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ABSTRACT 
 

RAMYA RAJARAM: A stationary digital breast tomosynthesis system: design 
simulation, characterization and image reconstruction  

  
(Under the direction of Dr. Otto Zhou) 

 
 Conventional screen-film and/or digital mammography, despite being the 

most popular breast imaging modalities, suffer from certain limitations, most 

important of which is tissue overlap and false diagnoses arising thereof. A new 

three-dimensional alternative for breast cancer screening and diagnosis is 

tomosynthesis in which a limited number of low-dose two-dimensional projection 

images of a patient are used to reconstruct the three-dimensional tissue 

information. The tomosynthesis systems currently under development all 

incorporate an x-ray source that moves over a certain angle to acquire images. 

This tube motion is a major limitation because it degrades image quality, 

increases the scan time and causes prolonged patient discomfort. The availability 

of independently controllable carbon nanotube cathodes enabled us to explore 

the possibility of setting up a stationary multi-beam imaging system. In this 

dissertation we have proposed a stationary digital breast tomosynthesis scanner 

using spatially distributed carbon nanotube based field emission x-ray sources. 

We have presented details about the design, set-up, characterization and image 

reconstruction of the completely stationary digital breast tomosynthesis system. 
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This system has the potential to reduce the total scan time and improve the 

image quality in breast imaging. 

 Extensive design simulation results have been used to decide on the final 

system set-up. The fully assembled actual experimental system is capable of 

acquiring all the images in as little as eight seconds and yield superior image 

quality as well.  The system has been completely characterized in terms of focal 

spot size, system resolution and geometric calibration. Certain important results 

have been obtained during the process that we hope will set the standard for the 

characterization of the future systems. A novel iterative reconstruction algorithm 

has been tried on the projection images obtained from the tomosynthesis system. 

Our algorithm has demonstrated image quality that is on par with the other 

tomosynthesis systems under development. 
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1 Introduction  

1.1 Breast cancer: incidence and mortality 

 

According to the National Cancer Institute (NCI), breast cancer is the 

second most common cancer among women in the United States. There were 

about 184,450 new cases of breast cancer in 2008 of which 40930 were fatal [1]. 

The NCI also estimates that 12.7% of women born today will be diagnosed with 

breast cancer at some point in their lives.  

 A lot of research has been done to find what causes breast cancer and to 

find ways to prevent, diagnose and cure it. Despite a long-term increase in the 

incidence of breast cancer, data from the Surveillance, Epidemiology and End 

Results (SEER) Program show a decrease in breast cancer mortality rate of 

2.3% per year from 1990 to 2001 [2]. The increased incidence of breast cancer is 

due to the widespread availability of screening mammography [3]. While 

mammographic screening can identify cancers earlier, and helps with the 

diagnosis of noninvasive cancers and pre-malignant lesions, it is also fair to say 

that screening has reduced the breast cancer mortality rate. Other forms of 

screening include breast-self exam, clinical breast exam, ultrasonography and 

magnetic resonance imaging but x-ray mammograms continue to be the most 

widely accepted, approved and cost-effective way to diagnose cancer. 
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1.2 Mammography as a breast cancer screening modali ty 

Mammography can identify cancers that are too small to find by physical 

examination in addition to finding ductal carcinoma in situ which is a non-invasive 

condition. Mammography utilizes ionizing radiation namely x-rays to obtain 

images of the compressed breast on either an x-ray film or a digital detector. It is 

routine practice to obtain a medio-lateral oblique (MLO) view and a cranio-caudal 

(CC) view of the breast. The two views are then used to identify abnormalities in 

the breast tissue. 

 The sensitivity of mammography (number of true positives) is about 75% 

[4], although it may be less sensitive for younger women and women with high 

breast density [5]. The specificity of mammography is related to a screening test 

being normal when a cancer is absent. The specificity in conventional or digital 

mammography is about 90% [4, 5]. A low specificity means a large number of 

false positives resulting in a number of unnecessary follow-up examinations, not 

to mention the anxiety associated with it.  

1.2.1 Digital mammography 

 
While most screening mammography the world over uses the screen-film 

technology, the advent of sophisticated digital detectors has made the adoption 

of digital screening mammography easier. In a digital mammography (DM) 

system, we have a computer and a digital detector instead of a screen-film 

cassette.  Digital mammography may be more expensive costing about 1.5 to 4 

times the screen-film system but it offers ease of data storage, manipulation and 
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sharing, faster image acquisition and shorter exams, and potentially improved 

contrast. Many studies have established that DM is at least as accurate as 

screen-film mammography in terms of image quality. The recent Digital 

Mammographic Imaging Screening Trial [5] that evaluated a large group of 

women who underwent both examinations concluded that DM had a higher 

sensitivity and specificity among pre-menopausal and peri-menopausal women, 

in younger women and in women with dense breasts. A few other studies have 

shown that while DM has higher cancer detection rates, it may also have a higher 

recall rate (the rate at which women screened using mammography are called 

back again for re-assessment) [6, 7]. 

1.2.2 Problems with conventional mammography   

 
Although screening mammography is widely accepted around the world 

and plays a very important role in the early detection of breast cancer, it is still 

not 100% accurate. It misses about 30% of cancers due to various reasons but 

foremost is the fact that screening mammography, screen-film or digital, is only a 

two-dimensional imaging modality wherein compressed projection images of a 

three-dimensional breast are obtained on a two-dimensional screen. It is possible 

for some lesions to be obscured by over- and underlying normal tissue because 

of the intrinsic tissue overlap. This is particularly a problem in radio-dense 

breasts where super-imposed tissues can either obscure an abnormality leading 

to decreased sensitivity or they may themselves appear as an abnormality 
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thereby decreasing the specificity of the examination. In addition, in conventional 

mammograms, depth information about the lesions is not made available. 

1.3 Alternatives to conventional mammography 

 
 

The shortcomings with conventional x-ray mammography led to an 

interest in the development of tomographic imaging for breast. In standard 

tomographic imaging, the x-ray tube and the detector move synchronously 

around the patient [8] on opposite sides to obtain multiple projection images. It is 

possible to reconstruct specific planes of interest through the patient’s body by 

shifting and adding these projection images. Tomographic imaging has enabled 

depth localization. It improves the conspicuity of features by removing 

overlapping tissues. It can also improve local contrast by restricting the dynamic 

range to a single slice [8]. Tomographic imaging of the breast can be done using 

either a dedicated breast computed tomography (DBCT) system or a digital 

breast tomosynthesis system. 

1.3.1 Dedicated breast computed tomography 

The concept of breast CT got started in the 1970s soon after the advent of 

CT technology [9, 10] but only recently has there been an increased interest in 

dedicated breast CT systems. The opinion is that CT of the breast may be much 

better than just projection mammography because CT has the potential to 

eliminate overlapping structures [11]. In a DBCT system, about 300-500 images 

of the breast are taken as the scanner rotates 360° arou nd the patient and these 
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images are then reconstructed to yield high-quality three-dimensional slices 

through the breast. A design for a DBCT scanner is shown in figure 1.1. CT 

would be done in the coronal plane. As the patient lies prone on the table with 

the breast hanging in the pendulant position, the scanner and the detector would 

rotate around the breast in the horizontal position [11]. 

 

Figure 1.1 A dedicated breast CT scanner [11]. 

 
The patient is then typically scanned using x-rays at 80-120 kVp but the 

tube voltage and tube-current-time product can be adjusted to deliver the same 

dose to the patient as in a conventional two-view mammogram [12].  About 500 

projection images of the patient breast are acquired which are then reconstructed 

in to 300-500 512x512 images. The breast CT images can then be stacked in the 

coronal, axial or sagittal planes to show specific lesions if need be. It is possible 

to adjust section thickness, contrast and brightness.  

The first clinical experience [12] with DBCT showed that while the overall 

performance of DBCT is similar to conventional mammography, it may still have 

certain limitations. In this first study, micro-calcifications were not well visualized, 

particularly in dense breasts. With 500 or more projection images, dose is an 

issue, and often certain tube parameters for a certain breast thickness have to be 
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chosen after a very careful consideration of a trade-off between patient dose and 

image noise. The other issue is that DBCT may not be very efficient in imaging 

the chest wall. In the above clinical study, the pectoralis muscle was seen in only 

about 18% of the patients. This is a major disadvantage with DBCT although 

future modifications to the breast CT table may address this shortcoming.  

1.3.2 Digital breast tomosynthesis 

 
Digital breast tomosynthesis (DBT) is a new kind of imaging modality 

designed to overcome the major limitation of a conventional mammographic 

system, that of tissue overlap. In DBT, a limited number of low-dose projection 

images are acquired so that the total dose to the patient is still comparable to 

conventional two-view mammography. The geometry of a DBT system is shown 

in Figure 1.2.  

 

Figure 1.2 Geometry of a DBT system [13]. 

 
These two-dimensional images are then reconstructed in to a three-

dimensional data set with a high isotropic in-plane resolution and a much lower 

depth resolution. This data set consists of slices that are relatively free of tissue 

clutter compared to a standard mammogram. Thus DBT allows the radiologist to 
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see through the “structured noise” of normal breast tissue to aid in the detection 

and characterization of cancers [13]. Although successful implementation of 

tomosynthesis was initially delayed because of the lack of digital detectors, the 

rapid advances in digital imaging technology has now made tomosynthesis a 

reality. Most of the current DBT systems primarily use a stationary detector and 

mechanical arms that move the x-ray source in an arc above the detector. 

Different groups have developed their own reconstruction algorithms to allow 

image reconstruction for the limited angle tomosynthesis geometry. In one of the 

earliest studies on tomosynthesis [13], images of a commercial two-dimensional 

accreditation phantom obtained using tomosynthesis, conventional screen-film 

imaging, and conventional digital imaging were compared to establish the 

superiority of tomosynthesis over the conventional methods. The conventional 

digital and screen-film images of the phantom that show the different features in 

a plane are shown in figure 1.3 (a) and 1.3 (b) while the tomosynthesis image is 

shown in Figure 1.3 (c).  
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,                 

 

Figure 1.3 Comparison between conventional and tomosynthesis images. 

(a) Conventional digital image (b) conventional screen-film image and (c) tomosynthesis image of 
a commercial accreditation phantom [13] 

 

The masses, fibers and calcifications are seen as well with tomosynthesis 

as with conventional imaging. This preliminary study concluded that the image 

quality of the tomosynthesis image is sufficient to pass the American College of 

Radiology (ACR) criteria for phantom images [13].   

1.4 Current digital breast tomosynthesis scanners 

 
 There are currently at least three tomosynthesis systems under 

development by major medical technology companies. These include the 

Senographe 2000D from General Electric (GE) [14], the Mammomat Novation 
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from Siemens [15] and Selenia from Hologic [16]. A brief description of each 

system’s characteristics is in Table 1.   

 

Table 1:1 Comparison of the three tomosynthesis scanners being developed by major 
companies. 

 

All the three systems are modified full field digital mammography systems. 

The gantry with the x-ray source moves about 15° to 50 ° around the patient while 

acquiring 11 to 49 projection views of the breast. These images are 

reconstructed using different algorithms in each case. The resultant depth 

resolution is about 1 mm while the in-plane resolution is between 100 and 150 

µm. A photograph of a commercial prototype DBT scanner is shown in figure 1.4. 

   

Parameters GE Senographe 
2000D 

Siemens 
Mammomat 
Novation 

Hologic Selenia 

kVp, mA 25-30 kVp, ~130 mA ~28 kVp, ~180 mA 24-39 kVp, ~100 mA 
Focal spot size  300 µm 300 µm 300 µm 
Target/filter Mo/Mo, Rh/Rh W/Rh Mo,W/Al, Rh 
Angle coverage 50° 50° 30° 
View numbers 11 25/49 11 
Gantry motion Step-and-shoot Continuous Continuous 
Detector CsI: a-Silicon Direct converter Direct converter 
Detector size 18 x 23.4 cm 23.9 x 30.5 cm 24 x 29 cm 
Pixel pitch 100 µm 85 µm 140 µm 
Readout time 0.3 s 0.3/0.6 s 0.6 s 
Integration time 0.4 s 0.2 s  1.0 s 
Exposure time 0.1 s 0.03 s 0.073 s 
Scan time 7 s for 11 views 20 s for 25 views 18 s for 11 views 
Total dose 45 – 143 mAs 80 – 133.4 mAs 80 – 160 mAs 
Reconstruction 
method 

Maximum 
Likelihood - 
Expectation 
Maximization 

Filtered Back 
Projection 

Filtered Back 
Projection 
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Figure 1.4 Mammomat – the prototype tomosynthesis system from Siemens [15]. 

 
From the results published by the researchers working on these DBT 

scanners, it is evident that tomosynthesis offers great promise as an alternative 

to conventional mammography. Phantom and patient results have demonstrated 

that tomosynthesis removes structure noise and greatly improves the in-slice low 

contrast detectability [14, 15, 16]. A comparison between a tomosynthesis image 

of a patient breast and the corresponding mammogram is shown in figure 1.5.  
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Figure 1.5 Mammogram image versus tomosynthesis slice. 

On the left is a mammogram of a patient breast in the MLO view and on right is a tomosynthesis 
slice showing a lesion that was not seen in the mammogram [16] (which later turned out to be a 
benign mass) 

 

It is to be noted that the x-ray focal spot size in the three systems is about 

300 µm. The imaging time is also about 7 to 40 s, which is larger than the about 

1 s imaging time for conventional mammography. It is important to note that each 

of the three systems has adopted one of two gantry rotation techniques. GE has 

adopted the step-and-shoot technique wherein the gantry containing the x-ray 

source makes a full stop at each projection angle to obtain an image before 

moving on to the next view. Hologic and Siemens have adopted the continuous 

rotation technique wherein the gantry keeps moving continuously albeit slowly so 

that x-ray images of the patient are acquired at each projection angle even while 

the source is moving.  
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1.5 Stationary digital breast tomosynthesis system 

1.5.1 Background - problems with current prototype DBT systems 

 
 From the previous discussion about currently available DBT scanners, it is 

evident that in the step-and-shoot technique where the gantry stops and starts 

intermittently, the gantry experiences high acceleration and deceleration in each 

imaging cycle leading to a large vibration of the gantry. The continuous rotation 

technique on the other hand leads to an enlargement in the effective focal spot 

size of the x-ray source in the direction of motion. Both techniques therefore lead 

to significant degradation in image quality. In addition, either kind of rotation 

requires some additional time which results in a longer scan time. A longer scan 

time means more blur due to patient motion thus affecting the overall image 

quality. 

 From the above discussion about DBT, we can infer that DBT may be 

better than conventional mammography and has a great potential to replace it for 

screening and/or diagnostic purposes. The current DBT systems under 

development have achieved significant results towards greater acceptance of 

DBT as a viable alternative to conventional mammography. At the same time, 

from a discussion of the disadvantages with the current systems, it is easy to see 

that there is great room for improvement. It should be possible to reduce the 

scan time so that the patient has to endure the pain of compression that much 

less. To significantly reduce the scan time would require a much faster rotation of 

the gantry. It may not be as easy as it sounds because a faster gantry is more 
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expensive and would also cause a significant enlargement of the effective focal 

spot. However, if images of the patient could be acquired without any rotation of 

the gantry, then it would definitely be possible to reduce the total scan time. The 

concept of using a non-rotating gantry with spatially distributed x-ray sources for 

tomography was investigated before. The Dynamic Spatial Reconstructor [17] 

developed at the Mayo clinic was one of the first systems to use about 28 x-ray 

sources and 28 opposing detectors. It was able to obtain a complete volume 

(about 240 cross-sections) of the patient body from 28 views recorded in 1/100th 

of a second and repeated 60 times/s. However, several issues such as cost, size 

and maintenance led to the eventual demise of the system. Later, the electron-

beam computed tomographic system [18] and the scanning-beam digital x-ray 

system [19] used an electromagnetic field to steer an electron beam to different 

points on the x-ray target to produce a scanning x-ray beam. Such systems 

tended to be bulky and generally had a smaller angular coverage because of 

difficulties with steering the electron beam.  

1.5.2 Motivation 

 
 Since 2000, several researchers have been extremely interested in using 

carbon nanotube (CNT) based x-ray sources. Our lab was one of the earliest in 

2002 to experiment with x-ray generation using CNT cathodes. Great 

improvements have since been made in terms of the x-ray tube current, cathode 

stability and lifetime. Before going into a brief description about CNTs and their 

properties, it is important to note that the availability of CNT cathodes has made 
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it possible for us to build a multiple beam field emission x-ray system. Such a 

system has no mechanical movement of any gantry and is completely stationary. 

The x-ray sources are all fixed in space and can be individually turned on, either 

sequentially or simultaneously, to acquire projection images of an object on a 

fixed detector. Therein lays the motivation to this project. We have the means to 

build a DBT system that is better than currently available systems and we want to 

be able to employ those means to demonstrate the feasibility and potential 

superiority of a truly stationary DBT system.  

