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ABSTRACT 

Alyssa Joy Cozzo: The Influence of Overweight- and Obesity-associated Mammary Adipose 
Inflammation on Progression of Triple-Negative Breast Cancer 

(Under the direction of Liza Makowski Hayes) 
 

Triple-negative breast cancers (TNBCs) are a collection of highly proliferative and 

invasive breast cancers primarily comprised of the basal-like (BBC) and claudin-low (CLBCs) 

molecular subtypes. We previously reported that weight gain and weight loss regulated pre-

neoplastic lesion formation, tumor latency, and tumor progression in C3(1)-TAg mice, a 

transgenic model of spontaneous BBC. These findings coincided with elevated concentration of 

hepatocyte growth factor (HGF), ligand for the proto-oncogene cMET, in the mammary 

microenvironment of high-fat diet (HFD)-fed mice. Thus, herein we conducted a two-phase 

study investigating whether crizotinib, an inhibitor of cMET, would delay onset of BBC in low-fat 

(LFD) and HFD-fed C3(1)-TAg mice. When administered prophylactically – before tumor onset – 

crizotinib did not significantly affect tumor progression or tumor burden. However, with 

therapeutic treatment following tumor development, crizotinib significantly reduced tumor 

multiplicity and vascularity in LFD- and HFD-fed C3(1)-TAg mice. These findings emphasize the 

importance of clarifying “windows of susceptibility” during which HGF/cMET signaling may play 

disproportionately greater roles in BBC onset and progression. 

We next hypothesized that adult weight gain and an inflammatory overweight mammary 

microenvironment would augment CLBC progression, while weight loss before tumor 

development would normalize overweight-associated tumor promotion. Therefore, a C3(1)-TAg-

derived CLBC cell line was orthotopically transplanted into lean, overweight, and formerly 

overweight female FVB/NJ mice. Indeed, overweight accelerated tumor progression and 
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induced pro-inflammatory changes in the mammary gland, including increased growth factor 

expression and crown-like structure formation. Weight loss abrogated overweight-induced tumor 

growth and reduced expression of mitogenic and metastasis-associated signaling pathways in 

tumors, significantly attenuating inflammation-induced CLBC progression. Interestingly, 

overweight also resulted in enhanced expression of a mast cell transcriptional signature in 

whole mammary tissue. Increased mast cell scores were also observed in cancer-adjacent 

breast tissue of overweight and obese relative to normal weight breast cancer patients. 

Conversely, lower intratumoral mast cell score was significantly associated with both triple-

negative subtype and elevated risk-of-recurrence score in human breast cancers. Taken 

together, our results support that excess adiposity facilitates TNBC aggression. Further 

elucidation of adiposity-driven mechanisms of tumor progression and the efficacy of preventive 

measures such as weight loss could have tremendous potential for public health.
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CHAPTER 1: CONTRIBUTION OF ADIPOSE TISSUE TO DEVELOPMENT OF CANCER1 

Didactic Synopsis 

Major teaching points:  

1. Solid tumor growth requires the interaction of tumor cells with the surrounding tissue, 

leading to a view of tumors as communities rather than exclusively tumor cells. 

2. Adipose tissue, or fat, plays important roles in cancer risk and outcome because many 

tumors grow close to or in direct contact with adipose.  

3. The adipose community – or microenvironment - includes adipocytes and adipose-

associated stromal and vascular components, such as fibroblasts and other connective 

tissue cells, stem cells, endothelial cells, innate and adaptive immune cells, and 

extracellular signaling and matrix components.  

4. Herein, we review the cellular and non-cellular parts of the adipose “organ” and the 

mechanisms by which varied microenvironmental components contribute to tumor 

development, with emphasis on obesity.  

5. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, 

which intriguingly resemble shifts observed within the tumor microenvironment.  

6. Understanding neighboring adipose is critical in tumorigenesis. 

                                                           
1This chapter was published as an Overview Article within the journal Comprehensive Physiology. The original 
citation is as follows: Cozzo, A.J., Fuller, A.M. and Makowski, L., Contribution of Adipose Tissue to Development of 
Cancer. Comprehensive Physiology. Published Online: 12 DEC 2017. DOI: 10.1002/cphy.c170008 
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Introduction 

Cancer is characterized by fundamental aberrations in cellular behavior, including the 

ability to multiply indefinitely in the absence of growth-promoting factors and a resistance to 

signals that normally result in programmed cell death (apoptosis) [1]. In the case of solid tumors, 

carcinogenic transformation and cell proliferation are followed by establishment of a vascular 

supply, called tumor angiogenesis, 

which facilitates the delivery of 

oxygen and nutrients to the growing 

tumor [1]. Subsequent invasion into 

and migration through surrounding 

tissues allows for the establishment 

of nearby satellite tumors or entry 

into the lymphatic or vascular 

systems for dissemination and 

secondary tumor formation 

(metastases) [1]. Solid tumor growth 

and tissue invasion require the 

interaction of tumor cells with the 

surrounding tissue, and it is well 

established that communication between cancer cells and the tissue-level context in which they 

reside, collectively referred to as the tumor “microenvironment”, is pivotal in determining 

whether a given tumor will exist in dormancy or progress to malignancy [2]. The tumor 

microenvironment includes, but is not limited to, the tumor cells themselves, blood vessels 

(endothelial cells and pericytes), lymphatic vessels (lymphendothelial cells), adipocytes, 

fibroblasts, and various stem and progenitor cells [3] (Figure 1). Also present is a wide variety 

of innate and adaptive immune cells, which can act as critical anti-tumor defenses or, 

Figure 1. Tumors as communities. Tumor cells co-exist 
with a variety of stromal and immune cells and reside in a 
complex mixture of signaling molecules and extracellular 
matrix components. Adjacent adipose tissue may provide 
a hospitable environment to developing tumors.  
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alternatively, play central roles in tumor promotion. The tumor “stroma” is the connective, 

functionally supportive framework of the tumor, and by definition refers to a complex mixture of 

signaling molecules and extracellular matrix (ECM) components, as well as the stromal cells 

(e.g., fibroblasts and pericytes) that produce and are embedded within them [4]. However, the 

term “stroma” may also be used to collectively refer to all of the aforementioned cell types and 

secreted factors, as all are present within the cancer cell-adjacent tissue. Thus, considerable 

heterogeneity, both within the cancer cells themselves and among the interacting stromal cells, 

leads to a view of tumors as communities, and the process of tumorigenesis as a tissue-level 

phenomenon occurring in conjunction with intrinsic genetic deviations within individual cancer 

cells [5].  

Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in 

proximate or direct contact with adipocytes and other adipose-associated cell populations. 

Although the specific nature of the reciprocal communication occurring between a developing 

tumor and adjacent adipose tissue is an area of active study, a growing body of literature 

indicates that these interactions with the local adipose milieu are important drivers of 

malignancy. Many of these studies have focused on dysregulated adipose and associated 

systemic metabolic dysfunction in the context of obesity, as there is now adequate evidence 

establishing a link between obesity/adiposity and elevated risk for, or accelerated progression 

of, several cancers. Following an overview of the adipose organ, we will briefly address 

epidemiologic links between obesity and cancer. Subsequently, we have chosen to emphasize 

the local physical and paracrine roles of adipose tissue in solid tumor development and 

malignancy by focusing on individual components of the adipose tissue microenvironment. 

Although adipose dysfunction in obesity will be addressed frequently throughout this review, we 

aim to provide the reader with an understanding of the recently described mechanistic links 

between cancer development or progression and adipose tissue per se, as opposed to obesity-

associated systemic alterations such as metabolic dysfunction. 
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The Adipose Organ 

Adipose tissue is a type of loose connective tissue that was long considered to be 

largely physiologically inert, primarily storing energy in the form of lipids while cushioning and 

insulating the body. However, adipose tissue is also a substantial contributor to whole body 

endocrine signaling, modulating feeding behavior and total body energy expenditure, as well as 

hematopoiesis and lymphopoiesis, overall immune function, and reproduction [6, 7]. 

Additionally, adipose tissue is now understood to contribute to the pathogenesis of a variety of 

regional and systemic diseases. The adipose tissue “organ” is in fact comprised of several 

distinct adipose depots (Figure 2), each of which differentially exerts systemic and regional 

control on overall energy metabolism and signaling based on location and adipose tissue 

subtype. Broadly, adipose depots can be divided according to anatomic location into 

subcutaneous and visceral subtypes. Whole adipose depots, or specific regions within depots, 

may be further subclassified as white, brown, or beige depending on, among other factors, 

adipocyte mitochondrial content, with a higher relative number of mitochondria corresponding to 

a darker adipocyte hue. In humans, subcutaneous adipose tissue comprises ~80% of total body 

fat, and is contained primarily in the abdominal, gluteal, and femoral depots [8] (Figure 2A). The 

breast fat pad is also a nontrivial contributor to total subcutaneous fat content in women. On the 

other hand, visceral depots represent approximately 5-20% of total body fat in normal weight 

(i.e., not overweight or obese) individuals [8]. Visceral adipose tissue surrounds vital organs, 

and includes omental, mesenteric, and epiploic adipose, as well as the gonadal, epicardial, and 

retroperitoneal fat pads. Finally, numerous smaller depots, such as intramuscular, intraorbital, 

and bone marrow adipose, nourish and protect tissues throughout the body. While the majority 

of these depots are comprised of white adipose tissue – discussed further in the Adipocytes 

section below – smaller brown and beige adipose tissue caches are also found in adults [9, 10]. 

Importantly, due to similarities in the location and composition of adipose depots and endocrine 
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function relative to humans, the laboratory mouse (Mus musculus) is a commonly used model 

for investigation of adipose tissue anatomy and physiology (Figure 2B). 

 

 

Figure 2. The adipose organ is comprised of several distinct adipose depots. Adipose depot locations 
and subtypes in A) humans and B) mice (panel B adapted from [11] with permission). 

 

Although adipocytes constitute approximately 90% of adipose tissue volume, the 

adipose tissue microenvironment is a rich ecosystem of additional stromal and vascular 

components (often referred to collectively as stromal-vascular cells). The stromal-vascular 

compartment of human white adipose tissue includes endothelial cells (10-20% of cells), 

pericytes (3-5%), fibroblasts and other connective tissue cells (15-30%), and stem and 

progenitor cells (0.1%), which reside within a complex milieu of signaling molecules and ECM 

components [12] (Figure 3). Adipose tissue also contains a rich and varied collection of innate 

and adaptive immune cells (macrophages, dendritic cells, mast cells, eosinophils, neutrophils, 

and lymphocytes; 25-45%) [12]. However, the exact cellular proportions, degree of vascularity, 

ECM composition, metabolic characteristics, and secretory products of adipose tissue vary 

according to numerous factors, including depot location, sex, age, health status, and extent of 

adipose accumulation [8]. 
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Figure 3. Approximate composition of human white adipose tissue stromal-vascular fraction 
(percent cellularity). 

 

Obesity and Cancer 

Adipose tissue exhibits an almost unlimited capacity to expand, a unique property that 

has received increased attention in recent years as obesity has moved to the forefront of global 

public health concerns. Overweight and obesity, defined by the World Health Organization 

(WHO) as abnormal or excessive adiposity that presents a risk to health, are frequently 

measured at the population level using the body mass index (BMI), an individual’s weight in 

kilograms divided by the square of his or her height in meters. However, it must be 

acknowledged that, at an individual level, the BMI formula can vary considerably by sex and 

race and says little about body composition, often underestimating adiposity [13, 14]. For this 

reason, additional measures specifically of adiposity, such as waist circumference or the Body 

Adiposity Index (BAI; [hip circumference (cm)/height (m)1.5-18]) developed by Bergman et al. 

[15], are sometimes used to correlate adiposity with disease risk.  

 

Current status of the obesity epidemic, globally and in the United States 

Since the recognition of obesity as a global epidemic in 1997 [16], increasing resources 

have been allocated to more completely understanding the prevalence, risk factors, and long-

term consequences of this health hazard. For example, a recent quantitative meta-analysis 
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published in The Lancet analyzed 1,698 population-based data sources, encompassing 186 

countries and more than 19.2 million adult participants (9.9 million men and 9.3 million women), 

to evaluate trends in mean BMI over the last four decades [17]. The authors reported a global 

increase in overall age-adjusted prevalence of obesity in men from 3.2% to 10.8%, and in 

women from 6.4% to 14.9%, between 1975 and 2014 [17] (Figure 4A). An additional cross-

sectional analysis of the United States National Health and Nutrition Examination Survey 

(NHANES) for the years 2013-2014 reports that the overall age-adjusted prevalence of obesity 

(again by BMI) among men and women in the US has now reached a staggering 35% and 

40.4%, respectively [18]. Furthermore, extreme obesity (or class 3 obesity, defined as BMI >40) 

in the US is currently 9.9% for women and 5.5% for men [18], considerably higher than the 

global prevalence of 1.6% and 0.64%, respectively [17] (Figure 4B). Importantly, a 

disproportionate burden of obesity and overweight is observed among women who self-identify 

as Hispanic or non-Hispanic black minorities; NHANES data indicate that the overall age-

adjusted prevalence of obesity in non-Hispanic black and Hispanic women measures 57.2% 

and 46.9% respectively, compared to 38.2% in non-Hispanic white women [18] (Figure 4C). 

Finally, it should be noted that rising obesity rates are not restricted to adults. The prevalence of 

obesity in US children and adolescents ages 2 to 19 years old rose from approximately 10% 

during the 1988-1994 NHANES period to 17.0% in the 2011-2014 period, with extreme obesity 

more than doubling from approximately 2.5% to 5.8% [19]. 

 



8 
 

 

Figure 4. Rising global and US obesity rates. A) Global age-adjusted prevalence of obesity in men and 
women, 1975 and 2014; B) Class III obesity (BMI >40), globally and US; C) US obesity prevalence by race, 
ethnicity [17]. 

 

The obesity-cancer link 

Cancer is currently the second leading cause of death in the United States and is 

expected to surpass heart disease as the leading cause of death within the next few years [20]. 

Approximately 40-60% of cancer patients are classified as overweight or obese [21, 22], and in 

2004 it was estimated that overweight and obesity accounted for one in seven cancer deaths in 

men and one in five in women [23]. Importantly, obesity is differentially associated with 

increased risk of cancer development and increased risk of poorer cancer prognosis. Indeed, 

there is adequate evidence to support an association between obesity and increased risk of 

developing colorectal, post-menopausal breast, endometrial, kidney, esophageal, liver, 

gallbladder, pancreatic, and thyroid cancers, as well as non-Hodgkin’s lymphoma and myeloma 

[24-28]. There is also strong support for an influence on outcome for several cancer types for 

which an association between obesity and increased risk of onset remains ambiguous. The 

American Society of Clinical Oncology (ASCO) has acknowledged that obesity contributes to 

poorer cancer prognosis following diagnosis in a number of ways, including by impairing the 

delivery of systemic cancer therapies and by elevating risk of both tumor recurrence and 

development of additional primary malignancies [29].  
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Interestingly, there is also a body of literature that supports a protective effect of obesity 

in overall survival for some cancer types, a finding known as the “obesity paradox”. Potential 

explanations for the obesity paradox emphasize methodological issues, such as unmeasured 

confounders and/or a reliance on BMI as a metric for obesity [30, 31]. As mentioned previously, 

BMI is a rather crude mathematical estimate that does not capture important considerations 

such as percent adiposity, regional distribution of adiposity (e.g., android vs gynoid obesity), or 

differences in lean mass. Gonzalez et al. reported that the use of body composition indices 

resulted in a disappearance of the obesity paradox in 175 cancer patients in which BMI was 

previously associated with a protective effect, emphasizing the importance of considering body 

composition in epidemiologic analyses of cancer outcomes [32]. In fact, when body composition 

was included, loss of lean mass (sarcopenia) was a more important prognostic indicator than 

BMI for patients exhibiting cancer-associated cachexia, a systemic wasting syndrome frequently 

observed in end-stage cancer patients that is characterized by a rapid loss of both skeletal 

muscle and adipose tissue [32, 33]. Thus, additional evidence is needed to determine whether 

isolated reports of the obesity paradox are simply artefactual or in fact clinically relevant. 

Nevertheless, leading hypotheses seeking to explain observed connections between 

obesity and increased cancer morbidity and mortality emphasize factors such as metabolic 

disruption-induced growth factor dysregulation; higher levels of circulating adipokines and 

cytokines secreted by inflamed obese adipose tissue; and elevated production of estrogens by 

adipose tissue [34, 35]. These hypotheses emphasize the role of adipose as an endocrine 

organ and obesity as a potential state of adipose endocrine dysfunction. However, the 

mechanisms whereby adipose accumulation increases risk of tumor onset and/or mediates 

tumor progression in adipose-adjacent cancers are multifactorial, complex, and likely 

tissue/organ-specific, in part due to unique paracrine and physical interactions occurring 

between cancer cells and adjacent adipose tissue. Moreover, growth and invasion of some solid 

tumors into adjacent adipose may promote tumor aggression even in the absence of obesity. 

For example, irrespective of BMI, adipose tissue invasion at the tumor margin is associated with 
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an increase in lymph node metastasis in patients with invasive breast carcinoma [36]. Thus, 

whether select adipose-mediated mechanisms of tumor promotion are merely exacerbated by 

obesity or are unique to a dysregulated obese adipose microenvironment in many cases 

remains to be determined. In this review, we have especially highlighted the role of adipose 

tissue in the development and progression of breast and prostate cancers due to the prevalence 

of these cancer types in the US population and their significant contributions to cancer-related 

mortality (see below). 

Breast and prostate cancers are the most frequently diagnosed cancers and the second 

leading causes of cancer-related death among US men and women, respectively [20]. Due to 

their now recognized genetic and molecular heterogeneity, these cancer types have been 

shown to exhibit complex associations with obesity. For example, although the association 

between obesity and risk of postmenopausal breast cancer is now well established, the 

relationship between obesity and premenopausal breast cancer risk remains controversial and 

appears to be dependent upon breast cancer subtype. Specifically, recent work has clarified an 

association between obesity and premenopausal onset of triple-negative breast cancers 

(TNBCs), with differential risk according to race [37-41]. Studies from our lab and others have 

also demonstrated that diet‑induced obesity is associated with accelerated TNBC latency (time 

to development of a palpable tumor) in ovary-intact preclinical mouse models [42-45]. In 

patients with confirmed breast cancers, obesity is associated with increased risk of breast 

cancer invasion [46, 47], development of distant metastases [48-50], tumor recurrence [51, 52], 

and mortality [24, 53-59] irrespective of molecular subtype. On the other hand, the role of 

obesity in risk of prostate cancer development remains equivocal [60-63], in part because, 

similar to breast cancer, prostate cancer risk in obese individuals also appears to vary by race 

[60, 64]. However, in confirmed prostate cancers, obesity is consistently associated with an 

elevated risk of cancer aggression (clinically advanced cases or high Gleason scoring, a 

grading system is used to inform the prognosis of men with prostate cancer) and prostate 
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cancer-associated mortality [65, 66]. Thus, rising obesity rates present an oncological crisis, 

both globally and within the US. 

Following a brief consideration of the anatomy of breast and prostate in humans and 

laboratory mice - a frequently used model in basic science and translational/pre-clinical cancer 

studies - potential mechanistic links between adipose tissue and breast and prostate cancer 

development or progression will be discussed in detail below through a comprehensive 

examination of the available literature regarding adipose-cancer interactions in each organ. 

 

Anatomy of the Breast and Prostate 

The laboratory mouse remains the most widely used animal model for the study of 

cancer pathophysiology. Consequently, integration of experimental findings with studies of 

human disease requires an understanding of human and veterinary pathology and anatomy, as 

well as developmental, molecular, and cellular biology. While this level of detail is beyond the 

scope of this review, this section will provide a brief comparative biology overview of the breast 

and prostate in humans and mice as a backdrop for the studies reviewed in subsequent 

sections.  

 

Mammary gland anatomy and adipose-cancer interaction in humans vs. mice 

In both mice and humans, the mammary gland is a unique, dynamic organ that 

continuously undergoes anatomic and functional changes over the life course [67]. In mice, the 

nascent mammary gland (“mammary tree”) consists of a network of epithelial ducts, each of 

which terminates in a stem cell-enriched structure called a terminal end bud (TEB; Figure 5A). 

During sexual maturation, inductive hormonal and growth factor-derived signals stimulate the 

proliferation of ectodermal cells within these TEBs, driving ductal elongation and branching [68-

70]. The mature mammary epithelium continues to undergo further differentiation during later life 
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stages such as pregnancy, lactation, and post-partum involution, or epithelial regression [70, 

71]. Development of the mammary tree and pregnancy/lactation-associated expansion and 

involution require remodeling of the surrounding stroma. In mice, mammary ductal-adjacent 

stroma is primarily comprised of adipose tissue, without a significant collagenous matrix layer 

(Figure 6).  

 

 
Figure 5. Comparison of mouse and human mammary gland anatomical structure. A) Murine ductal 
elongation and branching occur at the Terminal End Buds (TEBs). B) The human mammary gland is 
extensively branched, culminating in the functional terminal ductal lobular unit (TDLU). 

 

In comparison to mouse, the human mammary gland is a more extensively branching 

structure. Beginning at the nipple, the lactiferous sinus branches into segmental, or interlobular, 

ducts (Figure 5B). Segmental ducts branch further into terminal ducts and lobules, which 

together comprise the functional unit of the human mammary gland, the terminal ductal lobular 

unit (TDLU). Immediately surrounding the TDLU is a loose intra-lobular stroma, referred to as 

“specialized stroma”, which contains abundant fibroblasts (Figure 6) [71]. Dense, collagenous 

inter-lobular stroma surrounds the entire human TDLU structure, forming a thick layer between 

the TDLU and adjacent adipose tissue. Fibroblasts within the intra-lobular stroma exhibit 

phenotypic and functional differences from those found within inter-lobular stroma, including 

expression of select collagen isoforms [72] and ectoenzymes [73]. Surrounding the inter-lobular 
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stroma is a large depot of subcutaneous adipose, comprising 7 to 56% of the volume of the 

adult breast [74]. 

 

 
Figure 6. Comparison of mouse and human mammary gland histology. Left: Adult mouse mammary 
fat pad from nulliparous C57BL/6 mouse (4x and 10x, H&E staining). Right: H&E-stained normal human 
breast tissue. Arrowhead and asterisks in right panel refer to loose intra- and dense inter-lobular stroma, 
respectively. Human histology images courtesy of Melissa Troester and the UNC Normal Breast Study 
(unpublished). 

 

The most extreme example of tumor infiltration into adipose tissue is seen in breast 

cancer. Breast cancer most frequently begins in ductal epithelial cells, which proliferate to fill the 

ductal lumen and generate a pre-cancerous lesion called ductal carcinoma in situ (DCIS). 

Subsequently, invasive ductal carcinoma (IDC) cells invade the mammary stromal 

compartment. On the other hand, approximately 1 in 10 invasive breast cancers originate in the 

lobules, beginning as lobular carcinoma in situ and progressing to invasive lobular carcinoma. 

The lack of intra-lobular stroma in mice [71] and relatively thinner collagenous matrix means that 

tumor cell invasion in mouse models of breast cancer results in immediate encounter of 
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adipocytes and other adipose cell populations (Figure 7A), whereas human invasive breast 

carcinoma must invade through both intra- and interlobular stroma before direct interaction with 

an area rich in adipose tissue (Figure 7B).  

 

 
Figure 7. Adipose-breast cancer interactions in mice and humans. A) Early invasive lesions in H&E-
stained mammary gland tissue from the C3(1)-TAg genetically-engineered mouse model of spontaneous 
basal-like breast cancer (unpublished images). B) Human breast cancer - Female, 50 years, lobular 
carcinoma, grade 1, Elston-Ellis score 5. Image credit: The Human Protein Atlas [75, 76]. 

 

Prostate gland anatomy and adipose-cancer interaction in humans vs. mice 

Like the mammary gland, the prostate exhibits important inter-species differences 

between mice and humans. However, before progressing to a comparison of mouse and human 

prostate anatomy, it should be acknowledged that rat and canine models have generated 

important mechanistic knowledge in prostate cancer research, particularly in the context of the 

spontaneous development of prostate lesions [77]. With that said, genetically engineered or 

xenografted mice remain the most commonly used model in prostate cancer research. For an 

overview and critique of currently available mouse models of human prostate cancer, the reader 

is directed to [77, 78]. 

 In mice, the prostate is comprised of four lobes lying anterior and lateral to the urethra. 

These lobes are named after their spatial orientation (anterior, dorsal, ventral, and lateral lobes, 



15 
 

see diagram in Figure 8) and exhibit distinctive histology [77, 79]. The glandular acini of the 

prostatic lobes are surrounded by a thin fibromuscular tunica, and are embedded in a loose 

connective tissue stroma with minimal smooth muscle cells and sparse collagen fibers [79]. 

Individual mouse prostate lobes are surrounded by a delicate mesothelium-lined capsule, and 

are separated from each other by fibrous and adipose connective tissue [79].  

In contrast to mice, the human male prostate does not have exterior lobation, but instead 

contains distinct glandular regions (a peripheral zone, a central zone, and a transition zone; see 

diagram in Figure 8) [79], again with characteristic histology. Like the breast, a conspicuous 

histological difference between mouse and human prostate lies in the stromal component. In 

humans, the prostate gland bears an anterior, well-developed, non-glandular fibromuscular 

stromal region. Abundant adipose tissue is present surrounding most of the posterolateral 

aspects of the prostate [80], and is used as a marker of extraprostatic tissue in biopsy samples 

[81]. This region of adipose is referred to in subsequent sections as periprostatic adipose. 

Intraprostatic adipose, when present, consists of a small focus of a few adipocytes, and is rarely 

observed histologically [81]. 

 

 
Figure 8. Anatomical comparison of mouse (left) and human (right) prostate glands. 
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The most common type of prostate cancer is acinar adenocarcinoma, which originates 

from the glandular epithelium. Pre-neoplastic prostatic intraepithelial neoplasia (PIN) progresses 

to invasive adenocarcinoma, in which extension of prostatic carcinoma through the prostatic 

capsule (extraprostatic extension) and resulting interaction with the surrounding adipose is an 

indicator of malignant progression and advanced histopathological stage [82]. The periprostatic 

adipose depot unambiguously contributes to prostate cancer malignancy [83-85]. In fact, 

interaction with periprostatic adipose tissue has been suggested to be a more important 

determinant of cancer recurrence than an invasive phenotype [86]. Analogous to breast cancer, 

recent advances in molecular phenotyping by The Cancer Genome Atlas Research Network 

have identified several genomically distinct molecular subtypes of prostate cancers [87]. 

Whether these subtypes interact differentially with adjacent adipose remains to be determined. 

 

Microenvironmental Links between Adipose Tissue and Cancer 

Context matters: extracellular matrix in adipose tissue and cancer 

Adipocytes and stromal cells are embedded in a loose, three-dimensional ECM, the non-

cellular tissue component that provides both structural and biochemical support to surrounding 

cells, such as cell adhesion, paracrine communication, and differentiation signals. Maintenance 

of the adipose tissue ECM – primarily comprised of fibronectin and collagens [88] – involves a 

variety of cell types, including fibroblasts, macrophages, adipocytes, and preadipocytes. 

Importantly, adipocyte function and survival is tightly regulated by both the molecular 

composition and mechanical properties of the surrounding ECM [89].  

The structural flexibility of adipose tissue ECM facilitates transient volume changes in 

response to normal fluctuations in lipid stores throughout the feed-fast cycle. However, rapid 

adipocyte hypertrophy (increased adipocyte volume) during the development of obesity can 

result in intracellular or regional hypoxia. Reduced tissue oxygenation induces transcriptional 
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programs in adipocytes and other stromal cells that ultimately lead to excess deposition of 

fibrillar ECM components such as collagens I, III, and VI and development of tissue fibrosis [88, 

90]. Indeed, adipose depots of obese subjects often exhibit greater total fibrosis, and particularly 

pericellular fibrosis around adipocytes, than lean individuals [91, 92]. Importantly, hypoxia-

induced adipose tissue fibrosis is associated with onset of metabolic perturbations in adipocytes 

[88, 93], while dysregulation in visceral adipose function is linked to the pathogenesis of insulin 

resistance and type II diabetes mellitus [92-94]. Furthermore, as adipocytes become 

encapsulated in a shell of rigid ECM, impaired cellular function also results in apoptosis and 

necrosis [95]. Release of damage-associated molecular patterns (DAMPs) from dead and dying 

adipocytes and adjacent live adipocytes promotes recruitment of macrophages and other 

inflammatory cells; histologically, these macrophages can be observed within crown-like 

structures (CLS), foci of macrophages and other inflammatory cells surrounding dead and dying 

adipocytes [96]. Macrophages are fully integrated into all stages of the fibrotic process through 

secretion of soluble mediators and cytokines such as transforming growth factor β1 (TGF-β1), 

platelet-derived growth factor (PDGF), and chemokines that attract and activate fibroblasts and 

collagen-producing myofibroblasts [88, 97].  

Interestingly, while adipose tissue fibrosis in the context of obesity is well described, 

increased adipose ECM deposition, fibrosis, and immune cell infiltration are also observed in 

cancer-associated cachexia [98]. Abdominal subcutaneous adipose depots of lean cachectic 

subjects bearing gastrointestinal cancers displayed extensive adipose ECM remodeling, 

including a dramatic increase in deposition of collagens I, III, and VI as well as elastin and 

fibronectin [99]. These changes were associated with increased myofibroblast content and 

elevated activation of TGF-β/SMAD signaling pathways [99]. As described later in the 

Adipocytes and adipocyte-cancer interactions section, cancer-associated cachexia is also 

associated with metabolic dysfunction in adipocytes, which may be mediated in part by ECM 

modifications. 
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In addition to adipocytes, epithelial tissue homeostasis and tissue organization is also 

heavily dependent upon a dynamic dialogue with the surrounding ECM. Disruption of ECM 

structure or misinterpretation of ECM-derived signals due to alterations in signaling receptor 

profiles is associated with development of a malignant phenotype in transformed epithelial cells 

[100-102]. Enhanced ECM stiffness also triggers the process known as epithelial-to-

mesenchymal transition (EMT) in cancer cells, which is characterized by the loss of epithelial 

polarity, de-differentiation, and local migration and invasion [103-106]. Hence, modifications in 

the adipose tissue ECM that provide a hospitable environment to developing tumors, such as 

enhanced stiffness in obese breast tissue, may provide a link between adipose tissue and 

tumorigenesis.  

 

 
 

As discussed in later sections, chronic low-grade inflammation, macrophage infiltration, 

hypoxia, and aberrant wound healing responses, including an increase in myofibroblast and 

Figure 9. Desmoplasia and cancer-associated 
adipocytes. A) Mammary tumors from C3(1)-TAg 
mice stained with Hematoxylin/eosin (left) or 
Masson’s trichrome (right) (unpublished). Chronic 
activation of the wound-repair response results in 
excess collagenous extracellular matrix production 
(desmoplasia), within tumors. Asterisks (*) indicate 
desmoplastic stroma. B) Cancer-associated 
adipocytes (black arrows) at or near the tumor 
invasive front become smaller and exhibit 
decreased expression of adipocyte markers, while 
the number of fibroblast-like cells increases.   
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activated fibroblast content, are features of both the tumor and adipose tissue 

microenvironments [4, 102, 107]. Chronic activation of the wound repair response leads to 

excess deposition of ECM components and accumulation of scar-like fibrotic tissue in a process 

known as desmoplasia, or the desmoplastic reaction (Figure 9A). In both breast and prostate 

cancers desmoplasia is associated with poor outcomes [108, 109], and can facilitate cancer 

progression by interfering with drug delivery. Thus, ECM remodeling and the resultant 

disturbances in cytoskeletal tension and mechanotransduction have emerged as important 

factors that promote neoplastic transformation, cancer malignancy, and cancer metastasis [4, 

102, 110], and may provide another connection between adipose dysregulation and cancer.  

