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ABSTRACT

Li Cai: A Metropolis-Hastings Robbins-Monro Algorithm for Maximum Likelihood
Nonlinear Latent Structure Analysis with a Comprehensive Measurement Model

(Under the direction of Robert C. MacCallum and David M. Thissen)

A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm is proposed for max-

imum likelihood estimation in a general nonlinear latent structure model. The MH-

RM algorithm represents a synthesis of the Markov chain Monte Carlo method,

widely adopted in Bayesian statistics, and the Robbins-Monro stochastic approxima-

tion algorithm, well known in the optimization literature. The general latent structure

model not only encompasses linear structural equations among latent variables, but

also includes provisions for nonlinear latent regressions. Based on item response

theory, a comprehensive measurement model provides the link between the latent

structure and the observed variables. The MH-RM algorithm is shown to converge

to a local maximum of the likelihood surface with probability one. Its significant ad-

vantages in terms of flexibility and efficiency over existing algorithms are illustrated

with applications to real and simulated data. Implementation issues are discussed in

detail. In addition, this dissertation integrates research on the parametrization and

estimation of complex nonlinear latent variable models and furthers the understand-

ing of the relationship between latent trait models and incomplete data estimation.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, Drs. Robert MacCallum

and David Thissen, for their unwavering support and guidance over the years, and I

thank members of my committee for the many stimulating discussions and sugges-

tions that led to a much improved research project.

I thank my friends and colleagues at the Thurstone Psychometric Lab. I also

thank Dr. Michael Edwards for kindly sharing his MultiNorm program and data

sets. I am indebted to the many mathematicians and statisticians that worked on

the theories of stochastic processes and optimization, and to computer scientists who

helped create TEX, LATEX, and C++. I would not have come this far intellectually

without your insights.

Generous financial support from the Educational Testing Service (in the form

of a Harold Gulliksen Psychometric Research Fellowship) and the National Science

Foundation (Grant # SES-0717941) is gratefully acknowledged.

Finally, I thank my family, especially my wife, to whom this work is dedicated,

for being there for me.

iv



To Wenjing

v



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Limited-information Categorical Factor Analysis . . . . . . . . . 4

1.1.2 Full-information Item Factor Analysis . . . . . . . . . . . . . . . 6

1.1.3 Random-Effects, Mixtures, and Latent Variables . . . . . . . . . 8

1.2 Numerical Integration in FIML . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Adaptive Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Monte Carlo EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Simulated Maximum Likelihood and Variants . . . . . . . . . . 13

1.2.5 Fully Bayesian MCMC . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Stochastic Approximation Algorithms . . . . . . . . . . . . . . . . . . . 15

2 A Latent Structure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Latent Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Linear Structural Model . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Nonlinear Structural Model . . . . . . . . . . . . . . . . . . . . . 18

2.2 Measurement Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Dichotomous Response with Guessing Effect . . . . . . . . . . . 19

vi



2.2.2 Graded Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Nominal Response . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Continuous Response . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Observed and Complete Data Likelihoods . . . . . . . . . . . . . . . . . 23

2.3.1 Observed Data Likelihood . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Complete Data Likelihood . . . . . . . . . . . . . . . . . . . . . . 24

3 A Metropolis-Hastings Robbins-Monro Algorithm . . . . . . . . . . . . . . 26

3.1 The EM Algorithm and Fisher’s Identity . . . . . . . . . . . . . . . . . . 26

3.2 MH-RM as a Generalized RM Algorithm . . . . . . . . . . . . . . . . . 27

3.3 Relation of MH-RM to Existing Algorithms . . . . . . . . . . . . . . . . 30

3.4 The Convergence of MH-RM . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Approximating the Information Matrix . . . . . . . . . . . . . . . . . . . 32

4 Implementation of MH-RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 A Metropolis-Hastings Sampler . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Complete Data Models and Derivatives . . . . . . . . . . . . . . . . . . 37

4.2.1 Linear Latent Structure . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Nonlinear Latent Structure . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Dichotomous Response with Guessing Effect . . . . . . . . . . . 40

4.2.4 Graded Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.5 Nominal Response . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.6 Continuous Response . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Acceleration and Convergence . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Adaptive Gain Constants . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Multi-stage Gain Constants . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Convergence Check . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Applications of MH-RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 One-Parameter Logistic IRT Model for LSAT6 Data . . . . . . . . . . . 49

5.2 Three-Parameter Logistic IRT Model for LSAT6 Data . . . . . . . . . . 50

vii



5.3 Four-Dimensional Confirmatory Item Factor Analysis . . . . . . . . . . 51

5.4 Latent Variable Interaction Analysis . . . . . . . . . . . . . . . . . . . . 52

5.5 Latent Mediated Regression with Dichotomous Indicators . . . . . . . 54

5.6 Full-information Estimation of Tetrachoric Correlations . . . . . . . . . 58

5.6.1 An Approach Using Underlying Response Variates . . . . . . . 59

5.6.2 An Approach Using Logistic Approximation . . . . . . . . . . . 62

5.6.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Preliminary Sampling Experiments with MH-RM . . . . . . . . . . . . . . 72

6.1 A Unidimensional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 A Constrained Multidimensional Nominal Model . . . . . . . . . . . . 78

6.3 A Bifactor Type Model for Graded Responses . . . . . . . . . . . . . . . 80

7 Discussions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



LIST OF TABLES

5.1 LSAT6 One-Parameter Logistic Model Estimates . . . . . . . . . . . . . . . . 65

5.2 LSAT6 Three-Parameter Logistic Model Estimates . . . . . . . . . . . . . . . 65

5.3 Four-Dimensional Item Factor Analysis: Factor Correlation Estimates . . . 65

5.4 Four-Dimensional Item Factor Analysis: Item Parameter Estimates . . . . . 66

5.5 Latent Variable Interaction: Structural Model Estimates . . . . . . . . . . . . 67

5.6 Latent Variable Interaction: Measurement Model Estimates . . . . . . . . . 68

5.7 Latent Mediated Regression: Measurement Intercept Generating Values . . 68

5.8 Latent Mediated Regression: Measurement Slope Generating Values . . . . 69

5.9 Latent Mediated Regression: Structural Model Estimates . . . . . . . . . . . 69

5.10 Generating Tetrachoric Correlations and Thresholds . . . . . . . . . . . . . . 70

5.11 Means and Pearson Correlations of the Underlying Response Variables . . 70

5.12 Comparison of Three Estimation Methods for Tetrachoric Correlations . . . 71

6.1 Timing the MH-RM for Unidimensional IRT Simulation . . . . . . . . . . . 84

6.2 Unidimensional IRT Model (N = 200) . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Unidimensional IRT Model (N = 1000) . . . . . . . . . . . . . . . . . . . . . 86

6.4 Unidimensional IRT Model (N = 3000) . . . . . . . . . . . . . . . . . . . . . 87

6.5 Multidimensional Nominal Model: Slopes . . . . . . . . . . . . . . . . . . . 88

6.6 Multidimensional Nominal Model: Factor Correlations . . . . . . . . . . . . 89

6.7 Multidimensional Nominal Model: α and γ Estimate and Bias . . . . . . . . 90

6.8 Multidimensional Nominal Model: α and γ Standard Errors . . . . . . . . . 91

6.9 Generating Parameter Values for the Bifactor Type Model: Items 1–23 . . . 92

6.10 Generating Parameter Values for the Bifactor Type Model: Items 24–46 . . 93

ix



LIST OF FIGURES

4.1 The Effect of Gain Constants on the Robbins-Monro Iterations . . . . . . . . 48

5.1 Path Diagram for Confirmatory Item Factor Analysis . . . . . . . . . . . . . 51

5.2 Path Diagram for Latent Variable Interaction . . . . . . . . . . . . . . . . . . 54

5.3 Path Diagram for Latent Mediated Regression . . . . . . . . . . . . . . . . . 56

5.4 Latent Mediated Regression: Intercept Estimates . . . . . . . . . . . . . . . . 57

5.5 Latent Mediated Regression: Slope Estimates . . . . . . . . . . . . . . . . . . 57

6.1 Unidimensional IRT Model (N = 200): Intercepts . . . . . . . . . . . . . . . 75

6.2 Unidimensional IRT Model (N = 200): Slopes . . . . . . . . . . . . . . . . . 75

6.3 Unidimensional IRT Model (N = 1000): Intercepts . . . . . . . . . . . . . . . 76

6.4 Unidimensional IRT Model (N = 1000): Slopes . . . . . . . . . . . . . . . . . 76

6.5 Unidimensional IRT Model (N = 3000): Intercepts . . . . . . . . . . . . . . . 77

6.6 Unidimensional IRT Model (N = 3000): Slopes . . . . . . . . . . . . . . . . . 77

6.7 Path Diagram for A Constrained Multidimensional Nominal Model . . . . 78

6.8 Path Diagram for a Bifactor Type Model for Graded Responses . . . . . . . 80

6.9 Bifactor Type Model: Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.10 Bifactor Type Model: Slopes for the Primary Dimension . . . . . . . . . . . 83

6.11 Bifactor Type Model: Slopes for Specific Dimensions . . . . . . . . . . . . . 83

x



CHAPTER 1

Introduction

In the present research, latent structure model refers to a class of parametric sta-

tistical models that specify linear or nonlinear relations among a set of continuous

latent variables. The term is admittedly influenced by Lazarsfeld’s (1950) chapter

on latent structure analysis, although only continuous latent traits will be consid-

ered in the sequel. The observed variables become indicators of the latent variables

via a comprehensive measurement model such that an arbitrary mixture of metric and

non-metric variables is permitted at the manifest level, including e.g., dichotomous,

ordered polytomous, and nominal responses.

For a variety of technical reasons, it is a preferable practice that all parameters

in the latent structure model be jointly estimated using full-information maximum

likelihood (FIML). However, the likelihood function of the latent structure model

involves intractable high dimensional integrals that present serious numerical chal-

lenges. For standard Gaussian quadrature based methods, the amount of computa-

tion increases exponentially as a function of the number of latent variables. This is

known in the literature as the “curse of dimensionality.” Existing Monte Carlo based

methods also become cumbersome when both the number of latent variables and the

number of observed variables are large.

The primary objective of the present research is to outline a newly proposed

estimation algorithm known as Metropolis-Hastings Robbins-Monro (MH-RM; Cai,



2006) and apply it to solve the parameter estimation problem in maximum likeli-

hood latent structure modelling. The MH-RM algorithm combines the Metropolis-

Hastings (MH; Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,

1953) algorithm and the Robbins-Monro (RM; Robbins & Monro, 1951) stochastic ap-

proximation (SA; see e.g., Kushner & Yin, 1997) algorithm. The MH-RM algorithm

was initially proposed by Cai (2006) for exploratory item factor analysis. A general

convergence proof has been worked out and MH-RM performed satisfactorily in pre-

liminary comparisons against leading item factor analysis software packages. MH-

RM can handle large-scale analysis with many items, many factors, and thousands

of respondents. It is flexible enough to seamlessly incorporate the mixing of different

item response models, missing data, and multiple groups. It is well-suited to gen-

eral computer programming for confirmatory analysis with arbitrary user-defined

constraints. It is efficient in the use of Monte Carlo and unlike the EM algorithm

it also produces an estimate of the parameter information matrix as an automatic

by-product.

MH-RM has the potential of becoming a general and self-adaptive algorithm for

arbitrarily high dimensional latent trait analysis. While the use of MH-RM is novel

in its own right, a significant by-product of the present research is the integration of

research on the parametrization and estimation of complex nonlinear latent variable

models. To that end, a review of relevant background information is in order.

1.1 Background

Latent structure models are of considerable historical, theoretical, and practical

value. To the research psychometrician, latent variable models of such a general kind

encompass a large selection of psychometric models and techniques developed dur-

ing the past six decades, including, e.g., exploratory factor analysis (e.g., Thurstone,

1947; see also Cudeck & MacCallum, 2007 and the references therein), confirmatory

factor analysis (Jöreskog, 1969), covariance structure analysis (Bock & Bargmann,
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1966; Bollen, 1989; Jöreskog, 1970), and item response theory (Lord & Novick, 1968;

Thissen & Wainer, 2001). To the applied statistician, latent structure models are de-

scribed in a distinctly modern statistical language, using the general framework of

hierarchical models (see e.g., Bartholomew & Knott, 1999). These models offer fertile

new ground for interesting applications of modern statistical and computational the-

ory (see e.g. Dunson, 2000 for a statistician’s view on latent variable models). To the

statistical software programmers, the advent of a general modelling framework per-

mits the development of general software packages that combine features of existing

software such as Lisrel (Jöreskog & Sörbom, 2001), Testfact (Bock et al., 2003), and

Multilog (Thissen, 2003). To administrators of testing programs and ultimately test

users, latent structure models provide essential tools for item analysis, test assembly,

and score reporting. For instance, as noted by von Davier and Sinharray (2004), the

reporting methods used in NAEP rely on a special multidimensional item response

model with covariate effects.

Latent structure models have been invented (and reinvented) under many differ-

ent names. However, three main currents of research can be identified:

1. the extension of factor analysis and structural equation modelling to categorical

indicators,

2. the growth of multidimensional item response theory (IRT), especially full-

information item factor analysis (FIFA), and

3. the infusion of statistical concepts such as hierarchical models, mixture models,

and mixed-effects models into psychometrics.

Main topics from these three areas shall be reviewed in turn from section 1.1.1, to

section 1.1.3, in rough chronological order.
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1.1.1 Limited-information Categorical Factor Analysis

Limited-information methods have a long tradition in psychometrics. This line of

work began with the now classical treatment of factor analysis of categorical data by

Christoffersson (1975) and Muthén (1978). It was soon realized that Muthén’s (1978)

approach could handle far richer structural models than the common factor model.

Indeed, Muthén (1984) showed later that Jöreskog’s (1970) linear structural model

could be generalized to the case of mixed continuous and ordinal outcomes.

Building upon the equivalence of the “underlying response” formulation and

the IRT formulation of categorical factor analysis (Takane & de Leeuw, 1987), several

multi-stage estimators based on univariate and bivariate (hence limited) informa-

tion have been proposed (e.g., Lee, Poon, & Bentler, 1992, 1995a, 1995b; Muthén &

Muthén, 2007), and they compared favorably in empirical research against optimal

but more computationally demanding estimators such as full information maximum

likelihood (see e.g., Bolt, 2005; Knol & Berger, 1991). These estimators share the com-

mon feature that estimates of the category thresholds and polychoric correlations are

obtained in the first one or two stages, as well as the asymptotic covariance matrix of

these estimates. In the final stage, the remaining structural parameters are estimated

using generalized least squares (GLS).

As far as statistical theory is concerned, these GLS-based estimators are grounded

on sound principles. Furthermore, they have important ties to Browne’s (1984)

asymptotically distribution free method for moment structures, also known as the

method of estimating equations in the statistical literature (Godambe, 1960) and the

generalized method of moments in the econometric literature (Hansen, 1982). The

concept of limited-information has also motivated recent development of goodness-

of-fit indices for categorical data models (e.g., Bartholomew & Leung, 2002; Cai,

Maydeu-Olivares, Coffman, & Thissen, 2006; Maydeu-Olivares & Joe, 2005).

However, currently popular GLS methods rely on pair-wise estimation of the
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polychoric/polyserial correlations, so the resulting polychoric correlation matrix may

not be positive definite. It is interesting to note that the dependence on pair-wise es-

timation is also a consequence of the “curse of dimensionality.” Obtaining a full

polychoric/polyserial correlation matrix by maximum likelihood requires as many

dimensions of numerical integration as the number of observed variables, which is

typically large. In addition, if the sample size is not too large, the asymptotic covari-

ance matrix of the polychoric correlations cannot be determined accurately, which

may adversely affect the GLS estimation of structural parameters. Although remedies

such as the diagonally weighted least squares estimator appear to work in practice

(see e.g., Flora & Curran, 2004 for recent simulation results), current implementa-

tions of these estimators often require ad hoc corrections for zero cell-counts in the

marginal contingency tables. Furthermore, computation can become intense if the

number of observed variables is large. To a psychometrician, the main drawback of

GLS-based methods is the complete lack of support of other (more interesting) types

of measurement models, such as the nominal model (Bock, 1972), not to mention the

awkwardness when missing responses are present. Finally, due to the multi-stage

nature of the estimation procedure, a fully Bayesian analysis is cumbersome. A no-

table exception to the above criticism is the Monte Carlo EM method for estimating

polychoric correlations due to Song and Lee (2003), but this method is based on FIML

so that one might as well estimate the structural parameters directly, with even lower

dimensional integrals to solve.

A promising alternative that uses limited information but does not rely on multi-

stage estimation of thresholds and polychorics is Jöreskog and Moustaki’s (2001) Un-

derlying Bivariate Normal (UBN) estimator (also known as the bivariate composite

likelihood estimator). However, joint estimation of all parameters using a Newton-

type algorithm can lead to large optimization problems. For instance, if one were

to conduct a factor analysis of 100 Likert items in three independent samples, there

5



would be well over 1000 parameters to be jointly estimated. As will be shown, joint

optimization of all parameters is unnecessary, but the current UBN formulation does

not shed light on how the problem may be justifiably reduced to lower dimensions.

It should be noted that McDonald’s (1967) treatise on nonlinear factor analysis

and the associated NOHARM software (Fraser & McDonald, 1988) for parameter es-

timation can also be classified as using limited-information. However, the NOHARM

method is based on ordinary least squares, and it is not even efficient among the class

of limited-information estimators. This method has also seen limited practical use.

General latent structure models have taken preliminary shape within the limited-

information approach. The GLS-based estimation method has enjoyed a high degree

of popularity among practitioners over the past decades partly because of the ex-

istence of successful software programs such as Lisrel or Mplus. Many interesting

applications ensued, but it can be concluded from examining the trend of recent re-

search that traditional GLS-based estimation methods have failed to keep up with

the ever-increasing complexity of measurement and structural models.

1.1.2 Full-information Item Factor Analysis

Occurring around the same period as Muthén (1978) proposed the GLS estimator,

Bock and colleagues popularized the maximum marginal likelihood (MML) estimator

in the field of IRT (Bock & Aitkin, 1981; Bock & Lieberman, 1970; Thissen, 1982). This

estimator uses full-information and circumvents many problems associated with the

limited-information approach. It eventually led to active research on FIFA (Bock,

Gibbons, & Muraki, 1988; Gibbons et al., 2007; Meng & Schilling, 1996; Mislevy,

1986; Muraki & Carlson, 1995; Schilling & Bock, 2005). Wirth and Edwards (2007)

provide a recent overview of FIFA.

Full-information item factor analysis, as the name suggests, is factor analysis of

categorical item-level data, using a full-information estimator such as MML. In edu-

cational and psychological testing, FIFA is a state-of-the-art method for item analysis.

6



It provides a wealth of information about scale dimensionality and item appropriate-

ness, and it has also been used widely as a tool for modelling local dependence, e.g.,

testlets (Wainer & Kiely, 1987).

While standard IRT models are unidimensional in the sense that only one fac-

tor is in the model, recent applications of IRT in domains such as personality and

health outcomes (see e.g., Bjorner, Chang, Thissen, & Reeve, 2007; Reeve et al., 2007;

Reise, Ainsworth, & Haviland, 2003; Thissen, Reeve, Bjorner, & Chang, 2007) have

prompted the increasing use of FIFA. However, the MML method leads to analyti-

cally intractable high dimensional integrals in the likelihood function, which is al-

ready nonlinear. The difficult nonlinear optimization problem is further complicated

by the fact that there are typically many items and many respondents in applica-

tions of FIFA. Thus the use of standard Newton-type algorithms for maximizing the

FIFA log-likelihood, e.g., Bock and Lieberman (1970), does not generalize well to real

psychological and educational testing situations.

A break-through was made when Bock and Aitkin (1981) proposed a quadrature

based EM algorithm. The main idea of Bock and Aitkin (1981) is remarkably simple:

in step one, “make up” artificial data by conditioning on provisional estimates and

observed data; step two, estimate parameters and go back to step one and repeat until

parameters do not change further. This paper not only made important contributions

to the computational methods of the day and established the de facto standard of

parameter estimation method in the IRT field for the next two and half decades, but

it was also profoundly influential in helping shape psychometricians’ view on latent

variable models. Evidence of its lasting impact is provided by over 400 citations since

its publication, in fields ranging from education and psychology to biostatistics and

medicine.

