
Animation, Simulation, and Control of Soft

Characters using Layered Representations and

Simplified Physics-based Methods

Nico Galoppo

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2008

Approved by:

Ming C. Lin, Advisor

Miguel A. Otaduy, Reader

Dinesh Manocha, Reader

Markus Gross, Committee Member

Anselmo Lastra, Committee Member

c© 2008

Nico Galoppo

ALL RIGHTS RESERVED

ii

Abstract
Nico Galoppo: Animation, Simulation, and Control of Soft Characters
using Layered Representations and Simplified Physics-based Methods.

(Under the direction of Ming C. Lin.)

Realistic behavior of computer generated characters is key to bringing virtual environ-

ments, computer games, and other interactive applications to life. The plausibility of a

virtual scene is strongly influenced by the way objects move around and interact with

each other. Traditionally, actions are limited to motion capture driven or pre-scripted

motion of the characters. Physics enhance the sense of realism: physical simulation

is required to make objects act as expected in real life. To make gaming and virtual

environments truly immersive, it is crucial to simulate the response of characters to

collisions and to produce secondary effects such as skin wrinkling and muscle bulging.

Unfortunately, existing techniques cannot generally achieve these effects in real time, do

not address the coupled response of a character’s skeleton and skin to collisions nor do

they support artistic control.

In this dissertation, I present interactive algorithms that enable physical simulation

of deformable characters with high surface detail and support for intuitive deformation

control. I propose a novel unified framework for real-time modeling of soft objects

with skeletal deformations and surface deformation due to contact, and their interplay

for object surfaces with up to tens of thousands of degrees of freedom. I make use of

layered models to reduce computational complexity. I introduce dynamic deformation

textures, which map three dimensional deformations in the deformable skin layer to a two

dimensional domain for extremely efficient parallel computation of the dynamic elasticity

equations and optimized hierarchical collision detection. I also enhance layered models

with responsive contact handling, to support the interplay between skeletal motion and

surface contact and the resulting two-way coupling effects. Finally, I present dynamic

iii

morph targets, which enable intuitive control of dynamic skin deformations at run-

time by simply sculpting pose-specific surface shapes. The resulting framework enables

real-time and directable simulation of soft articulated characters with frictional contact

response, capturing the interplay between skeletal dynamics and complex, non-linear

skin deformations.

iv

Acknowledgments

If someone would have told me six years ago that living in North Carolina was going

to make a significant change in my life, I would have frowned at first, then I would have

needed someone to point out the state on a map, and finally I would have declared that

person crazy. But truth be told, the department of Computer Science at the University

of North Carolina in Chapel Hill has been a wonderful place to work. Sitterson Hall

is filled with friendly and always helpful faculty, staff and fellow students. There are

too many too mention, really; but I am thankful for the supportive and stimulative

environment that each and every one of them has provided.

I’d like to thank my advisor, Ming Lin for her guidance and for promoting my work

at every possible occasion. It really is Ming’s accomplishment that so many people know

about my research. I am also grateful to to my committee members Miguel Otaduy,

Markus Gross, Dinesh Manocha and Anselmo Lastra for their continuing support, tech-

nical guidance, and two incredible summers of research in Zürich. The work in this

dissertation was published in various papers that would not have been possible without

the help of my collaborators Sean Curtis, Paul Mecklenburg, Will Moss, Jason Sewall

and Serhat Tekin.

While my work at UNC has always been very stimulating, my life in Carrboro and

Chapel Hill really could not have been as entertaining and unforgettable without my

friends. I have made friends for life here, more than anywhere else in the world. Henry,

Luca, Mary and Paul; I can’t imagine any better room mates than you! Brian and Lisa,

how can I forget the many evenings together in the kitchen and the countless nights at

the table; eating, chatting and laughing our worries and annoyances away. Jason and

Sarah, you’ve always made sure to get me out of the office in time. Out and about, in

v

town or out of town: it did not matter, because it is the time with great friends that

has made these events always memorable. Miguel, even though you weren’t in North

Carolina, I always had the feeling that you were. I will always cherish the moments we

had in Switzerland; be it while drinking, chatting, partying in the streets of Zürich, or

hiking through the Swiss Alps! Jur, Lara, Kat, Chris, Marc, Luv, Monika, Simona, and

all the people in the lab in Zürich: you are the best friends anyone can imagine.

I would not be who I am now and I would not be where I am now, without the

influence of my parents. You have always given me love and support, unconditionally,

and no matter how far apart we are. The feeling that I can always depend on you is

what brought me this far. Erika en Karolien, my two little sisters, I miss being closer to

you. You have probably been the biggest influence on my personality, and I’ve always

been able to confide in you!

Finally, to the most important person in my life, thank you, Allison, for all the

wonderful things that we have shared so far, and all that is ahead!

vi

Table of Contents

List of Tables . xii

List of Figures . xiii

List of Abbreviations . xx

1 Introduction . 1

1.1 Deformable Simulation in Computer Graphics 2

1.1.1 Terminology: What is Deformable Simulation? 3

1.1.2 Applications . 8

1.1.3 Challenges . 12

1.2 Thesis . 15

1.3 Main Results . 16

1.3.1 Layered Models for Soft-body Simulation 17

1.3.2 Pose-space Skin Dynamics . 18

1.3.3 Parallelization and Physically-based Simplification 19

1.3.4 Two-stage Hierarchical Collision Queries 22

1.3.5 Fast Contact Response for Soft Articulated Characters 23

1.3.6 Control of Deformations with Dynamic Morph Targets 24

1.4 Organization . 26

2 Related Work . 27

2.1 Simulation of Deformable Bodies . 27

2.1.1 Continuum Elasticity . 27

vii

2.1.2 Finite Element Method . 29

2.1.3 Reduced Models . 33

2.1.4 Surface Oriented Methods . 35

2.1.5 Layered Deformable Models . 36

2.1.6 Regular Grids and Texture-based Approaches 37

2.2 Character Animation and Simulation . 38

2.2.1 Procedural Methods . 38

2.2.2 Example-based Methods . 40

2.2.3 Physically-based Methods . 41

2.3 Contact Handling . 42

2.3.1 Collision Detection . 42

2.3.2 Contact Response . 45

2.4 Control of Deformations . 47

2.4.1 Data-driven methods . 47

2.4.2 Kinematic methods . 47

2.4.3 Combined methods . 48

2.4.4 Physically-based methods . 48

3 Soft Body Simulation with Dynamic Deformation Textures 51

3.1 Dynamic Deformation Textures . 52

3.1.1 Parameterization of Layered Deformable Objects 53

3.1.2 Discretization and Generalized Coordinates 54

3.2 Layered Dynamic Deformations . 56

3.2.1 Equations of Motion . 56

3.2.2 Efficient Decoupled Implicit Integration 58

3.3 Texture-Based Collision Detection . 59

viii

3.4 Contact Resolution . 62

3.4.1 Efficient Decoupled Contact Resolution 63

3.5 Algorithm and Parallel Implementation 65

3.5.1 Dynamic Deformation Textures 67

3.5.2 Basic Rendering Blocks . 69

3.5.3 Simulation of Surface Deformations 71

3.5.4 Texture-Based Collision Detection 74

3.5.5 Rendering . 77

3.6 Benchmarks . 78

3.7 Comparisons and Discussion . 81

3.8 Advantages and Summary . 83

3.9 Limitations and Future Work . 84

4 Articulated Soft Character Simulation with Fast Contact Handling 85

4.1 Layered Articulated Soft Characters . 87

4.1.1 Pose-Space Deformation . 87

4.1.2 Discretization and Meshing . 88

4.2 Layered Dynamics with Contact Constraints 90

4.2.1 Coupled Layered Dynamics in Free Motion 91

4.2.2 Joint Constraints . 93

4.2.3 Contact Constraints . 94

4.3 Condensed Solution of Constraints . 96

4.3.1 Condensed Skeleton Dynamics . 97

4.3.2 Solving Collision-Free Velocities 98

4.3.3 Hierarchical Pruning and Collision Queries 99

4.3.4 Condensed Contact Constraints 101

ix

4.3.5 Solving Collision Response . 102

4.3.6 Run-time Algorithm . 103

4.4 Results and Discussion . 103

4.4.1 Benchmarks . 103

4.4.2 Comparisons and Limitations . 106

4.5 Advantages and Summary . 108

4.6 Limitations and Future Work . 109

5 Deformation Control with Dynamic Morph Targets 111

5.1 Method . 112

5.1.1 Dynamic Morph Targets . 112

5.1.2 Pose-dependent Elastic Model . 114

5.1.3 Interpolating Force Polynomials in Pose Space 117

5.1.4 Reduced Equations of Motion . 119

5.2 Model Construction and Kinematic Constraints 121

5.3 Reduced Modal Subspace Construction 122

5.4 Results . 125

5.5 Advantages and Summary . 131

5.6 Limitations and Future Work . 132

6 Conclusion . 135

6.1 Summary of Results . 135

6.2 Future Work . 138

6.2.1 Limitations . 138

6.2.2 Relaxing Design Assumptions . 140

6.2.3 Beyond Current Applications . 142

6.3 Conclusion . 144

x

A Kinematic Relationships . 145

A.1 Non-articulated (Single-Core) Objects . 145

A.2 Articulated Characters . 146

B Lagrangian Motion Equations with Finite Element Method 148

B.1 Lagrangian Formulation . 148

B.2 Elastic Energy . 148

B.3 Motion Equations . 149

B.4 External Forces . 150

B.5 Mass Matrix . 151

B.5.1 Quadratic Velocity Vector . 151

C Joint Compliance for Hinge Joint . 152

D Transformation of Multivariate Cubic Polynomials 154

E Code Snippets . 156

Bibliography . 165

xi

List of Tables

3.1 Models and Statistics. 79

3.2 Approximate Performance Data Benchmark. Extrapolated perfor-
mance data from [BNC96], [ZC99], [PPG04], [MG04] shown with mine,
D2T. 81

4.1 Benchmark Statistics. The soft characters for the benchmarks are a
deer model with three different skin resolutions, a snake model, and tubes
with different numbers of bones. All timings (in msec.) are averages over
the course of a simulation. The last two columns indicate the average
time per frame in (1) non-colliding and (2) colliding situations. 104

5.1 Model Statistics and Performance. 130

xii

List of Figures

1.1 Comparison of linear blend skinning to our approach. Left: The
fish touches the body of the snake, creating global response and skin
deformations. Right: We turn off local skin deformations to show the
importance of handling both global and surface response. Notice the
highlighted interpenetrations, clearly visible through the fish’s mouth. . . 5

1.2 Animation and Simulation systems. On the left, the diagram illus-
trates a traditional character animation system. The deformation engine
maps skeletal controls (such as joint angles) and abstract controls (such
as smile) to the output shape. Animation is achieved by varying the con-
trols over time. The diagram on the right illustrates the work of [Cap04].
Instead of a geometric deformation engine, the system is based on a dy-
namic elastic simulation. This introduces an explicit time dependence, so
the final shape is guided by the input controls, but also varies over time
according to the laws of elastic dynamics. 6

1.3 Snapshots of deformable dynamics in current game engines,
compared to methods from this thesis. From left to right, de-
formable tires with my dynamic deformation textures method (2006, Chap-
ter 3), deformable tires in the PhysX engine (2007), deformable torii with
the open-source Bullet engine (2008). 8

1.4 Snapshots from Pixar’s Ratatouille. Dough rolling effect (top),
requiring shape control in combination with physical deformation simu-
lation. Several stages of the egg during the cracking (bottom). The tech-
niques in Chapter 5 can be used to achieve deformation control. c©Disney
/ Pixar. All rights reserved. 10

1.5 The Co-Me Project. The technologies in this thesis have been bene-
ficial to the development of interactive methods for generalized surgery
simulation and training. 11

1.6 Deformation Detail. The Shape Matching algorithm [MHTG05], here
illustrated on Fig. (a), can simulate hundreds of deformable elements
in real time, but many more are required to show detail such as skin
indentations simulated with my framework. The face model in Figure (b)
has 40, 000 deformable surface vertices. 13

xiii

1.7 Responsive Contact Handling. The figure shows what can go wrong
when contact handling is not responsive for the entire model. On the
left, the outer surface layer, drawn with white dots, is prevented from
violating the ground plane constraint, but the object as a whole, with
the blue inner core layer is not. The figure on the right shows the correct
behavior, simulated with my system. 14

1.8 Dynamic Morph Targets Pipeline. To support artistic deformation
control, I propose dynamic morph targets (Chapter 5) to complement the
traditional animation and simulation pipelines. Dynamic morph targets
are created from artist-provided examples (pairs of example shapes and
associated skeletal poses) and enhance the runtime dynamic simulation. . 16

1.9 Simulation of Heterogeneous Materials and Examples of De-
tailed Deformations. 18

1.10 Interactive Deformation of an Articulated Deer. The deer, con-
sisting of 34 bones and 2 755 deformable surface vertices is being deformed
interactively (almost 10 fps on average) by a rigid bird model. The inter-
play between small-scale contact deformations and the skeletal contact
response is successfully captured. 19

1.11 Layered Representation and Collision Detection. From left to
right: Contact between the bird and the deer, with skin deformations on
the back of the deer; Proxies used for hierarchical pruning of collision
queries, with potentially colliding proxies of the deer highlighted in red;
Triangles influenced by the potentially colliding bones (in red) are the
only ones passed to the image-based collision detection algorithm; The
resulting detail around the contact area. 21

1.12 Deformations of a Virtual Head. Left: A fist hits a deformable head
(attached by springs in the neck area), producing both local deformations
and global motion. Right: Detail of the deformations produced near the
eyebrow by the impact. 23

1.13 Skeletal Deformations of a Soft Snake. Simulation sequence with
a fish touching the snake, showing the global deformation of the snake.
The last image shows the proxies for collision detection. 23

2.1 Continuous Displacement Field. Deformation of an object in rest
shape causes a material point originally at m to be transformed to a new
position x(m) through the continuous displacement field u(m). 28

xiv

2.2 Stiffness Warping. Linearized elastic forces are only valid for small
deformations (left). To solve these artifacts, Müller introduces stiffness
warping [MDM+02] (right). 32

2.3 Local linearization. Capell et al. [CGC+02a] associate each region of
the finite element mesh with the bone of a simple skeleton and then locally
linearize the elastic forces in the frame of that bone. 33

2.4 Multi-resolution methods. Debunne et al.partition the object in a
non-nested multi-resolution hierarchy of tetrahedral meshes [DDCB01]. . 34

2.5 Modal Reduction. Reduced coordinate methods based on modal anal-
ysis deformations have a low computational cost by describing global de-
formations as the combination of a few DoFs. In this figure, the principal
modes of deformation of a deformable shell are shown [HSO03]. 35

2.6 Surface oriented methods. Boundary Element Methods [JP99] have
been proposed for obtaining elasto-static formulations that reduce the
computations to surface nodes. 36

2.7 Image-based techniques. The technique illustrated here by Sumner et
al. [SOH99] animates surface deformations induced by contact, but does
not handle global motion effects. 37

2.8 DyRT. The technique by James and Pai [JP02], animates deformations
excited by global deformation modes using Dynamic Response Textures. . 38

2.9 Skinning Problems. Linear blend skinning has problems deforming
skin near joints due to collapsing geometry (i.e. pinching). Dual quater-
nions have been proposed to address this problem [KCŽC07]. 39

2.10 Constraint-based Contact Handling. Using only a small subset of
the contact points in a constraint-based method accelerates contact han-
dling, but limits the resolution of deformations and produces smoothened
deformations (see Fig. 2.10). 46

2.11 Physically Based Rigging. Capell et al. [CBC+05] use force field tem-
plates to control facial expressions. Here, two torus templates produce
dilation and contraction of the nostrils. 48

2.12 Directable Animation of Deformable Objects. Kondo et al. [KKA05]
retarget elastic deformations with shape keyframes (above), which are
used to compute the control result (below). Unfortunately, this technique
is restricted to a given input animation. 49

xv

3.1 Deformable Object Representation. Deformable surface S (52K tri-
angles) and core C (252 triangles) of a gear, showing the patch partition-
ing of its parameterization. The common color coding reflects the map-
ping g ◦ f−1 : C → S. The dynamic deformation texture T (256 × 256)
stores the displacement field values on the surface. On the right, 2D
schematic figure showing a slice of the tetrahedral meshing of the de-
formable layer. The gear contains 28K simulation nodes on the surface
and 161K tetrahedra, allowing the simulation of highly detailed deforma-
tions. 53

3.2 Simulation of Heterogeneous Materials. Efficient decoupled implicit
integration enables fast simulation of a heterogeneous cylinder. Notice the
large indentations and the resulting large contact area when the soft side
collides with the ridged plane. 57

3.3 Texture-Based Collision Detection Process. Center: A sphere S
collides with a textured terrain. Left: Contact plane D for texture-based
collision detection, and mapping φ : D → S. The contact plane shows the
penetration depth. Right: Dynamic deformation texture T , and mapping
g : T → S. The penetration depth is projected from D to T , and is
available for collision response. 60

3.4 GPU Algorithm Overview. 67

3.5 D2T Simulation Algorithm . 68

3.6 Dynamic deformation texture representation and implicit tesselation. . . 69

3.7 Rendering Blocks. 70

3.8 A texel in the D2T defines a simulation node. The figure shows its neigh-
borhood in the FEM mesh. Its 6 neighbors and itself give rise to 7 non-
zero blocks per block row in the stiffness matrix, as shown in Fig. 3.9. . . 72

3.9 Sparse matrix multiplies on the GPU using D2T representation. The ma-
trix A has 7 non-zero blocks per block row (left), which can be represented
by 21 RGB textures that use the D2T atlas mapping (right). 73

3.10 Schematic overview of the pipeline of my GPU-based collision detection
algorithm, composed out of 5 passes. 75

xvi

3.11 Left: The contact camera is set up with an orthogonal projection per-
pendicular to the contact plane D. Right: Multiple surface points may
map to the same location on D. When texels in the D2T are tagged as
colliding, a check is required which triangle (of the two red triangles) the
rasterized fragment belongs to, in order to avoid tagging the green surface
point as colliding. 76

3.12 Rendering pipeline. Note that the RenderMesh (RM) block utilizes the
vertex stream with normals generated as in Fig. 3.13. 77

3.13 Normal Generation block. A normals PBO is generated and then copied
to the normal vertex buffer. 78

3.14 Deformations of High-Resolution Geometry. Left: Two deformable
pumpkins are dropped on top of each other. Right: Detail view of the
rich deformations produced on the top pumpkin during contact. 79

3.15 Deformations of High-Resolution Geometry. A dropped cylinder
produces rich dynamic deformations on the ridges of a gear. 80

3.16 Deformable Objects Roll and Collide in the Playground. 80

3.17 Deformations of a Virtual Head. Top: A fist hits a deformable head
(attached by springs in the neck area), producing both local deformations
and global motion. Middle: Detail of the deformations produced near the
eyebrow by the impact. Bottom: A softer head is dropped on the floor,
resulting in larger deformations. 82

4.1 Interactive Deformation of an Articulated Deer. The deer, con-
sisting of 34 bones and 2 755 deformable surface vertices is being deformed
interactively (almost 10 fps on average) by a rigid bird model. The inter-
play between small-scale contact deformations and the skeletal contact re-
sponse is successfully captured (below). The interactivity of my approach
is demonstrated on the top left picture, where the bird is controlled in
real time by a 3-DoF haptic controller. 86

4.2 Pose space deformation. Elastic deformations us of the skin are de-
fined in bind-pose-space. 90

4.3 Layered Representation and Collision Detection. 100

4.4 Soft Articulated Characters Simulation Algorithm 103

xvii

4.5 Contact between Deformable Tubes with Moving Constraints.
The tubes consist of 3 links each and collide with each other in tangled
configurations. The described algorithm can handle such situations seam-
lessly with a combination of local deformations and bone motion at 20
fps. 104

4.6 Skeletal Deformations of a Soft Snake. 105

4.7 Contact Constraints. Left column: The fish touches the body of the
snake, creating global response and skin deformations. Right column: Lo-
cal skin deformations are turned off to show the importance of handling
both global and surface response. Notice the highlighted interpenetra-
tions, clearly visible through the fish’s mouth. 107

5.1 Concept of Dynamic Morph Targets: Simple cylinder geometry
mimicking an elbow joint with bulging skin, for which two morph targets
(out of a total of four) are given in (a). The skin of the bulged morph tar-
get was chosen to be stiffer to mimick muscle contraction. On the right,
we show runtime snapshots of simulations using our pose-dependent elas-
tic model, under influence of identical downward forces. (b) was gener-
ated with four soft morph targets, whereas (c) has increasingly stiffer
morph targets, to mimic muscle contraction. The dynamic skin behavior
is identical for the straight joint (a relaxed muscle), because the elastic
properties of the first morph target are identical for (b) and (c). But,
for the bent joint, the force clearly causes more skin deformation in (b).
This undesirable behavior can be fixed to mimic muscle contraction by
making the fourth morph target stiffer, as shown in in (c). This simple
example shows a dynamic bulging effect that can only be achieved with
dynamic morph targets. 114

5.2 When under influence of dynamic events such as jumping from a diving
board or bouncing off a wall, our method using morph targets produces
deformations consistent with Herbert’s morph targets defined in (a). The
fat morph target is associated with a crunched pose to mimic a bulging
belly (and only for that pose). As shown in (b), the simulation without
dynamic morph targets does not show bulging, whereas our method shown
in (c) does. 123

5.3 Construction of a morph target driven, mass-orthogonal reduc-
tion basis U: For each dynamic morph target i, during LMA the r
smallest eigenmodes are selected to construct eigenbases Ui. Mass-PCA
combines and compacts the Ui, retaining only k most significant modes.
Finally, I explicitly add morph target deformations x0

i to the eigenbasis
and guarantee mass-orthogonality of the final basis U. 126

xviii

5.4 Herbert jumps off on a diving board: Comparison of single (pose-
independent) linear elasticity (left column), my method with dynamic
morph targets (middle column), and my method with dynamic morph
targets and modal reduction applied (right column). When balled up,
Herbert’s back (top) and belly (bottom) bulge in correspondence with
his morph targets defined in Fig. 5.2. On the bottom left, Herbert’s belly
looks very flabby, as if he swallowed a brick. However, Herbert’s ‘fetal
pose’ morph target 3 was authored with a stiff belly. My method (bottom
right) shows the more desired behavior. 127

5.5 Herbert in flight: When under influence of kinematic events such as
flipping and discontinuous velocity changes such as when hitting a wall,
my method (right) still produces deformations consistent with Herbert’s
morph targets defined in Fig. 5.2. 128

5.6 Shoulder Rig Simulation . 133

5.7 Chest flex at runtime: On the left, a pose-independent force model
causes the chest to collapse as the arm of the character is lowered at
runtime. On the right, with my method, the chest correctly deforms
consistent with morph target 6 as shown in Fig. 5.6(a). 134

xix

List of Abbreviations

BVBounding volume

BVHBounding volume hierarchy

CGConjugate gradients method

D2TDynamic deformation texture

DMTDynamic morph target

DoFDegree of Freedom

FEMFinite element method

GJKGilbert-Johnson-Keerthi algorithm for collision detection

GPUGraphics processor unit

LCPLinear complementarity problem

LMALinear modal analysis

PBOPixel buffer object

PCAPrincipal component analysis

PCGPreconditioned conjugate gradients method

PPUPhysics processing unit

PSDPose-space deformation

RBFRadial basis function

SSD Skeletal-subspace deformation

StVK St. Venant-Kirchhoff

VBOVertex buffer object

WPSDWeighted pose-space deformation

xx

Chapter 1

Introduction

Believable animation of deformable, articulated characters is essential to realistic virtual

environments, computer games, and other interactive applications. The feeling of being

immersed in a virtual experience, such as a game or an animated feature film, is strongly

influenced by the way objects move, interact, and react to the environment around

them. Although often a tedious task, animators commonly prescribe these actions by

animating the bones of a character or by the process of rigging, to set up control of

abstract character traits in time. Smiling or frowning are good examples of such traits.

For interactive environments such as games, this approach is not sufficient because the

characters have to respond to user-generated or unexpected events in their environment.

Many current games resort to simple event-based approaches: most of the action is

limited to pre-scripted animations triggered by in-game events. As a result, every enemy

that is shot down falls in the same pre-recorded fashion; and very different weapons cause

the same damage on every wall. Players are left with a game that looks fine, but lacks

the sense of realism and variability necessary to make the experience truly immersive.

The addition of physical simulation to virtual scenes increases the sense of realism by

making virtual characters behave as expected in real life.

Over the last few years, game technology has evolved from supporting only a limited

number of rigid bodies to simulating a massive number of interacting rigid and articu-

lated objects in the scene. The feature animation industry has also turned to rigid body

simulation to remove some of the burden of hand-animating certain actions, from piling

food items to chopping vegetables [Sha07]. But, to make the virtual experience truly

immersive, it is important to simulate collisions of deformable objects and to generate

secondary skin effects. Physical simulation of deformable material allows for the auto-

matic synthesis of effects that are difficult to animate or script otherwise, such as the

sagging and vibration of tissue caused by gravity and locomotion, skin wrinkling and

muscle bulging. Ideally, the animator should be free from designing the motion that is

a direct result of physical laws, and concentrate only on the motion that expresses the

intent or emotional state of the characters [Cap04].

The scope of this thesis is real-time simulation of soft articulated characters with

secondary skin dynamics. I present a framework that supports coupled skeletal and skin

contact response, as well as direct shape and tissue behavior control.

1.1 Deformable Simulation in Computer Graphics

Animation of skin and muscular deformations of human characters and other living

creatures has long been one of the most important applications of deformable modeling

in computer graphics, notably in feature animation and more recently in increasingly

realistic computer games and interactive medical and training applications. Realistic

deformation is a complex and subtle phenomenon due to the tightly coupled interplay

of bones and musculature governing the deformations.

In order to clarify many of the recurring terms and concepts used throughout this

thesis, this section first presents useful terminology and situates my work in the field

of deformable simulation. Then, current as well as future applications of my thesis are

discussed. Finally, I present the challenges of the design and implementation in my

simulation framework.

2

1.1.1 Terminology: What is Deformable Simulation?

At the basis of this work lies the computer generation of motion and deformation of soft,

articulated characters. While human simulation is certainly one of the major application

areas of this work, I will use the term character in a broader sense, referring to any object

that undergoes events, motion or deformation in a scene. Examples of such objects can

be found across many application fields including molecular dynamics, where molecules

undergo docking; robotics and machine assembly, where assembled parts are fit together

with moving robotic arms; and computer graphics for video games and feature films,

where dynamic objects range from toys and props in a scene, to cartoon-like animals and

life-like human characters with realistically deforming skin. A character is said to be

articulated when it has a skeletal structure of bones connected by joints. Most robotic

parts and animal-like and human-like creatures with limbs fall into this category. The

skeletal motion of an articulated character is primarily governed by the joint constraints

which keep the bones together.

While many works have focused on kinematics, inverse kinematics, dynamic simula-

tion [Bar96] and control [WTF06] of articulated rigid bodies, this work concentrates on

soft bodies. The term soft usually refers to the fact that the outer surface of an object

is deformable, usually because there is some underlying layer of elastic tissue, as with

human skin. The terms soft and deformable are very tightly connected, but not equiv-

alent. An articulated rigid body (e.g. a robot) is deformable because it can undergo

some skeletal deformation along its joints (also called skeletal motion). However, it is

not soft, because its surface is infinitely stiff.

Global vs. Local Deformation For many years, there has been a lot of research

towards efficient computation of global deformations in computer graphics. Efficiency,

either for the animator or for a computer simulation, can typically be achieved by

providing a mapping between a limited number of degrees of freedom and the final

3

shape output. In the case of a human animator, these degrees of freedom can be con-

trolled in time through a user interface, for example with free-form deformation tech-

niques [Bar84, SP86, Coq90]. The mapping then turns those controls into frames of

animation of the final shape. It allows the animator to work much more efficiently,

because he can work at a much higher level of abstraction. In the case of a computer

simulation, these degrees of freedom could be the modal coordinates of a modal reduc-

tion approach [PW89, JP02, HSO03]. The laws of physics turn the modal coordinates

into the final shape output. Due to the compactness of the mapping, the variation in

possible final shapes is typically limited. This means that global deformation modes such

as bending, twisting and shearing are usually supported, but not highly detailed local

deformations on the surface. In Chapter 3, I present a method that targets fast simu-

lation of highly detailed deformations of the surface, enabling effects such as wrinkling

at real-time frame rates. Another example of global deformation is skeletal deforma-

tion. Here, the deformation is restricted by the skeletal structure, but the joints allow

a limited number degrees of freedom by which an articulated character can deform. As

explained later in this section and in Chapter 2, there are many methods available that

provide the necessary mapping from skeletal parameters, such as joint angles, to the

final shape output.

Animation vs. Simulation There are numerous approaches to generate continuous

deformation of a character skin. They can be broadly categorized into two groups: sur-

face deformation models on one side, either algorithmic or data-driven, and skin or tissue

deformation models on the other side, the latter usually physically inspired [LCF00].

In the traditional computer animation pipeline, a common data-driven approach is

rigging of characters such as animals and humans [Mae06]. This process is analogous

to setting up a puppet to be controlled by strings. A rigged character’s shape can

be controlled via a set of abstract parameters, such as ‘frown’ or ‘smile’. Thus, for

4

Figure 1.1: Comparison of linear blend skinning to our approach. Left:
The fish touches the body of the snake, creating global response and skin defor-
mations. Right: We turn off local skin deformations to show the importance of
handling both global and surface response. Notice the highlighted interpenetra-
tions, clearly visible through the fish’s mouth.

each instant in time, the animator does not have to position each vertex of the surface

mesh; he only needs to set the values of the control parameters. Once the character

has been rigged, shape transformations such as a smiling and frowning can be reused

and mixed together through shape interpolation. Unfortunately, the process of rigging

is rather complicated and almost impossible to automate. The difficulty is mostly due

to the inherent complexity of realistic shape deformation. Changes in the shape of a

real character are due to the motion of underlying bones, muscles, tendons, as well as

to physical forces. Skeletal-subspace deformation (SSD) [MTLT88], also referred to as

linear blend skinning, is another surface deformation model. In this technique, the skin

deformation is driven by the pose of the underlying skeleton, and a set of blend weights

that associate bone contributions to vertices. Surface contact is difficult to model using

traditional skinning techniques because the combination of bone transforms and blend

weights completely determine the resulting (deformed) shape (Fig. 1.1).

Alternatively, some computer animation researchers have chosen to use physical laws

to simulate the underlying deformable tissue for realistic motion and deformation of a

character skin [CHP89, GTT89, BW92, JP99, CGC+02a]. These techniques can also

be gathered under the name of deformable simulation. The use of physical laws to

model motion and deformation is especially important for interactive applications such

5

skeletal

controls geometric
deformation

engineabstract

controls

shape

Inputs

Output
skeletal

controls dynamic
elastic

simulation
abstract

controls

shape

Inputs

Output

time

Figure 1.2: Animation and Simulation systems. On the left, the diagram il-
lustrates a traditional character animation system. The deformation engine maps
skeletal controls (such as joint angles) and abstract controls (such as smile) to
the output shape. Animation is achieved by varying the controls over time. The
diagram on the right illustrates the work of [Cap04]. Instead of a geometric de-
formation engine, the system is based on a dynamic elastic simulation. This
introduces an explicit time dependence, so the final shape is guided by the input
controls, but also varies over time according to the laws of elastic dynamics.

as games, because there is no animator available to respond to the user’s input or to

unexpected events in the environment of the character. Physical simulation is also useful

for applications where secondary effects are too tedious to animate by hand and should

be automatically generated, such as in animated feature films. For these applications, the

computer can only respond in a realistic way through automation. Physical simulation

is a good example of a model that makes such automation possible. The physical

equations are encoded by a programmer, from which the computer can easily generate

the appropriate motion. Capell [Cap04] has combined rigged character animation and

physical simulation in a unified framework, as is illustrated in Figure 1.2.

Accuracy vs. performance Physically based methods in graphics try to mimic bio-

mechanical models of skin tissue and musculature with varying degree of faithfulness. In

terms of efficiency versus accuracy, these methods fall into two broad categories. The first

category of algorithms aim for accuracy [CZ92, SPCM97, WG97, KGCvB96, ZCCD04,

TSIF05, SNF05, LT06, SKP08] by simulating the actions of the individual muscles,

bones and tendons in the skin. Interactive physically based approaches trade accuracy

for performance [TPBF87, TW88, MT92, PDA01, JP99, JP02, CGC+02a, MG04]. Ex-

6

changing accuracy for performance has lead to labeling these methods simplified physical

models. However, the lack of accuracy does not necessarily entail the lack of believable

behavior. In deformable simulation for computer graphics, it is often sufficient and

sometimes even preferred that a model behaves the way the artist intended, as opposed

to exactly in line with physical reality.

Layered Models This work uses a layered representation for soft characters in com-

puter animation, as will be elaborated on in Section 1.3.1. The term ‘layered’ simply

refers to the fact that multiple deformation models are employed for different parts of a

character’s volume, and they are combined through some kind of interface, usually by

use of physically inspired forces. For example, Wilhelms [WG97] models several classes

of muscles algorithmically with attention to volume conservation; skin is a spring mesh

anchored to underlying tissue or bone in appropriate areas. In this dissertation, the

layered representation is essentially an integration of articulated body dynamics and

skinning with displacement corrections. One of the challenges for modeling soft ar-

ticulated characters that has not been well investigated previously is the interplay of

skeletal motion and surface contact and the resulting two-way coupling effects. Efficient

simulation of such interplay is a key design goal of my simulation framework.

