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ABSTRACT 

 

Nathan Thomas Rodeberg: Improving the Collection and Calibration of Voltammetric 
Measurements of Striatal Dopamine Release 

(Under the direction of R. Mark Wightman) 
 

 Fast-scan cyclic voltammetry (FSCV) enables rapid and sensitive measurements of 

electroactive neurochemicals in a variety of organisms, including rodents, non-human primates, 

and most recently, humans. Many FSCV recordings have focused on the role of the 

neurotransmitter dopamine, which is implicated in a wide host of different behavioral and 

pathological states. Experiments using FSCV in conscious rodents have corroborated previous 

electrophysiology studies that demonstrated dopamine plays a key role in learning, reward-

seeking behavior, and the actions of drugs of abuse.  

 The first half of this dissertation concerns studies delving into the role of phasic 

dopamine release during intracranial self-stimulation (ICSS). In ICSS, subjects are trained to 

self-administer electrical stimulation of the brain in a manner akin to self-administration of drugs 

of abuse.  Unsurprisingly, given the established role of dopamine in reward-seeking, histological 

and pharmacological studies have implicated dopamine as a key mediator of this task. 

However, direct measurements of dopamine release on a timescale relevant to behavior were 

elusive until the development of FSCV. Early FSCV studies suggested a dissociation between 

phasic dopamine release and ICSS responding, which stood in stark contrast to evidence from 

previous reports. Chapter 2 revisits this original finding with the use of more sensitive FSCV 

measurements and improved calibration methodology, while Chapter 3 extends the study with 

behavioral and pharmacological manipulations to further probe the relationship between 

dopamine release and ICSS. 
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 The second half of this dissertation pertains to the recent development of chronically-

implanted fused-silica microelectrodes (CFMs) for longitudinal FSCV measurements. While 

these electrodes permit recordings over unprecedented timescales in single recording locations, 

experimental and practical limitations have required changes in calibration compared to 

previously established techniques with acutely-implanted glass CFMs. Chapter 4 investigates 

the potential pitfalls of one approach to calibration, which uses universal models to analyze 

collected data. Chapter 5 is a collaborative review written with the developers of these 

electrodes, which addresses similarities and differences between experiments using acutely- or 

chronically- implanted CFMs, while Chapter 6 describes further characterization and 

comparison of these two electrode designs. Altogether, the studies in this dissertation suggest 

improvements for the collection, interpretation, and calibration of FSCV data. 
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CHAPTER 1: FAST-SCAN CYCLIC VOLTAMMETERY FOR THE MONITORING OF 

ELECTROACTIVE NEUROCHEMICALS 
 

INTRODUCTION 

 The existence of chemical signaling between nerves was first proposed by Otto Loewi 

following experiments in beating heart muscle of anesthetized frogs (Loewi, 1921). Later 

investigation, largely by Henry Dale and colleagues, validated this theory for much of the 

peripheral nervous system (Dale et al., 1936). However, this hypothesis emerged amid 

controversy, as it was at odds with the prevailing theory that signal transduction occurred solely 

via electrical impulses across gap junctions between cells. As such, it took decades of 

experiments and debates between neurophysiologists and pharmacologists before chemical 

transmission was accepted as standard for communication within both the peripheral and 

central nervous system (Valenstein, 2002).  

 While much information regarding neurotransmission has been elucidated since these 

original discoveries, chemical signaling within the brain still appears to be extremely complex. In 

addition to the large number of molecules that have been proposed to act as neurotransmitters 

or neuromodulators, it is common for each species to act at a wide host of receptors that can 

differ both in their substrate affinities and downstream consequences following activation 

(Beaulieu & Gainetdinov, 2011; Monaghan et al., 1989; Waldhoer et al., 2004). Moreover, 

neurotransmitters can exert different effects by signaling at different time scales. For example, 

dopamine neurons have been shown to exhibit two patterns of cellular activity: “tonic firing”, 

which is characterized by slow, rhythmic firing, and “phasic firing”, which consists of irregular, 

high frequency bursts (Schultz, 1998). The former is thought to produce low ambient 

concentrations of dopamine, while the latter produces high concentration release events, 
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termed ‘transients’, that can temporarily activate high affinity receptors. These two modes of 

transmission have been demonstrated to carry different neurobiological and behavioral signals 

(Floresco et al., 2003; Grace, 1991; Schultz, 1998). Therefore, development of techniques that 

can accurately monitor these molecules for physiologically relevant concentrations and time 

scales is an important endeavor. Moreover, these techniques should be compatible with 

experiments in conscious subjects so that relationships between neurotransmitter signaling and 

behavior can be revealed.  

 While there have been several techniques used to measure neurochemicals in real time 

(Bucher & Wightman, 2015; Robinson et al., 2008), there are two main methods used today. 

The most established procedure is microdialysis, which utilizes a probe enclosed in a 

permeable membrane that interfaces with the surrounding brain tissue. Any molecule that can 

diffuse across this membrane, in accordance to its concentration gradient with respect to the 

dialysate, can be collected for downstream analysis. Thus, the sensitivity and selectivity of this 

technique are predominately determined by the detection method employed (Kennedy, 2013). 

However, the time needed for adequate equilibrium of analytes across the membrane, as well 

as the minimum sample volume needed for detection, limit its temporal resolution to the order of 

tens of seconds to minutes.  

The focus of this chapter will be on an alternative technique, fast-scan cyclic 

voltammetry (FSCV), which uses an applied potential at an electrode to oxidize and reduce 

analytes of interest. Though limited to electroactive molecules, the high temporal resolution of 

FSCV permits measurements of rapid release events on a behaviorally relevant time scale. The 

development, analytical merits, and limitations of FSCV will be discussed.   
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FAST-SCAN CYCLIC VOLTAMMETRY: THE BASICS 

Electrochemical measurements  

The first electrochemical techniques for monitoring neurochemicals in brain tissue  

included linear sweep voltammetry (Kissinger et al., 1973; Wightman et al., 1976), differential 

pulse voltammetry (Ewing et al., 1983; Gonon et al., 1980), and chronoamperometry (Ewing, et 

al., 1983; Gerhardt et al., 1984). While these techniques were sufficient to detect faradaic 

currents corresponding to electroactive molecules in vivo, they were seldom able to see through 

the ‘mud’ to detect their neurotransmitters of interest due to the comparatively large ambient 

concentrations of other easily oxidized species in the brain, such as ascorbic acid (AA) and 

neurotransmitter metabolites (Parsons & Justice, 1992). Indeed, it has been demonstrated that 

the electrochemical signal arising from slow voltage sweeps in brain tissue is dominated by AA 

(Ewing et al., 1981). Moreover, these techniques lacked adequate sensitivity to measure 

smaller, but physiologically relevant, neurotransmitter concentrations. 

A significant step forward came with the development of FSCV, in which potentials are 

swept at high scan rates (>100 V/s) in triangular ramps to oxidize and reduce electroactive 

analytes within a given potential window (Armstrong-James et al., 1980; Millar et al., 1985; 

Stamford et al., 1984). High scan rates have two primary benefits. First, this process increases 

the redox current, which enables higher sensitivity (Bard & Faulkner, 2001). Second, this allows 

each sweep to be completed on the order of milliseconds, which permits sub-second 

measurements of neurotransmitter release. These advances enabled the first chemically-

resolved, real-time measurements of electrically-evoked dopamine transients (Kuhr & 

Wightman, 1986; Stamford et al., 1986). 

Traditional electrochemists avoid rapid scan rates for a good reason; non-faradaic 

current arising from charging of the double layer scales proportionally with scan rate, and easily 

dwarfs out the analytical signal. As a result, rapid voltage sweeps in the brain do not produce 

cyclic voltammograms (CVs) that resemble any particular analyte (Figure 1.1a). However, if this  
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Figure 1.1. Background subtraction with fast-scan cyclic voltammetry. a) Rapid potential 
sweeps (400 V/s) in brain tissue produce large background currents (black dotted line) that 
result from charging of the double layer and redox of electroactive groups on the electrode 
surface and in the surrounding environment. Superimposition of CVs for analytes of interest 
(dopamine, blue, and pH changes, orange) does not appreciably alter the background current. 
However, if the background current is relatively stable over the recording window, it can be 
digitally subtracted from experimentally relevant CVs to produce analyte-specific CVs for 
dopamine (b) and pH changes (c).   
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background signal is relatively stable over the course of the measurement window, background 

CVs preceding the ‘event’ of interest can be digitally subtracted out, with any remaining signal 

reflecting changes in the surrounding environment (e.g. release of neurotransmitters, pH 

changes) (Howell et al., 1986; Millar, et al., 1985) (Figure 1.1b-c). Unfortunately, this renders 

FSCV a differential technique that is unsuitable for measurements of ambient levels of 

neurochemicals in the brain. 

 

Carbon-based microelectrodes 

  A technique can be only as good as its tools. The development of in vivo 

electrochemistry was made possible by the simultaneous development of microelectrodes, 

which were so small compared to their macroelectrode predecessors that detailed 

characterization was necessary (Cheng et al., 1979). This characterization revealed that these 

miniature probes have a number of electrochemical advantages. First, their small dimensions 

enhance mass transfer to electrode surface via radial diffusion, which allows steady-state 

measurements at sufficiently slow scan rates (Wightman, 1981). Second, the low area, and thus 

capacitance, of these electrodes allows them to respond rapidly to changes in potential; scan 

rates up to 106 V/s have been used, with the fastest speeds ultimately determined by the 

bandwidth of instrumentation (Amatore et al., 1987; Wipf & Wightman, 1988).  Third, 

microelectrodes generate sufficiently small currents that any distortion that arises from ohmic 

drop is minimal, which enables measurements in resistive media (Howell & Wightman, 1984). 

Fourth, these small currents introduce minimal polarization of the reference electrode, which 

supports the use of two electrode designs (Fitch & Evans, 1986). Last, these small currents 

reduce concern with toxicity of electrogenerated products in vivo, particularly with the use of 

cyclic voltammetry  (Wightman, 1981).   

 While several different electrode materials have been used to construct microelectrodes, 

carbon in particular has a number of advantages (McCreery, 2008). Compared to metal  
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Figure 1.2. Diagram of carbon paste and carbon fiber microelectrodes. a) Schematic for a 
carbon paste microelectrode. Glass or Teflon capillaries are filled with graphite-Nujol-epoxy 
mixtures and allowed to harden. The outer diameter of the electrode is determined by the size of 
the sheath (typically 100-300 µm).  Figure was adapted from (Nagy et al., 1982). b) Schematic 
for a carbon –fiber microelectrode. The sensing element of the electrode (the carbon fiber) is 
much smaller in diameter than carbon paste electrodes. The taper in the insulating glass 
capillary allows its diameter to remain small above the electrode surface, which minimizes 
tissue damage. Electrical contact is established here through resin and carbon powder, which 
has largely been replaced with the use of conductive silver paint or electrolyte solution for 
modern experiments. Figure was adapted from (Ponchon et al., 1979).  
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substrates, such as gold, carbon has a wider potential window and exhibits less biofouling, 

though it displays slower electron-transfer (ET) kinetics (Zachek et al., 2008). Carbon 

microelectrodes are also inexpensive and easy to fabricate, and are amenable to a wide 

number of surface modifications for tunable electrochemistry. The first types of microelectrodes 

used in vivo were constructed with carbon paste and were 100 to 300 µm in diameter (Figure 

1.2a) (Cheng, et al., 1979; Conti et al., 1978; Kissinger, et al., 1973). While these probes were 

much smaller than standard macroelectrodes, they did not provide advantages over 

microdialysis in either spatial resolution or avoidance of tissue damage. An attractive alternative 

emerged with the development of carbon-fiber microelectrodes (CFMs) (Figure 1.2b) 

(Armstrong-James & Millar, 1979; Gonon et al., 1978). These probes vary from 5 to 15 μm in 

diameter, and are therefore capable of making highly localized measurements in the brain. For 

example, spacing between dopamine terminals in the striatum has been estimated to be around 

~1 μm (Wightman, 1981), which allows these sensors to sample heterogeneity in this brain 

region (Wightman et al., 2007; Wightman et al., 1988). Moreover, it has shown that acute 

implantation of these sensors does not significantly damage the surrounding tissue (Peters et 

al., 2004), especially compared to microdialysis probes (Jaquins-Gerstl & Michael, 2009). 

 

ANALYTICAL MERITS OF FAST-SCAN CYCLIC VOLTAMMETRY 

Sensitivity 

 An important aim for in vivo measurements is the ability to monitor physiologically 

relevant concentrations of neurotransmitters. Strategies for enhancing sensitivity for FSCV at 

CFMs generally fall into three camps: waveform modifications, electrode pre-treatment and 

electrode coatings. While the focus of this section will be on promoting sensitivity towards 

dopamine, the most commonly measured analyte with FSCV, many of the same principles in 

theory could be extended to similar neurochemicals.  
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Waveform Modification 

 The first waveforms used for in vivo FSCV had potential limits of ± 700-1000 mV and 

holding potentials of 0 V, with 1.5 cycles of each potential sweep carried out at 300 V/s 

(Armstrong-James, et al., 1980; Millar, et al., 1985). While this waveform was sufficient to detect 

dopamine concentrations approaching 10-6 M, prolonged electrical stimulation (10 s) was 

required to evoke measurable concentrations in vivo (Millar, et al., 1985). Therefore, 

improvements in sensitivity were essential to make measurements under more physiological 

conditions. 

Waveform modifications to enhance sensitivity towards dopamine rely on the fact that 

dopamine adsorbs to the electrode surface (Bath et al., 2000; Baur et al., 1988). Adsorption of 

dopamine appears to be necessary for both reliable detection (Bath et al., 2001; DuVall & 

McCreery, 1999) and fast ET kinetics (DuVall & McCreery, 2000). The amine side chain, which 

is protonated at physiological pH, appears to be critically important for adsorption (Baur, et al., 

1988; Michael & Justice, 1987). Consequently, holding at negative potentials between scans 

promotes electrostatic attraction of dopamine to the electrode surface. This introduces a 

dependency of sensitivity on the waveform application frequency, as higher repetition rates 

provide less time for dopamine to accumulate at the surface between measurements  (Bath, et 

al., 2000; Kile et al., 2012). While the use of a negative holding potential is a simple and widely 

used approach, it has limitations; holding potentials lower than -600 mV can result in unstable 

results (Heien et al., 2003), and negative holding potentials may promote the generation of 

hydrogen peroxide (Dengler et al., 2015), which could have deleterious effects in brain tissue.  

Modification of the anodic limit of the waveform, specifically its extension to more positive 

potentials, can also increase sensitivity towards dopamine (Hafizi et al., 1990; Heien, et al., 

2003; Rodeberg et al., 2016). This process generates surface oxide groups on the carbon 

surface (Roberts et al., 2010) that are critically important for adsorption of dopamine (Bath, et 

al., 2001). Furthermore, this process continually regenerates the electrode surface, which allows 
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enhanced sensitivity to be maintained over the course of measurements (Takmakov et al., 

2010b). Routine measurements using negative holding potentials and extended anodic limits at 

untreated CFMs have an in vivo limit of detection around 20 nM (Heien, et al., 2003; Rodeberg, 

et al., 2016). 

The current for adsorbing species, including dopamine, is directly proportional to the 

scan rate (Bard & Faulkner, 2001; Bath, et al., 2000). Therefore, increasing the scan rate is 

another viable tactic for increasing sensitivity. Scan rates in excess of 2,000 V/s have been 

used for measurements of dopamine, with a corresponding in vitro limit of detection around 1 

nM (Keithley et al., 2011). The use of large scan rates also amplifies non-faradaic current, as 

well as current arising from redox of surface moieties on the CFM surface. While these 

contributions can be removed digitally through background subtraction, sufficiently high scan 

rates can generate background currents that saturate the digital-to-analog converter. In these 

cases, analog background subtraction can be used to eliminate its contribution (Hermans et al., 

2008; Keithley, et al., 2011).  

 

Electrode pre-treatment 

 Pre-treatment of the electrode surface generally serves three goals:, increasing surface 

oxide content (Alsmeyer & McCreery, 1991), cleaning the electrode surface (Bath, et al., 2000), 

and/or enhancing the edge/basal plane ratio (Wightman et al., 1984), as edge planes have been 

demonstrated to be the most reactive sites for electron transfer on carbon surfaces (Banks et 

al., 2005). The first widespread approach for CFMs was electrochemical pre-treatment (ECP) 

(Feng et al., 1987; Gonon et al., 1981), which facilitates adsorption and ‘cracks’ the electrode 

surface, increasing the effective surface area for electron transfer (Kovach et al., 1986; Swain & 

Kuwana, 1991).  Though ECP enhances sensitivity, it has a limited lifespan in vivo and can 

induce temporal distortion during measurements (Feng, et al., 1987; Marcenac & Gonon, 1985). 

An alternative treatment to ECP is flame etching, which decreases the surface area of CFMs 
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while simultaneously increasing the sensitivity per unit area (Strand & Venton, 2008). In contrast 

to ECP, the temporal response at these electrodes appears faster compared to untreated 

carbon fibers. Flame-etched CFMs have an in vivo limit of detection around 10 nM, and are 

sufficient to detect dopamine release following single pulse electrical stimulation. However, it is 

unknown whether flame etching suffers from the same short lifespan in vivo as ECP. Another, 

more simple approach is soaking the CFM in isopropyl alcohol spiked with activated carbon 

(Bath, et al., 2000). This likely serves the dual purpose of cleaning the surface and facilitating 

the formation of surface oxides. This treatment increases sensitivity approximately four fold at 

cylindrical CFMs for measurements with a modest (+1.0 V) anodic limit. However, it is unclear 

whether these significant advantages hold with extended waveforms that naturally renew the 

electrode surface and generate oxygen-containing functional groups. 

 

Electrode coatings 

The development of electrode coatings for microelectrodes has often been tackled with 

the primary goal of enhancing electrode selectivity towards particular analytes (see Chemical 

Selectivity & Resolution section below). However, these coatings often provide the added 

benefit of enhanced sensitivity due to preconcentration of analytes at the electrode surface. The 

first common electrode coating for in vivo electrochemistry was the perfluorinated polymer 

Nafion (Gerhardt, et al., 1984; Kristensen et al., 1987). The negative charge within the Nafion 

structure promotes accumulation of cationic species, such as dopamine, resulting in a roughly 

two to five fold enhancement of sensitivity (Gerhardt, et al., 1984). However, this increase in 

sensitivity comes at the expense of temporal resolution, as Nafion coatings can cause 

noticeable distortion of the FSCV signal (Kristensen, et al., 1987). Nafion can be either dip-

coated or electrodeposited on the electrode surface, though the latter approach is preferred for 

carbon fibers due to reproducibility concerns with the former (Brazell et al., 1987).  
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Figure 1.3. Electrode modifications for FSCV measurements. a) Electrodeposition of composite 
Nafion:PEDOT coatings on CFMs results in smoother electrode surfaces, in addition to more 
sensitive and selective FSCV measurements towards dopamine. Figure adapted from (Vreeland 
et al., 2015). b) CNTs can be directly deposited on carbon-fiber disk electrodes (left panel) to 
enhance sensitivity. Enhanced magnification reveals nanotube structures on the electrode 
surface (right panel). Figure adapted from (Swamy & Venton, 2007a). c) CNT electrodes can be 
fabricated with wet-spinning procedures with different substrates (chlorosulfonic acid, CA, left; 
polyethylenimine, PEI, middle) or pulled from aligned CNT arrays (right) to produces electrodes 
with different microscopic and electrochemical properties. Figure adapted from (Yang et al., 
2017).  
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A recently developed coating uses the conductive polymer polyethylenedioxythiophene 

(PEDOT) as a component in stable electrode films (Figure 1.3a) (Vreeland, et al., 2015) (The 

positive charge of PEDOT acts with Nafion as a counterion for stable deposition of films on CFM 

surfaces via (slow-scan) cyclic voltammetry, obviating the concern of irreproducibility with 

regular Nafion coatings. The chemistry of this polymer pairingwas found to be tunable; low 

density PEDOT:Nafion (i.e. low [PEDOT]) doubled sensitivity towards dopamine,  while high 

density coatings quadrupled sensitivity at the expense of temporal resolution. Both preparations 

resulted in limits of detection around 5 nM. PEDOT has also been combined with graphene 

oxide (GO) in lieu of Nafion for FSCV measurements (Taylor et al., 2017). Electrodeposition of 

PEDOT:GO for 50 s was sufficient for a 10-fold enhancement of sensitivity. Unfortunately, 

PEDOT:GO is vulnerable to overoxidation, so this film is only compatible with waveforms 

without extended anodic limits.  

 Carbon nanotubes (CNT) have also been used to modify CFMs for more sensitive 

measurements (Jacobs et al., 2010; Swamy & Venton, 2007a; Xiao & Venton, 2012) (Figure 

1.3b). Electrode modifications with CNTs differ in a few distinct ways from other coatings. First, 

CNT-modified CFMs do not appear to suffer from the same temporal distortion as polymer-

coated electrodes (Xiao & Venton, 2012), which allows more sensitive measurements to be 

made more rapidly. Second, CNT deposition can enhance ET kinetics towards dopamine and 

other analytes (Jacobs, et al., 2010).  Third, CNT modification tends to increase redox current 

for all measured species, rather than solely cationic species (Xiao & Venton, 2012). This 

renders CNT-CFMs less selective than other coated electrodes. Similar to other electrode 

modifications, reproducibility of fabrication can be an issue (Swamy & Venton, 2007a), though 

improvements have been made via self-assembly (Xiao & Venton, 2012). An alternative use of 

CNTs is its direct use as the electrode substrate (Figure 1.3c). CNT electrodes display the same 

advantages as CNT-modified CFMs and have limits of detection approaching 10 nM (Jacobs et 

al., 2014; Schmidt et al., 2013; Yang et al., 2016). Furthermore, CNT yarn electrodes can be 
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combined with other  electrode pretreatments to augment results (Yang, et al., 2016) and 

engineered using different substrates to produce different electrochemical characteristics (Yang, 

et al., 2017). 

 

 

Temporal resolution 

In addition to the requirement for adequate sensitivity, a reliable technique for monitoring 

neurotransmission in vivo must have sufficient temporal resolution to resolve rapid 

neurotransmitter release events. Due to the small area, and thus capacitance, of CFMs, FSCV 

is capable of voltage sweeps at high scan rates (>100 V/s), which enables subsecond 

measurements (Wightman, 1981). The main determinant of the temporal resolution is the 

application frequency of the voltammetric waveform. To allow the diffusion layer to settle 

between measurements, a holding time of ten times the length of the voltage sweep is 

suggested (Howell, et al., 1986; Kawagoe et al., 1993). For standard in vivo measurements with 

scans between -0.4 V and +1.3 V at 400 V/s, this amounts to ~85 ms between scans, which 

results in a desirable application frequency of ~10 Hz. While measurements at higher sampling 

frequencies are possible at bare CFMs, they have reduced sensitivity towards dopamine, likely 

due to less time for adsorption between scans  (Kile, et al., 2012). Curiously, this effect is not 

seen at CNT yarn electrodes, which has been attributed to slower desorption kinetics for the 

oxidized form of dopamine, dopamine-ortho-quinone (DOQ) (Jacobs, et al., 2014). This enables 

measurements at up to 500 Hz without significant loss of sensitivity. 

Adsorption and desorption kinetics also affect the temporal response of CFMs. 

Voltammetric measurements exhibit slower responses to dopamine boluses than constant 

potential amperometry (Venton et al., 2002) and respond more quickly to freely diffusing species 

(e.g. AA) than predominately adsorbing species (e.g. dopamine) (Bath, et al., 2000). 

Correspondingly, electrode treatments that facilitate adsorption (and thus sensitivity) tend to 
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come at the expense of temporal resolution. In particular, extended anodic limits dramatically 

increase adsorption of dopamine to the CFM surface while blunting the temporal response 

(Heien, et al., 2003), which can impact interpretation of data collected in freely-moving animals 

with narrowly-spaced stimuli (Rodeberg, et al., 2016). It has been demonstrated that these 

effects can be removed via deconvolution (Venton, et al., 2002). However, care must be taken 

to delineate the effects of adsorption on the signal to separate it from other effects that could 

alter signal duration, including proximity to dopamine terminals (Venton et al., 2003b), long-term 

implantation (Clark et al., 2010), and overfiltering (Atcherley et al., 2013). 

 

Chemical selectivity & resolution 

In the words of Ralph Adams, ‘no amount of instrumental cajoling can provide 

discrimination between competing oxidation reactions at the electrode surface’ (Adams, 1990). 

Indeed, a major limitation of electrochemistry is its relatively poor resolving power. Early 

measurements with in vivo electrochemistry were plagued with uncertainty of signal identity; 

particularly, dopamine was difficult to resolve from other easily oxidizable species present in 

brain tissue (Adams, 1976; Kovach et al., 1984). This ambiguity often led to discrepancies 

between research reports, including contrasting results during amphetamine (Wightman, 1981) 

and cocaine administration (Garris & Wightman, 1995; Gratton & Wise, 1994). Two of the 

principal interfering species in vivo, AA and dopamine metabolite dihydroxyphenylacetic acid 

(DOPAC) are anionic at physiological pH. Therefore, the first step to enhance selectivity was the 

use of anion-excluding polymers (Gerhardt, et al., 1984; Kristensen, et al., 1987). Coating 

electrodes with Nafion results in the signal from AA and DOPAC contributing <1% of the signal 

from equivalent concentrations of dopamine (Gerhardt, et al., 1984). 

The use of FSCV provides an additional level of selectivity over slow-scan techniques, 

as molecules can be separated by their ET kinetics in addition to their half-wave potentials. For 

example, ascorbic acid has more sluggish ET kinetics at CFMs than dopamine, leading to its 



15 
 

oxidation wave occurring at more positive potentials (Baur, et al., 1988). The use of electrode 

coatings with FSCV further enhances selectivity  (Baur, et al., 1988; Kristensen, et al., 1987), 

which is particularly important for measurements of serotonin, which competes with substantial 

interference from its metabolite 5-hydroxyindoleacetic acid (5-HIAA) (Dankoski & Wightman, 

2013; Jackson et al., 1995). Recent improvements to electrode coatings include PEDOT:Nafion 

composite films that measure over 1500-fold higher current for dopamine over AA, an order of 

magnitude enhancement over dip-coated Nafion (Vreeland, et al., 2015).  

The main interference in typical in vivo measurements of dopamine arises from pH 

changes, which occur in the brain as an effect of metabolism and blood flow during cellular 

activity (Venton, et al., 2003b). pH changes in the environment surrounding CFMs can alter 

redox of pH-sensitive surface functionalities, such as quinone groups, and modify the 

background current; therefore, as a consequence of background subtraction, pH changes 

produce distinctive CVs (Dengler, et al., 2015; Takmakov et al., 2010a). These CVs can overlap 

with dopamine CVs; therefore, the use of univariate analysis (i.e. direct conversion of current at 

the peak oxidation potential of dopamine to concentration)  can allow pH changes to interfere 

with reliable assignment of faradaic current (Jones et al., 1994). One approach to minimize this 

effect is to alter the surface of the electrode to reduce sensitivity to pH (Runnels et al., 1999). 

Another approach is to use the current arising from pH changes at potentials with minimal 

dopamine contribution (e.g. ~+0.2 V on the anodic scan) to extrapolate the pH contribution at 

the peak potential for dopamine (~+0.6 V) (Cheer et al., 2004). In this way, the contribution from 

pH can be manually subtracted out to reduce interference. 

A more rigorous practice is the use the multivariate calibration techniques, such as 

principal component regression (PCR), to analyze data with overlapping currents from multiple 

analytes (Figure 1.4) (Heien et al., 2004; Heien et al., 2005). With this technique, the calibration 

model is built using a collection of CVs, termed a ‘training set’, that represents individual 

neurochemicals (e.g. dopamine and pH CVs). PCR separates experimental current into  
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Figure 1.4. Principal component regression to remove influence of pH from dopamine 
concentration predictions. Electrical stimulation of the ventral tegmental area evoked both 
dopamine release and pH changes in the nucleus accumbens. Raw voltammetric data is 
depicted with a color plot (applied potential along the y-axis, time along the x-axis, and current 
amplitude plotted in false color). Because CVs for dopamine and basic pH changes overlap, 
simple concentration prediction using the current at the peak oxidation potential for dopamine 
predicted a ~50 nM decrease in dopamine levels below baseline following the electrically-
evoked release event. However, the use of principal component regression with a model that 
included both dopamine and pH changes predicted dopamine levels returned to baseline shortly 
after stimulation.   
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contributions from each species contained in the training set. The applicability of the model can 

be tested through residual analysis in which current uncaptured by the model (‘residual’) is 

compared to a tolerance level specific to each training set, which is based on estimations of 

noise levels (Keithley et al., 2009). Failure of residual analysis indicates that the model is 

insufficient for calibration, and the corresponding data is discarded. While PCR cannot provide 

chemical identification (i.e. it does not alter selectivity at the electrode surface), its ability to 

monitor multiple analytes, as well as its ability to statistically validate the reliability of the model, 

gives it a substantial advantage over univariate techniques.  

 

Waveform modifications 

Modifications to the voltammetric waveform can also alter selectivity between different 

species at bare CFMs. Indeed, waveform customization has long been used to expand the 

chemical toolbox of FSCV.  The first notable instance of this was the development of a 

waveform for monitoring O2 changes in vivo, which sweeps to a negative potential (-1.4 V)  

to reduce oxygen to hydrogen peroxide (Zimmerman & Wightman, 1991). The concurrent use of 

positive anodic limits (+0.8 V) also permits detection of catecholamines, and simultaneous 

measurements of norepinephrine, O2 , and pH changes have been conducted in vivo (Bucher et 

al., 2014).  

Waveforms have been adapted to detect other non-traditional analytes with FSCV. One 

example is adenosine, which exhibits redox properties at high overpotentials (>1.2 V vs. 

Ag/AgCl) (Swamy & Venton, 2007b). Because these potentials approach the limit of the 

potential window in vivo, redox peaks for adenosine typically occur near the switching potential, 

where there are significant contributions from non-faradaic currents, in addition to faradaic 

currents from other analytes. As a result, specificity is a major issue for these measurements. 

Venton and coworkers have demonstrated that a brief holding time (1 ms) at the switching 

potential can result in moderate differences in current-potential relationships between 
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adenosine, adenosine triphosphate (ATP), and hydrogen peroxide (Ross & Venton, 2014). With 

PCR, these dissimilarities were sufficient to allow the three analytes to be resolved, though 

some misassigned current persisted in vitro.   

Another target molecule that requires waveform modification for detection is met-

enkephalin (M-ENK), a peptide involved in the endogenous opioid system in the brain (Schmidt 

et al., 2014). The electrochemical properties of M-ENK primarily arise from its electroactive 

amino acid residues, tyrosine and methionine. Measurements with a standard voltammetric 

waveform, sweeping between -0.4 V and +1.4 V, are inadequate to monitor M-ENK reliably, as 

there is significant contribution from other species (e.g. dopamine) and M-ENK tends to foul the 

electrode surface over successive measurements. Sombers and colleagues addressed these 

problems in two distinct ways. First, a lower scan rate (100 V/s) was used from -0.2 V to +0.6 V 

in regions to reduce sensitivity towards dopamine and AA. Second, a holding time (3 ms) at the 

switching potential (+1.2 V) was used to weaken adsorption of M-ENK products to the electrode 

surface, thereby reducing subsequent biofouling. While these measurements of M-ENK appear 

to have sufficient chemical resolution from dopamine and AA, a systematic comparison of M-

ENK signals to other analytes that contribute near +1.2 V (e.g. adenosine, ATP, hydrogen 

peroxide) has yet to be attempted. Moreover, other tyrosine-containing peptides have peaks 

similar to M-ENK, which could make separation of different peptides a difficult task (Schmidt, et 

al., 2014). 

 

Additional criteria for chemical specificity  

Ultimately, some species cannot be efficiently resolved with FSCV, even with the use of 

PCR. For example, dopamine and norepinephrine have nearly identical CVs when employing 

traditional voltammetric waveforms (Heien, et al., 2003). Therefore, careful practice of FSCV 

requires the use of additional identification criteria in vivo (Millar, et al., 1985; Phillips & 

Wightman, 2003). The two most common approaches are pharmacological and anatomical 
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verification. First, pharmacological manipulation with analyte-specific drugs can confirm signal 

identity. In particular, routine norepinephrine measurements utilize both dopamine- and 

norepinephrine-specific drugs to ensure the measurements do not arise from mixed 

catecholamine signals (Fox et al., 2017; Park et al., 2011). Second, different brain regions 

express different neurotransmitter content and release (Fox & Wightman, 2017; Nicola & 

Malenka, 1998); therefore, anatomical specificity can be provided when measurements are 

made in regions where one neurotransmitter dominates (Park et al., 2010; Park et al., 2013).   

 

Accuracy  

 Phasic dopamine signals measured with FSCV have been shown to be dependent on 

burst firing of dopaminergic neurons (Sombers et al., 2009). During impulse-dependent release, 

more than 90% of dopamine spills out of the synapse within <100 µs (Garris et al., 1994). 

Correspondingly, measurements in the extracellular space depend on a balance of dopamine 

release, diffusion, and uptake, rather than directly representing synaptic concentrations (which 

are three to six orders of magnitude higher) (Cragg & Rice, 2004; Garris, et al., 1994). However, 

these signals have functional relevance, as a significant population of dopamine receptors and 

transporters is found outside of the synaptic cleft, supporting the role of dopamine as a ‘volume 

neurotransmitter’ (Caille et al., 1996; Levey et al., 1993; Sesack et al., 1994). Therefore, the 

chemoanalytical power of FSCV to transduce neurochemical measurements into analyte 

concentrations is valuable, and the determination of accurate concentrations with FSCV is an 

important experimental aim. 

 The accuracy of determined concentrations depends primarily on two factors: 1) the 

ability of PCR to extract analyte current reliably from complex data and 2) the suitability of the 

external calibration factor that relates the measured current to concentrations.  
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Accuracy of PCR signal extraction 

 Before concentrations of neurotransmitter can be reliably estimated, its faradaic current 

must be separating from other interferents in the signal (e.g. pH, noise). The standard means of 

achieving this is through the use of PCR (Heien, et al., 2005; Rodeberg et al., 2017). PCR 

requires accurate knowledge of the CV characteristics for each analyte in the training set. 

Therefore, ‘pure’ analyte CVs are typically collected post-experiment with electrical stimulation, 

a process known to evoke both neurotransmitter release and pH changes. (Fox, et al., 2017; 

Heien, et al., 2005; Venton et al., 2003a). Moreover, the use of CVs from the same recording 

environment (i.e. same electrode, brain environment, and equipment) allows reasonable 

estimations of noise levels for the recording session, which is an important parameter for model 

validation (Johnson et al., 2016; Keithley, et al., 2009). 

However, there are a few limitations to the use of PCR. Training sets may vary between 

experimenters and labs, as the selection of CV standards for the training set involves a degree 

of subjectivity (Keithley et al., 2010). Additionally, the use of ‘unrepresentative’ CVs in the 

training set can impede model performance. The development of chronically-implanted 

microelectrodes, with the aim of longitudinal measurements over weeks to months of recording, 

has required modifications to PCR use due to experimental limitations (Clark, et al., 2010; 

Rodeberg, et al., 2017). Post-experiment electrical stimulation is not typically feasible at these 

electrodes, due to both concerns with long-term functionality of the stimulating electrode and the 

potential impact of electrical stimulation on sustained behavior (Rodeberg, et al., 2017). The 

most widely used solution is to build ‘standard’ training sets at separate electrodes to analyze all 

subsequent data. However, the application of these types of training sets appears to 

systematically underestimate concentrations, which suggests that signal extraction (and thus 

concentration estimation) is impaired with these models (Johnson, et al., 2016; Keithley & 

Wightman, 2011; Rodeberg et al., 2015). Current investigations are underway to improve 

multivariate calibration and address these concerns. 
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Accuracy of external calibration factors 

 After analyte concentrations are extracted, they are converted to concentrations using a 

calibration factor obtained in vitro (i.e. a flow cell); therefore, the accuracy of FSCV 

measurements is also tied to the similarity of in vivo and in vitro conditions. In comparison to 

constant-potential amperometry, the diffusion layer of FSCV measurements is very small (~3 

µm) due to its rapid scan rates. As a result, measurements in flow cell are flow-rate 

independent, which permits in vitro measurements to be representative of efflux in vivo 

(Kawagoe, et al., 1993; Venton, et al., 2002). 

