a repeat of the macroscale tem-

poral solution. This potentially leads to increased computational overhead and

decreased efficiency [31].

While both the K-level and two-level approaches can be incorporated into

the general framework presented above, they differ in definition of the operators

involved in the framework. We therefore use subscripts K and T to identify the

operators specific for K-level and two-level methods, respectively. In addition,

subscripts h and hp are used to identify the operators associated with h and

hp type adaption, respectively. In the sections that follow, we first present two

adaptive approaches with pure h adaption, and then detail the extension of the

two-level method to hp adaption.

4.3.5 K-level adaptive approach

4.3.5.1 RK,h operator

The remeshing operator RK,h for a general h adaptive method requires an

error indicator (η), and a remeshing strategy. A typical algorithm used in an
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adaptive finite element method can be outlined as

Algorithm 2 RK,h operator

Require: Solution Ψn to be sufficiently accurate, spatial error to be dominant,

operator E to be capable of capturing the characteristics of error distribution,

and operatorMK,h to be effective.

1: ηn(Gn)← E [Ψn(Gn)]

2: Gn+1,0 ←MK,h[Gn,ηn(Gn)]

Ensure: Solution approach on Gn+1,0 from tn to tn+1 generates solutions with

approximately minimized spatial truncation error within the discretization

limitations specified.

This algorithm describes the approach to generate a new mesh Gn+1,0 based on

which the solution process to the next time step proceeds. Operator E represents

the heart of a spatially adaptive algorithm, which quantitatively measures the

quality of an approximate solution to the true solution. This takes the form of

an error indicator or estimator on the current mesh based on either heuristic

estimation or more rigorous finite element analysis. We consider here a popular

error estimator proposed by Kelly et al. [193] based on a gradient recovery concept

[5], which takes the form

ηj =

{
z2
j

24

[t(
∂Ψ

∂z

)

j−1/2

|

+

t(
∂Ψ

∂z

)

j+1/2

|]}0.5

(4.24)

where a jump operator at the element interface is defined as

t(
∂Ψ

∂z

)

j+1/2

|

=

(
∂Ψ

∂z

)−

j+1/2

−

(
∂Ψ

∂z

)+

j+1/2

(4.25)

This indicator is often used in conjunction with standard conforming finite

element methods, as it bears out practical experience that the accuracy of the

finite element approximation is related to the discontinuity of the finite element

approximation to the gradient on the interelement boundaries [5]. Moreover, it
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is also inexpensive to compute, which makes it preferable to an implicit error

estimation approach.

OperatorMK,h represents a remeshing operator, which generates h-type re-

finement or coarsening flags (lj) for each element on Gn, based on which the data

structure is then modified and a new mesh Gn+1,0 is constructed. The h remesh-

ing rule is such that an element on Gn either remains unchanged (lj = 0), or is

subdivided into 2lj (lj > 0) elements, or is coarsened (lj = −1). Similar to the

remeshing strategy described in Remacle et al. [253], the algorithm to determine

h adaption flags is given by

lj =






−1, for ηj <
ηmax

αhc

0, for ηmax

αhr > ηj ≥
ηmax

αhc

lmax − i, elsewhere

(4.26)

In this algorithm, α is a parameter to scale the error indicators, which can be

related to the scales of the error indicators or the asymptotic behavior of the

numerical methods. We here set α to be 10 as in Remacle et al. [253]. lmax is

the maximum refinement level prescribed by users; the refinement level for an

element can be determined by finding i such that ηmax/α
i+1 ≤ ηj < ηmax/α

i; and

hr, and hc, are both user-defined parameters to determine refining and coarsening

thresholds, respectively. For instance, if lmax = 3, hc = 3, and hr = 2, all

elements where ηj < ηmax/103 are coarsened; all elements where ηmax/103 ≤

ηj < ηmax/102 are untouched; all elements where ηj ≥ ηmax/10 are refined with

lj = 3; and all elements where ηmax/102 ≤ ηj < ηmax/10 are refined with lj = 2.

After generating a new mesh, we further smooth the mesh by restricting the

maximum ratio of sizes of two neighboring elements to be 2.

As we use the MOL to decouple the spatial and temporal approximation and

thus the spatial and temporal adaption, we only perform spatial adaption after

a completion of time integration at the macroscale time step. In order to suffi-

ciently resolve the solutions in spatial and temporal space, the sharp features in
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the solutions should be enclosed in the spatially refined regions during the com-

plete macroscale time step, which often leads to relatively small macroscale time

steps, frequent spatial adaption, and consequently decreased efficiency. In order

to improve the efficiency of the adaptive approach, a mesh buffering method has

proven to be an effective means of increasing the macroscale time step [67, 163].

We consider here a simple buffering method, which extends the refined region by

a fixed width that is equal to the size of a coarsest element in the mesh hierar-

chy. The refinement level for the buffer region is set to be lmax. The buffering

algorithm increases the macroscale time steps needed by increasing the number

of elements for a given mesh. As a result, there is a trade-off between the width

of the buffer region and macroscale time step size for optimal computational

performance.

The K-level remeshing strategy described above is self-adaptive, and thus

requires a rather flexible data structure that supports the recursive and arbitrary

refinement and coarsening efficiently. We adopted a classic approach similar to

[104], in which a singly linked list algorithm was implemented to manipulate the

hierarchical structure of the mesh and support mesh refinement and coarsening.

