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ABSTRACT 

SAURABH WADHWA: Intracellular Delivery of Reactive Oxygen Species 
Generating Polypeptide-Drug Conjugates for Cancer Therapy 

(Under the direction of Russell J. Mumper, Ph.D.) 

Auto-oxidation of D-penicillamine (D-pen), FDA registered for the treatment of Wilson’s 

disease and rheumatoid arthritis, generates reactive oxygen species (ROS), a reaction 

catalyzed by transition metal ions (TMIs). D-pen has anti-proliferative and anti-angiogenic 

effects and is known to modulate several signaling pathways. However, an exact mechanism 

of action is not known. A reactive thiol group, strong plasma protein binding, rapid 

clearance, higher effective concentrations and cell impermeability challenge the development 

of D-pen as an anticancer agent. This dissertation work investigates poly(α)-L-glutamic acid 

(PGA) conjugates of D-pen for enhanced delivery to cancer cells and overcome the 

challenges mentioned above. Complete biodegradability, ability to carry large payloads of D-

pen, reversible conjugation, biocompatibility, longer circulation and passive tumor 

accumulation make PGA an ideal drug carrier. 

 

Evidence is presented that PGA-D-pen conjugates enhance the intracellular uptake of D-pen. 

Upon release from the conjugate, D-pen causes significant elevation in ROS levels leading to 

apoptotic cell death in murine and human leukemia, and breast cancer cells. Treatment with 

PGA-D-pen improves the survival of CD2F1 mice bearing intra-peritoneal (i.p.) leukemia 

with no apparent adverse events. 
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Idarubicin (Ida), an anthracycline chemotherapeutic, has shown efficacy as first-line 

treatment in acute leukemia and other cancers. ROS elevation that plays a major role in 

mediating its cytotoxicity is dependent on and augmented in the presence of low molecular 

weight thiols (LMWTs) like D-pen. We hypothesized that a combination of Ida and D-pen 

formulated as dual drug conjugates (DDCs) will provide co-delivery leading to enhanced 

anticancer effects while increasing the therapeutic index of Ida. Targeting to sigma-1 

receptors, known to be over-expressed in many different cancers, to further enhance the 

efficacy and specificity was also examined. 

 

It was shown that stable DDCs could be synthesized with programmed drug release 

properties. The conjugates were successfully targeted in-vitro to sigma-1 receptor over-

expressing non-small cell lung cancer (NSCLC) cells with a novel benzamide derivative, 

trivalent anisamide, as the ligand. DDCs showed prolonged circulation, enhanced tumor 

accumulation, reduced cardiac exposure of Ida, and improved tumor efficacy and survival in 

athymic nu/nu mice bearing NSCLC tumor xenografts. 
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1.1. Introduction and Statement of the Problem 

1.1.1. Background and Rationale of the Proposed Research 

D-penicillamine (D-pen) is a low molecular weight thiol (LMWT) used in the 

treatment of Wilson’s disease and as a disease modifying anti-rheumatic drug (DMARD) in 

rheumatoid arthritis (RA). The presence of a free thiol or sulfhydryl group (pka ~ 7.9) plays a 

significant role in its pharmacological activities (Netter et al., 1987). D-pen is a strong metal 

chelator. Redox cycling or auto-oxidation of D-pen generates reactive oxygen species (ROS). 

This reaction is catalyzed in the presence of metal ions like copper and iron (Starkebaum and 

Root, 1985). D-pen also undergoes thiol-disulfide exchange reactions with proteins that 

contain cysteine domains (Joyce et al., 1991). It can also interact with proteins having 

transition metal ions in their catalytic domains. Therefore, D-pen can potentially affect 

several signaling pathways. Its interactions with the components of redox buffer e.g. 

glutathione (GSH) depletion and GSH peroxidase inhibition can modulate the redox 

homeostasis (Chaudiere et al., 1984).  

Early investigations focused heavily on investigating the mechanism of beneficial 

effects of D-pen in RA and its interactions with the immune system (Gerber, 1978). D-pen 

was later discovered to have strong anti-angiogenic and anti-proliferative activity against 

epithelial and cancer cells respectively (Baier-Bitterlich et al., 1993; Matsubara et al., 1989). 

Moreover, the cytotoxicity was shown to be specific to transformed cells and normal cells 

were comparatively resistant (Havre et al., 2002). The underlying mechanism is not yet 

completely understood. However, ROS generation and effect on signaling proteins such as 

vascular endothelial growth factor (VEGF), tumor suppressor protein (p53), and matrix 
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metalloproteinases (MMPs) has been shown to play a significant role (Havre et al., 2002; 

Volpert et al., 1996). 

The major challenges that must be overcome to develop D-pen as an anticancer agent 

are; 1) highly reactive thiol group that is prone to irreversible serum protein conjugation and 

auto-oxidation before reaching the target site of action (Joyce et al., 1991; Joyce et al., 1989), 

2) poor cell permeability due to high hydrophilicity and unfavorable stereochemistry 

(Lodemann, 1981), 3) rapid clearance from plasma due to low molecular weight, and 4) need 

for higher effective concentrations (Gupte and Mumper, 2007a; Gupte et al., 2008).  

Natural and synthetic hydrophilic aqueous soluble polymers have been successfully 

used as drug carriers in the form of polymer-drug conjugates (PDCs), also referred to as 

polymeric prodrugs (Duncan, 2003). They have enhanced the efficacy, therapeutic index and 

reduced adverse events associated with chemotherapeutic drugs such as paclitaxel (PTX) and 

doxorubicin (dox). The presence of multiple functional groups and availability of numerous 

biochemically sensitive linkers makes PDCs versatile drug delivery systems. The cellular 

uptake of PDCs can be further enhanced by incorporating cell-specific targeting residues.  

The present work investigated high molecular weight, aqueous-soluble PDCs as 

delivery systems for D-pen. Such a delivery system would enable development of D-pen as a 

potential anticancer agent by overcoming the limitations summarized above.  

Cancer cells are characterized by multiple genetic and metabolic aberrations that vary 

widely among different types, and a tumor is composed of a heterogeneous population of 

cells (Bae, 2009; Jain and Stylianopoulos, 2010). Therefore, a combination therapy approach 

is widely used and has proven to be more effective than treatments with single agents. 

Ideally, a combination therapy should deliver two or more drugs to the tumor such that 
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maximum benefit can be achieved. In case of a combination drug therapy, where one drug 

augments the potential of the second, simultaneous delivery is desired. This has been 

successfully shown with PDCs (Vicent et al., 2005). The present work further investigated 

the potential of combination drug therapy with D-pen and idarubicin (ida), which is also 

known to mediate its toxicity by elevation of intracellular ROS levels among other actions, 

by developing dual drug conjugates (DDCs) with a polymeric macromolecule. 

 

1.1.2. Plan of Research 

The overall goal of this research was to investigate PDCs as drug delivery platforms for 

the anticancer delivery of ROS generating agent, D-pen, that would stabilize its thiol group, 

allow larger payload of drug to be delivered to the cancer cells, prolong the blood circulation 

time and release the drug through biochemically sensitive linkers upon uptake by cancer cells 

leading to strong anticancer effect. The research further aimed to investigate the potential of 

co-delivery of D-pen with Ida, conjugated to the same polymer chain, to enhance the 

anticancer effect while reducing the adverse events associated with the administration of Ida.   

The studies described in this dissertation investigated the following hypotheses: 

1. Conjugation of D-pen to a biodegradable and biocompatible polymer through its thiol 

group using a reducible disulfide linker will provide a stable delivery system with 

enhanced intracellular delivery of D-pen.  

2. The polymer-D-pen conjugate will lead to ROS mediated cytotoxicity in human 

cancer cells and will have potent anticancer effects. 
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3. Co-delivery of D-pen and Ida with DDCs targeted to sigma-1 receptor will result in 

enhanced cell uptake and cytotoxicity in human cancer cells over-expressing sigma-1 

receptor.  

4. In-vivo administration of DDCs in mice bearing sigma-1 over-expressing cancer cells 

will result in strong anticancer effect that will lead to tumor regression and enhanced 

survival.  

To evaluate the hypotheses outlined above, a research plan that included specific aims and 

major objectives to achieve these aims was designed. 

 

Specific Aim 1.  Synthesize poly(α)-L-glutamic acid (PGA) conjugates of D-pen and 

investigate the intracellular delivery of the conjugates. 

a. Synthesize PGA-D-pen conjugate with a reproducible chemical conjugation pathway 

using a hetero-bifunctional disulfide linker.  

b. Develop sensitive analytical methods to quantitatively characterize the extent of drug 

conjugation and assess the in-vitro release of D-pen from PGA-D-pen conjugate. 

c. Develop microscopic methods to analyze the cellular uptake of PGA-D-pen in human 

leukemia cells. 

 

Specific Aim 2. Investigate the intracellular ROS generation, the resulting in-vitro 

cytotoxicity and anticancer efficacy of PGA-D-pen. 

a. Determine the kinetics of intracellular ROS generation as a function of the dose of 

PGA-D-pen employing a ROS marker, carboxy-H2DCFDA (5-(and-6)-carboxy-2',7'-

dichlorodihydrofluorescein diacetate). 
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b. Determine the in-vitro cytotoxicity of PGA-D-pen in human leukemia and breast 

cancer cells, and determine the extent of apoptotic cell death in the cytotoxicity by 

utilizing the annexin V/propidium iodide dual label method. 

c. Evaluate the maximum tolerated dose (MTD) of PGA-D-pen by dose escalation 

studies and an increase in life span (ILS) upon treatment with PGA-D-pen in intra-

peritoneal (i.p.) leukemia bearing mice.   

  

Specific Aim 3.  Develop DDCs containing both D-pen and Ida conjugated to PGA as a 

co-delivery system further targeted to sigma-1 receptor over-expressing 

cancer cells. 

a. Develop a reproducible synthetic pathway for DDCs and quantitative analytical 

methods to analyze the extent of conjugation and in-vitro release of Ida from the 

DDC. 

b. Synthesize DDCs targeted to sigma-1 receptors using anisamide and trivalent 

anisamide as ligands, and develop spectroscopic methods to estimate the number of 

ligands per polymer chain. 

c. Optimize the number of ligands per polymer chain by assessing the differential cell 

uptake and cytotoxicity of targeted vs. untargeted DDCs in cancer cells over-

expressing sigma-1 receptors. 

 

Specific Aim 4.  Evaluate the anticancer efficacy of DDCs in mice bearing human cancer 

cells over-expressing sigma-1 receptors. 
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a. Develop a mouse (athymic nu/nu) model of human NSCLC (NCI-H460) and 

optimize for growth properties. 

b. Perform dose escalation studies to determine the MTD and dose-related toxicity of 

DDCs. 

c. Determine the plasma, tumor and organ disposition of targeted and untargeted DDCs. 

d. Assess the tumor regression or tumor growth delay (TGD) and survival enhancement 

upon treatment with targeted and untargeted DDCs. 
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1.2. Low Molecular Weight Thiols (LMWTs) as Anticancer Agents 

1.2.1. Introduction 

In anticancer therapy, LMWTs have been widely used as chemopreventive agents to 

reduce the risk of cancer by primarily scavenging the harmful reactive oxygen (ROS) and 

nitrogen (RNS) species and as adjuvants to chemotherapy thereby reducing the associated 

toxicity to normal tissue while increasing the therapeutic index. Interestingly, several 

investigators have shown that LMWTs are also capable of elevating intracellular oxidative 

stress and causing cytotoxicity to cancer cells. The generation of ROS occurs through one-

electron oxidation of LMWTs and is catalyzed by transition metals such as copper and iron 

(Munday, 1989). We have highlighted the significance of elevated serum and tissue copper 

levels in cancer patients and utilizing this as a potential strategy for anticancer therapy 

(Gupte and Mumper, 2009). The presence of free thiol group makes LMWTs unique among 

other antioxidants or chemopreventive agent in their interaction with cancer cells and so it is 

important to understand the redox chemistry of thiols. In particular, the variation in acidity 

and the oxidation potential of the thiol group results in differences in biological activity.  

Glutathione, which is a tripeptide composed of glycine, glutamic acid and cysteine, is 

the predominant endogenous LMWT besides cysteine which is a precursor of GSH. GSH has 

a very important role in detoxification of xenobiotics mediated by GSH-S-transferase as well 

as maintenance of the intracellular redox balance by balancing the ratio of the reduced and 

oxidized form of GSH (GSH/GSSG). Selective perturbation of this balance in cancer cells by 

increasing the levels of GSSG (NOV-002®) or decreasing the levels of GSH (buthionine 

sulfoximine and phoron) has been successfully investigated as a therapeutic strategy (Trapp 

et al., 2009; van Doorn et al., 1978). On the other hand, elevated GSH levels have been 
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shown to sensitize cancer cells to chemotherapy by complex redox pathways that involve 

interaction with copper (Chen et al., 2008a). The ratio of GSH/GSSG and the redox buffer 

capacity of cancer cells are significantly lower than normal cells due to increased metabolic 

stress (Fruehauf and Meyskens, 2007; Lopez-Lazaro, 2007; Nicco et al., 2005). Such 

persistent oxidative stress makes cancer cells susceptible to killing upon further elevation of 

ROS to levels that the normal cells will be able to buffer. 

The anticancer effects of LMWTs can be described in four distinct categories that 

include; i) generation of ROS causing direct cellular damage, ii) inhibition of enzyme activity 

by chelation of metal co-factors like copper and zinc leading to anti-angiogenesis and 

extracellular matrix perturbation, iii) modulation of cellular and membrane proteins by thiol 

disulfide exchange or disulfide formation at cysteine sites, and iv) effect on signaling 

pathways. LMWTs viz., D-pen, tetrathiomolybdate (TM), NOV-002 and others are currently 

under clinical investigation for anticancer therapy (Figure 1.1).  
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Figure 1.1 Chemical structures of some low molecular weight thiols (LMWTs) 
investigated for their anticancer properties.  
A) D-penicillamine (D-pen), B) Tetrathiomolybdate (TM), C) N-acetyl cysteine (NAC), D) 
Mesna, E) Amifostine, F) Captopril and G) NOV-002. 
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1.2.2. Redox Status of Normal vs. Cancer Cells 

Intracellular ROS are by-products of mitochondrial respiration and oxidative enzyme 

activity in the cytosol and other organelles (Murphy, 2009). They have diverse roles in cell 

signaling when present at optimum concentrations. However, elevated levels of ROS have 

the potential to cause cellular damage by oxidizing cellular components (e.g. lipid 

peroxidation), direct damage to DNA (e.g., strand breaks) or by triggering stress responses 

leading to apoptotic cell death (Martin and Barrett, 2002). The cellular redox buffer system 

that is composed of small molecule antioxidants like GSH and enzymatic components 

including GSH peroxidase, catalase, superoxide dismutase, and thioredoxin helps maintain a 

low level of ROS by converting them to inert chemicals. GSH is utilized as a single electron 

donor in most of the scavenging reactions resulting in its oxidation to GSSG (Figure 1.2). 

The ratio of GSH to GSSG (GSH/GSSG) is often used as a measure of the redox buffer 

capacity of a cell, a higher value indicating an improved ability to counter an oxidative insult.  

Elevated levels of intracellular ROS otherwise termed as “oxidative stress” has been 

associated with several pathological conditions including cancer, neurodegenerative diseases 

and cardiovascular diseases. It is known that cancer cells are under persistent oxidative stress 

making them more susceptible to killing by further elevation of intracellular ROS levels 

(Pelicano et al., 2004).  

Serum thiol levels, a marker for overall oxidative stress, in patients with several 

different types of cancer have been found to be significantly lower than normal patients 

(Nayak and Pinto, 2007; Ozkan et al., 2007; Rao et al., 1999). An increase in serum thiols is 

correlated with enhanced survival. In addition, the GSH/GSSG ratio is significantly lowered 

in tumor cells of different types (Lusini et al., 2001; Navarro et al., 1999) indicating reduced 
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ability to neutralize ROS. Comparatively, the redox buffer capacity of normal cells is much 

greater and they are able to neutralize ROS and prevent any associated damage at similar 

concentrations (Gupte et al., 2009). Therefore, agents that act predominantly by ROS 

elevation such as LMWTs, have an inherent selectivity towards killing cancer cells. This is 

supported by several studies that showed cancer cells to be more sensitive to treatment with 

LMWTs as compared to normal cells.  

N-acetyl cysteine was shown to selectively induce apoptosis in several transformed 

cell lines with no effect on normal cells (Liu et al., 1998b). Havre et al. showed that D-pen 

selectively induced a p53 mediated apoptosis in transformed cells compared to human 

fibroblasts (Havre et al., 2002).  Wondrak et al. (Wondrak et al., 2004; Wondrak et al., 2006) 

showed that more than 60% of the murine (B16) and human (A-375, G-361 and LOX) 

melanoma cells were apoptotic within 24 hr of treatment with D-pen whereas no apoptosis 

induction was seen in primary human skin fibroblasts and epidermal keratinocytes.   
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Figure 1.2 Pathways of neutralization of reactive oxygen species (ROS) by the cellular 
redox buffer components.  
RSH = Low molecular weight thiol (LMWT) containing compound. Glutathione (GSH) is 
the predominant intracellular LMWT. RSSR = Symmetrical disulfide of the corresponding 
LMWT, H2O2 = Hydrogen peroxide, O2

.- = Superoxide radical anion, NADP = Nicotinamide 
adenine dinucleotide phosphate. 
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1.2.3. The Oxidant-Antioxidant Paradigm 

LMWTs have been historically used as antioxidants due to their radical scavenging 

properties. The antioxidant property of LMWTs can be attributed to the presence of free thiol 

group(s) that can act as an electron donor and cause radical scavenging in a way similar to 

GSH. In addition, metal complexes of LMWTs have also shown superoxide dismutase 

(SOD) mimicking properties (Jay et al., 1995; Roberts and Robinson, 1985) which may 

further enhance their antioxidant activity.  

However, cytotoxic responses with LMWTs involving free radical species have been 

observed indicating an oxidant nature (Munday, 1989). The presence of free thiol group 

makes LMWTs susceptible to oxidation by other compounds or autoxidation resulting in the 

formation of symmetrical/mixed disulfides if another thiol containing compound is present. 

Although LMWTs may generate ROS during normal redox cycling (Searcy, 1996) as shown 

in Figure 1.2, oxidation of LMWTs may be catalyzed by several transition metals. Metal 

catalyzed oxidation of LMWT involves a series of single-electron steps that have been 

experimentally elucidated (Munday, 1989; Munday, 1994; Starkebaum and Root, 1985) 

(Figure 1.3). Reduction of the metal by thiol generates thiyl radical (step 1). The reduced 

metal further reacts with molecular oxygen to generate superoxide anion (step 2) followed by 

sequential reduction to hydrogen peroxide (step 3). The two thiyl radicals come together to 

form a symmetrical disulfide (step 4). The utilization of 1 mole of oxygen for every 2 moles 

of thiols has been experimentally shown (Starkebaum and Root, 1985). Gupte and Mumper 

have also observed the formation of one mole of hydrogen peroxide for every 2 moles of D-

pen oxidized (Gupte and Mumper, 2007a; Gupte and Mumper, 2007b). Hydrogen peroxide 

generated during metal catalysis of LMWTs can further undergo Fenton reaction to generate 
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the highly potent hydroxyl radical (step 5) (Kehrer, 2000). This has been confirmed in 

several reports (Held et al., 1996; Rowley and Halliwell, 1982). It has also been shown that 

thiol may be directly involved in Fenton reaction and may not depend on the generation of 

hydrogen peroxide (Issels et al., 1984).  

 The generation of ROS by LMWTs is dependent on the generation of thiolate anion 

which in turn depends on the acidity of the thiol group and the pH of the medium. Moreover, 

it has been suggested that the thiolate anion is the active species that binds DNA and causes 

single strand DNA breaks (Sawada and Okada, 1970). The acidity of thiol group in LMWTs 

has been correlated with the efficiency to generate ROS whereby the lower the pka of the 

thiol group, the higher is the concentration-dependent increase in ROS generation. 

Winterbourne and Metodiewa compared seven different LMWTs. D-pen caused the highest 

increase in hydrogen peroxide generation by the xanthine oxidase/hypoxanthine system 

(Winterbourn and Metodiewa, 1999). The acidity of the thiol group may be affected by the 

type of substituent on neighboring carbon and the steric hindrance around the sulfur atom. 

Electron withdrawing substituents would increase the acidity of the thiol group. Aromatic 

and unsaturated aliphatic thiols are expected to be more toxic while sterically hindered thiols 

will be less toxic (Munday, 1989). Therefore, if the therapeutic benefit of LMWTs depends 

on ROS generation in-vivo, only those LMWT with thiol pka values closer to or lower than 

the physiological pH of 7.4 should be investigated for further development.  

Another important factor that may determine the oxidative potential of LMWTs is the 

type of metal ion and the concentrations needed to achieve a catalytic enhancement in the 

rate of oxidation. D-pen, in the presence of copper (II), was shown to inhibit the proliferation 

of lymphocytes, fibroblasts, endothelial cells and cause apoptosis mediated cytotoxicity in 
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several cancer cell lines.  The effect of varying the metal salt in combination with D-pen 

upon inhibition of lymphocyte proliferation has been studied (Lipsky and Ziff, 1978). It was 

found that copper (II) salts (sulfate, acetate and chloride) were similar in their synergistic 

effects in combination with D-pen while addition of zinc chloride (ZnCl2), ferrous sulfate 

(FeSO4) or other divalent cations did not have any significant effect on mitogen induced 

lymphocyte proliferation by D-pen. It was further reported that the copper ions could be 

completely replaced with ceruloplasmin bound copper without any loss of synergism 

(Lipsky, 1984). This is significant as endogenous copper is almost entirely bound to 

ceruloplasmin. As a result, several investigations have focused on using pre-chelated 

compounds as anticancer agents (Daniel et al., 2004). Moreover, a number of reports have 

found significant elevation in serum as well as tumor copper levels in several different types 

of cancers (Carpentieri et al., 1986; Gupta et al., 1991; Rizk and Sky-Peck, 1984; Sharma et 

al., 1994). Therefore, metal catalysis of ROS generated during thiol autooxidation may be 

significantly higher in cancer patients and has been proposed as a potential anticancer 

strategy (Gupte and Mumper, 2009).  

Some LMWTs show a biphasic cytotoxic response with intermediate doses being 

toxic while being minimally toxic at low or high concentrations (Held and Biaglow, 1994; 

Held and Melder, 1987; Morse et al., 1995). It has been postulated that LMWTs may act as 

oxidants or antioxidants based on the biochemical conditions and the chemical nature of the 

thiol containing compound whereby the two opposing roles may be connected through redox 

pathways as discussed above. This paradox was first observed with cysteamine (Takagi et al., 

1974; Vos et al., 1962). The toxicity of cysteamine to cervical cancer (HeLa) cells was 

greatest at 2 mM and pH 7.4 while decreasing at lower pH values and higher concentrations. 
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The decrease in toxicity correlated with reduction in the concentration of hydrogen peroxide 

generated (Takagi et al., 1974). Low concentrations of cysteamine (0.5 mM) were more 

effective than higher concentrations (>2 mM) in inducing single-strand breaks in DNA, 

depressing DNA synthesis and inhibiting the rejoining of breaks (Sawada and Okada, 1970). 

At similar concentrations of cysteamine, while no toxicity was observed at low temperatures 

(5oC), there was a synergistic enhancement in toxicity to chinese hamster ovary (CHO) cells 

at higher temperatures (44oC). The increase in cytotoxicity correlated with oxygen uptake by 

the cells indicating an involvement of redox reactions (Issels et al., 1984). It was 

hypothesized that at higher concentrations, the generation of ROS by cysteamine may be 

overcome by its reaction with the generated hydrogen peroxide leading to neutralization of 

toxicity with concomitant formation of disulfide (Figure 1.2). Further investigations 

confirmed that LMWTs that reacted the slowest with hydrogen peroxide, were more 

cytotoxic than those that reacted at a faster rate. It was also reported that the biphasic 

cytotoxicity is not a universal property among LMWT and they differ in their relative 

cytotoxicity. However, the cytotoxicity was independent of the rate of thiol oxidation (Held 

and Biaglow, 1994). The rate of reaction between hydrogen peroxide and LMWTs may be 

slowed by indirect effects e.g. potent glutathione peroxidase inhibition by D-pen and 

mercaptosuccinate (Chaudiere et al., 1984).  

In another study by Betts et al., D-pen affected the degradation of hyaluronic acid 

(HA) in a biphasic manner where concentrations of 1 mM or lower enhanced the degradation 

of HA while higher concentrations had a protecting effect. The effect was determined in the 

presence of an enzymatic system (xanthine oxidase-hypoxanthine) to generate oxidative 

radicals. The degradation of HA by D-pen was more pronounced in the presence of Fe (III) 
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ions (Betts et al., 1984). This is possibly due to the generation of hydroxyl radical in Fenton 

reaction as shown in Figure 1.2. Other thiols like GSH, cysteine and NAC had similar effects 

on HA degradation. However, the corresponding disulfides were ineffective. Staite et al. 

reported hydrogen peroxide generation by D-pen that was dependent on the concentration of 

both Cu and D-pen. These authors also reported a dual redox property of D-pen whereby D-

pen, when present in excess of Cu (>500 µg/mL), acts as a scavenger of hydrogen peroxide 

and not as an oxidant (Staite et al., 1985). 
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Figure 1.3 Generation of ROS during one electron oxidation of LMWT and subsequent 
generation of hydroxyl radical by Fenton reaction. 
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1.2.4. Mechanisms Underlying Anticancer Effects of LMWTs  

Several early reports suggested systemic toxicity accompanied with significant redox 

disturbance upon administration of LMWTs such as bucillamine, captopril and dithiothreitol 

(DTT) (Helliwell et al., 1985; Munday, 1989; Yeung, 1991). High doses of captopril resulted 

in hepatic necrosis in mice through GSH depletion (Helliwell et al., 1985). In a study in rats, 

NAC acted as a protectant against LPS (lipopolysaccharide) induced oxidative stress in lungs 

at low doses but higher doses led to rapid lung GSH depletion and increased mortality 

(Sprong et al., 1998). Further evidence of ROS generation during redox cycling of LMWTs 

and DNA binding activity led the investigators to drop the notion that LMWTs only had a 

chemoprotective effect with no therapeutic benefit of their own. In addition, this also 

highlighted the need to direct the delivery of LMWTs to organs of interest.  

Many LMWTs have now been reported to show potent antiangiogenesis and 

cytotoxic effect in cell lines and animal models of cancer. It has been suggested that most of 

the observed effects of LMWTs can be attributed to either generation of oxidative species, 

modulation of essential proteins by thiol-disulfide exchange or perturbation of the redox 

balance. On a cellular level, the effects range from DNA damage, activation of apoptotic 

transcriptional factors that act as signaling molecules and GSH depletion. Many of these 

effects are thought to be mediated by intracellular ROS generation. However, direct 

involvement of the thiyl radical in binding to metal or cysteine containing active sites of 

enzymes, transcriptional factors as well as DNA has also been shown (Figure 1.4). 
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Figure 1.4 A model for cellular interactions induced by LMWTs.  
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1.2.4.a. Direct Cellular Damage by Free Radical Generation 

As outlined above, LMWTs are capable of generating free radicals intracellularly 

which can cause direct as well as indirect damage leading to cell death. Reactive oxygen 

species can cause extensive DNA damage through histone oxidation, base excision and 

strand breaks leading to generation of low molecular weight DNA fragments (Park and 

Floyd, 1994; Wallace, 1987). This can subsequently result in inhibition of DNA replication 

and mitotic arrest. Hydroxyl radicals generated as a consequence of Fenton reaction are 

especially potent at causing DNA damage. They can cause single strand breaks by 

abstracting hydrogen atoms from the deoxyribose sugars causing the sugar-phosphate 

backbone to cleave, and can form adducts with both purine and pyrimidine bases (Breen and 

Murphy, 1995). A system containing thiol, ferric ion and oxygen induced strand breaks in 

calf thymus DNA associated with the formation of 8-hydroxy-2’-deoxyguanosine. 

Dihydrolipoic acid was the most potent among those tested (Park and Floyd, 1994). Metal 

ion complexes of LMWTs are also very potent in binding and cleaving DNA (Dulger et al., 

2000).  

Although cells have the capability to repair DNA damage, extensive fragmentation 

can lead to activation of apoptotic triggers (Bertram and Hass, 2008; Breen and Murphy, 

1995). Both D-pen and bucillamine, in the presence of copper sulfate, induced extensive 

double stranded DNA strand breaks in human peripheral blood lymphocytes and completely 

suppressed the repair at higher concentrations. In this study, most of the effect could be 

attributed to damage by free radicals generated upon interaction with copper as no effect was 

observed with the drugs alone (Yamanaka et al., 1993). Cysteamine also induced single 

strand DNA breaks and almost complete inhibition of DNA synthesis at concentrations of 0.5 
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mM in mouse leukemia cells. The number of breaks synergistically enhanced when the cells 

were irradiated with X-rays (Sawada and Okada, 1970). Amifostine treatment resulted in an 

exposure dependent DNA fragmentation in hematopoietic stem cells (Ribizzi et al., 2000). 

Four different LMWT, NAC, cysteine, 2-mercaptoethanol and GSH induced DNA 

fragmentation in CEM cells at a dose of 1 mM that resolved as 180 bp DNA ladder on gel 

electrophoresis which is characteristic of apoptotic cell death (Morse et al., 1995). The 

position of the thiol group also affects DNA fragmentation. Vicinal LMWT increased the 

number of DNA breaks in human leukemia cells in the presence of nickel chloride whereas 

monothiols partially protected the DNA from nickel induced damage (Lynn et al., 1999).   

Lipid peroxidation mediated by free radical generation by LMWT can destabilize cell 

membrane by oxidizing the lipids to hydroperoxides that further lead to the accumulation of 

aldehydes capable of forming stable toxic adducts with cellular proteins, DNA and lipids. 

The presence of metal ions such as iron and copper is known to potentiate the conversion of 

hydroperoxides to aldehydes. Two of the common aldehydic products are malondialdehyde 

and 4-hydroxy-2E-nonenal (Cejas et al., 2004). A combination of cysteine and iron 

synergistically stimulated lipid peroxidation in liver microsomes mediated by ROS 

generation (Searle and Willson, 1983). Fenton chemistry and generation of hydroxyl radical 

during oxidation of LMWTs has an important role as the latter can initiate lipid peroxidation. 

Peroxidation of microsomal phospholipids was observed with LMWTs in combination with 

ADP-chelated iron (III). The nature of peroxidation was biphasic for cysteine and DTT with 

higher concentrations being less active, analogous to the cytotoxic property of some LMWTs 

(Tien et al., 1982). 
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Thiyl radical formed during the redox recycling of LMWT (Figure 1.1 and Figure 

1.2) can mediate oxidation of polyunsaturated fatty acids such as linoleic acid. Reaction of 

captopril with hydroxyl radical generates captopril thiyl radicals. The thiyl radicals attack 

polyunsaturated fatty acids leading to the formation of pentadienyl type radical which upon 

reaction with molecular oxygen forms conjugated dienes (Schoneich et al., 1992). Thiyl 

radicals can also attack unsaturated phospholipids and cause reversible isomerization of cis-

fatty acids to trans-fatty acids leading to membrane destabilization (Ferreri et al., 1999). 

Oxidation of phospholipids by glutathionyl radicals, generated by myeloperoxidase 

stimulated phenol oxidation system, has been shown in human leukemia cells leading to cell 

death (Borisenko et al., 2004). 

Studies using DTT showed that free radical damage by LMWT may be partly 

mediated by stimulation of the pentose phosphate pathway as higher cytotoxicity was 

observed in the presence of medium containing glucose and cells deficient in glucose-6-

phosphate dehydrogenase were more sensitive to DTT in the presence of glucose (Held et al., 

1993).   

 

1.2.4.b. Apoptosis and Cell Signaling Interactions 

Hydrogen peroxide and ROS generating agents can lead to apoptotic or necrotic cell 

death depending on the concentrations of ROS generated and severity of cellular damage 

with apoptosis being the preferred pathway at lower concentrations (Chandra et al., 2000). 

Apoptosis or programmed cell death is comprised of a series of intracellular events triggered 

by different pathways. Although apoptosis induction may occur through different pathways, 

one of the modes of ROS mediated induction involves loss of mitochondrial membrane 
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potential accompanied by the release of cytochrome c (Stridh et al., 1998). Subsequently, 

cytochrome c forms a part of the apoptosome in the cytosol leading to activation of a series 

of downstream signaling molecules including the caspase family of proteases. A combination 

of DTT with Vitamin B12b caused 50% decrease in mitochondrial potential and release of 

cytochrome c in human epidermoid larynx carcinoma cells. Other indicators of apoptosis 

including caspase-3 activation and DNA ladder formation were also observed (Solovieva et 

al., 2008). Another LMWT, PDTC (pyrrolidine dithiocarbamate), showed similar effects 

human leukemia cells in the presence of copper chloride (Chen et al., 2008b).  

Apoptotic cell death can be mediated by the reactive carbonyl species (RCS) 

scavenging activity of LMWTs. This has been observed in both human and murine 

melanoma cells. Reactive carbonyl species such as methylglyoxal, glyoxal and 

malondialdehyde play an active role in proliferation and metastasis. For example, they inhibit 

cytochrome c release from mitochondria and inhibit pro-apoptotic signals by interacting with 

proteins such as heat shock protein (Hsp 27) and mitochondrial permeability transition pore 

protein (Johans et al., 2005; Sakamoto et al., 2002). A structure activity relationship study by 

Wondrak et al. showed that a thiol and amino functional group was required for carbonyl 

scavenging via thiazolidine ring formation and apoptotic activity in melanoma cells. The loss 

of thiol by disulfide formation or S-methylation resulted in a complete loss of activity. NAC 

also did not show strong carbonyl scavenging due to the acetylation of the amino group. 

However, stereochemical configuration did not have any significant effect on the 

apoptogenicity as D-pen and L-pen were reported to be equally effective (Wondrak et al., 

2006). 
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LMWTs may also cause apoptosis by interaction with several transcription factors. 

