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ABSTRACT 

 

MATTHEW P. DANNENBERG:  Empirical Evidence for the Association of the El Niño-

Southern Oscillation with Terrestrial Vegetation Dynamics in the Western United States 

(Under the direction of Conghe Song) 

 

Timing of plant life cycle events (phenology) and annual plant productivity represent key 

interactions between the atmosphere and the biosphere, with implications and feedbacks for 

climate and ecosystem functions.  The El Niño-Southern Oscillation (ENSO) system is the 

dominant source of interannual climate variability in the western United States, with 

important effects on temperature, precipitation, and drought.  In this study, the connection 

between ENSO and terrestrial vegetation dynamics is examined using remotely sensed 

vegetation indices, eddy covariance flux tower observations, ENSO indices, and spatially-

resolved climate data.  El Niño events are associated with an increase in primary production 

throughout the western U.S., and with an earlier growing season in much of the Pacific 

Northwest and parts of the Southwest. The correlation between total annual production and 

the Southern Oscillation Index is highest in mid- to late-winter prior to the growing season, 

suggesting some predictive power in advance of the growing season. 
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CHAPTER 1 
 

INTRODUCTION 

 

 

 

Terrestrial vegetation is one of the key links between the biosphere and the 

atmosphere.  Fixation of carbon dioxide through photosynthesis (gross primary production, 

or GPP) and total plant biomass accumulation (net primary production, or NPP) are among 

the primary means by which vegetated ecosystems interact with the climate system.  GPP 

and NPP are also the sources of the fundamental resources (food and fiber) required by all 

biological organisms, including humans [Running, 2012].  Timing of plant life cycle events 

(phenology) is a dominant biological cycle with strong effects and feedbacks both on climate 

[Keeling et al., 1996; Peñuelas et al., 2009] and on terrestrial ecosystem functions, including 

evapotranspiration, carbon fixation, and ecosystem respiration [Morisette et al., 2009; 

Richardson et al., 2010].  Vegetation phenology also affects human health [Morisette et al., 

2009], agriculture [Brown and De Beurs, 2008], surface meteorology [Schwartz, 1992; 

Bonan, 2008a, 2008b; Richardson et al., 2013], trophic interactions [Chesson et al., 2004; 

Liu et al., 2011], and vegetation community structure, interspecific competition, and success 

of invasive species [Willis et al., 2008, 2010; Wolkovich and Cleland, 2011; Cleland et al., 

2012; Fridley, 2012]. 

Both primary production and vegetation phenology are strongly related to climate.  

Climatic limitations on plant production can include temperature, moisture availability, and 

incident photosynthetically active radiation.  The geographic distribution of climate 
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limitations to plant growth is not uniform, and multiple factors are often co-limiting to 

growth [Nemani et al., 2003].  The onsets of leaf emergence, maturity, senescence, and 

dormancy are also dependent on climate signals [Körner and Basler, 2010].  In temperate 

and high-latitude ecosystems, photosynthetic activity can be triggered by multiple 

mechanisms, including a physiological chilling requirement to break winter dormancy 

followed by temperature- and photoperiod-induced leaf emergence [Archibold, 1995; Zhang 

et al., 2007].  In arid and seasonally moist ecoregions, leaf and shoot growth is often 

triggered by the beginning of the wet season and  senescence and leaf abscission by depletion 

of soil moisture, though photosynthesis may also be limited by low temperatures in cool 

deserts such as the Great Basin of the western United States [Archibold, 1995; Jolly and 

Running, 2004; Jolly et al., 2005]. 

The El Niño-Southern Oscillation (ENSO)—a recurring 2-7 year cycle of coupled 

ocean-atmosphere dynamics in the equatorial Pacific—has long been recognized as one of 

the dominant modes of interannual climate variability, with teleconnections to surface 

climate across the globe [Trenberth, 1997a; Bonan, 2008a].  La Niña events occur during 

periods with a strong Walker circulation and anomalously strong sea surface temperature 

(SST) gradients across the equatorial Pacific (with higher SST in the western Pacific and 

lower SST in the eastern Pacific), while El Niño events occur with a weakened Walker 

circulation and reduced SST gradient in the equatorial Pacific.  Temperature and 

precipitation in the western United States are significantly linked to ENSO, with El Niño (La 

Niña) events being associated with dry (wet) and warm (cool) anomalies in the Pacific 

Northwest and with wet (dry) conditions in much of California and the arid Southwest 

[Redmond and Koch, 1991].  The ENSO cycle may also be relatively predictable, with 



3 
 

forecasting lead-times up to one year [Trenberth, 1997a], though there are limits to the ability 

of statistical models accurately predict ENSO [McPhaden et al., 2006].  While recent studies 

have found that current ENSO strength is anomalously high by historical standards [Cobb et 

al., 2013], there is considerable uncertainty surrounding the response of ENSO to global 

climate change, with strong disagreement among scholars over whether the cycle will 

become more Niño- or Niña-like [McPhaden et al., 2006; Vecchi et al., 2008].  Different 

“flavors” of El Niño events—resulting from variation in the location of sea surface 

temperature warming in the central or eastern tropical Pacific—are also associated with 

different climate impact patterns, and there may be long-term trends towards an increasing 

frequency of central Pacific El Niño “flavors” [Yeh et al., 2009, 2011; Newman et al., 2011]. 

Given the strength, short-term predictability, and future uncertainty of the ENSO-

climate connection, characterizing the relationship between ENSO and terrestrial vegetation 

is an important area of research with implications ranging from forecasting agricultural yield 

to managing natural resources.  Previous studies have found that the ENSO cycle is 

associated with variability in normalized difference vegetation index (NDVI) [Anyamba et 

al., 2001, 2002; Buermann et al., 2003], primary production [Behrenfeld et al., 2001; Potter 

et al., 2003a, 2003b, 2004; Hashimoto et al., 2004],  and phenology [Vicente-Serrano et al., 

2006; Brown et al., 2010; McCabe et al., 2012].  Studies in North America have suggested 

that overall carbon flux is not significantly related to ENSO, but that there is large regional 

heterogeneity in the response of NPP to ENSO [Potter et al., 2003a].  Likewise, across the 

U.S. few individual phenological time-series were significantly related to ENSO, but the 

continent-wide distribution of ENSO-induced green-up date divergence suggested a closely 

coupled relationship [McCabe et al., 2012]. 
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Here, the association between ENSO and vegetation dynamics in the western United 

States (31.1⁰N – 49.2⁰N latitude, 108.0⁰W – 125.2⁰W longitude)  is explored in further detail 

using ENSO indices, spatially-resolved climate data, eddy covariance flux tower data, and 

remotely sensed estimates of primary production and phenological events from the 

MODerate Resolution Imaging Spectroradiometer (MODIS).  Since phenological dates are 

extracted from remotely sensed data, rather than from ground-based canopy observations, 

satellite-derived phenological estimates are referred to as “land surface phenology” (LSP): 

the seasonal “greenness” signal aggregated for all objects within a pixel [Zhang et al., 2006; 

White et al., 2009].  As such, LSP derived in this study is not necessarily indicative of 

specific plant life cycle events, and all phenological terminology adopted throughout this 

paper should be interpreted as referring only to the aggregated seasonal greenness trajectory 

for individual pixels.    

 The objective of this study is to examine the association between ENSO and two 

satellite-assessed aspects of vegetation dynamics: LSP and primary production.  Since the 

ENSO cycle has been observed to affect both surface temperature and precipitation in the 

western United States, and since both plant phenology and productivity are driven by 

climate, it seems very likely that interannual ENSO variability will be associated with 

interannual variability in LSP and primary production.  Particularly, El Niño-induced 

increases in early growing season temperature in the Pacific Northwest and precipitation in 

the arid Southwest seem likely to result in an earlier start of the growing season throughout 

much of the western United States, which may also result in a longer growing season 

associated with El Niño events.  Primary production in most of this region is co-limited by 

temperature and water availability [Nemani et al., 2003], and historical ENSO impact 
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patterns suggest that these climate constraints may be alleviated following El Niño events.  It 

therefore seems likely that El Niño events will be associated with increases in primary 

production throughout much of the western U.S.  Given the importance of vegetation 

phenology and productivity to both natural and human systems, better understanding of 

interannual sources of variability could be important for agricultural forecasting, forest and 

invasive species management, and conservation planning.



