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ABSTRACT

ROSHAWN WATSON:
Molecular Profiling of Clinical Drug Resistance

(Under the direction of Howard McLeod, Pharm.D.)

One of the greatest challenges in oncology is drug resistance. 5-Fluorouracil (5-

FU) is the third most commonly used anti-neoplastic, so lack of initial or continued

response to 5-FU represents a big clinical problem. Despite its prominence in cancer

treatment, the mechanisms for its resistance remain largely undefined. The third leading

cause of cancer-related deaths is colorectal cancer for which 5-FU is an essential part its

therapeutic backbone. Resistance to 5-FU is a primary cause of treatment failure.

Developing models explaining 5-FU resistance is imperative to advancing care.

Quantitative proteomics is a rapidly emerging tool that when combined with

functional studies can be valuable for mechanistic elucidation. Our combined modality

approach utilizes colorectal tumors that are well-phenotyped with respect to 5-FU

exposure (clinical resistance), demographics, and baseline disease characteristics.

Expression of critical 5-FU pathway proteins is quantified within both tumors 5-FU

exposed and unexposed, expression is then compared, and proteins with differential

expression associated with 5-FU resistance are carried forward for functional validation.

Then, augmentation of 5-FU sensitivity (IC50) after knockdown of the genes (DUT,

UCK2, and DPYD) encoding the differentially expressed proteins was evaluated in
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colorectal cancer cell lines. DUT and UCK2 knockdown decreased IC50 by >2-fold in

two or more cell lines while DPD knockdown yielded decreased IC50 by >2-fold in one

cell line and nearly 2-fold in the others. This mechanistic validation supports

overexpression of these targets as a mechanism for 5-FU resistance. Additionally, copy

number gains in TYMS occurred 5 times more frequently in exposed compared to

unexposed patients, suggesting that TYMS gains is also a mechanism for 5-FU

resistance.

This work could have a significant impact on defining mechanisms of drug

resistance and designing rationale therapies for resistant patients. This model provides a

strategy for not only screening multiple candidates potentially causing resistance but also

a method for stratifying samples in a manner that enriches for variations associated with

resistance and a means of credentialing these candidates for their putative mechanism.
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Introduction



General Introduction

Variability in drug response is one of the most pervasive problems with patient

care, especially variability to chemotherapy and immunologic therapy.1 For instance,

despite the addition of novel agents and better optimization of regimens, over 50% of

patients undergoing chemotherapy for advanced and metastatic colorectal disease will not

receive significant therapeutic benefit.2-4 Many factors have been shown to influence

response to drug therapy including: age, gender, tumor subtype, disease stage, comorbid

diseases, overall performance status, pharmacokinetic and pharmacodynamics factors.5-7

Unfortunately, our knowledge of these factors typically does not translate into

development of predictive models for chemotherapy response. Our inability to

discriminate between patients who will derive benefit from chemotherapy and those who

will not causes non-responders to be exposed to unnecessary toxicity and expenses.

Identifying genetic contributors to variability in chemotherapy response allows for the

appropriate agents to be selected at the initiation of chemotherapy and when the regimen

must be modified. Presently, there are several examples where interindividual differences

in patient response have been linked to sequence variation and differences in expression

of drug-metabolizing enzymes, drug transporters, and drug targets.5,6,8 Genetics is

believed to account for between 20 to 95% of the variability in drug disposition and

effects.9 Such variability forms the basis for tumor heterogeneity and normal germline

differences between cancer patients. It is often a lack of an understanding of patient

genomic diversity that makes it particularly difficult to predict chemotherapy response

variability.
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This challenge has given rise to pharmacogenomics, a branch of personalized

medicine that has made progress in dissecting the diverse responses to chemotherapy.

Pharmacogenomics is the study of genetic differences underlying interindividual

variability in drug responses.5,10 It includes the studies of variation in RNA expression,

somatic mutations, and germline DNA.11 It aims to identify genetic changes in drug-

metabolizing enzymes and other molecules influencing drug activity.11

Pharmacogenomics is particularly important to oncology because systemic toxicity and

unpredictable efficacy often characterize chemotherapy. Additionally, the high costs of

chemotherapy make selection of the appropriate agent financially prudent. Incorporating

pharmacogenomics into treatment decisions has been shown to improve patient

outcomes. This is particularly true for colorectal cancer (CRC). In this chapter, we will

discuss CRC, resistance to its treatment, targets associated with its resistance, and the

methodologies used to identify the determinants to CRC chemotherapy resistance.

Colorectal Cancer and Resistance

Colorectal cancer is currently the third leading cause of cancer-related deaths in

the US.12 Despite some recent advances, such as the development of new treatments and

regimens, nearly all patients with metastatic colorectal cancer develop clinical resistance

and eventually stop responding to therapy. This resistance has been well-documented

with 5-fluorouracil-based regimens.

5-fluorouracil (5-FU) is the backbone of treatment for advanced and metastatic

colorectal cancer, as nearly all patients will receive a 5-FU-containing regimen (Figure

1.1).13,14 The prominence of 5-FU in metastatic colorectal cancer (mCRC) treatment is
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largely a function of its consistent efficacy throughout five decades of use.15 However,

one of the biggest challenges for the management of mCRC is 5-FU treatment failure,

especially in patients who initially respond but become resistant. Indeed, the five-year

survival of those with mCRC is less than ten percent.12 Deaths due to chemotherapy-

resistant mCRC disproportionately account for its very high mortality rate.16 Given that

5-FU is the third most commonly used anti-neoplastic agent, its resistance represents a

major clinical problem.

Targets Associated With Variable 5-FU Resistance

Understanding the mechanism of action for 5-FU may offer insight into

mechanisms of its resistance. 5-FU is metabolized in vivo by thymidine phosphorylase

ultimately into fluorodeoxyuridine monophosphate (FdUMP, Figure 1.2), which binds

TS. TS is the rate-limiting enzyme in pyrimidine nucleotide synthesis, and it inhibits

deoxythymidine monophosphate (dTMP) production.17 Since dTMP is essential for DNA

biosynthesis and repair, its depletion results in 5-FU’s cytotoxicity.18 Dihydropyrimidine

dehydrogenase (DPD)-mediated metabolism of 5-FU into dihydrofluorouracil (DHFU) is

the rate-limiting step of 5-FU catabolism; up to 80% of 5-FU is metabolized by DPD in

the liver.19

Due to the importance of 5-FU to the treatment of colorectal and other

gastrointestinal cancers, there have been numerous investigations into 5-FU resistance.

The primary approach of these previous studies has been to evaluate genes, mRNA, and

proteins thought to be important to 5-FU resistance (Figure 1.3).20-23 Pharmacokinetic-

mediated 5-FU resistance primarily consists of inadequate accumulation of 5-FU at the
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tumor site, altered 5-FU distribution secondary to the cancer, and increased 5-FU

elimination. Altered 5-FU metabolism, such as decreased catabolic activation and

increased inactivation of metabolites by a metabolizing enzyme (i.e. TP), can also cause

resistance.21 Additionally, pharmacodynamic contributors to 5-FU resistance are

important. Target-associated resistance includes increased levels of 5-FU’s target enzyme

(thymidylate synthase, TS) or its substrate (dUMP) and thymidylate synthase gene

(TYMS) amplification.24 Wild-type p53 also inhibits TYMS promoter activity, so

mutated p53 represents a potential mechanism of target-associated resistance.25 In

aggregate, over 20 enzymatic targets comprise the 5-FU pharmacokinetic and

pharmacodynamic pathway. Their true predictive value with respect to 5-FU response has

yet to be thoroughly elucidated.

This review will summarize major targets with known involvement in the 5FU

pharmacodynamic and pharmacokinetic pathway (Figure 1.2). Variation at either the

gene, mRNA, or protein level for these targets is may potentially be associated with

resistance to 5-FU. This chapter will review their biologic roles, their pharmacologic

relevance with respect to 5-FU, available data on their involvement in 5-FU resistance,

and their therapeutic utility as predictive markers for 5-FU efficacy. Based on this

discussion, a targeted approach will be presented as a new tool for circumventing some of

the technical challenges associated with traditional investigations of 5FU resistance.

Thymidylate Synthase

Thymidylate synthase (TS) is a critical enzyme for DNA synthesis. It catalyzes

the methylation of 2V-deoxyuridine-5V-monophosphate (dUMP) to 2V-deoxythymidine-
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5V-monophosphate (dTMP) thereby mediating the rate-limiting step of pyrimidine

biosynthesis.26 Accordingly, it is an important molecular target for many chemotherapy

agents including 5-FU. Inhibition of TS by FdUMP, the active metabolite of 5-FU, is

considered the primary mechanism of action of 5-FU. Numerous studies have evaluated

polymorphisms and copy number aberrations in TS associated with variable response to

5-FU.Overexpression of TS has been linked to resistance to 5-FU. Notably, a

polymorphic tandem repeat in the promoter region of the thymidylate synthase enhancer

region influences TS expression and segregates 5-FU responders from non-responders.27

Multiple studies show that three copies of the TS (TSER*3) tandem repeat gives greater

TS expression than two copies (TSER*2).28-30 Patients with stage 3 and 4 CRC who have

TSER*2/TSER*2 or TSER*2/TSER*3 genotypes have improved response and survival

from 5-FU compared to TSER*3 homozygous patients.24,27

TS levels have also been directly associated with 5-FU response in both advanced

CRC and mCRC patients. Advanced CRC and mCRC patients with low TS levels have

2.2 and 3.3 greater odds, respectively, of responding to 5-FU compared to patients with

high TS levels.31 Additionally, data from multiple studies corroborate that tumors

expressing high TS levels are associated with poorer survival than tumors expressing low

TS levels.32,33 Additionally, high thymidylate synthase gene copy number has been

implicated in poor survival in mCRC patients receiving 5-FU.34 Collectively, this data

suggests that high TS levels, irrespective of cause (i.e. copy number, tandem repeat in

enhancer region), are associated with poor response to 5-FU and shorter survival.
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However, there are complicating factors that have limited the utility of TS as a

biomarker including: the lack of standardized methodologies for assaying TS or TYMS

and negative and even contradictory data. Additional studies are needed with consistent

methodologies and 5-FU regimens that incorporate multiple TS variants and TS levels to

delineate the true predictive value of TS. Non-TS variants also appear important in

explaining 5-FU resistance and their integration into a model with TS would likely

contribute to the overall predictive value.

Thymidine Phosphorylase

Thymidine phosphorylase (TP) catalyzes the reversible interconversion of

thymine and thymidine, which are pyrimidine and nucleoside bases that are critical for

DNA synthesis.35,36 Additionally, since TP catalyzes a deoxyribosyl transfer reaction

responsible for the biologic activation of 5-FU, it has also been investigated as a cause of

5-FU resistance in a variety of clinical settings.21,37 However, the data is highly

discordant. In CRC patients receiving 5-FU, tumor TP mRNA and protein levels have

direct, no, or inverse associations with patient outcome, such as survival.38-40 Presumably,

low TP levels would be associated with poorer response or survival in patients receiving

5-FU since TP is responsible for activating the prodrug (5-FU). Nonetheless, in addition

to bioactivation, TP also has dual and contradictory functionality as a proangiogenic

factor.41 Thus, the malignant phenotype of pronounced angiogenesis conferred by high

TP may counterbalance or override any clinical utility of excess 5-FU activation. The

predictive utility of TP levels alas remains convoluted.
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Dihydropyrimidine Dehydrogenase

Dihydropyrimidine dehydrogenase (DPD) is an enzyme important for metabolic

degradation of nucleotides, a process important for cellular detoxification, and the

production of free pyrimidines that can be recycled for DNA and RNA synthesis. This

activity is also important for 5-FU metabolism, as DPD mediates the initial and rate-

limiting step of 5-FU catabolism.42 DPD has been evaluated for its impact on 5-FU

resistance. High DPD levels would be expected to correlate with poor 5-FU outcome

since over 80% of 5-FU is catabolized by DPD.43 However, similar to the TP data, the

results are very ambiguous. Studies of CRC patients receiving 5-FU have shown direct,

no, and inverse associations between tumor DPD mRNA and protein levels and 5-FU

outcome.44-50 Perhaps these discrepant results may be related to the reduced DPD

expression and activity in colorectal tumors compared to normal mucosa.51-54 The

discordance may also be attributable to the non-standardized methods for measuring DPD

levels. The lower DPD expression in some colorectal tumors may make a clear

association between 5-FU resistance and DPD levels difficult.

Deoxyuridine Triphosphate

Deoxyuridine triphosphatase (DUT) is an enzyme that regulates intracellular 2V-

deoxyuridine-5V-triphosphate (dUTP) levels. DUT catalyzes the conversion dUTP to

dUMP, a critical substrate for TS. Thus, DUT is believed to indirectly modulate the

effectiveness of 5-FU. Inhibition of TS by 5-FU results in accumulation of dUTP, which

serves as a stimulus for uracil misincorporation into DNA and ultimately cellular death.55

However, lack of accumulation of dUTP due to excess DUT would prevent uracil

misincorporation into DNA and thereby result in 5-FU resistance.55 Consequently, DUT
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levels have also been investigated for 5-FU resistance. Ladner and colleagues found that

response was exclusively seen in CRC patients who had low DUT (p=0.005).55 Time to

progression was also significantly longer (p=0.017) in patients with low DUT; however,

there was no difference in overall survival (p=0.09). Knockdown of DUT with siRNA

caused two of three cancer cell lines to become more sensitive to TS-inhibitor FUdR.56

However, other in vitro studies indicated no significant association between altered

cellular 5-FU resistance phenotype and DUT mRNA expression.57 DUT appears to be an

important target for 5-FU resistance, but its true predictive value has yet to be defined.

Uridine Cytidine Kinase 2

Uridine cytidine kinase (UCK) is an enzyme that catalyzes the phosphorylation of

dUMP to deoxyuridine diphosphate (dUDP), the initial step in the production of the

pyrimidine nucleoside triphosphates required for RNA and DNA synthesis. Since dUMP

is the critical substrate for TS, it has been hypothesized that UCK ultimately affects 5-

FU-mediated cytotoxicity.58 Although UCK exists in two isoforms, UCK1 and UCK2,

only UCK2 protein and mRNA levels correlate with UCK enzymatic activity.58

Additionally, studies in rat pheochromocytoma cells and normal rat tissues suggest that

the UCK pathway is a preferred pathway for 5-FU activation.59 It was believed that

overexpression of UCK2 would result in 5-FU sensitization; however, no difference in

cytotoxicity existed in cells overexpressing UCK2 compared to cells with normal UCK2

levels.59 Both colon tumor and CRC cell lines exhibited higher levels of UCK2 than

normal tissue, other tumors, and other cell lines investigated.58 The clinical relevance of

UCK2 levels with respect to 5-FU activity is currently unknown, especially in lieu of the

fact that 5-FU can be activated and mediate its cytotoxicity independent of UCK2.60
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Ribonucleotide Reductase

Biologically, ribonucleotide reductase is an enzyme that produces

deoxyoligonucleotides from ribonucleotides, a step that is essential for DNA synthesis

and repair.61,62 Human ribonucleotide reductase exists in two subunits RRM1 (regulatory)

and RRM2 (catalytic).61 Both subunits are necessary for enzymatic activity and are

encoded by different genes on separate chromosomes. Since RRM1 and RRM2 are both

critical for DNA synthesis, they have been evaluated by multiple studies as therapeutic

targets in various cancers. Importantly ribonucleotide reductase reduces FUDP, a 5-FU

intermediate metabolite, to FdUDP. FdUDP is subsequently dephosphorylated into

FdUMP, the active 5-FU metabolite inhibiting TS mediating 5-FU’s cytotoxicity. This

pathway operates independent of TP and may be associated with 5-FU resistance. Recent

data suggests that RRM1 and RRM2 may have conflicting roles in tumor malignancy.

Whereas overexpression of RRM1 has significant inhibited tumor growth and incidence

of metastases via PTEN (Phosphatase and Tensin Homolog), overexpression of RRM2 is

associated with increased tumor invasiveness and metastases via various oncogenes. 63-67

Additionally, RRM2 protein level is significantly associated with the incidence of

metastasis in colon cancer.68 The pharmacologic significance of RRM1 and RRM2 with

respect to 5-FU resistance in mCRC is presently unknown.