Such interaction may involve induction or suppression of the transcription factors that is 

independent of the redox properties of LMWTs or may be mediated by ROS generation. 

Tumor suppressor protein, p53, has an important role in redox regulation and maintaining a 

physiological balance between oxidant and antioxidant status of cells (Liu et al., 2008). It 

does so by regulating the expression of both pro- and anti-oxidant genes. Upregulation of p53 

leads to increased transcription of genes coding for pro-oxidant enzymes. Agents that 

promote nuclear translocation of p53 have similar effect. This may be accompanied by 

mitochondrial translocation and inhibition of manganese superoxide dismutase (MnSOD) 

(Liu et al., 2008; Zhao et al., 2005). Interestingly, downregulation of p53 leads to suppression 

of genes coding for antioxidant enzymes (Liu et al., 2008; Sablina et al., 2005). Therefore, 

any changes in the physiological concentrations of p53 result in increased oxidative stress 

and apoptosis with further attack on mitochondrial enzymes (Polyak et al., 1997). On the 

other hand, any changes in the redox status of the cell may also act as a trigger for p53 

induction (ROS generators) or suppression (ROS scavengers). Due to the presence of several 

cysteines and zinc in the DNA binding domain of p53 (Hainaut and Mann, 2001), LMWTs 

have the potential to directly interact with p53 by virtue of their thiol group and metal 

chelating properties. Alternately, modulation of the redox status via ROS generation or DNA 

damage by LMWTs may also induce p53 expression. Induction of p53 can further lead to 

increased expression of p21waf-1, which is a known cyclin dependent kinase inhibitor. It can 

cause p53 dependent growth arrest at different phases of cell division (Abbas and Dutta, 

2009). However, p21waf-1 can also act independent of p53. This was reported with PDTC and 
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other antioxidants. PDTC induced G1 arrest and apoptotic death in human colorectal cells. 

The levels of p21waf-1 were elevated whereas p53 was unchanged (Chinery et al., 1997).  

Apoptosis induced by p53 upregulation may also be mediated via Fas signaling as 

p53 is a known inducer of Fas (Bennett et al., 1998). Fas-signaling involves binding of the 

trimeric Fas ligand simultaneously to three Fas receptors on the cell surface to trigger caspase 

activation followed by apoptosis. Harada et al. reported an elevated surface expression of Fas 

receptor on rheumatoid synovial fibroblasts upon treatment with D-pen and copper sulfate 

leading to apoptotic death (Harada et al., 2002).  

NAC and 2,3-dimercapto propanol elevated p53 levels in both transformed (p53+/+) 

and normal (p53-/-) mouse embryo fibroblasts. However, apoptosis was caused only in the 

transformed cells. Elevation of p53 and apoptosis induction was independent of the redox 

status of the cells but dependent on the presence of thiol group indicating a separate 

mechanism for the specificity towards transformed cells (Liu et al., 1998b). In an extended 

study, the transformed human cells, the cells became 480-fold more sensitive to D-pen at the 

immortalization stage. The sensitivity was found to be predominantly occurring through p53 

induction leading to caspase-3 activation and apoptosis (Havre et al., 2002). 

It was recently shown that apoptosis induced by D-pen and NAC in cervical cancer 

(HeLa) cells is also mediated through an ER stress response (Guan et al., 2010). Treatment 

with either D-pen or NAC resulted in an increase in expression of glucose-regulated protein 

(GRP78), caspase-3 and C/EBP homologous protein (CHOP), all being important mediators 

of apoptosis. Tartier et al. observed significant caspase-3 activity upon treatment of human 

leukemia (HL-60) cells with DTT while absence of caspase-9 activity showed that the 
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apoptosis induced by some LMWTs may be non-mitochondrial in origin (Tartier et al., 

2000).  

LMWTs affect different phases of cell cycle based on which downstream processes 

are involved in mediating their cytostatic actions. Friteau et al. studied the effect of D-pen on 

the cell cycle progression and observed that the type of effect varies in different cell lines. 

While D-pen arrested the articular chondrocytes (normal cells) in G0/1 phase, the HeLa and 

L929 (transformed cells) cells were arrested in the G2+M phase (Friteau et al., 1988). 

Similarly, β-mercaptoethanolamine (BME) was shown to effect different phases in 

lymphocytes and leukemia cells (Jeitner et al., 1998). BME arrested the leukemia cells in the 

S phase whereas lymphocytes in G0/1 phase similar to D-pen. The authors proposed that 

these differences can be attributed to lower redox buffer capacity of cancer cells that makes 

the cells in S phase preferentially sensitive to oxidative stress. 

 

1.2.4.c Anti-angiogenic Effects of LMWT  

Angiogenesis is essential for tumors to vascularize, grow and metastasize to other 

sites. The theory of tumor inhibition by arresting angiogenesis was first proposed by 

Folkman (Folkman, 1971). LMWTs have been shown to cause anti-angiogenic effects in-

vitro and in-vivo. Attempts to understand the mechanism of anti-angiogenic effect of LMWT 

have also shown differences within these compounds in their ability to inhibit angiogenesis.    

Copper is an established cofactor in angiogenesis. LMWTs have been investigated as 

anti-angiogenic compounds due to their strong copper chelation property. Copper depletion 

and generation of hydrogen peroxide by a combination of D-pen and copper synergistically 

inhibited DNA synthesis and the proliferation of endothelial cell growth factor (ECGF) 
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stimulated as well as unstimulated endothelial cells (EC) (Matsubara et al., 1989). D-pen also 

inhibited ECGF induced neo-vascularization in rabbit cornea. A combination of diet and D-

pen resulted in copper depletion in rabbits and the VX2 carcinomas formed were smaller and 

avascular while rabbits with normal serum copper levels had large vascularized VX2 

carcinomas (Brem et al., 1990). 

 Angiostatin is a 38 kDa endogenous protein fragment that has potent anti-

angiogenesis activity. First isolated by O’Reilly, angiostatin inhibited endothelial cell 

proliferation and strong reduction in the growth of metastases subsequent to the removal of 

primary tumors in Lewis lung carcinoma (O'Reilly et al., 1994). Angiostatin may be 

generated from plasminogen via its conversion to plasmin by tissue plasminogen activators 

(tPA). LMWTs acting as free sulfhydryl donors, facilitate the conversion of plasmin to 

angiostatin and therefore a combination of LMWTs and tPA can produce antiangiogenic 

effects by in-situ generation of angiostatin (Gately et al., 1997). L-cysteine, captopril, GSH, 

NAC and D-pen were investigated for their efficiency in supporting the conversion of 

plasminogen to angiostatin. D-pen was found to be the most potent in-vitro and in-vivo, the 

combination resulting in 58% inhibition of tumor growth in BLM melanoma model (de 

Groot-Besseling et al., 2006). 

Matrix metalloproteinases play a significant role in the metastatic growth and 

invasive ability of cancer cells. Secreted by either the cancer cells or the stromal cells in 

response to signaling molecules including growth factors and cytokines, MMPs act by 

degrading extracellular matrix (ECM) components to aid in the mobilization and escape of 

cancer cells. For example, MMP-2 (72 kDa) and MMP-9 (92 kDa), categorized as 

collagenases or gelatinases, act on collagen type IV which is the major protein in the 
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basement membrane (Duffy, 1992). These collagenases have been overexpressed in 

metastatic tumors and the levels correlate with the metastatic potential (Liotta et al., 1980). 

Some of the other MMPs of significance in promoting cancer metastasis (angiogenesis and 

migration) and progression (proliferation and survival) are MMP-1, -3, -7 and -14 (Egeblad 

and Werb, 2002; Noe et al., 2001; Pavlaki and Zucker, 2003; Rundhaug, 2003). Zinc is 

present in the active site of MMPs and has strong affinity for thiol group (Tu et al., 2008). It 

is no surprise that many LMWTs such as D-pen and captopril are potent inhibitors of both 

MMP-2 and MMP-9 (Volpert et al., 1996). This inhibition has been shown to reduce the 

metastatic potential and antitumor effect in several studies. In spite of promising preclinical 

data, most of the clinical trials with MMP inhibitors have suffered from lack of efficacy 

and/or unexpected side effects owing to a lack of specificity towards the desired type of 

MMP enzymes (Pavlaki and Zucker, 2003). Utilizing the structure-activity relationship, 

several LMWTs with high specificity towards selective MMPs have been identified which 

could pave the way for further development (Figure 1.5). 

Low molecular weight thiols such as D-pen have also been reported to inhibit denovo 

collagen cross-linking and destabilize cross-linked collagen in the ECM. However, several 

mechanisms of collagen inhibition have been proposed. One of the mechanisms involves 

inhibition of lysyl oxidase. Lysyl oxidase catalyzes conversion of amino groups in lysine to 

aldehydes thus promoting cross-linking. Nimni and co-workers have proposed a mechanism 

whereby LMWT such as D-pen inhibit cross-linking by formation of thiazolidine ring 

complexes with these aldehydes (Nimni, 1968; Nimni et al., 1972). LMWT may also cause 

direct inhibition of lysyl oxidase via depletion of copper which is a co-factor of lysyl oxidase. 

The inhibition of lysyl oxidase in tumors may result in delayed tumor growth, anti-
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angiogenesis and decreased metastatic potential as observed in several studies (Chvapil, 

2005; Chvapil and Dorr, 2005; Chvapil et al., 2005). In another study, Siegel (Siegel, 1977) 

reported that D-pen acts by blocking the synthesis of polyfunctional cross-link products from 

Schiff base crosslink intermediates thus causing accumulation of the Schiff base precursors 

during collagen cross-linking.   
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Figure 1.5 Examples of synthetically designed matrix metalloproteinase (MMP) enzyme 
inhibitors.  
The inhibitors contain free thiol groups and show differential activity or binding affinity to 
different MMP enzyme subtypes. 
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1.2.5. LMWTs Investigated for Anticancer Properties 

1.2.5.a. D-penicillamine 

D-pen (Fig. 1.1) is FDA approved for the treatment of rheumatoid arthritis and is 

classified as a disease modifying anti-rheumatic drug (DMARD). However, the exact 

mechanism of therapeutic action is not known. Some of the proposed mechanisms include 

inhibition of collagen cross-linking (Nimni et al., 1972; Siegel, 1977) and 

immunomodulation (Gerber, 1978). D-pen is a very strong metal chelator and its interaction 

with endogenous metals has been widely investigated to study the mechanism of its 

pharmacological effects. Several investigations have focused on the generation of ROS by D-

pen in the presence of copper. A direct evidence of H2O2 generation upon incubation of D-

pen with catalytic amounts of copper sulfate was shown and this combination of D-pen and 

copper sulfate was cytotoxic to breast cancer and leukemia cells (Gupte and Mumper, 2007a; 

Gupte and Mumper, 2007b).  

In a previous study, treatment of cells from 25 different human tumors with D-pen 

plus copper sulfate significantly decreased the percentage of viable cells. Leukemia cells 

were found to be more sensitive than other type of cancer cells while DTT failed to show 

effectiveness. The authors concluded that the cytotoxicity of D-pen cannot be solely 

attributed to the thiol group. However, the inhibition of murine plasmacytoma xenograft was 

not significant when treated with a combination of D-pen and copper (Samoszuk and 

Nguyen, 1996). 

The effect of D-pen on various cell lines has also been studied in the absence of 

externally added copper. Baier-Bitterlich et al. studied the effect of D-pen in various human 

cell lines without addition of copper and found that the sensitivity to D-pen was different for 
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each cell type. The promyelocytic (HL-60) and lymphoblastoid (H9 and NC37) cells showed 

a bimodal dose-response curve where the inhibition was partly restored at higher 

concentrations of D-pen (Baier-Bitterlich et al., 1993). D-pen has also been shown to inhibit 

endothelial cell proliferation in-vitro and neovascularization in rabbit cornea in-vivo as 

discussed above. 

D-pen has distinct advantages over other LMWTs in that; 1) the pKa of its thiol group 

(7.9) makes it more reactive than other endogenous LMWTs at physiological pH of 7.4 and, 

2) being a D-isoform, it is resistant to degradation by endogenous enzymes such as L-amino 

acid oxidase, and L-cysteine desulfhydrase. Additionally, D-pen is much less sensitive to 

degradation by D-amino acid oxidase as well (Aposhian and Bradham, 1959). 

In spite of a clear potential for further development as an anticancer agent, the 

delivery of D-pen to cancer cells remains a challenge. D-pen is essentially cell impermeable. 

Lodemann (Lodemann, 1981) reported that the uptake of D-pen was >100-fold less than L-

pen in mouse fibroblasts and D-pen did not utilize the amino acid transport system to gain 

cellular entry. Schumacher et al. also proposed that D-pen possibly acts at the membrane 

level to inhibit lymphocyte stimulation (Schumacher et al., 1975). 

The second challenge to the delivery of D-pen is the reactive thiol group. The thiol 

group of D-pen is reported to conjugate with plasma proteins through disulfide linkages 

especially albumin. The protein binding in plasma is so rapid that essentially no free D-pen 

can be detected after 4 hours of oral administration (Planas-Bohne, 1981). Protein 

conjugation modifies the plasma disposition of D-pen whereby the albumin conjugate of the 

drug can circulate in the plasma for longer periods leading to slower elimination of the 

metabolites. In a study comprised of 5 human volunteers, the half-life of D-pen was found to 
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be 59 ± 8.4 min while the albumin conjugate formed in-situ circulates with a half-life of 1.65 

± 0.29 days (Joyce et al., 1991). Additionally, D-pen may also form conjugates with tissue 

proteins. The albumin conjugate of D-pen is very stable to reduction. This is possibly due to 

steric hindrance from the β, β-dimethyl groups. Therefore, the D-pen-albumin conjugate is 

not expected to contribute to the amount of free drug available in the body (Joyce et al., 

1989). However, rapid disposition of the free form and essentially non-reducible protein 

conjugates is a challenge to the delivery of D-pen and there is a need to stabilize the thiol 

group until D-pen reaches the therapeutic target site. 

Long-chain alkyl esters of D-pen have been synthesized and investigated for their 

anticancer potential (Chvapil, 2005; Chvapil and Dorr, 2005; Chvapil et al., 2005). Methyl, 

hexyl and benzyl esters of D-pen were synthesized and tested for antitumor effectiveness in 

breast adenocarcinoma and melanoma. An intratumoral injection of the hexyl ester of D-pen 

significantly decreased the tumor growth rate and delayed the detection of metastatic sites in 

rats bearing mammary adenocarcinoma. The alkyl chain may help in improving the cellular 

permeability of D-pen. However, the challenges to the anticancer delivery of D-pen including 

rapid oxidation in plasma and faster clearance still remain with this strategy. 

Conjugates of D-pen with gelatin (Gupte et al., 2008) were investigated to overcome 

some of the challenges to the delivery of D-pen. The polymer conjugate successfully 

delivered D-pen to cancer cells and showed a dose dependent cell uptake. The conjugate 

resulted in cytotoxicity in human leukemia cells. 

A phase II trial evaluated the antiangiogenic effect of a hypocupremia induced by a 

combination of copper deficient diet and D-pen in 40 patients with glioblastoma multiforme. 

D-pen showed a median survival of 11.3 months and progression free survival of 7.1 months. 
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The treatment was able to reduce the serum copper levels significantly to the desired level of 

<50 µg/dL after 2 months of therapy. The survival enhancement was not significant when 

compared to the reference group treated with concurrent radiation therapy and either an 

angiogenesis inhibitor (suramin or carboxyamidotriazole) or a radiosensitizer (RSR 13) 

(Brem et al., 2005). However, it is not clear if the patients in this trial had significantly 

elevated serum or tumor copper levels as generation of ROS and apoptosis induction is 

dependent on the availability of copper as shown by other reports (Staite et al., 1985). 

Additionally, we and others have shown that D-pen is essentially impermeable to the cell 

membrane and most of the therapeutic effects are possibly due to extracellular ROS 

generation or other unknown mechanisms. 

 

1.2.5.b. N-acetyl cysteine 

NAC is a cysteine precursor which in turn is a precursor of GSH. The role of NAC as 

an antioxidant and a chemopreventive in cancer has been studied and reviewed in detail. 

However, several recent studies indicate a greater role of NAC in cancer therapy and 

involvement of additional mechanisms that may lead to protective effects in cancer 

progression and metastasis. Oral treatment with NAC decreased the tumor weight and 

number of lung metastases (Albini et al., 1995). Similar reduction in tumor growth and 

increased survival in mice bearing Kaposi sarcoma was observed in a separate study. The 

levels of VEGF were decreased and NAC caused a dose dependent inhibition of type IV 

collagenases, MMP-2 and MMP-9 (Albini et al., 1995; Albini et al., 2001). The inhibition of 

MMPs may be mediated by chelation of zinc, a co-factor, by the free thiol group of NAC. 

This was evident as ascorbic acid, which lacks a free thiol group, did not affect MMP-2 
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levels (Albini et al., 2001). Inhibition of VEGF by NAC has been previously reported and 

could be responsible for its antiangiogenic effect. NAC also reduced chemotaxis and 

invasion ability of endothelial cells at much lower concentrations than the concentrations at 

which it reduced the viability of these cells (Cai et al., 1999). NAC showed a biphasic effect 

on sciatic nerve fiber action potential where concentrations above 1 mM were inhibitory and 

below 1 mM were neuroprotective (Moschou et al., 2008). This is analogous to the oxidant-

antioxidant paradigm discussed for some other LMWTs above.   

When used in combination with dox, NAC had a synergistic effect on the tumor 

growth and lung metastasis in a murine model (De Flora et al., 1996). The addition of NAC 

to therapy did not result in the loss of efficacy of dox, which is known to generate radical 

species in cancer cells. Some of the possible reasons for the synergy may be a reduction in 

MMP-2 and MMP-9 activity leading to enhanced penetration of dox in the tumor (Albini et 

al., 2001) and a synergistic elevation of oxidative stress (Zheng et al., 2010). 

 

1.2.5.c. Tetrathiomolybdate 

Tetrathiomolybdate is available as an ammonium (TM) or choline (ATN-224®) salt 

and is FDA approved for the treatment of Wilson’s disease. Figure 1.1 shows the structure of 

the ammonium salt of TM. It has been widely used in the treatment of Wilson’s disease due 

to its strong copper chelating property. It is well absorbed orally when administered prior to 

food intake and forms a tripartite complex with the non-ceruloplasmin bound copper in the 

systemic circulation. TM is also a potent inhibitor of Cu-Zn SOD and was found to be 

cytotoxic to melanoma cells via increased oxidative stress as a result of decreased cellular 

ROS scavenging (Trapp et al., 2009).  
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In several preclinical studies, TM has shown potent anti-angiogenic activity. In a 

study, TM decreased the microvessel density and the number of secondary branching in the 

mammary glands of nulliparous Her2/neu transgenic mice (Pan et al., 2009). In another 

mouse model of neovascularization, TM treatment significantly reduced neovascular cell 

nuclei and VEGF expression compared to control mice (Elner et al., 2005). Other effects 

such as a reduction in NFκB expression and basic fibroblast growth factor (bFGF) by TM 

also contribute to the anti-angiogenic effect (Pan et al., 2002). Systemic treatment with TM 

inhibited tumor growth and angiogenesis in SUM149 breast cancer xenografts. The levels of 

several angiogenic precursors including VEGF, FGF-2, IL-1α, IL-6 and IL-8 were 

significantly decreased in TM treated mice (Pan et al., 2002).  Similar tumor suppression was 

shown in mice bearing squamous cell carcinoma (Cox et al., 2003; Cox et al., 2001). 

A phase I study in patients with metastatic solid tumors investigated the effect of 

copper depletion by TM on disease progression. Ceruloplasmin was used as a surrogate 

marker for serum copper and a reduction to 20% of the baseline value was considered as a 

target level to begin therapy with TM. Five of the six patients that achieved the target levels 

in the highest dose group showed a stable disease for >3 months (Brewer et al., 2000). Phase 

II trials have been conducted in patients with advanced kidney cancer (Redman et al., 2003) 

and hormone refractory prostate cancer (HRPC) (Henry et al., 2006), respectively. These 

trials also aimed to establish a correlation between the angiogenic precursors (VEGF, bFGF, 

IL-6 and IL-8), serum copper levels and disease progression.TM treatment did not improve 

disease progression in HRPC patients and there was no correlation between the levels of 

angiogenic precursors and prostate specific antigen. However, patients with advanced kidney 

cancer treated with TM that reached target levels of copper depletion, showed stabilization of 
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disease and there was a correlation between serum copper levels and angiogenic precursors. 

In another phase II trial in 30 patients with malignant pleural mesothelioma, efficacy of TM 

in stage I or II patients terms of time to progression was comparable to patients previously 

treated with standard chemotherapy regimen while the efficacy in stage III patients was not 

improved (Pass et al., 2008). 

TM has also been investigated in combination chemotherapy regimens in both pre-

clinical and clinical studies. Mice receiving a combination of TM and radiation therapy 

showed a significant decrease in tumor growth compared to either of the treatments alone 

(Khan et al., 2006).   

 

1.2.5.d. NOV-002 

NOV-002 is a glutathione disulfide (GSSG) mimetic composed of a complex between 

GSSG and cisplatinum in a ratio of 1000:1. As the amount of cisplatin is very low, GSSG is 

considered the active component (Townsend and Tew, 2009). It is believed to act primarily 

by perturbation of redox homeostasis but multiple effects have been seen in cancer cells. As 

NOV-002 has been shown not to enter cells passively (Brennan et al., 2006), most of its 

effects may be extracellular or mediated through membrane interactions on the cell surface. 

Treatment of human leukemia (HL-60) cells with NOV-002 resulted in decreased 

GSH/GSSG ratio, oxidation of cell surface protein thiols and increased S-glutathionylation of 

intracellular proteins.  

It is interesting to note that NOV-002, that itself has small amounts of complexed 

cisplatin, when administered in combination with other chemotherapeutic drugs, increased 

the anticancer effects and improved tolerance (Townsend et al., 2008a). Concomitant therapy 
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with NOV-002 in mice resulted in a decrease in cisplatin associated nephrotoxicity (Jenderny 

et al., 2010). Treatment in mice showed a transient oxidative signal in plasma and a sustained 

decrease in total plasma free thiol. Other strategies based on modulating the GSH/GSSG 

balance have also shown synergistic enhancement in the sensitivity of cancer cells as 

adjuvant therapy (Zhao et al., 2009). 

NOV-002, that already contains a small amount of cisplatin, showed a significant 

improvement in 1 year survival and decreased tumor progression rates in non-small cell lung 

cancer (NSCLC) and ovarian cancer patients when administered in combination with 

standard dose of cisplatin (Pazoles and Gernstein, 2006; Townsend et al., 2008b). In spite of 

promising Phase 1/2 results in NSCLC patients, a recent Phase III trial failed to show an 

improved survival with NOV-002 in combination with chemotherapy (PTX + Carboplatin) 

when compared to chemotherapy alone (Fidias et al., 2010). NOV-002 is currently being 

investigated in breast cancer patients.  

 

1.2.5.e. Mesna 

Mesna (2-mercaptoethanesulfonate) was approved as uroprotector to be used with 

oxazaphosphorines such as cyclophosphamide and ifosphamide which have severe 

urotoxicity associated with them. Since then, mesna has been investigated with other 

chemotherapeutic drugs in a number of combination trials in several different types of 

cancers including bladder cancer, metastatic breast cancer, uterine sarcoma and ovarian 

cancer (Aksoy et al., 2008; Baur et al., 2006; Walters et al., 1998). It has been suggested that 

mesna acts by neutralizing the free radical species associated with chemotherapy thus 

reducing the overall toxicity and increasing the tolerance. A disulfide compound, BNP7787 
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(2,2-dithio-bis-ethanesulfonate sodium), which is a precursor of mesna is also currently being 

investigated as chemopreventive against ciplatin associated toxicity (Verschraagen et al., 

2003). However, like other LMWTs, mesna has also been shown to affect cancer cell 

viability when used alone. Mesna inhibited several human malignant cell lines and caused 

sensitization of some resistant cell lines (Blomgren et al., 1991). Interestingly, the 

cytotoxicity of mesna was also biphasic in nature, whereby the cell inhibition was reversed at 

higher doses (Blomgren et al., 1990). Interaction of mesna with transition metal ions 

especially copper has been shown to change the accumulation site from kidney to liver when 

administered simultaneously (Shaw and Weeks, 1986). Mesna when used in combination 

with tPA in patients with advanced solid tumors, generated two different isoforms of 

angiostatin in-situ and the treatment led to a decrease in tumor markers in two of the fifteen 

patients although no clinical response was observed (Soff et al., 2005). Antitumor activity of 

mesna in patients with metastatic or relapsed tumors previously treated with chemotherapy 

has also been studied (Yurkow and Mermelstein, 2006) (Table 1.1). It may also act as a 

redox clamping agent whereby treatment with mesna following a brief exposure to 

chemotherapeutic agent significantly sensitizes cancer cells. The redox clamping action is 

mediated by promotion of apoptotic signals and suppression of antioxidant response 

following exposure to the chemotherapeutic agent. 

 

1.2.5.f. Amifostine 

Amifostine (WR-2721, S-2-(3-aminopropylamino) ethyl phosphorothioic acid) has 

been widely investigated for its radioprotective and chemoprotective properties that were 

specific to normal tissue but did not affect radiation induced damage to malignant tissue 
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allowing for higher doses to be administered (Treskes et al., 1992; Yuhas, 1972; Yuhas, 

1979; Yuhas and Storer, 1969). This effect was found to be dependent on the tumor type, size 

and radiation dose (Milas et al., 1984; Milas et al., 1983). Hydrophilicity is considered as a 

major barrier to cell entry of amifostine (Yuhas et al., 1982). In-vivo dephosphorylation of 

WR-2721 in the presence of alkaline phosphatases leads to the formation of its thiol 

metabolite, WR-1065. This decreases the hydrophilicity resulting in an increase in tumor cell 

uptake (Issels and Nagele, 1989; Treskes et al., 1992). Although most of the clinical trials 

have focused on the chemoprotective effects of amifostine and WR-1065 when used in 

combination with cytotoxic agents, some of the trials indicated that amifostine may have 

anticancer properties of its own are summarized in Table 1.1. In addition, recent in-vitro 

studies show that novel mechanisms may be involved in anticancer effects of amifostine.  

The first report of anticancer properties of amifostine when administered alone 

showed suppression of the growth of Ehrlich’s ascites tumors (Ikebuchi et al., 1981). A 

synergistic enhancement in toxicity was observed when amifostine was used in combination 

with a free radical generator, 6-hydroxydopamine, due to hepatic GSH depletion (Schor, 

1987). However, GSH depletion is probably mediated by mechanisms other that simple 

disulfide formation as the effect plateaus at smaller doses. Comparative studies showed that 

both WR-1065 and amifostine, activate and induce the expression of p53 resulting in a 

delayed G1/S transition, mediated by p21waf-1, in breast cancer cells which is p53 dependent 

(North et al., 2000). Similar studies in lung cancer cells showed that p53 upregulation by 

amifostine resulted in sensitization of resistant cells (Swisher et al., 2000). Amifostine alone 

caused dose dependent apoptosis and G2/M arrest in lung cancer cells, and the effect was 

synergistic in combination with adenoviral vector containing wild type p53. Further 
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investigations indicated involvement of dephosphorylation of Cdc2 kinase leading to p53 

mediated DNA damage and apoptosis (Pataer et al., 2006). However, apoptosis and cell 

growth inhibition independent of p53 expression was induced in myelodysplastic syndrome 

cells by amifostine (Ribizzi et al., 2000). Other LMWT especially aminothiols seem to have 

some effect on the activity of p53 as discussed above and this mechanism seems to play an 

important role in their anticancer effects.  

Amifostine has also shown antiangiogenic effects in chorioallantoic membrane 

(CAM) model where it reduced the number of vessels, decreased the VEGF mRNA levels 

and decreased laminin and collagen deposition (Giannopoulou et al., 2003). In a murine 

sarcoma model, amifostine inhibited spontaneous metastases formation, increased serum 

levels of angiostatin and inhibited MMP enzymes (MMP-2 and MMP-9) (Grdina et al., 

2002).  

 

1.2.5.g. Captopril 

Captopril (D-3-mercapto-2-methylpropanoyl-L-proline) is an angiotensin converting 

enzyme (ACE) inhibitor with a free thiol group approved for the treatment of hypertension. 

In addition to the FDA approved indication, ACE inhibitors have been shown to arrest the 

growth of several different types of cancer cells and to inhibit angiogenesis. In a clinical 

study of 287 patients with advanced NSCLC, adding an ACE inhibitor to cisplatin regimen 

increased the median survival by 3.1 months (Wilop et al., 2009). 

The ACE inhibitors with a free thiol group were found to be the most potent in this 

category and research has been conducted to further investigate the mechanism of 

cytotoxicity (Molteni et al., 2003). Captopril completely inhibited corneal neovascularization 
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and specifically prevented chemotaxis of endothelial cells, both stimulated in the presence of 

bFGF (Volpert et al., 1996). The antiangiogenic effect could not be explained by ACE 

inhibition as other ACE inhibitors lacking a free thiol group failed to show any effect 

although this enzyme has been shown to induce new vessel formation (Fernandez et al., 

1985; Le Noble et al., 1993). Captopril, like some other LMWTs, was shown to inhibit the 

activity of MMP-2 and MMP-9 mediated through its zinc chelating ability which is an 

important cofactor for these enzymes (Sorbi et al., 1993). This could partly explain the 

stronger antiangiogenic effect of captopril among other ACE inhibitors. MMP inhibition 

directly correlated with a decrease in the tumor volume and number of metastases in Lewis-

lung carcinoma model in mice (Prontera et al., 1999). Captopril has also shown a decrease in 

the invasiveness of glioma cells. The effects could be overcome by excess zinc (Nakagawa et 

al., 1995).  

Interaction of captopril with metal ions and associated cell death has also been 

studied. A dose dependent generation of hydrogen peroxide in the presence of copper (sulfate 

or chloride salt or ceruloplasmin bound) but not with iron (ferric or ferrous chloride salt or 

transferrin bound) was observed which led to loss of viability in human mammary ductal 

carcinoma cells (Small et al., 1999). 

Captopril showed anticancer effects in renal cancer cells which was mediated by 

upregulation of type II receptors for transforming growth factor (TGF)-β thus causing growth 

inhibition (Miyajima et al., 2001). Similar decrease in cell viability was observed in human 

parotid gland adenocarcinoma cells, the mechanism being independent of ACE inhibition 

(Nittler et al., 1998). Its effect on neuroblastoma was cytostatic and could be attributed to 

ACE inhibition (Chen et al., 1991).  
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Antineoplastic effects of captopril have been investigated in several animal models. 

Oral administration of 50 mg/kg captopril to rats reduced the number of radiation induced 

squamous cell carcinomas and fibrosarcomas. The tumors were smaller and less vascularized 

compared to controls (Ward et al., 1990).  Captopril also caused a significant tumor growth 

delay in mammary ductal carcinoma in mice (Molteni et al., 2003). In a patient suffering 

from Kaposi sarcoma, captopril treatment resulted in complete regression of 50% and partial 

regression of 25% of the lesions (Vogt and Frey, 1997). Captopril is currently being 

investigated in clinical trials for treating patients with metastatic cancer due to its ability to 

generate angiostatin in combination with a tissue plasminogen factor (ClinicalTrials.gov 

Identifier: NCT00086723). 
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1.B.6.8. Others 
Several other LMWT have been investigated and have shown promising anti-cancer 

potential. Further investigations are needed before they can be evaluated clinically. Some of 

them are discussed below.  

Bucillamine or [N-(2-mercaptopropionyl)-Lcystiene] with two free thiol groups was 

shown to be redox active by mechanisms similar to D-pen whereby generation of hydrogen 

peroxide catalyzed by transition metals was observed. The presence of two thiol groups 

results in the formation of intramolecular disulfide bond. Administration of bucillamine 

resulted in a significant impact on the in-vivo redox status of mice marked by hepatic GSH 

depletion, 2-7-fold increase in serum GSSG and a 2-13-fold increase in serum GST (Yeung, 

1991). This may significantly limit its clinical usage unless redox activation in non-target 

organs is avoided.    

Dithiocarbamates (DTCs) and their corresponding disulfides can efficiently transfer 

external copper inside the cells and their treatment is associated with rapid GSH oxidation 

and DNA fragmentation leading to apoptotic cell death. However, DTCs were found to 

suppress hydroxyl radical formation in-vitro by stabilization of Cu(I) state thus inhibiting 

further redox recycling of the metal (Burkitt et al., 1998). In addition, PDTC (pyrrolidine 

dithiocarbamate) was shown to cause apoptosis and DNA fragmentation in rat aortic smooth 

muscle cells which was not affected in the presence of iron and copper chelators indicating 

mechanisms separate and independent of ROS generation in spite of the presence of a thiol 

group (Tsai et al., 1996). This is also evident by the higher cytotoxicity of disulfiram, which 

is a disulfide, than PDTC (Burkitt et al., 1998). Molecular investigations of DTCs indicate a 

p53 dependent apoptosis and cell cycle arrest mediated by modulation of effectors such as 

p21waf-1, NF-κB, AP-1 and Bcl-2 in the presence or absence of copper (Chen et al., 2008b; 
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Liu et al., 1998a). DTCs also affect the oxidation state of p53 by increasing intracellular 

copper transport (Furuta et al., 2002). Recently, spontaneously formed copper complexes of 

PDTC showed inhibition of proteasome chymotrypsin-like activity and apoptotic death of 

breast cancer cells (Daniel et al., 2005; Daniel et al., 2004). When used in combination with 

other chemotherapeutics drugs 5-fluorouracil (5-FU) and dox, PDTC decreased their IC50 

(viability) in human colon carcinoma cells by 10-13-fold while in-vivo the combination of 

PDTC and 5-FU showed complete regression of tumors (Chinery et al., 1997).  
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1.3. Polymer-Drug Conjugates (PDCs) in Anticancer Drug Delivery 

1.3.1. Introduction 

Polymer-drug conjugates (PDCs), for the purpose of this discussion, may be defined 

as polymeric prodrugs whereby a small molecule therapeutic agent(s) is covalently linked, 

directly or through a spacer, to the end or pendant functional group(s) of a linear polymer 

chain composed of one or different types of monomers. PDCs have been widely investigated 

for anticancer drug delivery in the past two decades due to their distinct advantages including 

a) enhanced drug stability in plasma due to covalent conjugation, b) altered pharmacokinetics 

in terms of prolonged plasma circulation time, decreased clearance and altered 

biodistribution, c) enhanced aqueous solubility of hydrophobic drugs, d) improved 

therapeutic index of chemotherapy due to reduction in non-specific organ uptake leading to a 

lower incidence of adverse events, e) improved tumor accumulation due to the “enhanced 

permeability and retention” (EPR) effect and/or inclusion of targeting ligands; and f) tumor 

specific drug release due to biochemically sensitive linkages or spacer molecules.  