1.6 Carbon nanotubes based x-ray systems 

 
 Carbon nanotubes are considered the fourth allotrope of carbon, in 

addition to diamond, graphite and fullerene. They were first observed and 

reported by Iijima [20] who called them microtubules of graphitic carbon. Electron 

micrographs of these early CNTs are shown in figure 1.6. Carbon nanotubes can 

be single or multi-walled. They are endowed with exceptional electronic, 

mechanical, thermal and chemical properties. These properties make them 

suitable for several applications such as nano-electronics, scanning probe 

microscopy, chemical and biological sensors, composites, and of course, as 

electron field emission sources.     

1.6.1 Electron Emission Theory 

 
 The emission of electrons from a conducting material like a metal is based 

on Fermi-Dirac statistics. At low temperatures, the energy of most electrons is 
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lower than the Fermi energy and therefore they remain bound. The electrons can 

be extracted by two processes – thermionic emission and field emission [21].  

These are illustrated in figure 1.7.  

 

Figure 1.6 Electron micrographs of the early carbon nanotubes. 

(a) Tube with five graphitic sheets (b) Two-sheet tube (c) seven-sheet tube [20]. 
 

 
 As the temperature is increased, some electrons gain enough energy to 

overcome the surface potential barrier and become free. This is called thermionic 

emission because of the involvement of high temperatures. Sometimes, when 

there is a strong external electric field, it is possible for the electrons to “tunnel” 

through the surface energy barrier. This process is called field emission as it is 

aided by the external field.  

 Although thermionic sources have enabled the development of various 

applications such as the simple light bulb, picture display tubes, cathode ray 

tubes, oscillators, rectifiers and electron microscopes, they have some inherent 

disadvantages. The need to heat the surface to high temperatures to enable 
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thermionic emission severely affects the lifetime and the size of a potential 

device. In addition, the slow response time of the thermionic sources limits the 

temporal resolution achievable. Often, they require complicated electromagnetic 

optics to accurately focus the random thermal electrons. On the other hand, field 

emission electron sources need only low operating temperatures. They lend 

themselves to easy miniaturization and their response time is almost 

instantaneous.  

 

Figure 1.7 Electron potential energy near a metal surface with/without applied field [21] 

 

Field emission is explained by the famous Fowler-Nordheim equation [22 

– 24]: 

[ ]FbfvFaJ /)(exp 2/321 φφ −= −                                               Equation 1-1 

where 

a = 1.54 x 10-6 A eV V-2 and b = 6.83 eV-3/2 V nm-1 and v(f)=1-  f + (1/6) f ln f…, 

and f =  1.44 eV2 V-1 nm)(F/φ2) 
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Here, F is the local field about the emission area. It is related to the applied field 

as 

F = β.V/d         Equation 1-2 

V is the total voltage drop between anode and cathode, d is the distance 

between the two electrodes, and β is called the field enhancement factor that is 

determined by the geometry of the cathode. It can be shown from 

electromagnetic theory that sharper the tip, the larger the enhancement factor 

and the lower the applied voltage required to achieve the same field emission 

current. 

1.6.2 Carbon nanotubes as field emitters 

 
Carbon nanotubes have atomically sharp tips and a large aspect ratio. So 

the field enhancement factors of CNTs are much greater than that of 

conventional Spindt-type emitters. Carbon nanotubes have been widely studied 

as field emission electron sources for x-ray tubes, display devices and electron 

microscopes [25 - 27]. The field required to turn on electron emission from CNTs 

is 1-2 V/µm [28, 29] which is much lower than other electron emitting materials. 

Carbon nanotubes are also more stable at high currents and have a long life time 

[30, 31]. The lifetime and current achieved on the nanotubes made recently in 

our group are shown in figure 1.8. Field emission cathodes based on CNTs have 

been fabricated by self-assembly, dielectrophoresis and electrophoretic methods 

[30-32].  
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Figure 1.8 I-V and lifetime measurements in new CNT cathodes. 

Shown on left is the I-V plot of a recent batch of CNTs. The maximum current in diode mode is 
about 14 mA. On right is a plot of the lifetime measurement. The CNT cathode stays stable at 
about 10 mA (0.15 Hz, 1 sec) for nearly 15 hours (data courtesy Xiomara Calderon, manuscript in 
progress).  
 

1.6.3 Carbon nanotube cathodes as x-ray sources 

 
 It was reported in 2001 that aligned CNT field emitters could be used as 

an x-ray source in an x-ray tube [33]. Previously published results from our group 

have demonstrated the generation of x-rays from a CNT-based triode type field-

emission x-ray tube [34-36]. While our early research was focused on the 

development of a diode type x-ray tube, later research shifted focus on to the 

triode type field emission x-ray tube in order to meet certain crucial objectives 

such as high temporal resolution and high spatial resolution. The triode structure 

incorporates focusing stages so that we have in the x-ray tube the CNT based 

cathode, a gate, one or two focusing stages and the anode (metal target). A 

schematic illustration of the triode type x-ray tube is shown in figure 1.9. 
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 The design of the above focusing structure was optimized by means of 

electron beam simulation using a commercial software program called Vector 

Fields. An elliptical cathode of dimension 2.35 mm x 0.72 mm was fabricated on 

silicon wafer using a combined process of photolithography and electrophoresis 

developed in our laboratory [37 – 39]. 

 

Figure 1.9 Triode type x-ray tube 

The tube includes a CNT based field emission cathode, a gate, two focusing structures and a 
Molybdenum target as the anode. Electrons are extracted from the CNT cathode upon application 
of a gate voltage. The electron beam is then focused by means of the focusing structure on to the 
anode. X-ray emitted from the anode exit the chamber via the beryllium window. 
 
 
 The x-ray system was then characterized systematically by measurement 

of effective focal spot size, system spatial resolution and temporal resolution [40]. 

Once optimized, the CNT based micro-focus x-ray system was used for in-vivo 

and ex-vivo micro-computed tomographic animal imaging. The x-ray source is 

programmed to generate radiation that is readily synchronized and gated with the 

non-periodic physiological signals from the animal. Efficient gating thus allows 
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the acquisition of images that are free from motion-blur. The system is usually 

operated at 40 kVp and 1 mA cathode current. About 600 or 300 projection 

images of the animal are acquired over either the entire 360° or over about 200°. 

The pulse width of the x-rays is variable depending on the application but 

typically the pulses are 100 ms or 50 ms long. The projection views that are 

obtained are later reconstructed using a commercial reconstruction algorithm and 

analyzed in the coronal, sagittal or axial planes. Reformatted images of a mouse 

imaged on our micro-CT system are shown in figure 1.10. 

 

Figure 1.10 Axial, coronal and sagittal views of a mouse obtained with cardiac and respiratory 
gating on the micro-CT system [40]. 

 

In our first version of the micro-computed tomography (micro-CT) system, 

the detector and the x-ray source were held stationary while the animal is 

mounted on a rotation stage and rotated. This design involved holding the animal 

in a vertical (and therefore an unnatural) position for the duration of imaging. In 

the second and latest version of the micro-CT system, the system is designed 

such that the x-ray source and the detector are mounted on a rotating gantry 

while the animal is held flat and stationary on a horizontal animal bed. This CNT 

based micro-CT system is very unique because it enables the imaging of a free-
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breathing animal in its natural position. It is to be noted that no intubation or 

ventilation of any kind is used on the animal in our micro-CT system.    

1.6.4 Multi-beam field emission x-ray source 

 
 As we can infer from the above description of micro-CT scanners, most 

tomographic scanners involve the rotation of either the source or the object in 

order to acquire multiple projection views that can then be reconstructed to give 

back the three-dimensional object. Thus, some kind of mechanical movement 

becomes an intrinsic part of the tomographic scanners. An alternative way of 

generating multiple projection views without any rotation is by the use of multiple 

cathodes, each cathode acting as an x-ray focal point. The field emission x-ray 

source based on CNT cathodes can be easily miniaturized. Their fabrication 

process is well understood and the micro-CT system has already been validated. 

Taking it to the next step, if one fabricated multiple CNT based x-ray sources and 

placed them all in some fashion, either at regular intervals around a complete 

circle or in a linear array or some other arrangement, then it would be possible to 

build a truly stationary tomographic scanner that could be used either for micro-

CT or tomosynthesis. It was based on this idea that we set out to explore other 

source geometries. Once a scanner design was finalized, it was built and 

completely characterized. Images were obtained from this truly stationary x-ray 

imaging system and reconstructed successfully to demonstrate the feasibility of 

the multi-beam x-ray source idea. That is the story that will be told in the next 

four chapters. 
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2 Design Simulation 

2.1 Simulation  

 

 Computer simulation makes use of theoretical models to predict the 

performance of a real system. In general, the simulation could be statistical or 

analytical. Statistical simulation is based on random number generation and uses 

the physical properties of the interaction process to predict system performance. 

Often problems that are too complex to solve analytically can be solved 

numerically. The most well known statistical simulation process is the Monte 

Carlo simulation which is used in various fields such as economics, physics and 

engineering. Analytical simulations model and solve for systems using analytical 

equations. An example would be the generation of projection images of 

theoretical phantoms. The projection can be calculated based on the line 

integrals of attenuation coefficients of objects whose shape can be described by 

closed-form equations, that is, the phantom consists of say, cylindrical, spherical 

or cubical objects. For a certain source and detector position, the line integral 

through the object can be calculated accurately. The final result would be a 

weighted summation of the integrals [1].  

 Computer simulation is vastly applicable in designing the optics of a 

system. For example, it helps understand the effect of say focal spot size, 
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detector size, source-to-detector distance etc on the final system resolution. 

Simulation is a very useful tool when designing a new x-ray tomographic system. 

In order to design a new system, the right set of parameters is required. The 

process of finding the optimum parameters is not an easy one. It is generally not 

possible or feasible to use real components to build and optimize a system 

repeatedly. On the other hand, if all the programs are in place, then a simple 

computer simulation will not only enable the researchers to find the optimum set-

up but aid them in the analysis of the effect of various factors on the system 

performance.  

 In a tomographic imaging set-up, the first step is the production of x-rays. 

The two important things about the generated x-rays are the x-ray spectrum and 

the x-ray flux. The x-ray photons generated in a tube often pass through 

additional filtration such as beryllium, molybdenum, etc before reaching the target 

and this affects the flux. The x-ray spectrum has a significant effect on the 

resulting image contrast and more importantly, the dose to the patient. In 

general, for mammography, the mean energy of the x-ray spectrum is chosen to 

be less than 20 keV in order to improve low-contrast detectability. Computer 

simulations can help the designer achieve a good balance between x-ray flux 

and x-ray spectrum [2, 3]. The second step is the interaction between the x-ray 

photons and the object that is scanned. This includes energy dependent 

attenuation (beam hardening), scatter, etc. Many of these processes have been 

thoroughly analyzed using computer simulation studies [4-6]. The third step is the 

detector and its associated electronics. Since detector manufacturing is very 
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time-consuming and expensive, computer simulation studies can greatly help in 

predicting the required detector geometries, the detection quantum efficiency and 

noise characteristics before the production of the actual system [7]. 

Simulations are also crucial in the development of reconstruction 

algorithms. It would take much longer for a system to be fully operational if the 

reconstruction algorithm development were to start after the system is built. It will 

also be difficult to separate the non-exact nature of the reconstruction algorithm 

from the non-ideal behavior of a system. Many algorithms for the newer CT 

system geometries were developed based on the results of computer simulation 

studies [8-10]. It is easy to see that computer simulations help a great deal in the 

successful setting up and characterization of a tomographic imaging system. It is 

a complicated topic and it is not possible to describe all aspects of a simulation 

study here. However, one of the most commonly used techniques in simulation is 

to divide complicated geometries into small elements so that their response could 

be considered a point response. For example, the x-ray focal spot and the 

detector are both divided into matrices of finer elements. Each element in the 

source matrix is called a source-let and each element in the detector matrix is 

called the detector-let [1]. For each source-let and detector-let, the x-ray path can 

be approximated by a pencil beam of very small width. The source-let, the path-

let and the detector-let are illustrated in figure 2.1. In simulations, a phantom is 

usually a complex object formed by combining spheres, ellipsoids, rectangles, 

etc. Each component can be divided into elements and each element is called 

object-let. The line integral along a path-let for each object-let can be calculated 
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analytically by solving for the length of intersection of the ray with each object-let. 

The total signal received by a detector is the weighted sum of all the path-lets 

through the object-lets and is expressed as 

∑ ∑
= =

=
1 1

,
i k

kiki lwp µ         Equation 2.1 

Here, li, k is the length for object k intersecting path-let i and wi is the weighting 

factor for path-let i [1].  

 

Figure 2.1 Illustration of source-let, object-let and detector-let [1]. 

 

From the above figure, we see that sixteen path integrals need to be calculated 

for each source-let when each detector channel is divided in to a 4 x 4 matrix. 

There are 48 integrals for four source-lets. Since we have a cubical object with 

two ellipsoids inside, 3 cord lengths need to be calculated for each path-let so 

that we have a total of 144 length calculations. For a detector with 1000 

channels, this means 144,000 calculations. The above calculations must be 

repeated for all projection views as well. It is easy to see the increasing 

computational complexity even for such a simple scenario. Nevertheless, the 

source-let 

   detector-let 

path-let 
Detector  

  Intersection length   
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sophisticated hardware available today can very well manage such complex 

simulations.  

2.2 Geometry simulation for tomosynthesis 

 
 

When the idea of a multi-beam field emission x-ray source came up, the 

first step was to decide on how these x-ray sources should be arranged in order 

to achieve our goals of image quality and scan time. It was important to decide 

how many of these sources were required for the specific application in mind and 

to explore the different possible geometries using those sources. Before building 

the actual system, it was essential to optimize the geometric parameters so as to 

achieve the desired spatial resolution, noise performance and speed. There are 

many possible geometry configurations for a tomosynthesis set-up including the 

selection of parameters such as continuous tube motion or step-and-shoot, 

number of projection views, total angular coverage, detector operation modes, 

etc. It is important to investigate the effect of many of these factors on image 

quality. However our goal was to set up and characterize a carbon nanotube 

based stationary digital breast tomosynthesis system. The fact that our DBT 

system is going to be stationary meant that we did not have to study the effect of 

motion. The availability of individually addressable carbon nanotube (CNT) based 

x-ray sources meant that we could use the computer simulations platform to 

study the effect of different source arrangements. We were most interested in 

looking at the effect of arranging the independent sources in a one-dimensional 

array as well as in a two-dimensional matrix. In addition, we wanted to use the 
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simulations to find the optimum number of projection views as well as to find the 

effects on image quality of the total angular coverage. In DBT systems in general 

a limited number of views (less than 50) are acquired over a limited angular 

range (less than 50° and due to the incomplete sampling  nature of DBT, there 

are bound to be artifacts. There has been a lot of research on image artifacts in 

DBT and their dependence on system geometry and reconstruction parameters 

[11-13]. However our system geometry is unique and it is vital to optimize the 

geometry in our stationary DBT system. The CNT sources are independent and 

separately fixed in space. It is easier to arrange the individually programmable 

CNT sources in a linear chamber as opposed to a curved path of the source that 

is commonly seen in the commercial systems containing their one conventional 

x-ray source. Design, manufacture and cost issues prompted us to consider the 

use of a linear chamber containing the CNT based sources rather than the 

sources-in-an-arc type of arrangement that would technically result in our 

scanner being the exact equivalent of the other DBT scanners under 

development [14-16] as far as source geometry is concerned. The difference is 

illustrated in figure 2.2. Thus our DBT system is unique because in addition to 

being completely stationary, it is defined by a novel source geometry. 

 

Figure 2.2 The geometry in other DBT systems (left) and the geometry in our DBT system (right) 
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In the simulation studies that were carried out, the physical characteristics 

of a commercial detector were adopted. Projection images of different phantoms 

were created assuming certain other fixed parameters such as dose. These 

projection images were then reconstructed using an iterative reconstruction 

method called Ordered-Subsets Convex (OSC) details of which are in chapter 5. 

To analyze the image quality, the contrast from profiles through reconstructed 

objects and the standard deviation in regions of interest were used to calculate 

the signal difference to noise ratio (SDNR). Various other studies have used the 

modulation transfer function (MTF), the artifact spread function (ASF), ripple etc 

to describe the in-plane resolution and out-of-plane artifacts [11, 17-19]. 