Non-metastatic cells

Non-metastatic cells (NME) is an enzyme encoded by the first discovered

metastasis suppressor; presently there are over 20 known metastasis suppressor genes.69,70

NME has many biological functions including: histidine kinase activity, binding of other

proteins to regulate metastatic formation, and altering downstream gene expression. .69,71
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Both NME1 and NME2 genes encode the hexamer nucleoside diphosphate kinase

responsible for NME kinase function. Through phosphorylation, NME catalyzes

conversion of UDP and dUDP to UTP and dUTP, respectively. Notably dUTP is a

substrate for DUT and is ultimately used in DNA synthesis. NME’s kinase activity is also

responsible for activating 5-FU metabolites FUDP and FdUDP to FUTP and FdUTP,

respectively, which is important for 5-FU cytotoxicity. Due to its biologic and

pharmacologic roles, NME has also been investigated for its role in 5-FU resistance.

Many studies have been conflicting: while some studies have found that NME1

expression (mRNA and protein) correlates with development of distant metastases, other

studies have not. 72-76 Loss of heterozygosity (LOH) of the NME1 gene occurs in up to

52% of colorectal liver metastases.77-79 However, some studies were unable to detect

LOH in NME1.80 It is unknown whether NME expression and LOH has predictive utility

in mCRC patients treated with 5-FU.

Conclusions

5-Fluorouracil, a nucleotide analog, has successfully been used to treat a broad

range of malignancies including: colorectal, head and neck, and pancreatic cancers. There

are many pharmacogenomic targets within the 5-FU pharmacokinetic and

pharmacodynamic pathway that are related to its response and resistance. However, the

impact of their altered expression on 5-FU resistance in mCRC patients remains

unknown. For example, TYMS (gene) amplification has been linked to 5-FU resistance in

mCRC patients; however, data on the impact of altered protein expression of pathway

targets in this patient group is unavailable, unconvincing or conflicting. Additionally, the

impact of 5-FU exposure on the expression of the remainder of the 5-FU pathway
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proteins remains unknown. Future studies are needed to investigate the expression of

these targets in 5-FU sensitive and resistant mCRC patients to determine whether altered

expression can explain 5-FU resistance.

Many studies unfortunately focus on single gene candidates. Despite gains in

knowledge of pharmacokinetic and pharmacodynamic contributors to 5-FU resistance,

the mechanistic determinants to 5-FU resistance remain unclear. With 24 proteins

comprising the 5-FU pharmacokinetic and pharmacodynamic pathway known to date, it

is quite improbable that 5-FU resistance would be wholly attributable to one target.

Indeed, it is becoming apparent that the cause of 5-FU resistance is likely multifactorial.21

Future studies must elucidate the complex interplay of pharmacokinetic and

pharmacodynamic contributors to 5-FU resistance.

Another challenge in establishing clear associations between altered protein

expression of 5-FU pathway genes and 5-FU resistance is that the qualitative means of

detecting expression is subject to inter-evaluator variability. Qualitative methods of

protein expression also suffer from lack of sensitivity, which can make finding

associations between altered target expression and 5-FU resistance particularly difficult if

the effect or sample size is small or modest. The nominal observations of traditional

pathologist-based scoring of protein expression are unable to detect subtle differences in

staining intensity. Thus, there is much disparity between the interpretations of observers

with pathologist-based scoring. Additionally, traditional immunohistochemistry means of

determining protein expression are slow. In future studies, researchers should avail
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themselves to high-throughput, quantitative, sensitive, and unbiased tools for determining

protein expression.

Introduction to Dissertation

5-FU is the cornerstone of treatment for colorectal and other gastrointestinal

cancers, so its resistance represents a major clinical problem. Placing the 40-50%

response rate of 5-FU based therapy into context means that not only are there 50-60% of

patients who do not respond but also that the majority of those who do respond

eventually relapse. Additionally, CRC accounts for approximately 10% of cancer-related

deaths domestically. Colorectal cancer most commonly metastasizes to the liver; these

metastases are surgically removed whenever feasible. Even with surgical and medical

intervention, mCRC is disproportionately deadly with less than a 10% 5-year survival

rate.81 The focus of this dissertation project is to identify molecular determinants of 5-FU

resistance in metastatic colorectal cancer. Consequently, this dissertation is separated into

two sections. Part one centers on the protein expression results determined by automated

quantitative analysis (AQUA) in mCRC patients sensitive and resistant to 5-FU. Part two

is concerned with the mechanism for differential expression amongst 5-FU sensitive and

resistant mCRC patients.

By carefully phenotyping patients who have consented to have their liver

metastases banked at the UNC Tissue Procurement Facility, patients were stratified based

on their 5-FU exposure. A comprehensive review of the clinical phenotyping database of

mCRC patients and how it was used to explore 5-FU resistance is provided in Chapter 2.

The purpose of Chapter 3 is to identify 5-FU pathway targets with altered expression

13



associated with 5-FU resistance in metastatic colorectal cancer patients using AQUA.

Since protein expression will be quantified for multiple targets, this approach overcomes

the aforementioned challenges of the single target-approach and the technical limitations

of qualitative protein expression determination. Chapter 4 will communicate the

mechanisms by which the 5-FU pathway targets associated with 5-FU exposure cause

resistance. Lastly, the results of this research effort will be placed into context of the

existing literature, and recommendations for a future research agenda that will advance

the present results are provided in Chapter 5.
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Figure 1.1

Figure 1.1 5-Fluorouracil Structure
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Figure 1.2

Figure 1.2 5-fluorodeoxyuridine
Monophosphate (FdUMP) – the active
metabolite of 5-fluorouracil.
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Figure 1.3

Figure 1.3 5-Fluorouracil Pharmacokinentic and Pharmacodynamic Pathway. T.E. Klein, J.T. Chang,
M.K. Cho, K.L. et al."Integrating Genotype and Phenotype Information: An Overview of the PharmGKB
Project" (220k PDF), The Pharmacogenomics Journal (2001) 1, 167-170.
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Chapter 2

Characterization of the Retrospective Clinical Cohort
and Phenotyping Stratification



Abstract

Introduction: Colorectal cancer is the third most common non-cutaneous

malignancy in the United States and the third most frequent cause of cancer-related

deaths. The presence of distant metastases is particularly problematic, as the 5-year

survival is 5-8%, despite 5-FU-based therapy. The primary objectives of this

comprehensive review are to detail how data were collected to develop a clinical database

resource that was used in subsequent studies investigating 5-FU resistance and to

characterize the mCRC patients comprising this clinical cohort.

Methods: Electronic and paper patient records from North Carolina Memorial

Hospital and community hospitals within the region were reviewed to obtain pertinent

dates, chemotherapy regimens, treatment outcomes, and baseline disease characteristics.

The Social Security Death Index was also queried to obtain survival data when

unavailable from patient charts. Patients were only included if they had mCRC, had their

colorectal liver metastases banked at North Carolina Memorial Hospital, and could be

phenotyped with respect 5-FU exposure.

Results: Chart reviews for 140 patients were performed; one-hundred and twenty

one of these patients had mCRC and could be phenotyped for 5-FU exposure. Sixty-

seven of the 121 (55%) were exposed to 5-FU, and the remaining patients (54/121) were

unexposed. There were no significant differences with respect to baseline characteristics

with the exception of age at diagnosis of liver metastases (p=0.01). From surgical

resection of colorectal liver metastases, the median overall survival was 885 days and

median disease-free survival was 294 days.
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Conclusions: Patients were well-characterized with respect to 5-FU exposure.

The 5-FU exposed and unexposed groups did not significantly differ with respect to

demographical data. This patient cohort is well-suited to investigate clinical resistance.
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Introduction

Colorectal cancer (CRC) is the third most common non-cutaneous malignancy in

the United States and the third most frequent cause of cancer-related deaths.1 In 2010, an

estimated 142,570 cases of CRC will be diagnosed and 51,370 people will die from this

disease.1 Despite the substantial progress that has been made in recent years, CRC

remains a major clinical problem. The most critical prognostic factor for CRC is

pathologic stage. The American Joint Committee on Cancer (AJCC) is the most common

staging criteria used.2,3 There is an inverse relationship between CRC patients’ AJCC

stage and their expected prognosis. As AJCC staging increases from stage 1 (early,

localized primary tumor) to stage 4 (distant metastases), the 5-year survival decreases

from 90% to less than 10%. Note that 30-40% of patients with localized CRC eventually

develop distant metastases and nearly 20% of patients present initially with metastatic

disease. Surgical resection of metastases in patients with a few metastases confined to a

specific organ has been shown to be curative in some patients.4 However, the majority of

mCRC patients succumb to the disease.

Perhaps, the most insidious problem for mCRC patients is chemotherapy

resistance, particularly 5-FU resistance since it is part of the therapeutic backbone of

mCRC treatment. Although patients will initially respond to 5-FU based therapy, most

develop recurrences. These patients will typically receive a new regimen that contains 5-

FU, and while most won’t respond, the few who do respond do so in an unpredictable

manner. The lack of validated predictive markers for 5-FU response results in patients

being exposed to unnecessary toxicity and a regimen with marginal chances of success.

Often somatic changes within patient tumors are implicated as putative etiologies for 5-
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FU resistance because they result in altered expression and copy number aberrations in 5-

FU pathway proteins, mRNA, and genes. However, the results from clinical studies

evaluating this resistance have been conflicting, and the studies are often underpowered

and have limited external validity.5-8

It is critical that future studies not ignore the enriched phenotyping strategy.

Clearly, the aforementioned data suggests that not all mCRC patients have the same

response to 5-FU. The enriched strategy attributes differences in patient outcomes to

underlying molecular differences. These molecular differences can be identified by

comparing patients most likely to possess high concentrations of variation associated

with resistance to those predisposed to be sensitive. An underlying presumption is the

tumors remaining despite adequate 5-FU-based treatment are clinically-resistant to 5-FU.

Giving such patients more 5-FU-based regimens would be expected to provide limited

therapeutic utility while simultaneously exposing them to increased chemotherapy-related

toxicity. Differences in gene copy number and expression are expected between 5-FU

exposed and unexposed patients, as they represent two distinct mCRC patient

populations: resistant and sensitive, respectively. Moreover, stratifying patients based on

their 5-FU exposure capitalizes on the fact that exposed tumors are enriched with

variation resulting in resistance that is not present in unexposed samples. When such

variation has previously been identified through enrichment, it has been unambiguously

implicated in 5-FU resistance.9,10 As such, exposed tumors can be further exploited as a

valuable discovery tool for investigating 5-FU resistance (Figure 2.1). Functional

validation of these targets with knockdown studies would be expected to modulate the 5-

FU resistance phenotype in CRC cells. By methodically characterizing mCRC patients
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with respect to clinical resistance (5-FU exposure), these molecular etiologies underlying

5-FU resistance can be systematically dissected. Thus, while it is expected that exposed

and unexposed patients will not significantly differ with regards to their baseline disease

characteristics and demographics, the fundamental molecular heterogeneity between

these two populations as a consequence of clinical resistance to 5-FU (exposure) serves

as the basis for stratification and is the focus of this dissertation. Since confounding

variables cannot be controlled for in this dataset, survival data will not be compared

between exposed and unexposed. Accordingly, this chapter details how mCRC patients

were phenotyped based on their 5-FU exposure and other pertinent clinical information

and how these data were pooled to create the clinical database used for investigating 5-

FU resistance in subsequent chapters.
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Methods

Data Sources

Patient medical records were retrieved from colorectal cancer patients who had

undergone surgical resection of their liver metastases at North Carolina Memorial

Hospital between 1998 and February 2009. Paper and electronic charts from North

Carolina Memorial Hospital and community hospitals within the region were reviewed.

Survival data was also obtained from the Social Security Death Index when survival was

unspecified in patient medical records. Examination of clinical records was approved by

an institutional review board and was performed in adherence to Health Insurance

Portability and Accountability Act regulations. A waiver of informed consent was

granted.

Eligibility Criteria

Patients were included in this analysis if they met the following criteria: (1) had

pathological diagnosis of metastatic colorectal cancer; (2) had colorectal liver metastases

banked at the University of North Carolina Translational Pathology Laboratory (formally

known as the Tissue Procurement Facility); (3) their exposure or lack of exposure to 5-

FU for the immediate 6 months preceding resection of their liver metastases could be

verified. Patients with ambiguous 5-FU exposure phenotype were excluded, such as

patients where it is unclear whether they received 5-FU in the six months before their

liver resection. All exposed patients received at least 4 weeks of 5-FU-based

chemotherapy.
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Data Extraction

The following data were extracted for each patient: first and last name, date of

birth, gender, race, ethnicity, diagnosis data of primary and metastatic lesions, disease

stage as determined per AJCC criteria, number and location of metastases, surgeon who

performed resection of liver metastases, date of resection of liver metastases,

radiofrequency ablation therapy, chemotherapy regimen within six months prior to

resection of liver metastases, post surgery chemotherapy (regimen not documented), date

of last follow up or death, date of recurrence or last pronouncement of no evidence of

disease, height, weight, dosage reduction (when applicable), and referring physician. The

data extraction was performed primarily by Roshawn Watson with some assistance from

Michael Hudson and Joan Van Ord. Disagreements about data were resolved by

consensus between the author, Christine Walko, and Bert O’Neil.

Statistical Analyses

All univariate statistical analyses were performed with SAS software, version 9

(SAS Corp, Cary, NC). P<0.05 was considered statistically significant. Overall survival

was calculated from both a) the date of the surgical excision of the metastases and b)

from the diagnosis date of metastatic colorectal cancer to the date of death or last follow-

up. Survival was computed by the Kaplan–Meier method. Disease-free survival was

determined from the date of the surgical excision of the metastasis to the date of

recurrence or last declaration of no evidence of disease. Data were censored when

patients were lost to follow-up.
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Results

Demographics

The study population comprised of a total of 140 patients with colorectal liver

metastases (Table 2.1). Nineteen patients eventually were excluded because they had

inadequate documentation of presurgical chemotherapy, unconfirmed histology,

noncolorectal primary tumors, or inadequate tissue available. The remaining 121 mCRC

patients consisted of sixty-seven 5-FU exposed and fifty-four unexposed. Their ages at

the diagnosis of their liver metastases ranged between thirty-eight and eighty-six (mean

age of sixty-one). This cohort was comprised of sixty-one male patients and sixty female

patients. The racial distribution of patients in this trial was: White, n = 90; Black, n =27;

and Asian/Other, n=4. Other patient characteristics are listed in Table 2.1. The mean age

at diagnosis in the unexposed group was 6 years greater than in the 5-FU exposed group

(p=0.01); no other statistically significant differences in demographic data were observed

between the two groups.

Survival

The median follow-up period of 434 days (95%confidence interval [CI], 335 to

533 days) for the 121 patients analyzed in this study. The median overall survival time

was 885 days from surgical resection of liver metastases and 1308 days from diagnosis of

liver metastases (Figures 2.2 and 2.3, respectively). The median disease-free survival

time was 294 days from surgical resection of liver metastases (Figure 2.4).

Chemotherapy

Sixty-seven mCRC patients received 5-FU containing regimens within the six

months preceding the resection of their liver metastases. The other components of the
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regimens were also documented (see Table 2.1). Thirty-one (46%) patients received

oxaliplatin as part of their regimen. Twenty-four (36%) patients received bevacizumab.

Fourteen (21%) patients received irinotecan. One (1.4%) patient received cetuximab.

Another patient was prescribed cetuximab but immediately discontinued usage after

experiencing anaphylaxis during the administration of initial dose. Clearly, these

chemotherapy regimens reflect the current diversity and complexity in the treatment of

mCRC patients.
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Discussion

Drug resistance is a primary reason for treatment failure and death in cancer

patients. The causes of drug resistance in malignancies are relatively unknown, despite

numerous investigations into the putative mechanisms. Recent data suggests that by

comparing molecular differences between 5-FU exposed and unexposed patients, the

underlying molecular contributors to 5-FU can be elucidated.9 The presumptive

hypothesis is that the residual tumor post-5-FU exposure is enriched with somatic

changes causing the resistance whereas the clinically-sensitive tumors would respond to

an adequate course of 5-FU. A relevant in vivo example is the genetic alterations that

occur in the BCR/ABL gene in chronic myelogenous leukemia patients during Gleevac

treatment. These alterations unequivocally suggest that the BCR/ABL gene plays a

significant role in Gleevac resistance.11,12 Similarly, changes in 5-FU targets that are only

evident tumors already clinically resistant (residual tumor) to the 5-FU are

unambiguously associated with 5-FU resistance.