Nonetheless, there are other issues with estimation of calibration factors. CFMs have 

been demonstrated to lose sensitivity after implantation into brain tissue (Logman et al., 2000). 

Consequently, postcalibration (i.e. generation of calibration curves following implantation) is 

standard for in vivo measurements. Ideally, this calibration is done for each individual CFM to 

capture variability between different electrodes. However, in some cases the CFM is 

deliberately destroyed with a high electrolytic current to create lesions for precise marking of the 

recording location (Bucher, et al., 2014; Fox, et al., 2017). In these cases, an average 

postcalibration factor obtained from several electrodes is used, with the assumption that it is 

representative of all in vivo measurements. While this undoubtedly adds imprecision in 

comparisons between different electrodes, it is unlikely to affect interpretation of measurements 

made within single recording sessions, as previous work has suggested that the majority of this 

sensitivity loss occurs immediately upon insertion into tissue (Capella et al., 1990; Ewing, et al., 

1981; Michael et al., 1987) with no significant differences in sensitivity seen between 

subsequent implant durations (Clark, et al., 2010; Rodeberg, et al., 2016; Singh et al., 2011). 

Notably, electrode coatings measurements have been suggested to prevent this loss of 

sensitivity in vivo (Cahill et al., 1996; Singh, et al., 2011; Vreeland, et al., 2015). In either case, 

postcalibration sensitivity also depends on treatment of the electrode post-removal from the 

brain (e.g. cleaning and rinsing) (Cahill, et al., 1996). Removal of adhered material enhances 
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sensitivity, but likely makes these measurements less representative of the tissue environment 

in which measurements were made. 

Fouling of the electrode surface is not the only factor that can alter sensitivity at CFMs. 

Application of voltammetric waveforms, particularly ones with high anodic limits, has been 

shown to generate surface oxide groups that augment sensitivity towards dopamine and other 

species (Hafizi, et al., 1990; Heien, et al., 2003; Roberts, et al., 2010). Common practice is to 

therefore ‘cycle’ waveforms at high repetition frequencies to hasten the conditioning of the 

electrode surface to promote CFM stability over the course of subsequent measurements.  

Long-term stability of the CFM sensitivity is of particular concern for chronically-implanted 

CFMs, which are used for weeks to months of recordings (Clark, et al., 2010; Rodeberg, et al., 

2017). Extended anodic limits have been shown to regenerate the CFM surface (Takmakov, et 

al., 2010b). While this process should maintain sensitivity by replacing damaged surface 

functional groups, this process is concomitant with loss of carbon from the surface. Therefore, 

surface area is deteriorated over prolonged use; for the standard in vivo dopamine waveform (-

0.4 V to +1.3 V), the carbon fiber completely disappears after approximately 1.4 x 107 scans 

(Takmakov, et al., 2010b). Assuming one hour of cycling (60 Hz) before measurements and 90 

min of recording (10 Hz) for each CFM measurement, this means approximately 52 sessions 

can be carried out before complete CFM degradation. While standard measurements with 

chronic CFMs seldom approach this limit, it is probable that a gradient of sensitivity loss exists 

as the CFM is etched away. Therefore, methods to track sensitivity over time at a CFM in vivo 

would be extremely valuable. The two contemporary methods that attempt to address this 

concern involve tracking the magnitude of the background current, which is also proportional the 

surface area of the CFM (Roberts et al., 2013), and using a proven stimulus (e.g. unexpected 

food reward) to evoke dopamine release and track its magnitude over time, which rests on the 

assumption that this reward-evoked release remains relatively stable (Clark et al., 2013; 
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Rodeberg, et al., 2017). Future studies using more rigorously controlled stimuli (i.e. optogenetic 

stimulation) could test the stability of CFMs over prolonged use more meticulously. 

 

CONCLUSIONS & FUTURE DIRECTIONS 

 Fast-scan cyclic voltammetry is an attractive tool for the real-time monitoring of 

neurochemicals in vivo. It has been demonstrated to have sufficient sensitivity and temporal 

resolution to track rapid signaling events on a timescale relevant to behavior. Moreover, the 

technique is flexible, due to the ease of CFM modification and the ability to customize 

voltammetric waveforms for enhanced sensitivity and/or selectivity. Nonetheless, the resolving 

power and accuracy of this technique are areas for continued improvement.  

 A few current and future innovations may increase the widespread use of FSCV. The 

introduction of chronically implanted CFMs has allowed measurements of dopamine over 

previously unattainable timescales during behavioral and disease-based models (Clark, et al., 

2013; Clark, et al., 2010; Covey et al., 2016). Multimodal measurements that combine FSCV 

with iontophoresis and electrophysiology recordings at the same CFM have permitted 

unprecedented insights into dopamine signaling (Belle et al., 2013; Kirkpatrick et al., 2016; 

Owesson-White et al., 2016). Lastly, past and current development of carbon-based arrays 

permits multiplexed FSCV recordings collection from several sites in vivo, which could cultivate 

unique knowledge regarding signaling and pharmacological heterogeneity in single brain 

structures (Parent et al., 2017; Schwerdt et al., 2017; Zachek et al., 2010). These advances will 

lead to increasingly versatile use of FSCV in future research.  
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CHAPTER 2: DOPAMINE DYNAMICS DURING CONTINUOUS INTRACRANIAL SELF-

STIMULATION: EFFECT OF WAVEFORM ON FSCV DATA1 
 

INTRODUCTION 

 Intracranial self-stimulation (ICSS), in which animals are trained to respond for electrical 

stimulation of the brain, is a central paradigm for investigating brain reward pathways that are 

activated by drugs of abuse and natural reward-seeking behavior (Carlezon & Chartoff, 2007; 

Fulton et al., 2000; Olds & Milner, 1954). The neurotransmitter dopamine has long been 

associated with this task in anatomical (Fibiger et al., 1987; Phillips & Fibiger, 1978) and 

pharmacological (Carlezon & Chartoff, 2007; Wise, 1996) studies. For instance, drugs that 

target the dopaminergic system, such as amphetamine, cocaine, and other dopamine receptor-

specific ligands, alter ICSS behavior even in well-trained animals (Carlezon & Chartoff, 2007; 

Steinberg et al., 2014; Wise, 1996). Furthermore, regions that promote the strongest ICSS 

responding when stimulated contain dopaminergic neurons (Corbett & Wise, 1980). However, 

the role of direct activation of these neurons has been controversial (Gallistel et al., 1981). 

Paired-pulse collision studies of the medial forebrain bundle (MFB) have implicated large, 

myelinated descending fibers to the ventral tegmental area (VTA) as the principal neuronal 

population activated with typical electrical stimulation parameters, while suggesting that direct 

activation of small, unmyelinated dopamine neurons makes only a minor contribution (Bielajew 

& Shizgal, 1986; Yeomans et al., 1988). Instead, separate neurons are thought to activate 

dopamine cells trans-synaptically during ICSS through the release of excitatory 

                                                           
1 This chapter previously appeared as an article in ACS Chemical Neuroscience. The original 
citation is as follows: Rodeberg, N.T., Johnson, J.A., Bucher, E.S., & Wightman, R.M. 
“Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on 
Fast-Scan Cyclic Voltammetry Data,” ACS Chemical Neuroscience 7, no. 11 (2016): 1508. 
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neurotransmitters, such as acetylcholine (Yeomans & Baptista, 1997) and glutamate (Sombers 

et al., 2009). Nevertheless, selective activation of dopaminergic neurons using optogenetics is 

sufficient to drive self-stimulation behavior (Berrios et al., 2016; Steinberg, et al., 2014; Witten et 

al., 2011). 

Direct measurements of dopamine release during ICSS were first made using 

microdialysis, which monitors gradual changes in tonic extracellular dopamine levels. This 

technique typically displays increased dopamine concentrations during ICSS followed by a 

decline to basal levels following trial termination (Fiorino et al., 1993; Hernandez et al., 2006; 

You et al., 2001). The development of fast-scan cyclic voltammetry (FSCV) permitted the 

measurement of dopamine dynamics on a time scale relevant to behavioral responding (i.e. 

phasic dopamine release) (Garris et al., 1999; Kilpatrick et al., 2000; Owesson-White et al., 

2008). In contrast to microdialysis measurements, FSCV measurements in the nucleus 

accumbens (NAc) have revealed a progressive decline in electrically-evoked release during 

continuous ICSS, with no detectable dopamine release present in later periods of ICSS 

behavior despite long timeouts between behavioral sessions (Garris, et al., 1999). This led to 

the conclusion that phasic dopamine release was not necessary for the maintenance of ICSS 

behavior, an unexpected finding given previous pharmacological evidence. 

 However, it remains unclear whether phasic dopamine release was fully abolished or 

rather fell to undetectable levels. Advances in the field of FSCV have improved the technique’s 

limit of detection (LOD). In the original study, dopamine concentrations were evaluated using 

univariate analysis, which did not account for contributions from pH or noise present in the 

experimental CV. Since then, multivariate calibration has become standard for analyzing 

voltammetric data collected in awake animals (Heien et al., 2004; Heien et al., 2005; Kishida et 

al., 2016; Yorgason et al., 2011). One such technique, principal component regression (PCR), 

has been extensively characterized and validated for FSCV (Heien, et al., 2004; Heien, et al., 

2005; Keithley et al., 2010; Keithley et al., 2009) and is able to separate and quantitate multiple 
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electroactive species of interest whilst diminishing noise contributions, allowing for more 

effective isolation of the dopamine signal (Keithley, et al., 2010). 

The original measurements made with carbon-fiber microelectrodes used a voltammetric 

waveform with an anodic limit of +1.0 V. Subsequent studies have shown that the use of a 

higher anodic limit promotes the generation of surface oxides that facilitate the adsorption of 

dopamine, enhancing sensitivity (Heien et al., 2003; Takmakov et al., 2010). Additionally, 

extended anodic limits also provide active and continuous regeneration of the carbon-fiber 

surface (Takmakov, et al., 2010), which permits the maintenance of high sensitivity throughout 

the measurement period. When PCR and extended waveforms are combined, the consequent 

decrease in the LOD may allow the monitoring of smaller dopamine transients previously 

unobservable with the use of the +1.0 V waveform and univariate analyses. 

 In this study, dopamine fluctuations during continuous ICSS were re-evaluated using 

three voltammetric waveforms commonly employed in vivo (anodic limits of +1.0 V, +1.3 V, and 

+1.4 V vs. Ag/AgCl) and PCR. This approach reveals that phasic dopamine release is not 

abolished during ICSS, but rather decays to smaller, steady-state levels previously undetectable 

with less sensitive methods. However, higher anodic limits result in diminished temporal 

resolution that precludes the ability to separate individual transients during rapid responding, 

and subsequently, the delineation of how dopamine release changes during this task. 

Therefore, the waveform utilized considerably impacts the amplitude and time course of 

voltammetric data collected in freely-moving animals.  Failure to recognize these differences 

could lead to a misinterpretation of the role of dopamine in this reward-based behavior.   

 

EXPERIMENTAL 

Animals  

Male Sprague-Dawley rats (250-450 g) from Charles River (Wilmington, MA, USA) were 

housed individually on a 12/12 h light/dark cycle. Rats were given access to water and foods 
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chow ad libitum. Animal procedures were approved by the UNC-Chapel Hill Institutional Animal 

Care and Use Committee (IACUC). 

 

Surgery 

Animals were anesthetized using isoflurane (1.5-4%). Guide cannulas for the working 

electrode (Bioanalytical Systems, West Lafayette, IN) were implanted above the NAc shell using 

stereotaxic coordinates (AP +1.7 mm, ML +0.8 mm, DV 2.5 mm). A separate guide cannula was 

implanted in the contralateral hemisphere to allow experiment-day lowering of a fresh Ag/AgCl 

reference electrode. A bipolar stimulating electrode (Plastics One, Roanoke, VA) was positioned 

above the ipsilateral VTA (AP -5.2 mm, ML +1.0 mm, DV -8.4-8.8 mm ventral from skull 

surface). Stainless steel screws and dental cement were used to secure the cannulas and 

stimulating electrode to the skull surface. Animals were given a minimum of three days of post-

surgery recovery before behavioral training. 

For biofouling experiments, surgical preparation differed slightly. Animals were 

anesthetized with urethane, and no stimulating electrode or guide cannulas were used. Fresh 

carbon-fiber and Ag/AgCl electrodes were used for implantation.   

 

Behavior 

Rats were trained in intracranial self-stimulation following protocol described previously 

(Garris, et al., 1999). Rats were placed in plexiglass operant chambers (Med Associates Inc., 

St. Albans, VT. USA) and connected to head-mounted voltammetric amplifier attached to a 

commutator (Crist Instrument Co., Hagerstown, MD, USA) that permitted movement within the 

behavioral chamber. Stimulation current was applied through a optically isolated current source 

(NeuroLog NL-800, Medical Systems, Greenvale, NY, USA) and adjusted to the maximal 

current that did not evoke strong motor responses that would prevent reliable behavior (24 

biphasic pulses, 60 Hz, 2 ms pulses, 75-175 μA). Following current adjustment, the behavioral 
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session was initiated with the onset of white noise, cue light illumination, and lever extension 

into the chamber. All behavioral events were controlled with a MedAssociates system. Rats 

were primed with electrical stimulation as they approached the lever until they learned to 

respond (lever press; fixed-ratio 1, FR1) for self-administered electrical stimulation. Care was 

taken to minimize the number of non-contingent stimulations, and non-contingent stimulation 

was not administered during training once rats had acquired ICSS (i.e. spend entirety of training 

session responding for ICSS). Rats were trained for a minimum of two sessions per day for a 

minimum of three days (maximum of five). Occasionally, rats were trained for a third session 

during the first two days of training. The lever was retracted for 30 min between behavioral 

sessions. All rats used for voltammetric recordings acquired and maintained ICSS (i.e. pressed 

for the entire duration of lever presentation) for the final two testing days without need for non-

contingent stimulations.  

 

FSCV  

Glass-sealed carbon-fiber microelectrodes (90-110 μm in length) were lowered into the 

nucleus accumbens through micromanipulators placed in the implanted guide cannula. On 

experiment day, freshly coated Ag/AgCl reference electrodes were implanted into the 

contralateral hemisphere. Electrodes were cycled (approximately 15 min at 60 Hz, 15 min at 10 

Hz) before electrochemical measurements to minimize the contribution of electrode drift to the 

signal. All waveforms employed the same scan rate (400 V/s) and holding potential (-0.4 V), 

while anodic limits varied (+1.0, +1.3, and +1.4 V). Dopamine release was monitored for a 

minimum of fifty electrical stimulations per ICSS session in all animals. The session duration 

required to meet this criteria varied, depending on press rate (mean: 167 seconds, range from 

89 to 318 seconds). 

 For FSCV recordings in anesthetized animals (n = 8), stimulated release events (300 

μA, 24 pulses) were measured in the NAc. For within-subject comparisons, stimulated release 
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was measured with all three waveforms (+1.0, +1.3, and +1.4 V; n = 6 stimulations per 

waveform) in a sequential manner. The electrode was cycled (15 min at 60 Hz, 15 min at 10 Hz) 

each time a new waveform was employed. 

Data was collected using HDCV programming (UNC-Chapel Hill, NC, USA) (Bucher et 

al., 2013) built in LabView (National Instruments, Austin, TX, USA). Voltammetric current was 

transduced through locally constructed UEI potentiostat instrumentation (UNC Electronics 

Facility). Data was digitally filtered (4th order low pass Bessel, 2 KHz cutoff).  

 

Data analysis  

Dopamine concentrations were predicted using principal component regression (PCR) 

using residual analysis following previously established protocol and software (Bucher, et al., 

2013; Heien, et al., 2004; Keithley, et al., 2009). Training sets were built using dopamine and pH 

standards recorded in vivo post-experiment from the same electrode and recording location as 

the collected data (Rodeberg et al., 2015). Dopamine transients for which Qt exceeded Qα at 

[DA]max were excluded from data analysis. Individual release events were analyzed by aligning 

the voltammetric background to the time of stimulation (preceding the stimulation by 0-2 s) for 

each individual event, minimizing the interference from electrode drift or additive pH changes 

from successive stimulation that would exceed the training set range. In a few longer behavioral 

trials, the number of transients of analyzed was limited to the first 70 electrical stimulations to 

keep data set sizes comparable. 

To ensure measurement of low concentration dopamine transients was reliable, a limit of 

detection (LOD) was calculated for each separate electrode. Data were collected at the same 

recording site as ICSS measurements, but without electrical stimulation, to estimate noise 

levels. The LOD was established as 3*RMS in the chemometrized dopamine signal. 
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Statistical analysis 

Results are presented as mean ± SEM. Statistical tests were performed in GraphPad 

Software, with results considered significant if p < 0.05. One-way ANOVAs were used for 

comparisons between the three different waveforms. Repeated measures one-way ANOVAs 

were used when the outcomes were quantitative, independent variables were nominal, and 

multiple observations were made with each unit. Two-way repeated measures ANOVAs were 

conducted to test the effect of two independent variables on a single dependent variable. If 

significant differences were found for any ANOVA test, Tukey’s multiple comparisons post hoc 

test was used to make pairwise comparisons. A two-tailed t-test was used to compare the 

average concentrations between the two ICSS sessions.  

 

Flow Cell analysis 

External calibration factors were determined using flow injection analysis. All dopamine 

solutions were prepared in TRIS buffer (3.25 mM KCl, 1.2 mM CaCl2●2H2O, 1.2 mM 

MgCl2●6H2O, 2.0 mM Na2SO4, 1.25 mM NaH2PO4●H2O, 140 mM NaCl, 15 mM Trizma HCl) 

adjusted to pH 7.4 with NaOH. Dopamine solutions were bubbled under N2 to prevent oxidative 

degradation of dopamine during successive calibrations. For sensitivity factor measurements 

between waveforms, a physiological range of dopamine concentrations (50 nM - 2 μM) was 

used. For biofouling measurements, point calibrations at 1 μM for both pre- and post-calibration 

were used. All calibration currents were normalized by electrode length to 100 μm. 
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RESULTS 

Anodic limit and stimulated release in anesthetized animals 

Early FSCV measurements of dopamine release in awake animals were made using a 

voltammetric waveform scanning from a holding potential of -0.4 V to an anodic limit of +1.0 V 

(Garris et al., 1997; Rebec et al., 1997).  While the resulting sensitivity was adequate to 

measure real-time dopamine release during initial ICSS responding (Garris, et al., 1999), the 

dopamine signal disappeared after multiple lever presses and did not reappear even following a 

30 min timeout. It was unclear whether this was due to insufficient sensitivity or the absence of 

dopamine release at these later times.  Subsequent investigation into the effect of the anodic 

waveform limit showed increased sensitivity using an anodic limit of +1.4 V (Heien, et al., 2003), 

with an anodic limit of +1.3 V later subsequently taken as optimal for dopamine measurements. 

The relative sensitivities to dopamine of these waveforms are evident in their post vivo 

calibration factors (normalized to 100 μm fiber lengths; +1.0 V waveform, 3.9 ± 0.2 nA/μM; +1.3 

V waveform, 11.8 ± 0.8 nA/μM;  +1.4 V waveform, 28.8 ± 3.3 nA/μM).  

While the effect of the anodic limit on dopamine sensitivity has been well characterized 

in vitro (Heien, et al., 2003; Keithley et al., 2011), its effect on temporal responses during 

measurements of dopamine release events in vivo is less clear. To investigate this, 

measurements of electrically stimulated (24 pulses, 300 μA, 60 Hz, n = 6 for each waveform at 

each electrode) dopamine release were made in the NAc shell of anesthetized rats (n = 8). Due 

to the heterogeneity of dopamine release kinetics in the NAc (Wightman et al., 2007), 

measurements were made using all three waveforms at each recording site to enable within-

subject comparisons (Figure 2.1a). Because the more positive anodic limits alter the electrode 

surface (Takmakov, et al., 2010), measurements were made in ascending order of anodic limit 

to prevent effects of prior history on electrode responses. Peak evoked dopamine 

concentrations ([DA]max), rise time (10-90% max signal), and t1/2 values (100-50%) were  



42 
 

 
Waveform [DA]max Rise Time (10-90%) t1/2 (100-50%) 

+1.0 V 267 ± 64 nM 0.3 ± 0.05 s 0.5 ± 0.05 s 

+1.3 V 321 ± 78 nM 0.3 ± 0.02 s 0.7 ± 0.05 s 

+1.4 V 244 ± 56 nM 0.3 ± 0.02 s 1.1 ± 0.08 s 

 

Table 2.1. Comparisons of [DA]max, rise time, and t1/2 between different waveforms. Data is 
expressed as mean ± SEM (n = 8 for each data set). 
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compared across waveforms (Table 2.1). No significant differences in [DA]max were seen 

between waveform  (repeated measures one-way ANOVA, F2,14 = 3.814, p > 0.05).  While 

differences were not observed in the rise time (10-90% max signal) for electrically evoked 

transients across waveforms (repeated measures one-way ANOVA, F2,14 = 0.1273, p > 0.05), 

there were significant differences in t1/2 values (100-50%) (repeated measures one-way 

ANOVA, F(2,14) = 39.94, p < 0.0001). Tukey’s multiple comparisons post hoc test revealed 

significant differences between the +1.4 V waveform and both the +1.0 V and +1.3 V waveforms 

(p < 0.001) but not between the +1.0 V and +1.3 waveform (p > 0.05). The falling portion of the 

dopamine signal is a measure of the response time of the electrode as well as an index of the 

uptake rate mediated by the dopamine transporter. The results here demonstrate that the 

diminished temporal response of higher anodic limit waveforms preferentially affects the uptake-

dominated region of electrically-stimulated release events, while minimally affecting the region 

dominated by release.  

Differences in the voltammetric characteristics of dopamine across waveforms are also 

evident. More negative anodic peak locations (Figure 2.1b), more positive cathodic peak 

locations (Figure 2.1c), and smaller anodic peak widths (Figure 2.1d) were seen with extended 

waveforms compared to the +1.0 V waveform. These observations are consistent with 

enhanced electron transfer kinetics (Bard & Faulkner, 2001), likely due to generation of surface 

oxide groups. Consistent with a previous study showing differences in voltammetric 

characteristics across electrodes (Rodeberg, et al., 2015), the potential of the anodic peak for 

dopamine on the +1.3 V waveform varied over a range of 40 mV. Significant differences were 

also seen in the peak current ratios between waveforms (Figure 2.1e). This is likely due to a 

greater contribution of adsorption to the signal on extended waveforms. As the oxidized form of 

dopamine (dopamine-o-quinone) adsorbs less strongly than dopamine, it is more likely to 

desorb before its subsequent reduction (Bath et al., 2000), resulting in an enhanced ip.a/ip,c ratio.  
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Figure 2.1. Differences in cyclic voltammogram characteristics across waveforms. a) Electrically 
evoked dopamine release measured with each waveform in an anesthetized rat, with inset 
cyclic voltammograms displayed for each waveform. Voltammogram characteristics of interest 
are labeled.  b) Anodic peak potentials (Ep,a) varied significantly across separate waveform 
anodic limits at the same electrode (+1.0 V waveform, 728 ± 9 mV; +1.3 V waveform, 662 ± 4 
mV;  +1.4 V waveform, 674 ± 6 mV), ***p < 0.001, ****p<0.0001. c) Cathodic peak potentials 
significantly varied across waveforms (+1.0 V waveform, -273 ± 6 mV; +1.3 V waveform, -217 ± 
6 mV;  +1.4 V waveform, -194 ± 9 mV), *p < 0.05. d) The full-width at half maximum (FWHM) for 
the anodic peak varied significantly across waveforms (+1.0 V waveform, 344 ± 12 mV; +1.3 V 
waveform, 298 ± 5 mV;  +1.4 V waveform, 307 ± 5 mV), **p < 0.01. e) The ratio of the peak 
anodic current to the magnitude of the peak cathodic current varied significantly across 
waveforms (+1.0 V waveform, 2.15 ± 0.15; +1.3 V waveform, 4.72 ± 0.4; +1.4 V waveform, 4.53 
± 0.5). Error bars reflect standard error, based on the number of electrodes. 
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Phasic dopamine concentrations during continuous ICSS 

 To address whether the sustained absence of the dopamine signal in early studies was 

due to insufficient sensitivity, ICSS measurements were repeated with the original +1.0 V 

waveform and compared to measurements with more sensitive voltammetric waveforms (+1.3 V 

and +1.4 V). Rats were trained to respond on a fixed-ratio 1 (FR1, lever press) schedule for 

electrical stimulation of the substantia nigra/ventral tegmental area (SN/VTA) region following  

previous protocol (Garris, et al., 1999). To prevent severe motor responses  associated with the 

large current intensities used in anesthetized animals (300 μA), smaller current intensities were 

used for ICSS training and recordings (75-175 μA). Once trained, each rat was assigned one of 

the three waveform variations for data acquisition. Stimulation currents were not significantly 

different between waveforms (one-way ANOVA, F2,9 = 1.499 p > 0.05). A carbon-fiber 

microelectrode was lowered into the NAc shell in 150 μm increments until electrically-evoked 

dopamine release was detected and optimized (Wightman, et al., 2007), after which 

experimenter-delivered (‘non-contingent’) stimulations were administered to establish baseline 

DA release in the final recording location. Next, rats were allowed to press a lever continuously 

for a minimum of 50 electrical stimulations. This process was subsequently repeated 30 min 

later in a separate behavioral session. 

For each ICSS session in each animal, dopamine maximal concentrations following 

each lever press (evoked by the electrical stimulation, [DA]max) were determined by PCR and 

monitored as a function of stimulation number (Figure 2.2). Transients that failed residual 

analysis at [DA]max were considered ‘invalid’, and concentration values were not recorded (+1.0 

V waveform, 17% of electrically-evoked transients; +1.3 V waveform, 2%; +1.4 V waveform, 

2%).  

While PCA reduces noise (Keithley, et al., 2010; Keithley, et al., 2009), some noise 

remains in the concentration traces. To ensure that dopamine was being measured at lower  
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Figure 2.2. Depiction of ICSS data analysis. a) Ten second segments of data were aligned to 
the digital events representing electrical stimulation (red bars). Background was taken 0-2 
seconds preceding electrical stimulation (grey dotted line), minimizing the contribution of drift or 
overlapping pH changes to concentration prediction. b) The residual trace for the corresponding 
ten second data segment in part (a). During data analysis, Qt occasionally crossed Qα either 
during dopamine transients or during periods without electrical stimulation (ex. area between the 
two blue dotted lines). Data was discarded if these residual failures occurred at [DA]max, while 
residual crosses during other time points did not impede concentration prediction. As shown by 
the dashed black line, the validity of the DA peak was maintained. c) Residual color plots 
exhibited which currents were not captured by the within-subject training set.   
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concentrations, we evaluated the limit of detection (LOD) for each voltammetric recording 

session. This was done with the electrode implanted in the brain at the recording locations 

where ICSS data was collected, but in the absence of electrical stimulation, to ensure that noise 

levels were similar to those during ICSS.  To minimize the effects of short-term electrode drift, 

data was analyzed in 10 s intervals for LOD determination. Segments in which spontaneous 

dopamine transients were apparent in the color plot, or which failed residual analysis, were 

excluded from these LOD determinations. The apparent ‘dopamine concentration’ for each 

segment was extracted with PCR and the average noise of these segments (taken as three 

times the root mean square noise, n ≥ 5 separate replicates for each subject) was taken as the 

LOD of the data set. There were significant differences in LODs between waveforms (+1.0 V 

waveform, 92 ± 8 nM; +1.3 V waveform, 31 ± 4 nM; +1.4 V waveform, 17 ± 2 nM, 4, n=4 

respectively; one-way ANOVA, F2,9 = 17.21, p < 0.001). Tukey’s multiple comparisons post hoc 

analysis revealed significant differences between +1.0 vs +1.3 and +1.4 (p < 0.01 and 0.001, 

respectively) but not +1.3 vs. +1.4 (p > 0.05). 

Concentrations evoked by electrical stimulation differed between animals, most likely 

due to differences in placements of the stimulating and working electrodes (concentration of first 

lever-press induced transient; 355 ± 66 nM, range from 60 to 832 nM). These concentrations 

were not significantly correlated with stimulation current (r2 = 0.236, p > 0.05). To make reliable 

comparisons across animals, concentrations and LOD values were normalized for each animal 

to the concentration of the first electrically-evoked ICSS transient in the first behavioral session. 

Transients that fell below the within-subject LOD were discarded from analysis (+1.0 V 

waveform, 69% of valid transients; +1.3 V waveform, 0.02%; +1.4 V waveform, 0%). While 

[DA]max decreased with stimulation number with each waveform, the profile of dopamine release 

differed across waveforms (Figure 2.3). Measurements with an anodic limit of +1.0 V revealed a 

similar pattern to those seen in the original study (Figure 2.3a). Dopamine release was initially 

observed early in the first ICSS session; however, the transients quickly decreased to smaller 
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Figure 2.3. The amplitude of individual dopamine transients during and across ICSS sessions 
with different waveforms. Dopamine concentrations were normalized to the concentration of the 
first electrically-evoked transient of the first ICSS session for each separate subject. Transients 
that fell below the within-subject LOD (depicted by grey bar, mean ± SEM) were discarded. 
Each waveform had four separate subjects, represented by the four different colors. a) 
Measurements on the +1.0 V waveform revealed a decrease in dopamine during the first ICSS 
session and few detectable transients in the subsequent session. b) Measurements on the +1.3 
V waveform reveal decreases in dopamine in both ICSS sessions, with the majority of transients 
detected and quantifiable. c) Measurements on the +1.4 V waveform reveal decreases in 
dopamine in both ICSS sessions, but less consistency between recordings than measurements 
on the +1.3 V waveform. d-f) Average concentration profile for (d) the +1.0 V waveform, (e) +1.3 
V waveform, and (f) +1.4 V waveform. Data points depict mean ± SEM at each stimulation. 
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amplitudes, with most stimulations failing to produce dopamine transients exceeding the within-

subject LOD (mean ± SEM represented by grey bar). After a 30 min timeout, in which the lever 

and electrical stimulation were unavailable, dopamine release was only observed early in the 

subsequent ICSS session, while the vast majority of stimulations did not result in observable 

dopamine release. Due to the paucity of observable dopamine transients, it is difficult to 

determine a consistent trend for dopamine release during ICSS with this waveform across 

subjects (Figure 2.3d). The enhanced sensitivity of the +1.3 V waveform captured dopamine 

release throughout the entire ICSS recording session, with nearly all electrical stimulations 

evoking observable events (Figure 2.3b). Thus, more reliable comparisons of dopamine 

concentration values both within and across ICSS sessions could be made.  The average 

dopamine concentrations across lever presses between animals exhibit a more rapid decay of 

dopamine during the second ICSS session (Figure 2.3e). Regression using a single-phase 

exponential decay (r2 = 0.713 and 0.533 for the two sessions, respectively) revealed a 

significantly larger rate constant for the second ICSS session, indicating a faster decline (p < 

0.0001). Correspondingly, the average (normalized) dopamine transient concentration was 

lower in the second session than in the first (ICSS 1: 0.436 ± 0.025, ICSS 2: 0.231 ± 0.017, two-

tailed t-test, t135 = 6.753, p < 0.0001). Taken together, these data could explain the rapid 

disappearance of the dopamine signal measured on the +1.0 V waveform during the second 

ICSS session, with the transients more rapidly approaching undetectable values.  

Measurements with the +1.4 V waveform also consistently resulted in observable 

dopamine signals release during ICSS (Figure 2.3c). In all rats (n = 4), each electrical 

stimulation resulted in a detectable dopamine transient, partially due to the lower LODs 

observed with the +1.4 V waveform (average ~ 17 nM). However, compared to measurements 

on the +1.3 V waveform, the concentration profile across stimulations differed. The average 

profiles (Figure 2.3f) fit a single-phase decay (r2 = 0.408 and 0.478 for the two sessions, 

respectively), but did not have significantly different rate constants (p > 0.05). Nonetheless, the 
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average normalized concentration values were lower in the second ICSS session compared to 

the first (ICSS 1: 0.684 ± 0.034, ICSS 2: 0.457 ± 0.022, two-tailed t-test, t111 = 5.174, p < 

0.0001).  

A repeated-measures two-way ANOVA was performed to test for differences in press 

rate between waveform groups and ICSS sessions. No interaction was found between 

waveform and ICSS session (F2,9 = 0.690, p > 0.05). No main effect of waveform (F2,9 =1.008, p 

> 0.05) or ICSS session (F1,9 = 1.733, p > 0.05) was observed. Therefore, the lower dopamine 

concentrations during the second ICSS session were not associated with changes in press 

rates. This is consistent with recent evidence that the amplitude of phasic dopamine release can 

be dissociated from pressing rate (Cossette et al., 2016). 

 

Sensitivity determines ability to consistently monitor dopamine 

To understand why different voltammetric waveforms provide drastically different 

dopamine release profiles during ICSS, it is necessary to recognize the benefits and limitations 

of each. Representative traces for the first ICSS session are shown for three separate subjects 

measured with different waveforms (Figure 2.4). Representative data indicate the most common 

features with measurements using the +1.0 V waveform (Figure 2.4a). Non-contingent 

stimulation (‘pre-ICSS’) and the first lever press-induced stimulations during ICSS (‘early ICSS’) 

evoke sharp dopamine transients that surpass the LOD (red dotted line). However, electrical 

stimulations near the end of the ICSS session (‘late ICSS’) do not evoke observable dopamine 

signals. The inability to detect dopamine release is not due to complete dopamine depletion or 

electrode failure, as non-contingent stimulation following ICSS (‘post-ICSS’) resulted in 

observable dopamine transients (normalized concentration: ICSS 1, 0.708 ± 0.112; ICSS 2, 

0.457 ± 0.070). Nonetheless, the smaller concentration of dopamine transients after prolonged 

stimulation prevents this waveform from providing a reliable measurement of dopamine release 

during this task. 
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Figure 2.4. Dopamine concentration versus time traces for representative measurements on 
each waveform before, during, and after the first intracranial self-stimulation session. Red 
triangles and red bars represent non-contingent and operant-delivered electrical stimulation, 
respectively. Red dotted lines indicate LOD for each data set. a) Measurements on the +1.0 V 
waveform reveal electrically evoked dopamine transients above the LOD (85 nM) before and 
immediately after ICSS. During early ICSS, dopamine release exceeds the LOD but falls to 
undetectable levels later in the behavioral session. b) Measurements on the +1.3 V waveform 
consistently reveal dopamine release above the LOD (21 nM) before, during, and immediately 
after ICSS. Notably, dopamine release falls to much smaller levels late in the ICSS session after 
prolonged stimulation. c) Measurements on the +1.4 V waveform reveal electrically evoked 
dopamine transients above the LOD (12 nM) before, during, and immediately following ICSS.   
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Measurements with the +1.3 V and +1.4 V waveforms, however, were able to consistently 

monitor dopamine release (Figure 2.4b-c). While dopamine transients diminish in amplitude 

during ICSS, the enhanced sensitivity permits the measurement of dopamine transients that 

would be near or below the LOD on the +1.0 V waveform.  The wider time course of the 

transients with these two waveforms compared to the +1.0 V waveform is consistent with the 

observations made in anesthetized animals.  

No significant differences were seen between the concentrations evoked by the first-

lever press during ICSS and non-contingent stimulation preceding the session (paired two-tailed 

t-test, t23 = 0.7367, p > 0.05). However, these two signals were significantly correlated across 

animals and sessions (r2 = 0.804, p < 0.0001), with larger release to non-contingent stimulation 

predicting higher concentrations during ICSS.  

 

Effect of biofouling on continuous measurements 

 The diminished ability to detect dopamine on the +1.0 V waveform during the second 

ICSS session could be related to progressive biofouling of the carbon-fiber microelectrode. The 

sensitivity of carbon-fiber microelectrodes have been demonstrated previously to decrease upon 

implantation in the brain (Logman et al., 2000; Singh et al., 2011). Notably, waveforms with 

extended anodic limits have been shown be more resistant to biofouling due to active 

regeneration of the carbon-fiber surface (Takmakov, et al., 2010), which could explain their 

comparative success in monitoring dopamine during later time points. To investigate this issue, 

the relative concentration values of the non-contingent stimulations preceding each ICSS 

session were first compared. On all three waveforms, the electrically evoked signals preceding 

the second ICSS session were generally lower in amplitude than non-contingent stimulations 

preceding the first ICSS session (+1.0 V waveform, 62.7 ± 14.8%; +1.3 V waveform, 68.3 ± 

10.3%; +1.4 V waveform, 81.9 ± 5%). While a general trend was observed across anodic limits, 

no systematic difference was seen between signal recovery and waveform (one-way ANOVA, 
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F2,11 = 0.815, p > 0.05). Furthermore, the magnitude of signal depression was not significantly 

correlated with the time between the two sets of non-contingent stimulations (43 ± 2 min; r2 = 

0.217, p > 0.05) or stimulation current (r2 = 0.082, p > 0.05).  