2.2.1 Early Results 

 
 In the first test that was performed to study the effect of geometry on 

image quality, a simple simulated phantom was generated. This phantom 

included seven small spheres, each of diameter 400 µm embedded in a uniformly 

absorbing background of thickness 5 cm (in the x-direction in figure 2.3). Five of 

these created a “plus” sign at a depth of 2.5 cm and were 4 cm apart while two 

other spheres were placed at depths of 1.5 cm and 3.5 cm and diagonally offset 

2.5 cm from the center in the y- and z-directions. The projections of this phantom 

were created on a 20 cm detector. The projection images were generated for a 1 

x 11 array (one-dimensional) of sources as well as for a 3 x 11 matrix of sources 

(two-dimensional). The projection images were reconstructed using the version 

of OSC algorithm available at that time. 
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Figure 2.3 Geometry of the tomosynthesis system used in simulation. 

 

 The contrast to noise ratio was evaluated on the reconstructed slices. The 

same total exposure was assumed for both the one-dimensional and the two-

dimensional cases. Poisson noise was simulated in the raw projection images 

and the standard deviation in a chosen region of interest in the reconstructed 

slices was calculated to represent noise.  

 Results indicated that the two-dimensional (2D) matrix of sources provided 

about 20-45% more contrast in the spheres than the one-dimensional (1D) array, 

the image noise was also higher at all locations in the 2D case [20]. The resultant 

CNR was about 5-17% higher in the 2D case (figure 2.4).  
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Figure 2.4 The CNR in the 1x11 and the 3x11 arrays. 

From the percent increase in the CNR for spheres at various locations in the 3x11 array, it is seen 
that the 2D array provides improved CNR. 
  

 Although the results were encouraging, it is to be noted that the phantom 

used in this simulation study was too simple. In order to be more conclusive, it 

would be essential to simulate projection images of a slightly more complex and 

realistic phantom. In addition, although this specific geometry with three arrays of 

eleven sources provided an improvement in the CNR over the 1x11 array, the 

results of comparing a 3x5 matrix with a 3x9 matrix (the extra sources added on 

in the y-direction) in order to study the effect of source spacing in the y-direction, 

or the results of comparing a 3x5 matrix with a 5x5 matrix (extra sources in the z 

direction) in order to study the effect of increased angular coverage in the z-

direction were not conclusive or consistent. It was also at this point that the 

reconstruction algorithm underwent a major upgrade that made it more efficient 

and resulted in better images. It was therefore essential to re-assess the results 

of the geometry simulation using a newer and more realistic phantom with the 

modified version of the reconstruction algorithm. 
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2.2.2 Mammography phantom 

 
 For the new study, projection images of a tissue-equivalent 

mammography phantom, referred to as the CIRS phantom, were created to test 

multiple geometric arrangements of the x-ray sources. The CIRS phantom is 4.5 

cm thick and the background material simulated the average glandular breast 

tissue composition. The objects included in the phantom represent calcifications, 

fibers and masses. The size of the different objects varies from the barely visible 

to the clearly visible. For instance, the smallest calcifications are about 150 µm in 

diameter while the largest are about 400 µm. A picture of the original CIRS 

phantom [21] and the simulated CIRS phantom are shown in figure 2.5 for 

comparison. 

 

Figure 2.5 The original CIRS phantom (left) and the simulated CIRS-type phantom (right). 

In both phantoms, there are objects that represent masses, fibers and calcifications. 
  

A single noise-free projection image of the simulated phantom is shown in 

figure 2.6. Noise was simulated in the projection images for the various 
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geometries that were analyzed. The following section gives the details of the 

simulation as well as the results from each of the geometries. 

 

Figure 2.6 A single noise-free projection image of the simulated CIRS type phantom. 

The image has been windowed to show the smaller calcifications and fibers. 
 

2.3 Simulated geometries 

2.3.1 1D versus 2D array of sources 

 
 As described before, the availability of individually addressable CNT 

based x-ray sources means that the sources could theoretically be arranged in 

many ways, some of which have the potential to increase the available field of 

view in addition to improving image quality. Towards this end, the first geometry 

that was tested with the simple phantom was the 1D array of sources against the 

2D matrix of sources. The same test was repeated with the CIRS type phantom. 

This time, the 1D array of sources had one row of 25 equally spaced sources 

while the 3D matrix had 3 rows of 25 equally spaced sources each. The array-to-

array distance was initially fixed at 2 cm. A second test with an array spacing of 5 

cm was also carried out to examine the effects of increasing the angular 

coverage in the z-direction (figure 2.3). In addition, the source to detector 
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distance was more realistically set at about 69 cm, like in the commercial full-field 

digital mammography systems. Projection images of the CIRS type phantom 

were obtained for both cases. Noise was included in the raw images so that the 

total exposure in the 2D case was comparable to the exposure in the 1D case. In 

addition, noise-free blank scans were created for both cases. The projection 

images were reconstructed using the modified version of the OSC algorithm and 

the resultant reconstructed slice containing the features of interest was 

subjectively and quantitatively evaluated. The contrast in the largest and the 

second largest centrally-located calcification was obtained by taking a profile 

through the objects. The noise was calculated as the standard deviation in a 

specific region of interest that was uniform across the 1D and the 2D scenarios. 

The SDNR was evaluated as (Iobj-Ibkg)/(noise) where Iobj and Ibkg are the 

intensities in the object and the background obtained by taking horizontal profiles 

through the objects of interest in the reconstructed image. The SDNR for the 

largest and the second largest calcifications were thus found at 20 iterations. 

Table 2.1 summarizes the results of the comparison between 1D and the 2D 

cases. 

 From the SDNR results, it is seen that given the same exposure 

conditions (75 mAs total), with a distance of only 2 cm between the arrays, the 

3x25 case does not provide any improvement in the SDNR of the largest 

calcification but provides a minimal improvement in the SDNR of the second 

largest calcification. However, when the distance between the arrays is increased 

to 5 cm, the SDNR improves for both sets of calcifications, with the percentage 
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increase being less than 5% for the larger ones and about 10% in the case of the 

smaller calcifications. This improvement in SDNR is despite the noise being 

larger at all locations in the 3x25 case than in the 1x25 case. Thus, keeping the 

total exposure constant, increasing the angular coverage in the z-direction by 

increasing the spacing between the arrays does seem to improve the contrast, 

especially of the smaller objects. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2:1 SDNR results for the one and two dimensional array of sources. 

The SDNR is given for the 1x25 and the 3x25 array of sources for two different distances 
between the arrays. 
 

2.3.2 Number of projection views 

 
 Next, the effect of the number of projection views used in a tomosynthesis 

set-up on the resultant image quality was studied by simulating projection images 

of the CIRS type phantom with varying number of sources. The total exposure is 

always fixed at 75 mAs, which is distributed equally among the sources. The total 

angular range was fixed at 48° and within that angle  7, 13, 19, 25, 31, 37 and 42 

equally spaced sources were used to create the projection images. The SDNR 

Distance 
between 
arrays 

Test 
case 

Average 
noise 

SDNR for 
the largest 
calcification 

SDNR for 
the second 

largest 
calcification 

 1x25 0.00344 136.1 50.6 

2 cm 3x25 0.00374 131.2 53.7 

 1x25 0.00272 109.0 3.5 

5 cm  3x25 0.00299 112.8 9.9 
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and the noise in each case are listed in table 2.2. It is seen that increasing the 

number of projection views within a fixed angle is advantageous only to a certain 

limit beyond which it becomes a case of diminishing returns because of the 

increase in noise.  

Number of 
projection views 

SDNR for 
largest 

calcification 

SDNR for the 
second largest 

calcification 

Noise 

7 72.2 38.4 0.00307 

13 110.9 43.9 0.0032 

19 116.8 43.9 0.0034 

25 133.1 50.6 0.0036 

31 142.4 55.2 0.0036 

37 135.6 59.8 0.0036 

42 120.1 53.9 0.0037 

Table 2:2 SDNR results for different number of projection views. 
 

 
The effect of increasing projection views on the SDNR is illustrated in figure 2.7. 
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Figure 2.7 Effect of the number of projection views within a fixed angle. 

Increasing the density of sources within a fixed angular range may be detrimental after a certain 
optimal density is reached. 
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2.3.3 Angular range 

 
 Tomosynthesis is a limited angle imaging technique that was developed in 

order to overcome the tissue overlap problem encountered in conventional 

mammography. In the several DBT prototypes that have been developed, the 

angular range is between 15° to 50°. The angular ran ge determines the region 

that is sampled in Fourier space. A limited angle means that the Fourier space 

that is sampled will be reduced too. In order to study the effect of the angular 

range on the image quality, four scenarios were simulated under conditions of 

constant exposure and equally spaced sources. These are (i) 7 sources over 12°, 

(ii) 13 sources over 24°, (iii) 19 sources over 36° and (i v) 25 sources over 48°. 

Projection images of the CIRS type phantom were simulated for each case and 

the SDNR in the largest and the second largest calcifications were evaluated as 

described in the previous sections. Table 2.3 lists the SDNR results for the four 

cases. When the angular range is increased, the SDNR increases too, despite a 

higher noise in the wider angular range.  

  
Angular range SDNR for largest 

calcification 
SDNR for the 

second largest 
calcification 

Noise 

12 66.2 38.5 0.0019 
24 102.8 50.6 0.0026 
36 117.1 55.2 0.0031 
48 133.1 50.6 0.0034 

Table 2:3 SDNR results for increasing angular range. 

 
  The effect of increasing the angular range is shown in figure 2.8. 

Reconstructed image from the angular range of 48° is sho wn in figure 2.9.  
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Effect of angular range
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Figure 2.8 Effect of angular range on the image quality. 

Increasing the angular range increases the SDNR by increasing the region sampled in Fourier 
space. 
 

 
 

Figure 2.9 Reconstructed slice of the CIRS type phantom (with 25 sources over 48°) 

The image has been windowed to show the masses, fibers and calcifications. 
 

2.3.4 Number of iterations 

 
 Although the parameter number of iterations does not strictly fall under 

geometry, it is nevertheless essential to estimate the number of iterations 

required to achieve optimal image quality. In order to do this, the CIRS type 

phantom was reconstructed using 25 sources and the results of every other 
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iteration up to 20 iterations of the modified reconstruction algorithm were saved 

and evaluated for SDNR in the biggest calcification.  The result is shown in figure 

2.10. A similar trend was visualized when the second biggest calcifications were 

evaluated. The optimum number of iterations for good and sufficient image 

quality with our reconstruction algorithm is about 6. 
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Figure 2.10 Effect of the number of iterations. 

 

2.4 Discussion of results 

 

 The effect on image quality of the limited angle acquisition in DBT was 

investigated. Projection images of a CIRS type phantom were reconstructed 

using the modified OSC algorithm and the SDNR in the reconstructed images 

was used to compare various geometries. It is believed that the intensity of a 

reconstructed object is spread throughout the slice thickness so that the in-plane 

contrast or signal difference to noise ratio is a good indication of the depth 

resolution or blurring as well. The availability of novel x-ray sources allowed us to 

explore the possibilities of arranging them in a two-dimensional matrix as 
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opposed to a simple 1D arrangement. From the results of this comparison, it 

appears that a 2D arrangement of sources may provide a marginal improvement 

in the image quality and increase the available field of view for imaging. 

However, in terms of design and development, a chamber with 2D arrangement 

of sources would be far more difficult to build and characterize. Considering this 

trade-off, it may be worthwhile to design a simple chamber that can 

accommodate sources in a linear array. An analysis of the effect of number of 

projection views indicated that between 25 and 35 projection views should be 

adequate to achieve good image quality. It was also seen that increasing the 

density of sources beyond the optimal number only degraded image quality 

because of associated increase in the noise. Also, our simulations confirmed the 

idea that an increased angular range is more important as it allows the sampling 

of a larger region in Fourier space. It was also determined that 6 iterations of our 

reconstruction algorithm should be enough to achieve superior image quality. 

Although more number of iterations improves the contrast, the SDNR does not 

improve. Only 6 iterations can provide the necessary contrast and high SDNR 

and is computationally efficient as well. 
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3 System 

3.1 Multiple beam field emission x-ray source 

 

As was described in Chapter 1, x-ray imaging applications such as 

computed tomography and tomosynthesis require the acquisition of multiple two-

dimensional projection views of the object/patient that are then reconstructed to 

give back three-dimensional object information. Most of the commercial 

tomographic scanners have a design where a single x-ray source (and a 

corresponding detector) rotates about the stationary object. The mechanical 

movement involved in such a source design greatly affects total scan time and 

image quality.  

 While other novel systems have been tried and tested, like the electron 

beam CT [1], they have not been altogether successful because of issues of size 

and cost. In addition, the angular range offered by these systems is often limited. 

The other alternative is to use many spatially distributed cathodes that then 

combined with their corresponding anodes can act as separate and possibly 

individually addressable x-ray sources. As was discussed in Chapter 1, carbon 

nanotubes (CNTs) are excellent field emitters and it is also easy to miniaturize 

the CNT based x-ray sources.  Based on this idea and the development of a 
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single CNT cathode based system, we were able to build a multi-beam x-ray 

source.  

 The multi-beam field emission x-ray (MBFEX) source consists of five CNT 

cathodes, focusing stages and a molybdenum anode target. The whole set-up 

was arranged in a vacuum chamber with a beryllium window. The set-up of the 

linear MBFEX source based system is shown in figure 3.1. Multiple metal-oxide 

semiconductor field effect transistors (MOSFETs) were used to individually 

control the x-ray sources. This preliminary system was characterized by 

measuring the field emission current from the sources in triode mode and by 

focal spot size measurements [2].  

 

Figure 3.1 The multi-beam field emission x-ray system and schematic of a single source (below) 

(a) The system has five cathodes, focusing electrodes and a molybdenum target. The cathode 
current was uniformly 1 mA with varying gate voltages across the sources and the system was 
operated at 40 kVp. (b) A single x-ray source consists of a 1.5 mm cathode on a metal disk, a 150 
µm dielectric spacer, an extraction gate, focusing electrode and a metal anode target [2]. 
 

 Further, the MBFEX system was then used to obtain five projection 

images of a blade from a surgical scalpel placed behind a metal rod [2]. Imaging 
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was done at 40 kVp using a digital x-ray detector (Hamamatsu C7921) running at 

16 frames/second. From these images, it could be seen that while the blade and 

the metal rod appeared as one in the central projection view, the other projection 

views were able to separate out the two objects. The acquisition time for the 

images in this system was only determined by the x-ray exposure time as there is 

no mechanical movement and electrical switching time is really negligible only. 

Another set of nine MBFEX sources over a larger angular range was used to 

demonstrate potential tomosynthesis applications. This system comprised of nine 

x-ray sources, a flat-panel detector, and a computer to synchronize the x-ray 

source and detector and to save the projection images. A schematic of the nine-

beam system together with three of the nine projection views acquired of a 

commercial full size stereotactic needle biopsy tissue equivalent phantom are 

shown in figure 3.2.  

 

Figure 3.2 The nine-beam imaging system and projection images. 

A schematic of the nine-beam imaging system with three of the nine projection images acquired 
of a mammography phantom showing some of the mass-like objects.  
 

Stereotactic needle 
biopsy tissue 
equivalent breast 
phantom 

detector 

Multi-beam field 
emission x-ray sources 
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At that time, due to the limited field of view afforded by the small detector, 

only a portion of the breast phantom containing the masses and calcifications 

was imaged. The nine sources were spaced 1.14 cm apart and the source to 

detector distance was about 19.3 cm. The total angular coverage is therefore 

about 25°. About 200 pixels in the depth direction fr om the nine projection 

images of the phantom (1000 x 200 x 9) were reconstructed with non-cubic 

voxels of 1 mm x 0.1 mm x 0.1 mm using an appropriate algorithm [3]. The 

reconstructed slices through the phantom are shown in figure 3.3.  

 

Figure 3.3 Reconstructed slices of the breast phantom obtained from the preliminary system. 

The slices through the breast phantom (from two different regions of interest) show how the 
overlapping masses in the raw projection images are resolved at their true depths.  The vertical 
lines in the reconstructed slices are artifacts due to blank scan inconsistencies [3].  
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Thus the above imaging test using stationary MBFEX sources 

successfully established the great potential for tomosynthesis. It was evident that 

the system could be greatly improved – in terms of source stability, angular 

coverage and detector specifications – so as to make it a full-field stationary 

digital breast tomosynthesis (DBT) system. It is essential to set a full-scale 

system up in order to make a fair comparison to other commercial systems. 

3.2 Stationary digital breast tomosynthesis system – Argus 

3.2.1 System overview 

 
 Our stationary digital breast tomosynthesis system based on carbon 

nanotube field emission x-ray sources, called Argus [4], consists of 25 

individually addressable x-ray pixels, a flat-panel detector, and an interfacing 

computer. The system geometry is illustrated in figure 3.4. 

