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Abstract

ALEXANDER HOFF COUTURE: Cross-Section Measurement of 2H(n,np)n at
16 MeV in Symmetric Constant Relative Energy Configurations.

(Under the direction of T. B. Clegg and C. R. Howell.)

The neutron-deuteron (nd) breakup reaction serves as a fertile testing ground for theories

of three nucleon dynamics and meson exchange descriptions of nuclear systems. The three-

body kinematics of the nd breakup reaction allow observables to be studied in a variety of

exit-channel configurations to test nucleon-nucleon potential models as well as three-nucleon

force models. Over the last two decades there have been significant advances in modeling

three-nucleon dynamics using empirical nucleon-nucleon potential models [Glö96]. These

calculations have shown excellent agreement with most experimental data. However, there

remain some exceptions where serious discrepancies arise. We have undertaken new cross-

section measurements to provide further insight into one of these discrepancies, the space-star

anomaly.

The space-star configuration is a special case of the symmetric constant relative energy

(SCRE) configuration in nd breakup. The SCRE configuration occurs when the three out-

going nucleons have the same energy and are separated by 120◦ in the center-of-mass frame.

The space-star configuration occurs when the plane containing the outgoing nucleons is per-

pendicular to the incident beam. The other SCRE configuration measured in this experiment

is the coplanar-star, in which this plane contains the incident beam.

The space-star anomaly is a discrepancy between theoretical predictions and experimental

measurements for the nd breakup differential cross sections; the data are systematically higher

than theory at all energies where measurements have been taken. This anomaly has been es-

tablished by eight previous measurements taken at neutron beam energies of 10.3, 13.0, 16.0,

and 25.0 MeV. Three of these experiments were performed in Germany at Bochum [Ste89]

and Erlangen [Str89, Geb93], one at the Chinese Institute of Atomic Energy [Zho01], and

four at TUNL [Set05, Cro01, Mac04]. All previous measurements were taken with essentially

the same experimental setup, the common features being: (1) the scatterer was a deuterated

scintillator, (2) two neutrons were detected in coincidence, (3) the target-beam integrated lu-

minosity was determined through nd elastic scattering by detection of the scattered neutron.

To determine if there could be a common experimental error in previous measurements, our

experiment utilizes a technique similar to the one developed by Huhn et al.[Huh00b] to mea-
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sure the nn scattering length. The primary distinctions between our technique and those used

in previous SST measurements are: (1) the deuterated target was a thin foil, (2) a neutron

was detected in coincidence with the scattered proton, and (3) the integrated target-beam

luminosity was determined by nd elastic scattering via detection of the scattered deuteron.

To compare the results of this experiment with theoretical predictions, a Monte-Carlo sim-

ulation of the experiment was developed which averaged point-geometry Faddeev calculations

over the finite geometry of the experimental apparatus [Taj10]. Along with this averaging

process several other effects were simulated including: the energy loss and attenuation of

charged particles in our system, background events from low energy neutrons in the beam,

the time resolution of the detectors and electronics, and kinematic constraints in breakup

events. The effective experimental cross section produced by the Monte-Carlo simulation

was then used to predict the number of counts expected as a function of detected neutron

energy which could be directly compared with the experimental measurement. This method

has the advantage that statistical and systematic uncertainties are clearly separated between

experimental measurement and theoretical prediction, respectively.
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1 Introduction

Models of the nuclear force naturally begin by considering the interaction between a pair

of nucleons. An extensive compilation of proton-proton (pp) and neutron-proton (np) scat-

tering observables has been cataloged over the last half century. Pure neutron-neutron (nn)

observables are lacking since neutron targets have not been developed. Nuclear force mod-

els are tailored to describe these two-nucleon (2N) observables. The first logical place to

test these models is the three-nucleon (3N) system; the nd system, in particular, is ideal since

the Coulomb interaction is not present, leaving the nuclear interaction as the dominant effect.

There are three classes of reactions which may occur from an nd interaction: elastic scat-

tering, neutron capture forming a triton, and the breakup of the deuteron. A measurement

of the five-fold differential cross section, d5σ/dΩpdΩndEn, for the neutron-induced deuteron

(nd) breakup reaction, 2H(n, np)n, taken at an incident neutron energy of 16.0 MeV forms the

basis of this thesis. This chapter will first discuss the kinematics of the breakup reaction and

describe the exit-channel configurations studied. The problems that have been encountered in

calculating 3N observables will then be addressed. The history of nd breakup measurements

which motivated this experiment will conclude the chapter.

1.1 Experimental Overview

The three-body kinematics of nd breakup allow the outgoing nucleons to arrange them-

selves in a wide variety of exit-channel configurations, restricted only by conservation of

energy and momentum. This provides a fertile testing ground for the application of nucleon-

nucleon (NN) potential models as well as three-nucleon forces (3NF). The cross sections for

two particular exit-channel configurations, both representative of the symmetric constant en-

ergy (SCRE) configuration depicted in Figure 1.1, were explicitly investigated. These were the



space-star configuration (SST) and the coplanar-star configuration (CST). Here, the SCRE

configuration of nd breakup is defined as an exit channel where the momentum vectors of

the three outgoing nucleons have the same magnitude and lie in a common plane separated

by 120◦ in the center-of-mass (CM) frame. The SST configuration occurs when this plane

is perpendicular to the incident neutron beam axis. In the CST configuration, this plane

contains the beam axis.

Figure 1.1: Diagram of the symmetric constant relative energy configuration of nd breakup.
In the center-of-mass frame, the momentum vectors of the three outgoing nucleons have the
same magnitude, lie in a plane, and are separated by 120◦. The angle defining the tilt of
the scattering plane with respect to the incident neutron beam axis is denoted as α. For the
SST(CST) configuration, α = 90◦(α = 0◦).

The kinematics of the 3N system are specified by nine degrees of freedom, the three compo-

nents of each nucleonic momentum vector. When considering the final state of the nd breakup

reaction, four of these components are restricted by energy and three-dimensional momentum

conservation. These are characterized by the initial state which in the laboratory frame is

described by a neutron traveling along the beam axis with a specific energy and a stationary

deuteron with a binding energy of 2.224 MeV. The remaining five parameters are typically

specified by the energies and polar angles with respect to the neutron beam axis, E1, θ1, E2

and θ2, for two of the outgoing nucleons and the azimuthal separation between them, φ12.

The knowledge of these nine parameters completely specifies the final state, with one caveat:
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since the initial state possesses azimuthal symmetry about the neutron beam axis, the final

state must as well. Thus any description of the final three-nucleon configuration must be

independent of rotations about this axis.

In performing a kinematically complete nd breakup measurement, two detectors are placed

in specific positions relative to the target, and the neutron beam energy is controlled. In any

coincidence between outgoing detected nucleons following a collision which causes a target

deuteron to break up, the outgoing nucleons must have energies which lie along a well-defined

kinematic locus or S-curve in the E1−E2 plane, as shown in Figure 1.2. This kinematic locus

may be parameterized by an arc length, S, defined such that it increases counterclockwise

and S=0 is located at the maximum value of E1 where the locus intersects the E1 axis. There

are configurations where the locus never intersects this axis; in this case S=0 is defined as

the point on the locus where the sum, E1 + E2 is minimized. Two sample loci pertaining to

these two conditions are included in Figure 1.2.

Figure 1.2: Examples of nd breakup kinematic loci for an incident neutron beam energy of
16 MeV. The dots show the location of S=0 for the two configurations. The configuration
shown by the solid line corresponds to the angles θ1 = θ2 = 35◦ and φ12 = 180◦ and obviously
does not intersect the E1 axis. Its S=0 location is defined by the minimization of E1+E2. The
configuration shown by the dashed line corresponds to the angles θ1 = θ2 = 70◦ and φ12 =
180◦. Here S=0 is defined by the E1 intercept. In both cases S increases counterclockwise.

3



1.2 The Three-Nucleon Problem

The interaction between two nucleons has been well characterized over the last half cen-

tury. Phenomenological NN potential models based on meson exchange, such as the CD-

Bonn [Mac01a], the AV18 [Wir95], and Nijmegen [Sto94] potentials, describe two-nucleon

(2N) systems with extreme accuracy. When these models are applied to 3N systems in a pair-

wise fashion, the results agree well with experimental observations in most cases. However,

there are some notable exceptions: the triton binding energy defect, the nucleon-deuteron

analyzing power puzzle, and the space-star anomaly. Attempts have been made, with vary-

ing degrees of success, to resolve these problems with the inclusion of a 3NF. A 3NF is an

interaction between the three nucleons which cannot be reduced into iterations of 2N inter-

actions. Notable 3NF models include the Tuscon-Melbourne [Coo79], the Urbana [Car83],

and Brazil [Coe83] models, all of which have been updated several times since their initial

formulations. The triton binding energy defect and the analyzing power puzzle will be sum-

marized in this section, while the space-star anomaly will be discussed extensively in the next.

Potential Binding Energy (MeV)
Model 3H 3He

AV18 7.624 6.925
Nijm II 7.651 6.994

CD-Bonn 7.998 7.263
AV18+UIX 8.479 7.750

CD-Bonn+TM 8.474 7.720

Exp. Value 8.482 7.718

Table 1.1: Calculations of the 3H and 3He binding energies using the hyperspherical harmonic
variational method [Kie08] with various phenomenological NN and 3NF potentials.

The binding energy of the triton (3H) has been experimentally determined to be 8.482 MeV.

Calculations of the 3H binding energies using modern NN phenomenological potentials have

been performed by several different methods [Kie08]. All such potentials fit the Nijmegen

phase shift data to about the same level of precision [Mac01a]. Calculations made with the

CD-Bonn potential come closer to the 3H binding energy than many of the other modern

potential models, however the CD-Bonn model still underbinds the triton by about 0.5 MeV.

The inclusion of the most recent version of the TM 3NF [Coo01] with the CD-Bonn potential

reproduces the binding energy exactly using the Faddeev method [Nog03]. The combination

of the AV18 with the Urbana IX 3NF [Pie01] yields similar results. This is not surprising

since the free parameters in these 3NF’s are specifically tailored to reproduce this binding

energy. However, when these NN+3NF models are used to calculate the binding energy of
3He nucleus, the results reproduce the experimental value to better that 0.5%. A summary
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of calculated 3H and 3He binding energieg is included in Table 1.1.

The nucleon-deuteron (Nd) analyzing power puzzle is defined by the failure of rigorous

3N calculations to reproduce experimentally measured Nd vector analyzing powers (Ay) for

elastic scattering at low energies [Tor08]. The observable Ay is a measure of the difference in

differential cross section when a nucleon beam is in a spin-up versus a spin-down polarization

state. The following equation defines Ay(θ):

Ay(θ) =

dσ
dΩ↑

(θ) − dσ
dΩ↓

(θ)

dσ
dΩ↑

(θ) + dσ
dΩ↓

(θ)
, (1.1)

where the up and down arrows indicate the spin state of the fully polarized nucleon beam. At

energies below 16 MeV, theoretical calculations underpredict the maximum value of Ay(θ) by

20-30%. The choice of NN potential model and the inclusion of a 3NF have only minor effects

on these discrepancies. The Ay puzzle diminishes as the incident nucleon energy increases

past 16 MeV until it vanishes at about 40 MeV, where NN calculations agree with data.

Figure 1.3 illustrates the Ay puzzle below 16 MeV.

Figure 1.3: Relative difference between vector analyzing power data and theoretical predic-
tions based on the AV18 potential at the angle where Ay is at its maximum value for that
energy [Tor08]. The solid dots and open squares represent neutron and proton discrepancies,
respectively.

A major issue with all modern phenomenological NN interaction models and their 3NF
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corrections is that they treat the nucleons as elementary particles. Nucleons are actually com-

posite systems consisting of quarks interacting via the exchange of gluons. The interactions

between quarks and gluons are described by the strong theory of quantum chromodynamics

(QCD). Nuclear systems should be described using QCD through the residual strong inter-

action between nucleons in a fashion similar to the van der Waals forces between neutral

molecules. However, the strong coupling constant, αS , between the quark and gluon fields is

too large to allow perturbative calculations to be made in the low-energy regime of nuclear

systems [Epe09]. A low-energy approximation of QCD, which treats nucleons and pions as the

effective degrees of freedom, known as chiral effective field theory (χEFT), has been developed

over the past twenty years. In the framework of χEFT, 3NF’s arise naturally and potential

models based on this theory have been implemented in 3N calculations [Epe06]. However,

chiral potentials have yet to resolve completely either the Ay puzzle or the space-star anomaly.

1.3 Motivation

The space-star anomaly in nd breakup is a discrepancy between theoretical predictions

and experimental measurements of the five-fold differential cross section, d5σ/dΩ1dΩ2dS. The

data are systematically higher than theory at all energies where measurements have been

made. This anomaly has been established by eight previous measurements taken at incident

neutron beam energies of 10.3, 13.0, 16.0, and 25.0 MeV. Three of these experiments were

performed in Germany at Bochum [Ste89] and Erlangen [Str89, Geb93], one at the Chinese

Institute of Atomic Energy [Zho01], and four at TUNL [Set05, Cro01, Mac04]. Figure 1.4

shows the history of these SST cross-section measurements compared with Faddeev calcu-

lations [Glö96] based on the CD-Bonn potential [Mac01a]. Another notable discrepancy in

nd breakup occurs in neutron-neutron (nn) quasifree scattering (QFS), a configuration where

the proton is left at rest after the breakup reaction. Cross-section data for nn QFS have been

taken at beam energies of 25.0 [Rua07] and 26.0 MeV [Sie02]. Theoretical calculations fall

short of the data by about 20% in both these measurements.

All previous measurements were taken with essentially the same experimental setup, the

common features being: (1) the scatterer was a deuterated scintillator allowing the energy

of the outgoing proton to be measured, (2) the two outgoing neutrons were detected in coin-

cidence, and (3) the target-beam integrated luminosity was determined through 2H(n, n)2H

elastic scattering. By measuring the momentum of the two neutrons and the energy of the

recoil proton, this technique over constrained the kinematics of the reaction. To determine if

there could be a common experimental error in previous measurements and alter the sensitiv-

ity of the data to systematic uncertainties, our experiment utilizes a technique similar to the

one developed by Huhn et al. [Huh00a, Huh00b] to measure the nn scattering length. This
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Figure 1.4: History of previous nd breakup space-star cross-section measurements. Mea-
surements have been made at 10.3, 13.0, 16.0, and 25.0 MeV incident neutron energy. All
measurements reported on this graph detected the two neutrons in coincidence.

method fully determines the kinematics of the reaction, but does not have redundant kine-

matic measurements as is the case in the previously used method. The primary distinctions

between our technique and those used in previous SST measurements are: (1) the deuterated

target was a thin CD2 foil allowing the outgoing proton to exit the target, (2) the outgoing

proton was detected in coincidence with one of the neutrons, and (3) the integrated target-

beam luminosity was determined by 2H(n, d)n elastic scattering. Previous measurements as

well as most theoretical calculations report the breakup cross section as a function of S. This

is advantageous, as an S-value uniquely defines an exit channel while an En or Ep value may

correspond two different channels. The choice of reporting the results of this experiment as a

function of En was spurred by the relatively poor proton energy resolution obtainable using

our experimental technique. The resolution of the proton energy measurement is mostly deter-

mined by the thickness of the CD2 target foil. Projecting the data onto the detected neutron

energy axis removes most of the experimental uncertainty from poor proton energy resolution.

The previous 2H(n, nnp) SST cross sections measured were all flat along the S-curve in

the region of the SCRE condition. This allows the measured cross section to be averaged

over a relatively large region. Measurements of the 2H(n, np)n SST cross section sample a

7



different region of the reaction phase space at locations on the S-curve other than the SST

point. Therefore, the region along the S-curve over which the SST data may be averaged is

more restrictive than for the two-neutron coincidence method. The asymmetry introduced

by final-state interactions between the undetected neutron and the proton on one side of the

SCRE condition and the two neutrons on the other skews the cross section. The SCRE con-

dition is the only point which may be compared between the current measurement and the

previous 16 MeV SST measurement of A. Crowell [Cro01]. Figure 1.5 shows the calculated

cross sections as a function of length along the S-curve at 16.0 MeV for the two experimental

techniques as well as the experimental results from Crowell.

Figure 1.5: Cross sections for nd breakup in the SST configuration. Data points are measure-
ments from the nn coincidence experiment performed by A. Crowell [Cro01]. The solid line is
a theoretical point geometry calculation for his experiment based on the CD-Bonn [Mac01a]
potential. The dashed line similarly gives the cross-section calculation for an np coincidence
measurement of the same reaction. The vertical dotted line shows the location of the SCRE
condition, the only place where the nn and np cross sections are identical and may be com-
pared.

Many of the experiments mentioned above which measured SST cross sections also made

CST measurements simultaneously, also by detecting the two neutrons in coincidence. Copla-

nar star data have been taken at incident neutron energies of 10.3 MeV [Mac04], 13.0 MeV [Mac04,

Set05, Str89], and 16.0 MeV [Cro01]. Unlike the SST configuration, which contains complete
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symmetry as the three outgoing nucleons are rotated about the axis perpendicular to the

plane containing them, the CST configuration obeys no such symmetry. Even in the CM

frame, the slight mass difference between protons and neutrons breaks this symmetry. When

observed in the laboratory frame, these rotations of the CST produce vastly differing re-

sults. The CST experiments listed above have all measured either two neutrons detected

symmetrically about the beam axis [Cro01, Mac04] or the scenario where one neutron exits

the reaction perpendicular to the beam axis in the CM frame and the other at a more for-

ward angle [Set05, Str89]. This latter choice is advantageous as a neutron detector may be

shared by both the SST and CST measurements and the neutron at the forward angle will

have greater energy in the laboratory frame allowing a larger kinematic region to be probed.

A comparison of laboratory cross sections and kinematic loci for these two scenarios at an

incident neutron energy of 16 MeV is shown in Figure 1.6. The CST configuration measured

in the current experiment is similar to this latter configuration differing only in that the pro-

ton shares its detector with the SST configuration. Unfortunately the 16 MeV 2H(n, nnp)

CST measurement [Cro01] was made in the symmetric scenario; thus the results may not be

directly compared with the present measurement. However, the 16 MeV beam energy of this

experiment explores kinematic regions unavailable to the previous 13 MeV asymmetric CST

measurements [Set05, Str89].

The remainder of this thesis will consist of five additional chapters. In the first of these,

Chapter 2, various nuclear potential models will be discussed, along with the methods used

to make 3N cross-section calculations with them. The following chapter will discuss the ex-

perimental setup. Monte-Carlo simulations were required to take the theoretical calculations

based upon point geometry and apply them to the experimental setup. These simulations

will be addressed in Chapter 4. The details of the data analysis applied to this experiment

will then follow in Chapter 5. The final chapter will present the experimental results and

discuss their implications.
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Figure 1.6: Comparison of CST configurations with incident neutron beam energies of 16 MeV
rotated by 30◦ from one another about an axis perpendicular to the plane of the outgoing
nucleons in the CM frame. The graph on the left compares the differential cross sections as a
function of S. The graph on the right compares kinematic loci. The solid line corresponds to
the configuration where the two outgoing neutrons are symmetric about the beam axis (θn1 =
θn2 = 71.2◦, φ12 = 180◦). The dashed line is for the configuration where the momentum of
one of the outgoing neutrons is perpendicular to the beam axis in the CM frame and the
other is at a forward angle (θn1 = 51.5◦, θn2 = 16.8◦, φ12 = 180◦). The solid dots indicate
the locations of the SCRE condition.
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2 Theoretical Background

2.1 Introduction

Theoretical cross sections were produced to compare with the results of this experiment.

In order to do this, one must begin with a model of the interaction between the nucleons

involved in the nd breakup reaction. A number of high-precision nucleon-nucleon potential

models are currently available, as well as models which include three-nucleon forces (3NF).

The Charge-Dependent Bonn (CD-Bonn) potential [Mac01a] was used for the brunt of the-

oretical predictions used in this project; however calculations were made with many other

models as well for comparison.

Once a potential model is selected, it must be inserted into the Faddeev equations [Fad61]

which are essentially a three-body extention of the Lippmann-Schwinger equation [Lip50] in

order to obtain transition (T) matrix elements. The Faddeev equations may not be solved an-

alytically, so numerical calculations were performed by Henryk Wita la of the Bochum-Cracow

theory group [Glö96]. Theoretical cross sections may then be derived rather simply from the

T-matrix.