 

Adipose extracellular matrix composition and viscoelasticity: influence on the normal 

breast and breast cancer 

Mammographic density denotes the radiologic appearance of the breast, and is a metric 

of the fibroglandular (epithelial and non-fatty stromal) content in that tissue [111]. A number of 

qualitative and quantitative methods have been developed to estimate mammographic density, 

including Breast Imaging Reporting and Data System (BI-RADS) categories, Wolfe’s 

parenchymal patterns, Tabar’s classification scheme, and numerous two- and three-dimensional 

image analysis techniques [112]. Within heterogeneous breast tissue, tumors most frequently 

arise within the most mammographically dense regions of the breast, suggesting that denser 

fibroglandular tissue directly influences carcinogenesis [113]. Indeed, regardless of the reporting 

method [111], high mammographic density is consistently and strongly associated with both 

elevated risk of breast cancer [114] and more aggressive tumor characteristics [115], even after 

adjustment for other risk factors such as age and BMI [116].  

At the molecular level, high mammographic density reflects the development of a dense, 

collagenous stroma rich in type I and/or type III collagen [117, 118]. Similar stromal changes are 

also observed in breast cancers [119], wherein they are orchestrated by a heterogeneous, 
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reactive population of so-called “cancer-associated fibroblasts” (CAFs). CAFs display 

remarkable plasticity, and frequently differentiate into myofibroblasts, a cell type exhibiting 

properties of both fibroblasts and smooth muscle cells [120-122]. In non-malignant tissue, 

myofibroblasts play an important role in wound healing responses, secreting a fibronectin- and 

collagen type I-rich ECM characterized by fibrillary architecture and increased cross-linking and 

density [123]. They are also the predominant source of fibrogenic and/or inflammatory cytokines 

in fibrotic lesions [124]. Despite the utility of this cell type to normal wound healing programs, 

however, the presence of myofibroblasts in tumors contributes to pathological desmoplasia 

[122], and may thus promote cancer progression [125]. 

In addition to fibroblasts, local (adipose-derived) mesenchymal stem cells, bone marrow-

derived mesenchymal stem cells, myeloid precursors, and cells derived from EMT may also 

present alternative sources of myofibroblasts in tumor stroma [126-128]. Furthermore, in tumors 

growing in an adipose tissue-rich microenvironment, cancer cell-induced reprogramming of local 

adipocyte gene expression and function has been observed to promote adipocyte delipidation 

and atrophy/regression [129]. This process occurs concurrently with the accumulation of 

fibroblast-like cells and a desmoplastic stroma; this synchronicity raises the possibility that some 

CAFs might be derived from dedifferentiated adipocytes [129] (Figure 9B). However, the extent 

to which their specific lineages determine the contribution of CAFs to tumor progression remains 

inconclusive. 

Although obesity is associated with reduced mammographic density – in part because 

fat is radiolucent – several studies have unveiled close links between chronic inflammation and 

the development of fibrosis and associated ECM rigidity in obese mammary adipose tissue 

[123, 130, 131]. Myofibroblasts are typically absent from normal, uninflamed breast tissue [132]. 

However, Seo et al. showed that obesity elevated matrix rigidity in non-cancerous breast tissue 

by enhancing myofibroblast content in mammary adipose [123]. Adipose stromal cells (ASCs, 

also called adipose-derived stem cells) isolated from obese mice exhibited increased 

expression of α-smooth muscle actin (α-SMA, a myofibroblast marker), as well as increased 



21 
 

fibronectin and a more fibrillar, partially unfolded, and stiffer ECM [123], implicating ASCs as a 

source of myofibroblasts in obesity. Furthermore, obese ASCs also exhibited enhanced 

proliferative capacity and secreted increased quantities of matrix components [123], thereby 

mimicking characteristics of tumor-associated stromal cells [122, 133]. Consistent with findings 

in mice, histologically normal breast tissue from obese patient mastectomies exhibited 

increased α-SMA staining and collagen fiber length and thickness relative to tissue from lean 

individuals [123]. Obesity-associated increases in α-SMA levels also correlated with formation of 

CLS, further implicating macrophages in the development of mammary adipose tissue fibrosis 

[123]. However, distinct from tumors [133], obesity-associated increases in myofibroblast 

content and matrix rigidity occurred in a TGFβ-independent manner [123], suggesting that ECM 

composition and stiffness may be differentially regulated in benign obese and malignant breast 

tissue. 

Increased matrix rigidity in breast adipose tissue may be an important mediator of 

cancer initiation and progression in obese individuals. To test the effects of obesity and ECM on 

tumor cell behavior, Seo et al. cultured pre-invasive human MCF10AT cells upon decellularized 

matrices produced by ASCs isolated from lean or obese mice. The authors reported that, 

relative to ECMs deposited by lean ASCs, obesity-associated ECMs increased MCF10AT cell 

motility and promoted the formation of disorganized three-dimensional acini, indicative of 

greater tumorigenic potential [123]. Additionally, ECM generated by obese mammary ASCs 

significantly enhanced the proliferation of the highly invasive MDA-MB-231 cancer cell line by 

altering mechanotransduction through enhanced RhoA/ROCK-mediated cell contractility and 

YAP/TAZ transcription factor activity [123]. Collectively, these results are suggestive of a 

relationship between obesity-associated mammary adipose tissue fibrosis and accelerated 

tumor initiation and/or proliferative capacity.  

In addition to fibroblasts/myofibroblasts, adipocytes play a vital role in defining the ECM 

environment through secretion and processing of factors such as collagen VI, an ECM 

component with both structural and signaling roles that is highly enriched in adipose tissue [93, 
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134, 135].  Excess adipocyte collagen VI expression in obesity is associated with adipose tissue 

fibrosis and metabolic dysregulation, while the absence of collagen VI in mouse models of 

obesity allowed for uninhibited adipocyte expansion and an improved metabolic phenotype [93]. 

Increased adipocyte collagen VI expression is also associated with elevated local 

concentrations of endotrophin, the collagen VI α3 chain cleavage product, which has been 

identified as a driving factor in adipose tissue fibrosis, macrophage chemotaxis, and 

inflammation, and appears to mediate adipose metabolic dysregulation in obesity (Figure 10) 

[131, 135]. Unsurprisingly, increased collagen VI production also coincides with increased 

adipose tissue macrophage content [130, 135].  

To further illustrate parallels in the obese adipose and tumor microenvironments, 

collagen VI and its cleavage product have also been implicated in the initiation and progression 

of breast cancers. Collagen VI is abundantly expressed by breast cancer-associated adipocytes 

(discussed at greater length in the Adipocytes section below), and its increased deposition in 

the ECM promotes tumorigenesis and malignant progression both in vitro and in vivo by 

inducing alterations in cancer cell signaling programs, gene expression patterns, and post-

translational modifications [136, 137]. For example, treatment of MCF-7 human invasive breast 

cancer cells with collagen VI significantly elevated activity of the oncogenic Akt-GSK3β–β-

catenin–Tcf/Lef pathway, ultimately resulting in cyclin D1 protein stabilization and enhanced cell 

proliferation [136, 137]. Accordingly, expression of the proto-oncogenes GSK3β and cyclin D1 in 

mammary tumors exhibited a steep immunohistochemical gradient, with increased staining 

intensities observed proximate to adipocytes. A similar gradient in collagen VI expression was 

also observed, further implicating adipocyte-derived collagen VI in the induction of mitogenic 

signaling pathways [136]. In addition, collagen VI-derived endotrophin induces markers of EMT 

in cancer cells and acts as a potent adipokine that exerts growth-stimulatory and pro-survival 

effects on developing tumors [135]. In the breast tumor microenvironment, endotrophin 

overexpression is associated with increased rate of metastasis [135] and resistance to the 

platinum-based chemotherapeutic cisplatin [138]. Thus, increased collagen VI deposition and 
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endotrophin concentration in obese adipose may influence both early tumor development and 

treatment outcomes.  

 

 

Figure 10. Obesity-associated modifications in the adipose tissue microenvironment. Adipose tissue 
expansion in obesity occurs in association with extracellular matrix changes such as fibrosis. Adipocyte 
hypertrophy and hypoxia trigger macrophage infiltration and crown-like structure formation, which further 
exacerbates development of fibrosis and inflammation. 

 

Adipose extracellular matrix-derived factors: direct effects on epithelial cells 

In addition to modulating composition and viscoelasticity of the breast ECM, stromal 

cells within the obese breast microenvironment secrete numerous soluble signaling mediators 

that have direct effects on epithelial cells. In particular, HGF is an excellent candidate for 

stromal-mediated breast cancer promotion in the context of obesity. Although HGF is classified 

as an adipokine [139], it is produced by a number of breast cell types including stromal 

fibroblasts and has been detected in both normal and malignant breast tissue [140]. In 

advanced tumors, HGF signaling through its receptor cMET initiates an invasive growth 

program that promotes cell migration, invasion, proliferation, and angiogenesis (Figure 11) 
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[141]. HGF is also elevated in the serum of breast cancer patients and correlates with advanced 

disease [142-145]. However, HGF signaling impacts the phenotypes of both early- and late-

stage breast cancers. With respect to early-stage lesions, we have reported that treatment of 

pre-malignant basal-like breast cells with HGF-blocking antibodies inhibited 3D morphogenesis, 

reflecting a reduction in epithelial malignant potential [142]. An HGF gene expression signature 

generated via treatment of pre-malignant breast cells with recombinant HGF was also found to 

correlate with both basal-like subtype and poor survival in >700 breast cancer samples from 

three publicly available datasets [142].    

 

 

Importantly, basal-like breast cancer is a clinically intractable TNBC subtype that is more 

prevalent in obese individuals [37-41], while serum HGF is also elevated in obese individuals 

and is reduced with weight loss [146-148]. Our laboratory previously demonstrated that high fat 

diet-induced obesity increased HGF concentration and enhanced expression and activation of 

cMET in the mammary fat pad of C3(1)-T-antigen (TAg) mice, a unique genetically engineered 

mouse model (GEMM) of spontaneous basal-like breast cancer [43, 149, 150]. We also reported 

that obesity increased HGF production by primary murine fibroblasts isolated from both normal 

mammary glands and tumors, and that CAFs isolated from obese animals induced epithelial cell 

Figure 11. 
HGF/cMET: an 
oncogenic 
signaling 
cascade. HGF 
secretion by 
stromal cells 
such as 
fibroblasts, 
adipocytes, and 
macrophages 
initiates an 
invasive growth 
program in 
epithelial cells. 
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migration in an HGF-dependent manner [43]. Obesity-mediated regulation of HGF secretion 

from other stromal cell types such as adipocytes is currently under investigation. 

 

Adipose extracellular matrix in prostate cancer 

Despite being a common feature of mouse models of prostate cancer, histologically 

conspicuous reactive stroma is much less prevalent in human prostate tumors compared to 

breast cancers [77]. However, like the breast, induction of a myofibroblastic phenotype and 

degree of reactive stroma carry important prognostic value for prostate cancer malignancy [109, 

151, 152]. Notably, as the literature regarding the contribution of adipose tissue to breast cancer 

onset and progression has greatly outpaced that of prostate cancer, obesity-associated ECM 

modifications are currently better characterized in the mammary, relative to the periprostatic, fat 

pad. Additionally, conflicting data exist regarding the association between periprostatic fat 

density (measured by magnetic resonance imaging or computed tomography) and tumor 

aggressiveness in prostate cancer patients [153-155]. Our literature search also revealed no 

publications reporting that periprostatic adipose tissue fibrosis occurs in obesity, but whether 

this is due to a lack of occurrence or a lack of examination is unknown. Furthermore, no studies 

investigating links between adipocyte-derived endotrophin and prostate cancer were available at 

the time of writing this review. Therefore, future obesity-prostate cancer studies may be 

informed by the sundry findings linking breast cancer and adipocyte-associated fibrosis, 

modifications in ECM dynamics, and endotrophin release. 

 

Adipocytes and adipocyte-cancer interactions 

Adipocytes are specialized connective tissue cells that constitute a major cell type in 

both the normal-weight and obese breast. The majority of adipocytes in adult humans are white 

adipocytes, which contain a large, unilocular lipid droplet and are specialized for storage of 
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neutral lipids. However, brown and/or beige adipocytes (also called “brite” or “inducible” 

adipocytes [9]) have also been reported in adults, and likely play important roles in 

thermogenesis [156]. More recently, “pink” adipocytes have been described in murine mammary 

gland, arising exclusively during pregnancy and lactation due to a process wherein white 

adipocytes progressively transdifferentiate to acquire secretory, epithelial-like features [9]. 

Adipocytes secrete a broad range of signaling molecules that exert local and/or systemic effects 

with the potential to influence tumor growth. Among the better studied adipocyte-derived factors 

are metabolic factors such as leptin, adiponectin, resistin, visfatin, and plasminogen activator 

inhibitor-1 (PAI-1); hematopoietic factors such as GM-CSF; growth factors such as 

angiopoietins, HGF, vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-

1), and TGF-β; and a variety of cytokines, including interleukin-6 (IL-6) and TNF-α and the 

chemokine monocyte chemoattractant protein (MCP-1) [also referred to as chemokine (C-C 

motif) ligand 2 (CCL2)] (Figure 12) [157, 158].  

 

 
 

 

Figure 12. Adipocyte subtypes and 
secreted factors. White adipocytes contain 
a large, unilocular lipid droplet and are 
specialized for storage of neutral lipids. 
Brown and/or beige adipocytes have 
increased mitochondrial content relative to 
white adipocytes and play important roles in 
thermogenesis. “Pink” adipocytes have been 
described in murine mammary gland, arising 
exclusively during pregnancy and lactation. 
Collectively, adipocytes secrete a broad 
range of signaling molecules. 
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Several of the aforementioned adipocyte-derived growth factors influence development 

of a tumor vascular supply (tumor angiogenesis), as discussed in the Endothelial 

Cells/Lymphendothelial Cells section below. Whereas leptin and adiponectin are considered 

true adipokines, many of the other signaling molecules, including resistin, visfatin, TNF-α, IL-6, 

MCP-1 and PAI-1, are not, as they are expressed by both adipocytes and immune cell 

populations such as macrophages, and play a variety of well-known roles in immunity [157]. 

Thus, select functions for several of these signaling molecules will be discussed within the 

section titled Adipose Tissue Immune Populations in Cancer Development and Progression. 

Finally, although there are clear and important roles for leptin and adiponectin in tumorigenesis 

and malignancy, these roles have been reviewed extensively by others [139, 159-162] and will 

be addressed only briefly within this review. 

Adipocytes exhibit both short- and long-range interactions with cancer cells, and may be 

found in close proximity to tumors, along tumor margins, and within the tumor body. These 

cancer-associated adipocytes (CAAs; also referred to as peritumoral, intratumoral, or tumor-

infiltrating adipocytes) influence tumor biology in a number of ways, including by promoting 

angiogenesis and inflammation [reviewed in 163, 164, 165]. Although it is reasonable to 

hypothesize that proliferation and invasion of tumor cells into cancer-adjacent adipose may 

account for the presence of CAAs within the tumor body, the origin of CAAs in fact remains 

unclear. As explained in further detail in the section on Adipose-derived Stromal Cells below, 

several cell types may give rise to intratumoral CAAs. 

 In addition to indirect mechanisms of tumor growth promotion (e.g., stimulation of 

angiogenesis, production of proinflammatory cytokines), the proximity of CAA to growing tumors 

may also provide direct metabolic benefits to cancer cells. In the phenomenon known as 

metabolic symbiosis, cancer cells within hypoxic regions of a tumor undergo metabolic shifts 

that facilitate increased utilization of fuel sources such as lactate, glutamine, and fatty acids 

released by surrounding cells, including other cancer cells [166, 167] and adipocytes [168, 169]. 

As mentioned previously, CAAs have been frequently observed to undergo delipidation. Lipid 
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droplet size within mature white adipocytes is the net result of several processes, including fatty 

acid uptake or de novo fatty acid synthesis, esterification, and lipolysis. Interestingly, Nieman et 

al. showed that co-culture of primary omental adipocytes with ovarian cancer cells, which 

frequently metastasize to the omentum, induced lipolysis in adipocytes, upregulation of β-

oxidation in cancer cells, and direct transfer of lipids between the two cell types [170]. Notably, 

the transfer of lipids from adipocytes to cancer cells has also been observed in prostate cancer 

[171] and breast cancer [172]. These findings indicate that active heterotypic cellular 

interactions between cancer cells and adipocytes induce metabolic symbiosis.  

CAAs may also influence cancer cell phenotypes through the shedding of exosomes, 

small vesicular bodies released from cells as a form of short- or long-range communication. 

Lazar et al. [173] reported that exosome shedding by mature human adipocytes induced 

increased migratory and invasive behavior in melanoma cells, which grow in proximity to the 

hypodermal adipose layer. Proteomic analysis of adipocyte-derived exosome composition 

revealed enrichment for proteins involved in mitochondrial lipid metabolism, particularly fatty 

acid oxidation. Remarkably, their results suggested that these enzymes were incorporated and 

utilized by melanoma cells. Melanoma cells pre-treated with exosomes exhibited an increased 

ability to form lung metastases in mice and an increase in fatty acid oxidation without a 

concomitant change in glycolysis, indicating that augmentation of lipid oxidation pathways 

occurred in the absence of complete metabolic reprogramming. In further support of these 

findings, administration of the mitochondrial fatty acid oxidation inhibitors etomoxir or 

trimetazidine reversed exosome-induced enhancement of migration without affecting basal 

migration levels. Importantly, increasing adiposity in obese individuals enhanced both the 

number of exosomes released from adipocytes as well as the potency of their effect on 

melanoma cell migration. Collectively, these studies reveal important roles for adipocytes in 

regulating cancer cell metabolism, migration, and metastatic potential. 
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Adipocytes in the normal breast and breast cancer 

Mouse models have revealed that adipocytes act as local regulators of normal mammary 

epithelial cell growth and function. In fact, mammary epithelial cells require adjacent adipocytes 

during embryonic and postnatal development, as well as throughout later life stages such as 

pregnancy, lactation, and involution [174]. Indeed, using the novel FAT-ATTAC mouse, a model 

of inducible and reversible adipocyte loss developed by Scherer and colleagues, Landskroner-

Eiger et al. showed that adipocytes play crucial roles in normal growth and development of 

mammary ductal epithelium [175, 176], contributing both to ductal branching morphogenesis 

during puberty and to maintenance of normal alveolar structures in adulthood [176].  

Due to the proximity of the adipose pad to the mammary glandular organ, ductal tumor 

invasion results in interaction of breast cancer cells with adipocytes (Figures 6 & 7), with 

dramatic implications for tumor cell biology. Carter and Church reported that mature breast 

adipocytes, but not preadipocytes, increased motility of both normal and malignant breast 

epithelial cell lines through secretion of PAI-1 [177]. Similarly, higher levels of CAA-specific IL-6 

expression in human breast tumors were associated with larger tumor size and more extensive 

lymph node involvement [178]. Co-culture with adipocytes also induced mesenchymal features 

in human breast cancer cells, including repolarization of vimentin and downregulation of E-

cadherin, thereby promoting tumor cell invasion and metastasis [178]. Furthermore, adipocytes 

co-cultured with malignant breast epithelial cells exhibited the profound phenotypic changes 

associated with CAA, including delipidation and decreased expression of adipocyte markers 

[178]. Hence, bidirectional communication between adipocytes and breast tumor cells also 

alters adipocyte biology.  

For example, reminiscent of findings in melanoma [173], prostate [171], and ovarian 

cancers [170] (discussed in the Adipocytes and adipocyte-cancer interactions intro section 

above), following co-culture of breast cancer cells with adipocytes Wang et al. reported 

increased lipolysis by adipocytes and concomitantly increased fatty acid oxidation by breast 

cancer cells [172]. Importantly, the signal released by tumor cells to induce adipocyte 
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delipidation was not identified, although IL-6 and β-adrenergic stimulation – factors previously 

implicated in lipolytic induction in cancer-associated cachexia [179] – were eliminated as 

potential candidates [172]. Similar to Lazar et al. [173], Wang et al. reported that co-culture with 

adipocytes increased both in vitro invasion toward a stimulus and formation of breast cancer 

lung metastases in vivo, each of which were restored to basal levels by administration of the 

fatty acid oxidation inhibitor etomoxir [172]. In vitro etomoxir administration also reduced the 

morphological hallmarks of EMT. Remarkably, the increase in fatty acid oxidation by breast 

cancer cells appeared to be dependent on an upregulation of both adipocyte triglyceride lipase 

(ATGL) and the carnitine palmitoyltransferase 1 (CPT1) isoform CPT1A, enzymes not 

expressed at appreciable levels in noncancerous human breast epithelial cells. Short-hairpin 

(sh)RNA-mediated knockdown of CPT1A and ATGL reduced hallmarks of EMT and invasive 

potential, respectively.  

In addition to oxidizing transferred fatty acids, breast cancer cells also esterified free 

fatty acid from adipocyte lipolysis [172], incorporating the newly synthesized triglyceride into 

lipid droplets within the cancer cells themselves. Breast cancer cell lipid droplet accumulation 

was supported by both in vitro co-culture experiments employing radiolabeled palmitate and the 

observation of lipid droplet accumulation in breast cancer cells along the tumor margin in 

histological sections (i.e., in close proximity to adipocytes). Interestingly, despite increased fatty 

acid oxidation, breast cancer cells also showed reduced ATP content and activation of AMP-

activated protein kinase (AMPK). AMPK activation following co-culture with adipocytes was 

associated with increased mitochondrial biogenesis and function, indicated by increased levels 

of PGC-1α and its associated transcription factor PPARα as well as an increase in the ratio of 

mitochondrial to genomic DNA. AMPK also inhibited acetyl-CoA carboxylase, the rate limiting 

enzyme in fatty acid oxidation, ensuring uninterrupted flux of fatty acids into mitochondria. 

Furthermore, breast cancer cell fatty acid oxidation was determined to be uncoupled from ATP 

production and, unlike in melanoma [173], occurred with a concurrent increase in anaerobic 

glycolysis, consistent with activation of AMPK [172]. Collectively, these findings provide new 
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insight into mechanisms of metabolic symbiosis between adipocytes and cancer cells in breast 

tumors. 

Interactions between cancer cells and adjacent adipose may also increase breast cancer 

stem cell abundance and facilitate metastatic progression. Picon-Ruiz et al. isolated human 

adipocyte stem cells and used adipogenic differentiation media to generate “immature” 

adipocytes. Co-culture of these “immature” adipocytes with both primary breast cancer cells and 

established cancer lines conferred stem-like features to the epithelial cells, including elevated 

expression of the pluripotency markers Sox2, c-Myc, and Nanog [180]. Co-culture with 

adipocytes also increased mammosphere-forming capacity, indicating a more stem-like 

phenotype due to a greater ability to grow under non-adherent conditions. Furthermore, when 

co-cultured breast cancer lines were orthotopically injected into mouse models, the resulting 

tumors exhibited reduced latency, increased abundance of tumor-initiating cells, and an 

enhanced capacity to form distant metastases. Taken together, this study demonstrates that 

interactions between immature adipocytes and breast cancer cells drive initiation of highly 

metastatic cancers by enhancing epithelial cell tumor-initiating potential. 

Due to the practice of autologous fat grafting as a method of breast reconstruction 

(oncoplastic surgery) following breast-conserving tumor excision, the impact of adipocytes on 

tumor malignancy may be a consideration for recurrence following treatment. Indeed, using a 

model of autologous fat grafting, Massa et al. reported increased proliferation of several breast 

cancer lines co-cultured with either induced adipocytes (i.e., differentiated from fibroblasts) or 

intact adipose tissue samples obtained from liposuction patients [181]. However, a recently 

published prospective matched case-control analysis found no significant differences in 

locoregional recurrence in patients who received autologous fat grafting vs. those who did not 

[182]. Although cases and controls were matched for hormone receptor status in this study, no 

analysis was conducted to evaluate potential differences in recurrence by tumor molecular 

subtype, potentially due to the limited sample size and low locoregional event rate. However, 

based on the aforementioned complex relationships between obesity status and risk of specific 
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breast cancer subtypes, as well as the reported roles for adipocytes in regulating breast 

epithelial tumorigenicity and metastatic potential, additional studies are needed to address 

concerns regarding the potential risks associated with fat grafting in breast reconstructive 

surgery. Stratification by BMI and/or molecular tumor subtype may be necessary to fully assess 

the influence of fat grafting on breast cancer recurrence rates.  

 

Adipocytes and prostate cancer 

Bidirectional communication between adipocytes and prostate epithelial cells also 

influences prostate tumor biology, particularly with regard to chemokine activity. Chemokines, or 

chemotactic cytokines, are small secreted signaling proteins that induce directed, gradient-

driven migration (chemotaxis) in nearby cells that express the appropriate chemokine receptor. 

The functions of chemokines in malignancy depend on both tumor characteristics and the 

specific chemokine in question, but are frequently associated with leukocyte infiltration as well 

as metastatic potential and site-specific spread of tumor cells [183]. Adipose tissue-specific 

expression of many CC subfamily chemokines and their receptors is upregulated in human 

obesity [184]. For example, Laurent et al. [185] identified a CCR3/CCL7 axis regulated by 

obesity, through which secretion of CCL7 by mature periprostatic adipocytes supported the 

directed migration of prostate cancer cells, thereby promoting cell migration toward the 

periprostatic fat pad and the spread of cancer cells outside of the prostate gland. This process 

appeared to be augmented in obesity by both enhanced secretion of CCL7 by hypertrophic 

adipocytes and increased expression of the CCL7 receptor, CCR3, by prostate cancer cells 

[185].  

Adipocyte-derived CCL2 is also implicated in prostate cancer progression. Ito et al. 

reported that adipocyte-derived CCL2 directly stimulated prostate cancer cell proliferation, 

promoting invasion and migration through induction of matrix metalloprotease (MMP)-2 activity 

and ultimately leading to enhanced tumorigenesis and metastasis [186]. Importantly, increased 
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production of CCL2 by bone marrow adipocytes and other stromal cells is also strongly 

implicated in the propensity of prostate cancer cells to metastasize preferentially to bone [187, 

188]. An increase in bone marrow adipocyte content with age, obesity, and obesity-associated 

metabolic pathologies [189, 190], suggests a potential link between obesity and elevated rates 

of prostate cancer metastasis [187, 188]. 

Interestingly, prostate cancer-adipocyte crosstalk also appears to induce tumor-

promoting changes in periprostatic adipocytes. Treatment of periprostatic adipose tissue 

organotypic explants with PC3 prostate carcinoma cell-conditioned medium activated a cancer-

promoting secretory profile, including increased secretion of osteopontin, TNF-α, and IL-6, and 

reduced production of adiponectin [191]. These changes were not observed upon treatment of 

cells comprising the periprostatic adipose stromal vascular fraction (i.e., all stromal populations 

except adipocytes) with PC3 cell-conditioned medium, suggesting that the observed increase in 

pro-tumorigenic factor production by explanted tissue was due specifically to tumor-mediated 

education of adipocytes [191]. Indeed, adipocytes appear to be a major source of 

microenvironmental IL-6 in prostate cancer. Periprostatic adipose tissue harvested from patients 

undergoing radical prostatectomy secreted IL-6 at concentrations 375 times greater than that in 

patient-matched serum and correlated with histological grade [192]. Additionally, Tang et al. [83] 

recently showed that co-culture of prostate cancer cells increased production of the cysteine 

protease cathepsin B by adipocytes. Further probing revealed that adipocyte co-culture induced 

secretion of the peptide hormone cholecystokinin (CCK) by prostate cancer cells, resulting in 

establishment of an autocrine/paracrine amplification loop in which CCK, acting through the 

CCK receptor CCKBR, induced expression of cancer stem cell markers such as CD49f and 

Sca-1 in prostate cancer cells and further production of cathepsin B by adipocytes. Importantly, 

cathepsin B has been shown to facilitate prostate cancer invasion and metastasis via 

degradation of ECM and basement membrane components [193, 194]. Collectively, these 

studies demonstrate that prostate cancer cell-induced alterations in adipocyte function are 
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important mediators of tumor progression. Figure 13 briefly summarizes adipocyte-cancer cell 

crosstalk findings described above.  

 

 

 

 

Adipocytes and adipose wasting in cancer-associated cachexia 

An example of long-range adipocyte-tumor interactions can be observed in cancer-

associated cachexia (referred to hereafter as cancer cachexia or simply cachexia). Cancer 

cachexia is a fatal energy-wasting syndrome that is estimated to be the immediate cause of 

death in approximately 20-40% of end-stage cancer patients [195]. A key feature of cancer 

cachexia is white adipocyte “browning”, characterized by greatly increased levels of brown fat-

mediated thermogenesis in white adipose depots [196, 197]. Accordingly, cachectic patients 

exhibit irreversible, pathologically elevated basal energy expenditure levels, adipocyte lipolysis 

and adipose tissue wasting, rapid weight loss, and eventually, death [196-199]. Although 

prolonged systemic inflammation plays a well-established role in cachexia-associated adipose 

tissue wasting [198, 199], tumor-derived factors have also been shown to contribute to the 

Figure 13. Adipocytes promote 
tumor progression and 
metastasis. Adipocytes may 
provide metabolic substrates 
directly to cancer cells, or may 
indirectly influence cancer 
metabolism through exosome 
secretion. Adipocytes also 
secrete a variety of factors that 
promote tumor growth, EMT 
(epithelial-mesenchymal 
transition), acquisition of stem-
like features, invasive behavior, 
and metastasis. 
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pathophysiology of this syndrome. For example, in a murine model of Lewis lung carcinoma, Kir 

et al. [196] demonstrated that tumor-derived parathyroid hormone-related protein (PTHrP) 

induced the expression of thermogenesis-associated genes in adipose tissue, implying a crucial 

role for this hormone in energy expenditure and tissue wasting. Accordingly, administration of a 

PTHrP neutralizing antibody prevented cachexia-associated weight loss and ablated 

thermogenic gene expression in white and brown adipose tissue. Furthermore, compared to 

cancer patients lacking detectable levels of blood PTHrP, patients with detectable blood PTHrP 

levels exhibited significantly higher resting energy expenditure levels per kilogram of lean body 

mass, implying a clinically relevant association between this hormone and wasting.  

On the other hand, Rohm et al. [200] reported that browning and associated 

thermogenesis in major white adipose depots was not the primary mechanism of adipose tissue 

wasting in mouse models of colon cancer-induced cachexia. Although the brown adipose-

associated protein cell death activator (CIDEA) was upregulated in both brown and white 

adipose depots of cachectic mice relative to healthy controls, this upregulation occurred in the 

absence of changes in other proteins implicated in adipocyte browning and thermogenesis, 

such as uncoupling protein 1 (UCP-1). Furthermore, while increased free fatty acid release was 

observed in primary mouse adipocytes exposed to serum from cachectic mice, this increase in 

lipolysis was not associated with well-characterized lipolytic inducers such as increased 

expression of lipases (e.g., hormone-sensitive lipase and ATGL), or increased β-adrenergic 

receptor activation. Instead, CIDEA-mediated degradation of AMPK, evidenced by a reduction 

in AMPK protein and enzymatic activity, contributed to adipocyte metabolic dysfunction. For 

example, although increased lipolysis was observed, decreased AMPK activity also resulted in 

reduced inhibitory phosphorylation of acetyl-CoA carboxylase, suggesting the establishment of 

a futile cycle in adipocytes characterized by simultaneous increases in both lipolysis and 

lipogenesis. Microinjection of white adipose depots with a peptide designed to interfere with the 

AMPK-CIDEA interaction (termed AMPK–CIDEA-interfering peptide, or ACIP), followed by 

implantation of the cachexia-inducing colon cancer cell line C26, resulted in approximately 30% 
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greater retention of adipose depot mass and greater adipocyte lipid droplet size compared to 

the contralateral control-injected depot. No significant effect was observed from ACIP injection 

into adipose depots of control, non-cachectic mice, suggesting that the augmented AMPK-

CIDEA interaction and downstream influences on lipid metabolism in adipocytes may be a 

cachexia-specific phenomenon.  