Directable Deformations and Control Finally, this dissertation also builds solu-

tions to control the shape and deformation behavior of simulated soft characters. It

was mentioned earlier that most physically inspired methods use simplified models.

These models cannot capture complex non-linear behavior such as muscle bulging, and

skin wrinkling. On the other hand, such behavior can be of extreme importance from

an artist’s point of view. In fact, animators may even want explicit control over the

amount and type of secondary effects and deformations in a physical simulation. For

example, the deformation of dough in a recent feature film [Sha07], as illustrated in

Fig. 1.4. Physically based methods can only provide control through the influence of

7

Figure 1.3: Snapshots of deformable dynamics in current game engines,
compared to methods from this thesis. From left to right, deformable tires
with my dynamic deformation textures method (2006, Chapter 3), deformable tires
in the PhysX engine (2007), deformable torii with the open-source Bullet engine
(2008).

forces. While methods that control global deformation modes have been around for a

while [WW90], providing control of sculpted deformations for simulation of deformable

models has only recently gained attention in graphics research. The work in this dis-

sertation seeks to bridge the gap between geometric example-based methods that have

explicit shape control and physically based approaches. This is the topic of Chapter 5.

1.1.2 Applications

Games Simulation of multi-body dynamics has become extremely important in the

games and entertainment industry. Game developers are constantly pushing the limits of

technology when it comes to achieving realism in gameplay, be it in graphical rendering

or in simulation of physical phenomena. It was only a few years ago that games made the

jump from 2D to 3D environments. Quickly, games have evolved from supporting only

a limited number of rigid and rigidly skinned articulated bodies to simulating a massive

number of interacting rigid objects in the scene. Although the focus has been mainly

on rigid phenomena, games are now stepping into the realm of deformable physical

phenomena that are computationally more challenging than rigid effects, such as fluids,

fracture, and soft body behavior. The need and desire for such realism has become

apparent from the upcoming support for deformable simulation in many popular physics

8

engines, such as the open-source Bullet [Bul08], Intel’s Havok [Hav08] and NVIDIA’s

PhysX [Phy08]. The method that I propose in Chapter 3 actually predates some of the

support for deformable bodies in the physics engines illustrated in Fig. 1.3. In addition, it

is clear that simulation of physical phenomena for games has become a hot topic, judging

from the emergence of hardware-based solutions that aid in simulating these phenomena

in real-time. For example, GPUs have recently been used to run a 3D Navier-Stokes fluid

solver on a 128×64×64 grid at 120 to 180 fps, and NVIDIA’s PhysX hardware solution

has been applauded in the gaming industry as a crucial component for achieving real-

time explosions with dynamically fracturing debris and complex smoke effects. NVIDIA

has also recently added support on the PhysX chip for real-time soft body behavior. It

is clear that the industry is quickly developing a growing need for smart and efficient

algorithms that enable even more realistic effects such as fast soft character interaction

or skin wrinkling. Likewise, there has been a radical move towards parallel architectures

geared specifically towards the games market, with examples such as Larrabee [SCS+08]

and NVIDIA PhysX. The algorithms in Chapters 3 and 4 are specifically geared towards

parallel efficiency, and I demonstrate that they map well to such architectures. Luckily,

a lot of effort has been put into supporting higher level programming models such as

C++ and CUDA [CUD07] for these novel parallel architectures, which simplifies the

task of porting the techniques of this dissertation to these platforms.

Animated Feature Films Physical simulation has taken an important role in the

film industry, not only for producing special effects, but also as an aid to the animation

process for animated feature films. Computer animation has one chief advantage over

traditional hand-drawn animation. By providing a modeling layer between the animator

and the output images, computer animation enables the artist to express the animation

more succinctly, while ignoring unnecessary details. This leads to an improvement in

animation quality and animator efficiency because his efforts are spent working at a

9

An Effects Recipe for Rolling a Dough, Cracking an Egg and Pouring a Sauce

Tolga G. Goktekin Jon Reisch Darwyn Peachey Apurva Shah

Pixar Technical Memo #07-06
Pixar Animation Studios

Creating the digital effects for cooking in Ratatouille posed a num-
ber of unique challanges. First we had to adopt efficient meth-
ods for simulating a wide variety of material behaviours. Second
we needed to direct our simulations in order to match the expres-
siveness of the character’s animation, e.g. forming specific shapes
while the character pounds a dough. Finally we had to apply shad-
ing to our simulated surfaces which underwent complex deforma-
tions and topological changes. In this sketch we will focus on ma-
terials ranging from elastoplastic solids to viscous liquids and illus-
trate with several shot examples from the film.

Figure 1: Dough rolling effect (top) and several stages of the egg during the cracking
(bottom). c©Disney / Pixar. All rights reserved.

1 Directable Softbodies

In order to simulate a wide range of materials we had to use differ-
ent techniques for different parts of the solid to liquids spectrum.
Materials that did not undergo any topological changes such as the
dough and the egg were treated as deformable solids. There are var-
ious methods for simulating deformable solids ranging from mass
spring damper (MSD) systems to finite element methods. We chose
MSD systems for their simplicity, efficiency and relative ease of in-
tegrating them into our existing pipeline. The main difference in our
setup compared to standard Maya softbodies is that we first create
a Delaunay tetrahedralization of our input surface and convert the
internal nodes and edges into internal particles and springs respec-
tively. This creates an internal structure for the softbody, resulting
in an unbiased set of springs that cover the volume efficiently. In
the case of two different MSD systems interacting such as the egg
white and yolk we created extra springs between the interior and
exterior surface particles of the objects.

Creating the dough effect presented two main challanges. First the
dough had to collide physically with the characters hand and the
rolling pin, leaving natural looking dents and bumps. Moreover the
dough had to flatten under and buldge in front of the rolling pin.
Second the dough needed to form specific shapes at specific times
based on creative direction.

Interaction with prescribed animation and controlling the shape of
the dough turned out to be conflicting requirements. Changing
the surface directly from one shape to the other using goal forces
looked too controlled. It also made accounting for the interaction
with the character’s hand very difficult to achieve since the collision

response forces were being overwhelmed by the stiff goal forces.
On the other hand relying purely on the simulation did get the in-
teraction right but the results didn’t go through any of the shapes
we were creatively after. In order to solve these problems we only
directed the internal particles of the dough to match the ”internal”
goal shapes. This made the surface move freely (still connected to
internal nodes with springs) and respond to collisions and changes
to the momentum naturally; and thus produced believable interac-
tion with colliders and other secondary motions. Plastic behaviour
is achieved by resetting the rest configuration of the dough to the
goal shapes as it went through them.

We didn’t have to specifically direct the shapes during the egg
crack. However we had to constrain the egg white at several points
and animate the constraints to encourage the natural draping be-
haviour.
2 Viscous Fluids

For viscous liquids such as our sauces and soups we chose a grid
based Eulerian fluid simulator with a levelset surface tracking or a
particle based fluid simulator. To control the timing, the amount and
the shape of our liquid simulations we animateed the gravity, added
sources and sinks and used lattice deformers. We also used extra
Maya particles (either as blobs or as input to our surface extractor)
to augment the regions where we ran out of resolution.

The shading applied to our sauces and soups had multiple com-
ponents such as depth tinting, translucency, subsurface scattering
and layered textures. In order to make these work we needed a
parametrization of our surfaces that was spatially and temporally
coherent. However the simulated surfaces were not consistent be-
tween frames and were undergoing topological changes. These
made applying any shaders that relied on a consistent parametriza-
tion over the surface problematic. To solve this problem we first
initialized a set of particles in a band around the surface on a ”ref-
erence” frame and stored the initial point (u,v,w) of each particle as
an attribute. Then we advected these particles with the simulated
velocity field. Finally as a post-process, at each frame we tagged
the vertices with these (u,v,w) values using the method in [Shen
et al. 2007]. We used this per vertex (u,v,w) value as a reference
point to the inital surface during shading.

In some of our chunkier sauces we needed to add suspended bits
that flowed with the sauce. Simulating these bits directly with the
liquid as colliders proved to be inefficient due to the their amount
and their relatively small size. Therefore we added them as ad-
vected instanced geometry particles as a post-process.

Figure 2: Various sauce effects in Ratatouille. c©Disney / Pixar. All rights reserved.

References

SHEN, C., AND SHAH, A. 2007. Extracting and parametrizing temporally coherent
surfaces from particles. Submitted to Siggraph 2007 Technical Sketches.

Figure 1.4: Snapshots from Pixar’s Ratatouille. Dough rolling effect (top),
requiring shape control in combination with physical deformation simulation. Sev-
eral stages of the egg during the cracking (bottom). The techniques in Chapter 5
can be used to achieve deformation control. c©Disney / Pixar. All rights reserved.

higher level of abstraction. Furthermore, this dissertation presents methods to include

deformable simulation and control in the modeling layer, supporting animators in a

number of ways. First, this enables automatic generation of secondary effects of the

animated shapes; when a virtual character with a fat belly is animated through the

scene, we would expect to see his belly bounce and sway in correlation with changes

in momentum caused by the animated path. Physical simulation is a good way to

avoid animating this type of effect by hand and to make it more believable. Second, it

enables passive deformable objects in the scene to react when in contact or influenced by

explicitly animated characters. In Pixar’s animated feature Ratatouille, the deformation

of a blob of dough being deformed by an animated rolling pin was computed with physical

simulation [GRPS07], as was the deformation of an egg yolk when an egg is cracked

10

Figure 1.5: The Co-Me Project. The technologies in this thesis have been
beneficial to the development of interactive methods for generalized surgery sim-
ulation and training.

open (Fig. 1.4). Finally, there seems to be a definite need for deformation control in

animated features. In Ratatouille, the dough had to flatten under and bulge in front of

the rolling pin, and it needed to form specific shapes at specific times based on creative

direction [GRPS07]. The techniques presented in Chapter 5 can be used to provide such

control, using intuitive animator controls.

Surgical Training The technologies in this thesis have been beneficial to the de-

velopment of interactive methods for generalized surgery simulation and training. For

example, the Co-Me project [COM] of the National Center of Competence in Research

(NCCR, Switzerland) aims to utilize information technology for improved health care.

Based on the work in this dissertation and on other research in deformable and fracture

modeling, collision handling, and point-based computer graphics, the CoMe project is

developing techniques for real-time surgical simulators, supporting applications such as

hysteroscopy simulation, simulation of stent placement, craniofacial surgery simulation,

orthopedic surgery planning and modeling of soft tissue (Fig. 1.5).

11

Haptics Haptic rendering of forces and torques between interacting objects, also

known as 6 degree-of-freedom (DoF) haptics, has been demonstrated to improve task

performance in applications such as molecular docking, nanomanipulation, medical

training, and mechanical assembly in virtual prototyping [LO08]. Haptic display of

complex interaction between two deformable models is considered especially challeng-

ing, due to the computational complexity involved in computing contact response and

performing proximity queries, including collision detection, separation distance, and pen-

etration depth, between two deformable models at force update rates. The algorithms

in this thesis focus on interactive deformations with support for contact and hence they

apply to the domain of haptic applications. This was briefly investigated in the context

of this thesis [GTO+07].

1.1.3 Challenges

One of the key challenges of deformable simulation is to satisfy the conflicting require-

ments of real-time interactivity and physical realism. In order to achieve realism, some-

times the first requirement is to achieve sufficient deformation detail, which then means

that real-time collision detection becomes a much harder task, and robust contact re-

sponse becomes problematic. Finally, marrying complex simulation algorithms with the

needs and wishes of animators requires intuitive control methods. In this section, I will

briefly elaborate on these sub-challenges.

Deformation Detail Simulation of detailed secondary effects such as skin wrinkling

requires many degrees of freedom on the surface, up to tens of thousands of deformable

vertices. This is at least an order of magnitude more than current interactive deformation

systems. Up until recently, systems such as in Figure 1.6(a) have been able to show

interactive rate deformable simulation in the range of hundreds of deformable elements,

but at least a few thousand elements are required to show complex deformation detail,

12

(a) (b)

Figure 1.6: Deformation Detail. The Shape Matching algorithm [MHTG05],
here illustrated on Fig. (a), can simulate hundreds of deformable elements in real
time, but many more are required to show detail such as skin indentations sim-
ulated with my framework. The face model in Figure (b) has 40, 000 deformable
surface vertices.

for example deforming tire threads or generating skin indentations as was done by my

system in Figure 1.6(b).

Efficient Collision Detection As the complexity of the models goes up, collision

detection tends to take up a considerable chunk of computation time in deformable dy-

namics systems because any precomputed acceleration data-structure has to be updated

while the objects are deforming [TKH+05]. Therefore, a fast collision detection algo-

rithm targeted towards dynamic deformation dynamics is essential to obtain a real-time

system. Likewise, handling self-collisions is a significant challenge, as they occur com-

monly for deforming articulated characters. Collision detection should be very efficient.

Ideally, it should be independent of surface resolution.

Responsive Contact Handling Collisions and interaction with the scene not only

give rise to surface deformations, but also cause global skeletal deformations, and they

13

Figure 1.7: Responsive Contact Handling. The figure shows what can
go wrong when contact handling is not responsive for the entire model. On the
left, the outer surface layer, drawn with white dots, is prevented from violating
the ground plane constraint, but the object as a whole, with the blue inner core
layer is not. The figure on the right shows the correct behavior, simulated with
my system.

influence the global motion of the objects. The overall robustness of a simulation frame-

work, such as the one presented here, can only be guaranteed if the contact response

algorithm is robust enough to account for these effects simultaneously. The contact han-

dling algorithm has to be responsive such that skeletal and global motion are handled

simultaneously and naturally with surface deformations. Figure 1.7 shows an example

of what can go wrong when contact handling is not responsive for the entire model.

With layered model methods, it often happens that the surface layer is prevented from

violating the constraint, but the object as a whole is not prevented from doing so.

Deformation control Regardless of the realism that can be achieved by numerical

simulation, animators and game content creators crave the ability to steer the behavior

of characters and their material properties. If a character’s skin is supposed to wrinkle on

the forehead but not on the back, there has to be a simple way to express that behavior.

Or, as in Figure 1.4, animators may prefer certain shapes of a bulging dough ball over

others. The challenge is to find intuitive tools that enable animators and modelers to

specify how and when materials are to deform.

14

1.2 Thesis

My thesis is:

Using appropriate layered representations and simplified physics-based mod-

els, it is possible to generate and control believable articulated soft-body

behavior at interactive rates.

In support of this thesis, I present a unified framework for real-time modeling of soft

objects with up to tens of thousands of degrees of freedom. This framework complements

animated articulated characters with skeletal dynamics and detailed secondary skin

effects. My framework also supports combined skeletal and skin contact response, where

the coupled nature of (global) skeletal deformations and (local) skin deformations is

gracefully captured.

I propose the use of layered models to reduce the computational complexity. Layered

models have been proposed previously, but I introduce novelty on two fronts:

1. The three dimensional deformations in the deformable layer are mapped to a

two dimensional domain to reduce complexity even further. A re-parameterized

version of this domain onto a regular grid, called dynamic deformation textures

(Chapter 3), is very amenable to parallel computation of the dynamic elasticity

equations.

2. I enhance layered models to support simulating the interplay of (global) skele-

tal motion and surface contact and the resulting two-way coupling effects. I apply

physically-inspired simplification to drastically reduce the computational complex-

ity of previous contact response methods for deformable dynamics.

In addition, I also propose a method that enables intuitive control over shape and

skin behavior at run-time. This approach bridges the gap between artist-controlled an-

15

skeletal
controls dynamic

elastic
simulationabstract

controls

shape

Inputs

Output

time

example
shapes

dynamic morph
targets

Figure 1.8: Dynamic Morph Targets Pipeline. To support artistic de-
formation control, I propose dynamic morph targets (Chapter 5) to complement
the traditional animation and simulation pipelines. Dynamic morph targets are
created from artist-provided examples (pairs of example shapes and associated
skeletal poses) and enhance the runtime dynamic simulation.

imated behavior, shape control, and computer-generated secondary skin deformation

effects. My approach complements the traditional animation pipeline with intuitive

control metaphors to support directable deformations: globally with traditional skeletal

animation and locally with dynamic morph targets (presented in Chapter 5). Dynamic

morph targets enable animators to express the way material deforms in particular con-

figurations. I achieve this by deriving a pose-dependent material model that is able to

retarget artist-provided example inputs to unforeseen motions. Figure 1.8 illustrates how

I complement the traditional animation and simulation pipelines (Fig. 1.2) to support

secondary skin dynamics using dynamic morph targets.

1.3 Main Results

In this section, I present the main results of this dissertation in detail, as summarized

in the previous section. I categorize the results in the areas of layered deformable

models, pose-space skin dynamics, parallelization and physically-based simplification

16

for efficient skin dynamics, hierarchical collision detection, responsive contact handling,

and directable deformations.

1.3.1 Layered Models for Soft-body Simulation

I propose the use of layered models to reduce the computational complexity of soft ar-

ticulated character simulation. My approach enables interactive simulation of objects

with tens of thousands of deformable surface points. I achieve such performance by

complementing layered models with several novel methods. First, I propose dynamic de-

formation textures, a method that enables fast parallelized computations. I also present

physically-based skin dynamics approximations that reduce the complexity to enable

interactive frame rates while preserving plausible behavior.

More specifically, I model each deformable object as a core covered by a layer of (pos-

sibly heterogeneous) deformable material. This layered representation enables modeling

of:

1. Detailed small scale deformations over large regions of the object’s surface.

2. Global deformations of skeletal nature.

3. During contact response, the dynamic interplay between the (global) skeletal mo-

tion of the character and surface deformations, as shown in Fig. 1.10.

For the skin dynamics model, I propose to start from a sound physics-based method

by formulating the dynamic motion equations of soft articulated characters using La-

grangian continuum mechanics [GPS02, Sha89], discretizing the continuous deformable

layer with a finite element mesh (FEM) with linear tetrahedral elements. With this

layered model, I have successfully captured large deformations that reach as much as

30− 40% of the radii of the objects, as illustrated in Fig. 1.9.

17

(a) Efficient decoupled implicit integration
enables fast simulation of a heterogeneous
cylinder. The cylinder has 21, 000 de-
formable vertices (161, 000 tetrahedra).

(b) Left: Detail view of the rich deformations
produced on the top pumpkin (30, 000 ver-
tices and 183, 000 tetrahedra) during contact.
Right: A dropped cylinder produces rich dy-
namic deformations on the ridges of a gear
(29, 000 vertices and 173, 000 tetrahedra).

Figure 1.9: Simulation of Heterogeneous Materials and Examples of
Detailed Deformations.

1.3.2 Pose-space Skin Dynamics

I present novel formulations of elastic deformations in body space for non-articulated

objects (Chapter 3)) and in pose-space for articulated characters (Chapter 4). It is well

known that linearization of the elasticity laws does not correctly model large deforma-

tions, because linear strain models are not rotation invariant (see Section 2.1.2). Akin to

previous co-rotational methods for non-articulted objects [TW88, MG04] and methods

using skin displacement corrections [KJP02, JT05] for articulated characters, I solve this

problem by expressing skin strain in a floating frame of reference that is aligned with

the rest configuration (or pose-space) of the articulated character. I either track the

bone state during the simulation to transform bone space deformations to world space,

or I derive bone kinematics from a character animation or motion capture sequence. In

contrast to previous approaches [MG04, CGC+02a], my model also optionally considers

centripetal and Coriolis forces introduced by the inertia of the deformable layer. With

my formulations, the motion equations derived from Lagrangian mechanics naturally

produce the desired interplay between skin and skeleton.

18

Figure 1.10: Interactive Deformation of an Articulated Deer. The deer,
consisting of 34 bones and 2 755 deformable surface vertices is being deformed in-
teractively (almost 10 fps on average) by a rigid bird model. The interplay between
small-scale contact deformations and the skeletal contact response is successfully
captured.

1.3.3 Parallelization and Physically-based Simplification

A key advantage of my layered model is the reduction of the computational complexity

that comes from the simplification of the interior volume dynamics. In fact, by only

retaining 6 degrees of freedom (DoFs) per rigid bone, I focus the computational power

on the simulation of detailed skin deformations — as opposed to volume deformation

— while I still maintain the ability to model global skeletal motion.

Using linear FEM discretization of the displacement field of the deformable skin in

pose-space (Section 3.1.1), I map 3-dimensional deformations to a 2-dimensional para-

metric domain. This enables a highly parallelized algorithm, called dynamic deforma-

tion textures to compute elasticity dynamics of a layer of deformable material. Together

with careful approximation of Schur complements (Section 3.2.2), this formulation en-

ables efficient decoupled simulation of highly detailed dynamic objects that have tens

of thousands of surface elements with two-way coupling of global object motion and

surface deformation at interactive rates.

Dynamic Deformation Textures I propose a re-parameterization of the surface

deformation field onto a 2-dimensional domain. If the topology and shape of the surface

19

geometry allows for it, this parameterization can correspond to a mapping of the surface

deformation field to a regular grid, called dynamic deformation textures. The regular grid

implicitly defines the meshing of the deformable layer, which, after FEM discretization

leads to a regular sparse SPD system on the regular data grid. Such systems can be

efficiently solved on massively parallel streaming architectures because branching and

pointer chasing are eliminated due to the regularity of the system. In Section 3.6, I

demonstrate the performance advantage in a fast GPU implementation that employs

texture memory to store the parameterization and fragment shaders to compute linear

system solver kernels. This implementation is up to an order of magnitude faster than

other methods that enable large time steps, for single-bone objects.

Efficient Dynamic Updates by Physically-based Approximation and Parallel-

lization As mentioned in Section 1.1.3, one of the key challenges of achieving realistic

soft character dynamics is to capture the physical interplay between skeletal dynamics

and local skin deformation, leading to a tightly coupled dynamic system. I reformulate

the motion equations such that the solution of this coupled and inherently non-parallel

problem can be split into a massively parallel subproblem solve, followed by a coupling

step to update the global (skeletal) dynamics. Full solution of the skeletal dynamics of

a character with k bones and n surface points is known to have brute-force O(nk) com-

plexity [Bar96]. A key contribution of this thesis is the reduction of this complexity to

O(n+k) (in practice) while preserving physically plausible global and local deformation

effects. I achieve this by:

1. Splitting of parallellizable skin computations from serial skeletal computations by

exploiting Schur complements, also known as matrix condensation [BNC96].

2. Employment of a fast approximate inverse of the skin inertia matrix to accelerate

computation of Schur complements (see Section 4.3.1).

3. Computation of a fill-reducing reordering of the condensed system matrix and

20

Figure 1.11: Layered Representation and Collision Detection. From left
to right: Contact between the bird and the deer, with skin deformations on the
back of the deer; Proxies used for hierarchical pruning of collision queries, with
potentially colliding proxies of the deer highlighted in red; Triangles influenced by
the potentially colliding bones (in red) are the only ones passed to the image-based
collision detection algorithm; The resulting detail around the contact area.

off-line pre-computation of its symbolic factorization.

I demonstrate that the elastic and skeletal update can be separated by observing that

the elastic energy due to pose-space strain is only dependent on the degrees of freedom

of the skin layer. Fast and massively parallel solvers can be exploited to solve the skin

update. In Chapter 3, I show that coupled layered dynamics of a rigid core with soft skin

can be implemented very efficiently on a parallel architecture such as graphics processing

units (GPUs) to simulate highly detailed surfaces at interactive frame rates, while also

minimizing costly communication between GPU and CPU host.

The intuition for the approximation of the inverse of the skin inertia matrix is phys-

ically based. Even though this approximation yields surface deformation velocities that

differ slightly from those of the full solution, it does not jeopardize the fulfillment of

joint or contact constraints. Moreover, the approximation still captures the coupling

of the elastic forces in the deformable layer that account for the interplay between

(global) skeletal motion and surface deformation during contact dynamics (Sections 3.4

and 4.2.3).

21

1.3.4 Two-stage Hierarchical Collision Queries

I present a two-stage collision detection algorithm that exploits low-resolution acceler-

ation data structures. These data structures are constructed from proxy geometry for

the character’s bones (Section 4.3.3). They can be efficiently updated at run-time to

check for potentially colliding surface patches.

In particular, I adopt a fast image-based algorithm that exploits the layered repre-

sentation of soft characters. Collision detection is performed in two steps:

1. Identification of contact patches with object-space techniques using low-resolution

proxies [EL00].

2. High-resolution skin surface interference detection and collection of colliding skin

vertices using image-space techniques with the aid of graphics hardware.

My method shares the two-step approach of others used for rigid bodies [OJSL04].

Unlike these methods, I perform collision handling of deformable objects and compute

contact information for many colliding surface points. My collision query algorithm also

performs hierarchical pruning to eliminate large portions of the objects from collision

queries by exploiting the skeletal nature of the deformation. An example of the pruning

can be seen in Fig. 1.11. The worst-case cost of the collision detection is O(n) for a

pair of tested objects with n surface nodes; the actual cost depends only on the size

of the contact area. Once contact areas have been identified, I exploit image-space

techniques in a GPU-accelerated surface interference algorithm to make the cost of the

collision detection sub-linear in the number of surface nodes in practice. My algorithm

achieves this by parallelizing surface node interference detection, based on orthogonal

projection of potentially intersecting surface patches onto low-resolution contact planes

(Section 3.3).

22

Figure 1.12: Deformations of a Virtual Head. Left: A fist hits a deformable
head (attached by springs in the neck area), producing both local deformations
and global motion. Right: Detail of the deformations produced near the eyebrow
by the impact.

Figure 1.13: Skeletal Deformations of a Soft Snake. Simulation sequence
with a fish touching the snake, showing the global deformation of the snake. The
last image shows the proxies for collision detection.

1.3.5 Fast Contact Response for Soft Articulated Characters

As mentioned before, I aim to achieve highly responsive contact response that accounts

for both the global (skeletal) effect and the local surface deformations. For example,

when a fist punches a face (Fig. 1.12), the head motion as well as the eyebrow deforma-

tion should be handled in a hybrid contact resolution framework. Another example of

such responsive behavior can be seen in Figure 1.13 where a fish causes global skeletal

motion of a snake as well as local deformation of its skin. I propose a novel efficient

and highly parallelizable solution that enables robust contact handling in the simula-

tion with very large time steps, based on Lagrange multipliers, implicit integration, and

physically-based approximation of elastic deformation forces. I also propose approxi-

mated anticipation of the skeletal response to reduce the typical O(mnk) complexity

for deformable characters with m contacts, n vertices and k bones to O(m + n + k) in

practice.

23

Responsiveness In many previous algorithms, contact response is computed by ex-

plicitly integrating the constraint forces, which is equivalent to applying an instantaneous

change of momentum to the surface nodes at the end of each time step. Unfortunately,

with those methods the elastic deformation forces are unable to counteract the momen-

tum of the core upon collision, and the core may penetrate the constraints (Fig. 1.7).

In Section 3.4, I propose and describe the computation of the collision impulse through

implicit integration which produces a robust and responsive reaction of the object’s core

with large time steps. In Section 4.2.3, it is shown that the same technique can be

applied to ensure responsive contact of the skeleton of a soft articulated character.

Skeleton response anticipation Previous existing methods for solving multi-body

dynamics of rigid articulated characters with joint and contact constraints propose the

anticipation of contact constraints to resolve contact impulses [Bar96]. However, this

approach has a worst-case cost of O(mk) for a scenario with m contacts and k joint

constraints. In the context of this thesis, I exploit the use of equality contact constraints,

the fact that each colliding surface node yields one constraint, and the approximation

of skin force Jacobians. Combining these techniques, I propose anticipation of skeleton

response for soft articulated characters. I first solve for the contact impulses while

anticipating the skeletal response under influence of the joint constraints. The overall

computational cost of expensive contact constraint anticipation is thereby reduced from

worst-case O(mnk) complexity to O(m + n + k) in practice. This is demonstrated in

Section 4.3.4.

1.3.6 Control of Deformations with Dynamic Morph Targets

I present a method to control the behavior of elastic, deformable material in a dynamic

simulation. In Chapter 5, I introduce dynamic morph targets, the equivalent in dynamic

simulation to the geometric morph targets in (quasi-static) modeling. Dynamic morph

24

targets define the pose-dependent physical state of soft objects, including surface defor-

mation and elastic and inertial properties. Given these morph targets, my algorithm

then derives a dynamic model that can be simulated in time-pose-space, interpolating

the dynamic morph targets at the input poses. My approach seeks to bridge the gap

between geometric example-based methods and physically based approaches. It easily

integrates with current modeling and animation pipelines: at different poses, an artist

simply provides a set of dynamic morph targets. Whether these input states are phys-

ically plausible is completely up to the artist. The resulting deformable models expose

fully dynamic, pose-dependent behavior, driven by the artist-provided morph targets,

complete with inertial effects. The success of dynamic morph targets relies on three key

results:

• A pose-space method for interpolation of simple elastic deformation models that

allows the artist to author complex nonlinear deformation behavior.

• A compact way of interpolating skin geometry, elastic forces, and their derivatives,

all in a unified manner using pose-space polynomial interpolation.

• The extension of the method to support modal reduction, resulting in a very

efficient implementation that is linear in the number of coefficients of the force

polynomial.

The main advantages of my method over previous approaches are three-fold: quality

of deformations, dynamic behavior and computational efficiency. Although my method

is physically based, it avoids expensive modeling of musculature or tendon influences,

and instead relies on physical constitutive models of deformable material to minimize

skin pinching artifacts and bypass complex rigging requirements that are common to

purely geometric approaches. The use of such constitutive material models also en-

ables response to external forces and inertial effects in dynamic simulations. Due to

performance requirements, one is usually restricted to linear or quasi-linear models that

25

cannot model pose-dependent effects such as bulging and wrinkling. Instead, I guide

dynamic simulations with dynamic morph targets — discrete pose-space examples of

skin properties and deformations.

The result is an efficient framework for directable physically-based skin deforma-

tions that extrapolates well to unforeseen poses. Soft characters that have been comple-

mented with dynamic morph targets can be plugged into existing dynamic simulation

engines, either forming interactive, deformable content in real-time games or provid-

ing secondary dynamic effects for kinematically-driven characters in feature animation

films. My method also facilitates certain time-consuming rigging procedures, by pro-

viding a physically based approach to resolve co-articulation deficiencies in traditional

skinning methods, such as in shoulder regions, fully automatically. These results are

demonstrated with my real-time implementation described in Section 5.4.

1.4 Organization

The rest of this dissertation is organized as follows. The next chapter summarizes related

work in deformable simulation and control. Chapter 3 presents dynamic deformation

textures for fast simulation of soft objects with a rigid core and soft skin, including

support for coupled contact handling. Chapter 4 extends my approach to soft articulated

characters with fast contact handling. Chapter 5 introduces a method to control the

deformations of soft character skin based on dynamic morph targets. Finally, Chapter 6

gives a summary of the thesis conclusions and discusses future research.

26

Chapter 2

Related Work

Creating appealing and realistic animation of deformable characters is a multi-disciplinary

problem. In this chapter, I present both related work in the domains of character simu-

lation, animation, contact handling and control with emphasis on deformable characters.

2.1 Simulation of Deformable Bodies

Since Lasseter’s discussion of squash and stretch [Las87] and, concurrently, Terzopoulos

et. al’s seminal paper on elastically deformable models [TPBF87], numerous researchers

have participated in the quest for the visually and physically plausible animation of

deformable objects and fluids. This inherently interdisciplinary field elegantly combines

Newtonian dynamics, continuum mechanics, numerical computation, differential geom-

etry, vector calculus, approximation theory and computer graphics (to name a few).

In this section, I will discuss physical simulation of deformable, elasto-plastic material,

focusing on previous research that is directly related to this thesis. For comprehensive

summaries, I’d like to refer readers to [GM97, NMK+05, TKH+05].

2.1.1 Continuum Elasticity

A deformable body is typically represented by its undeformed shape (also called equilib-

rium configuration, rest or initial shape) and by a set of material parameters that define

u(m)m

x(m)

rest shape

deformed shape

Figure 2.1: Continuous Displacement Field. Deformation of an object in
rest shape causes a material point originally at m to be transformed to a new
position x(m) through the continuous displacement field u(m).

how it deforms under applied forces. If we think of the rest shape as a continuous con-

nected subset M of R3, then the coordinates m ∈ M of a point in the object are called

material coordinates of that point. In the discrete case M is a discrete set of points

that sample the rest shape of the object. When forces are applied, the object deforms

and a point originally at location m (i.e. with material coordinates m) moves to a new

location x(m), the spatial or world coordinates of that point. Since new locations are

defined for all material coordinates m, x is a vector field defined on M . Alternatively,

the deformation can also be specified by the displacement vector field u(m) = x(m)−m

defined on M (see Fig. 2.1). From u(m) the elastic strain ε is computed. This quantity

is dimensionless; in the (linear) 1D case it is simply ∆l/l. A spatially constant displace-

ment field represents a translation of the object with no strain. Therefore, it becomes

clear that strain must be measured in terms of spatial variations of the displacement

field u = u(m) = (u, v, w)T .

Popular choices in computer graphics are

εG =
1

2
(∇u + [∇u]T + [∇u]T∇u) (2.1)

εC =
1

2
(∇u + [∇u]T) (2.2)

28

where the symmetric tensor εG ∈ R3×3 is Green’s non-linear strain tensor and εC ∈ R3×3

its linearized version, Cauchy’s linear strain tensor. The gradient of the displacement

field is denoted by the 3 by 3 matrix ∇u.