 Despite the lacks of correlation between the timing of non-contingent stimulation and 

signal depression, the results could be confounded by the variation in implantation time between 

subjects. Therefore, further biofouling experiments were performed to test the effect of precise 

implantation times on the sensitivity loss due to in vivo biofouling for each waveform. Carbon-

fiber microelectrodes were calibrated before and after 60 or 90 min of implantation in 

anesthetized rat brain (Table 2.2). A two-way ANOVA revealed no interaction between 

implantation duration and waveform (F2,24 = 0.1936 p > 0.05) or main effect of implant duration 

(F1,24 = 0.0621, p > 0.05) on post-calibration sensitivity. However, there was a main effect of 

waveform (F1,24 = 46.37, p < 0.0001). Tukey’s multiple comparisons post hoc revealed 

significant differences between the +1.4 V waveform signal recovery and both the +1.0 V and 

+1.3 V waveform at both implant durations (p > 0.0001) but not between the +1.0 V and +1.3 V 

waveform (p > 0.05).  Interestingly, the +1.4 V waveform maintained pre-implantation sensitivity 

for both implant durations, likely due to continued conditioning of the electrode surface during in 

vivo implantation. Consequently, while the trend in post-calibration sensitivity across waveforms 

is similar to the trends in restoration of the dopamine signal, the failure to completely restore the 

signal when measuring with the +1.4 V waveform suggests that biofouling is not the sole 

determinant of the decay in the dopamine signal. 

 

Temporal resolution determines ability to reliably quantitate rapidly spaced transients 

It has been previously demonstrated that temporal resolution is reduced at extended 

anodic limits (Heien, et al., 2003). Indeed, this is apparent in Figure 2.4, as electrically evoked 

dopamine transients measured on extended waveforms, particularly with the +1.4 V waveform, 

are broader than those measured on the +1.0 V waveform.  This is of particular concern for the  
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Table 2.2. The post-implantation sensitivity for different implantation durations (1 hour, 1.5 
hours) and waveforms. Values expressed as mean ± SEM.  n = 5 for all pairs of waveform-
duration.  

Waveform 1 hr 1.5 hr 

+1.0 V 44.5 ± 6.1% 37.9 ± 5.8% 

+1.3 V 51.4 ± 4.2% 51.4 ± 5.8% 

+1.4 V 106.4 ± 12.1% 108.5 ± 7.7% 
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continuous ICSS paradigm, which permits the rat to press the lever for electrical stimulation ad 

libitum, receiving a maximum of one stimulation every 400 ms (i.e. the duration of electrical 

stimulus). Thus, it is possible in this paradigm for rats to undergo rapid bouts of pressing in 

which dopamine transients become difficult to resolve due to the finite response time of the 

carbon-fiber microelectrodes.  

To demonstrate how this effect varies across waveforms, three representative thirty 

second segments of similar pressing rates collected on different waveforms are shown in Figure 

2.5. Lever presses generally induce transients that rapidly return to baseline when measured 

with the +1.0 V waveform (Figure 2.5a). With a similar press rate, measurements on the +1.3 V 

waveform also result in resolvable transients, but baseline is not always reached between each 

transient (Figure 2.5b). When baseline is not reached, an apparent ‘facilitation’ in the signal 

occurs as previous transients contribute to [DA]max for subsequent events (see transients 3-4, 

Figure 2.5b). Similar results can be seen for measurements with the +1.4 V waveform (data not 

shown); however, moderate pressing rates occasionally resulted in a rising envelope of 

dopamine signal with superimposed individual transients (Figure 2.5c). While digital background 

subtraction immediately before each transient can partially diminish the contribution of this 

‘envelope’ to [DA]max, it cannot eliminate background rises occurring during the dopamine 

transients themselves. As a result, these temporally distorted signals can lead to 

overestimations of [DA]max, and can make it difficult to ascertain how electrically evoked release 

is changing on a stimulation-by-stimulation basis. 

In addition to rising ‘envelopes’ interfering with quantitation of [DA]max, the rapid nature of 

continuous ICSS can lead to individual transients becoming unresolvable when stimulations are 

too narrowly spaced (see presses 6-7 in Figure 2.5a, presses 9-11 in Figure 2.5c). The 

diminished temporal resolution of extended waveforms exacerbates this problem. To investigate 

this, the percentage of observable transients (i.e. those above the LOD and passing residual 

analysis) resolved at half-maximum from the preceding transient was determined for each ICSS  
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Figure 2.5. Temporal resolution is diminished with extended anodic limits. a) Measurements on 
the +1.0 V waveform reveal that electrical stimulation evokes transient increases in dopamine 
concentration that rapidly return to baseline before subsequent transients. b) Measurements on 
the +1.3 V waveform typically reveal resolved transients at moderate pressing frequencies, 
though dopamine concentrations do not always return to baseline before onset of subsequent 
transients, leading to apparent ‘facilitations’ in the DA signal. c) Measurements on the +1.4 V 
waveform suffer from drastically diminished temporal resolution. Some cases of moderate 
pressing rates revealed rising envelopes of DA signal with superimposed transients, making it 
difficult to ascertain how dopamine dynamics were changing on a stimulation-by-stimulation 
basis.   
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session on each waveform. If resolved at half-maximum it was assumed that the preceding 

transient will minimally contribute to [DA]max of the subsequent transient. Transients that did not 

meet this criteria were excluded from Figure 2.2. The ability to resolve transients significantly 

decreased at extended anodic limits (Figure 2.6a). (one-way ANOVA, F2,21 = 15.95, p < 0.0001). 

Tukey’s multiple comparisons post hoc test revealed significant differences in the percent 

resolution between anodic limits of +1.0 V and +1.4 V (p < 0.0001) and between +1.3 V and 

+1.4 V (p < 0.01) but not between +1.0 V and +1.3 V (p > 0.05).  

However, the resolution of adjacent transients is also impacted by the pressing rate of 

the animal, as higher pressing rates will result in more narrowly separated dopamine events. 

Therefore, the percent resolution was compared to the pressing rate for each corresponding 

ICSS session for each waveform (Figure 2.6b). Linear fits to the data show a relatively flat 

profile for data collected on the +1.0 V waveform, indicating detectable transients are readily 

resolved at moderate to high pressing rates. The +1.3 V waveform performs well at lower 

pressing rates, but higher press rates result in diminished ability to resolve, and subsequently 

quantitate, adjacent dopamine transients. This effect is even more pronounced on the +1.4 V 

waveform, where temporal resolution suffers even at slower press rates and fails dramatically at 

higher pressing rates, where approximately half of transients were unable to be adequately 

resolved. 

 

Balance of temporal resolution and sensitivity determine ability to monitor dopamine 
dynamics 

 

 Taken together, these data suggest the ability to reliably determine the shape of the 

dopamine concentration profile during ICSS depends on the tradeoff between enhanced 

sensitivity and diminished temporal resolution.  Only 23% of dopamine transients could be 

reliably quantified with the +1.0 V waveform, with a large percentage of presses (56%) resulting 

in unobservable events (Figure 2.3, Table 2.3). Conversely, measurements on the +1.3 V V  
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Figure 2.6. Temporal resolution and its dependence on pressing rate differ across waveforms. 
a) The percentage of transients that were resolved at half-maximum from the preceding 
transient differed amongst waveforms (+1.0 V waveform, 95.0 ± 2.5 %; +1.3 V waveform, 81.6 ± 
6.6%; +1.4 V waveform, 54.8 ± 5.4%). One way ANOVA with Tukey’s multiple comparisons, **p 
< 0.01, ****p < 0.001. b) The effect of press rate on temporal resolution varied across 
waveforms. The temporal resolution of detectable transients on the +1.0 V waveform was 
relatively insensitive to the range of observed pressing rates. Measurements at higher pressing 
rates suffered from diminished temporal resolution on the +1.3 V waveform, while temporal 
resolution on the +1.4 V waveform was diminished at all pressing rates. 
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Waveform # quantifiable # undetected # unresolved # failed residual 

+1.0 V (n = 467) 107 (23%) 262 (56%) 17 (4%) 81 (17%) 

+1.3 V (n = 448) 381 (78%) 1 (0.02%) 96 (20%) 10 (2%) 

+1.4 V (n = 441) 236 (54%) 0 (0%) 198 (45%) 7 (2%) 

 

Table 2.3. The total number (and percentage) of transients that were quantifiable across 
waveforms. The number of transients below the LOD, unresolved from preceding transients, or 
failed residual analysis varied across waveforms are included. n = total number of transients for 
all ICSS sessions measured with each waveform.  
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waveform resulted in only one transient that fell below the LOD across all subjects and ICSS 

sessions. However, a higher percentage of transients (20%) were unresolvable from preceding 

transients. This problem was exacerbated on the +1.4 V waveform, where nearly half (45%) of 

transients were unable to be resolved. Ultimately, of the three waveforms investigated, the +1.3 

V waveform was able to provide the best balance of enhanced sensitivity and temporal 

resolution, quantifying the greatest percentage (78%) of electrically-evoked transients. 

 

DISCUSSION 

This study supports the previous conclusion that continuously elevated phasic dopamine 

release is not required for maintenance of ICSS behavior (Garris, et al., 1999). However, in 

contrast to the original findings, the use of more sensitive waveforms revealed that dopamine 

transients do not completely disappear during this task, but rather diminish to smaller values 

undetectable in previous investigations. Notably, continuous ICSS is a unique behavioral 

paradigm in which the ability to resolve narrowly spaced events is crucial. Thus, the enhanced 

ability of the +1.3 V waveform to detect electrically-evoked transients throughout ICSS while 

maintaining moderate temporal resolution supports its use as the standard waveform for 

measurements in awake animals with narrowly spaced dopamine events. However, the 

enhanced sensitivity of +1.4 V waveform may be useful for studying behavioral paradigms in 

which temporal resolution is unnecessary for understanding the voltammetric data (e.g. studies 

without narrowly spaced cues and/or behavioral responses). Nonetheless, its use to study rapid 

behaviors like ICSS could lead to erroneous conclusions about dopamine dynamics; indeed, the 

+1.4 V waveform revealed ‘rises’ in dopamine concentrations during ICSS (Figure 2.5c) similar 

to those seen in microdialysis experiments, rather than a decay in dopamine release as 

suggested by the other waveforms. This reduced temporal resolution could alter concentration 

prediction for moderately resolved release events (i.e. resolved at half maximum), with tailing 

currents from preceding transients augmenting concentration values for subsequent events. 
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Potential offsets are often used in voltammetric recordings in awake animals because of 

biofouling of chronically-implanted reference electrodes that results in an altered potential. The 

offsets are often quite large, typically ~200 mV (Heien, et al., 2005). The use of offsets can lead 

to an unwanted extended anodic limit, resulting in altered electrode performance. Accordingly, 

acute reference electrodes were used in this study to reliably compare waveforms. As shown 

here and elsewhere, the voltammetric waveform, including any offsets, is an important 

experimental consideration that can affect sensitivity, temporal resolution, and electrode stability 

(Keithley, et al., 2011). 

A difference between this study and Garris et. al. is the stimulus pulse duration (2 ms 

and 1 ms pulses respectively). Longer pulse widths promote slightly greater dopamine release 

when stimulation current remains constant (Park et al., 2011). However, longer pulse widths 

have more pronounced motor effects during electrical stimulation, which can limit rapid 

response rates during ICSS.  The moderate press rates in this study with longer pulse widths 

made it possible to resolve individual transients and study changes in phasic dopamine release 

over time. Shorter pulse widths could permit more rapid pressing; however, this may result in 

unresolved transients, particularly with extended waveforms. It has been hypothesized that 

extracellular dopaminergic tone is a function of summated phasic dopamine transients 

(Owesson-White et al., 2012). Thus, it is possible that these signals (i.e. unresolved dopamine 

transients) would begin to resemble microdialysis signals for rapid pressing (Hernandez, et al., 

2006), in which a gradual rise in dopamine is succeeded by a fall in dopamine levels during 

continuous pressing as the summated transients begin to decay in amplitude (see Figure 5c).  

In previous work a three component model (short-term facilitation, short-term depression, and 

long-term depression) was developed that predicts dopamine concentrations during isolated 

and rapid stimulation patterns (Kita et al., 2007; Montague et al., 2004). The time constant for 

recovery from long-term depression was predicted to be 12-15 min, and studies in anesthetized 

rats show full recovery on the order of 30 min (Michael et al., 1987). However, the 30 min 
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timeout in this study was insufficient for dopamine to return to pre-ICSS levels. Indeed, 

dopamine release often remained attenuated, which could not be solely attributed to biofouling 

of the electrode, suggesting this model has not captured all long term factors controlling 

dopamine release. This could be due to depletion of releasable vesicles or a decreased rate of 

dopamine synthesis. Alternatively, because dopamine VTA neurons are thought to be activated 

transsynaptically during electrical stimulation via ionotropic glutamate receptors (Sombers, et 

al., 2009), this mechanism could be altered. For example, it has been shown that the subunit 

composition of AMPA receptors in the VTA can change after repetitive brain stimulation 

(Carlezon et al., 2001). Recent studies have shown that optogenetic stimulation of glutamatergic 

neurons that form synapses on dopamine neurons within the VTA is sufficient to promote ICSS 

(Wang et al., 2015) and evoke dopamine release in the NAc (Qi et al., 2014). 

ICSS can be learned very quickly. In fact, we have previously shown that dopamine 

release and ICSS behavior are acquired and reach stable responding within 200 lever presses 

(Owesson-White, et al., 2008). Therefore, it is unlikely that differences in training history 

between subjects were a significant source of variability in the decay of dopamine release 

between and across sessions. However, future longitudinal studies of dopamine release during 

ICSS could investigate whether these dopamine profiles change over extended training.     

While this study did not manipulate phasic dopamine release to test its effect on 

behavior, it was found that even as the concentration of dopamine transients in the NAc fell 

across ICSS sessions, subjects continued to respond for ICSS at similar rates. Therefore, the 

original assertion that consistently elevated phasic dopamine release is unnecessary for the 

maintenance of ICSS remains valid. Nevertheless, a full dissociation of dopamine release from 

ICSS behavior seems unlikely. A few possibilities for the role of electrically-evoked dopamine 

release in ICSS remain. First, the high dopamine concentrations evoked by early stimulation 

may be required for acquisition of this task via corticostriatal synaptic plasticity that promotes 

learning (Reynolds et al., 2001), but is unnecessary for maintenance. However, this 
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pharmacological manipulations in well-trained animals can still alter behavior (Carlezon & 

Chartoff, 2007; Steinberg, et al., 2014; Wise, 1996), which contradicts this view. Second, the 

low steady-state dopamine concentrations seen after repeated responding in this study, as well 

as the slower increases in dopaminergic tone demonstrated with microdialysis (Fiorino, et al., 

1993; Hernandez, et al., 2006; You, et al., 2001), may be sufficient to activate high-affinity D2 

receptors on striatal medium spiny neurons, which inhibits their activity (Calipari et al., 2016). 

Activation of D2-expressing medium spiny neurons can be aversive (Kravitz et al., 2012). 

Therefore, it is possible that the relatively low dopamine concentrations after continuous 

pressing remain vital for inhibiting these cells to prevent activation of circuitry that could 

compete with the primary reward pathway activated by ICSS. The mechanism we prefer is that 

dopamine mediates responses to cues predicting reward availability. Although the visual cue 

and lever were both continually present, making it impossible to separate their contributions, 

elsewhere, using a delayed lever availability paradigm, we have shown that dopamine 

responses to cues during ICSS modulate D2-containing medium spiny neurons (Owesson-

White et al., 2016). Indeed, we found that D1-mediated responses occurred near the time of the 

stimulation, whereas responses after the cue were mediated by D2 receptors. Therefore, there 

is evidence that dopamine is important for both cue and operant responses. Ultimately, future 

studies involving pharmacological manipulations of dopamine during ICSS with FSCV 

measurements will further elucidate the relationship between phasic dopamine release and 

ICSS behavior.  

 

 

 

  



64 
 

REFERENCES 
 

Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications 
(2nd ed.). New York: Wiley. 

Bath, B. D., Michael, D. J., Trafton, B. J., Joseph, J. D., Runnels, P. L., & Wightman, R. M. 
(2000). Subsecond adsorption and desorption of dopamine at carbon-fiber 
microelectrodes. Anal Chem, 72(24), 5994-6002. 

Berrios, J., et al. (2016). Loss of UBE3A from TH-expressing neurons suppresses GABA co-
release and enhances VTA-NAc optical self-stimulation. Nat Commun, 7, 10702. 

Bielajew, C., & Shizgal, P. (1986). Evidence implicating descending fibers in self-stimulation of 
the medial forebrain bundle. J Neurosci, 6(4), 919-929. 

Bucher, E. S., et al. (2013). Flexible software platform for fast-scan cyclic voltammetry data 
acquisition and analysis. Anal Chem, 85(21), 10344-10353. 

Calipari, E. S., et al. (2016). In vivo imaging identifies temporal signature of D1 and D2 medium 
spiny neurons in cocaine reward. Proc Natl Acad Sci U S A, 113(10), 2726-2731. 

Carlezon, W. A., Jr., & Chartoff, E. H. (2007). Intracranial self-stimulation (ICSS) in rodents to 
study the neurobiology of motivation. Nat Protoc, 2(11), 2987-2995. 

Carlezon, W. A., Jr., et al. (2001). Repeated exposure to rewarding brain stimulation 
downregulates GluR1 expression in the ventral tegmental area. 
Neuropsychopharmacology, 25(2), 234-241. 

Corbett, D., & Wise, R. A. (1980). Intracranial self-stimulation in relation to the ascending 
dopaminergic systems of the midbrain: a moveable electrode mapping study. Brain Res, 
185(1), 1-15. 

Cossette, M. P., Conover, K., & Shizgal, P. (2016). The neural substrates for the rewarding and 
dopamine-releasing effects of medial forebrain bundle stimulation have partially 
discrepant frequency responses. Behav Brain Res, 297, 345-358. 

Fibiger, H. C., LePiane, F. G., Jakubovic, A., & Phillips, A. G. (1987). The role of dopamine in 
intracranial self-stimulation of the ventral tegmental area. J Neurosci, 7(12), 3888-3896. 

Fiorino, D. F., Coury, A., Fibiger, H. C., & Phillips, A. G. (1993). Electrical stimulation of reward 
sites in the ventral tegmental area increases dopamine transmission in the nucleus 
accumbens of the rat. Behav Brain Res, 55(2), 131-141. 

Fulton, S., Woodside, B., & Shizgal, P. (2000). Modulation of brain reward circuitry by leptin. 
Science, 287(5450), 125-128. 

Gallistel, C. R., Shizgal, P., & Yeomans, J. S. (1981). A portrait of the substrate for self-
stimulation. Psychol Rev, 88(3), 228-273. 



65 
 

Garris, P. A., Christensen, J. R., Rebec, G. V., & Wightman, R. M. (1997). Real-time 
measurement of electrically evoked extracellular dopamine in the striatum of freely 
moving rats. J Neurochem, 68(1), 152-161. 

Garris, P. A., Kilpatrick, M., Bunin, M. A., Michael, D., Walker, Q. D., & Wightman, R. M. (1999). 
Dissociation of dopamine release in the nucleus accumbens from intracranial self-
stimulation. Nature, 398(6722), 67-69. 

Heien, M. L., Johnson, M. A., & Wightman, R. M. (2004). Resolving neurotransmitters detected 
by fast-scan cyclic voltammetry. Anal Chem, 76(19), 5697-5704. 

Heien, M. L., et al. (2005). Real-time measurement of dopamine fluctuations after cocaine in the 
brain of behaving rats. Proc Natl Acad Sci U S A, 102(29), 10023-10028. 

Heien, M. L., Phillips, P. E., Stuber, G. D., Seipel, A. T., & Wightman, R. M. (2003). 
Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and 
increases sensitivity. Analyst, 128(12), 1413-1419. 

Hernandez, G., et al. (2006). Prolonged rewarding stimulation of the rat medial forebrain bundle: 
neurochemical and behavioral consequences. Behav Neurosci, 120(4), 888-904. 

Keithley, R. B., Carelli, R. M., & Wightman, R. M. (2010). Rank estimation and the multivariate 
analysis of in vivo fast-scan cyclic voltammetric data. Anal Chem, 82(13), 5541-5551. 

Keithley, R. B., Heien, M. L., & Wightman, R. M. (2009). Multivariate concentration 
determination using principal component regression with residual analysis. Trends 
Analyt Chem, 28(9), 1127-1136. 

Keithley, R. B., et al. (2011). Higher sensitivity dopamine measurements with faster-scan cyclic 
voltammetry. Anal Chem, 83(9), 3563-3571. 

Kilpatrick, M. R., Rooney, M. B., Michael, D. J., & Wightman, R. M. (2000). Extracellular 
dopamine dynamics in rat caudate-putamen during experimenter-delivered and 
intracranial self-stimulation. Neuroscience, 96(4), 697-706. 

Kishida, K. T., et al. (2016). Subsecond dopamine fluctuations in human striatum encode 
superposed error signals about actual and counterfactual reward. Proc Natl Acad Sci U 
S A, 113(1), 200-205. 

Kita, J. M., Parker, L. E., Phillips, P. E., Garris, P. A., & Wightman, R. M. (2007). Paradoxical 
modulation of short-term facilitation of dopamine release by dopamine autoreceptors. J 
Neurochem, 102(4), 1115-1124. 

Kravitz, A. V., Tye, L. D., & Kreitzer, A. C. (2012). Distinct roles for direct and indirect pathway 
striatal neurons in reinforcement. Nat Neurosci, 15(6), 816-818. 

Logman, M. J., Budygin, E. A., Gainetdinov, R. R., & Wightman, R. M. (2000). Quantitation of in 
vivo measurements with carbon fiber microelectrodes. J Neurosci Methods, 95(2), 95-
102. 



66 
 

Michael, A. C., Ikeda, M., & Justice, J. B., Jr. (1987). Mechanisms contributing to the recovery of 
striatal releasable dopamine following MFB stimulation. Brain Res, 421(1-2), 325-335. 

Montague, P. R., et al. (2004). Dynamic gain control of dopamine delivery in freely moving 
animals. J Neurosci, 24(7), 1754-1759. 

Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal 
area and other regions of rat brain. J Comp Physiol Psychol, 47(6), 419-427. 

Owesson-White, C., et al. (2016). Cue-Evoked Dopamine Release Rapidly Modulates D2 
Neurons in the Nucleus Accumbens During Motivated Behavior. J Neurosci, 36(22), 
6011-6021. 

Owesson-White, C. A., Cheer, J. F., Beyene, M., Carelli, R. M., & Wightman, R. M. (2008). 
Dynamic changes in accumbens dopamine correlate with learning during intracranial 
self-stimulation. Proc Natl Acad Sci U S A, 105(33), 11957-11962. 

Owesson-White, C. A., et al. (2012). Sources contributing to the average extracellular 
concentration of dopamine in the nucleus accumbens. J Neurochem, 121(2), 252-262. 

Park, J., Takmakov, P., & Wightman, R. M. (2011). In vivo comparison of norepinephrine and 
dopamine release in rat brain by simultaneous measurements with fast-scan cyclic 
voltammetry. J Neurochem, 119(5), 932-944. 

Phillips, A. G., & Fibiger, H. C. (1978). The role of dopamine in maintaining intracranial self-
stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. 
Can J Psychol, 32(2), 58-66. 

Qi, J., et al. (2014). A glutamatergic reward input from the dorsal raphe to ventral tegmental 
area dopamine neurons. Nat Commun, 5, 5390. 

Rebec, G. V., Christensen, J. R., Guerra, C., & Bardo, M. T. (1997). Regional and temporal 
differences in real-time dopamine efflux in the nucleus accumbens during free-choice 
novelty. Brain Res, 776(1-2), 61-67. 

Reynolds, J. N., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of reward-related 
learning. Nature, 413(6851), 67-70. 

Rodeberg, N. T., Johnson, J. A., Cameron, C. M., Saddoris, M. P., Carelli, R. M., & Wightman, 
R. M. (2015). Construction of Training Sets for Valid Calibration of in Vivo Cyclic 
Voltammetric Data by Principal Component Analysis. Anal Chem, 87(22), 11484-11491. 

Singh, Y. S., Sawarynski, L. E., Dabiri, P. D., Choi, W. R., & Andrews, A. M. (2011). Head-to-
head comparisons of carbon fiber microelectrode coatings for sensitive and selective 
neurotransmitter detection by voltammetry. Anal Chem, 83(17), 6658-6666. 

Sombers, L. A., Beyene, M., Carelli, R. M., & Wightman, R. M. (2009). Synaptic overflow of 
dopamine in the nucleus accumbens arises from neuronal activity in the ventral 
tegmental area. J Neurosci, 29(6), 1735-1742. 



67 
 

Steinberg, E. E., Boivin, J. R., Saunders, B. T., Witten, I. B., Deisseroth, K., & Janak, P. H. 
(2014). Positive reinforcement mediated by midbrain dopamine neurons requires D1 and 
D2 receptor activation in the nucleus accumbens. PLoS One, 9(4), e94771. 

Takmakov, P., et al. (2010). Carbon microelectrodes with a renewable surface. Anal Chem, 
82(5), 2020-2028. 

Wang, H. L., Qi, J., Zhang, S., Wang, H., & Morales, M. (2015). Rewarding Effects of Optical 
Stimulation of Ventral Tegmental Area Glutamatergic Neurons. J Neurosci, 35(48), 
15948-15954. 

Wightman, R., et al. (2007). Dopamine release is heterogeneous within microenvironments of 
the rat nucleus accumbens. Eur J Neurosci, 26(7), 2046-2054. 

Wise, R. A. (1996). Addictive drugs and brain stimulation reward. Annu Rev Neurosci, 19, 319-
340. 

Witten, I. B., et al. (2011). Recombinase-driver rat lines: tools, techniques, and optogenetic 
application to dopamine-mediated reinforcement. Neuron, 72(5), 721-733. 

Yeomans, J., & Baptista, M. (1997). Both nicotinic and muscarinic receptors in ventral tegmental 
area contribute to brain-stimulation reward. Pharmacol Biochem Behav, 57(4), 915-921. 

Yeomans, J. S., Maidment, N. T., & Bunney, B. S. (1988). Excitability properties of medial 
forebrain bundle axons of A9 and A10 dopamine cells. Brain Res, 450(1-2), 86-93. 

Yorgason, J. T., Espana, R. A., & Jones, S. R. (2011). Demon voltammetry and analysis 
software: analysis of cocaine-induced alterations in dopamine signaling using multiple 
kinetic measures. J Neurosci Methods, 202(2), 158-164. 

You, Z. B., Chen, Y. Q., & Wise, R. A. (2001). Dopamine and glutamate release in the nucleus 
accumbens and ventral tegmental area of rat following lateral hypothalamic self-
stimulation. Neuroscience, 107(4), 629-639. 

 



68 
 

 
CHAPTER 3: DEPLETION OF RELEASABLE DOPAMINE DRIVES DISSOCIATION 

BETWEEN PHASIC DOPAMINE RELEASE AND CONTINUOUS ICSS  
 

INTRODUCTION 

 The crucial role of dopamine in reward-seeking behavior is well established through a 

host of different behavioral paradigms and experimental techniques (Adamantidis et al., 2011; 

Ikemoto & Panksepp, 1999; Schultz, 1998; Wise, 2002). One popular method for studying 

reward pursuit is intracranial self-stimulation (ICSS), in which subjects are trained to self-

administer brain stimulation (Carlezon & Chartoff, 2007; Olds & Milner, 1954). With ICSS, the 

direct nature of the stimulus (e.g. electrical or optical stimulation) bypasses peripheral inputs 

and avoids satiety, which can affect self-administration of drugs of abuse and food reward 

(Wise, 1996). Furthermore, ICSS can be readily combined with behavioral or pharmacological 

manipulations to test their effect on reward (Fulton et al., 2000; Markou & Koob, 1991; Negus & 

Miller, 2014). Unsurprisingly, given its importance in other reward-seeking paradigms, there is 

strong evidence that dopamine release is critical for ICSS behavior. Brain regions that support  

vigorous ICSS responses have high densities of dopamine cells (Corbett & Wise, 1980) or their 

projections, and drugs that manipulate dopamine levels tend to alter ICSS in a predictable 

manner (Carlezon & Chartoff, 2007; Negus & Miller, 2014; Wise, 1996). Perhaps the most 

incontrovertible evidence for the role of dopamine in ICSS comes from optogenetic studies, in 

which selective optical stimulation of dopamine neurons is necessary and sufficient to promote 

this behavior (Adamantidis, et al., 2011; Ilango et al., 2014; Steinberg et al., 2014; Witten et al., 

2011).  

While accumulated evidence has made it clear that dopamine is a key mediator of ICSS, 

there have been relatively few investigations into how dopamine release is related to ongoing 
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ICSS behavior. Microdialysis measurements reveal increased dopamine overflow in the nucleus 

accumbens (NAc) over the order of minutes to hours during ICSS responding (Fiorino et al., 

1993; Hernandez et al., 2006; Hernandez et al., 2012). However, this technique is insufficient to 

measure phasic dopamine release events on a time scale relevant to individual responses. In 

contrast, measurements using fast-scan cyclic voltammetry (FSCV) have revealed that phasic 

dopamine release appears to be dissociated from ICSS behavior. While early studies suggested 

a complete loss of dopamine release during ICSS (Garris et al., 1999; Kruk et al., 1998), more 

recent investigation has suggested that these results were an effect of inadequate sensitivity, 

though more sensitive FSCV measurements still revealed a decrease in dopamine release 

during continuous responding (Rodeberg et al., 2016). The source of this decay in electrically-

evoked dopamine release remains unclear. One proposed theory has been that the decline in 

the phasic dopamine signal is an effect of reward predictability; stimulation patterns acquired in 

behaving rats appeared to evoke more consistent dopamine release in ‘yoked’ controls (Garris, 

et al., 1999), which corroborates previous electrophysiological studies that suggested 

unexpected reward elicit greater dopamine activity than fully expected rewards (Mirenowicz & 

Schultz, 1996; Schultz, 1998). Conversely, the diminishing dopamine signal during ICSS could 

result from depletion of releasable dopamine due to excessive stimulation (Michael et al., 1987; 

Montague et al., 2004). Consistent with this hypothesis, longer timeouts between stimulations (5 

– 25 s) permit continual monitoring of dopamine release (Owesson-White et al., 2008).  

 Two of the most frequently tested drugs with ICSS, amphetamine and cocaine, are well 

established to augment ICSS behavior (Elmer et al., 2010; Gilliss et al., 2002; Negus & Miller, 

2014). In addition to their role as blockers of the dopamine transporter (DAT), both drugs 

facilitate electrically-evoked dopamine release. Cocaine promotes dopamine release through 

the recruitment of reserve pools of vesicles in a synapsin-dependent process (Kile et al., 2010; 

Venton et al., 2006). The mechanism for amphetamine-induced augmentation of dopamine 

release is less clear. Early investigations in brain slices and anesthetized rodents suggested 
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amphetamine decreases electrically-evoked dopamine release in response to prolonged (~10 s) 

stimulation; this effect of amphetamine was attributed to depletion of synaptic dopamine 

vesicles via actions at the vesicular monoamine transporter, and subsequent efflux of cytosolic 

dopamine through DAT (Jones et al., 1998; Kuhr et al., 1985; Schmitz et al., 2001). However, 

more recent studies have demonstrated that amphetamine augments dopamine release in the 

NAc in response to shorter stimulation durations (0.4 s) (Avelar et al., 2013; Covey et al., 2013; 

Daberkow et al., 2013). This cannot be solely attributed to uptake inhibition, as the magnitude of 

dopamine transients is relatively insensitive to changes in uptake (Howard et al., 2013). 

Interestingly, the ability of amphetamine to enhance electrically-evoked release depends 

critically on the stimulus duration and brain region, as long-train (10 s) and short-train (0.4 – 2 s) 

stimulation decrease and increase electrically-evoked release in the dorsal striatum following 

amphetamine, respectively, while decreases are not typically seen in the NAc (Covey, et al., 

2013). These effects have been attributed to the ability of amphetamine to boost the readily 

releasable pool of dopamine vesicles while simultaneously depleting the reserve pool.  ICSS 

stimulation patterns represent interplay between these two stimulus durations and their 

corresponding vesicular pools, as ICSS consists of short but rapidly-repeated stimulation trains. 

Therefore, it is unclear how amphetamine alters dopamine release in the NAc during repeated 

ICSS responding. 

 This study further investigates the relationship between phasic dopamine release and 

ICSS behavior by testing the effect of reward expectancy and drugs of abuse (i.e. cocaine and 

amphetamine) on dopamine release patterns during continued responding. These experiments 

reveal that the expectancy of stimulation plays a minimal role in the decay of the dopamine 

signal. Moreover, while cocaine and amphetamine both boost electrically-evoked release during 

ICSS in a similar manner, their maximal effects are relatively short-lived compared to sustained 

increases in ICSS responding. In support of previous studies, these results do not support a key 

role of dopamine release magnitude in ongoing ICSS behavior. 
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EXPERIMENTAL 

Animals 

 Male Sprague-Dawley rats (250-450 g) were purchased from Charles River (Wilmington, 

MA, USA). Subjects were housed individually following surgery on a 12/12 hr light/dark cycle 

with ad libitum access to both food and water. All in vivo procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of North Carolina at 

Chapel Hill.  

 

Surgery 

 Animals were anesthetized with isoflurane (induction 4%; maintenance 1.5%-2.5%) and 

prepared for FSCV recordings in the NAc as previously described (Rodeberg, et al., 2016). All 

stereotactic measurements were made with respect to the skull landmark bregma. A guide 

cannula (Bioanalytical Systems, West Lafayette, IN) for the glass-encased carbon-fiber 

microelectrode was placed in the right hemisphere above the NAc (AP +1.7 mm, ML +0.8 mm, 

DV 2.5 mm from skull surface), with a cannula placed in the contralateral hemisphere for 

implantation of a fresh reference electrode on the day of the experiment. A bipolar stimulating 

electrode (Plastics One, Roanoke, VA) was targeted at the ventral tegmental area (VTA) (AP -

5.2 mm, ML +1.0 mm, DV -8.6 mm). Cannulas and stainless steel screws were affixed to the 

skull surface with acrylic dental cement. Each animal was allowed a minimum of three days to 

recover post-surgery before ICSS training. 

 

 



72 
 

Behavior 

Fixed-interval ICSS 

Rats were first trained in fixed-ratio 1 (FR1) ICSS following previous protocol (Garris, et 

al., 1999; Rodeberg, et al., 2016). Briefly, subjects were placed in operant chambers 

(MedAssociates Inc., St. Albans, VT, USA) and tethered to a head-mounted amplifier attached 

to a swiveled commutator (Crist Instrument Co., Hagertown, MD, USA) that allowed movement 

around the chamber. First, electrical stimulation (60 Hz, 24 biphasic pulses, 2 ms pulse width) 

was given to each subject and adjusted to the maximal in-range current (75-175 µA) that 

induced appetitive behavior (e.g. rearing, sniffing, exploring) without evoking substantial motor 

effects (e.g. circling, bucking) that would interfere with acquisition of ICSS behavior. Next, ICSS 

was initiated with the onset of white noise and extension of a lever into the chamber, which was 

positioned beneath an illuminated cue light. Each subject was primed with electrical stimulation 

as it approached the lever until animals acquired ICSS (i.e. pressed the lever on an FR1 

schedule without interruption). 

