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ABSTRACT 

 OMUR CELMANBET:         Two Essays on Sequential Auctions and Research Joint
Ventures 

(Under the direction of  Claudio Mezzetti)  

The dissertation consists of two essays. In ”Choosing the Order of Sale in Multi-Unit Auctions” I

examine a sequence of two English Auctions of two common-value, heterogeneous objects: a low-value

and a high-value object. I ask the question: Should the auctioneer sell the low-value or the high-value

first  in  order  to  maximize  his  revenue?  Under  the  assumption  that  bidders’  signals  about  the

common-value are affiliated random variables, I study two models. In Model I, some bidders only

want to buy the high-value item while the others only want the low-value item. In Model II, there are

also some bidders that want both objects. In Model I, I show that: (1) It is optimal for the seller to

auction the low-value item first, when the number of bidders competing for the high-value object is

not greater than the number of bidders competing for the low-value object. (2) When there are more

bidders in the auction of the high-value item than in the auction of the low-value item, then either

order  of  sale  can  be  optimal  for  the  seller,  depending  on  the  relative  values  of  the  objects.  In

particular, if there are sufficiently more bidders competing for the high-value object, then it is optimal

for the seller to auction the high-value item first. I also show that the main insights from Model I

generalize to Model II.

In the second essay, ”Voluntary Disclosure to Form a Research Joint Venture” I investigate  why

many potentially successful research joint ventures (RJV) do not start and suggest a way to remedy

the problem. To inform potential partners about the value of the know-how that it would bring into

an  RJV,  a  firm  must  disclose  some  of  this  know-how.  In  a  weak  intellectual  property  rights

environment, this creates the danger of exposing the firm to expropriation: The revealed know-how

cannot be protected and the potential partners may use it to innovate themselves. Because of this

fear of expropriation, many potentially successful RJVs cannot be formed. I introduce a contractual

procedure that guarantees  that firms disclose their  know-how fully  and  encourages firms to form

RJVs.
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Chapter I

Choosing the Order of Sale in Multi-Unit Auctions



1 Introduction

Many auctions involve the simultaneous or sequential sale of different and differently valued goods.

Examples include art, real estate, and government auctions to sell mineral rights, radio spectrum

licenses, and other state owned assets. The design of efficient and revenue maximizing auctions of

multiple objects has attracted considerable interest in the wake of the FCC spectrum auctions of

1994 (e.g., see Armstrong (2000), Ausubel and Milgrom (2002) and Ausubel (2002), among others).

Most auctioneers, however, have continued to use standard auctions to sell multiple items. A natural

question arises: which order of sale in a standard sequential auction maximizes the seller’s revenue?

This paper is an attempt to answer this fairly simple, yet unexplored question.

Governments all around the world have been using sequential auctions to privatize state owned

firms. While some governments sell their most valuable firms early, others wait to auction them off

after the sale of small enterprises. For example, Gupta et al. (2004) report that state owned firms were

sold in the order of declining value in the Czech Republic. On the other hand, the Turkish Government

is still in the process of selling Tupras, which is one of the most profitable state owned enterprises in

Turkey, after almost 20 years of continued privatization.1

Sequential auctions are used not only in the privatization of government assets, but also in the

creation of newmarkets. In the recent European UMTS/IMT-2000 spectrum auctions, the German and

Austrian governments sold the unpaired spectrum after the paired spectrum, which is more valuable.2

In contrast, in an auction to sell three wireless licences - two of them for 28 MHz block and one for

56 MHz - the Swiss goverment decided to auction off the largest (and hence most valuable) spectrum

last.

Perhaps the most illustrative examples in which the sequence of sale matters come from art auctions.

Suppose an auction house has to decide which of two paintings by Picasso should be auctioned first, a

masterpiece or a minor work. Actual practioners of auctions often resort to psychological arguments

to answer this question. Two factors seem to be primarily driving their decision: “warming up the

room” and “establishing lively bidding”. Warming up the room, it is argued, requires that the minor

work goes first, in order to generate enthusiasm in the competition for the masterpiece, among bidders

who are initially hesitant. Establishing lively bidding, on the other hand, requires that the masterpiece

goes first, in order to exploit the enthusiasm that competition for the masterpiece generates in the

subsequent sale of the minor work.3 In a study based on data from Contemporary Art auctions at

Christie’s in London in 1980-1994 and Impressionist and Modern Art auctions in both Christie’s and

1www.oib.gov.tr

2See Jehiel and Moldovanu (2001)

3See Cassady (1967) and Benoit and Krishna (2001) for discussions of these factors.
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Sotheby’s in New York and London in 1980-1990, Beggs and Graddy (1997) found evidence that the

objects are ordered by declining value.

To study the optimal sequence of sale, I develop a simple common-value model of two sequential

English auctions with an auctioneer who has two heterogeneous objects: a low-value and a high-value

object.4 The values of the objects are correlated. In particular, each object is tied to an unknown state

of nature. This is a plausible modeling assumption, given the examples above. For instance, in the case

of two paintings by Picasso, the state variable could be a summary of the current economic conditions

of the art market and the resale value of Picasso paintings in general. Similarly, in the privatization of

different firms by a government, the state of nature may represent the country’s economic conditions,

tax policy and corporate law.

In my model, there are three group of bidders: H-bidders, who want to buy only the high value

object, L-bidders who want to buy only the low value object, and B-bidders who want to buy both

the low and the high value items. Thus, H-bidders and L-bidders have only unit demand. One

explanation for the existence of unit-demand bidders is that some bidders may not have the financial

and technological resourses to buy and utilize both objects at the same time, as observed for example

in the spectrum auctions by the Swiss government. I assume that each bidder has a private signal

concerning the state variable and that the bidders’ signals are affiliated.

Given these assumptions, I study two models. In Model I there are only H-bidders and L-bidders,

in order to separate the issues arising from the presence of multi-demand bidders, while in Model II

there are also B-bidders.

The main result of this paper is that in both models either selling the high-value good first or

selling the low-value good first can be optimal depending on the relative values of the objects and the

number of bidders of each type. My findings suggest an explanation of why in practice we observe that

some sellers auction off their goods in the order of declining value, while others do the opposite. My

results also provide guidelines for auctioneers in deciding which good to sell first to maximize revenue.

I begin with Model I by analyzing the auctions of the items when there are only unit-demand

bidders. It is shown, as expected, that it is never optimal for the seller to hold simultaneous sales

where no information is released between the auctions. The intuition follows from the Linkage principle

of Milgrom and Weber (1982), which implies that the expected revenue increases if bidders are given

information that is related to the true value of the object. While the expected revenue from the

first sale is the same as the revenue from an independent auction of the same item, a sequential sale

improves the seller’s revenue in the second auction. Unlike in simultaneous sales, which are essentially

two independent English auctions, in a sequential sale the information of the bidders from the first

4 I chose to study the English auction because it is widely used and because, with affiliated values and risk neutral bidders,
it raises the highest revenue among the common auction formats, as shown by Milgrom and Weber (1982).
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auction is passed on to the bidders in the second sale. Since the revealed information is related to the

state of nature, and hence to the value of the object to be sold in the second stage, the information

disclosure leads to more aggressive bids and higher payoff to the seller in the second auction, as

compared to the revenue in the auction of that item when the goods are sold simultaneously.

After establishing that the seller should sell the goods sequentially, I ask the main question of the

paper: which of the items should the seller auction first in order to maximize total revenue? At first

glance, the answer would seem to be that the auction of the high value item should be held later. After

all, by revealing the signals of the bidders participating in the first auction, a sequential sale increases

the seller’s payoff only in the second sale. Since the contribution of a signal to the high value good

is larger than to the low value item, one may expect a larger price increase from auctioning off the

high value item later. However, it turns out that there is another effect present, which may conflict

with the value effect. In an auction, a bidder’s rent, or conversely the seller’s loss, on the unknown

part of the state of nature depends on the number of bidders competing in that auctions, and the rent

decreases as the auction becomes more competitive. Thus, this “competition effect” suggests that the

more competitive item should be auctioned first. When the number of L-bidders is greater than or

equal to the number of H-bidders, the sale of the low value item is at least as competitive as the sale of

more valuable object. In this case, both the value effect and the competition effect imply that the high

value good should be sold later. On the other hand, when there are more H-bidders than L-bidders,

that is the auction of the more valuable good is more competitive than the other auction, the value

effect and the competition effect conflict with each other. Therefore, in this case the optimal sequence

of sale depends on which effect is dominant. I find that when the number of H-bidders is sufficiently

large relative to the number of L-bidders, the competition effect outweighs the value effect, implying

that the high value good should be auctioned first.

I then consider Model II. The presence of multi-demand bidders complicates the situation, since

B-bidders may not be willing to reveal their information in the first auction in order to buy the second

good at a favorable price. This may lead to two types of equilibria in the first auction: a separating

equilibrium, in which the bid of the bidders that want both objects is a strictly increasing function of

their signals, and a pooling equilibrium, in which their bid is independent of their signals. A pooling

equilibrium always exists, while a separating equilibrium may or may not exist. The fact that each

sequence of sale may have multiple possible equilibrium outcomes makes it difficult to compare revenue.

Neverthless, I show that the intuition and spirit of the results of Model I still hold. In particular, I

find that if the number of H-bidders is sufficiently higher than the number of L-bidders and B-bidders,

then selling the high value object first is optimal for the seller. If, on the other hand, the number of

L-bidders is sufficiently larger than the number of H-bidders and B-bidders, then the auction of the

low value object should be held first. The intuition is similar to the one in Model I. When there are
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sufficiently many H-bidders, the auction of the high value good becomes very competitive regardless

of the equilibrium considered, implying that information disclosure will always be more valuable in

the sale of the low value item, which should then be sold second.

This paper is related to a small literature on the order of sale of heterogeneous goods in sequential

auctions. The effects of the sequence of sale on the auctioneer’s revenue have been studied by Bernhardt

& Scoones (1994), Benoit & Krishna (2001), Chakraborty, Gupta & Harbaugh (2003), Elmaghraby

(2003), and Pitchik (2004).

Bernhardt & Scoones (1994) consider a private value, sequential second price auction of two het-

erogeneous goods with different distributions of buyer valuations. They show that it is optimal for the

seller to auction the good with the highest variance first. Their paper differs from this paper in that

I look at common value English auctions and, most importantly, unlike in their model, in my setting

each bidder agrees about which object is more valuable than the other.

Benoit & Krishna (2001) study sequential sales of common value objects with complete information

and budget constrained bidders. They conclude that the seller prefers to sell the high value object

first. As they point out, it is not the desire to take advantage of information disclosure that is behind

their result. The auctioneer’s preference for selling the high value item first is due to the combination

of two factors: the bidders’ incentive to reduce the budgets of their rivals, and the seller’s incentive

to have the wealthiest bidder win the first auction. Pitchik (2004) also considers sequential auctions

with budget constrained bidders, but in an incomplete information and private value setting. In her

setting, there are two bidders and it is not the case that the bidders consider the same object as the

more valuable. Neverthless, similar to Benoit & Krishna (20001), she finds that the auctioneer’s profit

is maximized whenever the first object sold goes to the bidder with the highest income. Elmaghraby

(2003) extends her paper by allowing arbitrary number of bidders in a sequential procurement of two

jobs with different costs, and he shows that it is optimal for the buyer to outsource the more costly

task first.

Chakraborty, Gupta & Harbaugh (2003) share the most similarities with this paper, in that they

also consider a sequential English auction of two common value heterogeneous goods with different

values. However, their paper differs from mine in one important aspect: while the seller knows which

of the objects is more valuable, bidders cannot distinguish between the values of the objects initially.

Thus, in constrast to my setting, in their model there is strategic interaction between the seller and

the bidders. They show that the revenue to the seller is higher if he sells the high value good later,

but this order of sale may not be an equilibrium.

The rest of the paper is organized as follows. In Section 2, I describe the details of the model. In

Section 3, I investigate the simpler case where there are only unit-demand bidders. After finding the

seller’s revenue in each sequence of sale, I compare them in order to determine the conditions which
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make one sequence better than the other from the seller’s point of view. In Section 4, I consider the

general model in which there are also some bidders who wish to buy both items. Section 5 concludes.

2 The Model

An auctioneer is to sell a low-value, L, and a high-value, H, object. There are m+ n+ r risk neutral

bidders. Each of the m ≥ 2 bidders (H bidders) in the set M = {1, 2, ...,m} only wants H, each of the

n ≥ 2 bidders (L bidders) in the set N = {m+1,m+2, ...,m+n} only wants L, and each of the r ≥ 1

bidders (B bidders) in the set R = {m+ n + 1,m+ n + 2, ...,m + n + r} wants both H and L. The

number of bidders of each type, and who wants which object(s) are common knowledge.

Each bidder i ∈ I = M ∪ N ∪ R gets a private signal si from the set S = {0, 1}. I denote the

signals, or signal profile, of the bidders in the set A ⊆ I by sA = (si)i∈A. Also, I denote by sA(k) the

signal profile of the bidders in the set A such that the first k bidders in A have signal 0 and the rest

have signal 1. When I consider only the realized signal of bidder i, I write si = 0 or si = 1.

The objects have common values to all bidders, and the values of the objects depend on the

realizations of all signals. Specifically5 ,

vL =
µL

m+ n+ r

m+n+r∑

i=1

si and

vH =
µH

m+ n+ r

n+m+r∑

i=1

si where µH > µL

Let p(sI) be the commonly known joint probability of all signals. Then, p(sA) denotes the marginal

probability of the signals in the set A ⊆ I. That is,

p(sA) =
∑

p(sI)

sI\{A}∈S|I\{A}|

Similarly, p(sA|sB) denotes the probability of the signals in the set A conditional on the signals in

the set B, where A, B ⊆ I.

I assume that the signals have a non-degenerate, symmetric, probability density; that is, for all

A ⊆ I we have p(sA) > 0 and p(sA) = p(sσ(A)) for all sA ∈ Πi∈AS and for all permutations σ

on the set I.6 Furthermore, I assume that the signals are affiliated. Affiliation has been a common

5The general model is as follows. Let s1, s2, ..., sm+n+r ∈ S be a random sample from a distribution with an unknown
value of the parameter V . Suppose that v is the realization of V . The values of the objects are vL = µLv and vH = µHv.
In this paper, I consider the set of distributions such that the posterior distribution of V depends on the observed values

s1, s2, ..., sm+n+r only through 1
m+n+r

m+n+r∑
i=1

si. See DeGroot(1970) for more details on such class of distributions.

6Note that symmetry implies that p(sA(k)) = p(sσ(A)(k)) for all permutation σ and for all k ≤ |A|.
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assumption in the auction literature, starting with Milgrom and Weber (1982). For any sA and ŝA

(where A ⊆ I) let sA and sA be the component-wise maximum and component-wise minimum of sA

and ŝA, respectively. Then, the variables are said to be affiliated if p(sA)p(sA) ≥ p(sA)p(ŝA) for all

sA and ŝA. If the inequality is strict, then the variables are said to be strictly affiliated.

The timing of the game is as follows. The auctioneer chooses which object to sell first in a sequence

of two English auctions. Then, the first English auction starts. Bidders who want to buy the item

being auctioned participate. After the first auction ends, the English auction for the other item

starts, and bidders interested in that item participate. There are many versions of the English auction

(see Klemperer (1999) and Milgrom and Weber (1982) among many others). In the English auction

considered here, all bidders that wish to buy the item being sold are initially active at a price of

zero. Bidders drop out of the auction as price increases until no or only one bidder remains; bidders

cannot bid again once they have dropped out. The object is awarded to the winner(s) at the last

drop-out price, and ties are broken by a random draw with equal probabilities among the winners. An

important feature of an English auction is that the active bidders can observe at what prices inactive

bidders have quit. Thus, at any point in time an active bidder can estimate the value of the object

conditional on his signal and the drop-out prices of the inactive bidders. In other words, the early bids

convey information to the bidders who are still active. I assume that the bidders in the second auction

can also observe all the bids in the first auction, and use this information to update their beliefs about

the value of the item to be sold second.

3 Model I: No B-bidders, r = 0

In this section, to simplify the initial analysis, I study the sale of H and L when there are no B-bidders.

Finding the expected revenue to the seller in Model I will help me later, in Section 4, to find the seller’s

expected revenue in the general model with r ≥ 1.

I begin by deriving the benchmark case when the auctioneer sells the objects simultaneously.