This chapter will begin with a discussion of various potential models used to describe

the nuclear interaction. This will be followed with an explanation of two- and three-body

scattering theory and the calculation of the T-matrix. It will conclude with the procedure for

obtaining cross sections for three-nucleon processes.

2.2 Potential Models

Any potential model attempting to simulate the nuclear force must replicate the empirical

features of this interaction which have been experimentally determined since the discovery of



the atomic nucleus nearly a century ago. Five of the most important features will now be

presented [Mac89].

1. The nuclear interaction has a finite range. Since electromagnetic forces alone success-

fully describe observed phenomena on a molecular level, the nuclear force must have

a significantly shorter range than interatomic distances. However a more restrictive

limit may be placed on the range of this interaction by examining the binding energy of

nuclei. Above A=4, the binding energy per nucleon remains relatively constant as well

as their density. This indicates that nucleons are only interacting with their nearest

neighbors in a nucleus to first order. Based upon the evidence that the energy per bond

in light nuclei (A≤4) does increase with A, the range of the nuclear interaction has been

estimated to be roughly equal to the radius of the alpha particle (r≈1.7 fm) [Wig33].

2. The nuclear interaction is attractive in its intermediate range. The evidence for this

postulate is most clearly illustrated by the existence of atomic nuclei containing multiple

nucleons. There must be some attractive interaction between nucleons because of these

bound systems. The phrase “intermediate range” is meant relative to the entire range

of the nuclear force. The nuclear interaction can not be described by a single process

over its entire range, thus it is advantageous to subdivide it into different regions. A

division of the nuclear force into three regions was proposed by Taketani, Nakamura, and

Sasaki [Tak51]. They proposed short (r ≤ 1 fm), intermediate (1 fm ≤ r ≤ 2 fm), and

long (r ≥ 2 fm) range regions. Additional evidence of an intermediate range attractive

interaction comes from the analysis of low energy NN scattering which indicates positive

S-wave phase shifts [Arn83].

3. The nuclear interaction has a repulsive core. Evidence of this is also derived from

S-wave NN phase shifts. High energy scattering probes more deeply into the core of

the nucleon. At laboratory energies above 250 MeV, the S-wave phase shifts become

negative indicating repulsion [Arn83]. This range of the repulsive region is estimated

to be about 0.6 fm.

4. The nuclear interaction contains a tensor component. The most compelling evidence for

a tensor force in the nuclear interaction comes from the deuteron wavefunction. A tensor

force which mixes the D- and S-wave components of the nuclear interaction is required

to explain the quadrupole moment of the deuteron wavefunction [Kam83]. Additional

evidence for the tensor component comes from the non-zero magnetic moment of the

deuteron [Pri47].

5. The nuclear interaction contains a spin-orbit component. Once again evidence of this

property comes from the phase shift analysis of NN scattering [Arn83]. The high energy

triplet P-waves can only be reproduced by the inclusion of a spin-orbit interaction along
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with the central and tensor components. For completeness, it should be mentioned that

nuclear interaction should also include spin-spin terms though they are considerably

weaker than the other terms.

2.2.1 Meson Exchange Theory

Any discussion of meson exchange theory must begin with the work of Hideki Yukawa who

developed a theory to explain the finite range of the nuclear force [Yuk35]. He postulated

that the interaction field between the proton and neutron was mediated by a heavy particle.

He developed this theory by analogy with quantum electrodynamics (QED) where the force

carrier is the massless photon. Let’s begin by examining the Poisson equation of classical

electromagnetism for a point charge, e, fixed at the origin:

∇2V (r) = −eδ3(r). (2.1)

The solution to this equation is the Coulomb potential with infinite range, given as follows:

V (r) =
e

4π

1

r
. (2.2)

Yukawa introduced a wave equation for the nuclear potential, U(r,t), containing two constants,

g and λ, having the units of electric charge (m
3

2 kg
1

2 /s) and m−1, respectively. It is given by

the following:
{

∇2 −
1

c2
∂2

∂t2
− λ2

}

U = −gΨ̃
τ1 − iτ2

2
Ψ. (2.3)

Here τi denotes the Pauli matrices and Ψ is the wavefunction of the nucleons and is a function

of time, positions, spin, and isospin. In the limit of heavy, non-relativistic nucleons located

at r1 and r2 this equation is satisfied by the Yukawa potential [Yuk35]:

U(r) =
g

4π

e−λr12

r12

(τ1 − iτ2)

2
. (2.4)

Here r12 is the distance between the nucleons and the Pauli matrices act to transform neutron

to proton and vise versa. This potential has a range given by λ−1 and predicts a bosonic

force carrier with a charge of ±e and a mass given by m = (h/c)λ.

The particle predicted by Yukawa was eventually discovered and named the pion (π).

Initial potential models involving one-pion exchange were moderately successful at describing

NN scattering data and the properties of the deuteron [Mac05]. However, when attempts

were made to describe short-range NN interactions using multi-pion exchange models, serious

difficulties were encountered [Bru53]. The large πNN coupling ( g2

4π = 13.6) constant makes

unfeasible a perturbative treatment of the nuclear force analogous to QED ( e2

4π = 1
137).
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In the 1960’s, heavy mesons were discovered that behaved as multi-pion resonances with

definite masses and quantum numbers, the ρ and ω being 2π and 3π resonances, respec-

tively. Additional fictitious mesons were conjectured to account for uncorrelated multi-pion

exchanges [Mac89]. These advances led to the development of one-boson exchange (OBE)

potential models which described empirical NN properties with a good deal of success in the

1970’s and 1980’s. These potentials begin with Lagrangians characterizing the meson-nucleon

couplings by their various symmetries. These Lagrangians for the scalar (s), pseudoscalar (ps),

vector (v), and tensor (t) fields are given as follows [Oga67]:

Ls = gsΨΨφ(s),

Lps = gpsΨiγ5Ψφ(ps) +
fps

M
Ψiγ5γµΨ∂µφ

(ps),

Lv = gvΨiγµΨφ(ps)
µ +

fv

2M
ΨσµνΨ

(

∂µφ
(v)
ν − ∂νφ

(v)
µ

)

,

and Lt =
gt

2M

{

Ψγµ∂νΨ − ∂νΨγµΨ
}

φ(t)
µν +

ft

M2
∂µΨ∂νΨφ(t)

µν . (2.5)

Here M is the nucleon mass and Ψ is the nucleon wavefunction. Wavefunctions for spin 0, 1,

and 2 mesons are given by φ, φµ, and φµν , respectively. The following definitions apply for

the Dirac γ-matrices:

σµν =
1

2i
(γµγν − γνγµ) ,

γ0 =

(

i 0

0 −i

)

, γk =

(

0 −iσk

iσk 0

)

(k = 1, 2, 3), and γ5 =

(

0 −1

−1 0

)

. (2.6)

The first-order contributions to the NN interaction from OBE are described by the Feynman

diagram in Figure 2.1. The corresponding amplitude for this process is given as follows:

AB

(

q′, q
)

=
u1(q′)Γ

(B)
1 u1(q)PBu2(−q′)Γ

(B)
2 u2(−q)

k2 −m2
B

. (2.7)

Here Γ
(B)
i are vertices derived from the Lagrangians of Equation 2.5, the ui are Dirac spinors

for the nucleons, and PB divided by the denominator is the meson propagator. These ampli-

tudes may be used to produce the following OBE potential [Mac01b]:

V (q′, q) =
M

√

(M2 + q2)(M2 + q′2)

∑

B

iAB(q′, q)F (k2). (2.8)

Here M is the nucleon mass and a form factor F (k2) is used to account for the extended

structure of the nucleon and conceal a singularity at the origin. Several examples of commonly
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Figure 2.1: Feynman diagram for one-boson exchange in NN scattering in the center-of-
mass frame [Mac89] which describes the amplitude given in Equation 2.7. Solid lines denote
nucleons and the dashed line is a boson of mass, mB. The symbols, Γi, represent the BNN
vertices. The change in momentum is given by k = q′ − q.

used form factors are given as follows [Sto94]:

F (k2) = 1, (none)

F (k2) =
Λ2 −m2

Λ2 + k2
, (monopole)

F (k2) =

[

Λ2 −m2

Λ2 + k2

]2

, (dipole)

and F (k2) = ek
2/Λ2

. (exponential) (2.9)

This project uses four high-precision NN potentials based more or less on the princi-

ples of meson-exchange to compare the cross-section data with theoretical predictions. They

are the Nijmegen I and II (Nijm I and II) [Sto94], the Argonne V18 [Wir95], and the CD-

Bonn [Mac01a] potentials. These potentials were developed in the 1990’s and each fit the

pruned 1992 Nijmegen database to a χ2/datum ≈ 1 [Mac01b]. The 1992 Nijmegen database

contains all pp and np scattering data below Tlab = 350 MeV published in a regular physics

journal between 1955 and 1992 [Sto93] with certain exceptions which were rejected upon χ2

analysis. Additional data have been accumulated since and the χ2/datum produced by these

potentials has suffered somewhat [Mac01b].

A few concepts must be addressed before a proper comparison of these potentials may

proceed. The first is charge independence, defined as invariance to rotations in isospin space.

For the purpose of this discussion, this boils down to identical treatment of nn, np, and pp
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interactions once Coulomb forces are removed. Any violation of this principle is known as

charge-independence breaking (CIB) or charge-dependence. A special case of charge indepen-

dence is charge symmetry, which states that the nn and pp nuclear interactions should be

identical. Any violation of this principle is called charge-symmetry breaking (CSB). Evidence

for CIB is found in comparisons of Coulomb corrected pp and np scattering data. The effects

of CSB are seen in Nolen-Schiffer anomaly which concerns differences in the binding energies

of neighboring mirror nuclei [Nol69]. All of the meson-exchange NN potential models incor-

porate CIB and CSB to some extent. Both CIB and CSB are included in these potentials

through charged-neutral mass splitting in the pion and nucleon, respectively, although not

necessarily in all relevant terms. The concept of locality must also be addressed. Local poten-

tials do not depend explicitly on the initial or final momenta, but only upon the momentum

transfer, k = q′ − q. This is a reasonable approximation for low energies, however off-shell

effects cause the approximation to break down at energies above ≈350 MeV.

The Nijmegen potentials [Sto94] are based on OBE potential functions with exponential

form factors. The bosons included are three pseudoscalar mesons (π, η, η ′), three vector

mesons (ρ, ω, φ), and three scalar mesons (a0, f0, ε). The Particle Data Group [Nak10]

contains information about all of these mesons except the ε, which would have the properties

of the f0 with a mass of 760 Mev/c2. Also included are the J = 0 parts of the Pomeron,

f2, f ′2, and a2 tensor-meson trajectories. Here, CSB is included by explicitly including the

mass difference between the proton and neutron. The mass differences between the π0 and

the π±, as well as the ρ0 and the ρ± are included as well to include CIB in both the long

range and core regions of the interaction. The Nijm I potential contains non-local momentum

dependent terms in its central component, though its tensor component is local. The Nijm II

model differs from the Nijm I in that it is entirely local.

The AV18 potential [Wir95] is comprised of three parts: an electromagnetic (EM) part, a

one-pion exchange (OPE) part, and a combined intermediate- and short-range phenomeno-

logical part. Here, CIB and CSB are incorporated into the EM part by including mass

differences for the proton and neutron as well as taking into account the different EM prop-

erties of the nucleons. The OPE part also includes neutron-proton and charged-neutral pion

mass-splitting. The OPE potential contains momentum space Gaussian cutoffs which make

them vanish at r = 0 and simulate the effects of ρ-meson exchanges. The intermediate- and

short-range phenomenological part is built from local Wood-Saxon type functions. This part

of the potential only incorporates charge-dependence in its 1S0 central component.

The CD-Bonn potential [Mac01a] is based on OBE potential functions using dipole form

factors to regulate the short-range interaction. This model includes all mesons with masses
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less than the nucleon (π, η, ρ, ω) as well as two fictional scalar-isoscalar σ bosons. The η

is effectively dropped by incorporating a vanishing coupling to the nucleon. The σ bosons,

introduced to simulate multi-meson exchanges, have masses and coupling constants which are

adjusted in each partial wave to fit the 1992 Nijmegen database [Sto93]. This potential is

entirely non-local and contains full CIB and CSB in all partial waves with J ≤ 4.

2.2.2 Three Nucleon Force

Three-nucleon force effects arise from the quark substructure of the nucleon. The residual

strong interaction between color neutral nucleons is simulated through the meson-exchange

potentials discussed in the previous section. However, the 2N interaction may distort the

quark substructure, altering the interaction between these nucleons and others that may be

in their vicinity. The resulting 3NF effects in the framework of meson-exchange theory are

typically modeled via two-pion exchange (TPE) interactions as shown in Figure 2.2. The first

Figure 2.2: Feynman diagram from two-pion exchange. The solid lines represent nucleons,
the dashed lines pions. The shaded oval represents anything except a forward propagating
nucleon state which may be represented by iterations of the 2N interaction.

3NF based on TPE was developed by Fujita and Miyazawa [Fuj57] in an attempt to explain

the underestimation of the triton binding energy by 2N interactions, though at this time the

quark substructure of nucleons had yet to be proposed. The process they proposed was the

following: one nucleon emits a pion which is scattered by a second nucleon before being ab-

sorbed by the third nucleon. Some aspects of this process may be explained by iterations of

2N interactions, by considering two uncorrelated OPE processes. However, 2N interactions do

not take into account the intermediate excitation of the second nucleon which is the process

of concern.

The modern 3NF’s used in theoretical cross-section calculations for this project are the

1999 update to the Tuscon-Melbourne (TM99) potential [Coo01] and the Urbana IX (UIX)

potential [Pud97]. These potentials are both non-local, charge-independent, and based upon

TPE with an intermediate ∆-isobar. The TM99 potential is a modification of the TM81 [Coo81]
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model which excludes a short-range contact term inconsistent with chiral symmetry and con-

tains updated strength constants corresponding recent measurements of pion observables.

The UIX potential was developed for exclusive use with the AV18 2N potential. It contains a

2PE term and a short-range phenomenological term each with a single coefficient which were

fit to the density of nuclear matter and the binding energy of 3H.

2.2.3 Chiral Effective Field Theory

The interaction between nucleons should be based on the strong theory of quantum chro-

modynamics (QCD) involving the interactions between quarks and gluons. However, at low

energies (E < 1 GeV) the characteristic degrees of freedon are not quarks and gluons, but

nucleons and pions. To generate an effective theory for these degrees of freedom based on

QCD, one may invoke a theorem proposed by Weinberg [Wei79] which he implemented to

create the first chiral effective Lagrangians [Wei91].

“If one writes down the most general possible Lagrangian, including all terms

consistant with the assumed symmetry principles, and then calculates matrix el-

ements with this Lagrangian to any given order in perturbation theory, the result

will simply be the most general possible S-matrix consistent with analyticity, per-

turbative unitarity, cluster decomposition, and the assumed symmetry principles.”

The big idea behind this theorem is that no assumptions can be made about the Lagrangian.

All relevant terms must be included ensuring that the effective theory is the low-energy limit

of QCD. To develop a potential model using an effective Lagrangian, a process for organizing

the terms by their importance into a perturbative expansion must be developed. In chiral

perturbation theory (χPT), the expansion parameter used in the perturbative scheme is given

by the ratio Q/Λ, where Q is the the soft scale given by the pion mass and/or external nucleon

momenta and Λ is the hard scale of the order of the nucleon mass [Epe09]. The processes

considered in the expansion are pion exchanges and contact interactions between nucleons.

Heavy meson exchanges appear only indirectly in the contact terms. Feynman diagrams for

these interactions are shown in Figure 2.3. The order of the expansion parameter ν for a

particular Feynman diagram is determined by the following equation:

ν = −2 + 2En + 2(L− C) +
∑

i

Vi∆i, (2.10)

where En, L, C, and Vi are the numbers of nucleons, loops, separately connected pieces, and

vertices of type i, respectively. The dimension of a vertex of type i is given by ∆i, defined as:

∆i = di +
ni

2
− 2, (2.11)
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Figure 2.3: Feynman diagrams showing the hierarchy of nuclear forces in χPT. Solid lines
represent nucleons and dashed lines pions. Solid dots, filled circles, squares, and diamonds
denote vertices with ∆i=0, 1, 2, and 3 [Mac05].
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where di is the number of derivatives or pion mass insertions and ni is the number of nucleon

lines at the vertex [Epe05]. Please note that, for example, in a two-nucleon contact interac-

tion (the first diagram in Figure 2.3) there are two nucleons (En = 2), while there are four

nucleon lines at the vertex (ni = 4). The nomenclature pertaining to this ordering scheme is

that ν = 0 is referred to as leading order (LO), ν = 2 next-to-leading order (NLO), ν = 3

next-to-next-to-leading order (NNLO), ν = 4 next-to-next-to-next-to-leading order (N3LO),

and so on. Diagrams with ν = 1 are not included as a result of parity conservation which

forbids (NN)(NN) vertices with one spatial derivative and πNN vertices with two deriva-

tives. Also Equations 2.10 and 2.11 would imply that one irreducible 3N term involving a

2π-exchange with ∆i = 0 should appear at NLO, however this term is shifted to higher orders

because of a 1/m factor appearing in its potential. Thus the 3NF does not arise until NNLO

in χPT [Epe09].

Two nucleon potentials have been calculated up to N3LO in χPT [Epe05]. These potentials

are built from separate contributions arising from pion exchange and contact interactions. At

N3LO, terms arising from 1π, 2π, and 3π exchanges must be considered. A general outline of

the structure of 2N chiral potentials up to N3LO is given as follows:

V2N = Vcont + Vπ,

where Vcont = V
(0)
cont + V

(2)
cont + V

(4)
cont + · · · ,

and Vπ = V1π + V2π + V3π + · · · ,

V1π = V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π + · · · ,

V2π = V
(2)
2π + V

(3)
2π + V

(4)
2π + · · · ,

V3π = V
(4)
3π + · · · . (2.12)

The superscript in parenthesis refers to the chiral order, ν, of the term. The explicit forms of

these terms and their partial wave expansions have been derived by Epelbaum et al. [Epe05].

A number of “low energy constants” (LEC) arise in these potentials. All LEC related to

pion exchange take experimentally determined values. At LO, these are the nucleon and

pion masses (mn, mp, Mπ± , Mπ0), the pion decay constant Fπ, and the axial-vector coupling

constant ga. At NNLO and N3LO, four additional LEC are needed at each order which

have been determined from πN scattering. The short-range contact terms also contain LEC

that must be fixed from a fit to the Nijmegen database [Sto93], two at LO, seven at NLO,

and fifteen at N3LO. There are two high-momentum cutoffs, Λ̃ and Λ, used to prevent the

potentials from delving too deeply into the nucleons to reveal the underlying quark structure.
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The first of these, Λ̃, is used in the regularized spectral functions, AΛ̃(q) and LΛ̃(q), which are

applied to prevent terms involving 2π-exchange loops from having components with a range,

r < Λ̃−1 [Epe05]. These spectral functions are given as follows:

AΛ̃ (q) = θ(Λ̃ − 2Mπ)
1

2q
arctan

[

q(Λ̃ − 2Mπ)

q2 + 2Λ̃Mπ

]

,

and LΛ̃ (q) = θ(Λ̃ − 2Mπ)
ω

2q
ln

[

(Λ̃ω + qs)2

4M2
π(Λ̃2 + q2)

]

,

where ω =
√

q2 + 4M2
π , and s =

√

Λ̃2 + 4M2
π . (2.13)

The other high-momentum cutoff Λ is a parameter of an exponential regulator function

fΛ(p) which is applied to the entire chiral potential to remove divergences in the Lippmann-

Schwinger or Faddeev equations depending on whether a 2N or 3N system is being considered.

The potential is modified as follows:

V (p,p) → fΛ(p)V (p,p′)fΛ(p′), (2.14)

where fΛ(p) = exp

[

−
( p

Λ

)2n
]

. (2.15)

Here the parameter n is chosen such that the regulator function generates powers beyond the

order ν of the calculation.

Five NNLO and five N3LO two-nucleon chiral potentials were used in Faddeev calculations

for this project. The five potentials at each order differed in their high-momentum cutoff

values, Λ and Λ̃. Once the combination of high-momentum cutoffs was determined, the

potentials were fit to the Nijmegen database [Sto93] using the LEC of the contact terms as

variables [Epe05]. The high-momentum cutoff pairs used to create the chiral potentials used

in this project are given in MeV as follows and all describe 2N scattering observables equally

well:

{

Λ, Λ̃
}

= {450, 500} , {600, 500} , {450, 600} , {450, 700} , {600, 700} . (2.16)

The first non-vanishing 3NF enters χPT at NNLO with three relevant terms: a 2π-

exchange term, a contact plus 1π-exchange term, and a 3N contact term. This introduces two

new unknown LEC into the potential, one for each term involving contact interactions [Epe02].

