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ABSTRACT

Chris Bowen: Robots that Learn and Plan – Unifying Robot Learning and
Motion Planning for Generalized Task Execution

(Under the direction of Ron Alterovitz)

Robots have the potential to assist people with a variety of everyday tasks, but to achieve that

potential robots require software capable of planning and executing motions in cluttered environments.

To address this, over the past few decades, roboticists have developed numerous methods for planning

motions to avoid obstacles with increasingly stronger guarantees, from probabilistic completeness

to asymptotic optimality. Some of these methods have even considered the types of constraints

that must be satisfied to perform useful tasks, but these constraints must generally be manually

specified. In recent years, there has been a resurgence of methods for automatic learning of tasks

from human-provided demonstrations. Unfortunately, these two fields, task learning and motion

planning, have evolved largely separate from one another, and the learned models are often not

usable by motion planners.

In this thesis, we aim to bridge the gap between robot task learning and motion planning by

employing a learned task model that can subsequently be leveraged by an asymptotically-optimal

motion planner to autonomously execute the task. First, we show that application of a motion planner

enables task performance while avoiding novel obstacles and extend this to dynamic environments

by replanning at reactive rates. Second, we generalize the method to accommodate time-invariant

model parameters, allowing more information to be gleaned from the demonstrations. Third, we

describe a more principled approach to temporal registration for such learning methods that mirrors

the ultimate integration with a motion planner and often reduces the number of demonstrations

required. Finally, we extend this framework to the domain of mobile manipulation. We empirically

evaluate each of these contributions on multiple household tasks using the Aldebaran Nao, Rethink

Robotics Baxter, and Fetch mobile manipulator robots to show that these approaches improve task

execution success rates and reduce the amount of human-provided information required.
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CHAPTER 1

Introduction

New robotic hardware has the potential to assist people with a variety of routine tasks in people’s

homes and workplaces like those shown in Figure 1.1 [1, 2]. However, to achieve this potential,

robots require software. From assisting a person with a disability with an activity of daily living

(such as cooking or cleaning) to performing small-scale manufacturing tasks, assistive robots need to

be capable of planning and executing motions in cluttered environments that may contain unforeseen

obstacles. Further complicating the software challenge, many assistive tasks involve important

constraints on motion that humans are aware of from context and intuition. For example, when

carrying a plate of food, a person knows that tilting the plate sideways, while feasible, results in

task failure because it will spill the food. In order to autonomously and safely accomplish many

assistive tasks, a robot must be aware of or approximate such task constraints and must plan and

execute motions that consider these constraints while avoiding obstacles.

Identifying these constraints for each candidate task individually is time-consuming at best,

(a) Aldebaran Nao robot au-
tonomously performing a powder
transfer task.

(b) Fetch mobile manipulator ro-
bot autonomously performing a
sweeping task.

(c) Rethink Robotics Baxter ro-
bot autonomously performing a
liquid pouring task.

Figure 1.1: Robots performing households tasks.
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infeasible at worst. To combat this bottleneck, much research has been devoted to automatic task

learning. In this work, we focus specifically on learning from demonstrations, wherein a human

kinesthetically demonstrates multiple successful executions of a task. Because these demonstrations

were successful, similarity to them can be used an approximation for constraint satisfaction. This

allows the robot to learn to execute the task autonomously with natural-looking motions.

From a user’s perspective, after performing a few demonstrations in different scenarios, a learning

algorithm is run which estimates an opaque model of the task. Then after sensing a new environment,

the robot should be capable of using this learned model to plan motions to accomplish the task in

that environment.

To be adopted and useful, this process of learning from demonstrations followed by execution

cannot require a human to manually provide unrealistic amounts or types of information to achieve

success. This information might take many forms; for example:

• Information about the intended execution environment, including obstacles.

• Task-specific specifications which a non-technical user is unlikely to be able to correctly

provide.

• Tens or hundreds of kinesthetic demonstrations.

In this dissertation, we discuss and evaluate technological contributions that address each of these

by rendering them unnecessary for a broad class of useful tasks, with the goal of learning a model of

the task which can be generalized to enable execution in new environments by effectively bridging

the gap between prior work in task learning and motion planning. Specifically we will adapt

sampling-based motion planners [3] to execute task models learned through statistical methods

[4, 5, 6, 7].

1.1 Challenges

Unstructured Environments The first key challenge is that homes and workspaces are unlike

the manufacturing floors where robots have already been successfully applied. Those spaces were

designed to accommodate robots. By contrast, homes are often cluttered with obstacles, including

people, which must be avoided to safely perform a task, and the locations of objects in these

environments are not fixed. While much prior work in robotics has focused on navigation in such

environments and even while satisfying manual constraints, considerably less has addressed the

2



challenge of doing so for learned tasks. These problems are distinct because uncertainty is an

inherent aspect of learning which the resulting task model should capture. At planning time, this

uncertainty implies soft constraints rather than hard ones which usually arise from manual task

specification.

Changing Environments A further challenge in environments where people live and work is that

objects in the environment are often not static—objects relevant to a task may move independently

or be moved by people. Again, prior work has considered this problem, but often by relying on

heuristics like potential fields that sacrifice global guarantees [8, 9, 10]. Loss of such guarantees

is not a purely academic issue; without some guarantee of global optimality (or near-optimality),

solutions may be arbitrarily suboptimal, which is simply not good enough when operating around

people or in other safety-critical scenarios.

Mobility and Manipulation Unlike manufacturing floors, household environments are generally

designed with mobile occupants in mind. In fact, it is precisely occupants who have lost some

portion of their mobility that may most need a robotic assistant to perform activities of daily

living. So robots in these environments must be able to navigate in order to perform a variety of

tasks. However, for a mobile manipulator robot performing a task, the problems of navigation and

manipulation are inherently coupled [11]. To see this, observe that on the one hand, the manipulator

may need to be repositioned to navigate through a narrow passage while adhering to task constraints

(e.g., levelness of the grasped pitcher to avoid spilling). On the other hand, the robot may need to

reposition itself to enable the manipulator to accomplish a given task (e.g., pouring liquid from

the pitcher into a bowl). This coupling presents multiple challenges, mostly stemming from the

associated increase in dimensionality. While a traditional robot arm might have only six degrees of

freedom, a mobile manipulator like the Fetch robot [2] might have eleven or more. This increase in

dimensionality can dramatically affect the performance of motion planners.

Limited and Inconsistent Demonstrations Human demonstrators are often inconsistent, and

in fact, spatial inconsistency in demonstrations is vital when learning the full range of motions

which result in task success. However, demonstrations are also inconsistent in time; some parts of a

given task may be performed quickly in one demonstration and slowly in another, while a different
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Figure 1.2: General overview of the components of the system, with human input shown in green,
task learning shown in blue, execution execution shown in red, and environment shown in yellow.
Note that the task model is not specific to an environment and so need only be learned once per
task. It can then be used for execution across many environments. All arrows indicate execution
flow and solid arrows indicate data flow.

portion of the task may exhibit the opposite effect. Factoring out this inconsistency is a common

step across many robot task learning algorithms, including ours, but some of these methods may

require tens or hundreds of demonstrations to adequately learn a task. These problems are not

unrelated. As we will later show, improving how temporal inconsistency is handled can reduce the

number of demonstrations the user must perform before the learner becomes effective.

1.2 Contributions

Roboticists have already developed robust methods for motion planning that focused largely on

reachability. Simultaneously, numerous models of tasks and algorithms for estimating them from

demonstrations have been developed, but without application of a motion planner in mind. So, to

address all of the above challenges, we adapt and integrate these existing methods while introducing

new methods specific to the problem of motion planning for learned tasks. We discuss our approach

to each briefly here and in full detail in the corresponding chapter.

1.2.1 Asymptotically Optimal Motion Planning for Learned Robotic Tasks

To address the challenge of unstructured environments, our approach consists of two major

phases: learning a task model from a set of demonstrations followed by task performance in the

execution environment. Note that the task model is not tied to a specific environment, so it only

needs to be learned once per task. It can then be used for execution across many environments, even

if task-relevant objects are in different places and new obstacles are present. Figure 1.2 illustrates
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an overview of the approach. For now, we focus on tasks in static environments that do not require

dynamics considerations.

During the learning phase, the user provides demonstrations of a task. These demonstrations

can be performed with no obstacles present. We use statistical methods to learn a task model, which

can be mapped to new environments with previously unseen obstacles and in which task-relevant

objects may be in different locations.

Methods based on learning from demonstrations have already proven to be highly effective at

automatically learning task constraints and controllers from demonstrations by people who may not

have programming expertise but typically do not handle obstacles at all or do so in a way that is not

globally optimal, often relying on potential fields (e.g. [12, 13, 14]). Fortunately, sampling-based

motion planners for robotic manipulators have become increasingly efficient at computing feasible

plans that avoid obstacles [15]. However, these motion planners typically require that the task

constraints (such as keeping a plate level) be manually programmed, which can be tedious and

requires a programmer with domain knowledge. So we integrate ideas from demonstration-based

learning into a sampling-based motion planner with asymptotic optimality, yielding a framework

for robots to compute motion plans that (1) avoid obstacles in unstructured environments and

(2) aim to satisfy learned features of the motion that are required for the task to be successfully

accomplished.

This contribution is discussed in Chapter 2 and was also presented in [16].

1.2.2 Reactive Replanning for Learned Robotic Tasks

To address the unique challenge of environments which may change during execution, we

continuously replan by rebuilding the roadmap and then searching for a new plan. This replanning

approach computes plans that avoid obstacles while performing the task based on the current state

of the environment. This approach closes the loop between planning and sensing as indicated by

the dotted line in Figure 1.2. Ultimately, we enable the robot to replan in real-time, averaging more

than 5 plans per second in our experiments, by leveraging information in the task model and using

appropriate data structures and algorithms.

This contribution is discussed in Chapter 3 and includes work originally presented in [17] along

with work which later appeared in journal form [18].
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1.2.3 Learning Virtual Landmarks

We extend on the learning approach by allowing some additional time-invariant parameters

of the task to be learned from the demonstrations while simultaneously learning the time-variant

parameters considered previously. In that model, time-variant parameters are used to encode

how the robot should move as the task progresses by identifying low variance features that are

likely important for successful task performance due to their consistency in the demonstrations. In

contrast, we use time-invariant parameters to define the space in which we learn by determining

which features to consider. So rather than requiring manual specification of what features might

potentially be important, we automatically learn them by estimating the most informative (i.e.

consistent) value for the time-invariant parameter from the demonstrations. For example, these

parameters are used to define which objects in a cluttered environment are actually relevant to the

task that is being learned.

This contribution is discussed in Chapter 4 and was originally presented in [19].

1.2.4 Improving Temporal Registration

Many existing methods for robot learning from demonstrations require registering a time sequence

of observations to a reference model, either for aligning demonstrations during preprocessing or

as an integral part of task model estimation. Our learning phase is no exception. Often dynamic

time-warping (DTW) is used for this purpose thanks in part to its performance and ease of

implementation, but DTW aims to find only the single most likely temporal registration. We

introduce probability-weighted temporal registration, a more general form of temporal registration

that explicitly captures uncertainty in the registration. Instead of assuming each observation is

registered to (at most) one time step of the reference model, we use the forward-backward algorithm

to compute probability-weighted assignments and avoid degenerate registrations. We apply this

approach to two learning methods from prior work on both simulated and physical tasks and show

that incorporating uncertainty into robot learning algorithms can yield higher-quality task models

that enable faster task executions and higher task success rates.

This contribution is discussed in Chapter 5.

1.2.5 Motion Planning for Learned Mobile Manipulation Tasks

We present an approach to accelerating motion planning for mobile manipulation tasks learned

from demonstrations. This method guides sampling toward configurations most likely to be useful
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for successful task execution while avoiding manual heuristics and preserving asymptotic optimality

of the motion planner. We leverage the learned task model which is used by the motion planner

to evaluate plan cost, to also guide sampling, yielding plans with high rates of success faster than

unbiased or goal-biased sampling. This is accomplished by tightly integrating sampling with a

hybrid motion planner that builds separate base and arm roadmaps using Gibbs sampling [20]. Such

an approach allows the sampled arm configurations to depend on the reachable base configurations

and vice-versa. We evaluate our method on two household tasks using the Fetch robot and greatly

improve upon motion planners that rely on unbiased sampling or either of two goal-biased planners

when using the same cost metric.

This contribution is discussed in Chapter 6 and was originally presented in [21].

1.3 Thesis Statement

The unifying theme throughout this work is that of better leveraging the information and

methods available to us to avoid requiring more from the user than necessary. Concisely, we aim to

show that:

Robotic systems can learn, from demonstrations, to perform tasks in unstructured environ-

ments while avoiding obstacles with less prior knowledge by better extracting information from the

demonstrations and leveraging an asymptotically optimal motion planning method during execution.

Each chapter of this dissertation supports this thesis statement as outlined below.

1.4 Organization

In Chapter 2, we present a learned task model and show that it can be directly used by an

asymptotically optimal motion planner to perform tasks in new environments with new obstacles. In

Chapter 3, we further leverage the learned model to make this approach fast enough to be performed

multiple times per second to react to sensed changes in the environment. In Chapter 4 we show

that time-invariant parameters of the task can be learned simultaneously with the time-variant

ones of the aforementioned model, effectively enabling automatic feature space selection in the

form of virtual landmarks on grasped tools. In Chapter 5 we present an improved approach to

time alignment for learning robotic tasks using the forward-backward algorithm, which can enable

the robot to learn better models of a task from fewer demonstrations. Finally in Chapter 6, we

extend this method to mobile manipulators and tasks which require mobility while retaining global

optimality guarantees before concluding in Chapter 7.
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CHAPTER 2

Asymptotically Optimal Motion Planning for Learned Robotic Tasks

In this chapter, we present demonstration-guided motion planning (DGMP), a framework for

robots to compute motion plans that (1) avoid obstacles in unstructured environments and (2) aim to

satisfy learned features of the motion that are required for the task to be successfully accomplished.

We focus on tasks in static environments that do not require dynamics and in which task success

depends on the relative pose of the robot’s end effector to objects in the environment.

At the core of DGMP is an asymptotically optimal sampling-based motion planner that computes

motion plans that are both collision-free and globally minimize a cost metric that encodes learned

features of the motion. The motivation for our cost metric is that if the robot is shown multiple

demonstrations of a task in various settings, features of the demonstrations that are consistent across

all the demonstrations are likely to be critical to task success, while features that vary substantially

across the demonstrations are likely unimportant. For example, when transferring instant coffee

powder from a container to a cup (see Figure 2.1), the feature of the levelness of the spoon will

be consistent across the demonstrations (i.e., low variance) while the height of the spoon from the

table may vary (i.e., high variance) due to the presence of other objects on the table. Leveraging

this insight, our method takes as input a set of kinesthetic demonstrations in which a person holds

the robot’s limbs and guides the robot to perform the task while we record time-dependent motion

features, including the robot’s configurations and the pose of the end effector relative to task-relevant

objects in the environment. The placement of these objects, such as the coffee container and cup in

the example above, are randomized for each demonstration. We then estimate a learned task model

that encodes the covariances of the motion features as a function of time.

Once the task model is learned, DGMP can be used to autonomously execute the learned task in

a static environment in which task-relevant objects may be in different locations and new obstacles

may be present. Using the learned task model, we define a time-dependent cost map specific to

the current environment. The cost map, defined over the robot’s configuration space, considers the
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Figure 2.1: Tasks in many domains require both avoiding obstacles and also satisfying task constraints.
Transferring powder (e.g., instant coffee, sugar, mixes) by spoon requires avoiding obstacles while
keeping the spoon level to avoid spills (left). Pushing a (red) button requires that the robot avoid
obstacles while ensuring the finger advances at an appropriate orientation when approaching the
button (right).

covariances of the motion features across demonstrations using a Mahalanobis distance metric and

is parameterized by the locations of the task-relevant objects. The cost map is defined such that

a trajectory that minimizes cost has the highest probability density given the distribution of the

successful demonstrations in motion feature space.

This chapter is based on work previously published in [16].

2.1 Related Work

Sampling-based methods have been highly successful for computing feasible and optimal motion

plans for a wide variety of robots, including manipulators with many degrees of freedom [15, 3].

While most sampling-based motion planners aim to minimize metrics such as Euclidean distance in

the workspace or configuration space, some methods have investigated incorporating task constraints.

Several approaches are based on rapidly exploring random trees (RRTs) [15], a highly successful

method for computing feasible, obstacle-avoiding trajectories but which does not guarantee plan

optimality [3]. Transition-based RRT (T-RRT) [22] biases expansion of an RRT to low cost regions of

the configuration space cost map, and Mainprice et al. used T-RRT to generate natural motions based

on a predefined cost map for human robot interaction [23]. RRTs have also been used in conjunction

with analytically-defined task constraints [24] and with symbolic representations of manipulation

strategies [25]. Recent sampling-based motion planners have also investigated integrating motion

constraints and properties learned from demonstrations. Algorithms include sampling only inside

a user-specified number of standard deviations of a mean demonstrated trajectory [26], finding
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low-cost paths over cost maps using local optimization [27], locally optimizing a specified objective

function using gradient descent [28], and enforcing constraints using sampling strategies [29]. Prior

sampling-based motion planning approaches, unlike our proposed method, do not simultaneously

guarantee asymptotic optimality and allow for time-dependent task constraints.

At the heart of our method is an asymptotically optimal sampling-based motion planner, meaning

the computed plan is guaranteed to approach a globally optimal plan (based on the given cost

metric) as computation time is allowed to increase. Karaman and Frazzoli proposed motion planning

algorithms such as RRG and PRM* that guarantee asymptotic optimality [3]. Asymptotically

optimal motion planners avoid the suboptimal plans resulting from local minima that can occur

when using potential field methods [15] or sampling-based planners not designed for asymptotic

optimality like RRT [3]. Related work has investigated asymptotically optimal planners that balance

exploration and refinement [30], asymptotic near-optimal planners using smaller roadmaps [31], and

anytime solution optimization [32]. Our method integrates a learned cost metric with RRG or a

PRM variant [3] to guarantee asymptotic optimality for our learned cost metric.