4.3.5.2 P operator

Operator P defines an approach for solution communication between meshes.

It is desirable for a reliable operatorP to introduce no oscillations while maintain-

ing comparable accuracy and mass conservation. We consider a straightforward

L2 local projection approach to obtain Ψn(Gn+1) using a five-point Gaussian

quadrature and denote this method by PΨ.

An alternative method, denoted by PM , is to locally project variable M from

one mesh to another, and then solve a local nonlinear problem given by Eqn.

(4.17) to obtain variable Ψ on the new mesh. While this method is more compli-

cated to implement, it strictly conserves the local discrete mass represented by

variable M .
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4.3.5.3 SK operator

SK operator represents the solution approach to advance the solution at tn to

the next macroscale time level tn+1. The macroscale time step ∆tn can be user

prescribed or automatically adaptive to satisfy certain criterion. We here consider

a simple heuristic adaptive approach as in Hundsdorfer and Verwer [176]. After

an appropriate macroscale time step is selected, we iterate the solution process

and remeshing procedure until an error measure is controlled within a prescribed

error criterion. We provide the steps and algorithms involved in this operator

below.

The first part of the operator SK involves a standard adaptive time step-

ping approach to determine a macroscale time step ∆tn such that the solution

change between the two successive macroscale time levels are controlled within

a prescribed tolerance τt. The macroscale time step ∆t is selected using

∆t = rsrt∆t
n (4.27)

with

rt = τt/D (4.28)

where D is the discrete L2 norm of the difference in pressure head at tn and tn+1,

which is explicitly ||Ψn+1 −Ψn||L2
, and rs is a safety factor.

The current time step is accepted if D ≤ τt, and the next time step ∆tn+1 is

set to ∆t. Otherwise, the current time step is rejected and then repeated with the

new time step ∆tn = ∆t. The solution approach from tn to tn+1 is carried using

the LDG spatial discretization and the FLC-BDF temporal integration approach

outlined in 4.3.3, which can be represented by an I operator, namely

Ψn+1(Gn+1)← I[Ψn(Gn+1),∆tn] (4.29)

Note that the integration steps used in operator I are independent of our macroscale

time steps, as the integration steps are of variable order and variable size in
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order to meet user-specified relative and absolute error criteria for local trun-

cation error, whereas the macroscale time steps only determine the time points

when the spatial adaption is needed. The integration operator proceeds over the

macroscale time step adjusting the microscale internal time step as needed until

the solution reaches tn+1.

Algorithm 3 SK operator (Part II)

1: ηn+1(Gn+1,0)← E [Ψn+1(Gn+1,0)]

2: if ||ηn+1||L1
> τs then

3: m = 0

4: repeat

5: Gn+1,m+1 ←MK,h[Gn+1,m,ηn(Gn+1,m)]

6: Ψn(Gn+1,m+1)← Ψn(Gn+1,m)

7: Ψn+1(Gn+1,m+1)← I[Ψn(Gn+1,m+1),∆tn]

8: ηn+1(Gn+1,m+1)← E [Ψn+1(Gn+1,m+1)]

9: m = m+ 1

10: until ||ηn+1||L1
≤ τs

11: end if

This part of the algorithm simply quantifies the magnitude that the solution

travels from tn to tn+1 using the changes between the solutions, and reduces the

macroscale time step when the solution change is beyond the prescribed tolerance

τt. Therefore, by choosing an appropriate τt, this algorithm ensures that spatial

adaption is performed sufficiently often so that the solutions in [tn, tn+1] are

adequately resolved by the spatially adaptive mesh. It also introduces a simple

mechanism to enlarge the macroscale time step when changes in the solution

are relatively small compared to the prescribed tolerance. While this adaptive

approach for choosing the macroscale time step is heuristic and straightforward,

it allows flexibility of performing spatial adaption according to the dynamics of

the problem. This serves as an advantage when time-dependent features of the
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solution profile vary at different time scales.

The second part of the algorithm described in Algorithm 3 involves recom-

puting solutions on a modified grid iteratively until some measure of the error

indicators satisfies a prescribed tolerance. Line 1 obtains error indicators for the

solution Ψn+1. If the discrete L1 measure of the error indicator is greater than

a user-specified spatial error tolerance τs, Line 4-10 are executed to iteratively

update the mesh, project the solution at tn to the new mesh, and resolve until

the tolerance τs is met. The success of this part of the algorithm has two re-

quirements: (1) each iteration should effectively reduce the solution error such

that the extra computational expense involved in the iterations can be justified;

(2) the change of the error indicators should faithfully represent the change of

the true solution error such that true error can be controlled. It is clear that

a non-iterative algorithm is a special case incorporated in this algorithm, which

can be achieved using a sufficiently high τs such that no iteration is needed.

4.3.6 Two-level adaptive approach

Another adaptive strategy we consider follows closely the adaptive approach

proposed by Miller et al. [217], who explored an inexpensive coarse mesh solution

at tn+1 to identify the region where the sharp fronts would propagate and then

use the information to guide the adaptive process. Because this method can

effectively capture the front movement in both spatial and temporal domain, it

has shown significant advantages over a corresponding uniform spatial discretiza-

tion. We present this two-level adaptive approach by detailing the algorithms

for operators in the general framework in Algorithm 1.