These findings by Rohm et al. are particularly interesting in light of the reportedly 

opposite regulation of AMPK in breast cancer cells co-cultured with adipocytes that was 

highlighted in the previous section [172]. Also interesting to note is the lack of a role for β-

adrenergic signaling in either of these two studies [172, 200], as catecholamines are well-

established regulators of lipolysis, while lipid mobilizing factor – a tumor-derived factor 

frequently implicated in cachexia [179, 201] – also signals through beta receptors. Thus, 

although the causes of cachexia are multifactorial and systemic, it is clear that adipocyte-cancer 

cell interactions are key players in the pathophysiology of this syndrome. Future work should 

seek to identify additional tumor-derived paracrine and hormonal signals that contribute to 

cachexia pathogenesis and progression. 

 

Adipose-derived Stem Cells 

Human adipose tissue stroma is a rich source of multipotent mesenchymal stem cells, 

termed adipose stromal cells or adipose-derived stem cells (ASCs), that can differentiate toward 

the osteogenic, adipogenic, myogenic, and chondrogenic lineages [202]. Interestingly, several 

recent studies reviewed below suggest that ASC recruitment substantially contributes to stromal 

populations in both breast and prostate cancers. Due to the abundance of adipose tissue, as 

well as the minimally invasive procedures required to collect it, ASCs are a celebrated approach 

for tissue engineering and regenerative medicine. For example, lipoaspirate preparations may 

be “enriched” by the addition of ASCs to improve graft volume retention [203, 204]. However, 

the findings described below suggest that caution may be advised in use of ASCs in patients 
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with a history of cancer. Notably, factors such as age and menopausal status have been found 

to influence the proliferation and differentiation capacities of ASCs [205]. Future studies on the 

impact of age on ASC recruitment to tumors will yield interesting findings. 

 

Adipose-derived stem cells in breast cancer 

The varied stromal components of the tumor microenvironment must be recruited from 

either adjacent tissue or from distant precursor sources such as bone marrow. Kidd et al. [206] 

investigated the relative contribution of ASCs versus bone marrow-derived stem cells to stromal 

populations in mouse models of ovarian and breast cancers, and found that the majority 

(greater than 70%) of intratumoral myofibroblasts, pericytes, and endothelial cells were recruited 

from neighboring adipose tissue. However, CAF subpopulations were recruited from multiple 

distinct sources, with fibroblasts positive for fibroblast specific protein and fibroblast activation 

protein originating from bone marrow-derived mesenchymal stem cells, while α-smooth muscle 

actin+/chondroitin sulfate proteoglycan 4+ (α-SMA+/NG2+) CAFs were recruited from adjacent 

adipose. While the factors contributing to ASC recruitment to tumors are still ambiguous, 

Gehmert et al. have demonstrated that the PDGF-BB/PDGFR-β signaling pathway may be 

involved in ASC recruitment to breast cancers [207]. Together these results imply that the 

diversity of the tumor microenvironment can be attributed, at least in part, to the heterogeneous 

origin of stromal constituents.  

 Although ASCs are primarily localized to fat depots, circulating ASCs have also been 

detected in obese individuals and cancer patients, with greater levels observed in obese 

patients bearing colon, prostate, or breast cancers (relative to lean) [208-211]. Additionally, 

relative to ASCs from lean adipose, ASCs isolated from obese adipose show enhanced 

potential to traffic to breast tumors in both humans and mice [212, 213]. Similarly, Zhang et al. 

[213] recently reported hematogenous seeding of breast and ovarian tumors by ASCs in obese 

mice, resulting in infiltration and subsequent differentiation to pericytes and intratumoral 
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adipocytes/CAA. This process occurred in an obesity-dependent manner, with a 6-fold increase 

in “shedding” of precursors from adipose depots in obesity contributing to tumor cell survival and 

angiogenesis. It will be interesting to note in future studies whether specific adipose depots 

shed ASCs to the circulation at different rates. Ultimately, these findings reinforce the need to 

more comprehensively evaluate the risk of breast cancer recurrence after autologous fat 

grafting (see above), particularly in obese individuals.  

 

Adipose-derived stem cells in prostate cancer 

Similar to breast cancer, local and circulating ASCs have been reported in prostate 

cancer patients. Ribiero et al. observed higher levels of circulating ASCs in the blood of 

overweight or obese compared to lean prostate cancer patients [208]. The authors also reported 

that periprostatic adipose tissue of prostate cancer patients bore significantly higher numbers of 

ASCs than nearby visceral adipose tissue, independent of BMI. However, increased recruitment 

of ASCs into prostate tumors in obesity has been reported, and was recently attributed to 

secretion of the chemokines CXCL1 and CXCL8 by cancer cells (Figure 14) [210, 213]. CXCL8 

expression was restricted to malignant cells and was obesity-independent; on the other hand, 

secretion of CXCL1 by non-malignant epithelium was exclusively observed in histological 

sections from obese individuals, while CXCL1 expression in tumor cells was found in a 

significantly higher percentage of tumor sections from obese as compared to lean patients 

[210]. The extent to which periprostatic ASCs, as opposed to circulating ASCs released from 

other adipose depots, contribute to the cellular composition of prostate tumor stroma was not 

quantified in the highlighted studies and requires further investigation. 
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Adipose and Endothelial/Lymphendothelial cells 

Vascularization mechanisms in adipose tissue and tumors 

Expansion of adipose tissue during progression to obesity requires concomitant 

expansion of the adipose vascular bed through the process known as angiogenesis, the 

formation of new blood vessels from pre-existing vessels. In fact, administration of anti-

angiogenic agents in models of both genetic and diet-induced obesity either prevented weight 

gain [214] or induced dose-dependent, reversible weight reduction and adipose tissue loss [215, 

216]. When expansion of the vasculature does not occur in proportion to the expansion of 

adipocyte volume (hypertrophy), cellular and/or regional hypoxia develops, resulting in 

activation of the transcriptional complex hypoxia-inducible factor 1 (HIF-1) through stabilization 

of the HIF-1α subunit. HIF-1-mediated upregulation of inflammatory and pro-angiogenic 

signaling pathways in adipocytes, endothelial cells, and immune cells induces vascular growth, 

facilitating further tissue expansion [8, 217, 218]. In this way, the microenvironment during 

Figure 14. Obesity, cancer 
increase circulating ASCs. 
Human adipose tissue 
stroma is a rich source of 
multipotent ASCs, which 
enter the circulation and 
traffic to other tissues. This 
“shedding” process is 
increased in obese and/or 
tumor-bearing individuals. 
Tumor chemokine secretion 
(e.g., CXCL1, CXCL8) is 
influenced by obesity and is 
implicated in ASC 
recruitment to developing 
tumors and differentiation 
into stromal populations 
such as fibroblasts, 
pericytes, and adipocytes.   
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accumulation of adipose tissue resembles the tumor microenvironment during tumor 

vascularization, described in detail below (Figure 15). The extensive list of signaling factors 

contributing to angiogenesis in both adipose tissue and tumors includes VEGF isoforms, 

angiopoietins 1 and 2, leptin, adiponectin, TNF-α, fibroblast growth factor (FGF) isoforms, 

TGFβ, HGF, and cytokines such as IL-6 and IL-8 [158, 219, 220]. Among these, the 

VEGF/VEGFR system - one of the best characterized and most potent of the known pro-

angiogenic signaling pathways - is the main mediator of angiogenic activity in adipose tissue 

[219, 221, 222]. The VEGF-A ligand in particular is abundantly expressed by adipocytes and 

other adipose stromal populations [219, 221]. An additional shared factor of particular 

importance is angiopoietin-2, which signals through the receptor tyrosine kinase TIE2 to induce 

ECM degradation and disruption of endothelial-pericyte interactions during sprouting 

angiogenesis [223, 224]. Importantly, several of the pro-angiogenic factors listed above, 

including multiple VEGF isoforms, leptin, HGF, and angiopoietin-2, are also elevated in the 

serum of obese subjects and are implicated in systemic effects of obesity on cancer progression 

[147, 225, 226].  

Similar to adipose tissue, growth of solid tumors is also heavily dependent upon 

synchronous expansion of their vascular beds. In early stage solid tumors, rapid proliferation 

leads to diffusion limited hypoxia, wherein cells within the tumor mass end up at a distance from 

the surrounding vasculature that is beyond the diffusion limit of oxygen. Resulting hypoxia-

induced apoptosis and necrosis limit further tumor growth unless an intratumoral vascular 

system is established. The shift in developing primary or metastatic tumors from avascular to 

vascularized is termed the “angiogenic switch”, and is a discrete and requisite step for 

exponential tumor growth and progression to malignancy (Figure 15) [227-229]. Accordingly, 

tumor microvessel density is a powerful and independent prognostic indicator for several human 

cancers, including breast, prostate, melanoma, ovarian, gastric, and colon cancers [229]. 

However, in light of the myriad options for tumor vascularization described below, it is 
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interesting to note that the microvessel density in solid tumors is often lower than in their normal 

tissue counterparts [230]. 

 

 
 

New tumor vessel formation can occur through a number of non-mutually exclusive 

mechanisms, including sprouting and migration of endothelial cells (“classical” sprouting 

angiogenesis) or intussusceptive (non-sprouting) microvascular growth, a process in which 

tumor cells induce splitting and rapid remodeling of existing endothelial vessels [229]. 

Remarkably, along with endothelial cells, tumor cells themselves may integrate into newly 

forming blood vessels, resulting in mosaicism [229]. Tumor cells may also engage in a process 

known as vasculogenic mimicry, the arrangement of tumor cells into vascular channels which 

anastomose with adjacent blood vessels [229, 231, 232]. An additional mechanism for perfusion 

of tumors is vessel co-option, wherein tumor cells simply track alongside existing vessels for 

their own oxygen and nutrient gain, thereby exploiting nearby mature vessels in the host organ 

Figure 15. Hypoxia & the 
Angiogenic Switch. An extensive 
list of pro-angiogenic factors is 
involved in both induction of the 
angiogenic switch in developing 
solid tumors and expansion of 
adipose tissue during progression 
to obesity. As tumor cells proliferate 
or adipocytes hypertrophy, hypoxia 
develops and triggers stabilization 
of the HIF-1 complex, a 
transcription factor which promotes 
increased production of growth 
factors such as VEGF-A, FGF1, 
TGF-β, HGF, and angiopoietins 1 
and 2. Additional proangiogenic 
factors include the adipokines leptin 
and adiponectin; cytokines such as 
TNF-α, IL-6, and IL-8; and matrix 
metalloproteases, which degrade 
the extracellular matrix. Ultimately, 
increased vascularization alleviates 
regional hypoxia and facilitates 
further tissue expansion. 
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[229]. Given that adipose tissue is one of the most vascularized tissues in the body [164, 219], it 

is unsurprising that co-option of adipose tissue vascular beds was recently shown to promote 

accelerated tumor growth and intratumoral vascularization [233].  

Among other abnormal features, tumor vasculature is characterized by enhanced 

permeability, including transcellular holes and fenestrae, which drives further angiogenesis and 

increases nutrient and oxygen delivery, immune cell infiltration, and tumor cell extravasation 

during metastasis [234, 235]. Similar to adipose tissue, the VEGF/VEGFR system – and 

particularly VEGF-A – is highly expressed in tumors and is a potent inducer of tumor vascular 

permeability [236]. Given the extensive similarities of the pro-angiogenic signaling networks in 

adipose and tumors, it is unsurprising that the vasculature in these two tissue types is 

structurally similar. For example, adipose tissue capillaries also contain fenestrations, the 

presence of which depends upon a poorly understood synergistic relationship between VEGF, 

leptin, and FGF-2 signaling [237]. It is tempting to speculate that the fenestrations within 

adipose vasculature may provide a convenient means of escape for tumor cells invading into 

adipose tissue. 

 In addition to hematogenous metastasis, a tumor cell can also escape from its primary 

location through lymphatic dissemination. In a number of cancer types, including breast cancer, 

melanoma, and prostate cancer, metastasis to the tumor draining lymph node(s), also referred 

to as the “sentinel” lymph node(s), is a common initial route for the metastatic dissemination 

from solid tumors [238]. For this reason, sentinel lymph node biopsy in newly detected and 

early-stage cancers is a frequent and evidence-based clinical practice required for staging of 

disease, determination of prognosis, and development of the treatment approach. In a process 

similar in principle to classical sprouting angiogenesis, secreted factors in some solid tumor 

types and other inflamed tissues can also initiate lymphangiogenesis, the formation of new 

lymphatic vessels from preexisting vessels. These newly formed lymphatic vessels exhibit 

morphological differences from those in their healthy tissue counterparts, including structural 

disorganization [238]. Interestingly, tumor-associated lymphangiogenesis appears to involve 
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both incorporation of bone marrow-derived endothelial progenitors and endothelial mimicry by 

CD11b+ tumor-associated macrophages, although there are conflicting reports regarding the 

extent to which the latter occurs [239-242]. 

Although peritumoral lymphatic vessel density can act as a prognostic indicator in 

several cancer types, including cervical, colorectal, breast, and prostate cancers [243-247], 

several studies have suggested that intratumoral lymphatic vessels in solid tumors may be 

either collapsed due to intratumoral pressure, occluded by infiltrating tumor cells and therefore 

nonfunctional, or simply absent altogether [248-251]. Thus, the high frequency of cancer cell 

detection in regional lymph nodes implicates peripheral, peritumoral lymphatic vessels in 

mediating tumor metastasis in these tumor types [250, 252]. However, results showing non-

functional intratumoral lymphatic vessels have not been uniformly supported [253]. 

Consequently, the role of tumor lymphangiogenesis and the relative contribution of intratumoral 

versus peritumoral lymphatics to lymph node metastasis remains controversial.  

 

Adipose and breast cancer angiogenesis 

In vivo tumor models have demonstrated the ability of breast tumors to obtain a blood 

supply through all of the aforementioned processes: vessel co-option, intussusceptive growth, 

vasculogenic mimicry, and classical sprouting angiogenesis [254, 255]. Additional mechanisms 

have also been described for breast cancers, such as vasculogenesis and glomeruloid 

angiogenesis, albeit to a lesser extent [255]. Nevertheless, remodeling of existing vessels 

appears to be the dominant mechanism for establishing new vasculature in human breast 

cancers [256, 257]. In support of this assertion, Lim et al. [233] demonstrated that implantation 

of the E0771 murine mammary tumor line into either brown or white adipose tissue resulted in 

accelerated tumor growth rates and increased intratumoral vessel densities as compared to 

tumors grown subcutaneously. These results were attributed to co-option of pre-existing 

adipose vascular beds, as tumor growth and vascularity reflected the differential degree of 



44 
 

vascularity within the respective adipose types. Furthermore, adjacent adipose tissue fostered 

both reduced pericyte coverage and enhanced permeability in tumor vessels, features 

associated with worse prognosis.  

In obesity, both the increased abundance of white adipose and the resulting chronic 

inflammatory conditions of the microenvironment may promote tumor vascularization. Indeed, 

enhanced tumor angiogenesis in the context of obesity is observed in both mice and humans 

[45, 213, 258-260]. In one compelling study, Arendt et al. [45] developed a novel humanized 

mouse model wherein human adipose stromal populations overexpressing CCL2 were injected 

into cleared mammary fat pads (cleared of endogenous mammary epithelium) to generate an 

obese-like microenvironment. Prior to tumor formation, the authors reported enhanced 

angiogenesis in CCL2-overexpressing mammary fat pads, which was shown to be mediated by 

elevated levels of macrophage recruitment and activation. Upon transplantation of transformed 

human breast epithelial cells, the obese-like microenvironment augmented macrophage-

associated angiogenesis in early premalignant lesions as well as tumor-adjacent adipose 

following tumor formation, which induced the formation of larger and higher-grade tumors. 

Whether the observed tumor-promoting effects were due to specific macrophage phenotypes in 

“obese” vs. lean mammary adipose or simply to an increase in macrophage numbers was not 

explored. Moreover, this study did not differentiate whether increased tumor-associated 

macrophage content in obesity was due to accelerated recruitment of bone marrow-derived 

macrophages or to co-option of nearby mammary adipose tissue macrophages. Nevertheless, 

similar results were reported by Cowen et al., who demonstrated that high-fat diet-induced 

obesity in the MMTV-PyMT model of spontaneous breast cancer resulted in mammary adipose 

tissue inflammation, enhanced macrophage recruitment, and increased mammary tumor 

vascular density [44].  

As described in the previous section, obesity is also associated with elevated levels of 

circulating and infiltrating ASCs [213] which produce a range of proangiogenic factors, including 

VEGF and HGF [261]. Our lab has demonstrated that inhibition of the HGF receptor, cMET, via 
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the small molecule kinase inhibitor crizotinib significantly reduced tumor burden and tumor 

vascularity in both lean and obese C3(1)-TAg mice [262].  Reversal of high fat diet-induced 

elevation of HGF/cMET expression in both normal mammary gland and tumors was also 

observed with weight loss, which significantly blunted the effects of obesity on both pre-

neoplastic lesion formation [263] and tumor progression [264] (Figure 16). Importantly, 

endothelial cell upregulation of cMET is one mechanism attributed to inherent or acquired 

resistance to anti-angiogenic therapies targeting VEGF [265, 266]. In fact, the HGF/cMET 

pathway has been reported to act synergistically with VEGF [265, 267], and clinical trials 

investigating crizotinib alone (ClinicalTrials.gov: NCT 02101385 [268]) or in combination with 

anti-VEGF therapy (ClinicalTrials.gov: NCT 02074878 [269]) for the treatment of advanced 

TNBC are currently underway at the time of preparation of this review.     

 

 
 

However, one response to anti-angiogenic therapies is vessel pruning and regression, 

leading to intratumoral hypoxia. Such hypoxic conditions induce an influx of tumor-associated 

macrophages and other myeloid cells, triggering tumor revascularization and tumor relapse 

[270-273]. In addition, peritumoral adipose tissue is characterized by a dense macrophage 

infiltrate and a high degree of vascularization. Indeed, Wagner et al. demonstrated that 

inflamed, tumor-associated adipose tissue acts as a source of both vascular endothelium and 

Figure 16. Mammary 
HGF/cMET signaling in the in 
C3(1)-TAg mouse model of 
basal-like breast cancer. 
Obesity increased HGF 
production by stromal cells, 
promoting tumor growth and 
angiogenesis. HGF/cMET-
mediated tumor promotion was 
reversible by weight loss or 
cMET inhibition. 
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activated pro-angiogenic macrophages, thereby fueling the growth of malignant cells [259, 274]. 

Importantly, the presence of macrophages within adipose tissue increases considerably in 

obesity [275]. Thus, obesity-associated mammary adipose inflammation and resulting 

macrophage infiltration and angiogenesis may contribute to tumor relapse following anti-

angiogenic therapies. 

 

Adipose tissue and lymphangiogenesis in breast and prostate cancers 

Lymphatic vessels in the normal breast are dispersed throughout the interlobular stroma 

and adipose tissue [249], the latter of which acts a source of molecules that directly affect the 

lymphatic endothelium. For example, the lymphangiogenic factors VEGF-C and VEGF-D are 

chemotactic for macrophages in mice, and their blockade in a diet-induced obesity model 

attenuated macrophage infiltration, adipose tissue inflammation, and onset of insulin resistance 

[276]. An increase in circulating levels of pro-lymphangiogenic factors such as HGF and VEGF-

C in obesity may also alter lymphatic vessel density or function by enhancing capillary 

permeability and inducing lymphendothelial hyperplasia [226, 277]. Indeed, obesity is 

associated with dysfunction of the adipose lymphatic system, including decreased lymph node 

size and number [278], reduced drainage of macromolecules [279], increased perilymphatic 

inflammation [280], and altered lymph node immune cell composition [278]. These changes 

were recently attributed to the condition of obesity per se – specifically injury to lymphatic 

endothelial cells caused by inflamed adipose tissue – rather than the high fat diet used to 

generate the obese phenotype [281]. Interestingly, using a model of Prox1 haploinsufficiency, 

Harvey et al. demonstrated that lymphatic vascular defects and resulting abnormal lymph 

leakage into surrounding tissues induced adult-onset obesity [282]. A follow-up study by 

Escobedo, et al. further reported that the obese mutant phenotype of Prox1+/- mice could be 

rescued with tissue-specific restoration of Prox1 in lymphatic endothelial cells [283]. Whether 

lymphatic vessel density is altered in peritumoral adipose, either normal or obese, has not been 
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reported. However, Yamaguchi et al. observed a >3-fold increase in lymph node metastasis with 

adipose tissue invasion at the tumor margin in patients with invasive breast carcinoma [36]. 

The role of adipose tissue in prostate carcinoma angiogenesis and lymphangiogenesis is 

not well understood. However, as mentioned previously, ASCs are abundant in periprostatic 

adipose tissue [208] and are a source of lymphangiogenic factors [284]. Indeed, implantation of 

ASCs has been used successfully in mice to induce lymphangiogenesis in a model of 

lymphedema [285, 286]. Importantly, obesity may influence the degree of pro-

angiogenic/lymphangiogenic factors released from the periprostatic adipose depot. 

Venkatasubramanian et al. reported that conditioned media generated via explant culture of 

human obese periprostatic adipose stimulated prostate cancer cell proliferation and 

angiogenesis to a significantly greater degree than explants from lean patients, providing a 

potential link between obesity and worse prostate cancer prognosis [287]. Paradoxically, 

elevated leptin concentration in obese mouse models is associated with attenuated tumor cell 

proliferation and reduced angiogenesis and lymphangiogenesis in prostate cancers in vivo [288, 

289]. Furthermore, rate of lymph node metastasis in patients with clinically localized prostate 

cancer does not appear to be altered by obesity [290]. Thus, there are lingering questions 

surrounding the role of periprostatic adipose tissue in prostate tumor progression in both lean 

and obese individuals, particularly with regard to its influence on tumor angiogenesis.  

 

Adipose Tissue Immune Populations in Cancer Development and Progression 

Acute inflammatory responses, such as those that occur in the context of pathogen 

infections, are usually self-limiting and are characterized by an “acute inflammatory infiltrate” 

consisting primarily of neutrophils and sometimes eosinophils [291]. However, when triggering 

factors persist or inflammatory resolution mechanisms fail, a shift occurs in the immune profile 

to a “chronic inflammatory infiltrate”, predominantly comprised of lymphocytes and mononuclear 

cells such as macrophages and dendritic cells. Chronic inflammation is consistently associated 
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with increased risk of carcinogenesis and is a well-known hallmark of cancer [291, 292], leading 

Dvorak to describe tumors as “wounds that do not heal” [107]. Solid tumors frequently contain a 

dense infiltrate of immune cells, including lymphocytes, neutrophils, macrophages and mast 

cells, each of which directly or indirectly influence the course of tumor progression. In fact, many 

of the changes that occur in the tumor microenvironment are orchestrated by immune cells 

[293-295]. Chronic inflammation is also highly prevalent in obesity, and as discussed in previous 

sections, plays pivotal roles in adipose tissue (lymph)angiogenesis and development of fibrosis. 

Thus, the final section of this review will focus on adipose tissue immune populations. We will 

emphasize the changing immune profile during adipose accumulation and progression to 

obesity and the potential impact of these alterations on adipose-adjacent tumor progression. 

However, it should be noted that the immune profile of adipose tissue depends upon both the 

degree and the duration of adiposity, as well as a variety of other factors that are beyond the 

scope of this review, including physical activity, dietary intake, the microbiome, and certain 

therapeutics such as thiazolidinediones [296].  

Healthy adipose tissue contains a wide variety of innate and adaptive immune cells, 

including macrophages, dendritic cells, mast cells, eosinophils, neutrophils, and lymphocytes, 

which collectively constitute ~25-45% of stromal cells in humans [12]. In lean adipose, these 

“resident” immune cells maintain tissue homeostasis by clearing apoptotic cells, suppressing 

inflammation, and mediating basal ECM remodeling and angiogenesis in response to routine 

fluxes in caloric availability [114]. However, during progression to obesity, rapid expansion of 

adipose tissue and associated adipocyte dysfunction trigger a dynamic infiltration of innate and 

adaptive immune populations (Figure 17). These immune cells act as potent sources of 

inflammatory cytokines, chemokines, growth factors, and matrix-degrading enzymes such as 

MMPs, which rapidly remodel the tissue microenvironment and result in chronic low-grade, or 

“smoldering”, inflammation [88]. A decrease in relative influence of select adipose resident 

populations known for their anti-inflammatory action (e.g., immunosuppressive macrophages, 

eosinophils, regulatory T cells, and innate lymphoid cells [ILC2s]) may further exacerbate 
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adipose inflammation in obesity and associated sequelae, thereby indirectly mediating 

differential immune responses during tumor-adipose interactions in lean vs. obese individuals.  

 

 
Figure 17. Summary of changes in immune cell profile during progression to obesity.  In the lean 
state, adipose tissue contains a variety of immunoregulatory cells such as M2-like tissue-resident 
macrophages, regulatory T cells, and eosinophils.  Neutrophils infiltrate adipose within days of exposure to 
an obesogenic diet. Over weeks to months, an increase in CD8+ T cells, macrophages, and myeloid-
derived suppressor cells (MDSCs) results in a mix of pro- and anti-inflammatory cells. In prolonged obesity, 
adipose mast cell content may also increase. 

 

Despite a surge in research over the past 15 years on the roles of immune cells in 

adipose tissue biology, many fundamental lines of investigation remain incompletely 

understood. For example, a growing understanding of the complexity of innate lymphocyte 

subsets and their remarkable parallels with adaptive lymphocyte subsets [297] complicates 

interpretation of innate vs. adaptive influence. In addition, data regarding roles for select 

immune cell types, such as basophils, in adipose tissue remain in short supply. Notably, while 

comparing the immune response to tumor growth in lean and obese individuals many studies 
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have failed to take into account co-morbidities associated with obesity which may alter the 

immunometabolic milieu. For example, type II diabetes is a metabolic condition in which insulin 

resistance, often due to prolonged obesity and associated inflammation, results in 

hyperinsulinemia, hyperglycemia, and dyslipidemia. In addition to elevating risk of both cancer 

development and cancer mortality in several solid tumor types [298, 299], metabolic 

dysregulation in type II diabetics shifts availability of metabolic substrates such as glucose and 

fatty acids, which can alter immune cell number and behavior [300-302]. Furthermore, 

medications prescribed for glucose control in type II diabetics, such as metformin, may have 

profound and confounding effects on anti-tumor immunity through suppression of inflammation 

in macrophages [303] or augmentation of the cytotoxic T cell response [304].  

With these caveats acknowledged, the increased presence of adipose inflammatory cells 

in obesity may provide a link between adipose tissue and the pathophysiology of adipose-

associated cancers. Thus, when considering the effects of adipose tissue on cancer 

development, the potential for cross-talk between adipose immune populations and the 

developing tumor is paramount. Due to a current dearth of literature addressing immune 

populations in periprostatic adipose, the structure for this final section of our review will diverge 

from the format above, which emphasized breast and prostate adipose pads individually, and 

instead focus more generally on literature regarding immune populations in a variety of adipose 

depots.  

T cells in Adipose and Cancer  

T cell diversity in the tumor microenvironment 

T lymphocytes, or T cells, are central to cell-mediated immune responses and mediate 

exquisitely specific adaptive immune defenses within a given disease context, including cancer. 

Broadly speaking, T cells can be classified into CD4+ helper T (Th) and CD8+ cytotoxic T (Tc) 

cell subsets. CD4+ Th cells can be further subdivided into pro-inflammatory effector Th1 cells or 

immunoregulatory Th2 cells, which influence both generation and activity of CD8+ Tc cells and 
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antigen-presenting cells (APCs), such as macrophages and dendritic cells, within the tumor 

microenvironment. Other T cell subsets include Th17 cells, γδT cells, and certain types of 

natural killer (NK) cells, the latter of which exhibit cytotoxic activity and play a role in antitumor 

immune defense. While each of these T cell subsets, along with other, less well-characterized 

populations, influence both tumor progression and adipose immunity [305, 306], a 

comprehensive review of T cell function in these contexts is beyond the scope of this review. 

However, several of the most well characterized subsets will be addressed below, with 

particular emphasis on how adiposity-associated alterations in CD8+ T cells and a subset of 

CD4+ T cells termed “classical T regulatory cells”, or Tregs, may contribute to cancer 

development in obese individuals.  

CD8+ Tc cells and CD4+ Tregs generally exhibit opposing immunologic functions in both 

the tumor microenvironment and normal tissues. CD8+ Tc cells are a critical component of 

antitumor immune defense, directly killing tumor cells through release of cytotoxic granules 

containing perforin and granzyme B, and indirectly promoting tumor rejection by stimulating 

APC activity. On the other hand, Tregs are a subset of CD4+ T cells identified by expression of 

the cell surface markers CD4 and CD25 and the transcription factor forkhead box P3 (FOXP3), 

which acts as the master regulator of the Treg phenotype [307, 308]. Tregs directly regulate the 

activity of other T cells through suppression of CD8+ Tc cell proliferation following T cell 

receptor (TCR) stimulation and activation of immune checkpoint pathways, which provide a 

critical defense against T cell-mediated responses to self-antigens (autoimmunity). Specifically, 

in T cells, the amplitude and duration of TCR-mediated immune responses are determined by 

immune checkpoint proteins, which exert co-stimulatory and/or inhibitory signals to effectively 

“tune” the immune response and curtail collateral tissue damage. For example, FOXP3-

mediated constitutive expression of the immune checkpoint protein CTLA4 by Tregs inhibits 

development of self-reactive CD8+ Tc cells in secondary lymphoid organs such as lymph nodes 

[309]. In peripheral tissue, including tumors, expression of the inhibitory checkpoint protein 



52 
 

Programmed Death-1 (PD-1) by “exhausted” or chronically activated T cells impairs cell-

mediated responses. Binding of ligands to the PD-1 receptor triggers T cell senescence, 

apoptosis, or conversion to a Treg phenotype [310, 311], thereby attenuating cell-mediated 

immune responses [312]. Additionally, Tregs potently suppress the function of other immune 

cells such as APCs, NK cells, and CD8+ Tc cells through production of cytokines including IL-10 

and TGF-β [305, 306, 312]. While these immune-regulatory functions provide a critical defense 

against rampant immune responses, by suppressing immunosurveillance and promoting 

immune tolerance in the tumor microenvironment Tregs actively prevent robust elimination of 

developing cancers. Accordingly, the density of Tregs in solid tumors is correlated with adverse 

clinical outcomes in melanoma, as well as ovarian, gastric, pancreatic, hepatic, breast, and 

prostate cancers [313-315]. 

 

Differential T cell content and activation in lean and obese adipose tissue: links to cancer 

In addition to their well-established roles in the tumor microenvironment, Tregs have also 

recently been shown to contribute to the maintenance of adipose tissue metabolic homeostasis. 

Feuerer et al. [316] demonstrated that nearly half of the CD4+ T cells in lean visceral adipose of 

male mice expressed FOXP3. In fact, visceral adipose in 30-week old mice contained a greater 

abundance of Tregs than lymphoid tissues such as spleen and lymph nodes. Interestingly, 

these adipose-resident Tregs were frequently detected in CLS, which are typically associated 

with inflammatory cells. Expression profiling of isolated adipose Tregs revealed a gene 

signature distinct from that of “conventional” T cells from spleen and lymph nodes. Divergent 

transcription patterns in adipose Tregs included a relative increase in chemokines involved in 

leukocyte migration and extravasation and greatly elevated IL-10 expression (>100-fold) as 

compared to lymph node Tregs. Adipose-resident Tregs also exhibited limited TCR diversity 

relative to spleen or lymph node Tregs [316]. Similarly, Yang et al. reported that adipose T cells 
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displayed a TCR profile distinct from that of splenic T cells, further demonstrating that depot-

specific microenvironments modulate lymphocyte phenotypes [317].  