Our method combines a new sampling-based motion planner with ideas from demonstration-

based learning, which has been highly successful in enabling robots to learn task constraints and

imitate task motions [4, 33]. Our focus is not on learning control policies for dynamic systems (e.g.,

[34, 35, 36, 37]) but rather on computing robot trajectories that avoid obstacles while satisfying

learned constraints. Our aim is globally optimal obstacle avoidance in which the robot considers

plans in all homotopic classes and selects the best one. Prior work has investigated using search

methods such as A* or D* where cost maps or movement costs are learned from demonstrations

(e.g., [38, 39, 40, 41]), which are highly effective for 2D, discrete state spaces but do not scale well

to higher degree of freedom systems like robotic arms.

An alternative approach is to locally avoid obstacles, which works well for some applications

but does not guarantee global optimality. Potential field approaches have been applied to dynamic

movement primitives [8] and a Gaussian mixture model (GMM) [9] to locally avoid obstacles, but

potential fields require setting parameters for obstacle repulsion and can result in a robot being

trapped in local minima, especially in obstacle concavities or narrow passages [15].

Another approach is to include the obstacles in the demonstrations. Calinon et al. introduced a

GMM and Gaussian mixture regression (GMR) approach to learn motions relative to task-relevant
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objects and obstacles that are present in both the demonstration and execution environments [7, 42].

This approach represents a task using a hidden Markov model (HMM); HMM’s have been used for

motion recognition (e.g., [43, 5, 6]) and generation (e.g., [7, 6]).

We also use an HMM; however, we use a restricted form which permits us to build on prior

work on dynamic time-warping [34, 35] to create high quality alignments using an expectation-

maximization approach and then directly compute means and covariances in the space of motion

features. We use this model to construct a time-dependent cost map which we can integrate into an

asymptotically optimal sampling-based motion planner for obstacle avoidance.

2.2 Method Overview

Let Q ⊆ Rd be the d-dimensional configuration space of a holonomic robot and Qfree ⊆ Q denote

the set of configurations in which the robot is not in collision with an obstacle. We assume the robot

has also sensed the poses of L task-relevant objects (such as the cup and instant coffee container in

Figure 2.1(left)), which are stored in a vector a ∈ SE(3)L, and that these objects remain stationary

as the task is performed. We also assume the robot is holonomic with position-controlled joints, and

we do not consider dynamics. Our objective is to compute a trajectory Φ ∈ [0, 1]→ Qfree from the

robot’s initial configuration qstart ∈ Qfree to a goal configuration qgoal ∈ Qfree such that the robot

successfully accomplishes the task.

To address this challenge, we develop an approach for demonstration-guided motion planning

(DGMP) that consists of two major phases: learning and execution. The approach requires as input

a set of user-provided demonstrations of the task. During the cost metric learning phase, the robot

learns from the demonstrations a time-dependent cost metric for the task that considers the robot’s

configuration and its motion relative to task-relevant objects. The learning phase need only be

performed once per task. When the robot is in a new environment, the robot enters the motion

planning phase in which it computes a path that minimizes the learned cost metric, which captures

aspects of the demonstrated motions that are required to perform the task.

During the DGMP learning phase, presented in Section 2.4, we first extract from each demon-

stration a set of motion features that quantify properties of the motion as a function of time, such

as joint angles or the location of the end effector with respect to a task-relevant object. After

time-aligning the demonstrations, we compute statistics on the motion features, including their

means and variances, over time across the demonstrations. The lower the variance of a motion
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Figure 2.2: Bayesian network for a hidden Markov model.

feature across demonstrations at a given time, the higher the consistency of the demonstrations

with respect to that feature, which implies the mean value of a motion feature should be followed

more closely when performing the task. In contrast, high variance motion features likely do not

need to be closely reproduced during execution.

To compute a cost metric, we will leverage the intuition above regarding the increased importance

of motion features with low variances. Formally, we consider the demonstrations (as encoded in the

space of motion features) to be samples from the distribution of trajectories that will succeed at the

task. We then model the quality of a candidate motion plan in the execution environment as the

likelihood that it, too, is a sample from this distribution of successful trajectories and define a cost

metric such that better plans have lower costs.

In the DGMP execution phase, presented in Section 2.5, the robot first senses its environment to

collect sufficient information to evaluate the learned cost metric and to perform collision detection.

We then execute our new asymptotically optimal motion planning algorithm, DGPRM, to search for

a feasible, collision-free motion plan that minimizes the learned cost metric, and hence reproduces

the demonstrator’s intent as closely as possible in the new environment.

2.3 Background

Because this dissertation builds on concepts from prior work, we very briefly describe some

necessary background material here for the reader’s convenience.

2.3.1 Hidden Markov Models

Discrete-time Markov processes (or Markov chains) are distributions over sequences of states

(τ0, τ1, . . .) in some state space T such that τi+1 is independent of (τ0, . . . , τi−1) given τi. Intuitively,

the process is forgetful; it exhibits no hysteresis. We say such a process is time-homogeneous if it

is also independent of the index i (given τi−1). Such a process is fully described by the transition

probabilities between states. In this dissertation, we will be concerned only with Markov processes
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with finite state spaces, so a process can be parameterized by its transition probabilities.

A hidden Markov model (HMM) can be viewed as a probabilistic transformation of the sequence

produced by a Markov process. It is a distribution over sequences of observations (y0,y1, . . .) in

some observation space Y, where yi is independent of both (τ0, . . . , τi−1) and (y0, . . . ,yi−1) given

τi (see Figure 2.2). The name derives from the fact that we are generally only given the resulting

sequence of observations, and a common problem is to infer the (hidden) states which produced

it. In addition to the parameters of the underlying Markov process, parameterization of an HMM

necessitates choosing a parameterization of the mapping from states to observations.

2.3.2 Probabilistic Roadmaps

Let Qfree denote the free configuration space of a holonomic robot and M ∈ Qfree ×Qfree → R

be any metric on this space. Recall that a metric is non-negative, symmetric, and zero if and

only if both arguments are equal. A probabilistic roadmap (PRM) is an undirected graph with

vertices denoted V ⊆ Qfree and edges E ⊆ V ×V . Given a method for querying when vertices can be

locally connected in a collision-free way, CanLink, and a fixed connection radius r > 0, the PRM

is constructed using a relatively simple procedure.

Algorithm 2.1 BuildPRM(n)
Input: Numbers of samples n
while |V| < n do
Sample q uniformly at random from Qfree // via rejection sampling
V ← V ∪ {q}
E ← E ∪ {(q,q′) | q′ ∈ V ∧M(q,q′) < r ∧ CanLink(q,q′)}

end while

Paths in this graph thus represent collision-free paths in configuration space, so the problem

of motion planning is reduced to that of graph search. There are many variants of probabilistic

roadmaps. The description here matches what Karaman and Frazzoli call sPRM [3] where they

show it is asymptotically optimal, meaning that as the order of the graph approaches infinity, the

costs of shortest paths in the graph approach those of true minimum cost plans.

2.3.3 Product Graphs

For a directed or undirected graph G = (V, E) with vertices V and edges E , let s(e) ∈ V and

t(e) ∈ V denote the source and target of an edge e ∈ E respectively (where in the undirected case

we simply ignore the semantic distinction). Given two such graphs G1 = (V1, E1) and G2 = (V2, E2),
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their product is another graph with order (cardinality of vertices) equal to the product of the orders

of G1 and G2. The size (cardinality of edges) of the product is determined by the type of product

graph under consideration, two of which are relevant here: the Cartesian product and the tensor

product.

Let G× = (V×, E×) denote the tensor product of G1 and G2. The vertices of this graph are given

by V× = V1 × V2 and the edges similarly by E× = E1 × E2. So the size of G× is the product of the

sizes of G1 and G2. The source and target of an edge e = (e1, e2) ∈ E× are intuitively defined by

s(e) = (s(e1), s(e2)) and t(e) = (t(e1), t(e2)).

Let G� = (V�, E�) denote the Cartesian product of G1 and G2. As with the Tensor product,

V� = V1 × V2. However, E� = E1 × V2 ∪ V1 × E2. So the size of G� is |E1| · |V2| + |V1| · |E2|. The

source and target of an edge e ∈ E� are given by

s(e) =


(s(e1), v2) if e = (e1, v2) ∈ E1 × V2

(v1, s(e2)) if e = (v1, v2) ∈ V1 × E2

and

t(e) =


(t(e1), v2) if e = (e1, v2) ∈ E1 × V2

(v1, t(e2)) if e = (v1, v2) ∈ V1 × E2

.

2.4 Learning the Time-Dependent Cost Metric

In the first phase of DGMP, we learn a time-dependent cost metric for a task based on the

robot’s configurations and motions relative to task-relevant objects in a set of demonstrations. The

cost metric encodes the spatial variations and temporal ordering of the task. The robot will later

use this cost metric when planning its motions to complete the task in new environments where

task-relevant objects may have moved and new obstacles may be present.

Rather than directly learning constraints, we learn a cost metric, an approach that offers two

advantages. First, a cost metric better models how we observe humans perform a task. A human

holding a spoon to transfer powder typically holds the spoon roughly level with no explicit, hard

bounds on deviations from level. Second, the use of a cost function allows us to learn relatively
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Figure 2.3: The DGMP learning phase lifts demonstrations into a feature space, iteratively time
aligns the demonstrations, and learns a cost metric in the feature space.

complex tasks from a small number of demonstrations. While it is hard to differentiate the relevant

similarities across demonstrations from the infinitely many irrelevant coincidences without the

extensive semantic knowledge that a human would have, it is relatively easy to measure similarity

between a candidate trajectory and the demonstrations (as is required for cost metric learning). We

show an overview of the learning phase in Figure 2.3.

2.4.1 Inputs and Outputs of Cost Metric Learning

As input to the DGMP learning phase, a human controls the robot to performM demonstrations

of the task. For each demonstration, the robot’s joints are placed in a passive mode while a human

manually moves the robot’s limbs to perform the task and indicates where the task begins and ends.

We assume the robot has encoders at every joint, allowing the robot to sense its own motion and record

its configuration (e.g., a vector of its joint angles) as a function of time. During each demonstration

j ∈ {1, . . . ,m}, we record a time sequence of the robot’s configuration {qj,i}
nj

i=1, where nj is the

length of the demonstration and qj,i is the configuration at time i. For each demonstration, we also

require an annotation aj ∈ SE(3)L identifying the poses of L task-relevant objects in the environment

(e.g., the coffee container and cup in the task shown in Figure 2.1), which could be identified either

manually by the human or automatically using computer vision algorithms. We denote the poses in

demonstration j of the task-relevant objects {(Rj,l,oj,l) | j = 1, . . . ,m; l = 1, . . . , L}, where Rj,l is

the rotation matrix and oj,l is the translation vector of landmark l with respect to a global frame.
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Because the objects are task-relevant, they should be present in all demonstrations and necessarily

must be present in the execution environment.

The output of the DGMP learning phase is a time dependent cost metric c(q, t,a) for robot

configuration q at time t for an execution environment with annotations a, which may be different

from any of the values of a in the demonstrations.

2.4.2 Extracting Motion Features from Demonstrations

Since each demonstration is a successful task execution, we expect that the task constraints

for a problem are satisfied in each demonstration. To enable learning of these task constraints, we

consider a set of motion features that are designed to help identify aspects of the robot motions that

are consistent across demonstrations. These motion features may depend on both the configuration

and annotation. We denote motion feature k for time step i of demonstration j as y(k)
j,i . Inspired by

results from Calinon et al. [7, 42], for our experiments we consider two classes of motion features:

• A configuration motion feature is the robot’s configuration at a particular time. When there

are redundant degrees of freedom, this data enables learning natural motions that are lost

when only considering end-effector motions. We define this motion feature as

y(0)
j,i = qj,i.

• A landmark-based motion feature is a vector of the coordinate of a point on the robot x′

(e.g., end-effector, grasped object) relative to a landmark on a task-relevant object in the

environment (e.g., cup, button). This motion feature facilitates task execution for cases in

which task-relevant objects may be located in different places across demonstrations and

during execution. We define the motion feature relative to landmark l as

y(l)
j,i = R−1

j,l (x′j,i − oj,l).

Because we compute these motion features from the same information, namely the configuration

and annotation, it is convenient to consider both types of motion features in the context of a unifying

joint motion feature space Y along with some general function φ ∈ (Q,SE(3)L) → Y which lifts

a configuration q into the motion feature space given some annotation a. Such a function can
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represent multiple motion features simply by computing each motion feature y(k) individually and

concatenating them into a single higher-dimensional motion feature vector y = φ(q,a).

Similarly, we may consider a trajectory of motion features for each demonstration which we

denote Yj = {yj,1,yj,2, . . . ,yj,nj
} where yj,i = φ(qj,i,aj). Constructing these motion features is the

sole purpose of the demonstrations. The remainder of the cost metric learning method operates

exclusively in motion feature space.

2.4.3 Statistical Modeling of the Motion Features

Our objective in this space is to identify consistent aspects of the motion feature trajectories

across demonstrations in order to create a cost metric, parameterized by the locations of the

task-relevant objects, which will guide the motion planner.

To achieve this, we learn a statistical model consisting of T multivariate Gaussian distributions

N (µt,Σt) in motion feature space, each of which models the distribution of motion feature vectors

of the demonstrations at some time step t ∈ {1, . . . , T} in the task. Hence, our model of the task is

parameterized by the mean µt and the covariance matrix Σt of motion feature vectors for each time

step t. These may be considered as output distributions in a simple HMM with T sequential states,

wherein each state t has nonzero and equal transition probabilities only to itself and the next state

t+ 1. This induces a linear order structure to the HMM corresponding to time. The problem then

is to find the output distributions most likely to have generated the demonstrations.

To learn these distributions, we must find the correct monotonic mapping, or alignment, between

each of the observed configurations in the demonstrations and the T time steps. This corresponds

to determining the walk in the HMM which generated the demonstration. This is necessary

because the demonstrations are of different lengths and may perform parts of the task more or

less quickly. For instance, the demonstrations of the powder transfer task mentioned previously

varied from 21 to 32 seconds in length. Estimating to which state of the task a given observed

configuration in a demonstration corresponds requires constructing a model of the task, which is

exactly why we needed such an alignment in the first place. We resolve this cyclic dependence

by applying an expectation-maximization (EM) method, a common approach to learning models

of processes with latent variables. We note that the procedure described here is in actuality a

maximization-maximization method while a true expectation-maximization procedure is considered

in Chapter 5.
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First we choose a random initial alignment for each demonstration to the time steps in the task.

Next we estimate each distribution N (µt,Σt) using the sample mean and covariance of the motion

feature vectors which are aligned to time step t (weighted inversely proportional to the number

of observed configurations aligned to time step t from the same demonstration). This is the M

step of the EM algorithm because we use maximum likelihood estimates. Next we find, for each

demonstration, the walk in the estimated HMM most likely to have generated the demonstration

using the Viterbi algorithm [44]. This is the E step of the EM algorithm. Finally, if the algorithm

has not yet converged, we go back to the M step. Because EM algorithms can become caught in

local minima, we repeat the entire method a number of times with different randomized initial

alignments and use the resulting alignment with maximum likelihood.

More formally, let Yj,t denote the set of motion feature vectors in demonstration m which are

aligned to time step t. The M step computes the weighted sample mean and covariance (maximum

likelihood estimates) at each time step from Yj,t as follows:

w
(t)
j ←

1
|Yj,t|

µt ←
1
M

m∑
j=1

w(t)
j

∑
y∈Yj,t

y


Σt ←

M

M2 −
∑
w

(t)
j

m∑
j=1

w(t)
j

∑
y∈Yj,t

(y− µt)(y− µt)T
 .

The E step uses the Viterbi algorithm to align each of the demonstrations to the distributions

learned in the M step, using a cost function which maximizes the likelihood that the motion feature

vectors aligned to time step t in the demonstration came from the distribution N (µt,Σt). The

formulation of this cost is discussed in more detail in Section 2.4.4. Our results show that using an

EM approach, rather than only a dynamic-time warping [45] preprocessing step as is commonly

done in prior work, is crucial for effectively learning the task.

Accurately estimating the covariance matrices for the Gaussian distribution at each time step

requires that we have a sufficient number of demonstrations. The number of demonstrations should

exceed the dimension of the motion feature space. Intuitively, if the number of the demonstrations

is smaller, then one or more time steps could have too few motion feature vectors aligned to it,
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resulting in a singular matrix. In this case, we are only learning in a subspace of the motion feature

space. We note that this lower bound is empirically tight for some problems, as shown in the results

section.

It is possible to reduce the number of required demonstrations by approximating the motion

features as independent. This corresponds to computing the covariance matrix of each configuration

or landmark-based motion feature independently, resulting in Σt being a block diagonal matrix.

This reduces the number of required demonstrations to be one plus the dimension of the largest

motion feature vector. We used this approach in our experiments with the NAO robot in Section 2.6

and were able to effectively capture relevant task constraints.

2.4.4 Cost Metric

To formally define the cost metric, we consider the demonstrations to be samples from the

distribution of trajectories that will succeed at the task. Given an annotation â for the environment,

we define the cost of a candidate trajectory in the environment based on how likely it is a sample

from the distribution of successful trajectories.

With this approach, we wish the probability density of the trajectory being generated by the

task model to be maximized when the cost metric is minimized. At a given time step t, with a

configuration q this probability density is given by

p (q, t | µt,Σt, â) = NΣte
− 1

2 (φ(q,â)−µt)T Σ−1
t (φ(q,â)−µt)

where NΣt is a normalization factor. However, operating in the space of probabilities is numerically

inconvenient, so we instead consider the log probability density, yielding

log p (q, t | µt,Σt, â) =

log(NΣt)−
1
2(φ(q, â)− µt)TΣ−1

t (φ(q, â)− µt).