Using this model as the basis investigate drug resistance, a clinical cohort was

developed consisting of both 5-FU exposed and unexposed patients. The results

demonstrate that the exposed and unexposed patients do not significantly differ in

baseline disease characteristics and demographics with one minor exception: the mean

age of the unexposed patients was 6 years greater than exposed patients. The implications

are that differences between the exposed and unexposed will be attributable to 5-FU

exposure, clinical resistance to 5-FU, and will have relevance to the clinical management

of mCRC.
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A strength of this design is that it allows for clinical resistance to be evaluated

using in vivo samples from well-characterized patients. Additionally, the cohort consists

of patients from both community and university settings, which means data from this

cohort reflects real-world 5-FU resistance in mCRC patients. The fact that all included

patients had resectable disease is also notable. Historically, only 10-20% of patients with

colorectal liver metastases are resection candidates, and this cohort is among the largest

studies investigating 5-FU resistance in this patient cohort.

There are also some important considerations when evaluating data from this

cohort. First, by excluding non-resection candidates, the study design screens out patients

with the most aggressive disease. Resection candidates typically have higher performance

status and more contained liver disease than non-resection candidates. In contrast to the

overall 5-year survival of 5-8% seen in mCRC patients, survival in patients amendable to

resection is significantly higher at 40-50%.13-17 Nonetheless, resection candidates have

significant resistance considering that they are still prone to numerous recurrences and

only 50-60% survive at 5 years. Second, chemotherapy prior to six months before

resection is not documented, so some patients in unexposed group likely received 5-FU

before this point. There was no precedent dictating when data collection started, so by

consensus of medical oncologist and gastroenterologists, six months preceding resections

was agreed to be reasonable. Third, patients who were exposed to 5-FU were often

treated with other agents, so their influence cannot be separated from 5-FU. The patient

cohort examined in the Wang et al study, were treated with only 5-FU, as this was the

standard of care therapy at that time in history.9 However, the treatment guidelines have

since evolved. The addition of concomitant agents has been shown to improve response
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and survival, so 5-FU monotherapy is no longer gold standard. This is a common

consideration in any contemporary in vivo study investigating 5-FU resistance and

certainly not limited to this analysis.

It is tempting to directly contrast survival of the unexposed and exposed patients;

however, there are several limitations to the validity of such a comparison. First, survival

would be influenced by post-surgical access to care and patient preferences. Since both of

these were not assessed, they would be important potential confounders to a survival

analysis. Second, the drugs included in the post-surgical adjuvant therapy, duration of

therapy, and additional procedures were also not included in the database, yet they can all

influence survival. Lastly, the presence of extrahepatic disease in mCRC patients has

repeatedly been shown to decrease survival, so a meaningful survival analysis should also

be adjusted to reflect these data.18-23 Acquisition of the aforementioned data was beyond

the scope and resources for this project. Thus, a comparison of survival based on 5-FU

phenotype, without controlling for these confounders, would make interpretation

ambiguous and was never planned.

The primary conclusions drawn from this review are that the exposed and

unexposed patient groups do not significantly differ with respect to baseline disease

characteristics and demographics. Also, the included patients are a distinct subset of

mCRC patients who were eligible for resection. In aggregate, the data collected on this

clinical cohort will be critical to determining molecular contributors to 5-FU resistance in

mCRC patients. Based on the available data and samples, the database has lent itself to

numerous types of analyses including expression analysis (Chapters 3 and 4), copy
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number analysis (Chapter 4). Overall, stratifying patients on the basis of 5-FU exposure

is a pragmatic and proven study design for investigating clinical resistance to 5-FU.
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Figure 2.1

Figure 2.1 Model for an ‘enriched’ approach for genomic discovery. The hypothesis is that residual
tumor after chemotherapy treatment is clinically resistant and thereby harbors functionally important

somatic alterations.
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Figure 2.2

Overall Survival from Surgery
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Figure 2.2 Kaplan-Meier curve depicting the
overall survival of the entire clinical cohort from
surgery.
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Figure 2.3

Diseaese-Free Survival from
Diagnosis
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Figure 2.3 Kaplan-Meier curve depicting the
disease-free survival of the entire clinical cohort
from diagnosis of liver metastases.
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Figure 2.4

Disease-Free Survival from
Surgery

0 500 1000 1500 2000 2500
0

50

100

150
KM stat

Exp.

Days Survived

P
e
rc

e
n

t
S

u
rv

iv
a
l

Figure 2.4 Kaplan-Meier curve depicting the
disease-free survival of the entire clinical cohort
from surgical resection of liver metastases.
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Table 2.1

Characteristic Unexposed 5-FU Exposed P

Gender
Male 31 (57%) 30 (45%)
Female 23 (43%) 37 (55%)

NS

Race/Ethnicity
White 38 (70%) 52 (78%)
Black 13 (24%) 14 (21%)
Asian/Other 3 (6%) 1 (2%)
Hispanic 0 1 (2%) NS

Age (mean) at diagnosis
1

65 (range 42 – 86) 59 (range 38– 85) 0.01

Tumor
1 5 2
2 8 5
3 22 42
4 3 2 NS

Nodes
0 28 26
1 15 19
2 9 16 NS

Metastases
2

0 32 29
1 18 35 NS

Initial No. of Metastases
1 28 26
2 11 12
>2 7 15
Range 1-6 1-14
Median 1 1.5 NS

Neoadjuvant chemotherapy (%)
3

5-Flourouracil-containing regimen 67 (100)
5-Fluorouracil-Oxaliplatin regimen 31 (46)
5-Fluorouracil-Irinotecan regimen 14 (21)
5-Fluorouracil-Bevacizumab regimen 24 (36)

1
Diagnosis refers to diagnosis of liver metastasis

2
TNM criteria was taken at diagnosis of colorectal cancer not diagnosis of liver

metastases
3
Regimens included more than one agent

Table 2.1 Clinical cohort demographics and
baseline disease characteristics.
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Chapter 3

Quantitative Determination of Expression of 5-FU Pathway Proteins
and Functional Validation



Abstract

Introduction: Multiple proteins within the 5-fluorouracil (5-FU) pharmacokinetic

and pharmacodynamic pathway have been implicated in 5-FU resistance. Given that 5-

FU is the mainstay of chemotherapy for colorectal cancer, its resistance represents a

major clinical problem. In light of the high mortality associated with colorectal cancer,

novel alterations in protein expression were sought to determine which targets were

associated with clinical 5-FU resistance in vivo. Overexpression of UCK2, DUT, and

DPD, 5-FU pathway proteins, have all been linked to clinical resistance in

gastrointestinal cancers. The primary objective was to identify 5-FU pathway proteins

with altered expression that is significantly associated with clinical resistance to 5-FU.

Methods: Automated quantitative analysis (AQUA), a fluorescence based method

for analysis of in situ protein expression, was used to determine expression of 5-FU

pathway proteins, specifically DPD, DUT-N, NME1, RRM1, RRM2, TS, TP, and UCK2

in a cohort of colorectal cancer patients. The patient cohort consisted of 47 5-FU exposed

and 41 5-FU unexposed patients.

Results: Of the eight proteins, univariate analysis shows that UCK2 had higher

protein expression in liver metastases from 5-FU exposed colorectal cancer patients than

from 5-FU unexposed patients (p=0.007). Additionally, the multivariate analyses for

DUT (p=0.0135), DPD (p=0.035), and UCK2 (0.019) showed that 5-FU exposed patients

had higher expression of these protein targets compared to the unexposed.
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Discussion: These results indicate that UCK2, DUT, and DPD expression differs

in colorectal liver metastases that are clinically resistant to 5-FU compared to unexposed

samples. These novel findings have important implications to the selection of appropriate

therapy for patients treated with 5-FU.
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Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the

U.S., accounting for an estimated 142,570 cases new diagnoses in 2010.1 Approximately,

20% of the newly diagnosed patients already have metastatic colorectal cancer (mCRC),

which has a dismal 5-8% overall survival.1 5-FU is most active agent against colorectal

cancer and is the most commonly used chemotherapeutic in gastrointestinal cancers.

Other anti-neoplastic drugs are added to increase 5-FU efficacy, but response rates

typically do not exceed 50% for both advanced CRC and mCRC.2-4 Additionally, many

of the initial responders relapse, as recurrences occur in 27-38% of stage 2 and 3 patients

and nearly all mCRC patients by 5-years.2,4-8 Second- or third-line chemotherapy is

typically even less effective and can be associated with substantial toxicities. This

certainly underscores the importance of identifying the molecular predictors of 5-FU

efficacy as nearly all patients will receive 5-FU.

Proteins critical to 5-FU pharmacokinetics and pharmacodynamics are involved in

the de novo synthetic and salvage pathways that generate nucleotides, the precursors to

nucleic acids. The levels of these pathway proteins must be accurately regulated and

coordinated to prevent disruption of cellular metabolism. Defects in synthesis, regulation,

and recognition of growth factors can result in carcinogenesis. As a nucleoside analog, 5-

FU exploits this pathway primarily through its inhibition of TYMS, a key pathway

enzyme responsible for pyrimidine synthesis. Incidentally, the bioactivation and

catabolism of 5-FU is also dependent on proteins within this pathway, so the levels of key

pathway proteins may accordingly modulate tumor sensitivity to 5-FU. However,
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previous investigations have been variable with positive, negative and no associations

being found with the levels of pathway targets and resistance, so there is no clear

consensus for the molecular etiology for 5-FU resistance.9-11 Such disparate results might

be explained by the fact that all of these earlier reports relied on manual quantification of

protein levels by conventional immunohistochemistry methods, which suffer from limited

sensitivity, inter-evaluator biases, and lack of reproducibility.

Manual quantification is limited by pathologists’ abilities to accurately and

precisely score tissues by eye, often using categorical scoring that can differ significantly

between experimenters. Additionally, the heterogeneous nature of tumors complicates the

analysis of histological samples.

One histological tool that is revolutionizing how samples are being analyzed is the

tissue microarray. Tissue microarrays (TMAs) consists of paraffin blocks holding up to

1000 individual tissue cores assembled in an array to allow for high-throughput,

multiplex histological analysis. There are numerous benefits of using TMAs. TMAs

allow for all specimens to be analyzed simultaneously thereby reducing inter-sample

variability associated with technical difference between assays. An additional advantage

of using TMAs is that they can be paired with highly sensitive quantitative analytical

tools thereby allowing greater discrimination between small differences in the expression

levels of targets can be discerned over the aforementioned semi-quantitative methods.

Another major benefit is that quantitative analysis allows for continuous scoring of target

expression rather than a categorical proxy. This is very important in determining the

predictive value of a marker’s expression because human variability in scoring
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immunohistochemical staining by eye can diminish the reproducibility of assessment.

Also, many targets have variable expression, so validating the predictive utility of the

expression of markers necessitates consistent criterion being applied.

Automated quantitative analysis (AQUA) is a set of algorithms that uses

immunofluororescence to rapidly and reproducibly quantify protein expression of

specimens arranged in a TMA. AQUA quantification of a protein of interest will typically

occur within user-defined subcellular compartments within the tumor region for each

tissue microarray spot.12 AQUA has previously been validated and used to determine the

prognostic relevance of thymidylate synthase (TS) expression in two cohorts of colorectal

cancer patients.13 The 5-year disease free survival was significantly decreased in patients

whose tumors had high nuclear to cytoplasmic TS ratios (P<0.03).13

Wang et al. demonstrated that distinct differences exist between mCRC patients

exposed to 5-FU compared to those who are unexposed, and these differences were

associated with 5-FU resistance.14 Patients were stratified based on whether they received

5-FU and were assessed for thymidylate synthase gene copy number. Thymidylate

synthase amplification only occurred in patients exposed to 5-FU, and patients without

thymidylate synthase amplification had a median overall survival 4 times longer than the

patients with TYMS amplification (5-FU exposed; p=0.007). Thus, thymidylate synthase

amplification was significantly associated with 5-FU resistance.

To date, only TYMS expression levels have been assessed by AQUA to gain

insight into resistance mechanisms in colorectal patients treated with 5-FU. Manual

quantification of other proteins known to be involved in the 5-FU pharmacokinetic and
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pharmacodynamic pathway have met with conflicting results. A quantitative evaluation

of these proteins may lend insight into mechanisms of resistance for this important drug.

This paper explores the hypothesis that 5-FU exposed and unexposed colorectal liver

metastases have molecular differences in 5-FU pathway protein levels that are associated

with 5-FU resistance. Using AQUA, the expression of eight 5-FU pathway proteins will

be quantified in situ to delineate which are associated clinical resistance to 5-FU.
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Methods

Tissue microarray construction and cohort details

A tissue microarray was constructed from archival formalin-fixed, paraffin-

embedded colorectal liver metastases. H&E-stained full sections were used to determine

representative regions to core. The tissue microarray was constructed with three 0.6-mm-

diameter cores of each case spaced 0.8 mm apart in a grid format using a TMArrayer

(Pathological Devices, Westminster, MD). The tissue microarray block was then cut into

4 micron sections with a microtome. The colorectal cancer cohort consists of 88 samples

of colorectal liver metastases from the University of North Carolina Anatomical

Pathology Laboratory archived between 1998 to 2008. The cohort contains samples from

forty-seven 5-FU exposed patients and forty-one 5-FU unexposed patients. The mean and

median follow-up time for the entire cohort is 485 days and 383 days, respectively. The

mean age of diagnosis of liver metastases is 58 years for patients exposed to 5-FU and 64

for unexposed patients. Chemotherapy regimens for the 6 months preceding resection of

colorectal liver metastases were documented, and patients were stratified based on their

exposure to 5-FU during this period. All exposed patients were treated with at least 4

weeks of 5-FU within the six months prior to resection.

Cell line culture and harvest

The following cell lines were used in this study: SW-48, SW-620, WiDr, HT-29,

HCT-116, Lovo, and SW-480 which were donated by other labs. HCT-116, Lovo, SW-

48, and SW-620 were cultured in RPMI 1640 with 10% fetal bovine serum (FBS). SW-

480, HT-29, and WiDr were cultured in DMEM with 10% FBS. All cell lines were

53



maintained in at 37°C with 5% CO2. The cell lines were cultured on 75cm2 tissue culture

flasks. After cells reached 80% confluence, they were washed twice in 1x PBS and 5 mL

of neutral buffered formalin added at room temperature. The cells were then removed

from the flask and refrigerated (4°C) in neutral buffered formalin. The cells were

centrifuged at 1,500 rpm at room temperature for 10 minutes. The supernatant was then

removed, and the cells were resuspended in 80% ethanol. The cells were centrifuge for 5

minutes at 12,000 rpm, so that supernatant can be removed. The remaining cell pellet was

then resuspended in 50-100 uL of warm low melt agarose, and allowed to solidify. The

cell block was then placed in a tissue cassette, processed, and paraffin embedded. This

served as the donor block. A donor block of each cell line was created so that all of the

cell lines could be assembled on a single cell line array in triplicate.

Immunofluorosecent staining

The tissue microarray and cell line microarray slides were heated at 60°C for 30

minutes. The slides were then deparafinized with 3 xylene rinses for 5 minutes each.

Next, the slides were rehydrated with two 100% ethanol, 95% ethanol, 80% ethanol

rinses 70% ethanol rinses for two minutes each. Afterwards, the slides were rinsed with

Wash Buffer 1X (Dako, Carpinteria, CA). Antigen retrieval was performed by boiling the

slides in Antigen Retrieval solution (Dako) in a pressure cooker for 20 minutes and then

letting it cool down to room temperature. The slides were rinsed again briefly with Wash

Buffer 1X (Dako) and then incubated with peroxidase block (Dako) for 30 minutes. Next

slides were incubated with protein block (Dako) for another 20 minutes. Slides were then

rinsed in Wash Buffer 1X (Dako). Next, samples were incubated with the primary

antibodies. Slides were hybridized to one of following primary antibodies: TS
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(thymidylate synthase, 1:250 dilution for 1 hour, Abnova), TP (thymidine phosphorylase,

1:266 dilution for 1 hour, Abcam), DPD (dipyrimidine dehydrogenase, 1:46 dilution for 1

hour, Abnova), DUT-N (deoxyuridine triphosphate-nuclear, 1:2000 dilution for 1 hour,

Abcam), NME1 (non-metastatic cells-1, 1:266 dilution for 1 hour, Novus), RRM2

(ribonucleotide reductase-2, 1:250 dilution for 1 hour, Abcam), UCK2 (uridine-cytidine

kinase 2, 1:50 dilution for overnight at 4°C, Abcam), and RRM1 (ribonucleotide

reductase-1, 1:100 for overnight at 4°C, Millipore). Concurrently with primary antibody

incubation, slides were stained with either pancytokeratin mouse (for TS, TP, DUT-N,

RRM1, RRM2, NME1, DPD, at 1:200 dilution) slides or a rabbit anticytokeratin antibody

(for UCK2, at 1:400 dilution, clone EPR1622Y, Epitomics). Afterwards, slides were

incubated with secondary antibodies for 1 hour at room temperature; Alexa 555 goat anti-

mouse and Alexa 555 goat anti-rabbit antibody (Invitrogen) 1:200 dilution were used to

stain the cytokeratins and species-specific horse radish peroxidase (Dako). Slides were

washed with wash buffer (Dako) and then incubated with Cy-5 tyramide (1:50 dilution in

Amplification Diluent, Perkin-Elmer) for 10 minutes. Slides were mounted in Prolong

Gold antifade reagent with 4,6-diamidino-2-phenylindole (DAPI, 1:100, Invitrogen) for

imaging the nuclei and coverslipped.