Almost all the PDCs that are currently being investigated partially fit the model of a 

pharmacologically active polymer first proposed by Ringsdorf (Ringsdorf, 1975). This model 

consisted of a polymer backbone that may contain; a) “solubilizer” arm to enhance solubility 

of hydrophilic or hydrophobic drugs, b) covalently linked drug with or without a spacer and, 

c) a “transport system” that may function as a homing device or non-specific enhancer and is 

similar in concept to the targeting ligands widely used in current research. The first report of 

a system containing all three components was published in 1975 where PGA-p-

phenylenediamine mustard (PDM) conjugate was further covalently linked to 

immunoglobulin (Ig) against mouse lymphoma cells. The PDC showed decreased in-vitro 
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cytotoxicity compared to free PDM but resulted in longer median survival time (>100 days) 

compared to PGA-PDM (25 days) or Ig alone (19 days) in mice bearing i.p. EL4 lymphoma 

(Rowland et al., 1975).  

Polymers that have been investigated as multi-functional PDCs may be categorized 

into poly-amino acid derivatives such as poly-L-lysine (PLL), PGA, gelatin, poly-(N-(2-

hydroxyethyl)-L-glutamine (PHEG), poly-aspartic acid (PAA), polyacids such as poly-α 

malic acid (PAMA) and poly-β-malic acid (PBMA), polysaccharides such as dextran, 

pullulan, HA, chitosan, and others such as N-(2-hydroxypropyl) methacrylamide (HPMA) 

copolymer and polyethylene glycol (PEG). Many have focused on conjugating well 

established small molecular weight chemotherapeutic drugs such as anthracyclines, platinates 

and taxanes for conjugation to polymers. The functional groups that have been most widely 

utilized to conjugate drugs directly or through a spacer to the polymer chain are amino, 

carboxyl, hydroxyl and thiol.  

Drugs conjugated to a polymer backbone face multiple barriers to successful delivery 

at the target site some of which are commonly shared with other macromolecular drug 

delivery systems for anticancer therapy such as nanoparticles, liposomes etc. and are 

summarized below (Figure 1.6). These barriers are discussed with regards to parenteral 

(intravenous) administration. During blood circulation, PDCs may undergo clearance by 

renal and/or reticulo-endothelial system (RES), protein binding, drug release and organ 

sequestration all of which are barriers to successful delivery to the target site i.e. the tumor. 

Solid tumors have shown preferential accumulation of macromolecular drugs due to poor 

lymphatic drainage and leaky vasculature collectively termed as the “EPR effect” 

(Matsumura and Maeda, 1986) and several PDCs do exhibit significant improvement in 
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therapeutic efficacy over unconjugated drug. However, delivery to solid tumors is hindered 

by elevated interstitial fluid pressure (IFP) and diffusional resistance (Jain and 

Stylianopoulos, 2010) limiting the depth of drug permeation within the tumor. 

Passive or receptor-mediated endocytosis remains the major route of intracellular 

entry of PDCs. Mechanisms of endosomal release or escape, and further transport of the drug 

to its subcellular target have been widely investigated. Due to additional steps involved in the 

uptake and release of a polymer-conjugated drug, many have reported decreased or 

comparable in-vitro cytotoxicity compared to unconjugated drug (Guan et al., 2008; Ye et al., 

2006). However, in-vivo this may result in an increase in the therapeutic window allowing for 

higher dosing of the conjugates resulting in improved anticancer efficacy. This has been 

observed in many cases (Chau et al., 2006; Huang et al., 2010; Ye et al., 2006). For example, 

cis-dichlorodiammine platinum (II) (CDDP) conjugated to PGA via ester linkage had 7-8-

fold higher IC50 values than the unconjugated drug when tested in-vitro. However, the 

conjugate resulted in no weight loss at an equivalent dose of CDDP that caused 20-30% loss 

in body weight of the mice when administered as unconjugated. The conjugate could be 

dosed at a 3-fold higher dose than unconjugated CDDP without significant weight loss. The 

conjugate also showed better antitumor efficacy than CDDP at equivalent dose (Ye et al., 

2006). Methotrexate (MTX) conjugated to dextran via peptide spacer sensitive to cleavage by 

MMPs was 100-fold less active than free drug in-vitro but showed tumor inhibition in-vivo 

while the free drug was inactive at a similar dose (Chau et al., 2006). 

Significant improvements have been made in terms of the design of PDCs, 

availability of biochemically sensitive spacers and novel highly specific tumor targeting 

ligands to enhance the delivery of drug to the target site. As a result, several PDCs have 
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shown improved efficacy and are being currently investigated in clinical trials. Figure 1.7 

represents a model of PDCs with different components and their variations that have been 

investigated. Variations in any component may affect the in-vitro and in-vivo performance of 

the PDCs. However, the choice of the polymer carrier itself is paramount and dictates the 

overall effectiveness. An ideal polymer carrier must be biocompatible, readily biodegradable, 

non-immunogenic, sufficiently large to allow long circulation as well as passive tumor 

accumulation and able to avoid uptake by the RES (Christie and Grainger, 2003; Ofek et al., 

2010). Factors such as the molecular weight, charge on the polymer chain, hydrodynamic 

radius, hydrophilic-lipophilic balance and formation of secondary structures such as micelles 

or hydrophobic aggregates affect the organ biodistribution, pharmacokinetics and the 

toxicological properties of PDCs (Takakura et al., 1989). 
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Figure 1.6 Barriers in drug delivery to solid tumors using polymer-drug conjugates 
(PDCs). 
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Figure 1.7 An inclusive model of PDC and different components for drug delivery to 
solid tumors.  
(modified from Ringdorf, 1975) 
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1.3.2. Critical Aspects in the Design of PDCs 

1.3.2.a. Molecular Weight and Functionalization of the Polymer 

An increase in the molecular weight of PDCs above the threshold of renal filtration is 

shown to prolong the circulation half-life. Pullulan (Mw 136 kDa) conjugates of dox 

administered i.v. showed 10-fold higher area under the plasma-drug concentration-time curve 

(AUC) when compared to free dox in BALB/c mice (Scomparin et al., 2011). Longer 

circulation provides an increased opportunity for passive accumulation at the tumor site 

which is further facilitated by the leaky tumor vasculature or the EPR effect. However, very 

large molecular weight significantly hinders the permeability and mobility within the tumor 

microenvironment. Fluorescein labeled dextran of 40-70 kDa molecular weights showed 

maximal tumor vascular permeability and highest tumor accumulation when compared to 

dextran of 3.3 kDa, 10 kDa and 2 MDa (Dreher et al., 2006). Similar results have been 

reported by several other studies with dextrans (Harada et al., 2001; Mehvar et al., 1995). 

When copolymer of HPMA and N-methacryoyltyrosinamide was tested in the range of 12 to 

778 kDa, 45 ± 2.5 kDa was found to be the threshold molecular weight that limited 

glomerular filtration of the polymer. An increase in molecular weight above that correlated 

with accumulation in the RES organs (Seymour et al., 1987). The tumor accumulation and 

plasma circulation time correlated with an increase in molecular weight of HPMA 

copolymers from 23 kDa to 65 kDa in mice bearing Dunning AT xenografts (Lammers et al., 

2005). Sodium alginate showed a threshold molecular weight of 48 kDa in similar studies 

(Alshamkhani and Duncan, 1995a; Alshamkhani and Duncan, 1995b).  

Availability and number of suitable functional groups for drug conjugation is also an 

important aspect to consider when designing PDCs. For homopolymers such as PGA, the 
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number of functional groups increases with increasing molecular weight. Percent of 

functional group that can be conjugated depends on factors such as steric crowding, desired 

physicochemical properties of the PDC and chemical nature of the drug. Spacers have been 

routinely used to avoid steric hindrance. Polymerization of drug-conjugated monomers or 

attaching the spacer to the drug followed by polymer conjugation (Khandare et al., 2005) has 

also been attempted to increase the extent of conjugation.    

Polymer chains may also be derivatized with spacers to provide for desired functional 

groups. However, this may affect the in-vivo disposition. HPMA copolymers functionalized 

to have either free carboxyl groups or hydrazide groups were compared for their 

accumulation in tissues and plasma pharmacokinetics (Lammers et al., 2005). While both 

functionalities reduced the plasma circulation time and tumor accumulation of the polymers 

which was proportional to the extent of functionalization, the HPMA-hydrazide showed 

greater increase in rate and extent of renal elimination and reduced tumor accumulation 

compared to the HPMA-carboxyl. The presence of non-polar functional groups on the 

polymer chain or contributed by the conjugated drug may cause aggregation mediated by 

hydrophobic interactions. This is discussed in more detail below. 

Hydrophobization of the polymer may also occur due to drug conjugation. An 

increase in the extent of dox conjugated to carboxymethylpullulan led to an increase in the 

uptake by RES organs and a decrease in plasma circulation half-life (Nogusa et al., 2000a). 

Therefore, it is important to optimize the PDCs for hydrophilic-lipophilic balance to achieve 

maximal activity. 
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1.3.2.b. Charges on the Polymer Chain 

Polymer drug conjugates may bear a net positive charge, negative charge or stay 

electroneutral at physiological pH depending on the ionization properties of the drug and the 

unconjugated functional groups on the backbone. The net charge may affect the membrane 

interaction of PDCs thus affecting the cell uptake and enzyme accessibility leading to 

differences in in-vivo degradation. PDCs with a net positive charge at physiological pH show 

greater interaction with the negatively charged cell membranes which may enhance their 

endocytic uptake. On the other hand, a net negative charge will reduce membrane interaction. 

This can have a significant impact on the biodistribution and toxicity of the PDCs.  

The effect of charge on the pharmacokinetics and biodistribution of dextrans has been 

studied in detail by derivatization with charged substituents. In general, it was reported that 

neutral dextrans are cleared very rapidly. Positively charged dextrans were taken up very 

efficiently by macrophages. Dextrans optimally negatively charged were shown to increase 

the plasma circulation half-life as well as tumor uptake. For example, carboxymethylation at 

the pendant hydroxyl groups of dextran led to an increase in the plasma half-life until a 

degree of substitution of 0.4 beyond which there was rapid uptake in liver (Harada et al., 

2001). This was also observed with carboxymethylated pullulan with a degree of substitution 

of 0.6 (Nogusa et al., 1995). Negatively charged dextran derivative had longer plasma 

circulation and lesser accumulation in liver and spleen in mice bearing fibrosarcoma than 

positively charged dextran derivative (Tabata et al., 1997).  

Polycationic conjugates of poly-D-lysine (PDL) with daunomycin showed 

preferential accumulation in the organs of the RES system. Anionic or amphoteric 

modification of PDL by branching with poly-amino acids of different charge (glutamic acid) 
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or polarity (alanine, leucine) resulted in altered biodistribution and cytotoxicity of the 

conjuagtes. The PDL-daunomycin conjugate modified amphoterically using glutamic acid 

and alanine side chains were the most cytotoxic and showed prolonged circulation with lesser 

accumulation in liver and spleen (Hudecz et al., 1992). 

 The net charge on PDCs can also affect their interaction with the cell surface 

receptors in case of targeted systems or spacer sensitivity in case of enzyme cleavable 

spacers affecting overall drug release. The residual negative charges on dextran-MTX 

conjugate with a peptide spacer sensitive to cleavage by MMP-2 and MMP-9 were variably 

masked with ethanolamine to study the effect on drug release. A decrease in the charge 

resulted in improved sensitivity towards cleavage of the peptide spacer by the MMPs (Chau 

et al., 2004). Conjugates of 5-fluorouracil (5-FU) with PAMA where the residual carboxyl 

groups of the polymer were masked by methyl groups had superior antitumor activity 

compared to the negatively charged conjugates (Ouchi et al., 1990).   

 

1.3.2.c. Cell Uptake and Drug Release 

1.3.2.c.i. Endosomal Uptake and Escape 

The molecular size of PDCs inhibits them from passively diffusing across cell 

membranes. Like other macromolecules, they are dependent on non-specific passive 

transport by endocytosis. In the presence of targeting ligands, endocytosis can become an 

active transport pathway mediated by receptor or ion-channel interaction. Fluid phase 

endocytosis or macropinocytosis has been shown to be the major route of cell entry for PDCs 

that do not possess a molecular recognition component (Abdellaoui et al., 1998b). While this 

may present as an additional barrier to drug delivery, the benefit appears to be a reduction in 
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systemic adverse events associated with chemotherapy. For example, mice treated with TNP-

470 showed decreased neurological function while this effect was not seen with HPMA-

TNP-470 conjugate. This may be due to a decreased brain uptake of the conjugated drug. The 

conjugate also did not show skin irritation and weight loss associated with administration of 

free TNP-470 (Satchi-Fainaro et al., 2004).  

In addition, endocytosis provides a mechanism of cell uptake that is less affected by 

the efflux transporters and may help in overcoming multi-drug resistance (MDR) that is 

commonly associated with chemotherapy. The dose of HPMA copolymer-adriamycin (ADR) 

conjugate that caused a 50% reduction in viability in resistant cells was only 20% higher than 

a corresponding dose of the conjugate in sensitive cells which indicates a relative 

insensitivity towards resistance mechanisms. However, there was a 40-fold decrease in 

sensitivity of resistant cells to unconjugated ADR (Minko et al., 1998). The authors also 

showed that chronic treatment of cancer cells with HPMA copolymer-ADR conjugate did not 

induce the expression of either MDR1 or MDR associated protein (MRP) gene, both of which 

are associated with the development of resistance to chemotherapy (Minko et al., 1999). 

Higher intracellular concentrations of HPMA copolymer-ADR conjugate were observed in 

ADR resistant cells than free ADR (Omelyanenko et al., 1998). 

The cell uptake kinetics and subcellular distribution of HPMA copolymers has been 

studied in detail. The mechanism of endocytosis of HPMA copolymer drug conjugates has 

been studied in breast cancer cells. The uptake was confirmed to be vesicular and partly 

cholesterol-dependent in nature indicating a clathrin or caveolin mediated pathway (Greco et 

al., 2007). Jensen et al. provided qualitative evidence that HPMA copolymers with galactose 

as targeting ligand were endocytosed and remained in membrane bound vesicles even after 
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24 hr treatment. Only at 96 hr, the polymer began transferring to cytosol and nucleus. The 

conjugate rapidly transferred to nucleus upon microinjection into the cytosol indicating a 

preferential nuclear accumulation of the polymer (Jensen et al., 2001).  

In spite of reducing non-specific uptake and playing a role in overcoming resistance, 

endocytosis is a significant barrier to drug action. For drugs that are known to passively 

diffuse through the membrane, this barrier function can be minimized by designing 

conjugates that efficiently release the drug in endosomal/lysosomal conditions. Such release 

could be achieved by using spacers that are hydrolytically cleaved at endosomal pH or are 

sensitive to enzyme catalyzed degradation (Omelyanenko et al., 1998).  

On the other hand, drugs that do not freely diffuse across the plasma membrane, have 

stability concerns at lysosomal pH and for PDCs where cytosol is the ideal drug release 

environment, additional components must be incorporated in PDCs to enable endosomal 

escape of the conjugate or enable cytosolic delivery.  

Endosomal membrane disruption by Polyethylenimine (PEI) that contains ionizable 

amino groups has been explained by the proton sponge effect. The endosomal uptake of the 

polymer triggers ATPases to pump protons inside the vesicle followed by chloride counter 

ion diffusing in the vesicle to maintain equilibrium. This leads to osmotic swelling and burst 

of the membrane releasing the entrapped contents (Boussif et al., 1995). Other polymers such 

as polyamidoamine (PAMAM), polylipoamines and carboxymethyl poly-L-histidine have 

shown similar effects (Asayama et al., 2007; Lavignac et al., 2009). Lysosomotropic agents 

such as chloroquine that act decreasing the pH gradient between endosomes and cytosol 

leading to osmotic swelling have also been used to disrupt this barrier (Erbacher et al., 1996). 

Sucrose and polyvinylpyrolidone (PVP) are also taken up by the cells through fluid-phase 



62 

endocytosis and act by osmotic swelling (Ciftci and Levy, 2001). However, their application 

with PDCs has not been studied yet.  

A mechanism to avoid endosomal pathway and direct cellular delivery is by using 

cell penetrating peptides (CPP), also known as protein transduction domains (PTDs) 

(Lindgren et al., 2000). Intracellular transport of CPPs in unsaturable, occurs even at low 

temperatures in a protein independent and in some cases energy independent manner through 

a non-endosomal route at a much faster rate than normal endocytotic uptake (Lindgren et al., 

2000; Schwarze et al., 2000). This has resulted in tremendous interest in investigating their 

applications in the cellular delivery of drugs, genes, peptides, oligonucleotides and other 

hydrophilic therapeutics by conjugating CPPs to the desired cargo including PDCs 

(Allinquant et al., 1995; Calvet et al., 1998; Fawell et al., 1994; Schwarze et al., 1999). 

Fluorescein isothiocyanate (FITC) labeled HPMA-dox conjugates containing a single TAT 

peptide per polymer chain showed diffuse fluorescence in the cytosolic and nuclear regions 

while the conjugate with no TAT showed a punctate pattern of fluorescence typical of 

endocytic vesicular uptake (Nori et al., 2003).  

 

1.3.2.c.ii. Drug Release Mechanism 

The covalently conjugated drug must be released from the PDCs to perform its 

pharmacological function. For anticancer therapy, it is desirable that PDCs release the drug 

only upon tumor uptake or upon entry in the tumor cells. However, in some cases the intact 

conjugates have been found to have some activity. Irreversible conjugation of ADR to 

glutaraldehyde bound to membrane impermeable solid support (microspheres) by Schiff base 

formation was performed. While the conjugate was equally cytostatic in sensitive cell lines, 
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the activity increased by 15-20-fold in resistant cell lines (Rogers et al., 1983; Tokes et al., 

1982).  

By considering the factors that control drug release, it is possible to design PDCs that 

are highly sensitive to the biochemical environment at the target site and release the 

conjugated drug in a predictable way at a desired rate. This may be achieved by linking the 

drug to the polymer backbone with cleavable linkage or through suitable spacers (Figure 

1.8). The spacer allows for the incorporation of mechanisms of release of the conjugated drug 

under desired conditions. Additionally, spacers have been sometimes used to reduce the 

steric or “crowding” effect to achieve higher drug conjugation or to improve the binding of 

the targeting ligand to its target by having it further away from the polymer backbone (Erez 

et al., 2009). For example, the half-life of hydrolytic release of mitomycin C conjugated to 

dextran through alkyl spacers increased with increasing chain length from C4 to C8. A 

similar trend was observed in the antitumor activity of the PDCs while the therapeutic index 

of the C8 substituted conjugated was highest (Takakura et al., 1989). Conjugation of a 

trivalent dendrimeric spacer to HPMA copolymer increased the payload of PTX by 3-fold 

(Erez et al., 2009). The activity of PDCs has been shown to be greatly affected by the type, 

length and sensitivity of the spacer used as it determines the rate and extent of drug release at 

the site of action. Enzyme sensitive and pH sensitive spacers and linkages have been 

investigated. 

Drugs can have multiple sites and functional groups that may be used to conjugate 

with the polymer chain. Differences in drug release due to the site of drug conjugation are 

primarily due to steric factors. PTX conjugated to through the 2'- hydroxyl to a B sensitive 
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spacer showed a hydrolysis half-life of 9 hr compared to half-life of 40 min when conjugated 

through 7-hydroxyl position (Dubowchik et al., 1998). 

 

a) Enzyme Cleavable Spacers/Linkages 

Polymer drug conjugates where the drug is conjugated through a spacer sensitive to 

cleavage by a specific enzyme is a strategy to sustain or prolong the release of the drug at a 

specific site where high concentrations of the enzyme are available while increasing the 

stability of the conjugate in plasma circulation and reduced drug release in non-target organs. 

The stability of the conjugation before it reaches the target site is highly dependent on the 

specificity of the spacer. Many enzymes, especially proteases with different functions, have 

been reported to be elevated in solid tumors.  

Matrix metalloproteinases are secreted in the tumor microenvironment and have an 

important role in promoting tumor growth and metastasis. The overexpression of MMPs has 

been seen in many human cancers and is associated with poor prognosis (Davidson et al., 

1999; Liu et al., 2010; Passlick et al., 2000). PDCs targeting MMP-2 and MMP-9 were 

synthesized by incorporating peptide spacer sensitive to cleavage by these enzymes. MTX 

was conjugated to dextran through Pro-Val-Gly-Leu-Ile-Gly (PVGLIG) as spacer and was 

found to be specifically cleaved in the presence of MMP-2 and MMP-9. However, upon 

cleavage, the conjugate released MTX-PVG instead of free drug and was less active (Chau et 

al., 2004).   

Cathepsins or lysosomal cysteine proteases are papain-like enzymes present in the 

lysosomal vesicles that have optimal activity at lysosomal pH conditions and have also been 

shown to over-express in the tumor microenvironment (Campo et al., 1994; Turk et al., 
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2001). PDCs have been synthesized with spacers sensitive to cleavage by these enzymes for 

drug release upon endosomal uptake. The length and the amino acid composition of the 

spacer are known to influence the rate and extent of drug cleavage, and the type of enzyme 

that plays a major role in drug release. Dox-carboxymethylpullulan conjugates through Gly-

Gly-Phe-Gly (GGFG) and Gly-Phe-Gly-Gly (GFGG) spacers had higher antitumor effect 

than free dox (Nogusa et al., 1995). A systematic study with PHEG conjugated mitomycin C 

showed that tripeptide spacers are less effective in releasing the polymer-bound drug than 

tetrapeptides when tested in the presence of lysosomal enzymes as well as at pH 5.5. This 

study identified Gly-Phe-Leu-Gly (GFLG), Gly-Phe-Ala-Leu (GFAL) and Ala-Leu-Ala-Leu 

(ALAL) as spacers with efficient drug release properties (Demarre et al., 1994). The presence 

of hydrophobic amino acids Phe or Leu at the C-terminal end decreased the rate of enzymatic 

hydrolysis of the spacer, an effect reported with carboxymethylpullulan conjugates as well 

(Nogusa et al., 1995).  

Cathepsin B, a carboxydipeptidase, specifically recognizes the tetrapeptide sequence 

GFLG (Duncan et al., 1989). Another tetrapeptide sequence, Gly-Gly-Pro-Nle is specific 

substrate for cathepsin K (Segal et al., 2009). A dipeptide spacer composed of a basic or 

hydrogen bonding amino acid at P1 and a hydrophobic amino acid at P2 e.g. Phe-Lys-(p-

aminobenzylcarbonyl) (PK-PABC) spacer was shown to be cleaved specifically by cathepsin 

B and L (Dubowchik et al., 1998). Nogusa showed that the specificity is maintained even if 

the basic or hydrogen bonding amino acid is substituted with a hydrophilic amino acid e.g. a 

Gly-Phe spacer (Nogusa et al., 2000a; Nogusa et al., 2000b). ADR conjugates of PGA with 

or without a peptide spacer were investigated for their cytotoxicity in leukemia cells and 

release of conjugated drug in the presence of peptidases such as papain. The peptide spacers 
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were GGL or GGGL. The conjugates with the spacers had lower IC50 values and released 

most of the conjugated drug in the presence of papain compared to no drug release with 

PGA-ADR direct conjugates through amide bonds (Hoes et al., 1985).  

A tripeptide spacer, D-Val-Leu-Lys, was used to conjugate cytarabine to α,β-poly(N-

2-hydroxyethyl)-DL-aspartamide (PHEA) targeting specific cleavage by elevated plasmin 

levels in tumors. Complete drug release was seen in the presence of plasmin compared to 

minimal release in plasma indicating the specificity of the conjugation (Cavallaro et al., 

2001). 

PDCs sensitive to cleavage by esterases have been investigated. N,N-Dimethyl 

sphingosine (DMSP) was conjugated to PGA via ester linkages at two different sites on the 

drug. The drug release was transient and the conjugate showed similar in-vitro toxicity to 

cancer cells as the free drug. The authors suggested that enzymatic hydrolysis (esterases) of 

the ester linkages and the extent of drug loading is the rate-limiting step determining the 

overall toxicity of the conjugate. The solubility was enhanced several fold and the maximum 

tolerated dose of the conjugate was almost 2-fold higher than the effective antitumor dose of 

the drug in mice (Ghosh et al., 2009). 

 

b) Hydrolytically Cleavable Spacer/Linkages 

The actions of ‘vacuolar H+-ATPases’ in the endosomal membrane result in a gradual 

decrease in the vesicle pH as they progress towards lysosomes. The pH of the endosomes 

was observed to vary between 4.7 and 5.8 with 5.0 being the most frequent value measured 

using folate conjugated dextran (Lee et al., 1996). While low pH aids in proteolytic 

degradation of the contents in lysosomes, it may cause the release of receptor bound ligands 
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and enhancement in the activity of several pathogens among other things (Mellman et al., 

1986). Conjugating drugs to the polymer chain with covalent linkages that are prone to acid-

catalyzed hydrolysis, results in selective drug release following cellular uptake. Cis-aconityl 

and hydrazone linkages or spacers containing these linkages have been widely investigated in 

polymer-drug conjugation for their pH sensitive cleavage. Other linkages sensitive to pH 

mediated cleavage include amide, ester and carbamate bonds. The rate of hydrolysis and 

sensitivity may be different with different linkages. 

The half-life of daunomycin release from a poly-D-lysine conjugate was 6 hr at pH 

5.0 while there was no release at pH 7.0 after 96 hr when conjugated via a cis-aconityl bond. 

This conjugate showed significant growth inhibition in lymphoma cells. Similar conjugate 

with polyacrylamide gel beads and PDL conjugated to daunomycin via maleyl linkage were 

inactive indicating a lysosomal release of the drug upon cellular uptake (Shen and Ryser, 

1981). Similar pH dependent drug release was seen with sodium alginate derivatized to have 

amino groups conjugated to cis-aconityl-daunomycin (Alshamkhani and Duncan, 1995b). 

PGA based dendrimer with octa(3-aminopropyl) silsesquioxane (OAS) cores were 

conjugated to dox via acid-cleavable hydrazone bonds (Yuan et al., 2010). PGA bound to the 

OAS core was derivatized to contain hydrazine end groups that readily react with the 

carbonyl group of dox to form hydrazone via a Schiff base reaction. The dendrimer conjugate 

released 90% of the bound dox after 20 hr incubation at pH 5.0 whereas only 12% release 

occurred at pH 7.4 after 24 hr incubation (Yuan et al., 2010). Pullulan conjugated to dox via 

hydrazone bonds also showed a pH dependent release profile whereby complete release was 

observed at pH 5.5 within 40 hr compared to only 20% release at pH 7.4 in 72 hr (Scomparin 

et al., 2011). 
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A comparison of hydrazone and cis-aconityl spacers (HPMA-dox conjugate) showed 

a slower release of drug and consequently decreased bioactivity with the cis-aconityl spacer 

(Ulbrich et al., 2003). Another comparison of dox bound to HPMA copolymer via acid 

(hydrazone) or enzyme cleavable (GFLG) spacers showed that the cell uptake and 

corresponding cytotoxicity of the former was greater. This could be partially due to 

differences in the rate, extent and site of intracellular uptake of the two conjugates (Kovar et 

al., 2004). Similar studies showed a cis-aconityl spacer containing HPMA- ADR conjugate to 

be more cytotoxic compared to GLFG spacer containing conjugate (Choi et al., 1999). A 

rapid release of the pH sensitive spacers combined with their non-dependence on the location 

and level of enzyme expression make them more suitable for clinical development than 

enzyme-cleavable spacers. 

 PGA-gemcitabine conjugate linked via an ester bond without any spacer were shown 

to release the drug in a pH dependent manner while increasing the plasma stability of 

gemcitabine (Kiew et al., 2010). Effect of spacer was studied by conjugating gemcitabine to 

PHEA via succinyl or diglycolyl spacer with folic acid as the targeting ligand. The drug 

release was slower with the diglycol spacer, presence of folate reduced it even further and 

this conjugate showed diminished cytotoxic activity (Cavallaro et al., 2006). 

 5-FU was conjugated to PAMA via ester, amide or carbamoyl bonds with or without 

a polymethylene spacer to study the effect of type and hydrophobicity of the spacer on drug 

release from the PDC. The carbamoyl linkages showed the highest rate of drug release and 

maximal susceptibility to cleavage in all solutions of pH ranging from acidic to alkaline. The 

PDCs with tri- and hexamethylene spacers showed a superior antitumor activity than free 5-

FU (Ouchi et al., 1990). It has also been shown that the amide bonds in the side chain are 
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more sensitive to hydrolysis as compared to the polymeric amide bonds in poly-amino acid 

type polymers (Abdellaoui et al., 1998a; Abdellaoui et al., 1998b). 

 

c) Reducible Spacers 

Drugs have been conjugated to polymers through intracellularly cleavable disulfide 

bonds. The benefit of using disulfide spacers has previously been seen in several antibody-

drug conjugates, also referred to as immunoconjugates (Liu et al., 1996; Ross et al., 2002). 

Mesochlorin e6 (Mce6) was conjugated to HPMA copolymer via a disulfide spacer or GFLG 

(discussed above) spacer for photodynamic therapy of cancer. The disulfide linked conjugate 

showed greater intracellular drug release and higher cytotoxicity compared to the GLFG 

linked conjugate. An increase in quantum yield upon cellular entry with disulfide conjugate 

indicated drug cleavage as the conjugated drug has lower quantum yield (Cuchelkar et al., 

2008b). 

For drug release to occur, the disulfide bond containing PDCs must escape from the 

endocytic vesicle and enter the highly reducing environment of cytosol (Yang et al., 2006) or 

undergo disulfide reduction within the endocytic vesicles. Thioredoxin family of enzymes in 

conjunction with glutathione reductase and GSH/GSSG equilibrium play a major role in 

cytosolic disulfide reduction. However, there is a lack of consensus on the efficiency of 

disulfide reduction within the endocytic vesicles. Disulfide reduction was previously 

proposed to be a prelysosomal event, independent of endosomal pH and glutathione 

concentrations based on studies with MTX-S-S-PDL conjugate that showed comparable 

cytotoxicity to free MTX while a direct amide-linked MTX-PDL conjugate was inactive 

(Shen and Ryser, 1979; Shen et al., 1985). However, using [125I] tyramine-S-S-PDL these 
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authors later proposed that cell surface thiols and elements of golgi apparatus play a major 

role in disulfide reduction of endocytosed molecules with no significant reduction occurring 

in endosomes (Feener et al., 1990). Further, the endosomal and lysosomal environment was 

found to be oxidizing as indicated by reduction potential (-240 mV) measurements (Austin et 

al., 2005). Therefore disulfide reduction mediated by thiol-disulfide exchange reactions, that 

requires the generation of thiolate anion is not expected to be very efficient in endosomes 

(Shen et al., 1985; Yang et al., 2006). 

On the other hand, γ-interferon inducible lysosomal thiol reductase (GILT) is a 

disulfide reducing enzyme that has optimal activity between pH 4-5 and therefore, is 

expected to be active at endosomal conditions. GILT transfected melanoma cells showed 

enhanced reduction of F(ab')2 to Fab' (Arunachalam et al., 2000). Protein disulfide isomerase 

has also been detected in endosomes (Noiva, 1999). Fluorescence resonance energy transfer 

(FRET) based imaging showed that disulfide reduction in folate-BODIPY-S-S-rhodamine 

conjugate had a half-time of 6 hr and was independent of redox components as well as 

recycling (Yang et al., 2006) indicating that enzymatic reduction may be involved. Disulfide 

reduction is an important step in the activation of certain toxins as well as during antigen 

processing and a strong evidence of disulfide reduction in lysosomes was shown using 

subcellular fractionation technique (Collins et al., 1991). Recently, Langer and co-workers 

developed a PEG containing FRET pair, where the FRET donor was bound to PEG through a 

disulfide linker. They were further able to show that PEG shedding occurs from nanoparticles 

containing this (FRET)-PEG during early endocytosis (Gao et al., 2010).  
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Figure 1.8 Designer drug release from PDCs using spacers bound via cleavable bonds 
A. Paclitaxel bound to PGA through an ester bond (Li et al., 1998), B.Cis-aconityl linked 
alginate-daunomycin conjugate (Alshamkhani and Duncan, 1995b), C. Cathepsin B sensitive 
GFLG-linked HPMA copolymer-doxorubicin conjugate (Ulbrich et al., 2000), and D. Poly-
D-lysine-methotrexate conjugate linked with a reducible disulfide linker (Shen et al., 1985). 

A B

C D
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1.3.2.d. In-vivo Disposition 

Although prolonged circulation is a desirable feature in the design of PDCs, the 

residual polymer chain should not contribute to adverse events, be pharmacologically inert, 

non-immunogenic, and undergo predictable degradation followed by rapid clearance of the 

degradation products from the body. Factors like drug conjugation, presence of a linker, 

amount of cross-linking during reaction and final molecular weight of the conjugate can 

significantly alter the in-vivo degradation of the polymer. Polymers that have been used to 

construct PDCs have been investigated for their in-vivo fate. 