4.3.6.1 RT,h operator

This two-level adaptive strategy involves solution processes at meshes at two

levels, a uniformly discretized coarse mesh, and a finer adaptive mesh. The coarse

mesh Gc is a uniform coarse mesh that remains unchanged during the simulation.
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Algorithm 4 RT,h operator

Require: solution Ψn is sufficiently accurate and spatial error is dominant

1: Ψn
c (G

c)← P[Ψn(Gn)]

2: Ψn+1
c (Gc)← Sc[Ψ

n
c (G

c)]

3: ηn(Gc)← E [Ψn
c (G

c)]

4: ηn+1(Gc)← E [Ψn+1
c (Gc)]

5: ηn,n+1(Gc)← T [ηn(Gc),ηn+1(Gc),Ψn
c (G

c),Ψn+1
c (Gc)]

6: Gn+1,0 ←MT,h[Gc,ηn,n+1(Gc)]

Ensure: solution approach on Gn+1,0 from tn to tn+1 generates solutions with

approximately minimized spatial truncation error within the discretization

limitations specified

An appropriate choice of the coarse mesh should meet two criteria: (1) solutions

obtained on the mesh faithfully represent the evolutions of the solution; and (2)

the computational work involved in calculating the solution on the coarse mesh

is insignificant compared to the computational work on the adaptive fine mesh.

Obtaining a solution at tn+1 on Gc provides information regarding the dynamics

of the solution with time, which is valuable for generating an effective adaptive

mesh.

Line 1 represents projection of the known discrete solutions on a fine mesh

Gn to a coarse mesh Gc. The projected solution provides the initialization for

advancing the solution on the coarse grid from tn to tn+1.

Line 2 represents integration from tn to tn+1 on the coarse mesh. This step is

to obtain an approximate solution on the coarse mesh that is used to guide the

spatial mesh generation. Similar to operator SK , solution operator Sc adopts the

adaptive macroscale time stepping method to ensure sufficiently frequent spatial

adaption to capture the dynamics of solution propagation over time. However, as

the purpose of obtaining solutions on the coarse mesh is to guide mesh generation,

no error control is needed in Sc. While the time stepping algorithm involved in
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Sc is identical to SK , we note that since this operator only operates on a coarse

mesh, repeatedly reducing the macroscale time step to meet τt may have small

influence in terms of the overall efficiency of the two-level adaptive approach.

Line 3-4 represent the operations of obtaining error indicators at tn and tn+1

using solution Ψn
c and Ψn+1

c , respectively. These indicators are used to guide the

mesh generation.

Line 5 represents an operation, denoted by T , to incorporate solutions and

the error indicators at two time points tn and tn+1 into a new error indicator

which can be used to guide the remeshing procedure. We first normalize the

spatial indicator at tn and tn+1 to a dimensionless quantity η̄j ∈ [0, 1]

η̄j =
ηj − ηmin
ηmax − ηmin

(4.30)

where ηmax and ηmin are the maximum and minimal values of ηj for j = 1, . . . , ne

at the time level considered. We then simply consider the normalized pressure

difference in time as an indicator of the temporal change of the pressure profile,

which is given by

εtj =
∆Ψt,j −∆Ψmin

∆Ψmax −∆Ψmin
(4.31)

where ∆Ψt,j = |Ψn+1
j −Ψn

j |, ∆Ψmax and ∆Ψmin are the maximum and minimum

values of ∆Ψt,j for j = 1, . . . , ne, respectively. We then take

ηn,n+1
j = max(η̄nj , η̄

n+1
j , εtj) (4.32)

as our error indicator to guide the h refinement.

Line 6 involves an operator RT,h, which generates a new mesh based on the

integrated error indicator ηn,n+1. The criterion of determining the adaption level

for each element is

lj =





0, for ηj ≤

ηmax

αhr

max(lmax − i, lj±1 − 1), elsewhere
(4.33)

where i is obtained such that ηmax/α
i+1 ≤ ηj < ηmax/α

i. Compare to the K-

level method, the remeshing operatorRT,h greatly simplifies the implementation.

126



As operator MT,h only operates on the coarse mesh, no coarsening is required.

As a result, no hierarchical data structure is needed to maintain the element

generations, which simplifies the implementation complexities and significantly

reduces memory use.

4.3.6.2 ST operator

ST is an operator to calculate solution Ψn+1 on the adaptive fine mesh Gn+1

at macroscale time step tn+1. Since the macroscale time step ∆tn is determined

within operator RT,h, ST only involves the approach to integrate solution Ψn to

Ψn+1 using the LDG-MOL approach presented in 4.3.3, which is simply Ψn+1 ←

I[Ψn,∆tn].

4.3.6.3 Two-level hp adaptive approach

Because the LDG method does not enforce continuity at the element inter-

faces, both h and p type refinement are strictly local to elements being adapted,

offering great flexibility for performing hp adaption. While it is straightforward

to extend the adaption strategies to hp for both K-level and two-level adaptive

approaches, we only show an hp approach using the two-level adaptive approach

based on forward coarse mesh solve. The extra components needed for an hp

approach are included in the RT,hp operator, which is given below.

Compared to Algorithm 4, extra components involved in the hp adaptive

algorithm include: (1) estimating local regularity γ for a given solution, (2)

coupling the regularity indicators on the coarse mesh Gc at tn and tn+1 to a

single indicator to identify the smooth region common for solutions in [tn, tn+1],

and (3) making decisions on whether to apply h or p adaption for each element.