 
 

 

 

 

 

 

CHAPTER 2 

 

DATA AND METHODS 

 

 

 

2.1. MODIS Products and Pre-Processing 

Monitoring of terrestrial vegetation from space-borne sensors is largely based on the 

use of spectral vegetation indices (SVI), many of which were developed in the 1970s and 

1980s for use with the Landsat MSS and TM sensors [Tucker, 1979; Cohen and Goward, 

2004].  Since the launch of the Advanced Very High Resolution Radiometer (AVHRR) 

sensor in the early 1980s, SVI from coarse spatial and high temporal resolution satellite 

sensors have been applied for continental- to global-scale analysis of land cover [Tucker et 

al., 1985; Hansen et al., 2000; Loveland et al., 2000; Friedl et al., 2002, 2010], primary 

production [Potter et al., 1993; Field et al., 1995; Prince and Goward, 1995; Running et al., 

2004], and vegetation phenology [Justice et al., 1985; Reed et al., 1994; Moulin et al., 1997; 

White et al., 1997; Zhang et al., 2003].  MODIS, launched onboard the EOS-Terra satellite in 

late 1999, improves upon AVHRR spatial resolution, radiometric response, geolocation, and 

atmospheric correction, and the MODIS land science team produces and validates many 

higher level land surface products for use in global change research [Running et al., 1994; 

Justice et al., 1998].  MODIS-derived datasets used in this study (Table 1) include annual 

NPP (MOD17A3), 16-day enhanced vegetation index (EVI; MOD13A2), land cover type 

(MCD12C1), and land cover dynamics (MCD12Q2).   
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The MOD17 primary production algorithm is based on light-use-efficiency theory, 

estimating GPP based on an efficiency factor that converts the absorbed photosynthetically 

active radiation (APAR) [Running et al., 2004].  Daily GPP is then summed to an annual 

product, and NPP is estimated as the annual sum of daily GPP minus growth respiration and 

maintenance respiration of leaves, fine roots, and live woody cells.  In this study, only NPP is 

used since it is ecologically meaningful and is a key component of both the global carbon 

cycle and ecosystem services used by humans [Running, 2012].  Since total production varies 

greatly within and among biomes in the western U.S.—ranging from the high productivity 

evergreen forests of the Pacific Northwest to the low productivity shrub lands of the desert 

Southwest—each pixel time-series (separated into El Niño and La Niña  samples, Table 2) is 

converted from standard MOD17A3 units (kg C/m²/year) to standardized Z-scores, defined 

as the per-pixel difference between the mean ENSO sample NPP (computed separately for El 

Niño and La Niña samples) and the mean of the full study period NPP, divided by the per-

pixel NPP standard deviation in the full study period. 

The global 0.05⁰ (latitude by longitude) resolution MCD12C1 land cover product is a 

spatially-degraded version the 500 meter MCD12Q1 land cover product, produced globally 

from MODIS reflectance data and a supervised decision tree classifier [Friedl et al., 2002, 

2010].  In this study, the International Geosphere-Biosphere Programme classification 

scheme is aggregated into four plant functional types (PFT): evergreen needleleaf forest 

(ENF), mixed forest (MF), shrub lands (SHB, including both open and closed shrub lands), 

and grasslands (GRS).  Urban, barren, and water pixels are not used in subsequent analyses 

since they include minimal vegetation cover.  MCD12C1 also includes land cover classes for 

savannas, evergreen broadleaf forests, deciduous broadleaf forests, and deciduous needleleaf 
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forests, but they constitute a comparatively small proportion of the study area and are 

therefore not included in this study.  Understanding and forecasting the effects of interannual 

climate variation on crop production are important applications at the intersection of remote 

sensing, environmental science, and climatology, but croplands are not included in this study 

since the human “fingerprint” on the seasonal SVI signal of agricultural lands—through the 

effects of irrigation, fertilization, and multiple cropping cycles—make them poorly suited to 

isolating an ENSO signal. 

The MODIS land cover dynamics (MLCD) product (MCD12Q2) annually estimates 

four phenological “turning points” (onsets of greenness, maturity, senescence, and dormancy, 

each in day of year [DOY] units) as well as maximum, minimum, and integrated EVI 

parameters.  Land surface phenology (LSP) events for a given year are modeled using a 

piecewise logistic function fit to 24 months of 8-day enhanced vegetation index (EVI) 

calculated from the MODIS nadir and bidirectional reflectance distribution function (BRDF) 

adjusted reflectance (NBAR) dataset [Schaaf et al., 2002; Zhang et al., 2003; Ganguly et al., 

2010].  The MLCD algorithm produces LSP estimates for up to two annual growth cycles 

(e.g., in the case of double-cropped agriculture).  For use in this study, only one annual 

growth cycle is assumed.  Where two growth curves are found for a given pixel, early season 

MLCD metrics (onsets of greenness and maturity) are obtained from the first growth cycle, 

and late season metrics (onsets of senescence and dormancy) are obtained from the second 

growth cycle, thus reducing the complication of estimating ENSO-LSP relationships for 

multiple annual growth cycles.   

MLCD does not produce phenology estimates for pixels with minimal EVI 

seasonality or with missing observations near phenological turning points [Ganguly et al., 
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2010].  In much of the Southwest, where vegetation cover may be sparse, MLCD did not 

produce LSP estimates during several years between 2001 and 2010 (Figure A1), resulting in 

two or fewer annual LSP estimates for El Niño and La Niña samples throughout much of the 

study area (Figure A2).  An attempt is made to mitigate this issue and to extend the 

observational period by producing an additional LSP dataset using MODIS-observed 

vegetation indices from 2000-2011.  Extraction of phenological signals from remotely sensed 

imagery is very sensitive to missing vegetation index observations, particularly when those 

missing data are located near transition points [Zhang et al., 2009].  Since the MLCD 

estimates are produced annually using 8-day resolution NBAR data, a maximum of 46 

observations are available for fitting of a seasonal vegetation trajectory.  In this study, an 

alternative approach is performed by combining EVI observations from multiple years in an 

attempt to provide more information to the phenology curve fitting procedure.  However, if 

the reason that MLCD failed to produce annual estimates in much of the Southwest is related 

to other sources of error—such as noise from the soil background or to lack of seasonality 

due to sparse vegetation cover—then it is likely that the multi-year phenology approach will 

also fail to produce estimates in these arid regions. 

The MODIS vegetation index product (MOD13A2) is used to generate LSP estimates 

to supplement the 2001-2010 MLCD estimates.  MOD13A2 provides 16 day composites of 

both NDVI and EVI at 1 km spatial resolution [Huete et al., 2002]: 

     
         

         
           (1) 

        
         

                       
,       (2) 

where ρNIR, ρRED, and ρBLUE are atmospherically-corrected surface bidirectional reflectance 

values in near infrared, red, and blue portions of the electromagnetic (EM) spectrum, 
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respectively.  Since healthy vegetation is highly reflective in NIR but not in red portions of 

the EM spectrum, NDVI and EVI are both positively correlated to plant biomass, density, 

and productivity.  The addition of blue band reflectance and canopy background adjustments 

in EVI makes it less sensitive to residual aerosol effects and soil background noise than 

NDVI [Huete et al., 1997, 2002; Xiao et al., 2003].  NDVI also tends to saturate over high 

biomass forest sites, whereas EVI maintains some sensitivity [Huete et al., 1997, 2002].  

Since the western United States includes broad heterogeneity in canopy density and 

background conditions—with a high likelihood of signal saturation in productive 

Northwestern forests and soil background effects in Southwestern shrub lands—EVI is 

selected for use in this study.  Visual comparison of NDVI and EVI time-series at select 

pixels also suggests that EVI may be more suitable than NDVI for characterization of 

seasonal vegetation activity across the full range of biomes in the western U.S. (Figure A3).  

In addition to the vegetation index layer, the MOD13A2 quality assurance (QA) and day of 

year (DOY) layers are also retained for screening of poor quality observations and fitting of 

phenological curves, respectively.  EVI observations are only retained if they are flagged as 

“good” (QA=0) or “marginal” (QA=1) quality in the QA layer.  Pixels that do not have at 

least 20 total EVI observations from 2000-2011, or at least 10 total observations during El 

Niño or La Niña samples (Table 2), are also discarded from further analyses. 

All MODIS products were obtained from the Land Processes Distributed Active 

Archive Center (LP DAAC) Data Pool [http://e4ftl01.cr.usgs.gov/], after which they were 

mosaicked and reprojected from the native sinusoidal projection to a geographic projection 

using the MODIS Reprojection Tool (MRT).  The MODIS NPP, EVI, and LSP products 

were resampled from their native resolutions to 0.01⁰ resolution (approximately 1.1 km at the 
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equator) using the MRT nearest neighbor resampling method.  To scale up to the 0.05⁰ 

resolution of the MODIS land cover product, a simple average of the 0.01⁰ MODIS pixels 

was taken within a 5x5 window.  Missing values within each 5x5 window were ignored 

unless they made up more than 60% (15 out of 25) of the pixels, in which case the 0.05⁰ 

pixel received a “no data” label.  Since 16-day composited EVI values within a 5x5 window 

may have been collected during different days of the year, a simple DOY average is also 

assigned to the 0.05⁰ pixel.  To stratify the ENSO-vegetation relationship by land cover type, 

a single representative land cover class is derived for each 0.05⁰ resolution pixel using the 

most frequent classification (i.e. the mode) from the 2001-2010 period (Figure 1). 