Bock and Aitkin (1981) were also among the first to investigate the possibility

of further structural modelling within the computational framework of EM. For

7



instance, their empirical characterization of the latent ability distribution is at the

crossroads of latent trait models and latent class models. The model for structured

item parameters is effectively a Multiple-Indicator Multiple-Cause (MIMIC; see e.g.,

Bollen, 1989) model, widely known in the structural equation modelling community.

Because of the IRT orientation of FIFA, the kinds of structural models in

widespread use are usually not as rich as those seen in the categorical factor analysis

and structural equation modelling domain. The difference can be attributed to the

difficulty of numerically evaluating high dimensional integrals in the EM algorithm

for FIFA. The so-called “curse of dimensionality” is partially alleviated with recent

development in statistical computing, especially Markov chain Monte Carlo (MCMC;

see e.g., Tierney, 1994).

A clear trend that began with Albert’s (1992) Bayesian analysis of the two-

parameter normal ogive IRT model has been the wider acceptance of MCMC-

based estimation algorithms in FIFA (Béguin & Glas, 2001; Edwards, 2005; Meng

& Schilling, 1996; Patz & Junker, 1999a, 1999b; Segall, 1998; Shi & Lee, 1998). These

developments blurred the boundaries between traditional domains of psychometrics

such as IRT and structural equation modelling. Equipped with powerful modern

computational methods and converging theories on latent variables models, general

latent structure models have finally come to fruition.

1.1.3 Random-Effects, Mixtures, and Latent Variables

During the 1990’s, statisticians turned their interest to general latent variable

models. Early contributors include Bartholomew and Knott (1999), Skrondal and

Rabe-Hesketh (2004), and Moustaki and her coworkers (see e.g., Moustaki, 2000,

2003, 2007; Moustaki & Knott, 2000). Important theoretical and computational results

were also obtained by S.-Y. Lee and his associates (see e.g., Lee, Song, & Lee, 2003;

Lee & Zhu, 2000; Song & Lee, 2001; Zhu & Lee, 2002). At the same time, complex

extensions to standard IRT started to surface within the psychometric literature. For

8



instance, in a series of papers, Fox and colleagues have developed a multilevel IRT

model (Fox, 2003, 2005; Fox & Glas, 2001) that is a synthesis of IRT and random

effects regression models.

The literature has reached a consensus that latent variables are synonymous with

random coefficients, factors, random effects, missing data, counterfactuals, unob-

served heterogeneities, hidden volatilities, disturbances, errors, etc. The fact that

they are known by different names is mostly a disciplinary terminology issue rather

than real difference in their nature. In addition, it is not useful to classify models

based on the type of observed variables. For a vector of observed variables, say,

y = (y1, . . . , yn)′ that possesses density f (y), all latent variable models can be ex-

pressed as (cf. Bartholomew & Knott, 1999):

f (y) =
∫

f (y|x)h(x)dx, (1.1)

where x = (x1, . . . , xp)′ is a p-dimensional vector of latent variables, f (y|x) the con-

ditional density of observed variables given latent variables, and h(x) the density of

the latent variables. The y’s need not be all continuous, and neither must all the

x’s be so. The p-fold integral over x can also be a mixture of integration and sum-

mation, as dictated by the type of random variables. Note that the term density is

used generically to refer to either the probability density function of an absolutely

continuous random variable or the probability mass function of a discrete random

variable. One need not distinguish between the two because conceptually they are

both Radon-Nikodym derivatives of probability measures.

Equation (1.1) is of fundamental importance so comments are in order. First, the

latent variable model is not uniquely determined. Any arbitrary transformation of x

can preserve the same f (y) by simply making a change of variables in the integral.

This indeterminacy cannot be resolved based on statistical theory alone. Instead,

strong parametric assumptions on either f (y|x) or h(x) are necessary, and they must

come from substantive theory. The position taken here is to let f (y|x) be a member
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of the exponential family while restricting x to have an absolutely continuous mul-

tivariate distribution. This specification affords enough flexibility (as far as the role

of latent traits in mental test theory is concerned) and translates into easily inter-

pretable parameters. Second, f (y) is of the form of a mixture distribution, where the

conditional density f (y|x) is mixed over h(x). This implies that unless f (y|x) and

h(x) form conjugate pairs, the resulting integral does not have closed-form solution

and must be approximated numerically. Third, Equation (1.1) has a hierarchical in-

terpretation, wherein h(x) may be conceived of as a “prior” density that completes

the specification of a Bayesian two-level model. In a similar vein, the x’s can also

be thought of as nuisance parameters or random effects that must be integrated out

to arrive at a genuine likelihood. This is the statistical basis for MML estimation.

Finally, as the third point suggests, all inferences about x should be based on the

posterior distribution f (x|y). For instance, the best mean square predictor of x is the

posterior mean, a fact well-utilized in normal theory linear mixed models (Harville,

1977) and IRT scoring (Thissen & Wainer, 2001).

The historical circle that began with Thurstone (1947), Lazarsfeld (1950), and Lord

and Novick (1968) is finally complete. Now that Equation (1.1) provides a general

setup for latent variable models and the role of maximum likelihood estimation,

the immediate central issue becomes one of computation, especially methods for

evaluating multidimensional integrals.

1.2 Numerical Integration in FIML

To facilitate discussions, it is henceforth assumed that there are N independent

respondents, each measured on n observed variables or items, and the total number

of latent variables is p. Equation (1.1) makes it clear that the biggest obstacle in

general latent structure analysis stems from the need to evaluate high dimensional

integrals. Depending on how the integrals are approximated, existing algorithms for

maximum likelihood estimation in latent variable models can be grouped roughly
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into five classes, with a gradation from deterministic to stochastic.

1.2.1 Laplace Approximation

This class of methods is characterized by the use of Laplace approximation

(Tierney & Kadane, 1986). Psychometric applications of this method can be found

in Kass and Steffey (1989) and Thomas (1993). The Laplace method is fast (see e.g.,

Raudenbush, Yang, & Yosef, 2000, in a slightly different application), but a notable

feature of this method is that the error of approximation decreases only as the number

of observed variables increases. When few items are administered to each examinee,

such as in an adaptive test design, or when there are relatively few items loading

on a factor, such as in the presence of testlets (Wainer & Kiely, 1987), the degree

of imprecision in approximation can be substantial and may lead to biased param-

eter estimates. Raudenbush et al. (2000) argue for the use of higher-order Laplace

approximation, but the complexity of software implementation grows dramatically

as the order of approximation increases. In addition, the truncation point in the

asymptotic series expansion (6th-degree in their paper) of the integrand function is

essentially arbitrary. Furthermore, from the perspective of random effects models, it

is well known that if the error of approximation depends on cluster size (which is

the same as the number of observed variables in this context), the standard Laplace

method cannot be applied to models with crossed random effects (e.g., Kuk, 1999).

1.2.2 Adaptive Quadrature

This class is a direct generalization of Bock and Aitkin’s (1981) quadrature-

based approach. By replacing the original fixed-point quadrature with adaptive

Gaussian quadrature (e.g., Naylor & Smith, 1982; Schilling & Bock, 2005), approx-

imations to the high dimensional integrals impose significantly less computational

burden. Adapting the quadrature nodes also stabilizes likelihood computations, be-

cause when n is large the likelihood becomes so concentrated that standard Gaussian
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quadrature rules do not accurately capture its mass. With care in implementation,

pointwise convergence of the estimates to a local maximum of the likelihood func-

tion can be obtained when an efficient quadrature rule is used in conjunction with

either a Newton-type algorithm or the EM algorithm. Because of over two decades of

success of Gaussian quadrature in IRT, it is often considered a gold standard against

which other methods are compared. However, quadrature-based algorithms, e.g.,

those implemented in Testfact (Bock et al., 2003) or Gllamm (Rabe-Hesketh, Skron-

dal, & Pickles, 2004), are still quite limited in the number of factors that they can

handle simply because the number of quadrature points must grow exponentially

as the dimensionality of the latent traits increases. In addition, because the EM al-

gorithm does not provide information on sampling variability upon convergence,

Testfact does not provide standard errors.

1.2.3 Monte Carlo EM

This class of methods is intimately related to Wei and Tanner’s (1990) MCEM

algorithm, wherein Monte Carlo integration replaces numerical quadrature in the E-

step (e.g., Meng & Schilling, 1996; Song & Lee, 2005). The latent variables are treated

as missing data, and their plausible values are multiply imputed from the posterior

predictive distribution f (x|y) of the missing data given the observed data and provi-

sional estimates. As it will become clear in section 3, the connection between MCEM

and likelihood-based approaches to missing data (e.g., Little & Rubin, 1987; Schafer,

1997) provides a strong motivation for the MH-RM algorithm.

To achieve pointwise convergence, simulation size (the number of random draws)

must increase as the estimates move closer to the maximum so that Monte Carlo

error in the E-step does not overwhelm real changes in the M-step. Adaptive MCEM

algorithms have been devised (e.g., Booth & Hobert, 1999), but the number of random

draws in the final iterations of these automated algorithms can be as high as tens of

thousands (Jank, 2004), dramatically slowing its convergence.
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As far as estimation is concerned, MCEM is inefficient in the use of simulated

data because a new set of random draws are generated at each E-step, discarding all

previous draws. Experience with the design of IRT estimation software that imple-

ments the EM algorithm such as Multilog (Thissen, 2003) suggests that the E-step is

usually much more time consuming than the M-step due to expensive exponential

function calls and nested loop operations over both N and n. It is therefore not sur-

prising that the E-step simulations in MCEM should take much more time than any

other step. Discarding random draws appears to waste much needed computational

resources and is clearly undesirable.

1.2.4 Simulated Maximum Likelihood and Variants

While quadrature-based EM and MCEM work on the log of the marginal like-

lihood function, Geyer and Thompson’s (1992) simulated maximum likelihood ap-

proach seeks a direct Monte Carlo approximation to the marginal likelihood using

importance sampling. The simulated likelihood is then optimized using standard

numerical techniques such as Newton-Raphson. The appeal of simulated maximum

likelihood is that in theory simulation is done only once, at the beginning of the es-

timation algorithm. However, the resulting estimates become sensitive to the initial

approximation to the likelihood, especially the choice of the importance sampling

distribution. This leads to alternative, doubly-iterative procedures in which param-

eters of the importance sampling distribution are updated after each optimization

step. McCulloch and Searle (2001) advise caution on the implementation of simu-

lated maximum likelihood, and Jank (2004) show that simulated maximum likeli-

hood tends to be less efficient than MCEM. The details are too intricate and beyond

the scope of the present research but briefly, one must pay close attention to the bal-

ance of simulation size and the updating of the importance sampling distribution to

ensure convergence (Cappé, Douc, Moulines, & Robert, 2002).

Closely relate to simulated maximum likelihood is Qian and Shapiro’s (2006)
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Sample Average Approximation (SAA) method. SAA is not doubly-iterative. Return-

ing to the log of the likelihood function, SAA exploits the structures of some latent

variable models and uses Monte Carlo or quasi-Monte Carlo sampling from h(x) to

directly approximate the log-likelihood. For instance, Qian and Shapiro (2006) con-

sidered exploratory FIFA of dichotomous items. SAA is relatively new and holds

promise for a class of relatively simple latent variable models wherein the mixing

density h(x) does not contain parameters. However, for more general models the

performance of SAA is unknown. It is also subject to the same criticism as the UBN

approach (Jöreskog & Moustaki, 2001) in the sense that the size of the optimization

problem in SAA can become unnecessarily large (if n is large) because SAA fails

to exploit the conditional independence structure often encountered in models aris-

ing out of test theory. Furthermore, SAA (in its original form in Qian & Shapiro,

2006) obscures the important connection between missing data imputation and latent

variable modelling as the integration is taken with respect to h(x) instead of f (x|y).

1.2.5 Fully Bayesian MCMC

This class of algorithms is purely stochastic and may at best be regarded as ap-

proximations to maximum likelihood because the algorithms usually do not involve

optimization at all. A defining characteristic is the use of fully Bayesian sampling-

based estimation methods such as Markov chain Monte Carlo. Within the Bayesian

estimation framework, maximum likelihood can be approximated by choosing a non-

informative prior distribution. One then constructs an ergodic Markov chain whose

unique invariant measure is the posterior distribution of the parameters, and then

after a certain “burn-in” period, samples from the chain may be regarded as random

draws from the posterior, from which any functional of the posterior distribution can

be estimated. While the basic principle is easy to state, the implementations vary to a

wide extent (e.g., Albert, 1992; Diebolt & Ip, 1996; Patz & Junker, 1999a; Segall, 1998;

Shi & Lee, 1998), and the relative algorithmic efficiency of the existing implementa-
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tions have not been entirely settled (see e.g., Edwards, 2005). In addition, great care

and experience are needed to handle the numerical results because the chains only

converge weakly and the use of convergence diagnostics can be cumbersome with

models having both large n and p.

1.3 Stochastic Approximation Algorithms

From the preceding discussion, it seems clear that a flexible and efficient algo-

rithm that converges pointwise to the the maximum likelihood estimate is much de-

sired for high dimensional latent structural analysis. Indeed, in the research reported

here, the MH-RM algorithm is suggested to address most of the afore-mentioned dif-

ficulties. The MH-RM algorithm was initially proposed by Cai (2006) for exploratory

FIFA and it compared favorably against leading IRT parameter estimation software

packages in preliminary investigations.

The MH-RM algorithm is well-suited to general computer programming for high

dimensional analysis with large n, p, and N. It is efficient in the use of Monte Carlo

because the simulation size is fixed and usually small throughout the iterations. In

addition, it also produces an estimate of the parameter information matrix as a by-

product that can be used subsequently for standard error estimation and goodness-

of-fit testing (e.g., Cai et al., 2006).

In brief, MH-RM is a data augmented Robbins-Monro type stochastic approxima-

tion algorithm driven by the random imputations produced by a Metropolis-Hastings

sampler. The MH-RM algorithm is motivated by Titterington’s (1984) recursive algo-

rithm for incomplete data estimation, and is a close relative of Gu and Kong’s (1998)

SA algorithm. It can also be conceived of as a natural extension of the Stochastic

Approximation EM algorithm (SAEM; Celeux & Diebolt, 1991; Celeux, Chauveau,

& Diebolt, 1995; Delyon, Lavielle, & Moulines, 1999). Probability one convergence

of the sequence of estimates to a local maximum of the likelihood surface will be

established along essentially the same line as Gu and Kong’s (1998) theorem 1.
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SA algorithms have been well studied in the fields of systems engineering, adap-

tive control, and signal processing (see e.g., Kushner & Yin, 1997; Spall, 1999) since

the pioneering work of Robbins and Monro (1951). Until recently, statistical appli-

cations of SA algorithms have remained predominantly in the area of generalized

and nonlinear mixed-effects modeling (Gu & Kong, 1998; Gu & Zhu, 2001; Gu, Sun,

& Huang, 2004; Gueorguieva & Agresti, 2001; Kuhn & Lavielle, 2005; Makowski &

Lavielle, 2006; Zhu & Lee, 2002). The present research represents one of the first ap-

plications of SA algorithms to solve parameter estimation problems in latent structure

analysis. However, before further discussion of the MH-RM algorithm, it is worth-

while to flesh out the details of a nonlinear latent structure model that will become a

context for the application of the MH-RM algorithm.
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CHAPTER 2

A Latent Structure Model

Consistent with the review of historical background in Chapter 1, the latent struc-

ture model considered here can be regarded either as a generalization of categorical

structural equation models or as an extension of multidimensional IRT models. As

a structural equation model, it not only incorporates a full Lisrel-type latent regres-

sion model, but also permits nonlinear latent regressions such that polynomial and

interaction effects between latent variables can be assessed. However, it differs from

Arminger and Muthén’s (1998) and Lee and Zhu’s (2000) nonlinear models in that the

measurement part is developed directly from multidimensional IRT. For instance, the

current framework includes a dichotomous IRT model with respondent guessing ef-

fect, as well as a multidimensional nominal model (Thissen, Cai, & Bock, 2006). Both

models are rarely discussed in the categorical factor analysis and structural equation

modelling literature.

2.1 Latent Structural Models

Recall that there are N independent respondents, n observed variables or items,

and p latent variables. Let the vector of latent variables for respondent i be denoted

as xi. For convenience, the p-dimensional vector xi is further partitioned into two

sub-vectors: ξi (p1 × 1) and ηi (p2 × 1), such that xi = (ξ′i, η′i)
′ and p = p1 + p2. As

a notational convention adopted from this point on, boldface capital letters denote

matrices and boldface lower case letters are vectors.



2.1.1 Linear Structural Model

A linear structure is assumed for ξi:

ξi = τ + ∆ξi + εi, (2.1)

where τ is a p1× 1 vector of latent variable means, ∆ is a p1× p1 matrix of regression

coefficients, and εi is a p1× 1 vector of multivariate normally distributed error terms

with zero means and covariance matrix Φ. Equation (2.1) represents a standard sys-

tem of linear equations among ξi. It is further assumed that (Ip1 − ∆) is nonsingular

so that ξi can be expressed as

ξi = (Ip1 − ∆)−1(τ + εi). (2.2)

Upon defining A = (Ip1 − ∆)−1, Equation (2.2) implies that the distribution of ξi is

p1-variate normal with mean Aτ and covariance matrix AΦA′:

ξi ∼ Np1(Aτ, AΦA′) (2.3)

2.1.2 Nonlinear Structural Model

The latent variables in ηi are endogenous and are assumed to follow a nonlinear

regression equation:

ηi = τ∗ + ∆∗g(ξi) + ζi, (2.4)

where g(·) is a continuous vector-valued nonlinear function that maps the p1-

dimensional vector ξi into a q-dimensional vector g(ξi), and τ∗ is a p2 × 1 vector

of intercepts, ∆∗ a p2× q matrix of regression coefficients. Finally ζi is a p2× 1 vector

of normally distributed error terms that is uncorrelated with εi and has zero means

and covariance matrix Ψ:

ζi ∼ Np2(0, Ψ). (2.5)

This nonlinear model is quite flexible. For example, elements in g(ξi) may be poly-

nomials of elements in ξi so that it can model latent variable interactions (Kenny &

Judd, 1984).
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For computational reasons, it is convenient to define

Π =

 τ′∗

∆′∗

 , ξ∗i =

 1

g(ξi)

 (2.6)

and rewrite Equation (2.4) as:

ηi = Π′ξ∗i + ζi. (2.7)

Equation (2.7) implies that conditional on ξ∗i, the distribution of ηi is p2-variate nor-

mal with mean Π′ξ∗i and covariance matrix Ψ:

ηi|ξ∗i ∼ Np2(Π′ξ∗i, Ψ). (2.8)

2.2 Measurement Models

The measurement models are developed as multidimensional IRT models. The

basic principle of conditional independence (Lord & Novick, 1968) is assumed. De-

note the ith respondent’s vector of responses to the set of n observed variables as

yi = (yi1, . . . , yij, . . . , yin)′. The conditional independence assumption states that con-

ditional on the respondent’s latent trait level xi, the yij’s are mutually independent.

Therefore, it is sufficient in the sequel to consider measurement models for a single

response yij to a generic item j. Before embarking on model development, it is also

useful to define an indicator function for categorical response models

χk(y) =

{
1, if y = k,

0, otherwise,
(2.9)

for nonnegative integer k ∈ {0, 1, 2, . . .}.

2.2.1 Dichotomous Response with Guessing Effect

This model is a generalization of the so-called 3-parameter logistic model (3PL)

in unidimensional IRT. Given xi, the conditional probability of observing yij = 1 is

P(yij = 1|xi, θj) = c(κj) +
1− c(κj)

1 + exp[−(γj + β′jxi)]
, (2.10)
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where θj = (γj, β′j, κj)′ is a (p + 2)× 1 vector of parameters with γj being the inter-

cept, βj the p× 1 vector of slopes, and c(κj) the so-called guessing parameter, where

κj is the logit of guessing:

c(κj) =
1

1 + exp(−κj)
. (2.11)

The logit reparametrization transforms a bounded parameter space to an unbounded

one, and is customarily done in standard IRT software packages, e.g., Multilog

(Thissen, 2003). Given Equation (2.10), the conditional probability of observing

yij = 0 is equal to

P(yij = 0|xi, θj) = 1− P(yij = 1|xi; θj). (2.12)

The conditional density for yij is that of a Bernoulli variable:

f (yij|xi, θj) = P(yij = 1|xi, θj)yij P(yij = 0|xi, θj)1−yij . (2.13)

2.2.2 Graded Response

This model is the multidimensional counterpart of Samejima’s (1969) graded re-

sponse model. Let yij ∈ {0, 1, 2, . . . , Kj − 1} be the response from respondent i to

item j in Kj ordered categories. The development starts from defining the following

logistic conditional cumulative response probabilities for each category:

P(yij ≥ 0|xi, θj) = 1,

P(yij ≥ 1|xi, θj) =
1

1 + exp[−(γ1,j + β′jxi)]
,

P(yij ≥ 2|xi, θj) =
1

1 + exp[−(γ2,j + β′jxi)]
,

...