Following acquisition of FR1 ICSS, animals were trained on a fixed-interval (FI) schedule 

of ICSS. In this paradigm, each stimulation-reinforced lever press was followed by a timeout in 

which electrical stimulation was unavailable. During this timeout, the lever remained extended 

so that unreinforced responses could be recorded as time-locked, digital events. The minimum 

time between stimulations was gradually increased from 1 s (FI1) to 5 s (FI5) over successive 

sessions.  Animals were trained for a maximum of three sessions per day, separated by thirty 

minute timeouts, with a maximum of 150 stimulations per day. Animals were considered 

sufficiently trained for voltammetric recordings once the press rate was stable (± 10 % for three 

consecutive sessions). On recording day, animals pressed on a FI5 schedule for two separate 

sessions separated by a 30 min timeout. 
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‘Yoked’ controls 

 Yoked control animals (n = 5) were surgically prepared as described above, but were not 

trained in ICSS before FSCV recordings. Instead, stimulation current was adjusted on the day of 

measurements. All subjects received an identical stimulation pattern that was obtained in a 

separate rat in a previous study using an FR1 stimulus pattern (Rodeberg, et al., 2016). This 

stimulation record was chosen because it resulted in FSCV data with minimal overlap of 

electrically-evoked dopamine transients, which can interfere with quantitation and subsequent 

comparisons between animals. During yoked stimulation, the behavioral chamber was adjusted 

similarly (i.e. white noise, cue light) but without lever extension. 

 

FSCV recordings 

Electrode construction  

Carbon fibers (T-650, Thornel, Amoco Corporation, Greenville, SC) were aspirated into 600 µm 

outer diameter borosilicate glass capillaries, sealed using a heat-puller (Narishige, Tokyo, 

Japan), and trimmed to 100 µm in length. To solidify the seal, each electrode was dipped in 

heated epoxy resin (Epon 828, Miller Stephenson Chemical Co., Inc., Danbury, CT) mixed with 

15% hardener m/m (m-phenylenediamine, Sigma, St. Louis, MO) for 30 s followed by a brief 

rinse in warm acetone. Following one night of drying at air temperature, the electrodes were 

cured at high temperatures (100° C for 4 hr, 150° C overnight) before use. 

 

FSCV Measurements 

 All FSCV measurements were made with a waveform that swept from a holding potential 

of -0.4 V to +1.3 V and back at 400 V/s against a freshly implanted Ag/AgCl reference electrode; 

this waveform was demonstrated previously to provide a favorable balance of sensitivity and 

temporal resolution for recordings during continuous ICSS (Rodeberg, et al., 2016). Each 

electrode was cycled in the brain for a minimum of 30 minutes at a high frequency (60 Hz) 



74 
 

followed by 15 min at the recording frequency (10 Hz) before dopamine measurements to allow 

conditioning of the electrode surface to stabilize. FSCV data was collected using HDCV 

software (Bucher et al., 2013) built in LabView (National Instruments, Austin, TX), with a locally 

designed potentiostat (UEI, UNC Electronics Facility).  

 On the day of the experiment for both yoked and ICSS-trained animals, a 

micromanipulator was used to drive the working electrode along the dorsal-ventral axis in 75 µm 

increments through the implanted guide cannula.  Once a site supporting robust dopamine 

release was found, behavior (yoked or ICSS) was initiated. 

 

Drug administration 

 Cocaine (20 mg/kg, RTI International, Raleigh, NC), d-amphetamine (2.5 mg/kg, Sigma, 

St. Louis, MO), or vehicle (0.9% saline, Hospira, Rocky Mount, NC) (n = 5 for all groups) were 

administered via intraperitoneal injection (1 mL/kg) 10 min into the 30 min timeout between FI5 

ICSS sessions. These doses were chosen to ensure robust changes in phasic dopamine 

release that could be tracked over time. Successful drug delivery was confirmed with 

measurement of increased spontaneous transients and altered electrically-evoked release (i.e. 

increased amplitude and width compared to pre-drug recordings).   

 

Data analysis  

 Voltammetric data was analyzed using HDCV Analysis software. Principal component 

regression with residual analysis was used to extract dopamine concentrations as described 

previously (Heien et al., 2005; Keithley et al., 2009; Rodeberg et al., 2015). Briefly, electrical 

stimulation was varied in intensity (i.e. current amplitude, pulse number) post-experiment to 

evoke dopamine and pH changes that spanned the ranges of current seen during recordings. 

Residual analysis was used to confirm PCR model validity for all predicted transients; any 
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transient for which Qt passed the within-subject training set Qα at peak dopamine concentration 

was discarded. 

 ICSS and yoked stimulation data were broken into 10 s segments centered ± 5 s around 

each electrical stimulation. Each segment was digitally background subtracted preceding the 

electrically-evoked dopamine transient. As observed with previous measurements using the 

+1.3 V waveform, dopamine transients were detected for every stimulation. However, due to 

heterogeneity of release sites in the NAc (Wightman et al., 2007) and between-subject 

differences in current intensity that supported ICSS, average electrically-evoked dopamine 

concentrations varied between subjects. Therefore, to make more reliable comparisons, 

dopamine concentrations were normalized against the magnitude of the first electrically-evoked 

dopamine transient during ICSS, as done previously (Rodeberg, et al., 2016). 

 

Statistics 

 Data is expressed as mean ± standard error. All statistical analyses were made using 

GraphPad Prism software, with a significance threshold of p < 0.05. Two-tailed t-tests were 

used to compare (normalized) electrically-evoked dopamine amplitudes before and after 

treatment for both non-contingent stimulation and the first stimulation during ICSS 2 (i.e. post-

treatment). For each FI5 ICSS session within each treatment group, paired two-tailed t-tests 

were used to compare within-session changes in average press rate and average dopamine 

concentrations between the two halves of the session. A repeated-measures two-way ANOVA 

was used to test the effect of two independent variables (ICSS session, drug treatment) on a 

dependent variable (press rate). Single-phase decays were fit with the least squares fitting 

method, and extra sum-of-squares F tests were used to compare parameters (rate of decay (k) 

and plateau) between ICSS paradigms (i.e. FR1 vs. FI5 ICSS) and sessions (i.e. before and 

after drug treatment).  
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RESULTS 

Yoked ICSS 

 Previous investigations have reported that electrically-evoked dopamine transients 

appeared more frequently during unexpected, ‘yoked’ stimulation patterns than in subjects 

responding for ICSS with an FR1 stimulus pattern (Garris, et al., 1999). This was partially 

attributed to the unexpected nature of the stimulus, as unexpected rewards are demonstrated to 

activate dopamine neurons more potently than fully expected rewards (Mirenowicz & Schultz, 

1996; Schultz, 1998). However, a systematic comparison of dopamine concentrations between 

these two groups has not been attempted, partially due to limited sensitivity in previous 

experiments. With this aim, rats (n = 5) with no previous exposure to electrical stimulation 

(‘yoked’ controls) were subjected to an ICSS stimulation pattern acquired from a trained animal 

in a previous study (Rodeberg, et al., 2016). The particular pattern used was selected because 

it resulted in minimal overlap of electrically-evoked dopamine transients, which can impede 

reliable quantitation and subsequent comparisons. A voltammetric waveform with an anodic limit 

of +1.3 V was used due to previous demonstration that this waveform had the best balance of 

sensitivity and temporal resolution for measurements during FR1 ICSS (Rodeberg, et al., 2016).  

During yoked stimulation, dopamine release was monitored in the NAc using FSCV (Figure 

3.1a). Following extraction of dopamine conc entrations using PCR, the dopamine profiles (i.e. 

normalized dopamine transient magnitude vs. stimulation number) collected in yoked animals 

were compared to data from the original, behaving animal (Figure 3.1b). Similar to 

measurements in the original animal (black squares), electrically-evoked dopamine release in 

yoked controls (blue circles) declined in magnitude over the 50 successive stimulations. The 

decline in dopamine concentrations in each naïve animal was significantly correlated with the 

decline in the behaving animal for all subjects (0.562 < r2 < 0.721, p < 0.0001 for each subject). 

The behaving and yoked data both fit single-phase decays (r2 = 0.810 and 0.964, respectively); 

notably, there was no significant difference between the decay rates (K) of the two fits (Kbeh =  
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Figure 3.1. Electrically-evoked dopamine release during yoked-ICSS (FR1) stimulation pattern. 
a) Representative voltammetric data from a subject receiving a yoked stimulation pattern 
acquired in a previous subject. The concentration vs time trace (black, scale bar = 100 nM) 
extracted with principal component regression reveals dopamine transients evoked by each 
electrical stimulation (red bars) in the 30 second trace. The peak value for each evoked 
transient ([DA]max) was determined for every corresponding electrical stimulation. The color plot 
beneath the concentration trace serves as a qualitative representation of this 30 s segment. b) 
Comparison of [DA]max between the behaving animal (black squares) and yoked controls (blue 
circles, mean ± SEM, n = 4). Peak evoked release over successive stimulations (n = 50) 
declined in a highly similar fashion between the behaving and non-behaving subjects. 
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0.0257, Kyoke = 0.0270, p = 0.964).  This suggests that the expectancy of electrical stimulation 

plays a minimal role in the decay of dopamine release during ICSS. 

 

Fixed-interval ICSS 

 As the expectancy of the reward does not seem to drive the decay of phasic dopamine 

release during prolonged ICSS, the most plausible hypothesis remains to be depletion of 

releasable dopamine. If this is the case, slower stimulation patterns should result in less 

attenuation of the dopamine signal. With this aim, we used a fixed-interval 5 (FI5) schedule of 

ICSS responding, which limits the rate of stimulations each subject can receive. However, in 

contrast to previous ICSS studies with fixed- and variable-time outs (Cheer et al., 2005; 

Owesson-White, et al., 2008), the lever remained extended event when stimulation was 

unavailable, so that ICSS behavior could be continually monitored (i.e. unreinforced responses 

were recorded) (Figure 3.2). Stimulations were administered following each 5 s interval if the 

subject pressed the lever within the relevant window. Therefore, while each rat received a 

nearly identical stimulation rate (12 stim/min), differences in ICSS behavior between subjects 

could be delineated from overall press rates, which included unreinforced responses.  

A previous ICSS protocol was used in which each subject performed two self-stimulation 

sessions separated by a 30 min timeout (Garris, et al., 1999; Rodeberg, et al., 2016). We 

compared the FI5 response rates to the average response rates from all tested animals (n = 12) 

from a previous FR1 study (Rodeberg, et al., 2016), which used the same stimulation 

parameters and range of stimulation currents. Though the rate of electrical stimulation was 

lower on an FI5 schedule (i.e. limited to 12 stim/min), animals were found to press at a similar 

rate for both ICSS 1 (FR1: 26.3 ± 3.3 response/min; FI5: 31.7 ± 5.2 response/min) and ICSS 2 

(FR1: 29.0 ± 4.1 response/min; FI5: 29.4 ± 5.0 response/min). This indicates that, with the 

stimulation parameters employed, changing FR1 to FI5 did not appreciably alter ICSS behavior. 
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Figure 3.2. Fixed-interval 5 (FI5) paradigm for ICSS. Within each 5 s window, the animal must 
respond to receive a stimulation (red bars) following expiration of the timeout. However, in 
contrast to other timeout paradigms, the lever remains extended between stimulations, which 
permits free responses on the lever (grey bars) which have no programmed consequence, but 
are recorded for overall metrics of response rate. Electrical stimulation of the VTA evokes 
dopamine transients, which are well resolved due to spacing between adjacent stimulation. 
Scale bar: 100 nM.  
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Figure 3.3. Comparison of the decline in electrically-evoked dopamine release between FR1 (n 
= 4) and FI5 (n = 5) ICSS measured on the +1.3 V waveform. Dopamine concentrations were 
normalized against the first electrically-evoked dopamine transient in the first ICSS session to 
control for differences in transient magnitudes and provide more reliable comparisons between 
subjects. Exponential fits to each set of data revealed that dopamine release plateaued at a 
higher concentration in both ICSS sessions for FI5 responding compared to an FR1 schedule. 
Moreover, while dopamine declined at a quicker rate in ICSS 2 compared to ICSS 1 on an FR1 
schedule, there was no significant difference in decay rate between sessions for FI5 
responding. This data demonstrates that increased spacing between stimulations lessens 
attenuation of the dopamine signal, consistent with the dopamine depletion hypothesis for 
phasic dopamine release during ICSS.  
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Table 3.1. Comparison of dopamine profiles during dual session ICSS on FR1 and FI5 
paradigms. The best fit values for the first-order rate of decay (k) and plateau, as well as the 
coefficients of correlation, are displayed for each ICSS paradigm and ICSS session.  

 ICSS 1 ICSS 2 

k Plateau r2 k Plateau r2 

FR1 0.0654 0.285 0.915 0.157 0.199 0.919 

FI5 0.0781 0.633 0.782 0.0497 0.458 0.844 
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We compared the dopamine profiles during FI5 ICSS to FR1 ICSS data collected with 

the same waveform (n = 4) (Rodeberg, et al., 2016) (Figure 3.3). Notably, the x-axis in this plot 

represents stimulation number, so that comparisons in the dopamine concentration profile can 

be made; however, it should be understood that FI5 sessions were longer in duration than FR1 

sessions, in which stimulation was freely available. In both paradigms, dopamine release was 

detected reliably throughout both sessions using a waveform with an anodic limit of +1.3 V. 

Each ICSS session for each respective paradigm (FR1, FI5) was fit with a single-phase decay, 

and best-fit values for the rate of decay (k) and the plateau were compared (Table 3.1). The 

FR1 schedule resulted in a statistically significant increase in k (p < 0.0001) and a lower plateau 

(p = 0.0109) for the second ICSS session compared to the first. In contrast, k was not 

significantly different between sessions on a FI5 schedule (p = 0.198), though the plateau was 

significantly lower for the second session (p < 0.0001). Comparisons between FR1 and FI5 

paradigms revealed that the FI5 schedule resulted in higher plateaus for both sessions (ICSS 1, 

p = 0.0004; ICSS 2, p = 0.0124), and a lower k for the second ICSS session (p < 0.0001) but 

not the first (p = 0.5525). Altogether, this data indicates that a FI5 schedule lessens the 

attenuation of the dopamine signal compared to a continuous FR1 schedule, which is in line 

with previous studies that demonstrated more stable dopamine release with fixed- and variable-

timeout paradigms (Cheer, et al., 2005; Owesson-White, et al., 2008).  

 

Cocaine and amphetamine administration 

 Next, we tested the effects of two drugs known to facilitate ICSS behavior, cocaine and 

amphetamine (Elmer, et al., 2010; Gilliss, et al., 2002; Negus & Miller, 2014), on dopamine 

release during ICSS. Interestingly, cocaine has been demonstrated to facilitate phasic 

dopamine release via recruitment of reserve pools of vesicles in a synapsin-dependent process 

(Venton, et al., 2006). Therefore, it is possible that some of the success of cocaine in facilitation 

of ICSS behavior is due to its ability to augment and/or maintain electrically-evoked dopamine 
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release. In a similar fashion, amphetamine, has been demonstrated to augment electrically-

evoked dopamine release with the short stimulation trains used here for ICSS (Avelar, et al., 

2013; Covey, et al., 2013; Daberkow, et al., 2013), though decreases in electrically-evoked 

release in vivo have been reported for long train (~10 s) stimulation (Kuhr, et al., 1985). 

However, all of these studies were done with well-separated electrical stimulations, and it is 

unknown how these drugs affect phasic dopamine release during ICSS-like stimulation. 

However, both cocaine and amphetamine act as potent DAT blockers (Giros et al., 1996) which, 

in combination with potential increases in pressing rate, would lead to unresolved dopamine 

transients on an FR1 schedule; this would prevent reliable tracking of phasic dopamine 

dynamics during ICSS following administration of  either drug. Thus, the effects of both drugs 

were tested on an FI5 ICSS schedule. 

The two tested drugs, cocaine and amphetamine, were administered between sessions 

(20 min preceding the second ICSS session) so that their effects on dopamine release during 

ICSS could be compared to within-subject, pre-drug data. To ensure this dose timing was 

adequate for full onset of each drug, the two drug doses used for ICSS studies (cocaine, 20 

mg/kg i.p.; amphetamine, 2.5 mg/kg i.p.) were tested for their effects of electrically-evoked 

release in urethane-anesthetized animals (n = 5 for each group) (Figure 3.4a-b). Both drugs 

increased the amplitude ([DA]max) and duration (t1/2) of dopamine transients compared to pre-

drug values, which was consistent with previous reports on their effects on electrical stimulation 

(Daberkow, et al., 2013; Venton, et al., 2006). The maximal effect of cocaine on [DA]max (176 ± 

16%  of pre-drug values, 6 min) was more rapidly reached than the effect of amphetamine (183 

± 23%, 14 min). However, both drugs had stable augmentation of release within the time 

window in which FI5 ICSS was performed (range between animals indicated for both drugs by 

vertical dashed bars). Furthermore, non-contingent electrical stimulation was given before each 

FI5 ICSS session in each tested subject to verify onset of the drug (Figure 3.4c-d). Cocaine and  

amphetamine both augmented electrically-evoked release compared to pre-drug amplitude   
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Figure 3.4. The effects of cocaine (20 mg/kg) and amphetamine (2.5 mg/kg) on electrically-
evoked (60 Hz, 24 pulses) dopamine release. a-b) Dose-timing curves for the effects of cocaine 
(a) and amphetamine (b) in urethane-anesthetized animals on peak dopamine transient 
magnitude ([DA]max) and the decay rate (t1/2). These data reveal that the effect of these drug 
doses on electrically-evoked dopamine release is stable during the time period following 
treatment that was assayed in subjects performing FI5 ICSS (range depicted with vertical 
dashed black bars).  Electrical stimulations were spaced at 2 min intervals to prevent 
stimulated-induced attenuation of the dopamine signal. c-d) Electrically-evoked dopamine 
release before and after cocaine (c) and amphetamine (d) administration in awake animals. 
Consistent with the data in anesthetized animals, cocaine and amphetamine increased both 
release magnitude and duration. Scale bars: 200 nM. 
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(post cocaine: 169 ± 5% of pre-drug amplitude, t8 = 12.48, p < 0.0001); post amphetamine: 158  

± 11%, t8 = 5.161, p = 0.0009), while saline injection produced no significant changes (post 

saline: 86 ± 7%, t8 = 2.063, p = 0.073). 

Representative color plots, in addition to current versus time traces at the peak oxidation 

potential for dopamine, are shown for two minutes of FI5 ICSS responding following cocaine 

(Figure 3.5a) and amphetamine (Figure 3.5b) administration. The current versus time traces 

suggest raised ‘baseline’ levels of dopamine during pressing; this is likely the effect of DAT 

inhibition for both drug treatments. However this information is only qualitative, as PCR failed 

residual analysis over these extended time windows, preventing reliable long-term quantitation 

of dopamine levels. Instead, we monitored average dopamine release over a 30 s interval 

during initiation of ICSS session following each treatment. Dopamine concentrations were 

normalized against the magnitude of the first electrically-evoked transient within each trace to 

control for differences in concentrations between recording sites (Figure 3.5c). On this time 

interval, electrically-evoked dopamine release following saline treatment was stable, and 

returned to baseline between each successive stimulation (Figure 3.5c, left panel). In contrast, 

cocaine (middle panel) and amphetamine (right panel) administration resulted in transients 

superimposed on a rising envelope of dopamine levels (~40% of the electrically-evoked 

magnitude of dopamine transients). This is consistent with the actions of both drugs at the DAT 

transporter, which prevents reuptake of dopamine between stimulations and thus raises 

extracellular dopamine levels. 

 However, to monitor dopamine release over the entirety of the ICSS session, 

background subtraction was used prior to each electrically-evoked transient to isolate phasic 

changes in dopamine. This process eliminated information regarding tonic changes in dopamine 

during ICSS. Isolation and quantitation of dopamine transients in the second ICSS session 

revealed that both cocaine and amphetamine augmented phasic release compared to saline  
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Figure 3.5. The effect of cocaine and amphetamine on dopamine release during FI5 ICSS. a) 
Representative trace of dopamine release during FI5 ICSS responding following cocaine 
administration. The current at the dopamine peak potential reveals a gradual rise in the baseline 
signal, likely an effect of uptake inhibition. Due to failure of PCR with residual analysis over long 
time periods, each transient was analyzed with local background subtraction to track changes in 
phasic signaling over time; however, these measurements preclude statements about changes 
in tonic dopamine levels using FSCV. Scale bar: 5 nA. b) A representative trace for dopamine 
release during FI5 ICSS following amphetamine administration, which exhibits similar trends to 
cocaine treatment. Scale bar: 5 nA. c) The effect of saline (left), cocaine (middle), and 
amphetamine (right) on rising dopamine baseline during early FI5 ICSS. 30 s intervals during 
early FI5 ICSS for each subject were normalized against the magnitude of the first electrically-
evoked dopamine transient in the trace to control for differences in concentrations between 
subjects. Average traces reveal that dopamine transients are superimposed on a rising baseline 
in dopamine signal following cocaine and amphetamine treatment, but not saline.  
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Figure 3.6. Phasic dopamine release patterns during drug-treated FI5 ICSS. The effects of 
cocaine (blue) and amphetamine (red) on the dopamine profile during ICSS 2 compared to 
vehicle/saline control (black). The maximal effects of cocaine and amphetamine on augmenting 
phasic dopamine release were short-lived, as evidenced by greater decay rates (K) of 
exponential fits for ICSS 2 compared to ICSS 1 for cocaine and amphetamine, but not saline. 
Exponential fits plateaued at significantly different concentrations for each treatment. 
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controls (Figure 3.6). This was particularly evident for the first electrically-evoked transient 

during the second FI5 ICSS session, which was significantly greater in magnitude than the first 

stimulation of the first FI5 ICSS session for both cocaine (171 ± 14%, t8 = 5.191, p = 0.0008) 

and amphetamine (175 ± 5%, t8 = 13.86, p < 0.0001). Interestingly, saline controls showed a 

significant decrease in the amplitude of non-contingent stimulation preceding the second ICSS 

session (83 ± 6%, t8 = 2.819, p = 0.0225), which is consistent with previous reports that a 30 

minute time out is insufficient to fully restore electrically-evoked dopamine release (Rodeberg, et 

al., 2016). However, the maximal effects of both amphetamine and cocaine wore off more 

quickly; the decay rate was larger following treatment for both cocaine (k1 = 0.0674, k2 = 0.184, 

p = 0.0021) and amphetamine (k1 = 0.0665, k2 = 0.115, p = 0.044), while there was no  

significant difference in k between sessions for saline (k1 = 0.078, k2 = 0.0497, p = 0.198). 

Nonetheless, electrically-evoked dopamine release following both cocaine and amphetamine 

treatment remained elevated compared to vehicle controls, as evidenced by significantly higher 

exponential plateaus for cocaine (0.935, p = 0.0003) and amphetamine (0.763, p = 0067) 

compared to vehicle (0.478). The plateau for cocaine was significantly higher than amphetamine 

(p = 0.0281), which indicates the effects for cocaine may be more prolonged than amphetamine 

at these respective doses. Ultimately, both cocaine and amphetamine augment phasic 

dopamine release during FI5 ICSS in a similar manner, with maximal effects occurring for early 

electrical stimulations. 

 

Correlation of behavior and dopamine levels 

 Both amphetamine and cocaine have been reported to augment ICSS behavior (Elmer, 

et al., 2010; Gilliss, et al., 2002; Negus & Miller, 2014). Therefore, it is possible that there is a 

relationship between the ability to augment dopamine release and the vigor of ICSS behavior. 

First, the press rates for the two sessions of FI5 ICSS were investigated as a function of 

treatment (Figure 3.7a). Four of six subjects for both drug treatments had increased response  



89 
 

 

Figure 3.7. Comparison of response rates and dopamine concentrations between and across 
treatments. a) Press rates for subjects administered saline, cocaine, or amphetamine between 
sessions (n = 5 for each group). While the press rate increased in all 5 subjects for cocaine and 
3 out of 5 subjects for amphetamine, a repeated measures two-way ANOVA revealed only a 
main effect of ICSS session (p = 0.0278), with no interaction (p = 0.0755)  or main effect of 
treatment (0.4013). B) Correlation between the ratio of press rates between sessions (y-axis) to 
the initially evoked dopamine transient ([DA]I, top) and average dopamine concentrations 
([DA]avg bottom) during ICSS 2 across treatments (saline: black, cocaine: blue, amphetamine: 
red). A significant trend was seen between the change in press rate and changes in initial 
phasic dopamine release levels (p = 0.042) c) Comparison of changes in dopamine and press 
rate within session. While dopamine decreased significantly between the two halves of the ICSS 
session for both ICSS sessions within all treatments, no significant differences were seen in 
press rates within session for any group.  
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rates in the second ICSS session. A repeated-measures two-way ANOVA was used to test for 

differences in response rate (press/min) between treatment groups (SAL, COC, AMPH) and 

ICSS session. There was a significant main effect of ICSS session (F1,12 = 6.257, p = 0.0278), 

but no interaction (F2,12 = 3.229, p = 0.073) or main effect of drug (F2,12 = 0.9861, p = 0.401). 

Therefore, it cannot be stated definitively whether the tested drugs increased ICSS responding 

in this paradigm. Notably, the procedure for selecting the stimulation current was designed to 

maximize stimulated dopamine release for ease of FSCV measurements, rather than being 

optimized for stimulation currents that would favor changes in ICSS responding (i.e. 

determination of current intensity – rate curves). As a result, the two subjects that failed to press 

faster following amphetamine treatment may have been pressing near max threshold rates, 

preventing further augmentation of ICSS behavior. 

Next, it was tested whether changes (or lack thereof) of response rates following drug 

administration were correlated with changes in electrically-evoked dopamine release. Within 

treatments, there was no significant correlation between changes in the magnitude of the first 

electrically-evoked transient during ICSS 2 ([DA]i)  and changes in press rates for saline (r2 = 

0.089, p = 0.626), cocaine (r2 = 0.093, p = 0.618), or amphetamine (r2 = 0.457, p = 

0.210).However, when all treatments were grouped, there was a significant correlation between 

changes in [DA]I and press rate (Figure 3.7b) (r2 = 0.281, p = 0.042). Notably, this correlation 

includes the two subjects that did not respond faster following amphetamine treatment.  

 Lastly, comparisons were made to determine whether changes in evoked dopamine 

release within session were correlated with changes in response rates (Figure 3.7c). Each trial 

was split into two phases (first 25 presses, last 25 presses), with the average normalized [DA] 

calculated for each bin. Similarly, the press rate was normalized against the first half of the first 

ICSS session to control for differences in response rate magnitudes between animals. For 

saline-treated animals, there was a significant difference in [DA]avg between bins for ICSS 1 (t4 = 

4.351, p = 0.0121) and ICSS 2 (t4 = 4.139, p = 0.0144); however, there were no difference in 
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press rate between bins for either session (ICSS 1, t4 =  0.236, p = 0.825; ICSS 2, t4 = 0.681, p 

= 0.534). Similar trends occurred for both tested drugs. For cocaine, [DA]avg was significantly 

lower for the second half within both sessions (ICSS 1, t4 = 4.233, p = 0.0133; ICSS 2, t4 = 

4.078, p = 0.151), but there were no differences in press rate within-session (ICSS 1, t4 = 0.909, 

p = 0.4146; ICSS 2, t4 = 0.850, p = 0.443).   These trends were mirrored within amphetamine-

treated animals, as dopamine significantly changed within session (ICSS 1, t4 = 5.452, p = 

0.0055; ICSS 2, t4 = 10.84, p = 0.0004) but press rate did not (ICSS 1, t4 = 2.135, p = 0.0997; 

ICSS 2, t4 = 0.892, p = 0.423).  Altogether, this data suggests that for all treatments, [DA] 

significantly decreased between the first and second half of each ICSS session (i.e. both before 

and after treatment). However, this change in average dopamine transient magnitude was not 

accompanied by significant changes in responding. This data suggests that the changes in 

phasic dopamine release within session do not play a significant role in the modulation of press 

rate. 

 

DISCUSSION 

  This study expands and supports previous FSCV studies during ICSS in multiple ways. 

First, this study revealed that the expectancy of ICSS stimulation patterns plays a negligible role 

in the depreciation of electrically-evoked transients during ICSS, which suggests that the pattern 

of stimulation, rather than its expectancy, is the major determinant of the pattern of phasic 

dopamine release during continuous ICSS. Second, this study supports previous findings that 

timeouts between stimulations result in more gradual attenuation of the dopamine signal (Cheer 

et al., 2007; Cheer, et al., 2005; Owesson-White, et al., 2008), consistent with depletion-driven 

attenuation of dopamine release during ICSS.  To further test this, two drugs shown to augment 

phasic dopamine release and ICSS behavior, cocaine and amphetamine, were tested on a FI5 

schedule for their effects on behavior and dopamine profiles. While both drugs significantly 

increased phasic dopamine release during early ICSS, their maximal effects wore off rapidly 
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and changes in dopamine release within session were not mirrored by dynamic changes in 

behavior. Ultimately, this data supports previous evidence that dopamine release does not act 

as the ultimate reward mediator of ICSS. 

 The first finding of this study was that the expectancy of brain stimulation reward played 

a minimal role in phasic dopamine dynamics during repeated stimulation. This finding supports 

a previous microdialysis study that measured similar changes in tonic dopamine levels during 

fixed- and variable-interval stimulation (Hernandez et al., 2007). These findings are not 

altogether surprising, as electrical stimulation involves more direct activation of dopamine 

neurons than natural (i.e. food, sucrose) rewards, and thus brain stimulation reward may be 

more difficult to ‘predict away’ than other stimuli. Notably, due to the heterogeneity in the density 

of release sites in the NAc (Wightman, et al., 2007), it is difficult to assess with FSCV whether 

the absolute magnitude of dopamine transients (rather than changes over successive 

stimulation) is larger for unexpected over expected stimulation, as suggested in a previous 

study (Garris, et al., 1999). Repetitive stimulation, even in FI5 paradigms, results in significant 

attenuation of electrically-evoked stimulation even following a thirty minute time out. Therefore, 

administration of both operant- and yoked-ICSS stimulation patterns during the same recording 

session in the same animal would likely be confounded by the impact of repeated stimulation. 

However, chronically-implanted CFMs (Clark et al., 2010) would permit recordings on separate 

days in the same animal, and could therefore test this theory without these concerns. 

 Cocaine and amphetamine both augmented phasic dopamine release in a similar 

fashion during FI5 ICSS, despite their typical grouping into different drug classes when 

assessed with ICSS (i.e. amphetamine as a ‘monoamine releaser’, cocaine as a uptake 

inhibitor) (Negus & Miller, 2014), in a manner consistent with augmentation of the readily 

releasable pool of dopamine. This is in agreement with recent studies that demonstrated 

amphetamine-induced increases in electrically-evoked dopamine release for short-train 

stimulations in the NAc (Avelar, et al., 2013; Covey, et al., 2013; Daberkow, et al., 2013). 
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However, amphetamine is also thought to deplete reserve pools of dopamine vesicles via 

liberation of dopamine from synaptic vesicles via weak base action at the vesicular monoamine 

transporter and subsequent facilitation of reverse transport of dopamine through DAT. In the 

current study, the phasic dopamine profile following amphetamine plateaued at a significantly 

lower magnitude than cocaine, which is thought to have similar actions on the readily releasable 

pool (Venton, et al., 2006); this may be due to amphetamine’s depleting actions on the reserve 

pools of vesicles, which are likely increasingly interrogated during repeated stimulation. 

With the current ICSS schedule and drug dose paradigm, there was no significant main effect of 

drug on response rates, though there was a main effect of ICSS session. Manipulations of ICSS 

behavior are typically assessed with curve-sweep paradigms, which systematically test 

behavioral responses as a function of stimulation frequency before and after treatment to test 

for effects (Carlezon & Chartoff, 2007; Negus & Miller, 2014). However, with voltammetry, 

irregular stimulation frequencies can result in artifacts in the voltammetric signal, particularly in 

awake animals (Cossette et al., 2016), which can interfere with the success of multivariate 

calibration. As a result, a consistent stimulation frequency of 60 Hz was used, which has been 

shown in this lab to facilitate ICSS with FSCV recordings (Beyene et al., 2010; Cheer, et al., 

2007; Garris, et al., 1999; Owesson-White, et al., 2008). Consequently, changes in behavior 

following treatment were assessed at the same stimulation frequency and current as the 

subsequent ICSS session (and previous training). A notable limitation of this method is that the 

effect of drugs may vary as a function of baseline responding (Negus & Miller, 2014), which 

could explain why no statistically significant trends in behavior between drug treatments were 

seen with the current experimental approach, which was instead optimized for fidelity of FSCV 

recordings to track changes in dopamine release.  

Nonetheless, a significant correlation was found between the augmentation of the initial 

evoked dopamine transient during ICSS following treatment ([DA]i) and the change in press rate 

across animals. This demonstrates that augmented dopamine release is correlated with 
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increased ICSS responding. Examination of within-session dopamine release and response 

rates revealed that, despite significant within-session decreases in electrically evoked dopamine 

both before and after treatment, no significant changes in responding were seen within session. 

This suggests that sustained magnitude of dopamine transients is unimportant for ongoing ICSS 

behavior. This is consistent with the hypothesis that dopamine release in the NAc is important 

for initiation, but not maintenance, of reward-seeking behavior (Cheer, et al., 2007; Nicola, 

2010; Nicola et al., 2005). It is also supports previous assertions that dopamine release is 

unlikely to serve as the final stage in brain stimulation reward (Cossette, et al., 2016). Instead, 

other neurotransmitters are necessary for the ‘final stage’ of neurotransmission that supports 

continuous ICSS responding. Indeed, the effect of dopamine on MSNs appears to require 

concomitant local changes in glutamate (Yagishita et al., 2014), and other neurotransmitters, 

such as GABA (Cheer, et al., 2005; Steffensen et al., 2001) and acetylcholine (Yeomans & 

Baptista, 1997), have been shown to play important roles in ICSS behavior. Notably, selective 

optogenetic stimulation of VTA dopamine neurons evokes glutamate release in the NAc even 

when glutamate co-transmission is abolished (Wang et al., 2017). Therefore, even in conditions 

that highly favor selective activation of dopamine neurons (in contrast to electrical stimulation), 

other transmitters such as glutamate may be necessary for the manifestation of dopamine’s role 

in mediating ICSS behavior. Ultimately, while not assessed in this study due to the use of an 

ICSS paradigm with a continually available lever, the most important role of phasic dopamine 

release may be mediating responses to cues predicting reward availability (Cheer, et al., 2007; 

du Hoffmann & Nicola, 2014; Owesson-White et al., 2016), which represents a key factor in the 

initiation of reward-seeking behavior.  

 While our data demonstrates that sustained phasic dopamine release is not critical for 

maintenance of ICSS behavior, it is possible that underlying ‘tonic’ changes in dopamine levels 

play an important role. Previous work has shown that elevations in tonic dopamine persist for 

two hours of well-spaced (12 s inter-stimulation intervals) electrical stimulation patterns 
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(Hernandez, et al., 2006). In contrast, more rapid stimulation (~1.5 s inter-stimulation intervals) 

patterns result in higher peak changes in dopamine levels followed by decreased tone, which 

indicate depletion may alter tonic dopamine levels in a similar fashion to phasic dopamine 

release, though on different timescales. Interestingly, this depletion is followed by diminished 

ICSS responding, which indicates dopamine tone may indeed track ICSS behavior. This is in 

contrast to our findings for phasic dopamine release, which significantly attenuates within a 

single ICSS session without paired changes in behavior. Notably, amphetamine and cocaine 

both elevate tonic dopamine levels, through DAT blockade and, in the case of amphetamine, 

efflux of cytosolic dopamine into extracellular space. The subsequent elevations in tonic levels 

of dopamine, rather than their effects on phasic release, may underlie their ability to facilitate 

ICSS. Consistent with this finding, we found rising baselines in dopamine signal during early 

ICSS following amphetamine and cocaine, but not saline, treatment. Further microdialysis 

measurements during prolonged ICSS could reveal whether significant changes in tonic 

dopamine levels are tracked by dynamic changes in behavior. 
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CHAPTER 4: CONSTRUCTION OF TRAINING SETS FOR VALID CALIBRATION OF IN VIVO 

FSCV DATA BY PRINCIPAL COMPONENT ANALYSIS1 
 

INTRODUCTION 

 In vivo measurement techniques such as microdialysis and electrochemical methods 

have enhanced understanding of the roles of neurotransmitters during behavior (Bucher & 

Wightman, 2015). One electrochemical technique, fast-scan cyclic voltammetry (FSCV), is 

particularly useful to detect subsecond dopamine release in behaving animals. The cyclic 

voltammograms (CVs) provided by this technique give chemically specific information for 

identification of measured species. Most FSCV applications have utilized acutely implanted 

carbon-fiber microelectrodes, but chronically-implanted electrodes have also been used (Clark 

et al., 2010). Chronically-implanted electrodes are advantageous because they permit 

longitudinal recordings at the same location in the brain. 