A constitutive law (or also called material law) is used for the computation of the

symmetric internal stress tensor σ ∈ R3×3 for each material point m based on the strain

ε at that point. Most computer graphics papers use Hooke’s linear material law

σ = E · ε, (2.3)

where E is a rank four tensor which relates the coefficients of the stress tensor linearly

to the coefficients of the strain tensor. For isotropic materials (a material which has

the same mechanical properties in all directions), the coefficients of E depend only on

Young’s modulus and Poisson’s ratio. Two very common elastic models used in computer

graphics are:

• The fully linear elastic model, using the linear Cauchy strain tensor εC and Hooke’s

linear material law.

• The St. Venant-Kirchoff elastic model, abbreviated as StVK, using the non-linear

Green’s strain tensor in combination with Hooke’s linear material law.

The choice of elastic model influences the physical accuracy and also the computational

complexity of the resulting elastic model.

2.1.2 Finite Element Method

To date, Finite Element Methods (FEM) have often been used to discretize the partial

differential equations that describe the dynamics of continuum deformable, elasto-plastic

models, and result in (generally nonlinear) second-order ordinary differential motion

equations [Sha89].

29

The accuracy and computational complexity of a method depend on multiple factors

in the design of a simulation model. More specifically, they depend mainly on the choice

of elastic force model, time integration method and spatial discretization method. Many

papers in computer graphics use the explicit Finite Element Method, where both masses

and internal forces are lumped to the vertices [OH99, DDCB01, MDM+02, MG04]. This

choice relates to the spatial integration method, it is not to be confused with explicit

time integration. The explicit FEM method can be integrated in time both explicitly

or implicitly.

Implicit vs. Explicit Time Integration Numerical time integration of ordinary

differential equations is used to advance the state or in other words simulate the motion

equations that follow from physical laws. The survey paper of Hauth et al. [HES03] is an

excellent overview in the context of deformable modeling in computer graphics. Explicit

integration methods are easy to implement but are only conditionally stable because

they blindly extrapolate force values into the future. As a consequence, increasingly

smaller time steps have to be used for increasingly stiffer materials. This obviously

affects the overall computational complexity of such scheme. On the other hand, implicit

schemes express unknown force values implicitly in the equations. In other words, these

quantities are implicitly given as the solution of a system of equations. For example, the

implicit (or backward) Euler scheme is stable for arbitrarily large time steps. This gain

comes with the price of having to solve an algebraic system of equations at each time

step, which has a negative effect on the computational complexity of implicit schemes.

A combination of the St. Venant-Kirchhoff elasticity model (see Section 2.1.1) with

explicit time integration methods has been used successfully to produce fast simulations

of soft deformable bodies of moderate complexity for animation [ZC99] and for medical

applications [PDA01]. O’Brien et al. [OH99, OBH02] present a FEM based technique for

simulating brittle and ductile fracture in connection with elasto-plastic materials. They

30

use tetrahedral meshes in connection with linear basis functions and Green’s strain

tensor. The resulting nonlinear equations are solved explicitly and integrated explicitly.

The method produces realistic and visually convincing results, but it is not designed for

interactive use. In addition to the strain tensor, they use the so-called strain rate tensor

(the time derivative of the strain tensor), to compute damping forces.

As long as the equation of motion is integrated explicitly in time, non-linear elas-

tic forces resulting from Green’s strain tensor can be computed fairly efficiently. The

nonlinear formulas for the forces are simply evaluated and used directly to integrate

velocities and positions as in [OH99]. However, as mentioned earlier, implicit integra-

tion or quasi-static approximation methods enable significantly larger time steps than

explicit integration methods, as proven by many researchers [BW98, TPBF87, TSIF05,

MG04, BNC96, JP99]. However, for implicit integration, a system of algebraic equa-

tions needs to be solved at every time step. The use of Cauchy’s linear stress tensor

can yield a linear algebraic system which can be solved more efficiently and more stably

than non-linear ones. Unfortunately, linearized elastic forces are only valid for small de-

formations. Large rotational deformations yield highly inaccurate restoring forces (see

Fig. 2.2).

Co-rotational Methods and Stiffness Warping To eliminate these artifacts, Müller

et al. extract the rotational part of the deformation for each finite element and compute

the forces with respect to the non-rotated reference frame [MDM+02, MG04]. In his

method, named Stiffness Warping, the rotation of each tetrahedral element with respect

to the rest configuration is estimated from the deformed vertices, by performing a polar

decomposition of the matrix that describes the transformation of the tetrahedron from

the rest configuration to the current configuration. This rotation is used to warp the

vertex deformations back to the rest shape before internal elastic stresses are computed.

This strain is then transformed back to the current configuration for time integration.

31

Figure 2.2: Stiffness Warping. Linearized elastic forces are only valid for
small deformations (left). To solve these artifacts, Müller introduces stiffness
warping [MDM+02] (right).

This yields stable, fast and visually pleasing results. In an earlier approach, they ex-

tracted the rotational part not per element but per node [MDM+02]. In this case, the

global stiffness matrix does not need to be reassembled at each time step but ghost forces

are introduced. Müller’s approach can be categorized in a more general class of methods

called co-rotational FEM schemes [Fel00, HS04]. However, most of these methods do

not consider centripetal and Coriolis forces introduced by the moving reference frame.

Local Linearization The seminal work by Terzopoulos and Witkin [TW88] is an-

other approach to account for the fact that linear strain models are not invariant to

rotations. They explicitly track a single rigid body rotation for the entire deformable

body, instead of estimating the rotation of each element. They propose a hybrid ap-

proach, where linear strain models are exploited for large deformations by decoupling

32

Figure 2.3: Local linearization. Capell et al. [CGC+02a] associate each region
of the finite element mesh with the bone of a simple skeleton and then locally
linearize the elastic forces in the frame of that bone.

the rigid body motion from the deformation field. Although geometrically less accurate

than Müller’s work, it accounts for inertial forces introduced by the moving and warped

frame. Shabana [Sha89] proposes a similar approach for articulated characters. Another

solution to this problem is proposed in [CGC+02a]: each region of the finite element

mesh is associated with the bone of a simple skeleton (Figure 2.3) and then locally lin-

earized. The regions are blended in each time step, leading to results which are visually

indistinguishable from the non-linear solution, yet much faster.

2.1.3 Reduced Models

Unfortunately, employing linear elasticity models is usually not sufficient by itself to

obtain real-time performance for highly tesselated solids. Several recent techniques have

been proposed to reduce the number of the degrees of freedom (DoFs) in deformation

simulations.

33

Dynamic Real-Time Deformations using Space & Time Adaptive Sampling
Gilles Debunne
iMAGIS-GRAVIR

Mathieu Desbrun
U. of So. Cal.

Marie-Paule Cani
iMAGIS-GRAVIR

Alan H. Barr
Caltech

Abstract
This paper presents a robust, adaptive method for animating dy-
namic visco-elastic deformable objects that provides a guaranteed
frame rate. Our approach uses a novel automatic space and time
adaptive level of detail technique, in combination with a large-
displacement (Green) strain tensor formulation. The body is par-
titioned in a non-nested multiresolution hierarchy of tetrahedral
meshes. The local resolution is determined by a quality condi-
tion that indicates where and when the resolution is too coarse. As
the object moves and deforms, the sampling is refined to concen-
trate the computational load into the regions that deform the most.
Our model consists of a continuous differential equation that is
solved using a local explicit finite element method. We demon-
strate that our adaptive Green strain tensor formulation suppresses
unwanted artifacts in the dynamic behavior, compared to adaptive
mass-spring and other adaptive approaches. In particular, damped
elastic vibration modes are shown to be nearly unchanged for sev-
eral levels of refinement. Results are presented in the context of a
virtual reality system. The user interacts in real-time with the dy-
namic object through the control of a rigid tool, attached to a haptic
device driven with forces derived from the method.

1 Introduction
Animating deformable objects in real-time is essential to many in-
teractive virtual reality applications, such as surgery simulators or
video-games. An important point for a successful immersion is the
liveliness of objects: deformations should be dynamic (oscillations
should appear after a deformation for example), and not just a suc-
cession of static postures. Another essential point is to make a strict
guarantee for real-time. Merely satisfying visual and tactile fusion
frequencies (30 images, 1000 force samples per second) is not suf-
ficient to prevent lag or slow motion in the animation. In addition,
the simulation time must always be synchronized with the physical
time, regardless of computational platform.
Although quasi-static interactive simulators have been proposed

in the last few years [3, 20], computing accurate dynamic deforma-
tions in real-time is still a challenge. This paper proposes a solution
to this problem, using an adaptive physically-based model which is
locally animated at different levels of detail.

1.1 Related work
Background on deformable models
Many approaches have been developed for animating deformable
objects (see [17] for a thorough overview), but only few models
can be used when aiming at real-time performance.
Global deformation models have been designed for interactive

animation, but they restrict deformations to the combination of a

debunne|cani @imag.fr, mathieu|barr @cs.caltech.edu

Figure 1: Our real-time multiresolution model allows for a wide
range of applications, from virtual surgery simulators (top: liver
laparoscopic operation) to other immersive simulations (bottom:
toy example). The approach makes use of a local refinement tech-
nique to ensure high physical fidelity while bounding the global
computation load to guarantee real-time animations.

given set of vibration modes, or of a specific class of global de-
formations [23, 26]. They are less useful, however, when realistic
deformations are called for.
Particle and mass-spring systems are based on a local description

of the material. These systems allow for large deformations and dis-
placements, and are fairly easy to implement. The equations of mo-
tion are integrated independently for each particle, which generally
leads to fast calculations. When the spring stiffness is large, implicit
integration can be used to animate hundreds of mass points effi-
ciently [1], and even in real-time with some approximations [11].
Deformable models with greater physical accuracy have been

derived from elasticity theory [12] using finite element methods
(FEM). One of the most widely used solutions computes an equi-
librium shape of the object from a set of limit conditions [25, 18].
This method requires solving a large sparse system; as a result, it is
less compatible with real-time applications. Preinverting the matrix
allows for real-time [3], but the object has to be deformed using
penalty forces, which often fails to model accurate contact between
the object and the tool. The inverse matrix can also be updated
depending on which nodes are moved by the user, allowing a quasi-
static real-time animation of a hundred points [20]. One can also
precompute the effects of the displacement of each external point in
the three axis directions and then use a linear combination of these
deformations during animation [6]. However, superposition prob-
lems appear with this technique when several points are moved at
the same time.
The second main approach using elasticity theory is sometimes

called explicit finite elements [9, 22] (the term ”explicit” here refers
to a spatial discretization, and must not be mistaken with the more
common notion of time explicit integration). The way the anima-
tion is performed is quite similar to the mass-spring case, since each
node of the FEM mesh dynamically integrates its motion from the
positions of neighboring nodes. These methods give more accu-
rate results than mass-spring systems. However, computing local
deformations at a visually good discretization level requires a fine
sampling that prevents real-time performances, even if interactive

Figure 2.4: Multi-resolution methods. Debunne et al.partition the object in
a non-nested multi-resolution hierarchy of tetrahedral meshes [DDCB01].

Multi-resolution methods For example, multi-resolution methods [DDCB01, GKS02,

CGC+02b] focus computations with many DoFs at locations where high accuracy or

high detail is required. Debunne et al. [DDCB01] partition the object in a non-nested

multi-resolution hierarchy of tetrahedral meshes. The local resolution is determined by

a quality condition that indicates where and when the resolution is too coarse. As the

object moves and deforms, the sampling is refined to concentrate the computational

load on the regions that deform the most. This is illustrated in Figure 2.4. Grinspun

et al. [GKS02] and Capell et al. [CGC+02b] employ a subdivision scheme directly in

the finite element discretization scheme. They build a hierarchical basis using volumet-

ric subdivision, allowing the simulation to choose the appropriate subdivision level at

runtime, adding detail where it is needed. Otaduy et al. [OGRG07] integrate multigrid

algorithms and collision detection by identifying boundary conditions while inherently

exploiting adaptivity.

Modal Reduction Reduced coordinate methods based on modal analysis [JP02,

JF03, HSO03, BJ05, CK05] achieve rich deformations with a low computational cost

by describing global deformations as the combination of a few DoFs. For example,

34

Figure 2.5: Modal Reduction. Reduced coordinate methods based on modal
analysis deformations have a low computational cost by describing global defor-
mations as the combination of a few DoFs. In this figure, the principal modes of
deformation of a deformable shell are shown [HSO03].

Figure 2.5 shows the principal modes of deformation of a deformable shell. Barbič and

James [BJ05] have recently shown how to exploit St. Venant-Kirchhoff models along with

reduced coordinate methods, thus producing very fast, large rotation-invariant deforma-

tions. However, reduced coordinate methods based on modal analysis are not intended

for generating deformations with local support, which often arise during contact. Ex-

isting multi-resolution and reduced coordinate methods implicitly assume that a small

number of DoFs or a few global deformation bases are sufficient to describe meaning-

ful and possibly very large deformations. Choi et al.’s modal warping method [CK05]

extends stiffness warping to support modal reduction, but only supports moderate defor-

mations of constrained objects that are attached to rigid supports. Free-floating objects

are supported in the work by Hauser et al. [HSO03], and they also have basic support

for constraints in their modal simulation framework.

35

Figure 2.6: Surface oriented methods. Boundary Element Methods [JP99]
have been proposed for obtaining elasto-static formulations that reduce the com-
putations to surface nodes.

2.1.4 Surface Oriented Methods

Condensation [BNC96] and Boundary Element Methods (BEM) [JP99] have been pro-

posed for obtaining elasto-static formulations that reduce the computations to surface

nodes, while accounting for internal material properties. They exploit linear elasticity to

pre-compute the inverse of a matrix that is dense with respect to the number of surface

nodes. James and Pai [JP99] further optimized this approach by performing incremental

updates in situations with contact coherence, resulting in an interactive framework, as

illustrated in Figure 2.6. Unfortunately, these methods still suffer the disadvantages of

linear strain metrics under rotational motion. Zhuang et al. [ZC99] propose the use of

a graded mesh to reduce the complexity of the 3D problem by one order of magnitude

asymptotically. The spatial tesselation of a graded mesh has a higher resolution near

the surface of the mesh than on the inside. They suggest that if the size of the element

increases proportionally to the distance to the surface, one will lose little accuracy with

respect to static forces exerted on the surface.

36

Figure 2.7: Image-based techniques. The technique illustrated here by Sum-
ner et al. [SOH99] animates surface deformations induced by contact, but does
not handle global motion effects.

2.1.5 Layered Deformable Models

Layered deformable models [CHP89, TT93, Gas98, CGC+02a, CBC+05] overlay layers

of deformable material on top of an articulated skeleton that drives the motion. Upon

contact, these models typically produce only surface deformations and are often not

designed to capture the two-way coupling of the global motion of the colliding objects.

Novel rigid body models with compliance [SK03, PPG04], although designed to alleviate

singularities in contact computation for rigid bodies, can be regarded as a specific type

of layered deformable model. They are designed to capture the two-way coupling of

the global motion of bodies in contact, but use simple deformation models, such as

spring-damper networks [SK03] or Boussinesq’s approximation [PPG04].

2.1.6 Regular Grids and Texture-based Approaches

Texture-based representations have been used for animating surface deformations. Stam [Sta03]

has introduced a technique for simulating flows on the parametric domain of subdivi-

sion surfaces. The image-based techniques by Sumner et al. [SOH99] and Wrotek et

37

Figure 2.8: DyRT. The technique by James and Pai [JP02], animates deforma-
tions excited by global deformation modes using Dynamic Response Textures.

al. [WRM05] animate surface deformations induced by contact, but do not handle the

effect of deformation forces on global motion of the objects (Fig. 2.7). The technique

by James and Pai [JP02], on the other hand, animates deformations excited by global

deformation modes (Fig. 2.8), but does not focus on contact-induced deformations.

These methods unfortunately do not capture the coupling between global motion of

free-floating objects and contact forces, and deformations in the way e.g. Terzopoulos’

work does [TPBF87].

2.2 Character Animation and Simulation

Animation and simulation of deformable articulated characters is a problem that has

been investigated using procedural, example-based, or physically-based approaches. The

animation of a character’s skeleton can be separate from the motion of its deformable

surface. They can be modeled and animated by an artist or automated by physical or

38

physically-inspired simulation. In this overview, I have surveyed the body of work that

is most related to the work in this dissertation.

2.2.1 Procedural Methods

A fundamental technique used in current character animation is to drive the deformation

of the surface via an underlying skeleton. In the context of three-dimensional animation,

this technique was introduced by Komatsu et al. [Kom88] and [MTLT88]. Given the

animation of the skeleton, the deformation of the skin surface is computed by linear

blending of bone transformations. This method is called skeletal-subspace deformation

(SSD). This technique, also known as linear blend skinning, cannot capture complex

deformations and typically has problems deforming skin near joints due to collapsing

geometry (i.e. pinching), because the deformation is restricted to the subspace of the

affine transformation of the joints. A few of these problems are illustrated in Figure 2.9.

Different methods have been proposed to address these problems by using example-

based deformations [LCF00], adding eigenbases of deformations in pose space [KJP02],

inserting additional joints tuned from examples [MG03], employing blending of trans-

formations instead of weights [KZ05], or the use of dual quaternions [KCŽC07], among

others. Recent techniques have extended skinning to mesh deformations [JT05] or mo-

tion capture data without a predefined skeleton [PH06].

2.2.2 Example-based Methods

Another key technique in character animation is the representation of shape deforma-

tions using a set of meaningful parameters rather than directly manipulating control

vertices. This idea was introduced by Parke in his work on facial animation [Par82].

He separates control parameters into two categories. Conformation parameters capture

aspects of the face that vary from person to person, such as nose length. Expression

parameters control deformations relating to the emotional state and activity of the face,

39

Figure 2.9: Skinning Problems. Linear blend skinning has problems deform-
ing skin near joints due to collapsing geometry (i.e. pinching). Dual quaternions
have been proposed to address this problem [KCŽC07].

such as smiling. The deformations associated with each parameter are built on a set

of primitive deformation operations including procedural construction, interpolation,

rotation, scaling, and positional offset.

Lewis et al. [LCF00], and Sloan et al. [SIC01] were the first to provide hybrid methods

to improve the methods above in order to enable shape interpolation for skeleton-driven

characters. By factoring out the nonlinear warping due to skeletal joints, they are able

to interpolate character shapes associated with particular skeletal configurations. The

surface of the character can be hand-modeled in any pose of the skeleton, and the

given surfaces are then interpolated to provide a surface for any other pose. When

dealing with large pose-spaces that have many example poses, PSD becomes memory

inefficient due to the large database of surface displacements. PSD can be extended to

support per-vertex weighted pose-space deformation (WPSD) [KM04, RLN06], largely

reducing the number of required example poses. The EigenSkin method [KJP02] also

40

provides a way to reduce per-vertex displacement memory footprint by computing an

error-optimal set of eigenbases for approximating the original deformation model and is

optimized using graphics processors. Other recent methods [WSLG07, WPP07] learn

example-based corrections on sparse points and assume that these corrections can be

smoothly interpolated.

2.2.3 Physically-based Methods

Skeletal Dynamics In the area of rigid articulated physical simulation, several linear-

time algorithms exist for simulating articulated skeletons without closed loops, either

with articulated body inertias [Fea87] or with Lagrange multipliers [Bar96]. The La-

grange multipliers framework can be naturally extended to formulate contact constraints.

Recently, a few researchers have shown how to handle both unilateral and bilateral

constraints. For example, Cline and Pai [CP03] emphasize handling rigid body contact

constraints using post-stabilization, whereas Erleben [Erl04] combines joint constraints,

joint limits, and joint motors with rigid contact constraints in a velocity-based linear

complementarity formulation with shock propagation. Weinstein et al. [WTF06] pro-

pose an iterative solution for handling joint and contact constraints for rigid, articulated

bodies in a single framework. Accurate contact handling for an articulated body with

k bones and m contacts has O(km) complexity [Bar96]. Obviously, this multiplica-

tive complexity poses a problem for collision intensive scenes with complex characters.

Physically-based simulation of an articulated skeleton can also be combined with motion

capture data to generate plausible blending of motion capture segments [ZMCF05].

Skin Deformations Skeletal deformations can also be used to impose constraints

on a control lattice for FEM simulation of dynamic deformations [CGC+02a, GW05].

Recently, Capell et al. [CBC+05] extended their framework to include rigging force fields,

self-collision handling, and linearization of deformations in pose space.

41

Anatomical Modeling In the simulation of human characters, accurate anatomy-

based representations (e.g., [DCKY02]) can be used for modeling material properties.

These representations, however, are computationally expensive, and the goal of this

thesis is to develop methods that can interactively capture surface deformation effects

and global deformation in a plausible way with less focus on internal behavior.

2.3 Contact Handling

Contact handling in physical simulation usually consists of two steps, collision detection

and computation of contact response. Often they are performed independently, with the

result of collision detection being used as input to the contact response module. On

the other hand, in reality they are tightly intertwined: collision detection has a strong

influence on the continuity of contact response and hence on the stability of numerical

integration.

2.3.1 Collision Detection

Collision detection is the first step in contact handling between two bodies. Collision de-

tection has received much attention in robotics, computational geometry, and computer

graphics. For more information on collision detection between rigid objects, please refer

to surveys on the topic [LM04]. For a survey of recent techniques for deformable bodies,

please refer to a more recent survey [TKH+05].

The existing work on collision detection has tackled many different types of mod-

els: 2-manifold polyhedral models, polygon soups, and curved surfaces are just a few

examples. In this dissertation, the main interest lies in collision detection between two

deformable objects. Such objects change at each frame, making the use of precomputed

acceleration structures much harder. The simulation framework of this thesis takes a

two-step approach, exploiting low-resolution 2-manifold rigid proxies in the first step,

42

and detecting interference of high-resolution deformable polygon soups in the second

step. Therefore, it is interesting to look at the previous work that is related to each one

of those two steps.

Proximity Queries Between Convex Polyhedra The property of convexity has

been exploited in algorithms with sublinear cost for detecting interference or computing

the closest distance between two polyhedra. Gilbert et al. [GJK88] exploit Minkowski

sums in order to design a convex optimization algorithm (known as GJK) for comput-

ing the separation distance between convex polyhedra, with linear-time performance

in practice. Lin and Canny [LC91, Lin93] designed an algorithm for computing sep-

aration distance by tracking the closest features between convex polyhedra. They ex-

ploit motion coherence and Voronoi marching to achieve an algorithm that runs in

nearly constant time per frame. Later, hierarchical convex representations have been

exploited along with temporal coherence in order to accelerate queries in dynamic

scenes [GHZ99, EL00, Lin93].

Hierarchical Collision Detection Collision detection between general models achieves

large speedups by using hierarchical culling or spatial partitioning techniques that re-

strict the primitive-level tests. Over the last decade, bounding volume hierarchies (BVH)

have proved successful in the acceleration of collision detection for dynamic scenes of

rigid bodies. For an extensive description and analysis of the use of BVHs for col-

lision detection, please refer to Gottschalk’s PhD dissertation [Got00]. The optimal

choice of type of bounding volume depends on the application. Some of the common

bounding volumes (BVs), sorted approximately according to increasing query time, are:

spheres [Qui94, Hub95], axis-aligned bounding boxes (AABB)[BKSS90], oriented bound-

ing boxes (OBB)[GLM96], k-discrete-orientation polytopes (k-DOP) [KHMS98], convex

hulls[EL01], and swept sphere volumes (SSV)[LGLM00]. BVHs of rigid bodies can be

computed as a preprocessing step, but deformable models require a bottom-up update

43

of the BVs after each deformation. Recently, James and Pai[JP04] have presented the

BD-tree, a variant of the sphere-tree data structure[Qui94] that can be updated in a fast

top-down manner if the deformations are described by a small number of parameters.

Surface interference for deformable polygon soups If compared to collision de-

tection approaches for rigid bodies, there are various aspects that complicate the prob-

lem for deformable objects. First, in order to realistically simulate interactions between

deformable objects, all contact points including those due to self-collisions have to be

considered. Then, as mentioned before, efficient collision detection algorithms are accel-

erated by spatial data structures including bounding-volume hierarchies, distance fields,

or alternative ways of spatial partitioning. Such object representations are commonly

built in a pre-processing stage and perform very well for rigid objects. However, in

the case of deforming objects these pre-processed data structures have to be updated

frequently. Collision detection algorithms for deformable objects also have to consider

that extra information such as penetration depth may be required for realistic contact

response.

Image-space Collision Detection with Graphics Processors (GPUs) Due to

the rapidly growing trend for parallel architectures [GRLM03] and its immense potential

for high-performance general-purpose computation, many researchers have exploited the

parallel processing power of GPUs for collision detection in the last few years. Rasteri-

zation hardware enables high performance of image-based collision detection algorithms.

Hoff et al. [IZLM01] presented an algorithm for estimating penetration depth between

deformable polygons using distance fields computed on graphics hardware. Others have

formulated collision detection queries as visibility problems. Lombardo et al. [LCN99]

intersected a complex object against a simpler one using the view frustum and clip-

ping planes, and they detected intersecting triangles by exploiting OpenGL capabilities.

More recently, Govindaraju’s CULLIDE algorithm [GRLM03] performs series of visibil-

44

ity queries and achieves fast culling of non-intersecting primitives in N-body problems

with nonrigid motion. Otaduy et al. [OJSL04] use low-resolution geometric representa-

tions (or proxies) with texture images that encode surface details. They exploit GPUs to

compute directional penetration very efficiently, which enables interactive haptic texture

rendering of complex models. More recently, Greß et al. [GGK06] use GPU-based colli-

sion detection for parameterized deformable surfaces. They are able to render and check

collisions for deformable models consisting of several thousands of trimmed NURBS

patches in real-time.

2.3.2 Contact Response

Contact response is typically applied in one of two ways: using penalty methods or

enforcing constraints.

Penalty Methods The major advantage of penalty methods [WVS90, BW98, HFS03]

is their ease of implementation, but they rely on the existence of interpenetrations to

produce collision response. Interpenetrations may be alleviated by using stiff penalty

forces along with implicit integration methods, but this approach results in a coupling

of the motion equations of colliding bodies, and penalty methods lose their original

simplicity.

Constraint-based Methods Based on the Signorini problem [KO88], the contact

response between deformable bodies can be formulated as a Linear Complementarity

Problem (LCP) on contact forces and displacements [SK03, PPG04, DAK04]. Duriez

et al. [DAK04] formulated the LCP along with the time-discretization of FEM based

dynamic deformation equations. LCP-based solution to contact problems has long been

applied for rigid bodies, but with deformable bodies the dimension of the LCP may

grow by orders of magnitude when contact areas are large. Pauly et al. [PPG04] suggest

45

Figure 2.10: Constraint-based Contact Handling. Using only a small subset
of the contact points in a constraint-based method accelerates contact handling,
but limits the resolution of deformations and produces smoothened deformations
(see Fig. 2.10).

using only a small subset of the contact points in the LCP, which limits the resolution

of deformations and produces smoothened deformations (see Fig. 2.10).

With deformable bodies, contact lasts a small duration, and the classic inequality

non-penetration constraints may be substituted by equality constraints on the collid-

ing particles without affecting the body’s momentum much [BW92, BFA02]. A large

family of methods formulate contact constraints and apply contact impulses on each

colliding object independently [ZC99, BFA02, CW05, KEP05]. Pre-impact velocities

are computed by performing a collision-free integration step of the motion equations.

Then, colliding particles are detected, and impulses are applied to compute post-impact

velocities that satisfy the contact constraints. Finally, positions are corrected as well.

Previous methods, however, apply impulses explicitly, and require small time steps to

avoid the inversion of the deformable mesh, as they rely on accurate accumulation of

elastic energy during the compression phase [ITF04, PPG04]. In order to increase the

fidelity and responsiveness of collision detection, others have used implicit time integra-

tion of the constrained motion equations. Cirak et al. [CW05] formulated the deformable

constraint problem using Lagrange multipliers, into an algorithm that is unfortunately

computationally expensive and poorly parallelizable.

46

Contact Response for Procedural Characters For procedural character anima-

tion methods such as linear blend skinning (SSD) [MTLT88], the surface deformation

is fairly restricted because the skeletal pose fully defines the surface deformation. Such

methods based on the skeletal configuration and possibly other parameters [LCF00]

cannot capture the reaction of the character to collisions, as illustrated in Fig. 1.1.

Contact Response for Layered Models Terzopoulos and Witkin [TW88] suggested

an explicit integration of rigid motion and contact forces. Unfortunately, this approach

is only conditionally stable for appropriate time steps and it requires small simulation

time steps for the correct propagation of strain due to collision compression [PPG04].

Thus, as explained in Sections 1.1.3 and 3.4. I propose implicit integration of contact

forces to achieve stable and responsive contact handling (see also Figure 1.7).

2.4 Control of Deformations

In addition to strictly forward simulation of skin dynamics, there has been a fair body of

work related to control of skin deformations. That work is motivated by the importance

of artistic freedom and intuitive control in a animation pipeline. In this section, I will

give an overview of significant work related to control of surface deformation of both

kinematic and dynamic characters. Similar to animation and forward simulation of skin

dynamics in 2.2, I will categorize the work related to surface deformation control into

data-driven, kinematic, combined and physically-based methods.

2.4.1 Data-driven methods

Purely data-driven methods are an attractive choice for control purposes, as the input

shapes provide guide examples of desired deformations. In its most essential form,

one simply interpolates between character poses in a large database [Mae06], providing

47

Figure 2.11: Physically Based Rigging. Capell et al. [CBC+05] use force
field templates to control facial expressions. Here, two torus templates produce
dilation and contraction of the nostrils.

ample control of skin deformation to animators. However, many poses are required

in the database to achieve good results. Purely data-driven methods lack a kinematic

model, making them of limited use for animation and dynamic simulation.

2.4.2 Kinematic methods

Purely kinematic approaches such as skeletal-subspace deformation (SSD) [MTLT88]

model the deformation of the skin surface by linear blending of the animated bone

transformations. In this technique, the surface deformation is restricted to the subspace

of the affine transformation of the joints. Thus SSD is limited in the degree to which

the animator can influence the deformation. Unlike shape interpolation and other data-

driven methods, SSD does not permit direct sculpting or control. Instead, artists have to

tweak vertex weights, giving SSD algorithms the reputation of being tedious to control.

2.4.3 Combined methods

The first work to add control to a kinematic approach is that of pose-space deforma-

tions [LCF00]. PSD is a hybrid method that combines SSD with shape morphing and

48

Figure 2.12: Directable Animation of Deformable Objects. Kondo et
al. [KKA05] retarget elastic deformations with shape keyframes (above), which
are used to compute the control result (below). Unfortunately, this technique is
restricted to a given input animation.

employs scattered data interpolation to compute non-linear skin corrections in pose-

space, resulting in a kinematic model that also has artist-sculpted poses. Pose space

deformation and related example-based methods allow direct sculpting of geometric

morph targets, but are purely kinematic approaches to (quasi-)static deformation, with-

out reference to underlying forces or mass.

2.4.4 Physically-based methods

Finally, physically based methods can be used to increase the realism of a controlled

animation. Such realism can be achieved by exploiting bio-mechanical models of skin

tissue and musculature[ZCCD04, SNF05, SKP08]. To increase performance, some re-

searchers have used simplified (quasi-)linear elastic models that cannot capture complex

non-linear behavior such as muscle bulging. Physically based methods can only provide

49

control through the influence of forces. While methods that control global deformation

modes have been around for a while [WW90], providing control of sculpted deforma-

tions for simulation of deformable models has only recently caught attention in graphics

research. A method for physically based rigging was proposed by [CBC+05], using pose-

dependent forces to guide the shape of the character. This approach does not support

pose-dependent elastic properties and its performance is highly dependent on the reso-

lution of the sculpted deformations. Given an input animation, shape keyframes can be

used to retarget the elastic deformations [KKA05, AOW+08] or to enhance the surface

deformations with physically simulated detail using subspace constraints [BMWG07].

The former provides good control of shapes but is restricted to a given input anima-

tion, while the latter achieves rich secondary surface detail but does not provide direct

manipulation of the surface.

50

Chapter 3

Soft Body Simulation with Dynamic

Deformation Textures

In this chapter, I present a novel and fast simulation framework for a specific class of

deformable bodies in contact. The deformable bodies discussed in this chapter are as-

sumed to have a rigid core enclosed in a layer of deformable skin. The simulation of

the deformation in the skin layer is based on the projection of the three-dimensional

deformation field onto a lower-dimensional space. The many DoFs arising from large

contact regions and high-resolution geometry can be handled more efficiently handled

in two-dimensional parametric atlases called dynamic deformation textures. In Chap-

ter 4, this approach is generalized to support characters with an articulated core (i.e., a

skeleton). The use of layered representations have been proposed before for simulating

skeletal deformations [CHP89, Gas98, CBC+05], as many real-world solids retain their

core structures under large deformations. In this chapter and in Chapter 4, I show that

my layered model enables stable simulation of very appealing soft body effects for a wide

range of objects. Examples include animated characters, human bodies, furniture, toys,

footballs, tires, etc. I derive an implicit yet highly parallelizable solution to dynamic

deformations using linear elasticity theory (with separation of rigid motion), continuum

Lagrangian mechanics, FEM discretization, and constraint-based contact response with

Lagrange multipliers.

Dynamic deformation textures are exploited at all levels of the simulation framework

described in this chapter:

• Proximity queries of deformable bodies are computed in a two-stage algorithm

directly on dynamic deformation textures, resulting in output-sensitive collision

detection that is independent of the combinatorial complexity of the deforming

meshes.

• Skin deformations are formulated using pose-space elasticity dynamics in the para-

metric domain of dynamic deformation textures. A highly parallelized and efficient

implementation on the GPU is achieved by decoupling the motion equations.

• Contact response is also computed directly on the dynamic deformation textures.