 

2.2. Climate Variables 

Many indices have been developed to characterize aspects of ENSO evolution 

[Trenberth, 1997b; Trenberth and Stepaniak, 2001; Stenseth et al., 2003].  Two ENSO-

related indices are used in this study: the Oceanic Niño Index (ONI) 

[http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml] and 

the Southern Oscillation Index (SOI) [http://www.cpc.ncep.noaa.gov/data/indices/].  ONI is 

defined as a three month running mean of SST anomalies in the Niño 3.4 region (5⁰N – 5⁰S 

latitude, 120⁰W – 170⁰W longitude), where anomalous SST warming in this region of the 

tropical Pacific is characteristic of El Niño events.  SOI is based on the difference between 

standardized sea level pressures (SLP) at Tahiti and Darwin, Australia, where a strong SLP 

gradient generally corresponds to warm SST in the western Pacific (characteristic of La Niña 

events) while a weak SLP gradient corresponds to warm SST in the eastern tropical Pacific 

(characteristic of El Niño events).   
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ONI and SOI capture different aspects of the ENSO ocean-atmosphere connection, 

and they are used for different purposes in this study.  For split sample analyses, each year in 

the study period (2000-2011) is defined as an El Niño, La Niña, or neutral year based on the 

criterion that any year with five consecutive cool-season ONI periods—beginning with the 

preceding August through October (ASO) period and ending with February through April 

(FMA) of the current year—in excess of +0.5⁰C (-0.5⁰C) is an El Niño (La Niña) year (Table 

2).  Any year that fails to meet this criterion is categorized as a neutral ENSO year.  For 

correlation-based analyses, three month running means of SOI are used starting with August 

through October (ASO) of the previous growing season through ASO of the current growing 

season, for a total of thirteen 3-month SOI periods.  Since ENSO events tend to be most 

strongly defined in the North American cool-season, it is very likely that terrestrial 

vegetation dynamics will be most highly correlated with winter SOI composites, and the 13 

lagged SOI periods are used to examine this hypothesis. 

Surface climate characteristics associated with El Niño and La Niña events during 

2000-2011 are examined using monthly estimates of minimum temperature, maximum 

temperature, and precipitation from the PRISM Climate Group [Daly et al., 2002, 2008].  

Standardized anomalies for both El Niño and La Niña events are derived for February 

through April (FMA), May through July (MJJ), and August through October (ASO).  PRISM 

resolution (2.5 arcmin, approximately 4 km) is comparable to the 0.05⁰ MODIS resolution 

used in this study. 
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2.3. Eddy Covariance Flux Towers 

Ecosystem process studies have benefitted greatly from an expanding network of 

eddy covariance flux towers, which measure exchanges of CO2, water, and energy between 

the atmosphere and vegetation canopies [Baldocchi et al., 2001; Baldocchi, 2003].  Flux sites 

are distributed throughout a wide variety of biomes, and the AmeriFlux network 

[http://ameriflux.ornl.gov/] gathers data from many of the sites throughout North America.  

Daily level 4 flux data were downloaded for six sites in the western U. S. (Figure 1; Table 3): 

Blodgett Forest [Goldstein et al., 2000], Tonzi Ranch [Ma et al., 2007], and Sky Oaks [Sims 

et al., 2006b] sites in California, Santa Rita [Scott et al., 2009] and Kendall [Scott et al., 

2010] sites in Arizona, and one of the Metolius sites [Law et al., 2004] in Oregon.   

While flux towers do not provide the synoptic spatial coverage of remotely sensed 

data, they do provide frequent measurements of CO2 exchange and are often used for 

validation of high-level datasets (such as GPP/NPP and evapotranspiration) derived from 

remote sensing inputs [e.g. Heinsch et al., 2006; Turner et al., 2006].  In this study, gap-filled 

daily GPP estimates at each of these six sites are used for two purposes: 1) comparison with 

EVI time-series and MODIS-derived phenological trajectories, and 2) further examination of 

ENSO impacts on seasonal timing of photosynthetic activity and total annual productivity.  

For each flux site, corresponding 0.01⁰ resolution and 0.05⁰ resolution MODIS EVI pixels 

are determined based on minimum distance to pixel center-points.  The size and shape of a 

flux tower footprint varies among sites (depending on tower height and vegetation type) and 

through time (due to changing wind speed and direction, among other environmental 

variables), but is typically smaller than the observational scale of coarse-resolution satellite 

imagery [Turner et al., 2003].  Since the MODIS pixels used in this study cover up to 30 km² 

http://ameriflux.ornl.gov/
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or more, direct comparison between MODIS EVI time-series and flux tower GPP time-series 

are complicated by a host of scaling problems.  Additionally, while EVI does track seasonal 

changes in GPP in many ecosystems [Rahman et al., 2005; Sims et al., 2006a, 2008], it is 

also sensitive to canopy structural properties (e.g. leaf area index).  Thus, EVI and GPP time-

series at a given location will not necessarily demonstrate the same seasonal dynamics, and 

this may be particularly true at evergreen sites [Sims et al., 2006a], where there may be little 

intra-annual variation in canopy structure but significant seasonal changes in GPP when 

temperatures reach an optimum level during the peak of the growing season .  Given these 

issues, flux tower-derived GPP data are used as a simple and crude validation of MODIS-

derived LSP, not as a formal source of “ground truth” data. 

 

2.4. Derivation of Land Surface Phenology 

Phenological modeling from remotely sensed SVI is often based on two processing 

steps: 1) noise-filtering and temporal smoothing of seasonal SVI observations, and 2) 

extraction of phenological metrics.  Noise-filtering, temporal smoothing, and function-fitting 

approaches include best index slope extraction (BISE) [Viovy et al., 1992; Moulin et al., 

1997; White et al., 1997], outlier analysis [e.g. Hwang et al., 2011; Gray and Song, 2012], 

moving average or median smoothing [Reed et al., 1994], asymmetric Gaussian functions 

[Jönsson and Eklundh, 2004], the discrete Fourier transform [Moody and Johnson, 2001], 

and piecewise or difference logistic regression [Zhang et al., 2003; Fisher et al., 2006].  

Methods for determination of phenological transition dates (e.g. start-of-season [SOS] or 

end-of-season [EOS] metrics) include the use of global SVI thresholds (DOY at which SVI 

first exceeds a pre-determined value) [e.g. White et al., 2009], local thresholds (adaptively-



15 
 

chosen on a per-pixel basis) [White et al., 1997; Fisher et al., 2006], and turning point 

detection methods using forward- or backward-looking delayed moving averages [Reed et 

al., 1994] or derivatives of curvature functions [Zhang et al., 2003].  While global thresholds 

are the simplest method to implement, they are inappropriate at large spatial scales where 

vegetation types may have very different seasonal SVI amplitudes [White et al., 2009].  In 

the western U.S., for example, the minimum EVI of most ENF pixels would likely be higher 

than the maximum EVI of some SHB pixels.  Likewise, global thresholds may not be 

appropriate for pixels with limited seasonal SVI variability, as would be expected for many 

ENF and SHB pixels. 

In this study, per-pixel seasonal EVI trajectories are derived using a multi-stage EVI 

filtering and smoothing process, and LSP metrics are defined using local thresholds.  

Following Hwang et al. [2011], a two-step noise filtering approach is utilized prior to 

seasonal curve fitting.  First, EVI observations at each pixel are grouped and arranged by 

DOY, and a simple outlier analysis is used to identify noisy observations.  Outliers are 

defined as any EVI observation within a 30 day moving window that is greater than 1.5 times 

the interquartile range (IQR) above the third quartile or less than 1.5 times the IQR below the 

first quartile.  Any point flagged as an outlier is discarded from further analyses.  Second, a 

modified BISE filter is used to identify noisy observations that were not flagged in the outlier 

analysis. 