3.1 A Benchmark: Simultaneous Auctions

All of the m bidders participate in the auction of H and all of the n bidders compete in the auction of

L. I assume that none of the H-bidders (L-bidders) can observe the bids in the auction of L (H). No

information from one auction is passed on to the bidders in the other auction. Thus, the simultaneous

sale of H and L corresponds to two independent English auctions.

Consider the auction of H. Following Milgrom and Weber (1982), I now derive the drop-out prices

in the symmetric equilibrium. A bidder with signal 0 drops out first at the price bH(0), which is equal

to the expected value of H conditional on him and the other m− 1 bidders having signal 0. That is,

7



bH(0) = E(vH |sM (m)) =
E(
∑m+n

j=m+1 sj |sM (m))

n+m
µH . (1)

After all the bidders with signal 0 drop out, a bidder with signal 1 observes the number of bidders,

k, who have quit at bH(0) and updates his information about the other bidders. Thus, a bidder with

signal 1 drops out at the price bHk (1) which is equal to expected value of H conditional on k bidders

having signal 0 and m− k bidders having signal 1; that is,

bHk (1) = E(vH |sM (k)) =
E(
∑m+n

j=m+1 sj |sM(k))

n+m
µH +

m− k

n+m
µH, (2)

where k = 0, 1, 2, ...,m. It is convienient to define bHm(1) = bH(0), even though bHm(1) is not a bidding

function.

The bidding functions for the auction of L are analogous.

Let RA(m,n) be the expected revenue to the seller in the isolated auction of A ∈ {H,L}, when

there are m and n bidders competing for the items H and L, respectively. Before deriving the seller’s

revenue in the auctions of H and L, we need two definitions. Let

Xm = p(sM(m− 1)) [p(sm+1 = 1|sM (m− 1))− p(sm+1 = 1|sM (m))] ,

and

Xn = p(sN(n− 1)) [p(s1 = 1|sN(n− 1))− p(s1 = 1|sN(n))] .

Proposition 1 Assume that the auction of H and the auction of L are held simultaneously. Then,

(i) The expected revenue to the seller from the auction of H is

RH(m,n) = µHp(s1 = 1)−
m

m+ n
µHp(sM (m− 1))−

mn

m+ n
µHXm

(ii) The expected revenue to the seller from the auction of L is

RL(m,n) = µLp(sm+1 = 1)−
n

m+ n
µLp(sN(n− 1))−

mn

m+ n
µLXn

The first term in the formula for RH(m,n) corresponds to the unconditional expected value of H:

E(vH) =
µH

m+ n

m+n∑

i=1

E(si) = µHp(s1 = 1),

where the last equality follows from symmetry.

As we shall see, the two remaining terms in RH(m,n), which can be interpreted as a loss to the
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seller, correspond to the total expected payoff of the H-bidders,

LH(m,n) =
m

m+ n
µHp(sM(m− 1)) +

mn

m+ n
µHXm.

Thus, we have that the expected revenue is RH(m,n) = E(vH)− LH(m,n).

To better understand the formula for LH(m,n), begin by noting that the true value of H, vH =

µH
m+n

∑m+n
i=1 si, is the sum of the contribution of the H-bidders’ signals, vHH = µH

m+n

∑m
i=1 si, and of the

L-bidders’ signals, vLH =
µH
m+n

∑m+n
i=m+1 si: vH = vHH + vLH .

In the symmetric equilibrium, all H-bidders with signal 0 drop out when the price equals the

expected value of vH conditional on all H-bidders having signal 0; that is, they quit at bH(0) =

vHH (0) + vLH(0), where v
H
H (0) is the expected value of vHH and vLH(0) is the expected value of vLH , both

conditional on all H-bidders having signal 0. Bidder j ∈M makes a positive profit if and only if he is

the only H-bidder with signal 1, in which case he wins item H for sure and pays bH(0).7 Thus, we can

think that he pays

vHH (0) = E(vHH |sM (m)) = 0

for vHH , and

vLH(0) = E(vLH |sM (m)) =
n

m+ n
µHp(sm+1 = 1|sM(m))

for vLH . When bidder j is the only H-bidder with signal 1, the expected value of vHH is

E(vHH |sM (m− 1)) =
1

m+ n
µH ,

while the expected value of vLH is

E(vLH |sM(m− 1)) =
n

m+ n
µHp(sm+1 = 1|sM (m− 1)).

Since the probability that bidder j is the only H-bidder with signal 1 is p(sM (m− 1)), and bidders

are symmetric, it follows that the total expected payoff of the H-bidders from vHH is

m
[
E(vHH |sM (m− 1))− vHH (0)

]
p(sM(m− 1)) =

m

m+ n
µHp(sM(m− 1)),

which corresponds to the first term in LH(m,n), while the total expected payoff of the H-bidders from

vLH is

m
[
E(vLH |sM(m− 1))− vLH(0)

]
p(sM (m− 1)) =

mn

m+ n
µHXm,

7 In all the other cases, bidder j’s payoff is zero because he either does not win or his bid is in a tie as one of the highest
bid. In the latter case, if he wins, he pays his own bid, which is equal to the expected value of the object.
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which corresponds to the second term in LH(m,n).

Analogous formulas hold for the auction of L. In particular, RL(m,n) = E(vL) − LL(m,n), and

mn
m+nµLXn is the expected total payoff of the L-bidders from vHL , the sum of the contribution of the

H-bidders’ signals to the true value of L.

The following lemma shows that the expected loss to the seller on vLH and vHL is indeed nonnegative.

Lemma 1 Xm (Xn) is nonnegative for all m (n). If the signals are strictly affiliated, then Xm (Xn)

is positive for all m (n).

With simultaneous sales, the seller incurs a nonnegative (positive if the signals are strictly affiliated)

loss because of the bidders whose signals affect the value of an item, but who do not compete for that

item. In the next section, I will show that sequential sales reduce this loss.

3.2 The Sequential Sale of H and L

Now suppose that the seller auctions H and L sequentially. The first sale is identical to selling the

first item in a one-shot isolated auction, whereas the second sale is not. Assume, for instance, that

the seller auctions H first and L second (that is, the order is HL). Consider the auction of H. Each of

the m H-bidders views the sale of H as an independent auction, because he does not compete for L.

Thus, all H-bidders with signal 0 drop out at bH(0) = E(vH |sM (m)) and all H-bidders with signal 1

quit at bHk (1) = E(vH |sM(k)) (where k = 0, 1, 2, ...,m is the number of H-bidders who dropped out at

bH(0)), as in the simultaneous sales.

Now consider the auction of L. Since the equilibrium bidding function of the first auction is in-

creasing in a bidder’s signal, the vector of signals sM is revealed to the n bidders participating in

the auction of L (equilibrium in the auction of H is separating). The bidders use this information to

update the expected value of L. Suppose that k bidders drop out at bH(0) and m−k bidders drop out

at bHk (1) in the auction of H. Then, an L-bidder with signal 0 drops out first at the price bLk (0) that is

equal to the expected value of L conditional on k H-bidders having signal 0, m− k H-bidders having

signal 1 and him and the other n− 1 L-bidders having signal 0. That is,

bLk (0) = E(vL|sM(k); sN(n)) =
m− k

m+ n
µL. (3)

After all the bidders with signal 0 in the auction of L drop out at the price bLk (0), an L-bidder

with signal 1 observes the number t of L-bidders who have dropped out at bLk (0) and updates his

information about the other bidders. Thus, an L-bidder with signal 1 drops out at the price bLk,t(1)

which is equal to the expected value of L conditional on k H-bidders having signal 0, m− k H-bidders

having signal 1, t L-bidders having signal 0, and n− t L-bidders having signal 1. That is,
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bLk,t(1) = E(vL|sM (k); sN(t)) =
m− k

m+ n
µL +

n− t

m+ n
µL, (4)

where t = 0, 1, ...., n. It is convienient to define bLk,n(1) = bLk (0), but recall that b
L
k,n(1) is not a bidding

function.

Let RAB(m,n) be the seller’s expected revenue when the order is AB (where A,B ∈ {H,L}), there

are m bidders competing for H, and n bidders competing for L.

Proposition 2 (i) The expected payoff to the seller when object H is auctioned first and object L is

auctioned second is

RHL(m,n) = RH(m,n) +RL(m,n) +
mn

m+ n
µLXn

(ii) The expected payoff to the seller when object L is auctioned first and object H is auctioned

second is

RLH(m,n) = RH(m,n) +RL(m,n) +
mn

m+ n
µHXm

I now compare the revenues to the seller in simultaneous and sequential sales. Recall from Section

3.1 that RH(m,n) + RL(m,n) is the auctioneer’s payoff in the simultaneous sales of the items. In

Section 3.1, I also showed thatXm andXn are nonnegative (positive if the signals are strictly affiliated).

Thus, I have proved the following corollary.

Corollary 1 The seller weakly prefers sequential sales to simultaneous sales. If the signals are strictly

affiliated, then the seller strictly prefers sequential sales to simultaneous sales.

The difference between the expected revenues to the seller in sequential and simultaneous sales can

be explained by the “Linkage Principle,” one of the fundamantal results in auction theory (Milgrom

and Weber (1982)). The principle implies that the seller’s expected revenue increases when bidders

are provided with additional information that is related to the true value of the object. In sequential

sales, the seller’s expected revenue from the sale of the first item is the same as the expected revenue

from the auction of that item when the objects are sold simultaneously. However, this is not true for

the auction of the second item. Consider, for instance, the seller’s revenue in the auction of L when

the objects are sold simultaneously,

RL(m,n) = µLp(sm+1 = 1)−
n

m+ n
µLp(sN(n− 1))−

mn

m+ n
µLXn

A part of the seller’s loss, mn
m+nµLXn is due to the L-bidders having to consider the expected values

of the unknown vector of signals sM while forming their bids. Recall that mn
m+nµLXn is the expected

total payoff to the L-bidder on vHL , the part of the value of L due to the signals of the H-bidders.

Therefore, mn
m+nµLXn is also the expected loss to the seller on vHL .
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Now consider the auction of L when the order is HL. Since the equilibrium in the first auction is

separating, the vector of realizations of the H-bidders’ signals, sM , becomes known to the L-bidders.

As a result, each L-bidder obtains a zero payoff on the part vHL of the true value of L. In other

words, if item L is sold in the second auction, the seller avoids the loss on vHL that he incurs in the

simultaneous sales. Therefore, the seller’s expected revenue when the order is HL exceeds the revenue

in the simultaneous sales by mn
m+nµLXn. Since Xn ≥ 0 by Lemma 1, the seller weakly prefers to sell

the items sequentially to simultaneous sales. If the signals are strictly affiliated, then Xn > 0, and the

seller strictly prefers sequential sales.

In summary, when the objects are sold sequentially, the information of the bidders in the first

auction becomes known to the bidders in the second auction. As a result, the bidders in the second

auction bid more aggressively, increasing the price of the item to be sold second and the expected

revenue of the seller.

3.3 The Optimal Order of Sale

After concluding that the seller should auction the items sequentially, I will now determine which order

of sales is optimal from the seller’s point of view.

Proposition 3 Assume m = n. Then, the seller weakly prefers selling L before H. If the signals are

strictly affiliated, then the seller strictly prefers selling L first.

As I discussed in Section 3.2, if H is auctioned second, the auctioneer’s revenue rises by mn
m+nµHXm

compared to simultaneous sales, and it increases by mn
m+nµLXn if L is auctioned second. If m = n,

then Xm = Xn ≥ 0, with strict inequality if signals are strictly affiliated. When there is an equal

number of bidders in each auction, the information content spilling over from the first auction into the

second auction is the same, but information is more valuable in the sale of the high value object, since

µH > µL. In other words, the seller suffers a higher loss in the sale of H due to lack of information

about the L-bidders’ signals, than in the sale of L due to lack of information about the H-bidders’

signals. It is thus optimal to sell L first. More generally, we can think that a “value effect,” the fact

that object H is more valuable than L, favors the sale of the high value object later. Following the

jargon of practitioners, we could call the “value effect” a “warming up the room” effect. Proposition

3 says that if competition for the two items is the same, then the seller should exploit the information

spillovers from the sale of the less valuable object, in effect “warming up the room,” to raise the price

of the more valuable object.

The next lemma implies that n
m+nµHXm, the expected payoff of an H-bidder from vLH decreases

with m, the number of bidders competing for H.
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Lemma 2 Xm (Xn) is decreasing in m (n). Moreover, if the signals are strictly affiliated, then Xm

(Xn) is strictly decreasing in m (n).

This lemma suggests that, along with the value effect, the seller should also take into account the

“competition effect,” when determining the optimal order of sale. The “competition effect” favors the

more competitive auction to be held first, since there is less room for information disclosure to rise the

price of that item.

When the number of bidders competing for H is less than the number of bidders competing for

L, both the value and the competition effects suggest that L should be auctioned first. That this is

indeed the case is established in the next Proposition.

Proposition 4 If m < n then the seller weakly prefers selling L first to selling H first. If the signals

are strictly affiliated, then the seller strictly prefers selling L first to selling H first.

The next corollary says that for each level of competition for the H item, if the auction of the L

item is above a minimum level, then auctioning L first maximizes revenue.

Corollary 2 For any m there exists n∗ such that if n ≥ n∗, then the seller weakly prefers selling L

first to selling H first. Moreover, if the signals are strictly affiliated, then the seller strictly prefers

selling L first to selling H first.

When there are more H-bidders than L-bidders, either order can be optimal. While the competition

effect suggests that H should be sold first, the value effect favors the opposite order. For instance, if

the value of L is sufficiently close to the value of H, then it is more likely that the competition effect

outweighs the value effect. In that case, the seller should auction H first. In contrast, if the value

of L is really small compared to the value of H, then it is likely that the value effect outweighs the

competition effect. In this case, the auction of H should be held first.

The following two lemmas will be used to determine which object should be auctioned first when

there are more H-bidders than L-bidders.

Lemma 3 lim
m→∞

p(sM (m− 1)) = 0.

Lemma 4 lim
m→∞

Xm = 0.

The next proposition shows that, for any number of L-bidders, there is always a threshold level

of H-bidders above which revenue is maximized by auctioning the H item first. The reason is that

the seller’s loss in the auction of H due to the unknown signals of the L-bidder becomes small as the

auction of H gets sufficiently competitive. This results seems to capture the effect that practitioners

call “establishing lively bidding.” If the competition for the high value item is sufficiently intense, then
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the seller should exploit the information spillovers from the sale of the more valuable item, in effect

“establishing lively bidding,” to raise the price of the less valuable object.

Proposition 5 For any n there exists m∗ such that if m ≥ m∗ then the seller weakly prefers selling

H first to selling L first. If the signals are strictly affiliated, then the seller strictly prefers selling H

first.

The next corollary simply says that if there is no value effect (µH = µL), then the seller should

auction first the item for which competition is greatest.

Corollary 3 Assume that the signals are strictly affiliated and µH = µL. Then, the seller strictly

prefers selling H first to selling L first if and only if m > n.

Under the assumption that the signals are strictly affiliated, I now show that as the number of

H-bidders (L-bidders) becomes large, the seller finds it optimal to sell H (L) first, while he is indifferent

between selling L (H) first and auctioning the items simultaneously.

Proposition 6 Assume that the signals are strictly affiliated. Then,

(i) For any n <∞ selling H first gives the seller the highest revenue while simultaneous sale of the

objects and selling L first give the same revenue as m→∞.

(ii) For any m < ∞ selling L first gives the seller the highest revenue while simultaneous sale of

the objects and selling H first give the same revenue as n→∞.

The next result is that, if both the number of H-bidders and of L-bidders become large, then the

seller is indifferent between either order of sequential sales and simultanoeus auctions.

Proposition 7 Any order of sequential sales and simultaneous sales give the seller the same revenue

as (m,n)→ (∞,∞).

4 Model II: A Positive Number of B-bidders, r ≥ 1

In this section, I look at the more general model, Model II, in which there are also bidders, the B-

bidders, that want both objects. As in the previous section, I start by presenting the benchmark case

in which the auctioneer sells the items simultanously.

4.1 A Benchmark: Simultaneous Auctions

When the objects are sold simultaneosly, there is no information transmission between the auctions.

Thus, the sale of H is an isolated English auction with m + r bidders, who do not know the signals

of the n L-bidders. Similarly, the sale of L is an isolated English auction with n+ r bidders, who do
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not know the signals of the m H-bidders.8 The expected revenue of the seller follows as a corollary of

Proposition 1.