 Calibration is a major concern with all in vivo techniques. Originally, the peak oxidation 

current in CVs for dopamine was scaled to concentration with a calibration factor obtained in 

vitro. However, this technique fails when multiple species overlap, as when pH and dopamine 

changes occur simultaneously (Day et al., 2007; Phillips et al., 2003; Roitman et al., 2004; 

Roitman et al., 2008), and are inappropriate for long-term dopamine measurements, such as 

slow basal level increases in response to cocaine (Heien et al., 2005; Willuhn et al., 2014a) and 

other prolonged responses (Hollon et al., 2014; Howe et al., 2013) where current contributions 

from interferences are more likely to play a role. Comparison of CVs with templates for 

                                                           
1 This chapter previously appeared as an article in Analytical Chemistry. The original citation is 
as follows: Rodeberg, N.T., Johnson, J.A., Cameron, C.M., Saddoris, M.P., Carelli, R.M., & 
Wightman, R.M. “Construction of Training Sets for Valid Calibration of In Vivo Cyclic 
Voltammetric Data by Principal Component Analysis,” Analytical Chemistry 87, no. 22: 11484. 
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dopamine, utilizing the correlation coefficient to confirm analyte identity, has also been used 

(Clark, et al., 2010; Robinson et al., 2003). More recently, principal component analysis in 

tandem with inverse least-squares regression (PCR) (Heien et al., 2004; Kramer, 1998) has 

been introduced for resolving and quantifying overlapping compounds in FSCV data (Heien, et 

al., 2005; Keithley et al., 2009). PCR models use training sets containing CVs from multiple 

electroactive analytes for calibration (Heien, et al., 2004). As a multivariate analysis technique, 

PCR uses the entire CV for concentration prediction. When used with acutely implanted 

electrodes, training sets can be constructed at the same brain location where behaviorally 

evoked chemical measurements were made using electrical stimulation to evoke defined 

chemical changes.  Detailed description of the use of PCR with FSCV can be found elsewhere 

(Heien, et al., 2004; Heien, et al., 2005; Keithley et al., 2010; Keithley, et al., 2009; Keithley & 

Wightman, 2011; Kramer, 1998).  

 Chronically-implanted microelectrodes (Clark, et al., 2010) pose unique calibration 

problems. Longitudinal experiments need to demonstrate both electrode stability and reliable 

concentration calibration over successive recording sessions. The short durations of acute 

implantation studies minimizes the neuroimmunological response and adhesion of biomolecules 

to the electrode, thus making post-experiment calibration factors obtained in vitro relevant to in 

vivo data (Peters et al., 2004). However, this may not be true for the extensive implantation 

times used in chronic recordings. The temporal distortion seen with chronically implanted 

microelectrodes (Clark, et al., 2010) suggests tissue encapsulation and/or biofouling, each of 

which represents a much different environment from those seen in post vivo calibration. Recent 

measurements with chronically implanted electrodes have found peak dopamine concentrations 

of 5 nM or less (Hollon, et al., 2014), which represents an order-of-magnitude deviation from 

dopamine concentrations measured with acutely-implanted microelectrodes during natural 

reward (Roitman, et al., 2004; Roitman, et al., 2008). The chemoanalytical power of FSCV to 

determine concentrations is important because the affinity of receptors varies significantly 
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between subtype, as highlighted for dopamine (Tritsch & Sabatini, 2012). Thus, these 

differences are concerning and may reflect problems with current calibration methodology for 

these sensors. 

 Because stimulating electrodes are rarely implanted with chronically implanted 

microelectrode, robust dopamine and pH training sets are rarely obtained in the same location 

as behavioral measurements. To circumvent this problem, one approach has utilized 

unexpected sucrose delivery, a procedure that evokes dopamine transients (Day, et al., 2007) 

for within-subject analyte verification (Gan et al., 2010; Wanat et al., 2010). Another calibration 

attempt has been the use of ‘standard training sets’ built from electrically-stimulated dopamine 

transients acquired in separate subjects (Clark et al., 2013; Flagel et al., 2011; Goertz et al., 

2015; Hart et al., 2014; Hollon, et al., 2014; Howe, et al., 2013; Wanat et al., 2013; Willuhn, et 

al., 2014a; Willuhn et al., 2014b). Here, we compare these techniques at acutely-implanted 

electrodes to previously established protocols for PCR using data from behaving animals. The 

results reveal that large concentration errors are introduced with these approaches to PCR, 

which indicate deficits in signal extraction. Furthermore, the standard training set approach 

nullifies the use of residual analysis for model validation. 

 

EXPERIMENTAL 

Animals 

 Male Sprague-Dawley rats (250-400 g) from Charles River (Wilmington, MA, USA, n = 6) 

and Harlan Sprague Dawley (Indianapolis, IN, USA, n = 19) were housed individually on a 12/12 

h light/dark cycle. Rats were given access to water ad libitum. For behavioral paradigms utilizing 

sucrose rewards, animals were food-restricted as described previously (Cameron et al., 2014).   

Animal procedures were approved by the UNC-Chapel Hill Institutional Animal Care and Use 

Committee (IACUC). 



103 
 

Surgery 

 Rats in the multiple schedule reinforcement and cue discrimination task were surgically 

implanted with jugular vein catheters (Cameron, et al., 2014). For subjects participating in 

multiple schedule reinforcement (n = 8) and Pavlovian conditioning (n = 4), rats were 

anesthetized with a mixture of ketamine hydrochloride (100 mg/kg) and xylazine hydrochloride 

(10 mg/kg i.m.) and a guide cannula (Bioanalytical Systems, West Lafayette, IN) for the working 

electrode was implanted above the nucleus accumbens (NAc) core (+1.3 mm anterior, +1.3 mm 

lateral, all measurements from bregma). A Ag/AgCl reference electrode was implanted in the 

contralateral hemisphere. A bipolar stimulating electrode (Plastics One, Roanoke, VA) was 

positioned above the ventral tegmental area (VTA) (-5.2 mm posterior, +1.0 mm lateral, -7 mm 

ventral from brain surface). The stimulating electrode was lowered in 0.2 mm increments until 

electrical stimulation resulted in diminished physical response, suggesting proximity to the 

desired stimulation site. Stainless steel screws and dental cement were used to secure all items 

to the skull surface. 

Rats for intracranial self-stimulation (ICSS, n = 5) underwent similar surgery, with minor 

differences. They were anesthetized with isoflurane (1.5-4%). The guide cannula (Bioanalytical 

Systems, West Lafayette, IN) was implanted above the NAc shell (+1.7 mm anterior, +0.8 mm 

lateral). Another guide cannula was implanted in the contralateral hemisphere for experiment-

day implantation of the reference electrode. The bipolar stimulating electrode (Plastics One, 

Roanoke, VA) was implanted 8.4-8.6 mm ventral from skull surface.  

 

Behavior 

 Three separate behavioral paradigms were investigated in this study. All training and 

experiments were conducted in plexiglass operant chambers housed in sound- and noise-

attenuated cubicles (Med Associates Inc., St. Albans, VT. USA).  
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Multiple schedule reinforcement 

 The multiple schedule reinforcement paradigm was described previously (Cameron, et 

al., 2014). Prior to surgery, rats (n = 8) were trained to press a lever for sucrose (45 mg pellet; 

TestDiet, St. Louis, MO, USA) on a fixed-ratio 1 (FR1) schedule. A cue light above the lever was 

illuminated with lever extension. Each lever press was followed by the onset of a tone (65 dB, 

2900 Hz, 20 s) and a timeout (20 s). Rats were trained until stable responding of at least 50 

presses per behavioral session. Rats were subsequently trained to lever press for cocaine (0.33 

mg/infusion, approximately 1 mg/kg/infusion, 6 s) at a separate lever; each lever press was 

followed by a different tone (65 dB, 800 Hz, 20 s) and a timeout (20 s). 

Following behavioral training, rats underwent voltammetric surgery. After recovery, rats 

were retrained for two consecutive days in separate sessions for both sucrose and cocaine 

responding. Rats subsequently underwent a multiple schedule of reinforcement for sucrose and 

cocaine, in which rats had access to the lever paired with sucrose (15 min) or cocaine (2 h), 

followed by a timeout (20 s) and availability of the other reinforcer. The order of the reinforcers 

was pseudo-randomized across animals to ensure an equal number of subjects (n=4) 

underwent each reinforcer order. 

Pavlovian conditioning 

 The second behavioral paradigm involved Pavlovian conditioning for sucrose reward, as 

described previously (Saddoris & Carelli, 2014). Rats (n = 4) underwent extensive training (9 d) 

to discriminate between a cue that predicted sucrose delivery (CS+), a cue paired with reward 

omission (CS-), and two separate CS+ presentations without reward presentation (CS+NR). 

Voltammetric recordings of cue responses were made on the tenth day of training. 

 

ICSS 

 Following surgery, rats (n = 5) were trained in ICSS as previously described (Garris et 

al., 1999). Each training session began with white noise, house and cue lights, and lever 
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extension. Rats were primed with electrical stimulation (24 biphasic pulses, 60 Hz, 75-150 μA) 

as they approached the lever until the rat acquired ICSS (FR1 schedule continuous 

reinforcement). Rats underwent two separate training sessions (2 min) on a minimum of three 

days before voltammetric recordings.  

 On the recording day, freshly prepared Ag/AgCl reference and carbon-fiber 

microelectrode were inserted and voltammetric recordings were begun. Subjects were allowed 

to press a lever continually for electrical stimulation, for two minutes or a minimum of 50 

presses. Subject C experienced an electrode break during behavior, preventing full collection of 

this data set. However, sufficient data was collected in subject C to build a training set for PCR.  

 

FSCV 

 Glass-sealed carbon-fiber microelectrodes, 90-110 μm exposed length, were inserted 

into micromanipulators that was placed in the implanted guide cannula. The microelectrode was 

lowered to the brain region of interest where robust dopamine release was identified.  The 

microelectrode and reference electrode were connected to a head-mounted amplifier attached 

to a commutator (Med-Associates, St. Albans, VT) allowing unrestricted movement. Behavioral 

events (cues, lever extension) were controlled with a MedAssociates system. FSCV data was 

displayed as two-dimensional color plots with time as the abscissa, the applied potential as the 

ordinate, and the current in false color.  

 

Data analysis 

 Statistical tests were conducted using commercial software (Statistica, Tulsa, OK; 

GraphPad Software, La Jolla, CA). Significance was tested at α = 0.05. Training sets for 

dopamine and pH were built according to guidelines described previously (Heien, et al., 2004; 

Keithley, et al., 2010; Keithley, et al., 2009; Keithley & Wightman, 2011). Training sets consisted 

of five cyclic voltammograms for both dopamine and pH changes that spanned the amplitudes 
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obtained during behavioral experiments.  Normally, the sets were from the same animal with the 

same electrode and instrumentation as the behavioral data to ensure they included noise typical 

of each electrode and recording site.  The CVs were collected during electrical stimulations that 

were not part of the behavioral data.  K-matrices (see supplementary material) for dopamine 

and pH were calculated for each set to aid in qualitative analyte identification. Currents were 

converted to concentrations using external calibration factors (10 nA/μm at the peak oxidation 

potential for dopamine, -40 nA/pH unit at EQH for pH) (Takmakov et al., 2010). 

 To characterize pH changes during each lever press for sucrose and cocaine, 

voltammetric data was divided into 20-s snippets surrounding lever presses. pH changes were 

calculated every 100 ms, and averaged into 500 ms bins during statistical analysis. If animals 

responded more for one reinforcer than another, data was truncated to provide an equal number 

of trials for each reinforcer for each subject.  

 For rats undergoing Pavlovian conditioning, two training sets were built for each subject: 

one using CVs for dopamine and pH obtained during electrical stimulation, and a second set 

using CVs from naturally occurring transients.  Time blocks (centered ± 5 s surrounding cue 

onset) were constructed and peak dopamine concentrations at cue onset or delivery of 

unexpected sucrose were obtained from local maxima in the dopamine concentration versus 

time traces in each time block taken 0-3 s following cue onset. The time point of each transient 

was recorded to ensure both training sets were analyzing the same event. Dopamine transients 

that fell below the limit of detection (3*RMS) during analysis with the electrical stimulation 

training set were excluded from data analysis.  

 For ICSS, data were analyzed in 10-s blocks (± 5 s around each lever press) and the 

peak concentrations were recorded. Each snippet was digitally background subtracted at local 

minima in the current versus time trace at the peak oxidation potential for dopamine, usually two 

to three seconds before each lever press. In cases where several presses were in rapid 

succession, the same local minima were used for the adjacent dopamine transients. Composite 
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training sets were constructed using a locally written program using LabVIEW (National 

Instruments, Austin, TX). CVs for both dopamine and pH were selected at random from each 

training sets A-E. Due to the large number of possible composite training sets (510), the number 

of training sets was limited to 10,000. This process was repeated with larger training set sizes (n 

= 2, 3, and 4 CV standards from each training set for both DA and pH). Resulting K-matrices 

and Qα values were recorded and averaged for each training set size. 

 

RESULTS & DISCUSSION 

FSCV measurements during behavior consist of multiple physiologically relevant 
components  
 

FSCV data recorded in vivo contains contributions from numerous substances.  Signals 

in dopamine rich regions often include pH changes that occur not only during electrical 

stimulation of dopaminergic pathways (Venton et al., 2003) but also during unconditioned 

(Ariansen et al., 2012; Heien, et al., 2005; Roitman, et al., 2008) and Pavlovian (Ariansen, et al., 

2012) behaviors. We illustrate these changes here with CVs obtained during a behavioral task 

for which we previously showed evoked fluctuations in dopamine (Cameron, et al., 2014). Rats 

were initially trained to press a lever for sucrose reward; each press resulted in one pellet (FR1) 

delivered into a nearby food receptacle. Rats were then trained to press a spatially separate 

lever (FR1) for intravenous infusions of cocaine. On test day, FSCV recordings were made 

during a multiple schedule, wherein rats responded for one reinforcer (FR1; sucrose, 15 min; or 

cocaine, 2 hr) followed by a 20 s timeout period (no lever extended, dark chamber), and finally 

extension of the other reinforcer-paired lever. Reinforcer order was varied across animals. 

Dopamine increases following lever presses (peak, 0.6 V) and is accompanied by a basic pH 

shift (peak, 0.2 V) (Takmakov, et al., 2010) (Figure 4.1a). These signals were resolved by PCR 

using a training set obtained at the same location via electrical stimulation of the SN/VTA. 
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Figure 4.1. pH changes depend on reinforcer identity and order. a) Example of dopamine and 
basic pH shifts for one animal during performance of the sucrose/cocaine multiple schedule. A 
three-dimensional color plot is obtained by plotting time as the abscissa, the applied potential as 
the ordinate, and the current in false color. Insets: cyclic voltammograms (CVs) immediately 
surrounding lever press reflect dopamine (black dotted line), while CVs averaged at 7 s 
following lever press indicate basic shifts in pH (blue dotted line). Background subtraction at 
white dotted line. b) (Top) Changes in pH in the NAc core during sucrose and cocaine self-
administration. pH is averaged into 500 ms bins (mean ± SEM) and aligned to lever press 
(dotted line, time 0 s) for cocaine (gray) and sucrose (black). Open bar indicates bins 
significantly higher than baseline for cocaine (Newman-Keuls post hoc test, *p < 0.05). (Bottom) 
Comparison of peak pH within a 1 s window surrounding lever press (left, green column, 
p<0.005) and 9-10 s later right, blue column, p < 0.5) for sucrose (black) versus cocaine (gray), 
p < 0.005. c) Comparison of peak pH within a 1 s window surrounding lever press for sucrose 
and cocaine when self-administered first (white bars) versus second (gray bars) in the multiple 
schedule, p < 0.005.  
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The average time course and amplitude of pH changes to sucrose and cocaine were 

found to be significantly different (Figure 4.1b), and both time courses differed from those seen 

with dopamine (Cameron, et al., 2014). The onset of pH changes preceded lever responding for 

cocaine, but not for sucrose. Cocaine-reinforced pH responses were larger than sucrose-

reinforced responses, regardless of reinforcer order (two-way mixed design ANOVA [sucrose 

vs. cocaine, within subjects factors; reinforcer order, between subject factor]; F1,6=22.12, p < 

0.005) (Figure 4.1c). This example critically illustrates the necessity for multivariate analysis 

when monitoring with FSCV, as each analyte carries distinct information. 

 

Training sets from natural rewards 

 In experiments where it is inconvenient to implant stimulating electrodes, naturally 

occurring transients, such as those evoked with unexpected sucrose delivery (Day, et al., 2007), 

have been used for analyte verification. An example is shown in Figure 4.2a, where cue-, 

sucrose-, and electrically-evoked dopamine CVs collected at the same electrode and recording 

location maintain a high correlation (0.91 <r2 <0.99). However, this procedure provides only 

qualitative information. Instead, the naturally evoked transients could be used to build a PCR 

model that permits multivariate concentration prediction. To evaluate this approach, data was 

collected in four subjects that performed a behavioral discrimination task described previously 

(Saddoris & Carelli, 2014). The signals here were dopamine transients in response to cues.  

Two training sets were built in each subject at the same electrode: one using transients evoked 

from sucrose delivery and the other from electrically evoked transients (Table 4.1). The food 

pellets tended to give a narrower range of amplitudes than the electrical stimulations (Figure 

4.2b). For each animal, the dopamine concentrations obtained with the training set employing 

electrical stimulation in the same animal were first determined.  Next, the dopamine 

concentrations computed with the sucrose-evoked training set were determined, and the 

percent difference to the values obtained with electrically-evoked training sets was found  
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Figure 4.2. Training set construction with naturally evoked transients. a) Dopamine CVs evoked 
by cues, electrical stimulation, and unexpected sucrose delivery share high correlation. b) 
Dopamine transients evoked by unexpected delivery of sucrose pellets (left) post-experiment 
have a relatively small (maximum ~ 150 nM) and narrow (~60-70 nM) range. Varying stimulation 
parameters (right) enables generation of dopamine transients over a wide range. c) Peak 
dopamine concentration values obtained using training sets built with only naturally occurring 
transients post-experiment compared to values obtained with training sets built with electrical 
stimulation in the same subject. Sucrose-constructed training sets consistently predicted lower 
dopamine concentrations than electrical stimulation training sets. 
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Subject Training Set r

2 
Qα (nA

2
) Ep,a (V) Ep,c (V) I

p,a
/I

p,c
 

SOCC1 Electrical 0.882 199.8 0.63 -0.26 2.3 

Sucrose 191.9 0.64 -0.26 6.3 

SOCC2 Electrical 0.883 473.1 0.66 -0.19 3.2 

Sucrose 413.1 0.66 -0.32 3.5 

SOCC3 Electrical 0.957 289.2 0.59 -0.25 3.9 

Sucrose 144.6 0.60 -0.23 2.1 

SOCC4 Electrical 0.923 311.6 0.58 -0.18 5.9 

Sucrose 127.4 0.59 -0.20 3.2 

 

Table 4.1. Characteristics of dopamine K-matrices for various subjects for two different training 
set construction methods: electrically-evoked or naturally occurring dopamine transients. Minor 
differences were seen in the peak potentials, while notable differences observed in the peak 
current ratio. The most significant difference between constructed training sets were Qα values, 
which were systematically lower for transients constructed only with naturally occurring 
transients. Relatively low correlation coefficients for SOCC1 and SOCC3 were due to difficulty in 
obtaining clean cyclic voltammograms from naturally occurring transients, leading to broader 
oxidation peaks (SOCC1) and minor ionic fluctuations on the anodic scan (SOCC2). 
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(Figure 4.2c). Generally, the dopamine concentrations predicted by sucrose-evoked training 

sets were considerably lower despite using the same electrode and sensitivity factor (ratio 

paired t-test, p < 0.0001 for all subjects). The large majority of transients (96.1%) were 

underestimated with few overestimations (2.3%). These differences are likely due to the narrow 

range of concentrations obtained with the sucrose-evoked transients compared to those 

obtained with electrical stimulations. Post-experiment transients evoked with unexpected 

sucrose delivery can fail to span the concentration range of transients seen during behavior, 

which has been stated previously to be an important facet of training set construction (Keithley, 

et al., 2009). Moreover, it is more difficult to separate sucrose-evoked dopamine transients from 

other chemical events, such as overlapping pH and ionic fluctuations, than it is for time-locked 

electrical stimulations, resulting in the use of impure training set standards for model 

construction. With a narrow calibration range, impure standards will have an undue influence on 

the extrapolation of the calibration curve to higher concentrations. 

 

PCR and training sets from separate electrodes 

 An alternate approach has been the use of training sets built with electrodes from other 

experiments to predict concentrations. To further investigate this approach, we used data from 

rats executing ICSS (Garris, et al., 1999). The data sets from each of the five animals were 

designated by the letters A-E.  Animals pressed a lever repetitively for approximately two 

minutes, and each lever press evoked electrical stimulation of the SN/VTA. Voltammetric 

responses were measured in the NAc with acutely implanted carbon-fiber microelectrodes.  A 

representative color plot (Figure 4.3) indicates both dopamine and pH changes, observed in all 

animals. Interestingly, the individual voltammogram shown (top left) was highly correlated with 

an isolated, electrically evoked dopamine CV (r2 = 0.851) despite clearly containing pH 

contributions, illustrating that the template approach (Clark, et al., 2010; Robinson, et al., 2003) 

is insufficient for species resolution. 
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Figure 4.3. The use of principal component analysis to predict analyte concentrations. The 
white dotted line represents the cyclic voltammogram used for digital background subtraction. 
Each black triangle indicates a lever press-induced electrical stimulation, resulting in dopamine 
release. The inset cyclic voltammogram (top left) was collected at the blue dotted line. Principal 
component analysis allows separation of the total current into contributions from dopamine and 
pH, with any remaining current contained in a residual voltammogram (bottom right). Using this 
method, concentration versus time traces are acquired for both analytes (top right, DA and 
middle right, pH). 
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 Training sets for dopamine and pH changes were constructed from data obtained during 

experimenter-delivered electrical stimulation in each animal.  Five CVs were used for each 

analyte.  The K-matrices from these data (Figure 4.4a-b) serve as graphical representations of 

the general shape of the CVs for each particular analyte. The overall shapes of dopamine and 

pH K-matrices were similar across subjects, as evidenced by high correlation coefficients 

between K-matrices (Pearson’s r, 0.953 < r < 0.992 for dopamine, 0.950< r <0.985 for pH). First, 

we calculated the concentrations of dopamine transients ([DA]max) during ICSS for each animal 

using the training set obtained within-subject. Next, we evaluated dopamine concentrations 

using training sets obtained with different microelectrodes and subjects, and these 

concentration predictions were compared to those predicted by the within-subject training set 

(Figure 4.4c). Significant differences were found (repeated measures one-way ANOVA with 

Dunnet’s multiple comparisons, Table 4.2). Application of training sets from other animals 

tended to underestimate [DA]max (78.4% peaks), though overestimations also occurred (20.3%). 

Percent deviations widely varied over a physiological range of transients (~50-300 nM), with 

deviations approaching 50% for some transients. 

 Inspection of the CVs comprising the training sets reveals the origin of these errors 

(Table 4.3). Despite the high correlation between K-matrices, differences in peak locations, 

peak separations, and ratios of peak currents exist between training sets at separate electrodes. 

Because PCR utilizes the entire CV for concentration prediction, variation in these key CV 

characteristics between electrodes causes PCR models using different training sets to predict 

different responses when applied to the same data set. Because training sets generated from 

recordings with the same electrode and recording session contain features similar to 

experimental CVs, they provide the best estimate of actual analyte responses. Thus, the 

variability in Figure 4.4c reveals the failure of calibration with alternate (between-subject) 

training sets that will ultimately lead to erroneous data interpretation. 
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Figure 4.4. Training sets built in different subjects predict different dopamine transient 
concentrations. a) Dopamine K-matrices for five different training sets (A-E). Each K-matrix is 
normalized to the external calibration factor (10 nA/μM) measured at the peak anodic potential 
(Ep,a). Differences are seen in the ratio of peak currents, peak location, and separation between 
the anodic and cathodic peaks. b) pH K-matrices from training sets A-E. Each K-matrix is 
normalized to the external calibration factor (-40 nA/pH unit) at EQ,H. c) Dopamine transients 
seen during ICSS were first analyzed with the training set built in the same subject as the 
unknown data set. These transients were subsequently analyzed with training sets built in other 
subjects, and these values were compared to the original predicted concentration. 
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Data Set  A (n = 52) B (n = 57) C (n = 17) D (n = 65) E (n = 60) 

T.S. A 103 ± 6 264 ± 26 **** 224 ± 11 **** 177 ± 18 **** 107 ± 6 **** 

T.S. B 117 ± 6 **** 296 ± 28
 

224 ± 12 **** 184 ± 21 **** 286 ± 28 **** 

T.S. C 89 ± 6 **** 257 ± 24 **** 269 ± 13 194 ± 19 **** 242 ± 11 **** 

T.S. D 87 ± 6 **** 262 ± 26 **** 282 ± 13 ** 237 ± 19 203 ± 21 **** 

T.S. E 107 ± 6 **** 286 ± 28 **** 242 ± 11 *** 203 ± 21 **** 578 ± 34 

No PCR 130 ± 6 **** 296 ± 27 204 ± 20 **** 154 ± 21 **** 524 ± 36 **** 

 
Table 4.2. Training sets (T.S.) built in different subjects predict different peak dopamine 
concentrations than training sets built within subject. Five different data sets (n = # of electrically 
evoked dopamine transients) were analyzed with five different training sets (including the 
training set built within subject, in bold). The mean maximum concentration ±  SEM of the 
dopamine transients are expressed in nM. Asterisks denote significance level from control 
within-subject training set (Repeated measures one-way ANOVA, Dunnet’s multiple 
comparisons, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). The average absolute 
percent difference in predicted concentration compared to the prediction with the correct training 
set for each individual transient is included in parentheses (mean ± SEM). These values contain 
both overestimations and underestimations in predicted peak dopamine concentration. 
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Dopamine 

T.S. Ep,a (V) Ep,c (V) ΔEp (V) Ip,a/Ip,c Ip,a Range (nA) Qα (nA
2
) 

A 0.65 -0.19 0.84 1.74 0.37  2.74 217.6 

B 0.68 -0.18 0.86 2.14 1.00  11.14 492.5 

C 0.67 -0.19 0.86 3.80 0.71  4.17 312.0 

D 0.70 -0.24 0.94 3.57 0.57  7.87 571.7 

E 0.69 -0.22 0.91 3.54 1.44  15.3 858.8 

pH 

T.S. EC (V) EQH (V) EQ (V) IQH/IQ IQH Range (nA) Qα (nA
2
) 

A -0.11 0.22 -0.06 0.90 -0.57  -1.72 217.6 

B -0.10 0.30 -0.07 1.02 -1.20  -2.52 492.5 

C -0.13 0.26 -0.09 1.02 -0.81  -1.72 312.0 

D -0.10 0.37 -0.10 1.39 -1.34  -3.96 571.7 

E -0.09 0.25 -0.10 2.04 -2.02  -6.58 858.8 

 
Table 4.3. Key parameters from the K-matrices for dopamine (top) and pH changes (bottom), 
collected in five separate animals. Differences in peak locations, relative peak amplitudes, the 
range of measured  currents, and residual thresholds were seen between animals. Qα are 
specific to overall training sets, and are therefore the same for both analytes within each 
individual training set. The importance of these parameters in cyclic voltammetry is highlighted 
in “Electrochemical Methods: Fundamentals and Applications” by Bard & Faulkner, Chapter 6 
(Bard & Faulkner, 2001). The relevance and origin of the peak parameters for pH changes has 
been described previously (Takmakov, et al., 2010). 
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Residual analysis 

 While the preceding results show that use of inappropriate training sets leads to 

significant errors in concentration prediction, an even larger problem is that model validation is 

precluded.  For training sets established within the same animal and same electrode, we have 

used residual analysis for validation (Keithley, et al., 2009), in which a residual is calculated 

from the voltammetric currents unaccounted for by the training sets. If the squared sum of 

residual current at each applied potential for a particular CV (Qt) exceeds a training set-specific 

threshold value (Qα), then, according to previously established guidelines (Jackson & 

Mudholkar, 1979), a source of variance not accounted for in the PCR model is significantly 

contributing to the signal, indicating the model is invalid to analyze the data. 

 As an example, the ten-second trace in Figure 4.3 was analyzed with both the training 

set built in the same subject (E), the appropriate training set, as well as a training set built from 

data obtained in another animal (C). Training set C yielded a relatively small (~17%) error in 

concentration prediction (compared to E) due to a notably high signal-to-noise ratio (S/N) of this 

data trace. The Qt values obtained with the appropriate training set (E) did not exceed its Qα, 

indicating a valid analysis (Figure 4.5a). In contrast, Qt values for training set C frequently 

exceeded its Qα value (Figure 4.5b), indicating that large parts of this analysis are invalid. Color 

plots of the residuals allow these unassigned currents to be evaluated as a function of potential. 

The invalid analysis (training set C, Figure 4.5b) reveals considerable unassigned current near 

the peak locations for dopamine and pH, features not present for the valid training set E (Figure 

5a). 

 The number of residual threshold crosses at [DA]max varied between applied training sets 

for each data set (Table 4.4). Data sets with low noise result in few to no residual crosses 

across training sets (ex. data set A). However, alternative training sets can produce more 

residual threshold crosses than analysis with within-subject training sets, rejecting experimental  

 



119 
 

 

 

Figure 4.5. Residual analysis with different training sets.  a) The residual trace and color plot 
from a training set built in the same subject (E). The residual trace remains below the residual 
threshold (dotted line, Qα = 858.8). The residual plot contains little unaccounted current at 
potentials where dopamine and pH contribute. b) The residual trace and color plot from a 
training set built in a different animal (C) applied to these data. The residual trace rises 
throughout the trace and crosses the residual threshold (Qα = 312.0). The residual color plot 
reveals large sources of discarded current near potentials for dopamine and pH.   
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Table 4.4. The number of transients for which Qt (at [DA]max) exceeded the Qα threshold during 
various training set misapplications. Analysis with the appropriate training set is highlighted in 
bold, with the number of residual crosses shown for alternate training sets shown for each data 
set. n = the number of electrically evoked transients in each data set.  

  

Data Set  A (n =52) B (n=64) C (n=22) D (n=65) E (n=60) 

Training Set A (Qα=217.6) 0 18 17 10 53 

Training Set B (Qα=492.5) 0 7 14 8 43 

Training Set C (Qα=312.0) 0 18 5 0 10 

Training Set D (Qα=571.7) 0 4 0 0 1 

Training Set E (Qα=858.8) 0 3 10 0 0 
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data that would be retained using proper PCR protocol (ex. data set C, E). Conversely, 

alternative  training sets can result in fewer residual crosses than the within-subject training set, 

as is the case with training sets with larger Qα (ex. training set E). This leads to the retention of 

questionable data that should have been discarded. The inappropriate inclusion of false data or 

exclusion of accurate data illustrates the failure of model validation when using generalized 

training sets.  

 

Standard training sets constructed from multiple electrodes 

 Recently, some have adopted a PCR approach that analyzes data using a “standard 

training set” built from CVs collected in multiple subjects (Howe, et al., 2013). Ideally, the 

generality of this training set would allow it to be more applicable across data sets than alternate 

training sets built from single, electrodes.  

 To evaluate this approach, composite training sets containing 10 CVs were made using 

one dopamine and one pH CV selected at random from each training set (A-E) shown above. 

Due to the large number of possible training sets (510), the number of training sets constructed 

was limited to 10,000, and the resulting K-matrices for each training set were averaged. While 

the average K-matrices for DA and pH exhibit standard shapes for these analytes, variability 

was seen between training sets, particularly between pH K-matrices (Figure 4.6a). Furthermore, 

a wide range of Qα values is seen between composite training sets (Figure 4.7a), indicating an 

inconsistent treatment of noise. 

 If this variability reflects bias based on the random selection of CV standards, increasing 

the number of standards could provide more consistent K-matrices. However, increasing the 

number of CV standards selected from each training set resulted in K-matrices that no longer 

resemble the represented analytes (Figure 4.6b-d). This reduced ability of PCR to reliably 

identify dopamine and pH stems from the increased rank of these training sets (Figure 4.7b).  

 



122 
 

 
 

 

Figure 4.6. K-Matrices from composite training sets built with standards collected at different 
carbon-fiber microelectrodes. a)  Composite training sets containing 10 CVs were made using 
one dopamine and one pH CV selected at random from each training set (A-E). b) As in a) but 
made with 20 CVs using two dopamine and two pH CVs selected randomly from each training 
set. c) As in a) but made with 30 CVs using three dopamine and three pH CVs randomly 
selected from each training set. d) As in a) but made with 40 CVs using four dopamine and four 
pH CVs randomly selected from each training set. Average (solid line) and 95% confidence 
limits (dotted line) for both DA and pH K-matrices (n=10,000) are shown for each training set 
size. 
  



123 
 

 

 

 

 
 

Figure 4.7. Parameters of interest for composite generalized training sets. a) As the rank 
increases, the Qα value decreases (684.1 ± 513.5, 303.6 ± 106.2, 170.1 ± 101.0, and 13.5 ± 
32.3 nA2

 for one through four CVs/analyte from each training set respectively.) b) As the number 
of CVs/analyte incorporated from electrode is increased, the rank (or number of primary 
components) increases (2.7 ± 0.7, 5.0 ± 0.7, 7.8 ± 1.3, and 33.5 ± 10.2 for one through four 
CVs/analyte respectively.) c) If the number of principal components retained is restricted to two, 
the Qα values increase dramatically as more CVs/analyte from each electrode (e.g. larger 
number of total standards) are used (1366.6 ± 563.8, 3065.5 ± 732.0, 4798.8 ± 750.0, 6535.1 ± 
634.3 for one through four CVs/analyte respectively). Numbers expressed as mean ± standard 
deviation (n=10,000 for each training set size). 
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Figure 4.8. K-matrices for composite training sets constrained to two principal components. 
Composite training sets containing one (a), two (b), three (c), and four (d) cyclic voltammogram 
standards per analyte (dopamine and pH) from each individual training set (A-E) were 
constructed. Instead of determining the rank of each training set with Malinowski’s F-test, the 
number of principal components for each composite training set was constrained to two. The 
average (solid line) and 95% confidence limits (dotted line) for both DA and pH K-matrices 
(N=10,000) are displayed for each training set size.  The shape of the average K-matrices for 
dopamine and pH were independent of training set size. (Pearson’s correlation, 0.999 ≤ r ≤ 
1.000 for DA, 0.999 ≤ r ≤ 1.000 for pH).     
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PCR calculates a number of principal components (PCs) equal to the number of standards in 

the training set. These PCs are separated into PCs that describe significant sources of variance 

(primary PCs) and those that do not (secondary PCs). Rank, the number of retained primary 

PCs, is an important parameter in PCR that we determine using Malinowski’s F-test (Keithley, et 

al., 2010). With this approach, each individual training set (A-E) had two primary PCs, reflecting 

features for both dopamine and pH changes. However, in composite training sets built from 

multiple electrodes, standard CVs have a wider range of key characteristics (Table 4.3) and 

different sources of deterministic current. This requires more primary PCs (e.g. higher rank) to 

describe the sources of variance.  As a result, the signal for the analytes is spread amongst 

several PCs, leading to K-matrices without clear depictions of each analyte. In this case, the 

calibration model will overfit the data, causing a diminished tolerance for uncaptured variance 

and a reduction in the Qα values (Figure 4.7a). These problems are common to PCR and are 

well characterized in the literature (Kramer, 1998).  

 In principle, one could restrain the number of primary PCs to two, reflecting only 

variance within dopamine and pH signals. This leads to much cleaner K-matrices for dopamine 

and pH for all training   set sizes (Figure 4.8). However, because Qα values are largely 

determined by information in secondary PCs (Keithley, et al., 2009), the forced removal of PCs 

that Malinowski’s F-test would retain results in very large Qα values (Figure 4.7c) precluding 

model validation.  