As a result, three new operators are used in the hp adaption algorithm: J , N ,

and MT,hp. Operator J defines an approach to estimate the local regularity of

the solution, which is required for choosing h or p adaption for a given element.

OperatorN is an operator to incorporate regularity indicators at two time points
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Algorithm 5 RT,hp operator

Require: Solution Ψn is sufficiently accurate and spatial error is dominant

1: Ψn
c (G

c)← P[Ψn(Gn)]

2: Ψn+1
c (Gc)← S[Ψn

c (G
c)]

3: ηn(Gc)← E [Ψn
c ]

4: γn(Gc)← J [Ψn
c ]

5: ηn+1(Gc)← E [Ψn+1
c ]

6: γn+1(Gc)← J [Ψn+1
c ]

7: ηn,n+1(Gc)← T [ηn,ηn+1,Ψn
c ,Ψ

n+1
c ]

8: γn,n+1(Gc)← N [γn,γn+1]

9: Gn+1,0 ←MT,hp[Gc,ηn,n+1,γn,n+1]

Ensure: solution approach on Gn+1,0 from tn to tn+1 generates solutions with

approximately minimized spatial truncation error within the discretization

limitations specified

tn and tn+1 into a new error indicator which can be used to guide the hp adaption

procedure. Operator MT,hp represents a remeshing operator, which generates a

new mesh with both h and p refinement.

Line 4 and Line 6 represent the operation of obtaining regularity indicators

at tn and tn+1, respectively. We consider the approach proposed in Dolejsi et al.

[107], which employed jump terms at the interelement boundaries from the DG

solution to guide the adaptive procedure. This procedure is based on the obser-

vation that the interelement jumps in the approximate solution are of order O(1)

around discontinuities, but O[(∆z)2] in the areas where the solution is regular,

assuming ∆z is the size of an element under uniform discretization. While the

application of the jump terms as a regularity indicator deserves further theo-

retical justification, computational results in Dolejsi et al. [107] demonstrated

that this indicator works effectively with DG methods. In addition, it is very

inexpensive in practice. Therefore, the regularity indicator we use is based on a
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similar idea, namely

γj =

[
log(Ψ̄j)

log(∆zj)

]−1

(4.34)

where Ψ̄j is the normalized average jump term for element j, given by

Ψ̄j =
0.5
(∣∣qΨj−1/2

y
∣∣+
∣∣qΨj+1/2

y
∣∣)

Ψmax
(4.35)

Ψmax takes the maximum of the absolute values of pressure jumps across all the

interfaces.

Line 8 incorporate regularity indicators at two time points tn and tn+1 into

a new error indicator which can be used to guide the hp adaption procedure.

It is expected that regions marked by p refinement are smooth regions common

for solutions in [tn, tn+1], which is away from the region through which fronts

propagate during [tn, tn+1]. We simply consider taking maximum value of γn

and γn+1

γn,n+1
j = max(γn+1

j , γnj ) (4.36)

Line 9 represents explicitly the inputs of error and regularity indicators and

the production of a new mesh Gn+1,0. This operation generates h-type refinement

flags (lj) and p-type refinement flags (rj) for each element on Gc, guiding the

generation of the new mesh Gn+1. The p adaption rule is such that an element

on Gn either remains unchanged (rj = 0), or changes its approximation order to

kj + 1 (rj = 1). The algorithm involved in MT,hp can be given by the following

flow diagram shown in Figure (4.1).

This hp strategy simply relies on the regularity indicators to make the choice

between h and p refinement. When the regularity indicator on an element is

smaller than a user-defined parameter γr, the solution on the element is consid-

ered locally “smooth” and is flagged with p type refinement. Clearly, the choice

of γr depends on the asymptotic behavior of the solution as well as the resolution

of the coarse mesh and hence relies on empirical knowledge.
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Figure 4.1: Flow diagram for operatorMT,hp

4.4 Results

4.4.1 Overview

In order to meet the objectives of this work, we present the numerical results

to investigate the various aspects of the adaptive approaches, including both

h and hp adaptive LDG-MOL methods. The specific aims of these numerical

investigations were (1) to validate the adaptive LDG-MOL approaches and study

their convergence characteristics; (2) to compare the performance of the two

adaptive strategies considered; and (3) to address various issues regarding the

performance of our approach. We detail the test problems and adaptive methods

considered, the error and efficiency measures, and the numerical results in the

subsections that follow.
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4.4.2 Test problems

Table 4.1 summarizes the simulation details for the RE test problems. Prob-

lem I is a standard test problem that has been widely used in RE literature

[250, 281, 191, 217]. The solid medium properties together with the auxiliary

conditions lead to a moderately sharp infiltration front with varying smooth-

ness in solution profiles. Problem II models vertical infiltration with hydrostatic

equilibrium as the initial condition. The auxiliary conditions and constitutive

relation parameters combine to result in an extremely steep infiltration front in

both space and time [217], which poses significant challenges to the robustness

and efficiency of many numerical methods. These two test problems are standard

benchmark test problem in the RE literature [250, 281, 191, 217].