Proposition 8 The expected payoff to the seller with simultaneous auctions of H and L when there

are m H-bidder, n L-bidders and r B-bidders is

R(m,n, r) = RH(m+ r, n) +RL(m,n+ r)

4.2 Sequential Auctions

Suppose that item A ∈ {H,L} is sold first. Then, all the bidders demanding only item A and the

B-bidders, which demand both items, participate in the first auction. An A-bidder does not worry

about revealing his signal to the bidders in the second auction, because he does not compete for the

second item. Hence his drop out prices will be increasing in his signal. On the other hand, a B-bidder

may not be willing to reveal his signal in the first auction, in order to buy the second item at a

favorable price. Therefore, there are two types of potential equilibria of the first auction: a “pooling

equilibrium,” in which all B-bidders drop out at the same price, irrespective of their signals, and a

“separating equilibrium,” in which the drop out prices of a B-bidder is an increasing function of his

signal.

4.2.1 Pooling Equilibrium

In a pooling equilibrium all B-bidders quit the first auction at the same time at price b. I assume that

they quit before any unit-demand bidder drops out. For argument’s sake, suppose H is auctioned first.

Realizing that the signals of the B-bidders are not incorporated in the sale price, the H-bidders will

bid as if they were in a single isolated auction of H with m bidders. That is, all H-bidders with signal 0

drop out at bH(0) = E(vH |sM (m)) and all H-bidders with signal 1 drop out at bHk (1) = E(vH |sM (k))

where k = 0, 1, 2, ...,m is the number of H-bidders who dropped out at bH(0).9

Now consider the auction of L. Since in the sale of H the bidding function of the H-bidders is

increasing in their signals, while all B-bidders pool by quitting right away, the signal profile sM is

revealed, whereas sR is not. Thus, the L-bidders and the B-bidders view the auction of L as a one-

shot English auction with n + r bidders having private signals. They use the realized signals of the

8 I assume that each B-bidder has an agent in each auction and the agents cannot communicate with each other.

9 In this equilibrium b < bH(0). There may be other equilibria in which all B-bidders pool and b ≥ bH(0). The reason for
focusing on this equilibrium is that it is the only symmetric pooling equilibrium in which all H-bidders bid as in the case
in which there are no B-bidders. The reason is the following. First, bH(0) and bHk (1) is always a best response of an
H-bidder, no matter at what price all B-bidders quit. Second, a B-bidder with signal 0 gets a negative expected payoff
by bidding b ≥ bH(0) if all the other B-bidders also quit at b and all H-bidders drop out according to bH(0) and bHk (1).
This is because the B-bidder with signal 0 would end up winning H sometimes, but always at a price higher than the
value of the object.
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H-bidders to update the expected value of L. Suppose that k H-bidders quit at bH(0) and m − k

H-bidders quit at bHk (1). Then, as in Model I, in the L auction all bidders with signal 0 drop out at

bLk (0) = E(vL|sM (k); sN∪R(n+ r)), and all with signal 1 drop out at bLk,t(1) = E(vL|sM (k); sN∪R(t)),

where t = 0, 1, 2, ...n+ r is the number of bidders who dropped out at bLk (0).

Incentives to deceive arise in sequential auctions with multi-unit demand bidders, when bidders

have good news concernig the value of the objects.10 In Model II, it is the B-bidders with signal 1 who

have an incentive to hide their signals and bid as if they had signal 0. If a B-bidder with signal 1 bids

aggressively in the first auction and thus reveals his signal, he ends up with no private information

and hence makes zero profit in the second auction.

Let Rp
AB(m,n, r) be the expected revenue to the seller in the pooling equilibrium when the order of

sale is AB (where A,B ∈ {H,L}), and there are m bidders competing only for H, n bidders competing

only for L, and r bidders competing for both H and L.

Proposition 9 (i) A symmetric “pooling” equilibrium in which all B-bidders pool in the first auction

always exists when H is auctioned first and L is auctioned second. The equilibrium payoff to the seller

is

RP
HL(m,n, r) = RHL(m,n+ r)

(ii) A symmetric “pooling” equilibrium in which all B-bidders pool in the first auction always exists

when L is auctioned first and H is auctioned second. The equilibrium payoff to the seller is

RP
LH(m,n, r) = RLH(m+ r, n)

The seller’s expected revenue in the pooling equilibrium can be expressed using the formulas for

revenue from Model I. Suppose, for example, that H is auctioned first. Since all B-bidders drop out

before any of the H-bidders, there are only m “effective” bidders (the H-bidders) who compete in the

sale of H. On the other hand, since the signals of the B-bidders are not revealed in the first auction,

there are n + r effective bidders in the sale of L (the L-bidders plus the B-bidders). Therefore, the

seller’s revenue in the pooling equilibrium, when H is auctioned first and there are r B-bidders, is the

same as the seller’s revenue when H is sold first and there are m H-bidders, n + r L-bidders and no

B-bidders.

It may seem suprising that the pooling equilibrium, especially when H is auctioned first, always

exists regardless of the relative values of the objects and the number of bidders of each type. In

10See, for example Hausch (1994), Weber (1983) and Ortega Reichert (1968).
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equilibrium, a B-bidder with signal 1 makes zero profit in the auction of H and a positive profit in the

auction of L. Naturally, one may wonder why he is willing to give up the profit that he could have

made by bidding aggressively in the sale of the more valuable good, in order to make a positive profit

in the sale of the less valuable good. To put it differently, why does he not bid agressively in the

auction of H to make a gain on H at the cost of revealing his signal and get a zero payoff in the sale

of L? The answer follows from the fact that bidders update their perceptions about the other bidders’

information during an English auction. In a pooling equilibriums, H-bidders expect all B-bidders to

drop out early in the sale of H. If a B-bidder does not drop out along with the other B-bidders, then

all H-bidders will infer that he has signal 1 and will bid aggressively, leaving the B-bidder with a zero

profit from the first auction. Having revealed his signal, the B-bidder would also make zero profit in

the second auction. He thus has no incentive to bid aggressively in the sale of H.

4.2.2 Separating Equilibrium

In a “separating” equilibrium, the bidders that only demand the good auctioned first and the B-bidders

reveal their signals in the first auction. I will focus on the symmetric separating equilibrium, even

though there may be asymmetric equilibria in which the bidders demanding a single good and the

B-bidders follow different strategies in the first auction.

Suppose, for argument’s sake, that H is auctioned first. The equilibrium drop-out prices in the

symmetric equilibrium of the first auction are the same as in an isolated auction of H with m + r

bidders. That is, all H and B-bidders with signal 0 drop out at bH(0) = E(vH |sM∪R(m+ r)), and all

bidders with signal 1 drop out at bHk (1) = E(vH|sM∪R(k)), where k = 0, 1, ...,m+ r is the number of

bidders who dropped out at bH(0).

Now consider the auction of L. Suppose that in the first auction there were k bidders with signal

0 and m + r − k bidders with signal 1. Since the signals of all B-bidders are revealed in the first

auction, the actual competition for L is between the n L-bidders. The L-bidders bid as if there were n

bidders with private signals competing for L. That is, all L-bidders with signal 0 drop out at bLk (0) =

E(vL|sM∪R(k); sN(n)) and all L-bidders with signal 1 drop out at bLk,t(1) = E(vL|sM∪R(k); sN(t)),

where t = 0, 1, 2, ..., n is the number of L-bidders who drop out at price bLk (0). Now consider a B-

bidder. Since his signal was revealed in the auction of H, he cannot win the item L and make a positive

payoff. Thus, any bid b ∈ [0, bLk (0)] is a best response to the other B-bidders dropping out at b and all

L-bidders following the strategies bLk (0) and bLk,t(1).
11 Thus, bLk (0), b

L
k,t(1) and any b ∈ [0, bLk (0)] form

an equilibrium of the L auction.

11For a B-bidder quitting at b > bLk (0) is not a best response to bLk (0) and b
L
k,t(1) when r ≥ 2 and all the other B-bidders

drop out at b. The reason is that a B-bidder may find himself the winner and paying b. In that case, his payoff would
be bLk (0)− b < 0. When r = 1, on the other hand, an equilibrium with b > bLk (0) may exist. Since I consider a general

setting with r ≥ 1, I focus on b ≤ bLk (0).
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While a pooling equilibrium always exists, a symmetric separating equilibrium may or may not

exist. Consider the order HL. In the first auction, the B-bidders bid as if they were in an independent

sale of H with m + r bidders. The equilibrium expected payoff is zero for a B-bidder with signal 0,

and it is positive for a B-bidder with signal 1. Revealing his signal in the first auction costs nothing

to a B-bidder with signal 0, because he cannot make a positive payoff in the second auction even if he

conceals his signal. On the other hand, revealing his signal is costly to a B-bidder with signal 1, since

he loses his chance of making a positive profit on L. Thus, such a bidder may attemp to bid as if he

has signal 0. If he bids so, then the other bidders in the sale of L bid more conservatively, because

they believe that he has a low signal. As a result, a B-bidder with signal 1 who bids as if he had signal

0 in the sale of H makes a positive payoff in the L auction. However, bidding like a bidder with a low

signal in the first auction is costly, because either the bidder does not win H or he wins H with a tied

bid with all the other bidders. Thus, a symmetric separating equilibrium exists when the order is HL

if and only, for a B-bidder with signal 1, the cost of mimicking a B-bidder with signal 0 is higher than

the gain.

I now provide a necessary and sufficient condition for the existence of a separating equilibrium

when the order is HL:

Condition SHL :

1

m+ n+ r
µLp(sN(n)|sj = 1) ≤

m+ r − 1

m+ r
µH

[
nXm+r

p(sj = 1)
+ p(sM∪R\{j}(m+ r − 1)|sj = 1)

]

Consider a B-bidder with signal 1. If he bids in the first auction as if his signal were 0, then the LHS

of condition SHL is the gain of such a bidder in the second auction, while the RHS is his cost in the

first auction.

Similarly, the necessary and sufficient condition for the existence of separating equilibrium when

the order is LH is

Condition SLH :

1

m+ n+ r
µHp(sM(m)|sj = 1) ≤

n+ r − 1

n+ r
µL

[
mXn+r

p(sj = 1)
+ p(sN∪R\{j}(n+ r − 1)|sj = 1)

]

Let RS
AB(m,n, r) be the expected revenue to the seller in the symmetric separating equilibrium

when the order is AB (where A,B ∈ {H,L}), there are m bidders who want to buy only H, n bidders

who want to buy only L, and r bidders who wants to buy both H and L.

Proposition 10 (i) A symmetric equilibrium with all B-bidders separating in the first sale exists when

H is auctioned first if and only if condition SHL holds.
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The expected payoff to the seller is

RS
HL(m,n, r) = RHL(m+ r, n).

(ii) A symmetric equilibrium with all B-bidders separating in the first stage exists when L is auc-

tioned first if and only if condition SLH holds.

The expected payoff to the seller is

RS
LH(m,n, r) = RLH(m,n+ r).

As in the pooling equilibrium, the seller’s revenue in the separating equilibrium can be expressed

by using the revenue formulas from Model I. The B-bidders compete aggresively in the first auction

and then drop out early and make no profit in the second auction, because their signals have become

public. Thus, the B-bidders only affect the sale price of the item that is auctioned first. If H is

auctioned first, then the seller’s revenue is the same as if there were no B-bidders, m + r H-bidders

in the first auction and n L-bidders in the second auction. If H is auctioned second, then the seller’s

revenue is the same as if there were no B-bidders, n+ r L-bidders in the first auction and m H-bidders

in the second auction12 .

4.3 The Optimal Order of Sale

Even though the existence of multiple equilibria makes it more difficult for the seller to determine the

optimal order of sale, I will now show that the main insights from Model I remain valid when there

are B-bidders.

The seller’s revenue in the pooling and in the separating equilibrium is RHL(m,n+r) and RHL(m+

r, n), respectively, when the order of sale is HL; it is RLH(m+r, n) and RLH(m,n+r) when the order

of sale is LH. Thus, the number of effective bidders in the sale of A ∈ {H,L} is different in the two

equilibria. Even though they wish to buy both H and L, B-bidders effectively compete only in one of

the auctions. In the pooling equilibrium they compete in the second auction, while in the separating

equilibrium they compete in the first auction.

In Model I, I showed that the seller should auction first the item with a sufficiently higher number

12Another possible scenario is that the seller auctions off the items only as a bundle. In that case, I find that there is no
symmetric separating equilibrium in pure strategies. The intuition is as follows. First note that in such an equilibrium
all types of bidders with signal 0 should drop out at the price of zero, and they all make a payoff of zero. Otherwise, a
bidder with signal 0 may find himself a winner paying more than the worth of the object when all the other bidders have
signal 0. Now suppose that instead of droping out at the price of zero, an H-bidder with signal 0 plays the following
strategy: he waits until the price is ǫ. Then, he quits immediately if all the other bidders have quit already or there
is at least one H or B-bidder who has not quit at the price of zero. If, on the other hand, all H-bidders have dropped
out at the price of zero, then he quits right after all L-bidders drop out. With this strategy, an H-bidder with signal 0
makes either a payoff of zero or a positive payoff. Thus, he deviates.
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of bidders. The reason was that the seller’s loss on the unknown signals of the bidders who do not

compete for an item gets smaller as the auction becomes more competitive. The counterpart of this

result in the presence of B-bidders is that the auction of the object with a sufficiently higher number

of effective bidders should be held first, since it is the number of effective bidders in an auction which

determines the degree of competition.

If the number of H-bidders is sufficiently high relative to the number of B and L-bidders, then the

auction of H becomes more competitive both in the pooling and the separating equilibrium. This is

because H-bidders always compete in the sale of H, regardless of the type of equilibrium. As the next

proposition shows, as the number of H-bidders increases, the seller’s revenue in both equilibria when

the order of sale is HL is greater than the revenues in the pooling and the separating equilibrium when

the order is LH. Similarly, when the number of L-bidders becomes high relative to the number of H

and B-bidders, the auction of L gets highly competitive in both equilibria and the order of sale LH

yields the seller a higher revenue, no matter which equilibrium prevails.

Proposition 11 Assume that the signals are strictly affiliated. Then,

(i) For any finite pair (m, r) < (∞,∞) there exists an n∗ such that, for all n ≥ n∗, selling L first

yields the seller a higher revenue than selling H first, or selling the items simultaneously.

(ii) For any finite pair (n, r) < (∞,∞) there exists an m∗ such that, for all m ≥ m∗, selling H

first gives the seller a higher revenue than selling L first, or selling the items simultaneously.

5 Conclusions

Most auctioneers use standard auction formats to sell multiple non-identical goods sequentially. While

some sellers auction their items in the order of declining value, others do the opposite. The current

paper addresses and analyzes this real life phenomena. The main message of this research is that

the sequence of sale affects the auctioneer’s expected revenue through the information content spilling

over from the early auction to the later one. I have found that in an environment with only unit

demand bidders the auctioneer should sell the less valuable good first to “warm up the room,” when

the number of bidders who wish to buy the more valuable item is not greater than the number of

bidders competing for the less valuable item. On the other hand, when the number of bidders who

want to buy the high value item is sufficiently high, then the seller should auction the high value good

first to “establish lively bidding.” I have also found that when there are multi-unit demand bidders

as well, similar results still hold. My findings suggest an explanation for why in practice we observe

different orders of sales. They also provide guidelines to actual sellers about how to choose the order

of sale.
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Chapter II

Voluntary Disclosure to Form a Research Joint Venture



1 Introduction

Innovation is an uncertain process. A firm’s success rate of inventing a new product typically increases

as its know-how increases. It often happens that two or more competing firms try to develop the

same innovation. A research joint venture (RJV) is a form of inter-firm cooperation to share know-

how in order to increase the chances of successful innovation. They are widely observed in many

industries such as software, computer hardware, biotechnology and telecommunications. In spite of

the potential advantages of forming a RJV, there are many cases in which potentially successful RJV’s

are not formed. One important reason is that know-how is private information. Under asymmetric

information, the parties may not reach an agreement on how the value created by the venture is

going to be shared. In this case, pre-contract disclosures become necessary. In other words, a firm

must disclose some of its know-how to inform a potential partner about the value of the intellectual

property (IP) that it would bring into a RJV to obtain favorable transaction terms. However, by

disclosing its knowledge a firm exposes itself to expropriation: disclosed know-how enhances the likely

performance of the competitor and cannot be protected under weak or absent intellectual property

rights regimes. Thus, the potential partner may appropriate the disclosed information, improving its

bargaining position, and hence decreasing the firm’s expected gains from cooperation.