Filtered EVI values are split into three samples: El Niño years (2003, 2005, 2007, 

2010), La Niña years (2000, 2001, 2006, 2008, 2011), and MLCD overlap years (2001-

2010).  Since the temporal resolution of the EVI product (MOD13A2) is relatively low (one 

observation every 16 days) and since LSP metrics are sensitive to missing observations near 
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phenological turning points [Zhang et al., 2009], a curve fitting procedure is performed using 

the whole of each sample (with EVI observations arranged by DOY) rather than fitting the 

function to annual EVI observations.  A difference logistic function  is used to represent the 

seasonal EVI trajectory at each pixel [Fisher et al., 2006; Fisher and Mustard, 2007; Hwang 

et al., 2011]: 

 ( )    (
 

        
 

         )   ,       (3) 

Where a and b are fitting parameters defining the leaf onset period, a’ and b’ are fitting 

parameters defining the senescence period, c is the seasonal EVI amplitude (difference 

between maximum and minimum fitted EVI) of the smoothed time-series, and d is the 

minimum of the smoothed EVI.  The difference logistic function is fit for each pixel using 

iteratively reweighted, non-linear least squares regression.  At each iteration, the EVI 

observations are reweighted based on the residuals from the previous iteration’s fitted model: 

  
 

  | |
,           (4) 

Where w is a vector of fitted weights (theoretically ranging from 0 to 1) and r is a vector of 

normalized residuals, with each vector containing one element per EVI observation [Holland 

and Welsch, 1977]. 

SOS and EOS estimates are defined for each pixel-sample as the DOY (rounded to 

the nearest day) where y(t) equals the mid-point between the fitted minimum and maximum 

EVI values [Fisher et al., 2006].  The inflection points of the logistic functions for each half 

of the growing season were also considered as SOS and EOS estimates, but in cases where 

the first logistic function did not reach its maximum before the second function began its 

increase, the inflection points often resulted in non-sensical estimates of SOS or EOS (e.g. 



17 
 

Figure A4).  A length of the growing season (LOS) parameter is defined as the difference (in 

DOY units) between EOS and SOS. 

The MLCD product (MCD12Q2) and flux tower GPP data were used to validate the 

EVI-derived LSP estimates produced in this study.  Average 2001-2010 MLCD LSP 

estimates are derived from a simple average of the annual estimates.  Since MLCD provides 

different seasonal metrics than the SOS and EOS estimates derived in this study, comparable 

parameters are defined for each pixel as the midpoint between the onsets of greenness and 

maturity (for SOS) and the midpoint between the onsets of senescence and dormancy (for 

EOS).  Where the MODIS phenology product identified two seasonal growth cycles, EOS 

was only obtained from the second growth cycle since this would more closely correspond to 

the single growth cycle assumed in this study.   

Flux tower-derived phenology is determined by fitting the difference logistic model 

to the GPP time-series in a similar manner as with MODIS EVI: flux data is divided into 

three samples (El Niño, La Niña, and all years) and the model is fit separately to the average 

daily GPP of each sample.  Under the assumption that ground-based GPP observations are 

not subject to the same sources of noise that are present in remotely sensed EVI observations 

(i.e. atmospheric aerosols, cloud contamination, soil or snow background reflectance, 

geolocation inaccuracy, etc.), and thus that all GPP observations represent “valid” 

measurements, the GPP time-series are not outlier- or BISE-filtered prior to difference 

logistic curve fitting.  For comparison to MODIS-derived phenology, the flux “all years” 

curve is compared to a fitted EVI curve generated using the same temporal period as the 

available flux data.  The Kendall grassland site, for example, only has L4 data available from 
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2004-2007, and therefore only MODIS EVI data from 2004-2007 is used for comparison at 

this site.   

 

2.5. Assessing ENSO-Induced Patterns in Annual NPP and LSP 

Differences between El Niño and La Niña impact patterns on vegetation dynamics are 

mapped for the study area using a simple difference between average El Niño SOS, EOS, or 

LOS and average La Niña SOS, EOS, or LOS (hereafter, LSP differences are referred to as 

ΔSOS, ΔEOS, and ΔLOS).  Differences between El Niño and La Niña LSP are mapped using 

the LSP metrics derived in this study and the LSP metrics from the MLCD product.  For 

NPP, split-sample differences are taken both for the raw NPP data (ΔNPPraw) and for the 

standardized split-sample anomalies (ΔNPPstd).  To evaluate impacts on specific vegetation 

types, average LSP and NPP are also compared for each of the four PFTs used in this study.  

Previous studies on the ENSO-related precipitation dipole in the western U.S. have noted the 

presence of a narrow “transition zone” between the Pacific Northwest and the arid Southwest 

during extreme ENSO events [e.g. Wise, 2010].  To determine if a coherent latitudinal pattern 

is also evident in ENSO impact patterns on vegetation dynamics, zonal mean differences for 

each LSP metric and NPP are calculated at intervals of 0.1⁰ latitude. 

Since MODIS NPP is annually-resolved, ENSO effects on primary production were 

further evaluated by correlation with 3-month running means of SOI.  First, total study area 

NPP was calculated using the original 1 km MODIS annual primary production (MOD17A3) 

dataset, since the 0.05⁰ pixels vary in surface area as a function of latitude.  Since ENSO 

events are typically strongest and most clearly defined in the Northern Hemisphere winter, it 

is very likely that SOI composites during this period will be most strongly related to Western 
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U. S. vegetation dynamics.  Therefore, total study period NPP was correlated against each of 

the 13 SOI composites, and the period of maximum correlation was determined.  Average 

NPP was then calculated for each of the PFTs in the study area, and correlation analysis was 

performed using the SOI composite period that was most highly correlated with the total 

study area NPP.  Changes in productivity during El Niño and La Niña years are also 

examined by summing the average daily GPP observations for each ENSO sample, resulting 

in an average annual GPP estimate for El Niño years and La Niña years at each site.  At the 

Metolius site, the only La Niña year (2006) contained missing GPP values for the first 19 

days of January, so the annual GPP estimates for both ENSO samples are based on sums 

starting from January 20. 

Correlations between LSP and SOI are also examined using the annually-resolved 

MLCD product, though this analysis may be limited by the short MLCD temporal period 

(2001-2010) and by many missing annual estimates in the Southwest and parts of the Pacific 

Northwest (Figure A1).  Annual averages and standard deviations of SOS, EOS, and LOS 

were obtained from all pixels within each PFT, and these averages were correlated against 

February through April (FMA) SOI.  The FMA period was selected due to its relatively high 

correlation with full study area annual averages of each LSP metric. 

 



 
 

 

 

 

 

 

CHAPTER 3 

 

RESULTS 

 

 

 

3.1. Comparison of LSP Estimates to MLCD and Flux Tower GPP 

Average LSP derived from the difference logistic function fitted to the grouped 2001-

2010 EVI observations generally follows expected spatial patterns (Figure 2 a-c).  Earliest 

SOS is observed in southern California and southwestern Arizona, while the latest SOS is 

observed in eastern and northern Arizona, at higher latitudes, and along mountain ranges.  

Earliest EOS occurs in southern California and western Arizona and in eastern Oregon and 

Washington, while the latest EOS is observed in eastern and northern Arizona and in 

southern Utah, and along the Pacific coast.  Long LOS occurs along the Pacific coast and in 

northern Arizona and southern Utah, while the shortest LOS is mostly observed in northern 

parts of the study area (Montana, Idaho, eastern Washington and Oregon, and northern 

Nevada).  Within these broadly-defined patterns, there is a great deal of heterogeneity, 

particularly with EOS and LOS in the dry regions of Washington, Oregon, and Nevada, 

where “pockets” of late EOS and long LOS are observed amid a background of earlier EOS 

and shorter LOS.  The model failed to estimate LSP metrics throughout much of the study 

area (represented by grey pixels in all maps), particularly along the Cascade and Sierra 

Nevada mountain ranges, in arid southern California and western Arizona, and in central 

Idaho and western Wyoming.  
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Comparison of average 2001-2010 LSP derived in this study (LSPpredicted) to the 

average LSP derived from the MODIS phenology product (LSPMCD12Q2; Figure 2 d-f) 

demonstrates that the two approaches arrive at similar spatial patterns.  Since both products 

are based on some form of logistic function, this result is not surprising.  While spatial 

patterns appear quite similar, the estimates themselves diverge in particular regions.  For 

SOS, the divergence is most pronounced in eastern Arizona, where SOSpredicted is much later 

than SOSMCD12Q2.  For EOS estimates, both methods identified similar patterns of spatial 

heterogeneity in the Great Basin, but EOSpredicted tended to generate more extreme values in 

the late-EOS “pockets.”  EOSpredicted was also much later than EOSMCD12Q2 throughout 

Arizona, western New Mexico, and southern Utah, and was slightly later along the Pacific 

coast.  LOSpredicted generally exhibits more extreme values and much more spatial 

heterogeneity than LOSMCD12Q2, and noticeably longer LOS is predicted in northern Arizona, 

southern Utah, and the Pacific coasts of Washington and Oregon.  The more extreme 

heterogeneity in LSPpredicted compared to LSPMCD12Q2 could be driven by two possible 

sources: 1) differences between the two modeling frameworks or 2) the spatial averaging of 

MLCD performed in this study for scaling to 0.05⁰ resolution pixels. 