This project used five NNLO chiral potentials which contained 3NF terms. These used the

same high-momentum cutoffs as listed above, only the 3NF contributions were modified by a

slightly different regulator function than was used for the 2N contribution. This function is
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given by:

fΛ(p, q) = exp

[

−

(

4p2 + 3q2

4Λ2

)n]

, (2.17)

where p and q are the Jacobi momenta for the two-body subsystem and and spectator nucleon

defined later in Equation 2.50. The two LEC associated with the 3NF were then fit to the

triton binding energy and the nd doublet scattering length.

At N3LO, 3N interactions involve five different topologies shown in Figure 2.4. The three

long-range topologies involving (a) 2π exchange, (b) 2π-1π exchange, and (c) ring diagrams do

not introduce any new parameters into the potential. The potentials for these processes have

been derived [Ber08], but have yet to be encoded in a form applicable to numerical Faddeev

calculations. The remaining topologies (d) and (e) involve two-nucleon contact interactions

and introduce new LEC which will have to be fit to 3N observables. Their contribution to

chiral potentials have yet to be derived, but should have little effect on the low-energy 3N

system as a result of their limited range.

Figure 2.4: Feynman diagrams for the various topologies which appear in N3LO of χPT.
Solid and dashed lines are nucleons and pions, respectively. The shaded blobs represent
the corresponding amplitudes. The long range terms which have been calculated are (a) 2π
exchange, (b) 2π-1π exchange, and (c) ring diagrams. Short-range topologies (d) and (e)
involve 4N contact operators and have not been calculated [Ber08].

2.3 Scattering Theory

Once a potential model is selected, one must apply quantum mechanical scattering theory

to obtain the elements of the transition matrix. All physical observables may then be obtained

from the transition matrix. We will begin the section on scattering theory with a review of

two-body scattering and the Lippmann-Schwinger equation (LSE). Since this experiment

involves three-body scattering, we will then extend the LSE to include an additional particle,

deriving the Faddeev equations. Finally, the inclusion of the three-nucleon force into the

Faddeev scheme requires some special treatment which will be discussed.
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2.3.1 Two Body Scattering

We will begin our derivation of two-body scattering theory with the Schrödinger equations

for a free particle with wavevector, k, and energy Ek = h̄2k2/2µ and for the scattering of this

particle from a finite-ranged potential V (r), where V (r) = 0 for r > R. These are given by:

(Ek −H0) |φk〉 = 0, (2.18)

and

(Ek −H) |ψk〉 = 0, (2.19)

where H0 is the kinetic energy operator and H = H0 + V . If we now define the free particle

Green’s function propagator,

G0(Ek) ≡
1

Ek −H0 + iε
, (2.20)

Equation 2.19 may be expressed as follows:

|ψk〉 = |φk〉 +G0(Ek)V |ψk〉 . (2.21)

We will now define the transition operator or T-matrix,

Tk′k ≡ 〈φk′ |T (Ek) |φk〉 = 〈ψk′ |V |ψk〉 . (2.22)

Multiplying Equation 2.21 from the left by the potential, V , and using Equation 2.22 to

transform all free particle wavefunctions, |φk〉, into scattered wavefunctions, |ψk〉, we obtain

the Lippmann-Schwinger equation [Lip50] for the T-matrix,

T (Ek) = V + V G0(Ek)T (Ek). (2.23)

In general, the solutions to the Lippmann-Schwinger equation may be described by an asymp-

totic expansion of the wavefunction into an incident plane wave and an outgoing spherical

wave,

ψ(r) =
1

(2π)
3

2

[

eik·r + f(k′,k)
eikr

r

]

. (2.24)

The coefficient in front of the scattered wave, f(k’,k), which has units of length, is known

as the scattering amplitude. All information about two-body scattering is contained in this

coefficient. It is directly proportional to the T-matrix and can be calculated as follows:

f(k′,k) = −2π2

(

2µ

h̄2

)
∫

d3r′
e−ik′·r′

(2π)
3

2

V (r′)ψ(r′),

= −2π2

(

2µ

h̄2

)

〈φk′ |V |ψk〉 ,
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= −2π2

(

2µ

h̄2

)

〈φk′ |T (Ek) |φk〉 . (2.25)

To obtain the differential cross section, dσ
dΩ , we must take the ratio of particle flux scattered

into some solid angle, dΩ, to the incident particle flux crossing some small area, dσ. The

incident particle flux is proportional to the square of the first term in Equation 2.24 and the

scattered flux to the second term [Sak94]. Thus,

dσ

dΩ
dΩ =

r2|jscatt|dΩ

|jincid|
. (2.26)

Therefore, the differential cross section is simply the square of the scattering amplitude,

dσ

dΩ
= |f(k′,k)|2

= 4π4

(

2µ

h̄2

)2

|
〈

k′
∣

∣T (Ek) |k〉|2. (2.27)

To calculate the cross section for some two body scattering process, one must find the asso-

ciated T-Matrix elements from the Lippmann-Schwinger equation.

2.3.2 Three Body Scattering

We will begin with three particles, two of them in an initial bound state. The particles may

interact with each other through pairwise forces. After this interaction, the particles are free.

The breakup operator which describes this process is given by the following series [Glö96]:

U
(1)
0 ≡ V3φ1 + V2φ1 + V1G0V3φ1 + V3G0V3φ1 + V3G0V2φ1 + · · · . (2.28)

Here, the initial state is denoted as φ1, G0 is the free three-body propagator for pair inter-

Figure 2.5: Diagram depicting the infinite multiple scattering breakup series of Equa-
tion 2.28 [Glö96]. Please note that time propagates from right to left with the initial bound
state indicated by the semi-circle.
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Figure 2.6: Diagram depicting the rearrangement of the infinite multiple scattering breakup
series to apply the Faddeev scheme described in Equation 2.29 [Glö96].

actions, and the subscript on the pair interaction refers to the spectator particle, V1 ≡ V23

The superscript on the breakup operator, U
(1)
0 , indicates that the 1st particle is the projectile.

The initial interaction must be between projectile and target, thus all terms in the expansion

of the operator, U
(1)
0 must begin with either V2 or V3.

The key to solving this equation is in the organization of the terms. The Faddeev

method [Fad61] for approaching this problem is to group all terms which end with one specific

pair interaction on the left. Thus, the breakup operator may be separated as follows:

U
(1)
0 =

(

U
(1,3)
0 + U

(1,2)
0 + U

(1,1)
0

)

φ1, (2.29)

where the second superscript in these partial breakup operators denotes the spectator particle

to this final two-body interaction. A diagram depicting this is included in Figure 2.6. The

separation of this operator provides a system of three coupled equations, given by:

U
(1,3)
0 = V3φ1 + V3G0

(

U
(1,3)
0 + U

(1,2)
0 + U

(1,1)
0

)

φ1,

U
(1,2)
0 = V2φ1 + V2G0

(

U
(1,3)
0 + U

(1,2)
0 + U

(1,1)
0

)

φ1,

and U
(1,1)
0 = V1G0

(

U
(1,3)
0 + U

(1,2)
0 + U

(1,1)
0

)

φ1. (2.30)

25



Figure 2.7: Diagram showing the separation of Equation 2.29 into Equations 2.30 [Glö96].

Examining the first of Equations 2.30, terms containing U
(1,3)
0 may be combined on the left

hand side as follows:

(1 − V3G0)U
(1,3)
0 φ1 = V3φ1 + V3G0

(

U
(1,2)
0 + U

(1,1)
0

)

φ1. (2.31)

The operator acting on the partial amplitude, U
(1,3)
0 , in Equation 2.31 may then be inverted

to obtain:

U
(1,3)
0 φ1 = t3φ1 + t3G0

(

U
(1,2)
0 + U

(1,1)
0

)

φ1, (2.32)

where the quantity, t3, is defined as follows:

t3 ≡ (1 − V3G0)−1 V3 (2.33)

= V3 + V3G0t3. (2.34)
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Figure 2.8: Diagram of the antisymmetrization of the breakup amplitude [Glö96].

This is simply the two-body T-matrix for particles 1 and 2 in a three-body space and obeys

the LSE, as shown in Equation 2.34. Applying the same algebraic manipulations to the

expressions for U
(1,2)
0 and U

(1,1)
0 in Equations 2.30, we obtain a set of three coupled Faddeev

equations:

U
(1,3)
0 φ1 = t3φ1 + t3G0

(

U
(1,2)
0 + U

(1,1)
0

)

φ1,

U
(1,2)
0 φ1 = t2φ1 + t2G0

(

U
(1,3)
0 + U

(1,1)
0

)

φ1,

and U
(1,1)
0 φ1 = t1G0

(

U
(1,3)
0 + U

(1,2)
0

)

φ1. (2.35)

The final requirement in applying the Faddeev equations to nd breakup is that the wavefunc-

tion must be antisymmetric, since the equations treat the three nucleons as identical fermions.

We will do this for the initial wavefunction by replacing φ1 as follows:

φ1 ⇒ φa ≡ φ1 + φ2 + φ3. (2.36)

Repeating the procedure above for φ2 and φ3, one may obtain the properly antisymmetrized

breakup amplitude, given by [Glö96]:

U0φ1 ≡ U
(1)
0 φ1 + U

(2)
0 φ2 + U

(3)
0 φ3 =

∑

i

∑

k

U
(k,i)
0 φk ≡

∑

i

U0,iφ1. (2.37)

Combining Equation 2.37 with iterations of Equation 2.35 for φ2 and φ3, we obtain the

following set of equations:

U0,1φ1 = t1 (φ2 + φ3) + t1G0 (U0,2 + U0,3) ,
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U0,2φ1 = t2 (φ3 + φ1) + t2G0 (U0,3 + U0,1) ,

and U0,3φ1 = t3 (φ1 + φ2) + t3G0 (U0,1 + U0,2) . (2.38)

Upon inspection of these equations, one may notice that the second and third equations are

simply cyclic and anticyclic permutations of the first, respectively. Introducing the permuta-

tion operator,

P ≡ P12P23 + P13P23, (2.39)

and the 3N T-matrix,

T ≡ U0,1, (2.40)

the Faddeev equations may be written in the following elegant form (note the index 1 has

been dropped from t and φ):

Tφ = tPφ+ tPG0Tφ. (2.41)

Once T is determined from Equation 2.41, the full breakup operator is given by the following:

U0 = (1 + P )T. (2.42)

The operator for elastic scattering, U , may also be obtained from the T-matrix by removing

all terms in the series given in Equation 2.28 which end with the interaction, V1, between the

nucleons in the bound state. This operator is given as follows:

Uφ = PG−1
0 φ+ PTφ. (2.43)

2.3.3 Inclusion of the Three Nucleon Force

To include a three-nucleon force into Faddeev calculations, a potential V4 which acts on

all three nucleons must be included in the Hamiltonian to obtain

H =
3
∑

i=1

(

p2
i

2mi
+ Vi

)

+ V4. (2.44)

Introducing the following definitions:

t4 = V4 + V4G0t4, T = tG0U0, T4 = t4G0U0, (2.45)

and following a procedure analogous to the derivation of the Faddeev equations for 2N inter-

actions above, the following set of coupled differential equations for the 3N T-matrices may

be derived:

Tφ = tPφ+ tG0T4φ+ tPG0Tφ (2.46)
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and T4φ = (1 + P ) t4φ+ (1 + P ) t4G0Tφ. (2.47)

The breakup operator is then given simply as:

U0 = (1 + P )T + T4. (2.48)

The full derivation of these equations is beyond the scope of this thesis. A more detailed

(although still incomplete) derivation of the 3NF Faddeev equations is included in the review

article by Glöckle, et al. [Glö96] which includes references that explain the entire detailed

procedure.

2.3.4 Calculating Cross Sections for Three Nucleon Processes

All neutron-deuteron observables must be calculated from the transition matrix ampli-

tudes, 〈φ′|U |φ〉 for elastic scattering and 〈φ0|U0 |φ〉 for breakup processes. These share the

same initial state defined by: the relative momentum q0 of the neutron with respect to the

deuteron, the deuteron wavefunction ϕd, and the spin quantum numbers, md and mn. Thus

the initial state is given by:

|φ〉 = |ϕdmd〉 |q0mn〉 . (2.49)

The final state for elastic scattering, |φ′〉, shares the same q0 as |φ〉 with all other parameters

being primed. The final state for the breakup process, |φ0〉, may be defined by the relative

momenta of the three particles and their spin magnetic quantum numbers. The relative Jacobi

momenta are defined as:

pi =
1

2
(kj − kk)

and qi =
2

3

(

ki −
1

2
(kj + kk)

)

. (2.50)

The final breakup state may then be described by any of the three pairs of these Jacobi

momenta and is given by:

|φ0〉 = |pqm1m2m3〉 . (2.51)

The elastic cross section may be expressed in terms of the spin-dependent scattering ampli-

tude, M, as follows [Glö96]:

Mm′
d
m′

nmdmn

(

q′,q0

)

≡ −
8

3
mπ2

〈

φ′
∣

∣U |φ〉 , (2.52)

so that
dσ

dΩ
= |Mm′

d
m′

nmdmn

(

q′,q0

)

|2. (2.53)
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Here, q′ = q0R̂ and R̂ points in the direction of observation.

The breakup cross section may be calculated from the transition rate for the breakup

process, the probability that an incident particle will cause a breakup event with relative

momenta, q and p,

dN = 2π|〈φ0|U0 |φ〉|
2

∫

dq dp

(

3q20
4m

+ εd −
p2

m
−

3q2

4m

)

. (2.54)

Transforming this into the laboratory system, we obtain:

dN = 2π|〈φ0|U0 |φ〉|
2

∫

dk1 dk2 dk3 δ (klab − k1 − k2 − k3) δ

(

Elab + εd −
∑ k2

i

2m

)

,

= 2π|〈φ0|U0 |φ〉|
2 kE dΩ1 dΩ2 dE1. (2.55)

The phase space factor, kE , is defined through the energy and momentum conserving delta

functions. It suffers from a singularity where dk1/dk2 = 0 and may be double-valued for a

given E1. The solution is to replace E1 with an arclength, S, along the kinematic locus which

leads to:

kS ≡ kE
dE1

dS
=

(mk1k2)2
√

k2
1

(

2k2 − k̂2 · (klab − k1)
)2

+ k2
2

(

2k1 − k̂1 · (klab − k2)
)2
. (2.56)

The momenta k1 and k2 are coupled by the following equation which defines the kinematic

locus,

k2
2 − k2 · (klab − k1) + k2

1 − k1 · klab −mεd = 0. (2.57)

Dividing Equation 2.55 by the incident beam flux, we obtain the following expression for the

five-fold differential cross section,

d5σ

dΩ1dΩ2dS
= (2π)4 |〈φ0|U0 |φ〉|

2 2m

3q0
ks. (2.58)

To obtain the cross section in terms of E1, rather than S, one must simply multiply Equa-

tion 2.58 by the derivative dS/dE1 being mindful of the singularities and double values men-

tioned above. Both Equations 2.58 and 2.53 for the breakup and elastic nd differential cross

sections refer to specific magnetic quantum numbers in the initial and final states (polarized

beam and target). This experiment deals with unpolarized observables; thus we must average

over the initial states and sum the final ones. For the breakup cross section, this gives:

d5σ

dΩ1dΩ2dS
=

(2π)4

(2sd + 1) (2sn + 1)

(

2m

3q0

)

kS

∑

m1m2m3

(

∑

mdmn

|〈φ0|U0 |φ〉|
2

)

. (2.59)
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3 Experimental Details

3.1 Introduction

This experiment consists of a kinematically complete differential cross-section measure-

ment of neutron induced deuteron breakup at an incident neutron energy of 16.0 MeV. The

breakup configurations studied were the space-star (SST) and the coplanar-star (CST) de-

scribed earlier in Section 1.1. Each configuration is mirrored about a vertical plane containing

the beam axis to double the count rate. One of the outgoing neutrons and the proton were

detected in coincidence and their momenta were determined via time-of-flight (ToF) measure-

ments. The target-beam luminosity was determined through a concurrent measurement of

nd elastic scattering. Data were accumulated over the course of a year and required around

1400 hours of accelerator time. The entire experiment was performed in the Shielded Source

Area (SSA) of the Triangle Universities Nuclear Laboratory (TUNL).

3.2 Deuterium Beam Production

A 13.65 MeV deuteron beam incident upon a deuterium gas cell was required to produce

our 16.0 MeV neutron beam via the 2H(d, n)3He reaction. The specifics of neutron production

will be covered in Section 3.3. The current section will discuss the production and acceleration

of the deuteron beam.

3.2.1 The Direct Extraction Negative Ion Source

The deuteron beam was created by the Direct Extraction Negative Ion Source (DENIS),

a duoplasmatron [Law65] located in the low-energy bay of the tandem laboratory at TUNL.

The DENIS is capable of producing a 30 µA beam of negative hydrogen or deuterium ions at

an energy of 50 keV. For the present experiment only about 4.5 µA of D− ions were required.

A diagram of DENIS is shown in Figure 3.1.



Figure 3.1: Critical region of the duoplasmatron [Law65] in the Direct Extraction Negative
Ion Source (DENIS). The dimensions are given in inches in the diagram above.

To operate DENIS, a mixture of deuterium and hydrogen gas is leaked into a cylindrical

steel chamber surrounded by a solenoidal magnet. A gas pressure of approximately 10−2 Torr

is maintained in the chamber by balancing the leak rate with vacuum pumping. An electric

potential of 150 V is applied between a cathode and anode on opposite ends of this chamber.

The cathode consists of a nickel mesh filament coated with a mixture of barium and strontium

oxides which lowers the work function of the nickel [Ble39]. A current through the filament

causes resistive heating thereby inducing the emission of electrons. Under the right conditions

an arc is struck in the region between the anode and cathode. The plasma is contained in

this region by a solenoidal magnetic field. Depending upon the age of the filament, a filament

current of 10-35 A is required to maintain the arc. The anode side of the steel chamber nar-
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rows to an exit aperture located just before the anode as shown in Figure 3.1. High velocity

electrons are confined near the central axis by the intense magnetic field at the narrow exit

aperture of the chamber. These tend to knock electrons off of the H0 and D0 atoms forming

positive ions. Low velocity electrons are only weakly influenced by the magnetic field and

thus may migrate towards the edge of the aperture. These have a large capture cross section

on the neutral atoms creating H− and D− ions. The net result of these two processes is to

create a plasma with a dense positive core surrounded by a halo of negative ions. There is a

small aperture in the anode offset from the central axis of the bottle, so as to be aligned with

this negative halo. On the other side of the anode from the bottle an extraction electrode is

held at a positive voltage between 0-10 kV with respect to the anode to separate the negative

ions from any positive ions which may have passed though the aperture. This is followed by

an electrostatic lens used to focus the ions as they enter the beamline. The entire DENIS

system is held at a voltage of 50 kV with respect to ground providing the 50 keV beam en-

ergy of the departing negative ions. An inflection magnet downstream from DENIS is used

to separate the H− from the D− ions and send the latter on to the accelerator. The ratio of

hydrogen to deuterium gas injected into the bottle determines the D− beam current. Addi-

tional beam optics between DENIS and the accelerator optimize the beam current and profile.

3.2.2 The Tandem Van de Graaff Accelerator

In this experiment, the Model FN Tandem Van de Graaff accelerator is used to take the

50 keV D− beam produced by DENIS and convert it to a D+ beam as it is accelerated up

to 13.65 MeV. A diagram illustrating the basic operation of the accelerator is shown in Fig-

ure 3.2. The Tandem is a large steel cylindrical chamber with the beamline located just off

its central axis. There is a high-voltage terminal at its center which has a maximum voltage

of 10 MV. The terminal is insulated from the wall of the chamber by a ∼200 psi mixture of

nitrogen, carbon dioxide, and sulfur hexafluoride gas. The terminal voltage is stepped down

to ground by a series of resistors towards both ends of the accelerator, creating a smoothly

increasing then decreasing electric potential as the beam traverses the machine. Within the

terminal there is a thin carbon foil in the beamline which strips electrons from the D− ions

converting them to D+ ions. Thus the negative beam is accelerated towards the terminal

where it is stripped of its electrons and again accelerated to ground potential. For singly

charged ion beams, energies corresponding to twice the terminal voltage are produced. For

example, our 13.65 MeV deuteron beam was produced by a terminal voltage around 6.9 MV.