 

Figure 3.4 Argus system geometry showing the 25 x-ray sources and the flat panel detector [4]. 
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 The design of Argus is similar to other commercial systems. The flat panel 

detector used is Varian Paxscan 2520 which has a field of view of 19.5 cm x 24.4 

cm. Under full resolution (pixel size is 0.127 mm), the detector readout time is 

0.128 s whereas in the binned mode (pixel size is 0.254 mm), the readout time is 

0.032 s. The 25 x-ray sources are evenly angularly separated and provide a total 

angular coverage of 48°. A picture of the assembled syst em is shown in figure 

3.5. The system does not have any gantry rotation or movement and this enables 

us to reduce the scan time to as little as 9 s with sequential operation of the x-ray 

sources. The targeted total exposure is 80 mAs which is comparable to other 

systems as well.  

 

Figure 3.5 Photo of a completely assembled Argus system 

 

 The most important component is of course the cathodes. The system has 

25 cathodes arranged in a linear fashion so as to form an iso-center at the center 

of the breast phantom. The first batch of cathodes used had CNTs covering an 
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elliptical area of dimensions 0.72 mm x 2.5 mm. A tungsten mesh is used as the 

gate to extract the electrons from the cathodes. Mica is used as the spacer 

between the cathode and the gate. There are two focusing stages the design of 

which were decided after extensive simulations and based on previous 

experience with the one-pixel micro-CT system. The anode is molybdenum and 

has a tilt angle of 16°. We used molybdenum as the wi ndow through which x-rays 

exit the chamber. Molybdenum serves both as a vacuum seal as well as a filter. 

A control circuit consisting of a computer and a field-programmable gate array 

(FPGA) data acquisition board enables us to synchronize the detector and the x-

ray sources [4].  

3.2.2 Comparison with other systems 

 
 Argus is thus a truly stationary DBT system and it may well be superior to 

other systems. A comparison of the features in Argus with those in other systems 

is provided in table 3.1. Since other DBT scanners from major companies are still 

under development and are not yet fully clinically approved, the information 

provided in the table here and elsewhere has been obtained from associated 

published scientific literature. 
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Table 3:1 Argus system specification and comparison with the other systems [4] 

  

 Since Argus is completely stationary, there is no undesirable vibration due 

to gantry motion. The system enables us to utilize the x-ray power more 

efficiently and shorten the imaging time because the x-ray exposure time 

matches the detector integration time. The system resolution, which is often 

limited by the detector resolution, is still better than the other systems.  

3.2.3 Required system characterization  

 
 It is very important that an imaging system be completely characterized 

before any actual imaging is done. The usual quality assurance tests for x-ray 

systems include estimation of the focal spot size, the system resolution, 

calibration of dose and calibration of geometry. In our case, each of the above 
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tests is even more significant because of the presence of multiple x-ray sources 

and the need to establish that their performance is uniform across all x-ray pixels.  

 The next chapter is devoted to a description of the various methods 

adopted for the characterization of Argus while Chapter 5 gives details about the 

image reconstruction technique adopted for reconstructing the images from our 

stationary DBT system. 
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4 Characterization 

4.1 Focal spot size 

  

 In an x-ray chamber, the anode angle is defined as the angle that the 

target makes with the central axis of the x-ray tube output direction. The true 

focal spot size is the area on the anode that is struck by the electrons from the 

cathode. The effective focal spot size is the length and the width of the emitted x-

ray beam as projected along the central axis of the x-ray tube. This is illustrated 

in figure 4.1. The anode angle is usually between 7° and 20°, so the projected 

focal spot is less than the true focal spot [1]. If the anode angle is θ, the true and 

the effective focal spot size are related by the line focus principle: 

Effective focal length = True focal length * sin θ 

The true focal spot size is determined by cathode dimensions and other focusing 

or biasing circuits present in the system and is independent of the anode angle.  
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Figure 4.1 True versus effective focal spot size. 

Anode angle is the angle of the target with respect to the central beam of x-rays. The projected 
focal spot size is determined by the line focus principle. 
 
 
 While a smaller anode angle will yield a smaller effective focal spot for the 

same actual focal area by reducing the projected length by the sine of the angle 

(the projected width does not change), it will also limit the size of the usable x-ray 

field because of the attenuation of x-rays parallel to the anode surface. The 

optimal choice of the anode angle often depends on the application. It is 

important to remember that the focal spot size has a major influence on the 

spatial resolution of the system, particularly when there is a large magnification. 

Common tools used to measure focal spot size are the slit method, the pinhole 

method and the resolution bar pattern. The pinhole method uses a very small 

circular aperture (10-30 µm) in a thin, highly attenuating metal disk. The slit 

camera consists of a small slit made of a highly attenuating material mounted on 

a support. The image of the pinhole or the slit is used to estimate the effective 

focal spot size.  
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4.1.1 Initial imaging test and results 

 
 The first batch of cathodes used in our stationary DBT system Argus was 

elliptical in shape, with dimensions of 2.5 mm along the major axis and 0.72 mm 

along the minor axis. Simulation results predicted that with the combined effect of 

the two focusing stages in the system, there would be a demagnification of 

approximately 3.6 of the cathode size resulting in the actual (true) focal spot size 

on the anode being about 0.694 mm along the major axis and 0.2 mm along the 

minor axis.  Since the major axis would then be projected because of the anode 

angle, this would result in an effective isotropic focal spot size of about 200 µm.  

 In order to measure the focal spot size for all the 25 x-ray pixels in Argus, 

it was decided to adopt the slit method. The protocol as described in European 

Standard EN 13543-5 [2] that describes the measurement of the effective focal 

spot size in micro and mini x-ray tubes was followed.  This method is applicable 

to cathode sizes up to 300 µm and is based on an indirect estimation of the focal 

spot size using the geometric unsharpness. The test object or phantom used was 

a 1 mm tungsten cross wire mounted on a suitable support. This phantom was 

placed as close to the source as possible to achieve the large magnification 

necessary for the measurement as specified in the standard. The set-up is as 

shown in figure 4.2.  
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Figure 4.2 Estimation of the effective focal spot size by using the geometric unsharpness method. 

The magnification (a+b)/a is made as large as possible by placing the test object very close to the 
source [2].  
 

 A schematic of the cross wire phantom that we designed and used for the 

purpose is shown in figure 4.3 along with a typical projection image.  

 

Figure 4.3 Design of the cross-wire phantom used to estimate the focal spot size (left) and a 
single projection image of the phantom (right) 

 
 Once the image is obtained, the procedure outlined in the standard was 

followed in order to estimate the focal spot size along the projected side (that 

side of the true focal spot that is projected by the anode angle and which is 

termed the long side) and the un-projected side (which is the short side).  The 

entire procedure was repeated for various combinations of voltages on the first 

and the second focusing stages in order to find the right set of values at which 



 

 60

the focal spot size is the smallest. Our experimental results indicated that the 

gate voltage had little effect on the focal spot size. The results from nine pixels 

are shown in table 4.1. It can be seen that the typical focal spot size is 

isotropically 0.2 mm with an uncertainty of 0.02 mm [3].  

 

Table 4:1 Focal spot sizes along the long and the short sides of nine x-ray beams in Argus. 

 

4.1.2 Pinhole imaging and results 

 
 From literature and discussions with clinical experts, we figured that 

resolution in terms of focal spot size may not be as much of a concern in a 

tomosynthesis scenario as the total scan time. In that case, it is possible to 

increase the current output of a CNT cathode simply by increasing its size. An 

increased current from each one of the 25 x-ray pixels can help reduce the total 

scan time significantly. In order to do this, a batch of circular cathodes of 

diameter 3 mm was fabricated and assembled in the system. As per simulation 

results and earlier experience, the expected effective focal spot size is 600 µm 

(short side) x 170 µm (long side). Since the European standard is only valid for 

focal spot sizes up to 300 µm, a different method that might be more commonly 
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used for diagnostic x-ray tubes was to be adopted. The pinhole method was our 

method of choice.  

 The pinhole phantom is a 5 mm diameter disk made of an alloy of gold 

and platinum. It contains a 100 µm pinhole that is 500 µm long. This is illustrated 

in figure 4.4.  This commercial phantom (www.oegussa.at) was mounted within 

one hole of many on a large disk. The other holes are of varying diameters. The 

entire disk is mounted on a goniometer so that fine angular adjustment is 

possible. The goniometer with the phantom was placed as close to the x-ray 

source as possible and used the holes of larger diameters for initial alignment. 

The detector is placed so as to ensure a magnification of about 4 as suggested in 

the National Electrical Manufacturers Association standard [4] (for pinhole 

imaging).  

 

Figure 4.4 The pinhole phantom with the 100 µm pinhole. 

  

 After initial alignment it becomes easier to align the 100 µm pinhole in the 

path of the x-ray beam. An image of the pinhole obtained using the central x-ray 

pixel for a particular combination of focusing voltage is shown in figure 4.5.  
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Figure 4.5 An image of the pinhole. 

 

 From the intensity distribution of the pinhole, we estimated the focal spot 

size as follows: The intensity distribution along the long and the short sides are 

integrated separately across columns or rows as the case may be. The 

integrated intensity is then plotted as a function of the number of pixels. This is 

illustrated in figure 4.6. The integrated intensity data was then fitted to a 

Gaussian function. As per industry standard, the 80% area under the Gaussian 

curve is taken as the effective focal spot size. The 80% value is given in terms of 

the standard deviation of the Gaussian, σ, as 1.28*σ. This value was then 

expressed in terms of distance units and scaled for magnification to yield the 

effective focal spot size.  
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Figure 4.6 Integrated intensity of the long and the short side of the effective focal spot. 

Overlaid on the raw data is a Gaussian fit to the data. The σ of the fitted Gaussian is used to 
calculate the effective focal spot size. 
 
  
 The above procedure was repeated for various combinations of voltages 

on the two focusing stages in order to find the optimum set of focusing voltages. 

This set of focusing voltages was then used to verify the effective focal spot sizes 

of the other x-ray pixels. The focal spot sizes obtained for the central x-ray pixel 

are shown in table 4.2. 

 

Focusing 

 voltages 

(V) 

 

1200 

 

1300 

 

1400 

 

1500 

  

 1600 

 

1700 

900 0.1708x0.5719 0.1548x0.5195 0.147x0.4951 0.1469x0.4847 0.1496x0.4903 0.1511x0.4938 

1000 0.1708x0.5445 0.155x0.5277 0.1499x0.5011 0.1456x0.4718 0.1507x0.4749 0.153x0.4801 

1100 0.1587x0.5023 0.1587x0.5099 0.1487x0.4915 0.1496x0.4904 0.1492x0.4964 0.1529x0.4883 

 

Table 4:2 Focal spot sizes for various combination of focusing voltages. 

Focal spot sizes in units of ‘mm’ are estimated using the pinhole method for various combinations 
of focusing voltages. The focal spot size on the long side is about 0.15 mm while on the short 
side is about 0.50 mm. 
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 Thus, the pinhole method enabled us to measure the focal spot size. It 

can be seen from the experimental results that the focal spot sizes in the long 

and the short side are approximately 0.15 mm x 0.50 mm. The uncertainty in the 

measurements is about 0.02 mm. While the values are comparable to the values 

predicted by simulation (0.17 mm x 0.60 mm), the difference could be attributed 

to variation in the demagnification factor. In addition, simulation assumes a 

parallel anode whereas there is an anode angle of 16° in the experimental set-

up. 

4.2 System resolution 

 

 Spatial resolution of a system determines how good it is in producing 

images of very small objects [5-7]. Many different physical mechanisms can 

cause loss of resolution in imaging systems. In other words, these mechanisms 

cause the sharp point input to the imaging system to spread and create a blurred 

version of the input. The lateral spread of the output itself is a measure of the 

spatial resolution of the system and is measured in terms of the point spread 

function (PSF), the line spread function (LSF), or the edge spread function (ESF). 

These functions describe blurring caused in an imaging system in the spatial 

domain. Another way of describing resolution mathematically is by the use of 

functions in the frequency domain [1, 8-12]. The Fourier transform is the 

mathematical operation that allows the conversion from the spatial domain to the 

frequency domain.  
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4.2.1 Modulation Transfer Function 

 
 The modulation transfer function or MTF is a graphical description of the 

resolution capabilities of an imaging system. A typical MTF is illustrated in figure 

4.7. The x axis of the MTF plot represents the size of the object. Low spatial 

frequencies correspond to big objects while higher frequencies correspond to 

smaller objects. For most imaging systems, the MTF is close to 1 at low spatial 

frequencies and gets smaller at higher spatial frequencies. 

 

Figure 4.7 Spatial resolution in terms of modulation transfer function (MTF). 

The MTF is a plot of the contrast transfer properties of an imaging system as a function of the 
size of the object.  
 

4.2.2 Method for determining the MTF 

 
 To determine the MTF of our system, we have adopted the method 

described by Fujita, et al. [13]. This is a method for measuring the MTF by taking 

the Fourier transform of a “finely sampled” line spread function (LSF). The LSF is 

obtained from the image of a slightly angulated slit in the spatial domain. The 

small angulation of the wire helps by providing an effective sampling distance 

that is much smaller than the original sampling distance of the imaging system, 
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thus avoiding the effects of aliasing. For example, with a slit that is placed at an 

angle less than 2° perpendicular to the scan direction, the following four LSFs are 

obtained from locations A, B, C and D as shown in figure 4.8 (a & b). While each 

LSF has five discrete data with the same sampling distance, they can be 

combined to generate a composite finely sampled LSF with a smaller sampling 

distance as shown in figure 4.8 (c). The Fourier transform of the composite LSF 

gives the presampling MTF value of the digital imaging system.   

 

Figure 4.8 Generation of a composite LSF. 

On the left is a slightly angulated slit whose LSFs corresponding to various alignments (b) are 
used to generate a composite “finely sampled” LSF (c). The Fourier transform of the composite 
LSF gives the MTF of the system. [13] 
 

4.2.3 Experiment 

 
 In the phantom that was designed for the purpose of estimating the MTF, 

a 100 µm tungsten wire was placed inside a plastic holder so that the vertical 

angle of the wire is less than about 2°. The phantom w as then placed on the 

stage at the same distances from the source and the detector that would 

normally be used for breast imaging. The combination of focusing voltages that 

gave the smallest focal spot size was then used to obtain images of the MTF 

phantom. The MTF due to the central pixel and two extreme x-ray pixels were 
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measured in this manner. Once the image was obtained, a sufficiently large 

region of interest (ROI) encompassing the wire was chosen to yield the 

oversampled LSF. The angle of the wire was estimated from the ROI and used to 

generate a composite LSF. A Gaussian was fitted to the composite LSF after 

subtraction of the background. This Gaussian LSF was then Fourier transformed 

and normalized to give the MTF. The MTF at 10% is quoted in units of lp/mm as 

the presampling MTF of the digital imaging system. Since the effective focal spot 

size in our system is anisotropic, the above experiment was repeated to find the 

MTF in the other direction by placing the phantom horizontally on the stage.  

 Since it is important to determine and separate out the contributions of 

various components of the imaging system to the total presampling MTF, the 

detector MTF was also measured by placing a slightly angulated 100 µm 

tungsten cross wire directly on the surface of the detector. This enabled us to 

correlate the focal spot size of the CNT cathodes with the corresponding MTFs.  

4.2.4 Results 

 
 The MTF for three representative x-ray sources was measured by the 

above method by placing the phantom on the stage to ensure a magnification of 

about 1.1. We chose the central x-ray source as well as two of the extreme 

sources to characterize the spatial resolution. It is known that in the other clinical 

tomosynthesis systems under development, either the source or the detector or 

both are moving during the finite x-ray exposure period. This motion causes a 

degradation of the MTF compared to a stationary case [14]. Choosing the 
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sources that are at the extreme ends of the chamber (similar to the full range of 

c-arm motion in the other DBT systems) will allow us to make a more useful and 

fair comparison of our system MTF with that of the other systems.  

 The region of interest chosen from the image of the phantom, the binned 

LSF and the fitted Gaussian are shown in figure 4.9 for the central x-ray source 

(# 13).  

 
 

Figure 4.9 Calculation of the MTF. 

The region on interest chosen to calculate the MTF is shown on the image of the phantom. On 
right is the binned LSF (data points in blue) fitted to a Gaussian (red). 
 
 
The calculated MTF for the three x-ray sources along the long (projected) and 

the short side are shown in figure 4.10. It is evident that the system MTF on the 

long side is better than the MTF for the short side across the three x-ray sources 

that were tested. 

(a) MTF on the long side (left) and on the short side (right) for x-ray source 1 
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(b) MTF on the long side (left) and on the short side (right) for x-ray source 13 

(c) MTF on the long side (left) and on the short side (right) for x-ray source 25 
 

Figure 4.10 MTF plots for the three x-ray sources. 

 
 
 The detector MTF measured by placing the wire directly on the surface of 

the detector is shown in figure 4.11 corresponding to both the long and the short 

side of the cathode.  

 

Figure 4.11 Plot of the detector MTF. 