When performing time alignment, it is this value which we maximize in the M step, but in the

case of the cost metric, it can be simplified further. First by observing that the log normalization

term is constant for a given time step and thus has constant contribution to the total cost of a

trajectory, we can safely ignore it. Finally, we drop the −1
2 constant factor. This changes the

sign, which is desirable because we wish to formulate the problem as a minimization rather than a
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maximization. The final cost map is thus

c(q, t, â) = (φ(q, â)− µt)TΣ−1
t (φ(q, â)− µt). (2.1)

We note that this is simply the squared Mahalanobis distance [46] in feature space from q to the

configurations observed in the demonstrations at time t. The cost metric we will minimize is the

integral over this cost map.

In the following discussion we will drop the dependence on µ, Σ, and â from the notation for

the sake of brevity.

This log probability density formulation has desirable properties, the most notable of which is

composition. The sum of the log densities is the log of the product of the densities, log p (q, t) +

log p (q′, t′) = log(p (q, t) p (q′, t′)). We first assume that q and q′ are independent as will be the

case when they are drawn independently from a sampling distribution by a sampling-based motion

planner. We then assume independence between time steps, which while not generally true, is a

convenient simplifying assumption. Under these independence assumptions, p (q, t) p (q′, t′) is the

joint probability density given the task model, so log p (q, t) + log p (q′, t′) = log p (q, t,q′, t′). This

is important because our motion planner will find a trajectory which minimizes the integral of this

cost map, which under these assumptions is equivalent to maximizing the probability density of the

entire trajectory in our learned model.

We note that computing the likelihood given the model requires that we compute Σ−1
t , which

exists only if Σt is non-singular. Cases where Σt is singular will arise, e.g., when multiple landmarks

are fixed relative to each other. To overcome this in our implementation we employ a pseudoinverse,

specifically the Moore-Penrose pseudoinverse. This approach has the desirable property of effectively

collapsing multiple landmarks fixed relative to each other into a single landmark.

The learned cost map depends on knowing â, which contains the locations of the task-relevant

objects. Hence, the cost metric is used after the robot senses the locations of the task-relevant

objects in the execution environment. We describe in Section 2.5 how the learned cost metric is

used in motion planning.
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Figure 2.4: The DGMP execution phase uses output from the learning phase to construct a cost
metric for the current execution evironment and then computes a motion plan that minimizes the
cost metric.

2.5 Motion Planning Using the Learned Cost Metric

In the DGMP execution phase, the robot computes a feasible, collision-free motion plan in

configuration space that minimizes the learned cost metric. We show an overview of the execution

phase in Figure 2.4.

2.5.1 Inputs and Outputs of Motion Planning

The DGMP execution phase requires as input an annotation â describing the new environment

and a model of the obstacles that must be avoided. In our experiments, we used color and depth

data from a Microsoft Kinect to automatically create models of obstacles as described in Section 2.6.

The method also requires as input the robot’s start and goal configurations qstart,qgoal ∈ Qfree and

the time-dependent cost map c ∈ (Q, [0, 1])→ R+ as given by Eq. 2.1. For notational convenience,

we scale time to be between 0 and 1 and drop the annotation parameter from c since for motion

planning this is always the observed execution environment â.

Definition. We say Φ ∈ [0, 1]→ Q is a trajectory if and only if it is Lipschitz continuous. That is

∃KΦ ∈ R+, ∀t1, t2 ∈ [0, 1], |Φ(t2)− Φ(t1)| < KΦ(|t2 − t1|).

Definition. We say a trajectory Φ is feasible if and only if ∀t ∈ [0, 1], Φ(t) ∈ Qfree, Φ(0) = qstart,

and Φ(1) = qgoal.

Definition. Let C(Φ) =
∫ 1

0 c(Φ(t), t) dt denote the cost of a trajectory Φ.
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As discussed previously, our choice of cost metric has the advantageous property that the sum

of the costs is the log likelihood in the joint distribution under the assumption of independent time

steps. This is the discrete analogue of the integral formulation of C used by the motion planner.

Our objective is to compute a feasible trajectory Φ∗ that minimizes cost C(Φ∗).

2.5.2 Sampling-Based Planning for the Learned Cost Metric

We introduce DGPRM, a new sampling-based motion planner for computing plans that minimize

the DGMP time-dependent cost metric. We employ a variation of a probabilistic roadmap (PRM)

[47], because of its asymptotic optimality (using the sPRM variant) [3] and ease of parallelization,

which we leverage. We also integrate DGMP with an RRG-based roadmap [3], which performs

roughly equivalently when used with our DGMP-based extensions as discussed in the results. Our

sampling-based motion planner guarantees that, as computation time is allowed to increase, all

homotopic classes of plans will be considered and an optimal plan approached.

PRM methods construct a graph (called a roadmap) where each vertex (called a waypoint)

corresponds to a configuration of the robot and each edge corresponds to a local plan for navigating

from the configuration of one waypoint to another. This graph is constructed by repeatedly

sampling a configuration from Q and adding a new waypoint to the roadmap corresponding to

this configuration if it is collision-free. When a new waypoint is added to the roadmap, edges are

constructed between it and other waypoints which are nearby in configuration space and connectable

by collision-free paths. As the number of waypoints currently in the roadmap increases, the roadmap

becomes a denser approximation of the collision-free configuration space.

To accommodate the time-dependency in the cost metric, we associate a time value with each

waypoint and use a directed graph for the roadmap to forbid traversing edges backwards in time.

We choose the time value associated with a given waypoint by maintaining a partitioning of the time

span [0, 1] which is initially just a single partition consisting of the entire time span T = {[0, 1]}.

These partitions can be thought of as layers within the roadmap. We also choose some initial value

∆qmax. We then alternate between two phases, expansion and splitting. Intuitively, these increase

sampling density in configuration space and in time respectively. Throughout the process, we track

the size of the largest partition, which we denote ∆tmax.

This iterative refinement of time partitions provides multiple benefits. The first and most notable

of which is the capability to handle time-dependent cost metrics as present in DGMP. The second
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Figure 2.5: An example roadmap for a 2D configuration space with 3 time partitions in yellow, red,
and blue. A path is shown in green.

benefit of this approach is that we do not require numeric integration of cost along roadmap edges,

which typically requires an integration step size parameter. This approach can result in “missing” a

small, high-cost region if this parameter is not properly tuned. In contrast, as DGPRM progresses,

the maximum step size in both configuration space and time automatically decrease in such a way

that the error in computing the cost metric for a trajectory approaches 0 under certain reasonable

assumptions (see Section 2.5.4).

DGPRM begins by adding the start and goal configurations to the roadmap. Due to the layers,

multiple waypoints may correspond to the same configuration. We say that the start waypoint

is the waypoint corresponding to the start configuration in the first time partition, and the goal

waypoint is the waypoint corresponding to the goal configuration in the last time partition. We let

n denote the number of configurations currently in the roadmap, so initially n = 2.

At any time, we may search the roadmap for the shortest path from the start waypoint to the

goal waypoint. Interpolating linearly along this path yields a feasible trajectory, which is taken as

an approximation of Φ∗. An illustrative roadmap is shown in Figure 2.5.

In the algorithm below, B ∈ R+ is a constant which serves as a bias towards sampling more

densely in configuration space or time which affects performance but not correctness.

23



Algorithm 2.2 DGPRM(Vinitial, Einitial)
V ← { (q̂t, t) | q̂t ∈ F }
E ←

{
(q̂t, t, q̂t+1, t+ 1) | q̂tq̂t+1 ⊂ F

}
loop
nnew ← B|T |d+2 log(|T |)
ExpandRoadmap(nnew − n, V, E)
n← nnew
tsplit ← DetermineSplit()
SplitRoadmap(tsplit, V, E)
π ← ShortestPath()
yield π

end loop

Expansion In the expansion phase, ∆n additional configurations are sampled from Q. For each

configuration, if the configuration is collision free we add a waypoint to the roadmap in each time

partition for the configuration. As in other PRM methods, edges lying entirely in Qfree are then

added between nearby waypoints. In this case, nearby means nearby in both space and time.

Specifically, edges are only added if the waypoint configurations are within ∆qmax and the time

values are within adjacent partitions. The edges are also directional, and oriented forward in time.

Algorithm 2.3 ExpandRoadmap(∆n, V, E)
{q1,q2, . . . ,q∆n} ← ∆n samples from Qfree
for all qv ∈ {q1,q2, . . . ,q∆n} do
for all [ti, ti+1] ∈ T do
tv ← arbitrary value ∈ [ti, ti+1]
v ← (qv, tv)
V ← V ∪ {v}
for all v′ ∈ V | ti−1 ≤ tv′ ≤ ti+2 do
if |qv − qv′ | < ∆qmax ∧ |tv − tv′ | < ∆tmax then
if ∀s ∈ [0, 1], qv + s(q′v − qv) ∈ Qfree then
w ← |tv − tv′ | c(qv, tv)
E ← E ∪ {(v, v′, w)}

end if
end if

end for
end for

end for

Splitting In the splitting phase, we first choose a time value t at which to split. The only

restriction on this choice is that to approach optimality in the limit, the size of every partition
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must approach 0. That is, ∆tmax → 0. To perform the split, all the vertices in the time partition

containing t are duplicated, including their incoming and outgoing edges. All of these vertices are

then assigned new time values in one of the two new partitions. Next, ∆qmax is updated based

on the new value of ∆tmax, and edges longer than ∆qmax or that span multiple time partitions

are pruned from the roadmap. Edges which violate the temporal ordering property are reoriented.

Finally, all affected edge costs are recomputed.

Algorithm 2.4 SplitRoadmap(t, V, E)
Find the partition [ti, ti+1] containing t
Insert t after ti producing partitions [ti, t] and [t, ti+1]
∆tmax ← max

j
(tj+1 − tj)

∆qmax ← (∆tmax)1−ε

{v1, v2, . . .} ← {v ∈ V | ti ≤ tv ≤ ti+1}
{v′1, v′2, . . .} ← duplicate subgraph {v1, v2, . . .}
for v ∈ {v1, v2, . . .} do
tv ← arbitrary value ∈ [ti, t]
E ← E \ {(v, v′) | tv′ ≥ ti+1 ∨ |qv − qv′ | ≥ ∆qmax}

end for
for v ∈ {v′1, v′2, . . .} do
tv ← arbitrary value ∈ [t, ti+1]
E ← E \ {(v, v′) | tv ≤ ti ∨ |qv − qv′ | ≥ ∆qmax}

end for
for v ∈ {v1, v2, . . .} ∪ {v′1, v′2, . . .} do
Reorient edges to and from v as required
Recompute edge costs as when expanding

end for

This method frequently requires that we measure distance in configuration space, both for

connecting nearby waypoints and for pruning long edges. While any distance metric could be used

here, a metric which better approximates the actual cost of traversing an edge improves performance.

In DGMP we use the Mahalanobis distance in motion feature space with the covariance matrix of

all the motion feature vectors from all the demonstrations.

2.5.3 Demonstration-Guided Speedups for Motion Planning

While not strictly necessary for motion planning, we compute a guiding path, the trajectory

which minimizes C in the absence of obstacles. The configuration at time t along the guiding path

is given by

q̂t = argmin
q∈Q

(φ(q, â)− µt)TΣ−1
t (φ(q, â)− µt). (2.2)
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Efficient methods exist for locally approximating this computation [48]. Computing the guiding

path is fast and can be used to speed up computation time in several ways.

First, we implemented seeding which adds configurations along the guiding path to the initial

roadmap. These waypoints serve as local minima in regions of configuration space that are collision-

free.

Second, we use the guiding path to bias configuration space sampling to reduce computation

time in environments with obstacles. In the expansion step of DGPRM, rather than using uniform

sampling from Q, we sample configurations based on the learned model, sampling more densely in

regions of the configuration space that are more likely to result in high quality plans. Specifically, we

sample q from a Gaussian in configuration space with mean at the guiding path configuration at that

time step q̂t. The covariance matrix is chosen to be the sample covariance of all the configurations

across all the demonstrations.

In addition to the speedups based on the demonstrations, we note that our use of layers provides

a speedup for problems in static environments with time dependence. When a configuration is

added to the roadmap, we add corresponding waypoints and edges to all layers but only need to

check for collisions once, which reduces computation time compared to prior approaches that sample

in the product of configuration space and time and require collision checking for each sample.

2.5.4 Analysis

In this section, we will provide an outline of a proof showing that, under certain assumptions

and for suitable choices of parameters, the method is guaranteed to almost surely (with probability

one) converge to an optimal trajectory as computation time increases.

To simplify the analysis, we consider a modified version of the method in which a new roadmap

is constructed at each iteration and time partitions are evenly distributed. In this section we assume

that a minimal feasible trajectory Φ∗ exists.

Assumption 1. The cost metric c is Lipschitz continuous:

∃Kc ∈ R+, ∀q1,q2 ∈ Q, ∀t1, t2 ∈ [0, 1], |c(q2, t2)− c(q1, t1)| < Kc max(|q1 − q2| , |t2 − t1|).

This assumption holds for the DGMP cost metric if φ is Lipschitz continuous with constant

Kφ and the smallest singular value among the learned covariances matrices σmin > 0. Although a

tighter bound can be given, Kc = (K2
φ + 2)σ−1

min suffices. We note that the restriction that σmin > 0
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is equivalent to assuming all of the learned covariance matrices are non-singular. Intuitively we

expect this to be the case almost surely when the number of demonstrations exceeds the dimension

of the feature space. However, for pedantic choices of φ, this will not necessarily be the case [49].

Definition. Where π = (q1, t1, . . . ,qk, tk) is a path in the roadmap defined by the sequence of

configurations (qi) at times (ti), let Φπ be the trajectory formed by linearly interpolating between

configurations in π. Specifically, let Φπ(t) = qi + t− ti
ti+1 − ti

(qi+1 − qi) where ti ≤ t ≤ ti+1. By

construction of the roadmap, all ti are distinct and ∀i < k,
∣∣qi+1 − qi

∣∣ < ∆qmax so Φπ is Lipschitz

continuous with KΦ = ∆qmax
min

1≤i<k
ti+1 − ti

. Furthermore, edges are only added to the roadmap if the line

segment between the waypoints is contained in Qfree, so Φπ is feasible.

Definition. For a given path π = (q1, t1, . . . ,qk, tk), the weight of a path, denoted W (π), is given

by
∑k
i=1(ti+1 − ti)c(qi, ti).

Lemma 1. For every path π in the roadmap, W (π) approaches C(Φπ) as ∆tmax and ∆qmax

approach 0 where ∆tmax denotes the length of the longest time partition and ∆qmax denotes the

longest distance between adjacent waypoints in the roadmap.

The proof of this lemma follows fairly simply from the observation that the Lipschitz continuity

of c implies that as both ∆qmax and ∆tmax approach 0, the rectangle rule becomes arbitrarily

accurate.

Proof. For a given path π = (q1, t1, . . . ,qk, tk), the error is given by

∣∣∣∣∣C(Φπ)−
k∑
i=1

(ti+1 − ti)c(qi, ti)
∣∣∣∣∣ =

k∑
i=1

∣∣∣∣∫ ti+1

ti

c(qi + t− ti
ti+1 − ti

(qi+1 − qi), t)− c(qi, ti) dt
∣∣∣∣ <

k∑
i=1

∫ ti+1

ti

Kc max(∆qmax,∆tmax) dt =

∫ tk

t1
Kc max(∆qmax,∆tmax) dt

Thus,

lim
∆qmax,∆tmax→0

max
π

C(Φπ)− C(π) = 0. (2.3)
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Assumption 2. The distribution from which samples are drawn has probability density function

D ∈ Q → R+ which is everywhere nonzero. Furthermore, D is Lipschitz continuous with constant

KD.

This assumption holds for the sampling distribution considered in Section 2.5.2 if the none of

the learned covariance matrices are singular, as was required for Assumption 1 to hold for the cost

metric.

Lemma 2. For any error bound ε > 0, there exist a choices of n and ∆qmax as functions of ε and

∆tmax such that the probability that there exists a path in the roadmap constructed from n waypoints

with weight less than C(Φ∗) + ε approaches 1 as ∆tmax and ∆qmax approach 0.

The proof of this result revolves around a few key observations. First, the non-zero density of the

sampling distribution implies that the probability of sampling arbitrarily close to any configuration

along Φ∗ approaches 1. Second, the Lipschitz continuity of c implies that as samples approach the

configurations along Φ∗, their costs approach the costs of these configurations. Third, the Lipschitz

continuity of Φ∗ implies that as a path with sufficiently small time steps approaches Φ∗, the cost of

this path approaches the cost of Φ∗. Finally, as shown in [3] the expansiveness of Qfree implies that

the probability that there exists a path arbitrarily close to Φ∗ in a sufficiently-connected roadmap

approaches 1 as the number of samples approaches infinity.

Proof. For each of k time partitions [ti, ti+1] consider a configuration with minimal cost in the

optimal trajectory within that time span. That is

q∗i = min
t∗i∈[ti,ti+1]

c(Φ∗(t∗i ), t∗i ).

The path π∗ = (q∗1, t∗1, . . . ,q∗k, t∗k) then satisfiesW (π∗) ≤ C(Φ∗), but this path is not necessarily in the

roadmap or even feasible. However, consider d-balls βi of radius δ = εKc/k around each configuration

q∗i . Observe that ∀i < k ∀qi ∈ βi |c(q∗i , t∗i )− c(qi, ti)| < max(ε/k,Kc∆tmax), and for sufficiently

small ∆tmax, ε/k dominates. For π = (q1, t1, . . . ,qk, tk) we note that W (π) < W (π∗) + ε ≤ C(Φ∗).

Let pi be the probability of drawing a free sample in βi from the distribution, and let D∗min be
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the minimum probability density across Φ∗, that is D∗min = min
t∈[0,1]

D(Φ(t)). By Lipschitz continuity

of D and expansiveness of Qfree,

∀i, pi ≥ F
∫ min(δ,D∗min/KD)

0
Sd−1r

d−1(D∗min −KDr) dr.

Where Sd−1 denotes the surface area of the unit (d− 1)-sphere and F is a constant which depends

only on the expansiveness of Qfree. So for sufficiently small δ we have,

∀i, pi ≥ FSd−1

(
δd

d
− KDδ

d+1

d+ 1

)
= O(δd) .