Feuerer et al. [316] also noted that the presence of Tregs in visceral adipose declined 

with increasing adiposity in three mouse models of obesity, although the abundance of lymphoid 

tissue Tregs was unaffected. Subsequent mechanistic studies employing Treg stimulation and 

depletion suggested that IL-10 secretion by Tregs dampens inflammation in adipose tissue, 

thereby safeguarding insulin sensitivity. A second study published the same year by Nishimura 

et al. [318] also reported a decrease in Treg content in obese murine visceral adipose, with a 

simultaneous and substantial increase in the presence of CD8+ Tc cells displaying markers of 

activated effector T cells. Of note, in obese mice the accumulation of CD8+ Tc cells preceded 

macrophage infiltration by 3-4 weeks, indicating that T cells may affect microenvironmental 

changes enabling macrophage recruitment (Figure 17). An increase in CD8+ Tc cells, 

particularly within CLS, was also observed in subcutaneous adipose. Genetic or antibody-

mediated depletion of CD8+ Tc cells during the course of high-fat feeding attenuated the onset 

of insulin resistance, prevented macrophage infiltration, and blunted obesity-associated 

increases in TNF-α and IL-6 expression in whole adipose tissue; these phenotypes were 

“rescued” upon reintroduction of CD8+ Tc cells via adoptive transfer. Similarly, CD8+ T cell 

depletion in established obesity reduced the presence of pro-inflammatory macrophages and 

CLS density in adipose tissue. These findings were confirmed in vitro, as co-culture of CD8+ T 

cells from obese adipose with macrophages induced significantly greater macrophage-specific 

TNF-α expression than did CD8+ T cells from lean adipose. In sum, these studies illustrate that 

reduced Treg content and increased CD8+ T cell presence promote macrophage-specific 

expression of pro-inflammatory mediators, thereby contributing to adipose inflammation and 

metabolic dysfunction in obesity, both of which are drivers of tumor malignancy. 

However, the nature of these reported shifts in T lymphocyte profiles of obese murine 

adipose has not been consistent in human studies. In fact, the opposite has been observed. In 

obese adults, the expression of Treg activation markers and Treg cytokines increased with 
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increasing adiposity, particularly in subcutaneous as compared to visceral adipose [319, 320]. 

One potential explanation for these observed increases in Treg activation relates to increased 

local estrogen concentration in adipose tissue of obese subjects. Indeed, Subbaramaiah et al. 

provided evidence that elevated cyclooxygenase-2 (COX-2)-induced prostaglandin E2 (PGE2) 

production by CLS-associated inflammatory cells mediates increased risk of breast cancer in 

obesity by inducing activity of aromatase in mammary adipose tissue [321, 322]. Increased 

aromatase activity in adipose tissue increases the conversion of circulating androgens to 

estrogens, and thus is of particular concern for development of estrogen receptor-positive 

breast cancers in postmenopausal women, a population in which obesity is strongly linked to 

elevated risk of cancer [323, 324]. Estrogen also exerts a positive effect on both expansion of 

Tregs and augmentation of their immunosuppressive activities [325, 326]. Elevated PGE2 also 

induces FOXP3 expression and Treg function [327-329]. Paradoxically, however, elevated 

aromatase and PGE2 levels are also present in adipose of obese mice. Thus, the significance of 

interspecies differences in obesity-associated Treg abundance and/or activation is unclear.  

Interspecies differences in T cell content are not exclusive to Tregs. For example, 

although increases in Tc and Th1 cell content are frequently reported in murine models of 

obesity, the prevalence of these cell types in obese human adipose is controversial. Indeed, 

while Yang et al. reported that the stromal-vascular fraction of abdominal subcutaneous adipose 

from obese human subjects displayed an increased percentage of both CD4+ and CD8+ T cells 

compared to lean individuals [317], two additional studies profiling T cells in obese human 

adipose did not reach the same conclusions [319, 320]. Accordingly, although CD8+ T cells 

appear to contribute to adipose inflammation in mice, their role in human obese adipose 

remains ambiguous. Furthermore, in addition to identifying potentially critical cross-species 

differences in adipose T cell function, these results also suggest that, in humans, an increase in 

pro-inflammatory cell abundance in adipose occurs with a parallel protective response driven by 

Tregs. Should this be the case, an elevated presence of Tregs in human obese adipose may 

contribute to immunosuppression of anti-tumor responses in adipose-adjacent cancers.  
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In addition to influencing Treg-mediated immunosuppression, obesity may also impair T 

cell-mediated antitumor responses through systemic mechanisms. For example, obesity 

reportedly accelerates age-associated declines in immune function, including thymic atrophy. 

The thymus is a specialized primary lymphoid organ located in the mediastinum that houses 

maturing T lymphocytes. Beginning at puberty, the thymus undergoes involution, or atrophy, 

exhibiting fibrotic and fatty changes that culminate in its replacement by adipose tissue [330]. 

Following thymic involution, the peripheral T cell pool is primarily maintained independently of 

thymic lymphopoiesis, such as by expansion of existing T cell populations; however, it should be 

noted that some studies in humans have reported that the aged thymus retains a limited 

capacity to produce naïve T cells [331]. Eventually, the age-related decline in naïve T cell 

production, in combination with steady exposure to antigenic challenge and resulting expansion 

of effector-memory T cells, depletes the naïve T cell pool and reduces diversity of the TCR 

repertoire [332]. Thus, these processes reduce the capability of the adaptive immune system to 

respond to new antigenic challenges, increasing susceptibility to infection, autoimmune 

responses, and cancer. Importantly, Yang et al. [333] reported that prolonged obesity in mice 

increased perithymic adipose tissue content, reduced thymocyte counts, and enhanced 

thymocyte apoptosis relative to lean animals, each of which are associated with thymic aging. 

Similarly, increased frequencies of CD4+ and CD8+ effector-memory cells in subcutaneous 

adipose of obese mice, concomitant with a notable decrease in TCR diversity and depletion of 

the CD4+ and CD8+ naïve T cell pools, further supported an acceleration of the immune aging 

process. Moreover, splenic T cells isolated from obese mice exhibited reduced expression of 

pro-inflammatory mediators important for antitumor immune defenses, including interferon-γ and 

TNF-α. Finally, in humans, analysis of mature thymus-derived T cells demonstrated that 

increasing adiposity significantly correlated with a reduction in thymic output in overweight and 

obese middle-aged subjects. These obesity-related restrictions in TCR diversity and T cell 

function may account for reports of impaired adaptive immunity in obese patients [334, 335] and 

suggests a reduced capacity to mount an effective antitumor immune response. 
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Finally, recent clinical successes with tumor immunotherapies targeting the PD-1 

immune checkpoint pathway have increased interest in the regulation of this pathway in the 

context of obesity. As described above, PD-1 expression by T cells is an important driver of 

immunosuppression and reduced cytotoxic T cell response in the tumor microenvironment 

[336], prompting development of PD-1-targeting monoclonal antibodies (e.g., pembrolizumab 

and nivolumab) for clinical use. Recently, Shirakawa et al. reported B cell-dependent 

accumulation of CD4+ T cells constitutively expressing PD-1 within visceral adipose of obese 

mice and human omental adipose from obese patients [337], further suggesting that tumor-

adjacent adipose in obese individuals may present an immunosuppressive environment. In light 

of the accelerated thymic aging and naïve T cell depletion reported in obese patients, it will be 

interesting to see whether adipose contributes to increased PD-1+ T-cell content in the solid 

tumor microenvironment. 

 

Macrophages and myeloid-derived suppressor cells 

Macrophage ontogeny and activation   

Macrophages, or “big eaters”, are myeloid-lineage immune cells typically classified 

within the innate immune system, yet they bridge innate and adaptive immunity through 

extensive interactions with adaptive immune cells such as T cells. Conventionally, macrophages 

have been classified according to the “M1/M2” dichotomy, wherein “M1” polarized, or 

“classically-activated”, macrophages are pro-inflammatory, and “M2” polarized, or “alternatively-

activated”, macrophages are anti-inflammatory. M1 macrophages are generated in vitro upon 

exposure to Th1 cytokines (e.g., IFN-γ) or stimuli such as bacteria and lipids [338-340]. In 

contrast, M2 macrophages are most commonly generated by culture in the presence of Th2 

cytokines such as IL-4 and/or IL-13 [341]. However, a variety of other compounds may also be 

used for M2 macrophage polarization, including TGF-β, IL-10, glucocorticoid hormones, M-CSF, 

and PGE2 [342].  
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Figure 18.  Macrophage activation as a spectrum. Unstimulated macrophages can be polarized in vitro 
to generate M1 macrophages (right) or M2 macrophages (left) using single cytokines or cytokine and other 
stimuli cocktails. However, tissue macrophages are exquisitely plastic, often expressing one or more 
markers of both M1 and M2 subtypes. Thus, tissue macrophage activation lies along a spectrum, resulting 
in mixed phenotype with specific expression and function varying by tissue type and timing of residence. 

 

Importantly, a lack of standardized nomenclature and macrophage polarization strategy 

[343], coupled with the multifarious nature of tissue macrophages and their exquisite ability to 

respond to context-dependent cues [344], has resulted in a tremendous influx of literature about 

the respective roles of M1 vs M2 macrophage subsets in disease that is often contradictory and 

difficult to reconcile [345]. Furthermore, while much of our understanding of the M1 and M2 

phenotypes have come from animal and in vitro studies, genomic profiling of human and mouse 

macrophages treated with M1 or M2 stimuli revealed that only approximately 50% of 

macrophage polarization markers are shared across both species [346]. With these caveats 

acknowledged, despite their utility to in vitro research, truly polarized macrophages are rare in 

vivo. Instead, tissue macrophages display a diverse array of functional phenotypes and often 

express one or more markers of both M1 and M2 subtypes, resulting in a mixed phenotype with 
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specific expression and function varying by tissue type and timing of residence, as discussed 

below (Figure 18) [347-350]. 

Over the past few decades, macrophage ontogeny studies have revealed multiple 

origins for what are now referred to as “tissue resident” macrophage populations (for two 

excellent reviews on macrophage ontogeny the reader is referred to [348, 351]). During primitive 

hematopoiesis in early embryonic development, macrophages arise in the blood islands of the 

yolk sac from an erythromyeloid precursor, differentiating to macrophages without passing 

through a monocyte stage [352, 353]. These early embryonic macrophages are followed by a 

second wave derived from fetal monocytes and originating in the fetal liver [352, 353]. 

Collectively, macrophages within these waves of early hematopoiesis populate tissues 

throughout the body and develop specialized functions based on their tissue of residence (e.g., 

microglia in the brain, Kupffer cells of the liver, etc.) [348, 351]. Tissue-resident macrophages 

persist through adulthood and, in most tissues, self-maintain through local proliferation without 

significant contribution from circulating monocytes (exceptions include the intestine and the 

dermis) [354, 355]. Only in later stages of embryonic development and postnatally do 

macrophages develop from bone marrow-derived circulating monocytes, which are recruited to 

tissues as needed when insults arise.  

Although the embryonic origin of many specialized tissue macrophage populations has 

been identified, the precise origin of adipose tissue macrophages (ATMs), and the degree to 

which resident ATM populations are replaced by circulating monocytes, remains unclear 

(Figure 19). In one recent study, Franklin et al. demonstrated that ablation of the CCL2 

receptor, CCR2, significantly reduced mammary fat pad macrophage content in lean mice [356]; 

CCL2 mediates egress of monocytes from bone marrow and thereby augments the abundance 

of circulating monocytes [357]. This study by Franklin and colleagues therefore suggests that 

mammary-specific ATMs in lean mice are replenished throughout adulthood by circulating 

monocytes. Whether this replenishment also occurs in other lean adipose depots under 

physiologic conditions has not been reported.  
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Figure 19.  Adipose tissue macrophage ontogeny. Lineage tracing studies have revealed multiple 
embryonic sources for tissue-resident macrophages (e.g., Kupffer cells, microglia) including the yolk sac 
and fetal liver. However, the contribution of bone marrow monocyte-derived macrophages to tissue-resident 
populations remains ambiguous. Moreover, the relative contribution of yolk sac, fetal liver, and bone 
marrow-derived macrophages within adipose tissue depots has not been established, although the overall 
proportion of inflammatory, bone-marrow derived macrophages increases in obese adipose. 

 

Macrophage content and phenotypes in obesity 

Macrophages are the most highly represented immune cells in adipose tissue, and their 

numbers increase considerably in both visceral and subcutaneous adipose in obesity. However, 

the increased presence of ATMs in obesity appears to arise from multiple tissue sources. For 

example, using bone marrow transplant studies employing CD45.2-expressing recipient mice 

and syngeneic CD45.1-expressing donor mice, Weisberg et al. reported that adipose-infiltrating 

macrophages in obesity had differentiated from bone marrow-derived, circulating monocytes 

[275]. However, Amano et al. demonstrated that elevated CCL2 in visceral adipose drove local 

proliferation of macrophages in obesity, which contributed to ATM accumulation [358]. Local 

ATM proliferation was also observed by Hasse et al., with live imaging of adipose explants 
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showing that macrophages expressing M2-identifying markers underwent mitosis within CLS, 

followed by migration to interstitial spaces between adipocytes [359]. Moreover, in vivo 

proliferation in a subset of bone marrow-derived macrophages has also been described, a 

surprising finding as bone marrow-derived macrophages were long believed to be terminally 

differentiated and thus non-proliferative [360]. Importantly, however, recruitment of bone 

marrow-derived macrophages and local ATM proliferation need not be mutually exclusive, and 

future studies should examine obese ATM ontogeny in a longitudinal fashion.   

Regardless of their tissue of origin, the increased presence of macrophages in obese 

adipose tissue can be best observed histologically as an increase in CLS formation. Indeed, 

Weisberg et al. demonstrated that macrophage influx and CLS formation in both mice and 

humans were significantly correlated with both adipocyte diameter and BMI [275]. Time course 

studies probing the changing immune profile in obesity report that this macrophage 

accumulation occurs subsequent to neutrophil and T cell infiltration [318, 361]. However, there 

is variability in both the reported timing of macrophage influx and the degree of infiltration across 

adipose depots. For example, Elgazar-Carmen et al. observed an increase in CLS formation in 

murine visceral adipose tissue as early as 3 weeks into high fat feeding, which increased in 

density over time until the study endpoint at 16 weeks of diet exposure [361]. On the other hand, 

Nishimura et al. reported that the presence of macrophages in the stromal-vascular fraction of 

visceral adipose tissue did not increase until 10-12 weeks of high-fat feeding [318]. These 

temporal differences may be due to variation in the age at which obesity was induced and the 

dietary composition used to generate adiposity (i.e., both the percent kilocalories obtained from 

lipids as well as the lipid profile), as each are important considerations in diet-induced obesity 

studies. Nevertheless, although the initial timing of macrophage infiltration varies across studies, 

macrophage accumulation continues with prolonged obesity, with ATMs eventually comprising 

up to 50% of adipose stromal-vascular cells [275, 362-364]. Due to sexual dimorphism in mice 

with regard to degree of adiposity in response to high-fat feeding, as well as differential 

contribution of adipose depots to obesity-associated metabolic dysregulation, many obesity 
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studies have preferentially quantified changes in macrophage content in abdominal adipose 

depots of male mice (i.e., inguinal and periepididymal). However, we and others have also 

demonstrated obesity-associated CLS formation in the mammary fat pad of female mice, as well 

as human breast adipose tissue [321, 322, 365, 366].  

As mentioned in previous sections of this review, obese adipose tissue frequently 

exhibits elevated levels of pro-inflammatory cytokines such as TNF-α and IL-6. Although obese 

adipocytes have been shown to contribute to the secretion of these factors [367], macrophages 

and other stromal-vascular cells are thought to be the primary source of pro-inflammatory 

mediators in both mice [275] and humans [368, 369].  Following initial reports of adipose 

macrophage influx in 2003 [275, 364], early characterization of ATMs reported the appearance 

of a CD11c-expressing population of ATMs in adipose tissue of obese, but not lean, mice [370, 

371], as well as a phenotypic switch in the collective ATM population from an anti-inflammatory 

(M2) polarized state in lean animals to a pro-inflammatory (M1) state in obese animals [370]. 

Importantly, however, more recent research indicates that the nature of ATM phenotypes in 

obesity is more dynamic and complex than originally expected. For example, the pro-

inflammatory phenotype of CD11c-expressing ATMs appears to be malleable and may be 

modulated by degree of insulin sensitivity in obese animals [372]. In addition, more extensive 

profiling of ATMs in obese adipose of mice and humans has revealed that these cells harbor a 

“mixed” pro- and anti-inflammatory phenotype [373, 374]. For example, in human abdominal 

subcutaneous adipose, ATMs accumulating in CLS expressed both CD11c and the commonly 

used M2 marker mannose receptor C type 1 (CD206), as well as both pro- and anti-

inflammatory interleukins (IL-1β, IL-6, IL-8, and IL-10) [375]. These results are further supported 

by Nakajima et al., who reported accumulation of ATMs expressing both CD11c and CD163, the 

latter of which is commonly associated with M2-like macrophages, in abdominal visceral and 

subcutaneous adipose of obese subjects [376]. Shaul et al. [373] also described a mixed M1/M2 

phenotype in obese murine CD11c+ visceral ATMs, suggesting phenotypic and functional 

similarities between murine and human ATMs in obesity. Interestingly, in the latter study, these 
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mixed phenotype ATMs exhibited a shift toward a more M2-like transcriptional profile as obesity 

progressed.  

Due to the phenotypic overlap between ATMs and canonical M1- and M2-polarized 

macrophages, the precise stimuli that activate ATMs, as well as the specific surface marker 

profile of this cell population, have only recently been described. Using a membrane proteomics 

approach, Kratz et al. [377] described a unique, ‘‘metabolically-activated’’ phenotype in visceral 

ATMs from obese mice, which displayed surface markers distinct from those of classically-

activated macrophages generated in vitro. When these metabolically-activated ATMs were 

recapitulated in vitro by exposure to conditions characteristic of the metabolic syndrome (high 

glucose, insulin, and palmitate), they were further found to exhibit increased surface expression 

of M2-associated lipid metabolizing proteins, but not other M2-defining markers. Metabolically-

activated ATMs also exhibited increased PPARγ activation, as well as a strong and selective 

induction of protein sequestome-1/p62, a scaffold protein with a variety of signaling roles 

including activation of the transcription factor nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) [377, 378]. Importantly, PPARγ is a transcription factor crucial in the 

generation of the M2-like macrophage phenotype, while the NF-κB transcription factor family 

mediates several aspects of the M1 inflammatory response. Moreover, ablation of PPARγ or 

p62 in metabolically activated macrophages increased expression of several pro-inflammatory 

mediators, indicating that PPARγ and/or p62 attenuate pro-inflammatory responses in ATMs in 

obesity [377]. Moreover, Ferrante and colleagues [379] observed elevated lysosome biogenesis 

and lipid metabolism in visceral adipose ATMs from obese mice relative to lean, without 

concomitant activation of inflammatory pathways. In fact, the authors suggested that the driving 

force for the chronic low-grade inflammation observed in obesity may simply be due to the 

increased density of macrophages in obese adipose, rather than a shift in the inflammatory 

potential of individual macrophages. Thus, questions remain regarding our understanding of 

ATM phenotype and degree of plasticity within adipose tissue.   
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Adipose tissue macrophages: connections to cancer 

Increased ATM content in obesity suggests a clear inflammatory link between obese 

adipose and initiation of adipose-adjacent cancers. For example, as mentioned previously, 

macrophage infiltration into obese breast adipose tissue and resulting inflammation are linked to 

increased risk of mammary carcinogenesis [321, 322]. Additionally, in various sections of this 

review we have addressed roles for ATMs in development of adipose tissue fibrosis [88, 97], 

which may influence early stages of tumor initiation. Macrophages are also highly represented 

within the body and margins of many solid tumor types, and directly promote progression of 

both early and established tumors [380, 381]. Indeed, macrophages are implicated in every 

aspect of tumor progression, including induction of the angiogenic switch [382]; generation of an 

immunosuppressive environment [342]; ECM degradation to facilitate invasion and migration of 

tumor cells into surrounding tissue; and physical participation in tumor cell metastasis [380, 

383]. Macrophages have also been shown to negatively influence response to anticancer 

therapies in breast and prostate cancers [384-388]. Accordingly, in human breast tumors, 

degree of macrophage infiltration is an independent prognostic indicator strongly associated 

with high vascular grade, reduced relapse-free survival, and decreased overall survival [258, 

380, 389].  

Differences in phenotype and trophic potential between embryonic-resident, locally-

proliferating, and bone marrow-derived ATM populations may influence tumor development and 

ATM participation in the tumor microenvironment. Collectively, macrophages found both along 

the solid tumor periphery and within the tumor mass are referred to as tumor-associated 

macrophages (TAMs). Studies investigating the origins of TAMs in mice have reported that 

circulating bone marrow-derived monocytes are the primary source of TAMs in syngeneically 

grafted [390] and spontaneously arising mammary tumors [356], as well as in breast cancer 

pulmonary metastases [391]. Furthermore, Franklin et al. reported that monocyte-derived TAMs 

in the MMTV-PyMT mouse model of spontaneous breast cancer proliferate within the tumor site 

and are phenotypically and functionally distinct from the resident mammary tissue macrophages 
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present before tumor development [356]. Together these observations argue against 

recruitment of local tissue-resident macrophage populations. However, studies probing TAM 

ontogeny have investigated this question exclusively in lean animals. The term “tissue-resident 

macrophages” is often used to refer to embryonic macrophages but may also refer to any 

macrophages residing in a given tissue before an insult induces recruitment of bone marrow-

derived inflammatory monocytes. Both expansion of adipose tissue in obesity and the presence 

of a developing tumor act as inflammatory insults; thus, the marked increase in ATM content in 

obesity, as well as their variable tissues of origin and distinct phenotypic differences from 

macrophages in lean adipose, requires an evaluation of the ATM-TAM relationship in the 

context of obesity. 

 

Similarities between adipose tissue macrophages and tumor-associated macrophages 

In a similar vein to ATMs, discrepancies exist between reports of the defining “TAM 

phenotype”. Conventionally, TAMs have been described as resembling alternatively-activated 

M2 macrophages [342, 392, 393]. However, large-scale transcriptome analyses of TAMs in 

breast cancer suggest that TAMs collectively exhibit a mixed phenotype, expressing both M1-

like and M2-like markers [394]. Interestingly, this same study also showed that the gene 

signature of breast TAMs resembled that of fetal macrophages, with increased abundance of 

transcripts for genes regulating angiogenesis, tissue remodeling, and immune response [394]. 

On the other hand, Franklin et al. recently reported that TAMs in the MMTV-PyMT model of 

metastatic, luminal-B breast cancer did not resemble M2-like macrophages, nor were they 

dependent upon tumor-elicited Th2 immune response [356]. Together these studies indicate 

that, at least in breast cancer, TAMs are highly heterogeneous, and their phenotypes depend on 

tumor type, subtype, and location within the tumor (i.e., margins vs. periphery and extent of 

hypoxia) [383]. Alterations in TAM phenotypes may also occur over the course of tumor 

development and progression, as Qian and Pollard have described a shift in TAMs throughout 
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tumorigenesis from an “inflammatory” type during tumor initiation to an anti-inflammatory, M2-

like trophic type in later stages of tumor progression [383]. As mentioned previously and 

discussed further in the following section on Myeloid-derived suppressor cells, a similar shift has 

been described in ATMs over the course of prolonged obesity [373]. 

Shared characteristics between the tumor and obese adipose microenvironments, such 

as fibrosis, elevated ECM stiffness, angiogenesis, and regional hypoxia, may foster similarities 

between ATMs and TAMs. In particular, transient hypoxia activates the NF-κB transcription 

factor family [395]. While numerous molecules are involved in generating inflammation, NF-κB 

has long been considered to lie at the center of the inflammatory response. However, due to the 

plurality of NF-κB family members, as well as the sheer number of combinatorial interactions 

within canonical and non-canonical signaling pathways, NF-κB activation can have both pro- 

and anti-inflammatory effects. Inflammatory mediators controlled by canonical NF-κB signaling 

include the TNF superfamily, IL-1β, IL-6, several chemokines, COX-2, 5-lipooxygenase, MMPs, 

VEGF, and cell surface adhesion molecules [396]. Some of these gene products also activate 

NF-κB, with TNF-α being a particularly potent stimulus [396]. On the other hand, non-canonical 

NF-κB activities, such as regulation of IL-10 and TGF-β, play a role in inflammation resolution 

[397, 398]. As discussed throughout this review, many of these signaling mediators also 

contribute to tumor malignancy through a variety of mechanisms, including growth promotion, 

matrix degradation, and tumor angiogenesis. In fact, NF-κB signaling is a known mediator of the 

tumor promoting activities of both early-stage, pro-inflammatory TAMs, and late-stage 

immunosuppressive TAMs [399-402]. A study by Mayi et al. [403] provided direct evidence 

underscoring the similarities between ATMs and TAMs. Specifically, ATMs from obese 

individuals expressed several of the same cancer-promoting genes as TAMs, including 

angiogenic factors, chemokines, cytokines, proteases, and growth factors. In fact, many of 

these pro-tumoral genes, including VEGF-C and CXCL12, were expressed to an equal or 

greater extent in obese ATMs compared with TAMs [403], and are known targets of non-

canonical NF-κB signaling [404]. Taken together, these findings indicate that chronically 
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activated NF-κB signaling and dysregulated immune responses are likely unifying themes 

between ATMs and TAMs. 

 

Myeloid-derived suppressor cells 

For reasons that are not well understood, abnormalities in myelopoiesis under conditions 

of prolonged inflammation such as chronic infections and cancer generate a poorly 

differentiated group of myeloid lineage cells collectively termed myeloid-derived suppressor 

cells (MDSCs) [405]. MDSCs include immature monocytes, neutrophils, dendritic cells, and 

macrophages, and are defined by their expression of the myeloid lineage markers CD11b and 

Gr1 and their potently immunosuppressive properties [405-407]. Although they are comprised of 

multiple myeloid cell types, MDSCs are often described as immature macrophages, as MDSCs 

in mice are frequently reported to lack markers of mature macrophages such as major 

histocompatibility complex II (MHCII) and/or F4/80 [407, 408].  

Factors implicated in promoting the egress of MDSCs from bone marrow, as well as their 

arrest in an immature state and their immunosuppressive nature, include PGE2, IL-6, TNF-α, IL-

1β, and VEGF [407]. Of these factors, PGE2 is a particularly potent inducer of MDSCs that 

triggers upregulation of arginase metabolism, thereby suppressing T cell function [409-411]. 

Several of these signaling molecules are in turn produced by MDSCs, resulting in a positive 

feedback loop of MDSC recruitment. Notably, as discussed in various sections throughout this 

review, each of these factors is also elevated in obese adipose tissue, and increased MDSC 

content in adipose tissue of obese mice has recently been reported. Indeed, Xia et al. [408] 

demonstrated that increased MDSC content in peripheral tissues (e.g., adipose and liver) of 

obese mice acted as an important safeguard of insulin sensitivity in both genetic and diet-

induced models of obesity. Depletion of Gr1-expressing cells exacerbated symptoms of glucose 

intolerance and increased the presence of CD8+ T cells in adipose tissue. On the other hand, 

adoptive transfer of MDSCs improved fasting glucose and insulin levels in obese mice and 



67 
 

reduced levels of circulating pro-inflammatory cytokines. Interestingly, the onset of MDSC 

accumulation coincided with previously reported windows of CD8+ T cell and pro-inflammatory 

macrophage recruitment, supporting the putative role of MDSCs in suppression of a rampant 

inflammatory response. Accordingly, the percentage of CD11b+ Gr1+ MDSCs in adipose tissue 

increased with the duration of obesity [408]. Factors contributing to the accumulation of adipose 

MDSCs in obesity are poorly understood, but may include development of insulin resistance or 

increased local concentrations of estrogen and IGF-1, each of which have been found to 

influence MDSC biology [412]. Importantly, influx of MDSCs into adipose in prolonged obesity 

may provide a partial explanation for reports of a shift in overall ATM phenotype over the course 

of obesity from pro-inflammatory M1-like to that of more immunosuppressive M2-like 

macrophages [373]. For example, isolated MDSCs cultured with media conditioned by 

explanted obese adipose tissue displayed a greater shift toward an M2-like macrophage profile 

than MDSCs exposed to lean adipose explant-conditioned media [408]. Future studies should 

examine the extent to which MDSCs in obese adipose differentiate to M2-like macrophages in 

vivo.  

While the presence of MDSCs in obese adipose tissue is a relatively recent finding, a 

large body of literature supports the immunosuppressive functions of MDSCs within the tumor 

microenvironment. However, similarities in marker expression and immunosuppressive 

activation states may complicate a clear distinction between TAMs and MDSCs. Moreover, 

MDSCs can also differentiate into mature TAMs upon entry into the tumor microenvironment 

[413]. Functional similarities between MDSCs and certain TAM subsets have also been 

documented. For example, MDSCS suppress the function of critical antitumor defense cells 

(e.g., CD8+ cytotoxic T cells and NK cells) through expression of cytokines such as IL-10 and 

TGF-β and through arginine metabolism via the enzymes arginase-1 or inducible nitric oxide 

synthase (iNOS) [407]. Interestingly, simultaneous expression of arginase-1 and iNOS is a 

hallmark of MDSCs that is rarely observed in other immune cells [407].  
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As described in the T lymphocytes section above, activation of the PD-1 pathway in T 

cells is a critical checkpoint promoting immunosuppression in the tumor microenvironment [414]. 

Prima et al. reported that co-culture of bone marrow-derived myeloid cells with bladder tumor 

cells elevated production of PGE2 by both MDSCs and TAMs, and induced expression of the 

PD-1 ligand, programmed death-1 ligand (PD-L1), in these populations in a PGE2-dependent 

manner [415]. Increased expression of PD-1 and its ligands PD-L1 and PD-L2 were also more 

highly expressed in prostate tumors of obese mice compared to those from lean animals [416]. 

Importantly, hypoxia-induced HIF-1α activation in TAMs was also recently shown to control 

TAM-specific PD-L1 expression [417]. Whether regional hypoxia in obese adipose and resulting 

HIF-1α activation increases PD-L1 expression by ATMs remains to be seen. However, the 

presence of MDSCs in prolonged obesity, as well as their influence on ATM activation, further 

suggests that adipose-adjacent cancers in obese individuals may encounter an environment 

conducive to suppressed immunosurveillance.  

 

Neutrophils 

Neutrophils infiltrate adipose tissue early in progression to obesity 

Neutrophils are the most abundant white blood cells in human circulation and are 

typically the first immune cells recruited in response to infection or sterile tissue injury. Upon 

arrival, neutrophils secrete a variety of pro-inflammatory cytokines and participate in 

presentation of antigen to, and activation of, T cells, while helping to recruit additional 

inflammatory cells such as macrophages [418]. In lean animals, neutrophils represent a small 

fraction of total adipose tissue immune cells (<1%) [419]. However, Elgazar-Carmon and 

colleagues [361] demonstrated that transient neutrophil infiltration into visceral adipose depots 

occurs early during the course of adipose tissue expansion in diet-induced obesity models, 

suggesting induction of an acute inflammatory response. Indeed, neutrophils accumulated in 

visceral (periepididymal) adipose of male mice as early as 3 days after initiating high-fat feeding 
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- well before weight gain - with a corresponding increase in the neutrophil enzyme 

myeloperoxidase. Maximal myeloperoxidase was detected within 3-7 days, followed by a slow 

decline and return to baseline levels within 2-3 weeks of high fat feeding, and neutrophils were 

no longer detectable histologically at 16 weeks on diet. Talukdar et al. [420] also reported a 

rapid and dramatic increase in adipose tissue neutrophil content by 3 days of high fat feeding. 