Table 4.1: Summary of simulation conditions for Problems I–II

Variable Problem I Problem II

θr (-) 1.020× 10−1 9.300× 10−2

θs (-) 3.680× 10−1 3.010× 10−1

αv(m
−1) 3.350× 100 5.470× 100

nv 2.000× 100 4.264× 100

Ks(m/day) 7.970× 100 5.040× 100

ρ0(kg/m3) 9.982× 102 9.982× 102

d (-) 1.0 1.0

γ(1/m) 4.797× 10−6 4.797× 10−6

Ω (m) [0, 0.3] [0, 10]

t (day) [0, 0.25] [0, 0.25]

ψ0 (m) -10.0 -z

ψb(0) (m) -10.0 0.0

ψb(zl) (m) -0.75 0.1

ub(zl) (m) (-) (-)
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4.4.3 Method summary

As a number of investigations have indicated [205, 31, 124, 222], there are

several aspects of solution algorithms for RE that can affect the accuracy and

efficiency of the numerical method being considered for RE. As a subset of these

aspects regarding non-adaptive discretizations for LDG-MOL has been studied

in Li et al. [205], we select a fixed set of parameters shown in Table 4.2 regarding

these aspects while focusing on investigating the aspects related to the adaptive

methods. The application of the adaptive methods is not restricted to these

choices.

Table 4.2: Parameters for the LDG-MOL method

Variable K-level h Two-level h Two-level hp

Interior K evaluation DIR LIN on Gc; DIR on G LIN on Gc; DIR on G

kj 1 1 1-2

QM 5 5 5 + 2(kj − 1)

QF 3 3 3 + 2(kj − 1)

It has been shown that compared to direct evaluation method for K, K

linearization approach leads to more robust, but less accurate solutions [205].

As robustness is the primary concern for the coarse mesh solve in the two-level

method, we choose LIN to approximate K in the element interior. For h adaptive

methods, we use the linear approximation for elements on the entire mesh. For

the hp adaptive method, increases in number of points in quadratures are required

for higher order approximations.

We investigated many combinations of the parameters needed for the K-level

and two-level adaptive methods. Table 4.3 lists the set of parameters we use

for the simulation results we will show. These parameters are user-specified and

problem independent.
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Table 4.3: Parameters for the adaptive methods

Variable K-level h Two-level h Two-level hp

α 10.0 10.0 10.0

hc 3.0 (-) (-)

hr 2.0 1.0 1.0

rs 0.8 0.8 0.8

γn,n+1
r (-) (-) 0.6

For both adaptive methods, we choose an initial mesh containing 25 uniform

elements to be the coarsest mesh, based on which spatial adaption is performed.

This coarsest mesh also serves as the fixed coarse mesh used by the forward solve

for the two-level method. We also restricted our refinement level relative to the

coarsest mesh to be 5, which amounts to a minimal mesh size of zl/(25× 25).

4.4.4 Efficiency measures

In order to evaluate the approaches considered in this work, three classes of

error are often of concern: spatial, temporal, and total spatial-temporal error. As

the temporal integration approach we use as well as the temporal error control

are well-established, we only focus on spatial error in this study by controlling

the temporal error tolerance such that the spatial error dominates the total error.

To compute the error in a numerical solution for RE, one needs a reference

solution and measures of the differences between the approximate and reference

solutions. In practical applications, analytical solutions to RE are often not

possible particularly if one uses realistic p-S-κ relations to simulate various hy-

drological events with different boundary conditions in heterogeneous field. We

use dense grid solutions obtained from continuous cubic-spline approximations

of cell-centered FD-MOL solutions [217] computed using a uniform grid spacing

consisting of 36,451 nodes and εa = εr = 10−8.
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The error between approximate numerical solutions at time tm with time level

m and the corresponding reference solution was quantified in terms of differences

in Ψ using discrete L1 norms with high-order (ten-point) numerical quadrature

denoted by εmL1. In order to quantify the spatial error throughout the temporal

domain, we integrate the spatial error εmL1 over [0, T ] using trapezoidal rule and

normalize it with the length of the temporal domain T , which is given by

εT,L1 =

∑m=mT

m=1 0.5∆tm(εm−1
L1 + εmL1)

T
(4.37)

where mT is the time level corresponding to T , ∆tm = tm−tm−1, ε0
L1 corresponds

to the error in the initial condition so ε0
L1 = 0. Note that tm is different from the

macroscale time point tn as tm is the time point that solution is needed for error

calculation so they can be chosen arbitrarily without impact on the performance

of the adaptive methods we consider. For convenience, we use uniform time

interval ∆tm = 0.025 day.

In order to investigate the performance of our proposed adaptive methods,

we compare our spatially adaptive LDG methods with a fixed uniform LDG

discretization method. Our goal is to achieve the same accuracy as the uniform

LDG method using a minimal number of degrees of freedom and minimal CPU

work time. We therefore consider the mean of number of degrees of freedom at

each macroscale time step

Ndofs =

∑n=nT

n=1 Nn
dofs

nT
(4.38)

where Nn
dofs is the number of degrees of freedom used at time tn. Ndofs adjusts the

changes in number of degrees of freedom caused by h adaption and hp adaption.