The probability of drawing at least one sample from each {β1, . . . , βk} when drawing n samples is

at least Pmin =
∏k
i=1(1 − (1 − pi)bn/kc). If n is of order Ω(k2/δd) then (1 − pi)bn/kc approaches 0

with sufficient convergence rate for Pmin to approach 1. Because time steps are evenly distributed,

k =
⌈ 1

∆tmax

⌉
, so if n ∈ Ω(1/(∆t2maxδ

d)) then the probability of sampling waypoints which form a

path with weight within ε of the cost of the optimal trajectory approaches 1. Expressed in terms of

ε and ∆tmax we have,

n = Ω
(
k2

δd

)
= Ω

(
kd+2

(Kcε)d

)
= Ω

(
(∆td+2

maxε
d)−1

)
.

Finally, if two waypoints qi and qj lie within ∆qmax of one another, we say that (qi,qj) is a

candidate edge. By Lipschitz continuity of trajectories, notably Φ∗, this will always be the case

between waypoints in βi and βj if ∆qmax > KΦ∆tmax + 2δ. Thus it suffices for ∆qmax to shrink

more slowly than ∆tmax for sufficiently small ε as shown by

∆qmax > KΦ∆tmax + 2δ = KΦ∆tmax + 2εKc

k
= KΦ∆tmax + 2ε∆tmax = o (∆tmax) .

However, a candidate edge will only be added to the roadmap if the line segment between

the waypoints lies entirely in Qfree. As was shown in length in [3], these collisions do not affect

asymptotic optimality of relevant variants of PRM (e.g., PRM* and sPRM) in expansive free spaces.

While these results are not reproduced here, they transfer to DGPRM.

Theorem 1. As ∆qmax → 0 there will almost surely exist a path π in the roadmap, the piecewise
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(a) Three example input demon-
strations (blue, violet, teal) and
the sampling regions for the bea-
con (yellow) and goal (green).

(b) The trajectory (blue) computed by our method for two environ-
ments with obstacles (red), a beacon (yellow), and a goal (green).

Figure 2.6: Simulated 2D navigation task

linear interpolation of which has cost C(Φπ) arbitrarily close to that of the optimal trajectory when

n is of order Ω(kd+2) and ∆tmax → 0 asymptotically faster than ∆qmax.

Proof. Lemma 2 shows that under these conditions, the weight of the minimum weight path π in the

roadmap will approach a cost no greater than that of optimal trajectory with probability one and

Lemma 1 shows that this weight becomes an arbitrarily good approximation of C(Φπ). Therefore,

with probability one, C(Φπ) approaches C(Φ∗).

2.6 Results

We applied DGMP to a simulated 2D point robot and to the Aldebaran NAO small humanoid

robot [50]. In the physical experiments, we used 6 joints of the NAO robot: 5 in the right arm and 1

at the hip. Collision detection for motion planning was done using Bullet [51] to detect intersections

between a cylindrical approximation of the NAO robot’s links and point cloud data obtained from a

Microsoft Kinect sensor mounted next to the robot. All computation was performed on a PC with

two 6-core 2.0GHz Intel Xeon E5-2620 processors.

2.6.1 Simulated 2D Navigation Task

We consider a point robot that is to navigate on a 2D plane by starting at a fixed location,

moving counter-clockwise completely around a beacon without intersecting it, and then stopping at

a specified goal. In the learning phase, we used one configuration feature and two landmark features

corresponding to the beacon and intended goal position specified by the annotations, each of which
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Figure 2.7: Execution of DGMP for the powder transfer task. The robot successfully keeps the
spoon level while avoiding obstacles not seen in the demonstrations.

had dimension 2. For 6 linearly independent features, the method requires at least 7 demonstrations,

which we performed by manually drawing successful trajectories. For the demonstrations, we

randomly sampled the beacon location from the yellow region and the goal location from the green

region in Fig. 2.6(left).

In the execution phase, the test environment included 32 circular obstacles which were not

present in the demonstrations. We randomly generated 20 test cases with different obstacle locations

and with randomly chosen beacon and goal locations (sampled independently from the locations

chosen for demonstrations but using the same regions). As can be seen in Fig. 2.6, the trajectories

computed using our method consistently navigate clockwise around the beacon and reach their

intended goal. DGMP was successful in all 20 test cases while the method was never successful

when using Euclidean time alignment, indicating that our EM-based approach is important for

learning non-trivial tasks.

2.6.2 Physical Task 1: Left-to-Right Powder Transfer Task

In the first physical task, the NAO robot used a spoon to transfer a powder from one container

to another in the presence of obstacles as shown in Figure 2.7. In our test environment, we placed

on a table an instant coffee canister, a cup, and, in some cases, other objects to serve as obstacles.

The task was to scoop instant coffee using a spoon and transfer it to the cup without spilling coffee

or displacing any objects on the table.

We evaluated DGMP for scenarios in which the coffee canister was always on the right side of

the table and the cup was always on the left. This is a simplified version of the general task in which

the coffee canister and cup can be anywhere on the table, which will be discussed in Section 2.6.3.

We conducted 7 kinesthetic demonstrations for this task, and the locations of the objects on the

table were randomized for each demonstration. We drew the positions of the coffee canister and cup
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from uniform distributions based on 4 inch line segments on the left and right sides, respectively, of

the reachable surface of the table.

In the learning phase, we used the configuration motion feature defined by the robot’s 6 DOF as

well as landmark-based motion features based on the sensed locations of the two task-relevant objects,

the canister and cup. For the landmark-based motion features, we considered two points on the

robot’s end effector (the spoon): the top and bottom surface of the tip of the spoon. (We note that at

least two points are required to learn end effector orientations.) We enforced independence between

the configuration and each of the landmark-based motion features, as described in Section 2.4.3,

so that the largest dependent block in Σ was 6 × 6. Other than the demonstrations, we did not

provide the method any input regarding task constraints; e.g., we never explicitly expressed the

constraint that the spoon must be level. The learning phase took 2.5 seconds of computation time.

We then created 20 test cases in which the locations of the coffee canister and cup were drawn

randomly from the same distribution as the demonstrations. We also placed a bottle on the table

as an obstacle at a position drawn uniformly from the reachable surface of the table. The bottle

was sufficiently tall that it created a narrow passageway in the NAO’s feasible configuration space

when the NAO attempted to carry a level spoon over it. A test case was considered successful if the

robot (1) scooped coffee from the canister and transferred it to the cup without spilling, and (2)

did not displace the obstacle, canister, or cup. We considered a test case to be feasible if it was

possible for the robot to successfully accomplish the task given its kinematic limitations. Of the 20

test cases, 4 were not feasible due to the obstacles being too close to the coffee canister or cup and

the robot not having sufficient range of motion. We report statistics for the 16 feasible test cases.

As shown in Figure 2.8, the robot running DGMP successfully accomplished the task in 14 of

the 16 feasible test cases. The two failures were both due to the Kinect sensor failing to properly

sense the extent of the bottle. We also evaluated DGMP using the demonstrations aligned using a

simple Euclidean cost metric in configuration space which only considers similarity in joint angles

when aligning demonstrations (as in most prior work). Because this Euclidean cost metric does

not depend upon the task model, there is no need for EM. Our results show that this approach

is ineffective for this task and succeeded in only 9 test cases, indicating that time-alignment that

explicitly considers the task model as in the full DGMP approach is beneficial to task success. We

also executed the guiding path without motion planning, which resulted in only 8 successful runs
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Figure 2.8: The performance of DGMP on the left-to-right powder transfer task. We also evaluate the
performance of DGMP using Euclidean time alignment (rather than maximizing learned likelihood)
and also executing the guiding path (without sampling-based motion planning).

due to collision with obstacles.

2.6.3 Physical Task 2: General Powder Transfer Task

We also evaluated DGMP on a more difficult variant of the powder transfer task in which the

coffee canister and cup were each permitted to be anywhere on the reachable surface of the table,

approximated by a rectangular region spanning 7 inches left to right and 4 inches front to back.

This meant that the robot’s motions were no longer strictly following a left-to-right trajectory, and

thus were more difficult to align. We performed 20 new kinesthetic demonstrations with the coffee

canister and cup positions drawn uniformly from the reachable table surface. After completing the

demonstrations, the learning phase took 2.6 seconds of computation time. We then created 20 test

cases, drawing coffee canister, cup, and bottle obstacle positions randomly from the reachable table

surface. Of the 20 test cases, 17 were feasible.

When employing all 20 demonstrations, DGMP succeeded in 16 of the test cases, resulting in a

success rate of 94% of the 17 feasible test cases (see Figure 2.9). In the one failure case, the obstacle

was very close to both the coffee canister and cup, which resulted in a narrow passage in the robot’s

configuration space that was too narrow for the planner to find a feasible plan in the maximum

time allotted (20 seconds). We also evaluated the performance of DGMP for different numbers of

demonstrations. When fewer demonstrations are used, the performance of the method degrades

gracefully, with a greater than 80% success rate even for just 7 demonstrations.

To illustrate the need for motion planning for this scenario, we also executed the guiding path

with no motion planning, resulting in a success rate of under 60%. We also evaluated DGMP using
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Figure 2.9: The performance of DGMP on the general powder transfer task when 20, 10, and 7
demonstrations are provided to the learning phase. We also evaluated the performance of DGMP
using Euclidean time alignment (rather than maximizing learned likelihood) and the guiding path
(without sampling-based motion planning). DGMP performed better with more demonstrations,
but still exceeded an 80% success rate when only 7 demonstrations were provided.

the demonstrations aligned using the simplified Euclidean distance metric and achieved a success

rate of 0%. This highlights the benefit of aligning demonstrations by maximizing log-likelihood using

our EM-based approach rather than by using the more traditional Euclidean metric, which fails

to properly align demonstrations in which the direction of end effector motion varies substantially

across demonstrations. A video of a NAO robot performing this task using DGMP is available at:

http://robotics.cs.unc.edu/DGMP2.

To illustrate the impact of each component of the DGMP framework, we executed different

variants of the motion planner and plot in Figure 2.10 the cost of the computed plan based on the

learned DGMP metric. Each curve is the average of 6 runs for the same randomly selected test

case. As expected, allowing more computation time results in lower cost plans. As described in

Section 2.5, the DGMP cost metric can be used with either PRM or RRG against which we will

compare our proposed extensions that accelerate performance by biasing sampling based on the

learned metric, seeding along the guiding path, and incorporating layers. DGPRM and DGRRG,

which both include all the speedups, are roughly equivalent for this application. We also show

DGPRM with some of its components removed (i.e., removing speedups gained by layers and/or

seeding). The results show that the biggest speedup in DGPRM comes from biasing configuration

samples based on the learned cost metric during roadmap expansion. DGPRM and DGRRG are

both over 20 times faster than the traditional PRM algorithm for plans of equivalent cost.
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Figure 2.10: The cost of the best solution found as a function of roadmap planning time for different
variants of the method applied to the general powder transfer task. Note the logarithmic scale on
the vertical axis.

2.6.4 Physical Task 3: Push a Button

We also considered the task of pressing a button, where the button may be positioned on a

table, a slanted surface, or even a vertical wall. To correctly perform the task, the robot needed

to learn how to push a button in any of these orientations from the same set of demonstrations.

Furthermore, additional obstacles were introduced into the execution environment.

To train the method, we performed 9 demonstrations of pressing a 3 cm diameter button. In 3

of these demonstrations, the button was placed randomly on the reachable surface of a table; in

another 3, the button was randomly placed on the reachable surface of a plane inclined 40 degrees;

and in the final 3, the button was randomly affixed to the reachable surface of a vertical wall in

front of the robot.

The motion features we used were the 6 joint angles of the robot’s right arm and hip and the

3-dimensional positions of both the hand and finger relative to the pose of the button. As before, we

enforced independence in the covariance matrix between the configuration motion feature and each

of the two landmark-based motion features. The learning phase took 0.9 seconds of computation
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Figure 2.11: Scenarios for the button pushing task.

time.

To test the method, we considered 4 scenarios, and performed 3 random tests on each for a

total of 12 test cases. The scenarios, shown in Figure 2.11, included (1) placing the button and a

non-convex obstacle randomly on the reachable surface of the table, (2) placing a shelf over the table

and placing the button randomly on the table under the shelf, (3) placing the button randomly on

a plane inclined at 40 degrees and placing a non-convex obstacle randomly beside the inclined plane

such that it hung over the inclined plane, and (4) placing the button on a vertical wall and placing

a tall obstacle randomly on the surface of the table.

In Figure 2.12 we show the rapid convergence of DGPRM compared to regular RRG and PRM

without layers or accelerations based on the learned task model. While DGRRG did find lower cost

paths for the same number of samples, we see in the figure that DGPRM performed better because

each sample could be generated more quickly due to greater opportunities for parallel execution.

We believe this is because the biased sampling distribution derived from the demonstrations largely

subsumes the role of RRG’s roadmap expansion approach in effectively biasing samples towards the

relevant portions of the configuration space.

Figure 2.13 shows the execution of a DGMP plan. We considered an execution successful if it

avoided obstacles and depressed the button. DGMP succeeded in 11 of the 12 test cases, a greater

than 90% success rate. The sampling-based motion planner was crucial to success in this task as

the guiding path was successful in only 1 of the 12 tests cases.
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Figure 2.12: The cost of the best solution found as a function of roadmap planning time for different
variants of the method applied to the button pushing task.

Figure 2.13: Execution of a DGMP plan for one of the button pushing scenarios.
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2.7 Conclusion

This chapter presented demonstration-guided motion planning (DGMP), a framework for

planning motions for assistive robots to perform tasks in unstructured environments such as homes

or offices. DGMP combines the strengths of demonstration-based learning and sampling-based

motion planning to generate motion plans that (1) aim to satisfy learned features of the motion that

are required for the task to be successfully accomplished and (2) avoid obstacles in unstructured

environments. We used kinesthetic demonstrations and statistical modeling methods to learn a

time-dependent cost metric that encodes features of a task’s motion that are consistent across the

demonstrations and, hence, are likely required to successfully execute the task. We formalized

the cost metric as a Mahalanobis distance between a planned trajectory and the distribution of

demonstrations in a feature space parameterized by the locations of task-relevant objects. Our

asymptotically-optimal sampling-based motion planner computed plans that simultaneously avoid

obstacles and asymptotically globally minimize the learned time-dependent cost metric. The planner

also leveraged the demonstrations to significantly reduce motion plan computation time. We showed

the effectiveness of combining learning with sampling-based motion planning on the NAO robot

performing assistive tasks. In the following chapter, we will extend this approach to dynamic

execution environments and the Baxter robot, which has a higher-dimensional configuration space.
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CHAPTER 3

Reactive Replanning for Learned Robotic Tasks

In this section, we adapt the motion planning approach of the previous chapter to execute in a

closed-loop manner, enabling the robot to be responsive to the motion of task-relevant objects and

obstacles which should be avoided. We model the task in the same manner described in Chapter 2

to learn consistent features of the demonstrations, like the orientation of the spoon in Figure 3.1

while it contained powder. During execution, our motion planner uses this learned model to define

a cost function which is minimized by an interactive-rate motion planner to reproduce motions that

are consistent with the demonstrations. We leverage a sampling-based motion planner which uses

the model to guide sampling toward low-cost regions (in terms of the cost metric from Chapter 2)

by incorporating the positions of task-relevant obstacles. The solutions found by the motion planner

asymptotically approach global optimality, in contrast to approaches that only guarantee local

optimality and thus may become caught in the basin of attraction of a bad solution. We search for

plans in a roadmap defined by the Cartesian product of the learned task model, represented as a

hidden Markov model, and a probabilistic roadmap over the robot’s configuration space.

To consider the movement of task-relevant objects, we continuously replan by rebuilding the

roadmap and then searching for a new plan. This replanning approach computes plans that

avoid obstacles while explicitly considering task-relevant objects based on the current state of

Figure 3.1: As the Baxter robot performs the learned task of transferring powder from the yellow
bucket to the green bowl using the blue spoon, a person moves the green bowl. Our method
automatically replans in a closed-loop manner, enabling the robot to avoid obstacles and perform
the learned task even when task-relevant objects or obstacles are moved mid-task.
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the environment. The robot replans in real-time, averaging more than 5 plans per second in our

experiments, by leveraging information in the task model and using appropriate data structures and

algorithms. First, we employ a sampling distribution biased toward low-cost regions of configuration

space to produce a small, high-quality roadmap. Second, we use a parallel bidirectional search over

an implicit graph combined with lazy computation to quickly and globally search for optimal plans.

This chapter is based on work previously published in [17] and [18].

3.1 Related Work

Sampling-based methods have been highly successful for computing feasible (and optimal) motion

plans for a wide variety of robots, including manipulators with many degrees of freedom [52, 15, 3].

While most sampling-based motion planners that consider optimality aim to minimize metrics such

as Euclidean distance in the workspace or configuration space, some methods have investigated

incorporating more general task-based cost functions. Several approaches are based on rapidly

exploring random trees (RRTs) [52], a highly successful sampling-based method for computing

feasible, obstacle-avoiding trajectories. Transition-based RRT (T-RRT) [22] biases expansion of an

RRT to low cost regions of the configuration space cost map, and Mainprice et al. used T-RRT to

generate natural motions based on a predefined cost map for human robot interaction [23]. RRTs

have also been used in conjunction with analytically-defined task constraints [24] and with symbolic

representations of manipulation strategies [25]. Sampling-based motion planners have also been

extended to integrate motion constraints and properties learned from demonstrations. Claasens

extended RRT to sample only inside a user-specified number of standard deviations of a mean

demonstrated trajectory [26] and later within learned affordances [53], Berenson et al. integrated

local optimization with an RRT to find low-cost paths over cost maps [27], Scholz et al. incorporated

gradient descent into an RRT to locally optimize a specified objective function [28], and Şucan and

Chita investigated sampling strategies that enforce constraints [29]. Finally, RRTs have been used for

replanning when the environment changes [54, 55, 56]. However, plans produced by RRT methods

like those above are almost surely suboptimal, even as computation time approaches infinity. This

limitation also applies to some roadmap methods [47], like elastic roadmaps [57], which have been

applied to the problem of motion planning in the presence of soft constraints.