This increase was maintained for up to 90 days by fluorescence-activated cell sorting (FACS) 

analysis of immune cells within the periepididymal adipose stromal-vascular fraction of obese 

male mice, with a corresponding increase in neutrophil elastase mRNA. However, the exact 

adipose tissue-derived chemoattractant(s) that mediate neutrophil recruitment so early during 

the course of adipose tissue expansion remain unclear, as adipocyte hypertrophy and death do 

not typically occur until several weeks into diet-induced obesity studies. In either case, once 

inflammation is established, neutrophils in inflamed adipose engage in bidirectional interactions 

with macrophages, dendritic cells, natural killer cells, lymphocytes, and mesenchymal stem 

cells, with important implications for adipose metabolic homeostasis. For example, neutrophil 

elastase appears to be an important mediator in the development of obesity-associated insulin 

resistance in response to adipose inflammation, signaling through Toll-like receptor 4 and 

downstream NF-kB activation to influence both recruitment and inflammatory activation state of 

infiltrating immune cells in obesity, including neutrophils themselves [420]. 

 

Tumor-associated neutrophils 

Within the tumor microenvironment neutrophils exhibit varied content and multiple 

phenotypes and have been found to exert both pro- and anti-tumoral effects. Similar to the 

M1/M2 dichotomy long used for macrophages (but now transitioning out of favor as described 

above), tumor-associated neutrophils (TANs) have been described as either “N1” (anti-tumoral) 

or “N2” (pro-tumoral) (Figure 20) [421]. The N1 neutrophil profile is reported to be promoted by 

increased levels of interferon-β [422] and pro-inflammatory cytokines such as IL-1β and TNF-α 
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[422, 423], while transforming growth factor β (TGF-β) is an important determinant of the N2 

phenotype [421]. Relative to N2 neutrophils, N1 neutrophils display elevated oxygen radical-

dependent cytotoxicity and increased expression of the chemokine CCL3 and the cell adhesion 

molecule ICAM [421], which recruit additional inflammatory cells and act to increase adherence 

and extravasation, respectively.  

 

 

Figure 20. Tumor-associated neutrophils have N1 and N2-like phenotypes. A) Neutrophil content and 
phenotype is both pro- and anti-tumoral with cytokines such as IFNβ, IL-1β, TNF-α activating the N1 or pro-
inflammatory phenotype and TGF-B driving the N2 immunomodulatory phenotype. The N1 neutrophil 
releases reactive oxygen species (ROS) and proteins that increase cell recruitment and extravasation 
(ICAM and CCL3 (MIP-1-alpha)). N1 neutrophils support cytotoxic CD8+ T cell activity. N2 neutrophils have 
a less segmented nucleus than typical and secretes many angiogenic and immunosuppressive mediators, 
expressing arginase 1 for example.  ROS secreted by both N1 and N2 may both promote genotoxicity in 
tumor initiation, or in contrast, can be cytotoxic to growing tumors. B) Neutrophils infiltrate adipose early 
during progression to obesity. Neutrophil production of reactive oxygen species, for example, through 
myeloperoxidase (MPO) expression, contributes to oxidative stress and fibrotic changes. 

 

Pro-inflammatory N1 neutrophils promote CD8+ cytotoxic T cell recruitment and 

activation by producing T-cell attracting chemokines and pro-inflammatory cytokines [424]. The 

N2 subpopulation can be distinguished morphologically, with less pronounced segmentation of 

the nuclei than N1 neutrophils and elevated expression of pro-angiogenic mediators including 

chemokines (e.g., CXCR4, CCL2), growth factors (e.g., VEGF), and remodeling factors such as 

MMP9 [423, 425]. For example, neutrophil-derived MMP9 was shown to contribute to the 
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angiogenic switch in early-stage pancreatic adenocarcinoma [426]. Additionally, tumors formed 

by highly disseminating variants of prostate carcinoma recruited elevated levels of MMP9-

positive TAN, which correlated with tumor cell dissemination and increased levels of 

angiogenesis and intravasation [425]. N2 neutrophils are also immunosuppressive; elevated 

expression of the enzyme arginase-1 by N2 neutrophils contributes to depletion of arginase 

within the tumor microenvironment, inhibiting T-cell receptor expression and antigen-specific T-

cell responses [427]. 

 

Adipose tissue neutrophils and cancer 

Potentially due to the minimal presence of neutrophils in lean adipose, very few studies 

have addressed the influence of adipose tissue on neutrophils specifically in tumors that are 

adipose-adjacent or adipose-invading. Wagner et al. reported that melanoma cell lines 

implanted within white adipose tissue of lean mice showed significantly greater infiltration of 

CD11b+ cells than tumors implanted at a site distant from adipose [259]. Although these cells 

were initially described as monocytes and/or macrophages, CD11b is expressed by multiple 

myeloid lineage cells, including neutrophils [428]. Furthermore, inflamed peritumoral adipose 

exhibited increased expression of pro-inflammatory cytokines and chemotactic factors 

implicated in both macrophage and neutrophil recruitment, including CXCL1, macrophage-

inflammatory protein-2 (MIP-2), and CCL2 [259]. Moreover, in obese adipose, neutrophils likely 

contribute to both tumor initiation and tumor progression. In addition to facilitating recruitment of 

additional inflammatory cells, neutrophils participate in establishment of the mutagenic pro-

inflammatory microenvironment associated with cancer initiation. Indeed, neutrophil-derived 

reactive oxygen species and myeloperoxidase are genotoxic, and are recognized mutagens in 

certain tumor types, such as lung cancer [429]. Furthermore, the skewed cytokine profile of 

inflamed obese adipose, such as elevated CCL2, may influence recruitment of neutrophils to 

developing tumors.  
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Alternatively, tumor-adjacent adipose may impinge upon the phenotype of TANs. Incio et 

al. [430] reported that pancreatic tumors from obese animals contained higher concentrations of 

adipocyte-derived IL-1β than those from lean animals, resulting in increased TAN recruitment, 

TAN-induced activation of pancreatic stellate cells, and enhanced deposition of fibrillary 

collagen (i.e., desmoplasia). Obesity was also associated with greater tumor weight, which was 

reverted to lean levels by TAN depletion. Importantly, tumor formation in this study was induced, 

via orthotopic cell injection or tumor fragment implant, following 10 weeks on a high fat diet – a 

period during which, as illustrated above, the presence of neutrophils in visceral adipose depots 

is elevated [361, 420]. Reversion of tumor growth rate was only observed when TAN depletion 

was initiated on day 1 following tumor induction, as opposed to day 7 [430]. Thus, it is unclear 

whether neutrophils recruited from the visceral adipose, as opposed to newly trafficked 

peripheral blood neutrophils, were the primary contributors to induction of the desmoplastic 

response.  

Taken together, the balance of N1/N2 TAN subtypes is an important factor in tumor 

progression, and future studies should consider the functions of adipose tissue neutrophils in 

initiation and/or progression of adipose-adjacent or adipose-invading tumors in obese 

individuals. Notably, although the presence of neutrophils in visceral adipose is clearly 

enhanced in early stage obesity, it is important to acknowledge that the time course studies 

described above regarding neutrophil adipose infiltration used exclusively male mice, and 

therefore it is unknown to what extent, or when, neutrophils also infiltrate the obese mammary 

fat pad. 
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Mast cells 

Mast cell content and activation states in adipose tissue 

An understudied immune cell in both adipose and tumor biology is the mast cell. 

Historically described as mediators of allergic hypersensitivity reactions [431], mast cells are 

found in virtually all tissues and are frequently classified into one of two subtypes: those residing 

in connective tissues, which express both tryptase and chymase, and those residing in mucosal 

tissues, which express only tryptase [432]. However, similar to other immune cells, mast cells 

exhibit plasticity based on microenvironmental conditions, and thus several phenotypic subtypes 

may exist [433]. 

Accumulation of mast cells in visceral white adipose in obesity has been reported in both 

mice [434, 435] and humans [435, 436], with documented heterogeneity across specific adipose 

depots. Altintas et al. found that mast cell density in the epididymal fat pad of male mice 

increased up to 230-fold under conditions of prolonged obesity, with mast cells intermingled with 

macrophages in the interstitial spaces between adipocytes [434]. A similar study published the 

same year by the same group also found dramatically increased mast cell infiltration in 

mesenteric and perirenal adipose, but no significant obesity-induced changes in mast cell 

density in inguinal subcutaneous adipose [437]. However, Liu et al. reported increased numbers 

of mast cells in abdominal subcutaneous adipose tissue from obese human subjects, as well as 

significantly elevated serum tryptase levels, relative to lean individuals [435]. Many of these 

mast cells were found in association with microvessels [435], implicating mast cells in the 

regulation of endothelial cell biology and angiogenesis in adipose tissue. Interestingly, increased 

serum tryptase levels were not found in obese children and adolescents, suggesting an adult-

specific window of susceptibility to adipose-mast cell interactions [438]. 

Degree of mast cell activation is also affected by obesity. Divoux et al. [436] reported 

that mast cells isolated from omental and subcutaneous adipose depots of obese subjects 

exhibited a more activated state than mast cells isolated from lean subjects, secreting increased 
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levels of pro-inflammatory cytokines, chemokines, and growth factors. Histological sections also 

revealed that mast cells in obese subjects preferentially localized to fibrotic bundles or 

proximate to endothelial vessels and showed increased degranulation relative to those in lean 

tissue (Figure 21A). Collectively, these results suggested that mast cells in obesity harbor a 

pro-inflammatory profile, a phenotype which was recapitulated by culture of mast cells in a 3D 

matrix designed to mimic fibrotic conditions. Furthermore, a positive correlation was observed 

between mast cell density and both fasting glucose and glycated hemoglobin, suggesting a role 

for mast cells in altered glycemic status in obese subjects. Finally, Zhou et al. recently showed 

that mast cells in both white adipose and bone marrow of obese mice express elevated levels of 

leptin, potentially in response to increased regional concentrations of IL-6 or TNF-α in obesity 

[439]. 

 

 

Figure 21. Mast cells: Unappreciated players in adipose and tumor biology. A) Mast cell content in 
adipose tissue increases with obesity, with mast cells localized to blood vessels and/or within fibrotic 
bundles. Obesity is also associated with increased mast cell degranulation, an indicator of a mast cell 
activation. B)  In cancer, mast cells contribute to tumor progression through release of pro-angiogenic 
factors (MMP9, VEGF), immunosuppressive mediators (histamine), or growth factors such as PDGF.  Mast 
cells also secrete cytokines that may promote (arrow) or inhibit (line) tumor progression.  Mast cell influence 
on tumor progression appears to be dependent upon mast cell localization as peri- versus intratumoral. 

 

Similar to the other immune cell populations described above, mast cells have been 

ascribed both pro- and anti-tumoral roles. Tumor promotion by mast cells has been attributed to 
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secretion of proangiogenic factors such as MMP9 and VEGF, immunosuppression through 

release of histamine, or growth promotion by mitogenic factors including PDGF [440].  Mast 

cells also secrete IL-1, TNF-α, IL-6, IL-10, and IL-4 [440], each of which plays complex – and 

sometimes controversial – roles in solid tumor biology [441-446]. Thus, below we consider the 

potential relevance of adipose mast cells to cancer progression with regard to potential changes 

induced with increased adiposity and prolonged obesity. 

 

Mast cells in breast cancer 

In breast cancer, mast cell tryptase levels are linked to angiogenesis and 

lymphangiogenesis [447, 448], lymph node metastasis [449], and myofibroblast differentiation 

[450]. Samoszuk et al. [451] reported elevated serum tryptase in the blood of breast cancer 

patients as compared to healthy controls, as well as mast cell infiltration and mast cell tryptase 

expression adjacent to or within the stroma of every breast cancer patient sample examined, 

including DCIS specimens. Interestingly, in patients with invasive breast cancers, tryptase was 

found more frequently as extracellular deposits, suggesting mast cell degranulation, whereas in 

patients with early stage breast cancer, tryptase was located intracellularly, within intact mast 

cells [451].  

Remarkably, mast cell activation state and influence on the course of tumor 

development appear to also depend upon their localization within the tumor microenvironment 

(Figure 21B). For example, correlation between mast cell density and lymphatic microvessel 

density varied based on breast cancer subtype and peritumoral versus intratumoral mast cell 

location [447]. As discussed in an earlier section of this review, peritumoral lymphatic vessel is a 

prognostic indicator in several cancer types, including cervical, colorectal, breast, and prostate 

cancers [243-247]. Indeed, peritumoral mast cell density was significantly positively correlated 

with lymphatic density in luminal A and basal-like breast carcinomas; on the other hand, 

intratumoral mast cell density showed a low inverse correlation with lymphatic density in both 
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luminal A and HER2+ breast cancer subtypes, yet a positive correlation with basal-like 

carcinomas [447]. In addition, Rajput et al. investigated over 4,000 clinically annotated tissue 

microarrays from invasive breast cancer patients with long-term follow-up, and reported that 

intratumoral mast cell infiltration was a strong marker of favorable prognosis independent of 

age, tumor grade, tumor size, lymph node status, and ER or HER2 status [452]. Future work 

should address the molecular significance of the differential prognostic implications based on 

mast cell localization observed across breast cancer subtypes. 

 

Mast cells in prostate cancer 

Mast cell location also appears to influence prognosis in prostate cancers. Indeed, 

Nonomura et al. reported that increased peritumoral mast cell count was associated with 

reduced recurrence-free survival and higher Gleason scores in prostate cancer patients treated 

with radical prostatectomy, irradiation therapy, or androgen deprivation therapy [453]. Androgen 

deprivation therapy, also called castration therapy, is the gold standard for treatment of patients 

with metastatic prostate cancer. However, despite high initial response rates, nearly all men 

eventually develop progressive disease, referred to as “castration-resistant” prostate cancer. 

Johansson et al. [454] found that androgen deprivation therapy increased mast cell recruitment 

to the peritumoral tissue compartment of locally relapsing human prostate tumors, but not to the 

tumor itself. Peritumoral mast cells also promoted tumor growth and tumor angiogenesis, which 

were further exacerbated by mast cell degranulation. Moreover, patients with higher peritumoral 

mast cell density had higher Gleason scores and significantly shorter cancer-specific survival, 

while patients with low numbers of intratumoral mast cells exhibited the same patterns. Low 

intratumoral mast cell count was also associated with high tumor stage, higher tumor cell 

proliferation index, and metastatic spread [454]. Similar results have been reported by others, 

with poorest outcomes in prostate cancer patients lacking intratumoral mast cells [455]. These 

studies raise several important questions: how different are peritumoral vs intratumoral mast 
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cells, and what are the factors determining which phenotype develops? Are these factors tumor-

intrinsic or determined by the surrounding tissue, particularly adipose tissue? 

 

Impact of obesity on peritumoral mast cells 

Given consistent reports regarding the increased mast cell content and altered mast cell 

activation state in obese adipose, we were surprised to find not a single publication addressing 

the impact of obesity or adipose tissue on the density or phenotype of peritumoral mast cells. In 

fact, the only study found even peripherally linking mast cells in adipose tissue to cancer 

outcomes addressed the frequency of metastatic ovarian cancer colonization within “milky 

spots”, vascularized accumulations of mononuclear cells in human omental adipose that include 

mast cells [456]. It must also be noted that BMI was not included as a variable in any of the 

aforementioned studies addressing mast cell function in breast and prostate tumors.  

Increased adipose tissue mast cell density in obesity suggests the potential for elevated 

peritumoral mast cell concentrations in adipose-infiltrating tumors of obese individuals. 

However, although increases in adipose mast cell density have been reported in visceral 

adipose tissue of obese mice [434] and abdominal subcutaneous adipose of obese patients 

[435], whether obesity influences mast cell density in breast subcutaneous or periprostatic 

adipose tissue has not been reported. Ishijima et al. demonstrated that mast cells influence 

preadipocyte-adipocyte transition under both physiological and pathological conditions [457], 

suggesting a possible role for mast cells in adipose expansion. Furthermore, adipose tissue 

hematopoietic progenitor cells contain a population committed to the mast cell lineage, allowing 

white adipose tissue to act as a reservoir for mast cells that traffic to other tissues such as skin 

and, potentially, developing tumors [458]. Thus, considering the differential associations 

between peritumoral vs. intratumoral mast cells and cancer outcomes, future studies should 
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investigate the positioning and granulation status of peritumoral mast cells in relation to adipose 

tissue in lean and obese patients.   

 

Eosinophils 

Eosinophils are granulocytes typically associated with allergy and asthma that play key 

immunoregulatory roles in antigen presentation, suppression of inflammation, and maintenance 

of metabolic homeostasis [459, 460]. Under physiologic conditions, circulating eosinophils are 

rare however, eosinophils comprise ~4-5% of cells in the stromal-vascular fraction of lean 

adipose [461]. Indeed, Wu et al. [461] demonstrated that eosinophils are the primary source of 

IL-4 in adipose tissue, as ~ 90% of IL-4-expressing cells recovered from visceral adipose of lean 

mice were eosinophils [461]. Interestingly, they also noted an inverse relationship between 

adiposity and adipose eosinophil content in both genetic and diet-induced models of obesity. 

Furthermore, mice engineered to be eosinophil-deficient developed significantly greater 

adiposity and impaired glucose tolerance in response to high-fat diet feeding. These results 

were attributed to impaired eosinophil-mediated maintenance of alternatively activated, anti-

inflammatory macrophages, which are generated upon exposure to IL-4 and/or IL-13 and are 

generally considered to be protective against diet-induced obesity and associated metabolic 

dysregulation. Subsequent studies have revealed that visceral adipose eosinophil populations, 

and thus alternatively activated macrophages, are in turn dependent upon innate lymphoid type 

2 cells (ILC2s) through their production of IL-13 and IL-5, an eosinophil colony-stimulating factor 

[462]. In light of their direct or indirect anti-inflammatory effects, it is tempting to speculate that 

the presence of eosinophils and ILC2s in lean adipose, and their relative absence in inflamed 

obese adipose, may be a contributing factor to the differential cancer risk profile in lean vs. 

obese individuals.  
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In light of the role of eosinophils in the maintenance of alternatively activated 

macrophages in normal, uninflamed adipose, it may seem surprising that these cells appear to 

promote pro-inflammatory macrophage polarization in tumors. Accordingly, an E1/E2 

classification scheme analogous to the macrophage M1/M2 and T helper cell Th1/Th2 subsets 

has been proposed [463]. Eosinophil peroxidase enhances TNF-α and hydrogen peroxide 

release by human monocyte-derived macrophages, suggesting that paracrine signaling 

between eosinophils and macrophages within the tumor microenvironment may be relevant in 

promoting activity of certain tumoricidal TAM populations [464]. In agreement with this 

proposition, injection of exogenous eosinophils in a mouse melanoma model reportedly 

reprogrammed TAMs toward a pro-inflammatory, tumoricidal phenotype, a result attributed to 

increased production of eosinophil-derived IFN-γ [465]. However, it should be noted that while 

eosinophils facilitate tumor rejection in numerous cancer models, increased levels of circulating 

eosinophils are associated with poor prognosis in some hematologic malignancies, such as 

non-Hodgkin’s and T cell lymphomas [463]. Therefore, future research should systematically 

address relationships between local and circulating eosinophil content, site-specific tumor 

promotion vs. rejection, and eosinophil-mediated modulation of macrophage polarization. 

Although little research has addressed these functions in the context of obesity, it is 

clear that eosinophils also facilitate anti-tumor immune reactions independent of their effects on 

macrophage polarization. For example, Carretero et al. [465] recently reported that eosinophil-

mediated production of the chemoattractants CCL5, CXCL9, and CXCL10 promoted cytotoxic T 

cell recruitment in developing melanomas. Antibody-mediated depletion of eosinophils reduced 

CD8+ T cell infiltration, impaired tumor rejection, and severely reduced animal survival. 

Moreover, injection of melanoma cells together with exogenous eosinophils resulted in tumor 

vessel normalization, as evidenced by reduced permeability, enhanced perfusion, and reduced 

tumor hypoxia, alterations sometimes associated with reduced tumor aggression and more 

efficient vascular delivery of chemotherapies. In addition to their effects on other immune cells 

within the tumor microenvironment, eosinophils may also exhibit direct cytotoxicity. Tepper et al. 
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[466] reported that mouse melanoma and plasmacytoma cells engineered to express IL-4 

exhibited reduced or absent tumorigenicity in transplant studies due to elicitation of an 

inflammatory infiltrate comprised predominantly of macrophages and cytotoxic eosinophils. 

Accordingly, administration of a monoclonal antibody with granulocyte-specific cytotoxicity 

depleted eosinophils and restored tumorigenicity of IL-4-producing cells. However, these results 

were called into question by a subsequent study in which eosinophil-deficient IL-5-knockout 

mice showed similar degrees of IL-4-expressing melanoma rejection as wild-type animals, a 

phenotype attributed to a neutrophil-mediated response [467]. Ultimately, the conflicting results 

of these two studies indicate that the putative cytotoxic functions of eosinophils in anti-tumor 

immunity warrant further study. Moreover, additional investigation into eosinophil content in lean 

vs. obese adipose and their potential influence on adipose-tumor interactions should yield 

interesting findings.  

 

Conclusion 

Although adipocytes comprise the bulk of adipose tissue volume, adipose also contains 

a rich variety of stromal and vascular cells, as well as matrix and signaling components, which 

together constitute the adipose tissue microenvironment. A growing body of literature indicates 

that reciprocal, heterotypic interactions between developing tumors and the local adipose milieu 

influence the course of solid tumor progression. Herein, we have provided an overview of 

interactions between select adipose tissue components and developing adipose-adjacent 

cancers, emphasizing breast and prostate cancers and the known or potential impact of 

changes that occur in the adipose tissue microenvironment during progression to obesity. As 

described throughout this review, obesity-associated adipose modifications often resemble 

aberrations observed within the tumor microenvironment. For example, similar to tumors, 

dysregulated, obese adipose tissue is characterized by chronic low-grade inflammation, 

macrophage infiltration, hypoxia, and aberrant wound healing responses, including an increase 
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in myofibroblast and activated fibroblast content. Obese adipose tissue is also a harbor for 

soluble mediators of cancer development, including metabolites, exosomes, cytokines, growth 

factors, and extracellular matrix scaffolding proteins, which collectively provide a critical link 

between adiposity and tumorigenesis. Thus, we posit that adipose-adjacent epithelium in obese 

individuals encounters an environment particularly conducive to tumor initiation and 

progression.  

Despite a recent increase in research regarding the contributions of adipose tissue in 

cancer development, many questions still remain. For example, the identities of many adipose-

derived microenvironmental signaling mediators that modify tumor biology are largely unknown. 

Furthermore, while immune cells in both adipose tissue and cancer biology have been 

characterized individually, few studies have attempted to quantify recruitment of immune cells 

originating in adipose tissue adjacent to tumors. This potential for recruitment becomes 

especially important in the context of obesity, wherein adipose tissue immune cell content is 

greatly increased, yet the relative immune composition and phenotype shifts dramatically. Thus, 

the extent to which specific adipose-derived cell lineages contribute to tumor development 

and/or progression remains inconclusive. Ultimately, given the rising global prevalence of 

obesity, a better understanding of the molecular interactions between adipose tissue 

components and tumor cells is critical for the identification of novel targets for prevention and/or 

treatment of obesity-associated cancers.
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CHAPTER 2: CMET INHIBITOR CRIZOTINIB IMPAIRS ANGIOGENESIS AND REDUCES 

TUMOR BURDEN IN THE C3(1)-TAG MODEL OF BASAL-LIKE BREAST CANCER2 

Background 

Basal-like breast cancer (BBC) accounts for 15-20% of total breast cancers, with a 

higher prevalence in young and minority women such as African Americans and Hispanics [468, 

469]. BBC is typically estrogen receptor (ER), progesterone receptor (PR) and human epidermal 

growth factor receptor-2 (HER2) negative (so called “triple-negative”) and is highly aggressive, 

exhibiting an early pattern of metastasis and poor overall prognosis. Thus, BBC presents a 

formidable challenge, as it lacks the molecular targets for current targeted drug treatments. High 

body mass index (BMI) is associated with poorer prognosis in breast cancer patients, including 

increased risk of lymph node metastasis, vascular invasion, disease recurrence, and mortality 

[24, 52, 53]. Epidemiologic studies indicate that obesity is strongly associated with the BBC 

subtype in both pre- and post-menopausal women [52, 469]. Obesity mediates, and can 

exacerbate, both normal and tumor microenvironment dysfunction [296, 470]. In obesity, rapid 

expansion in mammary adipose tissue leads to alterations in the stroma that mediate normal 

and tumor microenvironment dysfunction yet are poorly understood in breast cancer risk and 

progression [296, 470-472]. Given that obesity has increasing prevalence and is one of few 

modifiable risk factors for breast cancer, it is important to better elucidate the mechanisms for 

this obesity-associated cancer. 

                                                           
2This chapter previously appeared as an article in the journal SpringerPlus, in a special Breast Cancer Edition. The 
original citation is as follows: Cozzo AJ, Sundaram S, Zattra O, et al. cMET inhibitor crizotinib impairs angiogenesis 
and reduces tumor burden in the C3(1)-TAg model of basal-like breast cancer. SpringerPlus. 2016; 5:348. 
doi:10.1186/s40064-016-1920-3. 
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We have shown that BBC is characterized by unique epithelial-stromal interactions, 

which likely play a role in BBC etiology [142, 473-475]. An elevated level of hepatocyte growth 

factor (HGF), a pleiotropic growth factor that signals through the receptor tyrosine kinase cMET, 

is characteristic of BBC [476]. Elevation of circulating HGF is also seen in obese patients [147].  

HGF/cMET signaling initiates an invasive growth program that promotes cell migration, invasion, 

proliferation, and angiogenesis [141]. Endothelial cell upregulation of cMET has also been 

attributed to inherent or acquired resistance to antiangiogenic therapies targeting vascular 

endothelial growth factor (VEGF) in patients [265, 266]. Marking the first work in preclinical 

models paralleling human epidemiologic BBC findings, we used C3(1)-TAg mice, a unique 

GEMM of spontaneous BBC, to demonstrate that high fat diet (HFD)-induced obesity 

accelerated onset of tumor development and increased tumor aggressiveness as compared to 

low fat diet (LFD)-fed lean controls [43]. HFD also increased mammary gland HGF 

concentration and enhanced expression and activation of cMET. Using primary murine 

fibroblasts isolated from mammary glands or tumors, we further reported that obesity increased 

HGF production by mammary gland normal- and cancer-associated fibroblasts (NAF and CAF) 

[43]. Through signaling inhibition via an HGF blocking antibody, we showed that obese CAF-

induced epithelial cell migration occurred through an HGF-dependent mechanism. Furthermore, 

using the intervention strategy of weight loss prior to tumor latency, we reported that weight loss 

blunted effects of HFD-induced obesity on multiple tumor parameters compared to mice 

maintained on HFD. Importantly, HFD-induced elevation of HGF/cMET signaling in normal 

mammary gland and cMET in tumors was significantly reversed with weight loss in C3(1)-TAg 

mice, with a concomitant and complete reversal of HFD-driven tumor progression [264].  

Given the precedent for the role of HGF signaling in invasive breast cancer [477], a 

better understanding of HGF’s role in BBC tumorigenesis was necessary. We hypothesized that 

inhibition of cMET signaling through crizotinib therapy (PF-02341066) would reduce HFD-

induced BBC. We first sought to inhibit tumor progression in existing tumors and began 
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crizotinib treatment upon identification of the first palpable tumor. Crizotinib significantly reduced 

total tumor burden in both LFD- and HFD-fed C3(1)-TAg mice, with a corresponding reduction in 

microvascular density. We next investigated whether we could inhibit or delay tumorigenesis by 

treating C3(1)-TAg mice with crizotinib prior to tumor development. Crizotinib treatment 

paradoxically increased progression of the initially detected tumor in both diet groups. However, 

at sacrifice there were no differences between diet or treatment groups in total preneoplastic 

lesions, total tumor progression or tumor burden. In summary, cMET inhibition disrupted tumor 

vascularization and limited subsequent BBC tumor development in tumor-bearing mice. Our 

results suggest that reduction of microvascular density through cMET inhibition may be a viable 

therapeutic target in the treatment of BBC.     

 

 

Methods 

Antibodies and drugs  

Crizotinib (PF-2341066 [(R)-3-[1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-5-(1-piperidin-4-

yl-1H-pyrazol-4-yl)-pyridin-2-ylamine) was purchased from Selleck Chemical (Catalog No. 

S1068). Primary antibodies include: Rabbit anti-mouse CD31 (Abcam #ab28364, Lot 

GR212364-5; 1:400); Rabbit anti-mouse phospho-cMET (Abcam #ab5662, Lot GR159296-1; 

1:4000); Goat anti-mouse cMET (R&D Systems #AF527, Lot CTB0310091; 1:1000)) diluted in 

Renoir Red Diluent (BM #PD904H). Additional reagents included biotin-conjugated Goat anti-

rabbit IgG (Jackson #111-065-144, Lot 110335; 1:500); Donkey anti-goat IgG (Jackson #705-

065-147, Lot 110544; 1:1000). ABC Elite (Vector #PK-6100, 1:50) and 3,3' Diaminobenzidine 

(DAB) (Thermo Scientific #TA-125-QHDX). 
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Animals and diet  

Animal studies were performed with approval and in accordance with the guidelines of 

the Institutional Animal Care and Use Committee at the University of North Carolina at Chapel 

Hill.  Animals were cared for according to the recommendations of the Panel on Euthanasia of 

the American Veterinary Medical Association. The veterinary care provided at UNC is in 

compliance with the Public Health Service Policy on Humane Care and Use of Laboratory 

Animals and meets the National Institutes of Health standards as set forth in the Guide for the 

Care and Use of Laboratory Animals (DHHS Publication No. (NIH) 85-23 Revised 1985). The 

animal facility is Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) approved and is responsible for the health and husbandry of animals. UNC also 

accepts as mandatory the PHS Policy on Humane Care and Use of Laboratory Animals be 

Awardee Institutions and NIH Principles for the Utilization and Care of Vertebrate Animals Used 

in Testing, Research, and Training. Animal studies comply with the ARRIVE guidelines. Mice 

were housed in a climate controlled Department of Laboratory Animal Medicine facility with a 12 

hour light:dark cycle and ad libitium access to food and water or special diets as defined below. 

Female C3(1)-TAg mice were obtained in collaboration with the UNC Lineberger 

Comprehensive Cancer Center (LCCC) Mouse Phase I Unit (MP1U). C3(1)-TAg mice [150], a 

model of BBC, were generated by crossing heterozygous male mice with FVB/N non-transgenic 

female mice.  

For the tumor treatment study, N= 46 female C3(1)-TAg mice were bred and maintained 

on chow diet (Harlan 2918) until nulliparous female were randomly assigned to LFD (N=24) and 

HFD (N=22) at 10 weeks of age. Diets obtained from Research Diets Inc. (New Brunswick, NJ, 

USA) were matched for protein, vitamins, and minerals, and provided 10% kcal (“LFD”; # 

D11012202); and 60% kcal (“HFD” ; # D11012204) derived from fat. Diets were sucrose-free, 

and soy-free. Additional details of diet components are provided in Sundaram et al. [43]. For the 

prevention study, during breeding and after weaning mice were put on Prolab Isopro RMH 3000 
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chow from LabDiet (St. Louis, MO, USA). At 8 weeks of age, nulliparous female C3(1)-TAg mice 

were randomly assigned to LFD (N=43) and HFD (N=45) diet.  

Tumor latency, number, and progression  

Mice were monitored for tumor development by palpating twice weekly. Tumor latency 

was defined as age in weeks at detection of first tumor. Tumor volumes were measured twice 

weekly over 3 weeks using calipers to measure the width (short diameter) and length (long 

diameter) in millimeters for each tumor. Tumor volumes were calculated using the formula: 

length × width2 × 0.5. Tumor progression is reported as percent change in volume from latency 

to sacrifice 3 weeks later. Primary tumor progression refers to the first tumor identified; total 

tumor progression includes all tumors palpated. The total number of visible tumors per mouse 

was counted at sacrifice for total tumor burden (multiplicity).  