We also consider CPU time as it is the ultimate quantity we aim to minimize.
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Table 4.4: Summary of adaptive simulation conditions for Problem I

Run† Method τt τs lmax

1[a,b,c,d,e,f] Uniform (-) (-) 0, 1, 2, 3, 4, 5

2[a,b,c,d,e] K-level, Non-iterative 0.25 (-) 1, 2, 3, 4, 5

3[a,b,c,d,e] K-level, Iterative 0.25 1.0, 0.5, 0.2, 0.1, 0.05 1

4[a,b,c,d,e] Two-level, h Adaptive 0.25 (-) 1, 2, 3, 4, 5

5[a,b,c,d,e] K-level, Iterative 0.15 1.0, 0.5, 0.2, 0.1, 0.05 1

6[a,b,c,d,e] Two-level, hp Adaptive 0.25 (-) 1, 2, 3, 4, 5

† alphabetical qualifier corresponds to the spatial discretization given by lmax for the uniform
method, the non-iterative K-level method and the two-level method, and τs for the iterative K-level
method

4.4.5 Numerical results

4.4.5.1 Problem I

Table 4.4 summarizes the simulation parameters in our numerical experi-

ments for solving Problem I using the adaptive methods we propose. Different

discretization levels are obtained by varying lmax for the non-iterative K-level

method and the two-level method. For the iterative K-level method, we varied

the spatial tolerance τs with lmax = 1. While the choice of lmax for the iterative

K-level method is not optimal, the setting demonstrates the performance of our

methods and facilitate numerical comparisons.

Figures 4.2 and 4.3 show the pressure head profiles and the corresponding

mesh at time points tn, n = 1, . . . , tn using the K-level method (Run 5b) and

the two-level method (Run 4c) with h adaption, respectively. It is readily seen

that the infiltration front for this problem displays varying smoothness across

the spatial domain. The infiltration front also travels with time while maintain-

ing similar shape. Both the K-level and two-level adaptive approaches generated

adaptive meshes capable of producing better resolution around the fronts. The

mesh used in the K-level approach is self-adaptive, leading to highly resolved
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Figure 4.2: Pressure head solutions by h K-level method for Problem I

region around the fronts. The buffering approach extended the refinement re-

gion and successfully enclosed sharp features of the solution in refined region.

Compared to the K-level approach, the two-level method employs an error indi-

cator formally incorporating the temporal behavior of the solution. As a result,

the two-level approach maintains a uniformly distributed finer region between

solutions at two consecutive time levels.

Figures 4.4 and 4.5 show the error measure εT,L1 with respect to Ndofs and

CPU time, respectively, for the h adaptive approaches listed in Table 4.4. From

Figure (4.4), we observe that all adaptive approaches achieved similar levels of

accuracy as the uniform discretization approach using many fewer Ndofs. For

the K-level method, the iterative approach attempted to control the error for

Ψn+1 by redistributing the elements based on solutions at tn+1, and thus led to

more economical mesh than the non-iterative method. However, the additional

computational expense associated with iterative solves significantly increased
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Figure 4.3: Pressure head solutions by h two-level method for Problem I

the total CPU time, as shown in Figure (4.5). On the other hand, the two-level

method uses 30-60% fewer Ndofs compared to the uniform discretization method

to achieve comparable accuracy. Because the computational overhead caused by

the extra coarse solve required by the two-level method is more significant for

simulations with low resolution, the computational advantages for the two-level

method deteriorated at low refinement levels.

We also found that for the iterative K-level method with a macroscale time

step tolerance τt = 0.25, the buffer region was not able to enclose the front

completely at some macroscale time levels. This resulted in poor accuracy and

slow convergence at finer discretization level. As expected, this situation was

improved by using a tighter tolerance τt = 0.15, as shown in Figures 4.4 and 4.5.

Figure (4.6) shows the pressure head solutions at tn, n = 1, . . . , nT and the

corresponding mesh using the two-level hp adaptive approach. Elements using

quadratic approximations are indicated in blue. Figures 4.7 and 4.8 show the con-
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Figure 4.4: Convergence rates of the K-level and two-level methods for Problem
I
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Figure 4.5: Convergence rates of the K-level and two-level methods for Problem
I

vergence rates of this approach in comparison with the pure h two-level adaptive

approach. We observe that, like the pure h adaptive method, the sharp fronts are

resolved by h refinement region; however, instead of having regions with variably

refined elements behind the front, higher order elements are used to resolve the

smooth feature in the solution. As a result, combination of hp adaptive strategy

further reduced the Ndofs needed to reach the same accuracy up to 15%. How-

ever, the significant reduction in Ndofs did not transform to equally significant

reduction in CPU time as indicated in Figure (4.8). This is due to the increased

number of quadrature points required to evaluate the integrals in Eqns (4.17)

and (4.19) and consequently more expensive banded linear solves.

4.4.5.2 Problem II

Table 4.5 summarizes the numerical experiments we performed to solve Prob-

lem IV using adaptive methods proposed. Figures 4.9 and 4.10 show the pressure
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Figure 4.6: Pressure head solutions by hp two-level method for Problem I
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Figure 4.7: Comparison of the h and hp adaptive methods for Problem I
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Figure 4.8: Comparison of the h and hp adaptive methods for Problem I
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Figure 4.9: Pressure head solutions by h K-level method for Problem II
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Table 4.5: Summary of adaptive simulation conditions for Problem II

Run† Method τt τs lmax

7[a,b,c,d,e,f] Uniform (-) (-) 0, 1, 2, 3, 4, 5

8[a,b,c,d,e] K-level, Non-iterative 3.0 (-) 1, 2, 3, 4, 5

9[a,b,c,d,e] K-level, Iterative 3.0 0.2, 0.1, 0.05, 0.02, 0.01 1

10[a,b,c,d,e] Two-level, h Adaptive 4.0 (-) 1, 2, 3, 4, 5

† alphabetical qualifier corresponds to the spatial discretization given by lmax for the uniform
method, the non-iterative K-level method and the two-level method, and τs for the iterative K-level
method

head solutions at macroscale time points from Run 9e and Run 10c, respectively.