AQUA analysis of microarrays

AQUA is paired with fluorescence microscopy to generate images of the

microarrays that can be used to quantify the proteins of interest within the tumor of each

core, according to previously published methods.12,13 Briefly, pan-cytokeratin is used to

differentiate epithelial tumor from stroma and fluorescent tags (i.e. DAPI). Pan-

cytokeratin also enables subcellular localization of targets (proteins of interest) and nuclei
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(i.e. DAPI). For instance, areas within the tumor mask, labeled with pan-cytokeratin

(Cy3, green), lacking DAPI were considered ‘‘nonnuclear’’ or ‘‘cytoplasmic.’’ The target

markers (DPD, DUT-N, NME1, RRM1, RRM2, TS, TP, and UCK2) are visualized with

Cy5 (red). Images were obtained of each histospot, and the corresponding AQUA score

represents the abundance of a protein of interest by pixel intensity. Tissue microarray

cores lacking sufficient colon tumor epithelium (<5% of total area has pan-cytokeratin

mask) were automatically excluded from this study. This exclusion decreased the total

number of samples evaluated for each of the biomarkers to between 221 and 243

Plasmid shRNA, Transfection, and Cytotoxicity

The shRNA gene knockdown work was performed as previously reported.15 5-FU

pathway targets were validated with shRNA-mediated gene knowdown in three colorectal

cancer cell lines: HCT-116, HT29, and SW620. The OpenBiosystems plasmid shRNA

bacterial glycerol stocks for each protein were obtained through the University of North

Carolina at Chapel Hill Lenti-shRNA Core. Plasmid isolation was conducted using the

Macherey-Nagel (MN) NucleoSpin Robot-96 plasmid kit (Bethlehem, PA, USA)

according to the manufacturer’s protocol. Bacteria were inoculated in Terrific Broth

medium (MP Biomedicals, Solon, OH, USA) containing 100µg/ml of Carbenicillin

(Invitrogen, Carlsbad, CA, USA) on 96-well MN Square-well Blocks, and grown in a

GeneMachine HiGro rotative incubator (San Carlos, CA, USA).

Exponentially growing (passages 5-15) colorectal cancer cell lines (HCT-116,

HT29, and SW620) were seeded at a density of 20,000 cells per well in 96 well plates

and incubated overnight. The following day, media was removed by aspiration and
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replaced with 50µl of warm fresh complete media. Cells were transfected with plasmid-

liposome complexes composed of 100ng plasmid shRNA and 0.5 µg Lipofectamine 2000

(Invitrogen, Carlsbad, CA, USA) in a final volume of 50 µl OPTIMEM I (Invitrogen,

Carlsbad, CA, USA). The following day, transfection media was removed by aspiration,

and cells were dissociated after incubation with 0.05% trypsin-53 mM EDTA in HBSS

(Cellgro, Manassas, VA, USA). Transfectants were seeded in 384 well plates at a density

of 1,000 cells/well and plates were incubated at at 37°C with 5% CO2 for an additional 24

hours.

These transected cell lines were then exposed to increasing concentrations of 5-

fluorouracil ranging from 0.001 to 1000µM. After 96 hours of drug exposure, the vital

dye indicator, alamarBlue (10% final concentration, Invitrogen Carlsbad, CA, USA) was

added. Fluorescence was measured at Ex 535 and Em 595 using a Tecan 1000 Multiplate

Reader (Männedorf, Switzerland) 6-8 hours following alamar blue addition. The

fluorescence readings were corrected for the blank (cells exposed to vehicle alone),

before being converted into percent cell survival at each drug concentration, and the IC50

determined utilizing XLfit4.0 software from IDBS (Guildford, UK).

Statistical Analysis

Comparisons of baseline demographics and disease characteristics between

exposed and unexposed samples were performed using the Fisher’s exact test. The

differences expression of each target between the exposed and unexposed samples were

evaluated using the Wilcoxon Rank Sum test. Logistic Regression was used to evaluate

associations of AQUA scores, adjusted for clinicopathologic variables, with group status.
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All analyses were done using SAS v9.2 (SAS Institute, Inc, Cary, NC). A plasmid

shRNA was considered as “active” when the IC50 was outside the range mean at the

control vector eGFP IC50±3SD. In a given cell line, a gene with two or more active

plasmids producing the same cytotoxicity phenotype was considered as “active gene”. A

gene was selected as “credentialed” in the 5-FU pathway when its knockdown

significantly altered IC50s in the HCT-116 cells (p53 wt) in addition to at least one of the

two cell lines with mutated p53 (SW620 or HT-29 cells).
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Results

Validation

To reliably measure the levels of the 5-FU pathway targets, total protein levels of

DPD, DUT-N, and NME1 were determined independently by Western blot and by

AQUA in cell line controls (Figure 3.1). Densitometry quantification of Western blot

bands was performed, and the 5-FU pathway targets were normalized to the β-tubulin

control to determine their relative expression. The correlations between Western Blot and

AQUA were strong overall. Pearsons correlation for the two methods ranged between 77-

91% and were significant for DPD and DUT-N (p=0.0042 and p=0.045). The correlation

for NME1 was trending towards significance (p=0.075). The intratumoral heterogeneity

among redundant tumor cores was high (Linear Regression R2<0.3, P=N.S. all targets),

so median AQUA scores of redundant histospots were used.

Demographics

Samples were annotated with demographic, clinical, and follow-up information

(Table 3.1). For the purpose of this study, the cohort consists of 88 metastatic colorectal

cancer patients (47 5-FU exposed and 41 unexposed). Their ages from the time of

diagnosis of liver metastases ranged between 41 and 85 (mean age of 61). This cohort

consisted of forty-three male patients and forty-five female patients. The racial

distribution of patients in this trial was: White, n = 65; Black, n =20; and Asian/Other,

n=3. Other patient characteristics are listed in Table 3.1. The mean age at diagnosis in

the unexposed group was 6 years greater than in the 5-FU exposed group (p=0.01); no
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other statistically significant differences in demographic data were observed between the

two groups.

Univariate analyses

The association of 5-FU exposure with the expression of 5-FU pathway targets

was assessed for all patients. Representative AQUA images are shown in Figure 3.2. The

results demonstrate that the colorectal liver metastases have variable expression of 5-FU

pathway proteins. Exposed tumors had a significantly higher median UCK2 expression

than unexposed tumors (AQUA scores 8152.50 versus 6706.42, respectively, p=0.007).

There were no significant differences between the median expression of the exposed and

unexposed tumors for the other targets although exposed patients were trending towards

higher DUT-N expression, p< 0.058.

Multivariate analysis

To determine whether clinicopathological parameters, target expression, and the

nuclear to cyptoplasmic ratio were significantly associated with 5-FU exposure and

pathway proteins, a multivariate logistic regression analysis was performed on the cohort.

Specifically, age, gender, target protein expression in tumor mask, tumor size, nodal

status, and nuclear to cytoplasmic protein expression ratio (as both a categorical and

continuous variable) were added into the model. Cases with missing values were

excluded from the analysis (Tables 3.2, 3.3, and 3.4). The best model comprised of

gender, race, and protein expression level in 1000 unit increments. DPD protein

expression is significantly higher in exposed samples (Point estimate 1.62; 95%

confidence interval [95% CI], 1.03-2.53; p=0.035), when the model adjusts for gender
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(Point estimate 3.34; 95% CI, 1.28-8.68; p=0.0135) and race (Point estimate 0.61, 95%

CI, 0.21-1.72; p=0.347). DUT protein expression was also significantly higher in exposed

samples (Point estimate 1.32; 95% confidence interval [95% CI], 1.05-1.66; p= 0.019),

when the model adjusts for gender (Point estimate 3.29; 95% CI, 1.28-8.46; p=0.013) and

race (Point estimate 0.62, 95% CI, 0.22-1.76; p=0. 367). The exposed samples also had

higher UCK2 expression than unexposed samples (Point estimate 1.28; 95% CI, 1.06-

1.54; 0.01) when the model corrected for gender (Point estimate 2.83; 95% CI, 1.11-7.22;

p=0.029) and race (Point estimate 0.50; 95% CI, 0.17-1.46; p=0.206). Expression of the

other protein targets did not significantly differ between exposed and unexposed samples

using the multivariate model. Nuclear to cytoplasmic protein expression ratio (as a

categorical and continuous variable), tumor stage, and nodal status did not significantly

interact with 5-FU exposure phenotype, race, or gender, so they were not included in the

final model because of parsimony.

Functional Analysis

To assess the functional relevance of the three proteins (DPD, UCK2, and DUT)

associated with clinical resistance to 5-FU using AQUA analysis, shRNA gene

knockdown was performed in three colorectal cancer cell lines. Knockdown of UCK2

resulted in a significant decrease of the IC50 by a magnitude of 3- to 6-fold in all three

cell lines. DUT knockdown also produced a significant decrease in 5-FU IC50 following

knockdown, causing a 13- and 3-fold reduction in HCT-116 and SW620 cells,

respectively. The knockdown of DPYD, the gene encoding DPD, significantly decreased

the 5-FU IC50 of SW620 by a magnitude of 6-fold; its knockdown also resulted in nearly
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a 2-fold decline in the 5-FU IC50 in the HCT-116 and HT-29 cell lines but was just below

the threshold of significance.
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Discussion

Patients with mCRC have variable responses to 5-FU even with identical

treatment and clinicopathologic parameters. This inconsistency is perhaps attributable to

molecular differences modulating disease pathology and cancer resistance to 5-FU.

Recent studies have demonstrated differences in biomarker levels are associated with

chemotherapy response in other malignancies. For example, the human epidermal growth

factor receptor 2 (HER2) is amplified or overexpressed in 20-25% of breast cancers.16-18

Breast cancer patients with HER2 positive (HER2+) tumors have a worse prognosis in

absence of therapy, and response to trastuzumab has almost exclusively limited to breast

cancer patients with HER2 amplification as determined by FISH.19-24 Despite numerous

investigations, underlying determinants of 5-FU resistance in colorectal cancer remain

elusive. Since 5-FU is the therapeutic backbone for treatment of advanced and metastatic

colorectal cancer, determining molecular contributors to its resistance would have a

meaningful impact on therapy.25,26

The expression of many 5-FU pathway proteins has not been studied in colorectal

metastases, and the expression data for those that have been investigated are conflicting.

For example, expression levels of the pathway target TS have been reported to have

positive, negative and no association with 5-FU resistance. Liver metastases expressing

high levels of TS protein have been associated with lack of clinical response to 5-FU in

vivo.27 Data also suggest that tumors expressing high TS levels are associated with poorer

survival than tumors expressing low TS levels.28,29 However, other studies show that

patients treated with adjuvant chemotherapy with low TS protein have impaired survival
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outcome compared to their high TS expressing counterparts. 30,31 Similar expression

studies were performed for thymidine phosphorylase, TP, but data has not consistently

demonstrated that overexpression is linked to good or poor clinical response.32

Conflicting data also exists linking DPD protein expression to 5-FU resistance. Studies of

CRC patients receiving 5-FU have shown both direct, no, and inverse associations

between tumor DPD mRNA and protein levels and 5-FU outcome.10,33,34 The general

consensus is that the role of tumoral DPD levels as a prognostic factor for clinical

responsiveness has not been firmly established.35 Due to the limited and ambiguous in

vivo data on the relationship between the expression of the 5-FU pathway proteins and 5-

FU resistance, further investigations into the molecular profiles of 5-FU pathway proteins

in clinically resistant and sensitive colorectal cancer samples may provide information

pertinent to patient therapy. Characterization of differential expression associated with 5-

FU exposure may be critical to identifying the molecular determinants of 5-FU

resistance.

The expression of eight important 5-FU pathway proteins was evaluated in 88

colorectal liver metastases stratified by 5-FU exposure. Three of these 8 proteins had

significant differences in expression between exposed and unexposed tumors in the

multivariate analysis (UCK2, DPD, and DUT). Differential UCK2 expression between

exposed and unexposed samples was also seen in the univariate analysis, and DUT

expression was just below the threshold for significance. The significant differences in

expression supports the presence of distinct molecular phenotypes associated with

clinical resistance to 5-FU. Due to DPD, DUT, and UCK2 prominent biological roles in

nucleic acid synthesis, their involvement in 5-FU resistance is not surprising. As a
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nucleoside analog, 5-FU mediates its cytotoxicity via targeting the pyrimidine

biosynthetic pathway.

DPD is responsible for the first and rate-limiting step of 5-FU catabolism and

mediates over 80% of 5-FU elimination. Therefore, higher levels of DPD, as seen in the

exposed samples, would be expected to be associated with 5-FU resistance presumably

because more of the drug would be catabolized. Studies have shown both no and an

inverse association between tumor DPD protein levels and the magnitude of 5-FU

sensitivity via multiple methods.10,33,34 The lack of correlation is at least partly imputable

to non-standardized method for measuring DPD levels. Rat in vitro studies suggest that

the UCK pathway is a preferred pathway for 5-FU activation.36 Consequently, an

abundance of UCK would presumably cause sensitization to 5-FU; however, cells

overexpressing UCK2 had no difference in 5-FU cytotoxicity compared to cells

expressing normal UCK2 levels.36 Additionally, DUT is a critical enzyme in the 5-FU

pathway because produces an essential substrate for TS. It is reasonable that DUT levels

would be associated with 5-FU resistance. Previous worked has linked low DUT

expression with both response to 5-FU (p=0.005) and a longer time to progression

(p=0.017) but not overall survival (p=0.09).37 While the true predictive value of DUT

levels has remains to be clearly delineated, it does appear to be an important target for 5-

FU resistance.

The quantification of 5-FU pathway proteins via the AQUA system has numerous

advantages over conventional detection methods. For instance, the continuous scores

generated by AQUA directly correlate with protein concentrations instead of the
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traditional pathologist-based categorical scoring of tissue, which is subjective and subject

to human biases. Additionally, AQUA is very high throughput thereby allowing analysis

of a large TMA, such as the one in this study, up to 30 to 50 times faster than pathologist

based scoring.12 AQUA also possesses the ability to detect subcellular localization of

targets. While the nuclear to cytoplasmic (N/C) protein expression ratios were not

significantly associated with clinical resistance phenotype in this study, Gustavon and

colleagues found that colorectal cancer patients with higher TS N/C ratios did have a

significantly shorter survival.13 The interpatient heterogeneity was higher than expected

based on other published work and likely reflected the inclusion of a third replicate and

the molecular diversity among these samples. To counterbalance this, the median

expression was chosen instead of the mean, as median would be a better measure of

central tendency given the distributions of our data.

All three of the 5-FU pathway proteins that had significant variation in expression

between exposed and unexposed tumor samples were consistently linked together in

correlation analysis (Table 3.5). This is suggestive of coregulation, and although the

mechanistic basis must be elucidated, it is likely associated with these proteins’ roles in

folate biochemistry. Additionally, the knockdown of the genes encoding these proteins

and subsequent increased CRC cellular sensitivity to 5-FU certainly supports these

pathway targets involvement in 5-FU resistance.

The primary focus of this study was quantifying the expression for 5-FU pathway

proteins in colorectal liver metastases. The molecular heterogeneity of tumors is widely

thought to cause CRC resistance to therapy. The protein expression of most targets within
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the 5-FU pathway have not previously been systematically quantified in intact tumor

tissues.