Crizotinib treatment  

Crizotinib dosage was 50 mg crizotinib/kg of body weight [478]. In the treatment study, 

crizotinib administration by oral gavage began at identification of the first palpable tumor and 

persisted for 3 weeks until sacrifice (5 days on drug, 2 days rest). Briefly, drug was prepared by 

dissolving 20 mg of crizotinib powder in 200 µL 1 N hydrochloric acid (HCl), then brought to a 

total volume of 1 mL with vehicle (0.5% glucose in phosphate-buffered saline) to yield a 2x 

crizotinib solution. Immediately prior to gavage administration, the 2x solution was diluted with 

an equal volume of vehicle to yield a 1x solution.  In the prevention study, drug was prepared as 

a 1x solution by dissolving 10 mg of crizotinib powder in 200 µL 1 N HCl, then brought to a total 

volume of 1 mL with vehicle; crizotinib treatment began for all mice at 9 weeks of age and 

continued for 3 weeks (5 days on drug, 2 days rest).  
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Body weight & composition  

Body weight was measured at start of diet and weekly until sacrifice. Body composition 

including lean mass, fat mass, free water content and total water content of non-anesthetized 

mice was measured using EchoMRI-100 quantitative magnetic resonance whole body 

composition analyzer (Echo Medical Systems, Houston, TX). Fat mass is presented as (fat 

mass/total body weight)×100% [43, 264]. There were no significant changes in absolute lean 

mass in grams (data not shown). 

Tissue and blood collection  

Three weeks after detection of the first palpable tumor, mice were fasted for six hours 

and anesthetized by an intraperitoneal (i.p.) injection of avertin (tribromoethanol/amylene 

hydrate, 1.25%) (Sigma Aldrich, St. Louis, MO). Blood was collected via cardiac puncture using 

an EDTA-coated syringe into 5µL of 250mM EDTA. Plasma was separated from other blood 

components by centrifugation at 10,000xg for 2 minutes at 4°C. Mammary tumors, unaffected 

inguinal mammary gland, liver, spleen, and lungs were flash frozen in liquid nitrogen or were 

placed into a cassette and formalin-fixed for immunohistochemistry (IHC) and H&E analysis. All 

frozen samples were stored at -80°C until analyzed. 

Immunohistochemistry  

Briefly, formalin-fixed and paraffin-embedded tissues were sectioned at 5 microns and 

mounted for histological staining [43]. Tissues were baked, deparaffinized, and hydrated. 

Following heat-induced epitope retrieval (Rodent Decloaker BM#RD913L)), slides were treated 

with 3% hydrogen peroxide in de-ionized water. Tissues were treated with Avidin/Biotin Block 

(Vector #SP-2001) and exposed to primary antibodies (anti-CC3, anti-Ki67 anti-CD31; anti-

phospho-cMET; anti-cMET) diluted in Renoir Red Diluent at 4°C overnight. Following incubation 

with biotin-conjugated secondary antibodies [Goat anti-rabbit IgG; Donkey anti-goat IgG] tissue 

sections were treated with ABC Elite and DAB. Digital immunohistochemistry quantification was 
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performed following the protocol previously described in Sundaram et al.[43]. Stained slides 

were scanned into the Aperio Scanscope CS system (Aperio Technologies, Vista, CA, USA) at 

a magnification of 40× and were quantified using the Aperio Imagescope software. Scanned 

slides were analyzed using algorithms as described previously [42]. N = 5-6 random areas from 

sections (n = 2 sections per mouse) were quantified and averaged per tumor per animal (n = 9-10 

mice per diet or exposure group). Images shown are representative.  

Statistical Analysis  

Data are expressed as mean ± standard error of the mean (SEM). All means were 

compared by 2-way analysis of variance (ANOVA) with Tukey’s post-hoc test for statistical 

differences using GraphPad Prism 5 software (GraphPad Software, Inc. La Jolla, CA). Kaplan-

Meier analyses were conducted using GraphPad Prism 5 software to estimate tumor latency. 

Log rank and chi-square tests were used to investigate differences among groups. P values < 

0.05 were considered statistically significant. 
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Results 

Diet-induced adiposity accelerated tumor latency in C3(1)-TAg mice 

In the treatment arm of our study, adult female C3(1)-TAg mice were randomly assigned 

to diet groups at 10 weeks of age (N=11-15; see Figure 22, Model of Treatment study design). 

Body weight and body composition were monitored, as were tumor latency and progression (by 

palpation and calipers).  

 

 

Body weight was not significantly altered by diet or drug treatment group for the study 

duration (Figure 23A). Adiposity as measured by MRI was increased with HFD exposure but 

did not reach significance (Figure 23B). This result may in part have been due to daily oral 

gavage of vehicle or drug, as adiposity initially declined in all groups following onset of the 

treatment protocol, irrespective of diet or treatment (i.e., vehicle vs. control) (Figure 23B). 

However, gonadal fat pad mass was significantly greater in mice fed HFD compared to mice fed 

LFD (P = 0.0173, Figure 23C). Consistent with our previously reported results [43], C3(1)-TAg 

mice fed HFD exhibited significantly accelerated tumor latency compared with mice fed LFD 

(LFD median 17.3 weeks; HFD median 15.5 weeks; P < 0.0001, Figure 23D). Using a log-rank 

(Mantel-Cox) chi-square test with a degree of freedom of 1, LFD vs HFD equaled 15.72. 

Figure 22. Model of 
Treatment Study 
design. At 10 weeks of 
age female mice were 
randomized to LFD or 
HFD and palpation 
began for identification of 
tumor onset. Vehicle or 
crizotinib treatment by 
daily oral gavage began 
at detection of first 
palpable tumor and 
lasted for 3 weeks, 5 
days on and 2 days off. 
Mice were sacrificed at 3 
weeks past tumor onset. 
Metabolic and other 
parameters were 
measured as indicated.  
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Figure 23. High-fat diet exposure accelerated basal-like tumor latency in C3(1)-TAg mice. A) Body 
weights did not differ by diet or treatment group. B) Body composition was measured at diet start, tumor 
latency (week 0 of crizotinib), 1.5 weeks on crizotinib treatment, and 3 weeks on crizotinib treatment (at 
sacrifice). C) Gonadal fat pad mass was weighed at sacrifice (LFD vs. HFD N = 11–13 per group *P = 
0.017).  D) Tumor latency was reported as age at detection of the first palpable tumor (LFD median 17.3 
weeks, N = 24; HFD median 15.5 weeks, N = 22; P < 0.0001. 

 

Crizotinib treatment inhibited secondary tumor development, reduced overall tumor 

burden 

Tumor progression of the primary (first detected) tumor and all subsequent palpable 

tumors was monitored via electronic calipers throughout the 3-week measurement period 

between latency and sacrifice. No differences by diet or treatment group were detected in either 

primary tumor progression (Figure 24A) or total tumor progression (total percentage volume 

change in all palpable tumors throughout 3-week monitoring period) (Figure 24B).  However, 

Crizotinib treatment significantly reduced total tumor burden (multiplicity) by 27.96% and 
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37.29% in LFD- and HFD-fed C3(1)-TAg mice, respectively, compared to mice treated with 

vehicle (P = 0.0085, Figure 24C). A minor diet effect on tumor burden was also detected: HFD-

fed animals in both vehicle- and crizotinib-treated groups exhibited lower overall tumor burden 

at sacrifice compared to LFD-fed mice (P = 0.0491, Figure 24C).  

 

 

Figure 24. Crizotinib treatment inhibited subsequent tumor development. No significant differences 
were observed in A) primary or B) total tumor progression, measured as percentage volume change during 
monitoring period C) Total number of visible tumors was assessed at sacrifice (LFD vs HFD *P = 0.0491; 
Vehicle (a) versus crizotinib (b) P = 0.0085). 

 

Crizotinib treatment disrupted tumor vascularization 

We next measured expression of CD31, a marker of endothelial and lymphendothelial 

cells [479], in tumors using immunohistochemistry (IHC) (Figure 25A-E). CD31 expression was 

reported as percent CD31-positive area out of total tissue area analyzed. Crizotinib 

administration significantly reduced mean intratumoral CD31 expression by 35.04% and 33.52% 

in LFD and HFD groups, respectively (P = 0.014, Figure 25F). There were no detected diet 

effects on CD31 positivity. Also quantified was total tumor cMET and phosphorylated (active) 

cMET protein expression, also by IHC. Although total intratumoral cMET positivity did not differ 

by diet or treatment group (Figure 26A), phosphorylated cMET was significantly higher in mice 

fed HFD (P = 0.014, Figure 26B). 
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Figure 25. Crizotinib impaired tumor vascularization. A-E) Representative photomicrographs (40×) of 
CD31 staining in negative control and indicated LFD, HFD, vehicle (veh) and crizotinib (criz) treated groups. 
F) CD31 was quantified on 5–6 randomly selected 20x regions of n = 2 sections each from each mouse. 
N = 9–10 mice (a vs b, Veh vs Criz, P = 0.014). 

 

 

 

Figure 26. High fat diet exposure increased active cMET in tumors. A) Total MET staining did not differ 
by diet or treatment group. B) Phosphorylated (active) MET was significantly higher in mice fed HFD (2-
way ANOVA *P = 0.0141). 

 

 

 



93 
 

Prophylactic crizotinib administration did not affect body weight or adiposity 

As crizotinib treatment reduced tumor multiplicity in tumor-bearing mice, we next 

investigated whether we could inhibit or delay tumorigenesis by treating with crizotinib prior to 

tumor development. C3(1)-TAg tumors progress along the following approximate timeline: 

atypical hyperplasia (AH) of the mammary ductal epithelium at 8 weeks of age, mammary 

intraepithelial neoplasia (resembling human carcinoma in situ [CIS]) at 12 weeks of age, and 

invasive carcinomas at 16 weeks of age with 100% penetrance [150]. Thus, in the prevention 

arm of the study, mice were started on diet 2 weeks earlier than in the treatment study above to 

ensure crizotinib administration occurred within the primary window of AH/CIS precursor 

lesions. Starting at 8 weeks of age, mice were randomly assigned to LFD or HFD, with crizotinib 

treatment beginning at 9 weeks of age and continuing until 12 weeks of age (see Figure 27, 

Model of Prevention Study design).  

 

 

Mice fed HFD diet gained significantly more weight than the LFD mice, with greater body 

weights from 9-16 weeks of age (P < 0.05, Figure 28A). Body composition differed significantly 

between LFD- and HFD-fed mice beginning at 1 week on diet (9 weeks of age) and remained 

significant until sacrifice (P < 0.0001 for all data points, Figure 28B). Crizotinib- and vehicle-

Figure 27. Model of 
Prevention Study 
design. At 8 weeks of age 
female mice were 
randomized to LFD or 
HFD. At 9 weeks of age 
vehicle or crizotinib 
treatment by oral gavage 
began and lasted for 3 
weeks, 5 days on and 2 
days off. Palpation began 
for identification o of tumor 
onset also began at 9 
weeks of age. Mice were 
sacrificed at 3 weeks past 
tumor onset. Metabolic and 
other parameters were 
measured as indicated. 
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treated mice fed HFD had significantly greater gonadal fat pad mass when compared to LFD-

fed mice (P < 0.0001, Figure 28C). No difference was detected in body weight or adiposity 

between the crizotinib and vehicle treated mice. 

 

 

Prophylactic crizotinib administration increased primary tumor progression without 

significantly altering tumor burden or precursor lesion development 

Upon initiation of crizotinib or vehicle administration (9 weeks of age), mice were 

palpated twice weekly for detection of tumor onset. Median tumor latency did not vary 

significantly between diet or treatment groups (LFD vehicle-treated median 15.0 weeks; LFD 

crizotinib-treated median 16.1 weeks; HFD vehicle median 16.0 weeks; HFD crizotinib median 

16.2 weeks, Figure 29A). Progression of the primary, initially detected tumor was significantly 

increased with crizotinib treatment in both diet groups (P = 0.04, Figure 29B). However, when 

all tumors were considered there were no differences between diet or treatment groups in total 

Figure 28. Crizotinib prophylactic treatment did 
not affect body weight or adiposity. Diet was 
started at 8 weeks of age. A) Mice fed HFD diet 
gained significantly more weight than LFD-fed 
mice, with greater body weights from 9 to 16 weeks 
of age  (LFD vs HFD *P  < 0.05). B) Body 
composition was measured by MRI (LFD vs. HFD 
*P < 0.0001). C) Gonadal fat pad mass was 
determined at sacrifice (LFD vs. HFD *P < 0.0001).  

 



95 
 

tumor progression (Figure 29B) or tumor burden (Figure 29D) at sacrifice. Non-tumor 

mammary tissue was analyzed for AH and CIS premalignant lesions in of HFD-fed vehicle- or 

crizotinib-treated mice. There were no significant diet- or crizotinib-mediated effects on 

precursor lesion formation detected (Figure 29E). 

 

Figure 29.  Preventive administration of crizotinib prior to tumor onset did not alter tumor latency 
or overall tumor burden. A) Median tumor latency did not differ across diet or treatment groups. B) 
Progression of the primary (first detected) tumor was significantly increased with crizotinib treatment (a vs 
b, P = 0.036 by 2-way ANOVA). C) Crizotinib treatment did not significantly influence total tumor progression 
or D) total tumor burden, assessed at sacrifice. (N = 21-22).  E) There were no significant diet- or crizotinib-
mediated effects on precursor lesion formation within the mammary fat pad (AH: atypical hyperplasia, CIS: 
carcinoma in situ) n = 7/diet + treatment group. 
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Discussion 

We have previously demonstrated that HFD exposure during adulthood increased cMET 

expression and activation in normal mammary and tumors [43]. Diet-induced upregulation of 

cMET in tumors was also evident in mice fed HFD from weaning and could be reversed by 

weight loss [264]. Our previous work further revealed that HFD-induced weight gain resulted in 

increased mammary adipose HGF that was reversed with weight loss [264]. Reduction in HGF 

due to weight loss correlated with diminished tumor progression or deceleration of tumor 

latency, depending on whether the diet was initiated at weaning or adult onset, respectively. 

Altogether, our previously published studies implicated HGF/cMET signaling as a mediator of 

obesity-driven BBC tumor aggression. Therefore, the studies herein aimed to specifically inhibit 

cMET signaling as a potential BBC treatment or prevention strategy, hypothesizing that 

disruption of HGF/cMET signaling would mimic the effects of weight loss on BBC tumorigenesis.  

C3(1)-TAg mice are a GEMM that develop BBC in 100% of female mice [150]. Initial 

characterization of the C3(1)-TAg model reported grossly palpable tumors at ~16 weeks of age; 

in our hands, median tumor latency occurs between 15-19 weeks, dependent on diet 

composition and age at diet start [42, 264, 470].  As shown here, in the crizotinib treatment arm 

of our study, initiating diets at 10 weeks of age resulted in detection of tumor latency two weeks 

earlier in mice that were fed HFD compared to mice fed LFD, consistent with our previous 

C(3)1-TAg studies in which identical diets were initiated at the same age [43]. However, in the 

crizotinib prevention arm of our study, in which HFD was initiated at 8 weeks of age, we did not 

see this diet effect of accelerated latency – these results parallel our second previously 

published study, in which female C3(1)-TAg mice were weaned onto LFD or HFD and no 

difference in latency was observed [264].  Several groups have reported “windows of 

susceptibility” during which HFD and/or obesity may play a disproportionately greater role in 

promoting breast cancer onset [470, 480]. Interestingly, pubertal exposure to HFD has been 

linked to stunted mammary duct elongation and reduced mammary epithelial cell proliferation in 
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murine models [481], a finding that was not seen in mice started on diet at 10 weeks of age or 

older. Collectively, our results here and in our previous studies support the concept that 

exposures extrinsic to the cancer cell (i.e., diet-induced alterations in the mammary 

microenvironment) can impact tumorigenesis, while age at diet start is an important variable 

contributing to diet effects on tumor latency.   

Herein, we showed that crizotinib treatment after BBC latency inhibited subsequent 

tumor formation such that total tumor burden was reduced at sacrifice, regardless of diet. The 

degree of tumor inhibition was paralleled by a similar degree of suppression of MVD, also 

irrespective of diet. Reduction in MVD in our crizotinib-treated tumor-bearing C3(1)-TAg mice 

could explain the significant reduction of tumor burden compared to vehicle-treated controls. In 

tumors, an “angiogenic switch” occurs, in which an increase in MVD in and near the tumor 

allows for exponential growth of cancer cells, tumor survival, and metastasis [482]. Increases in 

HGF in the tumor microenvironment contribute to this angiogenic switch [483, 484], while cMET 

signaling in cancer cells facilitates invasion and migration away from the hypoxic interior of the 

tumor, entry into the new and leaky vessels, and metastasis to distant locations [477]. Indeed, 

obesity-promoted HGF production by fibroblasts, adipocytes, macrophages, and endothelial 

cells [43, 141, 142, 264, 485] may be a unique mechanism to increase blood vessel density and 

alleviate the hypoxia of obese adipose tissue. The fact that no changes were detected in MVD 

in the prevention arm of our study suggests that the HGF/cMET axis may play a greater role in 

invasive BBC carcinoma than in earlier stages of BBC progression.  

The HGF/cMET signaling pathway has long been studied in ductal morphogenesis 

during mammary gland development [486] as well as invasive breast cancer [140, 487-491] and 

invasive biology of several other cancers due to its angiogenic, mitogenic, and morphogenic 

effects [492, 493]. Notably, single nucleotide polymorphisms in the MET gene may be 

associated with metastatic breast cancer [494]. HGF/cMET signaling is also relevant in BBCs, 

specifically. In patients, we demonstrated through gene expression analyses that 86% of BBCs 
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expressed an HGF/cMET activation signature [142]. Furthermore, a comprehensive meta-

analysis including over 6,000 cases showed a significant association between cMET over-

expression and poor survival in breast cancer patients, particularly among patients with triple-

negative breast cancers [495]. HGF is also an excellent candidate mediator of obesity-induced 

effects on cancer, as serum HGF is elevated in obese individuals and reduced with weight loss 

[146-148]. Moreover, adipose-derived HGF has been detected in normal and malignant breast 

tissue [140]. 

Inhibition of cMET as an effective anti-angiogenic agent has been shown in initial 

mechanism-of-action studies for crizotinib, in which dose-dependent inhibition of cMET in 

gastric carcinoma, glioblastoma, and prostate carcinoma resulted in reduction of microvessel 

density (CD31) [478]. Angiogenic suppression by cMET inhibition has also been shown in 

xenograft models of aggressive cancers such as lung [496] and pancreatic cancers [497]. 

Moreover, the use of other cMET inhibitors in triple-negative breast cancer models such as ours 

has yielded promising results in preclinical studies [498]. However, to date clinical trials using 

the cMET inhibitors tivantinib or onartuzamab in isolation or in combination with chemotherapy 

have demonstrated little therapeutic benefit in metastatic breast cancer [499-501]. At the time of 

publication, clinical trials investigating crizotinib alone (ClinicalTrials.gov:NCT 02101385 [268]) 

or in combination with anti-VEGF therapy (ClinicalTrials.gov:NCT 02074878 [269]) for the 

treatment of advanced triple negative breast cancer are currently underway. Breast cancer 

ranks as the fifth cause of death from cancer overall and is now the second cause of cancer 

death among women following lung cancer [502, 503]. With the growing global prevalence of 

obesity and the notable racial and ethnic disparities in BBC outcomes [502], it is imperative that 

approaches are identified to effectively address the increased risk of breast cancer onset and 

progression to malignancy for an increasingly overweight and obese US population.
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CHAPTER 3: WEIGHT LOSS NORMALIZES OVERWEIGHT-ASSOCIATED CLAUDIN-LOW 

BREAST CANCER PROGRESSION: ROLE OF MAMMARY FAT PAD INFLAMMATION AND 

MYELOID CELL INFILTRATES3 

Background 

Over the past four decades the worldwide prevalence of obesity has more than doubled 

among women [17]. Within the United States, 77.3% of adult women are overweight or obese 

[504], defined as having a body mass index (BMI) of 25.0-29.9 and >30 kg/m2, respectively. 

Importantly, among breast cancer patients overweight and obesity are associated with 

increased risk of invasive cancer, development of distant metastases, tumor recurrence, and 

mortality [505].  

Interactions with the local adipose milieu are important mediators of malignancy in triple-

negative breast cancers (TNBCs), a heterogeneous collection of highly proliferative and 

invasive breast cancers primarily comprised of the basal-like (BBC) and claudin-low (CLBCs) 

molecular subtypes. TNBCs represent approximately 15-20% of breast cancer cases [506], are 

typically poorly differentiated and highly enriched for vascular and immune response genes 

[507, 508], and exhibit elevated recurrence and metastasis rates relative to other breast cancer 

subtypes [509]. Importantly, in the context of TNBC overweight and obesity are negatively 

associated with both breast cancer-specific and overall survival in premenopausal women [510]. 

Animal studies also indicate that excess weight and dietary energy intake promote progression 

of both BBC and CLBC. For example, we have previously demonstrated that high fat diet-

induced weight gain accelerated pre-neoplastic lesion formation [263], tumor onset (latency) 

[43, 263] and tumor progression [264] in the transgenic C3(1)-TAg model of spontaneous BBC. 

                                                           
3 A modified version of this manuscript has been submitted for review, and the final published version is likely to 
differ from that which is included here. 
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On the other hand, weight loss before tumor onset in this transgenic model reversed the effects 

of mammary adiposity on both pre-neoplastic lesion formation [263] and tumor progression 

[264]. Similarly, obesity enhanced CLBC tumor progression, as evidenced by upregulation of 

migration and invasion markers associated with the epithelial-mesenchymal transition [511, 

512]; however these studies were conducted in the postmenopausal setting. Accordingly, the 

impacts of premenopausal weight gain, overweight without frank obesity, and weight loss on 

mammary inflammation and CLBC progression remain underexplored.  

The mechanisms whereby overweight and obesity exacerbate TNBC progression are 

likely multifactorial, yet inflammation plays a pivotal role. In visceral (intra-abdominal) adipose 

tissue depots, obesity is associated with a dynamic infiltration of innate and adaptive immune 

cells that produce inflammatory cytokines, chemokines, growth factors, and matrix-degrading 

enzymes, triggering chronic low-grade adipose inflammation and development of metabolic 

dysfunction (reviewed in detail in [505]). We and others have demonstrated that obesity-

associated inflammatory changes, including formation of crown-like structures (CLS), foci of 

macrophages and other inflammatory cells surrounding dead and dying adipocytes, also occurs 

in mouse mammary fat pad and human breast adipose tissue [321, 322, 366]. Importantly, 

increased breast CLS density has been observed in both overweight and obese patients with 

early-stage breast cancers, demonstrating that macrophage influx into breast adipose occurs in 

response to even minor changes in adiposity [366, 513].  

In addition to altering macrophage-associated inflammation, adipose accumulation also 

appears to increase both content and activation of mast cells in multiple adipose tissue depots 

[435, 436]. In the normal breast, mast cells play a significant role in pubertal mammary gland 

branching morphogenesis, promoting proliferation in ducts and terminal end buds through 

secretion of growth factors and tissue-remodeling proteases [514]. However, an increase in 

mast cell content and/or activation within the overweight or obese breast also has potential to 

influence the course of a developing breast cancer, as multiple mast cell-derived products are 

known mediators of tumorigenesis [505]. Remarkably, mast cell influence on the course of 
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tumor development appears to differ considerably depending upon their localization relative to 

the tumor. For example, tryptase-positive mast cells are found at high density along the tumor 

invasive front and are associated with tumor progression and angiogenesis [515]. Increased 

peritumoral mast cell density also significantly correlated with lymphatic density – a prognostic 

indicator in several cancer types – in luminal A breast cancers and BBC [452]. Conversely, 

increased intratumoral mast cell infiltration in invasive breast cancer was a strong marker of 

favorable prognosis independent of age, tumor grade, tumor size, lymph node status, or 

hormone receptor status [452]. As invasive breast cancers frequently interact with breast 

adipose tissue [505], these studies collectively raise important questions regarding the impact of 

overweight and obesity on the relative abundance and activation states of peritumoral and 

intratumoral mast cells in invasive breast cancers. However, despite consistent reports 

regarding increased mast cell content and altered mast cell activation state in obese adipose 

tissue [435, 436], the impact of excess adiposity on the density or activation phenotype of mast 

cells in breast adipose tissue has not been explored.  

To elucidate associations among changes in weight status, inflammatory changes within 

the mammary fat pad and CLBC tumor progression, we conducted syngeneic orthotopic 

transplant studies in female FVB/NJ mice, a model of overweight as opposed to frank obesity 

[516]. A C3(1)-TAg-derived CLBC cell line (C3-Tag-luc) was orthotopically injected into mice 

that remained lean, mice fed a high-fat diet to induce weight gain (Overweight), and mice in 

which a period of overweight was followed by weight loss (Weight Loss, WeLo) induced by a 

diet switch. Collectively, our results demonstrate that overweight induces inflammatory changes 

within mammary adipose that are akin to frank obesity and reversible with weight loss. 

Importantly, weight loss also normalized CLBC growth and reduced intratumoral expression of 

pathways associated with CLBC progression. Thus, premenopausal weight loss may be an 

important interventional strategy with regard to prevention of overweight- and obesity-

associated CLBC progression. 
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Methods 

Animals and Diets  

All animal studies were approved by the Institutional Animal Care and Use Committee of 

the University of North Carolina at Chapel Hill and were performed in accordance with the 

recommendations of the Panel on Euthanasia of the American Veterinary Medical Association. 

Animal facilities at UNC are accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC), and veterinary care meets National Institutes of Health 

standards set forth in the Guide for the Care and Use of Laboratory Animals (DHHS Publication 

No. (NIH) 85-23 Revised 1985). UNC also accepts as mandatory the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals by Awardee Institutions, as well as NIH 

Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and 

Training. Animal studies comply with the ARRIVE guidelines. In accordance with humane 

euthanasia regulations, mice were anesthetized by intraperitoneal injection of avertin 

(tribromoethanol/amylene hydrate, 1.25%) (Sigma Aldrich) and cervical dislocation was 

performed before tissue collection. Mice were housed in a climate-controlled Department of 

Laboratory Animal Medicine facility with a 12-hour light:dark cycle, with ad libitum access to 

water and diets as described below. Female wild-type FVB/NJ mice (strain 001800) were 

obtained from Jackson Laboratories (Bar Harbor, ME) at 3 weeks of age and allowed to 

acclimate for 5 weeks before randomization to diets at 8 weeks of age. Diets obtained from 

Research Diets Inc. (New Brunswick, NJ, USA) were matched for sucrose, protein, vitamins, 

and minerals, and provided 10% kcal (“LFD”, D12450J) or 60% kcal (“HFD”, D12492) derived 

from fat.  Nulliparous female C3(1)-TAg mice were bred and maintained on chow diet (Harlan 

2918) until random assignment to diet groups at 10 weeks of age. Diets obtained from Research 

Diets Inc. (New Brunswick, NJ, USA) were matched for protein, vitamins, and minerals, and 
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provided 10% kcal (“LFD”; # D11012202); and 60% kcal (“HFD”; # D11012204) derived from fat 

(additional information on dietary composition can be found in [43]).  

 

Body Weight and Composition  

Body weight was measured at diet start and once weekly until sacrifice. Body 

composition of non-anesthetized mice, including lean mass, fat mass, free water content, and 

total water content, was measured at diet start, diet switch, orthotopic injection, and sacrifice 

using an EchoMRI-100 quantitative magnetic resonance whole body composition analyzer 

(Echo Medical Systems, Houston, TX). 

 

C3-Tag-luc Cell Line Characterization  

C3-Tag-luc cells were established by dissociation of mammary tumors from C3(1)-TAg 

mice as described [517]. Expression profiling of the C3-Tag-luc cell line was conducted as 

follows: RNA was isolated from the cell line using the Qiagen RNeasy mini kit (QIAGEN, 

Valencia, CA) and RNA quality was determined using an Agilent Bioanalyzer. Total RNA was 

labeled with Cy5 dye using the Agilent Low RNA Input Fluorescent Linear Amplification Kit. 

Likewise, whole mouse reference [149] RNA was labeled with Cy3 dye. For mouse reference 

and tumor cell line RNA, labeled RNA (2ug) was co-hybridized overnight to Agilent microarrays 

(GEO Platform GPL11383 / Agilent Design 25503 144K mouse Agilent Array). Intensity values 

were then uploaded to the UNC Microarray Database (UMD). In order to examine the features 

of this cell line, we combined the C3-Tag cell line data with array data associated with the 

published dataset [518].  For all arrays, expression values were calculated as the log2 Cy5/Cy3 

ratios with Lowess normalization applied. Genes with intensity values greater than 10 in both 

Cy5 and Cy3 channels were determined as present in each sample. To examine genes in the 

entire dataset we applied a filtering criteria requiring expression in at least 70% of all samples. 
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Next, duplicate genes (corresponding to multiple probes) were collapsed to their median 

expression, and missing values were imputed by K-means nearest neighbor imputation. Prior to 

clustering, genes were median-centered and arrays were standardized. For intrinsic analysis, 

the normalized dataset was filtered to the published intrinsic gene list [518]. Genes and arrays 

were clustered using Cluster 3.0 with selection of the correlation similarity metric and centroid 

linkage. Finally, results were visualized in Java Tree View[519]. Sample subtype annotations 

from Pfefferle et al. [518] were used for all previously published array data.  

The original C3(1)-TAg model has been characterized as basal-like breast cancer [149]. 

However, while C3-Tag-luc cells clustered in proximity to tumors from the original C3(1)-

TAg  basal-like tumors, they were more closely related to the Claudin-low molecular subtype 

(Figure 30A). For example, while both had high expression of proliferation-associated 

genes, relative to the original C3(1)-TAg model C3-Tag-luc cells exhibited much lower 

expression of claudins 3 and 7, a defining feature of claudin-low breast cancers [520] (Figure 

30B&C). On the other hand, keratins 14 and 17, associated with the basal-like gene 

cluster, showed high expression in C3(1)-TAg  tumors and low expression in the C3-Tag-luc cell 

line (Figure 30B&C). 
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Figure 30. Phenotyping of C3-Tag-luc cell line. A) Hierarchical clustering of our previously published 
microarray dataset [518] and the C3-Tag-luc cell line. The dataset was filtered to include only intrinsic genes 
and the dendrogram assembled by centroid linkage, illustrating the relationship of individual samples in the 
dataset. The red bar beneath the dendrogram indicates the position of the C3-Tag-luc cell line while the 
blue/turqouise bars depict the position of other tumor subtypes according to row annotations. Note, the C3-
Tag-luc cell line clusters with other claudin-low tumor samples. The heatmap below shows the relative 
expression profile of genes across samples and corresponding to the color bar along the bottom. (B). Using 
the assembly from panel A, we identified clusters highlighting important features of tumors segregating 
closely, including (i) the basal-like cluster, (ii) the claudin-cluster, and (iii) the proliferation cluster. (C) 
Selecting these clusters for just the C3-Tag-luc cell line shows low expression of the basal-like genes, a 
claudin-low gene expression profile, and high expression of the proliferation cluster. 

 

Orthotopic Injections and Tissue Harvest  

C3-Tag-luc cells were generously donated by William Y. Kim, MD, of the UNC 

Lineberger Comprehensive Cancer Center. Cells were passaged once before orthotopic 

injection and were grown in DMEM (Cellgro) with 10% FBS and 1% penicillin/streptomycin at 

37°C and 5% CO2. Eighteen-week-old female FVB/NJ mice (N=19-20/group) were orthotopically 

injected in the left fourth (abdominal) mammary fat pad with 2×105 viable C3-Tag-luc cells in a 
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1:1 mixture of high concentration Matrigel® (Cat # 354262, BD Biosciences, Bedford, MA) and 

Hank’s Saline Solution (Sigma Aldrich, St. Louis, MO). Tumor progression was monitored with 

electronic calipers three times weekly until sacrifice, and volumes were calculated using the 

modified ellipsoid formula (length × width2 × 0.5) as in previous studies [43]. Tissues collected 

included tumor, un-injected abdominal mammary fat pad, tumor-adjacent adipose, and liver. A 

portion of each tissue sample was frozen in liquid nitrogen and stored at -80˚C for gene 

expression analysis. The remaining tissue was formalin-fixed and paraffin embedded (FFPE) for 

histological analysis.  