The detector MTF is given along the long side (left) and along the short side (right) of the cathode  
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4.2.5 Discussion of results 

 
 The system MTF values along the long and the short sides of the cathode 

for each of the three x-ray sources tested are summarized in table 4.3. The 

optimum effective focal spot size was estimated to be about 0.145 x 0.490 mm. 

The MTF of the Varian Paxscan detector as quoted by a technical representative 

of the company is 3.1 lp/mm for the 1x1 binning mode. We have measured the 

detector MTF along the long side to be 3 lp/mm and the detector MTF along the 

short side to be a little less at about 2.7 lp/mm. So, a detector MTF of 3.1 lp/mm 

actually corresponds to a spatial resolution of (0.5/3.1) = 0.161 mm even though 

the detector pixel size is given to be 0.127 mm.  

 The contribution of the effective focal spot size at the detector is (M-

1)*FSS, where M is the magnification used and FSS is the effective focal spot 

size. Based on the experiment, we have M=1.1 so that the effective focal spot 

size contributes about 10% to the system MTF. 

X-ray source 
number 

10% MTF along the long 
side in lp/mm 

10% MTF along the short 
side in lp/mm 

1 2.5 2.3 

13 2.8 2.4 

25 2.3 2.1 

 

Table 4:3 MTF for the different x-ray beams. 

 
  The effective FSS along the long side is 0.15 mm so that we have 

at the detector a resolution of (0.161 + 0.015) = 0.176 mm. This is equivalent to a 
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limiting MTF of 0.5/0.176 = 2.85 lp/mm. Similarly, the effective FSS along the 

short side is 0.5 mm so that we have at the detector a resolution of (0.161 + 0.05) 

= 0.21 mm. This is equivalent to a limiting MTF of 0.5/0.21 = 2.4 lp/mm. The MTF 

values obtained for the central x-ray source along the long and the short sides 

are very close to the limiting values. The extreme x-ray sources 1 and 25 are at 

an angle of 24° compared to the central source. The x- rays from these sources 

have a larger path length, that is they travel an extra distance of about cosine 24° 

(= 0.91) compared to x-rays from the central source. This causes an increase in 

the spatial blur in the detector scintillator screen and introduces a degradation of 

about 10% in the system MTF for the extremely located x-ray sources as seen in 

table 4.3. Thus, we can conclude that it is really the detector that is limiting the 

resolution and an improved detector resolution will allow us to achieve better 

system spatial resolution. 

 It is important that in the estimation of the MTF, the oversampling angle is 

calculated accurately. A modification to the existing program was implemented to 

calculate the angle by fitting a straight line to the minimum intensity values 

corresponding to the wire from every row in the selected region of interest. In 

addition, care should be taken to fit a good Gaussian to the line spread function 

before obtaining the Fourier transform. Flat-field corrected images are 

recommended to be used for the MTF estimation. In any case, the Gaussian fit 

should be able to account for any non-uniformity in the background. The 

thickness of the wire used in the method should in general be smaller than the 

detector pixel pitch. The phantom containing the wire should be a low attenuating 
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material and at the same time be able to hold a wire that is long enough to cover 

as much of the field of view of the detector as possible. 

4.3 Geometry Calibration 

 
 The purpose of geometric calibration in a cone beam tomographic system 

is to estimate the geometry parameters of the system that would be required for 

accurate and artifact-free image reconstruction. Often, the geometric calibration 

method is tightly linked to the algorithm hypothesis used in the particular set-up 

[15]. There are many methods for geometric calibration such as alignment [16], 

projection matrix estimation [17] and global estimation methods using sets of 

projection images [18, 19].  Accurate scanner calibration is required in order to 

avoid reconstruction artifacts [15] and even small errors in one geometric 

parameter can have visible bad effects on the reconstructed image.  

4.3.1 Method 

 
 The method that was used to calibrate the geometry of the DBT system is 

an analytic method based on identification of ellipse parameters as first 

described by Noo, et al [20]. In this method of calibration, a simple phantom 

consisting of two highly attenuating ‘point’ objects is used. Multiple projection 

views of the phantom are obtained as it rotates over the entire 360°. It is easy to 

see that as each object rotates, it traces an ellipse on the detector. From a 

parametric description of the ellipse, it is possible to analytically derive the 

geometry parameters through the use of explicit formulas that link the two. In 
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general, seven parameters are sufficient to calibrate a cone beam scanner where 

the source and the detector move in a circle [15].  In this method, it is assumed 

that the detector is parallel to the rotation axis and the remaining six geometry 

parameters are estimated.  

 It is easy to understand the geometry of the system by using a Cartesian 

system of coordinates where the z-axis is along the rotation axis and the x-axis is 

along the perpendicular line from the source to the rotation axis. This is shown in 

figure 4.12.  

 

Figure 4.12 Illustration of the scanner geometry for estimation of geometric parameters [20] 

 
 

 In figure 4.12, R is the distance from the cone vertex to the rotation axis 

and D is the shortest distance from the vertex to the plane of the detector. If ew is 

the unit vector that specifies the direction of the shortest line connecting the 

detector to the source, θ is the co-polar and the φ is the azimuthal angle in the (x, 

y, z) plane while η is used to define the two orthogonal unit directions eu and ev 

along the detector plane. The orthogonal projection of the source on the detector 

plane is represented by (u0, v0).  
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 In this method, the assumption is that θ = 0 and so the method estimates 

the remaining six geometry parameters, namely R, D, η, φ and (u0, v0). In our 

case, the most important parameters needed for tomosynthesis image 

reconstruction (reconstruction is described in Chapter 5) are the source locations 

in space. Each of the 25 sources in our system is fully described in (x, y, z) space 

by (u0, v0) and D. The value of η should be as small as possible as it describes 

an undesirable detector tilt. The value of φ should reflect the angular location of 

the x-ray source, that is, φ = 0° for the central x-ray beam whereas φ = 24° for 

the extremely located x-ray sources.  

 Earlier methods relied on non-linear parameter estimation, required 

reasonable initial estimates and had issues of uniqueness and stability. Noo’s 

method [20] avoids those difficulties by introducing an intermediate set of 

parameters to analytically derive the geometry parameters from the ellipse 

parameters. Here, N uniformly spaced projection images of a calibration phantom 

consisting of two point objects are obtained over 360°.  The two point objects are 

placed as far away from rotation axis as possible with one object on each side of 

the source plane. System calibration is done in three steps: 

1. Determine whether rotation axis is projected onto the detector and find η. 

2. The cone beam projection of the two point objects yields two ellipses on 

the detector. The projection data are used to determine the ellipse 

equations. A fitting is done on the two ellipses and the ellipse parameters 

are estimated.  
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3. The ellipse parameters and the distance between the two point objects are 

used to set up equations for the unknowns. These equations are then 

solved analytically to yield the geometry parameters. 

4.3.2 Testing 

 
 The calibration method described above was implemented in Matlab (The 

Mathworks™). Our implementation basically followed the three steps outlined 

above. The two balls are segmented out based on a threshold intensity value. 

The centroids of the projection of the two balls are identified for all projection 

views. A least squares ellipse fit is done on the centroids to derive the ellipse 

parameters. Using the intermediate equations given in the reference [20], the 

geometric parameters are calculated from the ellipse parameters. In order to 

validate the above geometric calibration method as applied to our stationary DBT 

system, it was first tested using computer simulations. The simulation test was 

done in two parts: 1) simulate projection images of the two-ball phantom based 

on certain geometry parameters, test the calibration method implemented in 

Matlab on the simulated images, extract the geometry parameters, compare the 

calibrated values with the input (designed) values. 2) Reconstruct a CIRS type 

phantom with the calibrated set of values as well as with the designed set of 

values to demonstrate differences, if any, between the two.  

 The calibration method was then applied to preliminary experimental 

images of a home-made two-ball phantom. For the initial calibration, nine x-ray 

sources in Argus were used to generate either 6 or 12 projection images of the 
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phantom. For the second test, the geometries of the central x-ray beam and the 

two extreme x-ray beams were calibrated first and then the calibration was 

validated by repeating for two other x-ray beams in between. More details on the 

simulation tests and the experiment are given in the following sections. 

4.3.2.1 Simulation Tests & Results 
 
 
 For the first simulation test, a calibration phantom containing two highly 

attenuating balls embedded in a low-attenuating background was created using a 

NURBS modeling software called Rhinoceros®. The balls are each 2 cm in 

diameter and if the center of the phantom is taken as (0, 0), the centers of the 

balls are located at (-2, 2) and (2, -2). There are nine equally spaced x-ray 

sources whose offset distances from the center are listed in table 4.4. These are 

the theoretical (designed) locations of the sources along the direction of the 

chamber (x-direction) and are designated as u0. The theoretical v0 (offset along 

the direction perpendicular to the chamber – the y-direction) for all the sources is 

zero. The phantom was placed close to the detector so that the magnification is 

nearly 1. The source to detector distance (SDD) was fixed at 69.06 cm (thus 

SDD will be along the z-direction). For each of the nine sources, thirty projection 

images of the calibration phantom were obtained over full rotation. A single 

simulated projection image from the central x-ray beam is illustrated in figure 

4.13. All the simulated projection images were then extracted out and the 

geometric calibration technique which had been implemented in Matlab was 

tested on the simulated images. The relevant geometric parameters are (u0, v0) 
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and the SDD. The values of these parameters obtained from calibration are listed 

together with the theoretical values in table 4.4. From the table, it is evident that 

the difference between the calibrated and the theoretical u0 values is about 2 mm 

(at worst) while the difference between the calibrated and theoretical v0 values is 

about 0.7 mm (at worst). The largest difference between the calibrated and 

designed SDD is about 1.2 cm, however, this variation is still less than 2 % of the 

actual SDD.  

 For the second part of the simulation test, a CIRS type phantom as 

described in Chapter 2 was set up and noise-free projection images of the 

phantom were simulated using the designed geometric parameters. The 

projection views were then reconstructed using our iterative reconstruction 

algorithm (described in Chapter 5). The reconstruction was first done with the 

designed geometry values and then repeated using the experimentally calibrated 

geometry values. The same slice containing the features of interest were 

extracted from both reconstructions and analyzed for differences in contrast 

and/or resolution. 

 

Figure 4.13 A single projection image of the simulated calibration phantom. 

Image shows the two highly attenuating balls in a low-attenuating background. 
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Table 4:4 Calibrated and theoretical geometric parameters. 

The phantom was imaged at a magnification 1. The difference between the two sets (∆ = theory – 
experiment) is also included. 
 
 
 A slice showing the masses, fibers and calcifications, reconstructed using 

the experimentally calibrated geometric parameters is shown in figure 4.14 next 

to the same slice from the reconstruction using theoretical parameters. The 

image quality in the two cases appears to be similar in general but a closer look 

reveals that the calcifications are slightly smeared out, especially the smallest 

and the second smallest set of calcifications, in the calibrated reconstruction. The 

fibers also seem to be fuzzier in the calibrated case than in the theoretical case. 

Exp. 
u0 

(mm) 
 

Theory 
u0  

(mm) 

∆u0 
(mm) 

Exp. 
v0 (mm) 

Theory 
v0 

(mm) 

∆v0 
(mm) 

Exp. 
SDD 
(mm) 

Theory 
SDD 
(mm) 

∆SDD 
(mm) 

286.1 287.4 1.3 0.013 0 -0.013 678.2 690.06 11.86 

213.84 215.55 1.7 -0.061 0 0.061 688.7 690.06 1.36 

142.9 143.7 0.74 0.14 0 -0.14 683 690.06 7.06 

71.56 71.85 0.28 0.09 0 -0.09 690.3 690.06 0.24 

0 0 0 0 0 0 680.5 690.06 9.56 

-72.89 -71.85 1.04 -0.37 0 0.37 688.7 690.06 1.36 

-143.6 -143.7 -0.10 0.38 0 -0.38 683.4 690.06 6.66 

-213.41 -215.55 -2.14 0.72 0 -0.72 690.9 690.06 0.84 

-288.4 -287.4 1.04 -0.05 0 0.05 681.6 690.06 8.46 
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Figure 4.14 Reconstruction using the theoretical and the calibrated geometric parameters. 

On left is the slice reconstructed using theoretical geometric parameters and on the right is the 
same slice reconstructed using the calibrated geometric parameters. The two images were 
separately windowed and zoomed to show the objects of interest and the difference in gray scale 
is most likely a result of minor variations in the windowing. 

 

 The comparison is further illustrated in figure 4.15 by taking two horizontal 

profiles through the central object, one profile for the top two sets and another 

profile through the bottom two sets of calcifications. From the profiles, it is 

evident that there is only a very negligible difference in intensity in the calibrated 

case compared to the experimental case, and even that is more so for the 

smallest calcifications. In addition, there is a small spread (resolution) associated 

with the tail side of the calibrated profile, which again is worst for the smallest 

calcifications. 

 Similar profiles taken through the fibers in both sets of reconstructed slices 

did not show any difference in intensity or the resolution. Same was the case with 

the masses. It is fair to conclude that the reconstruction is not very sensitive to 

small variations in the source locations or the source to detector distance. 
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Figure 4.15 Intensity profiles for the theoretical and the calibrated reconstruction sets. 

Horizontal profiles taken through the central object for the two sets of calcifications at the top (top) 
and through the central object for the two sets of calcifications at the bottom (bottom) from the 
theoretical reconstruction (purple squares) and the from the calibrated reconstruction (blue 
diamonds) 
 
  It was still important to test the calibration technique to see if it 

could provide more accurate results. For this, projection images of the two ball 

phantom were simulated under a magnification of 2. Thirty projection views of the 

phantom were obtained for each of three equally spaced sources. Following the 

same procedure as before, the geometric parameters were calculated from these 

images. The results are in table 4.5.  
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Table 4:5 Geometry parameters for magnification 2. 

Listed above are the calibrated values and the theoretical values of the geometric parameters 
when the phantom was imaged at a magnification 2. The difference between the two sets (∆ = 
theory – experiment) is also included. 

 
 Table 4.6 shows results of the calibration when a phantom with smaller 

beads was imaged under similar conditions (bead size was reduced to 1/10th its 

original size).  

 

Table 4:6 Geometry parameters for a phantom with smaller beads. 

Listed above are the calibrated values and the theoretical values of the geometric parameters 
when a phantom with smaller beads was imaged at a magnification 2. The difference between the 
two sets (∆ = theory – experiment) is also included. 
 
 Other simulation tests that varied the detector pixel pitch, number of 

projection views, threshold segmenting intensity, etc were also carried out, the 

results of which are summarized in the discussion.   

 

Exp. 
u0 

(mm) 
 

Theory 
u0  

(mm) 

∆u0 
(mm) 

Exp. 
v0 (mm) 

Theory 
v0 

(mm) 

∆v0 
(mm) 

Exp. 
SDD 
(mm) 

Theory 
SDD 
(mm) 

∆SDD 
(mm) 

47.9 46.9 1.0 0.05 0 -0.05 690.9 690.06 -0.84 

0 0 0 0 0 0 690.4 690.06 -0.34 

-47.9 -47.45 -0.45 0.03 0 -0.03 690.2 690.06 -0.14 

Exp. 
u0 

(mm) 
 

Theory 
u0  

(mm) 

∆u0 
(mm) 

Exp. 
v0 (mm) 

Theory 
v0 

(mm) 

∆v0 
(mm) 

Exp. 
SDD 
(mm) 

Theory 
SDD 
(mm) 

∆SDD 
(mm) 

47.5 47.9 0.4 0.05 0 -0.05 689.5 690.06 0.56 

0 0 0 0 0 0 689 690.06 1.06 

-46.1 -47.9 -1.8 -0.02 0 -0.02 690.2 690.06 -0.14 
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4.3.2.2 Experiment & Results 
 
 
 For the first experimental calibration, six projection views of a home-made 

phantom were obtained over full rotation from each of eight x-ray sources by 

placing the phantom at a magnification of 1.1. The detector was operated in the 

2x2 binning mode so that the detector pixel pitch was 254 µm. The geometric 

parameters obtained from this first test are listed in table 4.7. The results show 

that there is a large variation in the some of the sources’ location in terms of (u0, 

v0). Based on the reference and using the simulation results, the phantom was 

redesigned so that it could now be imaged under a magnification greater than 1.  