I present a robust, parallelizable formulation for computing constraint forces using

implicit methods that exploits the structure of the motion equations to achieve

highly stable simulation, while taking large time steps with inhomogeneous mate-

rials.

• Finally, dynamic deformation textures can be used directly for real-time shading

and easily be implemented using SIMD architecture on commodity hardware.

3.1 Dynamic Deformation Textures

In this section, I present a layered representation of deformable objects, specifically

tuned for objects that are amenable to low-distortion mapping or unwrapping to a 2-

dimensional domain. An efficient extension to articulated characters is non-trivial, but

a solution to that problem is presented in Chapter 4.

In the next few sections, I discuss the 2-dimensional parameterization of the defor-

mation field, and I show how this can be discretized and stored in a texture atlas. I

52

T CS

g f

Figure 3.1: Deformable Object Representation. Deformable surface S (52K
triangles) and core C (252 triangles) of a gear, showing the patch partitioning of its
parameterization. The common color coding reflects the mapping g◦f−1 : C → S.
The dynamic deformation texture T (256×256) stores the displacement field values
on the surface. On the right, 2D schematic figure showing a slice of the tetrahe-
dral meshing of the deformable layer. The gear contains 28K simulation nodes
on the surface and 161K tetrahedra, allowing the simulation of highly detailed
deformations.

also introduce the generalized set of coordinates, which are partitioned into a rigid and

a deformation coordinate set.

3.1.1 Parameterization of Layered Deformable Objects

Each deformable object is modeled as a core covered by a layer of (possibly hetero-

geneous) deformable material. For simplicity, this chapter describes the simulation

framework of layered deformable objects assuming that the core consists of one single

rigid body of low polygonal complexity. In Section 4.1, this approach is extended for

articulated characters. It will be demonstrated in the remainder of this chapter that the

layered representation enables modeling of many types of deformations in a elegant and

unified manner:

1. Both large and small scale deformations over large regions of the object’s surface.

2. Global deformations of skeletal nature.

3. Two-way dynamic coupling between the global motion of the object and the surface

deformations produced during contact.

53

A body frame is attached to the core, with rotation R and position of the center of

mass c. The world position x of a point in the object can be expressed in terms of its

body-frame position u as x = c + Ru. In the deformable layer, u can be decomposed

into a constant undeformed component uo and a displacement us, hence u = uo + us.

I proceed by expressing 3-dimensional deformations in a 2-dimensional parametric

domain. For that purpose, I parameterize the surfaces of the core and the deformable

object. A surface patch C ⊂ R3 of the core can be defined by a mapping f from a

domain T ⊂ R2, f : T → C. I enforce a one-to-one correspondence between points

on the surface of the deformable object and points on the surface of the core. Then

a corresponding surface patch S ⊂ R3 of the deformable object can be defined by a

mapping g : T → S, and the correspondence by g ◦ f−1. Based on the mapping g, the

body-frame position u of the surface of the object and the displacement field us can be

expressed as 2-dimensional functions u(s, t) and us(s, t).

The one-to-one correspondence can be achieved by appropriately modeling the core.

One option is to parameterize the surface of the object in its rest position and decimate

the surface while preserving the parameterization [COM98, SSGH01]. Another option

is to parameterize the core and model the surface of the object by successive subdivision

and addition of geometric detail [ZSS97]. The surfaces of the core and of the deformable

object may be partitioned into multiple patches, and each patch parameterized inde-

pendently.

3.1.2 Discretization and Generalized Coordinates

A regular sampling of the planar domain T can be regarded as a texture atlas, which I

refer to as dynamic deformation texture. Moreover, the grid points (s, t) are referred to

as texels. Each texel (s, t) ∈ T maps to two corresponding points f(s, t) and g(s, t) on

the surfaces of the core and the deformable object. The regular sampling of T and the

correspondence of surface points define implicitly a meshing with one layer of tetrahedral

54

elements, as shown in Figure 3.1. By applying classical approximation methods such as

FEM, the continuous displacement field us on the deformable layer can be approximated

from the values at a finite set of nodes. Since us = 0 at points on the core, us can be

approximated entirely from the values us(s, t) at surface nodes. Effectively, each texel

(s, t) ∈ T maps to a simulation node g(s, t) in the FEM discretization. Simulation

variables defined per-node, such as velocities, forces, mass and stiffness values, etc. can

also be stored in texture atlases. Note that the implicitly defined texture-based meshing

is not consistent at patch boundaries, which require special yet simple treatment as

discussed in Section 3.5.

The displacements of the surface nodes are packed in a vector of elastic coordinates

qs ∈ Rn. Together with the core coordinates qc =

 c

θ

 ∈ R7, they form the generalized

coordinates

q =

 qc

qs

 (3.1)

This vector of generalized coordinates describes the state of a layered deformable object.

I choose quaternions to represent the orientation θ. Given a (position-dependent) shape

matrix S, the displacement of a point in the deformable layer can be expressed in

compact matrix form as us = Sqs. Then the world-frame position of a material point

can be written as x = c + R (uo + Sqs). With linear basis functions, S is linear in the

barycentric coordinates for each mesh element [BNC96].

Given ω, the angular velocity of the core expressed in body-frame coordinates, I

define a velocity state vector

v =

 vc

vs

 , vc =

 ċ

ω

 , vs = q̇s. (3.2)

As shown in Appendix A.1, the velocity state vector and the generalized coordinates are

55

related by v = Pq̇ and q̇ = P+v, where P and P+ are matrices that encapsulate the

relation between ω and the derivative of a quaternion.

3.2 Layered Dynamic Deformations

In this section, I first formulate the motion equations of single-core layered deformable

objects based on Lagrangian mechanics, linear elasticity theory, and linear FEM dis-

cretization. For an extension to multi-core, articulated characters, please refer to Sec-

tion 4.2.1. The motion equations are then discretized in time using implicit integration.

I exploit the representation based on dynamic deformation textures and achieve an

efficient, parallelizable set of equations, by separating the update of core and elastic

velocities, without sacrificing responsive two-way coupling between the core and the

deformable layer.

3.2.1 Equations of Motion

The motion equations of a deformable body can be derived from Lagrangian contin-

uum mechanics [GPS02, Sha89]. Using linear elasticity theory and linear FEM, and

by formulating the displacement field in the floating frame of reference, elastic forces

are linear w.r.t. the elastic coordinates qs and invariant under rigid motion of the

core [Sha89, TW88]. I denote mass, damping, and stiffness matrices as M, D, and

K, generalized external forces as Q, and a quadratic velocity vector that captures the

inertial effects of centripetal and Coriolis forces as Qv. I obtain the ordinary differential

motion equations:  Mv̇ = Q + Qv −Kq−Dv = F,

q̇ = P+v.
(3.3)

56

Figure 3.2: Simulation of Heterogeneous Materials. Efficient decoupled
implicit integration enables fast simulation of a heterogeneous cylinder. Notice
the large indentations and the resulting large contact area when the soft side
collides with the ridged plane.

(A detailed description of the derivation can be found in [Sha89] and is also summarized

in appendix B.5.) The mass and stiffness matrices present the following structure:

M =

 Mc Mce

MT
ce Me

 and K =

 0 0

0 Ks

 . (3.4)

Mc ∈ R6×6 and Mce ∈ R6×n are dense, and I approximate Me ∈ Rn×n with a diagonal

form by applying mass lumping. Raleigh damping D is used as follows:

D =

 0 0

0 Ds

 with Ds = αMs + βKs, (3.5)

such that the damping matrix D is a diagonal matrix acting only on the elastic coor-

dinates. As shown by the structure of K, the elastic forces depend only on the elastic

coordinates qs. However, elastic forces affect the core coordinates as well, by inertial

coupling through Mce. The submatrix Ks ∈ Rn×n is constant and sparse, with at most

21 non-zero terms per row, due to the regular texture-based meshing.

57

3.2.2 Efficient Decoupled Implicit Integration

I have opted for an implicit backward Euler discretization of the motion equations,

enabling simulation of heterogeneous materials without letting the time step be gov-

erned by stiff regions. This approach enables simulation of very stiff materials and even

heterogeneous materials, with large time steps, as shown in Fig. 3.2. Backward Euler

discretization yields a nonlinear set of equations, which can be linearized using a first-

order approximation of the force F(t + ∆t) w.r.t. the state vectors v and q. After

algebraic manipulation, and assuming a constant mass matrix M during each time step,

the equation for the velocity update ∆v is:

(
M−∆t

∂F

∂v
−∆t2

∂F

∂q
P+

)
∆v = ∆tF(t) + ∆t2

∂F

∂q
P+v(t). (3.6)

I can define the implicit mass matrix M̃ and implicit force vector F̃ by gathering

terms in (3.6):

M̃∆v = ∆tF̃(t). (3.7)

Due to the linearity of (3.7), a collision-free velocity update can be computed first,

and then the effect of contact forces (Section 3.4) is added to produce the constrained

velocity update.

Unfortunately, the implicit mass matrix M̃ does not lend to an efficient solution of

the linear system (3.7). Instead, I propose an efficient solution that exploits the block

structure of M̃ and F̃ in (3.4). I derive the following equations to decouple the update

of core velocities vc and elastic velocities vs:

∆vc = M̃−1
cond(∆tF̃c −∆tM̃ceM̃

−1
s F̃s), (3.8)

∆vs = ∆tM̃−1
s F̃s − M̃−1

s M̃ec∆vc, (3.9)

in which the condensed matrix M̃cond = M̃c − M̃ceM̃
−1
s M̃ec ∈ R6×6. This differs from

58

other surface-oriented approaches [BNC96], where the size of the condensed matrix is

governed by the number of surface nodes. The advantage of the decoupling lies in the

structure of the systems to be solved. First, two linear systems are solved:

M̃sy = F̃s (3.10)

M̃sY = M̃ec. (3.11)

Then vc is updated by solving the condensed system (3.8). Finally, the elastic velocities

vs can be solved through (3.9) in a highly parallel manner.

The two n × n linear systems to be solved imply the matrix M̃e which, omitting

external forces, can be written as:

M̃e = Ms −∆t
∂Qve

∂vs

−∆t2
∂Qve

∂qs

+ ∆tDs + ∆t2Ks. (3.12)

I approximate the Jacobians of the quadratic velocity vector Qve by their diagonal forms.

In this way, the matrix M̃s is sparse, symmetric and positive definite; thus it can be

solved efficiently using iterative methods. Moreover, as discussed in Section 3.5, the

regularity of the matrix Ks, due to my texture-based representation, enables a highly

parallelizable implementation of the iterative solvers.

3.3 Texture-Based Collision Detection

Collision detection is the first step in resolving the dynamic behavior of soft objects

in contact. In this section, I present an algorithm for collision detection that exploits

dynamic deformation textures, in which contact constraints are detected in image space

and then mapped to the texture-based simulation domain.

I propose to perform collision detection between two deformable objects A and B in

two steps:

59

TD
S

D

Φ g

Figure 3.3: Texture-Based Collision Detection Process. Center: A sphere
S collides with a textured terrain. Left: Contact plane D for texture-based colli-
sion detection, and mapping φ : D → S. The contact plane shows the penetration
depth. Right: Dynamic deformation texture T , and mapping g : T → S. The
penetration depth is projected from D to T , and is available for collision response.

1. Identify contact regions with object-space techniques using low-resolution models

of the objects.

2. Compute contact information in the contact regions using image-space techniques

and high-resolution displacement fields.

A similar approach has been exploited for estimating the penetration depth value be-

tween rigid, high-resolution objects [OJSL04], whereas in my method, I perform collision

handling of deformable objects and compute contact information for many colliding sur-

face points.

In the object-space collision detection step, I identify patches of the core surfaces

closer than a distance tolerance that bounds the high-resolution deformable surfaces. I

employ existing acceleration methods based on convex hull hierarchies [EL01]. Given a

contact region between core surface patches CA ⊂ R3 and CB ⊂ R3, I identify a con-

tact plane D ⊂ R2. This is the plane passing between the contact points and oriented

according to the contact normal. By orthonormal projection of CA (and similarly for

CB) onto D, I define a mapping hA : D → CA. Due to the one-to-one correspondence

60

between patches on the surface core and patches on the deformable surface, a contact be-

tween core surface patches CA and CB defines a potential contact between corresponding

deformable surface patches SA and SB.

Given a patch S on a high-resolution deformable surface, and the mappings g and f

defined in Section 3.1.1, φ = g ◦ f−1 ◦ h defines a mapping φ : D → S from the contact

plane D to the patch S, through the core patch C and the texture atlas T , as shown

in Figure 3.3. Similarly to the sampling of the texture atlas T , the contact plane D is

sampled in a regular grid. Then, each texel (u, v) ∈ D maps to a point φ(u, v) on the

high-resolution patch S.

For each texel (u, v) ∈ D, I perform high-resolution collision detection by testing the

distance between points φA(u, v) ∈ SA and φB(u, v) ∈ SB along the normal direction of

D. If the points are penetrating, I identify a contact constraint and compute the contact

normal n as the average surface normal. I also approximate the penetration depth as

d = nT (φB(u, v) − φA(u, v)) for applying constraint correction. This approximation is

affected by texture distortion, but I have not found noticeable errors in my examples or

benchmarks.

Contact constraint information can be transferred to a texture atlas T via the map-

ping f−1 ◦ h and made readily available for the computation of collision response at

the simulation nodes, as shown in Figure 3.3. For accuracy of collision detection, it is

convenient to sample the contact plane D at a higher density than the texture atlas T .

As a result, multiple colliding points (u, v) ∈ D may map to the same simulation node

(s, t) ∈ T . In such cases, I keep only the constraint information from the colliding point

with the largest penetration depth value.

61

3.4 Contact Resolution

After collision detection, the computation of dynamic response of colliding bodies is

continued by formulating velocity constraints in the generalized coordinate setting us-

ing Lagrange multipliers. For enhanced two-way dynamic coupling between core and

deformable layer under collisions, I propose a solution of collision response based on the

implicit integration of constraint forces, and I present an efficient numerical solution.

Colliding surface nodes are prevented from penetrating other objects by the appli-

cation of contact constraint forces. I first describe the handling of fixed, frictionless

constraints, and then I extend the algorithm to moving constraints with friction. I de-

fine pre-impact velocities v− computed by solving (3.7), post-impact velocities v+ and

collision impulse δv = v+−v−. The contact constraints are expressed in the world-frame

velocities of the colliding nodes, and must be transformed to the generalized coordinate

setting by the kinematic relationship in Equation (A.5) in Appendix A.1. A planar

constraint n acting at a node i produces an elastic collision impulse with coefficient of

restitution ε governed by:

nT

(
ẋ−i +

δẋi

1 + ε

)
= j

(
v− +

δv

1 + ε

)
= 0. (3.13)

The generalized constraint normal is represented by the vector

j = nTLi =

[
nT −nTRũi nTRSi

]
, (3.14)

where Si indicates the position-dependent matrix S evaluated at node i. Note that

Sivs selects the ith block component from vs. The velocity constraints can be jointly

formulated with a generalized constraint matrix J ∈ Rm×(6+n), where m is the number

of colliding surface nodes:

J

(
v− +

δv

1 + ε

)
= 0. (3.15)

62

In order to compute the collision impulse, a constraint force vector JT λ is added to

the external forces Q in (4.13). Here, λ is a vector of Lagrange multipliers. Typically,

the collision impulse is solved by explicitly integrating the constraint forces, which is

equivalent to applying an instantaneous change of momentum to the surface nodes at the

end of each time step. Unfortunately, this approach requires small simulation time steps

for the correct propagation of pressure waves induced by collision response [PPG04].

With explicit integration and large time steps, the elastic deformation forces are unable

to counteract the momentum of the core upon collision, and the core may penetrate the

constraints. Figure 1.7 illustrates this problem.

I propose the computation of the collision impulse through implicit integration which,

as shown in Figure 1.7, produces a robust and responsive reaction of the core with large

time steps. Due to linearity of (3.7) w.r.t. the vector of forces F̃, one can compute the

collision impulse separately by solving:

M̃δv = ∆tJT λ. (3.16)

From (3.15) and (3.16), the following equation is obtained:

JM̃−1JT λ = −1 + ε

∆t
Jv−. (3.17)

After solving this equation for λ, the constraint forces JT λ can be computed. The

efficient decoupled implicit velocity update described in Section 3.2.2 is then performed

to compute the post-impact velocities v+.

3.4.1 Efficient Decoupled Contact Resolution

The matrix JM̃−1JT is dense, and the computation of λ through (3.17) is computa-

tionally expensive. Instead, I propose to decouple (3.17) by exploiting the structure

63

of J =

[
Jc Js

]
, which can easily be derived from the individual node velocity con-

straints (3.13). Jc ∈ Rm×6 is dense, and Js ∈ Rm×n presents one non-zero 1 × 3 block

per row. Equation (3.17) can be rewritten as:

(
JsM̃

−1
s JT

s + UM̃−1
condV

T
)

λ = −1+ε
∆t

Jv−, (3.18)

U = Jc − JsM̃
−1
s M̃ec, V = Jc − JsM̃

−1
s M̃T

ce.

I account for the rank-6 matrix UM̃−1
condV

T by applying a Sherman-Morrison-Woodbury

update [GL96] to the solution of the full-rank linear system given by JsM̃
−1
s JT

s . For

the solution of the full rank system, I approximate M̃s by considering only 3× 3 block

diagonal terms of the stiffness matrix Ks. This approximation has the effect of discarding

the implicit integration of inter-node elastic forces in the computation of the collision

force. Note that the approximation still captures the two-way coupling of elastic forces

between the core and the deformable layer, thereby preserving the responsiveness of

the core’s motion to collisions. Due to the block diagonal approximation of M̃s and

the structure of Js, where each constraint only affects one simulation node, the matrix

JsM̃
−1
s JT

s is diagonal, and can be trivially inverted.

Moving Constraints

If a node i collides against a moving constraint n, I estimate the world-frame velocity ẋo

of the constraint at the time of maximum compression, and I rewrite the elastic collision

equation (3.13) as:

nT

(
ẋ−i +

δẋi

1 + ε
− ẋo

)
= 0, (3.19)

To estimate ẋo, I rigidify the colliding bodies and compute the normal velocity at the

point of contact under a perfectly inelastic collision [Mir96].

64

Friction

I compute frictional response based on Coulomb’s model, with friction coefficient µi for

each colliding node i. Based on the kinematic relationship (A.5), pre-impact velocities

v−, frictionless impulsive response δv, a constraint normal n, and pre-impact tangential

velocity ẋt
i = Liv

− −
(
nTLiv

−)n, I compute a maximally dissipating friction impulse

δẋt
i for node i similar to [BFA02] as:

δẋt
i = −µ̂ẋt

i, µ̂ = min

(
1,

µi‖Liδv‖
‖ẋt

i‖

)
. (3.20)

I conclude by applying a friction impulse to the elastic velocity of the colliding node as

δq̇t
i = RT δẋt

i.

Constraint Correction

After the computation of collision response, I perform a position update with the newly

computed velocities. With a new texture-based collision detection step, I detect possible

colliding nodes and their penetration depth d. For a colliding pair of nodes i and j, I

estimate local stiffness ki and kj, and I determine the constraint position correction of

node i to be

δxi =
−kj

ki + kj

dn. (3.21)

Then, I correct the body-frame displacement of node i as

δqi = RT δxi. (3.22)

3.5 Algorithm and Parallel Implementation

The implicit formulation of the dynamic motion equations and collision response yields

linear systems of equations with dense coupling between the core and elastic velocities.

65

It is possible to formulate the velocity update and collision response in a highly paral-

lelizable manner. Figure 3.4 is a schematic overview of the GPU algorithm for simulating

and rendering deformable objects in contact using dynamic deformation textures maps.

Figure 3.5 is an more detailed outline of the algorithm. Let s denote the operations

that are performed on small-sized systems (i.e., computations of core variables, and low

resolution collision detection). The remaining operations are all executed in a parallel

manner on a large number of simulation nodes. Specifically, T refers to operations to

be executed on all simulation nodes in the dynamic deformation texture T , D refers to

operations to be executed on texels of the contact plane D, and TD refers to operations

to be executed on the colliding nodes. As highlighted in Figure 3.5, all operations to

be executed on simulation nodes (indicated by T , TD and D) can be implemented with

parallelizable computation stencils on the GPU, as indicated in Figure 3.4 with purple

diamond boxes. Moreover, due to the regular meshing of the deformable layer produced

by dynamic deformation textures, the computation stencils are uniform across all nodes,

hence they are amenable to implementation on a streaming processor such as the GPU.

In Section 3.5.3, I will illustrate this concept for representing and computing sparse

matrix multiplications in step 2 of Figure 3.5.

I exploit image-based computations also on the GPU for collision detection. Because

the dynamically deforming surface is updated in texture memory directly, its state is

available to the collision detection module without requiring an expensive update from

the CPU host. The computations of per-texel penetration depth and contact normal

are performed by orthonormal projection of the geometry, as described in Section 3.5.4.

Finally, after computing collision response of steps 6-15 and updating the position

D2T in texture memory, the state of the surface is readily available for rendering. Sec-

tion 3.5.5 describes how the deforming mesh is drawn to the screen using our D2T model

representation.

66

Figure 3.4: GPU Algorithm Overview.

3.5.1 Dynamic Deformation Textures

I encode the state of the deformable surface in dynamic deformation textures or D2Ts.

A D2T consists of a texture atlas, with potentially multiple patches (Fig. 3.1), in which

each texel (s, t) that falls within the patches implicitly represents a vertex on the surface.

These texels are also referred to as valid texels. Each texel (s, t) ∈ T maps to two

corresponding points f(s, t) and g(s, t) on the surfaces of the core and the deformable

object as indicated in Fig. 3.1. The regular sampling of T and the correspondence

of surface points define implicitly a meshing of one layer of tetrahedral elements, as

shown in Figure 3.6. By applying classical approximation methods such as FEM , the

deformation field in the deformable layer can be approximated from the values at a finite

set of nodes. Since there is never any deformation at points on the core, the deformation

field can be approximated entirely from the values at surface nodes. Effectively, each

texel (s, t) ∈ T maps to a simulation node g(s, t) in the FEM discretization. Simulation

67

COLLISION-FREE UPDATE
1. Evaluate forces T

2. Solve the sparse linear systems M̃sy = F̃s and M̃sY = M̃ec (Sec-
tion 3.2.2), using a Conjugate Gradient solver [GL96]

T

3. Update core velocities v−c using the condensed formulation (3.8) s
4. Update elastic velocities v−s using the new core velocities as in (3.9) T
5. Perform a position update q− = q(t) + ∆tP+v− T

COLLISION DETECTION
6. Execute low-resolution collision detection s
7. Execute high-resolution collision detection D
8. Map contact information to the dynamic deformation textures T

COLLISION RESPONSE

9. Invert the block-diagonalized full-rank matrix JsM̃
−1
s JT

s (Sec-
tion 3.4.1)

TD

10. Solve for λ in (3.18) using the Sherman-Morrison-Woodbury for-
mula

TD

11. Repeat steps 3 and 4 to obtain the collision impulse δv, based
on (3.16)

12. Compute friction impulse TD

13. Perform a position update q(t + ∆t) = q− + ∆tP+(δv) T
CONSTRAINT CORRECTION

14. Repeat collision detection steps 6 to 8
15. Apply constraint correction TD

Figure 3.5: Summary of the Simulation Algorithm

variables defined per-node, such as velocities, forces, mass and stiffness values, etc. can

also be stored in the D2T texture atlases. Note that the implicitly defined texture-

based meshing is not consistent at patch boundaries, which requires special yet simple

treatment as discussed in Section 3.5.3.

In a preprocessing step, I tesselate the mesh from the vertex connectivity that is

implicitly defined by the texel grid in the D2T texture (see Fig. 3.6). The implicitly

defined triangle strips are encoded in a vertex index list IM . Additional triangle strips are

constructed to patch or zipper [TL94] the mesh at the cuts along the patch boundaries.

68

Figure 3.6: Dynamic deformation texture representation and implicit tesselation.

3.5.2 Basic Rendering Blocks

In this section, I define a few basic blocks that are used to render the deforming mesh to

the screen and into the collision and simulation domains. Note that the representation

of a deformable mesh is carefully chosen such that expensive GPU readback or host

upload are avoided at all times. Therefore, the mesh topology is stored in a static index

buffer on the GPU and all surface vertex position data is stored in texture memory,

while the surface deformation simulation is computed using fragment programs on the

GPU. The blocks are illustrated schematically in Fig. 3.7

UpdateMesh (UM) This block is used to update a dynamic vertex buffer VM with

the deformed surface vertex positions after each time step in the simulation. One ap-

proach to render the deforming surface given the dynamic deformation texture T on

Vertex Shader 3.0 hardware, is to fetch the positions from T in the vertex shader. Each

vertex can then be displaced according to the current position stored in T . Unfortu-

nately, the less powerful vertex processing pipe and slow vertex-stage texture fetches of

non-unified GPU architectures can make this approach a bottleneck, especially because

69

Figure 3.7: Rendering Blocks.

the UpdateMesh block will be used multiple times for the same snapshot in time. It

would be wasteful to repeat the displacement in the vertex shader for collision detection,

shadow map generation and multiple final render passes.

Therefore, the OpenGL PBO (Pixel buffer object) extension is used to copy the D2T

texture T to a pixel buffer object that can later be interpreted by the OpenGL API as

a vertex buffer object VM (see Code Snippet E.1). This technique is often referred to as

the PBO/VBO approach to render-to-vertex-array. This data copy is efficient because

it is between two GPU memory areas: there is no data copy to or from the host. Note

that in this approach not all memory locations in the PBO contain valid vertex data,

because not all texels in T are valid (Sec. 3.5.1). The vertex indices in IM are assigned

such that they index into the correct location of the PBO. I store the triangle list in

the static index buffer IM ; thus the vertices are rendered without any vertex bandwidth

overhead with an indexed draw call (glDrawElements() for the OpenGL API).

70

RenderMesh (RM) This block is the encapsulation of the vertex processing stage

on the GPU, when rendering a deformable mesh. Given the index buffer IM and the

dynamic vertex buffer VM , the deforming geometry can be rendered efficiently with a

single indexed draw call.

RenderMeshPatch (RMP) This block is identical to the RenderMesh block, except

that the input index list IP is not static. In this case, only a subset of the mesh’s triangles

is rendered by sending the vertex index list at each frame. As it is only a limited number

of triangles, this is not a significant overhead.

RenderMeshIntoAtlas (RMIA) and RenderPatchIntoAtlas (RPIA) In many

simulation parts of the algorithm, it is required to render values defined on the surface

of the mesh into the D2T texture atlas. This can easily be achieved by the Render-

MeshIntoAtlas block. The D2T texture coordinates are stored as positions a separate

(static) the vertex buffer VT . Therefore, through the use of the identity matrix as the

model-view-projection matrix, the surface values are rasterized into the D2T texture

atlas. The same operation can also be performed for a subset of the mesh triangles.

This block is called RenderPatchIntoAtlas.

3.5.3 Simulation of Surface Deformations

As mentioned in Sec. 3.5.1, I perform dynamic simulation of the surface deformable

object in the domain of the dynamic deformation texture (D2T). The goal of the dynamic

simulation part of the algorithm is to compute the global motion of objects (i.e. the

rigid motion of the core C) and to compute how the surface S deforms under influence

of forces and accelerations. In practice, this can be done very efficiently exploiting the

parallellism on the GPU in fragment programs while rendering the results directly to

the dynamically changing D2T position texture which can then be used for collision

detection and rendering. The only information communicated between CPU and GPU

71

Figure 3.8: A texel in the D2T defines a simulation node. The figure shows its
neighborhood in the FEM mesh. Its 6 neighbors and itself give rise to 7 non-zero
blocks per block row in the stiffness matrix, as shown in Fig. 3.9.

are a few small state changes, typically 6-tuples or 3× 3 matrices. These state changes

are required for for updates that are related to the rigid transformation modes of C and

for transferring forces and accelerations that are due to dynamic coupling between the

deformable surface and the core.

This section will only touch on a few concepts and simple shaders that are being used

to map step 2 in Algorithm 3.5 to the deformation simulation to the GPU pipeline. In

reality, our implementation of all dynamics steps in Figure 3.5 consists of 50-100 different

shaders that compute the different steps in the dynamics equations and contact handling.

Velocity and position updates At the core of the dynamics simulation of a mesh

with n vertices, a large linear system Ax = b (Equation (3.10)) has to be solved at

each time step to compute the velocity at the next time step, where x and b are vectors

of size n. The matrix A is a symmetric, positive definite sparse block matrix, where

the non-zero blocks are 3 × 3 matrices (Fig. 3.9). Such a system can be solved with

any variant of the conjugate gradients (CG) solver [She94]. The conjugate gradients

method is an iterative solver and a very important building block of CG are sparse

matrix multiplications of the form y = Ax.

In the remainder of this section, I will explain how A is stored and how these sparse

matrix multiplies are performed in a fragment program.

72

Figure 3.9: Sparse matrix multiplies on the GPU using D2T representation. The
matrix A has 7 non-zero blocks per block row (left), which can be represented by
21 RGB textures that use the D2T atlas mapping (right).

Sparse Matrix Representation and Multiplication The vectors x and y ∈ R3n

both define vector values (3-tuples) at each vertex. We already know from Section 3.5.1

that we can store those values at valid texels in the D2T texture atlas. We can also

map A to the D2T atlas as follows. Each block row of A defines seven 3 × 3 blocks,

one for each neighbor of a given vertex (or texel in the D2T) as shown in Fig. 3.8.

Hence, we can store A in 21 RGB textures where each texture stores a 3 × 1 row of

a 3 × 3 block (Fig. 3.9). Due to the limited number of texture samplers that can be

bound to a fragment program within a pass, the actual sparse matrix multiplication

has to be performed in two passes. Mathematically, this corresponds to the following

transformation: Ax =

[
Al Ar

]
x = Alx + Arx. In the second pass, the result of Alx

is passed in from the first pass. Code Snippet E.2 shows the setup and invocation of the

passes, while Fragment Programs E.1 and E.2 show the implementation in the fragment

processor. Note that if x is a n × 3 matrix instead of a vector of size n, the result is

a n × 3 matrix. This can still be achieved in 2 passes by rendering to multiple render

targets simultaneously, storing 3 columns instead of 1.

This approach of matrix multiplies is very efficient on parallel streaming proces-

sors such as current GPUs, because there is no branching or pointer chasing involved.

73

Moreover, my mapping of the sparse matrix to the D2T atlas exploits the GPU texture

caching architecture in two ways. First, due to tile based rendering, neighboring values

fetched from x and A in one fragment are conveniently pulled into cache for neighboring

fragments in the same tile. Second, fetching a value pulls in other neighboring values

from x and A that are required in the same fragment program for free.

Patch Boundary Handling In the previous section, it was neglected that, at patch

boundaries in the D2T, not all neighboring texels are valid texels. One solution could

be to flag boundary texels in some way and use branching that is available in current

GPU hardware, but this is not very efficient because the boundaries are not coherent

fragment blocks. Better approaches are to rasterize and handle the boundary texels

separately with a separate fragment program [Har05] or to guarantee that all neighbors

are valid. I have taken the latter approach. I adapt a method by Stam [Sta03] for

providing accessible data in an 8-neighborhood to all nodes located on patch boundaries.

Before every sparse matrix multiplication step in the algorithm, I fill a
√

2-texel-width

region on patch boundaries by sampling values on the adjacent patches. In practice,

for each deformable model and D2T atlas, I maintain a list of thin quads that have

texture coordinates assigned that map to locations of neighboring surface points across

boundaries in the D2T texture atlas.

3.5.4 Texture-Based Collision Detection

I employ a GPU-accelerated image-space algorithm because it exploits the surface po-

sition data that is stored and simulated in fast texture memory. Therefore, the transfer

of large amounts of mesh position data between CPU and GPU is avoided. Such data

transfer could easily become a bottleneck for our system otherwise.

As proposed in Section 3.3, collision detection between two deformable objects A

and B is performed in two steps:

74

Figure 3.10: Schematic overview of the pipeline of my GPU-based collision
detection algorithm, composed out of 5 passes.

1. Identify contact regions with object-space techniques using low-resolution proxies

of the objects.

2. Compute contact information in the contact regions using image-space techniques

and high-resolution displacement fields.

The second step in my algorithm is accelerated by the GPU. This stage utilizes

the RenderMeshPatch block (Sec. 3.5.2) The draw call is restricted to the triangles that

form the potentially colliding surface patch. My image-based algorithm consists of three

substeps that are implemented by five rendering passes per pair of potentially colliding

surface patches (Fig. 3.10)

In the first two passes, I perform a projection step for each potentially colliding

surface patch. I set up an orthographic projection which we call the contact camera.

The contact camera is carefully positioned such that it looks along the normal of the

contact plane D and such that the projections CA and CB capture the full extent of

75

Figure 3.11: Left: The contact camera is set up with an orthogonal projection
perpendicular to the contact plane D. Right: Multiple surface points may map
to the same location on D. When texels in the D2T are tagged as colliding, a
check is required which triangle (of the two red triangles) the rasterized fragment
belongs to, in order to avoid tagging the green surface point as colliding.

the contact area of a pair of potentially colliding surface patches SA and SB (Fig. 3.11).

Vertex Program E.1 and Fragment Program E.3 are used to rasterize the distance from

the eye directly into textures T d
A and T d

B. Note that I enable front-facing triangles

while rasterizing SA into T d
A and back-facing triangles while rasterizing SB into T d

B. In

the third pass, I capture the areas of interpenetrating surface patches by constructing

texture D from projections T d
A and T d

B. For each texel (u, v) ∈ D, I perform high-

resolution collision detection by testing the distance between points CA(u, v) ∈ SA and

CB(u, v) ∈ SB along the normal direction of D. If the points are penetrating, I identify

a contact constraint and I compute the contact normal n as the average surface normal.