The threat of expropriation not only prevents formation of RJVs but also causes them to be highly

unstable. Even if the parties agree on the ownership shares, perhaps by the help of a disinterested

third party or some default sharing arrangements such as 50:50, some RJVs collapse before completing

their task. The reason is that partners may renege on their promises to share their know-how while

learning the others’ knowledge in order to use it for their own invention of the product. For example,

Baker and Mezzetti (2001) mention that the venture between Advent Inc., a small R&D firm and

Unisys, a computer company, to develop a marketable software document management systems broke

up two years after it was formed because Unisys decided to develop the product itself.

The possibility of this type of opportunistic behavior may give the partners disincentives to disclose

their IP to the venture, hence causing the venture to break down. In some cases, the fear that the other

firm will act opportunistically is so severe that some potentially profitable RJVs are not even formed

in the first place. Perez-Castrillo and Sandonis (1996) point out that a possible venture between US

aircraft manufacturers and Japanese firms on the Boeing 767 did not start because each firm feared

disclosing its know-how without learning the other’s.

Disclosure contingent contracts may ease the problem of moral hazard associated with disclosure.

However, they are not feasible in real life due to such contracts being incomplete and know-how being

unverifiable by third parties.

The current paper deals with the problems of asymmetric information and moral hazard regarding
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know-how that RJVs face. In particular, I develop a decentralized procedure which does not rely on

disclosure contingent contracts and the verifiability of know-how by third parties. In fact, my procedure

alleviates the asymmetric information problem and encourages firms to form a RJV. Moreover, in my

setting once the venture is established the problem of moral hazard disappears.

I analyze, in a stylized model, the tradeoff for a firm between disclosing its know-how to inform a

potential partner of its research ability, and exposing itself to expropriation. In model, there are two

firms, each having its own research lab. The firms have complementary know-how that is useful for

a potential innovation. A firm’s research knowledge cannot be observed by its potential partner, but

firms may disclose some of their know-how to each other. Any revealed idea is perfectly appropriable

by the receiver, and increases the receiver’s stock of knowledge. In my framework, firms simultaneously

disclose information in rounds. If both firms disclose in any round, firms are expected to disclose again

in the next round. This process continues until one firm stops disclosing. The firm which made the

last disclosure then makes a take-it-or-leave-it offer to the other firm to acquire the firm’s research lab.

If the offer is accepted, a RJV with two research labs is formed, and the party that made the offer

becomes the sole owner.

I investigate a Perfect Bayesian Equilibrium in which a firm discloses at any round whenever it has

any remaining undisclosed know-how. I show that such a "Full Disclosure" equilibrium exists. The

reason that the firms keep disclosing to each other, in spite of the risk of being expropriated, is that

each firm wants to make as low as possible an offer to the other party and it wants to receive as high as

possible an offer from his opponent. A Full Disclosure equilibrium exists because the cost of disclosure

is offset by the future gains from signaling that the firm is a strong competitor. Moreover, in the

equilibrium whenever the RJV is formed, the firm with more knowledge becomes the owner since the

party with lower IP runs out of know-how to disclose at some stage. Once the venture is established,

there are no moral hazard issues associated with disclosure since only one firm becomes the residual

claimant of the venture and the other firm which "sells" its research lab has already disclose everything

it has.

Despite the many advantages of RJVs, including the higher success rate in achieving an innovation,

many academics and policy makers are concerned that RJVs lead to the monopolization of markets.

Therefore, I additionally consider the effects of RJVs on social welfare in my model. I show that the

benefits of a higher success rate of innovation dominates the cost of monopoly, and hence RJVs are

socially desirable.

Coordinating research through an exchange of know-how in RJVs has been investigated in the

literature before. Several works approach the problem from a mechanism design point of view. Those

models involve a planner and disclosure-contingent transfer payments. Bhattacharya, Glazer and Sap-

pington (1992) develop licensing mechanisms to implement efficient sharing of know-how and efficient
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efforts in a RJV when each firm’s research ability is private information. Unlike my setting, their model

assumes that firms’ know-how is Blackwell-ordered so only the most knowledgeable firm is pivotal. D’

Aspremont, Bhattacharya and Gerard-Verat (1998) extends Bhattarcharya et al’s work by includ-

ing an arbitrary knowledge spillover function. In a two-firm setting, D’ Aspremont, Bhattacharya

and Gerard-Verat (2000) first consider a direct bargaining mechanism which induces full disclosure.

Second, they show that full disclosure can be implemented via infinite horizon sequential bargaining.

However, in their model there is one-sided incomplete information while my paper deals with two-sided

asymmetric information. Also, unlike in my procedure, a firm can make a disclosure-contingent offer

in their sequential bargaining game.

Another branch of the RJV literature addresses the instability of RJVs due to the problem of

moral hazard associated with disclosing knowledge. In a complete information setting, Veugelers

and Kesteloot (1994) show that a two-firm RJV with equal ownership is more likely to be stable

when synergy effects are high and know-how of the venture is sufficiently proprietary. Instead of

assuming 50:50 shares, Perez-Castrillo and Sandonis (1996) analyze possible incentive compatible and

renegotiation proof contracts between two firms inducing full disclosure after the venture is formed. In

contrast to my model, their setting assumes that the firms’ research abilities are common knowledge

so they focus on moral hazard issues only.

The current paper is most closely related to the strand of the literature which analyzes pre-contract

disclosure strategies of privately informed parties for the purpose of signaling the extent of their

information. Bhattacharya and Ritter (1983) study how a firm can signal its value to the capital

market in order to obtain favorable financing terms by publicly disclosing part of its valuable IP.

The down-side of disclosure is disclosed knowledge becomes available to competitors increasing their

innovation ability. Anton and Yao (1994) investigate whether pre-sale full disclosure is a signaling

equilibrium in a model with an innovator who wants to sell his idea when the disclosed information

can be appropriated by the potential buyers. In a similar setting, Anton and Yao (2002) consider the

possibility of an equilibrium with partial disclosure. The sale of ideas with pre-transaction disclosures

is also explored in Ielceanu (2003) when there are two sellers and one buyer. These works are similar to

mine in that the party with private information may have an incentive disclose its knowledge to obtain

favorable transaction terms despite of the threat of expropriation. However, there is one important

difference: in contrast to those models, I focus on a two-sided incomplete information environment.

The rest of the paper is organized as follows. In Section 2, I describe the decentralized sequential

disclosure game. In Section 3, I investigate whether "Full Disclosure" equilibrium of the game exists.

I also check if the firms are willing to participate in this procedure. In Section 4, I analyze the effects

of RJVs on social welfare. Finally, Section 5 concludes.
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2 The Model

Two risk neutral firms, each having its own research lab, are trying to obtain the same product

innovation. Firm i (i = 1, 2) has a stock of knowledge θi which is its private information. The value

of θi is the probability that firm i succesfully invents. The know-how levels θ1 and θ2 are drawn

independently from a probability density p with support Θ = {0,∆, 2∆, ....T∆} and this is common

knowledge. For simplicity I assume p(n∆) = 1
T+1 for all n = 0, 1, ..., T .

There are four possible outcomes of R&D stage: Both firms succeed, both fail, and only firm i

achieves the invention. In the latter case, firm i becomes the monopolist in the product market and

earns a profit of Πm. On the other hand, if both firms obtain the innovation, each firm makes a

profit of zero since I assume homogeneous product Bertrand Competition in the product market. An

unsuccesful firm always earns a payoff of zero. Therefore, firm i ’s expected payoff is Πmθi(1 − θj)

when its know-how is θi and the opponent’s is θj .

Each firm’s knowledge can be partially or fully transferred to its competitor through a disclosure of

information. Once a firm reveals its know-how, it can not take it back, and the competitor can freely

use it. I assume that the firms have perfectly complementary technologies. That is, if firm i discloses

d ≤ θi to firm j, the probability of successful innovation by firm j becomes d+ θj
1 .

Since the technologies are perfectly complementary, one may think that it may be in the firms’

mutual interest to form a Research Joint Venture (RJV) and fully share their know-how. In fact,

in my model there are always gains from forming a RJV. To see this first note that there would be

two research labs in the RJV, each having a stock of knowledge θ1 + θ2 after full disclosure. So, the

probability that the RJV obtains the innovation is 1 − [1 − (θ1 + θ2)]
2 where the expression in the

bracket is the probability of failure with one research lab. Thus, the value of the RJV is

Πm(1− [1− (θ1 + θ2)]
2) = Πm[2(θ1 + θ2)− (θ1 + θ2)

2]

Therefore, the gains from the RJV are

Πm[2(θ1 + θ2)− (θ1 + θ2)
2]−Πmθ1(1− θ2)−Πmθ2(1− θ1)

= Πm(θ1 + θ2 − θ21 − θ22)

which is always positive since θi ≤
1
2 for i = 1, 2.

I now describe a game which may lead to an efficient formation of a RJV. The rules are as follows.

At any time t (t = 1, ..., T − 1, T ) there is a simultaneous disclosure game in which each firm has two

1 I assume ∆T ≤ 1
2
to ensure that the probabilities do not exceed 1.
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possible actions: disclose ∆ and no disclosure. If both firms disclose at t, then a new disclosure game

starts at t + 1 (except for t = T ). If no firm discloses at any round, then the game terminates, and

each firm tries to obtain the innovation on its own. If, on the other hand, only firm i discloses at t,

firm i makes a take-it-or-leave-it offer, a monetary transfer, to firm j in exchange for acquiring firm

j’s research lab. If the offer is accepted, the RJV is formed, and firm i becomes the owner. Otherwise,

each firm tries to invent alone.

I now specify a rule for the case that both firms make a disclosure at t = T . In that case, I employ

Nash Bargaining Solution at the last round. That is, the firms equally share the gains from the RJV

I solve this dynamic game of incomplete information for a Perfect Bayesian Equilibrium (PBE). A

PBE consists of strategies and the beliefs such that the strategies are optimal given beliefs, and the

beliefs are determined by Bayes rule and the players’ equilibrium strategies whenever possible. In this

game, strategic options for firm k (k = 1, 2) with type θk at time T − i (where i = 0, 1, ..., T − 1 and

θk ≥ (T − i)∆)2 are as follows. Its disclosure strategy is given by σkT−i : Θ→ {∆, 0} where ∆ is short

for "disclose ∆" and 0 is for "no disclosure". At the bargaining game firm k follows Ok
T−i : Θ→ ℜ+

when it is to make an offer, and Rk
T−i : Θ→ {accept, reject} when it is to respond to an offer.

I focus on PBE in which the sequential disclosure strategy is "separating". That is, a firm discloses

∆ at any stage t if it has an undisclosed ∆ at t. I call this "Full Disclosure" equilibrium. Since the

beliefs should be consistent with equilibrium strategies, the beliefs are the following: If a firm does

not disclose at round t, the opponent believe that it is because the firm has already disclosed all its

know-how through t− 1.

3 Full Disclosure Equilibrium

In this section, I derive the Full Disclosure equilibrium. I start by investigating the equilibrium of

the bargaining game at any round. Then, I examine whether disclosure is an optimal strategy at any

stage for a firm whenever it has undisclosed ∆.

I now formally define the beliefs that would support "Full Disclosure" equilibrium. Since firms are

symmetric, w.l.o.g. I focus on firm 1. Let the probability µT−i(θ2 = (T − i − 1)∆|σ2T−i = 0) denote

the firm 1’s beliefs about firm 2’s know-how θ2 upon observing that firm 2 has not disclosed at stage

T − i. Then, the beliefs on the equilibrium path are µT−i(θ2 = (T − i − 1)∆|σ2T−i = 0) = 1 for all

i = 0, 1, ..., T − 1. That is, after observing no disclosure by its opponent firm 1 believes that firm 2

has no remaining undisclosed information. In other words, firm 2’s type is (T − i− 1)∆ for sure.

I begin the equilibrium analysis of the dynamic game by examining the equilibrium of the bargaing

2 I represent the rounds in the declining order for simplicity of notation. Also, note that firm k can have an option to
disclose ∆ at round t if only if its know-how θk is at least t∆.
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game at stage T − i when the outcome of disclosure game at T − i is (σ1T−i = ∆, σ
2
T−i = 0).

Consider round T − i. Since firm 2 has not disclosed at T − i, firm 1 believes that its competitor’s

type is θ2 = (T − i− 1)∆ for sure. On the other hand, from firm 2’s point of view firm 1 could be any

type θ1 in ΘT−i = {(T − i)∆, (T − i + 1)∆, ......, (T − 1)∆, T∆}. Note that the firms have disclosed

∆ to each other through the stage T − i − 1, and firm 1 has disclosed ∆ to firm 2 at T − i. Thus,

know-how levels of firm 1 and firm 2 after the disclosure game at T − i are θ1 + (T − i − 1)∆ and

θ2+ (T − i)∆, respectively. Therefore, firm 2’s expected outside option after the disclosure game but

before the bargaining at T − i is

OT−i = E [Πm(2T − 2i− 1)∆(1− θ1 − (T − i− 1)∆)|θ1 ∈ ΘT−i]

= Πm(2T − 2i− 1)∆(1−∆(2T −
3

2
i− 1))

Note that OT−i is the lowest amount that firm 2 with type (T − i− 1)∆ would accept.

The following lemma describes an equilibrium of the bargaining game at T − i.

Lemma 1 Assume that the beliefs are µT−i(θk = (T − i− 1)∆|σlT−i = 0) = 1 for k, l = 1, 2, and the

outcome of the disclosure game at stage T − i is (σ1T−i = ∆, σ
2
T−i = 0). Then, (OT−i, RT−i(θ2)) is

an equilibrium of the bargaining game at T − i for all i = 0, 1, ..., T − 1 where

OT−i = Πm(2T − 2i− 1)∆(1−∆(2T −
3

2
i− 1))

RT−i(θ2) =





accept if the offer is at least Πm(θ2 + (T − i)∆)(1−∆(2T − 3
2 i− 1))

reject otherwise

In the equilibrium, when firm 1 discloses ∆ and firm 2 does not disclose at round T − i, the payoff

to firm 1 with type θ1 at the end of the bargaining game is

PT−i(θ1) = RJVT−i(θ1)−OT−i

where

RJVT−i(θ1) = Πm[2(θ1 + (T − i− 1)∆)− (θ1 + (T − i− 1)∆)2]

is the value of the RJV to firm 1 when it is formed at stage T − i, and OT−i is amount it pays firm 2.

Consider the disclosure game of stage T − i (i = 1, 2, ..., T − 1).3 Assume θ1 = (T − j)∆ where

3Since I employ Nash Bargaining solution when the game ever reaches round T and both firms disclose∆ at T , the formulas
for the equilibrium payoffs in the last stage are different. Thus, I will investigate round T , hence the equilibrium behavior
of type T∆ later.
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1 ≤ j ≤ i.4 Prior to the disclosure game firm 1 knows that its opponent’s type θ2 is in the set

{(T − i− 1)∆, (T − i)∆, (T − i+ 1)∆, ..., (T − 1)∆, T∆}, and each type is equally likely.

Assume that firm 1 discloses ∆ at stage T − i. Then, it makes the offer O1T−k at stage T − k

with probability 1
i+2 where k = j, j+1, ..., i. Since in the equilibrium the opponent accepts OT−k, the

RJV is formed and firm 1 becomes the owner at stage T − k. Thus, firm 1 makes PT−k((T − j)∆) =

RJVT−k((T − j)∆)−OT−k at T − k with probability 1
i+2 for all k = j, j + 1, ..., i.

Now suppose that the game comes to stage T − j + 1.5 This means that firm 2’s type is at least

(T − j)∆. Assume that θ2 = (T − j)∆ which would happen with probability 1
i+2 In this case the firms

do not disclose, and each tries to innovate on its own. In other words, each firm gets its outside option

at T − j + 1. Thus the payoff to firm 1 with type (T − j)∆ is

OPT−j+1((T − j)∆) = Πm(2T − 2j)∆(1− (2T − 2j)∆)

Now assume that θ2 > (T − j)∆ which occurs with probability j
i+2 . In this case, firm 1 receives the

offer OT−j+1, and accepts it. Thus, its payoff is

OT−j+1 = Πm(2T − 2(j − 1)− 1)∆(1−∆(2T −
3

2
(j − 1)− 1))

Therefore, if type (T − j)∆ discloses ∆ at stage T − i, its expected payoff is

EPT−i((T − j)∆) = Πm[{
i∑

k=j

1

i+ 2
PT−k((T − j)∆)}+

1

i+ 2
OPT−j+1((T − j)∆) +

j

i+ 2
OT−j+1]

Instead assume that firm 1 with type (T−j)∆ does not disclose at stage T−i. Note at T−i we have

θ2 = (T − i− 1)∆ with probability 1
i+2 and θ2 ≥ (T − j)∆ with probability i+1

i+2 . If θ2 = (T − i− 1)∆,

firm 1 gets its outside option

OPT−i((T − j)∆) = Πm(2T − j − i− 1)∆(1− (2T − 2i− 2)∆)

since firm 2 does not disclose at T − i, either, and hence each firm tries to obtain the innovation alone.