Table 4:7 Geometric parameters from initial calibration test (magnification 1.1) on Argus 

 
 In the second calibration experiment, thirty projection images of the newly 

designed phantom were obtained by running the detector at full resolution over 

Exp. 
u0 

(mm) 
 

Theory 
u0  

(mm) 

∆u0 
(mm) 

Exp. 
v0 (mm) 

Theory 
v0 

(mm) 

∆v0 
(mm) 

Exp. 
SDD 
(mm) 

Theory 
SDD 
(mm) 

∆SDD 
(mm) 

-209.3 -209.6 -0.3 -1.5 0 1.5 681.0 690 9.0 

-185.8 -185 0.8 -2.5 0 2.5 685.1 690 4.9 

0 0 0 0 0 0 690.5 690 -0.5 

12.8 22.5 9.7 0.12 0 -0.12 689.9 690 0.1 

108.1 113.7 5.6 1.8 0 -1.8 688.2 690 1.8 

125.6 137.1 11.5 2.8 0 -2.8 687.6 690 2.4 

156.7 160.9 4.2 3.2 0 -3.2 687.8 690 2.2 

185.1 185 -0.1 1.9 0 -1.9 686.8 690 3.2 
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full rotation for the central x-ray source, the two sources at each end of the 

chamber, and two sources in between. The new results are shown in table 4.8. 

 Table 4:8 Geometric parameters obtained using a new phantom (magnification 1.5) 

 

4.3.3 Discussion 

 
 From the simulation tests, it could be confirmed that better estimates of 

the geometric parameters are possible if the phantom is imaged at a 

magnification of 2. This is due to two factors: (i) at a higher magnification, the 

projection of the beads on the detector covers sufficiently large number of pixels. 

(ii) Higher magnification aids in obtaining a better fit to the ellipses. If the 

projection of the beads on the detector covers too few pixels, the results may not 

be accurate. This was later confirmed using the experimental results. The 

selection of the threshold intensity is also very important. Different thresholds 

cause the beads to be segmented out differently thus affecting the centroid 

location and the calculation of the other parameters that are derived from the 

centroids. Also, the use of more number of projection images increased the 

accuracy in the estimate of the geometric parameters. The most important 

Exp. 
u0 

(mm) 
 

Theory 
u0 

(mm) 

∆u0 
(mm) 

Exp. 
v0 (mm) 

Theory 
v0 

(mm) 

∆v0 
(mm) 

Exp. 
SDD 
(mm) 

Theory 
SDD 
(mm) 

∆SDD 
(mm) 

-285.0 -287.24 -2.23 2.5 0 -2.5 683.1 685 1.9 

-164.29 -160.86 3.43 2.6 0 -2.6 682.1 685 2.9 

0 0 0 0 0 0 682.1 685 2.9 

162.59 160.86 -1.73 -2.58 0 2.58 679.1 685 5.9 

285.0 287.24 2.24 -3.36 0 3.36 676.5 685 8.5 
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conclusion of the simulation tests is that the inherent sensitivity of the particular 

calibration technique limits the accuracy of the source location in the x-direction 

to about 1 mm (uncertainty calculated as the standard deviation of the ∆u 

values). The reconstruction algorithm requires the source locations in the x- and 

y-directions and the SDD but it may be most sensitive to the source location in 

the x-direction. Even so, the reconstruction of the CIRS type phantom 

demonstrated that even a variation up to 2 mm in the source ‘x’ location does not 

significantly affect either the contrast or the resolution in the reconstructed slices 

in a tomosynthesis set-up. This can be further explained using the simple 

geometry shown in figure 4.16. If the ‘x’ location of the source is off by 2 mm, it 

translates to a displacement in the projection of a feature on the detector by 

about 120 µm. This displacement is less than the detector pixel size normally 

used in tomosynthesis and therefore does not significantly impact the 

reconstruction either.  

 

Figure 4.16 Typical imaging geometry in tomosynthesis. 

Geometry used to illustrate how a small variation in the x location of the source will negligibly 
affect the reconstructed images. 
 
 
 
 
 
 

2 mm 

650 mm ~40 mm 

detector 
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5 Image Reconstruction 

5.1 Introduction to reconstruction 

 

 Tomographic imaging deals with the reconstruction of an object from its 

projection images. A projection refers to the information derived from the 

energies transmitted through the object when it is illuminated from a particular 

angle. A projection at a certain angle is the integral of the image in the direction 

specified by that angle [1]. By using an external source of radiation, a 

transmission picture of the three-dimensional object is obtained on a two-

dimensional surface such as an x-ray film. The reconstruction problem is then 

defined as obtaining an estimate of the object’s internal density distribution given 

a subset of all possible projections of an object [2]. All algorithms for 

reconstruction take as input the projection data and produce as output an 

estimate of the original object. The solution to the problem of reconstruction of an 

object function from its projections was first described by Radon in 1917 but 

since the invention of computed tomography (CT) by Hounsfield in 1972 [3], 

there has been a renewed interest in image reconstruction techniques. It is now 

possible to compute high-quality cross-sectional images with great accuracy 

despite projection data not strictly satisfying the theoretical models that are 

required by the reconstruction algorithms.  
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A little introduction to x-ray physics is required before starting off about 

reconstruction. Computed tomography is based on measurement of x-ray flux at 

different angles. If we assume a mono-energetic beam of x-ray photons, and 

measure the intensities of the x-rays before and after impinging an object of 

thickness x that has a uniform attenuation µ, then by Lambert-Beers law, we 

have 

xeII µ−= 0          Equation 5.1 

In the above equation, I0 is the incident intensity and I is the transmitted intensity. 

The attenuation coefficient µ is a material property that is a function of energy. 

Objects with a higher µ (bones) attenuate x-rays more than objects with a lower µ 

(eg., soft tissue). In a non-uniform object, the attenuation coefficient is calculated 

by dividing the object into very small elements. Equation 5.1 is then modified to 

give 

( )dxx
I

I
p

L∫=






−= µ

0

ln        Equation 5.2 

Here L is the path length traveled by the x-ray beam through the object and p is 

the projections measured in CT. The CT problem is to estimate the attenuation 

distribution of the object given a set of measured line integrals in the form of 

projection data (often non-ideal because of poly-energetic x-ray beam, scatter, 

beam hardening and other effects). 
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5.1.1 Sampling geometry 

 
Since the discovery of CT, there have been at least four different 

generations of CT scanners [4]. The data collected in the first and the second 

generation scanners consist of parallel ray projections while the data collected in 

the third and the fourth generation scanners have projections that go forth from a 

single point. This focal point is the x-ray source and this type of data collection 

refers to the fan-beam geometry. Another type of data collection is the cone-

beam geometry which uses many fan beams to cover a volume. It is seen from 

figure 5.1 that the sampling geometry gets increasingly complicated as we move 

from parallel beam to cone-beam. 

 

Figure 5.1 Different data sampling geometries. 

On the left is simple parallel projection, in the middle is fan-beam sampling and on the right is 
cone-beam geometry. 
 

 It is easy to understand cone beam geometry by starting with parallel 

beam projections. Projection data set acquired over a 2π angle is commonly 

presented in the form of a sinogram. In a sinogram, the horizontal axis 

represents the detector channels while the vertical axis represents the projection 

detector detector detector 

source source 

  source 



 

 90

angle. A single projection is therefore represented in the sinogram space as 

shown in figure 5.2. The data collected over all the angles forms a two-

dimensional image with intensities representing the magnitude of the projections. 

Any object can be approximated by a collection of points in space so that its 

projection is a set of overlapping sine or cosine curves in sinogram space [4].  

A simplified object having four homogenous blocks with attenuation 

coefficients µ1, µ2, µ3, and µ4 can be used to discuss the various CT 

reconstruction methodologies. This is illustrated in figure 5.3. Line integrals of 

this object are available in the horizontal, vertical and diagonal directions. The 

diagonal equation and three others form a set of independent equations. Thus, 

we have four equations for four unknowns and therefore a unique solution is 

possible. 

 

Figure 5.2 Object space (left) and the sinogram space (right). 

A sinogram is formed by stacking the projections from all angles. A single projection is 
represented by a horizontal line in the sinogram space. 
 
 
 In the general case, for an object that is divided into N x N small elements, 

at least N2 measurements are required in order that a unique solution be 

possible. Solving such a large set of equations such as this simultaneously is a 

challenge. Not all the N2 measurements will be independent and in addition, 
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there may be errors in some measurements. A possible solution to this problem 

is iterative reconstruction. More details follow later but the gist of it is that it is a 

technique that requires repeated updates to the reconstructed pixels based on 

the difference between measured and calculated projections.  

 

Figure 5.3 An example of an object and its projections. 

 

5.1.2 Fourier Slice Theorem 

 
The most important principle in tomographic image reconstruction is the 

Fourier Slice Theorem that relates the measured projection data to the two-

dimensional Fourier transform of the object cross-section [1]. Projections of an 

object are basically line integrals through the object and by finding the Fourier 

transform of a projection taken along parallel lines, it is possible to derive the 

Fourier Slice Theorem. The attenuation of x-rays as they propagate through 

objects or biological tissue generates line integrals after a log transform [1]. If the 

object is represented by a two-dimensional function f(x, y) and each line integral 

through the object is represented by the parameters (θ, t) as shown in figure 5.4.  

The equation of the line AB is  

 x cos θ + y sin θ = t                   Equation 5.3 
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The line integral Pθ(t) is written as  

 Pθ(t) = ∫
linet

dsyxf
),(

.),(
θ

        Equation 5.4 

 

 

 
 

Figure 5.4 An object f(x,y) and its projection Pθ(t1) are shown for an angle θ [5] 

 
Using a delta function, this can be written as   

 Pθ(t) = ∫ ∫
∞

∞−

∞

∞−

−+ dxdytyxyxf )sincos(),( θθδ    Equation 5.5 

The function Pθ(t) is known as the Radon transform of the function f(x, y) [1]. A 

collection of parallel ray line integrals forms a parallel projection and is formed by 

moving an x-ray source and detector along parallel lines on opposite sides of the 

object. A fan beam projection is formed when a single source is fixed in place 

relative to a line of detectors.  

Now, the two-dimensional Fourier transform of the object function is written as  

B 

A 

x 

Pθ(t1) 

t 
 

t1 
 

Ray 
x cos θ + y sin θ = t1 

θ 

projection 
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 F(u, v) = dxdyeyxf vyuxj∫ ∫
∞

∞−

∞

∞−

+− )(2.),( π      Equation 5.6 

Similarly, the Fourier transform of Pθ(t), the projection at an  angle θ, is given by 

 Sθ(w) = dtetP tj πω
θ

2.)( −
∞

∞−
∫        Equation 5.7 

For a projection at an angle θ = 0, the Fourier transform simplifies to 

 F(u, 0) = dxdyeyxf uxj∫ ∫
∞

∞−

∞

∞−

− π2.),(      Equation 5.8 

The above integral can be split into two parts,  

 F(u, 0) = dxedyyxf uxj π2.),( −
∞

∞−

∞

∞−
∫ ∫ 








     Equation 5.9 

The term in brackets is the equation for a projection along lines of constant x or   

 Pθ=0(x) = ∫
∞

∞−

.),( dyyxf                Equation 5.10 

Substituting this in equation 5.9, we have,  

 F(u, 0) = dxexP uxj∫
∞

∞−

−
=

π
θ

2.
0 )(                Equation 5.11 

The right-hand side of this equation represents the one-dimensional Fourier 

transform of the projection Pθ=0; thus we have the following relationship between 

the vertical projection and the two-dimensional transform of the object function: 

F(u, 0) = Sθ=0(u)                Equation 5.12 

The above result is the Fourier Slice Theorem and is independent of the 

orientation between the object and the coordinate system. The Fourier Slice 

Theorem is therefore stated as follows: 
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The Fourier transform of a parallel projection of an image f(x, y) taken at an angle 

θ gives a slice of the two-dimensional transform, F(u, v), subtending an angle θ 

with the u-axis [1]. The Fourier transform of Pθ(t) gives the values of F(u, v) along 

line BB as shown in figure 5.5. 

 

Figure 5.5 The Fourier Slice Theorem. 

The theorem relates the Fourier transform of a projection to the Fourier transform of the object 
along a radial line [6].  
 

 In the (t, s) coordinate system a projection along lines of constant t is 

given as  

 Pθ(t) = ∫
∞

∞−

dsstf ),(                 Equation 5.13 

From equation 5.7, its Fourier transform is given by  

 ∫
∞

∞−

−= .)()( 2. dtetPwS tj πω
θθ                Equation 5.14 

Substituting equation 5.13 into 5.14, we obtain 

 [ ] dtedsstfwS wtj π
θ

2.),()( −
∞

∞−
∫=                Equation 5.15 

In the (x, y) coordinate system,  
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 ∫ ∫
∞

∞−

∞

∞−

+−= dxdyeyxfwS yxj )sincos(2.),()( θθπω
θ                       Equation 5.16 

The right-hand side of this equation represents the two-dimensional Fourier 

transform at a spatial frequency of (u = ω cos θ, v = ω sin θ).  

 )sin,cos(),()( θωθωθωθ FFwS ==              Equation 5.17 

The above result shows that by taking the projections of an object function 

at angles θ1, θ2, …,θk and Fourier transforming each of these, it is possible to 

determine the values of F(u, v) on radial lines as shown in figure 5.5. If an infinite 

number of projections are taken, then F(u, v) would be known at all points in uv-

plane. Knowing F(u, v), the object function f(x, y) can be recovered using the 

inverse Fourier transform [1]. 

∫ ∫
∞

∞−

∞

∞−

+= dudvevuFyxf vyuxj )(2.),(),( π               Equation 5.18 

Thus, it follows from the Fourier Slice Theorem that with each projection a line in 

the two-dimensional Fourier transform of the object is obtained by performing the 

Fourier transform of the projection. It is possible to fill the entire Fourier space by 

collecting enough projections. Then, once the Fourier transform is obtained, the 

object itself can be recovered using the inverse Fourier transform. 

5.1.3 Filtered Backprojection 

 
 The most popular implementation of the Fourier Slice Theorem is in the 

form of the filtered back projection algorithm. In order to derive the simplest form 

of the filtered backprojection formula, we start with equation 5.18. We can use 
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the coordinate transformation u = ω cos θ, v = ω sin θ so that equation 5.18 

becomes 

( ) ( ) ( ) ωωθωθωθ θθπω
π

deFdyxf yxj∫∫
∞

+=
0

sincos2.
2

0

sin,cos,             Equation 5.19 

Using Fourier Slice Theorem, we get 

( ) ( ) ( ) ( ) ( )
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πθ
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00

sincos2.
2

0

,
         Equation 5.20 

In parallel beam geometry, projections that are 180° apart represent the same 

set of x-ray paths so that  

)()( ωθπθ −=+ SwS                  Equation 5.21 

Using the above relation, we get 

( ) ( ) ( ) ωωωθ θθπω
θ

π

deSdyxf yxj∫∫
∞

∞−

+= sincos2.

0

||,               Equation 5.22 

Sθ(ω) is the Fourier transform of the projection at an angle θ. The inside integral 

in equation 5.22 is simply the inverse Fourier transform of Sθ(ω)|ω|. In the spatial 

domain, it is the projection filtered by a function whose frequency domain 

response is |ω|. This is called the filtered projection. If the filtered projection is 

represented by g(t, θ) = g(x cos θ + y sin θ), then we have 

( ) ( )∫ +=
π

θθθ
0

sincos, dyxgyxf                Equation 5.23 

Thus the reconstructed image f(x, y) is the summation of all filtered projection 

samples passing through the point (x, y). The value of the filtered projection is 
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smeared along the entire straight line path of x-rays. This is the backprojection 

process illustrated in figure 5.6 [4].  

 

Figure 5.6 Illustration of the backprojection process [4]. 

 t  
Without going into great details about the exact steps involved in filtration 

and backprojection, we can summarize the reconstruction steps for parallel 

projections as follows: obtain projection images for various angles, Fourier 

transform the projections, multiply by a suitable filter to obtain G(ω, θ), take the 

inverse Fourier transform to obtain filtered projection g(t, θ) and finally 

backproject g(t, θ) and add to the image f(x, y).  

5.1.4 Fan beam and cone beam reconstruction 

 
A much faster way to generate projections is by using fan beams as 

shown in figure 5.7. Fan-beam geometry could be either equiangular fan beam or 

equally-spaced fan beam [4].  
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Figure 5.7 Fan-beam and parallel projections [1]. 

 
In fan-beam geometry, the fan-beam projections are re-binned to parallel 

beam projections so that reconstruction algorithms can be applied on them 

directly. In order to understand re-binning, we will look first at the sampling 

pattern of a set of parallel projections in the sinogram space. Figure 5.8 shows a 

single projection ray mapped onto the sinogram space. For parallel projections, 

all the samples fall onto a uniformly spaced rectangular grid as shown in figure 

5.9 where each parallel projection is represented by a single row of dots.  

 

Figure 5.8 Generation of a sinogram. 

A projection sample in real space is mapped onto a point in the sinogram space. The graph on 
the left has on its horizontal axis the distance of a ray to the iso-center and on its vertical axis the 
angle of the ray with respect to the x-axis. 
 