In practice, as shown in the middle of Figure 3.10, I render a full-screen quad of the size

of T d
A and T d

B into D, while Fragment Program E.4 computes the difference in distances.

Positive values indicate penetration in the projection as indicated by the red regions on

the left in Fig. 3.3. Note that I also write the triangle ID of the current fragment to

D. These IDs are used in the next pass to check whether a rasterized texel of the D2T

is originating from the triangle whose fragments were rasterized into D and not from a

triangle that maps to the same texel in D (see Fig. 3.11).

Recall that the deformation of the sphere is stored in the two-dimensional texture

atlas T called dynamic deformation texture (D2T). This texture atlas is shown on the

76

Figure 3.12: Rendering pipeline. Note that the RenderMesh (RM) block utilizes
the vertex stream with normals generated as in Fig. 3.13.

right in Fig. 3.3. Dynamic contact response is computed in this domain. Therefore,

the collision information in texture D has to be transferred to the dynamic deformation

texture T via a mapping that is the combination of the inverse of the orthogonal contact

projection with the D2T texture atlas mapping. In practice, this step is performed by the

two last passes of our algorithm. These passes render each potentially surface geometry

again using the RenderMeshIntoAtlas block (Section 3.5.2) into the D2T domain. I set

up the texture matrix to perform the correct mapping while fetching values from texture

D. The required texture matrix set up is completely analogous to the typical setup for

traditional shadow mapping. Here, the contact camera model-view-projection matrix

takes the place of the light’s model-view-projection matrix. Snippet E.3 shows the code

that is used for this setup. Fragment Program E.5 shows the pixel shader code of the

last two passes, one shader per object.

3.5.5 Rendering

Using the RenderMesh block defined in Sec. 3.5.2, rendering a deformable mesh rep-

resented by D2T position textures and the additional data structures described in

Sec. 3.5.1 and Sec. 3.5.2 is relatively straight forward (see Fig. 3.12). A standard frag-

77

Figure 3.13: Normal Generation block. A normals PBO is generated and then
copied to the normal vertex buffer.

ment program that computes per-pixel shading is plugged into the pipeline and the

RenderMesh block can also be used to generate a standard shadow map.

The only missing piece of information are the vertex normals. As the geometry is

deforming, normals have to be recomputed at each frame (or each few frames). There are

two approaches possible. On Shader Model 4.0 (DirectX10) compatible hardware, the

normals can be computed in a geometry shader provided that an appropriate triangle

adjacency list is sent to the GPU. Alternatively, on older hardware, one can generate a

normal map using the D2T texture atlas. This process is illustrated in Fig. 3.13 along

with Fragment Program E.6. Here, as for sparse matrix multiplication in Sec. 3.5.3, the

input D2T texture has to be augmented with replicated position information along the

patch boundaries. This ensures that each D2T texel neighborhood is valid and can be

sampled to approximate the corresponding vertex normal. The normals vertex buffer

can be updated with the normal map using the PBO technique that was also used when

updating the position vertex buffer in Sec. 3.5.2.

3.6 Benchmarks

The experiments described in this section were performed on a 3.4 GHz Pentium-4 pro-

cessor PC with a Nvidia GeForce 7800GTX graphics card. Table 3.1 lists the statistics of

78

Figure 3.14: Deformations of High-Resolution Geometry. Left: Two
deformable pumpkins are dropped on top of each other. Right: Detail view of the
rich deformations produced on the top pumpkin during contact.

the used models. In all cases, the size of the dynamic deformation textures was 256×256

texels. Such high resolution enables the simulation of rich deformations, as shown most

clearly in the pumpkins (Figure 3.14), gear (Figure 3.15), and head (Figure 3.17) models.

With our constraint-based collision response approach, impacts produce highly-detailed

indentations such as the ones suffered when the pumpkins are dropped on each other,

or when the fist punches the head on the eyebrow. The gear model demonstrates rich

dynamic deformations of surface features larger than 30% of the object radius.

Model Tire Cylinder Pumpkin Gear Head

Nodes 31K 21K 30K 29K 40K
Tetrahedra 162K 161K 183K 173K 240K

Table 3.1: Models and Statistics.

The use of sound physically-based techniques for modeling contact and deformations

leads to highly plausible rolling and tumbling motion in combination with surface defor-

mations, as can be observed in the tires (Figure 3.16) and gear (Figure 3.15) scenes. With

79

Figure 3.15: Deformations of High-Resolution Geometry. A dropped
cylinder produces rich dynamic deformations on the ridges of a gear.

Figure 3.16: Deformable Objects Roll and Collide in the Playground.

my deformable object representation and simulation algorithm, I achieve those effects on

high-resolution objects in an efficient manner. The computational cost is dominated by

the iterative solver, and its convergence depends mostly on the stiffness of the regions in

contact. As a reference, the simulation of the rolling heterogeneous cylinder depicted in

Figure 3.2 runs at an average of 1−2 fps when the stiff part (Young modulus 60KN/m2)

80

is in contact with the ridged terrain. On the other hand, the same simulation runs at an

average of 6 fps when the soft part (Young modulus 3KN/m2) is in contact, with up to

2600 simultaneously colliding nodes. This translates to a throughput of approximately

1M tetrahedra and 120K surface simulation nodes simulated per second. In the rest of

the experiments, similar average performance is observed: 2 seconds/frame for the simu-

lation of the tires (Figure 3.16), 1 fps for the punch (Figure 3.17) and cylinder-with-gear

(Figure 3.15) scenes, and 2 fps for the dropped head (Figure 3.17).

3.7 Comparisons and Discussion

Method DoFs Contact Performance

BNC96 surface explicit 11K nodes/sec
ZC99 volume explicit 303K els./sec

PPG04 surface LCP 2K contacts/sec
MG04 volume explicit 63K els./sec

implicit 120K nodes./sec
D2T surface Lagrange 1M els./sec

mult. 15K contacts/sec

Table 3.2: Approximate Performance Data Benchmark. Extrapolated per-
formance data from [BNC96], [ZC99], [PPG04], [MG04] shown with mine, D2T.

I have chosen a few related techniques as a basis for benchmarking the overall perfor-

mance of the algorithm. It is, however, very difficult to compare the various techniques,

as their primary goals are often different. The algorithm in this chapter complements

the prior work by offering an efficient, robust contact handling method for colliding

deformable bodies with large contact regions and high-resolution surface geometry, but

cannot simulate arbitrary large deformations. In Chapter 4, I present a method that

does not have this restriction, providing a solution for soft articulated characters. I have

extrapolated performance data using Moore’s Law (performance increases 2x every 18

months). As indicated in Table 3.2, the performance of my approach (D2T) (up to 15K

contacts/sec, 1M tets/sec, and 120K nodes/sec for moderately soft objects), is compara-

81

Figure 3.17: Deformations of a Virtual Head. Top: A fist hits a deformable
head (attached by springs in the neck area), producing both local deformations
and global motion. Middle: Detail of the deformations produced near the eyebrow
by the impact. Bottom: A softer head is dropped on the floor, resulting in larger
deformations.

82

ble to the performance of techniques that use explicit integration (e.g. [ZC99]), without

their time-step restrictions. My approach is considerably faster than other methods

that enable large time steps, both those that focus on the surface deformation (such

as [BNC96]), and efficient co-rotational methods that compute deformations within the

entire volume (such as [MG04]). My approach can also handle many more contact

points than novel quasi-rigid dynamics algorithms using LCP [PPG04] while also pro-

ducing richer deformations. Though computationally very efficient, this method cannot

achieve a performance comparable to model reduction techniques that precompute data-

driven models and build efficient low-rank approximations of deformed shapes [BJ05].

On the other hand, my approach does not require lengthy pre-computation of dynamics

and achieves rich high-resolution deformations with both local and global support.

3.8 Advantages and Summary

In summary, my approach offers the following advantages:

• With the reformulation of the 3-dimensional elastoplastic deformations and col-

lision processing on 2-dimensional dynamic deformation textures, the resulting

system achieves fast and robust simulations of contacts between deformable bod-

ies with rich, high-resolution surface geometry.

• Using a two-stage collision detection algorithm, the proximity queries are scalable

and output-sensitive, i.e. the performance of the queries does not directly depend

on the complexity of the surface meshes.

• By decoupling the parallel update of surface displacements from the update of

the core DoFs, my efficient implicit formulation enables fast, stable simulations of

heterogeneous materials under large time steps.

83

• The constraint-based collision response, using Lagrange multipliers and approx-

imate implicit integration of elastic forces, provides fast and responsive contact

handling, alleviating time-step restrictions of previous impulsive methods.

• The surface detail attributes stored in dynamic deformation textures can also be

used directly for high-quality real-time shaders.

My mathematical formulation of dynamic simulation and contact processing, along

with the use of dynamic deformation textures, is especially well suited for realization on

commodity SIMD or parallel architectures, such as graphics processing units (GPU), Cell

processors, and physics processing units (PPU). I have demonstrated the implementation

of dynamic deformation textures on parallel processors, achieving fast simulation of

complex scenarios with detailed deformations and thousands of simultaneous collisions.

3.9 Limitations and Future Work

The use of a layered representation obviously poses some limitations on the type of defor-

mations that can be modeled. Nevertheless, it is possible to capture large deformations

of as much as 30-40% of the object’s radius successfully. This layered representation can

be extended to articulated, flexible bodies that undergo skeletal deformations, by aug-

menting the generalized coordinate set of the core representation to include multibody

systems. This is demonstrated in Chapter 4. Due to the issues regarding boundary

patches discussed in Section 3.5, it may be harder to port the texture representation to

articulated models. Such models have rather complicated texture atlases. As the atlas

complexity goes up, so does the patch boundary complexity. In my experiments, the

convergence rate of the conjugate gradients solver decreases as the boundary complexity

goes up.

84

Chapter 4

Articulated Soft Character Simulation with

Fast Contact Handling

In this chapter, I present a method for simulating soft characters with contact constraints

in a unified framework for real-time modeling of character deformations due to contact

with the interplay between skeletal deformations and surface deformations, for objects

with thousands of deformable surface vertices.

The method proposed in Chapter 3 simulates objects with a rigid core and a highly

detailed deformable skin, but does not support global deformations of the core, such as

the bending of an arm, or twisting of a shoulder joint. These effects are essential to

realistic animation of virtual characters such as humans and animals. In this chapter, I

present a method that supports characters with an articulated core, such as a skeleton

with bones and joints. Building on the concepts of Section 3.2, I extend layered repre-

sentations to soft articulated characters, which is essentially an integration of articulated

body dynamics and skinning with displacement corrections (see Section 4.1). While this

representation cannot capture general global deformations, it is nevertheless well suited

for representing skeletal and surface deformations. One of the challenges for modeling

soft articulated characters that has not been well investigated previously is the inter-

play of skeletal motion and surface contact and the resulting two-way coupling effects.

Another major issue is the enforcement of contact constraints on soft articulated bodies

Figure 4.1: Interactive Deformation of an Articulated Deer. The deer,
consisting of 34 bones and 2 755 deformable surface vertices is being deformed in-
teractively (almost 10 fps on average) by a rigid bird model. The interplay between
small-scale contact deformations and the skeletal contact response is successfully
captured (below). The interactivity of my approach is demonstrated on the top
left picture, where the bird is controlled in real time by a 3-DoF haptic controller.

with many degrees of freedom. In this chapter, I also extend the image-space collision

detection algorithm of Section 3.3 to support articulated characters. My extended algo-

rithm performs fast hierarchical collision queries between deformable characters whose

surface is computed by displacements from (weighted) rigid bones, and it overcomes the

86

computational bottlenecks due to contacts.

My algorithm overcomes the computational challenges of soft character simulation

by robustly decoupling skeleton and skin computations using careful approximations

of Schur complements (Section 4.3), and efficiently performing collision queries by ex-

ploiting the layered representation. With this approach, this simulation framework can

simultaneously handle large contact areas, produce rich surface deformations, and cap-

ture the collision response of a character’s skeleton.

4.1 Layered Articulated Soft Characters

In this section I describe the formulation of deformations in the pose-space of an articu-

lated character. I define the set of generalized coordinates composed of bone transforms

and skin vertex deformations, and discuss the FEM discretization of the deformation

field.

4.1.1 Pose-Space Deformation

Given a skeletal-subspace deformation model with k bones, the deformed position x

of a material point is defined based on the position u in pose space To,i and bone

transformations Ti as

x =
k∑

i=1

wiTiui =

(
k∑

i=1

wiTiT
−1
o,i

)
u. (4.1)

I choose to express deformation and elastic energy in pose-space (also known as

the bind pose of the articulated mesh) before applying the skin transformations (see

Figure 4.2). This approach has been proposed previously for geometric deformation and

displacement corrections [JT05, KJP02, LCF00]. Pose-space offers a local coordinate

frame on which we can measure elastic energy using a linear strain tensor without

87

suffering from geometric non-linearities [MDM+02].

The deformed position in pose space u can be decomposed into a constant unde-

formed component uo and an elastic skin displacement us, hence

u = uo + us. (4.2)

The bone transforms are chosen to be rigid transforms. The bone-frame position ui can

be then be defined:

ui = T−1
o,i u = co,i + Ro,iu. (4.3)

with co,i a displacement and Ro,i a rotation matrix. The constant transformations co,i

and Ro,i transform world-space surface positions in rest state to each bone’s reference

system. It is also possible to make Eqn. 4.1 more explicit for rigid transforms:

Tiui = ci + Riui, (4.4)

with ci a displacement and Ri a rotation matrix. Note that the blend weights wi are

assumed to obey the affine constraint
∑

i wi = 1.

4.1.2 Discretization and Meshing

The layered model described here can be regarded as a generalization of the model in

Section 3.2 to account for articulated motion. In this representation, the degrees of

freedom (DoFs) are determined by the DoFs of the bone transforms T and the DoFs

of the deformable layer. The deformation field us in the deformable layer is discretized

using linear FEM. The deformation field us can then be approximated by n discrete

node values accumulated in a vector qs ∈ R3n through the (position-dependent) shape

matrix S and expressed compactly as us = Sqs.

An advantage of this method is that we can generate dynamic models from skinned

88

meshes that have been created with popular 3D authoring software. A volumetric mesh

of the deformable layer can be generated with any method that preserves the original

outer surface vertices, either by defining two enclosing surfaces [HGB06] or by generating

a layer of tetrahedral elements inwards from the outer surface [EDS05]. The mesh blend

weights can simply be reused for the physical model as defined in Eqn. (4.1).

By replacing the deformation field in Eqn. (4.1) with its discretized version, the

expression for the position of a vertex is obtained:

x =
k∑

i=1

wi(ci + Ri(co,i + Ro,i(uo + Sqs))). (4.5)

The DoFs of our model can be packed together in the generalized state vector

q =

 qc

qs

 , (4.6)

where

qc =
[
cT

1 θT
1 . . . cT

k θT
k

]T ∈ R7k for k bones. (4.7)

We chose quaternions to represent the orientations θ.

The velocity state vector v follows from the time differentiation of Eqn. (4.5). As

shown in Appendix A.2, the world-frame velocity ẋ of a material point can be approxi-

mated as ẋ = LWv. Here, the velocity state vector is

v =

 vc

vs

 , (4.8)

with

vc =
[
ċT

1 ωT
1 . . . ċT

k ωT
k

]T ∈ R6k. (4.9)

The angular bone velocities ω are expressed in the bone’s local frame. The velocity state

89

Figure 4.2: Pose space deformation. Elastic deformations us of the skin are
defined in bind-pose-space.

vector and generalized coordinate vector are related by v = Pq̇ and q̇ = P+v, with P

and P+ matrices that transform angular velocities ω to time derivatives of quaternions

in q̇. Note that the discretized deformation model in Eqn. (4.5) is identical to the

deformation model in Section 3.2 for the case of a single bone (k = 1).

4.2 Layered Dynamics with Contact Constraints

In this section I formulate the constrained dynamic simulation problem for soft charac-

ters. I model both joint and contact constraints with the method of Lagrange multipliers,

and I use implicit backward Euler integration with linearization of forces.

90

4.2.1 Coupled Layered Dynamics in Free Motion

I formulate the dynamic motion equations of soft articulated characters using Lagrangian

continuum mechanics [GPS02, Sha89]. Using linear elasticity theory and linear FEM

and by formulating the displacement field of the soft layer in pose space, the elastic

forces can be regarded as linear with respect to the displacements us, and as invariant

to the rigid bone transformations T in Eqn. (4.1) [Sha89, TW88].

The elastic energy given by pose-space displacements and linear elasticity yields the

usual sparse block Ks of the stiffness matrix K that affects only DoFs of the soft skin

layer qs, not the skeleton:

K =

 Kb 0

0 Ks

 . (4.10)

However, note that, as shown in Section 4.3.5, the skeletal response of surface contact

forces is still naturally captured. On the other hand, pose-space strain (as defined in

Section 4.1.1) does not model pose-dependent strain energy. As an example, this is

apparent for large bending of an elbow. Due to compression of tissue in the elbow

region, one expects a reactive force that prevents the elbow to bend further. This is

not captured by pose-space strain. Instead, I propose to capture this effect partially in

the skeleton dynamics by adding a joint stiffness term between connected bones in the

skeleton. This approach leads to off-diagonal non-zero blocks in the skeleton stiffness

block Kc. The derivation of the joint stiffness terms is given in Appendix C .

The kinetic energy depends on both skeleton and skin velocities, and it captures the

interplay of articulated motion and skin deformation. My pose-space linearized defor-

mation model bears similarity with the one of Capell et al. [CBC+05], but I effectively

capture inertial forces by directly considering pose space deformations in the Lagrangian

formulation instead of using co-rotational methods [MDM+02].

From Lagrangian continuum mechanics (see Appendix A.2 and [Sha89]), the inertia

91

matrix M can be derived:

M =

∫
ρLT

WLW dV. (4.11)

This matrix has the following structure:

M =

 Mb Mbs

MT
bs Ms

 , (4.12)

with Mb ∈ R6k×6k the inertia of bones and Ms ∈ R3n×3n the inertia of the skinned

surface. Due to skinning blend-weights, Mb computed from the full Lagrangian would

present off-diagonal blocks. However, the inertial coupling between bones is dominated

by joint constraints, hence I compute a block-diagonal Mc, where for each bone I com-

pute the inertia by associating approximate link geometry (See Figure 4.3). Note that

this approximation requires that the bone coordinate frames are located at the center

of mass of the approximate link geometries. The dense bands Mbs and MT
bs are key for

capturing the effect of surface contact forces on bone motion through inertial coupling.

I incorporate Raleigh damping D (see Section 3.2.1), generalized external forces

Q, and a quadratic velocity vector Qv [Sha89] that represents the inertial effects of

centripetal and Coriolis forces on the bones. A set of ordinary differential equations

(ODEs) follows from assembling all terms in Lagrange’s equation [Sha89]:

 Mv̇ = Q + Qv −Kq−Dv = F + JT
µµ + JT

λ λ,

q̇ = P+v.
(4.13)

I explicitly separate joint constraint forces JT
µµ and contact forces JT

λ λ from other forces

F. In the discrete formulation of joint and contact forces (see Sections 4.2.2 and 4.2.3),

the Lagrange multipliers µ and λ will include the time discretization ∆t, and can be

regarded as impulses.

I have discretized the motion equations using implicit backward Euler with a first

92

order approximation of forces, as this method allows for stable and responsive contact

response. Please refer to Section 3.3 for the rationale behind implicit integration of

contact forces. The discretized motion equations have the form

M̃∆v = ∆tF̃, (4.14)

with discrete-time mass matrix M̃ and discrete-time force vector F̃ defined as

M̃ = M−∆t
∂F

∂v
−∆t2

∂F

∂q
P+ (4.15)

F̃ = F + ∆t
∂F

∂q
P+. (4.16)

Given the separation of forces in Eqn. (4.13), and as performed in a similar manner in

Chapter 3 and by others [Erl04, CW05], I decompose the dynamic update into three

steps:

1. Computation of collision free velocities v− = v(t−∆t)+∆v from the old velocities,

using Eqn. (4.14).

2. Collision detection and identification of contact constraints.

3. Computation of collision response δv that yields constrained velocities v(t) =

v− + δv.

To ensure enforcement of constraints on positions as well, I apply a final correction step

that projects (possibly) penetrating vertices to the constraint surfaces.

4.2.2 Joint Constraints

I use the method of Lagrange multipliers to compute joint constraint forces [Bar96]. It

is important to observe that the joint constraints do not influence the skin coordinates.

Hence, Jµ is of the form Jµ =
[

Jj 0
]
, with Jj a sparse (c × 6k) block matrix, k the

93

number of bones, and c the total number of DoFs of the joints. The non-zero (d × 6)

blocks in Jj are defined by each pair of bones connected with a d-DoF joint. Given the

joint Jacobians, constraints on the collision-free velocities can be defined as follows:

Jµv
− = −αg(qc) ⇒ −Jj∆vc = Jjvc + αg(qc). (4.17)

In this equation, the term −αg(qc) is a stabilization term to avoid position drift.

By combining the discrete motion equations and the joint constraints (4.17), it is

possible to arrange the collision-free velocity update of the articulated skeleton in a large

linear system:


M̃c M̃bs −JT

j

M̃T
bs M̃s 0

−Jj 0 0




∆vc

∆vs

µ

 =


∆tF̃c

∆tF̃s

bµ

 , (4.18)

with bµ = Jjvc + αg(qc).

The system above is sparse, symmetric, and indefinite, with a rather dense band M̃bs,

due to the inertial coupling between the skin and the skeleton. The size of this band,

O(kn) with k bones and n surface nodes, can be regarded as a lower bound on the cost

for solving the system with direct solvers [BBK05], and the indefiniteness of the system

suggests slow convergence of iterative solvers. In Section 4.3.2, I propose a solution

combining matrix condensation and an approximation of skin forces that decouples the

system and reduces the bilinear complexity.

4.2.3 Contact Constraints

I apply collision response by formulating velocity constraints on colliding surface nodes

and solving them through the method of Lagrange multipliers. Instead of simply apply-

ing an impulse to the colliding nodes, I formulate the constraints on the implicit motion

94

equations, which guarantees that collision response effectively acts on the skeletal mo-

tion as well. This approach has been demonstrated in Section 3.3. My collision detection

algorithm is described in Section 4.3.3. It identifies one contact constraint with normal

n for each colliding surface node. Given the pre-impact velocity ẋ−i of the colliding

node, I solve for the node contact response δẋi by imposing a velocity constraint using

the kinematic relationships (Eqn. (A.7)):

nT
(
ẋ−i + δẋi

)
= nTLi

W

(
v− + δv

)
= 0, (4.19)

where Li
W represents the position-dependent projection matrix LW evaluated at node i

(see Appendix A.2). It is easy to incorporate moving constraints, friction, and constraint

correction. Moving constraints are handled by a velocity offset in the contact constraints

in Eqn. (4.19). Similar to the approach of Chapter 3 and also of Bridson et al. [BFA02],

friction and constraint correction can be handled for each node separately as a post-

process to δvs, and to the resulting post-collision state qs respectively.

The vector j = nTLi
W =

[
nT −nTRũi nTRSi

]
represents the generalized con-

straint normal.

The generalized constraint normals can be stacked together in

Jλ =
[

Jc Js

]
∈ Rm×(6k+3n), (4.20)

where m is the number of colliding surface nodes, k is the number of bones, and n is

the total number of surface nodes. The constraint equation is then:

Jλ

(
v− + δv

)
= 0 ⇒ −Jcδvc − Jsδvs = Jcv

−
c + Jsv

−
s . (4.21)

With constraints formulated through Lagrange multipliers, the complete system of equa-

95

tions for collision response is:



M̃b M̃bs −JT
j −JT

c

M̃T
bs M̃s 0 −JT

s

−Jj 0 0 0

−Jc −Js 0 0





δvc

δvs

µ

λ


=



0

0

b−µ

bλ


, (4.22)

with b−µ = Jjv
−
c + αg(q−c) and bλ = Jcv

−
c + Jsv

−
s .

The system above can be regarded as an augmented version of Eqn. (4.18), with the

addition of contact constraints. This system could be solved by direct application of a

method such as constraint anticipation [Bar96]. But, that would yield a computational

cost of O(mkn) at best, since the complete system described in Eqn. (4.18) should be

solved for each contact. Instead, I propose a solution with a practical O(m+k +n) cost

in the next section.

4.3 Condensed Solution of Constraints

Two common constraints need to be resolved in the dynamics simulation of soft articu-

lated characters, namely joint and contact constraints. One of the key contributions of

this work is to reduce the best-case O(mkn) complexity of the full solution to contact

constraints, while preserving physically plausible global and local deformation effects. I

achieve this result by combining Schur complement computation [GL96] (also referred

to as matrix condensation [BNC96]), and careful approximations of implicit discretiza-

tion. First, I present the condensation of skeleton dynamics that allows for O(k + n)

update of collision-free dynamics in practice. Then I present the condensation of contact

constraints and anticipation of skeleton response that achieves O(m + k + n) update of

contact-consistent dynamics in practice.

96

4.3.1 Condensed Skeleton Dynamics

Joint constraints act only on bone coordinates, not on skin coordinates. This observation

is exploited to split the velocity computation in Eqn. (4.18) and Eqn. (4.22), solving

first for bone velocities (while accounting for forces on the skin). Computing the Schur

complement of the skin inertia M̃s yields a condensed skeleton inertia M̃cond:

M̃cond = M̃c − M̃bsM̃
−1
s M̃T

bs ∈ R6k×6k. (4.23)

Unfortunately, computing M̃cond requires solving 6k linear systems of size n, and the

resulting matrix is dense.

Instead I compute an approximate condensed matrix

M̂cond = M̃c − M̃bsM̂
−1
s M̃T

bs, (4.24)

where M̂−1
s is a fast approximate inverse of M̃s that accounts only for block-diagonal

terms. In this way the computation of M̂cond has an O(n + k) complexity. The ap-

proximation M̂s amounts to discarding off-diagonal blocks of K (i.e., the Jacobians of

elastic forces among skin nodes) in the implicit computation of velocities. Note that this

approximation does not jeopardize the fulfillment of joint or contact constraints; it sim-

ply yields velocities that differ slightly from those of the full solution with Eqn. (4.15).

Moreover, the full inverse M̃−1
s is still employed in the computation of collision-free skin

velocities in Eqn. (4.26). I have quantified the error ‖M̂cond−M̃cond‖/‖M̃cond‖ (using the

spectral norm), and it is below 10% in my simulations, with some variation depending

on the average number of bone influences per vertex.

97

4.3.2 Solving Collision-Free Velocities

Applying condensed skeleton dynamics, the constrained system for bone velocities in

Eqn. (4.18) can be rewritten as:

M̂cond −JT
j

−Jj 0


∆vc

µ

 =

bc

bµ

 , (4.25)

with bc = ∆t
(
F̃c − M̃bsM̃

−1
s F̃s

)
and bµ = Jjvc + αg(qc).

The structure of Eqn. (4.25) is practically the same as one would obtain when solving a

regular articulated body with implicit integration of joint stiffness. Equation (4.25) can

be solved in O(k + c) time, with c the number of DoFs constrained by the joints, for

articulated structures without loops [Fea87, Bar96]. But M̂cond has off-diagonal non-

zero blocks for pairs of connected bones (due to joint stiffness), or for pairs of bones

that influence a common skin patch (in the linear-blend skinning scheme). Hence I have

opted for a more general indefinite symmetric sparse system solver with fill-reducing

reordering [SG06]. Since the sparsity pattern of Eqn. (4.25) is fixed, the reordering and

analysis (or symbolic factorization) can be precomputed. This approach reduces the

runtime cost of solving this system to be linear in the number of bones and joints in my

simulation. Therefore, it is not a bottleneck, as discussed in Section 4.4.

After solving Eqn. (4.25) and computing collision-free bone velocities ∆vc, I solve

for skin velocities ∆vs in Eqn. (4.18):

M̃s∆vs = ∆tF̃s − M̃T
bs∆vc. (4.26)

The matrix M̃s is constant and symmetric positive-definite. Also, a fill-reducing sparse

factorization of M̃s is computed once for the entire simulation [SG06]. As discussed

in Section 4.4, the performance of the solver is linear in my experiments, and better

98

than a diagonally preconditioned conjugate gradient method. In summary, by approx-

imate condensation of skeleton dynamics, I was able to reduce the brute-force O(nk)

complexity to O(k + n) in practice.

4.3.3 Hierarchical Pruning and Collision Queries

One of the essential components to efficiently solve contact constraints is a fast colli-

sion detection module. I extend the fast image-based algorithm that was presented in

Section 3.3. In addition, the collision query algorithm for soft articulated characters

described in this section also performs hierarchical pruning to eliminate large portions

of the objects from collision queries, by exploiting the skeletal nature of the deforma-

tion. The worst-case cost of collision detection is O(n) for a pair of tested objects with

n surface nodes; but the actual cost depends only on the size of the contact area.

For the object-space collision detection step, I assign to each bone a low-resolution

proxy, as shown in Figure 4.3. Specifically, each ith bone is preprocessed to construct a

low polygon-count approximate convex hull of the set of skin vertices {vi} with blend

weight wi 6= 0. Typically, these convex proxies have a few tens of vertices. At runtime

I use the maximum skin displacement us of all vertices associated to a bone to com-

pute a conservative bound of the proxy. I identify potentially colliding bones using a

fast collision detection algorithm for convex objects [EL00] that identifies low-resolution

proxies within a user specified tolerance distance of each other. This phase, as well as

the image-space collision detection phase, is the same as in Chapter 3.3. For articulated

characters with many bones, the bone proxies can actually be organized in a bound-

ing volume hierarchy to reduce the number of low-res comparisons. Additionally, the

extended method can also handle self-collisions between surface patches of the same

articulated body. However, the second step in our collision detection algorithm may

report false positives for adjacent bone surface patches, especially for adjacent polygons

in the mesh. This case is handled by a post-processing step to check for exact collision

99

(a) Contact between the bird and the deer, with skin deformations on the back of the deer.

(b) Proxies used for hierarchical pruning of col-
lision queries, with potentially colliding proxies
of the deer highlighted in red.

(c) Hierarchical Pruning: only triangles influ-
enced by the potentially colliding bones (in
red) are passed to my image-based collision de-
tection algorithm.

Figure 4.3: Layered Representation and Collision Detection.

between adjacent polygons in object space.

100

4.3.4 Condensed Contact Constraints

When a collision is detected, I apply the same principle of condensation of skeleton

dynamics as described in Section 4.3.1 to solve the collision reponse in Equations (4.22).

However, this condensation is not sufficient to separate the computation of bone and

skin response, since contact constraints act on the bones as well as on the skin, as shown

in Eqn. (4.21). The solution is to compute condensed contact constraints Jcond with the

approximated M̂−1
s from Section 4.3.1:

Jcond = Jc − JsM̂
−1
s M̃T

bs. (4.27)

Algebraic manipulation of Eqn. (4.21) and Eqn. (4.22) yields the condensed constraint

equations:

Mλλ + Jcondδvc + bλ = 0, (4.28)

with Mλ = JsM̂
−1
s JT

s . (4.29)

Here, λ is the Lagrange multiplier vector that defines the contact impulses. In order to

split the equations, I propose the anticipation of skeleton response, i.e., to single out λ:

λ = −M−1
λ Jcondδvc −M−1

λ bλ. (4.30)

Other existing methods for solving multi-body dynamics with joint and contact con-

straints propose the anticipation of contact constraints (i.e. first singling out skeleton

response) and then solving for the contact impulses [Bar96]. However, for the layered

soft character representation employed in this thesis, it pays off to exploit the use of

equality contact constraints, the fact that each colliding surface node yields one con-

straint, and the approximation of skin force Jacobians. These techniques together make

the matrix Mλ diagonal and trivial to invert. The result is a significant reduction of the

101

overall computational cost of expensive contact constraint anticipation.

4.3.5 Solving Collision Response

By application of condensed skeleton dynamics, condensed contact constraints, and an-

ticipation of skeleton response, the following system of equations for computing contact-

consistent articulated body dynamics is obtained:

M∗
c −JT

j

−Jj 0


δvc

µ

 =

b∗c

b−µ

 , (4.31)

with M∗
c = M̂cond + JT

condM
−1
λ Jcond and b∗c = −JT

condM
−1
λ bλ.

The matrix M∗
c has exactly the same structure as M̂cond; therefore, the same solver

(and precomputed symbolic factorization) for articulated dynamics as discussed later

in Section 4.3.2 can be used. It is remarkable that solving collision response with the

proposed Eqn. (4.31) has the same cost as the collision-free solution.

Once the skeletal response δvc is computed, one obtains the collision impulse λ as

discussed in Section 4.3.4, and finally I solve for the skin response in Eqn. (4.22) as:

δvs = M̂−1
s

(
JT

s λ− M̃T
bsδvc

)
. (4.32)

The approximation of skin force Jacobians largely simplifies the solution of skin response.

I have not encountered instabilities in the simulations due to this approximation in my

experiments. My observation is that the use of full Jacobians in the collision-free update

as described in Eqn. (4.26) guarantees stability, while the coupled response computed

on the skeleton ensures the global reaction to collisions.

To summarize, the solution of bone velocities in Eqn. (4.25) and Eqn. (4.31) has

a cost O(k), the solution of skin velocities in Eqn. (4.26) and Eqn. (4.32) has a cost

102

O(n), and the condensation and anticipation steps are sparse matrix multiplications

with overall cost O(m + k + n). Altogether, the solution of constrained dynamics for

soft articulated characters in my simulation framework has a final cost O(m + k + n).