P(yij ≥ Kj − 1|xi, θj) =
1

1 + exp[−(γKj−1,j + β′jxi)]
, (2.14)

where θj = (γ′j, β′j)
′ is a (p + Kj − 1) × 1 vector of parameters, and γj =

(γ1,j, . . . , γKj−1,j)′ contains Kj − 1 intercepts that are strictly ordered. Equation (2.14)
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implies that the category response probability is the difference between two adjacent

cumulative probabilities:

P(yij = k|xi, θj) = P(yij ≥ k|xi, θj)− P(yij ≥ k + 1|xi, θj), (2.15)

where P(yij ≥ Kj|xi, θj) is identically equal to zero to ensure Equation (2.15) is well-

defined for k = 0, 1, 2, . . . , Kj − 1. With the indicator function defined in Equation

(2.9), the conditional density for yij is a multinomial with trial size 1 in Kj categories:

f (yij|xi, θj) =
Kj−1

∏
k=0

P(yij = k|xi, θj)χk(yij). (2.16)

2.2.3 Nominal Response

This model is a recent reparametrization of Bock’s (1972) original nominal model

(Thissen et al., 2006). Let yij ∈ {0, 1, 2, . . . , Kj − 1} be the response from respondent

i to item j in Kj nominal (unordered) categories. Conditional on xi, the category

response probability for category k is defined as

P(yij = k|xi, θj) =
exp[ak(αj)β′jxi + ck(γj)]

∑
Kj−1
m=0 exp[am(αj)β′jxi + cm(γj)]

, (2.17)

where θj = (α′j, β′j, γ′j)
′ is a vector of parameters with βj being a p-vector of slopes, αj

a (Kj − 2)× 1 vector that defines the “ordering” of categories, and γj a (Kj − 1)× 1

vector of intercepts. The scalar parameters ak(αj) and ck(γj) in Equation (2.17) are the

elements of Kj-dimensional vectors a(αj) and c(γj), respectively, who are themselves

linear functions of αj and γj, as defined below:

a(αj) =


a0(αj)

...

aKj−1(αj)

 = F(Kj)

 1

αj

 , (2.18)

and

c(γj) =


c0(αj)

...

cKj−1(αj)

 = F(Kj)γj, (2.19)
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where F(Kj) is a Kj × (Kj − 1) linear-Fourier basis matrix:

F(Kj) =



0 0 · · · 0

1 f2,2 · · · f2,(Kj−1)

2 f3,2 · · · f3,(Kj−1)
...

...
...

Kj − 1 0 · · · 0


, (2.20)

and a typical element fk,m for k = 1, 2, . . . , Kj and m = 1, 2, . . . , Kj − 1 takes its value

from a Fourier sine-series:

fk,m = sin

{
π(k− 1)(m− 1)

Kj − 1

}
.

Again making use of the indicator function defined in Equation (2.9), the conditional

density for yij under the nominal response model is

f (yij|xi, θj) =
Kj−1

∏
k=0

P(yij = k|xi, θj)χk(yij). (2.21)

Note that Equation (2.16) and Equation (2.21) are identical in form.

The seemingly complicated reparametrization achieves several goals. First, the

category response probability, defined in Equation (2.17) using the multinominal

logit, is invariant under arbitrary affine transformation of the logits. Therefore, the

following restrictions must be in place for identification (see Thissen et al., 2006):

a0(αj) = 0, aKj−1(αj) = Kj − 1, c0(γj) = 0.

It is clear that the linear-Fourier basis matrix implements these restrictions. Second,

the linear-Fourier matrix provide (partially) orthogonal bases that essentially serve

to “smooth” category boundaries or define partial ordering of the categories. If one

fixes some of elements of αj and/or γj to zero, one can effectively create models

that are between the original nominal model and constrained models such as the

generalized partial credit model (Muraki, 1992).
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2.2.4 Continuous Response

This model corresponds to the conditionally normal model assumed in common

factor analysis. Specifically, yij is no longer an integer, but rather a number on the

real line that has a conditional normal density:

f (yij|xi, θj) =
1√

2πσ2
j

exp

{
−

(yij − αj − β′jxi)2

2σ2
j

}
, (2.22)

where θj = (αj, β′j, σj) is a (p + 2)-dimensional vector of parameters, with αj being

the measurement intercept, βj the slopes and σj the unique variance.

2.3 Observed and Complete Data Likelihoods

2.3.1 Observed Data Likelihood

Invoking the conditional independence assumption, let the conditional density

for the observed vector of responses yi = (yi1, . . . , yin)′ be

f (yi|xi, θ) =
n

∏
j=1

f (yij|xi, θj) (2.23)

where θ = (θ′1, . . . , θ′n)′ is a vector of measurement model parameters. By definition

(see section 2.1 and Equation 2.7),

xi =

 ξi

ηi

 =

 ξi

Π′ξ∗i + ζi

 ,

so one can rewrite Equation (2.23) as

f (yi|xi, θ) = f (yi|ξi, Π′ξ∗i + ζi, θ). (2.24)

Let Hp(·|µ, Σ) denote the p-variate normal distribution function with mean vector

µ and covariance matrix Σ. Equation (2.24) implies that marginal density of yi is

f (yi|ω) = f (yi|θ, τ, ∆, Φ, Π, Ψ) (2.25)

=
∫ ∫

f (yi|ξ, Π′ξ∗i + ζ, θ)Hp1(dξ|Aτ, AΦA′)Hp2(dζ|0, Ψ),
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where the integrals above are Lebesgue-Stieltjes integrals over Rp1 and Rp2 with re-

spect to the distribution functions of ξ and ζ, respectively (see Equations 2.3 and

2.5), and ω ∈ Ω ⊂ Rd is defined as a d-dimensional vector containing all free pa-

rameters in θ, τ, ∆, Φ, Π, and Ψ. Recall that A = (Ip1 − ∆)−1 (see Equation 2.2).

Let Y = (y′1, . . . , y′N)′ be an N × n matrix of observed responses. The observed data

likelihood is simply

L(ω|Y) =
N

∏
i=1

f (yi|ω). (2.26)

Note that L(ω|Y) contains N integrals of p dimensions, which makes its direct opti-

mization extremely challenging.

2.3.2 Complete Data Likelihood

It is clear from the treatment in section 2.3.1 that the ξ’s and ζ’s are treated as

missing data that are integrated out to arrive at the marginal likelihood. Had they

been observed, the complete data likelihood would simplify considerably. Equiva-

lently stated, if an imputation scheme produces values of the xi’s, the optimization

of the complete data likelihood would become easy, because xi is completely deter-

mined by ξi and ζi. Let X = (x′1, . . . , x′N)′ be an N × p matrix of missing data, so that

complete data may be written as Z = (Y, X).

Let hp(·|µ, Σ) be the density of the p-variate normal distribution with mean vector

µ and covariance matrix Σ. It follows from Equation (2.8) that the complete data

likelihood is:

L(ω|Z) =
N

∏
i=1

n

∏
j=1

f (yij|xi, θj)hp1(ξi|Aτ, AΦA′)hp2(ηi|Π
′ξ∗i, Ψ). (2.27)

The complete data likelihood is of a factored form. To further simplify the analysis,

a restriction is placed on ω to partition it into three independent sub-vectors ω =

(ω′1, ω′2, ω′3)
′, where:

1. ω1 = θ contains measurement parameters,
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2. ω2 contains linear structural parameters in τ, ∆, and Φ, and

3. ω3 contains nonlinear structural parameters in Π and Ψ.

It is assumed that ω1, ω2, and ω3 are not linked via parameter space restrictions

and/or hyperparameters.

Let Ξ = (ξ′1, . . . , ξ′N)′ be an N × p1 matrix and H = (η′1, . . . , η′N)′ be an N × p2

matrix such that X = (Ξ, H). Rearrangement of the individual terms in Equation

(2.27) leads to the following alternative expression of the complete data likelihood as

the product of three independent parts:

L(ω|Z) = L(ω1|Z)L(ω2|Ξ)L(ω3|X), (2.28)

where

L(ω1|Z) =
n

∏
i=1

N

∏
j=1

f (yij|xi, θj) (2.29)

is the measurement model complete data likelihood, and

L(ω2|Ξ) =
N

∏
j=1

hp1(ξi|Aτ, AΦA′) (2.30)

is the linear structural model complete data likelihood, and

L(ω3|X) =
N

∏
j=1

hp2(ηi|Π
′ξ∗i, Ψ) (2.31)

is the nonlinear structural model complete data likelihood. Note that Equation (2.29)

corresponds to n (possibly nonlinear) regression models; Equation (2.30) corresponds

to a normal theory moment structure model; and Equation (2.31) corresponds to a

normal theory multivariate regression model.
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CHAPTER 3

A Metropolis-Hastings Robbins-Monro Algorithm

3.1 The EM Algorithm and Fisher’s Identity

Using the notation of Chapter 2, where Z = (Y, X), and the complete data like-

lihood is L(ω|Z) for a d-dimensional parameter vector ω ∈ Ω, and suppose X ∈ E ,

where E is some sample space. The task is to compute the MLE ω̂ based on the

observed data likelihood L(ω|Y).

Let l(ω|Y) = log L(ω|Y) and l(ω|Z) = log L(ω|Z). Instead of maximizing

l(ω|Y) directly, Dempster, Laird, and Rubin (1977) transformed the observed data

estimation problem into a sequence of complete data estimation problems by it-

eratively maximizing the conditional expectation of l(ω|Z) over F(X|Y, ω), where

F(X|Y, ω) denotes the conditional distribution of missing data given observed data.

Let the current estimate be ω∗. One iteration of the EM algorithm consists of: (a) the

E(xpectation) step, in which the expected complete-data log-likelihood

Q(ω|ω∗) =
∫
E

l(ω|Z)F(dX|Y, ω∗), (3.1)

is computed, and (b) the M(aximization)-step, in which Q(ω|ω∗) is maximized to

yield an updated estimate. Let

s(ω|Z) = ∇ωl(ω|Z) (3.2)

be the gradient of the complete data log-likelihood, where ∇ω denotes the gradient

operator that returns a vector of all partial derivatives with respect to ω for a scalar-



valued function. By Fisher’s identity (Fisher, 1925), the conditional expectation of

s(ω|Z) equals the gradient of l(ω|Y):

∇ωl(ω|Y) =
∫
E

s(ω|Z)F(dX|Y, ω). (3.3)

Equation (3.3) is the key to the entire EM machinery, and the MH-RM algorithm is

strongly motivated by this equality.

3.2 MH-RM as a Generalized RM Algorithm

Robbins and Monro’s (1951) algorithm is a root-finding algorithm for noise-

corrupted regression functions. In the simplest case, let ρ(·) be a real-valued function

of a real variable θ. If ρ(·) were known and continuously differentiable, one can use

Newton’s procedure

θk+1 = θk + [−∇θρ(θk)]−1ρ(θk)

to find the root. Alternatively, if differentiability cannot be assumed, one can use the

following successive approximation

θk+1 = θk + ερ(θk)

in a neighborhood of the root if ε is sufficiently small. If ρ(·) is unknown, but noisy

observations can be taken at levels of θ at one’s discretion, one can use the following

RM recursive filter

θk+1 = θk + εkrk, (3.4)

where rk is a noisy estimate of ρ(θk) and {εk; k ≥ 1} is a sequence of decaying gain

constants such that:

εk ∈ (0, 1],
∞

∑
k=1

εk = ∞, and
∞

∑
k=1

ε2
k < ∞. (3.5)

Taken together, the three conditions above ensures that the gain constants decrease

slowly to zero. The intuitive appeal of this algorithm is that rk does not have to be

highly accurate. This can be understood from the following: if θk is still far away
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from the root, taking a large number of observations to compute a good estimate of

ρ(θk) is inefficient because rk is useful only insofar as it provides the right direction

for the next move. The decaying gain constants eventually eliminate the noise effect

so that the mean path of the sequence of estimates converges to the root.

The MH-RM algorithm is an extension of the basic algorithm in Equation (3.4) to

multi-parameter problems that involve stochastic augmentation of missing data. Let

J(ω|Z) = −∂2l(ω|Z)
∂ω∂ω′

(3.6)

be the complete data information matrix, and let K(·, A|ω, Y) be a Markov transition

kernel such that for any ω ∈ Ω and any measurable set A ∈ E , it generates a

uniformly ergodic chain satisfying

∫
A

F(dX|Y, ω) =
∫
E

F(dX|Y, ω)K(X, A|ω, Y). (3.7)

In practice, it is often useful to exploit the relation F(X|Y, ω) ∝ L(Z|ω) and construct

a Metropolis-Hastings sampler that has the desired target distribution.

Let initial values be (ω(0), Γ0), where Γ0 is a d × d symmetric positive definite

matrix. Let ω(k) be the parameter estimate at the end of iteration k. The (k + 1)th

iteration of the MH-RM algorithm consists of:

1. Stochastic Imputation:

Draw mk sets of missing data
{

X(k)
j ; j = 1, . . . , mk

}
from the transition kernel

K(·, A|ω(k), Y) to form mk sets of complete data{
Z(k)

j = (Y, X(k)
j ); j = 1, . . . , mk

}
. (3.8)

2. Stochastic Approximation: Using the relation in Equation (3.3), compute a Monte

Carlo approximation to ∇ωl(ω|Y) as

s̃k =
1

mk

mk

∑
j=1

s(ω(k)|Z(k)
j ), (3.9)
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and a recursive stochastic approximation of the conditional expectation of the

information matrix of the complete data log-likelihood as:

Γk = Γk−1 + εk

{
1

mk

mk

∑
j=1

J(ω(k)|Z(k)
j )− Γk−1

}
. (3.10)

3. Robbins-Monro Update: Set the new parameter estimate to:

ω(k+1) = ω(k) + εkΓ−1
k s̃k. (3.11)

The iterations are terminated when the estimates converge (see section 4.3.3 for de-

tails on convergence analysis). In practice, εk may be taken as 1/k, in which case the

choice of Γ0 becomes arbitrary. Though the simulation size mk is allowed to depend

on the iteration number k, it is by no means required. In fact, the algorithm converges

with a fixed and relatively small simulation size.

The MH-RM for maximum likelihood estimation is not too different from the

engineering application of the RM algorithm for the identification and control of a

dynamical system with observational noise. Finding the MLE amounts to finding

the root of ∇ωl(ω|Y), but because of missing data, ∇ωl(ω|Y) is difficult to evaluate

directly. In contrast, the gradient of the complete data log-likelihood s(ω|Z) is much

simpler. Making use of Fisher’s identity in Equation (3.3), the conditional expectation

of s(ω|Z) is equal to ∇ωl(ω|Y), so if one can augment missing data by sampling

from a Markov chain having F(X|Y, ω) as its target, ∇ωl(ω|Y) can be approximated

via Monte Carlo integration. This is the logic behind Equation (3.9), and the key to

understanding the asymptotic (in time) behavior of MH-RM.

As to the matrix Γk, it is an approximation to the conditional expectation of

J(ω|Z) over F(X|Y, ω). In multi-parameter optimization problems, use of curvature

information often speeds up convergence. The complete data information matrix is

easy to compute, and the recursive filter in Equation (3.10) helps stabilize the Monte

Carlo noise. The term Γ−1
k s̃k serves precisely the same role as rk in Equation (3.4).
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In Equation (3.11), MH-RM proceeds by using the same recursive filter as Equation

(3.4) to average out the effect of the simulation noise on parameter estimates, so that

the sequence of estimates converges to the root of ∇ωl(ω|Y).

3.3 Relation of MH-RM to Existing Algorithms

Cai (2006) showed that when the complete data log-likelihood corresponds to

that of the generalized linear model for exponential family outcomes, the MH-RM

algorithm can be derived as an extension of the SAEM algorithm by the same lin-

earization argument that leads to the iteratively reweighted least squares algorithm

(IRLS; McCullagh & Nelder, 1989) for maximum likelihood estimation in generalized

linear models. Cai’s (2006) result also implies that if the complete data model is or-

dinary multiple linear regression for Gaussian outcomes, the SAEM algorithm and

the MH-RM algorithm are numerically equivalent. In other cases when this finite-

time numeric equivalence does not hold, Delyon et al. (1999) showed that the SAEM

algorithm has the same asymptotic (in time) behavior as the stochastic gradient al-

gorithm. Equation (3.11) makes it clear that the MH-RM algorithm is an elaborated

stochastic gradient algorithm that takes second derivative information into account.

This implies that the MH-RM algorithm and the SAEM algorithm share the same

asymptotic dynamics.

MH-RM is closely related to Titterington’s (1984) algorithm in that both algo-

rithms use the conditional expectation of the information matrix of the complete data

log-likelihood. It becomes Gu and Kong’s (1998) stochastic approximation Newton-

Raphson algorithm if Γk is replaced by an estimate of the information matrix of

the observed data log-likelihood. By the missing information principle (Orchard &

Woodbury, 1972), the step size of the proposed MH-RM algorithm cannot be larger

than that of Gu and Kong’s (1998) algorithm. However, the MH-RM algorithm is

much easier to implement and more stable than Gu and Kong’s (1998) algorithm

whenever the complete data likelihood is of a factored form. This will subsequently
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be important because the latent structure model considered here has a factored com-

plete data likelihood (see Equation 2.27).

If one sets εk to be identically equal to unity throughout the iterations and mk

to some relatively large number, the MH-RM algorithm becomes a Monte Carlo

Newton-Raphson algorithm (MCNR; McCulloch & Searle, 2001). Unlike MCEM,

there is no explicit maximization step in the MH-RM algorithm, so the MH-RM is

not transparently related with MCEM. However, if εk ≡ 1, the Robbins-Monro Up-

date step can be thought of as a single iteration of maximization, in the same spirit as

Lange’s (1995) algorithm with a single iteration of Newton-Raphson in the M-step,

which is locally equivalent to the EM.

In addition to εk being unity, if the number of random draws is also equal to

one, i.e., mk ≡ 1 for all k, the MH-RM algorithm becomes a close relative of Diebolt

and Ip’s (1996) stochastic EM (SEM) algorithm. The sequence of estimates produced

by the SEM algorithm forms a time-homogeneous stationary Markov chain. The

mean of its invariant distribution is close to the MLE, and the variance reflects loss

of information due to missing data. In psychometric models similar to FIFA, the

SEM algorithm is found to converge quickly to a close vicinity of the MLE (see e.g.,

Fox, 2003). Thus, the version of MH-RM similar to the SEM algorithm leads to a

simple and effective method for computing start values for the subsequent MH-RM

iterations with decreasing gain constants.

3.4 The Convergence of MH-RM

Recall that Z = (Y, X). Reference to Y will be suppressed in this section because

it is fixed once observed. To avoid intricate notation, it is sufficient to consider mk = 1

for all k. First define the following expectations:

J̄(ω) =
∫
E

J(ω|Z)F(dX|ω), and s̄(ω) =
∫
E

s(ω|Z)F(dX|ω).
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Due to the similarity of Equation (3.11) and Gu and Kong’s (1998) Equation (5), it

can be verified that the following ordinary differential equation (ODE) governs the

asymptotic (in time) behavior of MH-RM: ω̇(t)

Γ̇(t)

 =

 Γ(t)−1s̄(ω(t))

J̄(ω(t))− Γ(t)

 ,

 ω(0)

Γ(0)

 =

 ω

Γ

 , (3.12)

where ω̇(t) and Γ̇(t) use Newton’s notation for time derivatives. Consider the so-

lution (ω(t), Γ(t)), for t ≥ 0. A point (ω∗, Γ∗) is a stability point if the above ODE

admits the only solution ω(t) = ω∗, J̄(ω(t)) = Γ∗, t ≥ 0 when ω(0) = ω∗, Γ(0) = Γ∗.

A set D is called a domain of attraction of a stability point (ω∗, Γ∗) if the solution of

the above ODE with (ω(0), Γ(0)) ∈ D remains in D indefinitely and converges to the

stability point (ω∗, Γ∗). Clearly, for MLE ω̂, the point (ω̂, J̄(ω̂)) is a stability point.