Pixel-wise comparison of LSPpredicted to LSPMCD12Q2, stratified by PFT, suggests 

several patterns and divergences in LSP estimates produced by the two methods (Figure 3).  

First, SOS and EOS estimates from the two methods are more closely correlated than LOS 

estimates.  Since LOS is estimated as the difference between EOS and SOS, any divergence 

in SOS and EOS would be propagated in LOS estimates, which likely explains the lower 

correlation between LOSpredicted and LOSMCD12Q2 for most PFTs.  Second, SOS and EOS 

estimates from the two methods agree more closely for MF, SHB, and GRS than they do for 



22 
 

ENF.  Since pixels dominated by ENF generally exhibit less seasonal variation in EVI than 

pixels dominated by other PFTs, greater divergence between ENF estimates from the two 

models should not be particularly surprising.  Finally, whereas SOS estimates typically fall 

along the 1:1 line for most PFTs (with the exception of SHB), the slope is generally greater 

than one for EOS and LOS estimates.  Like the patterns noted in comparison of the LSP 

maps, this suggests that the difference logistic method used in this study generated a larger 

range of EOS and LOS estimates than those generated by MCD12Q2. 

Comparison of LSP derived from MODIS EVI to LSP derived from flux tower GPP 

highlights several strengths and weaknesses of the difference logistic model as applied to 

remotely sensed SVI in this study area (Table 4).  At the two ENF sites (Blodgett and 

Metolius), there is a distinct seasonal GPP curve but much less seasonal variation in 0.05⁰ 

resolution EVI.  The difference logistic function estimates a much earlier SOS and later EOS 

(and hence a much longer growing season) from GPP than from EVI at the Blodgett site.  At 

Metolius, GPP-derived SOS and EOS are both earlier than EVI-derived SOS and EOS, but 

LOS estimates are similar since SOS and EOS are offset by nearly the same number of days.  

At these ENF sites, negligible seasonal EVI variability in the 0.01⁰ pixels resulted in a flat 

difference logistic curve and failure of the LSP algorithm to extract SOS or EOS estimates.  

The seasonal EVI trajectory closely matches the GPP trajectory at Kendall and Santa Rita, 

and estimates of SOS are very similar, though the EVI-derived difference logistic model 

tends to estimate a later EOS and longer growing season than is observed from flux tower 

GPP.  While the Sky Oaks GPP exhibits a clear seasonality, EVI is relatively stable 

throughout the year, and the fitted curves clearly differ from the GPP-derived curve.  The 

Sky Oaks site is in southern California, where the difference logistic function failed to 
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produce LSP solutions for many pixels.  While the EVI and GPP curves at Tonzi Ranch 

exhibit very similar seasonality, substantial variability in 0.05⁰ resolution EVI from 

November through January resulted in a poorly fit difference logistic curve and prevented 

estimation of LSP metrics, while the 0.01⁰ resolution EVI resulted in a well-fit seasonal 

trajectory and well-estimated LSP metrics (though  EOS was earlier than GPP-derived EOS).  

Overall, with the exception of the Sky Oaks site and the two ENF sites, the SOS estimates 

from EVI are generally well-predicted by the SOS estimates from flux tower GPP, but there 

seems to be more uncertainty in EOS estimates (Figure 4).  One possible explanation for the 

differences between GPP- and EVI-derived EOS is the reduction of leaf-level photosynthetic 

capacity in response to declining photoperiod, which has been observed to precede leaf 

abscission by up to five weeks [Bauerle et al., 2012]. 

 

3.2. ENSO-induced variability in LSP and NPP 

Differences in timing of SOS between El Niño and La Niña events (ΔSOS) are most 

pronounced and coherent in the northern part of the study area and in eastern Arizona and 

western New Mexico, where there is a general advance in the timing of spring by up to two 

weeks or more for El Niño years relative to La Niña years (Figures 5a and A5a).  Spatial 

patterns of ΔSOS south of Oregon and Idaho are more heterogeneous and are complicated by 

large areas of missing values in California and western Arizona.  ΔEOS patterns are most 

pronounced in southern Nevada and Utah and (for MLCD) in southern California and 

western Arizona, where there is a delay of senescence by two weeks or more for El Niño 

years relative to La Niña years.  Both LSP products identify earlier EOS in eastern Montana 

during El Niño events (relative to La Niña events) by 20 days or more, and the MLCD 
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product also identifies much earlier El Niño EOS in eastern Oregon and Washington (Figures 

5b and A5b).  The spatial manifestation of ΔLOS is particularly heterogeneous with some 

disagreement between the two LSP products (Figures 5c and A5c), where LSP derived in this 

study identifies a lengthening of the growing season in El Niño years relative to La Niña 

years throughout most of the study area while MLCD identifies a longer El Niño growing 

season throughout the Southwest but little difference in more northern regions. 

Distributions of per-pixel SOS, EOS, and LOS stratified by PFT suggest small shifts 

in phenological timing between El Niño and La Niña events (Figure 6; Tables 5 & 6).  There 

is a great deal of within-class variability in LSP, particularly within SHB, which has a 

distinctly bimodal distribution for all three LSP metrics (not shown) and relatively wide, flat 

probability density functions (PDFs) for all three ΔLSP metrics.  On average, MF and SHB 

pixels experience an earlier start to the growing season during El Niño events compared to 

La Niña events, while (on average) there is very little difference for ENF and GRS.  

However, for ENF, MF, and GRS, more than two-thirds of pixels experienced an earlier SOS 

during El Niño events (relatively to La Niña events), while SHB pixels were evenly split 

between earlier SOS and delayed SOS during El Niño events.  With the exception of a slight 

delay in El Niño EOS for SHB pixels and a small advance for MF pixels, on average there 

appears to be very little consistent effect of ENSO on EOS within the study area.  An 

advanced SOS for most PFTs and delayed EOS for SHB combine for an average extension of 

growing season length in El Niño years compared to La Niña years (particularly for SHB, 

with an average two week extension of LOS).  Longer growing seasons during El Niño years 

were estimated for a majority of pixels (~60%) within each PFT. 
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Throughout the study area, MODIS-derived NPP is higher during El Niño events than 

during La Niña events, particularly along the Pacific coast and in Montana, with estimated 

differences in excess of 100 gC/m²/year for some pixels (Figure 7).  Differences in 

standardized NPP anomalies between El Niño and La Niña events (ΔNPPstd) highlights 

ENSO-related differences in these same regions, but also reveals large differences between 

ENSO events in many lower productivity regions, where the absolute difference in NPP may 

be relatively small but where the difference relative to natural variability can be quite large 

(Figure 8).  This includes large areas of Wyoming, western and northern Arizona, and 

southern California, as well as more isolated pockets of Utah and southern Idaho.  Regions 

with higher productivity during La Niña events make up a very small proportion of the 

western U. S., and are mostly concentrated in small pockets throughout the Great Basin. 

Distributions of per-pixel NPP reveal higher average productivity during El Niño 

events for all PFTs (Figure 9; Tables 5 & 6).  As with LSP, NPP is highly variable within 

classes.  PDFs of ΔNPPraw and ΔNPPstd are both centered at values greater than zero, 

indicating greater average productivity during El Niño years than during La Niña years.  The 

distinction is particularly great for SHB, where (on average) El Niño events are associated 

with nearly half a standard deviation increase in NPP above the study period mean, while La 

Niña events are generally associated with slightly below average production.  The proportion 

of pixels within each PFT with greater NPP during El Niño years than during La Niña years 

ranges from 82% (for ENF) to 92% (for MF). 

Total annual study area NPP is negatively correlated with the SOI over most 3-month 

composite periods, particularly pre-growing season SOI composites, with greater than 90% 

significance during the winter (Figures 10 and 11).  The strongest correlation occurred during 
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the JFM period (r = -0.6, p < 0.1), though DJF and FMA periods were also correlated at 

greater than a 90% significance level.  Total NPP varied from about 700 TgC/year during the 

most extreme positive JFM-SOI (La Niña) year to nearly 850 TgC/year during one of the 

most extreme negative JFM-SOI (El Niño) years.  Average NPP of each PFT was also 

negatively correlated with JFM-SOI during the study period (Figure 12), with Pearson 

correlation coefficients ranging from -0.45 for ENF (p>0.1) to -0.68 for GRS (p<0.05).   