At an average age of 18.20 weeks, mammary fat pads of C3(1)-TAg mice without palpable 

or visible tumors were collected as “normal” unaffected gland, although atypia of ductal epithelium 

could be present in C3(1)-TAg mice after 8 weeks of age [150]. 

 

Flow Cytometric Analysis  

Female mice were euthanized via CO2 asphyxiation and cervical dislocation at 21 weeks 

of age (n = 5 per diet). The left and right abdominal (4th and 7th) mammary adipose pads were 

removed and the intramammary lymph nodes excised. Fat pads were transferred to ice cold 

Dulbecco’s Modified Eagle’s Medium, high glucose (4.5 g/L) (DMEM, Corning, Corning, NY) 

containing 20 mM HEPES buffer (Cellgro, Manassas, VA), and supplemented with 10% bovine 

calf serum (HycloneTM, GE Healthcare Life Sciences, South Logan, Utah), 5mM glutamine, and 

10mM penicillin-streptomycin. Fat pads were minced with surgical scissors before enzymatic 

digestion in 2 mg/mL Type I collagenase (Worthington, Lakewood, NJ). A single-cell suspension 

was generated via mechanical dissociation with a Stomacher® 80 Biomaster small tissue lab 

paddle blender (Seward, Worthing, West Sussex, United Kingdom). Suspensions were diluted 

with an equal volume of HEPES-buffered DMEM and filtered through a 100-µm cell strainer, 

followed by centrifugation at 200 x g for 10 min at 4°C and removal of the mature adipocyte 

layer and red blood cell lysis (ACK lysis buffer; Gibco, Gaithersburg, MD) to generate an 
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immune cell-enriched stromal-vascular fraction (SVF). The resulting SVF from each mouse was 

blocked with Fc Block (CD16/32) (Biolegend, San Diego, CA), and stained with pre-titrated 

antibodies (see Table 1 for antibody information and dilutions). SVF cells were analyzed on a 

BD™ LSR II flow cytometer. Data were analyzed with FlowJo (FlowJo, LLC, Ashland, OR). 

Tumors were collected and immediately dissociated through enzymatic (collagenase 

type I; Worthington Biochemical Corporation, Lakewood, NJ) and mechanical dissociation with a 

Stomacher® 80 Biomaster small tissue lab paddle blender (Seward, Worthing, West Sussex, 

United Kingdom). Dissociation media was supplement DMEM, high glucose (4.5 g/L) (Sigma 

Aldrich, St. Louis, MO) containing 20 mM HEPES buffer (Corning, Manassus, VA) as described 

above. The resulting solution was filtered through a 100 µm filter and subjected to DNA 

digestion using DNAse I (Sigma Aldrich, St. Louis, MO) at 0.1 mg/mL in HEPES-buffered 

supplemented DMEM as described above. Cells were pelleted and underwent red blood cell 

lysis via ACK lysing buffer (Gibco, Grand Island, NY), after which cells were washed in a FACS 

Wash solution (1x Dulbecco's phosphate-buffered saline [DPBS, Corning, Manassus, VA] 

containing 1% fetal calf serum, 0.5% endotoxin-tested bovine serum albumin BSA, and 2 mM 

EDTA). Single cell suspensions were counted using a Scepter™ 2.0 Handheld Automated Cell 

Counter and blocked with Fc block (CD16/32; Biolegend, San Diego, CA) before staining. 

Antibody cocktails for staining were prepared in Brilliant Stain Buffer (BD Biosciences, Billerica, 

MA). Compensation was set using single-stained cellular controls and gating was determined 

based on fluorescence-minus-one (FMO) controls. Sample analysis was conducted using a 

FACSAriaII flow cytometer (BD Biosciences, Billerica, MA). 
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Table 1. Antibodies and dilutions used in analysis. 

Antibody Conjugate Dilutions Company Catalog # Lot # 

CD45 BV605 1:200 BioLegend   103140 B211813 

F4/80 PE-Cy7 1:200 eBioscience     25-4801-82 4281123 

CD11b BUV395 1:100 BD Biosciences  563553 7033600 

Ly6C BV421 1:100 BD Biosciences  562727 5357529 

MHCII (IA/IE) BV711 1:200 eBioscience   17-5321-81 6167935 

CD206 APC 1:100 
R&D Systems FAB25351A ADYJ0115081 

Tie2 PE 1:50 eBioscience   12-5987-83 E01993-1636 

Fc Block 
(CD16/CD32) 
 

N/A 1:50 BioLegend 101320 B200134 

Zombie Green 
Viability Dye 
 

N/A 1:400 BioLegend 423111 N/A 

 

 

 

Histological Analysis 

Formalin-fixed, paraffin-embedded (FFPE) tumor and corresponding uninjected 

mammary fat pad were sectioned at 5 μm in a serial interrupted fashion and mounted onto glass 

slides.  

Immunohistochemistry: Briefly, 5 μm FFPE tumor and normal mammary fat pad 

sections were baked, deparaffinized, and rehydrated. Following heat-induced epitope retrieval 

(Rodent Decloaker BM#RD913L), slides were treated with 3% hydrogen peroxide in de-ionized 

water. Tissues were treated with Avidin/Biotin Block (Vector #SP-2001) and exposed to primary 

antibodies (anti-CD31, anti-F4/80) diluted in Renoir Red Diluent at 4 °C overnight. Following 

incubation with biotin-conjugated secondary antibodies [Goat anti-rabbit IgG; Goat anti-rat IgG]  

tissue sections were treated with ABC Elite and DAB. Digital immunohistochemistry 

quantification was performed following the protocol previously described in Sundaram et al.[43]. 
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Stained slides were scanned into the Aperio Scanscope CS system (Aperio Technologies, 

Vista, CA, USA) at a magnification of 20× (F4/80) or 40× (CD31) and were quantified using the 

Aperio Imagescope software (Leica Biosystem, Buffalo Grove, IL). For CD31 percent positivity, 

scanned slides were analyzed using algorithms as described previously [42]. Microvessel 

density was quantified as total number of CD31/PECAM1+ vessels per tissue area (in mm2) in 

n=7-8 tumor histological sections per diet group.  Crown-like structure density was determined 

in n = 3 sections per mouse in n = 6-9 mice per diet group by counting the number of visible 

CLS and normalizing to tissue area analyzed (number/mm2). Images shown are representative.  

Adipocyte diameter: in hematoxylin-eosin (H&E) stained sections of uninjected 

mammary fat pad, a 20x field of view was randomly selected and the diameter of 100 white 

(unilocular) adipocytes was determined using the ruler function in ImageScope. (N = 7-8 

mice/group; 7-800 adipocytes total).  

Mast cell analysis: Slides were dewaxed and rehydrated with 60% ethyl alcohol, then 

exposed to Toluidine Blue O (C.I. 52040) for 1-2 minutes. Slides were then rinsed under water 

and dehydrated twice through acetone exposure for 1-2 minutes. Stained slides were scanned 

at a magnification of 40x into the Aperio Scanscope CS System. Total mast cell number in each 

section was manually counted and total tissue area analyzed was quantified in mm2 using 

Aperio Imagescope software. Mast cell density was reported as number of mast cells counted 

per section normalized to tissue section area.   

 

Quantitative PCR 

 Snap-frozen un-injected mammary fat pads were pulverized under liquid nitrogen. Total 

RNA was extracted (RNeasy Mini Plus kit, QIAGEN) and reverse-transcribed (1000 ng per 

sample; iScript Reverse Transcription Supermix, Bio-Rad) according to the manufacturers’ 

instructions. Gene expression was quantitated via quantitative reverse transcriptase PCR (qRT-

PCR) with the eukaryotic ribosomal 18S RNA as an endogenous control. TaqMan Assay-on-
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Demand (AOD) Gene Expression Assays (Applied Biosystems, Foster City, CA) were used for 

all probes, with the exception of Il10, Ccl2, and Nos2, which were measured using Roche 

Universal Probe Library Assays (Roche Diagnostics US, Indianapolis, IN) with the following 

oligonucleotide pairs: Il10: F: 5’-CAGAGCCACATGCTCCTAGA-3’; R: 5’-

GTCCAGCTGGTCCTTTGTTT-3’; Ccl2: F: 5’-AGCACCAGCCAACTCTCACT-3’; R: 5’-

GTGGGGCGTTAACTGCAT-3’; and Nos2: F: 5’-TGACACACAGCGCTACAACA-3’; R: 5’-

GCCAGTGTGTGGGTCTCC-3’. Data were analyzed using QuantStudio Real-Time PCR 

System software (Thermo Fisher Scientific, Waltham, MA) and the comparative ΔΔCT method.  

 

Microarray sample preparation 

FVB/NJ tumors: Total RNA was extracted (RNeasy Mini Plus kit, QIAGEN) and RNA 

purity and concentrations were determined using a NanoDropTM spectrophotometer (Thermo 

Fisher Scientific). All samples were diluted to a final concentration of 200 ng/uL for library 

preparation. RNA quality was determined using an Agilent TapeStation. One-color (Cy3) cDNA 

library preparation and microarray hybridization were conducted by the Lineberger 

Comprehensive Cancer Center Genomics Core using SurePrint G3 Mouse Gene Expression v2 

8x60K Microarray Kits (Agilent, Santa Clara, CA) and the Agilent Low RNA Input Fluorescent 

Linear Amplification Kit. Arrays were scanned using an Agilent Technologies G2505C Scanner 

with Feature Extraction software.  

 C3(1)-TAg mammary fat pads: Unaffected mammary fat pads were flash frozen in 

liquid nitrogen and prepared for microarray analysis as described above. Samples and universal 

mouse reference RNA were Cy5- and Cy3-labelled, respectively, using Agilent Low RNA Input 

Fluorescent Linear Amplification Kit, and hybridized to Mouse Gene Expression v2 4x44K 

microarrays (Agilent) according to the manufacturer’s protocol. 

Cancer-adjacent normal human breast: The Normal Breast Study (NBS) is an 

epidemiologic study of normal breast and breast cancer microenvironments conducted at UNC 

Hospitals in Chapel Hill, NC [521]. Women were eligible for inclusion if they were English-
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speaking, at least 18 years of age, undergoing breast surgery (mastectomy, lumpectomy, 

excisional biopsy, or cosmetic procedure) at UNC Hospitals between October 2009 and April 

2013, and consented to donate breast tissue. For microarray analysis, total RNA was extracted 

from snap-frozen tissue (Qiagen RNeasy) and quality was measured using an Agilent 

Bioanalyzer. Samples and universal human reference were Cy5- and Cy3-labelled, respectively, 

using Agilent Low RNA Input Fluorescent Linear Amplification Kit, and hybridized to Human 

Gene Expression v1 or v2 4x44K microarrays (Agilent). Only genes common to both array 

platforms were used in further analyses (see below).  

 

Microarray and gene signature analyses  

 FVB/NJ tumors: Gene expression estimates were calculating using the Agilent Feature 

Extractor software which performs background adjustment and total signal normalization. The 

normalized log2 Cy3 intensity was utilized for analysis, and histograms of t-test p-values 

between groups were used to assess global effects. Tests of gene level differential expression 

used the ‘Two class unpaired’ procedure in the Significance Analysis for Microarrays (SAM) 

algorithm [522]. Significantly up- or down-regulated pathways were identified using the 

Molecular Signatures Database (MSigDB) for Gene Set Enrichment Analysis. Genes and 

pathways were visualized using hierarchical cluster analysis ordering of heatmaps.  Clustering 

utilized average linkage with Pearson’s correlation as the distance metric.  

 

 C3(1)-TAg mammary fat pads, Normal Breast Study cancer-adjacent, and TCGA 

breast tumor samples: Expression values were calculated as the log2 Cy5/Cy3 ratios with 

Lowess normalization applied. Genes with intensity values greater than 10 in both Cy5 and Cy3 

channels were determined as present in each sample. Duplicate genes (corresponding to 

multiple probes) were collapsed by averaging. For C3(1)-TAg samples: Cy3-labeled reference 

was produced from Stratagene Universal Mouse Reference RNA following amplification with 

Agilent low RNA input amplification kit. Mouse mammary samples were labeled with Cy5. Data 
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were Lowess normalized, and probes with a signal <10 dpi in either channel were excluded as 

missing. In data preprocessing, we (1) eliminated probes without corresponding ENTREZ ID, (2) 

collapsed duplicate probes by averaging, (3) imputed missing data using k-nearest neighbors 

(KNN) method with k=10, and (4) median-centered genes. For NBS samples, women for whom 

microarray and BMI data (BMI >18.5 kg/m2) were available were included in this analysis. 

Patients undergoing cosmetic or prophylactic surgery were excluded, as were those for whom 

biopsy results indicated "no evidence of active disease” or “normal” tissue status. Specimens 

obtained from a second breast procedure were also excluded to avoid capturing gene 

expression patterns related to inflammation induced by a previous surgery (i.e., pre-existing 

granulation tissue). The final study population consisted of 131 unique patients and 193 tissue 

specimens. The clinicopathologic characteristics of these patients are included in Table 2. NBS 

microarray data were analyzed as previously described [523]. For TCGA samples, only data 

from invasive tumors were included (n = 1094). TCGA data and methods are available at the 

TCGA Data Portal (https://cga-data.nci.nih.gov). To calculate mast cell scores, the median 

centered gene expression profile for each sample was evaluated using published gene 

signatures. Mouse mammary tissue was analyzed using a previously validated, murine-specific 

128-gene signature for connective tissue mast cells [524], the type most commonly found in 

mammary tissue [514]. Human normal breast tissue was analyzed using a mast cell signature 

identified by Motakis et al. [525] through a comprehensive study of the mast cell transcriptome 

of ex vivo skin mast cells integrated with data from the FANTOM (Functional Annotation of the 

Mammalian Genome) consortium. Intratumoral mast cell gene expression was analyzed using 

the tumor mast cell gene signature described by Bindea et al. [526].  Since all genes in the 

original signatures were up-regulated in mast cells compared to the other cell types studied, the 

mast cell scores were derived from the average expression of mast cell signature genes in each 

sample.  

 

https://cga-data.nci.nih.gov/
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Statistical Analysis  

All statistical analyses were conducted using GraphPad Prism 7 software (GraphPad 

Software, Inc. La Jolla, CA). Data are expressed as mean ± standard error of the mean (SEM) 

unless stated otherwise. Means were compared as indicated via one- or two-way Analysis of 

Variance (ANOVA) followed by Tukey’s Post Hoc Multiple Comparisons. Statistical outliers were 

identified using the robust non-linear regression with outlier removal (ROUT) method with 

Q=1%. P-values ≤0.05 are considered statistically significant.  

 

Results 

High-fat feeding and diet switch-induced weight loss modulated mammary adiposity and 

CLBC tumor growth  

Eight-week-old female FVB/NJ mice were randomized to one of three diet groups: 

“Lean” mice were fed LFD until sacrifice, “Overweight” mice were fed HFD until sacrifice, and 

“Weight Loss (WeLo)” mice received 5 weeks of HFD to increase adiposity, followed by a 5-

week diet switch to LFD to induce weight loss prior to tumor cell injection (N=19-20 mice/diet 

group, see study design diagram in Figure 31). Following 10 weeks on assigned diets, C3-Tag-

luc CLBC cells were orthotopically transplanted into the left fourth (abdominal) mammary fad 

pad of each mouse. Tumors were allowed to develop for 21 days, at which point all mice were 

sacrificed. Body composition and 6-hour fasted glucose were monitored at the indicated time 

points. Overweight mice displayed significantly greater body weights than Lean beginning two 

weeks after diet start and continuing until sacrifice (Figure 32A; P<0.01-P<0.0001 vs. Lean). 

Body weights of WeLo mice paralleled Overweight until diet switch (Figure 32A; P<0.01-

P<0.0001 vs. Lean). Diet switch restored body weights to Lean levels until sacrifice (Figure 

32A; P<0.01-P<0.0001 vs. Overweight). Similarly, body composition analysis demonstrated an 

approximately 2-fold increase in overall adiposity in Overweight and WeLo mice after 5 weeks 
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on HFD (P<0.0001 Overweight vs. Lean; P<0.0001 WeLo vs. Lean) (Figure 32B). Following 

diet switch, adiposity in WeLo mice was restored to Lean levels (P<0.0001 Overweight vs. Lean 

and vs. WeLo, Figure 32B).   

 

 

Figure 31. Study design with orthotopic transplant model and tissue collection diagram. N=19/diet. 

 

Following normalization to body weight, liver weight was significantly greater in 

Overweight compared to Lean and WeLo mice (Figure 32C; P<0.0001). A modest but 

significant elevation in fasting glucose was also observed in Overweight compared to Lean and 

WeLo mice at the time of orthotopic injection; however, at sacrifice this difference only remained 

significant between Overweight and Lean (Figure 32D). Gonadal (~2.5-fold) (Figure 32E) and 

mammary (~2-fold) (Figure 33A) adipose fat pad masses were significantly increased in 

Overweight mice (P<0.0001 Overweight vs. Lean, WeLo), with no differences observed 
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between WeLo and Lean mice. Importantly, increased adiposity in Overweight mice 

corresponded with significantly greater final tumor volume compared to Lean and WeLo (Figure 

33B; P<0.05 Overweight vs. Lean, P<0.05 Overweight vs. WeLo).  

 

 

Figure 32. High fat diet induced adiposity in female FVB/NJ mice was normalized by weight loss. A) 
Body weight was measured at baseline and weekly until sacrifice at 21 weeks of age. ^^P<0.01 Lean vs 
WeLo, **P<0.01 vs Overweight (OW), ##P<0.01  OW vs WeLo, by two-way ANOVA with post-hoc Tukey’s 
analysis). B) Body composition, including fat mass, was measured at diet start and specified time points 
until sacrifice using an EchoMRI-100 (****P<0.0001 Lean vs OW, ^^^^Lean vs WeLo, ####OW vs WeLo 
by two-way ANOVA with post-hoc Tukey’s analysis). C) Average liver weight at sacrifice, normalized to 
body weight (****P <0.0001 by one-way ANOVA with post-hoc Tukey’s multiple comparisons). D) Fasting 
glucose was measured in 6h fasted mice at indicated time points (*P<0.05, ***P<0.001 Lean vs OW, 
###P<0.001 OW vs WeLo by two-way ANOVA with post-hoc Tukey’s analysis). E) Gonadal fat pad masses 
at sacrifice (****P < 0.0001 OW vs Lean, WeLo mice by one-way ANOVA with post-hoc Tukey’s analysis). 
All values reported as mean ± SEM. N=19/diet group. 
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Figure 33. Increased mammary fat pad mass in Overweight mice was associated with increased 
tumor growth rate. A) mammary fat pad masses at sacrifice (****P < 0.0001 OW vs Lean, WeLo mice by 
one-way ANOVA with post-hoc Tukey’s analysis). B) Tumor growth was measured thrice weekly by 
electronic calipers (*P<0.05 OW vs Lean; #P<0.05 OW vs WeLo by two-way ANOVA with post-hoc Tukey’s 
multiple comparisons). Mean ± SEM. N=19/diet group. 

 

Accelerated tumor growth rate in Overweight mice was associated with macrophage and 

neutrophil influx into mammary adipose 

Given the known role of mammary inflammation in breast cancer progression [505], we 

next determined whether the observed increases in mammary adiposity and tumor volume 

occurred in conjunction with features of adipose inflammation typically observed in visceral 

adipose pads in obesity. We first compared mammary fat pad adipocyte diameter of Lean, 

Overweight, and WeLo mice. Average mammary adipocyte diameter was approximately 35% 

greater in Overweight mice relative to Lean (Figure 34A&B; P<0.01) and was not significantly 

different between WeLo and Lean animals.  
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As adipocyte hypertrophy in obesity is associated with increased myeloid cell content in 

visceral adipose depots, flow cytometric analysis was performed on lean and overweight mice to 

determine if myeloid content in mammary adipose tissue was also increased by overweight. 

CD11b-positive myeloid cell content was increased within the stromal-vascular fraction of 

Overweight mammary adipose by 52% relative to Lean animals (Figure 35A; P=0.0035) 

(complete gating scheme in Appendix, Supp. Figure 43). We next quantified markers of 

neutrophil and macrophage influx in whole mammary fat pad to identify which myeloid populations 

were regulated by adiposity. Expression of the neutrophil-specific enzyme neutrophil elastase 

(Elane) was significantly >2-fold greater (Figure 35B; P<0.01) in Overweight relative to Lean 

mammary fat pad and was reduced to Lean levels in WeLo mice.  

Figure 34. Overweight and weight loss regulated 
mammary adipocyte diameter. A) Average 
adipocyte diameter of 100 adipocytes/tissue section 
in n=7-8 normal mammary sections was calculated 
per diet group. **P <0.01 OW vs Lean, OW vs WeLo 
by one-way ANOVA with post-hoc Tukey’s multiple 
comparisons. Mean ± SEM. Representative images 
shown. B) Histogram of adipocyte diameter from 100 
adipocytes/tissue section in n=7-8 normal mammary 
sections per diet group. 
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Figure 35. Accelerated tumor growth in Overweight mice occurred in association with increased 
mammary adipose myeloid cell content. A) CD11b+ myeloid cell composition shown as a percentage of 
total stromal-vascular cells in abdominal mammary fat pads. n=5-6 per diet group. **P= 0.0043 by Mann-
Whitney. Representative dot plots shown along with representative images of mammary fat pads used for 
flow cytometric analysis. B) mRNA expression of the enzyme neutrophil elastase (Elane) was elevated in 
mammary fat pad of OW mice.  

 

With respect to macrophages, mammary adipose CLS density was 2.20-fold (P=0.040) 

and 3.76-fold (P=0.0021) greater in Overweight compared to Lean and WeLo animals, 

respectively (Figure 36A). Notably, CLS were present in 90.3% of histologic mammary sections 

from Overweight mice yet were observed in only 50% of Lean and 31.8% of WeLo tissue sections. 

Accordingly, Overweight mammary glands exhibited a >4-fold increase in expression of F4/80 

(Emr1) relative to both Lean and WeLo (Figure 36B, P<0.05).  

Adipose tissue macrophages express a mixture of canonical pro- and anti-inflammatory 

markers (e.g., both CD11c [Itgax] and Arginase 1 [Arg1]) [370, 372, 527]. Consistent with this 

“mixed” macrophage phenotype, significant increases were observed in both Itgax and Arg1 

expression in Overweight mammary adipose (Figure 36C, *P<0.05, Overweight vs. Lean, 

WeLo; Figure 36D, **P<0.01 vs. Lean, ***P<0.001 vs. WeLo), while expression of monocyte-

chemoattractant protein (MCP1; Ccl2) (Figure 36E) and tumor necrosis factor alpha (TNF-, 

not shown) were increased but not significantly. Collectively, these findings suggest that 

adiposity-induced changes within the mammary microenvironment regulate myeloid cell content 

and/or activation, with potential to influence tumor growth in Overweight mice. 
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Figure 36. Overweight increased mammary adipose CLS density and expression of macrophage 
markers. A). Crown-like structure (CLS) density in the mammary fat pad was calculated in n=3 non-
sequential sections per mouse from n = 6-9 mice/diet group. Scale bar = 100 µm. *P<0.05 OW vs Lean, 
**P <0.0001 OW vs WeLo by one-way ANOVA with post-hoc Tukey’s multiple comparisons. Representative 
images shown, CLS indicated with arrows. B-E) mRNA expression of Emr1, the enzyme Arg1, the integrin 
Itgax, and Ccl2 (also known as Mcp1) were measured in the mammary fat pad by RT-qPCR analysis. All 
gene expression analyses were normalized by the delta delta Ct method to 18S and the same randomly 
selected Lean sample.  *P<0.05, **P<0.01, ***P<0.001 by one-way ANOVA with post-hoc Tukey’s analysis 
(n=5-7/diet). Mean ± SEM. 

 

Weight loss reversed overweight-associated increases in growth factor and inflammatory 

cytokine production 

To further probe the effect of adiposity and weight loss on mammary inflammation, we 

next examined expression of select interleukins (ILs) implicated in adipose tissue inflammation 

and breast tumor growth promotion. Compared to Lean mice, overweight increased expression 

of IL-6 (Il6), while weight loss significantly reduced Il6 expression by >8-fold relative to 

Overweight mice (Figure 37A; P=0.025 Overweight vs. Lean, P=0.014 Overweight vs. WeLo). 

Similarly, IL-1β (Il1b) expression was upregulated in Overweight mice relative to WeLo animals 

(P = 0.03) (Figure 37B). On the other hand, expression of immunosuppressive IL-10 (Il10) [441] 

was elevated by >4-fold in Overweight compared to Lean mammary fat pad (Figure 37C, P = 

0.041). Il10 expression in mammary pad of WeLo mice resembled that of Lean mice but did not 
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reach significance relative to Overweight (P = 0.054). Consistent with our flow cytometry data, 

these results support the existence of a mixed pro- and anti-inflammatory milieu within 

Overweight mammary adipose, with restoration of a lean-like microenvironment upon weight 

loss.  

Weight gain can also increase expression of growth factors that are relevant to breast 

cancer progression, including hepatocyte growth factor (HGF, Hgf) [42, 43, 264, 528] and 

vascular endothelial growth factor (VEGF; Vegfa) [147, 225]. Notably, Hgf expression in the 

mammary fat pad was increased by approximately 2.7-fold in Overweight relative to Lean 

animals; this upregulation was abrogated in WeLo mice (Figure 37D; P=0.038 and P=0.030, 

respectively). WeLo mice also exhibited a significant reduction in Vegfa expression relative to 

Overweight mice (Figure 37E; P=0.025). 

 

 

Figure 37. Weight loss restored mammary fat pad expression of mixed inflammatory cytokines, 
growth factors, and markers of neutrophil infiltration to lean levels. A-E) mRNA expression of the 
interleukins Il1β, Il6, and Il10, and the growth factors hepatocyte growth factor (Hgf) and vascular 
endothelial growth factor (Vegfa) were measured in the mammary fat pad by RT-qPCR analysis. All gene 
expression analyses were normalized by the delta delta Ct method to 18S and the same randomly selected 
Lean sample.  *P<0.05, **P<0.01, by one-way ANOVA with post-hoc Tukey’s analysis (n=5-7/diet). All 
graphs shown as mean ± SEM. 

 

Local, obesity-induced changes in the mammary adipose microenvironment may 

augment angiogenesis and infiltration of immune cells, such as macrophages, into developing 

mammary tumors [45, 529]. Based on our findings that overweight increased mammary CLS 

density and expression of the pro-angiogenic growth factors Hgf and Vegfa, we determined 
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whether these changes translated into greater tumor microvessel density or tumor-associated 

macrophage content. However, no significant differences were observed in either CD31+ tumor 

area or microvessel density (Figure 38A-B). Similarly, flow cytometric analyses revealed no 

diet-induced differences in total leukocytes (CD45+) (Figure 38C), tumor-associated 

macrophages (TAMs, defined as CD45+F4/80hiFSCmidSSCmid; Figure 38D), or other myeloid 

cells (defined as CD45+F4/80lo/midFSChiSSChi; Figure 38E) (gating scheme in Suppl Figure 2). 

 

 

Figure 38. Accelerated early tumor growth in Overweight was not explained by differences in 
vascular density or leukocyte infiltration. A) Vascular density was measured using 
immunohistochemistry against the endothelial marker CD31/PECAM1 (n=7-8/diet group) Mean ± SD. B) 
Microvessel density was quantified as total number of CD31+ vessels per tissue area (mm2). C-G) 
Intratumoral leukocyte analysis was conducted via flow cytometry on n=3 tumors/diet group. *P = 0.04, 
WeLo vs Lean. All values reported as mean ± SEM. 
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Weight loss reduced expression of mitogenic and metastasis-associated gene pathways 

To further probe potential mechanisms whereby changes in weight status influenced tumor 

progression, we next conducted microarray analysis on total tumor lysates. Tumors were 

selected based on proximity to the median tumor volume within each respective diet group. 

Initial analysis comparing all three diet groups revealed minimal differences in gene expression 

in tumors from Lean and Overweight mice (data not shown), suggesting that increased tumor 

volume in Overweight mice was not driven by differences within the intratumoral 

microenvironment. However, WeLo mice exhibited a distinct transcriptional profile, prompting 

additional analyses using a two class Significance Analysis for Microarray (FDR <5%) to 

emphasize unique intratumoral changes in response to weight loss (Figure 39A). Relative to 

Lean and Overweight, WeLo mice exhibited downregulation of CXCR4/CXCL12 (Figure 39B) 

and erythropoietin (EPO) signaling (Figure 39C), as well as reduced expression of multiple 

genes within the IGF-1, ERK5, IL-4, and extracellular matrix (ECM) pathways (Figures 39D-G).  
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Figure 39. Weight loss altered intratumoral expression of pathways associated with growth, ECM 
remodeling, immune response, and metastasis. A) Heat map of genes with FDR <5% from a 2-class 
ANOVA using SAM. B-G) Tumor gene expression pathways significantly altered by diet exposure. Pathway 
analysis conducted using the Molecular Signatures Database (MSigDB). Y-axis of boxplots shows 
normalized log gene expression. Indicated P-values correspond to Weight loss vs Other.  
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Adiposity status regulated mast cell density and activation in mouse mammary fat pad 

Similar to other myeloid-lineage immune cells, mast cell-derived factors are also 

implicated in breast cancer progression. To determine the effect of diet-induced weight gain and 

weight loss on mammary tissue mast cell content we next quantified mast cell density in un-

injected mammary gland. Toluidine blue-positive mast cells were observed most frequently 

within the collagenous stroma of mammary ducts, in close proximity to ductal epithelial cells 

(Figure 40A), and in the adventitia of mammary blood vessels (not shown). While no significant 

difference in mast cell density was observed between Lean and Overweight mice, weight loss 

resulted in an approximately 51% increase in average mast cell density compared to 

Overweight animals (Figure 40A; P<0.05 vs. WeLo). On the other hand, the mast cell-specific 

marker tryptase beta-2 (Tpsb2) was non-significantly increased in Overweight mice (P=0.063 

Overweight vs. Lean), and significantly (>3-fold) reduced by weight loss (Figure 40B; P=0.017 

WeLo vs. Overweight).  

To further investigate mast cell activation in response to mammary adiposity, we 

analyzed pre-existing, unpublished microarray data from lean and overweight nulliparous 

transgenic C3(1)-TAg mice mammary fat pads. These mice were randomly assigned to LFD and 

HFD at 10 weeks of age, and mammary fat pads without palpable or visible tumors were 

collected as unaffected mammary glands at an average of 18.2 weeks of age. We calculated a 

mast cell score for each sample using a previously validated, murine-specific 128-gene 

signature for connective tissue mast cells [524], the type most commonly found in mammary 

tissue [514]. Similar to our histologic findings in FVB/NJ mice, mast cell score was significantly 

greater in overweight as compared to lean C3(1)-TAg mammary fat pad (Fig. 40C).  

To determine whether the presence of CLBC influenced mammary mast cell content we 

next compared mast cell density within un-injected mammary pad to mast cell density within the 

corresponding tumor-adjacent tissue of the same animal. Interestingly, a significant increase in 

mast cell density in tumor-adjacent mammary gland relative to the corresponding un-injected 
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mammary tissue was observed in Overweight mice (Figure 40E; P=0.016 vs. un-injected 

mammary) but not in Lean or WeLo mice (Figure 40D&F). However, neither overweight nor 

weight loss affected intratumoral mast cell density in CLBC tumors (not shown). Likewise, 

microarray analyses revealed no significant difference in expression of mast cell-associated 

genes across diet groups in our murine model of CLBC. Restated, mammary adipose conditions 

in the context of overweight prompted an increase in tumor-adjacent mast cell content in 

response to CLBC tumor development without affecting intratumoral mast cells.  