The accelerator terminal is charged by two Pelletron � chains situated on pairs of pulleys

to each side of the terminal. These chains consist of a series of insulated metal pellets which

are inductively charged at the ends of the machine. The charge is applied by a negative
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Figure 3.2: Illustration of the basic operation of the Model FN Tandem Van der Graaff
Accelerator.

electrode which drives electrons from the pellet when it is in contact with a grounded pulley.

This positively charged pellet then travels to the terminal where it is neutralized by electrons

upon contact. The repetition of this process induces and maintains the terminal voltage.

When the tandem accelerator is operating, the precise terminal voltage is controlled by

an analyzing the beam with a steering magnet, known at the “20-70,” which is located down-

stream from the accelerator. This magnet may bend the beam down any of a series of beam-

lines identified by deflection angles ranging from 20◦ to 70◦, hence its name. The strength of

the magnetic field is set so particles of a particular mass, charge, and energy are sent down

the center of the beamline in use, in this case the 20◦ line. After the magnet, a pair of slits

is positioned on opposite sides of the beamline such that when the beam is centered it barely

grazes each slit providing small current signals. If the terminal voltage is high or low, the

beam will hit one of the slits more than the other. The current signals from the two slits are

sent through a difference amplifier which generates a feedback signal used to adjust the ter-

minal voltage accordingly. An array of fine metal needles attached to the end of a rod whose

radial extention from the pressure tank is adjusted to produce a sustained coronal discharge

from the terminal. The corona needles are connected to ground through a vacuum tube circuit

with an effective resistance that is controlled by the slit feedback signal. This circuit con-

tinuously adjusts the current from the corona discharge to maintain a stable terminal voltage.
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3.3 Neutron Production and Collimation

The 16.0 MeV neutron beam used in this experiment was produced via the 2H(d, n)3He

reaction, which is often used to produce neutrons between 7 and 20 MeV because of its large

0◦ cross section compared with other neutron producing reactions [Dro78]. Both neutron en-

ergy and cross section decrease rapidly with deviations from 0◦, making this an ideal reaction

to produce a collimated neutron beam. The reaction has a +3.3 MeV Q-value, which provides

a more than 5 MeV separation between the dominant background neutron source reactions;
2H(d, n)dp and 2H(d, n)ppn.

Tantalum

CopperStainless Steel

Ceramic Gold

Deuterium Gas

2 cm

Havar Foil

water cooling
      lines

to filling
 system

o-ring

Figure 3.3: Deuterium gas cell used to produce neutron beam via the 2H(d, n)3He reaction.
The length of the deuterium gas column was longer in the experiment than shown in the
diagram because the insert holding the Havar foil was shorter than shown. This was done to
increase the emitted neutron flux. Details are given in the text.

The neutron production reaction took place in a deuterium gas cell attached to the end of

the 20◦ beamline, as shown in Figure 3.3. The gas cell was a copper tube with a 0.5 mm gold

beam stop soldered to one end and a 6.35 µm thick Havar beam-entrance foil on the other

end. The gas chamber within the cell was 71.4 mm long and filled to 7.8 atm with 99.99%

pure research grade deuterium gas. Incident deuteron energy losses in the gas column lead to

a ±340 keV spread in neutron beam energy. Distilled water was pumped through the copper
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cooling coils surrounding the gas cell (see Figure 3.3) in a closed water circulation loop to

remove the heat generated by stopping the beam in the cell. The temperature of the water

in the closed loop was maintained by heat exchange with the main 50◦ C chilled water in

the tandem lab. Air cooling was also applied to the gold beam stop and at the location of

the Havar foil. The entire gas cell was electrically isolated from the remainder of the beam

pipe and the current deposited on the beam stop was sent to a beam current integrator (BCI).

The target area was shielded from the neutron production cell and other upstream sources

of neutron and gamma radiation by a wall composed of concrete, steel, lead, and paraffin. The

hydrogen-rich concrete and paraffin were included for low-energy neutron shielding; while the

high-Z steel, iron, and lead were used to deflect the γ-rays and higher energy neutrons [Gla74].

A 115 cm long double-truncated copper collimator with a circular cross section connects the

neutron production cell to the target area. This collimator produced a roughly uniform

neutron beam with a 40 cm diameter circular cross section at the location of the CD2 target,

187 cm from the neutron production cell. See Appendix E for a description of measurements

made to determine the energy and spatial distributions of the collimated neutron beam at

produced at the target.

3.4 Experimental Setup

An illustration of the experimental setup is included in Figure 3.4 and a photograph show-

ing the interior of the target chamber is shown in Figure 3.5. Surveyed detector angles and

distances may be found in Table 3.1 and the techniques for their measurement are described

in Appendix F. The 16.0 MeV neutron beam was incident on a 22.4 mg/cm2 thick deuter-

ated polyethylene (CD2) target. The CD2 target was approximately circular in shape with a

diameter of 25.4 mm. The target was suspended in the center of a square aluminum target

frame by thin nylon strings. The inner dimension of the target frame was 76.2 mm x 76.2 mm

and the width of the frame was 6.35 mm. The frame was attached to the end of the target

rod as shown in Figure 3.5. The target frame was mounted such that the incident beam

axis was normal to the surface of the target. The target was housed in a scattering chamber

which had the following characteristics: (1) a central cylindrical chamber, (2) a top dome,

(3) two charged-particle arms, (4) a target rod, (5) a vacuum port, (6) a bottom plate with

ports for the ∆E detectors, (7) entrance and exit windows for the beam. The central cylin-

der had a height of 17.1 cm and an inner diameter of 34.3 cm with 0.635 cm thick stainless

steel walls. The top dome was composed of 0.318 cm thick aluminum. It was designed to

allow emitted SST neutrons to exit the chamber through a thin barrier of uniform thickness

while withstanding the ∼1 atm pressure differential. The charged particle arms were allowed

the emitted protons and deuterons to travel sufficient distance to make ToF measurements
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with reasonable energy resolution. The target rod could hold two targets which could be

interchanged without breaking vacuum. Only one target was used for the main experiment;

however, the second position proved useful for calibration runs. The vacuum in the chamber

was produced and maintained by a turbo-molecular pump which provided chamber pressures

on the order of 10−5 Torr over the course of the experiment. The two ∆E detectors needed

to be positioned as close as possible to the target without being in the path of SST or CST

emitted neutrons. The neutron beam entered the chamber through a 7.6 cm diameter, 100 µm

thick beryllium window. The beam, as well as emitted CST neutrons, exited the chamber

through a 25 µm thick rectangular tantalum window (6.4 cm × 2.0 cm).

Detector θ (deg) φ (deg) Distance Diameter Thickness Scint.
(cm) (cm) (cm) Type

E1 51.3±0.5 180.0±0.1 69.0±0.2 10.0±0.05 0.50±0.02 BC-404

E2 52.3±0.5 0.0±0.1 69.0±0.2 10.0±0.05 0.50±0.02 BC-404

N1 51.4±0.5 119.5±0.5 73.0±0.2 12.68±0.05 5.08±0.05 BC-501A

N2 51.7±0.5 59.7±0.5 73.1±0.2 12.68±0.05 5.08±0.05 BC-501A

N3 17.7±0.5 180.0±0.5 101.3±0.2 12.68±0.05 5.08±0.05 BC-501A

N4 18.7±0.5 0.0±0.5 102.4±0.2 12.68±0.05 5.08±0.05 BC-501A

Table 3.1: Detector central angles, distances, and properties. The polar angle θ is given with
respect to the direction of the incident neutron beam. The azimuthal angle φ is measured
from the beam right in the horizontal scattering plane. Detector distances are given from
target center to the surface of the scintillator for the charged particle (E) detectors and to
the center of the scintillator volume for the neutron (N) detectors.

3.4.1 Charged Particle Telescope

The charged particle arms of the scattering chamber each housed an E-∆E telescope. The

∆E detectors were 4.7 mg/cm2 thick BC-4041 plastic scintillator coupled to a Hamamatsu

1949-512 photomultiplier tube (PMT). They were covered with a thin (≤ 8 µm) aluminum

tent to reflect scintillator light into the PMT. The center of the ∆E detectors were located

8 cm from the CD2 target. These detectors were designed to allow charged particles to

pass through the detector, depositing part of their energy in the scintillator. The minimum

energy required for a proton to traverse the ∆E detector and its aluminum tent was 1.7 MeV,

while a deuteron needed 2.2 MeV for transmission. The main charged particle (E) detectors

were located 61 cm beyond the ∆E detectors. They were also composed of BC-404 plastic

scintillator. These detectors had a cylindrical geometry (10 cm radius, 5 mm thickness) and

1For full technical data sheet, please refer to www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/
Documents/Product Data Sheets/BC400-404-408-412-416-Data-Sheet.pdf

2For full technical data sheet, please refer to jp.hamamatsu.com/products/sensor-etd/pd002/pd394/H1949-
51/index en.html
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Figure 3.4: The three-dimensional renderings labeled 1, 2, and 3 are top, front, and angled
views of the experimental setup, respectively, showing the target chamber (T), the charged
particle arms (P), the SST (S) and CST (C) neutron detectors, and the neutron beam (red
arrow). Please note that in the second image the neutron beam direction is out of the page.
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Figure 3.5: Photograph of the target chamber. The neutron beam enters the chamber through
the port in the top right of the picture. The target rod holds the CD2 foil used in the
experiment and a CH2 foil used for np elastic scattering. The two ∆E detectors are underneath
the aluminum foil tents used to reflect scintillated light into the photomultiplier tubes located
directly beneath the chamber.
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were coupled to a Hamamatsu H65273 PMT. The front face of the scintillator was covered

with thin aluminum foil to serve as a light reflector and seal. The foil did not affect the

ToF energy measurements with the exception of stopping the slowest charged particles. The

BC-404 was chosen for its physical rigidity as well as its high light output and fast response

time. Technical specifications on the BC-404 plastic may be found in Table 3.2.

Scintillator BC-501A BC-404

Light Output (% Anthracene) 78 68

Decay Time (ns) 3.2 1.8

Density (mg/cm2) 0.874 1.032

Ratio H:C Atoms 1.212 1.100

Wavelength of Maximum Emission (nm) 425 408

Table 3.2: Scintillator Properties: Neutron detectors used BC-501A. The charged particle
telescope used BC-404.

3.4.2 Neutron Detectors

All of the neutron detectors used in this experiment were of the same design. They were

manufactured by the Bicron Corporation and were filled with BC-501A4 liquid organic scin-

tillating fluid before being purchased by TUNL. The fluid chamber consisted of an aluminum

cylinder (12.68 cm diameter, 5.08 cm depth interior dimensions) capped by a 1 mm thick

aluminum plate on one end and a glass window on the other. A Teflon tube connected to the

liquid chamber was coiled around the cell to allow for thermal expansion of the fluid. The cell

and tube are designed such that no gas bubbles are present in the active scintillating volume.

The interior aluminum surfaces of the fluid chamber were painted with BC-6225 reflective

polyurethane resin so that scintillated light must exit through the glass window. This win-

dow is directly coupled to a 12.7 cm diameter model R1250 Hamamatsu6 PMT encased in

a mu-metal shield. BC-501A was chosen for its excellent pulse shaped discrimination (PSD)

properties and its fast response time. Technical specifications on BC-501A scintillator fluid

may be found in Table 3.2.

3For full technical data sheet, please refer to jp.hamamatsu.com/products/sensor-etd/pd002/pd394/H6527/
index en.html

4For full technical data sheet, please refer to www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/
Documents/Product Data Sheets/BC501-501A-519-Data-Sheet.pdf

5For full technical data sheet, please refer to www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/
Documents/Product Data Sheets/SGC Detector Assembly Materials Data Sheet.pdf

6For full technical data sheet, please refer to jp.hamamatsu.com/products/sensor-etd/pd002/pd394/R1250/
index en.html
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3.5 Electronics

The signals generated by the detectors used in this experiment were processed by the

electronics circuit described in this section. The circuit may be broken down into three main

parts: the neutron detector circuit (Figure 3.6), the charged particle detector circuit (Fig-

ure 3.7), and a trigger circuit (Figure 3.8). The signals generated by these circuits were then

digitized and saved to a disk.

Neutron
Detector
Anode

MPD4

TDC Signal

Trigger Circuit

Linear
Fan

Scalars

ADC Pulse-Shape
Discrimination Signal

ADC Pulse 
Height Signal

Amplifier

TAC

Gate

Figure 3.6: Neutron Detector Electronics Diagram.

The anode signal from the neutron detectors was sent directly into the mesytec MPD-47

particle discriminator module. This module was designed specifically for use with liquid

scintillators and greatly simplified the electronics circuits needed to produce ToF and PSD

measurements (see the theses of Crowell [Cro01] and Macri [Mac04] for comparison). This

module produces three outputs: an amplified signal, a Time-to-Analog Converter (TAC)

signal, and a gate signal. The amplified pulse height signal, proportional to the energy de-

posited in the scintillator, was sent directly to the Analog-to-Digital Converter (ADC). The

TAC output was proportional to the decay time of the anode signal. Signals caused by γ-rays

7For full technical data sheet, please refer to www.mesytec.com/datasheets/MPD-4.pdf
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decay faster than those from neutrons allowing discrimination between the particles using

pulse-shape analysis techniques. This signal is also sent directly to the ADC and will be

referred to as the PSD signal. The gate signal is a negative logic signal produced by the

constant-fraction discriminator circuit in the MPD-4 module when the input signal is greater

than some adjustable threshold. This gate signal is split with a linear fanout; one signal is

sent to the Time-to-Digital Converter (TDC), another to the scalar module, and the final to

the trigger circuit.

Magic
Tee

ADC Pulse 
Height Signal

TDC Signal

Scalars

Trigger Circuit

Spectroscopy
Amplifier

Constant
Fraction

Discriminator

Charged Particle
Detector Anode

Figure 3.7: Charged Particle Detector Electronics Diagram.

The electronics for the E and ∆E detectors were identical, except the ∆E signals required

an additional amplifier at the beginning of the circuit. The anode signal from the charged

particle detectors was sent through a “magic tee”, a passive voltage divider which matches

the impedance of the two branches to prevent signal reflections. One branch was then sent

through a spectroscopy amplifier and then into an ADC channel to provide pulse-height in-

formation. The other branch was sent to a constant fraction discriminator which produced a

negative logic pulse if the signal was above the threshold. This logic pulse was fanned out to

the TDC, the scalar module, and the trigger circuit.

The trigger circuit produced logic signals that were used to start the data acquisition

system (DAQ) digitization and data readout sequence for each event. Signals from the neu-

tron detectors were used to trigger the DAQ during γ-source energy calibration runs. During

normal data runs, triggers were generated from the coincidence of same-side E-∆E detector
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signals. These triggers would be vetoed if the ADC, TDC, or DAQ were busy processing an-

other event. The TUNL source/beam box was used to switch the DAQ trigger logic between

calibration runs and nd breakup runs. This box put an open circuit on the output when set

to beam and generated a constant voltage at the level of a logical “true” on the output when

set to source.

The ADC and TDC used in this experiment were 4096 channel CAEN models V7758 and

V7859, respectively. The TDC was set to a 600 ns range. The logic signals were counted

with a SIS 380010 Scalar module. Along with the scalars mentioned above, we also recorded

the triggers both before and after being vetoed, a 60 Hz clock both vetoed and unvetoed,

the beam current integration (BCI), and several other unused or redundant quantities. Event

data and scalars were buffered into the memory of a MVME 510011 Single Board Computer

before being transferred to the main DAQ computer where they were saved to a disk using

CEBAF Online Data Acquisition (CODA) software. An event consisted of eight pulse height

signals, the eight timing signals, the four neutron PSD signals, and several other quantities

which were not used in data analysis.

8For full technical data sheet, please refer to www.caen.it/nuclear/product.php?mod=V775
9For full technical data sheet, please refer to www.caen.it/nuclear/product.php?mod=V785

10For full technical data sheet, please refer to www.struck.de/sis3800s.pdf
11For full technical data sheet, please refer to www.mvme.com/manuals/MVME5100-SPEC.pdf
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Figure 3.8: Diagram of the data acquisition trigger circuit.
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4 Monte-Carlo Simulations

4.1 Introduction

The theoretical cross-section predictions for nd breakup and elastic scattering were made

by Henryk Wita la of the Bochum-Cracow theory group [Glö96]. These calculations are for

point geometry. This means they assume a mono-energetic neutron beam with a target and

detectors of infinitesimal size, which does not accurately represent the actual experiment. To

make a meaningful comparison of experimental data with the theoretical predictions, Monte-

Carlo (MC) simulations of the experiment were produced by Shigeyuki Tajima [Taj10] which

averaged the point geometry calculations over the finite geometry of our experiment. Along

with this averaging process several other effects were included in the simulation: the energy

loss and attenuation of charged particles in the target and detectors, background events from

low energy neutrons in the beam, and the time resolution of the detectors and electronics.

This chapter will begin with a description of the composition of the point geometry cross-

section libraries used in the simulation. The details of the nd elastic scattering and breakup

Monte-Carlo simulations will then be provided.

4.2 Cross-Section Libraries

The nd elastic scattering cross-section library was fairly simple. It contained differen-

tial cross sections for the 2H(n, n)2H reaction in the CM frame calculated using the CD-

Bonn [Mac01a] potential model for incident neutron energies from 0.5 to 20 MeV in 0.5 MeV

steps. At each energy, the library contained cross-section values for neutron scattering angles

in the center-of-mass system in 2.5◦ steps from 0◦ to 180◦.

The nd breakup library was more extensive as a result of the additional degrees of freedom



in three-body kinematics. This library contains files consisting of point-geometry, five-fold

differential cross sections, d5σ/dΩndΩpdS, in the laboratory frame, also based on the CD-

Bonn [Mac01a] potential specified by four variables: the incident neutron energy, E0
n, and the

outgoing nucleon angles, θp, θn, φnp. Please refer to Section 1.1 for definitions of these angles.

These four parameters define the S-curve, or the kinematic locus which starts at the point

where the proton energy is zero (S=0). Each file contains differential cross sections generated

in 0.1 MeV steps along the S-curve.

The incident neutron beam energies used to produce the libraries were 15.6, 16.0 and

16.4 MeV for the “prompt” part of the neutron beam. The “source breakup” (SBU) neutrons

were accounted for through the inclusion of incident neutron energies from 5.0 to 15.5 MeV in

0.5 MeV steps. A description of the measurement of the incident neutron beam energy spec-

trum is included in Appendix E. Definitions of prompt and source breakup neutrons may also

be found there. Figure E.2 shows the energy distribution of the incident neutron beam. The

cross-section libraries were composed to span 1-2◦ beyond the physical angular acceptance of

the detectors to ensure complete coverage. The angular ranges and step sizes for the CST

and SST configurations incorporated in the libraries are summarized in Table 4.1. In all more

than 60,000 files for different combinations of E0
n, θp, θn, and φnp, each containing on aver-

age about 175 points along the S-curve, had to be included in the breakup cross-section library.

Configuration θn (◦) ∆θn (◦) θp (◦) ∆θp (◦) φnp (◦) ∆φnp (◦)

CST 13.0-24.0 1.1 46.0-58.0 1.0 159-180 3.0

SST 44.5-59.5 1.5 46.0-58.0 1.0 104-136 3.0

Table 4.1: Angular ranges and step sizes used to generate theoretical cross-section libraries
for the nd breakup Monte-Carlo simulation.

4.3 Elastic-Scattering Simulation

The integrated target-beam luminosity obtained over the course of this experiment was

determined by an nd elastic scattering measurement taken concurrently with the primary

breakup measurement. The recoil deuterons were detected in the charged-particle arm. How-

ever, in exiting the target and traversing the ∆E detector, there was significant energy loss

and approximately 40% of the scattered deuterons were actually stopped before reaching the

E detector. In order to estimate the deuteron attenuation, determine the shape of the elastic

ToF spectrum, and model backgrounds from SBU events, a Monte-Carlo simulation of the

elastic scattering process was required.
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The first step in the elastic simulation was to select an incident neutron beam energy.

The incident beam energy distribution shown in red in Figure E.2 was used to weight each

event. An interaction location within the volume of the target and a polar and azimuthal

scattering angle within the acceptance of the charged particle (E) detector were then chosen,

completely defining the reaction kinematics. The cross section for this scattering event was

then calculated from the neutron scattering angle in the CM frame through an interpolation

of the elastic cross-section library, and this was subsequently stored after conversion into the

laboratory frame. This sampling process was then repeated until the statistical uncertainty

was insignificant when compared with the 1% systematic uncertainty of the cross-section

weighting.