 

If a set of fan beam samples are mapped onto the same sinogram, they 

will appear as dots that do not fall on to the rectangular grid [4]. They will map to 
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a slanted row of dots because the different fan beam rays make different angles 

with the x-axis. Similarly, the distance from the fan beam rays to the iso-center 

does not change uniformly. However, we can see that the fan-beam sampling 

can be equated to the parallel beam sampling grid by interpolation (either linear 

or non-linear). It is evident that a parallel projection ray located at an intersection 

of the grid can be estimated by simply interpolating the neighboring fan beam 

samples. Once a set of parallel projections are obtained by such interpolation, 

parallel beam reconstructions can be applied to the images directly. Thus fan-

beam reconstructions are more complex than simple parallel beam 

reconstruction.   

 

Figure 5.9 Mapping of parallel and fan beam projections on to sinogram space. 

Parallel projections are mapped onto the solid parallel dots in the sinogram space (left). Fan-
beam projections are not necessarily parallel (right) and are mapped onto slanted rows of dots in 
the sinogram space [4]. 
 
  
   The discussions so far have been limited to simple one-dimensional 

projections (line integrals of a slice through the object). However it is possible 

and advantageous to collect projection images on a two-dimensional array. A 

large organ or a significant portion of the patient can be imaged at once with a 

large area detector. This enables isotropic resolution and also reduces probability 

of patient motion during acquisition. Also, a larger detector means efficient use of 
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the x-ray photons generated in the x-ray tube. This type of data collection with 

the use of a two-dimensional flat or curved detector is called cone-beam 

scanning [4]. Cone-beam scanning is one step beyond fan-beam scanning and 

therefore is a very complex area of study. There has been significant research on 

this topic [7-11]. The algorithms developed for cone-beam reconstructions are 

either exact or approximate but the most popular and well-known reconstruction 

is the FDK reconstruction for cone-beam reconstruction with a flat-panel detector 

[7]. It could be considered a natural extension of the fan-beam reconstruction 

method.  

 The cone beam geometry is shown in figure 5.10. Just like in the fan beam 

and the parallel beam cases, the iso-center is the rotation axis of the system. The 

rotated coordinate system is (x’, y’, z’) in which the detector is parallel to the x’ 

axis. A point to be reconstructed (x’, y’, z’) is mapped to (s, v) on the imaginary 

detector [4]. This location is obtained by calculating the intersection of the 

imaginary detector with a straight line that connects the x-ray source and the 

point (x’, y’, z’). Without going into the entire derivation, the FDK formula for cone 

beam reconstruction is given as 

( )∫∫
∞

∞−

−
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= dssshvsqd
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2

0

2

βξβ
π

            Equation 5.24 

The FDK formula is only an approximate formula for cone beam reconstruction. A 

single circular trajectory does not provide sufficient sampling for an exact cone 

beam reconstruction. The algorithm performs reasonably well for small cone 

angles. Many new versions of the FDK algorithm require different source 

trajectories to compensate for incomplete sampling.  
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Figure 5.10 Geometry for cone beam imaging [4]. 

 

5.2 Iterative algorithms  

 

 The reconstruction algorithms commonly used in CT are analytical in 

nature where the data are weighted, filtered and backprojected. The projection 

process is expressed as g = Hf, where g is the measured projection data and the 

matrix H is a model of the projection process used to estimate the image pixels f. 

In order to find f, we need to find the inverse solution but direct matrix inversion is 

difficult to solve and very sensitive to noise. This is what happens in filtered 

backprojection (FBP).   

  Iterative algorithms offer a different approach to the reconstruction 

problem. In iterative algorithms, the reconstruction is started with some initial 

estimate of the image pixels. This initial estimate is projected by using the matrix 

H to generate a set of estimated projections. The difference between the 

estimated and the measured projections gives the error projections that are then 

backprojected to the image space. This image space error is used to update the 

image estimate and create a new current estimate. The whole process is 
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repeated until terminated. The general process of the iterative algorithm is shown 

in figure 5.11 [12].  

 Iterative algorithms in general can model the projection process more 

accurately. They perform better than analytical algorithms with truncated data 

sets and in limited angle imaging such as tomosynthesis. They also offer 

improved metal artifact reduction and noise performance whereas analytical 

algorithms are often very sensitive to noise. They used to be considered 

computationally intensive because of multiple projections and backprojections. 

However, with modern computers and improved algorithms, iterative 

reconstruction often turns out to be at least as fast as the analytical techniques.   

 

Figure 5.11 Sequence in an iterative reconstruction algorithm [12] 

 

Iterative algorithms can still further be classified into either algebraic or statistical 

algorithms.  The following two sections discuss the two types of iterative 

algorithms in detail.  
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The other thing in projection modeling is the use of a matrix-based model 

to compute the matrix H. This poses big storage and computational efficiency 

issues especially when three-dimensional imaging is involved. The alternative is 

to use a projection operator. In this case, the projections of an image are 

computed without any explicit computation and storage of the individual elements 

of the matrix H. This method is more flexible and computationally efficient than 

the matrix based method [12].  

5.2.1 Algebraic iterative algorithms 

 
 The algebraic reconstruction algorithms are based on a simple procedure 

proposed by Kaczmarz [13] to solve a system of consistent linear equations. The 

projection process as given by g = Hf is a set of linear equations [12]. The 

solution space is an N-dimensional hyperspace, where N is the number of pixels 

to be estimated. Each point in the solution space defines a particular solution 

image. Each equation defines a hyperplane in the solution space, that is, only 

those images that solve the given equation lie on the hyperplane. All the 

hyperplanes intersect at a point in the solution space when there is a unique 

solution to the set of equations. For multiple solutions, the hyperplanes will 

intersect in a line or a hyperplane. The Kaczmarz procedure is illustrated in figure 

5.12 where the current estimate is successively projected onto each equation by 

finding an estimate obtained from solving the equation that lies closest to the 

current estimate [12]. It is easily seen that the convergence rate of the above 

method depends on the orthogonality of the successive equations. For a set of 
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orthogonal equations, the solution is reached within a few iterations whereas for 

a non-unique solution the hyperplanes never intersect and the iterative process 

does not converge to a unique solution. 

 

Figure 5.12 Kaczmarz method for finding the solution to a system of consistent linear equations 
[12]. 

 

 The Algebraic Reconstruction Technique (ART) first proposed by Gordon, 

Bender and Herman [15] is based on the Kaczmarz method. The ART method is 

sequential. ART implements a correction to the estimated image vector so that 

the updated estimate will satisfy a single ray-sum equation representing a ray 

integral [12].  

The disadvantage with ART is that updates are made for one equation or 

one projection bin at a time. In addition because of the inconsistencies in the set 

of equations representing the forward process, the discrete formulation based on 

Kaczmarz method does not accurately represent the continuous nature of the 
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estimate 

solution 
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image function. Thus, the result is likely to be a noisy looking image. This is 

caused because solving a single equation results in a noticeable stripe along that 

particular ray and when repeated for all the rays in different directions, this 

results in a noisy reconstructed image [16].  

 A simultaneous algebraic reconstruction technique (SART) was developed 

with the goal of reducing the noise associated with ART [16]. Equations 

corresponding to many points in the discrete image are solved simultaneously. 

Fewer rays are used per view to average the errors in the correction process. 

The computation time increases with the use of more number of rays. Another 

way to reduce the noise is the use of a relaxation factor (λ < 1). Also, the pixel-

based method is discarded in favor of an approximate bilinear-elements 

approach [17] to model the forward projection process. The basic correction 

strategy of ART is still used in SART but the correction terms are applied to all 

the rays in a particular projection view simultaneously instead of sequentially. In 

ART, the image estimate is updated using the error terms from each ray. A single 

iteration of the ART method is complete when all the rays in a view have been 

used once. In the case of SART, the error terms from each ray are computed and 

saved until all rays in that view are considered. Then the average correction is 

computed and used to update the image estimate with the idea that a 

simultaneous correction for all the rays in a view represents the continuous 

nature of the image function [18].  

 In ART, the new image estimate is given as follows: 
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The new estimate )1(ˆ +q
ijf is obtained by using the update factor on the old 

estimate )(ˆ q
ijf . The numerator in the update correction factor is the error term 

between the estimated and measured projections (pmn) while the denominator is 

the normalization term. The old estimate is updated according to the weighting 

coefficients wijmn and the relaxation factor λ(q). The subscripts m and n represent 

the projection index for a total of M projections and the ray index for a total of N 

rays in each projection view [16, 19]. 

 In SART, the correction terms from all rays within a projection view are 

combined to update the image estimate as follows [19-21]: 
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In equations 5.25 and 5.26, λ(q) is the relaxation factor. It could be set to be a 

constant or it can be varied between steps in the reconstruction algorithm. It is 

generally chosen to be between 0 and 2. Under-relaxation (λ<1) can often reduce 

the noise in the reconstruction at the cost of increase in the time for converging 

to a solution.  
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5.2.2 Statistical Iterative Algorithms 

 
 A projection process is represented by the following form: 

 fHg ˆ=                   Equation 5.27 

The projection data is said to be consistent if there exists either a unique solution 

f̂  or in the case of an under-determined solution, more than one solution to the 

above equation. However, if the data is inconsistent, then no image solution is 

possible. Most of the reconstruction algorithms assume the data to be consistent 

however, the real data obtained from experiments is corrupted by noise or there 

may be inaccuracies in the projection model H that make the data inconsistent. 

That is the reason the reconstruction algorithms suffer noise issues. Statistical 

reconstruction algorithms use some known information about the statistical 

nature of the projection data to choose the likely or most probable solution, even 

in cases where no exact solution to the above equation exists [12].  

 Statistical reconstruction algorithms have two parts: a criterion and an 

algorithm. While a criterion is the statistical basis for selecting a possible solution 

to the above equation, the algorithm represents the method to use to get to the 

solution specified by the criterion. There are many criteria and algorithms, and in 

general, various combinations of the two are possible. The most common 

criterion is the Poisson-based maximum likelihood criterion. Commonly used 

algorithms include the expectation-maximization, convex, steepest descent 

algorithm, etc.  
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 Maximum likelihood (ML) is a well known criterion in which the image 

estimate is one for which the measured projection data has the highest 

probability. A Poisson distribution is written as 

)ˆ( fL =Prob [g|f:H]= 1)!(ˆˆexp −
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The ML solution is the f̂  that maximizes equation 5.28. The same f̂  maximizes 

the natural logarithm of equation 5.28. For simplification, the log-likelihood 

criterion is thus written as: 
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Taking the derivative of the above equation with respect to each parameter and 

equating to zero will solve the above equation. This leads to the following case: 
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An iterative algorithm is required to be used to solve for f̂ . There is a unique 

solution to the above Poisson based log likelihood function for consistent data 

and at least one solution in the case of inconsistent data [12]. 

 The most commonly used ML based algorithm in emission and 

transmission tomography has been the Expectation Maximization (EM) algorithm 

[22]. The EM algorithm is applied when the data to be estimated is in the form of 

pixel intensities in the projection views. In the expectation (E) step of the 

algorithm, the conditional expectation E {log Prob [q|g, f:H ] } is developed. In the 

maximization (M) step, the new image estimate that maximizes the above 
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expectation is found. The two steps are performed iteratively to increase the log 

likelihood function and eventually achieve the solution. The details and the 

derivation of the EM algorithm are not presented here but the algorithm in its final 

form is given as: 
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The ML-EM algorithm is a relatively simple algorithm whose convergence 

behavior is known. The ML-EM algorithm constrains non-negativity and allows 

pixels to be set to zero. It can also model non-uniform attenuation. However, the 

main disadvantage is that the convergence of ML-EM is slow and a solution may 

take several iterations. This leads to the other issue with ML-EM - image noise – 

the noise increases with iterations. Often, noise reduction filters are used after 

terminating the ML-EM reconstruction after a certain number of iterations.  

 The most effective methods that were applied to overcome the problems 

of slow convergence are the block-iterative methods making use of subsets [23]. 

In these methods, projection data is divided into a many independent subsets so 

that the reconstruction is applied to each subset sequentially. With the use of 

subsets, the image estimate is updated more often and thus results in 

acceleration of the reconstruction algorithm. 

 In the ordered subsets (OS) method, projection data are grouped into an 

ordered sequence of mutually exclusive subsets and these subsets could in 

general be processed with any kind of iterative algorithms such as EM. An 

iteration of OS-EM is defined as one pass through all the subsets, while using the 
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correction terms from each subset to update the image estimate [24]. The OS-

EM algorithm, with the back projections done only for the projection bins in 

subset Sn, could be written as follows [12]: 
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 In the other algorithm similar to EM called the convex algorithm, the log 

likelihood function (as given in equation 5.29) is re-written using the strictly 

convex functions tYedtf i
t

ii += −)( where di is the expected number of photon 

counts leaving the source along a projection i and Yi is the measured number of 

photons [25]. With the convex functions, the maximization of the log-likelihood 

function results in a form slightly more complex than that represented by 

equation 5.30. Although this form has a unique and positive solution, it cannot be 

solved exactly but can be solved quickly using Newton’s method. The convex 

algorithm has been shown to be considerably more efficient than the EM 

algorithm and its convergence behavior is also better understood. The convex 

algorithm adapts well to array and parallel processing.  

 The application of ordered subsets to the convex algorithm results in the 

ordered-subsets convex (OSC) algorithm [26]. Similar to OS-EM, OSC uses 

subsets of projections with the convex algorithm so that the update of the iterant 

is used as the starting image for the processing of the next subset. The OSC 

algorithm is written as follows [27]: 
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           Equation 5.33 

Here, µi
old and µi

new are the attenuation coefficients in pixel i before and after 

update. The elements of the matrix H that maps the image space to the 

projection space are represented by hij. Ij is the measured data and I0j is the 

blank data (data measured without the subject in place). The numerator in the 

above expression is the error between the measured and estimated projection 

data while the denominator is called the normalization term. The normalization 

term is the back projection of the product of the estimated projection data and the 

estimated detection intensity, and is usually updated every iteration. The 

parameter t is a step-size parameter that could be varied while Sn denotes the 

nth subset of projections.     

5.3 Development of Ordered-Subsets Convex algorithm  

 

 When the idea of the stationary digital breast tomosynthesis system was 

first tested using nine multi-beam field emission x-ray (MBFEX) sources, the 

OSC algorithm was employed in the reconstruction of the preliminary images. 

Nine equally spaced MBFEX sources generated projection images of the breast 

phantom as shown in figure 5.13. These were reconstructed using the OSC 

algorithm as described by equation 5.33. The first results were able to show that 

the OSC technique is effective in resolving objects at different depths and could 

be useful in a novel array-based stationary imaging system such as Argus.  
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Figure 5.13 Early projection images and reconstruction results. 

Five sample projection images of a breast phantom obtained from preliminary MBFEX sources 
are shown on left. On right are the slices reconstructed using OSC that show two distinct objects 
getting resolved at different depths [27]. 
 
 
 As the stationary DBT system was getting ready, modifications were made 

to the OSC algorithm to reconstruct images obtained from sources that are 

equally angularly spaced. In addition, the algorithm was made considerably 

faster by implementing the use of a projection operator instead of the earlier 

matrix-based model to calculate H during the projection modeling process.  

 In the OSC algorithm represented by equation 5.33, there are one 

projection and two backprojection operations for every projection view. One of 

the two backprojection operations is to calculate the normalization term, and so 

nearly a third of the total computation time is spent on it. However, the 

normalization term does not change significantly after the first few updates. In 

order to improve the computational efficiency of the algorithm, it was modified so 

that the normalization term is only calculated once at the beginning of the 

iterations [28]. The modified OSC (MOSC) is then written as follows: 
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          Equation 5.34 

MOSC has been tested on simulated mouse images as well as preliminary 

experimental images. It was demonstrated that MOSC was faster than OSC by 

about 30% while maintaining similar noise-resolution characteristics [28]. 

5.4 Comparison of algorithms 

 

 The iterative MOSC reconstruction technique was applied to reconstruct 

simulated as well as preliminary experimental phantom images obtained on the 

Argus system. The simulated CIRS phantom as described in Chapter 2 has four 

sets of calcifications (with AlO2 specifications) of varying grain size, four nylon 

fibers of varying diameters, and four masses (75% adipose/25% glandular) of 

varying thicknesses all embedded in an uniform background. For the simulation, 

the system is assumed to have nine sources arranged linearly with a flat-panel 

detector placed about 64.5 cm away from the center of the object to be imaged. 