As an example, PGA, which is composed of endogenous amino acid monomer, is 

susceptible to lysosomal degradation by cathepsin B (Kishore et al., 1990). At a molecular 

weight of 42 kDa PGA rapidly degraded in the presence of cathepsin B within 6-8 hr of 

incubation (Wen et al., 2004). However, only 30% degradation of PGA-DTPA conjugate 

with a 6-amino hexyl linker was observed after 48 hr in the presence of cathepsin B. 

Conjugation of hydrophobic amino acids like tyrosine and phenylalanine to the carboxyl 

groups of PGA resulted in faster degradation in the presence of lysosomal enzymes while 

conjugation via a peptide cleavable linker such as Gly-Leu-Gly decreased the rate of polymer 

degradation (Chiu et al., 1997). Degradation of PGA was studied in-vivo with a PGA-

NIR813 conjugate in orthotopic human U87 glioma in mouse. Liver was the major site of 

degradation and cathepsin B and L were efficient in degrading PGA. PGA was insensitive to 

cathepsins E and D, and MMP-2 (Melancon et al., 2007). PGA was dosed as a single i.v. 

injection in mice at 800 mg/kg with no adverse events reported (Li et al., 1998). PGA 

conjugates of melphalan were shown to have a sustained release property that was dependent 
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on the exopeptidases when injected i.v. and were absorbed through the lymphatic route when 

injected s.c. (Morimoto et al., 1984).   

The overall degradation in-vivo of PDCs is also complicated by rate of drug release. 

If the rate of drug release is different than the rate of polymer degradation, a modified 

pharmacological effect may be observed depending on the activity of the drug attached to the 

polymer remnants or the rate of final conversion to the drug. In the case of PGA-PTX 

conjugate, formation of mono- and di-glutamyl-PTX metabolites in the tumors and cells was 

observed, the ester bond between the drug and the polymer being resistant to hydrolysis 

while the polymer backbone is susceptible to enzymatic cleavage upon cellular uptake 

(Shaffer et al., 2007).  

The estimation of true degradation rate of PDCs can be complicated by the formation 

of smaller fragments of the polymer with the drug still attached to them. Elastin like 

polypeptides (ELPs) are recombinant polypeptides expressed in Escherichia coli with repeat 

units of a pentapeptide sequence which can be varied in the amino acid composition. Due to 

their thermally reversible phase transition behavior, ELPs have been investigated for the 

delivery of chemotherapy in combination with hyperthermia whereby an increase in 

temperature is associated with enhanced accumulation in the tumor (McDaniel et al., 2010). 

The in-vivo disposition shows a rapid distribution phase followed by a prolonged elimination 

phase. ELPs degrade in serum with an apparent rate of 2.49 wt %/day which only accounts 

for detectable fragments in the serum (Liu et al., 2006). ELPs have been shown to lack 

systemic toxicity, are non-mutagenic at very high doses and are thus biocompatible (Urry et 

al., 1991). 
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1.3.2.e. Tumor accumulation 

Tumor accumulation is typically presented as the percent of administered dose that 

reaches the tumor. However, it is also important to consider the depth of penetration or tumor 

permeability especially in the case of macromolecules. Macromolecular drugs show higher 

accumulation and slower clearance from solid tumors compared to small molecules. This has 

been partly attributed to the EPR effect (Matsumura and Maeda, 1986). Hypervascularization 

in solid tumors characterized by distorted vascular architecture and poor lymphatic drainage 

lead to the EPR effect whereby macromolecular entities smaller than the pores within the 

tumor vasculature, extravasate into the tumor microenvironment and are retained for a longer 

time due to impaired clearance. A number of investigations have shown preferential 

accumulation of macromolecular carriers in solid tumors including PDCs (Duncan, 2009), 

polymeric micelles (Iyer et al., 2007), nanoparticles (Zalipsky et al., 2007) and 

immunoglobulins (Matsumura and Maeda, 1986).  

On the other side, it has also been shown that EPR effect is heterogenous in nature 

and the extent of leakiness in tumor vasculature depends on the type, size and location of the 

tumor among other factors (Bae, 2009; Jain and Stylianopoulos, 2010). Further, the depth of 

penetration is determined by the resistance posed by the extracellular matrix (ECM) 

components to diffusive transport and by the IFP to the convective transport. Within the 

interstitial space, the pore size and connectedness also plays a significant role in the transport 

of macromolecules (Yuan et al., 2001). Some of the other factors affecting drug penetration 

and release from PDCs include the low pH and hypoxic conditions in the core of solid tumors 

(Jain and Stylianopoulos, 2010).  
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In a human squamous cell carcinoma xenograft mouse model, Dreher et al. showed 

that the apparent permeability of the tumor blood vessels and the depth of penetration within 

the tumor decreased with increasing molecular weight of dextran. However, if the molecular 

size allows for prolonged circulation, the decrease in permeability may have a comparatively 

smaller effect on the cumulative tumor accumulation (Dreher et al., 2006).  

 

1.3.2.f. Formation of Multi-molecular Assemblies 

Conjugation of a hydrophobic drug to a hydrophilic polymer has an impact on the 

physicochemical properties of the conjugate. The extent of the impact is determined by the 

hydrophilicity of the polymer before conjugation and the degree of hydrophobization upon 

conjugation which is dictated by the number of drug molecules or substituents per polymer 

chain. Hydrophobic substitution can result in a decrease in the aqueous solubility, 

spontaneous aggregation due to hydrophobic interactions and precipitation of the product at 

higher substitutions. However, if the conjugation results in the formation of an amphiphile 

with a hydrophilic-lipophilic balance (HLB) that allows for formation of stable assemblies or 

micelles, a higher degree of drug solubilization as well as stabilization in the hydrophobic 

core could be achieved (Gautier et al., 1997). Dox conjugated (6.2 wt %) to pullulan resulted 

in formation of two different populations with mean diameters of 145 nm and 24 nm 

respectively (Scomparin et al., 2011). PGA conjugates of PTX with or without a RGD 

peptide had hydrodynamic diameters of 6-7 nm (Eldar-Boock et al., 2011).  

The pendant carboxyl groups of PLL-citramide upon alkyl substitution formed multi-

molecular aggregates with C7 and C12 derivatives but not with C2 derivatives (Abdellaoui et 

al., 1998a). The aggregate size increased with an increasing amount of heptyl or lauryl 
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substitution on PLL-citramide. The presence of ions may enhance aggregation by shielding 

of charges thus promoting hydrophobic interactions and aggregation. A variation in the pH 

may have a similar effect on weak acid or weak base behavior of polymer functional groups 

(Gautier et al., 1997). A PGA-poly-L-phenylalanine block copolypeptide spontaneously 

formed vesicles with a critical micellar concentration (CMC) of 0.11 mg/mL and the size of 

the aggregates was pH dependent (Kim et al., 2009). Branched or block copolymers are other 

types of modifications that lead to the micellization of the conjugated drug carrier e.g. PEG-

PAA-ADR conjugate (Yokoyama et al., 1990). 

Incorporation of amphiphilic properties causing micellar aggregation to enhance the 

drug solubility, serum stability and take advantage of the EPR effect has been the intent in 

several PDCs. PAMAM conjugated to camptothecin (CPT) and PEG formed micelles of 88 

nm with a CMC value of 0.003 mg/mL. Formation of micelles resulted in improving the 

stability of the lactone form of CPT (Fan et al., 2010).  

The stability of the micellar assemblies in-vivo is dictated by their CMC or the HLB, 

interaction with plasma components and the ionic behavior. Their formation can have 

significant effect of the biodistribution, cell uptake and antitumor efficacy. ELPs have been 

characterized for the formation of stable multi-molecular assemblies following dox 

conjugation to these soluble polypeptides modified at the C-terminus with a cysteine 

containing peptide sequence to limit the site and number of drug attachment (MacKay et al., 

2009). The CMC, in dox equivalents (14.4 µM), were 40-fold lower than the plasma 

concentrations of dox at the time of injection (600 µM) and therefore the assemblies are 

expected to be stable to dilution in plasma (Dreher et al., 2003; MacKay et al., 2009). This 

further highlights the significance of the location and number of hydrophobic substituents in 



78 

PDCs in the formation of reversible yet stable and predictable aggregates. Interestingly, in 

case of cysteine derivatized ELPs, only anionic and neutral polymers self-assembled when 

substituted with dox and the size increased with increasing molecular weight of the polymer 

(MacKay et al., 2009).  

 

1.3.3. PDCs as Delivery Systems for Hydrophobic Drugs 

Many first line chemotherapy drugs like PTX suffer from low aqueous solubility 

(Trissel, 1997). This creates the need for delivery systems that are able to solubilize them to 

make it possible to administer therapeutic doses. Chemical conjugation to hydrophilic 

polymers to generate a polymeric prodrug is one of the ways to enhance the solubility. 

Micellization as discussed above may lead to further enhancement in solubility by creating 

hydrophobic pockets that minimize interaction with surrounding water molecules. Solubility 

enhancement in this manner also avoids the need to add additional modifiers that can be 

associated with adverse hypersensitivity reactions e.g. cremophor and ethanol in Taxol® 

(Weiss et al., 1990). 

PEG has been widely used as a hydrophilic polymeric substituent to provide 

enhanced aqueous solubility in addition to other advantages of PDCs as outlined above. 

Conjugation of PEG to PTX at 7-position via a urethane or a carbonate linkage led to a 

30,000-fold enhancement (>650 mg/mL) in the aqueous solubility (Greenwald et al., 1995). 

However, the biological activity of these conjugates was highly reduced compared to PTX 

(Greenwald, 2001). Moreover, unmodified PEG only provides a maximum of two sites for 

conjugation and is therefore, limited if a higher drug payload per polymer or multi-

functionality is desired (Khandare and Minko, 2006).  
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In this respect, hydrophilic polymers with multiple pendant groups have the potential 

to overcome this limitation while providing the solubility enhancement. PGA has been used 

to enhance the aqueous solubility of several hydrophobic drugs such as PTX, dox and CPT 

(Singer et al., 2000) by covalently conjugating them to the carboxyl groups of PGA. PGA-

PTX conjugate had aqueous solubility of 20 mg/mL of PTX equivalent which is 80,000-fold 

greater than the solubility of unconjugated PTX and has been shown to have improved anti-

tumor efficacy and increased therapeutic index in-vivo (Li et al., 1999). 

PGA-CPT conjugates prepared with different amounts of drug loading and varying 

length of the glycine linker were analyzed for their aqueous solubility. The conjugate with 

the triglycine linker and 30 wt % CPT had an aqueous solubility of 5 mg/mL while the 

conjugate with monoglycine linker and 29 wt % CPT had an aqueous solubility of 30 mg/mL 

(Bhatt et al., 2003). This is a 10,000-fold enhancement over the solubility of CPT (2-3 

µg/mL).   

 

1.3.4. Targeting PDCs for Enhanced Effectiveness 

Endocytosis is a non-specific process of cell uptake and presents as a rate-limiting 

step in the cellular entry of many PDCs. Covalent attachment of residues that have specific 

cell uptake activity by virtue of their affinity towards a cell surface receptor or alternate 

molecular pathway of cellular entry have been investigated to transport PDCs inside the cells. 

Receptor-mediated targeting of PDCs is based on the over-expression of certain receptors in 

cancer cells leading to preferential binding and active uptake of receptor-bound PDCs. This 

is expected to enhance the overall rate and extent of cellular entry resulting in improved 

activity. Successful targeting depends on the affinity of the targeting ligand after conjugation 
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to PDC, number of ligands necessary to provide desired accumulation, rate of receptor 

internalization and the subcellular fate of receptor-bound cargo.   

Epidermal growth factor receptor (EGFR)-overexpressing A431 cells were targeted 

using C225 antibody attached through a polyethylene glycol (PEG) spacer to PGA-dox 

conjugate (C225-PEG-PGA-Dox). The conjugate showed comparable binding to the 

receptors as free antibody and was internalized very rapidly compared to unconjugated dox 

or conjugates without C225. Pre-incubation with C225 prevented the uptake of the C225-

PEG-PGA-Dox (Vega et al., 2003). Targeting of the PGA-PTX conjugates discussed above 

to epithelial cells with cyclic RGD peptides showed selective tumor accumulation of the 

conjugate with anti-proliferative effect on the orthotopic tumors in mice over-expressing αvβ3 

integrin receptors (Eldar-Boock et al., 2011). Similar preferential accumulation and higher 

cytotoxicity was reported with PGA-dox-H2009.1 conjugate where H2009.1 peptide targeted 

cells over-expressing αvβ6 integrin receptors (Guan et al., 2008). Pulluan conjugates of dox 

(6.2 wt %) containing folate (4.3 wt %) as the targeting ligand showed higher uptake and 

cytotoxicity in cells over-expressing folate receptor compared to the conjugate with no folate 

(Scomparin et al., 2011). Asialoglycoprotein (ASGP) receptors expressed on hepatocytes 

were targeted using dox-linear PAMAM dendrimer-PEG-galactose conjugate where 

galactose was the ligand for ASGP receptors. The targeted conjugate showed improved 

hepatocyte uptake and antitumor effect in hepatoma xenografts in mice (Huang et al., 2010). 

A trivalent galactose ligand on HPMA copolymer recently showed 8-10-fold higher cell 

uptake compared to galactose in hepatocarcinoma cells (David et al., 2001). 

HPMA copolymer-drug conjugates have been investigated with a wide range of 

targeting residues. RGD peptides have been used to target HPMA copolymer drug conjugates 
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to αvβ3 integrin receptors on epithelial cells in angiogenic blood vessels of tumors (Line et 

al., 2005; Mitra et al., 2006). A copolymer conjugate of HPMA-geldanamycin with RGDfK 

peptide showed competitive binding to receptors on human umbilical vein endothelial cells 

(HUVEC) in the presence of free peptide and enhanced cytotoxicity compared to conjugate 

without the peptide (Borgman et al., 2009). Targeting HPMA copolymer-drug conjugates 

using Fab' fragment of a monoclonal antibody against the OA-3 (ovarian carcinoma) antigen 

was reported where the Fab' was covalently conjugated to a monomer unit and 

copolymerized with another monomer covalently conjugated to the drug via an enzyme 

cleavable spacer. This approach allowed precise control of the number of targeting molecules 

and the size of the final conjugate (Lu et al., 1999). HPMA copolymer-

triphenylphosphonium conjugate localized in mitochondria upon microinjection into the 

cytosol indicating organelle specific targeting (Cuchelkar et al., 2008a). Alendronate (ALN) 

shows high affinity for hydroxyapatite and has been used to target PDCs to bone to treat 

metastatic growth or primary bone tumors. A multifunctional HPMA copolymer conjugate 

containing both ALN and TNP-470 had greater antitumor effect than a combination of the 

two drugs administered simultaneously (Segal et al., 2009).  

Drug conjugation to the polymer can sometimes lead to decreased cytotoxicity when 

determined in-vitro due to additional steps involved in the uptake of the conjugate and 

eventual drug release (Kovar et al., 2002; Nogusa et al., 1997). In such cases, incorporation 

of efficient targeting ligands in combination with suitable spacers, once again, can attenuate 

this decrease in activity both in-vitro and in-vivo. For example, the HPMA-GLFG-Dox 

conjugate was almost 1000-fold less cytotoxic in lymphoma cells than free dox. Transferrin 

receptor targeting using an antibody for CD71 receptor (HPMA copolymer-dox-CD71 
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antibody) increased the cell uptake by almost 10-fold and had significantly high antitumor 

efficacy compared to free dox (Kovar et al., 2002).  

 

1.3.5. Combination Therapy with Multi-functional PDCs 

Combination therapy is routinely used in cancer patients to enhance the effectiveness 

and reduce drug associated adverse events. PDCs provide a unique opportunity in 

combination therapy of cancer. A combination of two drugs bound to the same polymer 

backbone, a PDC co-administered with another PDC or a PDC co-administered with standard 

treatment regimens (radiation or chemotherapeutic) have been investigated. The drugs used 

in combination may be similar or different in their mechanism of action based on the 

rationale and desired clinical outcome.  

In the first case, where two or more drugs are covalently linked to the same polymer 

chain, the resulting pharmacokinetics of the conjugated drugs is expected to be similar unlike 

the drugs administered separately. Simultaneous, selectively enhanced accumulation of two 

or more drugs to the solid tumor may result in lowering of the effective dose of each of the 

drugs leading to fewer associated adverse events. Additionally, it is possible to take 

advantage of pharmacological synergy among two different drugs based on the mechanism of 

action or physicochemical properties. For example, phosphatidylinositol-3 (PI3) kinase 

inhibitors like wortamannin have been shown to sensitize cells to dox. Combination therapy 

using dox and wortmannin covalently conjugated to amphiphilic block copolymer of PEG-

poly(aspartate hydrazide) via hydrazine bonds was investigated. The combination conjugate 

was equally effective at 50 mol% of dox compared to treatment with free drug indicating a 

possible synergy between the two drugs (Bae et al., 2007). HPMA copolymer simultaneously 
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linked to dox and aminoglutethimide (AGM) using GFLG as a cleavable linker was 

investigated for combination therapy. The single drug HPMA conjugates of dox or AGM 

used alone or in physical mixtures were less active than free dox in-vitro whereas the 

HPMA-GFLG-AGM-Dox conjugate showed synergistic enhancement in cytotoxicity (Vicent 

et al., 2005). HPMA copolymer conjugated simultaneously to gemcitabine and dox using 

separate GFLG spacers and to tyrosinamide through an amide bond (P-Gem-Dox) was 

reported. The P-Gem-Dox conjugate showed stronger tumor growth inhibitory effect than 

HPMA-Dox and HPMA-Gem conjugate administered together or the two free drugs 

administered in combination (Lammers et al., 2009). Similarly, dox and dexamethasone ester 

derivatives have been conjugated to the same HPMA copolymer chain via hydrazone linkage 

and the conjugate showed simultaneous pH dependent release of the two drugs (Krakovicova 

et al., 2009). ALN and PTX were conjugated to HPMA to combine the anti-angiogenic 

effects of ALN with anticancer effects of PTX. While ALN was conjugated through GFLG 

peptide spacer, an additional self-cleaving PABC spacer was included between PTX and the 

polymer chain (Miller et al., 2009). 

Two different polymer-drug conjugates if co-administered would provide co-delivery 

while still incorporating the merits of long circulation, enhanced passive tumor accumulation, 

improved tolerance and such. Such a co-administration if comparable in efficacy to two 

drugs linked to the same polymer backbone would be simpler and easier to characterize than 

multi-drug conjugate approaches discussed above. HPMA copolymer-Mce6 was co-

administered with HPMA copolymer-ADR conjugate in mice bearing ovarian carcinoma to 

investigate a combination of chemotherapy with photodynamic therapy of cancer. The two 
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conjugates were administered separately followed by light dose at 18 and 24 hr and showed 

significant antitumor effect compared to single conjugates alone (Shiah et al., 2000).    

In the third case, the concomitant delivery of polymer-drug conjugates with radiation 

therapy or other standard chemotherapeutic regimens has been explored. A PGA-feretinide 

conjugate sensitized cancer cells to radiation treatment leading to synergistic improvement in 

tumor (A549 lung cancer xenografts) growth control (Zhu et al., 2007).     

A combination of drug and gene delivery has recently shown promising anticancer 

properties. PEI-β-cyclodextrin conjugates further covalently linked to 5-fluoro-2-

deoxyuridine (FUD) showed a higher cell uptake and increased cytotoxic potential compared 

to unconjugated FUD. This drug conjugate was further complexed with plasmid DNA 

(pDNA) and showed enhanced gene transfer efficiency at N/P of 25 compared to a 25 kDa 

PEI at N/P of 10 (Lu et al., 2010).  

 

1.3.6. Preclinical and Clinical Investigations  

The success of chemical conjugation of drugs to polymers is evident by several recent 

FDA approvals of products based on this approach including NeulastaTM, PEGasys®, PEG-

IntronTM and Oncaspar® (Soo et al., 2009). The polymeric component in all of these is PEG. 

However, products based on other hydrophilic polymers e.g. PGA, HPMA copolymer and 

dextran, that are multivalent and multifunctional are still in various phases of clinical trials.  

Two different types of dox conjugates with HPMA copolymer are currently in clinical 

trials. PK1 contains dox conjugated to HPMA copolymer through a cathepsin B sensitive 

tetrapeptide (GFLG) linker (Vasey et al., 1999). PK2 is similar to PK1 but contains 

galactosamine bound to the polymer chain for additional targeting to the ASGP receptors on 
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hepatocarcinoma cells (David et al., 2001). In a Phase I study, PK1 was found to be longer 

circulating and less cardiotoxic than free dox in patients with refractory or resistant cancers 

administered at mean cumulative dose 508 mg/m2. The elimination half-life of PK1 was 93 

hr (Vasey et al., 1999). A dose, based on the Phase I studies, of 280 mg/m2 every 3 weeks 

was used in subsequent Phase II trials in patients with breast cancer (17/62), non-small cell 

lung  cancer (NSCLC) (16/62) and colorectal cancer (29/62). Partial responses were observed 

in 6/62 patients (Seymour et al., 2009). PK1 is currently under Phase II trials in women with 

advanced breast cancer (ClinicalTrials.gov Identifier: NCT00003165). In a Phase I study 

with PK2 in patients with solid tumors, 3.3% of total dose could be detected in areas of 

tumor in the liver and the conjugate showed increased uptake in the metastatic sites. The 

antitumor effects observed in this study are summarized in Table 1.3 (Seymour et al., 2002).  

PGA-PTX (OpaxioTM, formerly known as XyotaxTM) has been widely investigated 

for its antitumor efficacy. A single i.v. dose of the conjugate completely eliminated the 

mammary adenocarcinoma in mice (Li et al., 1998). The conjugate showed a 2-fold increase 

in the maximum tolerated dose in PTX equivalents. The conjugate enhanced the exposure by 

12-fold compared to unconjugated PTX. Multiple injections of the conjugate had similar 

efficacy compared to a single i.v. dose suggesting that administration of the highest possible 

single dose is a better strategy than multiple dosing for long circulating drug conjugates such 

as PGA-PTX (Li et al., 1999; Li et al., 1998).In a Phase II study in ovarian cancer patients, 

the conjugate was found to be active with a response rate of 10% (10/99) and median time to 

progression of 2 months. In three separate Phase III clinical trials in NSCLC patients with 

poor performance status, the conjugate had comparable survival compared to the control 
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treatments (Chipman et al., 2006; Langer et al., 2008) (Table 1.3). However, the female 

patients showed a longer survival compared to male patients. 

PGA conjugates of CPT, 9-amino-CPT, SN-38 and 10-hydroxy-CPT have been 

reported where the drugs were linked to the polymer via ester bonds. The conjugates with a 

glycine linker between the drug and the polymer were also evaluated. The glycine linker 

allowed for higher drug loading (37% w/w) and >2-fold increase in solubility (25 mg/mL) 

compared to the PGA-CPT conjugate with 14% w/w drug loading and aqueous solubility of 

11 mg/mL. However, there was no difference in the efficacy of the conjugates with or 

without the glycine linker in terms of tumor growth delay in a human lung cancer xenograft 

in mice. The maximum tolerated dose (MTD) of the PGA conjugates was approximately 2-

fold higher than unconjugated CPT (Bhatt et al., 2006). The conjugate with glycine linker (39 

mg/kg CPT equivalent dose) resulted in TGD of 26 days compared to 17 days with 

unconjugated CPT (20 mg/kg dose) in HT-29 colon carcinoma model. In the same model, the 

conjugate with glycine linker (18 mg/kg CPT equivalent dose) increased the tumor exposure 

(AUC) by >7-fold compared to unconjugated CPT (15 mg/kg dose) (Bhatt et al., 2003). A 50 

kDa conjugate showed better efficacy than a 33 kDa conjugate. This is probably due to 

slower clearance of the higher molecular weight conjugate resulting in longer circulation and 

thus allowing higher tumor accumulation (Singer et al., 2001; Singer et al., 2000). 

Recently, dextran conjugates of CPT and dox have been shown to be effective. DX-

8951 (exatecan mesylate) conjugated to carboxymethyldextran polyalcohol via a cathepsin 

sensitive GGFG linker, the product named DE-310, showed antitumor activity in mouse 

models. In a Phase I study with DE-310, the conjugate showed a 600-fold increase in the 

drug exposure and an apparent terminal half-life of 13 days (Soepenberg et al., 2005).  
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1.3.7. Future of PDCs Cancer Therapy 

With several different PDCs currently being evaluated in clinical trials, future 

investigations are expected to focus on designing systems that are more efficient in 

overcoming some of the delivery barriers discussed above. Some of the approaches currently 

being investigated include conjugates targeting specific molecular pathways, designing 

highly specific yet biologically sensitive spacers, incorporating components that allow 

efficient endosomal escape, conformationally favorable conjugates (Deacon et al., 2011) and 

polymer-directed enzyme prodrug therapy (PDEPT) (Satchi-Fainaro et al., 2003). 

Additionally, inclusion of multi-functionality in linear polymers allows for a combination of 

therapeutic functions as discussed above or a theranostic property. A recent report 

investigated formation of 50 nm particles upon formation of electrostatic complex between a 

positively charged fluorescent polymer (quenched when in complex) and negatively charged 

PGA-dox conjugate. The drug release caused fluorescence signal to “turn-on” thus enabling 

the monitoring of drug release and the cellular localization of the complex (Feng et al., 

2010). 

 Coiled-coil conjugates that contain a 1:1 heterodimer of polymer-peptide conjugates 

with a target protein have been developed as cellular delivery systems. PEG conjugate of a 

FOSWc (cysteine derivatized synthetic peptide) was shown to form a coiled-coil heterodimer 

with c-Jun peptide. The coiled-coil conjugate was investigated as a molecular target for the 

activator protein 1 (AP-1) and was shown to be dependent on the presence of transfection 

reagent (Tfx-50) for cell uptake and cytotoxicity (Deacon et al., 2011).    

 PDCs linked via an enzyme cleavable spacer are limited by the availability of the 

cleaving enzyme at the desired site of drug release. To overcome this limitation, an approach 
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involving the administration of a polymer-enzyme sensitive spacer-drug conjugate followed 

by polymer-enzyme conjugate was explored. HPMA copolymer-β-lactamase conjugate was 

administered 5 hr after administration of HPMA copolymer-cephalosporin-dox conjugate. 

The enzyme conjugate is expected to release dox by hydrolysis of the cephalosporin linker 

within the tumor microenvironment. This combination resulted in improved survival and 

reduced tumor growth in mice (Satchi-Fainaro et al., 2003). A similar combination of 

HPMA-GFLG-dox conjugate and HPMA-Cathepsin B conjugate showed increase in dox 

concentration in the tumors following administration of the enzyme conjugate (Satchi et al., 

2001).  

 

1.3.8. Poly(α)-L-glutamic Acid as the Polymer of Choice for Drug Conjugation 

PGA is a synthetic homopolypeptide composed of L-glutamic acid monomers linked 

by amide bonds between α-carbon and nitrogen attached to the α-carbon of adjacent L-

glutamic acid monomer. The γ-carboxyl groups are available for covalent conjugation as 

shown below (Figure 1.9). The figure also shows structural differences between PGA and 

the naturally occurring Poly (γ)-L-glutamic acid (γPGA), usually isolated from Bacillus 

subtilis cultures, that has also been used as therapeutic delivery system (Manocha and 

Margaritis, 2010; Matsusaki et al., 2002; Schneerson et al., 2003).  

PGA undergoes reversible helix-coil transition that is critically dependent on the 

degree of ionization of PGA and therefore pH changes induce corresponding conformational 

changes as shown in Figure 1.10 (Krejtschi and Hauser, 2011; Lumry et al., 1964). The 

random coil is the predominant conformation at physiological pH of 7.4, the mid-point of 

transition being at pH 5.0 (Morcellet and Loucheux, 1976). The polymer solution begins to 
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become turbid as the pH is dropped to 4.5 with visible precipitation below pH 3.0. Circular 

dichroism (CD), optical rotatory dispersion (ORD) and potentiometry have been used to 

investigate the helix-coil transition and the effect of degree of polymerization, extent of 

ionization, type of counterion and ionic strength of the solvent on the optical behavior of 

PGA (Nagasawa and Holtzer, 1964; Rinaudo and Domard, 1976). The random coil 

conformation is favorable for chemical conjugation reactions and was also reported to be 

more stable at higher temperatures than the helix form (Krejtschi and Hauser, 2011). 

Therefore, formulations containing PGA-drug conjugates should be carefully adjusted for pH 

and ionic strength for maximum stability and desired conformation.   

The molecular weight of PGA has been determined using Size Exclusion 

Chromatography (SEC), viscosity measurements using Mark-Houwink equation and 

concentration based determinations by multi-angle laser light scattering (MALLS) analysis 

(Morcellet and Loucheux, 1976; Tansey et al., 2004).  PGA has been investigated as a drug 

delivery system in the form of direct drug conjugates, cross-linked nanoparticles, hydrogels 

etc.  

Drug conjugates of PGA have been formulated as lyophilized products for extended 

shelf stability. In such cases the formulation may contain other inactive components intended 

to stabilize the formulation (buffers, salts etc.) or reduce the reconstitution time (sugars, 

polyols, amino acids etc.) (Besman et al., 2009). PGA is relatively stable to lyophilization 

due to good anti-freeze activity (Shih et al., 2003), and thus formulations containing PGA-

drug conjugates may not need any cryoprotectants during freeze-drying. 
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PGA is completely biodegradable, biocompatible and has high aqueous solubility 

(>50 mg/mL) at physiological pH. Further, the presence of easily modifiable pendant 

carboxyl groups makes it a versatile drug carrier. 
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Figure 1.9 Structure of synthetic poly(α)-L-glutamic acid (PGA) and the naturally 
occurring poly(γ)-L-glutamic acid. 
  

Poly(α)-L-glutamic acid Poly(γ)-L-glutamic acid 
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Figure 1.10 Helix-coil transition of PGA 
Degree of neutralization (α; from 0 to 1) and pH-dependent helix-coil transition of poly-α-L-
glutamic acid (PGA) with a degree of polymerization (DP) = 400 by circular dichroism 
spectra. PGA transitions from a random coil conformation to an α-helix as the degree of 
neutralization of the carboxyl pendant groups increases (reproduced with permission from 
the Journal of American Chemical Society (Rinaudo and Domard, 1976) 
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2.1. Abstract 

D-Pen is an aminothiol that is cytotoxic to cancer cells and generates dose dependent 

ROS via copper catalyzed oxidation. However, the delivery of D-pen to cancer cells remains 

a challenge due to its high hydrophilicity, highly reactive thiol group and impermeability to 

the cell membrane. To overcome this challenge, we investigated a novel PGA conjugate of 

D-pen (PGA-D-pen) where D-pen was conjugated to PGA modified with 2-(2-pyridyldithio)-

ethylamine (PDE) via disulfide bonds. Confocal microscopy and cell uptake studies showed 

that the fluorescently labeled PGA-D-pen was taken up by human leukemia cells (HL-60) in 

a time dependent manner. Treatment of HL-60, murine leukemia cells (P388) and human 

breast cancer cells (MDA-MB-468) with PGA-D-pen resulted in dose dependent cytotoxicity 

and elevation of intracellular ROS levels. PGA-D-pen induced apoptosis in HL-60 cells 

which was verified by Annexin V binding. The in-vivo evaluation of the conjugate in the 

P388 murine leukemia model (i.p.) resulted in significant enhancement in the survival of 

CD2F1 mice over vehicle control. 
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2.2. Introduction 

Cancer cells are under persistent increased reactive oxygen species (ROS) stress due 

to oncogenic stimulation, increased metabolic activity and mitochondrial malfunction 

(Pelicano et al., 2004). Such a sustained oxidative stress and thus exhausted redox buffering 

capacity makes cancer cells more susceptible to killing by oxidative insult compared to 

normal cells.(Gupte and Mumper, 2009) Therefore, agents that elevate intracellular ROS 

levels can lead to cytotoxic effects in cancer cells. 

D-Pen is an aminothiol and a strong copper chelator. It has been registered by the 

FDA for the treatment of Wilson’s disease. We recently showed that D-pen is cytotoxic to 

leukemia (HL-60, HL-60/VCR) and breast cancer cells (MCF-7 and BT-474) when 

externally supplied with copper via concentration dependent generation of hydrogen peroxide 

(H2O2) (Gupte and Mumper, 2007a; Gupte and Mumper, 2007b).The mechanism of H2O2 

generation in the presence of copper was first proposed by Starkebaum and Root 

(Starkebaum and Root, 1985). In a recent study, D-pen was found to produce maximum 

amount of ROS among different amino thiols due to favorable pKa (7.9) of its thiol group 

(Winterbourn and Metodiewa, 1999). The H2O2 generated by D-pen oxidation may result in a 

ROS cascade involving hydroxyl radical via Fenton type reactions (Held et al., 1996).  

Copper has been established as a key cofactor required by a number of proangiogenic 

molecules including FGF, VEGF and interleukin-1 (Mamou et al., 2006; Pan et al., 2002). 

Several in-vitro studies have shown that high copper concentrations facilitate proliferation of 

cancer cells (Hu, 1998; Lowndes and Harris, 2004; Raju et al., 1982). Significantly elevated 

levels of copper have been found in the serum and tumors of patients compared to healthy 

individuals (Gupta et al., 1991; Santoliquido et al., 1976; Siddiqui et al., 2006; Yucel et al., 
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1994; Zuo et al., 2006). Therefore, the delivery of D-pen to the cancer cells may result in a 

dual anticancer effect involving metal catalyzed elevation of cellular ROS levels leading to 

cytotoxicity (mechanism 1) as well as an antiangiogenic effect (mechanism 2). In fact, D-pen 

has been explored in the clinic as an antiangiogenic agent. For example, Matsubara et al. 

reported that D-pen inhibited human endothelial cell proliferation and endothelial cell growth 

factor induced neovascularization in rabbit cornea (Matsubara et al., 1989). 