It can be observed that the infiltration fronts are so sharp that even with highly

refined region around the front, only two or three elements are located on the

front. As with Problem I, both the K-level method and two-level method pro-

duced meshes that effectively followed the dynamics of the problem and provided

highly refined regions around the front. The self-adaptive K-level method led to

highly localized finer meshes around the front. On the other hand, the two-level

method results in meshes with a relatively uniform refined region between the

fronts at tn and tn+1. The refined region tends to be larger than that from the

K-level due to the fact that it relies on a forward coarse mesh solve, which is

robust yet diffusive due to the linearization of K [205].

Figures 4.11 and 4.12 compares the accuracy and efficiency of the K-level

method, two-level method, and the uniform non-adaptive method for this test

problem. We observed that both the K-level and two-level method achieved

significantly improved accuracy in terms of both Ndofs and CPU time. As can

be observed from Figure (4.11), the iterative K-level method, together with a

suitably chosen τt, produced the most economical mesh among all the methods.

Although the iterations added to the computational expense, it clearly achieved

an overall computational advantage over the uniform non-adaptive method. For

the non-iterative K-level method, we found a convergence artifact appearing with
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Figure 4.10: Pressure head solutions by h two-level method for Problem II
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Figure 4.11: Convergence rates of the K-level and two-level methods for Problem
II
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Figure 4.12: Convergence rates of the K-level and two-level methods for Problem
II

lmax = 2, 3, 4 and more obviously with lmax = 3. After examining the solution

profiles at various time points, we found that this is due to cancellation of error

during the simulation. For instance, with lmax = 3 at t = 0.025 (day), the front

obtained from the non-iterative K-level method was slightly behind the reference

solution at the same time point. This effect, coupled with the numerical diffusion

in the numerical solution caused error cancellation and therefore generated less

error than expected. As we adaptively refined our mesh, e.g. to lmax = 5, this

effect disappeared.

As observed for Problem I, we found that the two-level method generated

uniformly refined region around the steep front and achieved the same level of

accuracy as the uniform non-adaptive method at comparable levels of discretiza-

tion. We found that the accuracy of the two-level method was not sensitive to

the choice of τt because the forward coarse solve was sufficiently robust to locate

the front position at the next time level. In contrast, the K-level method relied
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on buffer regions with fixed width to extend the refined region. As a result,

when the fronts traveled beyond the refined region, the accuracy of the method

deteriorated significantly.

We also ran simulations for this problem using the hp two-level method and

found that the hp two-level method did not lead to significant computational

advantages for this problem. This is not surprising since the spatial error was

dominated by the extremely sharp fronts to a larger extent than Problem I. As a

result, the smooth region in which p refinement could offer potential advantages

is substantially limited.

4.4.6 Discussion

Our computational results show that both the K-level and two-level adap-

tive approaches produced economical meshes and hence significant savings in

computational time compared to a uniform discretization approach. The K-level

method is self-adaptive, resulting in highly refined regions around the infiltra-

tion fronts. This method, together with a buffering technique and appropriate

macroscale time steps is effective in solving challenging RE problems. The two-

level method relies on a coupled space-time error indicator based on a formal

forward solve to guide the mesh generation. It achieved comparable accuracy to

the non-adaptive method at comparable discretization levels with significantly

decreased computational expense. Overall, we believe that predicting the front

evolution at future time and incorporating the predicted information into the

adaptive methods plays a key role in the overall success of the adaptive methods

for many classes of variably saturated flow problems.

We found that although the K-level method can be effective with a set of

appropriately chosen parameters such as τt, it is somewhat sensitive to these

choices, which renders this method not as robust as the two-level method. On

the other hand, iterative solution approaches with error control can be naturally

built into the K-level method, whereas the mechanism is currently lacking for
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the two-level method. The iterative K-level method is certainly not optimal in

this study and advances should be pursued in these directions: (1) developing

more rigorous space-time error estimators with strict bounds for the true error

for RE; and (2) designing more efficient mechanisms for coupling spatial and

temporal adaption. We believe the advantageous aspects in both the K-level and

two-level method can be integrated to lead to more advanced adaptive methods.

This topic deserves further study.

Since the spatial error around the sharp fronts dominated the total error,

the advantage of an hp adaptive method only led to moderate CPU savings

compared to pure h adaption for Problem I. For Problem II where the extremely

steep fronts dominated the solution evolution, no computational advantage was

observed. Overall, the hp approach was able to reach the same level of accuracy

at no more computational expense than the h adaptive method.

Because the focus this paper was not to investigate different LDG-MOL

schemes, we only showed results using one-sided numerical fluxes with fixed con-

ductivity evaluation methods. However, our adaptive methods are not restricted

to the particular choice of this LDG method. Advantages in terms of compu-

tational work can also be achieved using, for instance, average numerical fluxes

with other conductivity evaluation methods. The performance of different LDG

schemes on the adaptive mesh was consistent with our previous investigations

[205].

We implemented and investigated a series of error indicators/estimators along

with the Kelly indicator, including pressure gradient indicator, saturation gra-

dient indicator [217], and an a posteriori error estimator developed for LDG

discretizations of nonlinear elliptic problems [54]. We found that the gradient

indicators were able to produce meshes around the fronts for the test problems

we considered. However, these gradient indicators were not asymptotic and led

in some cases to additional refined regions near the water table where there were

static capillary fronts with relatively low error [217]. On the other hand, the a
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posteriori error estimator and the Kelly indicator were more robust and efficient

error measures and both performed well for the problems we considered.