The same regularity conditions as Gu and Kong’s (1998) theorem 1 are assumed

to hold. These conditions guarantee (a) the integrability, convergence, and continuity

of the Markov transition kernel, (b) the continuity and the existence of sufficient mo-

ments for functions J(ω|Z) and s(ω|Z). If the process {(ω(k), Γk), k ≥ 1} as defined

by Equation (3.11) is a bounded sequence, then

ω(k) → ω̂, almost surely as k→ ∞, (3.13)

provided that the following recurrence condition also holds: {(ω(k), Γk), k ≥ 1}

belongs to a compact subset of the domain of attraction D of the stability point

(ω̂, J̄(ω̂)). This result is a direct consequence of Gu and Kong’s (1998) theorem 1,

which is in turn based on results in Benveniste, Métivier, and Priouret (1990).

3.5 Approximating the Information Matrix

Fisher’s identity in Equation (3.3) suggests the following procedure to recursively

approximate the score vector:

ŝk = ŝk−1 + εk {s̃k − ŝk−1} ,
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where s̃k is a Monte Carlo estimate of the observed data score function as defined in

Equation (3.9).

Following Louis’s (1982) derivations, the information matrix of the observed data

log-likelihood is

−∂2l(ω|Y)
∂ω∂ω′

=
∫
E

[
J(ω|Z)− s(ω|Z)[s(ω|Z)]′

]
F(dX|Y, ω) (3.14)

+
∫
E

s(ω|Z)F(dX|Y, ω)
∫
E
[s(ω|Z)]′F(dX|Y, ω).

This is a direct consequence of Orchard and Woodbury’s (1972) missing information

principle. Let

G̃k =
1

mk

mk

∑
j=1

[
J(ω(k)|Z(k)

j )− s(ω(k)|Z(k)
j )[s(ω(k)|Z(k)

j )]′
]

.

be a Monte Carlo estimate of the first conditional expectation in Equation (3.14). This

estimate is too noisy, so a better recursive SA estimate is

Ĝk = Ĝk−1 + εk
{

G̃k − Ĝk−1
}

.

Putting the pieces together, the observed data information matrix can be approxi-

mated as

Ik = Ĝk + ŝk ŝ′k. (3.15)

Provided that the log-likelihood is smooth, the almost sure convergence of ω(k) → ω̂

in Equation (3.13) implies that

Ik → −
∂2l(ω|Y)

∂ω∂ω′
, almost surely as k→ ∞.

Upon convergence of the MH-RM algorithm, the inverse of Ik is the large-sample

covariance matrix of parameter estimates.
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CHAPTER 4

Implementation of MH-RM

This chapter focuses on the details of implementing the MH-RM algorithm for the

latent structural model. For the majority of the applications described in Chapter 5,

the random-walk Metropolis sampler developed in section 4.1 is the most convenient

choice under full generality. Section 5.6 will describe an alternative special-purpose

formulation of the MH-RM algorithm for full-information maximum likelihood es-

timation of the tetrachoric correlation matrix that relies on a data augmented Gibbs

sampler – a special case of the Metropolis-Hastings algorithm with 100 percent ac-

ceptance rate (see e.g., Chib & Greenberg, 1995 for a discussion of the connection

between the Gibbs sampler and the Metropolis-Hastings algorithm). The alterna-

tive sampler, however, requires switching the measurement part of the latent struc-

ture model to multidimensional normal ogive models, which do not readily support

nominal responses. That restriction, in addition to the numerical complexities of the

normal cumulative distribution functions significantly undermines the purpose of

the present research, i.e., to develop a fully general framework for modelling and pa-

rameter estimation. Thus, the special-purpose MH-RM algorithm will be relegated

to section 5.6.

4.1 A Metropolis-Hastings Sampler

The MCMC imputation procedure can be derived in a similar way as in Patz and

Junker (1999a) from a Metropolis-within-Gibbs calculation (Chib & Greenberg, 1995).



Let f (xi|x1, . . . , xi−1, xi+1, . . . , xN, Y, ω) be the full conditional density for xi, and let

xl
i be the value of xi in the lth iteration of a Gibbs sampler with the following steps:

Draw xl
1 ∼ f (x1|xl−1

2 , . . . , xl−1
N , Y, ω)

Draw xl
2 ∼ f (x2|xl

1, xl−1
3 , . . . , xl−1

N , Y, ω)

...

Draw xl
i ∼ f (xi|xl

1, . . . , xl
i−1, xl−1

i+1, . . . , xl−1
N , Y, ω)

...

Draw xl
N ∼ f (xN|xl

1, . . . , xl
N−1, Y, ω) (4.1)

Let the transition kernel defined by this Gibbs sampler be K(X, A|θ, Y). Standard

results (e.g., Gelfand & Smith, 1990; Geman & Geman, 1984) ensure that it satisfies the

invariance condition in Equation (3.7). Hence if Xl = {xl
i ; i = 1, . . . , N}, the sequence

{Xl; l ≥ 0} converges in distribution to F(X|Y, ω). It is also easy to recognize that

the full conditional densities on the right hand side of (4.1) do not depend on past

updates. Thus the coordinates can be sampled independently of each other.

The full conditionals are still difficult to sample directly from, but they are spec-

ified up to a proportionality constant, i.e.,

f (xi|x1, . . . , xi−1, xi+1, . . . , xN, Y, ω) ∝ L(ω|Z)

∝ f (yi|xi, θ)hp1(ξi|Aτ, AΦA′)hp2(ηi|Π
′ξ∗i, Ψ).

This suggests coupling the Gibbs sampler with the MH algorithm. Let

α(xi, x∗i |ω, yi)

= min
{

f (yi|x∗i , θ)hp1(ξ∗i |Aτ, AΦA′)hp2(η∗i |Π
′ξ∗∗i, Ψ)q(x∗i , xi)

f (yi|xi, θ)hp1(ξi|Aτ, AΦA′)hp2(ηi|Π′ξ∗i, Ψ)q(xi, x∗i )
, 1
}

(4.2)

be the acceptance probability of moving from state xi to x∗i , where ξ∗∗i = (1, g(ξ∗i )′)′

takes the same form as Equation (2.6). To draw each xi, the following MH transition

kernel is used:

K(xi, dx∗i |θ, yi) = q(xi, x∗i )α(xi, x∗i |ω, yi)dx∗i (4.3)
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for x∗i 6= xi and K(xi, {xi}|θ, yi) = 1−
∫

x∗i 6=xi
K(xi, dx∗i |θ, yi), where q(xi, x∗i ) is any

aperiodic recurrent transition density. Piecing the Gibbs part and the MH part to-

gether, the transition kernel for generating the stochastic imputations is

K(X, dX∗|θ, Y) =
N

∏
i=1
K(xi, dx∗i |θ, yi). (4.4)

In the sequel, a simple random walk chain x∗i = xi + ei is used to generate

the proposal draws, where the increment density is that of a scaled standard mul-

tivariate normal distribution in p dimensions, i.e., ei ∼ Np(0, c2Ip). The scalar

parameter c adjusts the dispersion of the increments, so one can change its value

to tune the acceptance ratio of the MH chain. Simple calculation shows that

q(xi, x∗i ) = |2πc2Ip| exp{−(x∗i − xi)′(x∗i − xi)/(2c2)} for this increment density. Be-

cause of the symmetry of the increment density q(xi, x∗i ) = q(x∗i , xi), Equation (4.2)

can be further reduced to

α(xi, x∗i |ω, yi) = min
{

f (yi|x∗i , θ)hp1(ξ∗i |Aτ, AΦA′)hp2(η∗i |Π
′ξ∗∗i, Ψ)

f (yi|xi, θ)hp1(ξi|Aτ, AΦA′)hp2(ηi|Π′ξ∗i, Ψ)
, 1
}

. (4.5)

The kernel in Equation (4.4) represents a remarkably simple sampling plan be-

cause all the conditioning kernels K(xi, dx∗i |θ, yi) on the right hand side can be eval-

uated independently of each other. This means that the N Gibbs updates in Equation

(4.1) can be finished in parallel, if a matrix-oriented programming language such as

GAUSS (Aptech Systems, Inc., 2003) is used. In brief, one first generates an N × p

matrix E, whose ith row is e′i, from a matrix normal distribution (Mardia, Kent, &

Bibby, 1979) with independent rows each distributed as Np(0, c2Ip), and compute the

proposals as X∗ = X + E. Then for all rows, one evaluates the acceptance probabilities

in Equation (4.5) as a “dot” division of the numerator and the denominator.

Since Y is fixed, let Kk(·, A) = K(·, A|ω(k), Y) be the transition kernel in the

(k + 1)th iteration of MH-RM. From initial state X(k)
0 , a sequence {X(k)

l ; l ≥ 0} is

generated by iterating Kk(X, A), i.e.,

Pr(X(k)
l ∈ A|X(k)

0 ) = Kl
k(X(k)

0 , A),
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where Kl
k(X(k)

0 , A) denotes the lth iterate of the kernel. The sequence of random im-

putations {X(k)
j ; j = 1, . . . , mk} can be chosen from {X(k)

l ; l ≥ 0} as a subsequence,

using standard “burn-in” and/or “thinning” methods. The initial state can be cho-

sen as the last element of {X(k−1)
j ; j = 1, . . . , mk−1}, i.e., X(k)

0 = X(k−1)
mk−1 . Experience

with this MCMC sampling procedure suggests that the only parameter that has to be

tweaked on a case-by-case basis is the scalar dispersion parameter c in proposal gen-

eration. For high-dimensional problems, c generally needs to be smaller than 1, and

the right choice can be made by monitoring the rejection rates of the MH chain for

a brief period of time. It is also worthwhile to point out that standard subsampling

methods have little impact on the asymptotic behavior of the MH-RM algorithm be-

cause the convergence result (3.13) does not require uncorrelated imputations. For

any value of k, discarding a large number of initial iterates of the chain before gener-

ating the first imputation X(k)
1 is not useful for speeding up convergence. In a similar

way, “thinning” off many iterates between X(k)
j and X(k)

j+1 to reduce autocorrelation is

not helpful either. If the starting values are sufficiently close to the MLE, one may

even take mk ≡ 1 for all k and set the number of “burn-in” iterates as small as 5.

4.2 Complete Data Models and Derivatives

Having described the MH sampler that produces the random imputations, the

complete data log-likelihood and derivatives are needed to complete the specification

of the MH-RM algorithm for latent structure analysis. The first and second order

derivatives of the complete data models with respect to the unrestricted parameters

will be given. These results conveniently allow the implementation of the MH-RM

algorithm under general linear restrictions on the parameters. The linear constraint

capabilities can be implemented with a parameter segmenting technique described

by Thissen (1982). Due to conditional independence, it is sufficient to consider one

respondent and one item at a time for the measurement models.
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4.2.1 Linear Latent Structure

Using notation developed in Sections 2.1.1 and 2.3.2, let µ = Aτ and Σ = AΦA′

be the mean vector and covariance matrix of ξi. Equation (2.30) implies that the

complete data log-likelihood can be written as

log L(ω2|Ξ) ∝ −N
2

[
log |Σ|+ tr(Σ−1Sξ) + (ξ̄ − µ)′Σ−1(ξ̄ − µ)

]
(4.6)

(see Mardia et al., 1979, p. 97), where ξ̄ = N−1Ξ′1N is the mean vector of data matrix

Ξ, and Sξ = N−1Ξ′Ξ − ξ̄ξ̄
′ is the covariance matrix. Let ωi and ωj be the ith and

jth element of ω2. Newton’s notation for derivatives will be used. For instance, let

the first derivatives of µ and Σ with respect to ωj be denoted µ̇j and Σ̇j, respectively.

Similarly, let the second derivatives of µ and Σ with respect to ωi and ωj be denoted

µ̈ij and Σ̈ij, respectively. The first derivative of L(ω2|Ξ) with respect to ωj is

∂ log L(ω2|Ξ)
∂ωj

= −N
2

{
tr[Σ−1Σ̇jΣ

−1(Σ− Sξ)]− 2µ̇′jΣ
−1(ξ̄ − µ)

−(ξ̄ − µ)Σ−1Σ̇jΣ
−1(ξ̄ − µ)

}
, (4.7)

and the second derivative of L(ω2|Ξ) with respect to ωi and ωj is

∂2 log L(ω2|Ξ)
∂ωi∂ωj

=

−N
2

{
tr[(Σ−1Σ̈ijΣ

−1 − 2Σ−1Σ̇iΣ
−1Σ̇jΣ

−1)(Σ− Sξ) + Σ−1Σ̇jΣ
−1Σ̇i]

−2[µ̈′ijΣ
−1(ξ̄ − µ)− µ̇′jΣ

−1Σ̇iΣ
−1(ξ̄ − µ)− µ̇′jΣ

−1µ̇i]

−(ξ̄ − µ)′(Σ−1Σ̈ijΣ
−1 − 2Σ−1Σ̇iΣ

−1Σ̇jΣ
−1)(ξ̄ − µ)

}
, (4.8)

where

µ̇j = A∆̇jAτ + Aτ̇ j,

µ̈ij = A∆̇iA∆̇jAτ + A∆̇jA∆̇iAτ + A∆̇jAτ̇i + A∆̇iAτ̇ j,
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Σ̇j = A∆̇jAΦA′ + AΦ̇jA′ + AΦA′∆̇′jA
′,

Σ̈ij = A∆̇iA∆̇jAΦA′ + A∆̇jA∆̇iAΦA′ + A∆̇jAΦ̇iA′ + A∆̇jAΦA′∆̇′iA
′ +

A∆̇iAΦ̇jA′ + AΦ̇jA′∆̇iA′ + A∆̇iAΦA′∆̇′jA
′ + AΦ̇iA′∆̇

′
jA
′ +

AΦA′∆̇′iA
′∆̇
′
jA
′ + AΦA′∆̇′jA

′∆̇
′
iA
′.

4.2.2 Nonlinear Latent Structure

The notation here follows from Sections 2.1.2 and 2.3.2. Recall that Ξ =

(ξ′1, . . . , ξ′N)′ is an N × p1 matrix and H = (η′1, . . . , η′N)′ is an N × p2 matrix such

that X = (Ξ, H). Let Ξ∗ = (ξ′∗1, . . . , ξ′∗N)′ be an N × (q + 1) matrix consisting of ξ∗i

(see Equation 2.6) as its ith row. Equation (2.31) implies that the complete data model

corresponds to a multivariate regression model that regresses H on Ξ∗, with Π being

the regression coefficient matrix and Ψ the error covariance matrix. The complete

data log-likelihood is:

log L(ω3|X) ∝ −N
2

log |Ψ| − 1
2

tr[(H− Ξ∗Π)Ψ−1(H− Ξ∗Π)′] (4.9)

(see Mardia et al., 1979, p. 158). Let ωi and ωj be the ith and jth element of ω3,

respectively. The first derivative of the complete data log-likelihood with respect to

ωj is

∂ log L(ω3|X)
∂ωj

= −N
2

tr(Ψ−1Ψ̇j) +
1
2

tr
{

2Π̇jΨ
−1(H− Ξ∗Π)′Ξ∗

+Ψ−1Ψ̇jΨ
−1(H− Ξ∗Π)′(H− Ξ∗Π)

}
. (4.10)

The second derivative of log L(ω3|X) with respect to ωi and ωj is

∂2 log L(ω3|X)
∂ωi∂ωj

=
N
2

tr(Ψ−1Ψ̇iΨ
−1Ψ̇j)

−tr
{

Π̇jΨ
−1Ψ̇iΨ

−1(H− Ξ∗Π)′Ξ∗ + Π̇jΨ
−1Π̇

′
iΞ
′
∗Ξ∗

+Π̇iΨ
−1Ψ̇jΨ

−1(H− Ξ∗Π)′Ξ∗

+Ψ−1Ψ̇iΨ
−1Ψ̇jΨ

−1(H− Ξ∗Π)′(H− Ξ∗Π)
}

. (4.11)
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4.2.3 Dichotomous Response with Guessing Effect

Suppressing subscripts i and j used in section 2.2.1 define

T =
1

1 + exp[−(γ + β′x)]
, P = c(κ) + [1− c(κ)]T,

where c(κ) is defined in Equation (2.11). The individual contribution to the complete

data log-likelihood can be written as

l = y log P + (1− y) log(1− P). (4.12)

Using the chain-rule of differentiation, the first derivatives of (4.12) are

∂l
∂γ

=
∂l
∂P

∂P
∂γ

,
∂l
∂β

=
∂l
∂P

∂P
∂β

,
∂l
∂κ

=
∂l
∂P

∂P
∂κ

,

where

∂l
∂P

=
(

y
P
− 1− y

1− P

)
,

∂P
∂γ

= [1− c(κ)]T(1− T),

∂P
∂β

= [1− c(κ)]T(1− T)x,

∂P
∂κ

= (1− T)c(κ)[1− c(κ)]

Using the product rule, the second derivatives of (4.12) are

∂2l
∂γ∂γ

=
(

∂

∂γ

∂l
∂P

)
∂P
∂γ

+
∂l
∂P

(
∂

∂γ

∂P
∂γ

)
,

∂2l
∂β∂β′

=
(

∂

∂β

∂l
∂P

)
∂P
∂β′

+
∂l
∂P

(
∂

∂β

∂P
∂β′

,
)

∂2l
∂κ∂κ

=
(

∂

∂κ

∂l
∂P

)
∂P
∂κ

+
∂l
∂P

(
∂

∂κ

∂P
∂κ

)
,

∂2l
∂β∂γ

=
(

∂

∂β

∂l
∂P

)
∂P
∂γ

+
∂l
∂P

(
∂

∂β

∂P
∂γ

)
,

∂2l
∂β∂κ

=
(

∂

∂β

∂l
∂P

)
∂P
∂κ

+
∂l
∂P

(
∂

∂β

∂P
∂κ

)
,

∂2l
∂γ∂κ

=
(

∂

∂γ

∂l
∂P

)
∂P
∂κ

+
∂l
∂P

(
∂

∂γ

∂P
∂κ

)
,
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where

∂

∂γ

∂l
∂P

=
(
− y

P2 −
1− y

(1− P)2

)
∂P
∂γ

,

∂

∂β

∂l
∂P

=
(
− y

P2 −
1− y

(1− P)2

)
∂P
∂β

,

∂

∂κ

∂l
∂P

=
(
− y

P2 −
1− y

(1− P)2

)
∂P
∂κ

,

∂

∂γ

∂P
∂γ

= [1− c(κ)]T(1− T)(1− 2T),

∂

∂β

∂P
∂β′

= [1− c(κ)]T(1− T)(1− 2T)xx′,

∂

∂κ

∂P
∂κ

= (1− T)c(κ)[1− c(κ)][1− 2c(κ)],

∂

∂β

∂P
∂γ

= [1− c(κ)]T(1− T)(1− 2T)x,

∂

∂β

∂P
∂κ

= −c(κ)[1− c(κ)]T(1− T)x,

∂

∂γ

∂P
∂κ

= −c(κ)[1− c(κ)]T(1− T).

As is often done in practice (Thissen, 2003), a normal prior with mean µ and

variance σ2 can be placed on κ. While the resulting solution is technically no longer

the maximum likelihood estimate, the complete data model can be understood as

having a penalized log-likelihood:

l̄ ∝ l − (κ − µ)2

2Nσ2 .

This implies that the first derivative of l̄ with respect to κ becomes

∂l̄
∂κ

=
∂l
∂κ
− κ − µ

Nσ2 .

The prior also leads to the addition of a ridge term to the second derivative of l̄ with

respect to κ:
∂2 l̄

∂κ∂κ
=

∂2l
∂κ∂κ

− 1
Nσ2 .

The other derivatives remain unchanged.
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4.2.4 Graded Response

Subscripts i and j used in section 2.2.2 will be suppressed. Let y ∈ {0, 1, . . . , K−

1} be the response to a graded item in K categories. Let

T0 = 1,

T1 =
1

1 + exp[−(γ1 + β′x)]
,

T2 =
1

1 + exp[−(γ2 + β′x)]
,

...