Technical advances have made quantitative expression profiling of functionally-

relevant protein feasible. Ideally, confirmation of these results in a separate validation

cohort would have been performed but the requirement that the validation cohort be large

to achieve adequate statistical power coupled with the lack of sample availability and

other resources limitations made performing validation infeasible. Thus, this study

represents an initial investigation into the molecular basis within the 5-FU pathway for

clinically-sensitive and resistant patient groups. Future studies will need to correlate the

expression of these pathway protein within sensitive and resistant patients with

therapeutic outcome. Because 5-FU is one of the most active and frequently used anti-

neoplastic agents for CRC, treatment failure caused by its resistance has substantial

clinical implications. Knowledge of molecular contributors to resistance may be

clinically useful for individualizing patient therapy, as resistant patients could be spared

potential toxicity from 5-FU or be given a regimen with a greater potential for efficacy.

In summation, this study demonstrates the importance of quantifying the expression of 5-

FU pathway proteins in well-phenotyped samples and provides evidence for the

underlying molecular differences between 5-FU sensitive and resistant patients.
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Figure 3.1

Figure 3.1 Distribution of DPD AQUA scores and western blot densitometry values in cell lines
controls. A. Distribution of DPD AQUA scores in 7 cell lines controls embedded into a control cell line
array. B. Quantification of DPD bands on Western blot; the dynamic range of DPD expression is
consistent with AQUA analysis. C. Correlation of AQUA scores representing and Western blot in the
same cell lines for DPD expression.
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Figure 3.2

Figure 1

Figure 3.2 Representative AQUA of 5-FU pathway target (TS) in colorectal liver metastases. A. Spot
213 has low target (TS) in tumor mask. B. Spot 135 has high target in tumor mask. CK stands for
cytokeratin, nuclei stained with DAPI.

B
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Figure 3.3
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Figure 3.3 Profiles of cell sensitivity of genes
encoding proteins whose expression is
significantly linked to 5-FU exposure. Waterfall
diagrams show fold change in the IC50 relative to
control eGFP IC50 in the 2-3 shRNA per gene
producing the same phenotype. Negative values
represent fold change in IC50 <1. Cell lines
utilized were HCT-116 (A), HT-29 (B) and SW
620 (C).
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Table 3.1

Characteristic Unexposed 5-FU Exposed P

Gender
Male 25 (61%) 18 (38%)
Female 16 (39%) 29 (62%)

0.054 (NS)

Race/Ethnicity
White 29 (71%) 38 (77%)
Black 10 (24%) 10 (21%) 0.77 (NS)
Asian/Other 2 (6%) 1 (2%)

Age (mean) at diagnosis
1

64 (range 42 – 84) 58 (range 41– 85) 0.01

Tumor
1 3 2
2 6 2 0.18 (NS)
3 18 30
4 3 1

Nodes
0 20 19
1 13 13 0.65 (NS)
2 6 10

Metastases
0 24 24 0.37 (NS)
1 13 21

Initial No. of Metastases
1 23 19
2 10 11 0.35 (NS)
>2 5 9
Range 1-5 1-14
Median 1 1.5

1
Diagnosis refers to diagnosis of liver metastasis

Table 3.1 Clinical cohort demographics and pathological parameters
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Table 3.2

Variables Point Estimate P Value

DPD Expression (AQUA) 1.618 (1.034-2.532) 0.0353

Gender (Female vs. Male) 3.338 (1.283-8.684) 0.0135
Race (Black/Other vs. White) 0.606 (0.213-1.720) 0.3467

Table 3.2 Logistic regression multivariate analysis of clinical features and
DPD expression as determined by AQUA to evaluate association with 5-FU
exposure with indicated point estimates and P values (p<0.05).
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Table 3.3

Variables Point Estimate P Value
DUT Expression (AQUA) 1.318 (1.046-1.661) 0.0194

Gender (Female vs. Male) 3.293 (1.282-8.457) 0.0133

Race (Black/Other vs. White) 0.618 (0.217-1.760) 0.3674

Table 3.3 Logistic regression multivariate analysis of clinical features
and DUT expression as determined by AQUA to evaluate association with
5-FU exposure with indicated point estimates and P values.
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Table 3.4

Variables Point Estimate P Value
UCK2 Expression (AQUA) 1.276 (1.060-1.536) 0.0101

Gender (Female vs. Male) 2.832 (1.111-7.217) 0.0292

Race (Black/Other vs. White) 0.503 (0.173-1.458) 0.2057

Table 3.4 Logistic regression multivariate analysis of clinical features and
UCK2 expression as determined by AQUA to evaluate association with 5-FU
exposure with indicated point estimates and P values.
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Table 3.5

Unexposed

R DPD DUTN UCK2

DPD 1.00 0.43 0.47

DUTN 1.00 0.45

UCK2 1.00

Exposed

R DPD DUTN UCK2

DPD 1.00 0.65 0.47

DUTN 1.00 0.50

UCK2 1.00

Table 3.5 Correlation matrix of DPD,
DUT, and UCK2 for unexposed and
the exposed samples. Spearman’s rank
correlations (r) that were significant
are bolded.
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Chapter 4

Copy number determination of 5-Fluorouracil Pathway Targets for Mechanistic
Elucidation of Metastatic Colorectal Cancer Resistance

.

This chapter was published in part in the European Journal of Cancer and is presented in

the style of that journal.

Watson RG, Muhale F, Thorne LB, Yu J, O'Neil BH, Hoskins JM, Meyers MO, Deal

AM, Ibrahim JG, Hudson ML, Walko CM, McLeod HL, Auman JT. “Amplification of

thymidylate synthetase in metastatic colorectal cancer patients pretreated with 5-

fluorouracil-based chemotherapy.” Eur J Cancer. 2010. [published online ahead of print

August 18, 2010] http://www.ejcancer.info/article/S0959-8049(10)00689-1/abstract].



Abstract

Introduction: Resistance to 5-fluorouracil (5-FU) represents a major contributor

to cancer-related mortality in advanced colorectal cancer patients. Genetic variations and

expression alterations in genes involved in 5-FU metabolism and effect have been shown

to modulate 5-FU sensitivity in vitro, however these alterations do not fully explain

clinical resistance to 5-FU-based chemotherapy.

Methods: To determine if alterations of DNA copy number in genes involved in

5-FU metabolism impacted clinical resistance to 5-FU-based chemotherapy, we assessed

thymidylate synthetase (TYMS) and thymidine phosphorylase (TYMP) copy number in

colorectal liver metastases. DNA copy number of TYMS and TYMP was evaluated

using real time quantitative PCR (qRT-PCR) in frozen colorectal liver metastases

procured from 62 patients who were pretreated with 5-FU-based chemotherapy prior to

surgical resection (5-FU exposed) and from 51 patients who received no pretreatment

(unexposed).

Results: Gain of TYMS DNA copy number was observed in 18% of the 5-FU

exposed metastases, while only 4% of the unexposed metastases exhibited TYMS copy

gain (p=0.036). No significant differences were noted in TYMP copy number alterations

between 5-FU exposed and unexposed metastases. Median survival time was unchanged

in 5-FU exposed patients with metastases containing TYMS amplification and those with

no amplification. However, TYMS amplification was associated with shorter median

survival in patients receiving post-resection chemotherapy (p-=0.026).

81



Conclusions: These results suggest that amplification of TYMS is a mechanism

for clinical resistance to 5-FU-based chemotherapy and may have important ramifications

for the post-resection chemotherapy choices for metastatic colorectal cancer patients.
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Introduction

5-Fluorouracil (5-FU) is the backbone of treatment for advanced colorectal

cancer, as nearly all patients will receive a 5-FU-containing regimen 1,2. 5-FU’s

prominence in advanced colorectal cancer treatment is largely a function of its consistent

efficacy throughout its five decades of use 3. However, one of the biggest challenges for

the management of advanced colorectal cancer is 5-FU treatment failure, especially in

patients who initially respond but later become resistant. Indeed, the five-year survival of

those with metastatic colorectal cancer is less than ten percent 4. Deaths due to clinically-

resistant metastatic colorectal cancer disproportionately account for why colorectal

cancer is presently the third leading cause of cancer-related mortality 5.

Numerous investigations into 5-FU resistance in metastatic colorectal cancer have

focused on genes within its known pharmacokinetic and pharmacodynamic pathway,

such as thymidylate synthetase (TYMS), a key therapeutic target. Advanced colorectal

cancers that do not respond to 5-FU-based chemotherapy have greater TYMS enzymatic

activity than cancers that do respond 6. Likewise, liver metastases expressing high levels

of TYMS mRNA or protein have also been associated with lack of clinical response to 5-

FU in vivo 7-10. A recent meta-analysis of 24 studies has indicated that metastatic

colorectal tumors with low expression of TYMS are more sensitive to fluoropyrimidine-

based chemotherapy 11.

Similar expression studies have also been performed for thymidine phosphorylase

(TYMP) because of its role in 5-FU metabolism. Overexpression of TYMP has been

linked to increased 5-FU sensitivity in vitro 12. Xenografts transfected to overexpress
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TYMP showed a 43% decrease in size following 5-FU administration, whereas no

response to 5-FU was observed in the xenografts lacking TYMP-transfection 13. In one

small study, an increased in TYMP expression was observed in colorectal cancer

metastases, which were significantly more resistant to 5-FU than their matched primary

tumors 14. More recently, low TYMP expression was observed to be predictive of

response to 5-FU based chemotherapy in metastatic colorectal cancer patients 15.

Conversely, increased expression of TYMP measured by immunohistochemistry was

associated with prolonged survival in metastatic colorectal cancer patients treated with

capecitabine plus irinotecan 16. Thus the role TYMP plays in resistance to chemotherapy

remains to be clarified.

The underlying mechanism(s) for altered expression of genes and proteins

important for drug resistance has implications for the development of strategies to

overcome clinical resistance. Variants in the promoter region of genes are one

mechanism through which expression can be influenced. A polymorphic tandem repeat

sequence in the TYMS gene promoter region is associated with higher TYMS expression

17. Additionally, colorectal cancer patients with liver only metastases showed a

significant association between the high expressing TYMS genotypes and lack of tumor

response to 5-FU-based chemotherapy 18. It also appears that administration of 5-FU-

based chemotherapy has the potential to lead to increased expression of TYMS,

suggesting a role for acquired resistance to chemotherapy 19. Alternatively, alterations in

DNA copy number are another mechanism of influencing gene expression.

Amplification of chromosome 18p11.32, the location of the TYMS gene, was strongly

associated with resistance to 5-FU based drugs in human tumor mouse xenografts20.
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TYMS gene copy number has also been associated with clinical resistance to 5-FU.

TYMS copy number gains occurred significantly more frequently in liver metastases

from patients who had received 5-FU than in metastases from patients who were 5-FU

naïve 21. In addition, patients with TYMS copy number gains also exhibited a 3.5-fold

higher relative risk of death than those patients with normal TYMS copy number 21.

However, this small study has not been replicated.

To gain insight into the mechanisms of clinical drug resistance, we examined

TYMS and TYMP copy number in resected metastatic colorectal cancer tissue from

patients exposed and not exposed to 5-FU-based chemotherapy. Gain of TYMS gene

copy was associated with 5-FU exposure suggesting this genetic alteration as one of the

mechanisms underlying resistance to 5-FU-based chemotherapy.
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Methods

Tissue samples including normal tissues and liver metastases were obtained from

colorectal cancer patients undergoing liver resection at the University of North Carolina

at Chapel Hill Hospital between 1998 and 2008 by the Lineberger Comprehensive Cancer

Center’s Tissue Procurement Facility. Clinical information was retrospectively retrieved

from patient records and by the Social Security Death Index (SSDI). Tissue specimen

analysis and patient chart reviews was approved by an institution review board (IRB

number 07-1525) and was performed in accordance with Health Insurance Portability and

Accountability Act (HIPAA) regulations. Patient samples were categorized as “5-FU

exposed” if the patients received 5-FU within the 6-months preceding their liver

resections; all other samples were classified as unexposed.

DNA was extracted from frozen liver metastases specimens using the Qiagen All

Prep kit (Qiagen Inc, Valencia, CA) according to the manufacturer’s protocol. Briefly,

liver metastases were lysed and homogenized via Tissuelyser (Qiagen Inc, Valencia,

CA). DNA quality was assessed based on the optical density (OD) 260/280 ratio. DNA

extractions were performed at UNC Lineberger Comprehensive Cancer Center’s Tissue

Procurement Facility.

DNA copy number was determined by quantitative real-time PCR (qRT-PCR)

using the ABI 7300. Briefly, qRT-PCR for TYMS consisted of a 20 μL reaction mixture

composed of 10 μL of TaqMan universal PCR master mix (Applied Biosystems Inc. –

ABI), 10 μL of primer probe mix, and 20 ng of DNA (dried in wells of the PCR plate

overnight before adding the reaction mixture), which were performed in triplicate. The
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PCR primers and probe for TYMS are: forward primer – GCCTCGGTGTGCCTTTCA,

reverse primer – CGTGATGTGCGCAATCATG and probe -

CATCGCCAGCTACGCCCTGCTC. The colorectal cancer cell line, H630R10 (kindly

provided by Prof Patrick Johnston, Queen’s University, Belfast), was used as a control as

it exhibits TYMS copy number gain 22. The qRT-PCR assay for TYMP copy number

required a 20 μL reaction mixture composed of 10 μL of SYBR Green (Applied

Biosystems Inc. – ABI), 10 μL of PCR primers for TYMS, and 20 ng of DNA (dried in

wells of the PCR plate overnight before adding the reaction mixture), which were

performed in duplicate. The PCR primers for TYMS are: forward primer –

GTTCTCCATTGTCTCCAACCTC and reverse primer –

AACTTAACGTCCACCACCAGAG 23. DNA copy number for each sample was

determined by using the delta delta Ct method, in which the threshold cycle (Ct) numbers

were calculated by using ABI7300 software. For both the TYMS and TYMP copy

number assay, DNA copy number was normalized to RNaseP because normal liver has

two copies of RNaseP 23. The primers for RNaseP are: forward primer -

TGGGAAGGTCTGAGACTAGGG and reverse primer -

CGTTCTCTGGGAACTCACCT.

The range of values for normal TYMS and TYMP were determined by

performing the assays on cell lines from the Centre d’Etude du Polymorphisme Humain

(CEPH) collection, which are lymphoblastoid cells taken from healthy individuals believed to

have normal TYMS and TYMP copy number. Metastases samples with copy number

values more than 2 standard deviations greater than the mean CEPH copy number (2.53

for TYMS, 2.54 for TYMP) were considered to have copy number gains and those with
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values more than 2 standard deviations less than the mean CEPH copy number (1.31 for

TYMS, 1.52 for TYMP) were considered to have copy number losses. Based on the total

sample size we had the power to detect a 0.15 difference between exposed and unexposed

groups.

The proportion of the different demographic characteristics in the 5-FU exposed

and unexposed patients were compared using either Fisher’s exact test or Chi Square

likelihood ratio depending on the number of comparison being made. The Fisher’s exact

test was used to test significant association between copy number alterations and

exposure groups (5-FU exposed versus unexposed). Kaplan-Meier analysis was

performed to test the effect of genetic alterations on overall survival and significance was

assessed using log rank tests. Overall survival data was calculated from the date of

diagnosis of the liver metastasis to the data of death or last follow-up. Data were

censored when patients were lost to follow-up. All statistical test were 2-sided and the

significance level was set at p<0.05.
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Results

Demographics: The study population comprised of 113 metastatic colorectal

cancer patients (62 5-FU exposed and 51 unexposed). Their ages from the time of

diagnosis of liver metastases ranged between 38 and 86 (mean age of 62). This cohort

was comprised of fifty-eight male patients and fifty-five female patients. The racial

distribution of patients in this trial was: White, n = 84; Black, n =25; and Asian/Other,

n=4. Other patient characteristics are listed in Table 4.1. The mean age at diagnosis in

the unexposed group was 6 years greater than in the 5-FU exposed group (p=0.01); no

other statistically significant differences in demographic data were observed between the

two groups.

TYMS: TYMS DNA copy number was obtained for 111 samples (62 5-FU

exposed and 49 unexposed). The values of TYMS copy number ranged from 1.06 to 3.80

for the 5-FU exposed samples and 1.12 to 3.28 for the unexposed samples. The median

copy number was 1.89 for exposed samples and 1.78 for unexposed samples.