On the other hand, if θ2 ≥ (T − j)∆, then firm 1 receives the offer OT−i = Πm(2T − 2i − 1)∆(1 −

∆(2T − 3
2 i− 1)). However, it rejects the offer since its expected outside option Πm(2T − i− j)∆(1−

∆(2T − 3
2 i− 1)) is greater than OT−i.

Therefore, if type (T − j)∆ deviates to no disclosure at round T − i, its expected payoff is

4Note that only the types (T − i)∆, (T − i+ 1)∆, ...., T∆ of firm 1 have an undisclosed ∆ at round T − i.

5T − j + 1 is the last round the game can forward when θ1 = (T − j)∆.
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DT−i((T − j)∆) = Πm[
1

i+ 2
(2T − j − i− 1)∆(1−∆(2T − 2i− 2))+

i+ 1

i+ 2
(2T − i− j)∆(1−∆(2T −

3

2
i− 1))]

Thus, we have that type (T − j)∆ has no incentive to deviate to no disclosure at round T − i if

and only if EPT−i((T − j)∆) ≥ DT−i((T − j)∆).

The proof of next lemma shows that the deviation payoff is not greater than the equilibrium payoff

to type (T−j)∆ at stage T−i for j = 1, 2, ...i and i = 1, 2, ..T−1. Therefore, disclosing ∆ at any stage

as long as it has undisclosed ∆ is indeed the optimal strategy for type (T − j)∆ where j = 1, 2, ...i.

Lemma 2 Type (T − j)∆ discloses ∆ at stage T − i where j = 1, 2, ..., i and i = 1, 2, .., T − 1. Its

expected payoff at T − i is

EPT−i((T − j)∆) = Πm[{
i∑

k=j

1

i+ 2
PT−k((T − j)∆)}+

1

i+ 2
OPT−j+1((T − j)∆)+

j

i+ 2
OT−j+1] (1)

I now examine equilibrium strategy of type T∆. Suppose that firm 1 with type T∆ finds itself at

the last round T and both firm 1 and its opponent disclose ∆ at T . This means that firm 2 has type

T∆ for sure. Then, the value of the RJV if formed is Πm[4T∆− 4T
2∆2]. Note that each firm has an

outside option of Πm2T∆(1− 2T∆) after both disclose at T . Thus, the gains from the RJV at round

T is Πm4T
2∆2. Since they split the surplus 50:50 (Nash Bargaining), the payoff to firm 1 of type T∆

at stage T is Πm[2T∆− 2∆2T 2]. Therefore, the equilibrium payoff to type T∆ at stage T − i is

EPT−i(T∆) = Πm[{
i∑

k=o

1

i+ 2
(PT−k(T∆)}+

1

i+ 2
(2T∆− 2∆2T 2)]

The lemma below shows that disclosure at each round is an optimal strategy for type T∆, too.

Lemma 3 Type T∆ discloses ∆ at stage T − i where i = 0, 1, 2, .., T − 1. Its expected payoff at T − i

is

EPT−i(T∆) = Πm[{
i∑

k=0

1

i+ 2
PT−k(T∆)}+

1

2
(2T∆− 2∆2T 2)] (2)

Having establish that a firm discloses at any round whenever he has undisclosed knowledge, I

now derive the equilibrium payoff to firm 1 with type θ1. First consider θ1 = (T − j)∆ where

j = 1, 2, 3, ..., T − 1. We can use the formula (1) to find the firm’s expected payoff at the first round.
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By plugging i = T − 1, the equilibrium expected payoff to firm 1 with type ∆(T −j) is

EP ((T − j)∆) = Πm[
1

T + 1
{
T−1∑

k=j

PT−k((T − j)∆)}+
1

T + 1
∆(2T − 2j)(1−∆(2T − 2j))

+
j

T + 1
∆(2T − 2(j − 1)− 1)(1−∆(2T −

3

2
(j − 1)− 1))]

Now assume that θ1 = T∆. Similarly, by plugging i = T − 1 in (2), we have that the equilibrium

expected payoff to type T∆ is

EP (∆T ) = Πm[
1

T + 1
{
T−1∑

k=0

PT−k(∆T )}+
1

T + 1
(2T∆− 2∆2T 2)]

The lemma below summarizes the findings:

Lemma 4 The equilibrium payoff to type (T − j)∆ is

EP ((T − j)∆) = Πm[
1

T + 1
{
T−1∑

k=j

PT−k((T∆)}+
1

T + 1
∆(2T − 2j)(1−∆(2T − 2j))

+
j

T + 1
∆(2T − 2(j − 1)− 1)(1−∆(2T −

3

2
(j − 1)− 1))]

where j = 1, 2, ..., T − 1. The equilibrium payoff to type T∆ is

EP (∆T ) = Πm[
1

T + 1
{
T−1∑

k=0

PT−k(∆T )}+
1

T + 1
(2T∆− 2∆2T 2)]

At this point one may ask if the firms are willing to participate in this game once they receive their

private information. To answer this question first note that type θ1’s outside option before the game

starts is O(θ1) = E(Πmθ1(1 − θ2)|θ2 ∈ Θ). So, the game is individually rational if and only if the

equilibrium payoff of each type θ1 is not less than his outside option O(θ1). The next lemma shows

that it is indeed true.

Lemma 5 In the equilibrium each type gets at least its outside option O(θ1) = E(Πmθ1(1−θ2)|θ2 ∈ Θ).

We can now formally state the equilibrium. Consider the following strategy of firm k at stage T − i

where i = 0, 1, ..., T − 1

σkT−i(θ) = σT−i(θ) =




∆ if θ ≥ (T − i)∆

0 otherwise
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Ok
T−i = OT−i = Πm(2T − 2i− 1)∆(1−∆(2T −

3

2
i− 1)) for i = 0, 1, ..., T − 1

Rk
T−i(θ) = RT−i(θ) =





accept if the offer ≥ Πm(θ + (T − i)∆)(1−∆(2T − 3
2 i− 1))

reject otherwise

It is clear by lemmas 1-5, that the strategy profile {(σkT−i;O
k
T−i;R

k
T−i)}

k=1,2
0≤i≤T−1 and the beliefs

{µT−i(θk = (T − i − 1)∆|σlT−i = 0) = 1}k,l=1,20≤i≤T−1 is an PBE of the dynamic game of incomplete

information. I call this "Full Disclosure" equilibrium.

Proposition 1 There is a "Full Disclosure" equilibrium.

The intuition for Full Disclosure equilibrium is as follows. At any round there are two consequences

for a firm associated with disclosing ∆. First, revealed ∆ may win the firm a right to make an offer

and signals the firm’s privately observed know-how. Note that a RJV is always efficient in my model.

Thus, being eligible to make a take-it-or-leave offer is highly rewarding for a firm because it can get all

the residual gains from the RJV. Also, a firm with high level of knowledge wants to separate itself from

those with low level of knowledge for two reasons: it wants to offer the competitior as little as possible

when it makes an offer and wants to extract from the opponent as much as possible when it receives an

offer. Second, disclosed ∆ can be used by its competititor with no legal consequences, decreasing the

firm’s payoff when its competitor innovate outside of the RJV. The full Disclosure equilibrium exists

because the cost of disclosing is offset by the future gains from being qualified to make an offfer and

signaling that the firm is a strong competititor.

The equilibrium has interesting features. First, the value of the RJV, if formed, is shared somewhat

depending on firms’ stock of knowledge. In particular, the firm with higher know-how obtains most of

the gains while the other firm gets its expected outside option. Thus, this game could be a solution

for firms who want to cooporate but can not agree on what the "fair" shares are under incomplete

information. The game ensures that whoever has more information gets more surplus. Second, there

are no moral hazard issues in the RJV. This is because whenever the RJV is formed, only one firm

has possibly undisclosed know-how, and that party is the owner.

4 Social welfare

Even though the success rate in achieving an innovation is higher with a RJV, there is a social cost of

a RJV due to monopolization of the market. In order to evaluate social costs and social benefits of a

RJV, I consider a demand function in the consumer good market q = 1
Pa where a > 1 is the constant

elasticity of the demand. I also assume marginal cost of production is c.
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Suppose that there is only one firm in the market. Then, the monopolist sets its price at Pm =
ca
a−1 .

Thus, the monopolist’s profit is

Πm = (Pm − c)q(Pm)

=
(a− 1)a−1

ca−1aa

and the consumer surplus under monopoly is

CSm =

∞∫

ca

a−1

1

P a
dP =

(ca)1−a

(a− 1)2−a

Suppose instead that there are two firms in the consumer product market. Since the firms are

Bertrand competitiors, each makes a profit of zero while the consumer surplus is

CSb =

∞∫

c

1

P a
dP =

c1−a

a− 1

Assume that there is a RJV in the market6 . Since the probability of succesfull innovation in a RJV

is 2(θ1+θ2)− ((θ1+ θ2)
2 and there would be only one firm in the product market, the expected social

welfare with a RJV becomes

WRJV = E([2(θ1 + θ2)− ((θ1 + θ2)
2] [Πm +CSm] |θ1, θ2 ∈ Θ) (3)

Assume instead that there is no RJV. If only one firm invents, which happens with the probability

θ1(1− θ2)+ θ2(1− θ1), the social welfare is Πm+CSm. If, on the other hand, both firms achieves the

innovation, which occur with probability θ1θ2, the social surplus is CSB. Thus, the expected social

welfare without a RJV is

Wno = E({[θ1(1− θ2) + θ2(1− θ1)][Πm +CSm] + θ1θ2CSB}|θ1, θ2 ∈ Θ) (4)

In order decide if RJVs are socially desirable, I compare the expressions (3) and (4). We have

WRJV −Wno = (2E(θ1)− 2E(θ
2
1)) [Πm +CSm]−E(θ1)

2CSB

Since E(θ1) =
∆

T+1

T∑
i=0

i = T∆
2 and E(θ21) =

∆2

T+1

T∑
i=0

i2 = T∆2(2T+1)
6 , we get

6Note that there is a positive probability that no RJV is formed. This occurs when the firms have exactly the same
knowledge. Morever, as ∆→ 0 the probability of no RJV approaches to zero.
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WRJV −Wno = (T∆−
T∆2(2T + 1)

3
) [Πm +CSm]−

T 2∆2

4
CSB

So, we have

WRJV −Wno > 0⇔

(T∆− T∆2(2T+1)
3 )

T2∆2

4

>
CSB

Πm +CSm
(5)

The next lemma indicates that the RHS of inequality (5) is bounded. That is, we have

1 < CSB
Πm+CSm

< e
2 .

Lemma 6 (i) CSB
Πm+CSm

is increasing for all a > 1; (ii) lim
a→1

CSB
Πm+CSm

= 1; (iii) lim
a→∞

CSB
Πm+CSm

= e
2 .

Consider the LHS of (5). We have
(T∆−T∆2(2T+1)

3 )
T2∆2

4

= 4
T∆ −

8
3 −

4
3T , which takes its minimum at

T∆ = 1
2 and T = 3. Thus, the RHS is at least 44

9 . This implies that the inequality (5) is always

satisfied since 44
9 > e

2 . Therefore, the social benefit of a RJV dominates the its social costs, and hence

a RJV is socially desirable for all a > 1.

Even if the social planner puts different weights on the producer and consumer surplus, a RJV is

still socially desirable. To see this, let Λ and 1−Λ be the weights on consumer and producer surplus,

respectively. Then, the RHS of (5) becomes ΛCSb
(1−Λ)Πm+ΛCSm

. In this case, we have lim
a→1

ΛCSb
(1−Λ)Πm+ΛCSm

=

1 and lim
a→∞

ΛCSb
(1−Λ)Πm+ΛCSm

= Λe. Thus, the expected social welfare with a RJV is still higher since the

LHS of (5) is always greater than Λe for all Λ ∈ [0, 1].

Proposition 2 A RJV increases social welfare for all T , ∆, and a > 1.

5 Conclusions

When information about firms’ know-how is private, firms need to disclose at least part of their

know-how to inform each other about the value of the intellectual property they would bring into

a RJV. However, by providing their intellectual property firms expose themselves to expropriation.

In weak intellectual property rights regimes the revealed know-how cannot be protected and the

potential partners may use it freely to innovate themselves. Because of this fear of expropriation,

many potentially successful RJVs cannot be formed. In this paper I have suggested a sequential

disclosure procedure which alleviates the asymmetric information problem and encourages firms to

form RJVs. I have shown that the firms fully disclose their know-how gradually over time.

Despite the higher success rate in achieving an innovation in a RJV, many academics and policy

makers are concerned that RJVs lead to the monopolization of markets, and hence may decrease the
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social welfare. However, I have found that benefits of an increasing success rate of innovation outweighs

the cost of monopoly, and hence RJVs are socially desirable.
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Appendix A: Appendix for Chapter I

The following lemma lists some useful equations.

Lemma 5

bHm(1)− bHm−1(1) = −
1

m+ n
µH −

E(
∑m+n

j=m+1 sj |sM(m− 1))−E(
∑m+n

j=m+1 sj |sM (m))

m+ n
µH (5)

m∑

k=0


 m

k


p(sM (k)) = 1 for all m (6)

m∑

k=0


 m

k


p(sM (k); sN) = p(sN) for all m (7)

m∑

k=0


 m

k


 kp(sM (k)) =mp(s1 = 0) for all m. (8)

E




m+n∑

j=m+1

sj |sM (k)) = np(sm+1 = 1|sM (k)


 for all m,n and k = 0, ...,m (9)

Proof. Equation (5) follows from (2). Equation (6) follows from the property of a probability function,

and equation (7) is the definition of p(sN). Consider equation (8). We have

m∑

k=0


 m

k


 kp(sM (k)) =m

m∑

k=1


 m

k


 k

m
p(sM (k)) =m

m∑

k=1


 m− 1

k − 1


 p(sM (k))

=mp(s1 = 0).

Now consider equation (9). We have

E




m+n∑

j=m+1

sj |sM (k)


 =

m+n∑

j=m+1

E(sj |sM (k)) =
m+n∑

j=m+1

p(sj = 1|sM (k))

= np(sm+1 = 1|sM (k)),

where the last equality follows from symmetry.

Proof of Proposition 1. (i) It is clear that all bidders with signal 0 drop out at bH(0) = E(vH|sM (m))

and all bidders with signal 1 quit at bHk (1) = E(vH |sM (k)) (where k = 0, 1, 2, ...m is the number of

bidders who drop out at price bH(0)) form an equilibrium of a single-shot English auction of H (see
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Milgrom and Weber (1982)). The equilibrium price in the auction of H is bHk (1) when there are k

bidders with signal 0 and m − k bidders with signal 1 for k = 0, 1, ...,m − 2 and it is bHm(1) when

there is at most one bidder having signal 1. Thus, the expected equilibrium revenue to the seller in

the auction of H is

RH(m,n) =
m−2∑

k=0


 m

k


p(sM (k))b

H
k (1) +


 m

m− 1


p(sM (m− 1))bHm(1)

+


 m

m


 p(sM (m))b

H
m(1)

Using (5) and rearranging, we get

RH(m,n) =
m∑

k=0


 m

k


p(sM(k))b

H
k (1)−


 m

m− 1


p(sM (m− 1))

1

m+ n
µH

−


 m

m− 1


 p(sM (m− 1))

[
E(
∑m+n

j=m+1 sj |sM (m− 1))

m+ n
−

E(
∑m+n

j=m+1 sj |sM(m))

m+ n
µH

]

Using (2) and


 m

m− 1


 =m, we have

RH(m,n) =
m∑

k=0


 m

k


p(sM(k))

[
E(
∑m+n

j=m+1 sj |sM(k))

n+m
µH +

m− k

n+m
µH

]

−
m

m+ n
µHp(sM (m− 1))−

m

m+ n
µHp(sM(m− 1))




E

m+n∑

j=m+1

sj |sM (m− 1))

−E(
m+n∑

j=m+1

sj |sM (m)




 .