Although a few previous studies have shown D-pen to cause cytotoxicity in the 

presence of copper in in-vitro studies, these effects were almost certainly due to the 

extracellular production of cytotoxic H2O2 (Duncan et al., 2006; Gupte et al., 2008; Joyce et 

al., 1991; Joyce et al., 1989) since our recent studies confirmed that D-pen is impermeable to 

cancer cells (Gupte et al., 2008). Thus, the cell membrane presents a significant barrier to the 

therapeutic delivery of D-pen as a ROS-producing cytotoxic agent. Moreover, D-pen has 

been shown to rapidly oxidize to D-pen disulfide in-vivo and bind strongly to the plasma 

proteins, mainly albumin, via thiol disulfide exchange (Joyce et al., 1991; Joyce et al., 1989). 

This further limits the availability of D-pen for uptake by the cancer cells. Thus, there is a 

need to devise a delivery system for D-pen that could (i) protect the thiol group; (ii) enhance 

the intracellular delivery; and (iii) deliver high concentration of D-pen to cancer cells. It is 

hypothesized that conjugation of D-pen to the pendant groups of a polymer via disulfide 

bonds could lead to the delivery of higher concentrations of D-pen resulting in enhanced 

intracellular accumulation of D-pen by uptake via endocytosis. It is further hypothesized that 

release of D-pen from its polymeric conjugate in the intracellular reducing environment will 

result in time and concentration dependent cytotoxicity in cancer cells via the generation of 

cytotoxic ROS. 
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Polymer-drug conjugates or “polymer therapeutics” (Duncan et al., 2006) provide distinct 

advantages for the delivery of small drug molecules by acting as passive targeting carriers via 

enhanced uptake and longer retention in the tumors. This ability has been attributed to the 

characteristic leaky vasculature of tumors termed as the EPR effect by Maeda (Maeda et al., 

2009; Maeda et al., 1992). Several polymer-drug conjugates are being investigated for their 

potential to enhance the anticancer efficacy of drugs bound to them (Duncan, 2006).  

Our previous studies using a gelatin-D-pen conjugate showed cellular uptake and 

cytotoxicity in leukemia cells (Gupte et al., 2008). However, the conjugation efficiency was 

low and the conjugate only showed long-term cytotoxicity possibly due to slower uptake and 

release of D-pen from the conjugate. PGA is a biodegradable and biocompatible polymer 

composed of L-glutamic acid monomer units linked together with amide bonds. The pendant 

carboxyl groups of PGA provide excellent sites for drug conjugation. Several anticancer 

drugs have been conjugated to PGA via ester (Li, 2002; Li et al., 1999; Zou et al., 2001), 

hydrazone (Hurwitz et al., 1980) or amide bonds (Kato et al., 1984), with or without spacers 

(Singer et al., 2001; Singer et al., 2000) between the drug and the polymer. 

In the present studies, we describe the synthesis, characterization and in-vivo 

anticancer activity of a novel water-soluble PGA-D-pen conjugate where D-pen is covalently 

bound to PGA via a disulfide bond. The conjugate was also investigated for its ability to 

enhance the intracellular delivery of D-pen and subsequent cytotoxicity through a ROS-

mediated mechanism in leukemia cells. 

 



128 

2.3. Experimental Section 

2.3.1. Materials  

Poly-L-glutamic acid (MW 50−70 kDa), D-penicillamine (D-pen), D-penicillamine 

disulfide, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), 

DL-dithiothreitol (DTT), sodium borohydride (NaBH4), Sephadex G-25 medium, 

chloroquine diphosphate and ammonium dihydrogen phosphate were purchased from Sigma-

Aldrich (St. Louis, MO). NHS-fluorescein and BCA protein assay kit was purchased from 

Pierce Biotech Inc. (Rockford, IL). Acetonitrile, N,N-dimethylformamide (DMF), 

dimethylsulfoxide (DMSO) and o-phosphoric acid (85%) were purchased from Fisher 

Scientific (Pittsburgh, PA). Carboxy-H2DCFDA and propidium iodide were purchased from 

Invitrogen (Carlsbad, CA). Annexin-V-FITC was purchased from BD Pharmingen (San 

Diego, CA). 

 

2.3.2. Synthesis of PGA-D-Pen Conjugate  

PGA-D-pen conjugate was synthesized as shown in Figure 2.1. 2-(2-Pyridyldithio) 

ethylamine (PDE) hydrochloride was synthesized according to a previously published 

method (Gnaccarini et al., 2006). PDE was covalently conjugated to PGA via an amide bond. 

A large molar excess of D-pen was used to conjugate it to the modified PGA via thiol-

disulfide exchange. Briefly, PGA (100 mg, 0.63 mmol of carboxy monomer), PDE 

hydrochloride (279.78 mg, 1.26 mmol), N-hydroxysuccinimide (NHS) (36.15 mg, 0.314 

mmol) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) (120.45 

mg, 0.63 mmol) were added to 5 mL of DMF. Triethylamine (1.5 mmol) was added to the 
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reaction. The mixture was then stirred for 12 hr at room temperature under nitrogen. After 

the reaction, the solvent was removed by vacuum evaporation, and the product washed three 

times with dichloromethane to remove excess reactants. The product was then resuspended in 

0.05 M borate buffer pH 9.0, and D-pen (234.4 mg, 1.26 mmol) was added. The mixture was 

stirred for 12 hr at room temperature. PGA-D-pen was purified and exchanged with PBS pH 

7.4 using a Sephadex G-25 column (1.5 x 30 cm). 

To synthesize fluorescently labeled PGA-D-pen conjugate, 0.04 mL of NHS-

fluorescein in DMSO (3.2 mM) was added to 0.45 mL of PGA-D-pen conjugate in PBS 

buffer pH 7.4. The reaction mixture was stirred in the dark for 1 hr at room temperature. The 

fluorescently labeled conjugate was purified using a Sephadex G-25 column (1.5 x 30 cm). 

The moles of fluor per mole of PGA were determined spectrophotometrically (ε=68000 M−1 

cm−1, λmax= 494 nm). 

 

2.3.3. Choice of Reducing Agent to Measure the Extent of Conjugation  

Three different reducing agents, sodium borohydride (NaBH4), DL-dithiothreitol 

(DTT) and Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) were screened. Briefly, 

PGA-D-pen conjugate was incubated with increasing concentration (5 mM to 25 mM) of the 

reducing agent for varying time (30 min to 4 hr) and the amount of D-pen released was 

determined using HPLC. Based on the results, TCEP was chosen for further studies. 

 

2.3.4. Quantification of D-pen Conjugation by HPLC  

100 mM TCEP (0.25 mL) was added to PGA-D-pen conjugate (0.75 mL) and stirred 

for 1 hr at room temperature. D-pen released upon reduction of the PGA-D-pen conjugate 
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was analyzed with a modification of our previously reported HPLC method (Gupte and 

Mumper, 2007b). The HPLC analysis was performed using a FinniganTM Surveyor HPLC 

System (Thermo Electron Corp., San Jose, CA) with a Gemini C18 column (250 x 4.6 mm; 5 

μM; 20 μL sample; Phenomenex, Torrance, CA). The mobile phase employed was 20 mM 

ammonium dihydrogen phosphate +3% acetonitrile adjusted to pH 2.5 using o-phosphoric 

acid, and pumped at a flow rate of 1 mL/min. D-pen and D-pen disulfide were detected by 

UV absorption at 214 nm with retention times of 5.2 and 4.8 min, respectively. 

 

2.3.5. Cell Uptake Studies  

The uptake of the fluorescently labeled PGA-D-pen conjugate was determined 

qualitatively using confocal microscopy. HL-60 cells (5 × 105) cultured in RPMI-1640 

without phenol red and supplemented with 10% fetal bovine serum, 100 units/mL penicillin 

and 100 μg/mL streptomycin, were plated in a 24 well plate and treated with fluorescently 

labeled PGA-D-pen conjugate (500 μM D-pen equivalent). Cells were washed with PBS and 

resuspended in RPMI 1640 without phenol red and immediately observed under a confocal 

microscope. Cells were transferred onto a slide for visualizing using Zeiss 510 Meta Laser 

Scanning Confocal Microscope (63 x 1.4 NA oil Plan-Apochromat objective; excitation =488 

nm and emission =515 nm; Carl Zeiss, Thornwood, NY). Differential Interference Contrast 

(DIC) images, fluorescence images and the overlapped images taken from the microscope 

were visualized using the Zeiss AIM Viewer (Carl Zeiss, Thornwood, NY). 

To quantitatively determine D-pen associated with HL-60 cells, 5 x 105 cells were 

incubated with PGA-D-pen (500 μM D-pen equivalent) for predetermined time points. The 

cells were centrifuged at 1000 g x 10 min and the supernatant was reduced with TCEP to 
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release free D-pen which was analyzed by HPLC. This was subtracted from the original 

amount to obtain the cell-associated PGA-D-pen. 

 

2.3.6. Cytotoxicity Studies in Cells  

The HL-60 and MDA-MB-468 cells were obtained from American Type Cell Culture 

Collection (ATCC; Rockville, MD). The P388 cells were obtained from National Cancer 

Institute-Frederick Cancer Research Facility, DCT Tumor Repository (NCI, Bethesda, MD). 

HL-60 and P388 cells were cultured in RPMI-1640 (Invitrogen) while MDA-MB-468 cells 

were cultured in DMEM (Invitrogen). The media were supplemented with 100 U/mL 

penicillin, 100 μg/mL streptomycin and 10% Fetal Bovine Serum (FBS) (ATCC). All cell 

lines were maintained at 37oC in a humidified 5% CO2 incubator. Cell viability was regularly 

determined by trypan blue dye (0.4% in phosphate buffered saline) (ATCC).The P388 cells 

and HL-60 cells were plated at 1 x 104 and 4 x 104 cells respectively in 200 μL of medium 

per well in round-bottom 96-well microwell plates. The MDA-MB-468 cells were plated at 1 

x 104 cells/well in 96-well flat bottom microwell plates and allowed to attach overnight. 

Equal volumes of PGA-D-pen conjugate, PGA, D-pen, PGA+D-pen or PBS were added and 

the plates were incubated for 48 hr (37oC, 5% CO2). Twenty (20) μL of MTT reagent (5 

mg/mL in PBS) was added to each well and reincubated for 3-4 hr to allow formation of 

formazan crystals. The round-bottom plates were centrifuged at 200 g x 5 min. Subsequently, 

the supernatant was aspirated and 200 μL DMSO was added to each well and the plate was 

incubated at room temperature for 1 hr to lyse the cells and solubilize formazan. The optical 

density of each well at 570 nm was measured on a SynergyTM 2 Multi-Detection Microplate 
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Reader (Biotek; Winooski, VT). The results were analyzed in terms of percentage of viable 

cells after 48 hr of incubation as compared to control cells. 

 

2.3.7. Intracellular ROS Generation  

ROS generation was assessed using 5-(and-6)-carboxy-2′, 7′-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) (Molecular Probes). Carboxy-

H2DCFDA is a cell permeant probe and has improved intracellular retention due to additional 

negative charges at cytosolic pH. It is converted to a highly fluorescent form upon 

deacetylation by cellular esterases and oxidation. Stock solutions of carboxy-H2DCFDA (2 

mM) were prepared in DMSO. Further dilutions were prepared in PBS. For ROS 

measurement, HL-60 cells were incubated for 30 min in PBS containing 25 μM carboxy-

H2DCFDA. Subsequently, the cells were washed with PBS and resuspended in RPMI-1640 

without phenol red and serum. Three x 104 cells were plated in 96-well dark flat bottom 

plates and treated with different concentrations of D-pen and PGA-D-pen conjugate. 

Fluorescence was determined at various time points post-treatment using SynergyTM 2 Multi-

Detection Microplate Reader at excitation wavelength of 485 ± 20 nm and an emission 

wavelength of 530 ± 30 nm. RPMI-1640 and cells not incubated with the probe were used as 

negative controls while 100 μM H2O2 was used as positive control. 

 

2.3.8. Apoptosis Assay  

HL-60 cells (5 × 105) were incubated with PGA-D-pen (100−1000 μM D-pen 

equivalent) for 2 hr, 6 hr, 14 hr and 24 hr followed by double staining with Annexin-V-FITC 

and propidium iodide (PI) to differentiate between live, necrotic and apoptotic cells. Briefly, 
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the cells were centrifuged, washed with PBS and resuspended in 0.1 mL Annexin-V binding 

buffer. Annexin-V-FITC (5 μL) was added and incubated for 15 min in dark at room 

temperature. PI (10 μL of 50 μg/mL stock solution in binding buffer) and 0.4 mL of binding 

buffer were added and cells were immediately analyzed by flow cytometry (Becton-

Dickinson). Untreated HL-60 cells (negative control), cells treated with 10 μM etoposide 

(Annexin-V-FITC positive control) and cells treated with ethanol for 20 min (PI positive 

control) were analyzed to adjust instrument compensation and setting up the quadrant 

statistics. The results were processed by Cellquest (Becton-Dickinson) and FlowJo (Tree 

Star). 

 

2.3.9. In-vivo Anticancer Efficacy  

To determine the acute toxicity, PGA-D-pen conjugate in 0.9% sodium chloride (300 

mOsmol, pH 7.4, sterile filtered) was administered i.p. to CD2F1 mice (16-18 g) at doses of 

1, 2, 5, and 10 mg/kg D-pen equivalent on day 1, 5, and 9. Sodium chloride (0.9%) was 

administered i.p. as vehicle control to untreated animals. The mice were monitored for 14 

days for mortality and were assigned a body condition score (BCS) (Ullman-Cullere and 

Foltz, 1999) every 48 hr based on body weight and general health criteria. A loss of 10% 

body weight over 3 days or loss of 20% of initial weight and a BCS score of less than 2 was 

considered to be criteria for euthanasia. 

Anticancer efficacy of the PGA-D-pen conjugate was assessed using the 

intraperitoneal P388 murine leukemia model. Briefly, 1 x 105 P388 murine leukemia cells 

were implanted in the i.p. cavity of CD2F1 mice (16-18 g) on day 0. PGA-D-pen was 

administered i.p. on day 1, 5, and 9 at 5 mg/kg and 10 mg/kg D-pen equivalent respectively. 
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The mice were observed daily for mortality and were assigned a BCS every 48 hr. The 

percent survival curves were plotted and median survival was determined. All experiments 

involving mice were performed with the approval of the University of North Carolina 

Institutional Animal Care and Use Committee. 

 

2.3.10. Statistical Analysis  

Statistical analysis was performed with GraphPad Prism 4 Software (GraphPad 

software Inc. San Diego, CA). Results were depicted as mean ± SD. IC50 values were derived 

from the percent viability data by non-linear regression curve fitting. ROS generation was 

analyzed by one-way ANOVA followed by Dunnet’s post test to compare the different dose 

levels to control. Survival curves from the anticancer efficacy studies were plotted by 

Kaplan-Meier’s method and analyzed by Mantel-Cox log-rank test. 
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2.4. Results 

2.4.1. Synthesis and Characterization of PGA−d-pen Conjugate  

PGA-D-pen conjugate was synthesized by modifying PGA with PDE as shown in 

Figure 2.1. PDE is a heterobifunctional cross-linker as the amine group can be used to 

conjugate with carboxy groups while the pyridyl thiol functionality provides an opportunity 

to conjugate thiol groups via thiol-disulfide exchange in the presence of molar excess of 

another thiol like D-pen. The second conjugation reaction was performed in the presence of 

borate buffer pH 9.0 to provide favorable conditions for thiol-disulfide exchange (pKa of D-

pen thiol is 7.9). The final conjugate was completely soluble in water. 

To determine the efficiency of conjugation, different disulfide reducing agents were 

screened. Among the agents tested, TCEP was selected for further studies as it was the most 

efficient reducing agent and did not interfere with the HPLC assay (Figure 2.2). The 

previously developed HPLC assay (Gupte and Mumper, 2007b) was modified to determine 

D-pen, D-pen disulfide and TCEP before and after reduction. The final conjugate had 35 

moles of D-pen per mole of PGA. The theoretical maximum weight loading of D-pen on 

PGA was 8 wt % (9.3% of the pendant carboxyl groups were modified per chain of PGA). 1H 

NMR (Inova 500 spectrometer; 500 MHz in D2O) of the conjugate showed resonance of D-

pen at 3.81 ppm (1 H, C2), 1.85 ppm (3 H, C3-methyl) and 1.68 ppm (3 H, C3-methyl), 

resonance of methylene protons of PDE at 3.03 ppm (2 H, CH2-S) and 3.13 ppm (2 H, CH2-

N) and resonance of PGA at 4.20 ppm (1 H, Cα-H), 2.16 ppm (2 H, Cγ-H2) and 1.84 ppm (2 

H, Cβ-H2). 
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Figure 2.1 Synthesis of PGA-D-Pen Conjugate. 
PGA was covalently linked to PDE using EDC/NHS chemistry. D-Pen was conjugated to 
modified PGA via thiol−disulfide exchange of pyridine-2-thione with D-pen at pH 9.0. 
Abbreviations: PGA, poly-L-glutamic acid; EDC, 1-ethyl-3-[3-dimethylaminopropyl] 
carbodiimide hydrochloride; NHS, N-hydroxysuccinimide. 
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Figure 2.2 Screening of disulfide reducing agents. 
PGA-D-pen was incubated separately with different concentrations of three reducing agents 
for predetermined time and released free D-pen was analyzed by HPLC. Each bar represents 
mean ± SD (n = 3) of the concentration and time at which the highest amount of D-pen was 
released.  
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2.4.2. Cell Uptake Studies  

PGA-D-pen was fluorescently labeled using NHS-fluorescein. The number of moles 

of fluorescein per mole of PGA was 1.34, which was determined spectrophotometrically. The 

intracellular uptake was visualized by confocal microscopy. Live cells were visualized under 

the microscope after exposure to the conjugate for a predetermined time. The control cells 

were visualized to confirm that the cells were healthy and to rule out any background 

fluorescence. The conjugate exhibited time dependent uptake in HL-60 cells (Figure 2.3). To 

further confirm the results obtained by confocal microscopy, cell associated PGA-D-pen was 

determined by HPLC. Up to 25% PGA-D-pen was found to be associated with the cells at 8 

hr. These results support the hypothesis that polymer conjugation increases the cellular 

uptake of D-pen. 
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Figure 2.3 Intracellular uptake of PGA-D-pen conjugate by confocal microscopy. 
Differential interference contrast (DIC) images, fluorescence images and the overlapped 
images of untreated HL-60 cells (A), HL-60 cells treated with fluorescently labeled PGA-D-
pen conjugate for 12 hr (B), 24 hr (C) and 12 hr in the presence of chloroquine diphosphate 
(D) 
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2.4.3. Cytotoxicity Studies in Cells  

The in-vitro cytotoxicity of the conjugate was investigated in leukemia (HL-60 and 

P388) and human breast cancer cells (MDA-MB-468). The PGA-D-pen conjugate treatment 

resulted in a dose-dependent reduction in viability of the cells (Figure 2.4). The IC50 values 

for HL-60 (4 x 104 cells), P388 (1 x 104 cells) and MDA-MB-468 (1 x 104 cells) were 106.1 

μM, 106.3 μM, 156.7 μM, respectively. Similar concentrations of free D-pen, PGA or D-pen 

+ PGA did not cause significant reduction in cell viability over the duration of study. Our 

previous studies have shown that D-pen alone is cytotoxic to cancer cells only at low 

millimolar concentrations (Gupte and Mumper, 2007a).  
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Figure 2.4 Cytotoxicity of PGA-D-pen conjugate in a) HL-60 cells; b) P388 cells and c) 
MDA-MB-468 cells. 
Cytotoxicity was determined by MTT assay 48 hr after treatment with PGA-D-pen. The log 
of equivalent D-pen concentration was plotted on X-axis. Each point represents mean ± S.D. 
(n=3).  
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2.4.4. Intracellular ROS Generation  

Generation of ROS upon treatment with the conjugate was investigated using 

carboxy-H2DCFDA, a nonfluorescent probe which gets converted to highly fluorescent 

derivative following deacetylation by intracellular esterases and oxidation. This dye was 

chosen due to its longer intracellular retention compared to H2DCFDA used in our previous 

studies. The time and dye concentration required for the study were optimized using H2O2, 

which was also used as a positive control. The ROS levels were significantly higher 

compared to the control at all concentrations tested (Figure 2.5). Maximal levels of ROS 

were observed at 8 hr after treatment with PGA-D-pen. The ROS levels at the highest 

concentration of the conjugate, i.e. 500 μM (D-pen equivalent), were not significantly 

different from the levels produced by 100 μM H2O2, which suggests the strong potential of 

the synthesized conjugate to generate intracellular ROS upon release of D-pen. 
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Figure 2.5 Intracellular ROS generation by PGA-D-pen conjugate in HL-60 cells. 
Cells were incubated with 25 µM carboxy-H2DCFDA for 30 min before exposure to PGA-D-
pen conjugate. H2O2 (100 µM) was used as positive control. The fluorescence values were 
measured post-incubation at 8 hr with the conjugate and at 30 min with H2O2 respectively. 
Each bar represent mean ± S.D. (n=3). *p<0.01 and **p<0.001 compared to the control 
untreated cells. 
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2.4.5. Apoptosis Induction  

Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of live 

cells and inverts toward the outer surface during apoptosis. PS inversion is one of the early 

markers of apoptosis. It is possible to distinguish apoptotic and necrotic cells by staining with 

Annexin-V-FITC followed by counterstaining with PI as the former binds PS while PI is 

permeable only to cells with compromised membrane integrity. The HL-60 cells were 

incubated with three different D-pen equivalent concentrations of PGA-D-pen and analyzed 

at different time points to determine time and dose dependence. The number of apoptotic 

cells increased significantly in the PGA-D-pen treated samples (Figure 2.6) with dose and 

time. The percent of apoptotic cells upon treatment with 1000 μM PGA-D-pen (D-pen 

equivalent) for 14 hr was 22.5 ± 2.95%. 
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Figure 2.6 Apoptosis induction by PGA-D-pen. 
Human leukemia cells (HL-60; 5 x 105) were treated with three different concentrations of 
PGA-D-pen followed by double staining with Annexin-V-FITC/PI at different time points. 
A: Flow cytometric analysis of HL-60 cells treated with 1000 µM PGA-D-pen conjugate (D-
pen equivalent). B: The percent apoptotic cells (FITC positive, PI negative) at different time 
points. Each bar represents mean ± SD (n=3). *p<0.001 compared to the control untreated 
cells. 
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2.4.6. In Vivo Evaluation  

The PGA-D-pen conjugate was dosed i.p. in CD2F1 mice at 4 different dose levels 

(1, 2, 5, and 10 mg/kg) to determine the acute toxicity. Mice receiving a 10 mg/kg dose 

showed signs of toxicity (consistently lower BCS scores), but no mortality was observed 

after 14 days. The mice in this group showed no weight loss, but the mean percent weight 

gain was less than that of the control group. Therefore, 10 mg/kg was used to evaluate the in-

vivo anticancer efficacy of PGA-D-pen conjugate. The conjugate was also dosed at the 5 

mg/kg dose level to determine a dose response in the enhancement of survival. 

P388 i.p. model is a widely used animal model and involves implantation of cells in 

the ip cavity (Dykes and Waud, 2002). The tumor doubling time is 0.4 to 0.5 day, and the 

survival span is between 9 and 11 days in CD2F1 mice (Waud et al., 1992). The median 

survival upon treatment with 10 mg/kg and 5 mg/kg of PGA-D-pen on days 1, 5, and 9 

increased by 28.5% (13.5 days) and 24% (13 days) respectively over control, which was 

significant (p < 0.05) based on log-rank analysis of the survival curves (Figure 2.7). 
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Figure 2.7 Percent survival curves in CD2F1 mice upon i.p. administration of PGA-D-
pen. 
Mouse leukemia cells (P388) were implanted i.p. on day 0. PGA-D-pen conjugate was 
administered i.p. on day 1, 5 and 9. Control group (saline) was compared to the groups 
treated with PGA-D-pen (6 mice/group). 
  

5 10 15 
0

20 

40 

60 

80 

100 

Saline

PGA-D-pen (5 mg/kg)

PGA-D-pen (10 mg/kg)

Time (days)

P
er

ce
n

t 
S

u
rv

iv
al

 



149 

2.5. Discussion 

We and others have previously shown that D-pen is impermeable to cancer cells 

(Gupte et al., 2008; Lodemann, 1981). The impermeability results from a combination of 

high hydrophilicity (log P -0.39) (Chvapil et al., 2005) and the D-isoform being 

stereochemically less favored for cellular uptake by the amino acid transporters (Lodemann, 

1981). Polymer bound drugs have been shown to be taken up by the cells via fluid phase 

endocytosis (Omelyanenko et al., 1998). Therefore, PGA-D-pen conjugate was synthesized 

to enhance the intracellular uptake of D-pen. Additionally, conjugation to PGA via disulfide 

bonds would provide protection to the thiol group of D-pen before it reaches the target cells 

and ensure intracellular release by endosomal disulfide reduction (Fivaz et al., 2002; Shen et 

al., 1985).  

D-Pen has been shown to cause cytotoxicity by dose dependent generation of ROS 

via copper catalyzed one electron oxidation (Gupte and Mumper, 2007a). Cancer cells have 

an exhausted redox buffer capacity, and further increase in the oxidant load can lead to 

generation of apoptotic signals that may ultimately lead to cell death. Similar effects were 

observed with D-pen released intracellularly from the PGA-D-pen conjugate. Thus, it is 

possible that the major mechanism of cytotoxicity caused by D-pen is apoptosis induction via 

ROS generation. Leukemia cells were found to be more sensitive to PGA-D-pen treatment 

with lower IC50 values. This is similar to our previously reported in-vitro experiments (Gupte 

and Mumper, 2007a) except that the cells were not supplemented with copper. To investigate 

if the ROS generation and cytotoxicity were related to the endogenous copper levels in the 

different cells, we measured the intracellular copper in HL-60, P388 and MDA-MB-468 cells 

by ICP-MS (inductively coupled plasma mass spectrometry) (data not shown). There was no 
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direct correlation between the cytotoxicity and the endogenous copper levels suggesting that 

cytotoxicity of D-pen may be mediated by mechanisms additional to metal catalyzed ROS 

generation like a p53 dependent apoptosis induction (Havre et al., 2002) and binding to 

cellular proteins by thiol exchange similar to the endogenous thiols (Brennan et al., 2006) 

which are all independent of the availability of copper. 

The confocal microscopic pictures showed a punctate pattern of fluorescence 

characteristic of endocytic uptake of macromolecular structures (Nori et al., 2003; 

Omelyanenko et al., 1998). The punctate pattern still exists at 24 hr suggesting that 

endosomal release mechanisms may be needed to release the conjugate or released D-pen 

into the cytosol. These observations suggest that cytosolic delivery of the conjugate and/or 

released D-pen may be important. To qualitatively assess the effect of endosomal escape on 

the cell uptake of the fluorescently labeled PGA-D-pen, uptake studies were performed in the 

presence of 50 μM chloroquine diphosphate (CD) based on preliminary cytotoxicity studies 

with CD alone in which this concentration did not result in significant reduction in cell 

viability. CD is a lysosomotropic agent and has been shown to increase cytosolic delivery 

(Ciftci and Levy, 2001) by raising the endosomal pH (Maxfield, 1982) leading to an osmotic 

burst of the endosome. In our studies (Figure 2.3D), we found that CD treatment resulted in a 

diffused pattern of fluorescence of the fluorescently labeled PGA-D-pen in HL-60 cells. 

Moreover, cotreatment of HL-60 cells (4 x 104) with PGA-D-pen conjugate and 50 μM CD 

resulted in 20% enhancement in cytotoxicity of the conjugate (at IC50 value) when 

normalized to CD treatment over 48 hr suggesting that endosomal release may be important 

in the enhancement of the efficacy of the conjugate. We are currently investigating cellular 

uptake and transport mechanisms of the conjugate including possible strategies to avoid 
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endosomal accumulation. Future efforts are focused on incorporation of an endosomal 

release mechanism that would result in the cytosolic delivery and more efficient intracellular 

reduction of the conjugate. 

Based on the results of studies above, it was concluded that PGA-D-pen was able to 

successfully deliver D-pen to cancer cells. Although high doses of the conjugate (D-pen 

equivalent) are required to achieve beneficial effect if used alone, it has been reported that 

tumorigenic cells are 30-100-fold more sensitive to treatment with D-pen compared to 

normal cells (Havre et al., 2002; Okuyama and Mishina, 1981). This in-built selectivity 

makes D-pen a potential agent for development as an anticancer drug. However, it may be 

essential to combine it with a standard chemotherapy regimen when used in the clinic. For 

example, NOV-002, a new drug formulation under clinical trials, is the disodium salt of 

glutathione disulfide in complex with cisplatin in a ratio of 1000:1. It has been proposed that 

NOV-002 acts mainly by disturbing the cellular redox balance and results in increased 

efficacy when used in combination with cisplatin and other chemotherapeutics (Tew et al., 

2008; Townsend et al., 2008). It is important to note that the active component of NOV-002, 

glutathione disulfide, is not cytotoxic even at very high doses when used alone, and like D-

pen, glutathione disulfide is impermeable to the cell membrane (Brennan et al., 2006). This is 

relevant as we have found that treatment with D-pen in the presence of copper results in a 

decrease in cellular thiols and has the potential to perturb cellular redox balance while 

generating cytotoxic ROS (Gupte and Mumper, 2007a). Therefore, in an attempt to further 

enhance the efficacy of PGA-D-pen, we are currently developing dual drug conjugates where 

an anticancer anthracycline derivative will be conjugated to the PGA-D-pen conjugate via 

acid-cleavable hydrazone linkages. It has been reported that iron complexes of anthracyclines 
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especially doxorubicin catalyze oxygen consumption and ROS generation by thiols (Myers et 

al., 1982). Codelivery of an anthracycline with D-pen bound to a single polymer may 

synergistically enhance the anticancer efficacy, tolerability and an overall dose reduction of 

the chemotherapeutic. 
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2.6. Conclusions 

A polymeric conjugate of D-pen with PGA was synthesized to achieve enhanced 

intracellular accumulation and anticancer efficacy. D-Pen was linked to the polymer by 

disulfide bonds using a heterobifunctional linker. The conjugate increased cell uptake of 

polymer bound D-pen as observed by confocal microscopy and HPLC. The ROS generation 

by PGA-D-pen upon cellular uptake results in apoptosis mediated cytotoxicity in P388 

murine leukemia cells. PGA-D-pen significantly enhanced the survival of CD2F1 mice over 

control animals. Future efforts are focused toward investigating the intracellular release of D-

pen from the conjugate and improving the anticancer efficacy of PGA-D-pen by synthesizing 

dual drug conjugates. 
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Polypeptide-Conjugates of D-penicillamine and Idarubicin for Anticancer Therapy 
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3.1. Abstract 

We investigated oxidative stress therapy of cancer with a novel combination of D-pen 

and ida in a synthetic dual drug conjugate (DDC). D-pen and Ida were covalently linked to 

poly(α)-L-glutamic acid (PGA), a completely biodegradable and biocompatible 

homopolypeptide, via reducible disulfide and acid-sensitive hydrazone bonds respectively. 

The DDCs showed sustained release of the bound drugs in conditions mimicking the 

intracellular release media (10 mM glutathione and pH 5.2) and were taken up by cancer 

cells in a time-dependent manner. The in-vitro cytotoxicity of DDCs was comparable to 

unconjugated Ida in several sensitive and resistant cancer cell lines and correlated with the 

rate of cell uptake. In a single equivalent-dose pharmacokinetic (PK) study, DDCs enhanced 

the drug exposure by 7-fold and prolonged the plasma circulation half-life (t1/2) by 5-fold 

over unconjugated Ida. The therapeutic index (maximum tolerated dose; MTD) of DDCs was 

2-3-fold higher than unconjugated drugs. When dosed at MTD, DDCs caused 89% tumor 

growth inhibition compared to 60% by unconjugated Ida alone and led to significant 

enhancement in the median survival (17%) of athymic nu/nu mice bearing NCI-H460 tumor 

xenografts. 
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3.2. Introduction 

Oxidative stress therapy of cancer involves treatment with xenobiotics that cause 

elevation of intracellular reactive oxygen species (ROS). ROS are natural by-products of 

mitochondrial metabolism and cells maintain a low level of ROS as they have an important 

role in cell signaling pathways (Martin and Barrett, 2002; Murphy, 2009). However, at 

higher levels, ROS may cause direct damage to DNA, cause lipid peroxidation leading to 

membrane destabilization, and initiate apoptotic signals (Cejas et al., 2004; Chandra et al., 

2000). We have shown that D-penicillamine (D-pen), an aminothiol, generates dose-

dependent ROS in cancer cells and is cytotoxic (Gupte and Mumper, 2007). Recently, the 

involvement of p53 tumor suppressor protein that is highly sensitive to cellular ROS levels 

has also been implicated in apoptotic cell death induced by D-pen (Havre et al., 2002). 

However, a reactive thiol group, rapid clearance, low cellular permeability, strong plasma 

protein binding and higher effective concentrations are major barriers to the successful 

delivery of D-pen to cancer cells (Gupte and Mumper, 2007; Joyce et al., 1991; Joyce et al., 

1989; Lodemann, 1981). We previously reported the synthesis of poly-α-L-glutamic acid-D-

pen (PGA-D-pen) conjugate, where D-pen is covalently linked to PGA via intracellularly 

reducible disulfide bonds. PGA-D-pen enhanced the cell permeability of D-pen. Elevated 

cellular ROS levels upon uptake leading to the induction of apoptosis and enhancement in 

survival of mice bearing i.p. leukemia was reported (Wadhwa and Mumper, 2010). In the 

present study, we investigated a novel combination of ida and D-pen, delivered as dual drug 

conjugates (DDCs) of PGA, to further enhance the anticancer efficacy. 