 

 

Figure 40. Overweight and weight loss regulated mast cell density and activation in normal and 
tumor-adjacent mammary adipose.  A) Mammary mast cell density was calculated as number of toluidine 
blue-positive mast cells in a given mammary fat pad tissue section normalized to total tissue area analyzed 
(cells/mm2) n = 7-8 mammary sections/diet group. *P<0.05 WeLo vs OW. Representative image of toluidine 
blue staining shown with mast cells indicated by black arrows. B) mRNA expression of tryptase beta-2 
(Tpsb2), a mast cell-specific enzyme, was quantified in mammary fat pad from n=5-7 mice/diet group by 
RT-qPCR analysis. All gene expression analyses were normalized by the delta delta Ct method to 18S and 
the same randomly selected Lean sample. Reported as mean ± SEM. C) Mast cell score was determined 
use microarray gene expression analyses of n=4-6 unaffected mammary fat pads from Lean and 
Overweight female C3(1)-TAg mice. P= 0.0095 by Mann-Whitney analysis. D-F) Mast cell density in un-
injected mammary fat pad and corresponding tumor-adjacent adipose (cells/mm2) n =7-8 sections. 
Overweight *P=0.016 by paired t-test. 
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Mast cell score is increased in breast tissue of overweight and obese women 

Our findings in murine mammary gland indicated the potential for increased mast cell 

activation in overweight and obese human breast tissue. Thus, we next investigated expression 

of mast cell-associated genes in existing microarray data from cancer-adjacent normal human 

breast tissue samples obtained through the UNC Normal Breast Study, a hospital-based study 

of normal breast tissue and breast cancer microenvironments [521] (see Table 2 for patient 

characteristics).  

Table 2. Demographic and clinicopathologic features of Normal Breast Study participants. 

  
Mean + SD n % 

Demographic factors       

    Age  54.2 + 11.8     

        <50    44 33.6 

        >50    87 66.4 

    Race       

        Caucasian   82 62.6 

        African American   43 32.8 

        Other/Not reported 
 

  6 4.6 

Anthropometric data 

    1BMI (kg/m2) 29.8 + 7.1     

        Normal-weight   38 29.0 

        Overweight   37 28.2 

        Obese 
 

  56 42.7 

IHC-based subtype of 
corresponding tumor 

      

    Luminal A (ER+PR+HER2-)   52 39.7 

    Luminal B 
(ER+PR+HER2+) 

  14 10.7 

    HER2-enriched (ER-PR-

HER2+) 
  15 11.5 

    Triple-negative (ER-PR-

HER2-) 
  24 18.3 

    2Other/Not reported   26 19.8 
1May not equal 100% due to rounding. 
2Includes borderline, benign, and in situ cases. 
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A mast cell score for each patient was calculated using a previously validated panel of 

human mast cell-specific genes [525]. Consistent with our murine model data, mast cell score in 

human breast tissue was elevated with increased adiposity (Fig. 41A-B; P<0.05 Normal weight 

vs. Overweight, P<0.01 Normal weight vs. Obese). Thus, collectively our results demonstrated 

adiposity-mediated modulation of mast cell dynamics within both the mammary fat pad of mice 

and human breast tissue. 

Figure 41. Overweight and obesity 
increased expression of mast-cell 
associated genes within human 
breast tissue samples. A) Mast cell 
score was determined using gene 
expression data from N= 255 cancer-
adjacent human breast tissue samples 
obtained through the Normal Breast 
Study, a hospital-based study 
investigating potentially predictive 
markers within normal breast tissue 
surrounding a tumor. B) Distribution of 
mast cell scores in NBS human breast 
tissue analyses. See Methods for 
species-specific mast cell score 
derivation.  

 



128 
 

Lower intratumoral mast cell score is associated with triple-negative breast cancer and 

elevated risk of recurrence 

Linked anthropometric data such as BMI are often not available for large, publicly-

available human breast cancer gene expression datasets. However, as intratumoral mast cell 

density is correlated with more favorable outcomes in breast cancer [452], and because breast 

cancer outcomes vary across subtypes [530], we next utilized TCGA breast cancer datasets to 

inquire whether mast cell score varied in accordance with tumor subtype. Indeed, mast cell 

scores calculated in basal-like tumors were dramatically lower than those in luminal A cancers, 

a subtype with relatively high long-term survival rates [530] (Figure 42A, BBC vs. Luminal A; 

P<0.0001). A modest, yet significant, difference in mast cell scores was also seen between 

luminal B and HER2+ breast cancers (Figure 42A, P<0.05). These data indicate that breast 

cancer subtype is a strong determinant of intratumoral mast cell content. 

 The striking underrepresentation of mast cell-associated genes in BBCs, which display 

elevated 5-year distant recurrence rates relative to other breast cancer subtypes [509], led us to 

investigate whether mast cell score was also associated with predicted risk of tumor recurrence. 

For these analyses we used the previously assigned ROR-P score, which is a risk-of-recurrence 

score weighted to the PAM50 11-gene proliferation index available through TCGA [531]. 

Consistent with subtype findings, mast cell score was inversely associated with ROR-P score, 

with the greatest expression of mast cell-associated genes measured in tumors assigned a low 

ROR-P range, intermediate expression in the medium ROR-P group, and lowest expression in 

tumors assigned a high ROR-P score (Figure 42B, P<0.0001 for all comparisons).   



129 
 

 

Figure 42. Intratumoral mast cell score was subtype-specific and associated with risk-of-recurrence 
score. A) Mast cell score by tumor subtype using gene expression data from N=1010 human tumors, 
generated by The Cancer Genome Atlas (TCGA) Research Network. *P<0.05, ****P<0.0001 B) Mast cell 
score differed significantly across ROR-P risk groups. Reported as mean ± SEM. See Methods for mast 
cell score derivation. ****P<0.0001 vs Low risk, ^^^^ VS Medium risk. 

 

Discussion 

Obesity at the time of breast cancer diagnosis is associated with an estimated 34% 

increase in breast cancer-specific mortality in postmenopausal women and a 75% increase in 

premenopausal women [55]. Importantly, the inflammatory changes seen in obese breast 

adipose and implicated in promotion of breast cancer progression are also present in 

overweight women [366, 513]. As overweight and obesity in women are now more than three 

times as prevalent as normal weight [504], an understanding of the mechanisms whereby 

excess adiposity and weight loss influence breast cancer aggression is critical to inform public 

health recommendations and therapeutic approaches. 

Our previous findings in the transgenic C3(1)-TAg model of BBC demonstrated 

accelerated tumor progression in response to weight gain that was reversed in animals wherein 

weight loss occurred before tumor onset [264].  An unknown was how the mammary gland 



130 
 

microenvironment contributed to tumor growth as opposed to effects of weight gain or loss that 

were tumor-intrinsic. Herein, we show that overweight mice exhibited significantly greater tumor 

volume at sacrifice, whereas tumor growth in mice induced to lose weight paralleled that of lean 

animals. As inflammation is a well-established risk factor for breast cancer onset and 

progression, our studies herein employed mouse models of overweight and weight loss to 

identify the influences of changes in adiposity status on inflammation within mammary adipose 

tissue and the CLBC tumor microenvironment. Prolonged high-fat feeding in Overweight mice 

resulted in a doubling of overall adiposity, hepatomegaly, elevated fasting glucose, and a nearly 

2-fold increase in mammary fat pad weight relative to Lean and WeLo mice, consistent with 

reports of both regional and systemic effects of high-fat feeding in FVB/NJ mice despite a lower 

degree of overall adipose gain relative to the C57BL/6 strain [516]. Increased CLBC growth rate 

in Overweight mice occurred in the context of inflammatory changes within the surrounding 

mammary fat pad that are characteristic of visceral adipose depots in obesity, including 

increased adipocyte diameter and greater CLS density [275, 364, 532]. We also observed 

increased expression of markers (Itgax and Arg1) supporting infiltration of the overweight 

mammary fat pad by a population of mixed-phenotype macrophages, as has been reported in 

obese abdominal adipose depots of both mice and humans [372, 375-377]. Also in accord with 

previous studies [532], decreased mammary adipocyte diameter in WeLo mice corresponded 

with a decline in expression of macrophage-associated markers. 

In addition to increased macrophage content, our results indicated enhanced neutrophil 

content in mammary adipose tissue of Overweight mice. Notably, studies to date regarding 

adipose neutrophil infiltration in response to weight gain have investigated this question 

exclusively in male mice [361, 420], leaving unclear as to what extent, or when, neutrophils 

infiltrate the overweight or obese mammary fat pad. Our findings support both the increased 

presence of neutrophils in mammary fat of overweight mice and a reduction in neutrophil 

content with weight loss. Weight loss also reversed elevated expression of cytokines (Il6, Il10, 



131 
 

Il1b) and growth factors (Hgf and Vegfa) implicated in both inflammation and breast cancer 

progression [505]. Among these factors, Hgf is particularly noteworthy, as HGF/MET signaling 

appears to be a defining feature of CLBCs [533]. Together with the macrophage findings above, 

these results describe establishment of an inflammatory microenvironment in overweight 

mammary fat pad, with restoration of a lean-like cytokine milieu following weight loss.   

Despite these changes in the surrounding mammary fat pad, our analyses revealed no 

diet-mediated differences in either tumor microvessel density or total tumor leukocyte content. 

However, leukocytes comprised 40-50% of total CLBC tumor cellularity, a dramatic immune 

infiltrate which is consistent with previous reports of a strong immune signature in CLBCs [507, 

508]. Similarly, tumor microarray analysis demonstrated minimal differences in tumors resected 

from Lean and Overweight mice, results which were paralleled in additional microarray analyses 

of tumors from lean and overweight transgenic C3(1)-TAg mice (data not shown). However, 

weight loss before tumor development reduced expression of signaling pathways implicated in 

ECM remodeling, cancer cell survival and proliferation (IGF-1, ERK5, IL-4) [534-536], and 

metastasis (CXCR4/CXCL12 and EPO) [536-538]. Of particular interest are the reductions 

observed in CXCR4 and EPO pathways. CXCR4 is a G-protein coupled receptor with 

demonstrated roles in promotion of breast cancer metastasis. In mice, overexpression of 

CXCR4 alone significantly increased bone metastases of a CLBC cell line [537], while blockade 

of CXCR4 signaling in the same cell line reduced lung metastases [539]. In humans, CXCR4 

expression in breast cancer is associated with both lymph node status and distant metastases, 

as well as reduced 5-year disease-free survival and overall survival [540]. Weight loss also 

reduced expression of the EPO signaling pathway, which is implicated in tumor-initiating cell 

self-renewal [517], reduced response to chemotherapy [541], and lymph node metastasis [538]. 

Additional analyses are ongoing to identify the prognostic potential of these weight loss-

associated transcriptional changes with regard to breast cancer outcomes in other molecular 

subtypes.  
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In addition to increased macrophage and neutrophil content in mammary adipose, our 

findings herein also support a novel role for weight gain and loss in regulation of breast tissue 

mast cell dynamics. Accumulation and proinflammatory activation of mast cells in obese visceral 

adipose has been reported in both mice [437] and humans [435, 436]. However, to our 

knowledge ours is the first study to investigate mast cell content and activation with regard to 

mammary adiposity in both mice and humans and to incorporate a weight loss intervention. 

Interestingly, our results demonstrated increased mast cell content in un-injected mammary not 

in overweight mice, but instead in a subset of the mice assigned to undergo weight loss. On the 

other hand – and more relevant to breast cancer progression – mast cell content in tumor-

adjacent adipose was increased relative to un-injected mammary exclusively in overweight 

animals. Indicators of mast cell activation were also elevated in overweight mammary gland 

across two different mouse models, an increase which was significantly attenuated by weight 

loss.  

Importantly, increased expression of mast cell-associated genes was also observed in 

overweight and obese human breast tissue collected through the UNC Normal Breast Study 

[521]. Others have reported that mast cells isolated from omental (visceral) and subcutaneous 

adipose depots of obese subjects secreted increased levels of pro-inflammatory cytokines, 

chemokines, and growth factors relative to those isolated from lean subjects, indicating a more 

activated state [436]. An increase in mast cell content and/or activation within the obese breast 

may influence breast cancer progression in obese individuals. For example, tryptase-containing 

mast cells are typically found in greater number within peritumoral tissue, and are associated 

with myofibroblast differentiation, higher lymphangiogenic and angiogenic microvessel density, 

and lymph node metastasis [505]. Notably, our data indicated lower expression of tryptase in 

mammary mast cells of mice following weight loss. Taken together, our findings of increased 

mast cell markers in overweight and obese normal breast warrants additional investigation into 

mast cell-mediated mechanism of obesity-associated tumor progression. The close proximity of 
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mast cells in normal breast tissue to the ductal epithelium also suggests potential roles for mast 

cells in progression of pre-neoplastic lesions such as ductal carcinoma in situ or neoplastic 

transformation of mammary ductal epithelium. 

Finally, using TCGA data we reported that mast cell gene expression varied based on 

breast cancer subtype, with low mast cell-associated gene expression observed in BBCs and 

higher expression in luminal subtypes. Our studies herein also revealed an inverse relationship 

between intratumoral mast cell markers and risk-of-recurrence category (ROR-P), which 

provided the most significant prognostic information, compared with other prognostic gene 

signatures, regarding post‑relapse survival when added to a clinical model [531]. Our finding of 

low mast cell-associated gene expression in BBCs is consistent with reports of a high density of 

tryptase-positive mast cells in luminal A breast cancers yet low mast cell content in TNBCs 

[542]. Tryptase-positive mast cell density was also associated with expression of the 

proliferation marker Ki67 as well as tumor size and Nottingham Histologic Grade [542]. 

Collectively, these analyses suggest a potential role for mast cells in regulation of tumor 

characteristics associated with breast cancer recurrence, and complement previous reports of 

intratumoral mast cells as exerting a protective effect in breast cancer [452]. Additionally, the 

paradoxical relationship between mast cell localization and tumor prognosis suggests that 

peritumoral and intratumoral mast cells may in fact exhibit distinct phenotypes. Future analyses 

should address intratumoral mast cell score in CLBCs, which are not currently well represented 

in TCGA, and by anthropometric data such as BMI, which is not at this time linked TCGA to 

breast cancer data sets.   

Collectively, our results indicate that local inflammatory changes within the surrounding 

mammary fat pad, including increased myeloid cell content and growth factor expression, 

accelerated tumor progression in overweight mice, and suggest the potential for cross-talk 

between mammary adipose immune populations and developing CLBCs. Moreover, these 

findings elucidate the impact of overweight and subsequent weight loss on the mammary 
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microenvironment and progression of CLBC. The distinct patterns of gene expression observed 

in tumors from mice who experienced weight loss before tumor growth are encouraging for 

public health and emphasize the importance of clarifying physiological changes within the breast 

adipose or intratumoral microenvironment in response to body weight fluctuations. Furthermore, 

our findings of a relationship between weight status and mast cell dynamics in mammary 

adipose of both mice and humans argues for further investigation into peritumoral mast cells as 

key players in obesity-associated BBC and CLBC progression.  
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CHAPTER 4: SYNTHESIS, SIGNIFICANCE, AND FUTURE DIRECTIONS 

Triple-negative breast cancers: a heterogeneous disease 

The classification of breast cancers and subsequent clinical decisions for treatment 

remain reliant upon IHC4, a histopathologic scoring system which combines expression of 

known “molecular drivers” of breast cancer progression – estrogen receptor (ER), progesterone 

receptor (PR), human epidermal growth factor receptor 2 (HER2), and the proliferation marker 

Ki67 – with clinicopathological parameters such as Nottingham Histologic Grade. IHC4 provides 

an estimation of the risk of distant disease recurrence in breast cancer patients and guides 

treatment selection from within the currently limited arsenal of targeted adjuvant and 

neoadjuvant therapies. The focus of this dissertation, TNBCs, are called as such because they 

lack expression of ER, PR, and HER2 when assessed using IHC4. For this reason, TNBCs 

currently lack FDA-approved targeted therapies, leaving systemic chemotherapy as the 

standard-of-care treatment for patients with both early- and advanced-stage disease. 

Importantly, the category of TNBC applies to all tumors that lack ER, PR, and HER2 expression, 

resulting in profound heterogeneity within this subgroup [543] and complicating identification of 

actionable molecular targets. While TNBCs, particularly BBCs, are often more sensitive to 

chemotherapy than other phenotypes (e.g., ER and/or HER2 positive) [544], they paradoxically 

also exhibit elevated recurrence and metastasis rates relative to other breast cancer subtypes 

[509]. Critically, fewer than 30% of women with metastatic breast cancer survive five years 

[545], and virtually all women with metastatic TNBC will ultimately die of their disease. 

However, the additional complexity in breast cancer classification exposed by ongoing 

analyses under The Cancer Genome Atlas (TCGA), in conjunction with high-throughput gene 

sequencing and transcriptomic profiling, has allowed for molecular subtyping of breast cancers 
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and increased emphasis on personalized approaches to treatment. The studies presented 

herein have investigated the effects of weight status on tumor progression using multiple 

molecular subtypes of TNBC (BBC and CLBC) and employing both orthotopic transplant models 

and models of spontaneous tumor development. Consideration of molecular subtypes when 

investigating the impact of overweight and obesity on breast cancer outcomes is paramount. 

Elucidation of unique mechanisms of overweight- and obesity-related cancer pathogenesis in a 

subtype-specific manner may reveal therapeutic targets to improve outcomes and further inform 

personalized treatment options for these patient populations. 

In the studies conducted in Chapter 2 of this dissertation we sought to reverse the 

acceleration of basal-like TNBC latency previously observed in HFD-fed mice and inhibit tumor 

progression in LFD- and HFD-fed C3(1)-TAg mice using the small molecule cMET inhibitor 

crizotinib. A strength of our study is that we tested this question in models of both prevention 

and treatment, providing a better understanding of cMET dependence in both preneoplastic 

lesions and invasive basal-like mammary carcinoma. In the prevention arm we investigated 

whether administering crizotinib in a window prior to frank tumor development would inhibit or 

delay tumorigenesis. Thus, mice were started on diet at 8 weeks of age to ensure crizotinib 

administration occurred within the primary window of AH/CIS precursor lesions (9-12 weeks of 

age), based on previous findings of increased precursor lesion formation in C3(1)-TAg mice 

following HFD-induced weight gain [546]. Although preventive crizotinib administration 

significantly accelerated tumor progression in the primary (first detected) tumor in both diet 

groups, no differences were measured when total tumor progression (all tumors considered 

collectively) was assessed. Similarly, no effect was seen on total tumor multiplicity with 

prophylactic administration of crizotinib. Interestingly, we also did not observe accelerated tumor 

latency in HFD-fed mice, as has been seen in our previous studies of adult weight gain [43, 

263]. Instead these results paralleled those of female C3(1)-TAg mice weaned onto LFD or HFD 

– generating a model of lifelong obesity – wherein no difference in latency was observed but 

tumors progressed an at an accelerated rate [264]. The differences in adiposity-associated 
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phenotype observed across these studies (shortened tumor latency vs increased rate of tumor 

progression) emphasize the importance of clarifying “windows of susceptibility” [470, 480] during 

which overweight and obesity play disproportionately greater, and varied, roles in breast cancer.  

In the treatment arm of our study crizotinib administration was initiated upon detection of 

the first palpable tumor; i.e., in mice with established invasive mammary carcinoma. In mice with 

established basal-like mammary cancer, crizotinib treatment inhibited subsequent tumor 

formation in our study such that total tumor multiplicity was significantly reduced at sacrifice, 

irrespective of diet or weight status. The degree of tumor inhibition was paralleled by a similar 

degree of suppression of tumor vascularity, which is consistent with HGF/cMET signaling as a 

potent driver of tumor angiogenesis [265, 497]. 

 

Diet, overweight, obesity, and weight loss in breast cancer outcomes 

Herein we have also reported that overweight and weight loss reciprocally regulated 

CLBC tumor volume, along with numerous pro-inflammatory changes in surrounding mammary 

adipose. Increased CLS density and mammary inflammation in Overweight mice were 

associated with increased rate of CLBC tumor growth, as well as an increase in mast cell 

density in tumor-adjacent adipose. Increased expression of a mast cell gene signature was also 

observed in cancer-adjacent normal breast tissue from both overweight and obese human 

subjects compared to normal weight. Interestingly, while weight status did not influence 

intratumoral mast cells, weight loss resulted in reduced expression of mast cell activation 

markers within the mouse mammary adipose pad and a unique transcriptional signature in 

tumors of WeLo mice, including reduced expression of mitogenic and metastasis-associated 

gene pathways.  

While the studies in Chapter 3 are primarily descriptive in nature, our selection of a 

model of overweight, rather than outright obesity, allows insight into potential risk factors for 

CLBC progression in this understudied population. Additionally, we emphasized tissue- and 
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species-specificity in selection of the mast cell signatures for microarray analysis, based on 

reports of nontrivial differences in mast cells across species and in a given tissue context [547]. 

Importantly, our results indicate that weight loss following overweight significantly attenuated 

inflammation-induced CLBC progression. As overweight and obesity in women are now more 

than three times as prevalent as normal weight  [504], an understanding of the mechanisms 

whereby excess adiposity facilitates TNBC aggression is critical, while information regarding 

efficacy of preventive measures such as weight loss could have tremendous potential for public 

health.  

However, a limitation of diet-induced obesity studies in rodents that must be 

acknowledged is the high fat content of the diet used to induce adiposity, which raises questions 

regarding whether dietary composition or adiposity per se is the primary driver of the observed 

acceleration in tumor progression in overweight or obese animals. Our observation of extensive 

differences in expression of tumor growth-promoting pathways between lean mice and mice 

induced to lose weight – groups which consumed the same diet both before and during the 

tumor growth period – supports that adiposity as well as associated local and systemic changes 

that occur in response to weight loss are nontrivial in tumor biology. Moreover, recent studies 

evaluating the impact of low-fat diets in breast cancer patient populations argue against the 

reduction of dietary fat as an effective strategy for mitigating breast cancer risk or improving 

outcomes. For example, a randomized controlled trial in Canada reported that a low-fat dietary 

intervention in 4,690 women with high breast density did not significantly influence breast 

cancer incidence across 10 years of follow-up [548]. Similarly, the Women’s Healthy Eating and 

Living (WHEL) trial randomly assigned 3,088 breast cancer patients to a low-fat diet high in 

vegetables, fruit, and fiber and observed no differences in disease-free survival or overall 

survival between intervention and control groups [549]. Moreover, the Women’s Health Initiative 

Dietary Modification trial, a randomized controlled trial in post-menopausal patients within the 

larger Women's Intervention Nutrition Study (WINS), reported no significant effects on either 
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breast cancer incidence rate or breast cancer-specific mortality relative to the control group 

following prolonged consumption of a low-fat diet (16.1 years average follow-up) [550]. 

However, deaths after breast cancer (all-cause mortality) were significantly reduced in the 

dietary intervention group [550]. Thus, currently available data does not support an influence of 

dietary fat composition on breast cancer risk. Additionally, the difference in overall survival 

findings between the WHEL and WINS studies may be less directly linked to dietary 

composition and instead due to a modest decrease in weight (average loss of approximately 6 

lbs maintained over 5 years) in WINS participants but not those in WHEL.  

Nonetheless, the relationship between weight loss and breast cancer incidence and 

outcomes in overweight and/or obese individuals also remains ambiguous. Despite reports of 

improvement in levels of metabolic markers associated with cancer progression following weight 

loss [551], a secondary analysis of the Women’s Health Initiative randomized clinical trials found 

no association between breast cancer risk and weight loss (prior to cancer) among already 

overweight or obese postmenopausal women over a median of 13 years of follow-up [47]. On 

the other hand, Chlebowski et al. also evaluated associations between weight change and 

invasive breast cancer risk in postmenopausal women within the Women's Health Initiative over 

11.4 years (mean) of follow-up, and reported a significant 12% reduction in breast cancer risk in 

women with weight loss ≥ 5%, intentional or otherwise, compared with women of stable weight 

[552]. Importantly, weight gain ≥ 5% significantly increased risk of TNBC by 54%, without 

affecting overall breast cancer risk [552]. 

With regard to weight loss and breast cancer outcomes, a meta-analysis of 

observational studies did not support an association between weight loss and improved survival; 

in fact, several studies have reported dramatically increased mortality associated with weight 

loss in overweight and obese breast cancer survivors [553]. Critically, several of the included 

studies did not differentiate between purposeful weight loss and disease-specific weight loss 

after breast cancer diagnosis. Intentional weight loss through diet and/or exercise is inarguably 
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different from weight loss due to, for example, cancer-associated cachexia, a fatal energy-

wasting syndrome that is estimated to be the immediate cause of death in approximately 20-

40% of end-stage cancer patients [195].  

Collectively, the limited evidence supporting improved prognosis in response to weight 

loss after diagnosis, and the lack of studies separating intentional weight loss from disease-

associated weight loss, complicates recommendations regarding weight loss for breast cancer 

survivors. However, the studies reviewed above regarding breast cancer risk, as well as our 

results herein, argue for further investigation into the potential impact of weight loss before 

cancer diagnosis on breast cancer risk and outcomes. Finally, our use of murine pre-clinical 

models, human tissue samples collected through the Normal Breast Study, and secondary 

analysis of existing, publicly available data sets (TCGA) informs future translational studies with 

potential for clinical impact.  

 

Directions for future research 

Our crizotinib treatment arm results presented in Chapter 2 are consistent with initial 

mechanism-of-action studies for crizotinib, which showed a dose-dependent reduction of 

microvessel density (CD31+ area) in response to cMET inhibition in gastric carcinoma, 

glioblastoma, and prostate carcinoma [478]. cMET inhibition has also shown promising results 

in xenograft models of aggressive cancers such as lung [496] and pancreatic cancers [497] as 

well as pre-clinical models of TNBC models such as ours [498]. However, clinical trials 

investigating cMET inhibitors in metastatic TNBCs have so far not been in accord with 

preclinical findings, and at the time of submission of this dissertation no receptor tyrosine kinase 

inhibitors primarily targeting cMET have been approved for the treatment of breast cancer. 

Bearing this caveat in mind, inhibition of the cMET signaling pathway through chemical or 

antibody-mediated inhibition in a patient population may not be as effective as preclinical 

studies, including ours, have suggested. Of note, a potential contributor to the high rate of 
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attrition when translating preclinical to clinical contexts may be that essentially all preclinical 

drug studies are conducted in lean mice fed chow diets. In America, and increasingly worldwide, 

individuals of normal body weight are the minority. Perhaps inclusion of overweight and obese 

animal models in preclinical drug studies would more adequately predict therapeutic success in 

human trials. 

Nonetheless, clinical pursuit of the HGF/cMET pathway as a potential TNBC target 

continues, though the plan of attack has changed. Two currently active clinical trials are 

exploring efficacy of chimeric antigen receptor T cells (CAR-T cells) programmed to target 

cMET. One employs autologous cMET-redirected T cells administered intravenously in patients 

with melanoma or TNBC (ClinicalTrials.gov Identifier: NCT03060356), while the other 

administers autologous cMET-redirected T cells intratumorally in patients with metastatic breast 

cancer or newly diagnosed TNBC (ClinicalTrials.gov Identifier: NCT01837602). CAR-T cells 

have shown incredible promise in hematologic malignancies such as lymphoma [554]; 

unfortunately, they have been largely ineffective in patients with metastatic solid cancers, in part 

due to tumor heterogeneity and the paucity of suitable cell-surface targetable molecules 

expressed by solid cancers. In both of the highlighted trials, inclusion criteria specify ≥30% 

cMET positivity by IHC, and I eagerly await the results of these two trials. 

Data presented in Chapter 3 suggested that weight status influences breast mast cell 

dynamics in both mice and humans. However, the analyses conducted did not allow for 

differentiation between an increase in mast cell content as opposed to an increase in activation 

status of existing mast cells. Flow cytometric analyses of mammary mast cells from normal and 

tumor-adjacent mammary tissue of lean and overweight or obese mice would address this 

question, allowing for both quantification of mast cell content in mammary tissue as well as 

quantification of mediators of interest, such as select serine proteases or histamine. In vitro 

culture of isolated mast cells with media conditioned by lean and obese mammary adipose 

tissue would further clarify whether the obese mammary microenvironment alters activation 
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status of mast cells. The close proximity of mast cells in normal breast tissue to the ductal 

epithelium also suggests potential roles for mast cells in progression of pre-neoplastic lesions 

such as ductal carcinoma in situ or neoplastic transformation of mammary ductal epithelium. In 

vitro cell culture studies utilizing bone marrow-derived mast cells or mast cell-derived mediators 

could be used to determine the impact of an increased concentration of mast-cell derived 

factors, such as tryptase-β2, on various stages within the progression of breast cancer available 

through the MCF10 breast cancer cell series - MCF10A, MCF10AT1, MCF10DCIS.com and 

MCF10CA1a [555].  

The biological significance of the difference in mast cell content by breast cancer 

subtype seen in our study and that of Glajcar et al. [542] is intriguing, particularly in light of our 

finding that higher mast cell gene expression was significantly associated with a lower risk of 

recurrence score. To investigate whether mast cells directly influence tumor characteristics 

associated with breast cancer recurrence, co-culture studies with breast cancer cell lines could 

be conducted to determine whether mast cells increase migration, invasion of the basement 

membrane, or colony formation. Incorporation of cell lines of various molecular subtypes would 

also probe whether they do so in a subtype-specific manner and could be further used to 

determine the directionality of any observed effects. For example, perhaps production of mast 

cell-eliciting chemokines differs by breast cancer molecular subtype. Orthotopic transplant 

studies in mast-cell deficient and wild-type mice would also confirm molecular subtype-specific 

mast cell interactions in vivo. Studies reporting a differential association between peritumoral 

and intratumoral mast cell density and breast cancer prognosis suggest that analysis at a 

single-cell level of phenotypic differences between peritumoral and intratumoral mast cell 

phenotypes may also yield interesting findings. 

Finally, our analysis of tumor gene expression revealed a unique gene expression profile 

in tumors resected from mice that lost weight before orthotopic transplant. However, additional 

questions are raised by these findings, including: can the weight loss gene expression signature 



143 
 

– particularly the reduced signaling observed through the CXCR4 and EPO signaling pathways - 

be recapitulated by interventions such as caloric restriction or exercise? Does weight loss result 

in consistent transcriptional changes in other breast cancer subtypes? To the latter point, 

additional analyses are ongoing to identify an intratumoral weight loss “signature” and establish 

its prognostic potential with regard to breast cancer outcomes in human breast cancers and 

across molecular subtypes.  

Cancer research has traditionally focused on identifying altered gene expression and cell 

signaling within tumor cells. However, the tumor microenvironment, including immune cells and 

the signaling extracellular milieu, also strongly influences tumor onset and progression. This is 

the “seed and soil” hypothesis originally posed by Dr. Stephen Paget [556], and furthered 

developed by pioneers such as Mina Bissell, Ph.D. [557], wherein the seed (cancer cell) must 

be nurtured by the metabolites, growth factors, or angiogenic factors provided by the 

surrounding soil (stroma). The body of work presented herein speaks to the importance in 

overweight- and obesity-associated breast cancers of considering not only tumor-intrinsic 

factors, but also changes to the normal mammary and tumor-adjacent microenvironments.  
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APPENDIX: SUPPLEMENTAL FIGURES  

 

 

Supplemental Figure 43. Complete gating scheme for analysis of total leukocyte and CD11b+ 
myeloid cell content of Lean and Overweight mammary fat pads. 
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Supplemental Figure 44. Complete gating scheme for analysis of leukocyte infiltration into 
claudin-low tumors of Lean, Overweight, and WeLo mice
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