This is also observed in my experiments which are described in Section 4.4.

4.3.6 Run-time Algorithm

Figure 4.4 shows the outline of a single time step in my simulation algorithm. Each step

starts with a collision-free update step, followed by contact response.

1. Compute free-motion bone velocities (Eqn. (4.25)).

2. Compute collision-free skin velocities v−s (Eqn. (4.26)).

3. Update collision-free positions.

4. Execute collision detection (See Section 4.3.3).

5. Formulate condensed constraint equations (Eqn. (4.28)).

6. Formulate contact-consistent articulated dynamics (Eqn. (4.31)) to compute
skeletal contact response.

7. Compute contact impulses λ (Section 4.3.4) and solve for skin response
(Eqn. (4.32)).

8. Update contact-consistent positions.

9. Collision detection and collision-free position reprojection.

Figure 4.4: Summary of the Simulation Algorithm

4.4 Results and Discussion

4.4.1 Benchmarks

My algorithm was tested on a variety of benchmarks, using the soft articulated char-

acters listed in Table 4.1. All the benchmarks were simulated on a 3.4 GHz Pentium-4

processor PC with an NVidia GeForce 7800GTX graphics card. I have performed sev-

eral experiments with a set of bendable tubes (see Figure 4.5) for validating the be-

havior with different material stiffness, friction values, number of bones, and moving

103

Figure 4.5: Contact between Deformable Tubes with Moving Con-
straints. The tubes consist of 3 links each and collide with each other in tangled
configurations. The described algorithm can handle such situations seamlessly
with a combination of local deformations and bone motion at 20 fps.

Model Nodes Bones Coll. Collision-Free Update Collision Response Total Total
n k max(m) Setup Bones Skin Setup Bones Skin Time1 Time2

Deer 1 748 34 13 19.7 34.0 17.9 1.1 15.8 7.7 74.8 123.8
Deer 2 755 34 41 39.3 36.6 29.6 11.3 14.7 9.9 114.1 160.4
Deer 8 408 34 162 127.0 64.9 96.2 24.5 17.8 33.9 310.0 449.7
Snake 3 102 16 28 38.9 18.1 36.5 6.2 2.2 12.9 106.5 140.6
Tube 292 2 73 2.5 1.6 1.9 3.9 0.2 0.8 9.5 13.8
Tube 292 5 74 3.7 2.7 2.1 7.7 0.6 1.0 14.6 23.3

Table 4.1: Benchmark Statistics. The soft characters for the benchmarks are
a deer model with three different skin resolutions, a snake model, and tubes with
different numbers of bones. All timings (in msec.) are averages over the course
of a simulation. The last two columns indicate the average time per frame in (1)
non-colliding and (2) colliding situations.

constraints. The deer model in Figure 4.1 was pre-animated and driven by applying

additional control forces on its bones.

Table 4.1 also shows a breakdown of the average timings per frame, highlighting the

time for collision-free dynamics update, collision detection, and collision response. The

last two columns show the average total time per frame, for (1) non-colliding situations

and (2) colliding situations. Note that, for the benchmark of the snake (16 bones and

3 102 skin nodes, shown in Figure 4.6), the simulation runs at 7 fps with collisions, and

10 fps when there are no collisions. For the benchmark of the deer (34 bones and 2 755

104

(a) A snake with 16 bones
and 3102 surface vertices.

(b) Proxy geometry for the first phase of
collision detection.

(c) Simulation sequence with a fish touching the snake, showing the global deformation
of the snake.

Figure 4.6: Skeletal Deformations of a Soft Snake.

skin nodes), the simulation is also interactive (as shown in Figure 4.1) in the range of

6 − 9 fps. For one tube with 5 bones, the simulation runs at 43 fps even with large

colliding areas. The example shown in Figure 4.5 runs at 15− 20 fps.

For the deer model, the simulation was performed with different skin resolutions.

As shown in the table, the simulation cost varies linearly w.r.t. the resolution of the

skin n. Furthermore, notice how, for the two lower-resolution skins, the cost for the

collision-free velocity update of the bones remains almost unchanged and independent

of the skin resolution. This data shows that the cost at those resolutions is dominated

by the number of bones and, more importantly, that the proposed method for solving

105

bone and skin velocities does not have a bilinear cost of O(kn). Similarly, the number

of collisions for the mid-resolution deer varies from 1 to 41, while the time for collision

response on the bones remains practically unchanged during the simulation. This data

again shows that the cost at low resolutions is dominated by the number of bones and

is not bilinear O(km) w.r.t. the number of contacts. Combining the observations for

collision-free updates and collision response, it can be concluded that the simulations

have a runtime complexity of O(m+k+n) in practice. It is interesting to notice that, for

the deer model with the highest resolution mesh, the dominating cost is the initialization

of matrices for the computations, not the solution of the constrained systems.

4.4.2 Comparisons and Limitations

I have also compared the performance of the sparse system solver [SG06] with precondi-

tioned conjugate gradient descent (PCG) to solve (4.26), on the deer model with 2 755

surface nodes. I used a diagonal preconditioner consisting of the diagonal part of M̃s.

PCG is 4 times slower for solving the collision-free update of the skin, even after reaching

100 iterations without fully converging.

As demonstrated in the experiments, my method for simulating soft articulated char-

acters handles contact constraints interactively while producing rich deformations on the

skin. Due to its layered representation, it cannot be directly compared with methods

that model global deformations using a volumetric representation. From the family of

FEM-based methods, the one by Müller et al. [MDM+02] is perhaps the closest relative

to mine, as it also uses implicit integration and linear elasticity evaluated in a floating

reference frame. In comparison with Müller’s, my method is obviously restricted to

skeletal global deformations, not arbitrary ones, and the elastic energy only accounts for

skin-layer deformations, not deformations in the whole volume of the object. However,

our method offers considerable benefits for fast collision handling. Due to the fast solver

presented in Section 4.3, my method can efficiently compute global collision response

106

Figure 4.7: Contact Constraints. Left column: The fish touches the body of
the snake, creating global response and skin deformations. Right column: Local
skin deformations are turned off to show the importance of handling both global
and surface response. Notice the highlighted interpenetrations, clearly visible
through the fish’s mouth.

(i.e., response of the skeleton) using matrix condensation. Furthermore, it can handle

both local skin and global skeletal response with approximate implicit integration sta-

bly and robustly. Müller’s method (and others) cannot exploit the decomposition of

the deformation, and the constraint-based simulation would require the use of the full

implicit system, in order to robustly compute global response. Perhaps for this reason,

107

methods such as Müller’s are often combined with penalty-based collision response, not

constraint-based, with the associated problem of object interpenetration as shown in

Fig. 4.7.

4.5 Advantages and Summary

The method presented in this chapter has the following key advantages:

• A new formulation of elastic deformation in pose space, which is related to skin dis-

placement corrections [KJP02, JT05] and FEM approaches in a floating frame of

reference [TW88], augmented with a joint stiffness term to model pose-dependent

deformations. With this formulation, the motion equations derived from La-

grangian mechanics naturally produce the desired interplay between skin and skele-

ton.

• Efficient and scalable computation of articulated-body dynamics with contact con-

straints and skin deformations, with a cost of O(m + k + n) in practice, where m

is the number of contacts, k the number of bones, and n the number of surface

nodes. My method is based on the decoupling of skin and skeleton computations

in otherwise coupled implicit equations, through careful and robust approximation

of Schur complements.

• The presented model for dynamic soft articulated characters builds upon tradi-

tional mesh skinning paradigms and enables easy integration with existing skinning

pipelines.

I have presented a novel method for simulating deformable characters with an ar-

ticulated skeleton that allows fast handling of complex contact scenarios and plausible,

coupled global and local deformations. This method models characters as skinned artic-

ulated bodies with a layered representation, and measures elastic deformations in pose

108

space. Central to the efficient simulation of contact-induced deformations is an implicit

constraint-based collision handling approach that exploits the layered representation to

enable efficient, approximate yet robust matrix condensation.

I have implemented my algorithm and tested its performance on several complex

benchmarks. I was able to achieve simulation frame rates of 4 to 8 fps with multiple

colliding articulated characters with a deformable skin layer, each consisting of up to

3, 500 vertices.

4.6 Limitations and Future Work

The deformation model described in this chapter expresses strain in pose space and

does not capture pose-dependent strain near joints, as explained in more detail in Sec-

tion 4.2.1. I have approximated pose-dependent strain energy with a user-tunable joint

stiffness, but my model could be further extended with data-driven approaches [LCF00]

to add e.g., bulging effects due to elbow flexion. In fact, such effects become possible

with the method presented in Chapter 5, in which I present a method that complements

pose-dependent strain-energy with artist-provided example shapes. Another possible

extension for handling more complex volumetric deformations would be to adopt a de-

formation model based on a control lattice [CGC+02a], instead of a purely skeletal

approach. This would require an extension of the contact handling algorithm so that

collision response can be efficiently applied to both the control lattice and the skeleton.

Similarly, it is worth exploring the addition of our efficient contact-induced deformations

to non-skeletal skinning approaches [JT05].

Additionally, it would be interesting to explore ways to handle inequality constraints,

as this would allow modeling more accurate contact forces and joint limits.

Finally, in the interest of performance it would be useful to investigate a fully par-

allelized solution to enable implementations that are accelerated for parallel hardware

109

architectures. This would open the door to more complex scenes with many deforming

characters at interactive rates.

110

Chapter 5

Deformation Control with Dynamic Morph

Targets

In this chapter, I present a method to control the behavior of elastic, deformable material

in a dynamic simulation. I introduce dynamic morph targets, the equivalent in dynamic

simulation to the geometric morph targets in (quasi-)static modeling, as a step towards

bridging the gap between geometric example-based methods and physically based ap-

proaches. This chapter is a logical continuation of the development of a controllable

elastic deformation model that was started in the previous chapters. The elastic defor-

mation model presented in Chapters 3 and 4 for objects with a (possibly articulated)

core and a layer of soft skin is leveraged in this chapter. Dynamic morph targets merely

influence the coefficients of the dynamic equations and hence the discretization, integra-

tion and solution techniques that were presented in the previous chapters for simulation

of combined global and local deformations can be employed in this chapter as well.

Dynamic morph targets define the pose-dependent physical state of soft objects,

including surface deformation and elastic and inertial properties. My method easily

integrates with current modeling and animation pipelines: at different poses, an artist

simply provides a set of dynamic morph targets.

The deformable models presented in this chapter are computationally efficient at run-

time through modal reduction and pose-space polynomial interpolation. These models

can therefore be plugged into existing dynamic simulation engines, either forming inter-

active, deformable content in real-time games or providing secondary dynamic effects

for kinematically-driven characters in feature animation films.

5.1 Method

The goal of the method in this chapter is to simulate controllable non-linear deformations

by interpolation of dynamic morph targets at runtime, kindred to geometric morph

targets in static character modeling. In this section, I describe the concept of dynamic

morph targets, and explain how they can be used to simulate a pose-dependent elastic

model that is fast enough for real-time applications.

Dynamic morph targets rely on three key components:

• A pose-space method for interpolation of efficient elastic deformation models that

allows the artist to author complex nonlinear deformation behavior (Sections 5.1.1

and 5.2).

• A compact way of interpolating skin geometry, elastic forces, and their derivatives,

all in a unified manner using polynomial interpolation (Sections 5.1.2 and 5.1.3).

• The extension of the method to support modal reduction and therefore very ef-

ficient implementation that is linear in the number of coefficients of the force

polynomial (Section 5.1.4).

5.1.1 Dynamic Morph Targets

I define a ‘dynamic morph target’ as an elastic deformation model at a certain skeletal

pose of the character. More formally, dynamic morph targets are pairs of elastic models

Ei and poses si, i.e. they are pairs {Ei, si} of elastic models in pose space. Similar to

112

geometric morph targets, dynamic morph targets associate surface and volume defor-

mation with character pose. In contrast to geometric morph targets, dynamic morph

targets also define elastic properties at specific character poses. Elastic properties in-

clude stiffness and plasticity parameters. The combination of surface deformation and

elastic properties defines the elastic model Ei. A pose is represented by a vector s ∈ S

where pose-space S ⊂ Rk. Note that the implementation in this dissertation uses skele-

tal pose, but the concept of pose can easily be extended beyond the skeletal sense; in

fact any notion of state of a character can be used, such as emotional state, velocity

state, contact state, or muscle activation.

Dynamic morph targets can easily be created in existing modeling packages. At

the level of content creation, they are very similar to the creation of geometric morph

targets. The modeler makes a set of m poses {s1, s2, . . . , sm} of the character and sculpts

desired deformations that cannot be captured with traditional skinning methods [KZ05,

MTLT88]. As shown in Fig. 5.1 and Fig. 5.2, the morph targets are defined in the skeletal

bind pose, complying with most common modeling packages. In addition to surface

modeling, the modeler uses vertex painting to assign pose-specific elastic properties to

the dynamic morph targets directly from the modeling software. A modeler can therefore

choose to make the same skin section stiff for one pose and flabby for another pose, e.g.

to mimic contraction and relaxation of a muscle, or to exaggerate skin bulging.

Once created, the dynamic morph targets are then fed through a preprocessing

pipeline as described later in Section 5.2. The result is a fully dynamic character that

can react to external forces just like other common deformable model methods. How-

ever, these characters also expose the non-linear deformations and elastic behavior as

defined by the dynamic morph targets.

113

(a) Morph targets

(b) Simulation with all soft morph targets (c) Simulation with stiffer bulged morph tar-
get

Figure 5.1: Concept of Dynamic Morph Targets: Simple cylinder ge-
ometry mimicking an elbow joint with bulging skin, for which two morph targets
(out of a total of four) are given in (a). The skin of the bulged morph target
was chosen to be stiffer to mimick muscle contraction. On the right, we show
runtime snapshots of simulations using our pose-dependent elastic model, under
influence of identical downward forces. (b) was generated with four soft morph
targets, whereas (c) has increasingly stiffer morph targets, to mimic muscle con-
traction. The dynamic skin behavior is identical for the straight joint (a relaxed
muscle), because the elastic properties of the first morph target are identical for
(b) and (c). But, for the bent joint, the force clearly causes more skin deformation
in (b). This undesirable behavior can be fixed to mimic muscle contraction by
making the fourth morph target stiffer, as shown in in (c). This simple example
shows a dynamic bulging effect that can only be achieved with dynamic morph
targets.

5.1.2 Pose-dependent Elastic Model

Dynamic morph targets are used to build a pose-dependent elastic model E(x, s). For

hyper-elastic materials, an elastic model can be defined as a material function E(u(x))

defining the internal elastic energy at material points x in function of the deformation u.

For my experiments and in correspondence with the space in which the morph targets

114

are defined, I choose to express elastic deformation in the skeletal bind pose as has

been proposed in the past [LCF00, KJP02]. This is identical to the pose-space strain

formulation presented in Chapter 4.1.1. On the other hand, it is certainly possible to

use other formulations of elastic strain to define a pose-dependent model with dynamic

morph targets. Traditionally, the elastic energy is a pose-independent material potential

that causes internal elastic forces R(u) in the material. I propose a pose-dependent

elastic model by taking into account the dynamic morph targets {Ei, si} as example

inputs. I use scattered data interpolation to derive an expression for the internal elastic

forces R(u, s) anywhere in pose-space S, given the expressions for the elastic forces

Ri(u) that are imposed by the dynamic morph targets at poses si.

Equations of motion Without loss of generality, the finite element method is applied

to discretize the partial differential equations of solid continuum mechanics in space,

leading to the common Euler-Lagrange motion equations, where I substitute the pose-

dependent elastic forces R(u, s):

Mü + D(u, u̇, s) + R(u, s) = f , (5.1)

with M the mass matrix and f the external forces and the (local) Raleigh damping

model D(u, u̇, s):

D(u, u̇, s) =

(
αM + β

∂R(u, s)

∂u
)

)
u̇.

Polynomial elastic forces The computation of pose-dependent elastic forces R(u, s)

requires the interpolation of pose-specific forces Ri(u). However, since forces are a

function of the time-varying deformation u, they cannot simply be evaluated once and

then interpolated at runtime. I have opted for elastic models for which Ri(u) can be

expressed as a (multivariate) polynomial function of the degrees of freedom u. Then, the

interpolation of elastic models reduces to the interpolation of polynomial coefficients.

115

Common examples of such elastic models are the so-called ‘completely linear’ FEM

deformation model (with or without stiffness warping [MG04]), or the ’semi-non-linear’

St.Venant-Kirchoff model (StVK) [BJ05, CBC+05]. I have simulated example characters

with both linear and semi-non-linear elastic models. Interestingly, because deformation

is expressed in the skeletal bind pose in my system, there was no noticeable quality

difference between both elastic models in our experiments. Therefore, I have opted

for the more efficient linear elasticity model to produce most of the images in this

dissertation, unless otherwise noted (see Section 5.4). In Section 5.1.4 it is shown that

both models are amenable to modal reduction for efficiency.

Each polynomial Ri(u) is associated with a dynamic morph target at pose si and

is uniquely defined by its set of coefficients {ak}i which are collected in a vector ai.

One can then determine the pose-dependent elastic force R(u, s), which is also uniquely

defined by its set of coefficients a(s). At an arbitrary pose s in pose-space, a(s) can

be interpolated from the example coefficients ai. This is described in more detail in

Section 5.1.3.

The interpolation of polynomial coefficients yields the interpolation of force values

R(u, s) for all possible deformation values u. However, it also yields the interpolation

of force derivatives, such as the stiffness matrix ∂R(u,s)
∂u

. One subtle detail remains

for defining a complete interpolation of elastic models. The rest configuration at each

input pose may be different, therefore the deformation u may not be consistent across

poses. I first choose a certain pose as a reference, and express the deformation of all

other poses by adding the difference between rest configurations, ∆u. The addition of

this term simply modifies the coefficients of the force polynomials, which can then be

safely interpolated, as all deformations are now expressed with respect to a consistent

configuration.

116

5.1.3 Interpolating Force Polynomials in Pose Space

Conceptually, a pose can be described in many ways, as long as it provides a description

of the state of a model or character, and a metric to measure distances between poses.

In my implementation, I choose the joint configuration of an articulated character as

the pose descriptor. I define the pose descriptor s ∈ R6(k), where k is the number of

joints. Each joint contributes 6 components to s, namely the 6-DoF representation of its

parent-relative coordinate frame. The first three components represent the local joint

translation, whereas the last three components represent the local joint rotation. The

distance between two poses is defined to be the inner product of the difference of its

descriptors.

As an articulated character moves between observed configurations, its elastic model

should approximate the elastic models of the input poses. As mentioned in Section 5.1.2,

the goal is to find a way to interpolate internal elastic forces Ri. Obviously, as the

character moves from one pose to the other, the internal forces change continuously

but highly non-linearly. In other words, elastic forces form a non-linear smooth field in

pose-space. Radial base functions [Pow87] (RBF) are a common choice for interpolating

scattered data of an underlying smooth field that is non-linear. Moreover, as our goal

is to have as few input models Ei as possible, RBFs are suited because they work well

with sparse input data sets. RBFs extend easily to high dimensional domains, enabling

the capture of multi-joint coupling effects.

As mentioned in Section 5.1.2, it is possible to determine the pose-dependent elastic

forces R(u, s) by computing the polynomial coefficient vector a(s). Using RBFs, the

interpolated coefficient vector is computed at runtime as

a(s) =
m∑

j=1

wjφ(‖s− sj‖) + Q(s) (5.2)

where m is the number of dynamic morph targets. In my experiments, it was sufficient

117

to use a constant for the polynomial Q(s). I also employed the globally supported bihar-

monic RBF kernel φ(r) = r, since its optimal fairness allows for smoother interpolation

of sparsely scattered example poses as compared to locally supported kernels [CBC+01].

In our experience, locally supported kernels such as the Gaussian RBF kernel are harder

to tune and are unable to extrapolate across dynamic morph targets that are far apart in

pose-space. The smoothing term from [CBC+01] is also employed to achieve smoother

behavior across large gaps between input poses.

The RBF weight vectors wj are given by the solution of m linear systems (one for

each input pose i):

a(si) = ai =
m∑

j=1

wjφ(‖si − sj‖) + Q(si). (5.3)

The combination of these m linear systems provides m vectorial equations with m vector

unknowns wj, plus the additional constant unknown vector Q (in case of choosing a

constant polynomial). The combined system is underdetermined (m+1 vector unknowns

for m vectorial equations), but it can be solved by imposing orthogonality conditions

on the weights wi [CBC+01]. In order to avoid redundancy in the pose descriptors

si, and to guarantee that Eqn. (5.3) is not singular, I perform a principal component

analysis [GL96] on the set of input pose descriptors. By selecting modes with non-

zero or large eigenvalues only, I reduce the dimension of s and define a mapping to the

reduced pose descriptor s̄ = UT
s s. The pose descriptor s is replaced by s̄ both in the

preprocessing stage to solve Eqn. (5.3) and at runtime for Eqn. (5.2). Modal reduction of

the pose descriptors is very effective for robustness, but is also useful when our method

is used for facilitating rigging. In highly complex areas of skin deformation such as

the shoulder area, the skin is under influence of many bones for which the skin-bone

relationships cannot easily be determined by a human rigger or technical director. My

system can automatically deduce these relationships and reduce them to only a few

118

significant modes.

At runtime, given a(s) from Eqn. (5.2), I can compute the elastic forces R(u, s) and

their Jacobian ∂R(u,s)
∂u

for implicit integration of Eqn. (5.1). Unfortunately, due to the

large number of coefficients that need to be interpolated, the evaluation of Eqn. (5.2)

is rather costly. The number of coefficients is proportional to the number of nodes n

in the finite element mesh for linear elastic models, and O(S3n) for StVK materials,

where S is the average size of the neighborhood of a node). Instead, I propose a way

to increase performance and to reduce the dependency on the resolution of the input

geometry by reducing the number of degrees of freedom, while still maintaining the

non-linear behavior defined by the morph targets.

5.1.4 Reduced Equations of Motion

I use a reduced model u = Uq to enable dynamic simulation that is independent from

the input resolution of the geometry. The ODE, Eqn. (5.1), is transformed into

q̈ + D̃(q, q̇, s) + R̃(q, s) = f̃ (5.4)

where D̃, R̃ and f̃ are r-dimensional reduced forces,

D̃(q, q̇, s) = UTD(Uq,Uq̇, s) (5.5a)

R̃(q, s) = UTR(Uq, s) (5.5b)

f̃ = UT f . (5.5c)

Similarly, one can form the dense reduced tangent stiffness matrix,

∂R̃(q, s)

∂q
= UT ∂R(Uq, s)

∂q
U ∈ R(r,r) (5.6)

119

When applying model reduction to (multivariate) polynomial elastic forces, it can be

shown that the reduced forces are still (multivariate) polynomial elastic forces. In par-

ticular, reduced ‘completely-linear’ elastic forces are linear polynomials in terms of the

reduced coordinates q. Additionally, Barbic et al. [BJ05] have shown that reduced StVK

internal forces and tangent stiffness matrices are multivariate cubic polynomials that can

be evaluated in Θ(r4) time, with r the number of reduced modes (typically 10-30), by

simply evaluating polynomials in terms of the reduced coordinates q:

R̃(q) = Piqi + Qijqiqj + Sijkqiqjqk (5.7a)

∂R̃(q)

∂ql

= Pl + (Qli + Qil)qi + (Slij + Silj + Sijl)qiqj, (5.7b)

Note that Einstein summation convention was used in Eqn. (5.7). Here, Pi,Qij,Sijk ∈

Rr are constant vector polynomial coefficients. The polynomial coefficients can be pre-

computed, given the rest pose s0. For StVK materials, the algorithm is described

in [BJ05]. As described at the end of Section 5.1.2, these polynomials must be ex-

pressed with respect to the common rest pose p0. The details of finding the correct

transformation are described in Appendix D. For linear materials, the Qij and Sijk

terms are all zero and the transformation is trivial.

One can now combine scattered polynomial interpolation from Section 5.1.3 with the

reduced motion equations by concatenating the reduced coefficients into ã:

ã = [Pi; Qij; Sijk]. (5.8)

Just as in Section 5.1.3, each dynamic morph target defines a set of coefficients ãi which

can then be used to set up an interpolator for the pose-dependent coefficients ã(s). This

then yields all the necessary information to compute R̃(q, s) in Eqn. (5.5). Note that,

because the number of reduced modes r is typically many orders of magnitude smaller

than the number of vertices of the mesh, the cost of evaluating Eqn. (5.2) is significantly

120

smaller than in the non-reduced case.

The construction of the reduction basis U will be discussed in Section 5.3. The

reduced equations of motion Eqn. (5.4) can be solved using a reduced implicit Newmark

Solver, employing the aforementioned internal forces and tangent stiffness matrices eval-

uated at each time step.

5.2 Model Construction and Kinematic Constraints

My deformation control framework integrates well with existing content creation pipelines

provided by a wide range of popular modeling software. Dynamic morph targets are au-

tomatically generated from traditional geometric morph targets, and skeletal animation

is supported at runtime through kinematic constraints.

Modeling As described in Section 5.1.1, an artist begins by modeling the base model

surface and a skeleton with associated SSD skinning weights. He also defines a set of

geometric morph targets in the skeletal bind pose of the model (on the left in Figures 5.2

and 5.1). Using vertex painting, he can then assign stiffness parameters such as Young’s

modulus and Poisson ratio to certain parts of the skin. This is where the preprocessing

stage starts.

Preprocessing First, the base mesh is tetrahedralized and the surface node SSD skin-

ning weights are propagated to internal nodes. This is done by solving a homogeneous

Poisson problem for the internal node weights, where the known surface node weights

are set up as boundary conditions. Then, for each morph target, a corresponding tetra-

hedral rest-pose mesh is defined (still in the skeletal bind pose). This can be done

by displacing the surface nodes of the base tetrahedral mesh with the morph target’s

values. I then relax the internal nodes by performing a physical soft-body simulation,

constraining the new surface positions and using the elastic model of the base mesh.

121

Once the new internal node positions are determined, the morph target’s position off-

sets ∆u from the base mesh are computed and the force polynomials ai associated with

Ri(u) are precomputed (see Eqn. (5.3), Sections 5.1.2 and 5.1.4). For reduced elastic

models, a modal subspace is also constructed (Section 5.3).

Runtime skeletal constraints At runtime, the final positions of the material points

are computed as the combination of linear blend skinning and elastic deformation com-

puted in the skeletal bind pose. Inertial effects that are caused by the moving coordinate

frames of the bones are accounted for by applying condensation techniques, in the same

way as in Sections 3.2.2 and in 4.3.2 (Eqn. 4.26). Additionally, in order to emulate

that skin is attached to bones, the material points that are attached to internal bones

are constrained, at least conceptually. This can be achieved by removing the elastic

degrees of freedom that are associated with corresponding internal mesh nodes. Hence,

the positions of these points are then completely governed by the linear blend skinning

transformations only. These degrees of freedom are removed a pre-process by iden-

tifying tetrahedral mesh elements that are intersected by skeletal bones. Degrees of

freedom that are associated with these elements are removed (i.e. they are ‘fixed’ in the

pose-space), unless they lie on the model’s boundary surface.

5.3 Reduced Modal Subspace Construction

In order to use a reduced model with dynamic morph targets, as described in Sec-

tion 5.1.4, one needs to choose an appropriate reduced subspace. In this section, I

describe what entails a ‘good’ subspace, and I propose to construct a subspace that is

aware of the morph targets.

In the reduced model, the displacement vector u is expressed as u = Uq, where

U ∈ R(3n,r) is the displacement basis matrix, and q ∈ Rr is the vector of reduced

displacement coordinates. Here, U is a time-independent matrix specifying a basis of

122

(a) (b)

(c) (d)

Figure 5.2: When under influence of dynamic events such as jumping from a
diving board or bouncing off a wall, our method using morph targets produces
deformations consistent with Herbert’s morph targets defined in (a). The fat
morph target is associated with a crunched pose to mimic a bulging belly (and
only for that pose). As shown in (b), the simulation without dynamic morph
targets does not show bulging, whereas our method shown in (c) does.

123

some r-dimensional (r << 3n) linear subspace of R3n. There is an infinite number

of possible choices for this subspace and its basis, but ideally one would want a low-

dimensional space that well-approximates the space of nonlinear deformations near the

input poses.

For each of the dynamic morph targets, I employ linear modal analysis (LMA),

which provides the best deformation basis for small deformations away from the rest

configuration. Intuitively, modal basis vectors are directions into which the model can

be pushed with the smallest possible increase in elastic strain energy. To find the modal

basis vectors Ui, I solve the following symmetric generalized eigenproblem (for a small

number k of eigenvectors)

K(x0
i)Ui = MUiΛi, (5.9)

with Λp the diagonal eigenvalue matrix with the ki << 3n eigenvalues 0 < λi
1 < λi

2 <

. . . < λi
k. The stiffness matrix K = ∂R(x)

∂x
is evaluated at x0

i , the rest configuration for

input pose i, which defines a ‘goal’ deformation for the input poses. Note that at this

point, one could easily add modal derivatives, as in [BJ05].

In the next step, we have to combine the basis matrices Ui into a global basis matrix

U. We have taken into account three requirements when choosing the basis.

1. Avoid redundancy in the basis set, i.e. find an orthogonal set that is as compact

as possible.

2. The characteristic deformations of all the morph targets have to be well repre-

sented.

3. The input deformations of each of the dynamic morph targets have to be well

represented in the reduced space, otherwise the sculpted deformations cannot be

simulated. In other words, the basis has to be aware of the morph targets.

124

The most straight forward approach is to combine all eigenvectors together as

U =

[
U1 U2 . . . Um

]
,

and orthogonalize them (each set of eigenvectors Ui is orthogonal, but eigenvectors be-

tween different sets are not). This approach takes care of the second requirement, but

results in a large set of eigenmodes with relatively small contributions for many eigen-

modes, because all the common first deformation modes (such as stretch, shear, . . .)

are represented in each of the Ui. Instead, similar to [BJ05], one can construct a low-

dimensional motion subspace by applying mass-PCA. The derivatives are scaled accord-

ing to the eigenvalues of the corresponding linear modes. Namely, the low-dimensional

deformation basis is obtained by applying mass-PCA on the set of vectors

{λi
1

λi
j

Uj
i | i = 1, . . . ,m; j = 1, . . . , ki}. (5.10)

The first r? principal modes are selected to form the basis U?. Scaling is necessary to

put greater weight on the more important low-frequency modes, which would otherwise

be masked by high-frequency modes. In case the eigenmodes in different poses show

large variance, one can adapt the normalization factor such that the eigenvectors are

normalized across morph targets, by replacing the scaling factor by
λi
1

λi
kλi

j
.

Finally, to make the basis aware of the morph targets, I add m− 1 rest pose defor-

mations {x0
p|i = 2, . . . ,m} to the set U? and re-mass-orthogonalize the set {U?

i } ∪ {x0
p}

into the final basis U ∈ R3n×r with r = (r? + m − 1). Figure 5.3 illustrates the entire

process.

125

Object pose geometries and material properties

Linear Modal Analysis (LMA)

U1

U*

U

Mass-PCA

Mass-orthogonalization

Pre-compute StVK polynomials

r

k

x0
i

U2 U3

Figure 5.3: Construction of a morph target driven, mass-orthogonal
reduction basis U: For each dynamic morph target i, during LMA the r smallest
eigenmodes are selected to construct eigenbases Ui. Mass-PCA combines and
compacts the Ui, retaining only k most significant modes. Finally, I explicitly add
morph target deformations x0

i to the eigenbasis and guarantee mass-orthogonality
of the final basis U.

5.4 Results

By using pose-space efficient polynomial interpolation to achieve pose-dependent be-

havior, I am able to demonstrate rich non-linear deformation effects at relatively small

extra cost compared to simple simulation of linear or semi-non-linear materials. I have

performed experiments with three different input models: a simple bulging cylinder with

4 bones (see Fig. 5.1), a shoulder model with 4 bones, and Herbert, the swimsuit model

with 46 bones. For each model, I qualitatively compare simulations with different elastic

models. I compare a single (pose-independent) elastic model with my pose-dependent

elastic model that employs multiple dynamic morph targets, both with and without

modal reduction.

126

Figure 5.4: Herbert jumps off on a diving board: Comparison of single
(pose-independent) linear elasticity (left column), my method with dynamic morph
targets (middle column), and my method with dynamic morph targets and modal
reduction applied (right column). When balled up, Herbert’s back (top) and belly
(bottom) bulge in correspondence with his morph targets defined in Fig. 5.2. On
the bottom left, Herbert’s belly looks very flabby, as if he swallowed a brick.
However, Herbert’s ‘fetal pose’ morph target 3 was authored with a stiff belly. My
method (bottom right) shows the more desired behavior.

Herbert model For the Herbert simulations, only 3 morph targets were used, two of

which are shown in Fig. 5.2. The first morph target is a skinny version of Herbert, in

which his skin is very soft and flabby, the third target is a stiff, bulged Herbert in fetal

position, while the second target has been chosen in between the first and the third.