TK−1 =
1

1 + exp[−(γK−1 + β′x)]
,

TK = 0

be the cumulative response probabilities as defined in Equation (2.14) such that

Pk = Tk − Tk+1

is the category response probability for k ∈ {0, 1, . . . , K − 1}. Using the indicator

function defined in Equation (2.9), the log-likelihood for the complete data model is

l =
K−1

∑
k=0

χk(y) log Pk =
K−1

∑
k=0

χk(y) log(Tk − Tk+1). (4.13)

The first derivatives of (4.13) are

∂l
∂γk

=
∂

∂γk

(
χk−1(y) log(Tk−1 − Tk) + χk(y) log(Tk − Tk+1)

)
= −

(
χk−1(y)

Tk−1 − Tk
− χk(y)

Tk − Tk+1

)
∂Tk
∂γk

∂l
∂β

=
K−1

∑
k=0

χk(y)
Tk − Tk+1

(
∂Tk
∂β
− ∂Tk+1

∂β

)
,

where
∂Tk
∂γk

= Tk(1− Tk),
∂Tk
∂β

= Tk(1− Tk)x.
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The second derivatives are given by

∂2l
∂γ2

k
= −

(
χk−1(y)

(Tk−1 − Tk)2 +
χk(y)

(Tk − Tk+1)2

)(
∂Tk
∂γk

)2

−
(

χk−1(y)
Tk−1 − Tk

− χk(y)
Tk − Tk+1

)(
∂

∂γk

∂Tk
∂γk

)
∂2l

∂γk−1∂γk
=

χk−1(y)
(Tk−1 − Tk)2

(
∂Tk−1

∂γk−1

)(
∂Tk
∂γk

)
∂2l

∂γk+1∂γk
=

χk(y)
(Tk − Tk+1)2

(
∂Tk+1

∂γk+1

)(
∂Tk
∂γk

)
∂2l

∂β∂γk
= − χk(y)

(Tk − Tk+1)2

(
∂Tk
∂γk

)(
∂Tk
∂β
− ∂Tk+1

∂β

)
+

χk−1(y)
(Tk−1 − Tk)2

(
∂Tk
∂γk

)(
∂Tk−1

∂β
− ∂Tk

∂β

)
−
(

χk−1(y)
Tk−1 − Tk

− χk(y)
Tk − Tk+1

)(
∂

∂β

∂Tk
∂γk

)
∂2l

∂β∂β′
=

K−1

∑
k=0

{
− χk(y)

(Tk − Tk+1)2

(
∂Tk
∂β
− ∂Tk+1

∂β

)(
∂Tk

∂β′
− ∂Tk+1

∂β′

)

+
χk(y)

Tk − Tk+1

(
∂

∂β

∂Tk

∂β′
− ∂

∂β

∂Tk+1

∂β′

)}
,

where

∂

∂γk

∂Tk
∂γk

= Tk(1− Tk)(1− 2Tk)

∂

∂β

∂Tk
∂γk

= Tk(1− Tk)(1− 2Tk)x

∂

∂β

∂Tk

∂β′
= Tk(1− Tk)(1− 2Tk)xx′.

4.2.5 Nominal Response

Subscripts i and j used in section 2.2.3 will be suppressed. Let y ∈ {0, 1, . . . , K−

1} be the response to an item in K nominal categories. Let

Pk =
exp[ak(α)β′x + ck(γ)]

∑K−1
m=0 exp[am(α)β′x + cm(γ)]

,

be the category response probability. It follows from Equations (2.18) and (2.19), that

for k ∈ {0, 1, . . . , K − 1}, ak(α) = f′k+1α, and ck(γ) = f′k+1γ, where f′k is the (k + 1)th
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row of F(K) (see Equation 2.20). The log-likelihood is

l =
K

∑
k=0

χk(y) log Pk. (4.14)

Because

∂Pk
∂α

= Pk

{
K−1

∑
m=0

Pm(fk − fm)

}
(β′x)

∂Pk
∂β

= Pk

{
K−1

∑
m=0

Pm(fk − fm)′α

}
x

∂Pk
∂γ

= Pk

{
K−1

∑
m=0

Pm(fk − fm)

}
,

it follows that the first derivatives of (4.14) are

∂l
∂α

=
K

∑
k=0

χk(y)
Pk

∂Pk
∂α

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

Pm(fk − fm)

}
(β′x),

∂l
∂β

=
K

∑
k=0

χk(y)
Pk

∂Pk
∂β

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

Pm(fk − fm)′α

}
x,

∂l
∂γ

=
K

∑
k=0

χk(y)
Pk

∂Pk
∂γ

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

Pm(fk − fm)

}
.

The second derivatives of (4.14) are

∂2l
∂α∂α′

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

∂Pm

∂α
(fk − fm)′

}
(β′x),

∂2l
∂β∂α′

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

∂Pm

∂β
(fk − fm)′(β′x) + Pmx(fk − fm)′

}
,

∂2l
∂γ∂α′

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

∂Pm

∂γ
(fk − fm)′

}
(β′x),

∂2l
∂β∂β′

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

∂Pm

∂β
(fk − fm)′α

}
x′,

∂2l
∂γ∂β′

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

∂Pm

∂γ
(fk − fm)′α

}
x′,

∂2l
∂γ∂γ′

=
K

∑
k=0

χk(y)

{
K−1

∑
m=0

∂Pm

∂γ
(fk − fm)′

}
.
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4.2.6 Continuous Response

Subscripts i and j used in section 2.2.4 will be suppressed. It is also convenient

to define x∗ = (1, x′)′ and β∗ = (α, β′)′ so that the individual contribution to the

complete data log-likelihood can be written as

l = −1
2

log(2π)− 1
2

log(σ2)− 1
2

(y− x′∗β∗)
2

σ2 . (4.15)

The first derivatives of (4.15) are

∂l
∂β∗

=
(y− x′∗β∗)x∗

σ2 ,
∂l

∂σ2 = − 1
2σ2 +

(y− x′∗β∗)
2

2σ4 .

The second derivatives are

∂2l
∂β∗∂β′∗

= −x∗x′∗
σ2 ,

∂2l
∂β∗∂σ2 = − (y− x′∗β∗)x∗

σ4 ,
∂2l

∂σ2∂σ2 =
1

2σ4 −
(y− x′∗β∗)

2

2σ6 .

4.3 Acceleration and Convergence

The asymptotic convergence result of MH-RM says nothing of its finite-time be-

havior. Experience suggests that it is crucial to ensure that the algorithm does not

get “stuck” in locations far from the MLE during the initial stage of iterations. This

is clear because the sequence of gain constants is deterministic. With finite-precision

floating point operations, they eventually go to zero and the sequence of estimates

ω(k) is bound to converge to some limit, though it may not be the MLE. The prob-

lem of premature “convergence” can be effective solved with a combination of the

following strategies.

4.3.1 Adaptive Gain Constants

Schilling and Bock (2005) reported success with the parameter expansion method

(PX-EM; Liu, Rubin, & Wu, 1998) for speeding up convergence of a quadrature based

EM algorithm in the context of exploratory item factor analysis. However, PX-EM

does not easily generalize to confirmatory analysis with arbitrary constraints.
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On the other hand, it is well-known from the work on the rate of convergence

of the EM algorithm (e.g., Meng & Rubin, 1991) that components of ω(k) converge

at different rates due to difference in the fraction of missing information (Orchard &

Woodbury, 1972). Thus it seems “unfair” for those parameters having lower frac-

tions of missing information to share the same sequence of gain constants with other

parameters having higher fractions of missing information. This suggests using vec-

tor valued gain constants that take into account the differential rates of convergence.

Recall that ω is a d-dimensional vector. Let εk = (ε1k, . . . , εdk)′, and write

{εk; k ≥ 1} as the sequence of vector-valued gain constants. Then for parameter

ω`, the sequence of gain constants is defined by {ε`k; k ≥ 1}. Kesten (1958) finds that

frequent sign changes in the the successive differences between adjacent estimates is

often an indication that the estimate is close to the MLE. Therefore, the gain constants

should be made “larger” when the sign change is infrequent. One way to accomplish

this is to decrease the gain constant only if two successive changes are of opposite

sign. To formalize this ideal, let 4(k)
` = ω

(k)
` − ω

(k−1)
` . Then choose ε`(k+1) such that

ε`(k+1) < ε`k if and only 4(k)
` and 4(k−1)

` have different signs. This method allows

slower moving parameters to have larger step sizes.

4.3.2 Multi-stage Gain Constants

The adaptive gain constants can be further augmented with a three-stage proce-

dure. First, from some starting values, run M1 MH-RM iterations, wherein both the

gain constants and the mk’s are set to 1 for k = 1, . . . , M1. At the end of iteration

M1, run another M2 iterations and at the end of iteration M1 + M2, the sequence of

parameter estimates obtained from the last M2 iterations are averaged and used as

the start value for the subsequent MH-RM iterations with decreasing gain constants.

This multi-stage procedure is motivated by a simple example. Suppose one is
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faced with the task of solving for the root of the following equation

1
1 + exp(−0.5θ)

− 0.5 = 0.

Of course, one does not need advanced root-finding algorithms to see that the root is

equal to 0. However, if one insists, Newton’s algorithm can be used. Now suppose

one is faced with a stochastic version of the root-finding problem

1
1 + exp(−0.5θ)

− 0.5 + u = 0,

where u ∼ N (0, 1). Newton’s method cannot be used, but the Robbins-Monro

method is still applicable. Let the starting value of θ be 2. Figure 4.1 compares the

rate of convergence of three implementations of the Robbins-Monro method: with

strictly decreasing gains, with constant gains, and with a two-stage (constant and

then decreasing) gain sequence. The iteration history of Newton’s method for the

deterministic problem is also plotted to serve as a baseline. It is apparent from the

figure that though the Robbins-Monro method with decreasing gain constants even-

tually converged to the root, it took well over 100 cycles. The constant gain method

pushed θ to a close neighborhood of the root, but started oscillating around 0 as a

stochastic process. The two stage method used constant gains up to cycle 20, and

then switched over to decreasing gains. It converged to 0 in less than half of the

cycle count of the decreasing gain method. Applying this technique to the MH-RM

algorithm leads to the three-stage gain procedure that performs well in practice.

4.3.3 Convergence Check

Convergence of the MH-RM can be monitored by computing a window of succes-

sive differences, say {max`4
(k)
` , max`4

(k−1)
` , . . . , max`4

(k−W)
` }, where max` stands

for taking the maximum over ` = 1, . . . , d successive differences, and W is a prede-

termined window size. The iterations are terminated if and only if all differences in

the window are less than some small number. This method prevents premature stop

due to random variation. In practice, W = 3 seems a reasonable choice.
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Figure 4.1: The Effect of Gain Constants on the Robbins-Monro Iterations
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CHAPTER 5

Applications of MH-RM

In this chapter, the MH-RM algorithm will be applied to fit some latent struc-

ture models of realistic complexity to both real and simulated data sets. Whenever

possible, estimates from the MH-RM algorithm will be compared with an alterna-

tive algorithm. Data analysis with MH-RM is conducted using a C++ program that

implements the model and the algorithm as described in Chapters 2, 3, and 4. The

computer used throughout this chapter is a laptop equipped with Intel CoreTM2 Duo

processor at 2.0GHz with 2GB RAM and running Windows XP. The goal here is to

illustrate the flexibility and efficiency of MH-RM as a general estimation algorithm

for the kinds of latent variable models that frequently arise in psychological research.

5.1 One-Parameter Logistic IRT Model for LSAT6 Data

The Law School Admission Test section 6 (LSAT6) data set is a well-known real

data set analyzed by a number of authors including Bock and Lieberman (1970),

Bock and Aitkin (1981), and Thissen (1982), among others. This data set consists

of 1000 responses to 5 dichotomous items. The unidimensional 1-parameter logistic

IRT model is known to fit the data well. Table 5.1 contains parameter estimates and

standard errors for item intercepts and a slope parameter that is constrained to be

equal across items. As a comparison, the same model is estimated in Mplus (Muthén

& Muthén, 2007) using the EM algorithm with adaptive Gaussian quadrature (20

points). Mplus converged in 21 cycles and took 1 second. The two sets of estimates



are almost identical.

Due to the nature of the unidimensional model, it is not realistic to expect a

Monte Carlo based estimation method to outperform a specialized estimation algo-

rithm, i.e., EM with Gaussian quadrature, in terms of CPU time. However, even in

this unfavorable comparison, MH-RM converged in just 12 seconds at cycle 46 with

2 imputations per cycle. This clearly demonstrates that MH-RM can, in principle, be

used in unidimensional IRT estimation.

5.2 Three-Parameter Logistic IRT Model for LSAT6 Data

MH-RM allows the imposition of univariate logit-normal priors on the guessing

parameters in the three-parameter IRT model (see section 2.2.1). To demonstrate

this capability, and to verify results under arguably the most popular IRT model for

educational tests, the 3PL model is fitted to the LSAT6 data set using both the C++

implementation of MH-RM and Multilog (Thissen, 2003). Prior research suggest that

very little guessing is involved in these items, and that priors on the lower asymptote

parameters are crucial for stable convergence to the MLE. The prior in the present

analysis is chosen to be logit-normal with mean −1.4 and standard deviation 0.5.

This corresponds to a multiple-choice test with 5 response alternatives as the prior

mean −1.4 is roughly equal to log(0.2/0.8).

Table 5.2 presents estimates and standard errors from both programs. Multilog

used 19 equally-spaced fixed quadrature nodes to perform the numerical integration

in the Bock-Aitkin EM algorithm (Bock & Aitkin, 1981). It converged at cycle 21 in

less than 1 second. MH-RM used 90 seconds in 123 cycles with 5 imputations per

cycle. It is clear that the two programs produced almost identical point estimates.

The standard errors are slightly different. Multilog standard errors are known to be

quite inaccurate (see Cai, in press), which appears to be the case here. Note in the

last column that it produced standard errors that are larger than the prior standard

deviation. Taken together, the performance of MH-RM is entirely acceptable.
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Figure 5.1: Path Diagram for Confirmatory Item Factor Analysis

5.3 Four-Dimensional Confirmatory Item Factor Analysis

Confirmatory item factor models (Edwards, 2005) for ordinal responses can be

obtained as a special case of the multidimensional graded IRT model presented in

section 2.2.2 by placing restrictions on the item slopes. In his dissertation Edwards

(2005) used Bayesian MCMC estimation methods to fit a four-dimensional item factor

analysis model to a simulated data set having 19 items and 2000 respondents. The

factor pattern is that of a perfect-cluster simple structure, i.e., each item loads on one

and only one factor with no cross-loadings. The latent variables are constrained to

have zero means and unit variances to identify the model. The correlations among

the factors are freely estimated. Figure 5.1 depicts the model as a path diagram. The

number 4 in the rectangles indicates that observed variables are scored in 4 categories.

Edwards (2005) implemented a version of data augmented Gibbs sampling al-

gorithm in a C++ software package (MultiNorm). Because Edwards (2005) used the

normal ogive parametrization, whereas the present MH-RM implementation is based

on the logistic, all generating item parameter values and estimates in Table 5.4 are

converted to logistic metric. Edwards (2005) reported that the generating parameter

values are consistent with estimates that one frequently encounters in practice.1

1Data set kindly supplied by Dr. Mike Edwards, The Ohio State University.
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Edwards (2005) reported that the MCMC estimation ran for 60,000 cycles and

required 3 1/2 hours to finish. A thinning interval of 50 was used, resulting in

a final MCMC sample of 1200, of which the first 200 were discarded as burn-in. In

comparison, MH-RM converged in 3 minutes and 54 seconds on a similarly equipped

computer before convergence at cycle 484 with 1 imputation per cycle. The dispersion

constant for the MH proposal density is tuned to .45, which produced a chain that

accepted about 40 percent of the imputations.

Tables 5.3 and 5.4 give generating parameter values and estimates from both al-

gorithms. The MultiNorm estimates are posterior means, which is different from the

MLE by definition. Despite this difference, and the difference in normal vs. logistic

parametrization, the two methods yielded essentially identical estimates. However,

MH-RM is several orders of magnitude faster than MCMC.

5.4 Latent Variable Interaction Analysis

The modelling of two-way interactions in latent variables has received consider-

able attention from methodologists since the seminal work of Kenny and Judd (1984).

See Marsh, Wen, and Hau (2004) for a recent review. Klein and Moosbrugger (2000)

showed that full-information maximum likelihood estimation for such polynomial

structural equation models is feasible. Indeed, latent variable models with interac-

tion effects can be specified as nonlinear mixed models and SAS PROC NLMIXED

can be used to estimate their parameters with adaptive Gaussian quadrature.

As pointed out in section 2.1.2, latent variable interactions can be obtained as a

special case of the general nonlinear latent structure model. MH-RM can therefore

be used to estimate the parameters. Using notation of Chapter 2, let

η = τ∗ + ∆∗g(ξ) + ζ = τ∗ +
[

δ∗1 δ∗2 δ∗3

] 
ξ1

ξ2

ξ1ξ2

+ ζ, (5.1)
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be the structural equation for latent variable interaction analysis, where

g


 ξ1

ξ2


 =


ξ1

ξ2

ξ1ξ2


is the nonlinear function that produces the polynomial effects in ξ. The structural

model has 10 free parameters: 4 regression coefficients (τ∗, δ∗1, δ∗2, δ∗3), two means

for ξ1 and ξ2 (τ1, τ2), three dispersion components for ξ1 and ξ2 (φ11, φ21, φ22), and

one variance component (ψ11) for ζ.

Following Marsh et al. (2004), let there be three continuous indicators per factor.

In matrix notation, the measurement model can be written as

y1

y2

y3

y4

y5

y6

y7

y8

y9



=



α1

α2

α3

α4

α5

α6

α7

α8

α9



+



β1 0 0

β2 0 0

β3 0 0

0 β4 0

0 β5 0

0 β6 0

0 0 β7

0 0 β8

0 0 β9




η

ξ1

ξ2

+



u1

u2

u3

u4

u5

u6

u7

u8

u9



, (5.2)

where uj is the uniqueness term with mean 0 and variance σ2
j . To identify the model,

let y1, y4, and y7 be scaling indicators by fixing β1, β4, and β7 to one and the corre-

sponding α’s to zero. Thus the measurement model has 21 parameters: 6 intercepts,

6 slopes (loadings), and 9 unique variances. Figure 5.2 shows the path diagram for

this latent variable interaction model.

One data set was simulated from the model described above with N = 1000 and

generating parameter values similar to those reported in Marsh et al. (2004).2 The

2Data set kindly supplied by Ms. Wenjing Huang, University of North Carolina – Chapel Hill.
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y4 y5 y6 y7 y8 y9

ξ1 ξ1ξ2 ξ2

η

y2y1 y3

Figure 5.2: Path Diagram for Latent Variable Interaction

C++ program implementing MH-RM and SAS PROC NLMIXED (SAS Institute Inc.,

2004) were both used to fit the model to the simulated data set. Table 5.5 presents

generating parameter values and estimates from both programs for the structural

model. Table 5.6 shows the results for the measurement model. The two sets of point

estimates are virtually identical and the standard errors are also quite close.

In NLMIXED, a quasi-Newton algorithm in conjunction with 6-point adaptive

Gaussian quadrature was specified; computation time was 3 hours 45 minutes. How-

ever, several gradient elements are still larger than 0.001 at the NLMIXED solution.

In contrast, MH-RM required 258 cycles, and 1 minute 42 seconds, to converge, with

the number of imputations per MH-RM cycle set to 1. The dispersion constant for the

MH proposal density was tuned to .8, which produced a chain that accepted about

33 percent of the imputations.

5.5 Latent Mediated Regression with Dichotomous Indicators

Mediation, or indirect effect, is a topic of much interest among psychologists

(Baron & Kenny, 1986). Figure 5.3 shows a path diagram (measurement part omitted)
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for a latent variable mediation model. In the diagram, ξ1 to ξ4 are used to predict

ξ5, which in turn predicts ξ6. If observed variables are all continuous and normally

distributed, estimating and testing such a latent mediated regression model is not

a difficult task. Now suppose each latent variable is measured by a distinct set of

10 dichotomous observed variables (not shown in the path diagram). In that case,

maximum likelihood estimation requires 6-dimensional numerical integration. If one

were to use a 5-point quadrature rule to evaluate the integral, 56 = 15625 function

evaluations are needed for each integral.

It is clear that this model can be obtained as a special case of the latent structure

model (see section 2.1.1). The measurement model is the graded response model pre-

sented in section 2.2.2 for two categories. The factor pattern is again that of a perfect

cluster simple structure so that each observed variable has exactly two measurement

parameters. For the latent structural model, ∆ contains 5 free parameters:

∆ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

δ51 δ52 δ53 δ54 0 0

0 0 0 0 δ65 0


.