Approximately twice as many metastases had TYMS copy number alterations for the 5-

FU exposed group (23%) compared to the unexposed group (10%), although the

proportion was not statistically significant (p=0.13). TYMS loss was infrequent in both

5-FU exposed and unexposed groups (3 samples for each group), however the 5-FU

exposed samples did have a greater incidence of TYMS amplification compared to

unexposed samples (18% vs. 4%, p=0.036; Figure 4.1).

TYMP: TYMP DNA copy number was obtained for 99 samples (54 5-FU

exposed and 45 unexposed). The values of TYMP copy number ranged from 0.93 to 6.78
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for the 5-FU exposed samples and 1.06 to 6.98 for the unexposed samples. The median

copy number was 1.97 for 5-FU exposed samples and 2.00 for unexposed samples. A

greater percentage of metastases samples exhibited TYMP copy number alterations than

TYMS copy number alterations, but the prevalence of TYMP copy number alterations

was similar in the two groups (37% for 5-FU exposed and 42% for unexposed

metastases; p=0.68). Amplification of TYMP was roughly equivalent in both treatment

groups (20% for 5-FU exposed and 29% for unexposed; p=0.47), as was loss of TYMP

(17% for 5-FU exposed and 13% for unexposed; p=1.0).

Overall there were 7 tumor samples that exhibited copy number alterations for

both TYMS and TYMP. From the 5-FU exposed group, two samples had copy number

loss for both genes, two samples had copy number gains for both genes and one sample

had a gain of TYMS copy coupled with a loss of TYMP copy. From the unexposed

group, one sample had copy number loss for both genes and 1 sample had copy number

gains for both genes.

Since amplification of TYMS was observed in patients exposed to 5-FU-based

chemotherapy prior to surgical resection of their tumors, we compared the overall

survival times of patients with TYMS gains to patients with normal TYMS. Kaplan-

Meier analysis indicated no statistical difference between patients with normal TYMS

copy number and those with TYMS gain (Figure 4.3: Median survival for normal copy =

2.52 years, TYMS gain = 2.11 years, p=0.13, log rank test). However, for patients

receiving chemotherapy after surgical resection of their metastases, TYMS gain was

associated with a poorer median survival of 2.11 years, as compared to 3.61 years in
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patients with normal TYMS copy number (Figure 4.3: p=0.026, log rank test). Copy

number alterations for TYMP did not alter overall survival time in patients receiving

chemotherapy before or after surgical resection of their tumors (data not shown).
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Discussion

Aneuploidy is common phenomena in cancer which can have pharmacologic

impact if the altered chromosomal regions contain genes important for modulating drug

response. Trisomies are common in acute lymphoblastic leukemia cells 24 and

chromosomal gains that encompass the pharmacologically important genes TPMT and

GGH have been associated with higher activity of the encoded proteins in leukemic cells,

which would be expected to impact the clinical response to mercaptopurine 25. In breast

cancer, amplification of ERBB2 (also known as HER-2/neu) is found in a subset of

tumors, which has prognostic importance 26 and is associated with decreased response to

tamoxifen 27. In non-small-cell lung cancer, amplification of EGFR is associated with

better response to the EGFR tyrosine kinase inhibitor, gefitinib 28. Thus one mechanism

for drug resistance appears to include copy number alterations of pharmacologically

important genes in cancer tissue which can impact drug response 25.

Previously, copy number gain of the gene TYMS was observed in a small number

of colorectal metastases following exposure to 5-FU, which was associated with worse

outcomes 21. Our analysis of gene copy number indicates a significant association

between exposure to 5-FU-based chemotherapy and amplification of the TYMS gene in

surgically resected metastatic colorectal lesions, consistent with the aforementioned

results. However, while Wang et al only noted TYMS gain in tumors exposed to 5-FU 21,

our results suggest that amplification of TYMS in metastatic colorectal cancer can occur

in the absence of 5-FU exposure. This phenomenon might indicate that metastatic

colorectal tumors can contain genetic alterations that render them intrinsically less

sensitive to 5-FU-based chemotherapy. Alternatively, since data on adjuvant
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chemotherapy for primary disease was not available for most of this patient cohort, it is

possible that the patients received 5-FU-based chemotherapy regimen for their primary

disease before the onset of metastasis. It is unknown whether exposure to 5-FU induces

amplification of the chromosomal region containing the TYMS gene or if 5-FU

chemotherapy preferentially targets cancer cells without the amplification, which results

in the survival of resistant cells with TYMS amplification. However, it has been shown

that expression of TYMS increases after bolus exposure to 5-FU in vivo 19. Additional

work needs to conducted to determine the mechanism for the observed amplification of

TYMS in colorectal liver metastases following exposure to 5-FU.

The importance of TYMS amplification for metastatic colorectal cancer patients

was illustrated by previous results that indicated TYMS amplification resulted in shorter

survival times in patients pretreated with 5-FU 21. Our dataset cannot directly address

this issue. The patient cohort examined in the Wang et al study, were treated with only 5-

FU, as this was the standard of care therapy at that time in history 21. However, in those

patients treated with adjuvant chemotherapy following surgical resection of their

metastases, median survival time was 1 ½ years shorter in patients with tumors

containing TYMS amplification than those with normal TYMS copy number (Figure

4.3B). Thus it appears that in resected tumors containing TYMS amplification that any

remaining cancer cells also contain amplified TYMS and thus are resistant to subsequent

regimens of 5-FU-based chemotherapy. Furthermore, TYMS copy number alteration

could potentially serve as a biomarker for clinical resistance to 5-FU based adjuvant

chemotherapy in metastatic colorectal cancer patients. If validated in clinical trials,
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TYMS copy number gain in resected tumors could be used to indicate which patients

should receive an adjuvant chemotherapy regimen devoid of 5-FU due to resistance.

The cause of 5-FU resistance in metastatic colorectal cancer patients is believed to

be multifactorial 6,29-32. TYMS amplification clearly does not fully explain resistance to

5-FU based chemotherapy, as some patients without gain of TYMS also had short

survival times. A pathway-based approach to interrogate all the genes and proteins that

are postulated to be involved in 5-FU metabolism and efficacy is a more likely strategy to

identify the relevant mechanisms underlying clinical resistance to 5-FU. While our data

does not support copy number alterations in TYMP to be involved in resistance to 5-FU

based chemotherapy, there are still many other genes that need to be investigated. Copy

number variation assessment within dihydropyrimidine, deoxyuridine triphosphate, and

uridine cytidine kinase were not evaluated despite their protein expression being

significantly linked to 5-FU exposure because their mRNA expression failed to show

significant differences between these exposed and unexposed patients (data not shown).

Other genes were not evaluated for this analysis since the other pathway targets evaluated

(NME1, RRM1, RRM2) did not have differential expression at the protein level. In

addition, the problem of clinical resistance has become more complicated by the

additional chemotherapeutic agents that are utilized with 5-FU in metastatic colorectal

cancer patients. Detailed investigation of the role played by genes relevant to each of the

chemotherapy agents used will provide a more complete picture of the mechanism(s)

underlying clinical resistance to complex drug regimens. In addition, since our

knowledge of the mechanisms through which these drugs exert their anticancer effects is

incomplete, an unbiased approach, such as through genome-wide profiling, may be
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required to fully elucidate the mechanisms underlying clinical resistance in metastatic

colorectal cancer patients.

In conclusion, we found neoadjuvant treatment with 5-FU-based chemotherapy

was associated with gain of TYMS gene copy number. In addition, patients with tumors

containing TYMS amplification exhibited significantly shorter overall survival time

when treated with chemotherapy following surgical resection of their metastases. These

data, along with previously published results, implicates TYMS amplification in clinical

resistance to 5-FU-based chemotherapy in metastatic colorectal cancer patients. If

validated in larger clinical trials, these results suggest a prognostic importance for TYMS

copy number gain in metastatic colorectal cancer patients, which can assist in the

selection of the chemotherapy regimens most likely to be of clinical benefit.
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Figure 4.1 Histogram of TYMS copy number in tumors from 5-FU exposed and
unexposed patients. Normal DNA copy number ranged from 1.31 – 2.53; tumors with
copy number < 1.31 were classified as loss of copy number and tumors with copy number
> 2.53 were classified as gain of copy number. The p-value corresponds to the Fisher’s
Exact Test.
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Figure 4.2:
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Figure 4.2 Histogram of TYMP copy number in tumors from 5-FU exposed and
unexposed patients. Normal DNA copy number ranged from 1.52 – 2.54; tumors with
copy number < 1.52 were classified as loss of copy number and tumors with copy number
> 2.54 were classified as gain of copy number. The p-value corresponds to the Fisher’s
Exact Test.
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Figure 4.3: Pre Exposure
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Figure 4.3 Effect of TYMS amplification on overall survival in
metastatic colorectal cancer patients receiving chemotherapy.
Kaplan-Meier analysis of overall survival in patients with metastatic
colorectal cancer receiving neoadjuvant chemotherapy prior to
surgical resection of their metastases (median survival time for
TYMS amplification = 2.11 years, median survival for normal copy =
2.52 years, p=0.13, log rank test).
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Figure 4.4: Post Exposure
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Figure 4.4 Effect of TYMS amplification on overall survival in
metastatic colorectal cancer patients receiving chemotherapy.
Kaplan-Meier analysis of overall survival in patients with metastatic
colorectal cancer receiving adjuvant chemotherapy following surgical
resection of their metastases (median survival time for TYMS
amplification = 2.11 years, median survival for normal copy = 3.61
years, p=0.026, log rank test).
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Table 4.1

Characteristic Unexposed 5-FU Exposed P

Gender
Male 31 (61%) 27 (44%)
Female 20 (39%) 35 (56%)

0.089

Race/Ethnicity
White 36 (71%) 48 (77%)
Black 12 (24%) 13 (21%) 0.53
Asian/Other 3 (6%) 1 (2%)
Hispanic 0 1 (2%)

Age (mean) at diagnosis
1

65 (range 42 – 86) 59 (range 38-85) 0.01

Tumor
0 12 10
1 5 2
2 7 5 0.15
3 22 38
4 3 1

Nodes
0 27 25
1 14 17 0.46
2 8 14

Metastases
0 30 28 0.091
1 17 31

Initial No. of Metastases
Unknown 8 12
1 26 23
2 11 12 0.37
>2 6 14
Range 1-6 1-14
Median 1 1

Length of Neoadjuvant Chemotherapy (days)
Mean 140
Median 110
Range 27-564

1
Diagnosis refers to diagnosis of liver metastasis

Table 4.1 Clinical cohort demographics and baseline disease
characteristics

100



References

1. Bleiberg H. Role of chemotherapy for advanced colorectal cancer: new
opportunities. Semin Oncol. Feb 1996;23(1 Suppl 3):42-50.

2. de Gramont A, Vignoud J, Tournigand C, et al. Oxaliplatin with high-dose
leucovorin and 5-fluorouracil 48-hour continuous infusion in pretreated metastatic
colorectal cancer. Eur J Cancer. Feb 1997;33(2):214-219.

3. Moertel C. Chemotherapy for colorectal cancer. N Engl J Med. Apr
1994;330(16):1136-1142.

4. Sanoff HK, Sargent DJ, Campbell ME, et al. Five-year data and prognostic factor
analysis of oxaliplatin and irinotecan combinations for advanced colorectal
cancer: N9741. J Clin Oncol. December 10, 2008 2008;26(35):5721-5727.

5. American Cancer Society. Cancer Facts & Figures 20092009.

6. Etienne M, Chazal M, Laurent-Puig P, et al. Prognostic value of tumoral
thymidylate synthase and p53 in metastatic colorectal cancer patients receiving
fluorouracil-based chemotherapy: phenotypic and genotypic analyses. J Clin
Oncol. Jun 2002;20(12):2832-2843.

7. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and
protein expression correlate and are associated with response to 5-fluorouracil in
human colorectal and gastric tumors. Cancer Res. Apr 1 1995;55(7):1407-1412.

8. Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral
thymidylate synthase expression predicts for disseminated colorectal cancer
response and resistance to protracted-infusion fluorouracil and weekly leucovorin.
J Clin Oncol. Oct 1997;15(10):3223-3229.

9. Shirota Y, Stoehlmacher J, Brabender J, et al. ERCC1 and thymidylate synthase
mRNA levels predict survival for colorectal cancer patients receiving
combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol.
2001;19(23):4298-4304.

10. Corsi DC, Ciaparrone M, Zannoni G, et al. Predictive value of thymidylate
synthase expression in resected metastases of colorectal cancer. Eur J Cancer.
Mar 2002;38(4):527-534.

11. Qiu L-X, Tang Q-Y, Bai J-L, et al. Predictive value of thymidylate synthase
expression in advanced colorectal cancer patients receiving fluoropyrimidine-
based chemotherapy: Evidence from 24 studies. Int J Cancer. 2008;123(10):2384-
2389.

12. Evrard A, Cuq P, Ciccolini J, Vian L, Cano J. Increased cytotoxicity and
bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human

101



colorectal cancer cells transfected with thymidine phosphorylase. Br J Cancer.
Aug 1999;80(11):1726-1733.

13. Ciccolini J, Cuq P, Evrard A, et al. Combination of thymidine phosphorylase gene
transfer and deoxyinosine treatment greatly enhances 5-fluorouracil antitumor
activity in vitro and in vivo. Mol Cancer Ther. Dec 2001;1(2):133-139.

14. Okumura K, Shiomi H, Mekata E, et al. Correlation between chemosensitivity
and mRNA expression level of 5-fluorouracil-related metabolic enzymes during
liver metastasis of colorectal cancer. Oncology Reports. Apr 2006;15(4):875-882.

15. Gustavsson B, Kaiser C, Carlsson G, et al. Molecular determinants of efficacy for
5-FU-based treatments in advanced colorectal cancer: mRNA expression for 18
chemotherapy-related genes. Int J Cancer. Dec 2 2008;124(5):1220-1226.

16. Meropol NJ, Gold PJ, Diasio RB, et al. Thymidine Phosphorylase Expression Is
Associated With Response to Capecitabine Plus Irinotecan in Patients With
Metastatic Colorectal Cancer. J Clin Oncol. September 1, 2006
2006;24(25):4069-4077.

17. Marsh S, McKay J, Cassidy J, McLeod H. Polymorphism in the thymidylate
synthase promoter enhancer region in colorectal cancer. International Journal of
Oncology. Aug 2001;19(2):383-386.

18. Graziano F, Ruzzo A, Loupakis F, et al. Liver-only metastatic colorectal cancer
patients and thymidylate synthase polymorphisms for predicting response to 5-
fluorouracil-based chemotherapy. Br J Cancer. 2008;99(5):716-721.

19. Mauritz R, van Groeningen CJ, Smid K, Jansen G, Pinedo HM, Peters GJ.
Thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression
after administration of 5-fluorouracil to patients with colorectal cancer. Int J
Cancer. Jun 15 2007;120(12):2609-2612.

20. Ooyama A, Okayama Y, Takechi T, Sugimoto Y, Oka T, Fukushima M. Genome-
wide screening of loci associated with drug resistance to 5-fluorouracil-based
drugs. Cancer Sci. Apr 2007;98(4):577-583.

21. Wang T-L, Diaz LA, Romans K, et al. Digital karyotyping identifies thymidylate
synthase amplification as a mechanism of resistance to 5-fluorouracil in
metastatic colorectal cancer patients. Proc Natl Acad Sci U S A. March 2, 2004
2004;101(9):3089-3094.

22. Rooney PH, Stevenson DA, Marsh S, et al. Comparative genomic hybridization
analysis of chromosomal alterations induced by the development of resistance to
thymidylate synthase inhibitors. Cancer Res. Nov 15 1998;58(22):5042-5045.

102



23. Yu J, Miller R, Zhang W, et al. Copy-number analysis of topoisomerase and
thymidylate synthase genes in frozen and FFPE DNAs of colorectal cancers.
Pharmacogenomics. 2008;9(10):1459-1466.

24. Pui C-H, Relling MV, Downing JR. Acute Lymphoblastic Leukemia. N Engl J
Med. April 8, 2004 2004;350(15):1535-1548.

25. Cheng Q, Yang W, Raimondi SC, Pui C-H, Relling MV, Evans WE. Karyotypic
abnormalities create discordance of germline genotype and cancer cell
phenotypes. Nat Genet. 2005;37(8):878-882.

26. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human
breast cancer: correlation of relapse and survival with amplification of the HER-
2/neu oncogene. Science. January 9, 1987 1987;235(4785):177-182.