With a few exceptions, average LSP metrics for each PFT are not significantly 

correlated with FMA-SOI, at least partly due to the small number of annual observations (10) 

available from MLCD.  There is also a large amount of within-class variability in LSP for 

each year, particularly for SHB.  For each PFT, SOS is positively correlated with FMA-SOI, 

suggesting an earlier SOS during El Niño years and later SOS during La Niña years (Figure 

A6).  Relatively high positive correlations between EOS and FMA-SOI are observed for MF 

(r = 0.48; p > 0.1) and GRS (r = 0.58; p < 0.1) (Figure A7).  Average LOS is strongly 

correlated with FMA-SOI only for SHB (r = -0.76; p < 0.05), indicating a longer growing 

season during El Niño years than during La Niña years (Figure A8). 

There are some distinct zonal differences in LSP and NPP between El Niño and La 

Niña years (Figure 13).  At low latitudes (< 34⁰), there is a general trend towards earlier 

spring greening during El Niño events (i.e. negative ΔSOS), though most of this difference is 

from extreme negative ΔSOS in eastern Arizona and western New Mexico, while the 

difference logistic function failed to arrive at LSP solutions for many pixels in the Southwest.  

There is also a less extreme (but more spatially cohesive) trend north of 44⁰ toward earlier 

spring greening during El Niño events.  Differences in EOS between El Niño and La Niña 

are most extreme south of 40⁰N, where there tends to be a delay in fall senescence of up to 
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30 days during El Niño years (i.e. positive ΔEOS), though the magnitude of the difference 

varies between LSP derived in this study and LSP derived from MLCD.  ΔLOS tends to be 

positive (i.e. longer El Niño growing season) between 31⁰N and 34⁰N (driven primarily by 

negative ΔSOS) and between 36⁰N and 40⁰N (driven primarily by positive ΔEOS), but the 

two sources of LSP estimates vary in the magnitude of the difference.  The small trends 

toward earlier SOS and earlier EOS in the northern part of the study area during El Niño 

events tend to result in neutral ΔLOS above 42⁰ latitude, with close agreement between the 

two sources of LSP estimates. 

Differences in standardized NPP anomalies between El Niño and La Niña are greatest 

between 32⁰N and 36⁰N and north of 47⁰N, where El Niño NPP may be greater than La Niña 

NPP by up to 1 standard deviation.  In fact, zonal ΔNPP is never less than zero, indicating 

that productivity in El Niño years is consistently higher than that in La Niña years throughout 

the western U. S.  Surprisingly, the zonal NPP differences exhibit very different patterns 

from zonal ΔLOS.  Despite the hypothesis that changes in growing season length would be 

highly coupled to changes in NPP, the peak difference between El Niño and La Niña LOS 

occurs in latitudinal bands from about 31⁰-33⁰ and from about 36⁰-39⁰, while differences in 

NPP peak around 32⁰-36⁰ and from 47⁰-49⁰. 

ENSO-related differences in phenology and productivity vary among the six flux sites 

(Figure 14; Table 7).  At Blodgett, Metolius, and Santa Rita, there is little difference in 

seasonal GPP trajectory between the El Niño (2003, 2005, 2007) and La Niña  (2000, 2001, 

2006) samples.  At Kendall, photosynthetic activity started and ended earlier (on average) 

during the El Niño years (2005 and 2007) than during the La Niña year (2006).  At the Sky 

Oaks site, productivity was higher throughout 2005 (an El Niño year) than it was during the 
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2006 (a La Niña year), but the difference logistic model identified earlier SOS, later EOS, 

and longer LOS during the La Niña year.  At the Tonzi Ranch site, the difference logistic 

function identified a longer growing season and higher peak productivity during the El Niño 

years (2003, 2005, and 2007), but it did not converge to the typical “smooth” growth 

trajectory for the La Niña years (2001 and 2006), resulting in a later SOS estimate than if the 

curve followed the more typical green-up trajectory.  At each site, annual GPP was higher 

(on average) during El Niño years than during La Niña years, particularly at Metolius, Sky 

Oaks, and Tonzi Ranch.  However, the association of ENSO with annual GPP is not 

necessarily consistent from year to year (Figure A9).  At Blodgett, for example, annual GPP 

was quite high in 2005 but low in 2003 (both El Niño years) while GPP was also high in 

2006 and 2001 but low in 2000 (all La Niña years). 

 



 
 

 

 

 

 

 

CHAPTER 4 

 

DISCUSSION 

 

 

 

Comparison of the MODIS-derived LSP metrics from the difference logistic function 

to LSP metrics from the MODIS land cover dynamics product suggests that the method used 

in this study is capable of replicating results produced from well-validated studies.  The close 

correlation between these methods is not surprising, however, since they are closely related, 

with a few main differences.  First, in this study, a difference logistic function is used instead 

of a piecewise logistic function.  With the difference logistic method, the two halves of a 

seasonal growth curve are constrained to be continuous (i.e. to “meet in the middle”), 

whereas the piecewise function can produce discontinuous growth curves.  Second, the 

MODIS phenology product is estimated annually, whereas LSP estimates in this study are 

produced by grouping EVI data from multiple years in order to fit an “average” seasonal 

trajectory for El Niño and La Niña samples.  Finally, the extraction of LSP metrics is based 

on different criteria in the two methods.  In this study, SOS and EOS are extracted based on a 

half-amplitude criterion, where SOS is the mid-point between the minimum and maximum of 

the fitted EVI curve in the green-up phase, while EOS is the mid-point between the minimum 

and maximum of the fitted EVI curve in the senescence phase.  The MODIS phenology 

product, on the other hand, estimates four phenological “turning points” as the local maxima 

and minima of the first derivative of the curvature function [Zhang et al., 2003]. 
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As noted in previous studies, estimation of LSP metrics in arid regions and in areas 

dominated by evergreen vegetation is complicated by sparse vegetation cover and negligible 

seasonal SVI variation, respectively [Zhang et al., 2006].  As demonstrated in spatial LSP 

patterns and in comparison of EVI-derived LSP to flux tower-derived LSP, similar problems 

are observed in this study.  While some of these issues may be primarily related to the SVI 

signal, there may also be issues related to the curve-fitting procedure or to the LSP metric 

extraction method.  The difference logistic function used in this study may be most 

appropriate for temperate deciduous forests, where the seasonal growth trajectory is well-

defined and where the green-up function typically reaches its maximum before the 

senescence function begins to influence the shape of the curve.  In semi-arid or evergreen 

vegetation, the method may be less well-suited, as the two logistic functions may be more 

likely to influence the curve simultaneously, which can result in unrealistically-shaped 

growth curves and poor estimation of LSP metrics.  This can be particularly problematic 

when estimating LSP metrics from the inflection points of the individual logistic functions, 

since these points could be on the wrong side of the curve (Figure A4).  Use of the mid-

amplitude of the fitted EVI curve mitigates the problem of unrealistic SOS and EOS 

estimates, but the issue is not entirely eliminated (see EVI-derived LSP estimates at Sky 

Oaks, Table 4).   

Shifts in photosynthetic timing and total productivity tend to follow expected spatial 

patterns based on knowledge of ENSO climate impacts.  February through April 

temperatures (both minimum and maximum) in the Pacific Northwest—where both onset of 

the growing season and NPP are largely temperature-dependent—tend to be higher during El 

Niño events than during La Niña events (Figure 15 a-d).  As expected, this region 
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experienced a relatively cohesive shift towards earlier spring growth and higher productivity.  

Winter precipitation is also considerably higher in the Southwest during El Niño events than 

during La Niña events (Figure 15 e & f).  While greater water availability in February 

through April may be expected to advance the growing season for arid and semi-arid shrub 

lands, the ΔSOS spatial pattern is quite heterogeneous in much of the Southwest, though both 

LSP sources tend to agree that eastern Arizona and western New Mexico exhibit much earlier 

SOS during El Niño events.  This heterogeneity may reflect interacting limitations of water 

availability and winter temperature, where average maximum temperature is generally cooler 

during El Niño events in the Southwest (Figure 15 c & d). 

Response of EOS to El Niño events may be related to ENSO-climate impact patterns 

in both the cool-season (FMA) and warm-season (MJJ and ASO), though ENSO climate 

impact patterns are generally weaker and less spatially cohesive in summer than in winter 

(Figures 16 and 17).  Increased precipitation in the Southwest during the winter months of El 

Niño years may recharge and delay draw-down of soil moisture, allowing for later EOS in 

this region, and an extensive region of delayed EOS in southern Nevada and southern 

California also coincides with increased ASO precipitation during El Niño years.  The 

slightly advanced El Niño EOS observed throughout parts of the Northwest, particularly in 

eastern Montana, may be related to earlier draw-down of soil moisture due to an earlier SOS.  