The energy of the elastic deuterons immediately after the reaction was calculated based

upon the incident energy and scattering angle. The mean energy loss attained by a deuteron of

this energy as it encounters the experimental setup was then estimated using the Fortan code,

“Babel.” This code was developed at TUNL in the early 80’s and calculates the energy loss

of ions in matter using the relativistically correct Bethe formula by dividing the path through

the material into regions of small energy loss [Sel64, Jan66]. The energy after passing through

the ∆E detector was then used to determine the ToF of the deuteron between the ∆E and E

detectors. If a particle was stopped in the target or in the ∆E detector, it was assigned an

unphysical negative ToF. A Gaussian time-smearing function with a central value of zero and

a full-width half-maximum (FWHM) of 2.0 ns was used to shift the actual ToF randomly,

thereby simulating the time resolution of the charged particle detectors and the processing

electronics. The FWHM value for the time-smearing function was varied in 0.5 ns steps up

to 3.0 ns before settling on the 2.0 ns value which proved the best fit to the measured ToF

spectrum. This fit was then used for the normalization. A sample ToF spectrum generated

by the elastic Monte-Carlo is shown in Figure 5.9.

4.4 Breakup Simulation

The Monte-Carlo simulation for the nd breakup process begins in the same fashion as the

elastic simulation, with the choice of the incident neutron energy, E0
n. The neutron energy was

sampled from 5.0 to 16.34 MeV weighted by the incident beam energy distribution shown in

in red Figure E.2. While the measured distribution contains neutrons below 5 MeV, they are

not included in the simulation as protons from these breakup events would not have sufficient

energy to be detected. A reaction location was then chosen in the target volume, followed

by detection locations on the surface of the proton detector and within the volume of the

neutron detector. This determines the outgoing nucleon angles, θp, θn, φnp. The combina-

tion of incident neutron energy and outgoing nucleon angles defines the kinematic locus or
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S-curve. The detected neutron energy, En, is then uniformly sampled up to 8.2 MeV for the

SST configuration and 14.66 MeV for the CST. The simulation must then solve the three-

body kinematic equation which imposes energy and momentum conservation to determine

the momentum vectors of all three outgoing nucleons. There are three possibilities: either

one, two, or no solutions may be found. If a single solution is found, the three momenta,

cross section, and neutron detection efficiency are stored and the simulation proceeds. If two

solutions are found, one is chosen at random and the parameters are stored. If no solution is

available, nothing is stored. The sampling process was repeated until statistical uncertainty

was insignificant compared with systematic errors. A sample S-curve describing the three

possible solutions to the kinematic equation for the SST configuration is shown in Figure 4.1.

Figure 4.1: Sample SST kinematic locus or S-curve. It is defined such that S=0 is located at
the intercept with the neutron energy axis and S increases counterclockwise. This particular
locus was defined by E0

n = 16.0 MeV, θp = 51.3◦, θn = 51.5◦, and φnp = 59.7◦. A uniform sam-
pling of the detected neutron energy, En, will find either zero(red), one(green), or two(blue)
possible solutions to the kinematic equation after energy and momentum conservation are
imposed.

The effective breakup cross section for detecting coincident events with our experimental

setup drops off significantly with increasing En as compared to point geometry cross sections

at the central detector angles, as shown in Figure 4.2. There are two processes which con-

tribute to this effect which will be referred to as geometric acceptance and proton energy
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threshold acceptance. Figure 4.3 plots the acceptance factors as a function of En for these

processes as well as the net effect. The geometric acceptance is defined as the probability

of finding a solution to the three-body kinematic equation for a randomly chosen En, taking

into account all possible S-curves allowed by the range of incident neutron energies and detec-

tion angles. This effect is much more pronounced in the SST configuration than in the CST

because the SST is the kinematic extreme of nd breakup. Protons that exit the target with

an energy less than about 2 MeV were stopped by the ∆E detectors. A higher En leaves less

energy available to the outgoing proton, decreasing its probability of detection. Both of these

effects also come into play at very low En; however this has no bearing on our experimental

results as a low energy threshold is applied to the neutron detectors.

Figure 4.2: Comparison of Monte-Carlo simulated cross section to point geometry. The graph
on the left(right) corresponds to the SST(CST) configuration. The solid black line is the
point geometry cross section for the central detector angle at 16 MeV. The dashed blue line
gives the average cross section for all kinematically allowed configurations sampled over the
angular range of the detectors and the incident neutron energy of the prompt neutron beam.
The dotted red line represents the effective cross section for the experimental setup with
acceptance factors applied. The double-valued regions of En in the black curve correspond
to the two possible solutions to the kinematic equation. The dashed blue curve produced by
the Monte-Carlo simulation sums these two contributions.

The final step in the breakup simulation was to adjust the particle energies to repli-

cate the experimental measurement. First the energy loss of the protons as they exited

the target and traversed the ∆E detector was calculated. This was done using the “Babel”
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Figure 4.3: Acceptance factors for coincident nd breakup events. The graph on the left(right)
corresponds to the SST(CST) configuration. The dotted red curve is the geometric acceptance
factor and the dashed blue curve is the proton energy threshold acceptance factor. The solid
black curve is the total acceptance factor, the product of the other curves.

code [Sel64, Jan66] in the same manner as for the elastic simulation. The actual ToF between

the ∆E and E detectors was then calculated using the real flight path. Likewise the real ToF

between the time the proton triggered the ∆E and the time the neutron interacted with its

detector was calculated. These times were each adjusted using a randomly generated time

shift having a Gaussian profile with a FWHM of 2.0 and 2.5 ns for the protons and neutrons,

respectively. A “smeared” proton energy was then calculated using this adjusted ToF and the

center-to-center distance between faces of the ∆E and E detectors. This should correspond to

the proton energies measured in the actual experiment. The same procedure was repeated for

the neutron using the distance from the target to the center of the neutron scintillator volume.

Babel was then used in reverse to estimate the proton energy upon exiting the target. These

smeared neutron and proton energies were used to produce the simulated loci in Figures 4.4

and 4.5 for the SST and CST configurations, respectively.
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Figure 4.4: Monte-Carlo simulated SST counts for the complete experiment (top), prompt
neutrons only (middle), and SBU neutrons only (bottom). The vertical scale of the 3D-plots
is in thousands of counts.
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Figure 4.5: Monte-Carlo simulated CST counts for the complete experiment (top), prompt
neutrons only (middle), and SBU neutrons only (bottom). The vertical scale of the 3D-plots
is in thousands of counts.
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5 Data Analysis

5.1 Introduction

The data analysis for this experiment was broken into two separate parts. The first was

to determine the number of valid experimental breakup coincidence events as a function of

detected neutron energy. The second was to use the effective breakup cross section deter-

mined from the Monte-Carlo simulation to predict this same quantity, thus comparing theory

to experiment. The relative discrepancy between the measured and predicted counts should

be identical to the relative discrepancy between the actual cross section and the one predicted

by Faddeev calculations using the CD-Bonn potential. One advantage to this method of data

analysis is that statistical and systematic uncertainties may be clearly separated into the

experimental findings and theoretical predictions, respectively.

The data for this experiment were accumulated over the course of eight separate accel-

erator runs. Each of these runs lasted between 1-2 weeks and data were taken around the

clock whenever possible. Neutron detector biases and thresholds were monitored daily during

these runs using 137Cs and 22Na γ-sources and proved to be extremely stable. Data analysis

was performed on each run individually and the results were compiled afterwards. Table 5.1

contains the dates and percent of the total data that each run represents. This percentage was

determined by calculating the integrated beam flux for each run from the nd elastic scattering

measurements.

5.2 Determining the Measured Counts

This section will describe the method for producing the spectrum of measured nd breakup

coincidence events. The first step in this process was determining which events contain both



Run Date Percent of Total Data

1 June 2008 8.7

2 August 2008 17.1

3 September 2008 14.1

4 October 2008 15.1

5 December 2008 7.8

6 January 2009 14.2

7 March 2009 13.1

8 April 2009 9.8

Table 5.1: Data batches. The dates and percentage of total data obtained in each accelerator
run are given above. Each run was analyzed independently and the results were compiled
afterwards. The percentages were determined from the integrated neutron beam flux for each
run.

a proton and a neutron. The techniques for separating proton and neutron events from events

containing deuterons, electrons, γ-rays, and noise are collectively known as particle identi-

fication (PID). The next step was to determine the energies of the protons and neutrons.

The coincidence events were then plotted on the Ep versus En plane where a gate is ap-

plied to the region of interest. Events falling within this gate were projected into 1 MeV bins

along the En axis. To create the final spectrum, an accidental event subtraction was required.

5.2.1 Particle Identification

In order to find nd breakup events among the larger number of background events, pro-

tons and neutrons detected in coincidence had to be identified. The nd elastic normalization

required the identification of deuterons. The charged particle arms detected events caused

by protons, deuterons, and electrons. The neutron detectors could detect both neutrons and

γ-rays. Spectra from both detectors also contained null events and electronic noise. The

processes used to sort events by which particles they contained is outlined below.

In the neutron detectors, neutrons scatter elastically off of protons in the scintillating

fluid while γ-rays interact predominantly through Compton scattering with electrons. These

charged particles excite molecules in the scintillator which produce light when they relax back

into their ground states. Protons have a higher rate of energy loss than electrons providing a

high density of excited molecules in a region of the scintillator. This high density of excited

molecules results in increased intermolecular attractions which hinder their relaxation to the

ground state [Leo94]. The net effect of this process, known as pulse-shaped-discrimination

(PSD) is that anode signals produced by neutrons take longer to decay than signals from

γ-rays. Figure 5.1 is a plot of the energy deposited in the scintillator (pulse height) versus
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Figure 5.1: Neutron PSD spectrum. The graph shows the total energy deposited in the
scintillator (pulse height) versus the decay time of the anode signal. The red gate was set
around the neutrons. Counts outside the gate were caused by γ-rays. The units on both axes
are arbitrary.

Figure 5.2: Charged particle identification spectrum. The plot of pulse height vs. ToF
separates particles with the same energy but different masses into bands. The blue gate is
for deuterons, the red is for protons. The units on the axes are arbitrary.
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the decay time of the anode signal. Neutrons and γ-rays are clearly separated into bands. A

two-dimensional gate (shown in red) is used to identify neutrons in the data analysis.

The process for distinguishing between the protons, deuterons, and electrons was fairly

simple. Pulse height signals proportional to charged particle energy were recorded as well as

the time-of-flight (ToF) between the E and ∆E detectors. Particles with the same kinetic

energy but different masses travel at different velocities. This phenomenon separates the

different species of charged particles into distinct bands when pulse height versus ToF is

plotted as in Figure 5.2. During data analysis, two-dimensional gates were placed around the

deuteron band (blue) and the proton band (red).

5.2.2 Energy Calibration

To determine particle energies, ToF techniques were used. Charged particle and neutron

detector ToF spectra are shown in Figures 5.3 and 5.4, respectively. The signal from the ∆E

detector was used to start the TDC clock. To extract an actual time from these spectra,

two basic pieces of information must be determined: the time interval represented by one

TDC channel and a channel in the spectrum with a known time. Once these flight times

were known, particle energies could be determined using the formula: E = 1
2m(d

t )2. Here the

distance traveled, d, was determined by the experimental geometry and the particle mass,

m, to be used was determined using the particle identification gates discussed in Section 5.2.1.

Figure 5.3: Charged particle ToF spectrum. The units of the time spectrum are TDC channels
(1 TDC channel = 0.135 ns). Time increases to the right.
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Figure 5.4: Neutron detector ToF spectrum. The units of the time spectrum are TDC channels
(1 TDC channel = 0.135 ns). Time increases to the right.

To determine time interval per TDC channel, the Ortec 462 Time Calibrator1 was used.

This device provided a start signal for the TDC and then stop signals every 40±1 ns for a

1.28 µs time interval. Each of the TDC inputs was tested in this manner. The spectra from

these tests showed a series of five narrow peaks each separated by 296±4 TDC channels. Thus

each TDC channel had a width of 0.135±0.002 ns.

Elastic scattering was used to find a channel in the spectrum with a known time. Both

nd and np elastic scattering were performed detecting the neutron and scattered charged

particle in coincidence. To make this measurement, the neutron detectors had to be moved

from their breakup locations to a polar scattering angle of 37.6◦ for np scattering and 52.1◦ for

nd scattering. These detectors were located in the horizontal scattering plane, opposite their

coincident charged particle arm. These measurements were taken at incident neutron beam

energies of 16.0 and 19.0 MeV. The elastic scattering Monte-Carlo simulation discussed in

Section 4.3 was used to model charged particle energy loss in the target and ∆E detector. The

maximum in the elastic spectum was determined for both the simulation and measurement

for the four possible combinations of np and nd elastic scattering at 16 and 19 MeV. A linear

fit of these four points was then performed to obtain the TDC channel corresponding to

1For full technical data sheet, please refer to //www.ortec-online.com/download.asbx?AttributeFileId=95fdab9e-
2fa2-4559-91e2-29d5dfe84110
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t=0. The there was excellent agreement between the slope of these linear regressions and the

0.135 ns/ch value determined using the Time Calibrator. The procedure used for the charged

particle arms and the neutron detectors was virtually identical. The only difference being

that, for the neutron detectors, the ToF of the coincident charged particle between the target

and ∆E detector had to be added to the time interval measured by the TDC because the ∆E

detector provided the start signal for the clock.

5.2.3 Locus Projections and Background Subtraction

Once neutron-proton coincidences have been identified using the methods described in

Section 5.2.1, and their energies determined as described in Section 5.2.2, they are plotted on

the Ep versus En plane. In an idealized experiment, using a neutron beam with a 16 MeV

delta-function energy spectum and point-geometry beam, target, and detectors, all coincident

counts would lie on the kinematic loci shown in Figure 5.5. However, as a result of the finite

geometry of the experimental setup, the measured coincidences are found in a band around

this ideal locus. The location and width of this band was determined using the Monte-Carlo

simulation described in Section 4.4. A two-dimensional gate was set around this region of the

proton-versus-neutron-energy spectrum.

Along with the genuine 16 MeV nd breakup coincidence events of interest, background

Figure 5.5: Point geometry kinematic loci based on central detector angles. The locations
of the SCRE conditions are indicated by the stars. The N1-E2 and N2-E1 loci are the SST
configuration; the other two are the CST configuration.
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Figure 5.6: Measured locus and accidental spectra for N3-E2 CST detector pair. The number
in the top right corner of each spectum indicates the coincident event type as defined in
Table 5.2. The red gate defines the region where 16 MeV nd breakup events are kinematically
allowed. The units on all axes are MeV.
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Figure 5.7: Projections of the counts in the 2D-gates shown in Figure 5.6 onto the neutron
energy axis: The four colors on the graph correspond to the following coincident event types as
defined in Table 5.2; black ⇒ 1, red ⇒ 2, blue ⇒ 3, and yellow ⇒ 4. This graph corresponds
to the N3-E2 CST detector pair.

coincidence events are measured as well. Accidental coincidences may occur between time-

uncorrelated events that are misidentified as breakup events. These events form a uniform

background in the both the proton and neutron time spectra. One or both of the signals in a

coincident event may be caused by processes uncorrelated with nd breakup. To remove these

events from the analysis, unphysical regions of the timing spectra corresponding to particles

traveling faster than the speed of light were used to determine the magnitude of the accidental

background. The physical region of the spectra containing nd breakup events will be referred

to as the “True + Accidental” (T+A) region and the unphysical region will be referred to as

the “Accidental” (A) region. Gates of identical shape were set on the T+A and A regions.

To assign energies to the A region, the ToF of events in that region were shifted such that

the A gate identically overlapped with the T+A gate.

There are four possible combinations of proton and neutron event types as shown in

Table 5.2. Two-dimensional spectra of the N3-E2 CST detector pair for each of these event

types are graphed in Figure 5.6. Please note that the proton energies were adjusted to account

for energy loss in the ∆E detector using the “Babel” charged particle energy loss code. The

measured locus containing the true nd breakup events along with background coincidences

corresponds to event type 1. The same 2D-gate was applied to each event type and the

coincident events within the gate were projected in to 1 MeV bins along the neutron energy
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Coincidence Proton Neutron
Event Type Event Type Event Type

1 T+A T+A

2 A T+A

3 T+A A

4 A A

Table 5.2: Identification of true and accidental event types: The coincident event type will
be used to refer to the combination of proton and neutron event types in this section.

axis. These projections are displayed in Figure 5.7. The measured locus has coincident events

of type 2, 3, and 4 as backgrounds. The accidental spectra for coincident events of type 2 and

3 each have events of type 4 as a background. In order to remove the accidental background

from the measured locus the following formula must be applied:

Y (T ) = Y (1) − [Y (2) − Y (4)] − [Y (3) − Y (4)] − Y (4)

= Y (1) − Y (2) − Y (3) + Y (4). (5.1)

Here Y(T) is the estimated yield of true nd breakup events in a particular neutron energy

bin and Y(i) is the projected yield of the ith coincident event type into that same bin. The

statistical uncertainty for the true yields is given by the following formula:

∆Y (T ) =
√

Y (1) + Y (2) + Y (3) + Y (4). (5.2)

There is also a source of non-accidental background which may not be accounted for by the

methods described above. The neutron beam used in this experiment contains low energy

(SBU) neutrons as defined in Appendix E. The Monte-Carlo simulation discussed in Sec-

tion 4.4 was used to determine the fraction of true nd breakup counts in each neutron energy

bin which were caused by these SBU neutrons. The results of this simulation for the N3-E2

CST detector pair are shown in Figure 5.8.

5.3 Determining the Predicted Counts

To predict the yield of nd breakup events Yndbu expected in an energy bin along the En axis

from the effective cross section d5σ/dΩndΩpdEn produced by the Monte-Carlo simulation, the

following formula must be applied:

Yndbu =

(

d5σ

dΩndΩpdEn

)

· t · n · Ωp · Ωn · εn · αn · ∆En · LT, (5.3)
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Figure 5.8: Estimated percent of measured breakup counts from SBU events. This background
was estimated by the Monte-Carlo simulation described in Section 4.4. This graph corresponds
to the N3-E2 CST detector pair.

where t, n, Ω, εn, αn, ∆En, and LT stand for the target thickness, neutron beam flux, detector

solid angle, neutron detector efficiency, neutron attenuation, energy bin width, and fractional

live time of the data acquisition system, respectively. The proton detector is assumed to be

perfectly efficient and proton attenuation is handled by the Monte-Carlo simulation; thus it is

hidden in the effective cross section. The product of the target thickness, neutron beam flux,

proton detector solid angle, and live time were determined via nd elastic scattering performed

simultaneously with the nd breakup experiment. These quantities are related to the elastic

cross section and yield as follows:

Ynde =

(

dσ

dΩ

)

nde

· t · n · Ωp · LT. (5.4)

Many elastically scattered deuterons were stopped in either the target or ∆E-detectors and

thus were not recorded. However, the total number of elastic scattering events is the quantity

needed in Equation 5.4. This issue, along with the fact that the low energy region of the

elastic deuteron spectrum was contaminated with substantial background noise, led to the

adoption the following procedure for nd elastic scattering normalization.

The high energy region of the elastic deuteron spectrum was used in conjunction with the

Monte-Carlo simulation discussed in Section 4.3 to determine the total elastic yield. The full
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nd elastic yield was estimated using the following equation:

Ynde = Y HE
nde ·

(

YMC ·
〈

dσ
dΩ

〉

nde

Y HE
MC ·

〈

dσ
dΩ

〉HE

nde

)

, (5.5)

where the superscript, HE, indicates the yield or average cross section pertains to the high

energy region of the deuteron spectrum. Combining Equations 5.3, 5.4, and 5.5 we obtain

the following expression containing all quantities used to predict the nd breakup yields:

Yndbu =

(

d5σ

dΩndΩpdEn

)

· Ωn · εn · αn · ∆En ·

(

Y HE
nde · YMC

Y HE
MC ·

〈

dσ
dΩ

〉HE

nde

)

. (5.6)

This section will begin with a discussion of the nd elastic scattering normalization, explaining

the method for determining the term in parenthesis at the end of Equation 5.6. The remaining

terms in this equation are all parameters pertaining to the detection of the neutron, as

indicated by the subscript n, and will be discussed subsequently. The section will conclude

with a summary of the sources of systematic uncertainty in this experiment.