Rearranging, we get

RH(m,n) =
m

m+ n
µH

m∑

k=0


 m

k


p(sM(k))−

1

m+ n
µH

m∑

k=0

k


 m

k


 p(sM(k))

+
1

m+ n
µH

m∑

k=0


 m

k


p(sM (k))E




m+n∑

j=m+1

sj |sM (k))−
m

m+ n
µHp(sM (m− 1)




−
m

m+ n
µHp(sM (m− 1))


E




m+n∑

j=m+1

sj |sM (m− 1))−E(
m+n∑

j=m+1

sj |sM (m)





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Using (6), (8), (9), we get

RH(m,n) =
m

m+ n
µH −

m

m+ n
µHp(s1 = 0)

+
1

m+ n
µH

m∑

k=0


 m

k


p(sM(k))np(sm+1 = 1|sM (k))−

m

m+ n
µHp(sM(m− 1))

−
mn

m+ n
µHp(sM(m− 1)) [p(sm+1 = 1|sM (m− 1))− p(sm+1 = 1|sM (m))]

Since np(sM(k))p(sm+1 = 1|sM (k)) = np(sM (k); sm+1 = 1), using (7) we have

RH(m,n) =
m

m+ n
µH −

m

m+ n
µHp(s1 = 0) +

n

m+ n
µHp(sm+1 = 1)

−
m

m+ n
µHp(sM (m− 1))−

mn

m+ n
µHp(sM (m− 1)) [p(sm+1 = 1|sM (m− 1))

−p(sm+1 = 1|sM (m))]

Using symmetry and p(s1 = 1) = 1− p(s1 = 0), we get

RH(m,n) = µHp(s1 = 1)−
m

m+ n
µHp(sM (m− 1))−

mn

m+ n
µHXm

where

Xm = p(sM (m− 1)) [p(sm+1 = 1|sM(m− 1))− p(sm+1 = 1|sM(m))]

(ii) Similar to the proof of (i)

Proof of Lemma 1. Since the probability distribution is symmetric, w l.o.g., consider Xm. Recall

that Xm = p(sM (m− 1))X̃m where

X̃m = p(sm+1 = 1|sM (m− 1))− p(sm+1 = 1|sM (m)).

I will show that X̃m ≥ 0. We have

p(sm+1 = 1|sM (m− 1))− p(sm+1 = 1|sM (m)) ≥ 0⇐⇒

p(sM (m− 1); sm+1 = 1)p(sM(m)) ≥ p(sM (m); sm+1 = 1)p(sM(m− 1))⇐⇒

p(sM (m− 1); sm+1 = 1)p(sM(m); sm+1 = 0) + p(sM (m− 1); sm+1 = 1)p(sM(m); sm+1 = 1) ≥

p(sM (m); sm+1 = 1)p(sM(m− 1); sm+1 = 0) + p(sM (m); sm+1 = 1)p(sM(m− 1); sm+1 = 1)⇐⇒

p(sM (m− 1); sm+1 = 1)p(sM(m); sm+1 = 0) ≥ p(sM(m); sm+1 = 1)p(sM (m− 1); sm+1 = 0),

37



which is true for any m ≥ 2 since the signals are affiliated. Morever, X̃m is positive if the signals are

strictly affiliated. Recall that p(sM(m − 1)) > 0. Therefore, we have Xm ≥ 0 for all m and if the

signals are strictly affiliated, then we have Xm > 0 for all m.

Before proving the results for sequential sales of H and L, the following lemma lists some useful

equations.

Lemma 6

bLk,n(1)− bLk,n−1(1) = −
1

m+ n
µL (10)

n∑

t=0


 n

t


p(sN(t)|sM(k)) = 1 for all m,n and k = 0, 1, ..,m (11)

n∑

t=0

t


 n

t


p(sN(t)|sM(k)) = np(sm+1 = 0|sM (k)) for all m,n and k = 0, 1, ..,m (12)

Proof. Equation (10) follows from (4) and equation (11) follows from the property of a probability

density. Finally, equation (12) is similar to equation (8).

Proof of Proposition 2. (i) Following Milgrom and Weber (1982), it is clear that all H-bidders

with signal 0 and with signal 1 drop out at bH(0) = E(vH |sM (m)) and bHk (1) = E(vH |sM (k)),

respectively and all L-bidders with signal 0 and with signal 1 quit at bLk (0) = E(vL|sM (k); sN(n)) and

bLk,t(1) = E(vL|sM(k); sN(t)), respectively (where k = 0, 1, 2, ...m is the number of H-bidders who drop

out at price bH(0) and t = 0, 1, 2, ...n is the number L-bidders who quit at the price bLk (0)) form an

equilibrium of the two stage English auction when H is sold first and L is sold second. Notice that

the equilibrium drop out prices in the sale of H in the order of HL are the same as the ones in the

auction of H, when the items are sold simultaneously. Thus, the expected revenue to the seller from

the auction of H when H is auctioned first is RH/HL(m,n) = RH(m,n).

Now consider the auction of L. Suppose that there are k H-bidders with signal 0 and m − k H-

bidders with signal 1. Then, the equilibrium price in the auction of L is bLk,t(1), when there are t

L-bidders with signal 0 and n− t L-bidders with signal 1 for t = 0, 1, ..., n− 2, and it is bLk,n(1) when

there is at most one L-bidder with signal 1. Thus, the expected payoff to the seller in the auction of

L is

RL/HL(m,n) =
m∑

k=0


 m

k


p(sM (k))×



n−2∑

t=0


 n

t


 p(sN(t)|sM (k))b

L
k,t(1)


 n

n− 1


 p(sN(n− 1)|sM (k))b

L
k,n(1) +


 n

n


 p(sN(n)|sM (k))b

L
k,n(1)



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Using (10) and rearranging, we have

RL/HL(m,n) =
m∑

k=0


 m

k


p(sM (k))

n∑

t=0


 n

t


 p(sN(t)|sM (k))b

L
k,t(1)

−
m∑

k=0


 m

k


p(sM (k))p(sN(n− 1)|sM (k))

n

m+ n
µL

Since p(sM(k))p(sN(n− 1)|sM (k)) = p(sN(n− 1); sM(k)), using (7) we get

RL/HL(m,n) =
m∑

k=0


 m

k


p(sM (k))

n∑

t=0


 n

t


 p(sN(t)|sM (k))b

L
k,t(1)

−
n

m+ n
µLp(sN(n− 1))

Using (4) and rearranging, we get

RL/HL(m,n) =
m∑

k=0


 m

k


p(sM (k))×


m+ n− k

m+ n
µL

n∑

t=0


 n

t


 p(sN(t)|sM(k))

−
1

m+ n
µL

n∑

t=0

t


 n

t


p(sN(t)|sM (k))


− n

m+ n
µLp(sN(n− 1))

Using (11) and (12), we have

RL/HL(m,n) =
m∑

k=0


 m

k


p(sM (k))

m+ n− k

m+ n
µL

−
1

m+ n
µL

m∑

k=0


 m

k


p(sM (k))np(sm+1 = 0|sM (k))−

n

m+ n
µLp(sN(n− 1))

Since np(sM(k))p(sm+1 = 0|sM (k)) = np(sM (k); sm+1 = 0), using (6)-(8) we get

RL/HL(m,n) = µL −
m

m+ n
µLp(s1 = 0)−

n

m+ n
µLp(sm+1 = 0)−

n

m+ n
µLp(sN(n− 1))

Using symmetry, we have

RL/HL(m,n) = µLp(sm+1 = 1)−
n

m+ n
µLp(sN(n− 1))
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Since RL(m,n) = µLp(sm+1 = 1)−
n

m+nµLp((sN(n− 1))−
mn
m+nµLXn, we have

RL/HL(m,n) = RL(m,n) +
mn

m+ n
µLXn.

Therefore, the total expected revenue to the seller when H is sold first is

RHL(m,n) = RH/HL(m,n) +RL/HL(m,n) = RH(m,n) +RL(m,n) +
mn

m+ n
µLXn

(ii) Similar to the proof of (i).

Proof of Proposition 3. Assume m = n. Then, we have RLH(m,m) ≥ RHL(m,m) ⇐⇒ µHXm ≥

µLXm. Since Xm ≥ 0 by Lemma 1 and µH > µL, we have RLH(m,m) ≥ RHL(m,m). Moreover, if the

signals are strictly affiliated; that is, we have Xm > 0 by lemma 1, we get RLH(m,m) > RHL(m,m).

Proof of Lemma 2. Since p is symmetric, w l.o.g., consider Xm. I show that Xm ≥ Xm+1. Recall

that

Xm = p(sM (m− 1)) [p(sm+1 = 1|sM(m− 1))− p(sm+1 = 1|sM(m))]

Define M̃ = {1, 2, ...,m+ 1}, Ñ = {m+ 2, ...,m+ n+ 1}. Then, we have

Xm+1 = p(sM̃ (m))
[
p(sm+2 = 1|sM̃ (m))− p(sm+2 = 1|sM̃ (m+ 1))

]

Thus, we have

Xm ≥ Xm+1 ⇐⇒ p(sM (m− 1); sm+1 = 1)− p(sm+1 = 1|sM (m))p(sM (m− 1)) ≥

p(sM̃(m); sm+2 = 1)− p(sm+2 = 1|sM̃ (m+ 1))p(sM̃ (m))

Since

p(sM(m− 1); sm+1 = 1) = p(sM(m− 1); sm+1 = 1; sm+2 = 1) + p(sM (m− 1); sm+1 = 1; sm+2 = 0)

and p is symmetric, we have

Xm ≥ Xm+1 ⇐⇒ p(sM (m− 1); sm+1 = 1; sm+2 = 1) ≥

p(sm+1 = 1|sM(m))p(sM (m− 1))− p(sm+2 = 1|sM̃(m+ 1))p(s
M̃
(m))
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⇐⇒ p(sM (m− 1); sm+1 = 1; sm+2 = 1) ≥

p(sM(m); sm+1 = 1)p(sM (m− 1))

p(sM (m))
−

p(s
M̃
(m+ 1); sm+2 = 1)p(sM̃(m))

p(s
M̃
(m+ 1))

⇐⇒ p(sM (m− 1); sm+1 = 1; sm+2 = 1)p(sM (m))p(sM̃ (m+ 1))

≥ p(sM(m); sm+1 = 1)p(sM (m− 1))p(s
M̃
(m+ 1))− p(s

M̃
(m+ 1); sm+2 = 1)p(sM̃ (m))p(sM (m))

Now set

a = p(s
M̃
(m+ 1); sm+2 = 0)

b = p(sM̃(m+ 1); sm+2 = 1)

c = p(sM(m− 1); sm+1 = 0; sm+2 = 1)

d = p(sM(m− 1); sm+1 = 1; sm+2 = 1)

Then, we get

p(sM (m)) = a+ 2b+ c

p(sM̃ (m+ 1)) = a+ b

p(sM(m); sm+1 = 1) = b+ c

p(sM (m− 1)) = b+ 2c+ d

Therefore, we have

Xm ≥ Xm+1

⇐⇒ d(a+ 2b+ c)(a+ b) ≥ (b+ c)(b+ 2c+ d)(a+ b)− b(b+ c)(a+ 2b+ c)

⇐⇒ da2 + a(2bd− 2c2 − 2bc) + (b2d− bc2 + b3) ≥ 0

Consider the LHS of the above inequality as a quadratic equation in the variable a. First note that the

quadratic is convex since d > 0. Second, the discriminant is∆a = (2bd−2c
2−2bc)2−4d(b2d−bc2+b3) =

−4(b+ c)2(bd− c2). Since bd− c2 ≥ 0 by affiliation, we have ∆a ≤ 0. If ∆a = 0, then the quadratic

has only one zero. In this case, the LHS is always positive except at the zero because the quadratic

is convex. If ∆a < 0, then there are no zeros of the quadratic, which implies that the quadratic is

positive in this case, because it is convex. Thus, the LHS is always nonnegative. This implies that

Xm ≥ Xm+1. Moreover, if the signals are strictly affiliated, that is bd− c2 > 0, then ∆a < 0. Thus,

the LHS is always positive implying Xm > Xm+1.
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Proof of Proposition 4. We have RLH(m,n) ≥ RHL(m,n) ⇐⇒ µHXm ≥ µLXn. Assume that

m < n. Then, Xm ≥ Xn ≥ 0 by Lemmas 1 and 2. Thus, we have RLH(m,n) ≥ RHL(m,n) since

µH > µL. Moreover, if the signals are strictly affiliated; that is, we have Xm > Xn > 0 by Lemmas 1

and 2, then RLH(m,n) > RHL(m,n).

Proof of Corollary 2. Set n∗ = m. Propositions 3 and 4 together imply that the seller weakly

(strictly if the signals are strictly affiliated) prefers selling L first to selling H first for all n ≥ n∗.

Proof of Lemma 3. We have 0 < p(sM(m− 1)) < 1
m since p is symmetric and non-degerate. Thus,

by the sandwich theorem we get lim
m→∞

p(sM (m− 1)) = 0.

Proof of Lemma 4. Recall thatXm = p(sM(m−1))X̃m. Since 0 ≤ X̃m ≤ 1 and lim
m→∞

p(sM (m−1)) =

0 by Lemma 3, we get lim
m→∞

Xm = 0.

Proof of Proposition 5. Assume that Xn = 0. Then, choose m∗ = n. Thus, we have Xm = 0 for

all m ≥ m∗ by Lemmas 1 and 2. Therefore, RLH(m,n) = RHL(m,n) for all m ≥ m∗. Now assume

that Xn > 0. Set ǫ = µLXn

µH
. Since lim

m→∞
Xm = 0 by Lemma 4, there exists an integer m∗ such that

Xm < µLXn

µH
for all m ≥ m∗. Thus, we have RLH(m,n) < RHL(m,n) for all m ≥ m∗. Note that if

the signals are strictly affiliated, Lemma 1 implies that Xm > 0. Therefore, for any n there exists m∗

such that the seller strictly prefers selling H first to selling L first for all m ≥ m∗ if the signals are

strictly affiliated.

Proof of Corollary 3. Since µH = µL, we have RHL(m,n) > RLH(m,n)⇐⇒ Xn > Xm. Lemma 2

implies that Xn > Xm ⇐⇒ m > n. Therefore, RHL(m,n) > RLH(m,n)⇐⇒ m > n.

The next two lemmas are needed in the proof of Proposition 6

Lemma 7 i) lim
m→∞

RH(m,n) = µHp(s1 = 1) and lim
m→∞

RL(m,n) = µLp(sm+1 = 1)− nµLXn for any

n <∞.

ii) lim
n→∞

RH(m,n) = µHp(s1 = 1)−mµHXm and lim
n→∞

RH(m,n) = µLp(sm+1 = 1) for any m <∞.

Proof. Recall that

RH(m,n) = µHp(s1 = 1)−
m

m+ n
µHp(sM (m− 1))−

mn

m+ n
µHXm

RL(m,n) = µLp(sm+1 = 1)−
n

m+ n
µLp(sN(n− 1))−

mn

m+ n
µLXn.

(i) We have lim
m→∞

m
m+nµHp(sM (m− 1)) = 0 by Lemma 3 and lim

m→∞

mn
m+nµHXm = 0 by Lemma 4.

Also, note that lim
m→∞

n
m+nµLp(sN(n − 1)) = 0 and lim

m→∞

mn
m+nµLXn = nµLXn. Therefore, we obtain

lim
m→∞

RH(m,n) = µHp(s1 = 1) and lim
m→∞

RL(m,n) = µLp(sm+1 = 1)− nµLXn.

(ii) Similar to (i).
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Lemma 8 i) For any n <∞, we have

lim
m→∞

RH(m,n) +RL(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1)− nµLXn

lim
m→∞

RHL(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1)

lim
m→∞

RLH(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1)− nµLXn

ii) For any m <∞, we have

lim
n→∞

RH(m,n) +RL(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1)−mµHXm

lim
n→∞

RHL(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1)−mµHXm

lim
n→∞

RLH(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1)

Proof of Proposition 6. Directly follows from Lemma 8.

The next two lemmas are needed in the proof of Proposition 7

Lemma 9 lim
n→∞
m→∞

mn
m+nµHXm = lim

n→∞
m→∞

mn
m+nµLXn = 0.

Proof. To be added.

Lemma 10 i) lim
n→∞
m→∞

RH(m,n) = µHp(s1 = 1).

ii) lim
n→∞
m→∞

RL(m,n) = µLp(sm+1 = 1).

Proof. (i) First note that lim
n→∞
m→∞

m
m+nµHp(sM (m− 1)) = 0 since lim

m→∞
p(sM (m− 1)) = 0 by Lemma 3

and 0 < m
m+n < 1. Second, we have lim

n→∞
m→∞

mn
m+nµHXm = 0 by Lemma 9. Thus, we get lim

n→∞
m→∞

RH(m,n) =

µHp(s1 = 1).