 

CONCLUSIONS 

 When used correctly, PCR is a powerful tool to unravel overlapping signals, particularly 

for CVs in awake, behaving animals. As shown here and elsewhere, pH changes serve as an 

intriguing indirect marker for local activity (Ariansen, et al., 2012; Roitman, et al., 2008) in 

various behavioral paradigms, carrying its own unique signal. However, despite its advantages, 
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PCR can only provide meaningful results with training sets obtained by appropriate protocols. 

Calibration sets need to span the concentration range that occurs during behavior.  

Furthermore, they should be generated using the same equipment used to collect the 

experimental data. Indeed, the transfer of multivariate calibration models between 

instrumentation is a well-documented problem in the literature (Feudale et al., 2002). The 

generalized training sets do not provide a suitable PCR model for two major reasons. First, their 

application leads to significant underestimations of concentrations, effectively diminishing the 

signal-to-noise ratio, masking small, yet biologically relevant signals. Second, generalized 

training sets violate the theory behind residual analysis, which is important for model validation. 

For FSCV, these problems arise from differences in CVs between electrodes, which can 

arise from multiple sources. Reference electrodes have been known to drift during chronic 

implantation (Heien, et al., 2005) (Zhang et al., 1999), leading to voltage offsets in the CVs. 

Voltage distortion may be particularly problematic when using chronically implanted 

microelectrodes, because impedance changes following implantation (Williams et al., 2007) 

could cause CVs to vary across recording sessions. Nonetheless, the use of acutely implanted 

working and reference electrodes in this study did not prevent differences between electrodes. 

This reflects a fundamental limitation in comparing CVs across different carbon-fiber 

microelectrodes: carbon surfaces are complex and heterogeneous (McCreery, 2008; Takmakov, 

et al., 2010), which leads to differences in electron-transfer and adsorption kinetics. Particularly, 

the pH signal was shown to vary widely across electrodes in this study, a perhaps unsurprising 

finding due to the strong dependence of the pH response on the surface state of the electrode 

(Takmakov, et al., 2010). Thus, building separate training sets for each carbon-fiber electrode 

becomes essential to convert experimental data into meaningful chemical information. The 

unpredictable deviations in dopamine concentrations across training sets (Figure 4.4c) make it 

unlikely that a standard training set could be constructed that would be consistent to all 

experiments. Indeed, PCR has been used to demonstrate systematic differences between 
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instruments, rather than reconcile data between them (Rao, 1964). Furthermore, a principal 

advantage of PCR is its ability to separate sources of variance into distinct contributions from 

signal and noise (Keithley, et al., 2009). This advantage is violated twofold with generalized 

training sets, as standards from different electrodes will not reflect noise in the experimental 

data set and will introduce unrepresentative noise. 

 A principal advantage of using chronically implanted microelectrodes is to monitor 

changes in dopamine over time at the same electrode and recording site. For such trends 

across recording sessions to be considered reliable, it must be established that concentration 

calibration methods can act consistently across recording days. In light of the variability in 

training sets from different electrodes, improved calibration methodology for these sensors is 

crucial. . Otherwise, improper PCR protocols could mask true longitudinal trends in dopamine 

release. Thus, as the original developers of PCA stated (Jolliffe, 2002; Kramer, 1998), the PCR 

model must be generated under the same experimental conditions as the data to be analyzed. 
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CHAPTER 5: HITCHHIKER’S GUIDE TO VOLTAMMETRY: ACUTE AND CHRONIC 

ELECTRODES FOR IN VIVO FAST-SCAN CYCLIC VOLTAMMETRY1 

 

TECHNIQUES FOR MONITORING MOLECULES IN NEUROSCIENCE 

Monitoring of molecules in the brain has undergone significant advances in the past four 

decades. One of the earliest techniques for measuring neurotransmitter release was push-pull 

perfusion, a method that uses a cannula for sample collection prior to downstream analysis 

(Cheramy et al., 1981; Nieoullon et al., 1977). However, the direct interface of the perfusate with 

brain tissue raised concerns with sample contamination and flow-induced damage to the 

surrounding environment. To address these issues, this procedure was later adapted to 

incorporate a dialysis membrane, creating the technique known as microdialysis (Delgado et al., 

1972; Sharp et al., 1986; Ungerstedt & Pycock, 1974; Zetterstrom et al., 1983). Microdialysis 

restricts flow to the probe, which minimizes brain damage and maintains sample purity. 

Equilibration of analytes across the membrane according to their concentration gradients results 

in concentration changes in the dialysate reflective of fluctuations in the brain. Microdialysis is 

highly versatile, with its sensitivity, selectivity, and number of analytes that can be monitored 

simultaneously dependent on the detection method employed. Its main limitation is 

spatiotemporal resolution, as microdialysis probes are typically at least 200 μm in diameter, and 

samples are historically collected approximately every 5-20 min to allow sufficient sample 

volume accumulation at low flow rates (Pettit & Justice, 1989; Sharp, et al., 1986; Zetterstrom et 

al., 1986; Zetterstrom, et al., 1983). Recent improvements, largely due to reduction in the 

                                                           
1 This chapter previously appeared as an article in the journal of ACS Chemical Neuroscience. 
The original citation is as follows: Rodeberg, N.T., Sandberg, S.G., Johnson, J.J., Phillips, 
P.E.M., & Wightman, R.M. “Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes 
for in Vivo Fast-Scan Cyclic Voltammetry.” ACS Chemical Neuroscience 8, no. 2 (2017): 221. 
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minimum volume needed for sample analysis, have permitted microdialysis measurements on a 

sub-minute time scale (Harstad & Bowser, 2016; Saylor & Lunte, 2015; Wang et al., 2008; 

Wang et al., 2010). 

 For the subset of brain molecules that are electroactive, particularly biogenic amines, 

electrochemical monitoring has flourished as an alternative methodology (Hawley et al., 1967; 

Refshauge et al., 1974). This approach was first attempted in the Ralph Adams lab with a 

carbon paste electrode implanted in the striatum of an anesthetized rat (Kissinger et al., 1973). 

Slow potential sweeps between -0.2 to +0.6 V vs. Ag/AgCl revealed peaks in current  

corresponding to the oxidation and reduction of electroactive substances; however, the identity 

of the molecule(s) producing the signal was unclear, with the authors suggesting it could arise 

from dopamine, norepinephrine, or ascorbic acid. Indeed, early voltammetric measurements 

suffered from poor chemical resolution between catecholamines and other easily oxidized 

species, often present in the brain at higher concentrations (Gonon et al., 1980; Gratton & Wise, 

1994; Huff et al., 1979; Kissinger, et al., 1973; Schenk et al., 1983; Wightman et al., 1988b). In 

response to these problems, criteria were developed to ensure that intended analytes were 

indeed the source of recorded signals, including electrochemical, anatomical, pharmacological, 

and independent verification (Kuhr et al., 1984; Marsden et al., 1988; Phillips & Wightman, 

2003). A major advance to the field came with the development of fast-scan cyclic voltammetry 

(FSCV), a technique that utilizes rapid potential sweeps to oxidize and reduce analytes of 

interest (Baur et al., 1988; Ewing et al., 1983; Stamford et al., 1984). This process produces 

cyclic voltammograms, which display measured current as a function of the applied potential, 

that serve as ‘fingerprints’ for compound identification, providing an advantage over single 

potential techniques (Baur, et al., 1988; Heien et al., 2004; Heien et al., 2003). This moderate 

chemical selectivity allows the use of chemometric methods to separate, and subsequently 

quantitate, analytes with different current-potential characteristics (see Data Analysis section 

below) (Heien, et al., 2004; Heien et al., 2005). 
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The development of carbon-fiber microelectrodes (CFMs) has aided the FSCV field in 

multiple ways (Armstrong-James & Millar, 1979; Ponchon et al., 1979; Wightman, 1981). The 

small size, and thus reduced capacitance and time constant, of these electrodes permits rapid 

scan rates (>100 V/s), which enables measurements on a sub-second time scale. Additionally, 

this relatively small size compared to traditional probes increases spatial resolution and permits 

localized measurements in discrete brain regions. Moreover, in contrast to tissue damage 

observed near microdialysis probes, minimal damage is seen surrounding fiber implantation 

sites (Kozai et al., 2015; Peters et al., 2004). These probes are also easily modified with a 

variety of surface coatings, which can improve chemical selectivity, electron transfer kinetics, 

and sensitivity (Gerhardt et al., 1984; Schmidt et al., 2013; Singh et al., 2011; Swamy & Venton, 

2007a; Vreeland et al., 2015). Lastly, carbon-based electrodes demonstrate strong 

biocompatibility, and are more resistant to biofouling than metal electrodes. These advantages 

make FSCV with CFMs an attractive measurement technique for rapid neurotransmitter 

dynamics.  

 

DEVELOPMENT OF FSCV FOR FREELY-MOVING ANIMALS 

Measurements using FSCV with CFMs were originally conducted in anesthetized 

animals (Baur, et al., 1988; Kuhr et al., 1987; Stamford, et al., 1984; Wightman et al., 1988a). 

However, these studies could not reveal direct information about neurotransmission during 

behavior. The first FSCV measurements in freely moving animals detected dopamine release in 

terminal regions, evoked by electrical stimulation of afferent axonal pathways in rats. These 

experiments used acutely implanted glass-encased CFMs lowered into the brain using head-

mounted microdrives (Garris et al., 1997; Rebec et al., 1997; Rebec et al., 1993). Later, 

behavioral evoked dopamine was detected by this approach (Robinson et al., 2001), and these 

types of recordings became routine, primarily due to improved sensitivity obtained by increasing 

the anodic limit of the waveform (Hafizi et al., 1990; Rodeberg et al., 2016)  to maintain oxygen-



 

134 
 

containing moieties on the electrode surface which enhance adsorption of positively charged 

analytes (such as dopamine) (Heien, et al., 2003). FSCV has been adapted for multimodal 

recordings with simultaneous extracellular electrophysiological recordings (Armstrong-James et 

al., 1980; Cheer et al., 2005; Owesson-White et al., 2016; Stamford et al., 1993) and 

iontophoresis (Belle et al., 2013; Herr et al., 2010; Kirkpatrick et al., 2016; Owesson-White, et 

al., 2016) at the same probe. 

The most recent generation of FSCV use in freely behaving animals has been to adapt 

CFMs for chronic implantation, permitting longitudinal measurements over an extended 

timescale in the same animal. This is not a novel direction for electrochemical monitoring, as 

earlier methodologies had adopted such an approach (Conti et al., 1978; O'Neill et al., 1983; 

Yamamoto & Spanos, 1988). Notably, these early studies, which utilize amperometry, clearly 

show the need for more chemical specificity in the measurements due to difficulty assigning the 

source of the signal. The standard fabrication of CFMs for FSCV using a glass-encased design 

had limited success when chronically implanted (Kruk et al., 1998). However, the chronic CFMs 

used today employ a basic design where a carbon fiber is sealed in a small diameter fused-

silica tube (Clark et al., 2010). Similar to results at acutely implanted CFMs (Peters, et al., 2004) 

and other miniaturized devices (Kozai et al., 2012), these electrodes were demonstrated to 

avoid the progressive immune response and cell death that can impair measurements at larger 

probes (Kozai, et al., 2015). 

With the improved sensitivity (Heien, et al., 2003) and low-noise (Michael et al., 1999) of 

modern approaches to using FSCV in vivo, recordings in striatal regions permit detection of 

dopamine elicited by task-related events such as the delivery of primary rewards (Day et al., 

2007; Hart et al., 2014), including pharmacological rewards (Aragona et al., 2008; Cheer et al., 

2007b; Fox et al., 2017; Heien, et al., 2005; Vander Weele et al., 2014) or reward-associated 

stimuli (Day, et al., 2007; Flagel et al., 2011; Owesson-White, et al., 2016; Phillips et al., 2003b; 

Roitman et al., 2004). In addition, spontaneous dopamine ‘transients’ (i.e. brief elevations in 
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extracellular dopamine concentration above the ambient level, produced by release events) can 

be observed which do not appear to be time locked to overt stimuli (Flagel et al., 2010; 

Robinson et al., 2002; Stuber et al., 2005) but are dependent upon activity in the ventral 

tegmental area (Sombers et al., 2009), and have been suggested to be a contributor to ambient 

extracellular dopamine levels in the nucleus accumbens (Owesson-White et al., 2012). While 

the function of these dopamine transients has not been fully characterized, their activity can be 

altered by behavioral context(Robinson, et al., 2002) as well as pharmacological agents 

including drugs of abuse (Cheer, et al., 2007b; Stuber, et al., 2005). 

The objective of this paper is to discuss the nuances of using FSCV in behaving 

animals, based primarily on experience on measuring striatal dopamine. We will attempt to 

discuss the potential pitfalls that can make the use of FSCV or related approaches challenging, 

and then summarize how these caveats differentially affect alternative approaches, with a 

particular focus on the use of acute or chronic electrode. 

 

EXPERIMENTAL CONSIDERATIONS 

Electrode materials and design 

The most common construction of recording electrodes for FSCV in behaving animals 

uses carbon fibers housed in glass or fused-silica capillaries. These carbon fibers  host surface 

moieties, such as carbonyl, hydroxyl, or more complex groups (McCreery, 1995; Roberts et al., 

2010), which can alter the electrochemical properties of the carbon fiber by changing its surface 

charge and steric properties. The constellation of functional groups on the carbon surface can 

be tuned with electrochemical (Suaud-Chagny et al., 1986), thermal (Strand & Venton, 2008), or 

chemical (Runnels et al., 1999) pretreatment, and will determine the selectivity of the adsorption 

of molecules to the surface, including fouling agents and electrochemical analytes. A popular 

approach using FSCV at CFMs is to use the applied waveform on each FSCV scan to 

electrochemically condition the electrode, essentially ‘pretreating’ the electrode surface each 
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time a measurement is made (Hafizi, et al., 1990). Specifically, increasing the anodic limit of the 

waveform above 1.0 V versus Ag/AgCl substantially enhances the sensitivity to dopamine by 

increasing dopamine-adsorbing oxide groups on the carbon surface and slowly etching the fiber 

surface to mitigate the effects of irreversible fouling (Hafizi, et al., 1990; Heien, et al., 2003; 

Roberts, et al., 2010). This approach has the advantage over traditional pretreatment strategies 

in that equilibrium is maintained throughout the experiment, providing stable sensitivity. 

Construction of CFMs involves housing a carbon fiber in a capillary insulator with an 

exposed length at one end (the sensor) and an electrical connection at the other. For glass-

based electrodes, a single carbon fiber is aspirated into a borosilicate glass capillary (600-

1,000-μm outer diameter, 400-500-μm inner diameter) (Figure 5.1a, left panel). The capillary is 

then pulled on a commercial glass-electrode puller (either vertical or horizontal) to produce a 

tapered seal onto the carbon fiber. Sometimes the glass seal is then deliberately broken and 

resealed using epoxy (Epon 828 with 14% m-phenylenediamine by weight), which is more 

robust (i.e. prevents unintentionally exposed carbon-fiber from providing a low resistance path 

for current) and reduces the shunt capacitance of the electrode taper by providing a thicker 

insulating layer between the carbon-fiber and the extracellular fluid. For fused-silica-based 

electrodes, a single carbon fiber is loaded into a polyimide-coated fused-silica tube (90-μm outer 

diameter, 20-μm inner diameter, 8-12-mm length) submerged in isopropyl alcohol (Figure 5.1b). 

With the carbon fiber protruding, one end of the tube is sealed with epoxy (Devcon 20845). For 

either electrode type, the carbon fiber protruding from the seal is then trimmed to the desired 

length, and an electrical connection is made at the other end. Typical lengths of the trimmed 

carbon fiber range from 50 to 200 μm, where longer exposed fibers are more sensitive, but have 

lower spatial resolution. Typically, glass-based electrodes have been used for acute 

implantation, while fused-silica-based electrodes are favored for chronic implantation due to  
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Figure 5.1. The designs of (a) borosilicate glass and (b) fused silica CFMs. a) Carbon-fibers are 
aspirated through borosilicate glass under vacuum. A seal is created by heating and pulling the 
capillary to a fine tip. The protruding fiber is then trimmed, typically between 75-125 μm. For 
optimal electrochemical performance, epoxy resin is used to fill any leaks in the seal that occur 
during electrode fabrication. Left panel: Electron micrograph of CFM, generated wit. Reprinted 
with permission from (Robinson et al., 2003). Copyright 2003 American Association for Clinical 
Chemistry. Middle panel: A rat with dual cannulas for later acute implantation of a CFM and 
reference electrode. The rat is tethered to a swivel and commutator via fastening of the 
headstage to an implanted stimulating electrode. Right panel: Side view of cannula for acute 
implantation of electrodes (left) and a micromanipulator for precise driving of the CFM during in 
vivo recordings (right). b) Carbon-fibers are threaded through a small diameter fused silica 
capillary under isopropyl alcohol. After drying, epoxy is placed on the fiber and wicked into the 
fused silica capillary to create a hemispherical seal (inset image). The protruding carbon-fiber is 
trimmed between 150-200 μm long. Electrical connection is established between a silver pin 
and the fiber with silver epoxy, which is later insulated with clear epoxy. Reprinted with 
permission from (Clark, et al., 2010). Copyright 2010 Nature Publishing Group. 
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both their durability, and biocompatibility arising from their narrow diameter and polyimide 

coating (Hassler et al., 2011). 

Not all electrodes are created equal. For glass electrodes, the structural integrity of the 

pulled seal is the most important determinant of electrode performance. Large cracks or gaps in 

the seal will lead to exposed fiber and/or increased fragility, which will impede electrochemical 

measurements. These problems can be alleviated by the use of epoxy to reinforce the seal (see 

above). For fused-silica encased CFMs, it is important that no epoxy remains on the fiber itself 

and that the seal forms a convex, rather than concave, seal (see Figure 5.1b for illustration). 

Electrochemical characteristics of either electrode design can be tested pre-experiment, either 

in vitro (i.e. in buffer) or in vivo (i.e. during surgical implantation of chronic CFMs before 

cementation, or after lowering the electrode for acute CFMs), to observe noise levels and 

ensure electrical connectivity.  

 

Experimental design for FSCV recordings in freely-moving animals 

Measurements in freely-moving animals are conducted using head-mounted amplifiers 

(“headstages”), which connect to the CFM and reference electrodes and transduce the 

experimental current into voltages for downstream data collection and analysis (Phillips et al., 

2003a; Takmakov et al., 2011).   These headstages are anchored to the animal’s heads either 

directly via an electrical connector or at a separate point, such as the pedestal for the 

stimulating electrode assembly (Figure 5.1a, middle panel). The headstage is also connected to 

a swivel and commutator that permits movement within the behavioral chamber. Depending on 

the type of electrode used, cannulae may be affixed to the skull for later implantation of fresh 

CFM or reference electrodes (Figure 5.1a, middle panel) or fused-silica CFMs can be cemented 

directly to the skull.  

The electrode design used influences both the type of experimental questions that can 

be answered and the overall success rate of recordings. The fragility of borosilicate glass 
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electrodes can lead to a lower yield of successful experiments with respect to fused-silica 

implantations. Moreover, tissue damage from repeated insertion limits the number of within-

subject recordings (Phillips, et al., 2003a; Rebec, et al., 1993). Once successfully lowered, 

however, these electrodes tend to be stable over the course of individual measurement periods. 

Thus, these electrodes are best served for studies in which experimentally relevant 

manipulations occur during single recording sessions.  

Conversely, the flexibility of fused-silica electrodes permits a higher success rate for 

implantation compared to glass electrodes. For chronic recordings, fused-silica electrodes are 

affixed to the skull with dental cement and left unused for at least a month to allow the immune 

response to these probes to dissipate (Clark, et al., 2010).  Following this waiting period, it is 

possible to conduct many recordings at each electrode, increasing the data yield of chronic 

electrodes over acute electrodes. Longitudinal measurements permit the monitoring of 

dopamine over extended behavioral training and treatments. This is particularly relevant for 

models of disease states in which conditions develop slowly over time (Covey et al., 2016).  

These electrodes are routinely used for periods up to four months of recording. Naturally, there 

is some attrition of usable electrodes over that time. The majority of this attrition pertains to 

physical failures (e.g. separation of surgical implant from subject’s head, loss of electrical 

continuity) and is much more infrequently due to altered electrochemical properties of the 

electrode (see Figure 3a, Supplementary Table 1 of (Clark, et al., 2010)).  

 

In vivo electrode positioning 

For different applications, recording electrodes can either be fixed in the brain, or can be 

housed in a microdrive that allows their position to be adjusted (Figure 5.1a, right panel). The 

former is amenable to multiple electrodes in the same animal (Clark, et al., 2010), whereas the 

latter permits systematic mapping of heterogeneity of electrically or naturally evoked dopamine 

release along the dorsal-ventral axis (Wightman et al., 2007). Microdrives also allow selection of 
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a recording site within this heterogeneity by identifying ‘hot spots’ (i.e. areas with a high density 

of release sites) (Robinson, et al., 2002; Wightman, et al., 2007). Placement of fixed electrodes 

does not typically use this type of feedback-based selection. Therefore, positioning of these 

electrodes is more akin to random sampling of the tissue, and so signals converge upon the 

population average rather than local maxima. Consequently, signals measured with fixed 

electrodes tend to be smaller than those from drivable electrodes due to unbiased selection of 

recording sites (Figure 5.2) (Owesson-White et al., 2009; Willuhn et al., 2012). Dopamine 

signals in regions without release or uptake sites rely on diffusion from nearby terminals, and 

these sites exhibit both slower rises and decays compared to ‘hot spots’ (Venton et al., 2003b). 

As a result, electrodes not deliberately targeted at regions of high terminal density would be 

expected to have slower signals due to heterogeneity of release sites (Wightman, et al., 2007). 

For similar reasons, one would intuit that fixed electrodes should detect fewer spontaneous 

transients. However, most studies using chronic electrodes focus on the analysis of task-related 

events, and so spontaneous transients have seldom been reported. Nonetheless, on the rare 

occasion when they were quantified, they were comparable in detected frequency as those 

measured with drivable electrodes (Flagel, et al., 2010). Figure 5.3 demonstrates examples of 

pharmacologically and behaviorally evoked dopamine transients, as well as spontaneous 

transients, measured at chronically implanted CFMs.  

Acute electrodes have the advantage of being drivable. However, in addition to the 

concerns with electrode fragility during repeated use mentioned above, electrode insertion 

imposes restraint stress on the animals. This could impact behavioral assays that study stress 

under controlled conditions (Wanat et al., 2013). Because chronic electrodes do not require 

repeated insertion, they do not share these issues. Although chronic electrodes are not drivable 

in regular use, chronically implanted electrode arrays have been used that permit independent 

movement of electrodes within the array (Howe et al., 2013). 

  



 

141 
 

 

Figure 5.2. Comparison of concentrations measured at acute and chronic CFMs without 
optimization for dopamine release sites. In a study with acute CFMs (Owesson-White, et al., 
2009) electrode placement was optimized for extracellular electrophysiological signals rather 
than dopamine release, resulting in recording locations without (top) and with (middle) phasic 
dopamine release. The average concentrations and concentration profile correspond well with 
values from chronically implanted CFMs that were not optimized for recording location (bottom), 
indicating the lower concentrations measured with chronic CFM may be an artifact of recording 
site selection. Reprinted with permissions from (Willuhn, et al., 2012). Copyright 2012 PNAS. 
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Figure 5.3. Dopamine transients at chronically implanted CFMs. (a) Pharmacologically induced 
dopamine transients at a chronic CFM in response to i.v. cocaine infusion (red bar, 1.5 s 
duration). Background subtraction is denoted by the white dashed line. (b) Measurements at a 
chronic CFM during a behavioral session of Pavlovian conditioning. Spontaneous dopamine 
transients are observed preceding cue onset (white asterisks). Moreover, both cue onset (left 
red dotted line) and reward delivery immediately following cue offset (right red dotted line) 
evoked phasic dopamine release. Background subtraction is denoted by the white dashed line. 
Dopamine traces were extracted with PCR using a standard training set. Both measurements 
were made in the nucleus accumbens core.  

  



 

143 
 

Reference electrodes 

Experiments using FSCV in freely moving animals generally use chronically implanted 

Ag/AgCl reference electrodes (Phillips, et al., 2003a). An issue with this approach is that half-

cell reaction is not maintained over time, producing a shift in the reference potential and 

polarizing the reference electrode, most likely due to dechlorination (Moussy & Harrison, 1994). 

Further, fouling of the reference electrode would be expected upon insertion. This status is 

evident from an altered shape of the background current (Arnold et al., 2015). While the shift in 

reference potential can be compensated for by positive offsets to the applied potential, some 

non-linearity may be introduced by the polarization if voltage error persists (Roberts et al., 

2013). Use of a polymer coating on the Ag/AgCl surface has been shown to delay 

dechlorination (Hashemi et al., 2011; Moussy & Harrison, 1994). Alternatively, reference 

electrodes can be implanted on the day of recordings through a guide cannula (Rodeberg, et al., 

2016; Saddoris et al., 2015; Saddoris et al., 2016). 

 

Signal stability 

During each voltage scan with FSCV, a cyclic voltammogram (CV) is generated that 

contains faradaic (redox) current from electroactive neurochemicals. In addition, there are other 

sources of current, primarily from the electrode itself, which produces both faradaic current from 

redox processes at its surface moieties, and non-faradaic current due to its resistive-capacitive 

properties. The ‘background’ current from the electrode is quantitatively much greater than the 

current produced by physiological levels of neurochemicals. For this reason, background 

subtraction is used with FSCV to measure changes in analyte concentration from a baseline 

reference point: CVs obtained during the baseline period are averaged and subtracted from 

each of the subsequent CVs in the time series. This approach allows the detection of 

bidirectional changes in the concentrations of electroactive neurochemicals from the baseline. 

However, any changes in the other components of the CV following the baseline period will 
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necessarily also contribute to background-subtracted CVs. The electrode background current 

described above is quite stable from scan to scan, but because it dominates the CV, even very 

small changes in the electrode’s chemical or physical properties following the baseline period 

can contaminate background-subtracted CVs in the form of ‘drift’. 

The first type of drift that we will discuss is that relating to the chemical properties of the 

electrode surface. This type of drift is most prevalent when applying waveforms to the electrode 

that have anodic limits that exceed 1.0 V versus Ag/AgCl. Application of these waveforms in 

aqueous solutions such as the interstitial fluid in the brain, changes the surface chemistry of 

carbon fibers by introducing surface oxide groups (Roberts, et al., 2010), increasing the faradaic 

current in the CV. Until this ‘activation’ process reaches equilibrium, there will be progressive 

increase in the overall current in the background CV, as well as a net negative potential shift in 

the background peak.  

To get to equilibrium more expediently, waveforms can be applied (‘cycled’) at a higher 

repetition rate than that used for data collection (typically 60 Hz). The required time to reach 

equilibrium differs across electrodes and implantations. In practice, acutely implanted electrodes 

are cycled for 15-30 min at 60 Hz before use. Chronically implanted electrodes are typically 

cycled more extensively, as much as two hours on the first use, followed by shorter durations 

(30-60 min) for each subsequent recording. As the necessary amount of cycling to reach 

equilibrium can vary between electrodes, however, it is more reliable to assess electrode 

stability via the background CV, which should remain relatively consistent in shape and 

amplitude following cycling. With either approach, additional cycling at the data-collection 

repetition rate (usually 10 Hz) for at least 10 min is required to re-establish equilibrium at this 

waveform application frequency. Nonetheless, even with extensive cycling of the electrode 

before the experiment, some drift may still persist. 

Another type of background-current drift can be caused by etching of the carbon fiber 

during voltage scans. Etching drives evolution of the electrode surface and thereby affects both 
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the faradaic and non-faradaic currents. The extent that an applied waveform will produce 

etching of carbon fiber is dependent on its duration at higher potentials, specifically the period in 

which the applied potential remains greater than 1.0 V versus Ag/AgCl (Keithley et al., 2011).  

With the waveforms typically used in FSCV for in vivo dopamine detection, the excursion above 

1.0 V is relatively short (1.5 ms/scan) and so, any etching that takes place is incremental over 

millions of scans (~0.002 Å/scan) (Keithley, et al., 2011).  Therefore, drift attributable to this 

process occurs at a much lower rate than that from changes in surface chemistry. Thus, two 

main sources of background drift are augmented using voltage waveforms that that have an 

anodic limit in excess in 1.0 V. This drift is a tradeoff with the increase in sensitivity afforded by 

these waveforms (Heien, et al., 2003). 

The structural quality of the electrode and its connection to the headstage can also 

impact the stability of the signal. For example, if the seal between the carbon fiber and the 

insulating capillary is compromised then fluid can leak into the capillary increasing the 

background size (i.e., producing drift). The likelihood of this problem occurring can be reduced 

using epoxy to make, or reinforce, the seal. The integrity of electrical connections between the 

electrode and headstage are also important, especially with regard to movement artifacts. 

These types of problems are largely eliminated with practice in electrode fabrication, combined 

with robust quality control prior to implantation. 

 These instabilities in the signal can interfere with reliable signal analysis. While the 

reduction of noise can lessen this issue (e.g., with good electrode quality control), background 

drift poses a particular problem. Background drift, by definition, is an accumulative process 

where the level of interference in an analytical signal increases from the baseline (subtraction) 

period, limiting the effective window of analysis. Heien and colleagues suggested, as a 

guideline, that with standard parameters for FSCV in behaving animals, chemometric data 

analysis (see below) remains reliable for CVs taken up to 90 seconds from the baseline (Heien, 

et al., 2005). This window is sufficient for the routine use of peri-event histograms to test 
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changes in analyte concentration time locked to a stimulus or action. However, as discussed 

below, the exact size of a reliable analysis window will be dependent upon the quality of the 

data, and will be assessed as part of the data-analysis process. To attempt to remove the 

influence of drift, thereby increasing the analysis window, one strategy has been to incorporate 

CVs representing the drift in to the training sets used for analysis (Collins et al., 2016; Hermans 

et al., 2008).  

When considering different types of electrode with respect to signal stability, a number of 

factors come into play. Glass-based electrodes are more fragile than fused-silica-based 

electrodes and are therefore more susceptible to noise from compromised seals or other 

structural damage. Fixed electrodes have a low profile with connectors cemented in place, 

reducing movement artifacts and overall noise due to the absence of pendulum effects from a 

microdrive, or movement of wires relative to the electrode and headstage. However, these 

electrodes cannot be easily replaced with a fresh electrode in the event of a failure. Drift relating 

to the surface chemistry of the electrode is dependent on the type of carbon fiber used and the 

waveform applied. These aspects are not systematically different between acute and chronic 

electrodes and so neither application appears to be more susceptible to this type of background 

drift. By the same rationale, the rate of background drift due to etching should not differ between 

acute and chronic electrodes.  

However, because the cumulative duration of recording with chronic electrodes is 

substantially longer than for acute electrodes, it is likely that the total etching across the working 

lifetime of a chronic electrode will be greater. This may impact the sensitivity of the electrode. 

For this reason, it is advisable that positive controls are used to ensure that the sensitivity is not 

changing over the course of an experiment (e.g., Figure 2E of (Clark et al., 2013)). 
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CHEMOMETRIC DATA ANALYSIS 

Extracellular dopamine is detected via its oxidation and reduction at the carbon-fiber 

surface, producing a voltammetric current proportional to its local concentration. However, how 

to obtain this concentration has been a matter of considerable debate and development within 

the field. Original calibrations of in vivo voltammetric data directly converted the voltammetric 

current at the peak oxidation potential for dopamine into a concentration using an externally 

obtained calibration factor. However, various electroactive substances can interfere at the 

oxidative peak for dopamine, including ascorbic acid(Baur, et al., 1988; Ewing et al., 1982; 

Gerhardt, et al., 1984; Gonon et al., 1981), dopamine metabolites (Baur, et al., 1988; Garris et 

al., 1993; Gonon, et al., 1980; Gonon, et al., 1981), pH (Jones et al., 1994; Kawagoe et al., 

1993; Rice & Nicholson, 1989; Runnels, et al., 1999; Takmakov et al., 2010), and other ions 

(Jones, et al., 1994; Rice & Nicholson, 1989). Because this method is univariate (i.e. only uses 

a single measurement point to predict concentration), it cannot separate out these interferences 

(Booksh & Kowalski, 1994; Olivieri, 2014). While anatomical and pharmacological criteria can 

increase confidence in the identity of the measured signal, univariate analysis will fail if 

interfering analytes significantly contribute. 

To circumvent this problem, a method was developed to compare experimental cyclic 

voltammograms to electrically-evoked templates collected at the same electrode (Cheer et al., 

2004; Heien, et al., 2003; Phillips, et al., 2003a; Phillips & Wightman, 2003; Robinson, et al., 

2003; Troyer et al., 2002; Venton et al., 2003a). Cyclic voltammograms with a lower correlation 

coefficient than a user-defined value (typically r2 < 0.75) were considered to have significant 

contribution from other electroactive substances and were not used for univariate prediction. In 

some cases, current contributions from pH (Cheer, et al., 2004; Venton, et al., 2003a) and drift 

(Borland & Michael, 2004) were manually subtracted by using currents from a potential where 

dopamine did not contribute to predict current interference at the peak oxidation potential for 
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dopamine. However, this approach can miss dopamine events that are identified with more 

rigorous analysis (Heien, et al., 2005). 

 A more reliable calibration methodology is the use of chemometric multivariate analysis. 

Instead of using measurements at a single potential to predict concentration, multivariate 

analysis uses the entirety of the potential window to separate and quantitate multiple analytes, 

taking advantage of the chemical selectivity afforded FSCV (Figure 5.4a) (Bro, 2003; Kramer, 

1998; Lavine & Workman, 2013). While there have been a few different multivariate methods 

implemented with in vivo FSCV data (Kishida et al., 2016; Yorgason et al., 2011), the most 

implemented and characterized method with FSCV data is principal component analysis (PCA) 

with inverse least-squares regression, also referred to as principal component regression (PCR) 

(Heien, et al., 2004; Heien, et al., 2005; Keithley et al., 2010; Keithley et al., 2009a; Keithley et 

al., 2009b; Keithley & Wightman, 2011). Therefore, the focus of this section of the review will be 

on the use of PCR for analysis of FSCV data. Nonetheless, the fundamental theory behind PCR 

is similar to other multivariate methods. 

 

Principal Component Regression 

 Data collected with FSCV tends to be complex. At high sample rates (>100 kHz), there 

are approximately 1000 data points per individual CV. One of the chief goals of PCR is to 

reduce the dimensionality of data. In this way, a large number of data points can be described 

by a handful of abstract vectors referred to as ‘principal components’ (PCs). Despite this 

reduction in dimensionality, PCR extracts more information from the data than univariate 

methods, and allows resolution of simultaneously varying analytes with overlapping signals 

(Heien, et al., 2005). PCR also functions as a noise removal technique, because PCs that 

represent non-deterministic variance (i.e. random noise) in the training set are discarded. This 

process improves the quality of its determinations and allows stronger confidence in the model. 

Lastly, this method provides objectivity and statistical validation of the measured signal.  
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Figure 5.4. An example of the use of principal component analysis to analyze cocaine-induced 
dopamine transients. (a) A thirty second color plot following cocaine (20 mg/kg) administration in 
an awake rat shows overlapping dopamine and pH changes. The dopamine (black) and pH 
(blue) changes are separated by PCA, and quantitated using inverse-least squares regression. 
pH changes have a maximum contribution of +0.019 pH units (-0.76 nA) at 8.3 s, while 
dopamine maximizes at 262 nM (3.13 nA) at 28.9 s. (b) Residual analysis confirms that the PCA 
model is valid for analysis of this data. Qt values (black) fall below the model specific tolerance 
level (Qα, 379 nA2) for the data shown in panel (a). A residual color plot displays current 
uncaptured by the model. 
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Generally, the construction and application of a PCR model to predict concentrations 

from FSCV measurements consists of five steps: 1) training set construction, 2) generation of 

PCs, 3) discarding PCs that only represent noise (i.e. rank determination), 4) signal extraction, 

and 5) model validation. Importantly, free software (HDCV) is available that automatically carries 

out steps 2-5 and is compatible with data collected with TarHeel and other voltammetric 

software (Bucher et al., 2013). This software also includes additional diagnostics to assess 

training set quality. Nonetheless, it is important to understand the basic concepts of PCR to use 

it effectively. With this aim in mind, each step will be described briefly. More detailed discussion 

of PCR (Bro, 2003; Kramer, 1998; Lavine & Workman, 2013) and its use with FSCV is available 

elsewhere (Heien, et al., 2004; Heien, et al., 2005; Johnson et al., 2016; Keithley, et al., 2010; 

Keithley, et al., 2009a; Keithley, et al., 2009b; Keithley & Wightman, 2011; Rodeberg et al., 

2015). 