The equation disturbance covariance matrix Φ takes the following form:

1

φ21 1

φ31 φ32 1

φ41 φ42 φ43 1

0 0 0 0 1

0 0 0 0 0 1


.
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ξ1 ξ2 ξ3 ξ4

ξ5

ξ6

Figure 5.3: Path Diagram for Latent Mediated Regression

The 6 free elements correspond to the saturated correlations among the predictors.

To identify the model, τ is constrained to be a vector of zeros.

Taken together, this model has 120 parameters in the measurement part, and

11 parameters in the structural part. One data set was generated from this model

with N = 500. Tables 5.7 and 5.8 present generating values for the measurement

intercepts and slopes, respectively. Consistent with standard practice (e.g., Chen

& Thissen, 1997), the 60 slopes were sampled from a log-normal distribution with

(normal) mean 0 and (normal) standard deviation 0.5. To generate the intercepts,

thresholds are first sampled from a normal distribution with mean 0 and standard

deviation 1.5. Intercepts were then obtained by taking the negative of the product of

each threshold and the corresponding slope.

Both Mplus (Muthén & Muthén, 2007) and MH-RM were used to estimate the

parameters of this model from the simulated data set. In Mplus, an EM algorithm

with adaptive Gaussian quadrature was employed. The number of quadrature points

per dimension was set at 5. In MH-RM, 1 imputation per cycle was taken, and the

dispersion constant for the MH proposal density was tuned to 0.55, which produced

a chain that accepted about 30 percent of the imputations.

Figure 5.4 plots MH-RM estimates of measurement intercepts against Mplus es-
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Figure 5.4: Latent Mediated Regression: Intercept Estimates

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

MH−RM Estimates

M
pl

us
 E

st
im

at
es

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Generating Values

E
st

im
at

es

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

MH−RM
Mplus

Figure 5.5: Latent Mediated Regression: Slope Estimates
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timates (left panel), and both sets of estimates against true generating values (right

panel). Figure 5.5 presents similar information for the measurement slopes. As one

can easily tell from both figures, the points closely follow the 45 degree reference line

in the two panels on the left, indicating the close agreement of MH-RM and Mplus

estimates. Given the relatively small N and the fact that this is a one-replication sam-

pling experiment, the degree of variability of the estimated parameters shown in the

two panels on the right, when plotted against generating values, is entirely expected.

For the structural parameters, Table 5.9 presents results from both MH-RM and

Mplus. The two algorithms produced almost identical point estimates for the struc-

tural parameters of interest. Mplus required 2 hours 53 minutes and 38 cycles,

whereas MH-RM converged at cycle 598 in 4 minutes 43 seconds. MH-RM is clearly

more efficient than quadrature-based EM for problems of this type.

5.6 Full-information Estimation of Tetrachoric Correlations

As mentioned in section 1.1.1, standard estimators in categorical structural equa-

tion modelling (e.g., weighted least squares) are multi-stage estimators. A tetra-

choric/polychoric correlation matrix is estimated from bivariate marginal frequency

tables in the first stage and in the second stage, the structural parameters (e.g., factor

loadings and correlations) are estimated. Song and Lee (2003) pointed out that pair-

wise estimation of the tetrachoric/polychoric correlations from bivariate marginal

tables does not lead to maximum likelihood estimates for the full correlation matrix.

In practice, the estimated correlation matrix often turns out to be not positive defi-

nite, due to the lack of explicit restrictions in the pairwise estimation procedure that

ensures the positive definiteness of the full matrix (see Rousseeuw & Molenberghs,

1994, for a nontechnical discussion of the shape of correlation matrices). The pair-

wise procedure also does not handle missing data in a statistically justified manner.

Full maximum likelihood estimation is ideal, but to compute an MLE of a full n× n

tetrachoric correlation matrix n-fold numerical integration is necessary; this is still an
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insurmountable difficulty.

With no loss of generality, this section’s focus is on full-information maximum

likelihood estimation of the tetrachoric correlations; the extension to the polychoric

case is straightforward. The approach developed here is similar in principle to Song

and Lee’s (2003) work, but with important differences in both the modelling frame-

work and the estimation algorithm. Specifically, two competing implementations of

the MH-RM algorithm are given. The first is based on further augmenting the model

with a set of underlying response variates (Albert, 1992). The other one is based on

the latent structure model as it is described in Chapter 2, placing special restrictions

on the parameters.

One can use a Gibbs sampler to produce the multiple imputations in the first ap-

proach. In that case the complete data model is linear, permitting explicit closed-form

estimates of the correlation parameters. The second approach enjoys the advantage

of having a uniformly smaller fraction of missing information because no underlying

response variates need to be introduced in addition to the factor scores, which leads

to a potentially more rapidly converging Robbins-Monro sequence. Less missing in-

formation means less Monte Carlo variability; less variability means that there is less

error to be filtered out by the RM recursion in 3.11. The additional benefit of the

second approach is that the existing C++ program can be used directly.

5.6.1 An Approach Using Underlying Response Variates

The underlying response variates for each dichotomous observed variable can be

understood either as a mechanical consequence of the probit link function (Albert,

1992; Chib & Greenberg, 1998), or as a necessity of the psychometric theory behind

IRT (Lord & Novick, 1968; Thissen & Wainer, 2001). Recall that there are n dichoto-

mous observed variables and N respondents. For respondent i, let the number of

latent variables also be n so that ξi is an n× 1 vector normal random variable with

mean τ and covariance matrix Φ. As an identification restriction, Φ has unit diagonal
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elements.

Let y∗i = (y∗i1, . . . , y∗in) be an n × 1 vector of underlying response random vari-

ables that are conditionally independent given ξi. From a Thurstonian factor analysis

tradition, one can start with the following:

y∗i = λInξi + ui, (5.3)

where λ can be understood as the factor loading, and ui’s represent the unique factor

terms that are normally distributed with mean zero and covariance matrix (1− λ2)In

such that y∗i is conventionally scaled. The observed variables are connected to the

underlying response variates in the following manner: if y∗ij is larger than 0, the

observed response yij is 1, and yij = 0 if y∗ij ≤ 0. This is equivalent to stating that the

item response function for item j is the following normal probability integral

P(yij = 1|ξij) =
1√
2π

∫ Bξij

−∞
exp

(
−1

2
t2
)

dt, (5.4)

where

B =
λ√

1− λ2

can be understood as a slope parameter.

Recall that by definition, the tetrachoric correlation matrix of the observed vari-

ables is the Pearson correlation matrix of the underlying response variables. If the

diagonal elements of the unique factor covariance matrix (1− λ2)In can be made ar-

bitrarily small, the factor correlation matrix Φ becomes equivalent to the tetrachoric

correlation matrix. This is the guiding insight from Song and Lee (2003) and they pro-

ceeded with the factor analysis formulation to arrive at a Monte Carlo EM algorithm

for estimating the tetrachoric correlations by FIML.

It is easy to show that λ→ 1 as B→ ∞, so making the unique variance arbitrarily

small amounts to picking a sufficiently large B. Equation (5.3) suggests that the

following parametrization of the underlying response variables leads to the same
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item response function as in Equation (5.4)

y∗i = BInξi + u∗i , (5.5)

where u∗i is standard multivariate normally distributed. The implication of the

present formulation is that each y∗ij is required to have mean Bξij for a sufficiently big

positive constant B, say, 10, and standard deviation 1. Setting B to 10 is equivalent

to setting the unique variance to 0.005, which means that y∗ij is practically a perfect

surrogate of ξij. From the IRT perspective, the high slope B ensures that the response

function is practically a step-function with nearly perfect discrimination. Equation

(5.5) is the parametrization used in this section because it makes the approach in

section 5.6.2 a conceptual continuation of the present formulation.

If one can produce random imputations of both y∗i and ξi for i = 1, . . . , N, the

threshold parameters as well as the tetrachoric correlation matrix can be estimated in

closed form as the mean and correlation matrix of the sampled ξ’s. In other words,

τ contains the negative of the threshold parameters whereas the lower triangular

elements of Φ are the tetrachoric correlations.

Some bias is incurred because the unique variance cannot be entirely eliminated,

though it can be made arbitrarily small by fixing B to a sufficiently large value. The

small bias is a price that one pays in exchange for a dramatically simpler sampling

scheme. In particular, the n observed variables (and the underlying response variate

for each) are guaranteed to be conditionally independent with the introduction of n

factors in ξ. This conditional independence reduces the multivariate sampling of y∗

to univariate sampling. If one does not introduce the ξ’s, the distribution of y∗ given

y will be multivariate truncated normal, and the development of effective sampling

schemes for the multivariate truncated normal distribution is still an open arena

for research (see Geweke, 1991 for one algorithm). On the other hand, univariate

truncated normal sampling is comparatively a much easier task. A two-step Gibbs

sampling scheme that produces y∗i and ξi is as follows.
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First, the distribution of y∗ij, conditional on yi, ξi, τ, and Φ is

y∗ij|yi, ξi, τ ∼
{
N (Bξij, 1) truncated on the left by 0 if yij = 1

N (Bξij, 1) truncated on the right by 0 if yij = 0.

This is easy to generate by inverting the standard normal cumulative distribution

function (see e.g., Albert, 1992).

Second, the distribution of ξi, conditional on yi, y∗i , τ, and Φ is normal

Nn

(
(B2In + Φ−1)−1(BIny + Φ−1τ), (B2In + Φ−1)−1

)
.

This follows directly from Equation (5.5) and elementary Bayesian results on the

normal theory linear model.

Once the imputations are obtained, one can follow the second and third steps of

the MH-RM algorithm as described in section 3.2 to obtain updated estimates of τ

and Φ, and iterate the process until convergence. Because the complete data model

is linear, a result in Cai (2006) can be utilized to show that the MH-RM iteration is

formally equivalent to a direct application of the SAEM algorithm.

5.6.2 An Approach Using Logistic Approximation

As is made clear by Equations (5.4) and (5.5), one can use the existing latent

structure model and software to obtain an alternative estimation method for the tetra-

choric correlation matrix. In this approach, n factors are specified and for item j, its

vector of slopes takes the following form

β′j = (0, . . . 0, 1.702× B, 0, . . . , 0)′,

where the nonzero entry is the jth component. The item intercepts are set to zero,

and as in the last section the factor means τ and Φ are estimated with the diagonal

elements of Φ restricted to unity for identification. The Metropolis random-walk

sampler is then used to draw ξ’s directly.
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The validity of this alternative approach rests on the similarity of the normal

ogive and logistic item response functions. The scaling constant 1.702 is used to max-

imize this similarity. However, it must be pointed out that the two distributions are

not identical, especially in the tails. Also, even if the underlying response variables

are not explicitly present in this method, the use of the logistic IRT model implicitly

assumes the existence of underlying response variables that are distributed as multi-

variate logistic variables. Therefore, one cannot expect that the two approaches will

yield exactly identical correlations.

5.6.3 An Example

To demonstrate the feasibility of FIML estimation of the tetrachoric correlation

matrix using MH-RM, a proof-of-concept simulated example consisting of 5 dichoto-

mous variables is shown. Three methods will be used to estimate the item thresholds

and the correlations: 1) the underlying response variables method as in section 5.6.1,

2) the logistic approximation method as in section 5.6.2, and 3) as a benchmark the

currently popular pair-wise estimation method. For the last method, Mplus (Muthén

& Muthén, 2007) is used.

Table 5.10 lists the generating parameter values. The following procedure was

used to generate the data set. First, one multivariate normal sample with correlations

equal to the generating correlations and means equal to the generating thresholds

parameters was obtained for N = 200. Next, the variables were dichotomized to 0-1

according to the thresholds. If a sampled value is larger than the threshold, the result

was coded as 1, and 0 otherwise.

Table 5.11 shows the means and Pearson correlations for the obtained multi-

variate sample. Table 5.12 presents estimates from the dichotomized variables. The

threshold estimates from all three methods are close. Some elements in the tetra-

choric correlation matrix show slight discrepancy when compared across methods,

but the overall pattern is in clear agreement. With essentially one replication at a
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small N, little can be said about parameter recovery. However, this small example

shows what MH-RM promises when the number of variables becomes large and

when there are missing data.

The underlying response variables method was implemented in GAUSS (Aptech

Systems, Inc., 2003), which is an interpreted matrix algebra package. However, be-

cause the GAUSS programming were vectorized, i.e., no explicit looping was used,

there is little interpretation overhead. Thus the efficiency of the GAUSS program

should be treated as comparable to the compiled C++ program that implements the

second approach using logistic approximation. The GAUSS program required 251

seconds. Using similar options (in terms of the number of imputations, number of

thinning cycles, etc.), the C++ program required 115 seconds.
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Table 5.1: LSAT6 One-Parameter Logistic Model Estimates

Item Intercepts (SE)

Slope (SE) 1 2 3 4 5

MH-RM 0.75 (.07) 2.73 (.12) 1.00 (.08) 0.24 (.07) 1.31 (.08) 2.10 (.10)

Mplus 0.76 (.07) 2.73 (.13) 1.00 (.08) 0.25 (.07) 1.31 (.09) 2.10 (.11)

Table 5.2: LSAT6 Three-Parameter Logistic Model Estimates

Intercept (SE) Slope (SE) Logit(c) (SE)

Item MH-RM Multilog MH-RM Multilog MH-RM Multilog

1 2.52 (.23) 2.53 (.25) 0.82 (.26) 0.84 (.19) -1.40 (.50) -1.40 (.51)

2 0.65 (.19) 0.65 (.28) 0.83 (.28) 0.85 (.15) -1.40 (.49) -1.41 (.59)

3 -0.28 (.31) -0.27 (.27) 1.27 (.40) 1.21 (.21) -1.43 (.48) -1.45 (.45)

4 0.98 (.18) 0.98 (.22) 0.75 (.22) 0.77 (.14) -1.40 (.50) -1.41 (.57)

5 1.80 (.18) 1.80 (.21) 0.71 (.23) 0.71 (.15) -1.40 (.50) -1.40 (.56)

Table 5.3: Four-Dimensional Item Factor Analysis: Factor Correlation Estimates

Factor Correlations

(ξ2, ξ1) (ξ3, ξ1) (ξ3, ξ2) (ξ4, ξ1) (ξ4, ξ2) (ξ4, ξ3)

True 0.75 0.70 0.75 0.60 0.50 0.80

MH 0.74 0.69 0.74 0.63 0.52 0.81

MC 0.74 0.69 0.73 0.63 0.51 0.80

Note. True = Generating values; MH = MH-RM estimates; MC = MCMC estimates.
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Table 5.4: Four-Dimensional Item Factor Analysis: Item Parameter Estimates

Slope Intercept 1 Intercept 2 Intercept 3

Item True MH MC True MH MC True MH MC True MH MC

1 2.43 2.43 2.43 2.45 2.58 2.43 0.56 0.79 0.68 -3.13 -2.82 -2.83

2 2.66 2.70 2.66 2.76 3.11 2.91 0.51 0.75 0.63 -3.00 -2.82 -2.81

3 2.09 2.19 2.16 3.17 3.56 3.39 1.36 1.66 1.55 -1.74 -1.58 -1.60

4 1.63 1.73 1.75 1.06 1.18 1.11 -0.44 -0.45 -0.51 -2.31 -2.28 -2.31

5 2.08 1.96 2.01 2.03 2.17 2.09 0.56 0.74 0.68 -1.36 -1.23 -1.28

6 2.31 2.20 2.21 0.53 0.73 0.63 -1.12 -0.88 -0.97 -3.57 -3.43 -3.42

7 1.84 1.77 1.75 1.40 1.58 1.50 0.00 0.18 0.12 -2.52 -2.42 -2.45

8 1.46 1.46 1.48 0.07 0.18 0.12 -1.00 -0.97 -1.04 -2.54 -2.51 -2.55

9 2.08 1.91 1.91 1.92 2.05 1.96 0.27 0.43 0.36 -2.48 -2.35 -2.37

10 1.99 1.92 1.96 0.95 1.13 1.06 -0.68 -0.59 -0.66 -2.86 -2.83 -2.86

11 2.81 2.88 2.88 1.75 2.13 1.96 -0.36 -0.15 -0.26 -2.91 -2.85 -2.88

12 3.13 3.11 3.10 1.96 2.28 2.11 -0.41 -0.15 -0.26 -2.84 -2.76 -2.77

13 2.30 2.14 2.16 2.16 2.26 2.14 0.56 0.67 0.58 -1.97 -1.83 -1.87

14 1.87 1.82 1.86 0.63 0.82 0.75 -1.06 -0.86 -0.92 -2.84 -2.65 -2.66

15 2.14 2.10 2.09 0.39 0.70 0.61 -1.19 -0.98 -1.04 -3.47 -3.39 -3.37

16 2.09 2.09 2.08 2.62 2.95 2.81 0.83 1.10 1.00 -1.65 -1.53 -1.57

17 2.13 2.10 2.09 3.47 3.77 3.59 1.36 1.65 1.55 -1.28 -1.11 -1.16

18 1.60 1.45 1.48 1.77 1.83 1.79 -0.10 0.03 -0.02 -2.11 -2.01 -2.04

19 1.38 1.28 1.31 1.11 1.15 1.12 -0.61 -0.45 -0.49 -3.44 -3.25 -3.23

Note. True = Generating values; MH = MH-RM estimates; MC = MCMC estimates.
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Table 5.5: Latent Variable Interaction: Structural Model Estimates

Estimate (SE)

Parameter Generating Value MH-RM NLMIXED

Intercept τ∗ -1.50 -1.61 (.15) -1.60 (.16)

Slope for ξ1 δ∗1 0.70 0.80 (.06) 0.80 (.07)

Slope for ξ2 δ∗2 0.50 0.51 (.10) 0.51 (.11)

Slope for ξ1ξ2 δ∗3 0.25 0.20 (.05) 0.20 (.05)

Residual Variance for ζ ψ11 0.60 0.66 (.09) 0.67 (.09)

Factor Mean for ξ1 τ1 2.00 1.96 (.04) 1.96 (.05)

Factor Mean for ξ2 τ2 1.00 0.99 (.03) 0.99 (.04)

Variance for ξ1 φ11 1.50 1.42 (.08) 1.45 (.11)

Cov(ξ1,ξ2) φ21 0.00 -0.05 (.05) -0.05 (.05)

Variance for ξ2 φ22 0.70 0.76 (.05) 0.77 (.08)
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Table 5.6: Latent Variable Interaction: Measurement Model Estimates

Intercept (SE) Slope (SE) Uniqueness (SE)

Item True MH SAS True MH SAS True MH SAS

1 0.0 – – 1.0 – – .7 .72(.06) .71(.07)

2 1.0 1.02(.04) 1.03(.04) .8 .80(.02) .80(.03) .8 .84(.05) .84(.06)

3 1.4 1.35(.05) 1.36(.05) .5 .52(.03) .51(.03) 1.5 1.52(.07) 1.52(.07)

1 0.0 – – 1.0 – – .7 .72(.05) .70(.06)

2 1.0 1.03(.06) 1.05(.08) .8 .80(.03) .79(.04) .8 .78(.04) .79(.05)

3 1.4 1.39(.08) 1.40(.09) .5 .52(.04) .52(.04) 1.5 1.57(.07) 1.56(.07)

1 0.0 – – 1.0 – – .7 .76(.05) .75(.07)

2 1.0 0.97(.06) 0.98(.08) .8 .80(.05) .80(.07) .8 .78(.05) .78(.05)

3 1.4 1.49(.07) 1.50(.07) .5 .46(.05) .45(.06) .5 1.58(.07) 1.58(.07)

Note. True = Generating values; MH = MH-RM estimates; SAS = SAS PROC

NLMIXED estimates.