We employ an asymptotically optimal sampling-based motion planner, meaning the computed
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plan is guaranteed to approach a globally optimal plan (based on the given cost metric) as the

number of iterations is allowed to increase. This property is important even when only considering

finite planning times because as computational power grows, the probability of finding a near-

optimal plan within that deadline approaches one. Towards this end, Karaman and Frazzoli

proposed asymptotically optimal motion planning algorithms such as RRT*, RRG*, and PRM* that

guarantee asymptotic optimality [3]. Asymptotically optimal motion planners avoid the suboptimal

or even infeasible plans resulting from local minima that can occur when using potential field

methods [15] or local trajectory optimizers [58]. Trajectory sampling has been used to address these

shortcomings [59], including with a focus on dynamic environments [60], but does not guarantee

asymptotic optimality without also incorporating roadmap- or tree-based methods [61]. Related

work has investigated asymptotically optimal planners that balance exploration and refinement [30],

asymptotic near optimal planners using smaller roadmaps [31], the near-optimality of solutions in

finite time [62], and anytime solution optimization [32].

Our method integrates a learned hidden Markov model (HMM) representing a task with

a sampling-based motion planner to guarantee asymptotic optimality. HMMs have previously

been applied to motion recognition (e.g., [43, 5, 6]) and generation (e.g., [7, 6]). However, prior

approaches for motion generation, unlike our proposed method, do not simultaneously guarantee

global optimality while enabling fast replanning. Motion planners that operate entirely on constraint

manifolds have also been developed [63, 64], even while retaining asymptotic optimality [65, 66].

However, statistical task models learned from demonstrations like the HMM we consider naturally

encode uncertainty and formulating hard constraints discards this information. Model predictive

control approaches have also considered time-varying cost functions and may use sampling to avoid

obstacles [67]. A number of methods learn high level tasks from demonstrations, e.g. [68, 69].

For execution, these methods may use visual servoing in conjunction with subtask-specific motion

planners [70] or more general constraints [71]. Rather than competing with these methods, our

approach is more appropriate for learning and executing the subtasks on which such methods rely.

These subtasks could then be combined to solve more complex tasks using general frameworks based

on generic task planners [72], SMT solvers [73], or geometric backtracking [74]. Dynamical systems

have also been used to learn such motions from demonstrations, e.g. [75], [76], and [77]. These

systems have further been extended to avoid obstacles in [10], but this approach retains no notion
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of global optimality.

Prior work has also considered pouring tasks similar to one we consider here. An SVM classifier

learned from 170 demonstrations has been shown to enable execution in dynamic environments [78],

albeit without obstacles. When the task is known rather than learned, the physical constraints of

the task can often be exploited, and specialized methods have been developed for liquid pouring.

These methods have used physical reasoning [79] or fluid simulation [80] to model the problem,

even combined with trajectory optimization to enable obstacle avoidance [81]. By incorporating

more prior knowledge rather than learning the task from demonstrations, these approaches have the

potential to be more robust, but at the cost of generality.

3.2 Method Overview

3.2.1 Problem Statement

Let Q ⊂ Rd be the d-dimensional configuration space of a holonomic robot. Let Qfree ⊆ Q

denote the subset of the configuration space for which the robot is not in collision with an obstacle

in the current execution environment. We again assume the robot is capable of sensing the positions

of K task-relevant objects, called landmarks (such as the green bowl in Figure 3.1) and a model of

the environment against which we can test for collisions with obstacles. In our physical experiments,

both landmark and obstacle sensing rely on a Kinect RGBD sensor.

As in the previous chapter, during execution (described in Section 3.3), our objective is to

compute a trajectory Φ in the robot’s configuration space from a start configuration qstart ∈ Qfree to

a goal configuration qgoal ∈ Qfree such that the trajectory (1) avoids obstacles in the robot’s current

environment and (2) successfully accomplishes the task, which may depend on task-relevant objects

in the environment. The robot continually senses its environment to collect sufficient information to

perform collision detection and to compute costs in the current environment based on the learned

task model: all the information necessary to compute collision-free motion plans based on the

learned costs. In contrast to the prior chapter, we then enter a closed loop; the robot executes the

current plan while, repeatedly replanning based on the learned costs as task-relevant objects and

obstacles might move in the environment.
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Figure 3.2: Hidden Markov model with 3 discrete states (corresponding to time steps of the task)
and normally distributed observations.

3.2.2 Learned Task Model

To learn a task, we consider a reformulation of the method originally presented in [16] (see

Chapter 2), wherein a task was learned from a set of demonstrations of a human kinesthetically

guiding the robot through the task. This is in contrast to methods that attempt to model the effect

on the environment of the robot’s actions (e.g. [81]), effectively augmenting the state space of the

robot. Rather, we try only to mimic the motion of the human demonstrator while accounting for

the current state of the environment, which while less accurate is also less task-specific.

For each demonstration, we record a sequence of configurations evenly-spaced in time as well

as an annotation a that encodes the poses of task-relevant objects during the demonstration. The

recorded robot configurations are then lifted via a function φa(q) from configuration space into

a motion feature space Y ⊆ Rf comprising the robot’s end-effector pose relative to task-relevant

objects in the environment. We then time-align the demonstrations (using the Viterbi algorithm)

and use these aligned demonstrations to estimate a sequence of multivariate normal distributions

N (µt,Σt) in the motion feature space. For full details on this process and variations on it, see

Chapter 5.

In the remainder of this dissertation, for ease of integration with a constantly updating motion

planning roadmap, we reformulate this approach as learning a time-homogeneous hidden Markov

model (HMM) with a restricted structure (see Figure 3.2). We assume the model has T discrete,

sequential states, wherein each state t ∈ {1, . . . , T} has nonzero transition probabilities only to itself

and the next state t+ 1. This imparts a total ordering on the model corresponding to time. As such,

we refer to these states as time steps. For our experiments, we let the observed outputs in each

state t be distributed according to a multivariate Gaussian distribution N (µt,Σt) in motion feature

space. We learned the parameters of this model using the Viterbi path-counting algorithm [82].
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Figure 3.3: Cartesian product of the configuration space roadmap and the graph of the learned task
model.

This learned model will be used to compute a cost function for motion planning during task

execution. The cost function is parameterized by the annotation a, which will vary across execution

environments as well as during execution when a task-relevant object moves. The cost function

[83] is defined such that a trajectory which minimizes it, maximizes the likelihood in the learned

model, and thereby should successfully perform the task in the execution environment with high

probability.

3.3 Closed-loop Replanning with Learned Costs

In each replanning step, our method builds a spatiotemporal roadmap in which the edge costs

are set based on the learned task model and execution environment. We perform a shortest path

search in this roadmap to update the execution paths. We now describe each of the components of

the closed-loop motion planning approach.
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3.3.1 Spatiotemporal Roadmap

We employ an asymptotically optimal variation of a probabilistic roadmap with a fixed connection

radius (sPRM) [47], which we chose to adapt because it produces globally optimal plans to within

the roadmap resolution. A roadmap is a graph in which vertices represent the states of the robot

and edges represent feasible local plans between these states. In the simplest case these local plans

are just straight line trajectories in configuration space.

A traditional roadmap is undirected and is constructed as follows. First, n configurations

{q0, . . . ,qn} are randomly sampled from Qfree via rejection sampling. Then, edges are constructed

between all configurations qi and qj for which ‖qi − qj‖D < ε if a feasible local plan can be found.

We construct exactly such a roadmap, which we will call the spatial roadmap.

To accommodate dependence on the time step in the learned task, we also define a temporal

roadmap. This is not a roadmap in the traditional sense, but rather the graph representation of

the Markov chain implied by the task model, where time steps correspond to vertices in the graph.

Because the transitions in the Markov chain are directed, the temporal roadmap is a directed graph.

Finally, we define a spatiotemporal roadmap, a directed graph that combines the information in

the spatial and temporal roadmaps. The vertices of the spatiotemporal roadmap are each defined

by a pair composed of a vertex from the spatial roadmap and a vertex from the temporal roadmap.

The set of edges are given by the vertex-wise union of edges in the spatial and temporal roadmaps

(see Fig. 3.3). Put another way, the spatiotemporal roadmap is the Cartesian product of the spatial

and temporal roadmaps. Such a roadmap is necessary because the state of the robot needs to

incorporate the task progress (see Sec. 3.4.1).

This full roadmap can be quite large, but because of its regular structure, it need not be

explicitly constructed. Rather, we can implicitly traverse it by keeping track of vertices in the

constituent roadmaps. This approach has multiple advantages over directly sampling in the product

of configuration space and time. First, because the full roadmap does not need to be explicitly

constructed, it uses less memory and exhibits better locality of reference. Second, because every

vertex and edge in the spatial roadmap is effectively duplicated across all time steps, fewer collision

queries are required. Finally, small additions to either constituent roadmap are immediately reflected

as larger additions to the full roadmap without the need to perform an explicit construction, making

updates fast. As an aside, we also experimented with the tensor product of the roadmaps, which
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while more natural, had many more edges and adversely impacted search performance.

3.3.2 Cost Function

In a traditional roadmap, the goal is to find shortest paths, so edges in the roadmap are assigned

costs based on the lengths of the local plans they represent. We wish to find paths which are

most likely to successfully perform the task, so choose edge costs based on the learned task model.

Specifically, we define a notion of cost which, when minimized, maximizes probability of successfully

executing the task as defined by the learned model.

By the construction of the Cartesian product, each edge is from a configuration q and time

step t to another configuration q′ and time step t′. Our definition of edge cost will be based on the

negative log probability of entering time step t′ and observing configuration q′ after being in time

step t and observing configuration q. The Markov assumption inherent in the task model implies

that the configuration and subsequent time step depend on the current time step. This allows the

following simplification in the edge cost computation:

− log(p(q′, t′ | q, t)) =

− log(p(q′ | t′) · P(t′ | t)) = (Markov Property)

− log p(q′ | t′)− log P(t′ | t)

where the probability P(t′ | t) is given by pt,t′ and the probability density p(q′ | t′) by

|2πΣt′ |−
1
2 e−

1
2 (φa(q′)−µt′ )TΣ−1

t′ (φa(q′)−µt′ ).

We consider the log probability because the shortest path algorithm will minimize the sum of

the edge costs while joint probabilities (under independence assumptions) are multiplicative, as seen

above. We then negate the result to formulate the problem as one of minimization. However, recall

that edges in the spatial roadmap represent local plans. So for such edges, we use the line integral

of the negative log probability along the local plan q(s), yielding:

cost(q(·), t, t′) = − log P(t′ | t)−
∫ 1

0
log p(q(s) | t′)ds =
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− log pt,t′ −
1
2

∫ 1

0
logm log(2π) + log det Σt′ + (φa(q′)− µt′)TΣ−1

t′ (φa(q′)− µt′)ds

where the local plan is parameterized in the interval s ∈ [0, 1].

The following assumes the robot has velocity upper bounded by υ, in that |∇sq(s)| ≤ υ. When

the integrand has a strictly negative upper bound ε, which can be ensured by appropriate choice of

model like the one we use, asymptotic optimality is guaranteed by the sPRM method [3] because a

fixed connection radius r using any p-norm is a superset of some other fixed radius using this cost

metric. This can be seen by observing that a d-ball βr centered at q0 includes those configurations

with costs from q0 not greater than rε
υ − log pt,t′ for all t, t′. But a d-ball corresponds to a fixed

radius under a 2-norm, and all p-norms are equivalent in finite-dimensional spaces [84].

Given this formula for edge costs, the full motion planning problem can be formulated as a

constrained optimization problem as follows:

min
S0≤S1≤...≤ST , q(·)∈[0,ST ]→Q

T∑
t=1

(
(log pt,t − log pt−1,t)−

∫ St

St−1
log pt,t + log p(q(s) | t)ds

)

s.t. S0 = 0

q(0) = q0

∀s ≤ ST . q(s) ∈ Qfree

where the path q(·) is subject to the kinematic and dynamics constraints of the robot.

Thus, under the independence assumptions of our model, we are minimizing negative log

probability over the space of time-step-augmented trajectories. Formally, the learned task model

implies a distribution over trajectories (and latent variables S0, S1, . . .). By defining edge costs as

we do, we are able to use a motion planner to (asymptotically) find the mode of this distribution

(the trajectory with maximum probability density) restricted to feasible motions.

3.3.3 Biased Sampling

Although asymptotic optimality ensures that the method converges to the optimal solution, this

convergence may be too slow to achieve reactive execution. To accelerate this convergence, when

sampling configurations to add to the roadmap we use a biased sampling distribution rather than a

uniform one. We construct the distribution in such a way that asymptotic optimality is retained

while producing samples which produce lower cost edges and are thus more likely to be useful. This

47



Figure 3.4: End-effector positions of sampled configurations (shown in blue) from the biased
distribution for the task of scooping powder from the yellow bucket into the green bowl. The
distribution is dependent on the landmark positions. Sampling configurations in useful places
enables us to build higher quality roadmaps with fewer samples, which facilitates faster motion
planning.

takes the place of the guiding path considered in [83].

The intuition behind the distribution we construct is that when lifted into motion feature space,

it should approximate the distribution implied by the task model, conditional on the poses of

landmarks. Formally, we wish to sample a sequence {q0, . . . ,qn} such that φa(qi) ∼ N (µti ,Σti)

where ti ∼ U(0, T ). Recall that φa lifts a configuration into motion feature space given landmark

poses a.

To approximate this distribution, we work backwards. First, we sample ti ∼ U(0, T ), followed

by yi ∼ N (µti ,Σti), then solve the following non-linear least squares problem using a Levenberg-

Marquardt method:

qi = arg min
q

(φa(q)− yi)TΣ−1
ti (φa(q)− yi).

This yields a configuration which when lifted into motion feature space is close to yi in feature

space under the metric implied by Σti . An example of the resulting distribution for one of the

experimental scenarios is shown in Fig. 3.4. Note that the distribution appears to follow the path of

a successful execution and has greater variance where deviation would likely preserve plan success.

For non-singular φa and Σt, the support of this distribution is all of Q, so asymptotic optimality
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Figure 3.5: Flow of computation during real-time execution.

holds.

In practice, the initial iterate can be sampled uniformly at random, and the least squares

problem need not be solved to great precision. We found that even very few iterations of the

Levenberg-Marquardt method result in distributions that sufficiently approximate the desired one.

3.3.4 Real-Time Execution

During execution, we repeatedly replan using the latest sensed information about the environment

in a closed-loop manner, updating the path being executed with high frequency. In Fig. 3.5 we show

a schematic of the computation during real-time execution. Replanning comprises three logical

steps: sensing, sampling, and searching.

Sensing We refer to sensing as the general process of acquiring information about the environment

used by the planning procedure. In our physical experiments, sensing consists of processing the raw

point cloud from an RGBD sensor to locate task-relevant objects and build a collision model of the

environment. These computations are performed asynchronously, ensuring that after each planning

iteration, new environment information is available to immediately begin replanning.

Sampling Sampling refers to the first step of building the spatial roadmap (as described in

Section 3.3.1), which is randomly sampling configurations. Like prior work [16, 17], we use a fixed

connection radius (sPRM) rather than a shrinking one (PRM*) to retain asymptotic optimality [3]

under the cost metrics we consider (by metric equivalence). However, in contrast to prior work,

our method builds a roadmap from scratch each cycle and does not reuse roadmaps from previous

cycles. The rationale for this is twofold. First, in our problem obstacles may move, so the validity

of vertices and edges in the roadmap need to re-evaluated during each replanning step. This greatly
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reduces the benefit of retaining the previous roadmap. Second, the sampling distribution depends

on the environment, yielding samples that are appropriate for a specific set of landmark poses. This

not only means that the samples based on current landmark poses are more useful than those from

prior work, but that samples based on older landmark poses are less useful. Consequently, the

benefit of building off the previous roadmap is outweighed by the cost incurred by the corresponding

increase in roadmap size.

Searching After the spatial roadmap is constructed, we perform a parallel bidirectional shortest-

path search [85] on the spatio-temporal roadmap. Many calculations are performed lazily as edges

of the graph are explored, including collision detection and edge cost evaluation. This is beneficial

because fewer than 40% of the edges needed to be evaluated in order to identify the shortest path

in our experiments, a positive consequence of the cost-space chasm induced by the task model.

Unlike many methods for real-time planning or control, our approach is globally optimal in

that it selects the true minimal cost path present in the roadmap. Consequently, our method may

consider multiple homotopic classes of paths and can avoid being trapped in a local minimum.

Because we use an asymptotically optimal PRM variant, our approach is also asymptotically optimal

in the sense that the plans produced approach optimality as the size of the roadmap used increases.

While we only build relatively small roadmaps, asymptotic optimality of the planner allows the

method to find better solutions, approaching the global optimum, as computational power increases.

Our execution is real-time in the sense that we impose a firm deadline on the planner, from sensing

to execution, to ensure the robot is never acting on sensor information that is excessively out of

date. A missed deadline manifests as a pause while the robot waits for a new plan to be sent to the

motors for actuation. If the replanning cycle finishes before the deadline, then the next replanning

cycle begins immediately. In our implementation, we used a deadline of 250 milliseconds, although

in our experiments we were on average able to achieve replanning cycles substantially faster than

the deadline.

3.4 Results

To demonstrate the applicability of our method, we considered a simulated 2D navigation

task and two physical tasks using the Baxter robot [1]. Planning was performed using a C++

implementation on a 3.4GHz Intel Xeon E5-1680 processor.
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(a) Example
Demonstrations

(b) Execution Using Our Method
Environment 1 Environment 2 Environment 3

(c) Execution with
Only Spatial
Roadmap

Figure 3.6: (a) Three of the 7 demonstrations for the simulated navigation task as well as the beacon
and goal sampling regions. The demonstrated paths start at a fixed location, move counter-clockwise
around a specified beacon, and then move to a specified goal. (b) Three executed trajectories (solid
blue) and planned trajectories (dashed blue) around obstacles (red) to a goal (green) as computed
by our method, before (top) and after (bottom) the beacon (yellow) was moved. (c) Execution
without the temporal roadmap and using a temporal alignment heuristic [83].