 

1) Training Set Construction 

 The first step in building a PCR model is the collection of a group of CV standards 

known collectively as a ‘training set’. Several guidelines for building training sets have been 

outlined previously (Johnson, et al., 2016; Keithley, et al., 2010; Keithley, et al., 2009a; Keithley, 

et al., 2009b; Keithley & Wightman, 2011; Kramer, 1998; Rodeberg, et al., 2015). First, the 

training set should comprise all expected contributions to the data. For measurements of striatal 

dopamine, this typically includes dopamine and pH changes, though background drift has also 

been included (Collins, et al., 2016; Hermans, et al., 2008). Second, the CV standards should 

span the expected current range in the data to be analyzed, which prevents model extrapolation 

(Kramer, 1998). Third, the training set should contain an adequate number of samples. While 

there is no strict consensus on the ideal number of standards, a minimum of three standards per 

analyte is needed to satisfy the requirements for regression (Kramer, 1998). The use of a larger 

number of standards is preferred however, and previous work has suggested that five CVs per 
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analyte is sufficient to provide reliable models (Heien, et al., 2005; Keithley, et al., 2010; 

Keithley & Wightman, 2011; Kramer, 1998). Fourth, to satisfy mutual independence, training set 

CVs should be selected from separate events, and not include CVs that will be analyzed by the 

final model. Finally, a training set should be generated in a recording environment that matches 

the experimental environment. 

 

2) Principal component generation 

  Next, the training set standards are used to generate the PCs. As such, the quality and 

representativeness of training set standards is of critical importance. Importantly, the largest 

amplitude standards in the training set dominate the appearance and quality of these PCs; this 

is because FSCV standards are not usually mean-centered which avoids giving undue influence 

to the smallest standards in training set CVs, which typically have the lowest signal-to-noise 

ratio (Kramer, 1998). 

These PCs are determined by singular value decomposition (SVD), a process that is 

described in detail elsewhere (Johnson, et al., 2016). With SVD, each successive PC is 

calculated to span as much of the remaining variance in the training set standards as possible. 

The maximum number of PCs for a particular model is equal to the number of measurements 

being made (i.e. for CVs with 1000 data points, there could be a maximum of 1000 PCs). 

However, the use of SVD limits the number of PCs to the total number of standards in the 

training set. The PCs were created from the same dimensions as the data, and thus can be 

visualized in the form of CVs (Johnson, et al., 2016; Keithley, et al., 2010). However, it is 

important to understand that PCs are by definition abstract, and thus should not be viewed as 

representing individual analytes (Keithley, et al., 2009b). Indeed, it is extremely unlikely that 

PCs will precisely align to individual analytes because of the requirement of orthogonality 

between PCs in the PCA approach.  
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3) Rank determination 

 While several PCs are provided by SVD, only a subset has information that is relevant to 

concentration prediction (Keithley, et al., 2010; Malinowski, 1977). These are primary PCs, 

which represent analytically relevant variance in the standards, while secondary PCs reflect any 

remaining variance (i.e. noise). The number of primary PCs is referred to as the rank of the PCR 

model. The exclusion of secondary PCs is desirable, as it prevents the use of noise in 

concentration prediction and allows for an estimation of noise levels for model validation (see 

below). 

  Rank selection in FSCV is customarily done with Malinowski’s F-test (Keithley, et al., 

2010; Malinowski, 1977). This procedure is objective, statistically validated, and does not 

require pre-existing knowledge of noise levels in the data, which can be difficult to obtain. 

Moreover, it has been demonstrated to discard more noise than other methods (Keithley, et al., 

2010). This process is most suitable for training sets with a signal-to-noise ratio larger than 10 

(Malinowski, 2004). Rank tends to increase when there is more variability between training set 

standards (i.e. peak shifting and broadening). Therefore, while a rank of two may be desirable 

for a moderate training set size (e.g. 10 total standards) representing a two component system 

(i.e. dopamine and pH changes), the rank will vary both with the consistency of the CVs and the 

signal-to-noise of the training set (Johnson, et al., 2016; Keithley, et al., 2010). 

 

4) Signal Extraction 

 The generated PCs are then used to extract concentrations of any analyte that was 

included in the training set. The first step is using the training set standards to generate ‘scores’, 

which are the dot products of each PC with each training set standard. Notably, CVs have 

higher score magnitudes with PCs they closely resemble in shape. Scores arising from 

secondary PCs are discarded, as these PCs describe only noise. The concentrations are then 

regressed against retained scores, producing a regression that defines the calibration model. To 
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predict the concentrations of experimental CVs, their scores are determined for the retained 

PCs and plugged into this regression equation. This entire process has been depicted visually 

(see (Johnson, et al., 2016)). 

 

5) Model validation 

 As Douglas Adams states in ‘Hitchhiker’s Guide to the Galaxy’, “we demand rigidly 

defined areas of doubt and uncertainty” (Adams, 1980). Because multivariate calibrations are 

complex, it is important to verify that these models are of sufficient quality to capture 

experimental data and demonstrate what data remains uncaptured. This process is referred to 

as ‘model validation’. In other fields (e.g. spectroscopy), validation is performed by running 

independent standards on the instrument to determine the accuracy of the model (Kramer, 

1998). However, this is not possible when building an in vivo training set (see below), as the 

concentrations of analyte signals are not known. Therefore, a ‘pseudo-validation’ procedure is 

applied to PCR analysis of FSCV data in which the ability of the model to capture the 

experimental data is assessed (Jackson & Mudholkar, 1979; Keithley, et al., 2009a; Keithley, et 

al., 2009b). In other words, this validation procedures tests the applicability, rather than the 

accuracy, of the model. Nonetheless, if the model is considered ‘invalid’ (i.e. not applicable) for 

a particular experimental datum, the concentration value obtained is rejected. 

One method for evaluating model validity relies on the ‘first order advantage’ of 

multivariate calibration, which allows for detection, but not removal, of interfering signals through 

residual analysis (Booksh & Kowalski, 1994; Olivieri, 2014). During PCR, primary PCs are used 

to reconstruct experimental CVs. However, it is rare for these PCs to fit the data perfectly, with 

remaining uncaptured current referred to as the ‘residual’. Jackson & Muldholkar developed a 

procedure to statistically test residual values to validate the model (Jackson & Mudholkar, 

1979). A significance threshold is determined using the secondary PCs that were discarded 

during rank selection at a user-defined confidence interval α (Qα), under which 100*(1-α)% of 



 

154 
 

uncaptured random noise should fall (Keithley, et al., 2009a; Keithley, et al., 2009b). If the 

squared sum of the residual current for a particular CV (Qt) is greater than Qα, it is determined 

that a significant current source is present that cannot be captured by the model, which 

invalidates its use for analysis of this data. The concern with deterministic variance being 

present in the residual is that this variance may be the result of misattribution of dopamine to the 

residual rather than the dopamine vector (false negative). Alternatively, it could be an indicator 

that a signal that is not identical to dopamine is attributed to the dopamine vector (false positive) 

since the remainder of that signal (i.e., the difference between the CV for the signal and that for 

dopamine) would be attributed to the residual. However, the source of deterministic variance 

could be due to ancillary noise sources such as an unexpected electroactive neurochemical or 

movement artifacts in that absence of false positives or negatives. Therefore, the process is 

conservative inasmuch as the model will be rejected if Qt exceeds Qα because of false-negative 

or false-positive errors, but also due to the presence of other components that cannot be 

accounted for by the model. Importantly, this process does not statistically confirm whether the 

collected data contains dopamine; this can only be confirmed with pharmacological and/or 

histological tests, or selective (i.e. optogenetic) stimulation. 

The residual (Qt) is calculated for each cyclic voltammogram in any given set of data, 

and these values can be plotted along the same time scale as the data (Figure 5.4b, top). 

Residual color plots can be used to visualize uncaptured current, which could reveal the source 

of variance uncaptured by the training set (Figure 5.4b, bottom). Residual failure outside of the 

window in which concentrations are being predicted should not impair the ultimate success of 

the model. However, Qt may cross Qα for multiple CVs within the prediction window (i.e. during 

prolonged dopamine and/or pH events). Any individual data point that fails residual analysis (i.e. 

Qt > Qα) is excluded from the data set. The omission can be executed by replacing the data 

point with a new value based on interpolation between adjacent data points, or by designating 

the data point as “NaN” (not a number). Additional a priori exclusion criteria are also utilized if 
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there are too many data points missing from a trace that represents the single unit of analysis 

(e.g. one trial around a task-related event). Any trial is removed from subsequent analysis if it 

fulfills either of the following two criteria: 1) a total of ten percent or more of the data points have 

been excluded, or 2) a string of contiguous data points have been excluded that amounts to 

more than five percent of the data points. 

 

Additional diagnostics to test the quality of training sets 

Further procedures are available to assess the quality of training sets. One such tool is a 

Cook’s distance plot, which displays the scores for each analyte of interest with respect to the 

primary PCs (Keithley & Wightman, 2011). For the sake of simplicity, these are typically 

depicted with the x- and y-axis representing the first two primary PCs, though for higher 

dimension models (i.e. training sets with a rank >2), it should be understood that more 

projections exist. The use of these plots, along with calculation of Cooks’ Distances, also allows 

the identification of outliers in the training set, described elsewhere (Keithley & Wightman, 

2011).   

The robustness of a training set can also be assessed with the model k-vectors 

(sometimes referred to as a K-matrix). A k vector is typically calculated to represent the 

estimation of the CV for a pure unit analyte concentration change (i.e. 1 μM dopamine or a full 

pH unit change) (Johnson, et al., 2016; Keithley & Wightman, 2011). A representative k vector 

indicates the success of the model in isolating analytes of interest from the training set 

standards. A k vector that does not resemble the desired species can arise from the poor quality 

of training set standards and/or significant differences between them (Johnson, et al., 2016; 

Keithley & Wightman, 2011; Rodeberg, et al., 2015). Notably, it has been shown that the quality 

of CVs for each analyte (i.e. DA and pH for typical training sets) can affect the predictions for 

the other analytes in the training set, making the quality of standards for each analyte in the 
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training set an important experimental aim (in particular, see Figure 1 of (Keithley & Wightman, 

2011)). 

 

PCR with residual analysis in practice 

 The most controversial component of the chemometric PCR analysis for FSCV that is 

the construction of a training set (Johnson, et al., 2016; Rodeberg, et al., 2015).  The standard 

procedure for constructing a training set for chemometric analysis is to use a series of known 

concentration standards applied to the instrument in vitro, for example in a flow cell. However, 

even when collected at the same electrode, in vivo and in vitro CVs differ (See Supplementary 

Figure 3 of (Clark, et al., 2010)).This is likely due to chemical and electrical (impedance) 

differences between the two environments (Heien, et al., 2005; Phillips, et al., 2003a) and has 

led to the practice of acquiring training sets in vivo by stimulation of an afferent dopamine 

pathway following the experiment (Heien, et al., 2005; Keithley & Wightman, 2011; Rodeberg, et 

al., 2015), which is an extensively characterized source of dopamine release in vivo (Ewing, et 

al., 1983; Garris et al., 1994; Heien, et al., 2005; Kuhr, et al., 1987). This stimulation evokes 

both dopamine release and a subsequent temporally resolved hemodynamic response, 

including a pH change (Venton, et al., 2003a). Notably, these pH changes are difficult to resolve 

from changes in other electroactive substances (e.g. H2O2/O2, adenosine) that also occur in 

response to electrical stimulation. As a result, in vivo pH CVs typically include contributions from 

these substances, and are thus difficult to simulate in vitro (Dengler et al., 2015). Ultimately, 

with a series of stimulation intensities (e.g. current amplitude, pulse number, frequency), a 

training set can be constructed, which spans the range of signals from dopamine and pH 

observed under experimental conditions. This method produces CVs that match the 

electrochemical and biological environment of the data to be analyzed, which is important for 

PC generation, signal extraction, and residual analysis (see above). 
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However, unlike with a training set generated from exogenous standards, the analyte 

concentrations producing these in vivo signals are not inherently known. Therefore, to estimate 

the concentrations of analytes in the training set, an additional step is required. Common 

practice is to use in vitro standards to obtain a calibration factor to convert current to 

concentration. Thus, while the analyte identity is not determined from in vitro standards, the 

estimation of concentration is. As stated above, in vitro CVs do not perfectly map onto in vivo 

CVs and, as such, the mapping of a calibration factor also incorporates some level of 

inaccuracy. For this reason, it is important to recognize that analyte concentrations reported 

from in vivo FSCV experiments should be regarded as estimates.  

An additional limitation of the use of in vivo training sets is that, rather than using 

chemical standards, biological signals of presumed chemical origin are employed. Therefore, 

under these conditions, the model extracts signals that are similar to those produced by the 

biological manipulation rather than signals that are necessarily similar to a specific chemical. 

This approach is tolerated as a proxy of a chemical signal when the signal evoked by the 

stimulus used to generate the training set has been well characterized (such as in vivo 

stimulation along the ascending dopaminergic pathway, discussed above). 

Using the original incarnation of chememotric analysis of in vivo FSCV signals (Heien, et 

al., 2005), training sets and experimental data are collected from the same recording site (or 

sometimes at different recording sites from the same subject), and so they lack full statistical 

independence. In these cases, the model identifies signals at a recording site evoked by one 

stimulus that resembles signals at the same recording site evoked by a different stimulus; or 

even by the same stimulus when electrically evoked signals are analyzed using a training set 

generated from electrical stimulation at the same location (Cheer et al., 2007a; Owesson-White 

et al., 2008; Park et al., 2013; Rodeberg, et al., 2016). One means utilized to avoid this 

circuilarity, and obtain greater independence, has been to construct in vivo training sets in a 

different subject to that from which the experimental data will be collected. However, for 
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practical (and ethical) reasons, it is not always possible to take each electrode used in an 

experiment and colllect a training set with it from another animal. Consequently, the use of 

‘standard’ training sets has evolved where a model is built from a training set generated at one 

electrode and used to analyze data from another electrode in a different subject. This approach 

assumes generalization of signals across electrodes. Indeed, electrochemical detection is 

founded on the premise that molecules exhibit consistent faradaic properties on a particular 

substrate when conditions are reproduced. Therefore, the key to the success of this approach is 

to maintain reproducibility of electrode fabrication, a goal that may be more favorable for (non-

pulled) fused-silica than for pulled borosilicate-glass based electrodes, which tend to have 

significant variation in their tapers. However, other sources of variability can also violate 

generalization across experiments, including reference electrode drift and electrochemical 

differences between different carbon-fibers. 

There are some additional advantages to using standard training sets. Models no longer 

need to be built at each individual electrode, which results in reduced analysis time. In addition, 

the use of a single standard training set could avoid the variability between experimenters in 

training set construction that has been demonstrated previously (Keithley, et al., 2010). Finally, 

a stimulating electrode, which can perturb the tissue and ultimately affect behavior (Garris et al., 

2003), does not need to be implanted in the experimental animal. 

Nonetheless, there are limitations to this approach. The ultimate characteristics of any 

PCR model are dependent on the CVs provided for the training set, and not the data to which it 

is being applied. The primary PCs, those used for concentration prediction, will exhibit 

characteristics of the signals seen at whichever electrode was used for training set construction. 

If there are differences in CV shapes between the experimental data and the training set, 

primary PCs will prove less able to extract and attribute experimental currents to the desired 

analytes. A recent study demonstrated that CVs differ between electrodes and experiments and, 
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despite high correlation coefficients between k vectors, this lead to differences in predicted 

dopamine concentrations (Rodeberg, et al., 2015). 

A more significant problem is the impact on the reliability of model validation. Differences 

between experimental and standard training set CVs may lead to the assignment of 

deterministic currents (i.e. signals arising from analytes in the training set) to Qt, resulting in 

unrepresentative residual traces. In some cases, this can lead to data being discarded that 

would have been retained with a within-subject training set (i.e. a false negative) (Rodeberg, et 

al., 2015).  Moreover, because Qα is determined from information in secondary PCs, it will be 

model-specific and invariant across different sets of data even when noise levels vary from 

experiment to experiment. Lower than expected Qα values could increase the rate of false 

negatives; however, unrepresentatively high Qα values are also possible, which could lead to 

the retention of data that should have been discarded (i.e. false positives). This is more 

concerning, as it would permit the retention of poor data.  

Ultimately, standard training sets suffer from the disadvantage of being unrepresentative 

of the experimental data. Nonetheless, standard training sets could provide similar qualitative 

results to within-subject training sets. Previous work has demonstrated that replacing dopamine 

CVs in a within-subject training set with CVs from a separate electrode (leaving pH CVs 

unaltered) resulted in a qualitatively similar trace (Figure 5.5) (Keithley & Wightman, 2011), and 

comparisons of data from different experiments using within-subject and standard training sets, 

respectively, has yielded similar results (Figure 5.2). However, current standard training set 

methodology precludes the ability to test whether the quantitative or residual analysis failures 

outlined above occur for any given application. Thus, improvements to standard training set 

methodology to reflect these concerns are important. One method that has been adopted to 

provide a level of validation between the generalized model (standard training set) and the 

experimental data is to use positive controls at the start and end of the experiment to compare 

the evoked signals with those in the training set. Commonly for experiments where striatal  
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Figure 5.5. Training sets built with data from separate electrodes could capture qualitative 
information. Dopamine CVs from a training set built at the same electrode as the collected data 
were replaced with dopamine CVs from a separate electrode. pH CVs were left unaltered. 
Analysis with this composite training set resulted in underestimation of signal, but tracked 
qualitative information for this electrical stimulation (red bar). Figure reproduced with 
permissions from (Keithley & Wightman, 2011). Copyright 2011 American Chemical Society. 
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dopamine is being recorded, the unexpected delivery of a food reward is used to elicit an 

electrochemical signal (Clark, et al., 2013; Wanat et al., 2010). This signal is then compared to 

the CVs in the training set. If there is not close correlation between the positive-control signal 

and the training set, then either the signal is not predominantly dopamine, or the model will not 

generalize to the electrode being tested. While one could not easily discern these two 

scenarios, in either case it would not be fruitful to continue to collect and analyze experimental 

data under these conditions. However, this procedure does not address similarity of pH signals 

or noise levels between the data and training sets, both of which influence the predictions and 

success of the PCR model. Therefore, improving this verification process is a warranted area for 

progress in future investigations.   

In addition, the methodology for constructing and/or implementing standard training sets 

could be improved. Notably, multivariate calibration transfer between instruments or electrodes 

is a significant area of inquiry within the field of chemometrics (De Noord, 1994; Feudale et al., 

2002). These methods often require independent standards being run on each instrument (not 

possible with in vivo measurements) or use data from the new instrument to update the model. 

Further collaboration between chemometricians and users of FSCV could improve standard 

training set methodology by incorporating differences between electrodes and instrumentation 

to better match the experimental environment.  

 

Guidelines for Methods Presentation 

 Because variability exists in procedures for PCR, a few basic guidelines for reporting 

these procedures are warranted. First, it is important to make clear what methods were used to 

construct training sets for the study. In particular, it should be elucidated which electrodes were 

used to generate the training sets (i.e. specific or standard training sets) so that readers can 

understand the procedure used to acquire and select standards. Second, because these 

chemometric models will be used to analyze large amounts of data, it is important to report their 
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general characteristics. This would include the analytes that comprise the training set, Qα 

values, and rank. The use of k-matrices could also illustrate the quality of these training sets. 

Third, the criteria for exclusion of data (i.e. residual analysis) should be made clear. Lastly, the 

use of additional methods to increase confidence in the acquired signal (e.g. the use of positive 

controls to verify the applicability of the model to experimental conditions (Clark, et al., 2013; 

Wanat, et al., 2010)) should be reported.  

 

CONCLUSIONS AND PERSPECTIVES 

The authors of this review are in general agreement that, when appropriate caution is 

observed, both acute and chronic CFMs can be used for detection of behaviorally evoked 

dopamine release in regions of the striatum using FSCV. In support of the reliability of these 

measurements, there is generally high concordance between results from FSCV of dopamine 

concentration fluctuations in the striatum with either acute or chronic electrodes, and 

electrophysiological recordings of dopamine neurons in the midbrain, with many key findings 

reproduced across approaches. These replications include the characterization of reward 

prediction-error signals (Day, et al., 2007; Flagel, et al., 2011; Schultz et al., 1997) that convey 

quantitative information (Bayer et al., 2007; Hart, et al., 2014). They include demonstrations that 

dopamine signals to reward-related cues are sensitive to factors that influence subjective value 

such as delayed reward delivery (temporal discounting) (Day, et al., 2007; Fiorillo et al., 2008; 

Kobayashi & Schultz, 2008) or subjective risk preference (Lak et al., 2014; Nasrallah et al., 

2011; Sugam et al., 2012), and concur that there is stronger encoding of reward size than effort-

based response cost by dopamine signals (Gan et al., 2010; Pasquereau & Turner, 2013).  An 

uncertainty-like signal following presentation of a Pavlovian stimulus predicting probabilistic 

reward has been identified and replicated across methodologies (Fiorillo et al., 2003; Hart et al., 

2015) as have observations of partial generalization between sensory stimuli that are 

associated with different economic values (Day, et al., 2007; Waelti et al., 2001), which can 
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come in the form of a presumed sensory signal, temporally separated from a value signal (Hart, 

et al., 2014; Lak, et al., 2014; Saddoris et al., 2017).  The success of chronic electrodes is 

notable, as it has long been held that chronically implanted electrodes are prone to failure. A 

recent review of glucose biosensors documents the importance of chronic sensors for 

monitoring in diabetes. The chief problem to their use is the foreign body response that impairs 

sensor performance (Soto et al., 2017).  It may be that the finding that very small electrodes 

remain functional will be very useful to other health related fields involving biosensors.  

The chief remaining disagreement between the authors is the standard training set 

methodology (discussed in PCR with Residual Analysis in Practice). In its current design, the 

use of PCR to analyze in vivo voltammetry data results in a tradeoff between two separate 

guidelines for PCR: 1) matching instrumental and environmental conditions when generating 

calibration models and 2) independence between training set standards and data. Phillips and 

colleagues value the use of a training set that is generated from an independent source to that 

from which experimental data is collected. However, Wightman and colleagues maintain that the 

use of training sets obtained under unrepresentative conditions prevents definitive statements 

regarding statistical validation of PCR models when analyzing FSCV data, and has practical 

implications for signal extraction. Notably, this is true for training sets generated in vitro, in which 

it can be difficult to simulate the chemical environment of in vivo measurements, which is of 

particular importance for generating pH standards. 

While the robustness of detection of striatal dopamine by FSCV in awake animals should 

inspire confidence, some of the greatest promise is beyond dopamine in the striatum. For 

detection of other electroactive neurochemicals in other brain regions (Dankoski & Wightman, 

2013; Fox et al., 2015; Spanos et al., 2013; Swamy & Venton, 2007b), sensitivity and selectivity 

are more serious concerns because of lower analyte concentrations and greater number of 

possible interferents. With this in mind, we believe that many of the caveats we have described 

in this review will pose much greater challenges for these new applications. Specifically, key 
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hardware changes could be more widespread use of chronically implanted electrode arrays that 

have moveable probes, and the use of stable polymer coatings on Ag/AgCl reference 

electrodes.  
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CHAPTER 6: CHARACTERIZATION OF FUSED-SILICA ELECTRODES FOR 

LONGITUDINAL MEASUREMENTS OF STRIATAL DOPAMINE RELEASE 
  

INTRODUCTION 

 The neurotransmitter dopamine plays vital roles in reward-seeking behavior (Ikemoto & 

Panksepp, 1999; Schultz et al., 1997) and the effects of drugs of abuse (Covey et al., 2014; 

Sulzer, 2011), and its dysfunction is associated with several different diseases and disorders, 

including Parkinson disease (Lohr et al., 2014; Lotharius & Brundin, 2002) and schizophrenia 

(Stone et al., 2007; Urs et al., 2017). Study of the role of dopamine in complex behavior is 

bolstered by the ability to monitor its release on a time scale relevant to behavioral responses. 

This aim can be accomplished with fast-scan cyclic voltammetry (FSCV), which utilizes the 

electroactive nature of dopamine to study its release in real time. FSCV measurements with 

carbon-fiber microelectrodes (CFMs) have been adapted to monitor rapid dopamine release in 

freely-moving animals (Phillips et al., 2003a; Rebec et al., 1997). These advances have allowed 

many unique insights into the role of dopamine release in a variety of behaviors (Day et al., 

2007; Owesson-White et al., 2016; Phillips et al., 2003b; Roitman et al., 2004).  

However, the growth of FSCV as a widespread technique has been hindered by a few 

limitations. The borosilicate glass (BSG) electrodes conventionally used for FSCV 

measurements in awake animals are fragile, and brain tissue damage from repeated insertion of 

electrodes can prevent multiple measurements in the same animal (Phillips, et al., 2003a; 

Rodeberg et al., 2017). As a result, FSCV measurements with BSG electrodes are typically 

limited to a small number of measurements in any given animal. Consequently, it is common for 

several rats to be needed to assay different behavioral time points when studying dopamine 

release during progression of more complex behaviors. Alternatively, FSCV studies can make 
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use of more simple behaviors that can be learned within single recording sessions (Owesson-

White et al., 2008). A new method for FSCV measurements was introduced with the 

development of fused silica (FS)-based electrodes, which can be cemented into individual 

recording locations for longitudinal measurements of dopamine release at the same recording 

site (Clark et al., 2010).  This reduces the number of animals needed to track long-term changes 

in dopamine release, and the flexibility of these electrodes reduces concerns with electrode 

fragility. Since their inception, the use of chronically implanted CFMs has grown significantly 

(Ferguson et al., 2011; Flagel et al., 2011; Howe et al., 2013; Rodeberg, et al., 2017; Willuhn et 

al., 2014).  

The ability of implanted CFMs to track long-term changes in dopamine release depends 

on both the stability of the recording environment and the sensor itself. The former has been 

demonstrated for through immunohistochemical experiments for acute (Peters et al., 2004) and 

chronic (Clark, et al., 2010) implantation of CFMs; these studies found that the small size of the 

implanted carbon fiber (~5-7 µm in diameter) allows it to evade the progressive immune 

response and corresponding insulation that impedes larger implanted devices (Polikov et al., 

2005). In particular, chronically-implanted CFMs have proven to be capable of monitoring 

dopamine over extended durations (i.e. up to 4 months), and their long-term presence in brain 

tissue does not appear to, in and of itself, alter sensitivity as assessed by post-implantation 

calibration (Clark, et al., 2010). However, it is unknown whether repeated use of CFMs 

significantly alters their sensitivity over time, as application of voltammetric waveforms with 

extended anodic limits (>+1.0 V) have been shown to condition the electrode surface (Heien et 

al., 2003; Takmakov et al., 2010).  Thus, further investigation into the stability of these 

electrodes over time is warranted. 

A significant area of debate with respect to the use of chronic CFMs is their calibration 

(Johnson et al., 2016; Rodeberg et al., 2015; Rodeberg, et al., 2017). Data collected with FSCV 

consists of complex overlapping currents when multiple electroactive species are present during 
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measurements. Principal component regression (PCR), a multivariate analysis technique, has 

been introduced to separate and quantitate multiple analytes of interest during FSCV 

measurements (Heien et al., 2004; Heien et al., 2005). This approach requires several isolated 

standards for each analyte to build reliable PCR models. For measurements of striatal 

dopamine release, this is typically achieved with electrical stimulation of afferent dopamine 

neurons to evoke release at the recording site, in addition to alkaline pH changes that lag 

temporally behind electrically-evoked dopamine transients (Heien, et al., 2005; Venton et al., 

2003).  However, most studies that have utilized chronic CFMs have been performed without 

stimulating electrodes, which has precluded building PCR models at the same electrode as 

FSCV measurements. Instead, a ‘standard training set’ built from dopamine and pH standards 

acquired at one (or several) separate CFMs has been used to calibrate all acquired data. We 

have previously demonstrated that this approach can lead to difficulties with reliable quantitation 

and PCR quality control (i.e. residual analysis) (Johnson, et al., 2016; Rodeberg, et al., 2015), 

though this approach may capture qualitative information (Rodeberg, et al., 2017). The 

limitations of this approach arise from differences in dopamine and pH cyclic voltammograms 

(CVs) between CFMs, which can impede reliable extraction of analyte-specific current from 

complex FSCV data. It has been suggested that the more robust construction method of FS 

electrodes, compared to BSG electrodes, could result in more desirable electrochemical 

characteristics, including more consistent dopamine CVs across electrodes (Rodeberg, et al., 

2017). If this is the case, the use of ‘standard training sets’ at FS electrodes may encounter less 

problems than those seen in previous studies that used BSG electrodes (Johnson, et al., 2016; 

Rodeberg, et al., 2015).  

 This study first compared the electrochemical performance of BSG and FS electrodes in 

vitro, and demonstrated that FS electrodes have lower noise and stray impedance than their 

BSG counterparts. The use of epoxy resin to treat BSG electrodes abolished these differences. 

However, no significant differences in the variance of dopamine CVs were seen between 
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electrode designs. This suggests that the principal source of variability in dopamine CVs across 

experiments arises from the carbon fibers themselves. Moreover, we found that repeated 

cycling of CFMs in vitro has dynamic effects on their sensitivity, which has implications for their 

long-term use. Next, we investigated the performance of chronic CFMs in vivo. BSG and FS 

electrodes performed similarly during acute in vivo recordings, though FS electrodes show 

diminished temporal resolution following implantation. Last, stimulating electrodes were found to 

be insufficient to reliably evoke dopamine release following weeks of implantation, which 

prevented their use to track sensitivity at chronically-implanted CFMs. Instead, we used drug 

cocktail to evoke phasic dopamine release under anesthesia during and following electrode 

implantation. This study revealed that, while chronic CFMs are capable of stable monitoring of 

dopamine release over time, results can be variable. Altogether, these results emphasize the 

need for positive controls in experiments using chronically-implanted microelectrodes. 

   

EXPERIMENTAL 

Animals 

 Male Sprague Dawley rats (250 – 400 g, Charles River, Wilmington, MA) were housed 

(paired before surgery, singly-housed post-surgery) on a 12:12 hr light-dark cycle in a 

temperature and humidity controlled environment. Rat chow and water was available ad libitum. 

All animal procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC) at UNC Chapel Hill.  

 

 

Electrode Construction 

Borosilicate glass electrodes 

 Carbon fiber (T-650, Amoco, Greenville, SC) were aspirated into borosilicate glass 

(BSG) capillaries (600 µm outer diameter, 400 µm inner diameter) under vacuum. Capillaries 
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were pulled using a micropipette puller (Narishige, East Meadow, NY) to produce two tapered 

capillaries of approximately equal length. The exposed carbon fiber was trimmed to 150 to 200 

µm in length. For epoxy-BSG electrodes, the electrodes were then dipped in heated epoxy resin 

(Epon 828, Miller Stephenson Chemical Co., Inc., Danbury, CT) mixed with 15% hardener m/m 

(m-phenylenediamine, Sigma, St. Louis, MO) for 30 s, followed by a brief rinse (~5 s) in warm 

acetone to remove residual epoxy from the carbon-fiber surface. Following air drying overnight, 

epoxy-BSG electrodes were cured in an oven (100° C for 4 hr, 150° C overnight). For both BSG 

and epoxy-BSG electrodes, electrical connection was created by insertion of silver wires 

(Squires Electronics Inc., Cornelius, OR) coated in conductive silver paint into the glass 

capillaries to make electrical contact with the insulated carbon fiber. BSG electrodes with 

obvious cracks under an optical microscope were discarded before use. 

 

Fused silica electrodes 

 First, poylimide-coated fused silica (FS) tubing (90 µm outer diameter, 20 µm inner 

diameter) was cut into approximately 10 mm segments with a scalpel blade. Carbon fibers were 

threaded through capillaries submerged in ethanol with use of cotton applicators under a 

stereoscope (Wild M3Z, Leica, Buffalo Grove, IL) until exposed carbon fiber was visible on both 

ends of the capillary. Following overnight drying, each FS capillary was suspended above wax 

paper with arched tape. A small bead of epoxy (TQS-2, Super Glue Corp., Rancho Cucamonga, 

CA) was applied onto one end of the carbon fiber, and this bubble was pulled backwards by 

hand via the exposed fiber at the opposite end of the FS capillary. This process was considered 

successful if epoxy had wicked several mm into the FS capillary, and if the exposed epoxy 

formed a hemispherical seal around the remaining exposed fiber. Electrodes with obvious 

defects in the seal (i.e. flat, incomplete) or residual epoxy on the exposed fiber visible under an 

optical microscope, were discarded. 
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 After the epoxy was allowed to harden overnight, exposed carbon fiber at the epoxy-

sealed end of the FS capillary was trimmed to 150-200 µm in length. The open end of each FS 

capillary (and its corresponding exposed fiber) was placed in a patch of silver epoxy (8331-14-

G, MG Chemicals, Surrey, B.C., Canada) dabbed on Parafilm. The silver connector pin (Mill 

Max Mfg. Corp., Oyster Bay, NY) was placed on top of the silver epoxy/ FS capillary junction, 

and the complex was allowed to dry overnight. Last, the epoxy-capillary-pin junction was 

secured and insulated with epoxy (same as above). Following a final night of drying, the FS 

electrodes were ready for use. 

 

FSCV 

 FSCV measurements were conducted with locally designed equipment (UEI, UNC 

Electronics Facility, Chapel Hill, NC) and software (flow cell analysis with Tarheel CV, in vivo 

recordings with HDCV, both built in LabVIEW, National Instruments, Austin, TX). All 

measurements were made with a triangular waveform sweeping from a holding potential of -0.4 

V to an anodic limit of +1.3 V (vs. Ag/AgCl) and back at 400 V/s. AgAgCl electrodes were 

constructed by applying +5 V to sanded silver wire for 30 s in 0.1 N HCl. For measurements in 

freely-moving animals with chronically-implanted Ag/AgCl reference electrodes, an offset of 200 

mV was applied to the waveform to account for reference potential drift that occurs over long-

term implantation (Hashemi et al., 2011). All data was filtered with a low-pass Bessel filter 

(cutoff frequency = 2KHz).  

 

 

 

Flow-Cell Analysis 

 All flow cell measurements were made in TRIS buffer (15 mM Trizma HCl, 126 mM 

NaCl, 2.5 mM KCl, 25 mM NaHCO3, 2.4 mM CaCl2, 1.2 mM NaH2PO4, 1.2 mM MgCl2, 2.0 mM 
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Na2SO4), with an adjusted pH of 7.4.  Dopamine standards were prepared in TRIS buffer, and 

bubbled under N2 to prevent oxidative degradation during measurements. All dopamine 

injections were 5 s in duration at a flow rate of 2 mL/min. The Ag/AgCl reference electrode was 

rechlorinated for each day of use. The current at the peak oxidative potential for dopamine (Ep,a) 

was used for calibration. For measurement of background currents, no dopamine injections 

were made, and the RMS noise was defined as the 3 * standard deviation of current at the 

approximate peak potential for dopamine (~620 mV) for a 30 s file following cycling (30 min 60 

Hz, 10 min 60 Hz) of the electrode. For the series of dopamine calibration curves, noise was 

assessed in the 5 s window preceding injection of dopamine standards. The temporal response 

of the electrodes over time was assessed with the rise time (10-90% max signal) in response to 

the dopamine boluses.  

  

Surgery 

Acute recordings 

 Rats were anesthetized with urethane (1.5 mg/kg) and placed in a stereotaxic frame. 