While the single elastic model shows little or no dynamic behavior, the pose-dependent

127

Figure 5.5: Herbert in flight: When under influence of kinematic events
such as flipping and discontinuous velocity changes such as when hitting a wall,
my method (right) still produces deformations consistent with Herbert’s morph
targets defined in Fig. 5.2.

elastic model adds a dramatic amount of realism due to the bulging behavior and inertial

skin motion. The skinned Herbert model driven with a skeletal animation and my

simulation framework adds inertial forces due to the bone’s moving frames. As Herbert

jumps off a diving board and flips through different poses, I show the advantage of the

128

pose-dependent model from an artistic viewpoint. With single elastic models, the belly

is flabby and skinny throughout the entire simulation. Using the aforementioned morph

targets for Herbert, an animator can impose a stiff, bulged belly in balled-up poses,

and softer, skinny belly behavior in upright poses. Fig. 5.5 demonstrates the imposed

behavior as Herbert’s belly exposes bulging and non-flabby skin when he jumps from

the diving board. Also, in Fig. 5.4, we show the use of reduced models in our method

achieves the same quality of desired deformations as the computationally more expensive

unreduced model.

Shoulder model My method also provides a physically-based approach to resolving

regions affected by multiple joints, such as a shoulder rig. Our approach facilitates

complex rigging: a set of skinning weights and a set of morph targets are sufficient to

simulate complex co-articulation effects. There is no need for manual tweaking of the

complex mapping of joint configuration to blending weights of geometric morph targets.

In our shoulder example, we have 6 morph targets, shown in Fig. 5.6(a). This figure

also shows the method’s ability to simulate dynamic behavior at poses away from the

morph target input poses. The input morph target set contains only one example of a

folded elbow but two distinct folding scenarios are shown in the full simulation. Both

folding scenarios show severe self-intersection in the single pose-independent model due

to the effect of linear blend skinning. The presented pose-dependent model resolves

both automatically. Another interesting co-articulation effect is the motion of the chest

muscle as the arm makes a folding motion (see Fig. 5.7). Whereas the chest seems

to collapse for single elastic models, it bulges more realistically with my method. The

shoulder model has 4899 degrees of freedom. After modal reduction, it was possible

to accelerate the simulation significantly by using only 19 eigenmodes (Table 5.1) with

almost no visible effect on the simulation quality, as shown in Fig. 5.6.

129

Table 5.1: Model Statistics and Performance.
Model Elasticity # DOFS # DMT Preproc. Without With

Type DMTs (s) DMTs DMTs

(fps) (fps)

Bulging Lin. 918 4 / 28 25

Cylinder Red. Lin. 13 4 / 93 89

Red. StVK 13 4 21.2 89 64

Herbert Lin. 603 3 / 36 34

Red. Lin. 12 3 / 96 92

Red. StVK 12 3 16.8 90 58

Shoulder Lin. 4899 6 / 3 3

Red. Lin. 19 6 / 87 85

Red. StVK 19 6 661 30 22

Performance In addition to qualitative comparisons, I have also compared simulation

timings. All the experiments were performed on a Macbook Pro laptop with a single

2.4 GHz Intel Core 2 Duo processor, 2 GB of RAM and a NVidia GeForce 8600M

GT graphics card. All rendering was done with the open-source Blender modeling

package. Timing results are summarized in Table 5.1. All the techniques described in

this chapter achieve real-time performance due to efficient pose-space interpolation of

low-complexity linear elastic forces and modal reduction of either linear or semi-non-

linear (StVK) forces. Comparing my method with the performance of single (pose-

independent) elastic models, it is clear from Table 5.1 that my method has only a

marginal extra cost, due to efficient polynomial interpolation of the dynamic morph

target models. Finally, precomputation of the force polynomial coefficients in Eqn. (5.7)

can be significant in case of StVK models, but never prohibitive. The precomputation

times are shown for each specific experiment in Table 5.1.

Linear versus StVK Even though my method is general enough to handle any poly-

nomial force model including the more expensive StVK model, my experiments show

that the use of linear elastic models Ei for the dynamic morph targets yields very re-

alistic, non-linear deformation effects due to polynomial force interpolation. I have

included the StVK results in the timing results for completeness but did not notice bet-

130

ter visual quality. One of the key features of the StVK model is its rotation-invariance.

In my skinning approach, where elastic deformation is expressed in skeleton’s bind pose,

rotation-invariance does not offer much advantage. Except for the simulation of the

bulging cylinder, all images and videos show the use of linear dynamic morph target

forces.

Comparison with other methods While geometric morph targets enable control

of non-linear deformations, these deformations are purely static and cannot react to

external forces in a physical simulation. Our dynamic morph targets add dynamic

behavior to non-linear deformations such that external and inertial forces can be applied,

as shown in Fig. 5.1. The method by Capell et al. [CBC+05] also enables deformations

under influence of external forces, corresponding to the behavior in Fig. 5.1(b), but does

not influence the underlying properties of the elastic material. As shown in Fig 5.1(c),

our method can correct such undesirable behavior by setting elastic properties for each

of the individual morph targets, effectively mimicking muscle contraction.

5.5 Advantages and Summary

In this chapter I have presented dynamic morph targets — pose-dependent elastic mod-

els that allow an artist to easily author and control the geometry and elastic behavior

of dynamic characters. The main advantages of my method over previous control ap-

proaches are three-fold: quality of deformations, dynamic behavior and computational

efficiency. Although my method is physically based, expensive modeling of musculature

or tendon influences is avoided, and instead I rely on physical constitutive models of

deformable material to minimize skin pinching artifacts and I bypass complex rigging

requirements that are common to purely geometric approaches. The use of such con-

stitutive material models also enables response to external forces and inertial effects in

dynamic simulations. Due to performance requirements, one is commonly restricted to

131

linear or quasi-linear models that cannot model pose-dependent effects such as bulging

and wrinkling. Instead, I guide dynamic simulations by dynamic morph targets — dis-

crete pose-space examples of skin properties and deformations. Application of modal

reduction to the basic framework in Sections 5.1.2 and 5.1.3 improves the runtime perfor-

mance significantly, in order to guarantee real-time frame rates. Finally, my framework

blends well with existing authoring pipelines, as described in Section 5.2.

5.6 Limitations and Future Work

The presentation of the algorithm in this chapter can be enhanced with additional

features, especially with a component that was present in the last two chapters: defor-

mations due to contact are not considered in this chapter. Even though the deformation

models haven’t changed, adding support for contact deformations can improve the abil-

ity to demonstrate the detailed deformations and dynamic effects that were present in

the previous chapters. Dynamic morph targets merely change the coefficients and hence

contact constraints could easily be added to the non-reduced dynamic model. However,

because the skin stiffness matrix is not constant with dynamic morph targets, other ac-

celeration techniques will be required. Additionally, support for contact constraints in

reduced dynamic models could be provided by extending the method of [HSO03] to the

pose-space interpolation setting of this chapter. Alternatively, an extension of the work

by Bergou et al. [BMWG07] also provides possibilities for introducing low-dimensional

constraints into the reduced dynamic system.

Another interesting area for future work is the extension of the pose-space deforma-

tion framework to weighted pose-space deformation [KM04], which allows for a smaller

set of input poses. In my simulations, as shown in the provided figures, the relatively

small number of input morph targets were sufficient without the use of weighted pose-

space deformation. Lastly, so far I have used my method with artist-authored models,

132

but it would be interesting to exploit it for simulating complex nonlinear materials

measured from reality. This would also serve well for quantitatively evaluating the ap-

proximation quality of the method, especially with respect to the added value of using

StVK materials versus pose-space linear elastic materials.

133

(a) Shoulder example morph targets: A few skinned input poses with associated target defor-
mations as provided by an artist (targets 1, 3 and 6). I used 6 morph targets in total, including one
bent arm input with bicep bulging (target 6).

(b) Bicep muscle bulge and self-intersection: At runtime, a pose-independent force model
clearly shows undesired and self-intersecting deformations when bending the arm (left column).
On the other hand, my method in the middle column shows deformations consistent with morph
target 6 (Fig. (a)), even after application of modal reduction for efficiency (right column).

(c) Extrapolation to new shoulder poses: My method also extrapolates to non-input poses.

Figure 5.6: Shoulder Rig Simulation

134

Figure 5.7: Chest flex at runtime: On the left, a pose-independent force
model causes the chest to collapse as the arm of the character is lowered at runtime.
On the right, with my method, the chest correctly deforms consistent with morph
target 6 as shown in Fig. 5.6(a).

135

Chapter 6

Conclusion

In this dissertation, I have presented a unified framework for real-time modeling of soft,

articulated characters with highly detailed skin. This framework combines character

animation, dynamic elastic simulation, fast contact response and directable deformation.

The methods I presented reduce the computational complexity by exploiting layered

models and simplified physics-based models, thus enabling real-time performance. In

this chapter, I summarize the main results of this dissertation and discuss potential

future research directions.

6.1 Summary of Results

I have presented methods on the simulation of soft articulated bodies for computer

graphics. These methods enable real-time animation, simulation and control of char-

acters with contact and collision of very detailed skin, typically with thousands of de-

formable vertices. First, I propose the use of layered models, to concentrate compu-

tational resources on the area that is often the most interesting: the outer skin layer.

Simultaneously, my system preserves the dynamic behavior of the entire volume by

appropriate time and space discretization of continuum Lagrangian dynamics with im-

plicit integration of contact forces. Thus, I guarantee realistic behavior in dynamic and

interactive scenes, as well as stable and responsive contact handling. Correct contact

handling, including friction, is particularly hard for layered models because of the inter-

play between skeletal motion and soft surface contact. Due to the tight mathematical

coupling between these two effects, I have proposed physically-inspired approximation

to reduce the computational complexity of layered contact response, enabling real-time

performance. For the simulation of non-articulated objects, I have proposed the use of

dynamic deformation textures, a very efficient representation that maps well to parallel

architectures such as GPUs. Dynamic deformation textures are exploited and imple-

mented on the GPU for all stages of the algorithm presented in Chapter 3: in forward

skin deformation dynamics, collision detection, contact response and rendering. The

resulting implementation is able to process more than a million deformable elements

per second and up to fifteen thousand contacts per second. This is comparable to the

performance of techniques that use explicit integration (e.g. [ZC99]), without its time

step restrictions and considerably faster than other methods that enable large time steps.

My approach can also handle many more contact points than novel quasi-rigid dynamics

algorithms using LCP [PPG04] while also producing richer deformations.

The system in Chapter 3 does not support global deformation modes such as bend-

ing, twisting or stretching. This limitation was addressed in Chapter 4, where I have

extended the layered model of Chapter 3 to soft articulated characters, subject to skele-

tal animation and skeletal contact response. Naturally, surface collisions simultaneously

cause skin deformations and skeletal motion. In my framework, I propose anticipation

of skeleton response to enable fast coupled contact response, reducing the worst-case

O(mk) complexity to O(m + k) in practice, for m contacts and k bones. For character

meshes with n vertices, I have combined fast contact handling with an extension of

non-articulated pose-space dynamics (Chapter 3) to articulated characters, effectively

reducing the worst-case O(nmk) complexity to O(n+m+ k) in practice. To the best of

my knowledge, this system is the first to enable real-time simulation of soft articulated

characters with frictional contact response that captures the interplay between skeletal

137

dynamics and skin deformation.

At the level of bones and joints, I have introduced two approaches for controlling

the forward dynamics in Chapter 4. The skeletal deformation can be driven by skeletal

animation and controlled by varying magnitudes of joint stiffness. But often users

want to be able to control the shape of the character at a finer level, beyond simple

skeletal deformation. Behavior such as muscle bulging and skin wrinkling are simply

not possible with the pose-space linear dynamics proposed in Chapters 3 and 4. With

dynamic morph targets, the data-driven approach presented in Chapter 5, control of

the behavior of elastic, deformable material in a dynamic simulation is made possible

simply by providing examples of desired shapes. Dynamic morph targets define the

pose-dependent physical state of soft objects, including shape and elastic and inertial

properties. Realistic animation of skin and muscular deformations is a complex and

subtle phenomenon due to the tightly coupled interplay between bones and musculature

governing the deformations. Most physical skin deformation models used in computer

graphics today are not sophisticated enough to reproduce such complex behavior, or

their computational complexity is too high to be practical for interactive computer

graphics applications. Instead of increasing the complexity of the simulation model, I

have proposed to give animators control over complex skin behaviors that are hard to

capture in a physical model. This method is efficient at runtime through modal reduction

and pose-space polynomial interpolation with radial basis functions. Likewise, it is much

more practical than simulation of non-linear materials, both in implementation and

runtime performance, while it nevertheless achieves rich, non-linear effects. In addition

to physically-based contact response approximation in Chapters 3 and 4, non-linear

elastic model approximation in Chapter 5 is the second type of model simplification

applied in this dissertation. As a result, I was able to retain real-time performance for

all methods presented in this dissertation.

138

6.2 Future Work

In the design of the methods presented in this dissertation, I have made a number

of assumptions and have sometimes restricted the scope of my system for the sake

of performance or ease of implementation. Some of these restrictions were relaxed in

the course of my research, such as adding support for skeletal deformation modes in

Chapter 4 or for rich non-linear effects such as bulging in Chapter 5. This section

reiterates remaining limitations, offers potential solutions, examines ways to relax some

assumptions, and explores ways to broaden the scope of my work with novel applications.

6.2.1 Limitations

As summarized in Section 6.1, the methods presented in Chapter 4 can be considered

as a natural extension to resolve some limitations of the system presented in Chapter 3.

Similarly, dynamic morph targets (Chapter 5) complement techniques in Chapers 3

and 4 to support rich non-linear effects and to account for the lack of control in the

earlier methods. Nevertheless, there are still a number of improvements possible:

• Layered models, more specifically layered models with a single layer of deformable

skin tissue on the surface of a body that are used throughout my work, do not

preserve volume well. The reason does not necessarily lie in the linearized dy-

namics employed, because the dynamic formulation with FEM discretization has

reasonably good volume preservation for small deformations. It lies in the fact

that the deformations are often fairly large, to compensate for the lack of defor-

mation degrees of freedom in the (non-)articulated core. Volume constraint forces

can cause locking of competing forces, therefore an alternative approach, based

on fluid dynamics, may be required [ISF07]. Alternatively, one could relax the

assumptions on the core model, as proposed later in this section.

• The performance of dynamic deformation textures as presented in Chapter 3 is

139

partially dependent on the parameterization of the surface. The parameteriza-

tion determines the amount and smoothness of the patch borders, which in turn

influences the convergence of the Conjugate Gradient iterative solver. For my

experiments, this was not a major issue, but it could be improved on. This imple-

mentation issue is due to the choice of mapping the degrees of freedom to a regular

grid. As texture parameterization is a broad and very active field of research,

there is certainly potential to find a parameterization that is tuned specifically

to dynamic morph targets. Alternatively, one could lift the concept of dynamic

deformation textures to a more abstract meaning. One could relax the assumption

of a completely regular grid to a semi-regular grid. This is discussed later in this

section.

• The image-space collision detection algorithm presented in Section 3.3 is approx-

imate because of the distortion that is associated with back-projecting collision

information from the contact domain to the dynamic deformation texture domain.

This could be resolved by replacing this part of my collision detection pipeline

with a more sophisticated primitive-level collision detection.

• I have employed velocity equality constraints to resolve deformable collisions. This

works well for impact resolution and frictional contact effects such as rolling, but

can lead to artifacts for resting contact. It would be interesting to explore ways to

handle inequality constraints, as this would allow modeling more accurate contact

forces as well as joint limits.

• Contact constraints for controllable models with dynamic morph targets were not

presented in this thesis. Although the elastic models of Chapters 3 and 4 also

govern the dynamics of models with DMTs, adding contact constraints efficiently

requires new acceleration techniques (Section 5.6). Also, support for constraints

with reduced models requires additional research. A good starting point is an

140

extension of the method of Hauser et al. [HSO03] to the pose-space interpolation

setting. Another possibility is an extension of the work by Bergou et al. [BMWG07]

to introduce low-dimensional constraints into the reduced dynamic system.

• In my simulations with dynamic morph targets in Section 5.4, the relatively small

number of input morph targets were sufficient to achieve the desired effects. Nev-

ertheless, for other applications, many more morph targets could be required to

capture all desired deformations, especially for highly articulated characters. In

that case, the extension of the pose-space deformation framework to weighted pose-

space deformation [KM04], which allows for a smaller set of input poses could be

useful.

6.2.2 Relaxing Design Assumptions

In the design of my framework, I have chosen to restrict the class of characters to

objects with a rigid or articulated core covered with a single layer of deformable tissue.

In addition, dynamic deformation textures were defined to be mappings to a fully regular

grid for easy and efficient implementation on GPUs. In this section, I will briefly discuss

ways to relax those assumptions to generalize my approach and deal with some of the

limitations of Section 6.2.1.

Generalization of the Layered Model As mentioned before, the lack of degrees of

freedom together with the lack of an elastic deformation model in the core has led to some

unrealistic effects. The lack of degrees of freedom causes prevalent large deformations in

the outer skin layer for which linear elastic laws aren’t very accurate. In addition, the

core was assumed either completely rigid, or articulated and complemented with simple

joint constraints. With such a representation, material compression inside the core,

usually around the joints, is not modeled at all. In Chapter 4, I proposed a solution by

introducing joint stiffness. The main disadvantage of this approach is that the stiffness

141

has to be tuned manually for each joint to achieve both realistic behavior and stable

simulation. Alternatively, many of these limitations could be relieved by generalizing

the concept of the inner core. Future research could be geared towards augmenting

the inner core with a low-dimensional elastic deformation model, and formalizing the

dynamic interface between the core and the high-resolution outer tissue layer. With

an appropriate choice of deformation model for the core, this approach could naturally

provide the volume-preserving behavior that is missing in some of my methods, as well

as inherent joint stiffness through material compression. One of the major challenges in

this approach lies in the formulation of a contact handling algorithm that is stable and

responsive as has been done in this dissertation. Either rigid or loose coupling between

core and outer tissue layer are valid options, but in the end the resulting objects have

to react realistically to surface contact, without restrictions to the material properties

of either core or skin.

Improved Parallelization Dynamic deformation textures provide an extremely fast

implementation of pose-space elastic dynamics of non-articulated objects on the GPU.

The regular grid is very amenable to parallel implementation of iterative numerical

solvers. Unfortunately, due to parameterization issues, mapping the surface of artic-

ulated characters to a regular grid is less straightforward. Unwrapping such surfaces

inherently requires a considerable number of seams, resulting in many different patches

in the parameterized domain and even more patch boundaries that have to be interfaced

with boundary conditions. The boundary conditions negatively affect the dimension-

ality, conditioning of the system of equations and convergence rate of the numerical

solvers. Alternatively, one could consider forgoing the parameterized domain, directly

mapping surface degrees of freedom to a sparse linear system, as is commonly done. In

fact, the sparse matrix is just another form of grid, although it can only be considered

semi-regular because its sparsity pattern is not completely regular. A regular sparsity

142

pattern is the main reason for the extremely high efficiency of dynamic deformation

textures on the GPU. Nevertheless, many techniques exist for re-ordering linear systems

to increase the regularity of its sparsity pattern [Kar03, DGLN04]. In fact, in the articu-

lated framework of Chapter 4, I have applied such strategy to increase the performance

of the CPU-based solvers. Nevertheless, considering the increasing attention for mas-

sively parallel architectures and imminent appearance of many-core systems, the real

challenge lies in parallelization of advanced solvers beyond simple Conjugate Gradient

solvers, such as for example direct sparse solvers for semi- and indefinite systems of

equations, as in Equation 4.31.

6.2.3 Beyond Current Applications

In addition to resolving limitations, the work in this dissertation also motivates exploring

new and exciting applications. Here I briefly present ideas in the areas of real-time

medical applications and active control.

Realistic Nonlinear Materials for Surgery Simulators For the experiments in

Section 5.4, the dynamic morph target shapes were hand-modeled with the goal of giv-

ing artistic control to the outcome of the dynamic simulation. The resulting simulations

show rich non-linear deformations achieved with my novel pose-dependent elastic model,

such as muscle bulging. This effect could not be achieved with simple pose-independent

linear forces, and incurs only marginal extra computational cost. The main goal in

these experiments was to achieve more interesting dynamics with a good level of in-

tuitive artistic control. On the other hand, I believe dynamic morph targets and the

efficient pose-dependent model could provide accurate real-time simulation of nonlin-

ear elastic behavior in medical applications, such as surgery simulators. The essential

difference with the experiments in Section 5.4 would be the way the dynamic morph

targets are produced: the set of example shapes and material properties could come

143

from either a highly accurate nonlinear off-line simulator, or from measurements of real

physical tissue. It would be interesting to investigate the accuracy at which my pose-

dependent elastic model is able to approximate complex non-linear physical materials

in real time, given sufficient and appropriate morph targets. With sufficient accuracy,

this method could be invaluable to real-time surgery simulators. Along with more input

poses and hence more dynamic morph targets also comes the burden of performance

degradation. An intelligent morph target selection scheme in combination with the ex-

tension to weighted pose-space deformation [KM04] will probably be required to retain

real-time performance as well as the desired level of accuracy.

Active Control and Motion Synthesis In Chapter 5, I have proposed a method

for directable dynamics of passively controlled systems. The control is passive, because

dynamic morph targets only have indirect control over the output shape. Eventually,

physical laws govern the final output shape. An exciting possibility for future research

lies in directable active systems with deformable characters, in combination with the

passive control of dynamic morph targets. Actively directed systems require a real-

time controller which directs the physical simulation to follow a given input trajectory.

A trajectory could be an actual physical path, but it could also represent a practical

task, such as obstacle avoidance, grasping or balancing. Imagine for example a range of

human characters with varying body structure and muscle mass, all trying to balance

on a rocking platform with a unified controller. In order to generate realistic behavior,

such controller needs to account for the dynamic properties, such as force generation

in the muscles, as well as the elastic properties in the deformable tissue, as both will

influence the behavior. Inverse dynamics [IC87] and constrained-Lagrangian inverse

dynamics [BMWG07] can drive such a controller but use arbitrary forces that may

cancel the natural dynamics and will look over-controlled. Compliant controllers such

as proportional-derivative (PD) controllers [SNF05, WTF06], could also do the job but

144

depend on gains that are tuned either manually or with heuristics and may not perform

well for many degrees of freedom. Optimal control minimizes the injection of fictional

control forces by cooperating with the natural dynamics of the system [PW99, FP03,

LHP05]. In other words, it can also cooperate with the dynamics of a pose-dependent

system such as the one proposed in Chapter 5. The combination of such a controller

with my dynamic morph targets could unite the benefits of both passive and active

control in exciting new ways.

6.3 Conclusion

This dissertation has provided a strong incentive for using layered models in character

animation systems. Layered models provide many benefits for real-time controllable

simulation of realistic characters, provided that they are appropriately integrated with

responsive contact handling and intuitive deformation control. Additionally, other types

of layers could be added: for example, an animation layer to control high-level character

traits or layers with planning and active control for motion synthesis. I believe that such

layered models can lead to the creation of truly interactive, autonomous and persuasive

characters.

145

Appendix A

Kinematic Relationships

A.1 Non-articulated (Single-Core) Objects

The angular velocity ω ∈ R3 can be expressed in terms of the derivative of a quaternion

θ ∈ R4 by the linear relationship ω = Gθ̇ [Sha89]. Similarly, we can express the rela-

tionship between the velocity state vector v and the time-derivatives of the generalized

coordinates q as:

v = Pq̇, q̇ = P+v, (A.1)

P =


I3 0 0

0 G 0

0 0 In

 , P+ =


I3 0 0

0 1
4
GT 0

0 0 In

 ,

where n is the number of elastic coordinates, and PP+ = I.

We can now derive the world-frame velocity of a material point in terms of the

velocity state vector:

ẋ = ċ + Ṙu + Ru̇ (A.2)

= ċ + Bθ̇ + RSq̇e. (A.3)

The matrix B is the Jacobian of the vector Ru w.r.t. θ, and it can be proven to be

equal to −RũG [Sha89], where ũ is the skew-symmetric cross-product matrix obtained

from u. We can rewrite (A.3) in compact matrix form as a linear function of the time

146

derivative of the generalized coordinate set q:

ẋ =

[
I3 −RũG RS

]
q̇. (A.4)

Applying q̇ = P+v, we can rewrite (A.4) and obtain:

ẋ =

[
I3 −Rũ RS

]
v = Lv. (A.5)

A.2 Articulated Characters

We can derive the world-frame velocity of a material point in terms of the velocity state

vector by time differentiation of (4.5):

ẋ =
k∑

i=1

wi(ċi −Riuiωi + RiRo,iSq̇s)

=
k∑

i=1

wi(ċi + Biθ̇i + RiRo,iSq̇s) (A.6)

Each matrix Bi is the Jacobian of a vector Riui w.r.t. θi, with ui a position in local

bone space. The Jacobian can be proven to be equal to −RiũiGi [Sha89], where ũi is

the skew-symmetric cross-product matrix, and G relates local-frame angular velocities

to time derivatives of quaternions through ω = Gθ̇. We can rewrite (A.6) in compact

matrix form as a linear function of the velocity state vector v (after application of

q̇ = P+v that encapsulates the adjoint relationship G, see Appendix A.1 for details):

ẋ = LWv =

[
W BW RWS

]
v, (A.7)

BW =
[
−w1R1ũ1 . . . − wkRkũk

]
, RW =

k∑
i=1

wiRiRo,i,

147

and W is a diagonal weight matrix. LW is position-dependent.

148

Appendix B

Lagrangian Motion Equations with Finite

Element Method

B.1 Lagrangian Formulation

From Lagrangian continuum mechanics, the motion equations of a deformable body

with generalized coordinate set q can be written in their general form as [GPS02]:

d

dt

(
∂T
∂q̇

)T

−
(

∂T
∂q

)T

+

(
∂F
∂q

)T

+ ∂xE = Q̄, (B.1)

where T is the kinetic energy of the body, F is the work done by the body against

dissipative forces, E(x) is the elastic energy of the body, and Q̄ is the vector of generalized

external forces which includes gravity and contact forces.

B.2 Elastic Energy

The virtual work due to elastic forces can be written as

δWe = −
∫

V

σT δεdV (B.2)

where ε and σ are the stress and strain vectors. With our choice of linear strain model,

the strain can be written in terms of the displacement field as ε = Bue, where B is a

differential operator matrix. In terms of the generalized elastic coordinates of the body,

149

this becomes ε = BSqe.

For a linear isotropic material, the constitutive relationship between stress and strain

is σ = Eε, with E the symmetric matrix of elastic coefficients, defined by the two Lamé

material constants λ and µ. This enables writing the stress vector in terms of the

generalized elastic coordinates. Substituting ε and σ into (B.2) yields an expression for

the virtual work due to elastic forces:

δWe = −qT
e

[∫
V

(BS)TEBSdV

]
δqe = −qT

e Keδqe (B.3)

Here, Ke is the symmetric positive definite stiffness matrix associated with the elastic

coordinates of the body. The generalized stiffness matrix K̄ can be formed from Ke

as

 0 0

0 Ke

. Following equation (B.3), the virtual work due to elastic forces can be

written as δWe = Q̄T
e δqe, where Q̄e = −K̄qe is regarded as a generalized force acting

on the body, or equivalently, −∂xE .

B.3 Motion Equations

The various terms of the Lagrangian equation (B.1) can be rewritten by integrating the

kinetic energy T , the work produced against dissipative forces F , and the elastic energy

E over the entire deformable body, exploiting the texture-based discretization of the

deformable layer described in Section 3.3 in the paper:

d

dt

(
∂T
∂q̇

)T

−
(

∂T
∂q

)T

= M̄q̈ + ˙̄Mq̇−
[

∂

∂q

(
1

2
q̇TM̄q̇

)]T

, (B.4)(
∂F
∂q

)T

= D̄q̇, (B.5)

∂xE = K̄q, (B.6)

150

where M̄, D̄, and K̄ are, respectively, the generalized mass, damping, and stiffness

matrices of the deformable body. They are obtained by integration with linear elements

and linear basis functions, and for their exact expressions we refer to [Sha89]. Note that,

due to definition of the elastic energy based on the displacement field, the generalized

elastic forces only depend on the elastic coordinates.

We define the mass matrix M = (P+)TM̄P+, damping matrix D = (P+)T D̄P+,

and stiffness matrix K = (P+)T K̄P+. We also define transformed external forces Q =

(P+)T Q̄, and a quadratic velocity vector Qv as

Qv = (P+)T

(
− ˙̄Mq̇ +

[
∂

∂q

(
1

2
q̇TM̄q̇

)]T
)

. (B.7)

After some algebraic manipulation, and applying v = Pq̇ (See Appendix A.1 for the

definition of P and P+), the system of motion equations can be reduced to its familiar

form:  Mv̇ = Q + Qv −Kq−Dv = F,

q̇ = P+v.
(B.8)

B.4 External Forces

Generalized forces Q̄ can be computed from world-frame forces f applying the principle

of virtual work. Using the kinematic relationship ẋ = LPv (See Appendix A in the

paper), a world-frame force fp applied at a point p on the deformable body induces a

generalized force Q̄p = PTL(p)T fp.

151

B.5 Mass Matrix

The mass matrix M has the following structure [Sha89]:

M =


mI3 RS̃t RS̄

−S̃tR
T Iθ Iθe

S̄TRT IT
θe Me

 , (B.9)

with mass integral m, Iθ the usual inertia tensor, time dependent inertia shape integrals

St =

∫
ρudV, (B.10)

S̄ =

∫
ρSdV, (B.11)

and

Iθe =

∫
ρũSdV. (B.12)

B.5.1 Quadratic Velocity Vector

From the mass matrix M and (B.7), the quadratic velocity vector reverts to [Sha89]:

Qv =

 Qvc

Qve

 ,
Qvc =

−Rω ×
(
ω × St + 2S̄ve

)
−2Iθω − 2Iθeve − İθω

 ,

Qve =

(
−Me[ω̃

2]u− 2Me[ω̃]ve

)
,

(B.13)

where [A] denotes a block diagonal matrix with A replicated in every block, and u is a

column vector that packs the body-frame position u of all simulation nodes.

152

Appendix C

Joint Compliance for Hinge Joint

For a hinge joint aligned with axis of rotation u, we model joint stiffness between bones

i and j with an angular spring generating torques T = ±kθu proportional to the joint

angle θ. This torque is (conceptually) be encoded in the system stiffness matrix K, more

specifically the block Kb associated with the character’s bones (see Section 4.2.1).

For implicit integration in (4.15), we also need the Jacobians J = ∂T
∂q

. We use quater-

nions q = (s, x, y, z) = (qs,qu) to represent orientations and quaternion matrices [Die06]

to represent quaternion multiplication: qi ⊗ qj = Q(qi)qj = Q̄(qj)qi:

Q(q) =

(
s −x −y −z
x s −z y
y z s −x
z −y x s

)
=

Qs

Qu


Q̄(q) =

(
s −x −y −z
x s z −y
y −z s x
z y −x s

)

with Qs ∈ R1×4 and Qu ∈ R3×4.

The difference orientation q = (qs,qu) between two quaternions qi and qj can be ex-

tracted with these quaternion matrices:

Qi = Q̄(q̄i)

Qj = Q(q̄j)

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)

153

as follows:

qs = Qj,sqi = Qi,sqj

qu = Qj,uqi = Qi,uqj.

Here, the subscripts Q,s and Q,u refer to the first row respectively the lower 3 × 4

submatrix of Q. Then, the Jacobians can be computed as follows:

Ji
j =

∂Ti

∂qj

= −Jj
j = kz

(
wuQi,s + θQi,u

)GT
j

4

Ji
i =

∂Tj

∂qi

= −Jj
i = kz

(
wuQj,s + θQj,u

)GT
i

4

with z = cosec(
θ

2
) w =

θ

tan(θ/2)
− 2

For very small difference angles, we compute lim
θ→0

J:

Ji
j = −Jj

j = k
(
2Qi,u −

θ

2
uTQi,s

)GT
j

4

Ji
i = −Jj

i = k
(
2Qj,u −

θ

2
uTQj,s

)GT
i

4

As defined in Appendix A.2, G relates local-frame angular velocities to time derivatives

of quaternions through ω = Gθ̇.

154

Appendix D

Transformation of Multivariate Cubic

Polynomials

In Section 5.1.2 it is explained that, in order to do force interpolation, I have opted for

elastic models for which the forces can be expressed as polynomial functions in function

of the degrees of freedom. In the case of the reduced StVK model (Section 5.1.4) I have

shown that the elastic force vector R(q) is a multivariate cubic polynomial with vector

coefficients Pi,Qij,Sijk ∈ Rr. Note that, when using linear modal analysis to compute

these coefficients for each of the dynamic morph targets Ri(qi) using Eqn. (5.9), the

computed polynomial Ri(qi) is a function of the displacement qi from rest pose pi.

Given these polynomial coefficients, one can compute a new set of coefficients for the

cubic polynomial R̄i(q) that is in function of the degrees of freedom q of the system.

By substituting qi with (q + ∆q) one can find:

R̄(q) = T̄ + P̄i∆qi + Q̄ij∆qi∆qj + S̄ijk∆qi∆qj∆qk (D.1)

with

T̄ = Pi∆qi + Qij∆qi∆qj + Sijk∆qi∆qj∆qk

P̄l = Pl + (Qli + Qil)∆qi + (Slij + Silj + Sijl)∆qi∆qj

Q̄kl = Qkl + (Slik + Silk + Sikl)∆qi

S̄klm = Sklm,

155

where ā =

[
T̄ P̄i Q̄ij S̄ijk

]
are the new vector coefficients that define R̄i(q) and

∆q is the displacement between a reference rest pose and the rest pose pi of a morph

target. The new coefficients are then eventually used to solve (5.3) for the RBF weights.