The object is assumed to lie directly on the detector. The projection and blank 

images (1100 x 500 x 9) simulated with a 32 kVp polychromatic Mo spectrum 

were reconstructed on non-cubic voxels of size 1.27 mm x 0.127 mm x 0.127 

mm. The images were reconstructed using MOSC and a version of SART written 

by another graduate student. The performance of the two algorithms was 

compared by evaluating image quality parameters such as contrast and noise in 

the reconstructed images.  
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 Representative slices from the simulated phantom reconstructed using 

MOSC are shown in figure 5.14. In our implementation of MOSC, the step-size 

parameter was set to 1 and the subsets option was not utilized. The images 

show that the features are resolved well at their true depths. Similar 

representative slices from the simulated phantom reconstructed using SART are 

shown in figure 5.15. In SART, the variable parameter λ was set to increase 

sinusoidally from 0.04 to 0.2. The two figures show the differences in the contrast 

and the noise between the two algorithms. SART also introduces inaccuracies at 

the edge of the phantom where truncation occurs and therefore results in a 

smaller effective field of view than MOSC [29].   

 To evaluate the image quality, the contrast in the calcifications was 

calculated as (Iobj – Ibkg)/(Iobj + Ibkg) * 100  where Iobj and Ibkg are the intensities in 

the object and the background obtained by taking a horizontal profile through the 

objects of interest in the reconstructed image. Since Poisson noise was 

simulated in the projection data, a small and uniform region of interest (ROI) was 

chosen in the reconstructed images and the standard deviation of the pixel 

values in the selected ROI was calculated to evaluate noise. 

 The contrast of the largest calcification was estimated and used for all 

comparison studies. The contrast and the noise as a function of iteration number 

in the MOSC and SART reconstructions are illustrated in figure 5.16. Although 

the contrast in SART starts out being higher, MOSC is able to reach the same or 

better contrast after only the second iteration. The noise also grows much faster 

with iterations in the case of SART than in the case of MOSC. 
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Figure 5.14 Representative slices of the CIRS type phantom reconstructed with MOSC. 

The slices show how the different features get focused at their true depths (3.81 mm). 
 

 
Figure 5.15 Representative slices of the CIRS type phantom reconstructed with SART. 

  
The plot of noise as a function of contrast shows that SART achieves 

similar contrast as MOSC but at the cost of a large increase in noise.  
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Figure 5.16 (a) Contrast and (b) noise as a function of iteration number in the two reconstructions. 

Shown below is noise as a function of contrast for the two reconstruction algorithms. 
 
 

 The step-size parameter plays an important role and other earlier studies 

on SART have used different step-size parameters to suit the particular 

application. In our implementation of SART, the parameter was set to vary 

sinusoidally from 0.04 to 0.2. It could be that the high noise is a result of the 

choice of λ.  Also, SART updates after each projection while MOSC uses all of 

the projections for an update. So there might have been similar noise in both 

cases if MOSC was tried with subsets of one projection. However, SART does 

tend to be noisy in general and at least one another study that compared the 

performance of SART with ML-convex (both algorithms starting with initial 

estimates provided by a back projection reconstruction) concluded that although 

the CNR was about equivalent in the two cases, the noise was much higher in 
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SART [30]. In the current comparison, the computation time for both 

reconstruction algorithms was about the same up to 20 iterations but again 

MOSC could have been faster with the application the subsets option. 

5.5 Imaging experiment 

 

 When the stationary digital breast tomosynthesis system was completely 

set up and ready to image, nine projection images of a home-made sponge 

phantom of thickness 2.2 cm that has three lima beans sandwiched between the 

sponges were obtained. The phantom was placed about 2.5 cm away from the 

Varian Paxscan detector along with two aluminum plates of different thicknesses 

that were placed closer to the detector for reference. The whole set-up was 

imaged at 31 kVp with an exposure of 3 mAs to yield projection images of size 

960 x 768 x 9 (shown in figure 5.17). Corresponding blank images were also 

obtained and using calibrated values of the source-detector distance and the 

location of the sources, the images were reconstructed using MOSC to yield 50 

slices (slice thickness of 1.27 mm) through the phantom with an in-plane 

resolution of 127 µm.  

 

Figure 5.17 A single projection image of the home-made sponge phantom. 

On the right of the phantom are two aluminum plates of varying thickness used for reference [29]. 
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 Even without the use of subsets, the reconstruction of this first 

experimental 9-beam system with 960 x 768 pixels took less than six minutes for 

ten iterations. The reconstruction clearly showed the inserted beans and the 

aluminum plates getting resolved at their respective depths as shown in figure 

5.18. The same projection images were also reconstructed using SART. SART 

was able to resolve the objects well at their true depths, and delivered similar 

visual quality [29]. However, earlier simulation results and a quick estimate of the 

contrast and noise in the reconstructed images allowed us to conclude that 

MOSC is capable of delivering excellent image quality when used in a novel 

tomosynthesis set up such as ours. 

 

Figure 5.18 Slices of the sponge phantom reconstructed with MOSC 

The slices show the inserted beans getting resolved at their true depths (bottom left). 
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 In another experiment, a stereotactic needle biopsy tissue-equivalent 

breast phantom was imaged on the fully set-up 25 beam x-ray system. The body 

of the 5.5 cm thick phantom is shaped to represent a partially compressed 

breast. It is made from a material that has a consistency similar to human tissue 

and includes many solid randomly positioned masses of varying sizes. This 

phantom was placed on a stage in front of the detector and no additional 

compression was applied. The air gap was about 2.5 cm and the total source to 

detector distance was about 64.5 cm. The phantom was illuminated using each 

one of the 25 sources running at a tube current of about 0.5 mA. The exposure 

time and the number of exposures were set so that the total exposure on the 

breast phantom was 100 mAs. The anode was operated at 28 kVp. A single 

projection image of the phantom is shown in figure 5.19.  

 

Figure 5.19 A single projection image of the commercial breast phantom 

 
 
Corresponding blank scans (without the phantom) were also obtained. All images 

were cropped to a size of 1900 x 850 to show only the phantom. A simple profile 
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through the central mass seen in the projection image revealed the contrast (Iobj-

Ibkg) to noise ( {σobj+σbkg}/2 where σ is the standard deviation) ratio (CNR) to be 

about 2.2. Twenty-five projection images were then used to reconstruct using 

MOSC with the designed geometric parameters. The reconstruction voxel size 

was 0.1 x 0.01 x 0.01 mm and 60 slices through the phantom were obtained. The 

reconstructed slices are shown in figure 5.20. The images are successive 3 mm 

slices and should be read top to bottom and then left to right. A profile through 

one of the masses in the reconstructed slice where it gets focused was used to 

calculate the CNR. The CNR was found to be about 10. 

 
 

Figure 5.20 Slices of the commercial breast phantom reconstructed with MOSC. 

Shown above are slices through the commercial phantom that show the different masses getting 
focused at their corresponding depths. The slices are 3 mm apart and the in-plane resolution is 
100 µm x 100 µm. The slices should be read top to bottom and then left to right. 
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 The same phantom was also imaged using the GE Senographe 

tomosynthesis unit undergoing clinical trial at UNC Hospitals. The imaging was 

done under identical conditions of anode voltage using Molybdenum as the 

anode as well as filter. The total exposure was 100 mAs in that case too although 

the exact thickness of the filter in the GE system is unknown. In addition, details 

on the detector or reconstruction were not furnished. However, a CNR analysis 

similar to what was done in our case was done on the projection and 

reconstruction images obtained from the GE system (shown in figure 5.21). 

 

Figure 5.21 Reconstructed slices of the breast phantom obtained from the GE tomosynthesis unit. 
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The CNR on their projection image was estimated to be 3.3 while the 

reconstructed CNR was about 11. The reconstructed image quality looks similar 

in both cases. Therefore it is fair to say that our reconstruction performs and 

produces results that are as good as a system under clinical trial.  

In order to exactly determine the resolution of the GE tomosynthesis unit, 

the projection MTF of the system was found by imaging the 100 µm wire 

phantom and a commercial 10 µm wire phantom on the GE scanner. The wire in 

each phantom is enclosed in clear cylindrical plastic so that there is a separation 

of only about 1.5 cm between the detector and the wire when the phantoms are 

placed on the surface of the detector, and with a source-to-detector distance of 

about 60 cm or more, the magnification is very close to 1. The projection images 

of the phantoms so acquired are then analyzed using the same Matlab program 

that we used to estimate the MTF of our system Argus.  

The image of the 100 µm wire together with the line spread function and 

the resulting MTF are shown in figure 5.22. It was found that with a 10 µm wire, 

there is a substantial improvement in the projection MTF as illustrated in figure 

5.22 (right) although the background is much noisier as seen in the line spread 

function graph. This indicates that for a system with a certain detector, a more 

accurate representation of MTF is obtained by using a wire that is smaller than 

the detector pixel pitch.  
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Figure 5.22  MTF of the GE scanner as determined using a 100 µm wire (left) and using a 10 µm 
wire (right). 

 
 

The projection MTF of our system Argus has already been found to be 

about 2.8 lp/mm and the technician quoted and measured detector MTF for 

Varian Paxscan is about 3.1 lp/mm. This MTF was measured using the 100 µm 

wire. Unfortunately, it is nearly impossible to see the 10 µm wire in our case so 

that analysis was not done. In any case, the detector in the GE tomosynthesis 
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unit is far superior to the detector that is in use with Argus. The better resolution 

afforded by the GE detector may be partly responsible for the better image 

quality that may be perceived in the GE reconstructed slices.  

It also appears from the reconstructed slices (figure 5.21) that the GE 

scanner incorporates some substantial post-reconstruction image processing 

algorithms that tend to enhance the appearance of the edges of the phantom. In 

order to do the same on our images, two approaches were followed. In the first 

case, a mask with a suitable threshold was applied on all the reconstructed slices 

in order to define the edges better. In the second case, based on the distribution 

of intensity values in the projection images, a binary mask was created using a 

suitable threshold intensity value. A Gaussian filter was applied to this mask to 

create a smooth boundary. This filtered mask was then used as the initial 

estimate file together with the projection images during reconstruction. The 

results of the two approaches yield similar results. However, both cases do result 

in tomographic slices of the breast phantom that have more sharply defined 

edges, a little more like what is seen on the reconstructed slices of the GE 

scanner than before. The reconstructed slices obtained by applying a Gaussian 

filtered mask to the projection images are illustrated in figure 5.23. 

In addition, a careful evaluation of the reconstructed slices also revealed 

two sets of calcifications that get focused at different depths. These two 

reconstructed slices (with the window level adjusted to show the calcifications) 

are shown in figure 5.24. 
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Figure 5.23 Slices of the commercial breast phantom reconstructed with MOSC after application 
of an edge-smoothing mask (projection images from Argus). 

 

 

Figure 5.24 Tomographic slices that show two different sets of calcifications in the breast 
phantom. 
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5.6 Discussion 

 
 The advances in tomosynthesis imaging have been paralleled by similar 

advances in the reconstruction algorithms employed to reconstruct 

tomosynthesis projection images [30-33]. In general, algorithm development for 

tomosynthesis reconstruction is challenging because of the availability of a 

limited number of low dose projection images acquired over a small angular 

range but the general consensus seems to be that iterative reconstruction 

algorithms perform better than the analytical algorithms in the tomosynthesis set 

up due to many of the previously mentioned properties of the iterative algorithms. 

Iterative algorithms could be simple algebraic or statistical and we have chosen 

to use a statistical ML-based reconstruction algorithm for our novel system. 

Based on a comparison of the results obtained from using optimized versions of 

an algebraic algorithm and MOSC, it could be concluded that MOSC delivers 

better image quality. OSC and/or MOSC are also being tried on other 

configurations and have yielded consistent results. There may be different 

algorithms used by the other tomosynthesis systems under development that are 

claimed to be superior. A direct comparison of the reconstruction algorithms may 

not be fair or possible without knowing all the absolute details in the different 

techniques but it is believed that the modified OSC as applied to a novel imaging 

geometry such as ours will perform at least as well as other ML-based 

algorithms. 
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6 Conclusions and Future Direction 

 
 In this research study, a fully stationary digital breast tomosynthesis 

system ‘Argus’ with a novel geometry was completely characterized. The system 

was tested by acquiring preliminary images that were reconstructed by applying 

an iterative reconstruction algorithm to demonstrate good image quality.  

 Extensive simulation results enabled us to set up the final system. It was 

found that there is an optimum number for projection views within a certain angle 

given a fixed dose. The results also demonstrated that the tomosynthesis 

imaging quality could be improved by increasing the total angular coverage as it 

approximates the full CT scenario more and more.  

The methods employed to characterize the system are mostly well established 

and reviewed in literature past and it is not the goal of this dissertation to devise 

new characterization techniques. However, it is our goal to apply those 

characterization techniques to our stationary system, which is even more unique 

because of its geometry. Some crucial results have been obtained during the 

characterization process. The resolution in terms of the modulation transfer 

function showed that the system resolution is largely limited by the detector. The 

results thus enabled us to focus on increasing the cathode size in order to 

achieve greater flux. The results of the geometric calibration seem to suggest 

that a good calibration is possible with the method of choice. The most important 
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geometric parameters for reconstruction were found to be the two-dimensional 

source location in space, and the source to detector distance. The method may 

have a slightly large inherent variance in the source location. These variances 

are likely due to highly correlated geometry parameters that may tend to cancel 

each other out. For instance, detector tilt and the source location in terms of (u0, 

v0) are highly correlated. Because of such correlations, a direct and simple 

evaluation of the deviations in the geometric parameters may not be a good 

indication of the accuracy of the calibration as large deviations may not 

necessarily mean a large error in alignment. However, future modifications to the 

method can include using the designed or known geometric parameters to act as 

constraints so as to reduce the variance. It may also be possible to improve the 

accuracy in the parametric estimation by using a phantom with more point 

objects at multiple planes than just the two as was used in this project. In any 

case, the reconstruction results demonstrated that the uncertainty does not result 

in any noticeable loss in resolution or contrast when applied to the tomosynthesis 

imaging geometry. It might even be that for future systems with larger cathodes, 

if the central x-ray source alone is calibrated, then the use of the designed values 

for the other sources may be enough for the reconstruction.  

 The reconstruction algorithm of choice for our system is the modified 

ordered subsets convex (MOSC) algorithm and it has been remarkably 

successful. It appears to be robust enough to handle minor inconsistencies in the 

geometry as well in the projection data. The early results using this iterative 

algorithm on preliminary images are what motivated us to proceed with the 
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design and construction of the full scale system. The superb image quality as 

well as short reconstruction time provided by MOSC as demonstrated with the 

home-made sponge phantom and the commercial phantom on the full scale 

system thus greatly validates our choice. Under very similar imaging conditions, 

the reconstruction image quality in terms of the contrast-to-noise ratio and spatial 

resolution obtained on our first generation system is on par with that obtained on 

a dedicated tomosynthesis unit developed by a major healthcare company.  

It would be apt to call Argus as the world’s first and up until now the only 

stationary DBT system. On one level, Argus is a successful demonstration of 

bench-to-bedside translational research. The fundamental technology that 

enabled Argus is the availability of field-emission carbon nanotube based x-ray 

sources. On another level, the set-up and successful characterization of the 

stationary DBT system was accomplished so that the image quality is at least as 

good as, if not better than, the other current DBT systems under development. 

The system has better stability because it is completely stationary. In addition, 

there is a great potential to reduce the total imaging time. It is important to 

remember that in breast cancer imaging, any reduction in the scan time can 

significantly reduce the dose as well as the pain of compression to the patient.  

 It is believed that tomosynthesis will at some point of time be able to 

replace or assist mammography in the screening and early diagnosis of breast 

cancer. There is a lot of research going on about new tomosynthesis systems, 

acquisition techniques, and reconstruction algorithms but clinical trials on some 

DBT systems are already underway in certain universities and hospitals. It is a 
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proud achievement that our stationary DBT is well on its way there. The 

groundbreaking study of Argus could change the way tomosynthesis is done.   

 Work has also started in our group on the next generation DBT system. 

This new system will be the clinical prototype stationary DBT scanner that will be 

able to acquire 25 projection images of the patient in either the medio-lateral 

oblique or the cranio-caudal positions that are common in conventional 

mammography.  This system will have larger cathodes that are capable of 

delivering a higher x-ray flux that is required in order to reduce the total scan 

time. A total scan time of only 3 seconds is now a possibility. Research is also 

being undertaken to study the feasibility of using quasi-monochromatic x-rays. By 

using a tungsten anode running at higher energy (60 kVp) together with an 

appropriate thickness of a suitable filter (Cerium) it is possible to obtain a very 

narrow spectrum of energy as the output. Quasi-monochromatic imaging has 

been shown to increase contrast in tissues with similar attenuation. The use of a 

higher mean energy translates into reduced dose to the patient. It might also help 

reduce beam hardening effects where applicable. It is important to note that this 

thesis work on Argus has already set the standards for characterization and 

image reconstruction techniques for any future DBT systems so that the major 

focus can now be on the new system alone. 

 Argus is a system devoted to breast imaging but the idea of many 

individually addressable x-ray sources has a great potential to be applied to other 

systems such as tomosynthesis of the chest or even a CT system. Other 

research possibilities include multiplexing and dual energy imaging.  