Both BSG and FS electrodes were lowered into the dorsal striatum (AP +1.2 mm, ML +2.0 mm, 

DV -4.0, with respect to skull landmark bregma). A Ag/AgCl reference electrode was lowered in 

the contralateral hemisphere and secured in place by wrapping it around a skull-imbedded 

screw. A bipolar stimulating electrode was lowered into the substantia nigra / ventral tegmental 

area (SN/VTA) (AP -5.2 mm, ML +1.0 mm, DV -7.0 mm). Electrical stimulation (300 µA, 60 Hz, 

60 biphasic pulses, 2 ms pulse duration) was applied through optically isolated equipment (NL 

800 A, Neurolog, Digitimer, Hertfordshire, UK) in 0.2 mm intervals until dopamine release was 

observed at the working electrode. The stimulating electrode was then lowered in 0.1 mm 

increments until stimulated release maximized in the dorsal striatum. Next, the working 

electrodes were optimized for recording location (lowered in 0.1 mm increments) until no further 

increases in dopamine release were seen.  
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 Following signal optimization, short electrical stimulation was applied (24 pulses) to 

determine temporal response (t1/2, rise time), later determined with ClampFit software 

(Molecular Devices LLC, Sunnyvale, CA). Next, prolonged electrical stimulation (120 p) was 

applied at 30, 40, 50, and 60 Hz (n = 5 stimulations at each frequency). The peak evoked 

current for dopamine was compared between frequencies. 

 

Chronic Implantation of FS Electrodes 

 For long-term implantation FS electrodes, animals were prepared surgically in a similar 

manner to above, with a few exceptions. The same signal optimization procedure was used 

under isoflurane anesthesia (4% induction, 1.5-2.5% maintenance). However, once electrically-

evoked dopamine release was optimized, all three electrodes (FS, Ag/AgCl reference electrode, 

stimulating electrode) were affixed with dental cement. For electrical stimulation experiments,  

short electrical stimulation (300 µA, 60 Hz, 24 or 60 biphasic pulses, 2 ms pulse duration) was 

applied after the cement hardened for later comparisons to post-recovery release. Animals were 

allowed to recover in their cage (singly-housed) for 1 week (first electrical stimulation 

experiment) or 4 weeks (for subsequent experiment). 

For the pharmacologically-induced dopamine transients experiment, animals were administered 

a drug cocktail of cocaine (20 mg/kg, i.p.) and haloperidol (0.5 mg/kg, i.p.) dissolved in 0.9% 

saline. Drugs were administered in consecutive injections after the cement had hardened. 

Following 1 hr of measurements of drug-evoked dopamine transients, electrical stimulation was 

applied to collect standards for construction of training sets for PCR analysis, as described 

previously (Rodeberg, et al., 2015). 

 

In vivo recordings 

 Following recovery, implanted CFMs were extensively cycled (2 hr at 60 Hz, 30 min at 

10 Hz) before first use, and cycled (1 hr at 60 Hz, 30 min at 10 Hz) before each subsequent 
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measurement to minimize the effects of electrode drift. FSCV recordings were made a 

maximum of once a week. For awake measurements, electrical stimulation was applied (60 Hz, 

24 p, 2 ms pulses) at stimulation frequencies (75 – 150 µA) that evoked minimal motor effects 

(i.e. head bucking); the stimulation current was determined on an individual rat basis. Next, 

multiple stimulations (n = 6) were applied to test for electrically-evoked dopamine and pH 

changes. Animals with electrically-evoked dopamine release were anesthetized with isoflurane 

and administered electrical stimulation at surgical parameters (300 µA, 24 or 60 pulses) for 

comparison to original measurements during surgery. 

 Animals that had received a cocaine-haloperidol injection during surgery were again 

anesthetized with isoflurane, and the cocktail experiment was repeated. Following 1 hr of FSCV 

recordings, electrical stimulation was administered to build a within-subject training set. Animals 

were then allowed to fully recover from isoflurane under O2 and returned to their cages.  

 

Data analysis 

 Electrically-evoked dopamine transients measured in freely-moving animals and 

isoflurane-anesthetized rats were isolated using principal component analysis as described 

previously (Heien, et al., 2005; Rodeberg, et al., 2015). Briefly, stimulation currents were applied 

at a range of parameters (varied current intensity and pulse number) to evoke a range of 

dopamine and pH changes for subsequent construction of a training set to analyze experimental 

data collected at the same electrode. However, a calibration factor was not used to convert 

extracted current into concentration, as the post-implantation calibration factor was not 

inherently known. Therefore, all dopamine measurements are reflected in current, despite signal 

extraction with principal component analysis (PCA).  

 For analysis of drug-evoked transients, dopamine transients were similarly isolated with 

PCR using previously described protocol (Fox et al., 2017). 10 min following drug 

administration, data was broken into 30 s segments with local background subtraction to 
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minimize the influence of drift. Deflections in PCA-isolated dopamine currents were considered 

transients if they exceeded 3 times the noise in the traces. The average isolated current and 

total number of transients per measurement time (i.e. transient frequency) was compared 

across drug administrations within each animal.  

 

Statistics 

 All statistical test were performed in GraphPad Prism, with a user-defined significance 

level of p < 0.05. One-way ANOVAs were used to compare electrochemical characteristics of 

the three different electrode designs (BSG, epoxy-BSG, FS). Two outliers were removed from 

the ‘noise’ measurements, following the ROUT test provided by GraphPad Prism (Q = 1%). A 

two-way ANOVA was used to determine the effects of two independent variables (time, 

electrode design) on a dependent variable (dopamine peak oxidation potential). For significant 

ANOVA results, Tukey’s post hoc test for multiple comparisons was used when sample sizes 

were equal, and Bonferroni’s post hoc test was use for unequal sample sizes. Paired t-tests was 

used to compare the amplitude and time course (t1/2) of electrically-evoked dopamine transients 

during and after implantation of chronically-implanted CFMs. Unpaired t-test were used to 

compare the average magnitude (in nA) of dopamine transients following drug administration 

during and after implantation.  

 

RESULTS 

In vitro comparison of electrode designs 

 The difference in outer diameters for borosilicate-glass (BSG) and fused-silica (FS) 

capillaries (600 µm and 90 µm, respectively) necessitates different construction methods for the  
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Figure 6.1. Environmental scanning electron micrographs of fused-silica (FS) (a-b) and 
borosilicate glass (BSG) (c) carbon-fiber microelectrodes. a-b) The seal of FS electrodes is 
created by wicking epoxy beads dropped onto exposed fiber back into the 90 µm diameter FS 
capillary. This process creates hemispherical seals. C) For construction of BSG electrodes, 
glass capillaries filled with carbon fiber are pulled under heat in a gravity-assisted puller, which 
produces a fine glass taper seal around the carbon-fiber. This process can introduce defects 
(i.e. leaks, cracks) in the seal (white arrow).   
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two CFM designs. For BSG electrodes, the electrochemical seal is formed with a micropipette 

puller, which produces a fine glass taper around the unexposed carbon-fiber. As FS capillaries 

are not compatible with heat-pulling, seals are instead formed by back capillary action with 

epoxy resin. This process creates hemispherical seals that insulate retracted carbon fiber from 

the surrounding environment (Figure 6.1a-b). The lack of pronounced ‘tapers’ brings the full 

diameter of FS capillaries in closer proximity to the exposed carbon-fiber compared to BSG 

designs.  While the taper of BSG electrodes may result in less tissue damage around the 

sensing element of the microelectrode, the heat-pulling process can introduce imperfections (i.e. 

cracks, leaks) into the seal of BSG electrodes (Figure 6.1c). The resulting shunt capacitance 

can result in undesirable electrochemical properties. A common practice to alleviate this 

concern is the use of epoxy resin to fill in potential cracks in the BSG seal.  

 To test whether differences in electrode construction causes differences in 

electrochemical performance, we made in vitro comparisons between BSG (with and without 

epoxy treatment) and FS electrodes. First, the background currents and noise levels in TRIS 

buffer were compared (Figure 6.2). Application of the standard waveform used for in vivo 

measurements of dopamine (voltage sweep at 400 V/s from holding potential of -400 mV to a 

1300 mV switching potential before return to -400 mV against Ag/AgCl) in TRIS buffer (pH = 

7.4) results in a cyclic voltammogram that is composed of non-faradaic processes (i.e. charging 

of the double layer) and redox of surface functional groups on the carbon fiber (Figure 6.2a). 

This background current can be characterized by its peak amplitude, which is a function of the 

surface area of the exposed carbon fiber, and the location of the background peak (EBG), which 

can vary as a function of the impedance of the electrochemical circuit (Meunier et al., 2017) and 

the integrity of the carbon-fiber seal. To test whether these background currents varied 

systematically between different CFM designs, electrodes (n = 20 for each design, trimmed to 

150-200 µm in length) were first cycled in TRIS buffer (30 min at 60 Hz, 30 min at 10 Hz) to 

equilibrate the CFM surface in the TRIS environment. Next, the amplitude and peak position 
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Figure 6.2. In vitro characterization of FS and BSG elecrodes (with and without epoxy). a) A 
characteristic cyclic voltammogram for the background current of a CFM electrode in TRIS 
buffer (pH = 7.4). These backgrounds can be characterized by their amplitude (in nA) and the 
position of the background peak (EBG). b-d) The position of the peak potential for the 
background current (EBG) (b), the background amplitude (c), and noise levels (d) were 
significantly different between BSG and FS electrodes, and between epoxy-BSG and BSG 
electrodes, but not between FS and epoxy BSG electrodes. This suggests improper insulation 
of unexposed carbon fiber drives these electrochemical differences. e) When measured against 
the same reference electrode, all three designs had significantly different peak oxidation 
potentials for dopamine (Ep,a) but similar spreads of peak potentials (~40 mV). This suggests 
that the carbon fiber itself is the major source of variability between CFMs.  
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of the background CVs were compared between groups (Figure 6.2b-c). Significant differences 

in peak location were seen between electrode designs (F2,57 = 21.72, p < 0.0001), and Tukey’s 

post hoc test revealed that non-epoxied BSG had significantly more positive EBG values than 

epoxied BSG (p < 0.0001) and FS (p < 0.001), while no differences were seen between epoxy-

BSG and FS electrodes (p > 0.05). Significant differences in background amplitude were also 

found between designs (one-way ANOVA, F2,57 = 22.59, p < 0.0001), specifically between BSG 

and epoxy-BSG (p <0.0001) and FS (p < 0.0001) electrodes. This was likely due to unintended 

exposure of carbon fiber via leaks in BSG seals, as there was no significant difference between 

fiber lengths of the three electrode groups (F2,57 = 0.493, p = 0.6134).  

These leaks may also impact the fidelity of FSCV recordings. To investigate this, the 

noise levels of each electrode design were assessed by determining RMS noise levels in 

measured current at the approximate peak potential for dopamine over a 30 s period. The 

average noise level varied significantly across designs (F2,57 = 8.885, p = 0.0004), and Tukey’s 

multiple comparisons post hoc test revealed significant differences between BSG and epoxy-

BSG (p < 0.05) and FS (p < 0.001), but no difference between epoxy-BSG and FS electrodes. 

We also found significant differences in variance of noise levels between electrode populations 

(Brown-Forsythe test, F(2,57) = 4.321, p = 0.0179). To test whether this was the effect of 

outliers in the data, the ROUT method (GraphPad Prism) was selected for its ability to detect 

multiple outliers. ROUT (Q = 1%) revealed two outliers in the BSG group (top two data points in 

Figure 6.2d, left bar). Upon removal of outliers, significant differences in noise levels remained 

between BSG and FS electrodes (one-way ANOVA, F(2,55) = 0.0016, p = 0.0016; Tukey’s post-

hoc, p < 0.001), but no differences were seen between the other pairings (p > 0.05). This data 

suggests that FS electrodes are significantly less noisy than the BSG design, which is likely due 

to more robust electrochemical seals. 

 The consistency of dopamine CVs across electrodes is an important experimental 

consideration, as it could define the success of the use of standard calibration models to 
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measure FSCV data acquired  different electrodes (Johnson, et al., 2016; Rodeberg, et al., 

2015; Rodeberg, et al., 2017). To test whether the more desirable electrochemical 

characteristics of epoxy-BSG and FS electrodes results in more reproducible dopamine CVs, 

each group of electrode designs was tested with injections of dopamine ([DA] = 2 µM) via flow-

injection analysis, and the peak oxidative potential of dopamine (EDA,ox) was measured.   To 

avoid variability in the potential of the Ag/AgCl reference electrode that could affect dopamine 

measurements, all electrodes were measured against the same reference electrode on the 

same recording day. We counterbalanced electrodes of each type over time (in four time bins) 

to test for the possible effect of reference potential drift on measurements. A two-way ANOVA 

revealed no interaction between time and electrode design (F6,41 = 1.439, p = 0.2234) or main 

effect of time (F3,41 = 0.531, p = 0.664). However, a main effect of electrode design (F2,41 = 

15.00, p < 0.0001) was found. Bonferroni’s post-hoc test for multiple comparisons found 

significant differences in the mean value of the peak anodic potential for dopamine (EDA,a) 

between each electrode design (Figure 6.2e). All electrode designs, however, showed a similar 

range of peak potentials (~40 mV) and similar coefficients of variation (BSG: 1.62%, epoxy-

BSG: 1.23%, FS: 1.80%), with a Brown-Forsythe test revealing no significant differences in 

deviations between groups (F2,50 = 1.644, p = 2.036). Due to all electrodes being tested against 

the same reference electrode, the deviation within populations reflects differences between 

individual CFMs.  

 

Acute in vivo comparison of electrode designs 

As differences in electrode construction led to differences in electrochemical 

performance, we tested next whether these differences could also impact in vivo recordings of 

dopamine release. The geometry of the FS electrodes brings the full capillary diameter in close 

proximity to the exposed carbon fiber, and this may act as a diffusional barrier to measuring 

dopamine efflux in the brain. Notably, it has been suggested in literature that chronically 
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implanted FS electrodes appear to have more temporal distortion than acutely implanted BSG 

electrodes in measurements of electrically-evoked dopamine release (Clark, et al., 2010). It is 

possible that differences in geometry between these two electrodes could explain some of this 

variation.  

To investigate this possibility, we used short electrical stimulation of the SN/VTA (300 

µA, 60 Hz, 24 pulses) to evoke dopamine release in the dorsal striatum (Figure 6.3a), which 

was measured with BS and FS electrodes (n = 6 for each design). Each transient was 

temporally defined by its rise time (10-90% max signal) and t1/2 value (100-50% max signal on 

decaying portion of the transient). No significant differences were seen between BSG and FS 

designs in either rise time (t10 = 0.5423, p = 0.5995) or t1/2 (t10 = 0.2774, p = 0.7872) (Figure 

6.3b). This suggests these two electrodes do not differ in responses to stimulation responses 

that mimic short, burst firing of dopamine neurons. 

The comparative responses of these two electrode designs were also tested across a 

range of different stimulation frequencies. It has been demonstrated previously that when the 

number of stimulation pulses is kept constant, maximally evoked dopamine release in the dorsal 

striatum is a linear function of stimulation frequency between 30 and 60 Hz  (Wightman et al., 

1988). This is because dopamine efflux depends on the competing processes of release and 

uptake; slower stimulation frequencies allow more time for reuptake of dopamine between 

subsequent pulses, and thus result in lower amplitudes of dopamine release. Consistent with 

previous results, the amplitude of electrically-evoked dopamine release events increased with 

stimulation frequency when the number of pulses (120) was kept constant (Figure 6.3c). To 

control for variations in overall release magnitude between animals, the value of release events 

was normalized against the maximal response (i.e. 60 Hz, 120 pulse stimulation) for each 

recording location. Consistent with previous results, both FS and BSG electrodes exhibited a 

strong linear trend between peak release magnitude and stimulation frequency (BSG: r2 = 

0.999, p = 0.0005; FS: r2 = 0.996, p = 0.0022) (Figure 6.3d). There was no significant difference  
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Figure 6.3. Acute in vivo comparison of BSG and FS electrodes. a) A representative 
electrically-evoked dopamine transient in the dorsal striatum response to short (24 pulse) 
electrical stimulation of the SN/VTA. b) No significant differences were seen in the temporal 
response of BSG and FS electrodes, as assessed by average rise time (10-90%, left) and 
decay time (t1/2, 100-50%, right) of electrically-evoked transients at each electrode type. c) 
Representative dopamine events in response to prolonged stimulation (120 p) at four different 
frequencies (30, 40, 50, and 60 Hz). The peak dopamine amplitude increases as a function of 
stimulation frequency. d) No differences were seen in the relationship between stimulation 
frequency and peak amplitude for BSG and FS electrodes, which suggests that these 
electrodes respond similarly to dopamine release events with a range of different durations. 
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between slopes for BSG and FS groups (p = 0.1971). Ultimately, BSG and FS electrodes 

performed very similarly during acute in vivo implantation, and showed no systematic 

differences in their responses to dopamine release over a wide range of different durations. 

Therefore, any noted differences in temporal distortion between acutely implanted BSG 

electrodes and chronically implanted FS electrodes are due to the duration of implantation. 

 

Effect of prolonged use of carbon-fibers on electrode sensitivity 

 While both electrode designs can be used for acute implantations, only FS electrodes 

are compatible with chronic recordings due to their enhanced flexibility and durability (Clark, et 

al., 2010; Rodeberg, et al., 2017). The use of CFMs over several recording sessions 

emphasizes the need for stable sensitivity over time. It has been shown that long-term 

implantation of CFMs does not in itself systematically alter sensitivity, as assessed by post-

calibration following 1, 2, and 4 months of stagnant implantation (Clark, et al., 2010). This is 

consistent with evidence that the majority of CFM sensitivity loss occurs immediately upon 

implantation (Ewing et al., 1981; Michael et al., 1987; Singh et al., 2011).  However, it is known 

that repeated cycling of application of voltammetric waveforms with high anodic limits (i.e. +1.3-

1.4 V) etches the CFM surface (Takmakov, et al., 2010) and enhances sensitivity towards 

dopamine due to generation of surface oxide groups (Heien, et al., 2003; Roberts et al., 2010). 

Therefore, repeated waveform application during extended use could dynamically tune 

sensitivity over time. 

 We cycled FS electrodes at a high repetition frequency (60 Hz) to simulate long term use 

at the standard application frequency (10 Hz) during in vivo measurements (i.e. 2 hr cycling at 

60 Hz was assumed to mimic 12 hr at 10 Hz, due to an equivalent number of waveform 

repetitions). After each 12 hr equivalent, we tested the sensitivity of each electrode towards 

dopamine (Figure 6.4). The sensitivity of FS electrodes towards dopamine increased following   
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Figure 6.4. The effect of prolonged cycling of CFMs on sensitivity towards dopamine. FS 
electrodes were cycled at a high repetition frequency (60 Hz) to imitate long-term use of CFMs 
at the standard application frequency in vivo (10 Hz). 60 Hz cycling for 2 hr was assumed to 
mimic 12 hr of use at 10 Hz. Repeated cycling of FS CFMs resulted in a significant increase in 
sensitivity, followed by progressive decreases in sensitivity, when assessed over five different 
time points.  
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Table 6.1. The sensitivity, noise levels, and temporal response over repeated cycling of FS 
CFMs. Repeated use of chronic CFMs resulted in significant increases followed by decreases 
over time, without any significant changes in noise levels or the rise time (10-90%) during 
measurements of flow cell. One outlier was removed from RMS noise calculations following 
Grubb’s test. 
  

n Cycle Time (hr) Sensitivity (nA/µM) RMS noise (nA) Rise Time (s) 

22 0 11.3 ± 0.4 0.16 ± 0.10 1.0 ± 0.3 

14 12 16.2 ± 0.7 0.18 ± 0.16 0.9 ± 0.5 

12 24 18.0 ± 0.6 0.18 ± 0.10 0.8 ± 0.4 

12 36 15.6 ± 0.7 0.15 ± 0.05 0.9 ± 0.4 

12 48 14.3 ± 0.7 0.16 ± 0.05 0.9 ± 0.2 
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early use, followed by a decrease in sensitivity at later time points (Table 6.1). A one-way 

ANOVA revealed significant differences in sensitivity between time points (F4,67 = 292.4, p < 

0.0001). Bonferroni’s post-hoc test for multiple comparisons revealed significant differences in 

average calibration factor between every time point (p < 0.0001), aside from between 12 and 36 

hr (p > 0.05). To test whether repeated cycling altered noise levels, the RMS noise was 

calculated from current fluctuations at the peak oxidation potential for dopamine in the 5 s 

preceding injection. No significant differences in noise levels between time points (F4,66 = 

0.2644, p = 0.8998, following one outlier removal from 48 hr time following Grubb’s test). 

Similarly, a one-way ANOVA revealed no significant difference in the temporal response 

(assessed by the rise time, 10-90%) between time points (F4,67 = 0.6003, p = 0.6637). 

Altogether, this data suggests that long-term use of CFMs in vivo could alter their sensitivity 

following repetitive conditioning and etching of the CFM surface. 

 

Failure of electrical stimulation to track potential sensitivity changes in vivo 

 Methods to track prospective changes in CFM sensitivity in vivo are less straightforward 

than in vitro conditions, as introduction of dopamine standards to probe electrode responses 

over time is difficult in vivo. One possible approach is the use of electrical stimulation to evoke 

dopamine release at the implanted CFM to test its sensitivity over subsequent recording 

sessions (and cycling). Electrical stimulation would provide distinct benefits, as its magnitude 

(i.e. current intensity, pulse number, frequency) can be precisely controlled and it can produce 

robust, time-locked dopamine release events.  

This tactic was first attempted for FS electrodes implanted in the dorsolateral striatum. A bipolar 

stimulating electrode was lowered into the SN/VTA region and optimized for placement by 

administering electrical stimulation (300 µA, 60 p) and measuring dopamine release at the FS 

electrode. Once the signal was optimized for amplitude, we cemented the FS and stimulating 

electrodes in place and allowed animals to recover for one week. Administration of electrical 



 

198 
 

stimulation (60 Hz, 24p) after one week of implantation failed to elicit measurable dopamine 

release in any tested subjects (n = 5). This was not due to failure of the stimulating electrode, as 

successful FSCV measurements of dopamine release during intracranial self-stimulation (ICSS) 

over this time interval can be performed (Garris et al., 1999; Rodeberg et al., 2016) and 

electrical stimulation evoked pH changes at chronically implanted FS electrodes in all five 

subjects (data not shown). Therefore, this was likely due to impediments at the FS electrode. 

Indeed, it has been suggested to wait a minimum of four weeks before FSCV measurements at 

chronically-implanted CFMs to allow the brain immune response to dissipate (Clark, et al., 

2010). Therefore, all future recordings were done after a minimum of four weeks of recovery 

post-surgery. 

 Following a minimum of four weeks of recovery, the occurrence of stimulated dopamine 

release was variable amongst subjects. Amongst tested subjects (n = 7), only four subjects 

exhibited stimulated dopamine release, though pH changes following electrical stimulation 

occurred in all subjects (data not shown). Administration of cocaine (10 mg/kg, i.p.) in the three 

subjects without electrically-evoked release resulted in observable, spontaneous dopamine 

transients, which indicates that the absence of stimulated release is at least in part due to failure 

of the stimulating electrode, rather than inability of the chronic CFM to measure phasic 

dopamine release. Repeating electrical stimulation under identical conditions (i.e. same 

stimulation parameters, isoflurane anesthesia) in subjects that exhibited stimulated release 

revealed the dopamine signal had significantly attenuated in amplitude compared to release 

evoked during surgery (avg % recovery of signal amplitude: 17.8 ± 8.2 %; paired t test, t3 = 

10.00, p = 0.0021).  Moreover, electrically-evoked dopamine transients were more temporally 

distorted following implantation (Figure 6.5). Comparison of t1/2 values before and after 

implantation revealed that electrically-evoked transients were significantly broader post-

implantation (surgery: 0.6 ± 0.2 s, post-implant: 1.8 ± 0.4 s; t3 = 3.651, p = 0.0355). The 

temporal distortion of the dopamine signal following implantation cannot be attributed to failure  
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Figure 6.5. Temporal distortion in the electrically-evoked dopamine signal at chronically-
implanted CFMs. All electrodes with measurable dopamine release under conditions identical to 
surgical measurements (isoflurane anesthesia, matched stimulation parameters) (n = 4) 
exhibited temporal distortion following implantation. While changes in the electrically-evoked 
amplitude could be due to changes surrounding either the working or stimulating electrode, 
temporal distortion can only be attributed to changes at the chronic CFM.  
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of the stimulating electrode, as action potentials evoked by electrical stimulation stop 

immediately upon cessation of the stimulus (Kuhr et al., 1987). These results suggest changes 

in the recording environment around the FS electrode following implantation. However, the 

diminished amplitude could be due to occlusion of the stimulating electrode, which compared to 

implanted CFMs (Clark, et al., 2010), is unlikely to avoid the progressive immune response that 

impedes other brain-implanted devices due to its larger size (Polikov, et al., 2005). Ultimately, 

these data show the use of stimulating electrodes is insufficient to track changes in CFM 

sensitivity over time, and is an unreliable tactic to acquire clean dopamine CVs for within-subject 

calibration (Rodeberg, et al., 2015). 

 

Alternate methods for tracking sensitivity of chronically implanted CFMs 

An alternative method for tracking sensitivity of implanted CFMs is through 

pharmacological manipulations that evoke dopamine release. Ideally, drug-evoked dopamine 

transients could be compared (i.e. frequency, magnitude) to surgical recordings to test whether 

long-term dwelling of the CFM in brain tissue alters its sensitivity over time in situ, which is 

difficult to assess with post-vitro calibration alone. Previous work has shown that a mixture of 

dopamine transporter blockade and autoreceptor inhibition can induce dopamine transients in 

the dorsal striatum of anesthetized rats (Venton & Wightman, 2007). Using a similar protocol, 

we induced dopamine transients in isoflurane-anesthetized rats during surgery and following 

implantation with co-injection of cocaine (20 mg/kg, i.p.) and haloperidol (0.5 mg/kg, i.p.). 

Dopamine transients were isolated and quantitated using PCR following previous protocol (Fox, 

et al., 2017). Although electrical stimulation was often unsuccessful in evoking dopamine 

release in the previous experiment, the combined effects of cocaine and haloperidol sufficiently 

elevated electrically-stimulated dopamine release that training sets could be built at every 

electrode/subject (n = 4) for each individual recording. The average amplitude and overall  
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Figure 6.6. The amplitude and frequency of dopamine transients evoked by a drug cocktail of 
cocaine and haloperidol before and after CFM implantation. Two subjects (top) showed 
decreases in the amplitude and frequency of dopamine transients following 4 weeks of chronic 
implantation. However, one subject (bottom left) showed a significant increase in transient 
amplitude in the first post-implantation measurement, followed by a significant decrease in 
amplitude. Lastly, one subject showed no significant changes in transient amplitude across 
recording sessions. This indicates that, while chronic CFMs are capable of consistent, stable 
measurements of striatal dopamine, results can be variable. This emphasizes the need for 
positive controls during FSCV recordings at chronically implanted CFMs.  
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frequency of transients following drug cocktail administration were compared between time 

points. 

Changes in dopamine transient magnitude and frequency were variable amongst the 

four subjects tested (Figure 6.6). Two subjects exhibited a decrease in dopamine transient 

frequency for the first drug administration following implantation (top panels). A third subject 

showed an increase in transient amplitude, but not frequency, following drug administration 4 

weeks post-surgery, but a significant decrease in magnitude during a second measurement at 7 

weeks post-implantation (bottom left panel). However, a fourth subject had stable dopamine 

transient magnitudes across three separate post-implantation drug administrations (bottom right 

panel). While this subject demonstrates the possibility of high fidelity dopamine recordings over 

time at chronically-implanted CFMs, the variability in recovery of the dopamine signal between 

subjects emphasizes the need for ‘positive controls’ (i.e. independent measures to elicit stable 

dopamine release) to assay dopamine sensitivity over long-scale use of chronically implanted 

CFMs. The decreased frequency of dopamine transients following implantation in three out of 

four subjects demonstrates a diminished ability to monitor dopamine transients, and suggests 

that the use of an average post-calibration factor based on removal of the electrode from tissue 

may not be representative of the post-implantation environment in situ. 

 

Changes in background current following long-term implantation 

It has been demonstrated that the background current amplitudes of CFMs correlate 

strongly with their sensitivity towards dopamine, as both measures increase linearly with surface 

area (Roberts et al., 2013). Therefore, tracking the amplitude of the background current over 

consecutive recording sessions may serve as an indirect method of tracking CFM sensitivity. 

Background currents during surgery were compared before and after implantation at different 

time points, grouping animals from the electrical stimulation and the drug treatment experiments 

(Table 6.2). Background currents increased by approximately 40% upon first use following four  
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Table 6.2. The background amplitudes at chronically-implanted CFMs before and after long-
term implantation. A significant increase in background amplitude was seen upon first use 4 wks 
following implantation, but no significant changes were seen between subsequent 
measurements. Data expressed as mean ± SD.   

n Timepoint Bkg Current Amplitude (nA) Normalized Amplitude 

11 Surgery 723 ± 21 100 

11 4 wks 1010 ± 98 140 ± 16 

8 5 wks 1015 ± 103 146 ± 16 

7 6 wks 1044 ± 124 145 ± 25 

7 7 wks 1012 ± 130 142 ± 21 
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Table 6.3. Changes in background amplitude over repeated cycling of FS CFMs in vitro. 
Background currents significantly increased following the first extensive cycling period. 
However, no significant changes were seen for subsequent measurements despite significant 
changes in sensitivity. This suggests that the use of background amplitude alone to track 
electrode performance in vivo may mask underlying changes in sensitivity. 
  

n Cycle Time (hr) Bkg Current Amplitude (nA) Normalized Amplitude 

22 0 481 ± 87 100 

14 12 703 ± 97 146 ± 20 

12 24 719 ± 109 153 ± 16 

12 36 688 ± 90 147 ± 17 

12 48 676 ± 107 144 ± 17 
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weeks of implantation. Significant differences were seen between time points (F3,33 = 18.62, p < 

0.0001), with Bonferroni’s post-hoc test revealing significance differences between the 

background amplitude during surgery and each other time point (p < 0.0001), but not between 

any time points post-implantation (p > 0.05). Based off previous work (Roberts, et al., 2013), this 

would suggest that there should be minimal changes in sensitivity following first use of the CFM 

post-implantation.  

Interestingly, the trend between surgery and the first measurements following 

implantation mirror the increases in sensitivity seen upon first extensive cycling in vitro (Figure 

6.4, Table 1), which suggests the increase in background current may be an effect of the 

extensive cycling (2 hr at 60 Hz) performed before the first measurement with each chronically 

implanted CFM. To further investigate the relationship between the in vivo and in vitro findings, 

we compared the magnitude of background currents for the calibration data represented in 

Table 6.1 between time points (Table 6.3). The relative changes in background currents in vitro 

closely matched the trends found in vivo. Background current varied over time (F4,67 = 19.47, p < 

0.0001), and significant differences were found between the first time point and each later 

measurement (Bonferonni’s post-hoc, p < 0.0001). However, there were no significant 

differences in background currents between later time points (p > 0.05), despite the significant 

changes in sensitivity described above (Figure 4, Table 1). This suggests that tracking the 

amplitude of background currents at individual electrodes in vivo may be inadequate for the 

reliable determination of changes in sensitivity between subsequent recordings. 

 

DISCUSSION 

 This work represents the first detailed characterization of fused silica CFMs with respect 

to borosilicate glass electrodes. We found that FS electrodes behaved more favorably than BSG 

electrodes in vitro, as evidenced by lower stray impedance and noise, though epoxy treatment 

of BSG electrodes alleviated these differences. Despite these findings, dopamine CVs varied 
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similarly across electrode designs, which suggests that the carbon fiber itself is a major source 

of variability between electrodes. In vivo comparison of BSG and FS electrodes revealed that 

these two electrode designs behave identically during acute use, which suggests that any noted 

differences in literature between these two electrodes are due to different implantation 

durations. Lastly, we found that repeated cycling of CFMs in vitro significantly alters their 

sensitivity significantly over time. To test whether these effects persisted in vivo, we 

administered drug cocktails to evoke dopamine transients under anesthesia before and after 

implantation. We found that the changes in dopamine amplitudes and frequencies following 

implantation varied between subjects. This finding emphasizes the need for positive controls in 

studies with chronically-implanted CFMs. 

 We found that the peak oxidation potential for dopamine CVs varies similarly across all 

electrode designs, even when measuring against the same Ag/AgCl reference electrode. This 

suggests that the heterogeneity of carbon-fiber surfaces drives much of the previously reported 

differences in CVs across different CFMs (Johnson, et al., 2016; Rodeberg, et al., 2015). 

Interestingly, FS electrodes were found to have significantly more positive dopamine peak 

potentials than epoxy-BSG electrodes, despite having very similar electrochemical 

characteristics. This may be due to differences in the internal resistance of the two designs. 

Electrical connection with BSG electrodes is generated via insertion of a silver wire coated in 

conductive silver paint into the BSG capillary, where it makes contact with the unexposed 

carbon fiber. In contrast, electrical connection to the connector pin at FS electrodes is made 

only at the very end of the FS capillary via silver epoxy. Thus, the carbon fiber carries the 

current for the length of the fused silica capillary, which would increase the internal resistance of 

the electrode.  Regardless of the mechanism, the ~40 mV range of peak potentials at each 

design under ideal conditions (i.e. low impedance in vitro environment, same reference 

electrode) suggests that the variability in experimental CVs is inherent to the use of CFMs. This 

suggests that the previous concerns with ‘standard’ calibration models (Johnson, et al., 2016; 
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Rodeberg, et al., 2015) may be difficult to avoid even with more robust CFM construction 

methods. However, the method for collecting dopamine and pH standards at acutely implanted 

BSG electrodes for within-subject PCR models (i.e. electrical stimulation of afferent dopamine 

neurons) is not appropriate for experiments with chronically-implanted CFMs, as stimulating 

electrodes appeared to fail over long-term implantation. Moreover, the other method used in this 

study to evoke dopamine transients at chronic CFMs (i.e. injection of a cocaine-haloperidol 

cocktail) is infeasible for routine studies, as these injections would likely alter behavior. 

Therefore, the best approach to improve generalized calibration at chronic CFMs may be 

adaptation of multivariate calibration to control for differences in CVs across electrodes (or 

differences in CVs over time at the same electrode).  

 We found that repeated cycling of CFMs in vitro significantly changes their sensitivity 

over time. This finding was not unanticipated, as previous studies have shown that repeated 

application of waveforms with extended anodic limits etches the surface and generates surface 

oxides, which facilitate sensitivity towards dopamine (Heien, et al., 2003; Roberts, et al., 2010; 

Takmakov, et al., 2010). This would explain the two trends in sensitivity seen during repeated 

use; the early increases in sensitivity would likely be due to generation of surface oxide groups 

on the CFM surface, while the diminished sensitivity at later time points would be due to active 

etching (and reduction) of the carbon-fiber surface. However, it is difficult to determine whether 

these same effects persist in an in vivo environment. While previous studies have shown that 

background current amplitudes can predict differential sensitivity towards dopamine across 

different electrodes and anodic limits (Roberts, et al., 2013), our findings here suggest that 

significant changes in sensitivity over time at the same CFM are unpaired from significant 

alterations in background current amplitude. Therefore, while background currents in vivo 

appear stable following first use post-implantation, this metric alone may be insufficient to 

guarantee stable sensitivity over time. 
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 Due to failure of the stimulating electrode, we used a drug cocktail to evoke dopamine 

transients at FS CFMs before and after implantation to track their sensitivity. We found that 

changes in average dopamine transient amplitude differed across electrodes. Notably, there 

was a minimum interval of one week between injections in this study. It is possible that a more 

rapid dosing paradigm, which would mirror more consistent use of chronic CFMs, would result in 

plasticity and/or sensitization of dopamine release that would confound results (Singer et al., 

2017). Therefore, systematic tests of the relationship between chronic CFM use and sensitivity 

may be infeasible with this method. One possible alternative is selective optogenetic stimulation 

of dopamine neurons, which evokes dopamine release in the dorsal and ventral striatum (Bass 

et al., 2010; Tsai et al., 2009). If optical fibers avoid the problems that plague bipolar stimulating 

electrodes during chronic implantation, optogenetic stimulation could be used to test the 

sensitivity of chronic CFMs using precisely controlled stimulation parameters. With this method, 

it could be tested whether (possible) changes in sensitivity of chronically-implanted CFMs are a 

function of the frequency and duration of their use. As it stands, the best current practice for 

positive controls at chronic CFMs is the use of unexpected food reward to elicit dopamine 

release. A previous study showed that dopamine release to this stimulus remained relatively 

consistent over fifteen sessions of measurements, despite dynamic changes in dopamine 

release to other conditioned and unconditioned stimuli (Clark et al., 2013). Alternatively, 

experimental design that ensures both increases and decreases in dopamine could ensure that 

chronically-implanted CFMs aren’t being systematically altered over repeated use. 
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