Figure 3.7: Environment for the powder transfer task with the permissible region for both the green
bowl and paper towel roll highlighted in blue. The permissible region is based on the reachable
workspace of the Baxter’s arm.
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Figure 3.8: Example execution for the powder transfer task, from a bucket (yellow) to a bowl
(green).

3.4.1 Simulated Navigation Task

We first consider a point robot that is to navigate on a 2D plane by starting at a fixed location,

moving counter-clockwise completely around a beacon without intersecting it, and then stopping at

a specified goal. In the learning phase, the feature space consisted of the absolute position of the

robot and its position relative to two landmarks, corresponding to the beacon and intended goal

position specified by the annotations. For the demonstrations, we manually performed 7 successful

trajectories with beacon locations randomly sampled from the yellow region and goal locations

randomly sampled from the green region in Figure 3.6(a).

In the execution phase, the test environment included 32 circular obstacles which were not

present in the demonstrations. We randomly generated 15 test cases with different obstacle locations

and with randomly chosen beacon and goal locations (sampled independently from the locations

chosen for demonstrations but using the same regions). A quarter of the way through the trajectory

(approximately when the robot begins encircling the beacon) we moved the beacon 10% of the width

of the environment in a random direction.

The method successfully accomplished the task in all 15 test cases. Several representative

executions are shown in Figure 3.6(b). Due to the density of the obstacles, in most of the test cases

it was necessary for the method to change homotopic classes when replanning, illustrating the need

for global planning rather than local refinement of plans.

This task also illustrates the need to incorporate task progress into the planning state. Planning
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Success Rate Mean Pauses Mean Update Time

Full Method 100% 0 133 ms
No Bidirectional Search 50% 23 170 ms
No Obstacle Avoidance 10% 0 44 ms
No Biased Sampling 0% – –

No Replanning 0% – –

Table 3.1: Empirical results for the physical powder transfer task with moving bowl and stationary
yellow bucket and obstacle during execution, including success rates, average number of pauses, and
average update periods for variants of the method. The additional failures without bidirectional
search were due to insufficient reaction time when the bucket or bowl were moved. Without
biased sampling, the method was unable to find successful plans even after 5 minutes of roadmap
computation time. Similarly, replanning was required for success in every scenario due to the motion
of the bowl.

in configuration space alone is not sufficient for correct execution because a successful path crosses

itself by design. Using the temporal alignment heuristic from [83] skips an important portion of the

task as shown in Figure 3.6(c).

3.4.2 Physical Powder Transfer Task

In the second task, the goal was to scoop powder from a small bucket and transfer it into a bowl

using a spoon using the Baxter robot. To successfully perform the task, the robot was required to

transfer the powder without spilling while avoiding obstacles in the environment. The feature space

consisted of the position and orientation of the spoon relative to the bucket and bowl, for a total

feature dimension of 12. We provided the method with 13 successful kinesthetic demonstrations

from which to learn.

At the beginning of execution the green bowl was randomly placed on the reachable surface of

the table (see Figure 3.7) and tracked using a Kinect RGBD sensor. For obstacles, we affixed a

hanging lamp shade above the table and randomly placed a vertical roll of paper towels. During

task execution, when the robot positioned the spoon above the bowl but before it began dumping

the contents, we quickly moved the bowl to a different location randomly sampled uniformly from

the reachable surface of the table (see Figure 3.8).

We consider two variants of this task, as discussed below.
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Success Rate Mean Pauses Mean Update Time

Full Method 100% 0 111 ms
No Bidirectional Search 30% 27 148 ms
No Obstacle Avoidance 10% 0 45 ms

Table 3.2: Empirical results for the physical powder transfer task when moving the bowl, bucket,
and obstacle during execution, including success rates, average number of pauses, and average
update periods for variants of the method.

Moving Bowl During Execution We first evaluated the method on the same set of 10 scenarios

used in [17] for comparison. In these scenarios, the bowl was moved during execution but the

yellow bucket was always placed in a single, fixed location and the obstacles were stationary during

execution.

We show empirical results for different variants of the method in Table 3.1. For each method

variant, we report the success rate, the average update period (defined as the total time required

to perform sensing and replan), and the average number of pauses due to missing a deadline (i.e.,

planning took longer than our deadline of 250 milliseconds). In some scenarios, the proximity of the

paper towel roll and lamp shade created a narrow passage in configuration space through which the

robot arm needed to navigate to accomplish the task. Collision detection against a point cloud was

the primary bottleneck as reflected by the latency reduction when obstacle avoidance was disabled.

For this reason, bidirectional search was very profitable because of the decrease in the number of

edges for which collision checking was required.

Moving Bowl, Bucket, and Obstacle During Execution We next generalized the task by

moving the bucket (before the powder was scooped), the roll of paper towels (at the same time as

the bowl), and the bowl (as in the prior scenario) to random locations during execution. We also

randomized the initial placement of the yellow bucket in these 10 scenarios.

Empirical results for these scenarios are shown in Table 3.2. We first note that the average

latencies where shorter than their counterparts in the stationary scenarios. This is because moving

the objects often required the planner to spend more time in later parts of the task, where the

number of remaining time steps was fewer and thus the portion of the graph which needed to be

searched was smaller. We note that this effect did not appear when obstacle avoidance was disabled,

54



Figure 3.9: Example execution for the liquid pouring task, from a pitcher into a pot (green).

likely because traversing edges occupies a smaller fraction of the computation time. However,

there was also more variance in the latencies, as reflected in the increase in missed deadlines when

bidirectional search was disabled. The success rate without bidirectional search was also lower than

for the stationary scenarios because the robot failed to react in time to the motion of the bucket to

satisfy the relatively narrow constraints required to successfully scoop powder from it.

3.4.3 Physical Liquid Pouring Task

We next evaluated the method on a liquid pouring task in which the Baxter robot pours liquid

from a grasped pitcher into a pot without spilling. Here, the feature space consisted of the position

and orientation of the pitcher relative to the bowl. We performed 11 successful demonstrations from

which the task was learned. For the execution environment, we introduced as an obstacle a potted

plant, which has complex geometry not amenable to modeling via geometric primitives but that can

be sensed using a Kinect (see Figure 3.9). As before, in each of the 10 scenarios the pot and an

obstacle were initially placed uniformly at random on the reachable surface of the table and then

moved to different random locations, necessitating replanning.

Results for this task are shown in Table 3.3. The size of the pitcher and plant obstacle produced

multiple challenging scenarios which required denser roadmaps to navigate than in the powder

transfer task. This in turn resulted in marginally longer planning times and a few missed deadlines.

Without bidirectional search, planning was substantially slower but the success rate was comparable

because this task was less time-sensitive than the powder transfer task. Obstacle avoidance again

proved crucial to successful execution in 60% of the scenarios.
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Success Rate Mean Pauses Mean Update Time

Full Method 100% 1 138 ms
No Bidirectional Search 90% 26 212 ms
No Obstacle Avoidance 40% 0 61 ms

Table 3.3: Empirical results for liquid pouring task, including success rates, average number of
pauses, and average update periods for variants of the method. The additional failure without
bidirectional search was due to a failure to find a difficult narrow passage and likely only a result of
the randomized nature of method.

3.5 Conclusion

This chapter presented a closed-loop motion planning approach that is applicable to execution

of learned tasks in which the environment changes during execution. Using this method, the Baxter

robot was able to successfully perform several learned tasks while avoiding moving obstacles and

reacting to the motion of task-relevant objects whose locations were relevant to task success. In

the following chapter, we will extend the learned model to encompass time-invariant parameters to

reduce the task information the human demonstrator must provide.
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CHAPTER 4

Learning Virtual Landmarks

In this chapter, we extend the learning phase introduced in Chapter 2 by allowing some additional

time-invariant parameters of the task to be learned from the demonstrations while simultaneously

learning the time-variant parameters considered previously. Consider the task of moving a pitcher

across a table and pouring liquid into a bowl as shown in Figure 4.1. Successfully performing this

task requires properly positioning and orienting the pitcher relative the bowl, and this relative

position and orientation changes over time during the the task (i.e., the pitcher’s orientation is

initially level and then changes so that the liquid pours out). Implicit in performing this example task

is that the robot must be aware of certain task-relevant landmarks, including (1) awareness that the

bowl (rather than other landmarks in the scene, e.g., the paper towel roll) is important to the task,

and (2) awareness that the position of the spout of the pitcher (as apposed to other landmarks on

the pitcher) is most important to successfully pouring the liquid into the bowl. Utilizing appropriate

task-relevant landmarks is often critical to successfully performing a task.

Figure 4.1: Our method automatically learns task-relevant virtual landmarks, such as the relevance
of the center of the bowl and the spout of the pitcher. The method also learns a time-dependent
task model parameterized by the poses of the virtual landmarks.
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Prior approaches for learning manipulation tasks often assume that task-relevant landmarks

are manually specified by a user (e.g., [16, 17, 86, 87, 9]). In this chapter, we propose a method to

automatically learn time-invariant parameters which specify which landmarks on the robot and in

the environment should be considered during execution. We assume the robot, using its kinematic

model and vision system, can sense landmarks on the robot and in the environment, such as the

poses of the robot’s end-effector and significant objects in the scene, both during the demonstrations

and during motion planning in a new environment. During the learning phase, our method learns

virtual landmarks that are based on linear combinations or projections of sensed landmarks.

We demonstrate the efficacy of our approach on two tasks with the Baxter robot [1] in an

environment with obstacles, a powder transfer task and a liquid pouring task. Our method improved

the success rate compared to arbitrary or hand-selected landmarks by automatically selecting virtual

landmarks.

This chapter is based on work previously published in [19].

4.1 Related Work

The problem of learning a task from human demonstrations has been studied extensively, and

many different approaches have been considered [4, 33].

In [16], we presented an approach based on a user-specified feature space which incorporated

the position of a landmark on the robot’s end-effector (or grasped object) relative to landmarks in

the environment. We extend that approach with the addition of learned time-invariant parameters

on which the feature space is parameterized to reduce the amount of human-provided information

required. Specifically, these parameters encode the definitions of landmark which were manually-

specified previously. The feature space then incorporates the relative positions of these virtual

landmarks.

One class of approaches for learning from demonstration are regression methods which directly

learn a reference trajectory. This is the approach taken in [7, 42], and [86] using Gaussian Mixture

Regression in a feature space. The feature space used in these works inspired the one used in [16, 17],

and this paper. The learning approach we present in this paper could be adapted to learn virtual

landmarks to establish coordinate systems in the context of Gaussian Mixture Regression methods

as well. In [88], this was extended with a feature space selection step from a finite pool of predefined
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features. Instead, we effective incorporate feature space selection in the learning as part of the

optimization problem permitting more general feature spaces to be learned. Additionally, these

approaches generally assume that the robot can always traverse the reference trajectory and are

thus not directly applicable when new obstacles not present in the demonstrations are introduced.

A second class of approaches learn a control policy, mapping robot states to control inputs.

Because of the dimensionality of this space, the class of policies must be restricted. In [89, 10], and

[87] for example, the policies are restricted to nonlinear equations of a specific form the authors call

Dynamic Movement Primitives, which are adapted to avoid obstacles locally, but not globally (i.e.,

by considering multiple homotopic classes of paths).

Finally, our approach can be contextualized in the class of approaches which learn a mapping

from robot state to a cost (or reward). This can be thought of as a refinement of the second

class of approaches, wherein the control policy learned is defined by the cost it optimizes. This is

the approach taken in inverse reinforcement learning (e.g., [34, 35, 36, 37]), wherein this cost is

assumed to be a parameterized function of some features of the robot state. In [9], a time-dependent

multivariate Gaussian distribution is learned, and the Mahalanobis distance is taken as the cost.

This approach was extended in [90] to incorporate feature space selection from a finite pool by using

all the possible features and enforcing sparsity during the learning phase.

In this paper, we learn a probabilistic model based on a Hidden Markov Model. HMMs have

previously been applied to motion recognition (e.g., [43, 5, 6]) and generation (e.g., [7, 6]). By

framing the learning method as an optimization problem, we can simultaneously learn time-variant

and time-invariant parameters of the task, including what virtual landmarks are most relevant to

the task and produce the most consistent model. We then derive a cost which, when minimized,

maximizes the probability that the path was generated by the learned model.

Cost-oriented approaches, like ours, are more amenable to global obstacle avoidance because

asymptotically-optimal sampling-based planners like PRM*, RRG, and RRT* [3] are readily available,

including variants designed to effectively explore low-cost regions (e.g., [27, 91]). Asymptotically

optimal sampling-based planners avoid the local minima inherent in potential field methods [15],

and can avoid the suboptimal plans resulting from sampling-based planners which are merely

probabilistically complete (e.g., RRT [3]). Because we rapidly replan [54, 55] when landmarks move,

it is also useful to be able to access the best known plan at any given time [32]. For these reasons,
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we use a variation on a probabilistic roadmap (PRM), but do not allow it to grow arbitrarily large.

Nevertheless, we could still guarantee near-optimality in finite time [31], [62].

4.2 Problem Definition

4.2.1 Inputs and Outputs

As in previous chapters, we consider a robot with a d-dimensional configuration space Q ⊆ Rd.

In order to teach the robot a task, we provide M demonstrations of the task in which the pose

of task-relevant objects vary across the demonstrations. Each demonstration m ∈ {1 . . .M} is a

sequence of Sm observed configurations of the robot at fixed time intervals. Let qsm ∈ Q denote

the s’th observed configuration in demonstration m. Additionally, we assume we have for each

demonstration m, a description of the environment am which lists the poses in SE(3) of Z sensed

landmarks in the demonstration environment. We assume that the landmarks may be distinguished

from each other (e.g., via visual feature matching). The resulting task model will ultimately specify

which subset of these landmarks is relevant to the task and must be present in the execution

environment.

Although we assume that obstacles in the execution environments do not move during execution,

we do not require that they be present in the demonstrations or known during the learning phase. To

enable the robot to successfully perform the task in environments with never-before-seen obstacles,

the problem we consider is that of estimating the parameters in a parametric probabilistic task

model amenable to use by a sampling-based motion planner given these demonstrations.

We consider the problem of estimating parameters defining the task model of two distinct types:

• ζ-parameters, which will encode the position of a virtual landmark on a grasped object (e.g.,

a tool) relative to the robot’s end-effector and what linear combination of the Z sensed

landmarks define a virtual landmark in the environment. Such parameters are time-invariant;

they do not vary with time or between demonstrations.

• η-parameters, which represent the dependence on task progress, like the tendency for a

landmark on a grasped object to be at a specific position relative to a landmark in the

environment at some time point in the task. Specifically, these parameters consist of means

and covariances in a ζ-parameterized feature space incorporating the positions of points on a

grasped object relative to landmarks (discussed in detail in Section 4.3.3). Such parameters
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Figure 4.2: Bayesian network describing independence assumptions for the learned task model. Note
that for a specific demonstration, this generalizes a Hidden Markov Model used previously with the
addition of ζ-parameters.

are time-variant; they vary during the task (although not between demonstrations).

We note that the challenge of learning the η-parameters was addressed in prior work [16], but that

work assumed the ζ-parameters were manually provided by a human user. To extend that work to

consider time-invariant ζ-parameters, which results in non-local interactions between time steps, we

explicitly re-frame the problem as an optimization.

Once the task has been learned, we then consider the problem of executing the task in new

environments with new obstacles. This requires computing an obstacle-free path in the robot’s

configuration space from its start configuration qstart ∈ Q to a goal configuration qgoal ∈ Q which

incorporates learned information from the task model and considers the sensed locations of the

landmarks that were found to be relevant to the task during learning. We compute paths by

constructing a notion of cost for which minimum cost paths correspond to maximum probability

paths given the model, and applying this cost metric to an asymptotically optimal motion planner.

4.2.2 Probabilistic Task Model

The ζ- and η-parameters form the basis for a task model similar to a Hidden Markov Model

(Figure 4.2) with discrete states, which we call time steps, {1 . . . T}, where the probability of

observing configuration q at time step t during demonstration m is given by p (() q | ζ,ηt) and the

probability of transitioning to time step t′ from t is given by p (() t′ | t). We also consider priors on

each latent parameter, denoted p (() ζ) and p (()η).

Let Q = {q1...Sm
1...M } denote the observed configurations from each demonstration, and let A =

{a1...M} denote the environment descriptions from each demonstration that list the sensed landmark
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poses. Let H = {η1...T } denote the set of η-parameters from each time step, and let p (()H) be

given by p (()η1, . . . ,ηT ) =
∏T
t=1 p (()ηt) by independence. For convenience of notation, we will let

ηsm = ηtsm denote the η-parameter corresponding to the time step associated with the sthobservation

in demonstration m. There are still only T such parameters; this notation merely serves as a

convenient view of them. By the conditional independence properties of the given model, we have

the following:

p (()Q, ζ,H | A) = (4.1)

p (() ζ) ·
T∏
t=1

p (()ηt) ·
M∏
m=1

Sm∏
s=1

(p (() ts+1
m | tsm)p (() qsm | ζ,ηsm,am)).

Putting the model in this form separates the prior, transition, and observation distributions to

facilitate parameter estimation in the following section.

4.3 Learning

We first define virtual landmarks as time-invariant parameters, and then describe our approach

for simultaneously estimating the time-variant and time-invariant parameters of the task model.

Although much of the problem is similar to our prior work [16], the introduction of time-invariant

parameters necessitates a different, global, learning approach due to their non-local nature.

4.3.1 Feature Space using Virtual Landmarks

We begin by defining the virtual landmarks that will be learned as the ζ-parameters. These

virtual landmarks are based on linear combinations or projections of sensed landmarks a whose

pose is identified using the robot’s kinematic model and vision sensors.

We first consider an environmental virtual landmark, which is based on a linear combination

of sensed landmarks in the environment. ζ includes the coefficients of this linear combination.