4.4.7 Conclusions

While a fully automatic adaptive method with formal spatial and temporal

error control is highly desirable, it is a challenging and certainly a long-range

task. Towards this direction, we have the following conclusions based on this

work:

• h and hp adaptive LDG methods used within an MOL framework can offer

significantly increased efficiency for RE problems in one dimension.

• The K-level and two-level spatial adaptive methods can both achieve sub-

stantial savings in computational effort and a large reduction in the mean

number of degrees of freedom compared to a uniform spatial discretization.

• The hp two-level adaptive approach offers moderate savings in terms of

computational effort because (1) the RE problems under consideration have

dominant spatial errors around the steep fronts with limited smooth region

needed for p adaption to be superior; and (2) higher order p refinement

requires more computational effort due to the intrinsic, high nonlinearity of

RE and hence compromises the computational advantages.

• The proposed adaptive methods need further evaluation and development

Additional advances can be made in these areas: (1) implementation and

investigation in higher dimension and larger scales; and (2) development of

more rigorous spatial and temporal error control mechanisms.
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Chapter 5

Summary and Recommendations

This chapter summarizes the dissertation research and recommends potential

directions for future research. Our research focuses on improving models of flow

and transport in porous medium systems using numerical modeling approaches

at the pore scale and continuum scale. Specifically, the issues examined in this

work include addressing: (1) deficiencies in using conventional Darcy’s law and

the generalized model to describe two-phase flow in porous media; (2) depen-

dence of two-phase flow on a broad range of flow parameters including capillary

number, wettability, and viscosity ratio; (3) validity of using interfacial area as

an additional variable to improve the multiphase flow models; (4) formulation

of the LDG methods to improve numerical solution techniques for the tradi-

tional air-water phase model represented by RE; and (5) extension to spatially

adaptive LDG-MOL methods to further improve the efficiency of the proposed

LDG-MOL method. These issues are investigated through a series of numerical

studies, which are summarized below.

5.1 Summary

In Chapter 2, deficiencies of the traditional Darcy’s law in modeling two-phase

flow and a resulting phenomenon—viscous coupling, were investigated using a

three-dimensional, two-fluid-phase MRT-LB model. Simulation of co-current



flow through a sphere-pack porous medium was performed and correlations of

the relative permeabilities as a function of capillary number, wettability, and

fluid viscosities were obtained. The results were qualitatively consistent with

experimental observations. In addition, a strong correlation between the relative

permeability and interfacial area between fluids was found, indicating that both

the common extension of Darcy’s law and the generalized formulation accounting

for viscous coupling effects do not provide adequate insight into two-phase flow

processes in porous media. This work lends additional support for the hypothesis

that interfacial area is a key variable for multiphase flow in porous medium

systems.

Chapter 3 aimed at developing robust and efficient numerical solution tech-

niques to reduce numerical errors during application of numerical methods for

solving models in porous medium systems. An LDG-MOL spatial approxima-

tion combined with a robust and established variable order, variable step-size

backward difference method was formulated for RE. A variety of approximations

at discontinuous element edge boundaries, permeability approximations, and nu-

merical quadrature schemes were examined. The results discussed in Chapter 4

demonstrated that the proposed LDG-MOL approach is robust and efficient for

a range of common RE problems.

While the non-adaptive LDG-MOL approach demonstrated good performance

for RE in Chapter 4, the subsequent work discussed in Chapter 5 further de-

veloped effective spatially adaptive LDG methods to improve the efficiency of

the LDG-MOL simulator. Specifically, two adaptive LDG-MOL approaches—a

straightforward adaptive strategy for finite element methods and a novel and

effective adaptive approach based on a coarse-grid solve—were developed and

implemented. Numerical comparisons in Chapter 4 indicated that the spa-

tially adaptive LDG method coupled with advanced and mature time integration

through MOL, is a promising numerical technique that can offer significant com-

putational advantages over the non-adaptive counterparts.
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5.2 Recommendations

Based on the dissertation research, several avenues for future research appear

promising. Specifically, we provide the following recommendations.

• While the LB simulator used in Chapter 2 incorporated high-performance

LB implementation including parallelization, computational challenges re-

main when using LB to simulate porous medium flow and transport pro-

cesses at larger scales. It is important to continue the development of more

efficient algorithms (e. g. adaptive LB) and codes [239, 279].

• As demonstrated in this dissertation, pore-scale studies have significant mer-

its in improving our understanding of various mechanisms and processes

in porous media. A challenging aspect involves appropriately incorporat-

ing this understanding with more advanced models where numerical mod-

els can be applied to develop better answers to many practical problems

[147, 221].This area of research deserves further attention.

• The proposed adaptive LDG-MOL methods need further evaluation and

development. Additional advances can be made in the following areas: (1)

implementation and investigation in higher dimensions and at larger scales;

(2) development of more rigorous spatial and temporal error control mech-

anisms; and (3) coupling of the m adaptive method, in which different

numerical methods, such as DG and CG, are adaptively used to achieve

improved performance.
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Galerkin method for the oseen equations. Mathematics of Computation, 73
(246):569–593, 2004.

[80] B. Cockburn, G. Kanschat, and D. Schötzau. The local discontinuous
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