The overall lengthening of the growing season observed throughout much of the western U. 

S. (particularly the Southwest) during El Niño events likely reflects the combination of 

warmer winter temperatures throughout the Pacific Northwest and greater moisture 

availability in the Southwest during winter and in parts of the Southwest during summer 

months (MJJ and ASO). 
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Findings from this study may be particularly relevant for short-term forecasting and 

for better understanding of continental scale responses of vegetation to interannual sources of 

climate variability.  The high correlation of phenology and productivity metrics with winter 

ENSO indices suggests that some knowledge of both surface climate and vegetation 

dynamics can be obtained in winter months prior to the growing season.  This may be 

particularly relevant for management of agriculture, wildfire, and invasive species, the latter 

of which increasingly relies on knowledge of plant phenology [Wolkovich and Cleland, 

2011].  Knowledge of phenological and productivity responses to climate variability at a 

broad scale could also be useful for careful targeting of fine scale observations and 

experiments.  While the connection between early season phenology and climate have been 

well-studied, particularly in temperature deciduous and boreal forests, climatic controls of 

senescence and dormancy are more poorly understood [Richardson et al., 2013].  The 

inclusion of both EOS and non-forest, water-limited regions in this study could therefore 

move in the direction of filling this knowledge gap. 

Despite these implications, there are significant limitations in this study.  First, the 

choice of LSP modeling framework could have a large effect on the results of the study.  A 

recent study comparing many commonly-used methods for extracting phenological signals 

and metrics from remotely sensed SVI found that the methods varied by as much as 60 days 

in SOS estimates [White et al., 2009].  Therefore, the choice of a different method could alter 

the relationship observed between LSP metrics and ENSO.  Limitations in the ability of the 

MODIS primary production product to capture seasonal variation in water stress have also 

been identified in some arid regions, resulting in overestimates of productivity [Mu et al., 

2007].  Uncertainty in the MODIS NPP estimates could influence the results of this study, 
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though this may be slightly mitigated by the primary reliance of this study’s results on the 

ability of MODIS NPP to capture interannual dynamics rather than absolute accuracy. 

Arguably the most significant limitation of the study is the relatively short operational 

period of the MODIS sensor.  In particular, it is very likely that the 2000-2011 period only 

captures a limited range of ENSO variability.  There is a great deal of internal variability in 

the ENSO cycle, and climate impact patterns may not be consistent among all ENSO events 

with similar SOI or ONI values.  Within the MLCD record, there is considerable spatial 

variability in LSP among particular types of ENSO events.  Among El Niño years, for 

example, 2007 was characterized by earlier than normal SOS throughout the western U.S., 

while 2010 experienced later than normal SOS in most of the region (Figure A10).  Based on 

peak SOI, these two years were similarly strong El Niño events, though the timing and 

duration of peak SOI differed from August through October (2007) to December through 

March (2010).  2005 and 2010 were similar in both peak and timing of SOI, yet spatial LSP 

patterns also differed substantially between these two years.  Similar differences are observed 

among La Niña years (Figure A11) and neutral years (Figure A12).  Thus, while on average 

there may be an association between interannual variation of vegetation phenology and the 

ENSO system, the patterns are not necessarily consistent from year to year.  

Some of this variation may be related to the location of tropical Pacific sea surface 

temperature warming, where impact patterns associated with central Pacific warming may be 

different from those associated with eastern Pacific warming [Trenberth and Stepaniak, 

2001; Yeh et al., 2009, 2011; Newman et al., 2011].  Additionally, variation in ENSO impact 

patterns may reflect interactions with multidecadal sources of climate variability, including 

the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation [Wise, 2010].  It 
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seems very likely, therefore, that the 12 year MODIS record only captures a small range of 

ENSO variability, and that associations between vegetation dynamics and El Niño/La Niña 

events may exhibit a greater range of variability than indicated in this study.  This issue could 

be mitigated with use of vegetation indices derived from longer satellite records, such as the 

AVHRR-GIMMS NDVI dataset, but these satellite sensors are also limited by comparatively 

poor calibration, geolocation, and radiometric response over terrestrial surfaces. 

 



 
 

 

 

 

 

 

CHAPTER 5 

 

CONCLUSIONS 

 

 

 

The response of vegetation dynamics to the El Niño-Southern Oscillation was 

examined in the western United States using vegetation indices from the MODIS sensor, in 

addition to ENSO indices, daily GPP estimates from six eddy covariance flux towers, and 

spatially-resolved temperature and precipitation data from the PRISM Climate Group.  Land 

surface phenology estimates were derived from 16-day time-series of the enhanced 

vegetation index (using a difference logistic function) and from the MODIS Land Cover 

Dynamics product.  Average seasonal trajectories of EVI generally agreed with flux tower 

observed GPP at sites with reasonably strong seasonal EVI variation, but LSP metrics 

(particularly EOS) derived from EVI often differed from LSP metrics derived from the daily 

GPP.  Start of growing season metrics were found to advance by more than a week 

throughout much of the Northwest during El Niño events, while the response was often 

stronger but more spatially heterogeneous in the Southwest.  ENSO-related changes in end of 

growing season metrics were most pronounced in the southern regions of the study area 

(south of 40⁰N latitude), which may be associated with reduced water availability during La 

Niña events.  Growing season length was generally longer throughout most of the western 

U.S. during El Niño events, though with a great deal of variability and heterogeneity.  Net 

primary production was considerably and significantly higher during El Niño than during La 

Niña events throughout the study area.  The peak correlation between total annual NPP and 
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SOI occurred during the January through March SOI composite period, suggesting some 

potential for short-term forecasting of vegetation dynamics using ENSO-related indices. 
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TABLES 

 

 

 

 

 

 

Table 1.  MODIS products and derived variables used in this study

Product Units Resolution Temporal Period Citations

MOD17A3 (Primary Productivity) kgC/m²/year 1000 m Annual Running et al.  [2004]

Net Primary Production (NPP) (2000-2010)

MOD13A2 (Vegetation Index) 1000 m 16-day Huete et al.  [2002]

Enhanced Vegetation Index (EVI) (2000-2011)

MCD12C1 (Land Cover Type) 0.05⁰ Annual Friedl et al.  [2002,

Evergreen Needleleaf Forest (ENF) (2001-2010) 2010]

Mixed Forest (MF)

Shrubland (SHB)

Grassland (GRS)

MCD12Q2 (Land Cover Dynamics) DOY 500 m Annual Zhang et al.  [2003],

Onset of Greenness (2001-2010) Ganguly et al.  [2010]

Onset of Maturity

Onset of Senescence

Onset of Dormancy

Table 2.  ENSO years during the study period (2000-2011)

ENSO condition Number of observations Years

Neutral 3 2002, 2004, 2009

El Niño
1

4 2003, 2005, 2007, 2010

La Niña
2

5 2000, 2001, 2006, 2008, 2011
1
  Five consecutive ONI (in the winter prior to the growing season) greater than 0.5⁰C

2
  Five consecutive ONI (in the winter prior to the growing season) less than -0.5⁰C

Table 3.  Level 4 eddy covariance flux tower data used in this study

Name Latitude Longitude PFT Years Principal Investigator

Blodgett Forest 38.8952 -120.9519 ENF 1999-2006 A. H. Goldstein

Kendall Grassland 31.7365 -109.9419 GRS 2004-2007 R. Scott

Metolius Intermediate Pine 44.4523 -121.5574 ENF 2002, 2004-2007 B. E. Law

Santa Rita Mesquite Savanna 31.8214 -110.8661 SVN 2004-2006 R. Scott

Sky Oaks New 33.3844 -116.6403 SHB 2004-2006 W. C. Oechel

Tonzi Ranch 38.4316 -120.9660 SVN 2001-2007 D. D. Baldocchi
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Table 4.  Comparison of LSP derived from flux tower GPP and from MODIS EVI

Name Flux 0.01⁰ EVI 0.05⁰ EVI Flux 0.01⁰ EVI 0.05⁰ EVI

Blodgett 89 141 280 251

Kendall 211 212 210 261 283 286

Metolius 98 127 259 304

Santa Rita 214 219 215 269 297 295

Sky Oaks 96 40 17 172 365 365

Tonzi 73 64 173 145

SOS (DOY) EOS (DOY)

Table 5.  Comparison of average LSP and NPP during El Niño and La Niña years (with one standard deviation)

PFT El Niño La Niña El Niño La Niña El Niño La Niña El Niño La Niña El Niño La Niña

ENF 124±29 126±34 256±26 255±25 132±42 129±46 627±217 609±212 0.15±0.25 -0.31±0.28

MF 119±14 125±18 258±20 260±19 139±21 135±23 851±199 827±200 0.26±0.24 -0.28±0.30

SHB 107±51 115±54 255±64 248±60 148±67 133±59 170±122 156±115 0.43±0.20 -0.10±0.26

GRS 115±25 116±28 225±39 225±40 110±39 109±45 209±97 196±93 0.31±0.32 -0.27±0.34

SOS (DOY) LOS (DOY)EOS (DOY) NPPraw (gC/m²/yr) NPPstd

Table 6.  Proportion of PFT pixels with El Niño-La Niña 

differences less than (greater than) 0.