(ii) Similar to (i).

Proof of Proposition 7. By Lemmas 9 and 10, we obtain lim
n→∞
m→∞

RH(m,n) + RL(m,n) =

lim
n→∞
m→∞

RHL(m,n) = lim
n→∞
m→∞

RLH(m,n) = µHp(s1 = 1) + µLp(sm+1 = 1).

Proof of Proposition 9. I show that the drop out prices bH(0) = E(vH |sM(m)), bHk (1) = E(vH |sM (k)),

b < bH(0), bLk (0) = E(vL|sM (k); sN∪R(n + r)) and bLk,t(1) = E(vL|sM (k); sN∪R(t)) where k =

0, 1, 2, ...,m and t = 0, 1, 2, ...n+ r form an equilibrium.

First notice that no H-bidder has an incentive to deviate. The reason is that quitting at bH(0)

(bHk (1)) is a best response of an H-bidder with signal 0 (signal 1) given that all B-bidders drop out at

b < bH(0) and all the other H-bidders follow the strategies bH(0) and bHk (1).

43



Second note that if the drop out prices are b < bH(0), bH(0) and bHk (1) in the sale of H, then bLk (0)

and bLk,t(1) form an equilibrium of the auction of L. Thus, neither an L-bidder nor a B-bidder has an

incentive to deviate in the second sale.

Now I show that no B-bidder j (where j ∈ R) has an incentive to deviate in the first sale. Note that

bidder j makes a zero payoff both in the auction of H irrespective of his signal and in the auction of L

if he has signal 0. However, if he has signal 1, his payoff in the auction of L is µL
m+n+rp(sN∪R\{j}(n+

r − 1)|sj = 1) > 0.
7

Assume that all the other bidders believe that bidder j has signal 1 if he does not quit at b.

Note that any deviation by bidder j is observable to all bidders since b < bH(0). Thus, when bidder

j does not drop out at b, all H-bidders, all L-bidders and the other B-bidders will update their

bids: All H-bidders with signal 0 and with signal 1 quit at b̃H(0) = E(vH |sM (m); sj = 1) and

b̃Hk (1) = E(vH |sM(k); sj = 1), respectively, in the auction of H (where k = 0, 1, ...,m is the number

of H-bidders who drop out at the price b̃H(0)). Also, in the auction of L, all L and B-bidders (other

than bidder j) with signal 0 and with signal 1 drop out at b̃Lk (0) = E(vL|sM (k); sN∪R(n+ r− 1)) and

b̃Lk,t(1) = E(vL|sM (k); sN∪R(t)), respectively (where t = 0, 1, 2, ...n+ r − 1 is the number of bidders -

other than the bidder j - who drop out at price b̃L(0)).

Suppose that bidder j has signal 0 and he does not quit at b. Then, it is clear that he cannot

get the item L in the second auction with a postive payoff. Thus, he gets zero in the auction of L.

Now consider the auction of H. If he wins the object H, he pays either b̃H(0) or b̃Hk (1). Consider the

case he pays b̃H(0). This implies that all H-bidders have signal 0. Then, the expected value of H to

bidder j with signal 0 is E(vH |sM(m); sj = 0). But we have E(vH |sM (m); sj = 0) < b̃H(0) by the

proof of Lemma 1. Now consider the case he pays b̃Hk (1). This implies that there are k H-bidders

with signal 0 and m− k H-bidders with signal 1. Then, the expected value of H to the bidder j with

signal 0 is E(vH|sM (k); sj = 0). But we have E(vH |sM (k); sj = 0) < b̃Hk (1), by the proof of Lemma

1. Therefore, bidder j with signal 0 has no incentive to deviate.

Now suppose that bidder j has signal 1 and he does not quit at b. Consider the auction of L. If he

wins the object at b̃Lk (0), then all the other bidders in the second sale have signal 0. In that case, the

object’s expected value is E(vL|sM (k); sN∪R(n + r − 1)) which is the same as b̃Lk (0). If he wins the

object at b̃Lk,t(0), then there are t bidders with signal 0 and n + r − t bidders with signal 1. In that

case, the expected value of L is E(vL|sM (k); sN∪R(t)) which is the same as b̃Lk,t(1). Thus, his payoff is

zero in the auction of L. Now consider the auction of H. If he wins the object H, he pays either b̃H(0)

or b̃Hk (1). Consider the case he pays b̃H(0). This implies that all H-bidders have signal 0. Then, the

7To see this note that his payoff is postive in the auction of L if all the other n+ r− 1 bidders in the second auction have
signal 0. Otherwise his payoff is zero. Thus, his expected payoff is [E(vL|sM (k); sN∪R(n+r−1))−E(vL|sM (k); sN∪R(n+
r))]p(sN∪R\{j}(n+ r − 1)|sj = 1) =

µL
m+n+r

p(sN∪R\{j}(n+ r − 1)|sj = 1).
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expected value of H to him is E(vH |sM (m); sj = 1) which is equal to b̃H(0). Now consider the case

he pays b̃Hk (1). This implies that there are k H-bidders with signal 0 and m− k H-bidders with signal

1. Then, the expected value of H to him is E(vH |sM (k); sj = 1) which is equal to b̃Hk (1). Thus, his

payoff is zero in the auction of H. Therefore, bidder j with signal 1 has no incentive to deviate.

Therefore, the drop out prices bH(0), bHk (1), b < bH(0), bLk (0) and bLk,t(1) where k = 0, 1, 2, ...,m

and t = 0, 1, 2, ...n+ r form an equilibrium.

Notice that in the equilibrium there are actually m bidders competing for H and n + r bidders

competing for L. Therefore, we have RP
HL(m,n, r) = RHL(m,n+ r) by Proposition 2.

(ii) Similar to the proof of (i).

Proof of Proposition 10. (i) I show that bH(0) = E(vH |sM∪R(m+ r)), bHk (1) = E(vH |sM∪R(k)),

bLk (0) = E(vL|sM∪R(k); sN(n)), bLk,t(1) = E(vL|sM∪R(k); sN(t)) and any b ≤ bLk (0), where k =

0, 1, 2, ...,m+ r and t = 0, 1, 2, ...n form an equilibrium.

First note that no H-bidder has an incentive to deviate given that all B-bidders and the other

H-bidders quit according to bH(0) and bHk (1).

Second, neither an L-bidder nor a B-bidder has an incentive to deviate in the second auction since

bLk (0), b
L
k,t(1) and b ≤ bLk (0) form an equilibrium of the auction of L.

Now consider bidder j (where j ∈ R). Assume that all the other bidders believe that bidder j has

signal 1 if he does not drop out at bH(0) in the sale of H.

Suppose that bidder j has signal 0. It is clear that he has no incentive to deviate since his

equilibrium payoff is zero.

Now suppose that bidder j has signal 1. Assume that k bidders drop out at price bH(0). Then, in

the equilibrium he drops out at bHk (1) and makes a positive payoff if he is the only bidder with signal

1 among the m+ r bidders. Otherwise he makes zero. Thus, his expected equilibrium payoff is

Π = [E(vH |sM∪R(m+ r − 1))−E(vH |sM∪R(m+ r))] p(sM∪R\{j}(m+ r − 1)|sj = 1)

=

[
nXm+r

p(sj = 1)
+ p(sM∪R\{j}(m+ r − 1)|sj = 1)

]
µH

Now I show that bidder j with signal 1 has no incentive to deviate if and only if condition SHL

holds. Suppose that he quits at bH(0). Then, he wins the object H if and only if all the other (m+r−1)

bidders have signal 0. In that case, he’ll get his equilibrium payoff Π with probability 1
m+r . Later, in

the auction of L all the other B-bidders and all n L-bidders believe that he has signal 0. Thus, they

expect bidder j to drop out at m+r−k
m+n+rµL in the sale of L along with all the other B-bidders and the

L-bidders with signal 0 (where k is the number of bidders who quit at bH(0)). If he does not drop at

that price , then all the remaining L-bidders can update their beliefs and bid accordingly. The only

way for bidder j with signal 1 to make positive profit in the second sale by mimicking a bidder with
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signal 0 in the first sale is that all L-bidders must have signal 0 so they drop out at m+r−k
m+n+rµL. In that

case, which occurs with probability p(sN(n)|sj = 1), he gets
µL

m+n+r . Therefore, bidder j with signal

1 has no incentive to deviate if and only if

1

m+ r
Π+

µL

m+ n+ r
p(sN(n)|sj = 1) ≤ Π⇐⇒

(m+ r)
µL

m+ n+ r
p(sN(n)|sj = 1) ≤ (m+ r − 1)Π

That is,

1

m+ n+ r
µLp(sN(n)|sj = 1) ≤

m+ r − 1

m+ r
µH

[
nXm+r

p(sj = 1)
+ p(sM∪R\{j}(m+ r − 1)|sj = 1)

]
.

Notice that in the equilibrium there are actually m + r bidders competing for H and n bidders

competing for L. Thus, we have RS
HL(m,n, r) = RHL(m+ r, n) by Proposition 2.

I will now investigate the asymptotic properties of the equilibria in Model II. This will help me to

determine the optimal order of sales.

The next three lemmas are needed in the proof of Proposition 11. The first two follow directly

from Lemmas 7 and 8.

Lemma 11 For any pair of (m, r) < (∞,∞), we have

lim
n→∞

R(m,n, r) = µHp(s1 = 1) + µLp(sm+1 = 1)−mµHXm+r

lim
n→∞

RS
HL = µHp(s1 = 1) + µLp(sm+1 = 1)− (m+ r)µHXm+r

lim
n→∞

Rs
LH = µHp(s1 = 1) + µLp(sm+1 = 1)

lim
n→∞

R
p
HL = µHp(s1 = 1) + µLp(sm+1 = 1)−mµHXm

lim
n→∞

R
p
LH = µHp(s1 = 1) + µLp(sm+1 = 1)

Lemma 12 For any pair of (n, r) < (∞,∞), we have

lim
m→∞

R(m,n, r) = µHp(s1 = 1) + µLp(sm+1 = 1)− nµLXn+r

lim
m→∞

Rs
HL = µHp(s1 = 1) + µLp(sm+1 = 1)

lim
m→∞

Rs
LH = µHp(s1 = 1) + µLp(sm+1 = 1)− (n+ r)µLXn+r

lim
m→∞

R
p
HL = µHp(s1 = 1) + µLp(sm+1 = 1)

lim
m→∞

R
p
LH = µHp(s1 = 1) + µLp(sm+1 = 1)− nµLXn
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Lemma 13 Let {x}j and {y}j be two sequences. Then, if lim
j→∞

{x}j > lim
j→∞

{y}j, then there exists an

integer j∗ such that xj > yj for all j ≥ j∗.

Proof. Set lim
j→∞

xj = x and lim
j→∞

yj = y and assume x > y. Suppose that there is no such j∗. Then,

there exist a subsequence {x}jk of {x}j and a subsequence {y}jkof {y}j such that xjk ≤ yjk for all k.

Thus, we have lim
k→∞

{x}jk = x ≤ lim
k→∞

{y}jk = y which is a contradiction.

Proof of Proposition 11. (i) Assume that the signals are strictly affiliated. Note that we have

R
p
LH > Rs

HL for all n ≥m+ r by Propositions 3 and 4. Now compare Rp
LH with R

p
HL and R

p
LH with

R(m,n, r). Lemma 11 implies that lim
n→∞

RP
LH > lim

n→∞
R
p
HL and lim

n→∞
RP
LH > lim

n→∞
R(m,n, r). Then, by

Lemma 13 there exist integers n∗2 and n∗3 such that Rp
LH > R

p
HL for all n ≥ n∗2 and R

p
LH > R(m,n, r)

for all n ≥ n∗3. Now choose n∗1 = max{m + r, n∗2, n
∗
3}. Thus, for any pair of (m, r) < (∞,∞) there

exists an integer n∗1 such that Rp
LH > Rs

HL, R
p
LH > R

p
HL and R

p
LH > R(m,n, r) for all n ≥ n∗1.

Similarly, we have Rs
LH > R

p
HL for all n ≥ m− r by Propositions 3 and 4. Also, Lemma 11 implies

that lim
n→∞

RS
LH > lim

n→∞
RS
HL and lim

n→∞
RS
LH > lim

n→∞
R(m,n, r). By lemma 13, there exist integers

n∗5 and n∗6 such that Rs
LH > Rs

HL for all n ≥ n∗5 and RS
LH > R(m,n, r) for all n ≥ n∗6. Choose

n∗4 = max{m− r, n∗5, n
∗
6}. Thus, for any pair of (m, r) < (∞,∞) there exists an integer n∗4 such that

Rs
LH > R

p
HL, R

s
LH > Rs

HL and Rs
LH > R(m,n, r) for all n ≥ n∗4.

Therefore, we have Rp
LH > max{Rs

HL, R
p
HL, R(m,n, r)} and Rs

LH > max{Rs
HL, R

p
HL, R(m,n, r)}

for all n ≥ n∗ = max{n∗1, n
∗
4}.

(ii) Similar to the proof of (i).
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Appendix B: Appendix for Chapter II

Proof of Lemma 1. Suppose that the outcome of the disclosure game at round T − i is (OT−i,

RT−i(θ2)) and the beliefs are µT−i(θk = (T − i− 1)∆|σlT−i = 0) = 1 for k, l = 1, 2. Assume that firm

1 offers OT−i and firm 2 plays RT−i(θ2) at the bargaining game of T − i. Then, in the equilibrium

firm 2 accepts the offer and firm 1 becomes the owner of the RJV. The value of the RJV at T − i for

firm 1 with θ1 is

RJVT−i(θ1) = Πm

[
2(θ1 + (T − i− 1)∆)− (θ1 + (T − i− 1)∆)2

]

Thus, its payoff is

PT−i(θ1) = RJVT−i(θ1)−OT−i

= Πm

[
2(θ1 + (T − i− 1)∆)− (θ1 + (T − i− 1)∆)2

]

−Πm(2T − 2i− 1)∆(1−∆(2T −
3

2
i− 1))

Let OPT−i(θ1) be the outside option of firm 1 at the bargaining game of stage T − i. That is, if it

decides not to make an offer or its offer is rejected, firm 1’s payoff would be OPT−i(θ1). We have

OPT−i(θ1) = Πm(θ1 + (T − i− 1)∆)(1− (2T − 2i− 1)∆)

I now compare PT−i(θ1) and OPT−i(θ1). We have

PT−i(θ1)−OPT−i(θ1) = Πm [(θ1 + (T − i− 1)∆)− (2T − 2i− 1)∆

+ (2T − 2i− 1)(2T −
3

2
i− 1)∆2+

+(θ1 + (T − i− 1)∆)(2T − 2i− 1)∆− (θ1 + (T − i− 1)∆)2
]

= Πm [(θ1 − (T − i)∆)− (θ1 + (T − i− 1)∆)(θ1 − (T − i)∆)

+ (2T − 2i− 1)(2T −
3

2
i− 1)∆2]

= Πm[(θ1 − (T − i)∆)(1− θ1 − (T − i− 1)∆)

+ (2T − 2i− 1)(2T −
3

2
i− 1)∆2]

Since θ1 ≥ T − i and θ1, (T − i − 1)∆ ≤ 1
2 , we get PT−i(θ1) > OPT−i(θ1) for all θ1 ∈ ΘT−i and

i = 0, 1, ..., T − 1. This implies that firm 1 has no incentive to deviate at T − i given
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µT−i(θ2 = (T − i − 1)∆|σ2T−i = 0) = 1 and firm 2 plays RT−i(θ2). Moreover, it is clear that

RT−i(θ2) is a best response of firm 2 given that firm 1 offers OT−i. Therefore, (OT−i, RT−i(θ2)) is an

equilibrium of the bargaining game of round T − i for all i = 0, 1, ..., T − 1.

Proof of Lemma 2. I show that EPT−i((T − j)∆) −DT−i((T − j)∆) ≥ 0 for i = 1, ...T − 1 and

j = 1, ..i.