Ida, an anthracycline derivative, has been effective as first line treatment for acute 

leukemia and several other cancers (Borchmann et al., 1997). Anthracyclines act by several 
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mechanisms including DNA intercalation, topoisomerase II inhibition and p53 mediated 

apoptosis induction (Gewirtz, 1999). Cellular damage by anthracycline-iron (Fe) complexes 

via generation of ROS has been considered an important mechanism in their cytotoxicity 

(Minotti et al., 2004). The ROS generation is dependent on and is augmented by thiol 

mediated reduction of the anthracycline-Fe (III) complex to anthracycline-Fe (II) which is 

redox active. This reduction results in further generation of hydroxyl radicals that are the 

most damaging among ROS (Muindi et al., 1984; Xu et al., 2005), via Fenton type reactions 

(Held et al., 1996). Moreover, it has been shown that the anthracycline-iron complex can 

catalyze oxygen consumption by thiols and thus may augment ROS generation (Eliot et al., 

1984). We hypothesized that DDCs co-delivering D-pen and Ida will be highly effective 

anticancer agents and reduce adverse events associated with administration of Ida leading to 

an increase in the therapeutic index. To the best of our knowledge, this is the first report 

investigating the combination of an anthracycline with an aminothiol for anticancer therapy 

through DDCs.  

Conjugation of drugs to linear polymers like PGA, HPMA copolymer and 

polyethylene glycol via releasable linkers has several advantages. It has been shown to 

prolong plasma circulation, improve tumor accumulation and drug solubility (Duncan, 2003; 

Rodrigues et al., 1999; Ulbrich et al., 2003; Ulbrich et al., 2000). Longer circulation enables 

increased passive accumulation in the tumors. Further enhancement in tumor uptake may be 

achieved due to the presence of leaky, distorted vasculature in solid tumors and poor 

lymphatic drainage, the major source of clearance for macromolecules (Maeda et al., 2009; 

Maeda et al., 1992). Polymer drug conjugates (PDCs) have also been investigated for 

combination therapy of cancer to enhance therapeutic responses (Vicent, 2007). This 
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includes using single drug polymer conjugates in combination with chemotherapy (Herzog et 

al., 2005), synthesis of multi-functional conjugates (Vicent et al., 2005) and simultaneous 

delivery of two separate PDCs (Dharap et al., 2005). PGA is a linear homopolypeptide 

composed of L-glutamic acid monomer, an endogenous amino acid. It is very sensitive to 

cleavage by lysosomal cysteine proteases, cathepsins, and can be dosed at very high levels 

with no adverse events (Kishore et al., 1990; Wen et al., 2004). PGA has been widely 

investigated for drug conjugation (Li, 2002). PGA-PTX conjugate showed strong antitumor 

effect in preclinical studies and results of a phase III clinical trial in NSCLC patients were 

published recently whereby the conjugate was equally effective as chemotherapy controls, 

however, a greater anticancer effect was observed in the female patients (Chipman et al., 

2006; Langer et al., 2008; Sabbatini et al., 2004).  

The DDCs of the present study were investigated for anticancer efficacy in a non-

small cell lung cancer (NCI-H460) model. Detailed analysis of the plasma and organ 

disposition kinetics was performed to study the in-vivo behavior.  
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3.3. Materials and Methods 

3.3.1. Materials 

Poly-α-L-glutamic acid sodium salt (MW 50-70 kDa), D-penicillamine (D-pen), 

tris(2-carboxyethyl)phosphine hydrochloride (TCEP), 1-ethyl-3-[3-dimethylaminopropyl] 

carbodiimide hydrochloride (EDC), glutathione and N-hydroxysuccinimide (NHS) were 

purchased from Sigma-Aldrich (St. Louis, MO). Slide-A-Lyzer® dialysis cassettes, 4-

maleimidophenylbutyric acid hydrazide hydrochloride (MPBH), sepharose Cl-4B, buffers 

and all solvents were purchased from Thermo Fisher Scientific (Rockford, IL). Idarubicin 

hydrochloride was purchased from Synbias Pharma (Donetsk, Ukraine). 

 

3.3.2. Synthesis of Idarubicin MPBH (1) 

Idarubicin hydrochloride (16 mg, 0.03 mmol) and 4-maleimidophenylbutyric acid 

hydrazide hydrochloride (MPBH) (50 mg, 0.15 mmol) were dissolved in anhydrous methanol 

(10 mL). A few drops of trifluoroacetic acid were added and the reaction was stirred for 96 hr 

at room temperature under argon. The mixture was concentrated to 2 mL and precipitated 

from anhydrous ethyl acetate. The precipitate was separated by centrifugation. The 

precipitation was repeated three times and the product (1) was dried under vacuum (14 mg, 

62%). 1H NMR (400 MHz, CD3OD): δ (ppm) = 1.17 (m, 3H), 1.93-2.03 (m, 7H), 2.32 (t, 

2H), 2.65 (m, 2H), 3.0-3.12 (m, 3H), 3.52 (t, 1H), 6.96 (s, 2H), 7.21 (m, 4H), 7.89 (m, 2H), 

8.29 (m, 2H); m/e (ESI): 753.37. 
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3.3.3. Synthesis of DDC (4) 

 2-(2-Pyridyldithio) ethylamine (PDE) hydrochloride was synthesized as described 

previously (Gnaccarini et al., 2006). PGA sodium (0.5 g) was dissolved in 5 mL deionized 

water cooled to 4oC. Hydrochloric acid (1 N) was added drop-wise to precipitate PGA. The 

precipitate was washed with water until the pH was >5.0. The precipitate was lyophilized on 

a VirTisTM AdVantage Freeze Dryer (SP Scientific, Gardiner, NY). Lyophilized PGA (50 

mg, 0.83 µmol) was dissolved in anhydrous dimethylformamide (DMF) (5 mL). Then, 1-

ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) (63.9 mg, 0.33 mmol), 

N-hydroxysuccinimide (NHS) (18.10 mg, 0.16 mmol) and PDE (37.8 mg, 0.17 mmol) were 

added to the flask. The mixture was stirred for 12 hr at room temperature under an 

atmosphere of argon. The PGA-PDE conjugate (2) was precipitated by addition of ether and 

subsequent washing with water. The conjugate was dissolved by adding a few drops of 0.5 M 

sodium bicarbonate and pH was adjusted to 7.4 using 0.1 M PBS. The extent of conjugation 

was determined spectrophotometrically (ε = 8080 M-1 cm-1, λmax = 343 nm) by measuring the 

absorbance of pyridine-2-thione released upon the reduction of the conjugate in presence of 

25 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP) for 1 hr.  

To the solubilized PGA-PDE conjugate, D-pen (124 mg, 0.83 mmol) was added and 

the mixture was stirred for 12 hr at room temperature. The PGA-D-pen conjugate (3) was 

dialyzed against 10 mM PBS for 48 hr using a Slide-A-Lyzer dialysis cassette (Thermo 

Scientific, Rockford, IL). The extent of D-pen conjugation was determined by HPLC as 

described previously (Wadhwa and Mumper, 2010). To synthesize DDCs (4), the PGA-D-

pen conjugate (containing 0.05 mmol D-pen) was reduced in the presence of TCEP (1 mM) 

for 5 min. TCEP was removed by centrifugation using an AmiconTM Ultra-15 centrifugal 
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filter (Millipore, Bedford, MA) and Ida-MPBH (11.54 mg, 0.015 mmol) was added. The 

reaction was stirred for 12 hr at room temperature. The DDCs were purified by filtration with 

a sepharose CL-4B column (15 x 1.5 cm) using PBS pH 7.4 as the mobile phase, lyophilized 

and stored at -20oC until further use. 1H NMR (400 MHz, CD3OD): δ (ppm) = 1.23-1.43 (m, 

6H), 1.83-2.38 (s, broad, ~30H), 3.31-3.49 (m, broad ~12H), 3.56-3.67 (m, broad, ~6H), 

7.86-8.26 (m, broad, ~21H). The molecular weight of PGA measured by viscosity and multi-

angle laser light scattering (MALLS), as reported by the manufacturer, was 50-70 kDa. We 

determined the molecular weight before and after conjugation with dynamic light scattering 

(DLS) using a Nano-ZSTM Zetasizer (Malvern, Worcestershire, UK). Toluene was used as a 

scattering standard. The refractive index increment (dn/dc) of 0.176 was used to run ten 

different standards in the concentration range of 5 mg/ml to 0.05 mg/ml (Van et al., 2010). 

The DDCs at concentration within the standard curve were analyzed to obtain the molecular 

weight after conjugation. The average molecular weight of DDCs determined by DLS, was 

found to be 68 ± 8.9 kDa before conjugation and 101.6 ± 1.67 kDa after conjugation. 

Although 1H-NMR showed the presence of aromatic protons of Ida, it was difficult to 

estimate the extent of conjugation. Therefore, a spectrophotometric method was used to 

determine Ida concentrations in the conjugate (ε = 8887.8 M-1 cm-1, λmax = 483 nm). 

Additionally, the Ida content was also measured by HPLC following acidification of DDC 

with 1 N HCl for 30 min. The final conjugate had approximately 4 moles of Ida (35 mg Ida/g 

PGA) and 36 moles (89 mg D-pen/g of PGA) of D-pen per PGA chain (theoretical average 

molecular weight of 60 kDa). This converts to a weight ratio of 2.515 for D-pen:Ida. 
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3.3.4. Circular Dichroism Study 

Spectra were acquired on a ChirascanTM-plus Circular Dichroism (CD) Spectrometer 

(Applied Photophysics, Leatherhead, UK). The spectra were measured from 185 nm to 260 

nm at 25oC, pH 7.4 and PGA concentration of approximately 50 µM. Two independent 

measurements were performed for each sample. Simultaneous UV absorbance spectra were 

measured in the same wavelength range to monitor scattering and optimize sample 

concentrations.  

 

3.3.5. Cell Culture 

The HL-60, P388 and NCI-H460 cells were obtained from American Type Cell 

Culture Collection (ATCC; Rockville, MD). HL-60/VCR (P-gp) and P388/ADR (MRP-1) 

cells were provided by Dr. Baer (Roswell Park Cancer Institute, Buffalo, NY). The cells were 

cultured in RPMI 1640 medium (Invitrogen, Carlsbad, CA). The media were also 

supplemented with 10% Fetal Bovine Serum, 100 U/mL of penicillin and 100 µg/mL of 

streptomycin (ATCC, Rockville, MD). All cell lines were maintained at 37oC in a humidified 

5% CO2 incubator. 

 

3.3.6. HPLC Method 

Analysis of Ida concentration was performed by HPLC on Finnigan SurveyorTM 

HPLC system (Thermo Electron Corp., San Jose, CA) equipped with a fluorescence detector 

using a Synergi® Hydro-RP column (250 mm x 4.6 µm; 4 µm; 25 µL injection volume; 

Thermo Electron Corp., San Jose, CA). The mobile phase containing (v/v) 65% 0.1 M 

sodium dihydrogen phosphate (adjusted to pH 2.2 using o-phosphoric acid) + 35% 
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acetonitrile was pumped at 1 mL/min. The retention time of Ida was 6.5 min and standard 

curve was constructed in the range 5 ng/mL – 1000 ng/mL. The limit of detection was 1 

ng/mL. D-pen was analyzed by the HPLC method described previously (Wadhwa and 

Mumper, 2010). 

 

3.3.7. Mice Plasma and Tissue Sample Analysis 

To analyze DDCs in the plasma, samples were acidified with 1 N HCl and incubated 

for 30 min to release the conjugated Ida. Acetonitrile (five volumes) was added to the 

samples to precipitate proteins. The samples were diluted in mobile phase, vortexed and 

centrifuged (14,000 g x 10 min) after 15 min. The supernatants were analyzed by HPLC. 

Spike standard curves of Ida and DDCs were prepared in mouse plasma and the percent 

recovery was calculated prior to actual sample analysis. 

Weighed tissue samples were added to lysis vials containing zirconium oxide beads 

and homogenized in the presence of water on a Precellys®-24 Tissue Homogenizer (Bertin 

Technologies, France). Further processing of the homogenized tissue was similar to plasma 

samples.   

 

3.3.8. In-vitro Release of the Conjugated Drugs 

The DDCs were incubated in 0.1 M MES buffer pH 5.2 to mimic the acidic 

endosomal environment. The samples were also incubated in 10 mM phosphate buffer pH 

7.4 to validate the pH specific release of Ida. At predetermined time, the sample was injected 

into HPLC column to determine the amount of Ida released from the conjugate. D-pen 
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release from the conjugate in the presence of 10 mM glutathione (GSH) was determined. 

Samples were analyzed by HPLC.   

 

3.3.9. Cell Uptake  

To investigate the cellular uptake of DDCs, human leukemia (HL-60) cells (1 x 106) 

were incubated with 1 µM DDCs (Ida equivalent dose) for 4 hr and 12 hr. The cells were 

visualized live using Zeiss 510 Meta Laser Scanning Confocal Microcope (63 x 1.4 NA oil 

Plan-Apochromat objective; Excitation: 488 nm and emission: 540 nm; Carl Zeiss, 

Thornwood, NY). The images were processed using Zeiss AIM Viewer (Carl Zeiss, 

Thornwood, NY).  

Quantitative analysis of cell uptake was performed by flow cytometric analysis. 

Briefly, HL-60 cells were treated with either Ida or DDCs for a predetermined time. Further 

processing was done at 4oC. The cells were washed two times with and resuspended in cold 

10 mM PBS containing 2% sodium edetate and 10% FBS. Analysis was immediately 

performed on a BDTM LSR II Flow Cytometer (BD Biosciences, Franklin Lakes, NJ) using 

the 488 nm laser for excitation.  

 

3.3.10. Stability of DDCs in Mouse Plasma  

To determine the stability of the hydrazone linkage between Ida and PGA, 0.1 mL of 

DDCs were incubated with 0.9 mL mouse plasma at 37oC for selected times (0.25, 0.5, 1, 2, 

4, 8 and 24 hr). Samples were divided in two equal parts. One part was acidified with 1 N 

HCl for 30 min. Both samples were further processed as described above. Analysis was 
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performed by HPLC. The percent of Ida conjugated was calculated by subtracting the results 

of acidified samples from those not acidified. 

 

3.3.11. Cytotoxicity Studies  

Leukemia cells were incubated in 96 well round-bottom cell culture plates at 1 x 104 

cells/well few hours before treatment. NCI-H460 cells were incubated in 96 well flat-bottom 

cell culture plates at 1 x 104 cells/well overnight to allow for attachment. The final dilutions 

for all the treatment groups were made in the culture medium. The cell viability was 

measured at 48 and 72 hr following treatment by addition of (3-(4, 5-dimethylthiazolyl-2)-2, 

5-diphenyltetrazolium bromide) (MTT) reagent at a final concentration of 0.5 mg/mL. The 

media was removed (centrifugation preceded aspiration in case of leukemia cells) and 

resulting formazan crystals were dissolved in DMSO and the absorbance was measured at 

570 nm on a SynergyTM 2 Multi-Detection Microplate Reader (Biotek, Vinooski, VT). The 

results were expressed as percent viable cells compared to untreated control. 

 

3.3.12. Plasma Disposition and Biodistribution Studies 

NCI-H460 cells (1 x 106) were implanted subcutaneously (s.c.) in the right flank of 

male athymic nu/nu mice (20-25 g). When the tumors attained a size of approximately 200 

mm3 (day 13), the mice were injected i.v. with Ida (3 mg/kg) or DDC (3 mg Ida 

equivalent/kg and 7.5 mg D-pen equivalent/kg). The mice (n=3/time point) were sacrificed at 

selected times between days 13 and 15 (t= 0.08, 0.25, 0.5, 1, 4, 8, 24 and 48 hr). Blood was 

collected by cardiac puncture. Subsequently, tumors and organs (heart, liver, kidneys, lungs 

and spleen) were blotted with a filter paper and collected in pre-weighed lysis tubes 
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containing zirconium oxide beads. Plasma was separated from blood with Lithium-Heparin 

microtubes (Sarstedt, NC). Plasma and organ samples were stored at -80oC until further 

analysis. The samples were analyzed for Ida concentration by HPLC as described above. The 

data were analyzed by non-compartmental pharmacokinetic analysis using WinNonlin® 4.0 

(Pharsight, Mountain View, CA). 

 

3.3.13. Antitumor Efficacy 

Athymic nu/nu mice bearing NCI-H460 tumor xenografts (40 ± 10 mm3) were 

intravenously administered different treatment groups. A dosing regimen of Q2dx3 was 

followed based on a dose escalation study performed in BALB/c mice (20-25 g; n= 3-

4/dose). The mice were monitored for tumor volume, body weight and a body condition 

score (BCS) was assigned every 24-48 hr (Ullman-Cullere and Foltz, 1999). The length of 

the study was 60 days from tumor implantation. A loss of body weight that is 20% or greater, 

a 10% or greater loss over three consecutive days, or a BCS of 2 or lower was considered as 

a criteria for euthanasia. Tumors were not allowed to grow larger than 1500 mm3. All 

experiments involving mice were performed with the approval of the University of North 

Carolina Institutional Animal Care and Use Committee. 

 

3.3.14. Statistical Analysis 

Organ pharmacokinetic data was analyzed by regular two-way ANOVA followed by 

Bonferroni post-test to compare the means at individual time points between different 

treatments. Tumor volume (TV) were calculated as, TV (mm3) = ((length (mm) x width2 

(mm))/2). Tumor growth inhibition (TGI) was calculated as, TGI (%) = ((TVuntreateed – 
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TVtreatment)/TVuntreated) x 100. Differences between TVs in the anticancer efficacy studies were 

analyzed by one-way ANOVA followed by Dunnett’s post-test. Survival curves were plotted 

by Kaplan-Meier method and analyzed by Mantel-Cox log rank test. Differences were 

considered significant if the p values were less than 0.05. 
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3.4. Results and Discussion 

3.4.1. Synthesis of Dual Drug Conjugates 

The DDCs were synthesized to contain two drugs – D-pen and Ida. Two distinct 

mechanisms for the release of the conjugated drugs were incorporated in the DDCs. Ida was 

derivatized with MPBH (Figure 3.1) to incorporate acid cleavable hydrazone linkage in the 

DDC. The hydrazone linkage is expected to cleave in the acidic endosomal compartment 

upon cellular uptake (Ulbrich and Subr, 2004). Ida-MPBH (1) was conjugated to DDCs (4) 

via thioether linkage (Figure 3.2). D-pen was conjugated to PGA through disulfide linkage 

as described previously. The disulfide bond has been shown to release upon cellular uptake 

in the endosomes by an enzymatic pathway mediated by GILT as well as in the cytosol by 

GSH and thioredoxin (Arunachalam et al., 2000; Gao et al., 2010). Two separate HPLC 

assays were developed to analyze both the drugs released from the conjugate.  

Previously reported PGA-D-pen conjugate was used as the starting material for the 

synthesis of DDCs (Wadhwa and Mumper, 2010). Derivatization with MPBH provides a 

maleimide end group that can be covalently linked to the exposed sulfhydryl groups on PGA-

D-pen (3) under controlled reduction using TCEP. The reduction reaction was optimized to 

release 10-12% of the conjugated D-pen that can be analyzed by HPLC. It is important to 

perform the disulfide reduction in the presence of a metal chelator like EDTA and 

immediately purify the partially reduced conjugate to avoid oxidative cross-linking of the 

polymer chains. The conjugate was buffer exchanged with PBS pH 7.4 using a sepharose 

CL-4B column before reaction with Ida-MPBH (1) to provide an optimum pH for 

maleimide-thiol reaction. The pH range of 6.5 to 7.5 provides high specificity of maleimides 

towards sulfhydryls and reaction with free amines is negligible (Partis et al., 1983). 
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Derivatization of daunorubicin to provide maleimide end groups was reported by Kratz and 

co-workers who developed highly active drug-transferrin conjugates while the amide linked 

conjugates were inactive (Kratz et al., 1997). Similar derivatives of doxorubicin developed to 

bind albumin in-situ, showed superior antitumor efficacy (Kratz et al., 2002). Derivatization 

of doxorubicin with maleimide end group and conjugation to elastin like polypeptides (ELPs) 

has been reported with increased antitumor efficacy (Dreher et al., 2003; Mackay et al., 

2009).  

PGA has been reported to undergo a pH dependent helix-coil transition with an 

almost complete conversion to α-helix below pH 4.5 and greatly reduced water solubility 

(Krejtschi and Hauser, 2011; Lumry et al., 1964). As the PGA used in the synthesis of PGA-

D-pen was previously acid-precipitated, lyophilized and solubilized in DMF, it was expected 

to be in the helix conformation during the reaction. The PGA-D-pen conjugate was 

solubilized in sodium bicarbonate with a resulting pH of 8.0 - 8.5. Interestingly, CD spectra 

measurements showed the presence of PGA in helical conformation in a completely water 

soluble state (Figure 3.3). This may be due to hydrophilicity imparted by the D-pen 

molecules on the outer side of the helix that may lead to the solubilization while the core may 

contain some unionized carboxyl groups that help stabilize the helix.  
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Figure 3.1 Synthesis of Ida-MPBH. 
Reagents: a) Anhydrous methanol, trifluoroacetic acid and MPBH 
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Figure 3.2 Synthesis of dual drug conjugates (DDCs). 
Reagents: a) 1 N HCl, Lyophilization; b) PDE, EDC, NHS, DMF; c) D-pen, PBS pH 7.4; d) 
1 mM TCEP, 5 min; e) Ida-MPBH.  
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Figure 3.3 Circular dichroism spectra of PGA and DDC. 
The spectra before conjugation were compared with that of dual drug conjugate at 25oC and 
PGA concentration of approximately 50 µM. Each value is a mean of two independent 
measurements.  
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3.4.2. In-vitro Drug Release 

 The DDCs released 90% of hydrazone-conjugated Ida within 14-16 hr of incubation 

(Figure 3.4A). However, the conjugate was stable at pH 7.4 with less than 10% Ida being 

released at the end of 16 hr. This is in agreement with what has been observed with several 

polymeric conjugates where doxorubicin was conjugated via hydrazone linkage (Rodrigues 

et al., 1999; Etrych et al., 2002). The rate of hydrolysis of hydrazone (imine) bond increases 

with a decrease in the pH as the rate limiting step in the hydrolysis changes from attack of 

hydroxyl anion on the protonated imine leading to carbinolamine formation to the 

decomposition of carbinolamine to the starting products i.e. the ketone and free amine 

(D’Souza and Topp, 2004). Therefore, the conjugate is expected to be stable in circulation 

and only release the bound drug upon cellular uptake. Some degree of release may occur in 

the extracellular matrix environment in areas of low pH within the tumor. Several studies 

have reported conjugation of doxorubicin to drug carriers via hydrazone bonds and 

subsequent intracellular release.  

D-pen was completely released in the presence of 10 mM GSH within 3 hr (Figure 

3.4B). The normal range of intracellular GSH concentrations is 1–10 mM. Cancer cells 

usually have low concentrations of reduced GSH due to metabolic stress. Therefore, the 

cellular release is expected to occur at a reduced rate. However, disulfide reduction is also 

mediated enzymatically by GILT and thioredoxin as discussed above. Some degree of 

disulfide reduction has also been shown to occur at the cell surface mediated by thiols 

associated with membrane proteins. Based on this observation, the two drugs are expected to 

be released from the conjugate if similar conditions are encountered intracellularly. 
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Figure 3.4 In-vitro release of D-pen and Ida from DDC. 
Values represent mean ± SD (n=3). 
A. Release of D-pen was investigated in the presence of 10 mM GSH. 
B. Dependence of Ida release on pH was investigated at pH 5.2 and 7.4, respectively. 
 
  

Fig. 3.4B 

0 1 2 3 4
0 

20 

40 

60 

80 

100 

120 

Time (hr)

P
er

ce
n

t 
R

el
ea

se
 



180 

3.4.3. Cell Uptake 

Fluid-phase endocytosis is the major mechanism of cellular entry for PDCs that do 

not have cell-specific moieties attached to them. In case of fluorescently labeled PDCs, 

endocytic uptake is characterized by pitted pattern of fluorescence while a diffused 

fluorescence indicates predominantly cytosolic delivery (Nori et al., 2003). Time dependent 

cell uptake of DDCs was monitored by tracking the fluorescence of Ida. The cellular uptake 

of DDCs was qualitatively assessed by confocal microscopy in HL-60 cells previously shown 

to be sensitive to treatment with PGA-D-pen conjugate. Endocytic uptake is evident by the 

pitted pattern of fluorescence. The cells showed a time dependent increase in the 

fluorescence upon treatment with the DDC as observed after 4 hr and 12 hr of treatment 

(Figure 3.5A). The cell uptake was quantitatively assessed by flow cytometry. The 

fluorescence intensity (FI) increased 3-fold over 24 hr treatment (Figure 3.5B). However, the 

FI was 4-fold lower than free Ida at similar dose and time. Ida is a hydrophobic compound 

and is expected to be cell permeable with faster cell uptake compared to DDCs (Hollingshead 

and Faulds, 1991). In addition to the uptake barrier, drug release also contributes as a barrier 

in successful drug delivery with PDCs. Although this may profoundly affect the effectiveness 

in-vitro, this may lead to fewer adverse events due to reduced non-target organ uptake and an 

increase in the overall therapeutic index as has been observed with some other PDCs. 

Further, based on the concept of EPR effect, a higher tumor accumulation of macromolecules 

due to leaky vasculature and poor lymphatic drainage may enhance the overall efficacy of 

DDCs (Maeda et al., 2009).  
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Fig. 3.5A 
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Time (hr) Mean Fluorescence Intensity 

Ida DDC 

1 2,470.3 453.8 

24 6,307.8 1,599.3 

 
Figure 3.5 Cell uptake of DDC. 
A. Confocal microscopic visualization of HL-60 cells for the uptake of DDC showing the 
differential interference contrast (left) and fluorescence images respectively after 4 hr (top) 
and 12 hr (bottom) of treatment with DDC. 
B. Quantitation of cell uptake by flow cytometric analysis of HL-60 cells showing 
fluorescence intensity (FI) of untreated cells (black), at 1 hr (red) and 24 hr (blue) after 
treatment with idarubicin (left) or DDCs (right). 
C. Table showing the FI representing the flow cytometric histograms in (B). 
 
  

Fig. 3.5B 

Fig. 3.5C 
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3.4.4. Stability of DDCs in Mouse Plasma 

 The stability of DDCs in mouse plasma at 37oC was determined using the HPLC 

assay. The results showed that the DDCs were stable in mouse plasma for 24 hr with no 

significant drug release (Figure 3.6). This ensures the stability during the longer circulation 

of DDCs and higher concentrations of conjugated drug to accumulate in the tumor. In 

aqueous solutions, acylhydrazones are susceptible to hydrolysis in acidic conditions leading 

to the formation of starting products. This provides specific release of conjugated drugs upon 

acidification of endosomes thus minimizing extracellular drug release. The range of 

sensitivity for hydrazone linkages in PDCs has been studied and Although hydrazone 

linakges have been reported to be stable in serum for at least 24 hr (Greenfield et al., 1990), it 

is important to determine the stability for individual conjugates as involvement of 

physicochemical and steric factors may lead to increase or decrease in stability (Rodrigues et 

al., 1999). Drugs have also been conjugated to polymers through cis-aconityl linkage, which 

also leads to the release of bound drug at endosomal pH. However, Ulbrich and co-workers 

recently showed that hydrazone bound HPMA copolymer-dox conjugates were more active 

than cis-aconityl conjugates (Ulbrich et al., 2003).  
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Figure 3.6 Stability of DDC in mouse plasma. 
Stability of the hydrazone linkage between Ida and PGA was investigated in-vitro in mouse 
plasma in shaking water bath at 37oC. Analysis was performed by HPLC. 
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3.4.5. Cytotoxicity Studies 

The in-vitro cytotoxicity of DDCs was determined in both sensitive and resistant 

cancer cells. As the cellular entry mechanism of DDCs is distinct from small molecules, they 

are expected to avoid the efflux mechanisms and thus overcome resistance. This has been 

shown with HPMA copolymer conjugates of ADR that were comparably less sensitive to 

resistance mechanisms (Minko et al., 1999). However, the drug released in the cytosol is still 

subject to efflux.  

In our studies, DDCs were comparable in cytotoxic potential to free Ida while D-pen 

was inactive (data not shown) at the corresponding doses in murine leukemia (both sensitive 

and resistant) and NSCLC cells (Table 3.1). However, both the sensitive and resistant human 

leukemia cells (HL-60) were significantly less sensitive to DDCs than Ida. The overall 

cytotoxicity of DDCs may be dependent on a combination of the rate of endocytic uptake, 

rate of drug release and the efficiency of the efflux mechanism. As noted above, the rate of 

cell uptake of the DDCs in HL-60 cells was 4-fold less than Ida. This correlates well with the 

almost 3-fold difference in the cytotoxic potential. To further examine the lag phase involved 

in the cytotoxicity of DDCs, we determined cell viability at 72 hr after treatment and 

compared in to the effect at 48 hr after treatment. In most of the cell lines tested, the IC50 

values at 72 hr were lower than at 48 hr and for human leukemia cells. Additionally, the 

difference between the IC50 of Ida and DDCs at 72 hr reduced indicating a relatively 

decreased sensitivity towards resistance mechanisms.   
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Cell line 
48 hr, IC50 (nM) 72 hr, IC50 (nM) 

Ida DDC Ida DDC 

HL-60 32.7 ± 1.7 98.9 ± 4.4 27.5 ± 2.1 53.7 ± 4.3 

HL-60/VCR 64.5 ± 3.1 199.3 ± 13.4 45.4 ± 2.8 97.7 ± 6.0 

P388 9.4 ± 2.7 9.7 ± 2.1 7.3 ±2.1 10.1 ± 3.2 

P388/ADR 281 ± 48.5 294.2 ± 75.21 162.6 ±5.6 213.2 ± 8.5 

NCI-H460 61.3 ± 22.1 86.6 ± 18.36 55.2 ±15.1 96.2 ± 7.4 

 
Table 3.1 Effect of Dual Drug Conjugate (DDC) treatment on cancer cell viability. 
Dose and time dependent effect of DDC treatment on cancer cell viability was investigated 
by MTT assay in resistant (HL-60/VCR and P388/ADR) and sensitive (HL-60 and P388) 
leukemia and non-small cell lung cancer (NCI-H460) cells. Values represent mean ± SD 
(n=6). 
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3.4.6. Plasma Disposition of DDCs 

A dose-equivalent pharmacokinetic study was performed where a single dose of 

DDCs or Ida was injected i.v. and blood was collected at different time points after 

administration. In case of DDCs, total Ida (conjugated + unconjugated) in plasma was 

determined by acidification prior to analysis. DDCs showed a rapid distribution followed by 

a slower elimination phase (Figure 3.7A). The t1/2 of DDCs was 15.6 hr which is almost 5-

fold longer than Ida. DDCs enhanced the drug exposure by 7-fold as indicated by the area 

under the plasma concentration-time curve (AUC0-last) (Table 3.2). In comparison, similar 

PGA-CPT conjugates synthesized using a 50 kDa PGA, showed just over 1.8-fold 

enhancement in the plasma AUC over CPT (Bhatt et al., 2003). Liposomal and 

nanoparticulate (solid lipid) formulations of Ida have also been reported previously with 

prolonged circulation and enhanced drug exposure (Santos et al., 2005; Zara et al., 2002). 

However, due to the lipophilicity of Ida, it is challenging to keep it entrapped in the delivery 

system and achieve reproducible drug release. The plasma concentrations after 5 min of 

administration, were 21.5-fold higher for DDC (3015 ng/mL) than Ida (140.2 ng/mL). The 

plasma circulation half-life (t1/2) of Ida was 3.2 hr. Xenobiotics with small molecular weight 

are efficiently cleared by glomerular filtration and therefore, it was not surprising to observe 

a rapid decline in the blood levels of Ida with no detectable levels after 8 hr. The formation 

of its major metabolite, idarubicinol, and its effect on the overall circulation time was not 

taken into account (Hollingshead and Faulds, 1991).  

DDCs are expected to be negatively charged in physiological conditions due to 

residual carboxyl groups on PGA. This may increase their uptake by the components of the 

reticuloendothelial (RES) system. A faster distribution may also be caused by metabolism of 
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the polymer in plasma leading to the formation of smaller entities with different rates of 

elimination. It has been previously reported for PGA that the amide bonds in the polymer 

chain are more susceptible to hydrolysis than the covalent bonds linking the drugs. An 

interesting example is the PGA-PTX conjugate where PTX is attached to PGA through an 

ester bond, however, the major degradation products in-vivo are mono and diglutamyl-PTX 

derivatives (Shaffer et al., 2007). 

 

3.4.7. Biodistribution Studies 

The distribution kinetics of DDCs vs. Ida was studied in liver, kidney, heart, lungs 

and spleen which constitute the most perfused organs of the body. The tumor accumulation at 

4, 8 and 24 hr after administration was significantly higher for DDCs (5.7-fold at 24 hr) than 

Ida (Figure 3.7B). This may be explained by the passive accumulation as a result of a 

combination of longer plasma t1/2 and possibly, the EPR effect. For comparison, a 6-fold 

enhancement in tumor exposure was reported for PGA-CPT conjugates compared to CPT 

(Bhatt et al., 2003). 

In clinical setting, treatment with Ida is associated with cardiotoxicity that can be a 

dose-limiting factor although the severity in comparison to doxorubicin is lower (Chan-Lam 

et al., 1992; Platel et al., 1999). The short-term single equivalent dose pharmacokinetic study 

showed that the cardiac accumulation of Ida was significantly reduced with DDCs (Figure 

3.7C). The peak levels of Ida detected in heart were 4.8-fold higher than the peak levels with 

DDC (p<0.001). This may lead to significant enhancement in the doses that can be delivered 

to patients in the clinic. However, the levels in heart with DDCs were sustained at lower 

levels due to slower clearance with the concentrations becoming higher than free Ida at 24 hr 
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and beyond. This is the reason that the predicted PK parameters calculated by the non-

compartmental analysis show comparable AUC values while an increased MRT and t1/2 for 

DDCs (Table 3.2). A long-term multiple dosing study will perhaps indicate if these sustained 

levels stay effectively lower than those that can cause clinical toxicity. 

The liver uptake of DDCs was significantly higher than Ida with almost 15% of the 

injected dose (i.d.) found in liver at 1 hr compared to 4% i.d. of Ida at 30 min after 

administration (Figure 3.7E). Accumulation in liver and spleen has been shown for poly-γ-

D-glutamic acid and its possible that PGA may have similar effects (Sutherland et al., 2008). 