5.3.1 Elastic Normalization

Using the same beam, target, charged particle detectors, and electronics as the main

breakup experiment, nd elastic scattering measurements were taken as well. The purpose

of these measurements was to determine the product of the beam-target luminosity, charged

particle detector solid angle, and DAQ fractional live time shown in Equation 5.4. In these

measurements, the recoil deuteron was detected and its ToF between the ∆E and E detectors

determined. The elastic deuterons had to exit the target and traverse the ∆E detector with

its aluminum foil tent. During this process, there was substantial energy loss and straggling;

many of the deuterons were stopped or scattered, preventing their detection. The elastic

scattering measurements were modeled using the Monte-Carlo (MC) simulation described in

Section 4.3 to reproduce the shape of the measured ToF spectrum accurately. The simulation

was run until statistical uncertainty was negligible; a ±1% error was assigned to the simulated

spectrum resulting from cross-section weighting [Wit89]. The results of this simulation are

shown in Figure 5.9. The simulation was used to estimate the total number of nd elastic

events that occured over the course of the experiment, as shown in Equation 5.5.

The measured ToF spectrum for elastic deuterons was produced using the PID techniques

described in Section 5.2.1. This spectrum is shown in Figure 5.10 which is a projection of the

contents of the blue deuteron PID gate shown in Figure 5.2 onto the ToF axis. This gate was

also shifted to an unphysical region of the ToF spectrum containing only accidental counts in

order to apply a background subtraction to the elastic spectrum.
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Figure 5.9: Monte-Carlo simulation of the elastic deuteron ToF spectrum. Only the region of
the spectrum to the left of the vertical line was used in the normalization. The region shaded
black indicates the influence of the SBU neutrons.

Figure 5.10: Measured elastic deuteron ToF spectrum. This is a projection of the contents of
the blue deuteron PID gate shown in Figure 5.2 onto the ToF axis. The error bars represent
statistical uncertainty.
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Figure 5.11: Elastic scattering χ2 minimization. The alignment value represents which entry
in the measured elastic scattering spectrum corresponded to the first entry in the pruned
Monte-Carlo spectrum for that particular linear fit.

The ToF spectum created by the Monte-Carlo simulation was fit to the measured data

taken by each charged particle arm on a batch-by-batch basis. The MC spectrum was binned

such that the width of one bin corresponded to the width of one TDC channel (0.135 ns). This

spectrum was then pruned to include only the highest energy elastic deuterons; only the part

of the spectrum to the left of the vertical line in Figure 5.9 was used for this fit. This was done

to minimize the effect of the SBU part of the neutron beam as well as any discrepancies in

the background subtraction on the analysis. A linear fit was performed between the channel

yields in the two spectra, given as follows:

Y meas
i = mY MC

j + b. (5.7)

The pruning of the MC spectra determined the number of points to fit. The fit parameter,

b, was included to account for any errors in the background subtraction. To allow for errors

in timing calibration, the pruned MC spectrum was scanned across the measured spectrum

with a linear fit being performed at each increment. The difference between the j th bin of the

MC and the ith bin of the measured spectrum (i − j) will be referred to as the “alignment

value” for that linear fit. For each alignment value, a χ2/datum was calculated as well as a

background subtracted measured yield (Y BS = mY MC). These were each plotted and fit to

parabolic functions as shown in Figures 5.11 and 5.12. The alignment value of the minimum
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reduced χ2 (13.78 in Figure 5.11) was used to determine the optimal measured yield. The

error in this yield was estimated by adding one to the minimum value of χ2/datum and finding

the corresponding range of yields. The combination of this “high energy” measured yield, the

integration of the cross-section weighted pruned MC spectrum, and the total number of elastic

events simulated by the MC were then used to estimate the total number of nd elastic events

resulting from the 16.0 MeV “prompt” neutron beam that occurred during the course of a

data run. The results for the two charged particle arms were averaged and the disagreement

between the two sides was used as a measure of the ±4% systematic uncertainty.

Figure 5.12: Determination of the nd elastic scattering yield from the χ2 minimization. The
optimal yield was determined from a quadratic fit of Measured Yields vs. Alignment Value.
Error bars were obtained by adding one to the minimum value of χ2/datum and determing
the range of yields associated with the corresponding alignment values.

5.3.2 Neutron Detection Parameters

The explanations for two of the neutron detection parameters, Ωn and ∆En, are pretty

straightforward. The neutron detector solid angles, Ωn, were determined by dividing the cross-

sectional area of the scintillator volume by the square of the distance between the center of the

scintillator volume and the target. The width of the neutron energy bins were set at 1 MeV as

a balance between accurately tracing the shape of the cross section and statistical uncertainty.

The neutron detector efficiency, εn, is an energy dependent quantity. The neutron scin-

tillators produce a light pulse when a neutron scatters on a proton in their volume that is
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Figure 5.13: Results of the linear fit between elastic scattering data and the Monte-Carlo
simulation for the best integer alignment value.

proportional to the energy delivered to the recoiling proton. This recoil energy varies contin-

uously from the full energy of the neutron all the way down to zero since the neutron may

pass through without interacting at all. A software threshhold was applied to the neutron

pulse height spectrum which disregards any signals detected below a specific energy. This

pulse height threshold determines the probability that a neutron of a particular energy which

entered the detector would be included in the measured spectrum. Several times over the

course of each accelerator run, the neutron beam would be stopped so that 137Cs and 22Na

γ-sources could be placed near the detectors. These sources produce γ-rays at three specific

energies. The Compton scattering edge for each γ-ray energy was recorded; and these were

used to calibrate the neutron pulse height spectrum. The choice of pulse height threshold

was based on this calibration and was specified by what fraction of the 137Cs Compton edge

it corresponded to. Thus this threshold is also referred to as the Cs-bias; a 1
2Cs-bias was

used for all detectors in this experiment. The absolute efficiencies of the neutron detectors

were measured previously at TUNL using the 2H(d, n)3He reaction as well as neutrons from

a 252Cf spontaneous fission source. The details of these measurements may be found in the

dissertations of D.E. González Trotter [Gon98] and F. Salinas [Sal98]. Tables, plots, and

further information on the neutron detector efficiencies may be found in Appendix C.

The neutron attenuation factor, αn, is the probability that an outgoing breakup neutron

initially headed for a particular detector will not be scattered away from the detector by

intermediate material (technically this is a transmission factor). The material between the
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reaction and the neutron detectors differed between the SST and CST detectors. The CST

neutrons simply had to exit the target and pass through a 25 µm tantalum foil; the attenua-

tion was negligible (αn = 1). The SST neutrons had to exit the target and pass through the

0.318 cm thick aluminum dome. Using the total interaction cross section for 4.6 MeV neu-

trons with aluminum, we estimate that 4% of the neutrons should interact in the aluminum.

Additionally, a large portion of the neutrons scattered by the aluminum were still detected

on account of the large forward angle differential cross section. Some neutrons that initially

would have missed the detector were scattered into the detector lessening this effect further.

A first-order estimate based on an isotropic neutron distribution across the surface of the

dome and isotropic, energy-independent neutron-aluminum scattering was performed which

indicated that for the SST configuration αn = 0.98 ± 0.01.

5.3.3 Systematic Errors

The known sources of systematic error in this experiment are as follows: (1) nd elastic

normalization, (2) SBU subtraction, (3) neutron detector solid angle, (4) neutron detector

efficiency, (5) neutron attenuation, and (6) neutron energy binning. The estimates for the

relative error of each of these contributions are added in quadrature to estimate the systematic

error for the entire experiment as shown in the following formula.

(

∆Ybu

Ybu

)

sys

=

[

(

∆Yel

Yel

)2

+

(

∆YSBU

YSBU

)2

+

(

∆Ωn

Ωn

)2

+

(

∆εn
εn

)2

+

(

∆αn

αn

)2

+

(

∆En

En

)2
]

1

2

(5.8)

Estimates of the magnitude of each term in Equation 5.8 and the sources of these systematic

uncertainties are described below and summarized in Table 5.3.

1. The uncertainty in the nd elastic normalization arises from several sources. Background

subtraction, calculation of deuteron energy loss, angular uncertainties, fitting errors,

and cross-section weighting must contribute. The magnitude of this uncertainty was

estimated by examining the difference between the neutron flux determined by the two

charged particle detectors as described in Section 5.3.1. This uncertainty was estimated

to be ±4.0%.

2. The subtraction of SBU induced nd breakup events is described in Section 5.2.3. The

uncertainty in this quantity was governed by the uncertainty in the nd breakup cross

sections and neutron beam energy spectrum used to model the SBU events in the Monte-

Carlo simulation. These quantities were varied within reasonable bounds and the range

of results were used to estimate the ±1.0% uncertainty assigned to this quantity.

3. The uncertainty in the neutron detector solid angle is derived from the the measurement

error in the neutron flight paths (±2mm) and scintillator radii (±0.5mm). Since the
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SST and CST flight paths were different, their relative uncertainties are slightly differ-

ent, ±1.7% and ±1.6% respectively. However, after performing the error propagation

described by Equation 5.8, the difference between the overall systematic uncertainties

between the two configurations is negligible.

4. Neutron detector efficiencies were obtained through previous measurements at TUNL of

the 2H(d, n)3He source reaction as well as the spontaneous fission of a 252Cf source [Sal98,

Gon98]. These measurements were compared to a simulated spectrum. The uncertainty

in these efficiencies was derived from two sources: a ± 3% uncertainty stemming from

the range of normalizations needed to bring the measured spectra in agreement with

the simulation for the various detectors and a ± 1% uncertainty associated with small

deviations in the shape of the measured spectra. These uncertainties were added in

quadrature to produce an overall systematic error of ± 3.2%

5. The ±1.0% systematic uncertainty assigned to the neutron attentuation coefficient in the

SST configuration was based upon a first-order estimate of isotropic, energy-independent

neutron-aluminum scattering. The maximum and minimum possible values for this co-

efficient differed only by ±2%. The effects of neutron attenuation on the CST configu-

ration were negligible, thus no uncertainty was alotted.

6. The width of the neutron energy bins into which the measured counts are projected is

determined by the energy calibration. Uncertainty in the measurement of the nanosec-

onds per TDC channel used in this experiment provide us with a conservative estimate

of ± 1% systematic error in the width of the 1 MeV energy binning.

Source of Uncertainty Estimated Uncertainty

Elastic Normalization ±4.0%
SBU Subtraction ±1.0%

Solid Angle ±1.7%
Detector Efficiency ±3.2%

Neutron Attenuation (SST) ±1.0%
Neutron Attenuation (CST) ±0.0%

Energy Binning ±1.0%

Total Uncertainty (SST) ±5.7%
Total Uncertainty (CST) ±5.6%

Table 5.3: Summary of systematic uncertainties inherent in the breakup cross-section mea-
surement.

69



6 Results and Conclusions

This chapter will summarize the experimental results for the nd breakup cross-section

measurements of the SST and CST configurations and compare them to theoretical predic-

tions as well as to previous measurements. A series of studies probing the sensitivity of the

theoretical calculations to modifications of the nuclear potential were performed. The first

of these tested the different NN potential models and 3NF’s described in Section 2.2. The

second tested the sensitivity of the calculations to the partial waves included in the CD-Bonn

potential. The final study examines the effects of modifying the nn 1S0 component of the

CD-Bonn potential. The chapter will conclude with speculations as to how theoretical pre-

dictions may be brought into agreement with experimental findings based upon the results of

these sensitivity studies.

6.1 Space-Star Results

The results for the SST cross-section measurements are shown in Figure 6.1. The counts

measured in 1 MeV bins along the neutron energy axis after subtracting background events

are shown for the two mirrored detector pairs, N1-E2 and N2-E1, as well as their statistically

weighted average. The error bars on these measurements reflect only statistical uncertainty.

The solid black line in the figure is the theoretical prediction produced by the Monte-Carlo

simulation based on the CD-Bonn [Mac01a] potential; the blue band around it shows the

±5.8% systematic uncertianty. The discrepancy between the theoretical cross-section predic-

tion and the actual value should be directly proportional to the relative difference between the

measured and predicted counts. The SCRE condition occurs at a detected neutron energy of

4.6 MeV and is indicated in the figure by the vertical dashed line. Considering the weighted

average of the two detector pairs, the theoretical prediction is ∼ 28% below the measurement

around the SCRE condition.

All previous measurements of the SST reported the differential cross section with respect



Figure 6.1: Results for the SST measurement. The top graph shows the counts measured by
the N1-E2 (blue points) and N2-E1 (red points) detector pairs after background subtraction.
The bottom graph shows the weighted average of the two sides (black points). Error bars
on data points represent statistical uncertainties only. The solid black line represents the
theoretical prediction obtained from the Monte-Carlo simulation and the band around it
represents the 5.7% systematic uncertainty. The vertical dashed line indicates the neutron
energy of the SCRE condition.
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to S, d5σ/dΩ1dΩ2dS. The current results must be presented in the same manner to compare

them with those measurements. To do this, the relative discrepancy between data and theory

found at the SST condition was multiplied by the point geometry cross section based on the

CD-Bonn potential to obtain a value of 1.203±0.098 mb/sr2·MeV. Figure 6.2 shows this value

compared with the history of nd breakup five-fold differential cross-section measurements.

Figure 6.2: History of SST cross-section measurements with the present datum included. The
data point for the present work shown as the magenta triangle was created by calculating
the relative discrepancy between the number of counts measured and the number of counts
predicted by the CD-Bonn potential. This discrepancy was then used to estimate the point
geometry cross section by simple multiplication. The statistical error on the data point for
the present work is shown by the black shaded band. The magenta error bar for this point
is the statistical and systematic errors added in quadrature. While adding statistical and
systematic errors in quadrature can not be rigorously justified, it gives the reader a feel for
the magnitude of the total uncertainty [Tay97].

6.2 Coplanar-Star Results

The results for the CST cross-section measurements are shown in Figure 6.3. In the same

manner as the SST results, the counts measured in 1 MeV bins along the neutron energy axis

after subtracting background events are shown for the two mirrored detector pairs, N3-E2

and N4-E1, as well as their weighted average. The error bars on these measurements reflect
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Figure 6.3: Results for the CST measurement. The top graph shows the counts measured by
the N3-E2 (blue points) and N4-E1 (red points) detector pairs after background subtraction.
The bottom graph shows the weighted average of the two sides (black points). Error bars
on data points represent statistical uncertainties only. The solid black line represents the
theoretical prediction obtained from the Monte-Carlo simulation and the band around it
represents the 5.6% systematic uncertainty. The theoretical predictions for the two detector
pairs varied slightly because of the slight difference in geometry. The average value is shown
on the graphs; and the two values lie within the error band. The vertical dashed line indicates
the neutron energy of the SCRE condition.
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only statistical uncertainty. The solid black line in the figure is the theoretical prediction

produced by the Monte-Carlo simulation based on the CD-Bonn [Mac01a] potential, and the

blue band around it shows the ±5.6% systematic uncertainty. The SCRE condition occurs at

a detected neutron energy of 8.45 MeV and is indicated in the figure by the vertical dashed

line. Considering the weighted average of the two detector pairs, the theoretical prediction is

∼ 40% above the measurement around the SCRE condition. This discrepancy is confined to

the kinematic region near the SCRE condition in this configuration. The theory follows the

data quite nicely at detected neutron energies below 6 MeV and above 10 MeV.

Figure 6.4: Results from the previous 16.0 MeV CST cross-section measurement of A. Crow-
ell [Cro01]. Two neutrons were detected in coincidence at laboratory angles of θn1 = θn2 =
71.2◦ and φ12 = 180◦. The dashed line gives the gives CD-Bonn prediction for point geometry.
The solid line is the finite-geometry prediction based on Monte-Carlo simulations. The error
bars represent only statistical uncertainty.

The first CST data taken were at an incident neutron energy of 13.0 MeV in an asymmetric

configuration by Strate et al. [Str89] and were reported higher than the theoretical prediction

by 10-25%. This measurement was repeated by Setze et al. [Set05]; and was found to be

in agreement with theory. Setze indicated that the background subtraction applied in the

analysis of Strate was underestimated [Set05] which would lessen the reported discrepancy, if

not eliminate it entirely. Additionally symmetric CST measurements taken at beam energies

of 10.3 and 13.0 MeV [Mac04] agreed with theoretical predictions within the experimental
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uncertainty. In the previous 16.0 MeV CST measurement [Cro01], the results of which are

shown in Figure 6.4, the data were on average 1.4 standard deviations higher than theory.

Those data were taken in the symmetic CST configuration where the direction of the outgoing

proton is opposite the direction of the incident neutron in the CM frame. The present data

were taken in an asymmetric configuration such that the direction of the outgoing proton was

perpendicular to the neutron beam in the CM frame. It is odd that a 90◦ rotation of the

outgoing particles would produce cross-section discrepancies of opposite signs and significantly

different magnitudes when compared to theoretical predictions.

6.3 Sensitivity Studies

All the theoretical predictions shown in the previous section were based upon the CD Bonn

nucleon-nucleon (NN) potential model [Mac01a]. Since there is significant disagreement be-

tween these predictions and the present results, an investigation into possible resolutions of

this disagreement must ensue. There are other possible NN potential models which may

prove a better match to experimental findings. Also the effects of three-nucleon forces (3NF)

need to be considered. It also would be instructive to test the sensitivity of the SST and

CST breakup cross sections to the contributions of the various partial waves used in Faddeev

calculations. The likely culprits for the source of the discrepancy may then be identified and

tested.

6.3.1 Sensitivity to Potential Models

In order to test the dependence of theoretical predictions to the underlying dynamics

contained in traditional meson-exchange based potential models, 3N Faddeev calculations

were performed using different modern NN potentials alone and combined with 3NF models

[Glö96, Hüb97]. Along with the CD Bonn potential [Mac01a], the AV18 [Wir95] and Nijmegen

I and II [Sto94] high precision NN potentials were also used to make predictions. These four

NN potential models were each combined with the TM99 3NF [Coo81, Coo01] using cutoff

Λ values which led to a reproduction of the 3H binding energy for a particular NN force and

TM99 combination. The AV18 NN potential was also combined with the UIX 3NF [Pud97]

which was developed for exclusive use with this potential. All NN potentials used provided

virtually the same cross-section predictions. The effects of the TM99 and UIX 3NF models

were also essentially negligible.

Faddeev calculations were also performed using potential models derived from the frame-

work of chiral effective field theory (χEFT). Ten different NN chiral potentials were used, five

at N2LO and five at N3LO [Epe06]. These potentials differ in the value of the high-momentum

cutoffs used in their derivation. Using a particular pair of cutoffs, Λ and Λ̃, their low-energy
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Figure 6.5: Sensitivity of the five-fold point geometry cross section, d5σ/dΩpdΩndS, to dif-
ferent potential models as a function of the S-curve length. Faddeev calculations using 24
different potential models, including traditional meson-exchange and χEFT potentials both
with and without 3NF’s, were performed for the SST (A) and CST (B) configurations. All
results lie within the black bands and differ by less than 2% at the location of the star con-
dition. The red dashed lines indicate the location of the star condition. Graphs C and D are
zoomed in views of the SCRE condition for graphs A and B, respectively.
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constants were then adjusted to reproduce two-nucleon phase shifts. All choices of these cutoff

values described the two-nucleon system equally well. The first non-vanishing 3NF appears

in N2LO order of the chiral expansion with three contributing topologies: the 2π-exchange

between three nucleons, a one-pion exchange between one nucleon and two-nucleons interact-

ing pointwise, and a pure 3N contact interaction. While standard 3NF models only take into

account 2π-exchange, these topologies simulate contributions from heavier meson-exchanges

such as π–ρ and ρ–ρ in their contact terms. Each of the five N2LO potentials were combined

with a chiral 3NF using the same high-momentum cutoffs. Two additional adjustable parame-

ters appear in the short-range 3NF terms which were adjusted for each potential to reproduce

the triton binding energy and the nd scattering length [Epe02]. At N3LO, 3NF contributions

have been derived [Ber08], but have yet to be transcribed into a form applicable to numeri-

cal Faddeev calculations. The star cross sections were found to be practically insensitive to

variations in the χEFT potential model used. For both configurations studied, all theoretical

cross-section predictions based on both traditional meson-exchange models and χEFT, with

and without 3NF’s differed at most by 2% at the star condition as shown in Figure 6.5.

6.3.2 Sensitivity to Partial Waves

Since the star cross sections are practically insensitive to the choice of potential model

used to produce theoretical predictions, the CD Bonn model was given further examination.