156

Appendix E

Code Snippets

Code Snippet E.1 Routine to update two pixel buffers (PBO) from texture memory.
The PBOs can then be interpreted as a vertex and normals buffer (VBO)
void HighResRenderMesh::updateVBOfromTextures(FramebufferObject* fb,

const TextureRef& positionTexture, const TextureRef& normalTexture)

{

// read the vertex data back from framebuffer-attached texture into the PBO

if (!positionTexture.isNull())

{

fb->AttachTexture(GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D,

positionTexture->openGLID());

glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);

fb->IsValid();

debugAssertGLOk();

glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, VBOs[POSITION]);

debugAssertGLOk();

glReadPixels(0, 0, pos_tex_height, pos_tex_width,

GL_RGBA /*BGRA*/, GL_FLOAT, 0);

debugAssertGLOk();

}

// read the normal data back from framebuffer-attached texture into the PBO

if (!normalTexture.isNull())

{

fb->AttachTexture(GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D,

normalTexture->openGLID());

glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);

fb->IsValid();

debugAssertGLOk();

glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, VBOs[NORMAL]);

debugAssertGLOk();

glReadPixels(0, 0, pos_tex_height, pos_tex_width,

GL_RGBA /*BGRA*/, GL_FLOAT, 0);

debugAssertGLOk();

}

// Unbind

glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, 0);

debugAssertGLOk();

}

157

Code Snippet E.2 CPU driver code for sparse matrix multiply. Two passes on the
GPU are invoked with the Compute() call.
/**

* Compute sparse Kx product. Does *not* write alpha.

*

* @param x x, an RGB(A) texture

* @param y y, result buffer, an RGB(A) buffer

* @param tempbuffer z, tempbuffer, should match the format of y (default RGBA)

*/

template <typename model_type>

void compute_sparse_product(model_type& model,

texture_pointer* A, texture_pointer x, texture_pointer y, texture_pointer tempbuffer)

{

shared_ptr<GPUOps> gpu = model.m_gpu;

shared_ptr<FramebufferObject> fbo = gpu->get_fbo();

// Update the boundary information

model.m_boundaryops->update_boundaries(model, x);

DebugTexture(fbo, x);

if (!tempbuffer)

tempbuffer = gpu->m_tempbuffer2;

// First pass, 3 neighbors and self

tempbuffer->Attach(get_pointer(fbo), GL_COLOR_ATTACHMENT0_EXT);

gpu->Ax1->SetTextureParameter("A00", A[0]->Texture());

gpu->Ax1->SetTextureParameter("A01", A[1]->Texture());

gpu->Ax1->SetTextureParameter("A02", A[2]->Texture());

gpu->Ax1->SetTextureParameter("A20", A[3]->Texture());

gpu->Ax1->SetTextureParameter("A21", A[4]->Texture());

gpu->Ax1->SetTextureParameter("A22", A[5]->Texture());

gpu->Ax1->SetTextureParameter("A30", A[6]->Texture());

gpu->Ax1->SetTextureParameter("A31", A[7]->Texture());

gpu->Ax1->SetTextureParameter("A32", A[8]->Texture());

gpu->Ax1->SetTextureParameter("A80", A[18]->Texture());

gpu->Ax1->SetTextureParameter("A81", A[19]->Texture());

gpu->Ax1->SetTextureParameter("A82", A[20]->Texture());

gpu->Ax1->SetTextureParameter("x", x->Texture());

gpu->Ax1->SetMesh(model.GetParameterizedMesh());

gpu->Ax1->Compute();

tempbuffer->FastUnAttach();

// Second pass, 3 neighbors and tempself

y->Attach(get_pointer(fbo), GL_COLOR_ATTACHMENT0_EXT);

gpu->Ax2->SetTextureParameter("A40", A[9]->Texture());

gpu->Ax2->SetTextureParameter("A41", A[10]->Texture());

gpu->Ax2->SetTextureParameter("A42", A[11]->Texture());

gpu->Ax2->SetTextureParameter("A60", A[12]->Texture());

gpu->Ax2->SetTextureParameter("A61", A[13]->Texture());

gpu->Ax2->SetTextureParameter("A62", A[14]->Texture());

gpu->Ax2->SetTextureParameter("A70", A[15]->Texture());

gpu->Ax2->SetTextureParameter("A71", A[16]->Texture());

gpu->Ax2->SetTextureParameter("A72", A[17]->Texture());

gpu->Ax2->SetTextureParameter("x", x->Texture());

gpu->Ax2->SetTextureParameter("tempy", tempbuffer->Texture());

gpu->Ax2->SetMesh(model.GetParameterizedMesh());

gpu->Ax2->Compute();

}

158

Code Snippet E.3 Set up texture matrix for projection of contact domain to D2T
atlas and render into D2T atlas.
void ContactComputePolicy::ComputePolicy(const Matrix4 & contactCamMVP)

{

// load contact camera matrices

glMatrixMode(GL_TEXTURE);

static Matrix4 bias(

0.5f, 0.0f, 0.0f, 0.5f,

0.0f, 0.5f, 0.0f, 0.5f,

0.0f, 0.0f, 0.5f, 0.5f - .000001f,

0.0f, 0.0f, 0.0f, 1.0f);

glLoadMatrix(m_bias);

glMultMatrix(contactCamMVP);

CheckErrorsGL("Loaded contact camera matrices");

// Render into D2T atlas

m_mesh->RenderNearContactToAtlas(contact->Point(m_numobj), m_normal);

}

159

Fragment Program E.1 Compute Ax = Alx+Arx with D2T mapped sparse matrix
in two passes. The intermediary result from Ax1() is passed on to Ax2() as input in
the second pass.
#define SAMPLER samplerRECT

float3 value3(SAMPLER sampler, float2 offset)

{ return texRECT(sampler, offset).xyz; }

float3 Ax(SAMPLER A0, SAMPLER A1, SAMPLER A2, float3 x, float2 coord)

{

float3 y;

y = mul(float3x3(

value3(A0, coord),

value3(A1, coord),

value3(A2, coord)),

x);

return y;

}

void Ax1(

in float2 coord : WPOS,

uniform SAMPLER x,

uniform SAMPLER A00, uniform SAMPLER A01, uniform SAMPLER A02,

uniform SAMPLER A20, uniform SAMPLER A21, uniform SAMPLER A22,

uniform SAMPLER A30, uniform SAMPLER A31, uniform SAMPLER A32,

uniform SAMPLER A80, uniform SAMPLER A81, uniform SAMPLER A82,

out float3 result : COLOR0)

{

float3 x0 = value3(x, coord + float2(0.0, 1.0));

float3 x2 = value3(x, coord + float2(1.0, 0.0));

float3 x3 = value3(x, coord + float2(1.0, -1.0));

float3 x8 = value3(x, coord);

result = Ax(A00, A01, A02, x0, coord);

result += Ax(A20, A21, A22, x2, coord);

result += Ax(A30, A31, A32, x3, coord);

result += Ax(A80, A81, A82, x8, coord);

}

160

Fragment Program E.2 Compute Ax = y+Arx with D2T mapped. The intermediary
result from Ax1() is passed as input to Ax2().

void Ax2(

in float2 coord : WPOS,

uniform SAMPLER x, uniform SAMPLER tempy,

uniform SAMPLER A40, uniform SAMPLER A41, uniform SAMPLER A42,

uniform SAMPLER A60, uniform SAMPLER A61, uniform SAMPLER A62,

uniform SAMPLER A70, uniform SAMPLER A71, uniform SAMPLER A72,

out float3 result : COLOR0)

{

float3 x4 = value3(x, coord + float2(0.0, -1.0));

float3 x6 = value3(x, coord + float2(-1.0, 0.0));

float3 x7 = value3(x, coord + float2(-1.0, 1.0));

result = value3(tempy, coord);

result += Ax(A40, A41, A42, x4, coord);

result += Ax(A60, A61, A62, x6, coord);

result += Ax(A70, A71, A72, x7, coord);

}

Fragment Program E.3 Rasterize distance to eye.

void main(

float4 pos : WPOS,

float4 eyepos : TEXCOORD0,

float4 tidpos : TEXCOORD1,

uniform samplerRECT triangleidmap : TEX0,

out float3 result : COLOR0

)

{

// Copy the triangle ID to green

result.g = value(triangleidmap, tidpos.xy);

// transfer depth (with and without perspective divide)

// z component of eye space position is distance to the eye

result.rb = eyepos.zw;

}

161

Fragment Program E.4 Compute per-texel depth differences.

void main(

in float2 coord : WPOS,

uniform samplerRECT texture1,

uniform samplerRECT texture2)

{

// Subtract texture values and copy to red

float2 val1 = f2texRECT(texture1, coord.xy);

float2 val2 = f2texRECT(texture2, coord.xy);

result.r = val1.r - val2.r;

//Copy triangle ID to green and blue

result.g = val1.g;

result.b = val2.g;

}

162

Fragment Program E.5 Tag colliding texels in the D2T by transferring the collision
data from D with the appropriate mapping and with triangle checking.
void tagcontactobj1(// code for object 1

in float2 coord : WPOS, in float2 texcoord : TEXCOORD0,

uniform float3 lowresnormal,

uniform samplerRECT pdtexture, uniform samplerRECT trianglemap,

out TYPE result : COLOR0)

{

float3 pd = value3(pdtexture, texcoord);

float triangle_id = value(trianglemap, coord);

result = 0.0;

// compare triangle ID and penetration depth.

// Note: the triangle ID for object 1 is stored

// in the green component of pd

if ((pd.r > 0.0) && (abs(pd.g - triangle_id) < 0.00001))

{

//store inwards lowres normal

result.xyz = lowresnormal;

//store penetration depth

result.a = pd.x;

}

else { discard; }

}

void tagcontactobj2(// code for object 2

in float2 coord : WPOS, in float2 texcoord : TEXCOORD0,

uniform float3 lowresnormal,

uniform samplerRECT pdtexture, uniform samplerRECT trianglemap,

out TYPE result : COLOR0)

{

float3 pd = value3(pdtexture, texcoord);

float triangle_id = value(trianglemap, coord);

result = 0.0;

// compare triangle ID and penetration depth.

// Note: the triangle ID for object 2 is stored

// in the blue component of pd

if ((pd.r > 0.0) && (abs(pd.b - triangle_id) < 0.00001))

{

//store inwards lowres normal

result.xyz = lowresnormal;

//store penetration depth

result.a = pd.x;

}

else { discard; }

}

163

Fragment Program E.6 Generate normal map by sampling of each D2T texel neigh-
borhood.
void generate_normals(

in float2 coord : WPOS,

uniform samplerRECT bodypos,

out float3 normal : COLOR0

)

{

// fetch body position from position texture

float3 pos = value3(bodypos, coord);

float3 up = value3(bodypos, coord + float2(0,1)) - pos;

float3 down = value3(bodypos, coord + float2(0,-1)) - pos;

float3 left = value3(bodypos, coord + float2(-1,0)) - pos;

float3 right = value3(bodypos, coord + float2(1,0)) - pos;

float3 upright = value3(bodypos, coord + float2(1,1)) - pos;

float3 downright = value3(bodypos, coord + float2(1,-1)) - pos;

float3 upleft = value3(bodypos, coord + float2(-1,1)) - pos;

float3 downleft = value3(bodypos, coord + float2(-1,-1)) - pos;

float3 norm = (float3)0;

norm += normalize(cross(up, left));

norm += normalize(cross(left, down));

norm += normalize(cross(down, right));

norm += normalize(cross(right, up));

norm += normalize(cross(upright, upleft));

norm += normalize(cross(upleft, downleft));

norm += normalize(cross(downleft, downright));

norm += normalize(cross(downright, upright));

normalize(norm);

normal = norm;

}

164

Vertex Program E.1 Transform position to eye space.

void main(

float4 pos : POSITION,

in float4 tin : TEXCOORD0,

out float4 eyepos : TEXCOORD0,

out float4 tidpos : TEXCOORD1,

out float4 clippos : POSITION

)

{

eyepos = mul(glstate.matrix.modelview[0], pos);

tidpos = tin;

clippos = mul(glstate.matrix.mvp, pos);

}

165

Bibliography

[AOW+08] Bart Adams, Maks Ovsjanikov, Michael Wand, Hans-Peter Seidel, and
Leonidas J Guibas. Meshless modeling of deformable shapes and their mo-
tion. ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2008.

[Bar84] A Barr. Global and local deformations of solid primitives. Proc. of ACM
SIGGRAPH, 1984.

[Bar96] D Baraff. Linear-time dynamics using lagrange multipliers. Proceedings
of the 23rd annual conference on Computer graphics and interactive tech-
niques, pages 137–146, 1996.

[BBK05] M Botsch, D Bommes, and L Kobbelt. Efficient linear system solvers for
mesh processing. IMA Mathematics of Surfaces XI, Lecture Notes in Com-
puter Science, 3604:62–83, 2005.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of
collisions, contact and friction for cloth animation. 2002.

[BJ05] J Barbic and Doug L James. Real-time subspace integration of st. venant-
kirchhoff deformable models. 2005.

[BKSS90] N Beckmann, H Kriegel, R Schneider, and B Seeger. The r*-tree: an efficient
and robust access method for points and rectangles. Proceedings of ACM
SIGMOD, 1990.

[BMWG07] M Bergou, S Mathur, M Wardetzky, and E Grinspun. Tracks: toward
directable thin shells. ACM Transactions on Graphics (TOG), 2007.

[BNC96] Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric deformable
models for surgery simulation using finite elements and condensation. Com-
puter Graphics Forum, 15(3), 1996.

[Bul08] Bullet physics library. 2008.

[BW92] David Baraff and Andrew Witkin. Dynamic simulation of non-penetrating
flexible bodies. 1992.

[BW98] David Baraff and Andrew Witkin. Large steps in cloth simulation. Proc.
of ACM SIGGRAPH, 1998.

[Cap04] S Capell. Interactive Character Animation Using Dynamic Elastic Simula-
tion. Phd thesis, 2004.

166

[CBC+01] JC Carr, RK Beatson, JB Cherrie, TJ Mitchell, WR Fright, BC McCallum,
and TR Evans. Reconstruction and representation of 3d objects with radial
basis functions. 2001.

[CBC+05] S Capell, M Burkhart, B Curless, T Duchamp, and Z Popovic. Physi-
cally based rigging for deformable characters. Proc. of Eurographics/ACM
SIGGRAPH Symposium on Computer Animation, 2005.

[CGC+02a] S Capell, S Green, B Curless, T Duchamp, and Z Popovic. Interactive
skeleton-driven dynamic deformations. Proc. of ACM SIGGRAPH, 2002.

[CGC+02b] S Capell, S Green, B Curless, T Duchamp, and Z Popovic. A multires-
olution framework for dynamic deformations. Proc. of ACM SIGGRAPH
Symposium on Computer Animation, 2002.

[CHP89] John E Chadwick, David R Haumann, and Richard E Parent. Layered
construction for deformable animated characters. 1989.

[CK05] M Choi and H Ko. Modal warping: real-time simulation of large rotational
deformation and manipulation. IEEE Transactions on Visualization and
Computer Graphics, 2005.

[COM] Co-me: Computer aided and image guided medical interventions. http:

//co-me.ch/.

[COM98] J Cohen, M Olano, and D Manocha. Appearance-preserving simplification.
1998.

[Coq90] S Coquillart. Extended free-form deformation: a sculpturing tool for 3d
geometric modeling. Proceedings of ACM SIGGRAPH, 1990.

[CP03] M Cline and D Pai. Post-stabilization for rigid body simulation with contact
and constraints. pages 3744–3751, 2003.

[CUD07] Cuda programming guide. 2007.

[CW05] Fehmi Cirak and Matthew West. Decomposition contact response (dcr)
for explicit finite element dynamics. International Journal for Numerical
Methods in Engineering, 64(8), 2005.

[CZ92] D Chen and D Zeltzer. Pump it up: computer animation of a biome-
chanically based model of muscle using the finite element method. ACM
SIGGRAPH Computer Graphics, 1992.

[DAK04] Christian Duriez, Claude Andriot, and Abderrahmane Kheddar. Signorini’s
contact model for deformable objects in haptic simulations. Proc. of
IEEE/RSJ IROS, 2004.

167

http://co-me.ch/
http://co-me.ch/

[DCKY02] F Dong, G J Clapworthy, M A Krokos, and J Yao. An anatomy-based
approach to human muscle modeling and deformation. IEEE Trans. on
Visualization and Computer Graphics, 8(2), 2002.

[DDCB01] G Debunne, M Desbrun, M P Cani, and A H Barr. Dynamic real-time
deformations using space and time adaptive sampling. Proc. of ACM SIG-
GRAPH, 2001.

[DGLN04] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng.
A column approximate minimum degree ordering algorithm. ACM Trans.
Math. Softw., 30(3):353–376, 2004.

[Die06] James Diebel. Representing attitude: Euler angles, quaternions, and rota-
tion vectors. Technical report, 2006.

[EDS05] Kenny Erleben, Henrik Dohlmann, and Jon Sporring. The adaptive thin
shell tetrahedral mesh. Journal of WSCG, pages 17–24, 2005.

[EL00] Stephen A Ehmann and Ming C Lin. Accelerated proximity queries between
convex polyhedra by multi-level voronoi marching. 2000.

[EL01] Stephen A Ehmann and Ming C Lin. Accurate and fast proximity queries
between polyhedra using convex surface decomposition. 2001.

[Erl04] Kenny Erleben. Stable, Robust and Versatile Multibody Dynamics Anima-
tion. Phd thesis, 2004.

[Fea87] R Featherstone. Robot Dynamics Algorithms. Book, 1987.

[Fel00] C A Felippa. A systematic approach to the element-independent corota-
tional dynamics of finite elements. Technical report, 2000.

[FP03] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of physically
valid human motion. ACM Trans. Graph., 22(3):417–426, 2003.

[Gas98] Marie-Paule Gascuel. Layered deformable models with implicit surfaces.
1998.

[GGK06] A Gress, M Guthe, and R Klein. Gpu-based collision detection for de-
formable parameterized surfaces. Proc. of Eurographics, Computer Graph-
ics Forum, 25(3), 2006.

[GHZ99] L Guibas, D Hsu, and L Zhang. H-walk: hierarchical distance computation
for moving convex bodies. Proceedings of the fifteenth annual symposium
on Computational Geometry, 1999.

[GJK88] E Gilbert, D Johnson, and S Keerthi. A fast procedure for computing the
distance between complex objectsin three-dimensional space. Robotics and
Automation, 1988.

168

[GKS02] E Grinspun, P Krysl, and P Schröder. Charms: A simple framework for
adaptive simulation. Proc. of ACM SIGGRAPH, 2002.

[GL96] Gene H Golub and Charles F Van Loan. Matrix Computations. Book, 1996.

[GLM96] S Gottschalk, M Lin, and D Manocha. Obbtree: a hierarchical structure
for rapid interference detection. Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, 1996.

[GM97] S F Gibson and B V Mirtich. A survey of deformable modeling in computer
graphics. Technical report, 1997.

[Got00] S Gottschalk. Collision queries using oriented bounding boxes. 2000.

[GPS02] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics,
3rd Ed. Book, 2002.

[GRLM03] N Govindaraju, S Redon, M Lin, and D Manocha. Cullide: interactive colli-
sion detection between complex models in large environments using graphics
hardware. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics Hardware, 2003.

[GRPS07] T Goktekin, J Reisch, D Peachey, and A Shah. An effects recipe for rolling
a dough, cracking an egg and pouring a sauce. International Conference on
Computer Graphics and Interactive Techniques (ACM SIGGRAPH), 2007.

[GTO+07] N Galoppo, S Tekin, M Otaduy, M Gross, and M Lin. Interactive haptic
rendering of high-resolution deformable objects. Lecture Notes in Computer
Science, 2007.

[GTT89] Jean-Paul Gourret, Nadia Magnenat Thalmann, and Daniel Thalmann.
Simulation of object and human skin deformations in a grasping task. 1989.

[GW05] Z Guo and K C Wong. Skinning with deformable chunks. Proc. of Euro-
graphics, Computer Graphics Forum, 24(3):373–382, 2005.

[Har05] Mark Harris. Mapping computational concepts to gpus. chapter 31. 2005.

[Hav08] Havok. Havok physics engine. 2008.

[HES03] M Hauth, O Etzmuss, and W Strasser. Analysis of numerical methods for
the simulation of deformable models. The Visual Computer, 2003.

[HFS03] Gentaro Hirota, Susan Fisher, and Andrei State. An improved finite element
contact model for anatomical simulations. The Visual Computer, 19(5),
2003.

[HGB06] J O Hallquist, GL Gourdreau, and D J Benson. Tetgen. a quality tetrahedral
mesh generator and three-dimensional delaunay triangulator., 2006.

169

[HS04] M Hauth and W Strasser. Corotational simulation of deformable solids.
Proc. of WSCG, 2004.

[HSO03] Kris K Hauser, Chen Shen, and James F O’Brien. Interactive deformation
using modal analysis with constraints. Proc. of Graphics Interface, 2003.

[Hub95] P Hubbard. Collision detection for interactive graphics applications. Visu-
alization and Computer Graphics, 1995.

[IC87] P Isaacs and M Cohen. Controlling dynamic simulation with kinematic con-
straints. Proceedings of the 14th annual conference on Computer Graphics
and Interactive Techniques, 1987.

[ISF07] G Irving, C Schroeder, and R Fedkiw. Volume conserving finite element
simulations of deformable models. International Conference on Computer
Graphics and Interactive Techniques (ACM SIGGRAPH), 2007.

[ITF04] Geoffrey Irving, Joseph Teran, and Ron Fedkiw. Invertible finite elements
for robust simulation of large deformation. 2004.

[IZLM01] K Hoff III, A Zaferakis, M Lin, and D Manocha. Fast and simple 2d
geometric proximity queries using graphics hardware. Proceedings of the
2001 symposium on Interactive 3D graphics, 2001.

[JF03] Doug L James and Kayvon Fatahalian. Precomputing interactive dynamic
deformable scenes. 2003.

[JP99] Doug L James and Dinesh K Pai. Artdefo: accurate real time deformable
objects. 1999.

[JP02] Doug L James and Dinesh K Pai. Dyrt: Dynamic response textures for
real-time deformation simulation with graphics hardware. 2002.

[JP04] D James and D Pai. Bd-tree: output-sensitive collision detection for reduced
deformable models. ACM Transactions on Graphics (TOG), 2004.

[JT05] Doug L James and Christopher D Twigg. Skinning mesh animations. 2005.

[Kar03] George Karypis. Multi-constraint mesh partitioning for contact/impact
computations. page 56, 2003.

[KCŽC07] L Kavan, S Collins, J Žára, and CO’Sullivan. Skinning with dual quater-
nions. Proc. of the 2007 Symposium on Interactive 3D Graphics, 2007.

[KEP05] Danny M Kaufman, Timothy Edmunds, and Dinesh K Pai. Fast frictional
dynamics for rigid bodies. Proc. of ACM SIGGRAPH, 2005.

[KGCvB96] R Koch, M Gross, F Carls, and D von Büren. Simulating facial surgery
using finite element models. Proceedings of the 23rd annual conference on
Computer Graphics and Interactive Techniques (ACM SIGGRAPH), 1996.

170

[KHMS98] J Klosowski, M Held, J Mitchell, and H Sowizral. Efficient collision de-
tection using bounding volume hierarchies of k-dops. Visualization and
Computer Graphics, 1998.

[KJP02] P Kry, D L James, and D K Pai. Eigenskin: Real time large deformation
character skinning in hardware. 2002.

[KKA05] R Kondo, T Kanai, and K Anjyo. Directable animation of elastic ob-
jects. ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, 2005.

[KM04] T Kurihara and N Miyata. Modeling deformable human hands from medi-
cal images. Proceedings of the 2004 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, 2004.

[KO88] N Kikuchi and J T Oden. Contact Problems in Elasticity: A Study of
Variational Inequalities and Finite Element Methods. Book, 1988.

[Kom88] K Komatsu. Human skin model capable of natural shape variation. The
Visual Computer, 1988.

[KZ05] L Kavan and J Zara. Spherical blend skinning: A real-time deformation of
articulated models. 2005.

[Las87] J Lasseter. Principles of traditional animation applied to 3d computer
animation. ACM SIGGRAPH Computer Graphics, 1987.

[LC91] M Lin and J Canny. A fast algorithm for incremental distance calculation.
Robotics and Automation, 1991.

[LCF00] J P Lewis, Matt Cordner, and Nickson Fong. Pose space deformations: A
unified approach to shape interpolation and skeleton-driven deformation.
2000.

[LCN99] J C Lombardo, M-P Cani, and F Neyret. Real-time collision detection for
virtual surgery. Proc. of Computer Animation, 1999.

[LGLM00] E Larsen, S Gottschalk, M Lin, and D Manocha. Fast distance queries with
rectangular swept sphere volumes. Robotics and Automation, 2000.

[LHP05] C Liu, A Hertzmann, and Z Popović. Learning physics-based motion style
with nonlinear inverse optimization. Proceedings of ACM SIGGRAPH 2005,
2005.

[Lin93] M Lin. Efficient collision detection for animation and robotics. cs.unc.edu,
1993.

[LM04] Ming C Lin and D Manocha. Collision and proximity queries. Handbook of
Discrete and Computational Geometry, 2004.

171

[LO08] Ming C Lin and Miguel A Otaduy. Haptic rendering: Foundations, algo-
rithms, and applications. page 623, 2008.

[LT06] S Lee and D Terzopoulos. Heads up!: biomechanical modeling and neu-
romuscular control of the neck. Proceedings of ACM SIGGRAPH 2006,
2006.

[Mae06] G Maestri. Digital character animation 3. page 309, 2006.

[MDM+02] Matthias Müller, J Dorsey, L McMillan, R Jagnow, and B Cutler. Stable
real-time deformations. Proc. of ACM SIGGRAPH Symposium on Com-
puter Animation, 2002.

[MG03] A Mohr and M Gleicher. Building efficient, accurate character skins from
examples. 2003.

[MG04] Matthias Müller and M Gross. Interactive virtual materials. Proc. of Graph-
ics Interface, 2004.

[MHTG05] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus
Gross. Meshless deformations based on shape matching. Proc. of ACM
SIGGRAPH, 2005.

[Mir96] Brian V Mirtich. Impulse-Based Dynamic Simulation of Rigid Body Sys-
tems. Phd thesis, 1996.

[MT92] Dimitri Metaxas and Demetri Terzopoulos. Dynamic deformation of solid
primitives with constraints. Proc. of ACM SIGGRAPH, 1992.

[MTLT88] N Magnenat-Thalmann, R Laperrière, and D Thalmann. Joint-dependent
local deformations for hand animation and object grasping. Proceedings on
Graphics Interface, pages 26–33, 1988.

[NMK+05] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxermann, and
Mark Carlson. Physically based deformable models in computer graphics
(state of the art report). Eurographics STAR, 2005.

[OBH02] J F O’Brien, A W Bargteil, and J K Hodgins. Graphical modeling and
animation of ductile fracture. Proc. of ACM SIGGRAPH, pages 291–294,
2002.

[OGRG07] M Otaduy, D Germann, S Redon, and M Gross. Adaptive deformations with
fast tight bounds. Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer Animation, 2007.

[OH99] J O’Brien and J Hodgins. Graphical modeling and animation of brittle
fracture. Proceedings of the 26th annual conference on Computer Graphics
and Interactive Techniques (ACM SIGGRAPH)], 1999.

172

[OJSL04] Miguel A Otaduy, Nitin Jain, Avneesh Sud, and Ming C Lin. Haptic display
of interaction between textured models. 2004.

[Par82] F Parke. Parameterized models for facial animation. Computer Graphics
and Applications, 1982.

[PDA01] Guillaume Picinbono, Hervé Delingette, and Nicholas Ayache. Non-linear
and anisotropic elastic soft tissue models for medical simulation. IEEE
ICRA, 2001.

[PH06] S I Park and J K Hodgins. Capturing and animating skin deformation in
human motion. 2006.

[Phy08] Nvidia physx sdk. 2008.

[Pow87] MJD Powell. Radial basis functions for multivariate interpolation: a review.
Algorithms for Approximation, 1987.

[PPG04] Mark Pauly, Dinesh K Pai, and Leonidas J Guibas. Quasi-rigid objects in
contact. 2004.

[PW89] Alex Pentland and John Williams. Good vibrations: Modal dynamics for
graphics and animation. volume 23, pages 215–222, 1989.

[PW99] Z Popović and A Witkin. Physically based motion transformation. Proceed-
ings of the 26th annual conference on Computer Graphics and Interactive
Techniques (ACM SIGGRAPH)], 1999.

[Qui94] S Quinlan. Efficient distance computation between non-convex objects.
Robotics and Automation, 1994.

[RLN06] T Rhee, J Lewis, and U Neumann. Real-time weighted pose-space defor-
mation on the gpu. Computer Graphics Forum, 2006.

[SCS+08] L Seiler, D Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jermey Sugerman, Robert Cavin,
Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee:
A many-core x86 architecture for visual computing. Proc. of ACM SIG-
GRAPH, 2008.

[SG06] Olaf Schenk and Klaus Gärtner. On fast factorization pivoting methods
for symmetric indefinite systems. Elec. Trans. Numer. Anal., 23:158–179,
2006.

[Sha89] Ahmed A Shabana. Dynamics of Multibody Systems. Book, 1989.

[Sha07] A Shah. Course 6: Anyone can cook: inside ratatouille’s kitchen. Interna-
tional Conference on Computer Graphics and Interactive Techniques (ACM
SIGGRAPH), 2007.

173

[She94] Jonathan R Shewchuk. An introduction to the conjugate gradient method
without the agonizing pain. Technical report, 1994.

[SIC01] P Sloan, C Rose III, and M Cohen. Shape by example. Proceedings of the
2001 symposium on Interactive 3D graphics, 2001.

[SK03] Peng Song and Vijay Kumar. Distributed compliant model for efficient
dynamic simulation of systems with frictional contacts. 2003.

[SKP08] Shinjiro Sueda, Andrew Kaufman, and Dinesh K Pai. Musculotendon sim-
ulation for hand animation. Proc. of ACM SIGGRAPH, 2008.

[SNF05] E Sifakis, I Neverov, and R Fedkiw. Automatic determination of facial
muscle activations from sparse motion capture marker data. Proceedings of
ACM SIGGRAPH 2005, 2005.

[SOH99] Robert W Sumner, James F O’Brien, and Jessica K Hodgins. Animating
sand, mud, and snow. Computer Graphics Forum, 18(1), 1999.

[SP86] T Sederberg and S Parry. Free-form deformation of solid geometric models.
ACM SIGGRAPH Computer Graphics, 1986.

[SPCM97] F Scheepers, R Parent, W Carlson, and S May. Anatomy-based modeling
of the human musculature. Proceedings of the 24th annual conference on
Computer Graphics and Interactive Techniques (ACM SIGGRAPH), 1997.

[SSGH01] P V Sander, J Snyder, S J Gortler, and H Hoppe. Texture mapping pro-
gressive meshes. Proc. of ACM SIGGRAPH, 2001.

[Sta03] Jos Stam. Flow on surfaces of arbitrary topology. 2003.

[TKH+05] Matthias Teschner, S Kimmerle, B Heidelberger, G Zachmann, L Raghu-
pathi, A Furhmann, M-P Cani, F Faure, N Magnenat-Thalmann,
W Strasser, and P Volino. Collision detection for deformable objects. Com-
puter Graphics Forum, 24(1), 2005.

[TL94] G Turk and M Levoy. Zippered polygon meshes from range images. Proceed-
ings of the 21st annual conference on Computer Graphics and Interactive
Techniques, 1994.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. Proc. of ACM SIGGRAPH, 1987.

[TSIF05] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ron Fedkiw. Robust
quasistatic finite elements and flesh simulation. 2005.

[TT93] Russell Turner and Daniel Thalmann. The elastic surface layer model for
animate character construction. 1993.

174

[TW88] Demetri Terzopoulos and Andrew Witkin. Physically based models with
rigid and deformable components. IEEE Computer Graphics and Applica-
tions, 8(6), 1988.

[WG97] J Wilhelms and A Van Gelder. Anatomically based modeling. Proceed-
ings of the 24th annual conference on Computer Graphics and Interactive
Techniques (ACM SIGGRAPH), 1997.

[WPP07] R Wang, K Pulli, and J Popović. Real-time enveloping with rotational
regression. International Conference on Computer Graphics and Interactive
Techniques (ACM SIGGRAPH), 2007.

[WRM05] Pawel Wrotek, Alexander Rice, and Morgan McGuire. Real-time collision
deformations using graphics hardware. Journal of Graphics Tools, 10(5),
2005.

[WSLG07] O Weber, O Sorkine, Y Lipman, and C Gotsman. Context-aware skeletal
shape deformation. Computer Graphics Forum, 2007.

[WTF06] R Weinstein, J Teran, and R Fedkiw. Dynamic simulation of articulated
rigid bodies with contact and collision. IEEE Trans. on Visualization and
Computer Graphics, 12(3), 2006.

[WVS90] P Wriggers, T Vu Van, and E Stein. Finite element formulation of large de-
formation impact-contact problems with friction. Computers & Structures,
37(3), 1990.

[WW90] Andrew Witkin and William Welch. Fast animation and control of nonrigid
structures. Computer Graphics (SIGGRAPH ’90 Proceedings), 24(4):243–
252, 1990.

[ZC99] Yan Zhuang and John Canny. Real-time simulation of physically realistic
global deformation. Proc. of IEEE Visualization, 1999.

[ZCCD04] VB Zordan, B Celly, B Chiu, and PC DiLorenzo. Breathe easy: model
and control of simulated respiration for animation. Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
29–37, 2004.

[ZMCF05] Victor B Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. Dynamics
response for motion capture animation. 2005.

[ZSS97] D Zorin, P Schröder, and W Sweldens. Interactive multiresolution mesh
editing. 1997.

175