Table 5.7: Latent Mediated Regression: Measurement Intercept Generating Values

Distinct Observed Variables for Each Latent Variable

1 2 3 4 5 6 7 8 9 10

ξ1 -0.26 1.20 0.13 0.54 -0.32 -0.79 -0.27 0.17 -0.38 0.83

ξ2 2.20 -0.46 1.11 -0.59 0.36 -0.27 -0.70 1.45 0.56 -0.29

ξ3 0.98 0.55 1.19 0.63 1.34 0.86 -0.54 -0.35 0.03 -0.62

ξ4 -0.28 0.35 4.79 0.02 2.80 -0.35 -1.28 -0.46 -0.73 0.65

ξ5 -0.36 0.32 -0.02 -0.92 0.33 0.47 0.18 -1.73 0.37 -2.60

ξ6 -1.16 -0.29 -0.50 -1.55 -3.66 1.10 -0.35 1.23 1.47 -0.48
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Table 5.8: Latent Mediated Regression: Measurement Slope Generating Values

Distinct Observed Variables for Each Latent Variable

1 2 3 4 5 6 7 8 9 10

ξ1 1.07 1.03 0.59 1.42 1.57 0.83 0.78 2.44 1.23 0.41

ξ2 1.40 0.88 1.37 1.44 0.71 1.08 1.74 1.72 0.64 0.52

ξ3 2.04 0.58 1.35 0.64 1.84 0.95 2.02 0.96 0.92 0.82

ξ4 0.63 1.51 2.40 0.79 1.94 0.90 1.07 0.97 1.70 1.10

ξ5 1.11 1.03 0.24 1.00 0.67 0.73 0.44 0.99 1.18 1.39

ξ6 0.81 0.86 0.69 1.23 2.53 0.81 1.00 1.65 1.10 1.79

Table 5.9: Latent Mediated Regression: Structural Model Estimates

Estimate (SE)

Parameter Generating Value MH-RM Mplus

δ51 0.60 0.51 (.11) 0.51 (.10)

δ52 0.30 0.26 (.14) 0.27 (.12)

δ53 0.40 0.49 (.16) 0.49 (.13)

δ54 0.50 0.33 (.09) 0.34 (.10)

δ65 0.50 0.51 (.05) 0.51 (.07)

φ21 0.30 0.24 (.06) 0.25 (.06)

φ31 0.40 0.38 (.09) 0.38 (.06)

φ32 0.60 0.61 (.10) 0.61 (.05)

φ41 0.20 0.22 (.06) 0.22 (.07)

φ42 0.50 0.42 (.07) 0.42 (.06)

φ43 0.30 0.31 (.06) 0.31 (.06)
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Table 5.10: Generating Tetrachoric Correlations and Thresholds

Variable

Variable 1 2 3 4 5

1 -1.00

2 0.72 -0.50

3 0.48 0.56 0.00

4 0.48 0.40 0.20 0.50

5 0.72 0.68 0.32 0.64 1.00

Note. Thresholds are on the diagonal.

Table 5.11: Means and Pearson Correlations of the Underlying Response Variables

Variable

Variable 1 2 3 4 5

1 -0.94

2 0.67 -0.46

3 0.43 0.55 0.04

4 0.41 0.29 0.13 0.51

5 0.66 0.63 0.32 0.62 1.05

Note. Means are on the diagonal.
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Table 5.12: Comparison of Three Estimation Methods for Tetrachoric Correlations

1 2 3 4 5

-1.15,-1.17,-1.15

.72, .68, .70 -.51,-.50,-.51

.46, .50, .51 .68, .67, .66 .05, .04, .05

.50, .55, .59 .28, .23, .28 .03, .01, .03 .50, .51, .51

.52, .53, .45 .76, .73, .60 .07, .11, .10 .48, .53, .53 1.13, 1.11, 1.13

Note. Thresholds are on the diagonal. The estimates in left-to-right order are obtained

from: 1) the underlying response variables method as in section 5.6.1, 2) the logistic

approximation method as in section 5.6.2, and 3) the Mplus implementation of the

pair-wise method, in that order.
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CHAPTER 6

Preliminary Sampling Experiments with MH-RM

While the applications to real and simulated data shown in the last chapter tell

convincing success stories about the MH-RM algorithm in a wide variety of mod-

elling contexts, questions such as parameter recovery and accuracy of standard error

estimates are best answered by simulation studies. To that end, some results from

three small scale sampling experiments are reported in this chapter. The C++ pro-

gram implementing MH-RM is used throughout for both random data generation

and model fitting. Only a relatively small number of replications is attempted under

each condition because of the preliminary nature of these sampling experiments.

6.1 A Unidimensional Model

The data generation model is a standard 2-parameter logistic IRT model with n =

10 items. The reason for including this relatively simple model in the simulation is to

investigate the accuracy of the estimated standard errors produced as a by-product

of the MH-RM iterations. While results on the convergence of the approximation to

the observed data information matrix as given in section 3.5 hold under fairly general

conditions, they are asymptotic results that may be difficult to verify given the finite

sample size and finite computing time in practice.

Theory on multiple imputation (Little & Rubin, 1987) suggests that while taking

the number of imputations per MH-RM cycle mk to be identically equal to 1 is enough

to ensure the convergence of the sequence of point estimates to the MLE, it may lead



to downward bias in the estimated standard errors. In a slightly different context,

taking mk = 1 is analogous to conducting a single round of imputation for survey

nonresponse, a practice that tends to produce biased standard errors. Multiple im-

putation theory also suggests that even when the fraction of missing information is

large, 5 to 10 imputations is usually good enough. An infinite number of imputa-

tions guarantees full efficiency, but a diminishing marginal returns effect is clearly

at work. Limited preliminary work with the MH-RM algorithm shows that 5 to 10

imputations per cycle may be more than sufficient for high quality standard errors.

This conjecture is investigated in the present simulation.

Three sample size conditions are considered: 200, 1000, and 3000, corresponding

to small, large, and very large N, respectively, for a 10-item test. As in section 5.5, the

generating slope parameters are sampled from a log-normal (0,0.5) distribution, and

the thresholds are sampled from a normal (0,1.5) distribution. Intercepts are then

obtained from the negative product of thresholds and slopes. The latent trait variable

is scaled as standard normal. Table 6.2 lists the generating item parameters in the

first column, where αj is the intercept and β j is the slope for item j.

The number of Monte Carlo replications is set to 200. Though this is smaller

than the typical number of replications seen in the literature, it is sufficient to detect

clear trends and to verify the accuracy of both the point estimates and the standard

errors. After all, the aim of this simulation study is not about Type I errors or making

accurate power tables. The number of imputations for the MH-RM algorithm is set to

5, and the dispersion of the proposal density in the Metropolis random-walk sampler

is set to 2.4.

Timing information is listed in Table 6.1. It is clear that as sample size increases,

the average number of MH-RM cycles decreases steadily. This is natural because

MH-RM has the same asymptotic (in time) behavior as the SAEM algorithm, whose

rate of convergence is inversely related to the fraction of missing information, which
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decreases as N increases. On the other hand, the amount of computation per cycle

increases linearly in N. The two processes interact such that the average CPU time

per replication for N = 3000 is only about 2 times the average CPU time for N = 200,

as opposed to a factor of 15 when predicted from N alone.

Table 6.2, 6.3, and 6.4 present summaries of simulation results for N = 200,

N = 1000, and N = 3000, respectively. Let θ denote a generic item parameter, and

let θ̂ be its MLE. A variety of statistics are computed to examine parameter recovery,

including the mean of the point estimates E(θ̂), absolute bias (θ̂ − θ), and the mean

and standard deviation of a univariate z statistic, computed as

θ̂ − θ

se(θ̂)

for each parameter, where se(θ̂) is the estimated standard error of θ̂ obtained from

Equation (3.15). The z statistic should have a mean of 0 and standard deviation of 1,

if the point estimate is correctly centered and the standard error estimate is accurate.

The tables show that as N increases, the quality of the point estimates and standard

errors becomes better, as indicated by the diminishing bias and the closer agreement

between the Monte Carlo standard deviation of the point estimates SD(θ̂) and the

mean of estimated standard errors E{se(θ̂)}. The mean and standard deviation of

the univariate z’s also approach 0 and 1, respectively.

To further aid interpretation, a series of plots are made using information from

the tables. For N = 200 and the item intercept parameters, the left panel in Figure

6.1 plots E(θ̂) against θ, and the right panel plots log E{se(θ̂)} against log SD(θ̂).

While the point estimates are aligned correctly against the true generating values,

the standard errors are generally underestimated. Figure 6.2 shows a similar pattern

for the slopes. When N is increased to 1000, the downward bias of the standard error

estimates largely disappears, as shown in Figures 6.3 and 6.4. Figures 6.5 and 6.6

show results for N = 3000, which is even better than the N = 1000 condition.
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Figure 6.1: Unidimensional IRT Model (N = 200): Intercepts

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Generating Values

E
st

im
at

es

●

●

●

●

●

●

●

●
●

●

−2.0 −1.5 −1.0 −0.5 0.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Log of Monte Carlo SDs

Lo
g 

of
 M

ea
n 

S
E

s

●

●

●

●

●

●

●

●

●
●

Figure 6.2: Unidimensional IRT Model (N = 200): Slopes
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Figure 6.3: Unidimensional IRT Model (N = 1000): Intercepts
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Figure 6.4: Unidimensional IRT Model (N = 1000): Slopes
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Figure 6.5: Unidimensional IRT Model (N = 3000): Intercepts
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Figure 6.6: Unidimensional IRT Model (N = 3000): Slopes
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Figure 6.7: Path Diagram for A Constrained Multidimensional Nominal Model

6.2 A Constrained Multidimensional Nominal Model

This simulation study may be the first empirical verification of the multidimen-

sional nominal model, so the data generating model is kept relatively simple. A

nominal categories confirmatory item factor model with five correlated factors and

perfect simple structure factor pattern is used. Figure 6.7 shows a path diagram for

this model, where the symbol N5 in each of the rectangles represents nominal ob-

served variables in 5 categories. There are n = 20 items, N = 500 respondents, and

each factor is measured by a distinct set of four items possessing the same α and γ

parameters (see section 2.2.3). The goal of this study is on parameter recovery of the

point estimates with a relatively small sample size. Hence the number of imputations

per MH-RM cycle is set to mk = 1 to reduce the run time.

For 5 nominal categories, the linear-Fourier basis matrix (see Equation 2.20) is

given by

F(5) =



0 0 0 0

1 0.707 1 0.707

2 1 0 −1

3 0.707 −1 0.707

4 0 0 0


.
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Let αj = (1, 2, 2)′ and γj = (1, 0.5, 0, 0)′ for all j = 1, . . . , n. The nominal category

parameters are

a(αj) = F(5)

 1

αj

 =
[

0 5.12 1 3.12 4

]′
,

and

c(γj) = F(5)γj =
[

0 1.354 2.500 3.354 4

]′
.

Because the last two components of γj are equal to zero, they were constrained to be

zero during model fitting using the linear restrictions capability of the C++ program.

With 100 replications, bias and variability of the parameter estimates were as-

sessed. On average it required MH-RM 378 iterations in 1253 seconds to complete

each replication. The lowest number of iterations was 297 (in 960 seconds) and the

highest number was 427 (in 1639 seconds). The Metropolis proposal dispersion was

set at 0.3.

Due to the perfect cluster factor pattern, each item loads on one and only one fac-

tor. Table 6.5 shows the generating values and estimates of the item slope parameters

side by side. Overall, the bias in point estimates is relatively small. The most interest-

ing feature is that the bias are all in the negative direction. It may be attributable to

the small sample size N = 500, relative to the number of item parameters d = 130.1

The Monte Carlo standard deviations of the estimated slopes and the mean of the

estimated standard errors are also shown. Given that mk is set to 1, the estimated

standard errors for the slopes tend to be negatively biased. This is to be expected

based on results in section 6.1. Table 6.6 presents a similar set of results for the factor

correlation matrix.

Table 6.7 shows point estimates and bias information for the nominal categories

parameters α and γ. The bias tends to be smaller in proportion than that of the

1In a subsequent sampling experiment for N = 1000 that is not reported here, the negative bias
decreased almost by half.
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Figure 6.8: Path Diagram for a Bifactor Type Model for Graded Responses

slopes. Finally table 6.8 compares Monte Carlo standard deviations of α̂ and γ̂ with

the average of the estimated standard errors. Again, the estimated standard errors

are smaller, but not appreciably so. This seems to suggest that even when mk is

small, the standard error estimates are not entirely useless as indicators of sampling

variability for the parameters in confirmatory item factor analysis.

6.3 A Bifactor Type Model for Graded Responses

The bifactor model (Holzinger & Swineford, 1937) is an important special case

of confirmatory factor analysis. At the item level, item bifactor analysis (Gibbons

& Hedeker, 1992; Gibbons et al., 2007) is also extensively used for modelling local

dependence. Much of the focus in the methodological literature on item bifactor anal-

ysis deals with special purpose algorithms for reducing the dimension of integration

so that numerical quadrature can be applied. Analyses of such special cases can be

useful at times, but the generality of the latent structure model and the MH-RM al-

gorithm has enabled psychometricians, for the first time, to specify full information
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item bifactor models (or closely related variants that would break the special case

algorithm due to Gibbons & Hedeker, 1992) as a standard confirmatory item factor

analysis model by simply placing restrictions on parameters, and fit the model by

maximum likelihood. While the generality afforded by this approach is attractive

(e.g., item bifactor models that mix item types are now possible), its performance in

practice is best checked with a simulation study.

Figure 6.8 shows the path diagram of the data generation model. This model

is motivated by the bifactor analysis reported in Gibbons et al. (2007) on Lehman’s

(1988) classical quality of life scale. One can think of ξ1 as the primary dimension

underlying the 46 observed variables, each scored on a 7-point ordinal scale (hence

the 7 in the rectangles). The items also fall into 9 clusters that have 5 item in each

cluster. The 9 additional factors that are orthogonal to the primary dimension can

be thought of as nuisance dimensions. In the context of quality of life scales, these

are often termed domain-specific factors. Note that there is a singleton item that

loads on the primary dimension only. The existence of such items is not unusual in

practice. In fact, in Lehman’s (1988) original scale, there is a global life satisfaction

item that does not appear to belong to any specific domain. The presence of such an

item that belongs only to the primary dimension is a departure from the standard

bifactor model in which each item is required to load on two and only two factors.

As a confirmatory item factor analysis model, the dimensionality of integration for

maximum likelihood fitting of the model in Figure 6.8 is equal to 10, which is the

number of dimensions that MH-RM attempts to cover in this simulation study.

The generating parameter values are given in Tables 6.9 and 6.10. These pa-

rameter values are chosen to be similar to the bifactor item parameters reported in

Gibbons et al. (2007). The sample size is N = 2000. The Metropolis random walk

proposal dispersion is set at .25, and mk = 1.

A total of 100 replications were conducted, with average run time of 1191 seconds
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Figure 6.9: Bifactor Type Model: Intercepts

(in 847 cycles) per replication. The minimum cycle count was 719, and the maximum

968. The minimum run time was 803 seconds, and the maximum was 1878 seconds.

The left panel in Figure 6.9 compares the average of the point estimates of item

intercepts against the generating values. The panel on the right plots the log of the

average of the estimated standard errors against the log of the Monte Carlo standard

deviations of the intercept estimates. The intercept point estimates show a slight

downward bias, and so are the standard error estimates. Figure 6.10 shows a similar

set of plots for the primary dimension item slopes. These slopes are slightly upwardly

biased, but their standard errors are still underestimated. Surprisingly, the slopes

for the specific dimensions are recovered very well, including their standard error

estimates (see Figure 6.11). Note that this model contains 367 parameters, so even

with a sample size of 2000, the ratio of respondents to parameters is still not too large.

Further simulation work is needed to gather conclusive evidence about the quality of

parameter estimates, but the current results show clear promise for MH-RM.
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Figure 6.10: Bifactor Type Model: Slopes for the Primary Dimension
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Figure 6.11: Bifactor Type Model: Slopes for Specific Dimensions
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Table 6.1: Timing the MH-RM for Unidimensional IRT Simulation

N Mean SD Min Max

200 # cycles 1625 301 925 2761

# seconds 352 73 128 654

1000 # cycles 515 69 335 710

# seconds 530 97 234 783

3000 # cycles 257 37 122 337

# seconds 708 230 391 1186
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Table 6.2: Unidimensional IRT Model (N = 200)

θ E(θ̂) E(θ̂ − θ) SD(θ̂) E{se(θ̂)} E
{

θ̂−θ
se(θ̂)

}
SD
{

θ̂−θ
se(θ̂)

}
α1 -0.79 -0.79 0.00 0.16 0.16 0.03 0.98

β1 0.53 0.53 0.00 0.22 0.21 -0.08 0.99

α2 1.02 1.04 0.02 0.20 0.19 0.02 1.00

β2 0.92 0.93 0.01 0.26 0.27 -0.08 0.95

α3 -1.15 -1.20 -0.05 0.23 0.21 -0.11 0.97

β3 1.03 1.09 0.06 0.36 0.30 -0.02 1.00

α4 2.36 2.56 0.20 0.69 0.61 -0.10 1.08

β4 1.79 2.02 0.23 0.81 0.72 -0.10 1.08

α5 -0.33 -0.33 -0.01 0.22 0.20 0.02 1.05

β5 1.66 1.75 0.10 0.56 0.48 -0.14 0.99

α6 -0.26 -0.26 0.00 0.17 0.16 0.01 1.05

β6 0.83 0.87 0.04 0.25 0.24 0.03 0.98

α7 -2.29 -2.50 -0.21 0.54 0.42 -0.16 0.99

β7 1.15 1.35 0.19 0.57 0.45 0.14 0.96

α8 1.22 1.29 0.07 0.31 0.22 0.13 1.05

β8 0.95 1.04 0.09 0.38 0.30 0.09 0.96

α9 -0.09 -0.09 0.00 0.17 0.16 -0.02 1.03

β9 0.90 0.94 0.04 0.29 0.25 -0.03 1.08

α10 -0.70 -0.71 -0.02 0.19 0.17 -0.04 1.11

β10 0.69 0.71 0.02 0.27 0.23 -0.06 1.09

Note. θ = Generating values; E(θ̂) = mean of point estimates; E(θ̂ − θ) = absolute

bias; SD(θ̂) = SD of point estimates; E{se(θ̂)} = mean of estimated SEs; E
{

θ̂−θ
se(θ̂)

}
=

mean of univariate z statistics using estimated SEs; SD
{

θ̂−θ
se(θ̂)

}
= SD of univariate z

statistics using estimated SEs.