At low energies, the largest contributions to these cross sections should be provided by the

S-wave components of the NN potential. Faddeev calculations were performed using the 1S0,
3S1-3D1, the combination of these two, and all higher angular momentum components of

the CD Bonn interaction up to a two-body total angular momentum, j = 3. The results of

these calculations are shown in Figure 6.6 for the SST and CST configurations. These studies

show that the star cross sections are built predominantly from the singlet and triplet S-wave

components of the NN force with the triplet being the dominant of the two. The effects of

higher order partial waves on the star cross sections are essentially negligible. Both the 1S0

and 3S1-3D1 np forces have been well determined by np scattering data and the properties of

the deuteron [Sto93]. Up to this point, the 1S0 nn force has only been determined indirectly

because of the lack of free nn data [Kon10, Gar09]. Therefore, the 1S0 nn force is the most

likely culprit for the disagreement between data and theory in the star configurations.

6.3.3 Sensitivity to the nn 1
S0 Component

There is further evidence of possible issues with the nn 1S0 component of the nucleon-

nucleon interaction which have arisen from cross-section measurements of the quasifree scat-

tering (QFS) configuration of nd breakup. The QFS configuration refers to a situation in

which one of the nucleons is at rest in the laboratory system. In nd breakup, the nn or np
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Figure 6.6: Sensitivity of the five-fold point geometry cross section, d5σ/dΩ1dΩ2dS, to the
CD Bonn potential to different partial waves for the SST (left) and CST (right) configurations
as a function of the S-curve length. The solid (red) line shows the full calculation with all
partial waves up to jmax = 3 included. The dashed (blue), dotted (black), and dashed-dotted
(green) lines show the results when only contributions from 1S0, 3S1-3D1, and 1S0+3S1-
3D1 are kept when calculating the cross sections, respectively. The dashed-double-dotted
(magenta) line presents contribution of all partial waves with the exception of 1S0 and 3S1-
3D1. The position of the SCRE condition is indicated by the vertical dashed line.
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QFS configurations are possible, leaving the proton or one of the neutrons at rest, respec-

tively. Measurements of QFS cross sections have been performed at incident neutron energies

of 26 MeV [Sie02] and 25 MeV [Rua07]. At 26 MeV both nn and np QFS configurations were

measured; while at 25 MeV only nn was measured. The results for nn QFS resemble those

of the SST: the nn QFS cross sections are clearly underestimated by ≈ 20%. Suprisingly,

when the np pair is quasi-freely scattered instead, the theory closely follows the np QFS

cross-section data [Sie02].

Figure 6.7: Sensitivity of the star five-fold point geometry cross sections, d5σ/dΩ1dΩ2dS, in
the SST (left) and CST (right) configurations to the changes of the nn 1S0 force component as
a function of S-curve length. Those changes were induced by multiplying the 1S0 nn matrix
element of the CD Bonn potential by a factor λ. The solid (red) line is the full result based on
the original CD Bonn potential [Mac01a] and all partial waves with 2N total angular momenta
up to jmax = 3 included. The dashed (blue), dotted (black), and dashed-dotted (green) lines
correspond to λ = 0.9, 0.95, and 1.05, respectively. The vertical dashed line indicates the
position of the SCRE condition.

Sensitivity studies analogous to those described in the previous two sections have been per-

formed for these QFS configurations [Wit10b] which show that these cross sections are highly

independent of the NN potential and practically do not change when any of the present day

3NF’s are included. The partial wave analysis study proved that QFS is dominated by S-wave

contributions as well. Studies to probe the sensitivity of QFS, SST, and CST cross sections to

the 1S0 nn force component have been performed. In these studies, a very simple mechanism

was used to change the 1S0 nn interaction; the 1S0 nn matrix element of the CD Bonn poten-

79



tial was multiplied by a factor λ. This technique demonstrated that the nn QFS undergoes

significant variations while the np QFS cross sections remain essentially unchanged as shown

in Figure 6.8. The increase in the 1S0 nn force strength (λ = 1.08) needed to bring the nn

QFS theoretical cross sections into agreement with data would lead to a nearly bound state

of two neutrons [Wit10b]. The corresponding study for the SST configuration has shown that

changes which would provide an explanation for the nn QFS have almost no effect on the SST

discrepancy. In Fig. 6.7, we present evidence that changing the 1S0 nn interaction does not

influence the CST configuration and has only a minor effect on the SST cross section near the

star condition. The study was performed with λ values of 0.9, 0.95, and 1.05. Increasing the

value of λ much beyond 1.05 would require modification to the Faddeev calculations to take

into account the neutron-neutron bound state. This is feasible; however, further experimental

evidence for this state will be required for such modifications to be warranted.

Figure 6.8: Sensitivity of the nn (left) and np (right) QFS five-fold point geometry cross
sections, d5σ/dΩ1dΩ2dS, at an incident neutron energy of 26 MeV to changes in the nn 1S0

force component as a function of S-curve length. There are significant variations in nn QFS,
while np QFS remains virtually unchanged. For a description of the lines see Figure 6.7, the
only difference being at this higher energy all partial waves with 2N total angular momenta
up to jmax = 5 were included.

80



6.4 Discussion and Speculations

The results of this experiment confirm the SST anomaly in nd breakup established by pre-

vious measurements which measured differential cross section by detecting the two outgoing

neutrons in coincidence. The present measurement used a different experimental technique

which detected the proton and one of the neutrons in coincidence and found a similar discrep-

ancy with theoretical calculations. Additionally, the CST measurement found discrepancies

between data and theory in a kinematic region of the 3N continuum unexplored by previous

experiments. Preliminary analysis of 19.0 MeV nd breakup data taken at TUNL indicates

similar discrepancies with the SST and CST cross sections [Taj10] providing further credence

to these claims.

The sensitivity study presented in Section 6.3.1 clearly shows that cross-section calcula-

tions using the most advanced nuclear potential models currently available all provide essen-

tially the same prediction for the nd breakup configurations measured in this experiment.

However, this does not exclude the possibility that some exotic, long-range components of a

3NF could provide the modification to the nuclear potential needed to bring theoretical cal-

culation in line with data. Chiral perturbation theory in orders higher than N2LO introduces

a multitude of additional short- and long-range 3NF contributions which come with a variety

of momentum-spin dependencies [Ber08]. While fourth-order corrections to a perturbative

expansion which describes most processes well at third-order must by definition be small,

these configurations could be particularly sensitive to the matrix elements altered by them.

Considering the large nn QFS discrepancies, one may indulge in even wilder speculation

about the existence of a weak two neutron bound state which could affect star cross sections.

Such a state would not only drastically change the 1S0 nn interaction, but could also provide

a continuous background from the following reaction:

n +2 H → p +2 n → p + n + n (6.1)

which would be particularly important in regions of the breakup phase-space with small

cross sections, like the SST configuration [Wit10a]. The strength of the nn interaction is

typically parameterized by the 1S0 nn scattering length, ann, the magnitude of which is

negative in unbound attractive interactions and positive for bound systems. Please refer to

Appendix D for information on scattering length. Measurements of this parameter have been

made through cross-section measurements of several different reactions: 2H(n, np)n [Huh00a,

Huh00b] giving ann = −16.1 ± 0.4 fm, 2H(n, nnp) [Gon98] giving ann = 18.7 ± 0.7 fm, and
2H(π−, nγ)n [How98] which gave ann = −18.5 ± 0.5 fm. These values were obtained by

incorporating different values of ann into theoretical calculations which were then fit to the
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cross-section data. However, these calculations were only sensitive to the square of the scat-

tering length, not the sign, and did not include any accommodations for a nn bound state.

The discrepancy between the 2H(n, np)n ann measurement and the other two could be ac-

counted for by such a state. An experiment that could test the nn bound state hypothesis is

the photodisintegration of 3H, measuring the energy spectrum of the recoil proton [Wit10b].

The energy spectrum of the proton should show two distinct regions (provided sufficient en-

ergy resolution): a low energy region pertaining to the three-body exit channel and a higher

energy region of the two-body exit channel. These two regions should be separated by the

binding energy of the nn state. An example of this principle is shown in Figure 6.9 which

shows the summed charged particle energy spectrum of the two-body (p+d) and three-body

(p+p+n) exit channels for the photodisintegration of 3He.

Figure 6.9: Energy spectrum obtained from the photodisintegration of 3He at Eγ =
15.01 MeV. A high-pressure 3He gas scintillator acted as both target and detector. The
large peak on the left is from Compton scattered electrons. The three-body exit channel,
3He(γ, pp)n is seen in the continuum of counts which extend out to a pulse height of around
215. The peak on the right is the two-body exit channel, 3He(γ, pd). The separation be-
tween the three-body continuum and the two-body peak is defined by the deuteron binding
energy [Est04].

In summary, we have presented cross sections in two kinematically complete geometries of

the Elab
n = 16 MeV nd breakup. These data have been taken by detecting the outgoing np pair

in coincidence while all previous nd breakup measurements have detected the nn pair. Thus

the clear discrepancy between data and theory found in the present measurement supports
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those revealed in previously reported experiments. As a result of the strong stability of the

theoretical cross sections to the underlying dynamics, such large discrepancies would require

new long-ranged components of 3NF’s or could even indicate a deficiency in our present

knowledge of the 1S0 nn force.
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A Tables of Experimental Results

The following tables present the counts measured during the experiment with uncertainties

as well as the theoretical predictions for those counts from the Monte-Carlo simulation. These

tables correspond to the plots shown in Figures 6.1 and 6.3. The counts are presented in

1 MeV bins along the neutron energy axis where the neutron energy value specified defines

the center of the bin. A background subtraction has been applied to the counts. The total

uncertainty was obtained by adding the statistical and systematic uncertainties in quadrature.

Combining statistical and systematic uncertainties by this method can not be rigorously

justified, however it may give the reader a feel for the magnitude of the total uncertainty of

these measurements [Tay97]. The systematic uncertainty was 5.8%(5.6%) for the SST(CST).

Neutron Measured Statistical Total Predicted
Energy (MeV) Counts Uncertainty (%) Uncertainty (%) Counts

1.5 66 15.0 16.1 91
2.5 206 7.5 9.5 221
3.5 215 7.2 9.2 194
4.5 171 8.1 9.9 121
5.5 116 9.8 11.4 52
6.5 49 15.0 16.1 16
7.5 19 23.1 23.8 3

Table A.1: Experimental results and theoretical predictions for the N1-E2 detector pair.

Neutron Measured Statistical Total Predicted
Energy (MeV) Counts Uncertainty (%) Uncertainty (%) Counts

1.5 70 15.0 16.1 93
2.5 234 6.9 9.0 223
3.5 241 7.0 9.1 194
4.5 183 8.0 9.9 122
5.5 125 9.3 11.0 52
6.5 90 11.0 12.5 15
7.5 21 23.0 23.7 3

Table A.2: Experimental results and theoretical predictions for the N2-E1 detector pair.
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Neutron Measured Statistical Total Predicted
Energy (MeV) Counts Uncertainty (%) Uncertainty (%) Counts

1.5 46 28.9 29.4 47
2.5 164 8.8 10.4 120
3.5 141 9.2 10.8 121
4.5 152 8.7 10.4 120
5.5 143 9.4 11.0 130
6.5 136 9.7 11.2 157
7.5 159 8.7 10.3 198
8.5 157 8.5 10.2 201
9.5 136 9.3 10.9 166
10.5 110 10.4 11.8 109
11.5 64 14.1 15.2 51
12.5 25 24.4 25.1 19

Table A.3: Experimental results and theoretical predictions for the N3-E2 detector pair.

Neutron Measured Statistical Total Predicted
Energy (MeV) Counts Uncertainty (%) Uncertainty (%) Counts

1.5 47 22.7 23.4 47
2.5 133 9.6 11.1 118
3.5 115 10.0 11.4 118
4.5 95 11.8 13.0 121
5.5 136 9.6 11.1 136
6.5 140 9.2 10.8 170
7.5 153 8.6 10.2 217
8.5 140 8.8 10.4 214
9.5 136 9.0 10.6 169
10.5 92 11.2 12.5 102
11.5 52 14.8 15.8 42
12.5 21 22.9 23.6 13

Table A.4: Experimental results and theoretical predictions for the N4-E1 detector pair.
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Neutron Measured Statistical Total Predicted
Energy (MeV) Counts Uncertainty (%) Uncertainty (%) Counts

1.5 68 10.6 12.1 96
2.5 219 5.1 7.7 231
3.5 227 5.0 7.7 201
4.5 176 5.7 8.1 126
5.5 121 6.8 8.9 54
6.5 63 9.3 11.0 16
7.5 20 16.3 17.3 3

Table A.5: Experimental results and theoretical predictions for the SST configuration. These
are the weighted averages of the N1-E2 and N2-E1 detector pairs.

Neutron Measured Statistical Total Predicted
Energy (MeV) Counts Uncertainty (%) Uncertainty (%) Counts

1.5 46 17.9 18.7 47
2.5 147 6.5 8.6 119
3.5 126 6.8 8.8 120
4.5 118 7.2 9.1 121
5.5 139 6.7 8.7 133
6.5 138 6.7 8.7 164
7.5 156 6.1 8.3 208
8.5 148 6.1 8.3 208
9.5 136 6.5 8.6 167
10.5 100 7.7 9.5 105
11.5 57 10.2 11.7 47
12.5 22 16.8 17.7 16

Table A.6: Experimental results and theoretical predictions for the CST configuration. These
are the weighted averages of the N3-E2 and N4-E1 detector pairs.
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B Kinematic Tables

These tables present kinematic quantities of interest pertaining to nd breakup at 16.0

MeV for the central angles of the four detector pairs used in this experiment. The central

detector angles are specified in the caption below each table. The quantities given in the

tables are defined as follows:

� Ep = laboratory energy of the proton,

� En = laboratory energy of the detected neutron,

� Eu = laboratory energy of the undetected neutron,

� Epn = relative energy between the proton and the detected neutron,

� Epu = relative energy between the proton and the undetected neutron,

� Enu = relative energy between the two neutrons,

� θu = laboratory polar scattering angle of the undetected neutron,

� φu = laboratory azimuthal scattering angle of the undetected neutron, and

� S = the length along the S-curve.

The SCRE condition occurs when all three particles have the same relative momentum. If the

detectors were set up at the ideal angles, the SST would occur at S=7.45 MeV and the CST

would occur at S=7.24 MeV. For the SST, the ideal angles would have been θn = θp = 51.52◦

and φnp = 120◦. For the CST, these angles would have been θn = 16.75, θp = 51.52◦, and

φnp = 180◦.
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N1-E2 Space-Star Kinematics

Laboratory Relative Undet. Neutron S
Energy (MeV) Energy (MeV) Lab Angle (◦) (MeV)

Ep En Eu Epn Epu Enu θu φu S

1.00 6.49 6.28 3.55 2.39 6.72 44.1 276.2 3.2
1.20 6.52 6.05 3.64 2.36 6.65 45.1 273.8 3.4
1.40 6.52 5.86 3.73 2.37 6.57 45.9 271.5 3.6
1.60 6.49 5.69 3.79 2.40 6.47 46.6 270.7 3.8
1.80 6.43 5.54 3.85 2.45 6.35 47.2 272.8 4.0
2.00 6.36 5.41 3.91 2.52 6.23 47.8 274.9 4.2
2.20 6.28 5.29 3.95 2.61 6.10 48.3 277.0 4.5
2.40 6.18 5.19 3.99 2.70 5.96 48.8 279.0 4.7
2.60 6.07 5.10 4.03 2.81 5.82 49.2 281.0 4.9
2.80 5.95 5.02 4.06 2.93 5.67 49.5 283.1 5.1
3.00 5.82 4.96 4.09 3.06 5.51 49.8 285.1 5.4
3.20 5.68 4.90 4.11 3.20 5.35 50.1 287.1 5.6
3.40 5.53 4.85 4.13 3.35 5.18 50.3 289.1 5.9
3.60 5.37 4.80 4.15 3.50 5.01 50.5 291.1 6.1
3.80 5.20 4.77 4.16 3.66 4.84 50.6 293.2 6.4
4.00 5.03 4.75 4.17 3.83 4.66 50.7 295.3 6.7
4.20 4.84 4.73 4.17 4.00 4.49 50.8 297.4 6.9
4.40 4.65 4.73 4.18 4.18 4.30 50.8 299.5 7.2
4.60 4.44 4.73 4.17 4.37 4.12 50.8 301.7 7.5
4.80 4.23 4.75 4.17 4.56 3.93 50.8 304.0 7.8
5.00 4.00 4.77 4.16 4.76 3.74 50.6 306.3 8.1
5.20 3.76 4.81 4.14 4.97 3.55 50.5 308.7 8.4
5.40 3.51 4.87 4.12 5.18 3.36 50.2 311.3 8.7
5.60 3.23 4.94 4.09 5.41 3.16 49.9 314.0 9.1
5.80 2.93 5.05 4.05 5.65 2.96 49.4 317.0 9.4
6.00 2.59 5.19 3.99 5.91 2.76 48.8 320.3 9.8
6.20 2.17 5.41 3.90 6.20 2.56 47.9 324.5 10.3
6.00 0.49 7.29 3.11 6.78 2.76 40.0 344.1 12.0

Table B.1: Kinematics for the N1-E2 space-star detector pair in the region where data were
taken. This table was produced using the experimentally measured central detector angles
θn = 51.4◦, φn = 119.5◦, θp = 52.3◦, φn = 0◦. Kinematic parameters pertaining the the
undetected neutron are labeled with the subscript, u.
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N2-E1 Space-Star Kinematics

Laboratory Relative Undet. Neutron S
Energy (MeV) Energy (MeV) Lab Angle (◦) (MeV)

Ep En Eu Epn Epu Enu θu φu S

1.00 6.51 6.26 3.56 2.33 6.77 44.2 277.6 3.3
1.20 6.55 6.03 3.66 2.29 6.71 45.2 275.3 3.5
1.40 6.55 5.82 3.74 2.29 6.63 46.0 273.0 3.7
1.60 6.53 5.64 3.81 2.31 6.54 46.8 270.9 3.9
1.80 6.49 5.49 3.88 2.36 6.43 47.5 271.2 4.1
2.00 6.43 5.35 3.93 2.42 6.31 48.1 273.3 4.3
2.20 6.35 5.23 3.98 2.50 6.18 48.6 275.3 4.5
2.40 6.26 5.12 4.03 2.59 6.05 49.1 277.3 4.8
2.60 6.16 5.02 4.06 2.69 5.90 49.5 279.3 5.0
2.80 6.04 4.93 4.10 2.80 5.76 49.9 281.3 5.2
3.00 5.92 4.86 4.13 2.93 5.60 50.2 283.2 5.5
3.20 5.79 4.79 4.16 3.06 5.45 50.5 285.2 5.7
3.40 5.64 4.73 4.18 3.20 5.28 50.8 287.2 5.9
3.60 5.49 4.68 4.20 3.34 5.12 51.0 289.2 6.2
3.80 5.33 4.64 4.22 3.50 4.95 51.2 291.2 6.4
4.00 5.17 4.61 4.23 3.66 4.77 51.3 293.2 6.7
4.20 4.99 4.58 4.24 3.82 4.60 51.4 295.2 7.0
4.40 4.81 4.57 4.24 4.00 4.42 51.5 297.3 7.2
4.60 4.61 4.56 4.25 4.18 4.24 51.5 299.5 7.5
4.80 4.41 4.56 4.25 4.36 4.05 51.5 301.6 7.8
5.00 4.20 4.58 4.24 4.55 3.86 51.5 303.9 8.1
5.20 3.98 4.60 4.23 4.75 3.68 51.4 306.2 8.4
5.40 3.74 4.64 4.22 4.96 3.48 51.2 308.6 8.7
5.60 3.49 4.69 4.20 5.17 3.29 51.0 311.2 9.0
5.80 3.22 4.76 4.17 5.39 3.10 50.6 313.9 9.4
6.00 2.92 4.85 4.13 5.63 2.90 50.2 316.8 9.7
6.20 2.59 4.99 4.08 5.88 2.70 49.6 320.2 10.1
6.40 2.18 5.19 4.00 6.16 2.50 48.7 324.2 10.6
6.60 1.50 5.67 3.81 6.56 2.30 46.6 331.4 11.3

Table B.2: Kinematics for the N2-E1 space-star detector pair in the region where data were
taken. This table was produced using the experimentally measured central detector angles
θn = 51.7◦, φn = 59.7◦, θp = 51.3◦, φn = 180◦. Kinematic parameters pertaining the the
undetected neutron are labeled with the subscript, u.
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N3-E2 Coplanar Star Kinematics

Laboratory Relative Undet. Neutron S
Energy (MeV) Energy (MeV) Lab Angle (◦) (MeV)