As mentioned above, the charge and the molecular size make DDCs prone to uptake by 

phagocytic cells in the circulation and in the organs of the RES system. The difference in 

accumulation of DDCs and Ida in spleen was not as significant as that observed in liver. 

Significant accumulation of Ida in kidneys is reflective of the rapid clearance from plasma 

while DDCs showed a sustained slow rate of kidney accumulation (Figure 3.7G). Higher 

kidney concentrations may manifest as urotoxicity in clinical settings. 
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Fig. 3.7C 
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Fig. 3.7D 
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Fig. 3.7E 
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Fig. 3.7F 
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Figure 3.7 In-vivo plasma and tissue disposition kinetics of DDC and Idarubicin. 
The pharmacokinetic behavior of DDC (3 mg/kg Ida and 7.5 mg/kg D-pen) and Ida (3 
mg/kg) administered as a single i.v. dose was monitored. Values represent mean ± SEM 
(n=3-4/time point). # p<0.05, * p<0.01, ** p<0.001. 
A. Plasma disposition of DDC and Ida administered as i.v. injection. 
B. Disposition kinetics of DDC and Ida in NCI-H460 xenografts. 
C. Disposition kinetics of DDC and Ida in heart tissue. 
D. Disposition kinetics of DDC and Ida in lung tissue. 
E. Disposition kinetics of DDC and Ida in liver tissue. 
F. Disposition kinetics of DDC and Ida in spleen tissue. 
G. Disposition kinetics of DDC and Ida in kidney tissue. 
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Organ 

AUC(0-last) 
(hr*ng/mL) 

MRT 
(hr) 

Cl 
(ml/hr/kg) 

t1/2 
(hr) 

Ida DDC Ida DDC Ida DDC Ida DDC 

Plasma 415 2,993 4.6 13.3 7,224 1,002 3.2 15.6 

Tumor 2,617 9,426 17.6 32.1 1,146 318 12.2 21.1 

Liver 9,063 148,348 11.6 31.8 331 20 8.5 21.3 

Lungs 46,751 31,982 9.9 29.1 64 94 7.6 19.7 

Heart 10,605 11,280 11.7 28.6 283 266 10.1 19.6 

Kidney 39,834 27,747 10.1 19.2 75 108 7.3 12.1 

Spleen 150,046 125,163 14.4 25.3 20 24 8.1 17.3 

 
Table 3.2 Pharmacokinetic parameters for plasma and tissue disposition of DDC and 
Idarubicin.  
Noncompartmental analysis of pharmacokinetic data was performed to calculate and predict 
parameters that are indicators of in-vivo behavior.  
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3.4.8. Antitumor Efficacy 

The therapeutic index of DDCs, in terms of Ida, was found to be 2-3-fold (3-6 mg/kg) 

higher than Ida (1.5 mg/kg) when tested in a Q2dx3 regimen and a dose escalation study. The 

mice treated with 6 mg/kg (Ida equivalent) showed >15% loss in their body weight following 

a second dose. The body weight was partially recovered by the end of the study at 30 days. 

Initial dose selection was based on our previously published detailed analysis of dose 

escalation with unconjugated Ida in CD2F1 mice (Ma et al, 2009). 

Anticancer efficacy studies were performed in athymic nu/nu mice bearing NCI-H460 

tumor xenografts. Figure 3.8 shows the tumor growth curves for different treatments. A 

previous efficacy study (data not shown) indicated no improvement in anticancer efficacy or 

survival upon co-administration of D-pen and Ida as a single solution in saline. Therefore, 

this treatment group was excluded from the later studies. DDCs showed potent antitumor 

effect by completely suppressing the tumor growth at the highest dose. The tumor 

suppression at this dose was significantly higher than any other group tested. Mean tumor 

volumes were used to calculate the TGI among different treatment groups on the last day at 

which all mice were alive (day 16). The DDCs, at the highest dose tested, resulted in 89% 

TGI compared to 60% by Ida (Table 3.3). Higher doses of DDC showed weight loss after 

second dosing as observed with the dose escalation studies. However, 50% of the mice 

recovered from the loss but others had to be euthanized. This is reflected in an overall 

decrease in the median survival of this treatment group predicted from the Kaplan-Meier 

curve (Table 3.3). The lower dose of DDCs, however, resulted in a comparable antitumor 

efficacy with no significant loss in body weight and significantly enhanced median survival 

(41 days) over other groups.  
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Previous studies have reported that the tumor IFP increases with increasing size due 

to edema associated with an increase in water content (Boucher et al., 1991). Increased IFP 

can further diminish macromolecular drug delivery to the tumors (Jain, 1987). Therefore, we 

examined the anticancer effects of DDC on the growth of larger tumors. The lower, better 

tolerated dose of DDC was chosen for this study and compared with Ida treatment. 

Administration of D-pen alone was not tested as it failed to show significant anticancer 

effects in the previous study (Figure 3.8A). Our observations indicated that DDCs may be 

able to suppress the growth of large tumors as well. The TGI on day 18 was 64% with DDC 

and 48% with Ida alone (Figure 3.8C).  
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Fig. 3.8B 
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Figure 3.8 Anticancer efficacy in NCI-H460 tumor model. 
Athymic nu/nu mice bearing NCI-H460 xenografts (50-100 mm3) were administered 
different treatments following a Q2dx3 dosing schedule. Tumors were measured and body 
weight recorded every 24-48 hr. Values represent mean (n=6-8). # p<0.05, * p<0.01, 
**p<0.001. 
A. Tumor growth curve (Mean ± SEM, n=6-8).  
B. Body weight curve. The body weight was monitored every 24-48 hr and the mice were 
assigned a Body Condition Score in the range of 0-5 based on body weight loss and physical 
assessment. 
C. Tumor growth curve (Mean ± SEM, n=8).   
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Parameters/ 
Treatment Group Untreated D-pen Ida DDC DDC 

Dose or Dose Equivalent 
(mg/kg) None 15 1.5 

Ida: 3  
D-pen: 

7.5 

Ida: 6 
D-pen: 

15

Mean Tumor Volume 

(n=6, ± SEM, d16; mm
3
) 562 ± 54 330 ± 78

(p>0.05)
220 ± 55
(p<0.05)

154 ± 74 
(p<0.01) 

60 ± 13
(p<0.01)

Tumor Growth Inhibition 
at day 16 (%) None 41.3 60.8 72.5 89.4 

Median Survival (days) 23 26 35 41 26 

 
Table 3.3 Quantitative parameters of anticancer efficacy in the NCI-H460 tumor model. 
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3.5. Conclusions 

DDCs containing D-pen and Ida conjugated to PGA were synthesized and evaluated 

for their anticancer properties. The DDCs released the conjugated drugs in-vitro in a 

sustained manner and were cytotoxic to cancer cells. PK analysis indicated longer 

circulation, enhanced drug exposure and tumor accumulation. This led to an increase in the 

antitumor activity characterized by 89% TGI and significant enhancement in the survival 

NCI-H460 tumors in mice. We are currently examining the effect of the presence of Sigma-1 

receptor targeting ligand on the cell uptake and in-vivo anticancer efficacy of DDCs. Further 

studies will be conducted to investigate the in-vivo fate of DDCs in terms of rate of drug 

release and metabolism of the residual polymer. 
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Chapter 4  

Dual Drug Conjugates of D-penicillamine and Idarubicin Targeted to Sigma-1 Receptor 
Over-expressing Cancer Cells Enhance Drug Uptake and Cytotoxicity 
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4.1. Abstract 

Sigma receptors are over-expressed in several malignant human and non-human cell 

lines including breast, lung, prostate, renal and brain. Their expression correlates with the 

metastatic potential and growth of tumors. However, neither the endogenous ligand nor the 

exact physiological function of sigma receptors is known. Several benzamide analogues have 

been shown to bind the sigma receptor with very high affinity (Kd = 15 nm). In this report, 

we investigated a novel benzamide derivative, trivalent anisamide (TA), for the delivery of 

dual drug conjugates (DDCs) of D-pen and Ida bound to poly-α-L-glutamic acid. Sigma 

expression was measured by western blotting in human (HL-60, HL-60/VCR, HL-60/ADR, 

ThP-1 and K562) and murine (P388 and P388/ADR) leukemia, breast (MCF-7) and non-

small cell lung cancer (NSCLC; NCI-H460) cell lines. High expression was observed in HL-

60, ThP-1, MCF-7 and NCI-H460 cells. TA-DDCs showed higher specific uptake in cells 

that could be completely inhibited by haloperidol. TA-DDCs led to a 2-fold enhancement in 

the cytotoxicity over untargeted DDCs. Preliminary pharmacokinetic study showed that TA-

DDCs were long-circulating (t1/2 14.8 hr) in mice bearing NCI-H460 xenografts. 
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4.2. Introduction 

Targeted macromolecular therapy of cancer, analogous to the concept of ‘magic 

bullet’ first proposed by Paul Ehrlich, involves incorporation of a molecular recognition 

component to focus the drug delivery to specific cell populations. In the past two decades, 

there has been a tremendous interest in utilizing this concept to increase the effectiveness of 

drug delivery systems including liposomes, nanoparticles and polymer drug conjugates 

(PDCs) (Duncan et al., 1996). We have recently developed dual drug conjugates (DDCs) for 

the co-delivery of D-pen and Ida with significantly enhanced therapeutic index and 

anticancer efficacy. We hypothesized that targeting DDCs to receptors over-expressed in 

cancer cells will further improve the anticancer effect of DDCs. PDCs that are designed to 

target specific receptors over-expressed in cancer cells may overcome drug efflux via multi-

drug resistance (MDR), reduce non-specific organ uptake and lead to further increased drug 

concentration in the tumor via active accumulation. This can result in an overall dose 

reduction and decreased associated adverse events. The present study investigated the effect 

of targeting DDCs to cells over-expressing sigma-1 receptors. 

Sigma receptors were originally classified as opiate receptors but were later 

differentiated (Su et al., 1988). Two different subtypes, sigma-1 and sigma-2 have been 

identified. Sigma-1 receptor has been cloned (25,330 kDa) and more widely investigated 

(Hanner et al., 1996; Maurice and Su, 2009). The exact physiological function of sigma 

receptors and the endogenous ligand is still unknown. However, interaction with various ion 

channels may play an important role in mediating its functions (Aydar et al., 2004).  

Treatment with antagonists of sigma-1 receptors has resulted in reduction in viability 

and tumor growth inhibition indicating their potential role in cell growth (Spruce et al., 2004; 
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Wang et al., 2004). Sigma-1 receptors have been shown to be over-expressed in several 

human and non-human cancer cell lines including breast, lung, prostrate, renal and brain 

(Vilner et al., 1995). They have been successfully targeted to deliver high concentrations of 

chemotherapeutics to cancer cells using benzamide derivatives shown to bind sigma-1 

receptor with very high affinity (Kd = 15 nM), as ligands (Mach et al., 2004). Huang and co-

workers showed that doxorubicin-containing liposomes targeted to sigma receptors using 

anisamide conjugated to DSPE-PEG(3500) resulted in significant reduction in tumor (DU-

145) growth compared to untargeted liposomes (Banerjee et al., 2004). They recently also 

showed a 3-fold enhancement in cell uptake and strong epidermal growth factor receptor 

(EGFR) silencing by siRNA-containing liposomes formulated with anisamide-lipid 

(DSGLA) conjugate (Chen et al., 2009). 

Although several attempts have been made to deliver drugs to sigma-1 receptor, 

targeting polymer bound drugs to sigma-1 receptors has not been investigated. We evaluated 

DDCs targeted to sigma-1 receptors using a novel benzamide analog as ligand and 

investigated the effect of targeting on cellular uptake and viability. 
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4.3. Materials and Methods 

4.3.1. Materials 

Poly-α-L-glutamic acid sodium salt (MW 50-70 kDa), D-penicillamine (D-pen), 

tris(2-carboxyethyl)phosphine hydrochloride (TCEP), 1-ethyl-3-[3-dimethylaminopropyl] 

carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were purchased from 

Sigma-Aldrich (St. Louis, MO). Sepharose Cl-4B, buffers and all solvents were purchased 

from Thermo Fisher Scientific (Rockford, IL).  

 

4.3.2. Synthesis of N-boc-2-amino ethyl-4-methoxy Benzamide (Compound 1) 

4-methoxybenzoyl chloride (0.8 g, 4.7 mmol) in 5 mL dry DCM was added slowly to 

the solution of N-boc ethylene diamine (0.5 g, 3.1 mmol) and triethyl amine (0.5 mL) in 5 

mL dry DCM under nitrogen atmosphere at 0oC.The resultant solution was stirred for another 

3 hr. The reaction mixture was diluted with excess DCM and washed with 1N HCl (1 x 50 

mL) followed by saturated sodium bicarbonate and brine solution and the organic layer was 

dried over anhydrous sodium sulphate. The solvent was removed and purified by column 

chromatography. The compound 1 (N-boc-2-aminoethyl-4-methoxy benzamide) was eluted 

with 2% methanol in chloroform as a white solid (0.8 g, 87%). 1H NMR (400 MHz, CDCl3): 

δ (ppm) = 1.41( s, 9H), 3.4 (m, 2H), 3.6 (m, 2H), 3.82 (s, 3H), 5.0(bs, NH), 6.9 (dd, 2H), 7.8 

(dd, 2H).  

 

4.3.3. Synthesis of N-1-(4-Methoxybenzoyl) Ethylenediamine 

N-boc-2-amino ethyl-4-methoxy benzamide (0.7 g, 2.3 mmol) was dissolved in 4 mL 

dry DCM under nitrogen atmosphere. Trifluoro acetic acid (1 mL) was slowly added to the 
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reaction mixture at 0°C and stirred for 4 hr. Solvent was removed and purified by the column 

chromatography. The compound (N-1-(4-Methoxybenzoyl) ethylenediamine) was eluted 

with 8% methanol in chloroform as a white solid. (0.42 g, 91%). 1H NMR (400 MHz, D2O): 

δ (ppm) = 3.1 (t, 2H), 3.5-3.6 (m, 2H), 3.8 (s, 3H), 6.9-6.95 (dd, 2H), 7.6-7.7 (dd, 2H).  

 

4.3.4. Synthesis of Compound 2 

N-1-(4-Methoxybenzoyl) ethylenediamine (0.5 g, 2.6 mmol) was dissolved in 5 mL 

of dry DMF. Tri ethyl amine (300 µL) and glutaric anhydride (0.45 g, 3.9 mmol) were added 

and the reaction mixture was stirred for 12 hr. Water was added and the compound was 

extracted with ethyl acetate (3 x 50 mL). The organic layer washed with water (1 x 20 mL) 

and followed by brine solution. The organic layer was dried over anhydrous sodium sulphate 

and solvent was removed by vacuum evaporation to obtain compound 2 as a white solid (0.6 

g, 75%). 1H NMR (400 MHz, CD3OD): δ (ppm) = 1.8-1.9 (m, 2H), 2.1-2.4 (m, 4H), 3.3-3.5 

(m, 4H), 3.8 (s, 3H), 6.9 (dd, 2H), 7.8 (dd, 2H). ESI-mass: 639 (M+23). 

 

4.3.4. Synthesis of Compound 3 

Compound 2 (0.43 g, 1.4 mmol), EDC (0.27 g, 1.4 mmol) and catalytic amount of 

DMAP were dissolved in 3 mL of dry DMF under nitrogen atmosphere. After 15 min, the 

Tris (5-hydroxy-2-oxapentyl)-N-boc-methylamine (0.14 g, 0.35 mmol) (Khorev et al., 2008) 

in 1 mL dry DMF was added slowly to the reaction mixture and stirred overnight. Water was 

added and the compound was extracted with ethyl acetate (3 x 30mL). The organic layer was 

washed with water (2 x 30mL) followed by a brine solution. The organic layer was dried 

over anhydrous sodium sulphate, the solvent was removed, and the compound was purified 
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by column chromatography. Compound 3 was eluted with 3% methanol in chloroform as a 

pale yellow solid. (0.39 g, 89%). 1H NMR (400 MHz, CDCl3): δ (ppm) = 1.4 (s, 9H), 1.7 ( s, 

2H), 1.8-2.0 (m, 12H), 2.2-2.4 (m, 12H), 3.4-3.5 (m, 12H), 3.5-3.6 (m, 12H), 3.82 (s, 3H), 

4.1 (t, 6H), 6.9 (dd, 2H), 7.8 (dd, 2H). ESI-mass: 1289(M+23). 

 

4.3.5. Synthesis of Trivalent Anisamide (Compound 4) 

Compound 3 (0.3 g, 0.23 mmol) was dissolved in 2 mL of dry DCM under nitrogen 

atmosphere and TFA (0.5 mL) was added at 0oC and stirred for 3 hr. The solvent was 

removed by N2 flushing and the final compound was obtained as a pale yellow semi solid 

(0.25 g, quantitative yield). 1H NMR (400 MHz, CDCl3): δ (ppm) = 1.8-1.9 (m, 12H), 2.2-2.4 

(m, 12H), 3.4-3.6 (m, 24H), 3.82 (s, 3H), 4.2 (t, 6H), 6.9 (dd, 2H), 7.8 (dd, 2H). ESI-mass: 

1167(M+1). 

 

4.3.6. Synthesis of Sigma Targeted DDC 

PGA was obtained from PGA sodium as described in section 3.3.3. PGA (50 mg, 

0.83 µmol), EDC (63.9 mg, 0.33 mmol), NHS (18.10 mg, 0.16 mmol) and PDE (55.7 mg, 

0.25 mmol) were dissolved in 5 mL anhydrous DMF. Immediately, TA (4) (53.7 mg, 0.042 

mmol) was added to the reaction and stirred for 12 hr at room temperature under an 

atmosphere of argon. The TA-PGA-PDE conjugate (5) was precipitated by the addition of 

ether and subsequent washing with water. The conjugate was dissolved by adding a few 

drops of 0.5 M sodium bicarbonate and pH was adjusted to 7.4 using 0.1 M PBS. The extent 

of conjugation was determined spectrophotometrically (ε = 8080 M-1 cm-1, λmax = 343 nm) by 

measuring the absorbance of pyridine-2-thione released upon the reduction of the conjugate 
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in presence of 25 mM TCEP for 1 hr. The extent of conjugation of TA was also determined 

spectrophotometrically (ε = 24810.07 M-1 cm-1, λmax = 252 nm). 

To the solubilized TA-PGA-PDE (5) conjugate, D-pen (124 mg, 0.83 mmol) was 

added and the mixture was stirred for 12 hr at room temperature. The TA-PGA-D-pen 

conjugate (6) was separated from unreacted components with AmiconTM Ultra-15 Centrifugal 

Filter Device (Millipore, Bedford, MA). The extent of D-pen conjugation was determined by 

HPLC as described previously (Wadhwa and Mumper, 2010). To synthesize TA-DDCs (7), 

the TA-PGA-D-pen conjugate (containing 0.05 mmol D-pen) was reduced in the presence of 

TCEP (1 mM) for 5 min to release 10-12% of conjugated D-pen. TCEP was removed by 

centrifugation using Amicon Ultra-15 and Ida-MPBH (11.54 mg, 0.015 mmol) was added. 

The reaction was stirred for 12 hr at room temperature. The TA-DDCs were purified by 

filtration with sepharose CL-4B column (15 x 1.5 cm) using PBS pH 7.4 as the mobile phase, 

lyophilized and stored at -20oC until further use. 

 

4.3.7. Sigma Receptor Expression by Western Blot Analysis 

Sigma receptor expression in human leukemia (HL-60, THP-1 and K562) and non-

small cell lung cancer (NCI-H460) cells was determined by Western Blot analysis using a 

sigma receptor specific polyclonal antibody (SC-22948, Santa Cruz Biotechnology, Santa 

Cruz, CA).  As a positive control, sigma expression levels were also determined in human 

breast cancer cells (MCF-7) (Aydar et al., 2004). Cells were lysed with RIPA lysis buffer 

(Santa Cruz Biotechnology, Santa Cruz, CA) and 25-50 µg of total protein from each cell 

line was separated by electrophoresis on Ready Gel® (4-20%) (Bio-Rad, Hercules, CA) and 

transferred to a PVDF membrane. The membrane was blocked with 5% non-fat milk and 
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incubated overnight at 4oC with the primary antibody diluted to 1:50 in 5% non-fat milk 

followed by incubation for 30 min with secondary antibody diluted to 1:1000 in 5% non-fat 

milk. The protein bands were detected by chemiluminescence using VersaDocTM Imaging 

System (Bio-Rad Laboratories, Hercules, CA). The membrane was incubated with RestoreTM 

PLUS western blot stripping buffer (Thermo Scientific, Rockford, IL) and re-probed for β-

actin using a mouse monoclonal antibody (SC-47778, Santa Cruz Biotechnology, Santa Cruz, 

CA) and secondary antibody diluted to 1:1000 with 5% non-fat milk. The band intensities for 

sigma were normalized to the β-actin and compared among different cell lines.  

 

4.3.8. Cell Uptake Studies 

NCI-H460 cells (1 x 106) cultured on Lab-TekTM Chambered Coverglass (Nalge 

Nunc International, NY) were incubated with 2 µM of TA-DDCs or DDCs (Ida equivalent 

dose) for 0.5, 2 and 4 hr. The cells were subsequently washed five times with PBS. The cells 

were visualized live using Zeiss 510 Meta Laser Scanning Confocal Microcope (63 x 1.4 NA 

oil Plan-Apochromat objective; Excitation: 488 nm and emission: 540 nm; Carl Zeiss, 

Thornwood, NY). The images were processed using Zeiss AIM Viewer (Carl Zeiss, 

Thornwood, NY). 

Quantitative cell uptake was studied by confocal microscopy. NCI-H460 cells (1 x 

106) were plated in 12-well cell culture plates and allowed to attach overnight. Cell were 

treated with TA-DDCs or DDCs (1 µM Ida equivalent) in the presence of absence of 

haloperidol (50 µM) for 0.5, 2 and 4 hr. Further processing was performed at 4oC. Cells were 

trypsinized and, washed two times with and resuspended in cold 10 mM PBS containing 2% 
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sodium edetate and 10% FBS. Analysis was immediately performed on a BDTM LSR II Flow 

Cytometer (BD Biosciences, Franklin Lakes, NJ) using the 488 nm laser for excitation.  

 

4.5.9. Plasma Disposition Study 

NCI-H460 cells (1 x 106) were implanted subcutaneously (s.c.) in the right flank of 

male athymic nu/nu mice (20-25 g). When the tumors attained a size of approximately 200 

mm3 (day 13), the mice were injected i.v. with TA-DDCs (3 mg Ida equivalent/kg and 7.5 

mg D-pen equivalent/kg). The mice (n=3/time point) were sacrificed at selected times 

between days 13 and 15 (t= 0.08, 0.25, 0.5, 1, 4, 8, 24 and 48 hr). Blood was collected by 

cardiac puncture. Plasma was separated from blood with Lithium-Heparin microtubes 

(Sarstedt, NC). Samples were stored at -80oC until further analysis. The samples were 

analyzed for Ida concentration by HPLC as described in section 3.3.6. The data were 

analyzed by non-compartmental pharmacokinetic analysis using WinNonlin® 4.0 (Pharsight, 

Mountain View, CA). 

 

4.5.10. Statistical Analysis 

The cell uptake of TA-DDCs was compared with DDCs by regular two-way ANOVA 

followed by Bonferroni post-test to analyze effect of time. Differences were considered 

significant at p values of <0.05.  
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4.4. Results and Discussion 

4.4.1. Synthesis of Sigma-1 Receptor Targeted DDCs 

Anisamide has been previously used to effectively target chemotherapy to cells over-

expressing sigma receptors. The new ligand was synthesized to enhance the receptor binding 

by increasing the valency of receptor-ligand interaction, a concept that has been popularly 

applied to nanoparticulate drug delivery systems (Simnick et al., 2010). Conjugation of 

multiple trivalent ligands to polymer chain is expected to further enhance the avidity of 

binding. Moreover, a recent report showed that a similar trivalent benzamide derivative 

conjugated to oligonucleotides significantly enhanced the uptake in sigma receptor over-

expressing prostate cancer cells (Nakagawa et al., 2010). The number of ligands per polymer 

chain was optimized by performing cell uptake studies by flow cytometry and it was found 

that 4-6 TA per chain resulted in the maximal enhancement in the uptake while at higher 

levels of conjugation led to decrease in uptake with a decrease in aqueous solubility. The 

final TA-DDCs had 4 moles of TA, 4 moles of Ida and 35 moles of D-pen per polymer chain 

as determined by HPLC and spectrophotometry.  
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Figure 4.1 Synthesis of trivalent anisamide (TA) 
Reagents: a) N-boc ethylene diamine, TEA, DCM, 0oC; b) TFA, DCM; c) Glutaric 
anhydride, TEA, DMF; d) Tris (5-hydroxy2-oxapentyl)-N-boc methylamine, EDC, DCM; e) 
TFA, DCM.  
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Figure 4.2 Synthesis of DDCs targeted to sigma-1 receptors using trivalent anisamide. 
Reagents: a) 1 N HCl, Lyophilization; b) PDE, TA, EDC, NHS, DMF; c) D-pen, PBS pH 
7.4; d) 1 mM TCEP, 5 min; e) Ida-MPBH.   
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4.4.2. Sigma Receptor Expression by Western Blot Analysis 

The sigma-1 receptor gene has been cloned and the receptor is shown to be a protein 

of 25,300 Da (Hanner et al., 1996). Sigma-1 expression has previously been shown to be 

elevated in several different cancer cell lines (Vilner et al., 1995). The sigma receptor protein 

band was detected in all cell lines at the expected molecular size (25 kDa) (Figure 4.3). 

Protein concentration levels were normalized to β-actin thus revealing robust expression in 

HL60, ThP-1 and NCI-H460 cells and moderate expression in the K562 cells. The sigma-1 

receptors are predominantly located at the interface of ER and mitochondria but can 

translocate to the plasma membrane when they are over-expressed as has been reported in 

breast cancer cells (Aydar et al., 2006; Su et al., 2009). An enhanced expression of sigma-1 

receptors provides an opportunity to target chemotherapy to cancer cells while sparing non-

target cells. 
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Figure 4.3 Sigma-1 receptor expression study by Western Blot analysis in different 
cancer cells. 
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4.4.3. Cell Uptake Studies 

Confocal microscopic pictures showed significantly high fluorescence intensity in 

NCI-H460 cells treated with TA-DDCs compared to DDCs after 0.5 hr. It is interesting to 

note that the non-specific uptake of the untargeted DDCs is significant thus making 

differentiation difficult at later time points (2 hr and 4 hr). Ida, a lipophilic anthracycline 

derivative, is expected to passively accumulate in the cells and it was not surprising to see 

high FI in Ida treated cells at shorter time points (data not shown). Therefore, lower doses 

were used for quantitative studies with flow cytometry to identify differences between the 

treatment groups at time points beyond 0.5 hr. TA-DDCs showed 2-3-fold enhancement in 

the FI over DDCs. To investigate if the enhancement could be attributed to sigma receptors, 

uptake studies were performed in the presence of haloperidol. Haloperidol is a potent but 

non-selective inhibitor of sigma-1 receptors (Kiσ-1 = 644 nM; Kiσ-2 = 221 nM) (Aydar et al., 

2004). We did not determine the expression of sigma-2 receptors and therefore, some 

contribution to the uptake by sigma-2, if present, cannot be ruled out.  

In-vitro cytotoxicity of TA-DDCs was determined in NCI-H460 cells and compared 

to DDCs and Ida. The IC50 values for TA-DDCs, DDCs and Ida were 41.27 nM, 86.57 nM, 

and 61.28 nM, respectively. The difference between the targeted and untargeted conjugates 

may be attributed to enhanced uptake as seen by flow cytometry. However, the lower IC50 

values compared to Ida is an indirect evidence of a combination effect of Ida and D-pen.  
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Fig. 4.4A 



227 

 

 
Figure 4.4 Uptake of targeted vs untargeted DDCs in NCI-H460 cells. 
A. NCI-H460 cells treated with TA-DDCs and DDCs for 0.5 hr were visualized by confocal 
microscopy.  
B. NCI-H460 cells were treated with DDCs or TA-DDCs for 0.5, 2 hr and 4 hr in the 
presence or absence of haloperidol (50 µM) and analyzed by flow cytometry. The y-axis 
represents fold increase in fluorescence intensity over untreated cells.  
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4.4.4. Plasma Disposition of DDCs 

Plasma disposition study was performed to investigate the long-circulating property 

of TA-DDCs (Figure 4.5). The TA-DDCs showed a rapid distribution followed by a 

sustained plasma profile upto 48 hr and circulation t1/2 of 14.8 hr (12-fold) compared to 1.23 

hr for Ida reported previously in BALB/c mice (Dos Santos et al., 2005). Although sigma 

receptors have been shown to be expressed in other organs of the body (Su et al., 1988), we 

expect that the large molecular size of DDCs will minimize the uptake in non-target organs. 

This will result in an increased accumulation in the tumors and lead to further enhancement 

of the therapeutic index allowing higher doses to be administered. 
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Figure 4.5 Plasma disposition of TA-DDCs in mice bearing NCI-H460 tumors. 
TA-DDCs were dosed at 3 mg/kg Ida equivalent and 7.5 mg/kg D-pen equivalent dose in 
anthymic nu/nu mice bearing NCI-H460 tumor xenografts. A dosing schedule of Q2dx3 was 
followed.  
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4.5. Conclusions 

Preliminary investigations showed that DDCs targeted to sigma-1 receptor enhanced the 

cellular uptake and cytotoxicity. The TA-DDCs were longer circulating and are, therefore, 

expected to increase the tumor accumulation of conjugated drugs. Future studies will focus 

on determining the binding properties of conjugates and further optimization of the conjugate 

to enable in-vivo anticancer efficacy. 
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Lipid Nanocapsules as Vaccine Carriers for His-Tagged Proteins: Evaluation of 
Antigen Specific Immune Responses to HIV I His-Gag p41 and Systemic Inflammatory 

Responses  
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A.1 Abstract 

The purpose of this study was to design novel nanocapsules (NCs) with surface-

chelated nickel (Ni-NCs) as a vaccine delivery system for histidine (His)-tagged protein 

antigens. Ni-NCs were characterized for binding His-tagged model proteins through high 

affinity non-covalent interactions. The mean diameter and zeta potential of the optimized Ni-

NCs was 214.9 nm and -14.8 mV, respectively. The optimal binding ratio of His-tagged 

Green Fluorescent Protein (His-GFP) and His-tagged HIV-1 Gag p41 (His-Gag p41) to the 

Ni-NCs was 1:221 and 1:480 w/w, respectively. The uptake of Ni-NCs by DC2.4 dendritic 

cells was visualized by microscopy. Treatment of DC2.4 cells with Ni-NCs did not result in 

significant loss in the cell viability up to 24 h (<5%). We further evaluated the antibody 

response of the Ni-NCs using His-Gag p41 as a model antigen. Formulations were 

administered subcutaneously to BALB/c mice at day 0 (prime) and 14 (boost) followed by 

serum collection on day 28. Serum His-Gag p41 specific antibody levels were found to be 

significantly higher at 1 and 0.5 µg doses of Gag p41-His-Ni-NCs  (His-Gag p41 equivalent) 

compared to His-Gag p41 (1 µg) adjuvanted with aluminum hydroxide (AH). The serum 

IgG2a levels induced by Gag p41-His-Ni-NCs (1 µg) were significantly higher than AH 

adjuvanted His-Gag p41. The Ni-NCs alone did not result in elevation of systemic IL-12/p40 

and CCL5/RANTES inflammatory cytokine levels upon subcutaneous administration in 

BALB/c mice. In conclusion, the proposed Ni-NCs can bind His-tagged proteins and have 

the potential to be used as antigen delivery system capable of generating strong antigen 

specific antibodies at doses much lower than with aluminum based adjuvant and causing no 

significant elevation of systemic proinflammatory IL-12/p40 and CCL5/RANTES cytokines. 
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A.2. Introduction 

Subunit vaccines containing soluble protein antigens have been proposed as 

alternatives to using whole organisms to generate immune responses because of reproducible 

immune responses and better characterization (Peek et al., 2008). However, many of these 

antigens are poorly immunogenic if administered alone. Particulate antigen delivery systems 

like nanoparticles (NPs), emulsions, microparticles and liposomes have been shown to 

enhance the recognition of the antigens by the antigen presenting cells (APCs) and result in 

improved immune response (Aline et al., 2009; Alving, 1995; Audran et al., 2003; Ott et al., 

1995). Formation of a depot at the site of injection has been proposed as a possible 

mechanism of enhanced antigen recognition by particulate systems (Panyam and 

Labhasetwar, 2003). In addition to being taken up efficiently by the APCs, NPs have the 

potential to release the entrapped antigen over prolonged time. Moreover, surface 

modification allows incorporation of a variety of antigens on the same particle and surface-

coated ligands to target the APCs (Klippstein and Pozo, 2010; Yan et al., 2009).  