27. Arpino G, Green SJ, Allred DC, et al. HER-2 Amplification, HER-1 Expression,
and Tamoxifen Response in Estrogen Receptor-Positive Metastatic Breast Cancer.
Clin Cancer Res. September 1, 2004 2004;10(17):5670-5676.

28. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and
protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer
Inst. May 4, 2005 2005;97(9):643-655.

29. Ahnen D, Feigl P, Quan G, et al. Ki-ras mutation and p53 overexpression predict
the clinical behavior of colorectal cancer: a Southwest Oncology Group study.
Cancer Res. Mar 1998;58(6):1149-1158.

30. Etienne MC, Formento JL, Chazal M, et al. Methylenetetrahydrofolate reductase
gene polymorphisms and response to fluorouracil-based treatment in advanced
colorectal cancer patients. Pharmacogenetics. Dec 2004;14(12):785-792.

31. Liang J, Huang K, Cheng Y, et al. P53 overexpression predicts poor
chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for
stage IV colorectal cancers after palliative bowel resection. Int J Cancer. Feb
2002;97(4):451-457.

32. Peters G, Backus H, Freemantle S, et al. Induction of thymidylate synthase as a 5-
fluorouracil resistance mechanism. Biochim Biophys Acta. Jul 2002;1587(2-
3):194-205.

103



Chapter 5

Molecular Heterogeneity and 5-Fluorouracil Resistance
in Metastatic Colorectal Cancer



Patients often respond to medication differently. There are a myriad of reasons

causing variable drug effects including: the nature and severity of the disease, an

individual’s age, organ function, drug interactions, and other diseases.1 Despite the

importance of these factors, genomic, proteomic, and other molecular differences in

metabolism, disposition, and the targets of drug therapy can have an even greater impact

on overall drug response.2 There have been numerous investigations into the molecular

etiologies of variable drug response, particularly resistance to antimicrobial and

antineoplastic agents.3 As the third most commonly used chemotherapeutic agent, 5-FU

resistance has been the subject of many of these studies.4-7 Still, the underlying

mechanisms surrounding 5-FU resistance remain elusive. Ultimately, executing more

rigorous investigations, selecting biologically-relevant approaches to target discovery,

utilizing tools with greater sophistication for analyses, and choosing the appropriate

patient cohorts meticulously are necessary to gain better insight into the causes of 5-FU

resistance.

One of the impediments to cancer resistance research is that many studies

evaluating 5-FU resistance lack methodological standardization. Typically this occurs

because the ideal approach to evaluate a particular molecular target has yet to be

determined. Unfortunately, this lack of standardization often limits the predictive value

for any biomarker studied. For example, 5-FU pathway target, thymidylate synthase has

been proposed as a predictive marker for 5-FU efficacy; however, to date, there is no

standardized assay for measuring it. There is little consistency between the thymidylate

synthase macromolecules (DNA, mRNA or protein) chosen across investigations.
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Significant heterogeneity exists between different macromolecules, which also explains

some of the discordant results. Measuring one form of the thymidylate synthase

macromolecule does not provide correlative information about the levels of other

thymidylate synthase macromolecules. More specifically, while the cell converts DNA to

mRNA that is translated into protein, changes at the DNA copy level do not elicit

proportional changes in mRNA and changes at the mRNA expression level are not

predictive of the resulting protein expression levels. Importantly, thymidylate synthase

protein auto-regulates its own expression, further complicating correlations between

thymidylate synthase protein, mRNA, and DNA. Thus, thymidylate synthase protein and

mRNA levels are not expected to have strong concordance. Clearly, incorporating such

knowledge of drug regulation, metabolism and disposition into the design of

pharmacogenomic studies is important and can affect the ultimate interpretation of

results.

There are other methodological limitations that confound the utility of 5-FU

resistance studies. The sensitivity and predictive value of 5-FU response can vary

profoundly based on the selected detection method.8 For example, thymidylate synthase

levels measured by the more quantitative PCR-based methods were found to have greater

predictive value for 5-FU response compared to levels measured by IHC.9 Also,

traditional pathologist-based scoring of protein expression via immunohistochemical

(IHC) staining is semi-quantitative (categorical), and often suffers from lack of

reproducibility, low sensitivity, and low dynamic range.10 Additionally, the type of tumor

material measured (metastasis versus primary) may also influence the prognostic utility

of a biomarker. For instance, there are conflicting results published on thymidylate
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synthase expression in metastases and primary tumors.11-13 A recent meta-analysis found

that if thymidylate synthase expression was determined in the metastatic lesion, the

hazard ratio (HR) was 2.39 (95% CI, 1.43–4.01) compared to only 1.33 (95% CI, 1.07–

1.61) when measured in the primary cancer.9

As mentioned earlier, selecting biologically-relevant approaches to choosing

targets is critical for exploring mechanisms of 5-FU resistance. While many studies

focus on the single gene candidate approach to identifying resistance mechanisms of

5FU, a pathway-guided target approach may actually be more beneficial for several

reasons. This approach simultaneously investigates the interaction of targets critical to 5-

FU activation, catabolism, and therapeutic activity. Although single candidate studies do

contribute to the aggregate knowledge of 5-FU pharmacokinetic and pharmacodynamics,

their focused scope limits their ability to capture the complex interplay between 5-FU

pathway targets and its resistance. With 24 proteins comprising the 5-FU

pharmacokinetic and pharmacodynamic pathway known to date, it is quite improbable

that 5-FU resistance would be wholly attributable to one target. Thus, an approach that

investigates multifactorial etiologies of 5-FU resistance could provide a more complete

characterization.7 Additionally, a pathway-guided approach employs rigorous

interrogation of targets that have pharmacodynamic and pharmacokinetic data supporting

their relevance to 5-FU. Also, investigating a small number of pathway targets in a

limited number of samples often has more statistical power to detect targets with small

effect sizes than a genome-wide association (GWA) study because GWA studies

typically have substantial correction for multiple hypothesis testing.14 Moreover, using a
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priori knowledge to investigate target heterogeneity in situ or within clinical samples

allows for clinical relevance to more directly be established.

The phenotype of the samples investigated can also contribute to the molecular

diversity. For example, both normal human polymorphisms and tumor genetic

heterogeneity contribute to the large interpatient variability in response to cytotoxic

agents. The combined effects of genetic heterogeneity of tumors and normal human

polymorphisms are in part responsible for the large interpatient variability existing for

nearly all targeted and cytotoxic agents. These molecular changes significantly impact 5-

FU metabolism and disposition in vivo. Phenotyping tumors based on clinical resistance

(exposure) to 5-FU increases the ability to identify the underlying contributors to

resistance through the process of enrichment. Enrichment refers to the belief that exposed

samples are uniquely concentrated with molecular patterns that allow tumorigenesis to

persist despite adequate 5-FU therapy. Evidence for this phenomenon has been

published.15,16

The central aim of this dissertation project is to use a pathway-guided approach to

identify mechanistic determinants of 5-FU resistance in metastatic colorectal cancer

patients. This objective was addressed two parts. The first section of this dissertation

characterized 5-fluorouracil pathway targets whose expression differed in clinical

resistant (exposed) colorectal liver metastases compared to unexposed tumors.

Specifically, patients were phenotyped for 5-FU exposure and various clinicopathological

variables, samples were incorporated into a tissue microarray, and the protein expression

was quantified using AQUA. This step required the construction of a TMA and the
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retrospective analysis of patient charts and pathological reports. The second part of this

project investigated the mechanism whereby 5-FU pathway targets associated with 5-FU

exposure cause resistance (again using colorectal liver metastases). Copy number variants

in genes encoding targets from the 5-FU pathway were identified that were associated

with 5-FU exposure. Additionally, shRNA-mediated knockdown of genes encoding

UCK2, DPD, and DUT, the pathway proteins with expression significantly associated

with 5-FU exposure, was undertaken to see if loss of these genes would augment cellular

sensitivity to 5-FU. This combined-modality approach allows for the characterization of

the molecular determinants for 5-FU resistance.

The goal of this concluding chapter is to assimilate the findings of this

dissertation project, to discuss these findings within the context of the broader body of

scientific literature, and to evaluate the impact of these findings and potential areas for

future investigation.

Summary

Chapter 2

The objective of Chapter 2 to characterized the entire clinical cohort of metastatic

colorectal cancer patients stratified by 5-FU exposure phenotype. To this end, 67 exposed

patients (received 5-FU within the 6 months preceding their liver resection) and 54

unexposed patients were evaluated with respect to clinical demographics, baseline

disease characteristics, chemotherapy, and survival. There were no significant differences

with respect to baseline characteristics with the exception of age at diagnosis of liver

metastases; the unexposed patients were 6 years older (p=0.01). The median overall

109



survival from surgical resection of colorectal liver metastases was 885 days and the

median disease free survival was 294 days.

In addition to 5-FU, thirty-one (46%) exposed patients received oxaliplatin as

part of their regimen. Twenty-four (36%) patients received bevacizumab. Fourteen (21%)

patients received irinotecan. One (1.4%) patient received cetuximab. Patient

chemotherapy regimens, demographics, and disease characteristics reflected the real-

world diversity and complexity seen in metastatic colorectal cancer patients and made

them well-suited to investigated 5-FU resistance.

Chapter 3

In Chapter 3, the goal was to identify 5-FU pathway proteins with altered

expression that is significantly associated with clinical resistance to 5-FU. Patients were

grouped based on their 5-FU exposure (in same manner as Chapter 2). Deterioration,

“checked out samples,” and loss samples dropped the exposed sample size from 67 to 47

and the unexposed sample size from 54 to 41. Cores from the available samples were

arranged on a tissue microarray and AQUA analysis of eight important 5-FU pathway

targets was performed to quantify protein expression. AQUA algorithms allow for

continuous, rapid, unbiased, sensitive detection of targets within subcellular

compartments of cells. In the univariate analysis, UCK2 was the sole target that had a

significantly different expression pattern between the exposed and unexposed samples.

When using a multivariate analysis model that adjusted for race and gender, UCK2

(0.019), DPD (p=0.035), and DUT (p=0.0135) had differential expression between

exposed and the unexposed. The model was very sensitive to gender secondary to target

expression. Additionally, shRNA knockdown of DPD, DUT, and UCK2 in 3 colorectal
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cancer cell lines was performed, so that the cellular cytotoxicity phenotype in the

presence and absence of 5-FU could be determined. Knockdown of these gene did

modulate the cellular 5-FU IC50. Knockdown mediated by shRNA resulted in at least a 2-

fold increased sensitivity to 5-FU in three cell lines for UCK2 (HCT116, HT29, and

SW620), in two cell lines for DUT (HCT116 and SW620), and in one cell line for DPD

(SW620). DPD was just below the threshold for credentialing (2-fold change in 5-FU

IC50) for both HT29 and HCT116.

To corroborate the validity of AQUA data, its variability, and its predictive

power, validation in an independent population is typically performed. We investigated

using a paired sample approach to validate our findings and concluded that including a

validation cohort for this study was impractical due to lack of our ability to achieve

adequate statistical power and limited resources. Accordingly, the feasibility of using

patients’ pre and post 5-FU exposure samples as a validation cohort was determined.

Approximately 25% of the exposed patients also had unexposed tumors, biopsy samples

taken prior to exposure, banked at UNC. This meant that there are approximately 12-16

matched samples from the retrospective cohort that could be used for AQUA. Before

using the 12-16 matched samples as a validation cohort, I determined how much target

expression must differ between the exposed and pre-exposed samples to have adequate

power.

Assuming 12 matched samples are available (n=12), low inter-patient variability

(0.06 SD), and comparing each patient’s ratio of expression in his 5-FU exposed sample

to the expression in his unexposed (biopsy) sample, there is 35% power to detect a mean
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difference of at least 1.3. Thus, if the effect size is similar to what was seen in the initial

AQUA analysis (Chapter 3), there is little power to detect a difference between exposed

versus unexposed samples. If the effect size of 5-FU exposure was noticeably larger, then

the power is more reasonable, even with high variability between patients. For example,

assuming n=12, high inter-patient variability (1 standard deviation), and comparing each

patient’s ratio of expression in her 5-FU exposed sample to the expression in her

unexposed (biopsy) sample, then there is 71% power to detect a mean difference of at

least 1.8.

These analyses suggest that constructing a validation cohort appears technically

feasible, assuming the same incidence of biopsies banked at UNC (25%) and assuming

that these samples are indeed in the tissue procurement facility bank. Deterioration,

“checked out samples,” and loss samples previously dropped the exposed sample size

from 67 to 47 (Chapter 3). While technically feasible, it also appears statistically unlikely

that this validation cohort will be able to replicate the previous results because of two

reasons: small sample size (n=12-16) and a modest effect size (based on the initial

analysis in protein, Chapter 3). Of course, with patients serving as their own controls, the

5-FU effect size could improve. Still, even with a generous effect size of 1.8, the study

remains underpowered.

Chapter 4

In Chapter 4, the primary aim was to determine whether gene copy number was

associated with 5-FU exposure of pathway targets. Accordingly, patients were grouped

based on their 5-FU exposure. DNA was isolated from patient colorectal liver metastases

that were acquired during surgical resection. Gene copy number assessment was
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performed for thymidylate synthase (TYMS) and thymidine phosphorylase (TYMP) in

the overall clinical cohort (Chapter 2). Gain of TYMS DNA copy number was observed

in 18% of the 5-FU exposed metastases compared to only 4% in the unexposed

metastases group (p=0.036). TYMP copy number was not associated with significant

differences between 5-FU exposed and unexposed metastases.

These findings indicate that amplification of TYMS is a mechanism for clinical

resistance to 5-FU-based chemotherapy and may have important implications for the

post-resection chemotherapy choices for metastatic colorectal cancer patients. Copy

number variation assessment within DPD, DUT, and UCK2 were not evaluated despite

their protein expression being significantly linked to 5-FU exposure because their mRNA

expression failed to show significant differences between these exposed and unexposed

patients (data not shown). Other genes were not evaluated for this analysis since the other

pathway targets evaluated (NME1, RRM1, RRM2) did not have differential expression at

the protein level.

An underlying hypothesis explored in this dissertation project is that copy number

variants elicit altered downstream expression. Thus, evaluating mRNA expression and

gene copy number for 5-FU pathway targets whose protein expression were associated

with 5-FU resistance would provide an unambiguous mechanism by which the molecular

heterogeneity occurs. AQUA was used as a filter for identifying pathway targets with a

functionally relevant association with 5-FU resistance. The mRNA expression data were

evaluated for DPD, DUT, and UCK2, which are the three 5-FU pathway proteins

identified as significant via AQUA. Gastrointestinal Spore collaborator, Jen Jen Yeh
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M.D., provided gene expression data using a microarray for 24 liver metastases exposed

to 5-FU and 20 unexposed liver metastases. Although DPYD, UCK2, and DUT were part

of her screen, their expression was not differentially expressed based on 5-FU exposure.

Since Dr. Yeh utilized the same samples used in the retrospective cohort (Chapter 2)

developed for this dissertation and had the same study design, her results were highly

prejudicial for not performing additional mRNA studies for these samples and targets.

Additional mRNA expression studies would be unlikely to yield different results in spite

of a somewhat larger sample size.

There are numerous potential reasons as for why the mRNA and protein

expression data didn’t correlate including: negative feedback (proteins directly and

indirectly regulate their own gene expression through multiple mechanisms), post-

translational regulation (such as methylation), mutations in exon or promoter regions, and

mutated gene products with altered degradation rates. Due to the sheer abundance of

potential explanations for the discordance, it was impractical to continue exploring

correlations and beyond the scope of this project. Since mRNA expression data failed to

demonstrate a significant difference between exposed and unexposed samples, copy

number assessment for UCK2, DPYD, and DUT was not performed. Note copy number

evaluation of TYMS and TYMP were conducted as part of an exploratory analysis before

the decision was made to use AQUA to screen targets for functional relevance.

Additionally, there were poor correlations between thymidylate synthase (gene and

protein, Spearman’s -0.0170, p=0.8777) and thymidine phosphorylase (gene and protein,

Spearman’s -0.1829, p=0.1214) for AQUA and real time PCR detection. This lack of

gene-protein correlations for thymidylate synthase and thymidine phosphorylase
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indirectly provides support for not evaluating copy for other targets. The lack of

correlation could result from a myriad of reasons including dysregulation of gene copy

and RNA resulting from insertions and deletions and point mutations that alter RNA

turnover or cellular senescence. With TS autoregulation of its own expression,

discordance is not uncommon.7 This could also reflect the tumor-specific expression

determined by AQUA compared to a mixture of normal and tumor cells present in

extracted DNA or mRNA from the metastases.