Ep En Eu Epn Epu Enu θu φu S

2.00 11.75 0.02 5.22 1.21 6.23 30.4 180.0 3.0
2.20 11.53 0.04 5.14 1.41 6.10 44.7 180.0 3.3
2.40 11.31 0.06 5.07 1.62 5.96 53.3 180.0 3.6
2.60 11.08 0.09 5.00 1.84 5.82 59.2 180.0 3.9
2.80 10.85 0.13 4.94 2.06 5.67 63.6 180.0 4.2
3.00 10.60 0.17 4.87 2.28 5.51 67.0 180.0 4.5
3.20 10.36 0.22 4.81 2.50 5.35 69.9 180.0 4.9
3.40 10.11 0.27 4.75 2.73 5.18 72.4 180.0 5.2
3.60 9.85 0.32 4.69 2.96 5.01 74.6 180.0 5.5
3.80 9.59 0.38 4.63 3.19 4.84 76.6 180.0 5.8
4.00 9.33 0.45 4.58 3.42 4.66 78.5 180.0 6.2
4.20 9.06 0.51 4.52 3.65 4.49 80.3 180.0 6.5
4.40 8.79 0.59 4.47 3.89 4.30 82.0 180.0 6.8
4.60 8.51 0.66 4.41 4.13 4.12 83.6 180.0 7.2
4.80 8.23 0.75 4.36 4.36 3.93 85.2 180.0 7.5
5.00 7.94 0.84 4.31 4.60 3.74 86.8 180.0 7.9
5.20 7.65 0.93 4.27 4.84 3.55 88.3 180.0 8.2
5.40 7.34 1.03 4.22 5.08 3.36 89.8 180.0 8.6
5.60 7.04 1.14 4.17 5.33 3.16 88.6 180.0 9.0
5.80 6.72 1.25 4.13 5.57 2.96 87.1 180.0 9.3
6.00 6.40 1.38 4.08 5.81 2.76 85.5 180.0 9.7
6.20 6.07 1.51 4.04 6.06 2.56 83.9 180.0 10.1
6.40 5.72 1.66 3.99 6.31 2.36 82.2 180.0 10.5
6.60 5.36 1.82 3.95 6.56 2.16 80.4 180.0 10.9
6.80 4.98 2.00 3.90 6.81 1.95 78.6 180.0 11.4
7.00 4.57 2.20 3.85 7.06 1.74 76.5 180.0 11.8
7.20 4.13 2.45 3.80 7.32 1.54 74.3 180.0 12.3
7.40 3.62 2.75 3.74 7.59 1.33 71.6 180.0 12.8
7.60 2.98 3.19 3.66 7.88 1.12 68.0 180.0 13.5
7.40 0.96 5.42 3.27 8.06 1.33 52.9 180.0 15.5

Table B.3: Kinematics for the N3-E2 coplanar star detector pair in the region where data
were taken. This table was produced using the experimentally measured central detector
angles θn = 17.7◦, φn = 180◦, θp = 52.3◦, φn = 0◦. Kinematic parameters pertaining the the
undetected neutron are labeled with the subscript, u.
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N4-E1 Coplanar Star Kinematics

Laboratory Relative Undet. Neutron S
Energy (MeV) Energy (MeV) Lab Angle (◦) (MeV)

Ep En Eu Epn Epu Enu θu φu S

2.00 11.76 0.02 5.22 1.13 6.31 1.8 0.0 3.0
2.20 11.55 0.03 5.15 1.33 6.18 24.9 0.0 3.3
2.40 11.33 0.04 5.08 1.53 6.05 39.5 0.0 3.6
2.60 11.11 0.06 5.02 1.74 5.90 48.9 0.0 3.9
2.80 10.88 0.09 4.95 1.95 5.76 55.4 0.0 4.2
3.00 10.65 0.12 4.89 2.16 5.60 60.3 0.0 4.5
3.20 10.41 0.16 4.83 2.38 5.45 64.2 0.0 4.8
3.40 10.17 0.20 4.77 2.60 5.28 67.4 0.0 5.2
3.60 9.92 0.25 4.72 2.82 5.12 70.1 0.0 5.5
3.80 9.67 0.30 4.66 3.05 4.95 72.6 0.0 5.8
4.00 9.42 0.36 4.61 3.28 4.77 74.8 0.0 6.1
4.20 9.16 0.42 4.56 3.50 4.60 76.8 0.0 6.4
4.40 8.89 0.48 4.51 3.73 4.42 78.7 0.0 6.8
4.60 8.62 0.55 4.46 3.97 4.24 80.5 0.0 7.1
4.80 8.35 0.63 4.41 4.20 4.05 82.2 0.0 7.5
5.00 8.07 0.70 4.36 4.43 3.86 83.9 0.0 7.8
5.20 7.79 0.79 4.32 4.67 3.68 85.6 0.0 8.1
5.40 7.50 0.88 4.27 4.90 3.48 87.2 0.0 8.5
5.60 7.20 0.97 4.23 5.14 3.29 88.8 0.0 8.9
5.80 6.90 1.08 4.19 5.38 3.10 89.6 0.0 9.2
6.00 6.59 1.19 4.14 5.62 2.90 88.0 0.0 9.6
6.20 6.27 1.31 4.10 5.86 2.70 86.4 0.0 10.0
6.40 5.94 1.44 4.06 6.10 2.50 84.7 0.0 10.3
6.60 5.60 1.58 4.02 6.34 2.30 83.0 0.0 10.7
6.80 5.24 1.73 3.98 6.59 2.09 81.2 0.0 11.2
7.00 4.86 1.91 3.94 6.83 1.89 79.3 0.0 11.6
7.20 4.46 2.11 3.89 7.08 1.68 77.2 0.0 12.0
7.40 4.02 2.35 3.85 7.34 1.48 74.9 0.0 12.5
7.60 3.52 2.65 3.79 7.60 1.27 72.2 0.0 13.0
7.80 2.88 3.10 3.72 7.88 1.06 68.4 0.0 13.7
7.60 0.94 5.23 3.36 8.04 1.27 53.6 0.0 15.7

Table B.4: Kinematics for the N4-E1 coplanar star detector pair in the region where data
were taken. This table was produced using the experimentally measured central detector
angles θn = 18.7◦, φn = 0◦, θp = 51.3◦, φn = 180◦. Kinematic parameters pertaining the the
undetected neutron are labeled with the subscript, u.
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C Neutron Detector Efficiencies

The efficiencies of the neutron detectors used in this experiment were calibrated previously

at TUNL using neutrons produced by the spontaneous fission of 252Cf as the 2H(d, n)3He

reaction [Gon98, Sal98]. These detectors were four out of a stock of at least twelve essentially

identical liquid scintillator detectors produced by the Bicron Corporation and held at TUNL.

One of the detectors from this stock was calibrated at the Physikalisch-Technische Bunde-

sanstalt (PTB) in Braunschweig, Germany [Gon98]. The PTB group then modeled the char-

acteristics of this detector using the Monte-Carlo simulations, NRESP7 and NEFF7 [Die82].

This code reproduced the measured efficiency of this detector within 1% statistical fluctu-

ations. The efficiency simulations for this detector using various Cs-biases are shown in

Figure C.1. The remaining detectors which were calibrated at TUNL required a normaliza-

tion factor to bring them in line with the PTB simulation. These normalization factors were

independent of the Cs-bias used. Table C.1 gives these normalization factors for the detectors

used in the current experiment. A 1
2Cs-bias was applied to all detectors. Table C.2 gives the

simulated neutron detector efficiencies as a function of neutron energy for a 1
2Cs-bias. Please

note that no normalization factor has been applied to the values in this table.

Detector Number PTB Normalization

N1 12 0.975
N2 8 0.975
N3 11 0.975
N4 7 0.950

Table C.1: Normalization factors applied to the PTB simulated neutron detector efficiencies
for the detectors used. The Bicron neutron detectors used at TUNL have numbers associated
with them to keep track of which were used for what purposes. This is the meaning of the
second column.
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Figure C.1: Comparison of neutron detector efficiencies simulated using the PTB Monte-Carlo
code, NEFF7 [Die82], for different pulse-height thresholds.
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Neutron Detector Neutron Detector Neutron Detector
Energy Efficiency Energy Efficiency Energy Efficiency

0.90 0.0000 3.90 0.3166 7.00 0.2503
1.00 0.0000 4.00 0.3168 7.20 0.2493
1.10 0.0019 4.10 0.3153 7.40 0.2481
1.20 0.0156 4.20 0.3147 7.60 0.2442
1.30 0.0503 4.30 0.3131 7.80 0.2408
1.40 0.0964 4.40 0.3065 8.00 0.2362
1.50 0.1376 4.50 0.3069 8.20 0.2369
1.60 0.1822 4.60 0.3055 8.40 0.2278
1.70 0.2157 4.70 0.2986 8.60 0.2276
1.80 0.2469 4.80 0.2982 8.80 0.2221
1.90 0.2690 4.90 0.2980 9.00 0.2202
2.00 0.2818 5.00 0.2935 9.20 0.2150
2.10 0.2935 5.10 0.2915 9.40 0.2131
2.20 0.3055 5.20 0.2859 9.60 0.2124
2.30 0.3079 5.30 0.2837 9.80 0.2132
2.40 0.3130 5.40 0.2806 10.00 0.2134
2.50 0.3163 5.50 0.2804 10.20 0.2122
2.60 0.3222 5.60 0.2774 10.40 0.2082
2.70 0.3205 5.70 0.2728 10.60 0.2084
2.80 0.3187 5.80 0.2701 10.80 0.2044
2.90 0.3235 5.90 0.2679 11.00 0.2011
3.00 0.3214 6.00 0.2669 11.20 0.1981
3.10 0.3188 6.10 0.2657 11.40 0.1964
3.20 0.3199 6.20 0.2649 11.60 0.1945
3.30 0.3157 6.30 0.2612 11.80 0.1977
3.40 0.3183 6.40 0.2597 12.00 0.1974
3.50 0.3184 6.50 0.2573 12.20 0.1984
3.60 0.3166 6.60 0.2587 12.40 0.1966
3.70 0.3182 6.70 0.2564 12.60 0.1967
3.80 0.3131 6.80 0.2540 12.80 0.1952

Table C.2: Simulated neutron detector efficiency calculated using the PTB Monte-Carlo Code
for a pulse height threshold of 1

2xCs.
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D Scattering Length

The scattering length, a is a parameter which is used to describe extremely low energy

scattering from a short range potential. At these low energies, the wavelength of the particle

will be much larger than the range of the potential; thus any structure in this potential

will not be resolved and the scattered wavefunction may be well approximated a spherically

symmetric outgoing wave (l = 0). In the limit of zero-energy scattering, outside the range of

the potential, R, the Schrödinger equation satisfies:

d2u

dr2
= 0. (D.1)

The solution to this equation is a simple straight line:

u(r) = c(r − a), (D.2)

where c is a constant and the scattering length, a, is defined as the radial intercept of this

line. This intercept is governed by the magnitude and slope of the wavefunction just inside

the range of the potential. The possible inner wavefunctions may be grouped into three

general classes, as shown in Figure D.1. The first is a repulsive potential where the slope

of the outside wavefunction must be positive and the value of the scattering length may

take values between 0 and R as the strength of the potential is increased. The second case

is an attractive potential. Here the slope of the outside wavefunction will still be positive,

however the intercept will take negative values. As the strength of the attractive potential

is increased, eventually a bound state will form. This is the third case where the slope of

the outside wavefunction becomes negative and a must take positive values larger than R (a

larger a means a more weakly bound state). The scattering length is related to the S0 phase

shift, δ0, as follows:

lim
k→0

k cot δ0 = −
1

a
, (D.3)

and to the total cross section as k → 0 by:

σ = 4πa2 (D.4)
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Figure D.1: Illustation of the scattering length, a. These graphs show the radial wavefunction,
u(r) for a particle under the influence of a square well potential of range R in the limit of
zero-energy scattering. The three graphs show the results for (a) a repulsive potential, (b) an
attractive potential, and (c) a strong attractive potential. The scattering length is the radial
intercept of the line tangent to the wavefunction at the range of the potential [Sak94].
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E Neutron Beam Characterization

The neutron beam used in this project was characterized by a series of experiments.

The energy and spatial distributions of neutrons were measured and used in data analysis.

Energy distributions were measured for nominal beam energies of 16.0 and 19.0 MeV. The

higher energy was used in the analysis of a parallel nd-breakup measurement. The deuteron

beam energy at the center of the gas cell was 13.15 MeV to produce 16.0 MeV neutrons

and 16.33 MeV for 19.0 MeV neutrons. The reaction, 2H(d,n)3He (Q=+3.3 MeV), was used

to produce the “prompt” neutrons. The beam also contained low energy background neu-

trons from the reactions, 2H(d,n)dp (Q=-2.2 MeV) and 2H(d,n)ppn (Q=-4.4 MeV), as well

as deuteron breakup on the gold beam stop. There is an additional source of neutrons which

populate the valley between the low energy breakups and the higher energy prompt peak

arising from 2H(d,n)3He on deuterons implanted in the beam stop. All neutrons in the beam

with energies less than 15.66 MeV are referred to as “source breakup” neutron in this thesis.

To determine the energy distribution of the neutron beam, an organic liquid scintillator

with a cylindrical volume (5.08 cm diameter, 5.08 cm depth) was placed in the neutron beam

at a center-to-center distance of 375.7 cm from the neutron production cell. The deuteron

beam was “chopped and bunched” [How84] at a rate of 78.125 kHz into packets with a width

of ≈3 ns. The pulsed beam allowed ToF measurement of the neutron energies using a time-

to-amplitude (TAC) converter with the neutron detector pulse as its “start” and the signal

from a capacitive pickoff unit located just before the gas cell as its “stop.” The γ-peak in the

ToF spectrum was used as a known reference time. However a small delay had to be added to

the γ-ray ToF since most γ-rays were produced in the gold beam stop, but the neutrons were

produced on average in the middle of the gas column. The delay was calculated as the time

required for a deuteron to traverse the second half of the gas cell. The deuteron energy three-

fourths of the way through the cell was used in this calculation as shown in Equation E.2.

Thus the following formula was used to determine the neutron ToF:

tn = tγ + tdelay + (Chγ − Chn) ∗
(

0.1726
ns

ch

)

, (E.1)

where,

tdelay = (3.57 cm) ·

√

md

2Ed
(E.2)

with md and Ed expressed in units of Mev/c2 and MeV, respectively, and c=30 cm/ns. Data

were first taken with 7.76 atm of D2 in the gas cell, just as in the main experiment. The gas

cell was then flushed and filled with 7.76 atm of 4He. Data was taken with 0.22 atm of 4He
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in the gas cell as well. The results of these three types of runs are shown in Figure E.1. The

runs with 4He were used to determine which parts of the neutron energy spectrum arose from

interactions in the gold beamstop and which were from 2H(d,n) reactions. However, there

are additional neutron producing reactions in the 4He gas which influence these spectra. The

reaction, 4He(d,n)5Li (Q=-4.187), produces the large low-energy peak seen in the 7.76 atm

spectrum. The reaction, 4He(d,p)5He, followed by the decay, 5He → n + α, produces the

slight enhancement seen at ≈5 MeV below the prompt peaks in Figure E.1.

The width of the prompt neutron peaks determined by the ToF measurements is not rep-

resentative of the actual beam energy distribution. Instead this width is determined by the

≈3 ns width of the pulsed deuteron beam packets. A better estimation of the width of this

peak may be obtained by calculating the deuteron beam energy loss as it passes through the

deuterium gas column in the gas cell. This method provides a width of 0.34(0.28) MeV for the

prompt 16.0(19.0) MeV neutron peak. The measured prompt neutron peak was integrated

beginning at 12.0 MeV using the 7.76 atm 4He spectum as background. These counts were

then placed in a rectangular distribution with a width defined by the beam energy loss in the

neutron production cell as shown in Figure E.2.

To determine the spatial distribution of the neutron beam, a thin rectangular plastic

scintillator (3×25 mm facing the beam) was attached to a translation stage which scanned it

across the beam in 3 mm steps. Horizontal and vertical scans were taken before and after the

chamber separated by 83.2 cm along the beam axis. The detector anode signal was fed into a

constant-fraction discriminator (CFD) with a threshold set just above the γ-ray background

emanating from the gas cell. The CFD signal as well as the beam-current integration (BCI)

were fed into a scalar counter module set to count for 20 s at each location in the scan.

The counts per unit BCI were then calculated for each scan position. The results of these

measurements are shown in Figure E.3. Analysis of these results show the beam to be tilted

1.1◦ beam-right and 0.35◦ up relative to the zero degree axis of the experimental setup.
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Figure E.1: Measured neutron beam spectra. The graph on the left(right) shows the
16.0(19.0) MeV results. The black histograms correspond to the gas cell filled with deuterium.
The red and blue histograms are the results from the 7.76 and 0.22 atm 4He measurements,
respectively. The spectra have been weighted by BCI and neutron detector efficiency.
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Figure E.2: Neutron beam energy distribution with the width of the prompt peak estimated
by deuteron energy loss in the gas cell (black) compared with the measured results (red)
where the width is determined by the pulsed deuteron beam packet length. The graph on the
left(right) shows the 16.0(19.0) MeV results.
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Figure E.3: Neutron Beam Spatial Distribution. The graph on the left(right) describes the
horizontal(vertical) distribution. The solid lines are the distributions just after the collimator;
and the dashed lines are just after the chamber. The offsets in the graphs are with respect to
vertical and horizontal planes which contain the target center where positive offsets correspond
to up and beam-right.
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F Survey of the Experimental Setup

Upon disassembling the experimental setup, the positions of the target and detectors were

surveyed. This section will outline the techniques used in and results of this survey. The tar-

get chamber and detectors were all mounted above a horizontal table which was marked with

a zero degree axis. This axis supposedly denoted the beam direction, however it was found

that the beam actually propagated 1.1◦ to the right of this axis.

The height of the target above the table was found to be 44.6±0.2 cm above the ta-

ble. This distance was obtained by simply measuring the height of the target rod which was

mounted horizontally as well as could be measured. Before the target chamber was removed,

a plumb bob was suspended directly above the center of the target. Once the target chamber

was removed the plumb bob was lowered from its fixed suspension point to the level of the

table. It lined up with the zero degree line marked on the table (±0.1 cm). The position of

the target along this line was marked on the table.

The distances between the neutron detectors and the target were determined slightly

differently for the CST and SST detectors. The out-of-plane SST detectors had a direct line-

of-sight to the target when the chamber dome was removed. A string was taped to the center

of the detector face and the distance to the target was marked on the string. The length

along the string was then determined with a tape measure. The thin tantalum exit window

impeded the line-of-sight for the CST neutron detectors. The delicate nature of this window

and the difficulty in obtaining a leak tight seal required it to remain in place. Two rulers

were taped vertically to the target position and the center of the detector face. The hori-

zontal distance between these rulers was then determined using a tape measure. All neutron

detector distance measurements were repeated three times and agreed to better than ±2 mm.

The distances between the target and the ∆E detectors were measured directly with a ruler

and found to be 8.0±0.2 cm. The distance between the ∆E and E detectors was measured

by inserting a rod down the charged particle arm until it touched the face of the thick plastic

scintillator and marking the location of the ∆E detector. The rod was then measured using

a tape measure. Both E-∆E pairs were separated by 61.0±0.02 cm.

The height of the detectors above the table were determined using a tape measure. All

measurements are with respect to the center of the detector faces. The E detectors were at the

same height as the target, 44.6±0.2 cm. The CST neutron detectors were just slightly lower

at 44.5±0.2 cm. The out-of-plane SST detectors were slightly different from one another at

heights of 92.4±0.2 cm and 92.1±0.2 cm for the N1 and N2 detectors, respectively.
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Detector angles were found by hanging plumb bobs from the center of the detector faces.

The projection of the central detector position onto the plane of the table was then marked.

A t-square was then used to project this position onto the nominal 0◦-axis marked on the

table. This formed a right-triangle with vertices at the target position, the detector position,

and the projection of the detector position onto the 0◦-axis. The lengths of the three sides

of this triangle measured and used to determine the scattering angle in the horizontal plane.

The angle was found using the sine, cosine, and tangent, and the three results were averaged.

This was sufficient to determine the scattering angle for the detectors located in the horizontal

scattering plane; E1, E2, N3, and N4. The out-of-plane detectors, N1 and N2, required one

additional parameter, their height above the horizontal scattering plane, to determine their

scattering angle trigonometrically.
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