PFT ΔSOS ΔEOS ΔLOS ΔNPP

ENF 0.67 (0.31) 0.50 (0.46) 0.38 (0.60) 0.18 (0.82)

MF 0.89 (0.09) 0.62 (0.33) 0.35 (0.62) 0.08 (0.92)

SHB 0.48 (0.50) 0.37 (0.61) 0.39 (0.60) 0.11 (0.89)

GRS 0.67 (0.29) 0.51 (0.45) 0.40 (0.57) 0.15 (0.85)

Table 7.  Comparison of average LSP and annual GPP during El Niño and La Niña years

Name El Niño La Niña El Niño La Niña El Niño La Niña El Niño La Niña

Blodgett 80 91 303 277 223 186 1261 1209

Kendall 210 232 241 269 31 37 206 187

Metolius
1

95 100 247 285 152 185 1443 1186

Santa Rita 222 213 272 276 50 63 296 235

Sky Oaks 111 50 186 210 75 160 479 196

Tonzi 71 104 171 162 100 58 924 726
1
 The only La Niña year (2006) had missing GPP values for DOY 1-19, so both GPP sums include only DOY 20+

SOS (DOY) EOS (DOY) LOS (DOY) GPP (gC/m²/yr)
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FIGURES 

 

 

Figure 1:  Typical plant functional types in the western United States during 2001-2010, and 

eddy covariance flux towers used in this study (1: Blodgett, 2: Kendall, 3: Metolius, 4: Santa 

Rita, 5: Sky Oaks, 6: Tonzi Ranch). 
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Figure 2: Average 2001-2010 SOS, EOS, and LOS derived from this study (a-c, 

respectively) and from MLCD (d-f, respectively). 
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Figure 3: Comparison (by PFT) of average 2001-2010 SOS, EOS, and LOS derived from 

this study (LSPpredicted) and from MLCD (LSPMCD12Q2).  Warm colors indicate high point 

density. 
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Figure 4: Comparison of LSP estimates derived from flux tower GPP (LSPflux) and from 

0.01⁰ resolution MODIS EVI (LSPpredicted). 

 

 
Figure 5: Difference between El Niño and La Niña SOS, EOS, and LOS (a-c, respectively).  

Negative numbers (blue) indicate earlier (or shorter) events for El Niño relative to La Niña; 

positive numbers (red) indicate later (or longer) event for El Niño relative to La Niña. 



43 
 

 

 
Figure 6: Probability density functions of per-pixel ΔSOS, ΔEOS, and ΔLOS for each PFT.  

Values less than (greater than) zero indicate advanced (delayed) SOS or EOS and longer 

(shorter) LOS during El Niño years relative to La Niña years. 
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Figure 7: Difference between NPP during El Niño and La Niña years.  Positive values (red) 

indicate greater NPP during El Niño years relative to La Niña years; negative values (blue) 

indicate reduction in NPP during El Niño years relative to La Niña years. 
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Figure 8: Difference between standardized NPP anomalies (relative to 2000-2010 NPP) 

during El Niño and La Niña years.  Positive values (red) indicate greater NPP during El Niño 

years relative to La Niña years; negative values (blue) indicate reduction in NPP during El 

Niño years relative to La Niña years. 
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Figure 9: Probability density functions of the difference between per-pixel average NPP 

(left) and standardized NPP anomalies (right) during El Niño and La Niña years for each 

PFT. 
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Figure 10: Pearson correlation coefficients between annual total study area NPP and lagged 

3-month mean SOI.  Note that the y-axis is inverted for display purposes. 
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Figure 11:  Relationship between annual total study area NPP and JFM-SOI. 
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Figure 12:  Relationships between annual average NPP and JFM-SOI for each PFT.  Error 

bars represent one standard deviation of NPP for all pixels within a given PFT. 
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Figure 13: Average zonal differences between SOS, EOS, LOS, and standardized NPP 

anomalies during El Niño and La Niña events.  For ΔSOS, ΔEOS, and ΔLOS, positive values 

indicate later (or longer) LSP during El Niño years relative to La Niña years.  Black lines 

indicate LSP derived in this study, gray lines indicate LSP derived from MLCD.  For 

ΔNPPstd, positive values indicate increased NPP during El Niño years relative to La Niña 

years.  Dashed lines represent raw data, while dark lines are smoothed using robust loess. 
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Figure 14:  Seasonal trajectories of daily flux tower GPP during El Niño (red) and La Niña 

(blue) years at each flux site. 
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Figure 15:  February through April z-scores of average daily minimum temperature (a & b), 

average daily maximum temperature (c & d), and precipitation (e & f) during El Niño (left 

column) and La Niña (right column) years, relative to mean 2000-2011 climatology. 
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Figure 16:  May through July z-scores of average daily minimum temperature (a & b), 

average daily maximum temperature (c & d), and precipitation (e & f) during El Niño (left 

column) and La Niña (right column) years, relative to mean 2000-2011 climatology. 
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Figure 17:  August through October z-scores of average daily minimum temperature (a & b), 

average daily maximum temperature (c & d), and precipitation (e & f) during El Niño (left 

column) and La Niña (right column) years, relative to mean 2000-2011 climatology. 
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APPENDIX 

 
Figure A1:  Number of annual MLCD LSP estimates from 2001-2010. 
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Figure A2:  Number of annual MLCD LSP estimates in El Niño (a) and La Niña (b) years. 
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Figure A3:  Seasonal MOD13A2 NDVI (red) and EVI (black) observations from select 

pixels within the study area. 

 



58 
 

 
Figure A4:  Example of a fitted difference logistic curve (with LSP metrics derived from 

inflection points) where the green-up and senescence logistic functions simultaneously 

influence the curve. 
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Figure A5:  Difference between El Niño and La Niña SOS, EOS, and LOS (a-c, 

respectively) derived from MLCD.  Negative numbers (blue) indicate earlier (or shorter) LSP 

events for El Niño years relative to La Niña years; positive numbers (red) indicate later (or 

longer) LSP events for El Niño relative to La Niña. 
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Figure A6:  Relationships between annual average SOS and FMA-SOI for each PFT.  Error 

bars represent one standard deviation of SOS for all pixels within a given PFT. 
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Figure A7:  Relationships between annual average EOS and FMA-SOI for each PFT.  Error 

bars represent one standard deviation of EOS for all pixels within a given PFT. 
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Figure A8:  Relationships between annual average LOS and FMA-SOI for each PFT.  Error 

bars represent one standard deviation of LOS for all pixels within a given PFT. 
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Figure A9:  Annual GPP at the six eddy covariance flux towers used in this study.  Only 

years with fewer than 40 missing daily GPP values were used in calculation of annual GPP.  

Only days with valid GPP observations across all years were used in calculation of annual 

GPP at a given site.  At Blodgett, for example, GPP values were missing from DOY 339-365 

for year 2004, so only DOY 1-338 were used for calculation of annual GPP in all years at the 

Blodgett flux site. 
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Figure A10:  Difference between annual SOS (left column) and EOS (right column) during 

El Niño years and per-pixel mean (2001-2010) SOS and EOS.  Negative values (blue) 

indicate earlier SOS or EOS relative to 2001-2010 mean, while positive values (red) indicate 

later SOS or EOS relative to 2001-2010 mean. 
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Figure A11:  Difference between annual SOS (left column) and EOS (right column) during 

La Niña years and per-pixel mean (2001-2010) SOS and EOS.  Negative values (blue) 

indicate earlier SOS or EOS relative to 2001-2010 mean, while positive values (red) indicate 

later SOS or EOS relative to 2001-2010 mean. 
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Figure A12:  Difference between annual SOS (left column) and EOS (right column) during 

neutral years and per-pixel mean (2001-2010) SOS and EOS.  Negative values (blue) indicate 

earlier SOS or EOS relative to 2001-2010 mean, while positive values (red) indicate later 

SOS or EOS relative to 2001-2010 mean.
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