Future Directions

This dissertation research has prompted a number of proposed future

studies into the impact of 5-FU pharmacokinetic and pharmacodynamic pathway proteins

on 5-FU resistance. A discussion of the proposed follow-up studies follows.

Target Validation with AQUA

In order to determine the degree to which the AQUA results are applicable to

other mCRC patients, the next step would be to validate these results using another TMA

composed of colorectal liver metastases. Ideally, a well-matched independent validation

cohort would already exist and be available through collaboration, but if none are

available then one could be created in a manner similar to the development of the

retrospective clinical cohort (see Chapter 2). Note, an independent cohort would be most

desirable, as it would help avoid coverage error, which occurs when there is a

discrepancy between the target population and the population from which the sample was

derived.17 Note that coverage error potentially compromises the ability to generalize the

results of the study. Samples from the validation cohort would be phenotyped based on 5-

115



FU exposure (as described in Chapter 2). The same inclusion and exclusion criteria and

methodologies would be employed as the initial cohort (see Chapters 2 and 3). Also, it

would be important for the validation cohort to have similar baseline disease

characteristics (in addition to AJCC stage), chemotherapy regimens, and patient

demographics. To assess the similarities between the cohorts, which would allow for

direct comparisons of data, statistical tests evaluating homogenicity of baseline disease

characteristics, demographics, and chemotherapy regimens can be performed.18 Provided

that the samples are sufficiently homogenous, any differences apparent in the cohorts are

more likely due to molecular heterogeneity or chance (more rare) instead of confounders.

However, if the tests of homogenicity are not significant, then the heterogeneous

population of colorectal tumor samples may be too distinct to use for validation.

Just as in the initial cohort, differences in the expression of 5-FU pathway targets

within colorectal liver metastases will be correlated with 5-FU exposure. Also, now that

there is data regarding the effect size of 5-FU exposure on the expression of these 5-FU

pathway targets (see Chapter 3), the number of cases included in the replication cohort

would ideally be increased. For example, post-hoc statistical power calculation revealed

that the initial analysis was underpowered given the modest effect size (power <0.3).

Adequate power will decrease the risks of a false-negative result, make sure that the

sample represents the population, and make sure that the effects of clinical resistance on

target expression are accurately characterized. The recommended sample size would be at

least 620 samples to achieve adequate power based on the UCK2 data (see Chapter

3).19,20 Note, if the validation analysis is also performed at the translational pathology

laboratory at UNC, then one consideration is that there is a priori knowledge of the
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results from the initial analysis; since AQUA is automated, perhaps perceived researcher

bias would be minimized.

There are numerous reasons why a validation cohort is important. Validation

cohort help avoid spurious conclusions. For example, Gustavson and colleagues

quantified TS within primary colorectal carcinomas using AQUA in two large cohorts.

The training and validation cohorts consisted of 599 and 447 tumor samples,

respectively.21 In the training cohort, there was a significant association found between a

decreased 5-year disease-free survival (DFS) and increased TS nuclear expression (16%

decreased survival [72% to 56%], p<0.001), cytoplasmic expression (12% decreased

survival [70% to 58%], p=0.02), and higher nuclear to cytoplasmic expression ratio (15%

decreased survival [66% to 51%], p<0.001). However, in the validation cohort only the

expression ratio showed a significant association with outcome (time to recurrence),

p=0.03. Ideally these cohorts would have used the same outcome measure; still, both

DFS and time to recurrence have certainly been used successfully as a surrogate for

survival in other trials; the lack of correlation likely means that nuclear and cytoplasmic

expression’s impact on survival was overestimated in the training cohort. Thus, by

performing analyses in the validation cohort, there is refinement of the model, and the

most important variables can be highlighted. Indeed, subsequent unpublished data from

the same group also demonstrated that TS nuclear to cytoplasmic ratios was a better

prognosticator for clinical outcome than either nuclear or cytoplasmic expression alone.

Another advantage of validation cohorts is that they provide greater confidence in the

data, as independent validation of results establishes the scientific rigor. For instance, a

recent study by Anagnostou and colleagues demonstrates how when the validation cohort
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is chosen correctly (or created carefully) and identical experimental methods employed,

AQUA data is highly reproducible.22 The authors used AQUA to quantify the expression

of mammalian target of rapamycin in the cytoplasm of lung adencarcinoma cytoplasm.

The expression was remarkably similar (56% and 50% of cases) in the training and

independent validation cohorts, respectively. Performing a validation cohort also may

provide additional scientific insights. For example, in the Gustavson study, TS nuclear to

cytoplasmic expression ratio was added to their Cox multivariate proportional hazards

multivariate model multivariate model of survival after it came out as significantly

associated with outcome in their both cohorts.21 Moreover, its inclusion in the model

improved the prognostic value of the model over clinical and pathological features alone.

Functional Validation

Additional functional validation would also strengthen my results by providing

additional mechanistic insights. Cell proliferation refers to the number of cells that are

dividing in a culture. Colorectal cancer, as well as other cancer types, is characterized by

hyperproliferation. This dysregulation undoubtedly contributes to its pathogenesis. While

cytotoxicity was used to evaluate the functional relevance of the targets, the cytostatic

effects of the shRNA to DPYD, DUT, and UCK2 (and of 5-FU) were not analyzed.

Additionally, cell cycle perturbation has been linked to 5-FU resistance in resistant

colorectal cancer cell lines.23 Understanding the impact of shRNA and 5-FU resistance on

the cell cycle would provide a relevant contribution to our understanding of the

underlying molecular mechanisms of 5-FU resistance. Another complimentary study

would be to modulate the phenotype of CRC cell lines from chemosensitive to 5-FU
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resistant. Thus, reasonable next steps in the functional validation of these targets would

be to assess the impact on the distribution of the cell cycle and proliferation in CRC cell

lines after shRNA knockdown both in the presence and absence of 5-FU. Also, the

functional impact of overexpression of prioritized pathway targets will be evaluated in

vitro. To this end, I propose the following experiments: flow cell cytometry, enzyme-

linked immunosorbent assay (ELISA), and transfecting cDNA vectors overexpressing 5-

FU pathway target genes. These experiments would be performed using the three cell

lines that were used in the initial functional validation (SW620, HT29, and HCT-116; see

Chapter 3).

To characterize the functional impact of shRNA and 5-FU resistance on cell

cycle, the aforementioned CRC cell lines should undergo flow cell cytometry.

Synchronization of the cell cycles would be necessary by incubating them for 48 hours in

medium without fetal calf serum at 37° Celsius at 5% carbon dioxide. Cells would then

be incubated: 1) with no shRNA and no 5-FU, 2) with shRNA but no 5-FU, and 3) with

shRNA and with increasing concentrations of 5-FU. These “treatments” would be added

to the medium. After harvesting, rinsing, and fixating the cells, they would be incubated

with detergent Triton-X and stained, such as with propidium iodide in PBS. Then, the

stained cells will be analyzed via flow cytometry (Beckton Dickinson, Heidelberg,

Germany). Cells from each sample would be counted until 10,000 cells were determined

to be in a predefined G1-gate. Then, the cell cycle distribution or the percentage of cells

in the G0/G1, S, and G2/M phase, can be evaluated using WinMDI version 2.9 software.
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Additionally, the cell proliferation could be evaluated with the cell proliferation

ELISA bromodeoxyuridine (BrdU) chemiluminescence assay (Roche Diagnostics, GmbH

Manheim Germany). This assay allows for assessment of cell proliferation by quantifying

BrdU incorporated into the newly synthesized DNA of replicating cells. The sensitivity

and activity of this assay should be comparable to the more traditional [3H]-thymidine-

based cell proliferation studies.24 This assay has been used successfully in colorectal

cancer cell lines as well.25 Again, cells could be incubated: 1) with no shRNA and no 5-

FU, 2) with shRNA but no 5-FU, 3) with shRNA and in increasing concentrations of 5-

FU. Cells would be cultured in 96-well microtiterplate and pulse-labeled with BrdU.

Only proliferating cells incorporate BrdU into their DNA. Cells would be fixated,

genomic DNA denatured, allowing the incorporated BrdU to be detected. A secondary

perioxidase-conjugated anti-BrdU antibody will locate and bind the BrdU label in DNA.

Then a peroxidase substrate, such as Luminol/4-iodophenol, will be used to quantify the

bound-anti-BrdU complex. Alternatively, an ELISA could also be used to quantify the

expression of molecules that regulate cell proliferation, such as cell division protein

kinase 1, cyclin A, cyclin B1, p21Waf1, and p27Kip1. Again, the cells could be stratified as

mentioned earlier to interrogate the impact shRNA and 5-FU resistance are making on

cell proliferation.

A third plan to investigate the functional relevance of genes that came out of the

AQUA screen would be to use cDNA vectors to overexpress the target genes of interest.

For example, cells transfected with overexpressing cDNA vectors and those that have an

empty vector could both be treated with 5-FU and their respective cytotoxicities

compared. This would allow for an in vitro investigation of resistance from an opposite
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perspective. For example, since UCK2 is overexpressed in clinically resistant (exposed)

sample, transfection of cDNA overexpressing UCK2 should result in a higher 5-FU IC50

compared to control. Expression from cells from both pre and post plasmid transfection

could also be analyzed via AQUA for confirmation of increased UCK2 levels post

transfection. This type of modulation is not possible in vivo but provides tremendous

mechanistic validation.

Clinical Trial

To provide additional insights to the clinical relevance of these targets, they should be

investigated as part of another clinical trial. The study population would still consists of

patients with colorectal liver metastases, but those with extrahepatic disease or positive

surgical margins would be excluded from this analysis to minimize confounders to the

survival analysis.26-28 The size of this cohort would also be larger, such as at least 620

patients, given the modest effect sizes of UCK2, DUT, and DPD (see Target Validation

with AQUA in Future Directions and Chapter 3). Patients would be randomized to

exposed and unexposed groups prior to resection of their liver metastases. Again,

exposed patients would have received 5-FU within the six months preceding their

hepatectomies. However, this time all patients would receive adjuvant 5-FU based

therapy post resection in accordance to NCCN guidelines; this therapy would be

documented. Additionally, pathological, other baseline disease characteristics, and other

clinical data including duration of recurrence (recurrence-free survival), pre and post-

surgical carcinoembryonic antigen (CEA) levels, and presurgical chemotherapy would be

recorded for each patient.
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The resected colorectal liver metastases would undergo microdisection in an

effort to minimize the normal cell contamination problem, which is evident in bulk tumor

samples. Microdissection allows procurement of specific cells or cellular populations

from a histology slide via direct microscopic visualization. There are many types of

microdissection ranging from simple mechanical systems to more sophisticated

instruments, such as laser capture microdissection and selective ultraviolet radiation

fractionation.29-35 The primary result of performing microdissection would be a more

homogenous population of tumor cells to carry forward for the analyses. A tissue

microarray would again be constructed with triplicate samples for each patient whenever

feasible (see Chapter 3). All samples would be randomly distributed across the array.

DNA and mRNA from the samples would also be obtained using the Qiagen All-Prep kit

(Qiagen Inc, Valencia, CA). Quantification of the expression of 5-FU pathway targets

(especially UCK2, DPD, DPYD, and DUT) in the colorectal liver metastases would be

performed with AQUA and real-time quantitative reverse-transcriptase polymerase chain

reaction (qRT-PCR).

Thus, the study design would consist of enriching samples for variation

underlying resistance through stratifying patients based on their 5-FU exposure,

identifying molecular variation associated with resistance, and then comparing the

disease-free survivals between patients with variation associated with resistance and

those who don’t. This study structure would represent a more comprehensive approach to

evaluating the clinical impact of resistance and would potentially have more perceived

external validity since recurrence-free survival is a more widely used endpoint compared

to exposure. Additionally, univariate and multivariate models for resistance would be

122



created. The univariate analysis would determine whether molecular variation as

determined by AQUA and Real time qRT-PCR is associated with clinical resistance to 5-

FU (exposure) using a two-sided Wilcoxon. Then logistic regression would be used for

the multivariate model. Importantly, the larger sample cohort would allow for more

variables to be included into the model, such as CEA and recurrence-free survival.

Gender would also be included in the model.

The interaction between gender, 5-FU exposure-phenotype, and DPD, DUT, and

UCK2 protein expression found in dissertation (see Chapter 3) has prompted some

interest in defining the role of gender on biomarker predictive value in metastatic

colorectal cancer patients. Gender-related expression differences are not unique to this

cohort. For example, Gustavson and colleagues recently found a statistically significant

longer disease-free survival associated with female gender in colorectal cancer patients.21

Longer survival and better response to 5-FU in females is believed to be linked to

females having lower DPD expression compared to males thereby making females less

resistant due to lower 5-FU clearance.36,37 However, subsequent studies have not

consistently replicated this association with outcome.38-40 Additional studies evaluating

the relationship between gender and 5-FU clearance and DPD activity also have

conflicting results.41-46 Presumably, some of the disparity in data results from

methodological differences and tissue preparation between studies. However, even within

trials reporting significant gender differences, substantial overlap in values existed

between males and females. A literature search did not reveal that gender has previously

been implicated in differential DUT or UCK2 expression. If gender turns out to be a
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significant prognosticator of recurrence-free survival, associated with exposure-

phenotype, then the molecular basis would also have to be explored.

Concluding Remarks

AQUA quantification of pathway proteins in tumors coupled with enrichment has

the potential to be a powerful tool for identifying functionally-relevant variation

associated with resistance. Protein expression profiles can be compared between

clinically resistant and sensitive samples, which can then coupled with mRNA

expression, copy number determination and in vitro experiments for mechanistic

elucidation. These results suggest that samples exposed to 5-FU are both phenotypically

and molecularly distinct from unexposed tumors. Furthermore, variation in these pathway

targets modulates in vitro sensitivity to 5-FU in colorectal cancer cells. With further

exploration and refinement, this multi-platform model may be able to identify underlying

causes of resistance, associated with protein levels, to novel drugs (based on in situ

proteomic profiling). This would enable better individualization of care: resistant patients

to avoid unnecessary exposure to ineffective therapy and to be treated with drug regimens

to which they will more likely respond.
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Appendix 1:

Supplementary Data



Rows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1 121 4 157 140 234 35 153 33 194 49 161 101 172 27

2 77 137 72 183 251 184 109 162 9 143 105 55 87 221

3 160 24 139 167 29 17 58 174 190 75 147 107 242 43

4 166 25 46 5 85 54 66 40 44 200 47 53 249 152

5 68 188 41 108 186 21 150 205 100 119 208 247 102 118

6 71 67 126 180 112 1 196 206 134 62 236 201 209 117

7 210 11 18 84 96 179 178 229 95 91 203 124 135 170

8 207 69 98 132 28 103 14 142 248 120 177 94 90 113

9 148 89 193 97 164 220 81 31 154 216 10 181 45 74

10 246 70 56 99 202 128 250 123 15 34 146 214 65 243

11 226 218 165 231 204 13 125 6 48 115 169 159 158 149

12 57 224 80 254 185 30 238 211 22 255 258 116 50 168

13 171 92 61 257 19 156 59 237 176 93 122 198 64 16

14 241 63 191 51 133 232 36 213 144 42 52 8 7 83

15 60 37 131 233 78 256 173 141 3 155 175 2 244 197

16 130 225 129 217 215 23 212 195 199 82 187 127 230 252

17 26 145 88 182 192 104 240 151 235 32 39 253 76 110

18 245 227 20 12 138 136 86 228 111 38 223 73 106 79

19 163 222 114 219 239 189
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Figure A1.1 Configuration of tissue microarray
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Figure A1.2 Distribution of UCK2 protein
expression among the exposed (red) and
unexposed (blue) as quantified by AQUA
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Figure A1.3 Distribution of DPD protein
expression among the exposed (red) and
unexposed (blue) as quantified by AQUA
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expression among the exposed (red) and
unexposed (blue) as quantified by AQUA
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Figure A1.5 Example of dose-response curves
used to quantify altered 5-FU phenotype
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Figure A1.6 DPYD mRNA expression as
determined by microarray in exposed (red) and
unexposed (blue) samples
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Figure A1.7 DUT mRNA expression as
determined by microarray in exposed (red) and
unexposed (blue) samples
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Figure A1.8 UCK2 mRNA expression as
determined by microarray in exposed (red) and
unexposed (blue) samples
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