We denote this portion of ζ as ζenv and require the sum of these coefficients be 1 by locally

parameterizing the tangent space of this constraint. In addition to being an intuitive way to combine

sensed landmarks, constraining the L1-norm encourages sparsity. After learning, to further enforce

sparsity, we discard sensed landmarks with coefficients less than 5% to form the set of sensed

landmarks required during task execution. Specifically, we compute the pose of the environmental
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virtual landmark as follows:

Kvirt(ζ,a)−1 =
Z∑
i=1
ζenv
i Ki

sens(a)−1

where Ki
sens(a) ∈ SE(3) denotes the pose of the ithsensed landmark in the environment described

by the input a from 4.2.1.

The ζ-parameters may also encode the position of a point relative to the robot’s end effector.

We will denote this portion of ζ as ζtool. This point defines a tool virtual landmark, i.e., a point on

a grasped object (e.g., a tool).

Together, these virtual landmarks, combined with the robot’s configuration q, serve to define a

feature space that augments that used in [17] by including the position of a tool virtual landmark

relative to an environmental virtual landmark. This feature space incorporates both configuration

and task spaces, enabling the method to learn tasks which require both. Specifically, we define a

function f to lift configurations into the feature space for learning (see Section 4.3.3):

f(q, ζ,a) =

 q

Kvirt(ζ,a)−1Kend(q)ζtool

 , (4.2)

where Kend(q) denotes the pose of the end effector when the robot is in configuration q, and Kvirt(a)

denotes the pose of the environmental virtual landmark.

4.3.2 Maximum a Posteriori Estimation

Given a set of demonstrations, our goal is to find the maximum a posteriori probability (MAP)

estimates for ζ and H. To accomplish this, we combine dynamic time warping (DTW) [45] and

local optimization using an expectation-maximization (EM) approach.

For numerical convenience, we first take the negative logarithm of (4.1), a common loss function

in the machine learning literature. By monotonicity, minimizing this quantity is equivalent to

maximizing the original function. To facilitate this transformation, let L(·) denote − log p (() ·),
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yielding the following:

L(Q, ζ,H | A) =

L(ζ) +
T∑
t=1

L(ηt) +

M∑
m=1

Sm∑
s=1

(
L(ts+1

m | tsm) + L(qsm | ζ,ηsm,am)
)
.

In this form, it is perhaps apparent that if we fix the time step tsm corresponding to each

observation qsm, the problem of finding the most likely ζ- and η-parameters becomes one of

performing a simple, if high-dimensional, nonlinear optimization. In our implementation, this is

accomplished using the Ceres nonlinear least-squares solver [92]. The transformation from this form

to a nonlinear least squares problem is discussed in Section 4.3.3.

Dynamic time warping is used to find the most likely sequence of time steps t1...Sm
m corresponding

to the observations q1...Sm
m in each demonstration m using the current best estimates for the latent

parameters. This is analogous to the time-alignment steps used in prior methods [9, 83]. The value

update equations for the dynamic time warping which maximize likelihood are as follows:

l0m[t′] = 0

lsm[t′] = min
t∈[1,T ]

(
ls−1
m [t] + L(t′ | t)

)
+ L(qsm | ζ,ηt′ ,am),

where lsm[u] denotes the value of the best assignment of time steps t1...sm to observed configurations

q1...s
m from demonstration m with tsm = u.

Following the EM approach, this most likely sequence of time steps is then fixed and used to

estimate new ζ- and η-parameters as discussed above. This process is repeated until convergence.

Because EM approaches may become caught in local optima, we employ random restarts with

randomly-chosen initial alignments.

The transition probabilities p (() t′ | t) may either be fixed (the approach taken in [16]), estimated

from the alignments, or a combination of the two approaches with a fixed set of permitted transitions

with estimated probabilities (the approach taken in [17]). In the experiments, we use the last of

these approaches.
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4.3.3 Estimation via Minimization

We consider a specific class of distribution based on the assumption that observations have

multivariate Gaussian distributions in a feature space at each time step. We cannot estimate time

steps independently as in prior work because we simultaneously estimate time-invariant parameters.

Given the differentiable function f(q, ζ,a) defined in Section 4.3.1 which lifts a configuration

into feature space RF , we consider η which captures the mean µ ∈ RF and covariance matrix

Σ ∈ RF×F in feature space. Specifically, η = [µT, vec[σ−1]T]T where vec[σ−1] ∈ RF (F+1)/2 denotes

a vector containing the components of the inverse of the lower-triangular Cholesky factorization of

Σ = σσT. In this feature space model, we consider p(q | ζ,η,a) defined by f(q, ζ,a) ∼ N (µ,Σ).

We then have the following negative log conditional probability:

L(q | ζ,η,a) =

L(f(q, ζ,a) | µ,Σ) ∼

log det Σ + (f(q, ζ,a)− µ)TΣ−1(f(q, ζ,a)− µ) =∣∣∣√log det Σ
∣∣∣2 +

∣∣∣σ−1(f(q, ζ,a)− µ)
∣∣∣2 . (4.3)

Minimizing this is explicitly a nonlinear least-squares problem.

The choice of representation in terms of σ−1 is particularly convenient because it admits fast

computation of the residual of the transformed problem. Specifically, to compute the first term, we

use the fact that log det Σ = −2
∑F
i=1 log |σ−1

i,i | by the multiplicative property of the determinant

and triangularity of σ (and thus of σ−1). In the second term, the residual is linear in both σ−1 and

µ and thus multilinear in η. This not only decreases the computation time needed to evaluate the

residual, but greatly improves the convergence rate and reduces local minima.

We note that the first term depends only on σ−1 and so need not be recomputed for each

observation. For computational efficiency, it can even be incorporated into the prior (effectively

treating the conditional as an unnormalized distribution). In fact, this term is proportional to the

logarithms of multiple classical priors [93], so such a prior can be incorporated simply by changing

the scale on this term.

The only restriction we place on the priors is that they be log differentiable and note that they

may be transformed similarly to the way the normalization term was above, although they may
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Figure 4.3: The Baxter robot performing the powder transfer task with the spoon being used as a
tool in blue, the source container in yellow, and the destination container in green. Both the lamp
and paper towel obstacles are white.

also admit more elegant forms (e.g., exponential distributions). In the experiments conducted in

Section 4.4, we used (unnormalized) uniform priors for all parameters.

4.4 Results

We evaluated our method on two simplified food preparation tasks on the Baxter research robot

[1]. Once learned, these tasks were performed autonomously using the method described in [17],

which is very similar to that from Chapter 3. All computation was performed on two 2.0GHz 6-core

Intel Xeon E5-2620 processors. Landmark poses were continuously tracked using a Kinect sensor.

4.4.1 Powder Transfer Task

We first tested our method on the same task as in Chapter 3, wherein the Baxter robot learned

to transfer powder from one container to another (see Figure 4.3) while the bowl moved. However,

unlike prior work, a human did not specify a landmark on the spoon, which previously was manually

specified as the tip. Instead, we automatically learned a tool virtual landmark via ζtool specifying

a position relative to the pose of the robot’s gripper. Additionally, we synthetically introduced

4 sensed landmarks into each demonstration in addition to the bowl, randomly sampled in the

reachable space of the robot, bringing Z to 5 and the dimensionality of the ζ-parameter to 8. The

feature space for learning included the robot’s configuration specified by its 7 joint angles as well

as the position of the tool virtual landmark relative to a learned environmental virtual landmark

based on (4.2).

As mentioned in Section 4.3.3, the η-parameters used were means and covariance matrices in

this feature space. For this task, we used T = 24 time steps. The learning algorithm was then

used to estimate these parameters from the same 11 demonstrations used to evaluate the previous

method [17], but with the 4 synthetic new sensed landmarks added to the set A = {a1...M} for each
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Figure 4.4: A spoon being used as a tool in the powder transfer task with an arbitrary landmark at
the robot’s gripper marked in blue, the hand-picked landmark at the tip marked in red, and the
tool virtual landmark learned by our method marked in green.

Tool Landmark
(on spoon)

Environment
Landmark (bowl)

Success
Rate

Learning
Time

Planning
Latency

Arbitrary Manual 60% 26s 201ms

Manual Manual 80% 26s 226ms

Learned Manual 100% 1,658s 182ms

Learned Learned 100% 1,686s 182ms

(without obstacle avoidance) 10% 1,686s 108ms

Table 4.1: Powder transfer task results averaged across 10 scenarios.

67



Figure 4.5: Baxter robot performing the liquid pouring task with the pitcher (being used as a tool)
with blue liquid and the green bowl. The lamp, vase, and paper towel obstacles are white.

demonstration.

The actual virtual tool landmark learned for the spoon differed notably from the hand-picked

point at the tip used previously (see Figure 4.4). The point estimated by the learning method

corresponded roughly to the average point of rotation on the spoon during the dumping motion.

The method also correctly learned a virtual environmental landmark which consisted only of the

sensed landmark corresponding to the bowl, with effectively no contribution from the other sensed

landmarks. This was because the standard deviation of the tool landmark relative to the bowl in

the facing direction of the robot in one time step was only 7 cm, while for the other landmarks, it

was as high as 78 cm.

We tested the new learned model using the same planner on the same 10 scenarios as in

the previous method’s evaluation [17]. The scenarios included uniformly random paper towel

obstacle and bowl locations as well as a hanging lamp obstacle. The bowl was moved to another

random location midway through the task, requiring the closed-loop motion planner to react quickly.

An execution was considered successful if the robot avoided obstacles in the environment and

transferred the powder without spilling. A video of the robot executing this task is available at

https://youtu.be/QaiRBRwE3Lo and quantitative results are provided in Table 4.1.

Surprisingly, the new learned model resulted in a higher success rate than the previous method

even though less information was manually provided, likely because the relevant covariances were

better captured with the new virtual landmarks in ζ. This also slightly improved planning latency

because lower variances imply narrower low-cost regions, which allow the path search to explore

and consequently lazily evaluate fewer edges.
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Tool Landmark
(on pitcher)

Environment
Landmark (bowl)

Success
Rate

Learning
Time

Planning
Latency

Arbitrary Manual 40% 216s 225ms

Learned Learned 90% 71,462s 200ms

(without obstacle avoidance) 30% 71,462s 132ms

Table 4.2: Liquid pouring task results averaged across 10 scenarios.

To further demonstrate the importance of appropriately choosing the tool virtual landmark, we

also ran the learner arbitrarily fixing ζtool = 0 corresponding to the robot’s gripper. This was only

successful near the center of the table and not at the extremes where the robot completely missed

the bowl.

Finally, we evaluated planning using only local optimization of the learned task model without

any obstacle avoidance. As expected, this resulted in many failures due to collisions with obstacles.

The results of each approach are shown in Table 4.1.

4.4.2 Liquid Pouring Task

We next tested our method on the task of pouring liquid from a grasped pitcher into a bowl

(see Figure 4.5). The pose of the bowl and 4 other sensed landmarks (a pair of scissors, a spoon,

a vase, and a roll of paper towels) varied between executions, bringing Z to 5. The feature space

used to construct the probabilistic model was the same as for the powder transfer task, again with

T = 24 time steps and the dimensionality of the ζ-parameter was again 8.

We performed 11 demonstrations of the task which we then supplied to the learning method

with the pose of each sensed landmark, including the bowl, selected uniformly at random from a

30-inch square on the surface of the table. Additionally, the extra sensed landmarks were lifted

up to 10 inches off the table surface. The learning phase took significantly longer than for the

transfer task (see Table 4.2) because the demonstrations were sampled at 50Hz rather than 10Hz,

resulting in significantly more observations per demonstration. This could have been mitigated

simply by subsampling during learning. However, this does show that the learning method is robust

to different sampling rates. We note that learning only has to be done once after the demonstrations

are provided, and does not need to be performed again when the robot executes the task in a new

environment using the motion planner.
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The method found a tool virtual landmark corresponding to a point just below the spout of

the pitcher (distinct from that learned in Section 4.4.1). The only sensed landmark with a learned

contribution to the environmental virtual landmark was the bowl. So the objects corresponding to

the other sensed landmarks served only as obstacles during execution.

We tested the motion planner on 10 randomly selected scenarios which included the same objects

as the demonstrations as well as a hanging lamp obstacle. An execution was considered successful

if the robot avoided obstacles in the environment and poured the liquid into the bowl without

spilling. During execution, the large size of the pitcher resulted in more constrained motion planning

problems in some of the scenarios than in the powder transfer task, which caused one trial to result

in failure to pour the liquid. A video of the robot successfully executing this task is available at

https://youtu.be/QaiRBRwE3Lo and quantitative results are provided in Table 4.2.

4.5 Conclusion

This chapter presented a method for performing tasks relative to initially unknown landmarks

using a task model which encodes both the task motion and the landmarks required by it. We

showed that such a model can be learned from human-guided demonstrations by simultaneously

estimating time-variant and invariant parameters. Furthermore, this model is amenable to fast,

global sampling-based motion planning.

Our method requires less user-provided information compared to prior work by enabling the robot

to learn, from demonstrations, relevant virtual landmarks both on tools and in the environment.

These virtual landmarks help define the feature space of the learned task model. We demonstrated

the efficacy of our approach by learning and executing two manipulation tasks on the Baxter

robot, including a powder transfer task and a liquid pouring task. The following chapter will

target the other half of the learning process, namely temporal registration, to reduce the number of

demonstrations required for learning.
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CHAPTER 5

Improving Temporal Registration

Registering a time sequence of observations to a reference model is a common subproblem

in many robotics algorithms, including algorithms for both motion recognition [94] and robot

task learning [95, 96] like that described in Chapter 2. This subproblem may be referred to as

time alignment, time warping, or temporal registration (which is the term we use in this chapter).

Formally, temporal registration is an assignment of individual observations (from a sequence of

observations) to the ordered steps in some underlying reference model. In the domain of robot

learning from demonstrations, the observations correspond to the time-ordered data collected during

each demonstration, where each demonstration must be temporally aligned to an underlying task

model (e.g., a reference demonstration or task representation) to facilitate learning features of the

motion over time from a set of demonstrations. The process of temporal registration abstracts away

differences in execution speed both between and within demonstrated trajectories and is often a

Figure 5.1: The Baxter robot performing a knot-tying task learned from demonstrations. The
temporal registration of demonstrations can have a significant impact on the quality of the learned
task model.
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critical step to learning effective task models.

Many prior methods for learning synthesizable models rely on dynamic time-warping (DTW)

[97] for temporal registration, either as a preprocessing step [95, 98, 99] or interleaved with model

estimation [35, 16]. DTW can be viewed as a maximum-likelihood approach to temporal registration.

However, maximum-likelihood approaches are inherently prone to becoming caught in local minima,

yielding suboptimal registrations when a different initialization would produce better results.

Furthermore, DTW may drop some or even most observations from the temporal registration which

can produce degenerate temporal registrations in which a time step of the reference model has too

few observations aligned to it. Mostly importantly, DTW does not consider uncertainty in the

temporal registration. We explore whether or not these limitations negatively impact robot learning

algorithms that rely on temporal registration, noting that prior work both within and outside of

robot task learning has aimed to address similar shortcomings [100, 101].

With these alternative approaches in mind, we compare maximum-likelihood temporal regis-

tration approaches against a more general form of temporal registration that explicitly captures

uncertainty in the temporal registration in the form of probability-weighted temporal registrations

(PTRs). Instead of assuming each observation is registered to (at most) one time step of the

reference model, we instead compute probability-weighted assignments (as shown in Figure 5.2).

These weighted assignments can be leveraged in robot learning algorithms to yield more robust task

models.

Specifically, we propose to use the classical forward-backward algorithm [102] to compute

probability-weighted temporal registration. This approach is not new, but we present a framework

based on a tensor product graph in which DTW and the forward-backward algorithm are in fact

remarkably similar in terms of implementation. Using this graphical approach, we describe a novel

modification for avoiding degenerate registrations that improves registrations across methods in

practical applications.

We demonstrate that it is often easy to adapt existing methods to utilize the probability-weighted

temporal registrations produced by the forward-backward algorithm by doing so for two models

from prior work [35] including the one presented earlier in this document (Chapter 2). We also show

empirically that using the forward-backward algorithm (and the modification mentioned above)

produces better models with smoother motions and higher success rates on challenging tasks both
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θ5

(a) Traditional temporal registration using DTW

y1 y2 y3 y4 y5 y6 y7 y8

θ1

θ2

θ3

θ4

θ5

(b) Probability-wighted temporal registration

Figure 5.2: Comparison between traditional temporal registration (e.g., using dynamic time warping
(DTW)) and probability-weighted temporal registration (using our approach) to register a sequence
of observations {y1, . . . ,y8} to a reference model {τ1, . . . , τ5}. In our approach, we register all
samples to the task model, avoid degenerate registrations, and assign probabilities to the alignment
of each observation, which can be utilized by a learning algorithm to improve the quality of a learned
task model.

in simulation and on the Baxter robot. And while the forward-backward algorithm used by PTR is

more computationally expensive than DTW, it is not asymptotically slower in the general case, so

it still scales well with the problem size. And in an expectation-maximization framework as used

by some robot learning algorithms, the improved temporal registration of PTR may even reduce

the number of iterations required for convergence of the robot learning algorithm, yielding overall

similar running times for some problems.

5.1 Related Work

Temporal registration is necessary for solving many estimation, classificiation, and clustering

problems in robotics, signal processing, and other fields. By far the most common method for

temporal registration is dynamic time warping (DTW), which has been successfully applied to

problems such as gesture recognition [94] and robot task learning using Guassian mixture models

[95, 98] as a preprocessing step. Similar approaches have been applied to the problem of learning to

manipulate deformable objects [96]. Other methods instead integrate DTW or similar methods into

an iterative estimation process [35, 16].

DTW has also been used to learn and subsequently execute tasks in the presence of external

perturbations [103]. Collaborative tasks add an additional cause for variable demonstration speed,

which has been addressed using related modifications to DTW [104] or gradient descent to overcome
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the non-smooth nature of DTW [105]. That weakness of DTW, combined with the desire for a

global solution rather than one which relies on local optimization, is what motivates this work.

When viewed as the problem of registering demonstrations to an underlying hidden Markov

model (HMM) [99] or semi-Markov model [106], DTW is quite similar to the well-known Viterbi

algorithm [44] for inference of the hidden model variables. Work has been done to produce variants

of the Viterbi algorithm for finding registrations with specific properties [107], lower risk [108], or

approximations for switching linear dynamic systems (SLDSs). For SLDSs in particular, alternative

approaches to estimation that do not rely on the Viterbi algorithm have been explored [100], and

these systems have been combined with reinforcement learning to good effect [109].