85



Table 6.3: Unidimensional IRT Model (N = 1000)

θ E(θ̂) E(θ̂ − θ) SD(θ̂) E{se(θ̂)} E
{

θ̂−θ
se(θ̂)

}
SD
{

θ̂−θ
se(θ̂)

}
α1 -0.79 -0.79 0.00 0.08 0.07 0.05 1.05

β1 0.53 0.53 0.01 0.09 0.10 0.04 0.90

α2 1.02 1.03 0.01 0.10 0.08 0.05 1.13

β2 0.92 0.94 0.02 0.12 0.12 0.07 0.98

α3 -1.15 -1.15 0.00 0.10 0.09 0.02 1.08

β3 1.03 1.04 0.01 0.14 0.13 0.00 1.10

α4 2.36 2.39 0.03 0.21 0.20 -0.01 1.03

β4 1.79 1.82 0.03 0.25 0.24 -0.04 1.04

α5 -0.33 -0.33 0.00 0.10 0.09 -0.03 1.16

β5 1.66 1.67 0.02 0.19 0.19 -0.04 1.01

α6 -0.26 -0.26 0.00 0.06 0.07 0.02 0.91

β6 0.83 0.84 0.01 0.10 0.11 0.05 0.97

α7 -2.29 -2.31 -0.02 0.16 0.15 -0.02 1.03

β7 1.15 1.17 0.02 0.18 0.17 -0.01 1.06

α8 1.22 1.22 0.00 0.08 0.09 -0.02 0.92

β8 0.95 0.96 0.01 0.12 0.12 0.01 0.98

α9 -0.09 -0.10 -0.01 0.07 0.07 -0.13 1.06

β9 0.90 0.90 -0.01 0.10 0.11 -0.11 0.90

α10 -0.70 -0.70 0.00 0.07 0.07 -0.03 1.01

β10 0.69 0.68 -0.01 0.10 0.10 -0.14 0.96

Note. θ = Generating values; E(θ̂) = mean of point estimates; E(θ̂ − θ) = absolute

bias; SD(θ̂) = SD of point estimates; E{se(θ̂)} = mean of estimated SEs; E
{

θ̂−θ
se(θ̂)

}
=

mean of univariate z statistics using estimated SEs; SD
{

θ̂−θ
se(θ̂)

}
= SD of univariate z

statistics using estimated SEs.
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Table 6.4: Unidimensional IRT Model (N = 3000)

θ E(θ̂) E(θ̂ − θ) SD(θ̂) E{se(θ̂)} E
{

θ̂−θ
se(θ̂)

}
SD
{

θ̂−θ
se(θ̂)

}
α1 -0.79 -0.79 0.00 0.04 0.04 0.08 1.05

β1 0.53 0.53 0.00 0.05 0.05 0.03 0.88

α2 1.02 1.03 0.00 0.05 0.05 0.06 0.95

β2 0.92 0.92 0.00 0.06 0.07 0.00 0.89

α3 -1.15 -1.14 0.00 0.06 0.05 0.05 1.18

β3 1.03 1.02 -0.01 0.08 0.07 -0.20 1.01

α4 2.36 2.36 0.00 0.10 0.11 -0.04 0.90

β4 1.79 1.79 0.00 0.13 0.14 -0.07 0.99

α5 -0.33 -0.32 0.00 0.06 0.05 0.06 1.10

β5 1.66 1.65 -0.01 0.11 0.11 -0.20 1.04

α6 -0.26 -0.25 0.01 0.04 0.04 0.16 0.95

β6 0.83 0.82 0.00 0.05 0.06 -0.06 0.85

α7 -2.29 -2.30 -0.01 0.09 0.09 -0.02 1.05

β7 1.15 1.15 0.00 0.09 0.10 -0.08 0.93

α8 1.22 1.22 0.00 0.06 0.05 0.02 1.09

β8 0.95 0.96 0.01 0.07 0.07 0.06 1.01

α9 -0.09 -0.09 0.00 0.04 0.04 0.04 1.00

β9 0.90 0.90 -0.01 0.06 0.06 -0.12 1.00

α10 -0.70 -0.70 0.00 0.04 0.04 -0.09 0.95

β10 0.69 0.68 -0.01 0.06 0.06 -0.20 1.04

Note. θ = Generating values; E(θ̂) = mean of point estimates; E(θ̂ − θ) = absolute

bias; SD(θ̂) = SD of point estimates; E{se(θ̂)} = mean of estimated SEs; E
{

θ̂−θ
se(θ̂)

}
=

mean of univariate z statistics using estimated SEs; SD
{

θ̂−θ
se(θ̂)

}
= SD of univariate z

statistics using estimated SEs.
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Table 6.5: Multidimensional Nominal Model: Slopes

Item β E(β̂) E(β̂− β) SD(β̂) E{se(β̂)} E{se(β̂)}
SD(β̂)

1 1.00 1.04 0.04 0.12 0.10 0.85

2 1.50 1.56 0.06 0.17 0.16 0.96

3 1.20 1.29 0.09 0.13 0.13 1.00

4 0.90 0.95 0.05 0.10 0.10 0.96

5 1.00 1.05 0.05 0.12 0.11 0.89

6 1.50 1.59 0.09 0.19 0.17 0.94

7 1.20 1.25 0.05 0.15 0.13 0.87

8 0.90 0.92 0.02 0.11 0.10 0.90

9 1.00 1.07 0.07 0.12 0.11 0.88

10 1.50 1.59 0.09 0.19 0.18 0.94

11 1.20 1.28 0.08 0.14 0.13 0.92

12 0.90 0.96 0.06 0.11 0.10 0.93

13 1.00 1.02 0.02 0.10 0.11 1.02

14 1.50 1.58 0.08 0.18 0.18 1.02

15 1.20 1.25 0.05 0.14 0.13 0.95

16 0.90 0.94 0.04 0.12 0.10 0.79

17 1.00 1.05 0.05 0.12 0.10 0.86

18 1.50 1.59 0.09 0.17 0.17 1.02

19 1.20 1.28 0.08 0.13 0.13 0.96

20 0.90 0.94 0.04 0.10 0.10 0.97

Note. β = Generating item slope; E(β̂) = mean of point estimates; E(β̂− β) = absolute

bias; SD(β̂) = SD of point estimates; E{se(β̂)} = mean of estimated SEs.
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Table 6.6: Multidimensional Nominal Model: Factor Correlations

φij E(φ̂ij) E(φ̂ij − φij) SD(φ̂ij) E{se(φ̂ij)}
E{se(φ̂ij)}

SD(φ̂ij)

φ21 0.70 0.71 0.01 0.03 0.04 1.10

φ31 0.60 0.61 0.01 0.04 0.04 1.03

φ32 0.70 0.71 0.01 0.03 0.04 1.14

φ41 0.60 0.61 0.01 0.04 0.04 0.98

φ42 0.50 0.51 0.01 0.04 0.05 1.05

φ43 0.50 0.51 0.01 0.04 0.05 1.09

φ51 0.80 0.81 0.01 0.03 0.03 1.37

φ52 0.60 0.62 0.02 0.04 0.04 1.01

φ53 0.60 0.61 0.01 0.03 0.04 1.22

φ54 0.50 0.51 0.01 0.05 0.05 1.02

Note. φij = Generating correlation; E(φ̂ij) = mean of point estimates; E(φ̂ij − φij) =

absolute bias; SD(φ̂ij) = SD of point estimates; E{se(φ̂ij)} = mean of estimated SEs.
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Table 6.7: Multidimensional Nominal Model: α and γ Estimate and Bias

True Values α1 = 1 α2 = 2 α3 = 2 γ1 = 1 γ2 = 1

Item 1 (0.98,-.02) (1.99,-.01) (2.02, .02) (1.00, .00) (.51, .01)

Item 2 (0.97,-.03) (1.98,-.02) (1.98,-.02) (0.99,-.01) (.52, .02)

Item 3 (1.04, .04) (1.97,-.03) (2.01, .01) (1.03, .03) (.52, .02)

Item 4 (1.03, .03) (1.98,-.02) (2.00, .00) (1.01, .01) (.53, .03)

Item 5 (1.02, .02) (1.99,-.01) (2.02, .02) (1.03, .03) (.55, .05)

Item 6 (0.98,-.02) (1.99,-.01) (2.00, .00) (1.01, .01) (.51, .01)

Item 7 (1.00, .00) (1.97,-.03) (2.02, .02) (1.00, .00) (.50, .00)

Item 8 (0.99,-.01) (1.99,-.01) (2.01, .01) (1.00, .00) (.51, .01)

Item 9 (1.04, .04) (1.98,-.02) (2.00, .00) (1.03, .04) (.58, .08)

Item 10 (0.98,-.02) (1.99,-.01) (1.99,-.01) (1.01, .01) (.52, .02)

Item 11 (1.02, .02) (1.96,-.04) (2.00,-.01) (1.01, .01) (.51, .01)

Item 12 (1.02, .02) (1.95,-.05) (1.96,-.04) (1.03, .03) (.57, .07)

Item 13 (0.98,-.02) (2.01, .01) (2.00, .00) (1.00,-.01) (.51, .01)

Item 14 (0.98,-.02) (2.00,-.01) (1.99,-.01) (1.01, .01) (.53, .03)

Item 15 (1.02, .02) (1.99,-.01) (2.03, .03) (1.01, .01) (.48,-.01)

Item 16 (1.00, .00) (1.99,-.01) (2.00, .00) (1.01, .01) (.53, .03)

Item 17 (0.99,-.01) (1.96,-.04) (1.99,-.01) (1.01, .01) (.53, .03)

Item 18 (0.97,-.03) (1.98,-.02) (2.00, .00) (1.01, .01) (.50, .00)

Item 19 (1.00, .00) (1.97,-.03) (2.00, .00) (1.02, .02) (.53, .03)

Item 20 (0.98,-.01) (1.99,-.01) (2.01, .01) (1.00, .00) (.50, .00)

Note. The entries in the parentheses are (mean of point estimates, bias), where bias is

defined as the mean of point estimates minus true generating value.
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Table 6.8: Multidimensional Nominal Model: α and γ Standard Errors

Item α1 α2 α3 γ1 γ2

1 (.17, .18, 1.04) (.14, .13, 0.89) (.15, .15, 1.01) (.10, .09, 0.90) (.24, .22, 0.91)

2 (.19, .16, 0.88) (.14, .12, 0.83) (.12, .13, 1.09) (.10, .10, 0.96) (.23, .24, 1.03)

3 (.16, .17, 1.02) (.11, .12, 1.03) (.14, .13, 0.94) (.10, .09, 0.95) (.23, .23, 0.99)

4 (.16, .19, 1.18) (.13, .13, 1.01) (.14, .16, 1.09) (.08, .09, 1.03) (.20, .22, 1.08)

5 (.20, .19, 0.94) (.14, .13, 0.90) (.16, .15, 0.93) (.11, .09, 0.85) (.26, .23, 0.86)

6 (.16, .17, 1.04) (.14, .13, 0.87) (.13, .13, 1.02) (.10, .10, 1.03) (.27, .25, 0.90)

7 (.16, .17, 1.10) (.13, .12, 0.98) (.14, .14, 0.97) (.10, .09, 0.90) (.22, .23, 1.05)

8 (.23, .20, 0.87) (.14, .14, 0.98) (.17, .16, 0.98) (.09, .09, 1.00) (.23, .22, 0.94)

9 (.20, .18, 0.93) (.13, .13, 0.97) (.16, .15, 0.91) (.10, .09, 0.90) (.23, .23, 0.98)

10 (.18, .17, 0.97) (.14, .13, 0.93) (.13, .13, 1.02) (.11, .11, 1.00) (.27, .25, 0.93)

11 (.20, .17, 0.84) (.13, .12, 0.91) (.13, .14, 1.05) (.11, .10, 0.84) (.26, .23, 0.91)

12 (.19, .19, 1.01) (.14, .13, 0.90) (.16, .15, 0.98) (.10, .09, 0.94) (.20, .22, 1.13)

13 (.20, .19, 0.95) (.15, .13, 0.90) (.16, .15, 0.92) (.09, .09, 1.03) (.23, .22, 0.96)

14 (.19, .18, 0.95) (.13, .14, 1.05) (.14, .14, 0.99) (.11, .11, 0.97) (.25, .25, 1.02)

15 (.19, .18, 0.93) (.12, .13, 1.02) (.14, .14, 1.04) (.10, .10, 0.99) (.22, .23, 1.09)

16 (.22, .20, 0.92) (.13, .14, 1.03) (.18, .16, 0.88) (.10, .09, 0.88) (.23, .22, 0.97)

17 (.19, .18, 0.97) (.13, .13, 0.95) (.15, .15, 0.96) (.10, .09, 0.89) (.23, .22, 0.98)

18 (.17, .17, 0.98) (.13, .13, 0.99) (.14, .13, 0.96) (.09, .10, 1.10) (.25, .24, 0.98)

19 (.16, .17, 1.07) (.14, .12, 0.89) (.13, .14, 1.01) (.10, .09, 0.94) (.25, .23, 0.92)

20 (.19, .20, 1.04) (.12, .13, 1.09) (.17, .16, 0.93) (.08, .09, 1.11) (.20, .22, 1.04)

Note. The entries in the parentheses are (Monte Carlo SD of point estimates, mean of

estimated standard errors, the ratio of the latter over the former).

91



Table 6.9: Generating Parameter Values for the Bifactor Type Model: Items 1–23

Intercepts Slopes

Item 1 2 3 4 5 6 ξ1 ξ2 − ξ6

1 4.33 2.95 2.15 0.75 -0.91 -2.93 2.39 –

ξ2 2 5.19 3.62 2.89 1.24 -0.31 -2.16 1.70 1.93

3 4.16 2.65 1.62 0.64 -1.00 -2.91 1.58 1.45

4 6.86 3.98 2.57 0.53 -1.72 -5.06 2.79 3.28

5 6.17 3.87 2.62 0.78 -1.63 -4.21 2.83 2.85

6 3.81 1.90 0.57 -0.58 -2.86 -5.29 1.73 2.49

ξ3 7 3.54 2.03 1.17 0.21 -1.53 -3.52 1.09 1.38

8 3.61 1.72 0.39 -0.92 -3.16 -5.75 2.15 2.74

9 3.74 1.64 0.26 -0.74 -2.85 -5.03 1.95 2.52

10 3.63 2.55 2.02 1.19 -0.89 -2.51 1.25 0.37

11 4.87 3.86 3.00 1.66 -0.18 -2.79 1.61 1.55

ξ4 12 4.45 3.25 2.13 1.15 -0.92 -3.24 1.41 1.49

13 5.25 4.05 2.80 1.65 -0.49 -3.09 1.66 1.68

14 4.53 3.00 2.09 1.17 -0.39 -2.55 1.69 0.54

15 3.71 2.50 1.61 0.56 -1.13 -2.95 1.83 0.27

16 3.83 2.34 1.29 0.18 -1.39 -3.47 1.94 0.83

ξ5 17 3.84 2.59 1.51 0.51 -1.12 -2.98 1.45 0.97

18 4.32 2.82 1.90 0.87 -0.59 -2.39 1.72 1.13

19 4.83 2.87 1.66 0.49 -1.43 -3.52 2.25 1.93

20 3.68 2.51 1.53 0.61 -1.03 -3.03 1.50 1.23

21 4.26 3.18 2.36 1.22 -0.18 -1.74 0.93 0.29

ξ6 22 3.91 2.85 2.01 0.99 -0.86 -2.65 1.46 1.46

23 4.21 3.42 2.58 1.86 0.31 -1.49 1.11 1.15
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Table 6.10: Generating Parameter Values for the Bifactor Type Model: Items 24–46

Intercepts Slopes

Item 1 2 3 4 5 6 ξ1 ξ6 − ξ10

ξ6 24 4.22 3.31 2.33 1.42 -0.02 -2.14 1.51 2.11

25 5.05 3.86 3.07 2.24 0.46 -1.36 1.65 2.31

26 2.62 1.51 0.86 -0.08 -1.10 -2.22 1.25 1.43

ξ7 27 4.55 3.19 2.26 0.98 -1.36 -4.03 1.93 1.96

28 4.79 3.77 2.87 1.74 -0.38 -2.88 1.86 1.70

29 2.38 1.84 1.01 0.09 -1.13 -2.72 1.18 0.79

30 3.60 2.60 1.57 0.56 -1.20 -3.38 1.64 1.49

31 4.56 3.50 2.57 1.37 -0.73 -3.29 1.76 1.31

ξ8 32 7.01 5.68 4.16 2.21 -1.06 -4.16 2.25 2.48

33 5.45 3.88 2.78 1.22 -1.18 -4.13 1.93 1.56

34 4.55 3.54 2.60 1.23 -0.53 -2.76 1.42 1.18

35 4.43 3.44 2.82 1.56 -0.06 -1.91 0.93 0.53

36 4.36 2.96 2.18 0.83 -0.87 -2.89 2.43 1.94

ξ9 37 5.27 3.66 2.90 1.33 -0.28 -2.14 1.77 1.51

38 4.23 2.70 1.66 0.68 -0.90 -2.82 1.68 3.31

39 6.96 4.03 2.63 0.54 -1.65 -5.04 2.80 2.94

40 6.18 3.93 2.65 0.84 -1.59 -4.12 2.85 2.57

41 3.88 1.96 0.58 -0.52 -2.79 -5.21 1.77 1.47

ξ10 42 3.60 2.11 1.23 0.21 -1.51 -3.44 1.16 2.77

43 3.66 1.77 0.48 -0.84 -3.11 -5.66 2.19 2.62

44 3.82 1.69 0.33 -0.68 -2.79 -5.00 1.98 0.43

45 3.68 2.60 2.08 1.24 -0.87 -2.47 1.32 1.65

46 4.94 3.91 3.02 1.69 -0.09 -2.71 1.62 1.57
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CHAPTER 7

Discussions and Future Directions

7.1 Discussions

The present research extends work in Cai (2006) on exploratory item factor analy-

sis using the MH-RM algorithm to the general confirmatory setting within the mod-

elling context of a flexible nonlinear latent structure model. The latent structure

model synthesizes many existing psychometric models and provides a rich frame-

work for the development of new models. The MH-RM algorithm combines elements

of MCMC with Stochastic Approximation and makes important connections between

the missing data formulation, the EM algorithm, and maximum marginal likelihood

estimation. A C++ program has been written that implements both the model and

the algorithm, permitting general confirmatory analysis.

Theoretical results on the MH-RM algorithm have been extended, and details

on the practical implementation of the MH-RM algorithm are discussed. Issues that

have been encountered and resolved include: 1) algorithmic acceleration with multi-

stage and adaptive gain constants, 2) estimation under user-defined linear restrictions

using a parameter space segmentation technique, 3) exploratory studies on an alter-

native Gibbs sampler for the normal ogive parametrization.

A variety of real and simulated data sets are used to compare MH-RM with

currently available software packages for latent variable modelling. The problems

range from small to large, and from simple to complex. Without exception, MH-RM



compared favorably against alternatives in terms of efficiency, while maintaining the

same degree of accuracy.

Some Monte Carlo sampling experiments were conducted to examine different

aspects of this new estimation algorithm, including parameter recovery, standard er-

ror estimation, and CPU time. While firm conclusions cannot be drawn solely on

the current limited set of simulations, the results are promising. It is safe to conclude

that MH-RM may become the first self-adaptive algorithm for high-dimensional max-

imum likelihood latent variable modelling that is not subject to the “curse of dimen-

sionality.”

7.2 Future Directions

There are two avenues for extensions of the present research. The first, and most

obvious one, is to extend the MH-RM algorithm to modelling frameworks that are not

covered by the current latent structure model. For instance, theoretical and empirical

results on MH-RM suggest that it may also work well for generalized and nonlinear

mixed effects models. Another possibility is to investigate the applicability of MH-

RM for multilevel latent structure modelling, where the respondents are themselves

nested within some larger unit or cluster. This includes multilevel structural equation

modelling as a special case. Yet another possibility is mixture modelling. MH-RM

resembles, in some ways, the SAEM algorithm, which was originally proposed to

solve finite mixture problems. Therefore it is reasonable to expect MH-RM to be

applicable in that context as well. In general, MH-RM is most likely to excel in

dealing with high-dimensional problems where both the number of latent variables

and the number of observed variables are large.

The second avenue is extending the algorithm itself. Theory on the Robbins-

Monro method suggests that further improvement of MH-RM’s efficiency and rate of

convergence is possible. For example, Polyak and Juditski (1992) showed that if the

gain constants converge to zero at a rate less than O(N−1), the “off-line” averaged
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estimate

ω̃(k) =
1
K

k

∑
j=k−K(k)+1

ω(j)

converges at an optimal rate, where K(k) is a “window of averaging” that is allowed

to depend on k. Kushner and Yin (1997) give detailed analysis and justification for

this procedure based on the time-scale separation argument. The effect of Polyak

averaging on the finite-time behavior of MH-RM deserves further study.

In general, more simulation work using MH-RM is necessary. A feature of the

present simulations is that the data generating model and the fitted model are iden-

tical, which means that there is no model error (in the sense of MacCallum, 2003).

This is strikingly unrealistic. Better external validity can be achieved by incorporat-

ing model error into the simulations and only then can one be somewhat optimistic

about the usefulness of MH-RM for latent structural modelling in real psychological

research.
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Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation and some model-fit analysis
of multidimensional IRT models. Psychometrika, 66, 541–561.

Benveniste, A., Métivier, M., & Priouret, P. (1990). Adaptive algorithms and stochastic
approximations. Berlin: Springer-Verlag.

Bjorner, J. B., Chang, C.-H., Thissen, D., & Reeve, B. B. (2007). Developing tailored
instruments: Item banking and computerized adaptive asessment. Quality of Life
Research, 16, 95–108.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are
scored in two or more nominal categories. Psychometrika, 37, 29–51.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item
parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.

Bock, R. D., & Bargmann, R. (1966). Analysis of covariance structures. Psychometrika,
46, 443–449.

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis.
Applied Psychological Measurement, 12, 261–280.

Bock, R. D., Gibbons, R., Schilling, S. G., Muraki, E., Wilson, D. T., & Wood, R. (2003).
TESTFACT 4 user’s guide. Chicago, IL: SSI International.

97



Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously
scored items. Psychometrika, 35, 179–197.

Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley
& Sons.

Bolt, D. (2005). Limited and full information estimation of item response theory
models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics
(p. 27-71). Mahwah, NJ: Earlbaum.

Booth, J. G., & Hobert, J. P. (1999). Maximizing generalized linear mixed model
likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal
Statistical Society – Series B, 61, 265–285.

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of
covariance structures. British Journal of Mathematical and Statistical Psychology, 37,
62–83.

Cai, L. (2006). Full-information item factor analysis by Markov chain Monte Carlo stochastic
approximation. Unpublished master’s thesis, Department of Statistics, University
of North Carolina at Chapel Hill.

Cai, L. (in press). SEM of another flavor: Two new applications of the supplemented
EM algorithm. British Journal of Mathematical and Statistical Psychology.

Cai, L., Maydeu-Olivares, A., Coffman, D. L., & Thissen, D. (2006). Limited-
information goodness-of-fit testing of item response theory models for sparse
2p tables. British Journal of Mathematical and Statistical Psychology, 59, 173–194.
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