We have

EPT−i((T − j)∆)−DT−i((T − j)∆) = Πm[{
i∑

k=j

1

i+ 2
(2(2T − j − k − 1)∆− (2T − j − k − 1)2∆2

−(2T − 2k − 1)∆(1−∆(2T −
3

2
k − 1)))}+

1

i+ 2
(2T − 2j)∆(1−∆(2T − 2j))

+
j

i+ 2
(2T − 2(j − 1)− 1)∆(1−∆(2T −

3(j − 1)

2
− 1))

−
1

i+ 2
(2T − j − i− 1)∆(1−∆(2T − 2i− 2))−

i+ 1

i+ 2
(2T − i− j)∆(1−∆(2T −

3

2
i− 1))]

= Πm[
∆2(1 + i− j)(24 + 36i2 + 35j + 20j2 + 49i+ 32ij − 78Ti− 96T − 54Tj + 48T 2

12(2 + i)

+
∆(1 + i− j)12i

12(2 + i)
]

Case I: j = 2, ...i and i = 2, ...T − 1. Set

A(i, j) = 24 + 36i2 + 35j + 20j2 + 49i+ 32ij − 78Ti− 96T − 54Tj + 48T 2

Subcase I: Assume that A(i, j) ≥ 0.Then we have

EPT−i((T − j)∆)−DT−i((T − j)∆) = Πm
∆(1 + i− j)12i+∆2(1 + i− j)A(i, j)

12(2 + i)
≥ 0

since j ≤ i.

Subcase II: Assume that A(i, j) < 0. I show that

∆(1 + i− j)12i+∆2(1 + i− j)A(i, j) ≥ 0

Note that

∆(1 + i− j)12i+∆2(1 + i− j)A(i, j) ≥ 0⇐⇒ 12i+∆A(i, j) ≥ 0

Since ∆ ≤ 1
2T , we have

12i+∆A(i, j) ≥ 12i+
1

2T
A(i, j)
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Now consider

12i+
1

2T
A(i, j) =

48T 2 + T (−54i− 96− 54j) + (24 + 26i2 + 35j + 20j2 + 49i+ 32ji)

2T

Set

48T 2 + T (−54i− 96− 54j) + (24 + 26i2 + 35j + 20j2 + 49i+ 32ji) = 0

and solve for T. The discriminant is X = (−54i−96−54j)2−196(24+26i2+35j+20j2+49i+32ji) =

12(384−173i2+304j−77j2+80i−26ji). Since ∂X
∂j = 12(304−154j−26i) < 0 for all j = 2, 3, ..., i and

for all i = 3, ..., T −1, we have X ≤ 684−173i2+28i < 0 for all j = 2, 3, ..., i and for all i = 3, ..., T −1.

Thus, the quadratic equation 48T 2 + T (−54i− 96− 54j) + (24 + 26i2 + 35j + 20j2 + 49i+ 32ji) ≥ 0

all j = 2, 3, ..., i and for all i = 3, ..., T − 1. This implies that EPT−i((T − j)∆)−DT−i((T − j)∆) ≥ 0

for i = 3, ..., T − 1 and j = 2, ..., i.

Now I prove that EPT−i((T − j)∆) − DT−i((T − j)∆) ≥ 0 when j = 2 and i = 2. Note that

EPT−2((T − 2)∆)−DT−2((T − 2)∆) = Πm
∆+∆2(2T−15T+21)

2 . Since 2T − 15T + 21 ≥ 0 for all T ≥ 6,

we have EPT−2((T − 2)∆)−DT−2((T − 2)∆) ≥ 0 for all T ≥ 6.

If T = 3, then EPT−2((T − 2)∆)−DT−2((T − 2)∆) = Πm
(1−6∆)∆

2 ≥ 0 since ∆ ≤ 1
2T =

1
6 .

If T = 4, then EPT−2((T − 2)∆)−DT−2((T − 2)∆) = Πm
(1−7∆)∆

2 ≥ 0 since ∆ ≤ 1
2T =

1
8 .

If T = 5, then EPT−2((T − 2)∆)−DT−2((T − 2)∆) = Πm
(1−4∆)∆

2 ≥ 0 since ∆ ≤ 1
2T =

1
10 .

Therefore, EPT−i((T − j)∆)−DT−i((T − j)∆) ≥ 0 for i = 2, ..., T − 1 and j = 2, ..., i.

Case II: j = 1 and i = 1, 2, , , T − 1. Then, we have

EPT−i((T − 1)∆)−DT−i((T − 1)∆) = Πm
∆12i2 +∆2i(79 + 26i2 + 81i− 78Ti− 150T + 48T 2)

12(2 + i)

Set

A(i, 1) = i(48T 2 + T (−150− 78i) + 79 + 26i2 + 81i)

Subcase I: Assume that A(i, 1) ≥ 0. Then, we have

EPT−i((T − 1)∆)−DT−i((T − 1)∆) = Πm
∆12i2 +∆2A(i, 1)

12(2 + i)
≥ 0.

Subcase II: Assume that A(i, 1) < 0. I will show that

∆12i2 +∆2A(i, 1) ≥ 0

Note that

∆12i2 +∆2A(i, 1) ≥ 0⇐⇒ 12i2 +∆A(i, 1) ≥ 0
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Since ∆ ≤ 1
2T , we have

12i2 +∆A(i, 1) ≥ 12i2 +
1

2T
A(i, 1) =

48iT 2 + T (−54i2 − 150i) + 79i+ 26i3 + 81i2

2T

Set

48iT 2 + T (−54i2 − 150i) + 79i+ 26i3 + 81i2 = 0

and solve for T . The discriminant is X = (−54i2− 150i)2− 192i(79i+26i3+81i2) = 12i2(611+54i−

173i2). Since X < 0 for all i ≥ 3, we have ∆12i2 +∆2A(i, 1) ≥ 0 for all T ≥ 3 and for all i ≥ 3.

If i = 2, then EPT−2((T − 1)∆)−DT−2((T − 1)∆) = Πm
∆8+∆2(115−102T+16T2)

8 ≥ 0 for all T ≥ 3.

If i = 1,then EPT−1((T − 1)∆)−DT−1((T − 1)∆) = Πm
∆2+∆2(31−38T+8T2)

6 ≥ 0 for all T ≥ 3.

Therefore, EPT−i((T − 1)∆)−DT−i((T − 1)∆) ≥ 0 for i = 1, 2, ..., T − 1.

Proof of Lemma 3. Suppose that firm 1 with type T∆ does not disclose at stage T − i. Then,

with probability 1
i+2 the other firm does not disclose, either since it is type (T − i − 1)∆). In that

case, firm 1 will get its outside option Πm(2T − i − 1)∆(1 −∆(2T − 2i− 2)). In all the other cases,

which occur with probability i+1
i+2 the other firm has at least (T − i)∆, so firm 1 will recieve the offer

OT−i = Πm(2T −2i−1)∆(1−∆(2T −
3
2 i−1)). However, it will reject this offer since firm 1’s expected

outside option Πm(2T − i)∆(1−∆(2T − 3
2 i− 1)) is greater than OT−i. Thus, if firm 1 with type T∆

does not disclose stage T − i, it will get

DT−i(T∆) = Πm[
1

i+ 2
(2T − i− 1)∆(1−∆(2T − 2i− 2)) +

i+ 1

i+ 2
(2T − i)∆(1−∆(2T −

3

2
i− 1))]

I now show that EPT−i(T∆)−DT−i(T∆) ≥ 0 for all i = 0, 1, ..., T − 1.

We have

EPT−i(T∆)−DT−i(T∆) = Πm[{
i∑

k=0

1

i+ 2
PT−k(T∆)}+

1

2
(2T∆− 2T 2∆2)

−
1

i+ 2
(2T − i− 1)∆(1−∆(2T − 2i− 2))−

i+ 1

i+ 2
(2T − i)∆(1−∆(2T −

3

2
i− 1))]

= Πm[{
i∑

k=1

1

i+ 2
(2(2T − i− 1)∆− (2T − i− 1)2∆2 − (2T − 2i− 1)∆(1−∆(2T −

3

2
i− 1)))}

+
2

i+ 2
(
1

2
(2T − 1)∆ +

1

2
(2T∆− 2∆2T 2))− [

1

i+ 2
(2T − i− 1)∆(1−∆(2T − 2i− 2))

+
i+ 1

i+ 2
(2T − i)∆(1−∆(2T −

3

2
i− 1)]

= Πm
∆(12i+ 12i2) +∆2(26i3 + 75i2 − 78Ti2 + 24− 96T + 72T 2 + 73i− 174Ti+ 48iT 2)

12(2 + i)

Set

A(i) = 26i3 + 75i2 − 78T i2 + 24− 96T + 72T 2 + 73i− 174Ti+ 48iT 2
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Case I: Assume that A(i) ≥ 0.Then we have

EPT−i(T∆)−DT−i(T∆) = Πm
∆(12i+ 12i2) +∆2A(i)

12(2 + i)
≥ 0

Case II: Assume that A(i) < 0. I show that

∆(12i+ 12i2) +∆2A(i) ≥ 0

Notice that

∆(12i+ 12i2) +∆2A(i) ≥ 0⇐⇒ (12i+ 12i2) +∆A(i) ≥ 0

Since ∆ ≤ 1
2T , we have

(12i+ 12i2) +∆A(i) ≥ (12i+ 12i2) +
1

2T
A(i)

Now consider

(12i+ 12i2) +
1

2T
A(i) =

T 2(72 + 48i) + T (−54i2 − 96− 150i) + 26i3 + 75i2 + 24 + 73i

2T

Set

T 2(72 + 48i) + T (−54i2 − 96− 150i) + 26i3 + 75i2 + 24 + 73i = 0

and solve for T . Notice that this quadratic equation has no solution since the discriminant X =

(−54i2−96−150i)2−4(72+48i)(26i3+75i2+24+73i) = −12(−192−264i+229i2+474i3+173i4) is

negative for all i = 1, 2, ..., T −1. Thus, T 2(72+48i)+T (−54i2−96−150i)+26i3+75i2+24+73i ≥ 0

for all i = 1, ..., T − 1 and for all T . Also, we have to show that firm 1 with type T∆ has no incentive

to deviate at the last round, either. To see this set i = 0. Then, we have

EPT (T∆)−DT (T∆) = Πm
∆2(24− 96T + 72T 2)

24
≥ 0

Therefore, we have EPT−i(T∆)−DT−i(T∆) ≥ 0 for all i = 0, 1, ..., T − 1.

Proof of Lemma 5. First note that the expected outside option for firm 1 with type θ1 before the

game starts is

O(θ1) = E(Πmθ1(1− θ2)|θ2 ∈ Θ) = Πmθ1(1−
1

2
∆T )

I show that EP (θ1)−O(θ1) ≥ 0 for all θ1 ∈ Θ.

(i) θ1 = T∆
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Consider

EP (T∆)−O(T∆) = Πm
12T 2∆−∆2(5T + 3T 2 + 4T 3)

12(1 + T )

We have

EP (T∆)−O(T∆) ≥ 0⇐⇒ 12T 2 −∆(5T + 3T 2 + 4T 3) ≥ 0

Set

A(0) = 5T + 3T 2 + 4T 3

If A(0) < 0, then E(∆T )−O(∆T ) ≥ 0. Suppose that A(0) ≥ 0. Then, we have

12T 2 −∆(5T + 3T 2 + 4T 3) ≥ 12T 2 −
1

2T
(5T + 3T 2 + 4T 3) = 10T 2 −

3

2
T −

5

2
≥ 0

for all T ≥ 3.

Therefore, EP (T∆)−O(T∆) ≥ 0.

(ii) θ1 = (T − 1)∆

Consider

EP ((T − 1)∆)−O((T − 1)∆) = Πm
∆(12T 2 − 12T + 12)−∆2(4T 3 + 45T 2 − 61T + 24)

12(1 + T )

We have

EP ((T − 1)∆)−O((T − 1)∆) ≥ 0⇐⇒ (12T 2 − 12T + 12)−∆(4T 3 + 45T 2 − 61T + 24) ≥ 0

Set

A(1) = 4T 3 + 45T 2 − 61T + 24

If A(1) < 0, then E(∆(T − 1))−O(∆(T − 1)) ≥ 0. Suppose that A(1) ≥ 0. Then, we have

(12T 2 − 12T + 12)−∆(4T 3 + 45T 2 − 61T + 24) ≥

(12T 2 − 12T + 12)−
1

2T
(4T 3 + 45T 2 − 61T + 24) = 10T 2 −

69

2
T −

85

2
−
12

T
≥ 0

for all T ≥ 3.

Therefore, EP ((T − 1)∆)−O((T − 1)∆) ≥ 0.

(iii) θ1 = (T − j)∆ where j = 2, 3, ..., T − 1)
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Consider

EP ((T − j)∆)−O((T − j)∆) = Πm[
∆(12T 2 + 24T − 12Tj − 12j)

12(1 + T )

−
∆2(4T 3 + 27T 2 + 5T + 18T 2j − 24Tj − 42Tj2 + 20j3 + 3j2 + j)

12(1 + T )
]

We have

E(∆(T − j))−O(∆(T − j)) ≥ 0⇐⇒ (12T 2 + 24T − 12Tj − 12j)

−∆(4T 3 + 27T 2 + 5T + 18T 2j − 24Tj − 42Tj2 + 20j3 + 3j2 + j) ≥ 0

First note that (12T 2 + 24T − 12Tj − 12j) > 0 (it is decreasing in j so 12T 2 + 24T − 12Tj − 12j ≥

12T > 0). Set

A(j) = 4T 3 + 27T 2 + 5T + 18T 2j − 24Tj − 42Tj2 + 20j3 + 3j2 + j

If A(j) < 0, then E(∆(T − j))−O(∆(T − j)) ≥ 0. Suppose that A(j) ≥ 0. Then we have

(12T 2 + 24T − 12Tj − 12j)−∆(4T 3 + 27T 2 + 5T + 18T 2j − 24Tj − 42Tj2 + 20j3 + 3j2 + j)

≥ (12T 2 + 24T − 12Tj − 12j)−
1

2T
(4T 3 + 27T 2 + 5T + 18T 2j − 24Tj − 42Tj2 + 20j3 + 3j2 + j)

= 10T 2 + T (
21

2
− 21j) + 21j2 −

5

2
−
20j3 + 3j2 + j

2T

Now consider

10T 2 + T (
21

2
− 21j) + 21j2 −

5

2
−
20j3 + 3j2 + j

2T

Note that

10T 2 + T (
21

2
− 21j) + 21j2 −

5

2
−
20j3 + 3j2 + j

2T
≥ 0⇐⇒

20T 3 + T 2(21− 42j) + 42Tj2 − 5T − 20j3 − 3j2 − j ≥ 0

Now we have

20T 3+T 2(21−42j)+42Tj2−5T −20j3−3j2−j = (T −j)(20T 2+20j2−22Tj)+21T 2−5T −3j2−j

Notice that the second term is nonnegative for all j = 2, ..., T and T ≥ 3.

Now I show that the first term is nonnegative, too. Solve 20T 2 + 20j2 − 22Tj for T given j.

The quadratic equation has no real root since (22j)2 − (40j)2 < 0. Thus, 20T 2 + 20j2 − 22Tj ≥ 0.

54



Therefore, EP ((T − j)∆)−O((T − j)∆) ≥ 0 for all j = 2, ..., T and T ≥ 3.

(iv) θ1 = 0

Firm 1 with type 0 has outside option of zero before the game starts. If it participates, the

opponent disloses ∆ at the first stage with probability T
T+1 . Thus, its expected outside option becomes

E(Πm∆(1− θ2)|θ2 ∈ Θ1) = ∆(1−∆(
T
2 +

1
2)) which is greater than zero.

Proof of Proposition 1. By lemmas (1)-(5).

Proof of Lemma 6. We have

CSB

Πm +CSm
=

c1−a

a−1

(a−1)a−1

ca−1aa + (ca)1−a

(a−1)2−a

By simplifying we get
CSB

Πm +CSm
=
(a− 1)1−aaa

2a− 1

Thus, we obtain lim
a→1

CSB
Πm+CSm

= lim
a→1

(a−1)1−aaa

2a−1 = 1 and lim
a→∞

CSB
Πm+CSm

= lim
a→∞

(a−1)1−aaa

2a−1 = e
2 .

To see that CSB
Πm+CSm

is increasing for all a > 1 first consider the derivative of CSB
Πm+CSm

. We

have
(

CSB
Πm+CSm

)′
=

(2a−1) ln a

a−1−2

(2a−1)2(a−1)2a−2 . Note that the denominator is postive for all a > 1. I now

show that the numerator is non-negative for all a > 1. Set f(a) = ln a
a−1 −

2
2a−1 . Consider f

′

(a) =

− 1
a(a−1) +

4
(2a−1)2 , which is always negative. This implies that f(a) is decreasing. Thus, for all a > 1

we have f(a) ≥ lim
a→∞

f(a) = 0
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