The antigen can be either entrapped inside the matrix/core of the particle or coated on 

the surface. The entrapment of protein in the core of a particle has problems associated with 

the stability of the protein during the preparation of particles and poor entrapment (Duncan et 

al., 2005). The surface coating of the antigen on the particle may be achieved by ionic 

interactions (Patel et al., 2007a), covalent conjugation (Sloat et al., 2010) or non-covalent 

attachment (Patel et al., 2007b). We have previously reported that increasing the affinity of 

the antigen to the surface of solid lipid NPs contributes to enhanced immune responses as 

compared to the antigens associated on the surface via simple adsorption or charge-charge 

interactions (Patel et al., 2007a; Patel et al., 2007b). 
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In the present study, we investigated the formulation of novel nanocapsules (NCs) 

with surface chelated nickel (Ni-NCs) in the outer shell and their potential to bind histidine 

(His)-tagged proteins with high affinity through non-covalent attachment. The strong non 

covalent interaction (Kd ~ 10-6 – 10-14 M) between nucleophilic ligands such as the His-tag 

on a protein and transition metal ions like Ni and Cu has been investigated in detail and has 

been successfully applied to protein purification (Hochuli et al., 1987; Knecht et al., 2009; 

Porath et al., 1975). This interaction is highly dependent on individual protein, the site and 

length of His-tag and pH (Knecht et al., 2009; Lauer and Nolan, 2002). Liposomes and iron 

oxide NPs with surface chelated Ni have been previously proposed for the delivery and 

purification of His-tagged proteins (Kim et al., 2007; Platt et al., 2010). We formulated the 

Ni-NCs using 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl) iminodiacetic acid) 

succinyl] (nickel salt) (DGS-NTA-Ni), a lipid with NTA end group that can chelate Ni. Platt 

and co-workers concluded that the association of NTA-Ni and his-tagged proteins is in 

micromolar range which may be considered weak for in-vivo conditions. However, later 

studies comparing NTA to trivalent NTA ligands suggested that increasing the affinity of this 

interaction did not lead to an increase in immune responses (Platt et al., 2010; Watson et al., 

2011). Although this report showed that covalently bound antigen elicits stronger responses, 

the effect of the nature of association on immune response may be antigen-specific as was 

reported by Shahum and Therien (Shahum and Therien, 1988). Moreover, it has been 

previously known that covalent modification of antigens is prone to causing changes in the 

antigenicity and loss of binding (Cooper et al., 1987). Non-covalent attachment while 

enhancing the antigen association is expected to preserve the antigenicity by ensuring the 

presentation of the unmodified antigen. 
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Aluminum salts remain the only FDA approved particulate adjuvants. They have been 

shown to induce strong antibody responses but there is uncertainty in induction of cellular 

immunity (Rabinovich et al., 1994). Additionally, the use of aluminum containing salts has 

been linked to hypersensitivity reactions and physical or chemical alterations of the adsorbed 

protein antigen in some cases (Baylor et al., 2002). NPs have been investigated for their 

superior safety profile and an ability to protect the entrapped antigen (Wang et al., 2008). In 

addition, we have reported strong humoral and cellular immune responses against several 

protein antigens like TAT, p24 and Nef coated onto solid lipid NPs and that NP bound 

antigens have the potential to generate CD8+ T cell responses (Cui et al., 2004). 

In the present studies, we investigated a new type of lipid-based NCs developed in 

our laboratory for their potential to deliver His-tagged proteins. His-Gag p41 was used as a 

model antigen. We also compared the immune responses from our previously reported (Patel 

et al., 2007b) nickel decorated solid lipid NPs (Ni-NPs) to the novel Ni-NCs. 
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A.3. Materials and Methods 

A.3.1. Materials and Reagents: 

Polyoxyethylene (20) stearyl ether (Brij® 78), d-α-tocopheryl polyethylene glycol 

1000 succinate (Vitamin E TPGS) and Miglyol® 812 (caprylic/capric triglycerides) were 

purchased from Uniqema (Wilmington, DE), Eastman Chemicals (Kingsport, TN) and Sasol 

(Witten, Germany), respectively. Sepharose® CL-4B and DGS-NTA-Ni were obtained from 

GE Healthcare (Piscataway, NJ) and Avanti Polar Lipids (Alabaster, AL), respectively. 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) standard for Nickel was 

purchased from Sigma Aldrich (St. Louis, MO) and N-terminal His-tagged GFP (His-GFP) 

was purchased from Millipore (Billerica, MA). Aluminum hydroxide gel (Cat. No. AL226) 

and emulsifying wax (comprised of cetyl alcohol and polysorbate 60 in a molar ratio of 20:1) 

were purchased from Spectrum Chemicals (Gardena, CA). CpG oligonucleotide (5’- tcc atg 

acg ttc ctg acg tt -3’) (20 mer) (CpG ODN) was purchased from InvivoGen (San Diego, CA). 

 

A.3.2. Preparation of Ni-NCs  

To prepare Ni-NCs, Brij 78 (3.5 mg), Vitamin E TPGS (1.5 mg) and Miglyol 812 (2.5 

mg) were weighed in a glass vial. DGS-NTA-Ni (varying amounts of 10 mg/mL stock 

solution in chloroform) and 0.2 mL ethanol were added and mixed. The solvents were later 

evaporated under nitrogen. The vial was placed in a water bath at 65oC and deionized water 

(1 mL) preheated to 65oC was added while stirring the contents for 30 min. The Ni-NCs form 

spontaneously and are composed of liquid core (Miglyol 812) and solid shell (Brij 78 and 

Vitamin E TPGS). The suspension was cooled to room temperature and separated from free 

components using a Sepharose CL-4B column (1.5 x 15 cm). The purified Ni-NCs were 



239 

characterized for particle size using Beckman Coulter N5 Submicron Particle Size Analyzer 

(Beckman Coulter, Brea, CA) and zeta potential using a Malvern Nano-Z (Malvern 

Instruments, Southborough, MA). Table A.1 lists the representative formulations. For 

comparison, Ni-NPs were prepared as previously reported (Patel et al., 2007b). Briefly, 

emulsifying wax (2 mg) and Brij 78 (3.5 mg) were weighed in a glass vial and heated to 

65oC. DGS-NTA-Ni (0.106 mg; 10 mg/mL stock solution in chloroform) was added to the 

mixture. Deionized water (1 mL) was added and the contents were stirred at 65oC to form a 

clear oil-in-water microemulsion. Ni-NPs were obtained by cooling the microemulsion to 

room temperature that causes the solidification of the core and the shell components. The Ni-

NPs were purified as described above.  

 

A.3.3. Determination of Surface Nickel Content 

ICP-MS was used to quantify the amount of Ni on the surface of the Ni-NCs 

available for binding to His-tagged ligands using Varian 820 Mass Spectrometer (Palo Alto, 

CA). A standard curve for Ni was prepared using Ni standard solution (1000 mg/L) in the 

concentration range of 9 – 200 ppb. The recovery of Ni from the Ni-NCs was quantified by 

spiking the standards with Ni-NCs dissolved in 0.2 mL of ethanol. To quantify the amount of 

Ni on the surface, the Ni-NCs were diluted with 2% nitric acid, filtered through a 0.2 µm 

filter and analyzed by ICP-MS. Ni concentrations were calculated from the previously 

developed standard curve. Formulation NC02 was selected for further studies based on lower 

polydispersity and higher DGA-NTA-Ni incorporation (wt %) compared to other 

formulations (Table A.2). 
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Formulation/ 
Components NC00 NC01 NC02 NC03 

Brij 78 (mg) 3.5 3.5 3.5 3.5

Vitamin E TPGS (mg) 1.5 1.5 1.5 1.5

Miglyol 812 (mg) 2.5 2.5 2.5 2.5

DGS-NTA-Ni (mg) None 0.1 0.25 0.50

 
Table A.1 Representative nanocapsule (NC) formulations with various components 
designed to incorporate surface chelated nickel. 
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Formulation/ 
Parameters 

NC00 NC01 NC02 NC03 

DGS-NTA-Ni  
(wt % after 
purification) 

None 1.05 ± 0.01 2.73 ± 0.04 3.51 ± 0.04 

Particle Size (nm) 
(Mean ± SD) 

197.2 ± 59.3 199.7 ± 67.4 214.9 ± 57.1  270.2 ± 145.2

Zeta Potential (mV) 
-7.8 -16.2 -14.8 -35.9 

Nickel Content  
(ng/mg NPs) 

ND  29.5 ± 2.8  145.6 ± 19.5  228.4 ± 38.5 

 
Table A.2 Physicochemical characterization of the representative NC formulations with 
or without the incorporation of surface chelated nickel. 
*The calculation of DGS-NTA-Ni incorporation (%) was based on the experimental values 
obtained by ICP-MS in Ni-NCs before and after the gel filtration chromatography using 
Sepharose Cl-4B column to separate non-incorporated components. 
ND = Not detected 
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A.3.4. His-GFP Biding to Ni-NCs 

To investigate the extent of accessible Ni on the surface, formulation NC02 was 

mixed with His-GFP in several Ni to His-GFP molar ratios (1:0.1, 1:0.2, 1:0.4 and 1:0.8) and 

incubated at 4oC overnight to allow for surface binding. Formulation NC00 was also 

incubated with His-GFP (amount similar to that used in the ratio 1:0.2 above) to determine 

non-specific association. The GFP-His-Ni-NC02 was separated from unbound His-GFP 

using a Sepharose CL-4B column (1.5 x 15 cm) equilibrated with 10 mM PBS. Briefly, 0.2 

mL mixture was applied to the column and 1 mL fractions were collected. Subsequently, the 

fluorescence associated with each fraction was measured (Ex 360/40, Em 528/20) on a 

SynergyTM 2 Multi-Detection Microplate Reader (Biotek, Winooski, VT). The particle 

intensity of each fraction was also measured and fractions containing GFP-His-Ni-NC02 

were pooled and characterized for their particle size and zeta potential, respectively. 

 

A.3.5. Microscopy 

Formulation NC02 was visualized by transmission electron microscopy (TEM) to 

understand the morphology of the particles. Briefly, 5 µL (approximately 1.6 x 106 particles) 

of diluted NC02 suspension was spread on a Pelco formvar coated 300 mesh copper grid 

(01710-F, Ted Pella, Redding, CA). The suspension was allowed to air dry for 5 min. Any 

remaining liquid was wicked off. There was no additional staining. The grids were then 

examined with a Zeiss EM 900 Transmission Electron Microscope using 50 kV accelerating 

voltage. The images were acquired using photographic film which was subsequently 

digitized.  
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A.3.6. Uptake of GFP-His-Ni-NCs by Dendritic Cells 

The DC2.4 murine dendritic cell line was obtained from Dr. Kenneth L. Rock 

(Department of Pathology, University of Massachusetts Medical School). The cells were 

cultured in RPMI 1640 (ATCC) supplemented with 10% fetal bovine serum, 2 mM 

glutamine, 55 µM beta-mercaptoethanol, non-essential amino acids, 10 mM HEPES buffer 

and 100 U/mL penicillin and 100 µg/mL streptomycin (GIBCO). Trypan blue was used to 

determine viability and cells were used for experiments when 70-80% confluent. Uptake of 

GFP-His-Ni-NC02 (NC02-02, Table A.3) by DC2.4 dendritic cells was determined using 

confocal microscopy. Briefly, 1 x 105 cells were added to chamber slides (Lab-Tek® 

Chamber Slide SystemTM, Nunc) and incubated overnight to allow for attachment of cells 

followed by treatment with predetermined concentration of NC02-02 for 2 hr. The cells were 

fixed with 4% paraformaldehyde and permeabilized using 0.2% Triton X-100. Subsequently, 

the cells were counterstained using 4,6-diamidino-2-phenylindole (DAPI) and mounted using 

Prolong® Gold Antifade Reagent (Invitrogen). The slides were visualized on a Leica DM 

IRB Inverted Microscope using a 100x oil objective. 

 

A.3.7. Effect of GFP-His-Ni-NCs on the Viability of Dendritic Cells 

The DC2.4 dendritic cells were incubated with different concentrations of NC02 for 

up to 48 hr. The cells were trypsinized with 0.05% Trypsin-EDTA (GIBCO), suspended in 

culture medium, centrifuged at 200 g x 5 min and re-suspended in 10 mM PBS containing 1 

mM EDTA and 10% fetal bovine serum. Propidium iodide (PI) was added to the cell 

suspension as a viability marker at a final concentration of 1 µg/mL immediately before 

analysis by flow cytometry. Flow cytometric analysis was performed using BD LSRII Flow 
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Cytometer (BD Biosciences, Mountain View, CA). Data analysis was performed using Flow 

Jo 7.6Software (Tree Star, Ashland, OR). 

 

A.3.8. His-Gag p41 Binding to Ni-NCs 

Purified recombinant His-Gag p41 protein (HXB2 isolate) was generously provided 

by Dr. Robert Seder (NIH-NIAID) and was used as model antigen. The protein was 

fluorescently labeled using NHS-fluorescein. Briefly, 16 µg of NHS-fluorescein (186 µg/mL 

stock solution in DMSO) was added to 325 µg of His-Gag p41 (1.2 mg/mL stock solution in 

10 mM PBS). The mixture was incubated overnight at 4oC. Excess reactants were separated 

from the protein using a desalting spin column. The degree of modification was calculated 

using the molar extinction coefficient of fluorescein (ε = 68,000 M-1 cm-1, λmax = 493 nm). 

The fluorescein-His-Gag p41 was incubated with NC02 in different weight ratios (His-Gag 

p41:NC02) as described previously for His-GFP to estimate the binding of fluorescein-His-

Gag p41 to NC02. 

 

A.3.9. Mouse Immunization Study 

Eight to 10-weeks old female BALB/c mice (n = 5–7/group) from Charles River 

Laboratories were used for immunization studies. The experimental design is shown in Table 

A.4. Formulations (100 µL) were administered subcutaneously in the nape of the neck on day 

0 and 14. Gag p41-His-Ni-NC02 (His-Gag p41:Ni-NCs weight ratio of 1:480) was used to 

prepare three different concentrations that were subsequently administered to mice to give 

three different doses of His-Gag p41. Gag p41-His-Ni-NP (His-Gag p41:Ni-NP weight ratio 

of 1:100) were administered for comparison. Immune responses were compared to His-Gag 
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p41 adjuvanted with AH. Mice were bled by cardiac puncture on day 28 and sera were 

collected. All sera were stored at -20oC until further analysis. 

 

A.3.10. Determination of Antibody Levels 

His-Gag p41 specific serum IgG, IgG1 and IgG2a antibody levels were determined 

by ELISA. Briefly, 96-well plates were coated with 50 µL His-Gag p41 (5 µg/mL in PBS) 

overnight at 4oC. The wells were blocked using 4% BSA prepared in PBS/Tween 20 for 1 hr 

at 37oC. Subsequently, 50 µL of mouse serum at predetermined dilution was added and 

plates were incubated for 2 hr at 37oC. Horseradish Peroxidase (HRP) conjugated Anti-

mouse IgG F(ab/)2 fragment from sheep (50 µL of 1:3000 dilution in 1% BSA in PBS/Tween 

20) was added and incubated for 1 hr at 37oC. TMB (3,3,5,5-tetramethylbenzidine) substrate 

(100 µL) was added to each well and incubated for 30 min at RT. Color development was 

stopped by addition of 2M sulfuric acid and the absorbance at 450 nm was measured on 

SynergyTM 2 Multi-Detection Microplate Reader (Biotek, Vinooski, VT). For the 

determination of IgG1 and IgG2a, the plates were blocked for 1 hr at 37oC as described 

above followed by incubation with mouse serum for 1 hr at RT. The plates were incubated 

with biotinylated rat anti-mouse IgG1 or IgG2a for 1 hr at RT followed by incubation with 

streptavidin HRP for 30 min at RT. The plates were developed as described for IgG. The 

wells were washed four times with PBS/Tween 20 before each step.  

 

A.3.11. Systemic Cytokine Induction Studies 

To investigate the induction of inflammatory cytokines upon s.c. administration of 

Ni-NCs, 8–10 weeks old female BALB/c mice (n = 3/time point) were used. Briefly, 0.48 mg 
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of NC02 or 10 µg CpG ODN (0.1 mg/mL in PBS) were administered to mice. Blood was 

collected by cardiac puncture at 3, 6, 12, 24 and 48 hr after administration. Sera were 

collected and stored at -20oC. 

The serum concentration of IL-12/p40 and RANTES/CCL5 were determined by 

BDTM cytometric bead array (CBA) flex assay following manufacturer’s protocol (BD 

Pharmingen, La Jolla, CA). Flow cytometric analysis was performed using BDTM LSRII 

Flow Cytometer (BD Biosciences, Mountain View, CA). Data analysis was performed using 

Flow Jo 7.6Software (Tree Star, Ashland, OR). 

 

A.3.12. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 4 Software (GraphPad 

Software, San Diego, CA). Differences in antibody responses among treatment groups were 

analyzed by one way ANOVA followed by Dunnet’s post-test to compare different 

treatments to the naïve group. Effects on DC2.4 cell viability and cytokine induction results 

were analyzed by regular two-way ANOVA followed by Bonferroni post-test to compare 

differences within groups. Differences were considered significant at p<0.05. 
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A.4. Results 

A.4.1. Preparation and Characterization of Ni-NCs 

Our laboratory has recently reported the formulation of stable spontaneously forming 

NCs containing a liquid oil core and surfactant-based shell prepared using biocompatible and 

biodegradable components (Dong et al., 2009a; Dong et al., 2009b). The liquid core consists 

of Miglyol 812, which is a mixture of caprylic and capric acid triglycerides, while the shell is 

composed of two nonionic surfactants, Brij 78 and Vitamin E TPGS respectively. We 

modified the formulation to contain a small amount of surface accessible nickel by 

incorporating DGS-NTA-Ni in the shell (Figure A.1). DGS-NTA-Ni has two out of the six 

co-ordination sites available to interact with the His residues on proteins. Table A.1 shows 

four representative formulations prepared during the optimization of NCs with or without 

surface accessible nickel. The incorporation of DGS-NTA-Ni was determined by measuring 

the amount of Ni by ICP-MS. Based on the incorporation efficiency of DGS-NTA-Ni 

determined by ICP-MS analysis and desired particle size range, formulation NC02 was 

selected for further studies. The optimized NCs had mean particle size of 214 nm with very 

low polydispersity upon gel filtration and had negative surface charge density as indicated by 

zeta potential measurements in 0.5 mM phosphate buffer (Table A.2). The negative charges 

can be due to the formation of small amounts of metal oxides or accumulation of negative 

ions on the surface of the NCs. We also formulated previously reported Ni-NPs to investigate 

the effect of particle morphology on antigen delivery (Patel et al., 2007b). The Ni-NPs have a 

solid matrix core composed of emulsifying wax coated with a single surfactant.  
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Fig. A.1A 
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Figure A.1 Nanocapsules (NCs) with surface accessible nickel (Ni-NCs). 
A) Ni-NCs having a core and shell morphology were formulated with DGS-NTA-Ni to 
provide surface accessible nickel for binding to His-tagged proteins. Four out of the six co-
ordination sites of Ni in DGS-NTA-Ni are occupied while the two remaining sites are 
available for His-tagged ligand binding. 
B) TEM image of Ni-NCs. The distance between the arrowheads within the blackbox 
corresponds to 150 nm. 
 

  

Fig. A.1B 
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A.4.2. Protein Binding 

His-GFP was used as a model protein to study the interaction of His-tag with surface 

Ni and investigate the binding efficiency of the Ni-NCs. His-GFP can be easily detected by 

fluorescence making it easier to quantitatively determine the amount of protein bound to the 

surface and qualitative assessment by microscopy. The GFP-His-Ni-NC02 was separated 

from unbound His-GFP using gel filtration (Sepharose CL-4B). The fluorescence associated 

with the particles compared to the fluorescence of the unbound fractions was used to derive 

the percent of His-GFP bound to the Ni-NCs (Figure A.2). The elution of particles from the 

gel was monitored using particle intensity measurements by light scattering. Based on trials 

using different ratios of surface Ni to His-GFP, Ni-NCs (NC02-02) incubated at molar ratio 

of 1:0.2 (Ni:His-GFP) resulted in the highest level of binding (35%). Interestingly, increasing 

the amount of GFP did not increase the association (Table A.3). This indicates that only a 

limited number of DGS-NTA-Ni are accessible on the surface of the NCs and the binding is 

therefore, saturable. Theoretical calculations showed that the weight ratio His-GFP: Ni-NC in 

formulation NC02-02 was 1:221 and the ratio of molecules of Ni (13,300) to molecules of 

His-GFP (885) was approximately 15. This is expected as the much larger surface area of 

His-GFP may result in shielding of the surface Ni and the ability of single His-tag residue to 

complex with multiple Ni atoms. The binding of protein on the surface did not significantly 

affect the particle size and zeta potential of Ni-NCs (data not shown). Formulation NC00 was 

used as controls to determine non-specific binding of His-GFP which was found to be 

negligible (Figure A.2). The results from this study provide an evidence of surface binding 

of His-tagged proteins that was specific to Ni-NCs. 
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The binding experiments were also performed using fluorescein-His-Gag p41. The 

weight ratio of 1:480 (His-Gag p41: NC02) resulted in more than 65% of the protein 

associated with the NC02 (Figure A.2). 

 

A.4.3. Microscopy 

To examine the morphology of the Ni-NCs, NC02 suspension was observed by TEM. 

As the Ni-NCs have a soft structure and all the components have lower melting points, the 

protocol involved air drying of the grids. The TEM images corroborated the sizing 

parameters obtained by light scattering. Based on TEM analysis, the Ni-NCs ranged in size 

from 150 – 250 nm (Figure A.1). The NCs appeared as hollow spheres that confirms the 

presence of a fluid core. This is in contrast to similar TEM studies performed with our 

previous solid lipid nanoparticles where the core is composed of waxy solid and the particles 

appear as opaque spheres (Oyewumi et al., 2003).  

  



252 

Formulation Ni:GFP 
(Molar Ratio)

GFP Associated 
with NCs (%) 

NC02-01 1:0.1 24.87 

NC02-02 1:0.2 35.68 

NC02-03 1:0.4 32.28 

NC02-04 1:0.8 32.70 

NC00-01 0:0.2* 2.34 

 
Table A.3 Estimation of accessible nickel on the surface of Ni-NCs using His-GFP as a 
model protein. 
Ni-NCs were incubated with His-GFP at different molar ratios of Ni:His-GFP. The GFP-His-
Ni-NCs were purified and the percentage of fluorescence associated with NCs was 
calculated. 
*Formulation NC02 was incubated with His-GFP to estimate non-specific binding in the 
absence of surface nickel. The amount of GFP incubated with NC00 was equivalent to that 
used in NC02 (Ni:His-GFP of 1:0.2) trial. 
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Fig. A.2A 
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Figure A.2 Binding of His-tagged proteins to Ni-NCs. 
A) Ni-NCs formulated with (formulation NC02) or without (formulation NC00) surface Ni 
were compared to determine specific and non-specific binding of His-GFP as a model 
protein, and to determine the binding efficiency of the Ni-NCs. The Ni-NCs were separated 
from unbound His-GFP by elution from a Sepharose CL-4B column (1.5 x 15 cm) using 10 
mM PBS as the elution medium. The elution of Ni-NCs was monitored by measuring the 
particle intensity (PI) while the fluorescence intensity (FI) was measured to determine His-
GFP associated with each fraction. 
B) Binding of fluorescein-His-Gag p41 to the surface of Ni-NCs (formulation NC02) was 
determined similarly. 
  

Fig. A.2B 
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A.4.4. Uptake and Toxicity of NCs in Dendritic Cells 

Dendritic cells are the most potent APCs. Particulate delivery systems are suited for 

rapid uptake by the dendritic cells due to their size. We investigated the uptake of GFP-His-

Ni-NC02 by DC2.4 dendritic cells. As shown in Figure A.3, the Ni-NCs were taken up by 

the cells within 2 hr of incubation as indicated by the fluorescence of GFP. The fluorescence 

was diffused throughout the cytosol with minimal fluorescence in the nucleus. Intact GFP is 

impermeable to cell membrane (Fuchs and Raines, 2007) and therefore, it can be said that the 

intact NCs were taken up by the cells possibly via endocytosis. However, we did not evaluate 

the rate of release of GFP from the NCs upon cell uptake.  

The toxicity of the Ni-NCs (NC02) to DCs was investigated by flow cytometry by 

measuring the fraction of cells that stained positive with PI. NC02 did not show any 

significant decrease in the viability of the cells up to a concentration of 40 µg/mL for 24 hr. 

At 48 hr, higher concentrations of NC02 (40 µg/mL) did result in significant PI positive cell 

population (Figure A.3). We have previously shown that Ni-NPs exhibit significant loss of 

cell viability at comparatively lower concentrations (Yan et al., 2009). This could have 

implications on adverse events associated with the particle-based delivery systems. 
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Fig. A.3A 
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Figure A.3 Interaction of Ni-NCs with DC2.4 dendritic cells.  
A) DC2.4 dendritic cells (1 x 105) were treated with formulation GFP-His-Ni-NC02 for 2 hr 
followed by nuclear staining with DAPI. Cells were visualized by confocal microscopy. 
B) DC2.4 dendritic cells (1 x 105) were treated with formulation NC02 (0.04, 0.4, 4 and 40 
µg/ml) following which they were stained with propidium iodide and analyzed by flow 
cytometry. Data represents mean ± SEM (n = 3). *p<0.01 
 

  

Fig. A.3B 
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A.4.5. Immunization Study 

Mice were immunized with Gag p41-His-Ni-NC02, Gag p41-His-Ni-NPs or His-Gag 

p41 adjuvanted with AH. Three different doses of His-Gag p41/Ni-NCs (fixed weight ratio of 

1:480) were administered to investigate a His-Gag p41 dose response in the antibody 

generation. When compared at the 1:1000 sera dilution, the Ni-NCs resulted in stronger 

antibody response compared to AH at both the 1 µg and 0.5 µg His-Gag p41 doses (Figure 

A.4).  When compared at the same sera dilution, the OD (450 nm) values for NCs at the 1 µg 

dose were >4-fold higher than those for Ni-NPs. In contrast to the Ni-NCs used in these 

studies, the Ni-NPs caused significant loss of viability in DC2.4 dendritic cells at 

concentrations as low as 4 µg/mL (Yan et al., 2009). Therefore, it is possible that the toxicity 

to APCs may have contributed to weaker antibody response observed with the Ni-NPs. 

The serum isotype levels, IgG1 and IgG2a, were determined by ELISA to investigate 

the type of immune response. While production of IgG2a isotype has been associated with 

Th1 response, IgG1 isotype has been associated with Th2 type response. The ratios of 

IgG2a/IgG1 were used to indicate the Th1 or Th2 bias of the generated immune response 

(Maassen et al., 2003; Romagnani, 2000). A balanced Th1 and Th2 response is desired 

following vaccination as excess of either will result in adverse effects. Aluminum containing 

salts have been reported to generate a Th2 biased response (Marrack et al., 2009; McKee et 

al., 2009). This is expected to result in a lower IgG2a/IgG1 ratio. In our observations, the 

ratio IgG2a/IgG1 was 0.14 for AH and 0.55 for Ni-NCs at highest dose of His-Gag p41 (1 

µg) respectively (Figure A.4).  
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A.4.6. Systemic Cytokine Induction Studies  

To investigate the immunostimulating activity of Ni-NCs, we determined the 

induction of pro-inflammatory cytokines by Ni-NCs (formulation NC02). CpG ODN was 

administered as strong inducer of pro-inflammatory cytokines. We determined serum 

concentrations of IL-12/p40 and CCL5/RANTES upon s.c. injection of Ni-NCs in 

comparison to CpG ODN and untreated animals. The results demonstrate that Ni-NCs did not 

result in significant elevation in the level of any of the cytokines measured over control while 

CpG was a strong inducer of both the cytokines (Figure A.5). This indicates that the Ni-NCs 

are potentially a safe delivery vehicle and may result in fewer adverse events upon 

administration. However, this also indicates that additional (safe) adjuvant(s) may be needed 

in certain cases to potentiate the immune response by Ni-NCs.  
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Group/Treatment 
Dose 

His-Gag p41 
equivalent (µg) 

Dose 
(mg of NCs) 

Naive 0 0 

Gag p41-His-Ni-NCs 
(NC02) 

1 0.48 

Gag p41-His-Ni-NCs 
(NC02) 

0.5 0.24 

Gag p41-His-Ni-NCs 
(NC02) 

0.1 0.048 

AH + His-Gag p41 1 0.48 

Gag p41-His-Ni-NPs 1 0.1 

 
Table A.4 Mouse immunization study design. 
Female BALB/c mice were s.c. administered treatments on day 0 (prime) and 14 (boost). 
Sera were collected on day 28 and analyzed by ELISA.  
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Figure A.4 Antibody responses in BALB/c mice.  
A. Female BALB/c mice were immunized on days 0 and 14 with 100 µL of Gag p41-His-Ni-
NPs, Gag p41-His-Ni-NC02 or His-Gag p41 adjuvanted with Aluminum Hydroxide (AH).  
B. Serum samples were also analyzed for IgG1 and IgG2a levels.  
His-Gag p41-equivalent dose is indicated in parentheses on X-axis. Serum was analyzed on 
day 28 by ELISA. Data represents mean ± SEM (n = 6–7). # p<0.05, * p<0.01, **p<0.001 
compared to naïve (untreated) group. 
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Fig. A.5A 
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Figure A.5 Serum cytokine analysis.  
Serum levels of A) IL-12/p40 and B) CCL5/RANTES were measured at predetermined time 
points following s.c. administration of formulation NC02 (0.48 mg) in female BALB/c mice. 
CpG ODN (10 µg) was administered as positive control. Analysis was performed by 
cytometric bead array flex assay. Data represents mean ± SEM (n = 3), ** p<0.001. 
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A.5. Discussion 

This study aimed at developing NCs with chelated Ni on the surface thus providing 

binding sites for His-tagged antigens. The Ni-NCs of the present study are composed of 

completely metabolizable or biocompatible components and have the ability to carry multiple 

antigens as well as an adjuvant. Therefore, using them as a vehicle for the delivery of 

vaccines is a promising approach.  

Delivery of antigen by particulate systems requires their association or entrapment. 

The effect of the type of association on the resulting immune response has been a matter of 

debate over the past two decades and several contradicting reports have been published 

(Shahum and Therien, 1988; Watson et al., 2011). In our previous studies, we observed that 

increasing the association of the antigen to the surface of the NPs increased the associated 

antibody responses (Patel et al., 2007b). Continuing on the previously obtained results, we 

investigated non-covalent attachment of the antigen to the NPs exploiting the Ni-His 

interaction. NTA has been used as a popular ligand for Ni in delivery systems (Huang et al., 

2006). The effect of spacer group and the valency show that while the length of the spacer 

may have some effect on the accessibility, the valency does not affect the antibody responses 

(Huang et al., 2009; Watson et al., 2011). The Ni-NCs exhibited specific binding ability for 

His-tagged model protein although the extent of binding can be increased by improving the 

binding affinity of surface nickel. This may be done by modifying the length and 

amphiphilicity of the spacer group to reduce steric effects on the surface of the NPs although 

some steric hindrance is desired to reduce the exchange of the bound protein with other His-

tagged proteins or serum proteins.  
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The overall safety and absence of hypersensitivity are desirable features of a vaccine 

formulation. The presence of Ni in the formulations of the present study may be of concern 

in view of studies implicating adverse events like immunosuppression (Smialowicz et al., 

1984) and carcinogenicity (Buzard and Kasprzak, 2000) upon parenteral administration of Ni 

compounds and Ni containing products. However, the highest dose of the Ni administered in 

the form of Ni-NCs in the present study was 70 ng. This is approximately 10,000-fold less 

than the doses shown to cause immunosuppression or carcinogenicity and is expected to be 

well tolerated. Additionally, the average dietary intake of Ni in humans is estimated to be 69-

162 µg/day (Safe Use of Nickel, 2008). Chikh et al. reported no toxicity upon acute s.c. 

dosing (three weekly injections) of liposomes containing 5% and 10% DGS-NTA-Ni in mice 

for 30 days (Chikh et al., 2002). To further address this, we examined the serum levels of IL-

12/p40 and CCL5/RANTES in mice treated with Ni-NCs. We observed no significant 

induction of systemic pro-inflammatory cytokines by s.c. administered Ni-NCs. 

Nevertheless, further investigation of immune response to DGS-NTA-Ni may be needed and 

antigen delivery systems using components containing Ni must be evaluated for their safety 

in individuals where adverse events may be expected.  

The type of desired immune response, humoral or cellular, is affected by many 

factors including the nature of the pathogen or the antigen, its mode of entry, types of cells 

infected and cellular localization, the purpose of immune induction (therapeutic or 

prophylactic) and host features among others. In most cases, both humoral and cellular 

responses are desired. Interestingly, particulate antigen delivery systems have shown 

enhanced cross-MHCI presentation due to their endocytic uptake and thus may lead to both 

humoral and long-lasting cellular responses making them ideal adjuvants (Chen et al., 2011; 
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Shen et al., 2006). Interestingly, we have previously shown a strong cytotoxic T-cell and 

antibody response with the Ni-NPs similar to those used for comparison in the present study 

(Cui et al., 2004). 

We are currently evaluating T-cell responses to further investigate the type of 

immune responses. To further improve the immune response with the Ni-NCs, we are also 

investigating the addition of an immunostimulant adjuvant in the Ni-NCs by either surface 

conjugation or incorporation in the core. 
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A.6. Conclusions 

We have successfully formulated novel NCs with surface accessible Ni and 

investigated binding of two His-tagged proteins, GFP and Gag p41, respectively, to the 

surface of Ni-NCs. The Ni-NCs are taken up by the APCs (DC2.4 dendritic cells) but are 

non-toxic upto 24 hr at high concentrations. Enhanced antibody responses were observed 

compared to AH at much lower doses of the antigen. Treatment with Ni-NCs resulted in a 

higher IgG2a/IgG1 ratio compared to AH. The Ni-NCs did not stimulate the production of 

systemic proinflammatory cytokines, IL-12/p40 and CCL5/RANTES after s.c. injection. 

Future efforts involve conjugation of different adjuvants on the surface of the Ni-NCs in 

addition to the surface decoration with a protein antigen to create a system that has both 

immune-potentiation and efficient antigen delivery characteristics. We also plan to 

investigate the retention and migration of Ni-NCs from the site of administration.   
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APPENDIX B  

Spectral Characterization of Synthesized Compounds  
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Figure B.1 1H NMR spectra for 2-(2-Pyridyldithio) ethylamine hydrochloride. 
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Figure B.2 1H NMR spectra for PGA-D-pen conjugate. 
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Figure B.3 1H NMR spectra for idarubicin-4-maleimidophenylbutyric acid hydrazide 
hydrochloride conjugate (Ida-MPBH).  
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Figure B.4 1H NMR spectra for trivalent anisamide and intermediates.  
The spectra refer to compounds 1-4 in Figure 4.1. 