Estimation of an HMM using the Viterbi algorithm in a simple expectation-maximization

framework yields the Viterbi path-counting algorithm [82]. However, the classical forward-backward

algorithm has nicer properties. So in this work, we explore how use of the forward-backward

algorithm versus DTW or the Viterbi algorithm impacts learning and subsequent execution for

HMM-based task models. We note that in an expectation-maximization framework, this approach

produces the well-known Baum-Welch algorithm.

We do so by comparing these approaches applied to two methods, that presented in Chapter 2

and one presented by van den Berg et al. [35]. We find measurable improvements by using a

temporal registrations approach that captures uncertainty. While adapting these methods to use such

registrations, we also propose modifications to any of these approaches that enforce non-degeneracy

constraints, resulting in improved model estimation in practice. Given these results, we suggest that

the forward-backward algorithm be used more broadly for learning task models from demonstrations

in robotics.

5.2 Problem Definition

Consider a user-provided demonstration given by a sequence Y = {y1, . . . ,yn} where each yi is

an observation which might be in the state space of the robot or some arbitrary feature space. It is

often necessary for learning or recognition algorithms to register such a demonstration to a different

sequence Θ = {θ1, . . . ,θT } of time steps (often in a learned task model) while abstracting away

differences in demonstration speed. We are generally interested in a registration which minimizes

some measure of loss L(yi,θt) between matched elements of each sequence.

The most common approach to this problem in the domain of robotics is DTW, which produces
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for each θt an assignment i = ιt (iota of t) corresponding to yi (see Figure 5.2a). In particular, this

assignment minimizes
∑T
t L(yιt ,θt) subject to a strict monotonicity constraint ιt < ιt+1. Stronger

variants of this constraint may also be enforced as shown in Section 5.3.4.

However, this approach discards much of the demonstration and fails to encode uncertainty in

the temporal registration. To address these weaknesses, we consider probability-weighted temporal

registrations which assign to each yi a weight ωi,t for each θt (see Figure 5.2b). These weights

must sum to one and so form a distribution. Here, we minimize
∑n,T
i,t ωi,tL(yιt ,θt) subject to a

monotonicity constraint similar to that above generalized to distributions (discussed in Section 5.3.1).

To make these temporal registrations truly probability-weighted, we impose a restriction on the

loss L, namely that it be defined as the negative log likelihood for some statistical model L (θt | yi):

L(yi,θt) ≡ − logL (θt | yi) . This model could of course be one described in Chapters 2, 3, or 4.

More generally, of course, these models are estimated from multiple demonstrations. In such

cases, each demonstration can be temporally registered to the model independently, and given

the resulting registrations, the model can be re-estimated. The process repeats in an expectation-

maximization loop until convergence. This is the approach taken by both the learning methods of

both models we evaluate in Section 5.5.

5.3 Method

In this section, we describe a graphical approach to probability-weighted temporal registration

using the forward-backward algorithm along with a practical improvement to any temporal reg-

istration method that fits into this graphical framework. In Section 5.3.1 and Section 5.3.2, we

discuss two maximum-likelihood temporal registration methods: DTW and the Viterbi algorithm.

We recast both approaches as shortest paths on a tensor product graph. In Section 5.3.3, we next

discuss a true expectation-maximization algorithm that produces a temporal registration with

probability-weighted assignments for the observations. Again, we reformulate this approach using

the tensor product graph and show that it is in fact nearly the same algorithm as the Viterbi

algorithm. Finally, in Section 5.3.4 we show that any of these methods can be improved upon by

modifying the tensor product graph to enforce a non-degeneracy constraint, which is particularly

valuable when integrated with robot learning and using very few demonstrations as input, as shown

in Section 5.5. To our knowledge, the reformulation of these algorithms in terms of a tensor product

graph is novel, as is the modification to enforce the non-degeneracy constraint. The combination of
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using the forward-backward algorithm and enforcing the non-degeneracy constraint gives us our

complete method for probability-weighted temporal registration (PTR).

5.3.1 Dynamic Time Warping as a Graph Algorithm

The structure of the DTW algorithm follows the familiar dynamic programming approach of

iteratively solving each subproblem in a table. In particular, let C[t, i] denote the cost of the best

registration of the first t time steps {θ1, . . . ,θt} to the first i observations {y1, . . . ,yi}. We then

have for all t ≤ T and i ≤ n:

C[0, 0] = 0

C[t, 0] = ∞

C[0, i] = ∞

C[t, i] = min(C[t, i− 1] + cinsert(t),

C[t− 1, i] + cdelete(i),

C[t− 1, i− 1] + cmatch(t, i))

(5.1)

where cinsert(t) denotes the cost of not matching θt to any observation, cdelete(i) the cost of not

matching observation yi to any time step, and cmatch(t, i) the cost of matching θt with yi. The

actual registration ι may then be constructed by traversing this table.

The best temporal registration is the one which maximizes L (ι | Y,Θ), that is the likelihood

of the entire registration given both sequences. Because the loss function we assumed depends

only yi and τt where ιt = i, it satisfies the Markov property, and thus the joint likelihood is simply∏T
t=1 L

(
θt | yιt

)
, and maximizing this is equivalent to minimizing

∑
− logL

(
θt | yιt

)
. Substituting

cinsert(t) = ∞

cmatch(t, i) = − logL (θt | yi)
(5.2)

in the recurrence above yields C[t, i] = − logL (Θ | Y, ι1...t) where ιt′ ≤ i. By monotonicity of log,

minimizing C[T, n] maximizes L (Θ | Y, ι).

Letting cinsert(t) =∞ ensures that every time step is registered to an observation, but much of

the prior work in robotics further assumes cdelete(i) = 0 [97]. That is, not every observation needs to
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(b) Restricted transitions (time graph)

Figure 5.3: Discrete-time hidden Markov model in which time steps comprise the discrete states
and observations are those from the demonstrations.

be considered during registration, and only the best T observations contribute to model estimation.

Not only does this not match the underlying model, it discards information which could otherwise

be useful for robust parameter estimation. In the next section, we will consider an alternative, the

Viterbi algorithm. But first, it will be convenient to recast the DTW algorithm as a graph algorithm.

This view will become an important step in unifying and extending all the temporal registration

algorithms we consider.

To view DTW as a graph algorithm, we first construct graphs representing both the time steps

and the demonstration. The demonstration simply becomes a sequential graph of its observations

(the demonstration graph). Time steps encode a more complex relation, but one which can be

described by a hidden Markov model (HMM). To see this, consider the time steps to be the

discrete states, denoted τi, of a time-homogeneous hidden Markov model (HMM) with observation

distributions parameterized by {θ1, . . . ,θm} and transition probabilities given by pt,t′ . To enforce a

monotonicity constraint, we restrict the state transitions as shown in Figure 5.3b, and this forms the

time graph. Finally, we then consider the tensor product [110] of these two graphs (see Figure 5.4).

Note that unlike the time graph, we omit self-edges in the demonstration graph, which similar

to setting cinsert(t) =∞ above, ensures that every time step is matched with an observation. We

will later generalize this constraint in Section 5.3.4.

We next assign to each edge from (t, i) to (t′, i′) a cost as follows:

cDTW((t, i)→ (t′, i′)) =


− logL (θt′ | yi′) t 6= t′

0 t = t′

. (5.3)

Under these edge costs, the DTW registration is simply the shortest path from (1, 1) to (T, n),

where a match occurs whenever the time step changes along the path.
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Figure 5.4: Tensor product of time graph (left) and demonstration graph (bottom). Darker edges
have lower costs and blue vertices show the DTW registration.

5.3.2 Temporal Registration Using the Viterbi Algorithm

As we alluded to previously, this variant of DTW does not accurately reflect the underlying

HMM because the result may not include some of the observations. However, there is a similar

algorithm which does find the true maximum-likelihood registration of a sequence of observations

to an HMM, namely the Viterbi algorithm [44], which has previously been used in task learning

and recognition [111, 112]. This algorithm can be viewed as a specific instance of DTW with an

appropriate choice of costs, but it is more illuminating to describe using the graph we introduced in

the prior section.

To do so, we first need to reparameterize the registration, so that instead of mapping time steps

to observations via ιt, we map observations to time steps via τi. Then we need only change the

edge costs as follows:

c((t, i)→ (t′, i′)) =− logL
(
τi′ = t′ | τi = t, Y,Θ

)
=− log pt,t′ − logL (θt′ | yi′) .

(5.4)

Recall that pt,t′ is the probability of transitioning from time step t to t′, so this is not only arguably

simpler than the DTW edge costs (5.3), but correctly considers transition probabilities. Under these

edge costs, the Viterbi registration is again the shortest path from (1, 1) to (T, n), but we consider

θt to be matched with yi whenever (t, i) occurs in this path. In particular, a time step may be
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Figure 5.5: Tensor product of time graph (left) and demonstration graph (bottom). Darker edges
are more probable and blue vertices show the maximum likelihood temporal registration. This
corresponds to the shortest path in the graph.

matched with multiple observations, while every observation will be matched with exactly one time

step (see Figure 5.5). This coincides with the underlying HMM model.

To see that the shortest path indeed corresponds to the maximum-likelihood registration, we

again rely on monotonicity and the Markov property as follows:

arg min
τ

n−1∑
i=1
− logL (τi+1 | τi, Y,Θ) =

arg max
τ

n−1∏
i=1
L (τi+1 | τi, Y,Θ) =

arg max
τ

L (τ | Y,Θ) .

(5.5)

Using either of the aforementioned model estimation methods, we can then estimate a distribution

for a given time step from only the set of observations most likely to have been drawn from it.

However, this approach still suffers from the issues associated with maximum likelihood approaches,

namely local minima and sensitivity to noise.

One question that arises is what shortest path algorithm to use. Because the edge costs may be

negative, Bellman-Ford [113] is a reasonable choice. However, we can relate this better to DTW

and the forward-backward algorithm by noting that because the demonstration graph is a directed

acyclic graph (DAG), so must be the tensor product graph. Because the graph is acyclic, we need

79



not perform the multiple passes usually required by the Bellmann-Ford algorithm thanks to the

availability of a topological ordering. With this simplification, the Bellmann-Ford algorithm may be

described by a recurrence:

C(v) =
u→v⊕
e

C(u)⊗ c(e) (5.6)

where
a⊕ML b = min(a, b)

a⊗ML b = a+ b

(5.7)

with initial condition on the source vertex s ∈ V set to the identity of ⊗, that is R(s) = 1⊗.

Expanding this out again yields the general DTW algorithm. The ML subscripts on these operators

indicate that this choice produces maximum-likelihood estimates, and in the next section, we will

show that simply changing our choice of semiring [114] (associative ⊕ and ⊗ with the distributive

property) effectively yields the forward-backward algorithm.

5.3.3 Probability-weighted Temporal Registration Using the Forward-Backward Al-
gorithm

In contrast to the Viterbi algorithm, the forward-backward algorithm [102] computes not only

the most likely temporal registrations, but the posterior probabilities of all possible temporal

registrations. Rather than presenting this approach in its original terms, however, we present an

equivalent formulation using a graph algorithm that is more amenable to further modifications. The

graph is the same as the one used in the previous section Section 5.3.2 and shown in Figure 5.5.

However, to implement the forward-backward algorithm, we instead use:

a⊕FB b = − log(e−a + e−b)

a⊗FB b = a+ b

(5.8)

which are simply the sum and product of the probabilities in negative log-space, producing (unnor-

malized) distributions over registrations given prior observations. Specifically,

L
(
τi = t | Θ,y1, . . . ,yi−1

)
∝ e−C(t,i) . (5.9)
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Figure 5.6: Tensor product of time graph (left) and demonstration graph (bottom). Darker edges
are more probable and shaded vertices show the distribution of likely registrations in PTR.
To extend this to distributions over registrations given the entire sequence of observations, one need

only compute the value C′(v) of each vertex in the reverse graph. The likelihood of an observation

yi registering to time step t is then:

L (τi = t | Θ, Y ) ∝ e−(C(t,i)+C′(t,i)) . (5.10)

This view of these algorithms as recurrences over a tensor product graph enables us to further

improve registrations by modifying the graph in Section 5.3.4.

5.3.4 Non-degenerate Temporal Registration

For many practical use cases, it is desirable to ensure that a sufficient number K∆ of observations

are registered to each time step. We say that such registrations are non-degenerate because if they

are subsequently used to estimate covariance matrices as in prior learning methods [35, 16], this

gaurantee is neccessary for the problem to be well-posed. Even with other choices of parameters or

estimators, it may be desirable to enforce such a constraint because human demonstrators naturally

perform precise parts of a task more slowly. This can be thought of as a stronger version of the

Itakura parallelogram constraint used for Dynamic Time Warping [115].

This constraint can be enforced by modifying the structure of the graph used in Figure 5.6 to

ensure that all paths satisfy the K∆ constraint. An example of this modified graph structure is shown

in Figure 5.7. The edge costs must then be modified similarly for the Viterbi and forward-backward
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Figure 5.7: Tensor product of time graph (left) and demonstration graph (bottom) modified to
exclude degenerate registrations (K∆ = 2). Darker edges are more likely and shaded vertices show
the distribution of likely registrations.

algorithms:

c((t, i)→ (t′, i′)) =− (i′ − i− 1) · log pt,t − log pt,t′ −
i′−1∑
k=i

logL (θt | yk) . (5.11)

Note that this cost is identical to that given in (5.4) when i′ = i+ 1, that is, when the time step

does not change.

The observation weights may then be computed from the vertex values using a similar approach

to that used previously for the forward-backward algorithm:

L (τi = t | θ, Y ) = e−C(t,i)−C′(t,i) +
i−1∑

i′=i+1−K∆

e−C(t,i′)−c((t,i′)→(t+1,i′+K∆))−C′(t+1,i′+K∆) (5.12)

The combination of using the forward-backward algorithm and enforcing the non-degeneracy

constraint gives us our complete method for probability-weighted temporal registration (PTR).

5.4 Application to Learning from Demonstrations

PTR has the potential to improve the the performance of many robotics algorithms that require

temporal registration as a subroutine. For purposes of exposition and evaluation, we consider the

application of PTR to the estimation of two specific task models from prior work on robot learning

from demonstrations [35, 16]. These models were selected because they both explicitly require
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temporal registration and each readily enable execution on a robot, either through application of a

motion planner or definition of an explicit control policy.

First, consider a set of user-provided demonstrations {Y (1), . . . , Y (m)} where each Y (j) is a

sequence {y(j)
1 , . . . ,y(j)

nj }, and in general we will use a parenthesized superscript to indicate per-

demonstration parameters. We reproduce the core learning algorithm of van den Berg et al. [35] in

Algorithm 5.1 with small notational changes for parity and to highlight the underlying HMM model.

Algorithm 5.1 EstimateVanDenBerg2010(T , Y (1), . . . , Y (m))

Initialize R(j) = I and ι(j)t =
⌊
|Y (j)|·t
T

⌋
.

repeat
for t = 1 to T do
Zt =

{
(y(j)
i , R(j)) | i = ι

(j)
t

}
end for
Θ̂← KalmanSmoother(Z1, . . . , Zn)
for j = 1 to m do
R(j) ← arg maxR L

(
R | Y (j), Θ̂

)
ι̂(j) ← arg maxι L

(
ι | Y (j), Θ̂

)
// Dynamic time-warping

end for
until converged

Compare with this moderately abridged implementation of the method from Chapter 2 shown

in Algorithm 5.2.

Algorithm 5.2 EstimateBowen2015(T , Y (1), . . . , Y (m))

Initialize τ̂ (j)
i =

⌊
T ·i
|Y (j)|

⌋
.

repeat
for t = 1 to T do
Zt =

{
y(j)
i | τ̂

(j)
i = t

}
θ̂t ←MaximumLikelihoodEstimator(Zt)

end for
for j = 1 to m do
τ̂ (j) ← arg maxτ L

(
τ | Y (j), Θ̂

)
// Viterbi algorithm

end for
until converged

Although each of these algorithms operates in a different space, we note that both fit the general

mold of expectation-maximization (EM) methods, interleaving estimation of model parameters

θ and latent parameters (τ or ι and R(j)). More accurately, however, these are maximization-
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maximization methods, because their respective registration steps compute the best (in some sense)

single registration given θ rather than a distribution over all possible registrations.

To apply PTR to our method and that of van den Berg, we need only replace DTW and

extend the model parameter expectation steps of these methods to handle weighted observations

to accommodate probability-weighted temporal registrations. More specifically, when estimating

θt, we use all y(j)
i , but weight each by its posterior likelihood of being registered to time step t,

ω
(j)
t,i = L

(
τ

(j)
i = t | Y (j)

)
, which is given by (5.9). This produces a true expectation-maximization

method, and in the method of Bowen et al., yields the Baum-Welch algorithm, which has the general

effect of smoothing the estimation compared to the maximum likelihood approach, reducing (but

not eliminating) local minima and improving robustness (see results in Section 5.5).

The transition probabilities in the HMM (Figure 5.3b) may be estimated by applying Bayes’

rule, yielding:

pt,t′ = L
(
τi+1 = t′ | τi = t, Y

)
=
∑
i,j ω

(j)
t,i ω

(j)
t′,i+1∑

i,j ω
(j)
t,i

. (5.13)

In the method of van den Berg et al., at each time step t the Kalman update step can be

performed once for each observation y(j)
i , with weight ω(j)

t,i applied by scaling the covariance matrix

R(j) of the observation by 1/ω(j)
t,i . Equivalently, and more efficiently, a single Kalman update step

can be done at each time step t by combining the weighted observations as follows:

Σ̂t =

∑
i,j

ω
(j)
t,i R

(j)−1
−1

µ̂t = Σ̂t

∑
i,j

ω
(j)
t,i R

(j)−1y(j)
i



5.5 Results

We evaluate the impact of our probability-weighted temporal registration (PTR) approach by

applying it to several previously-developed robot learning methods that require temporal registration

of demonstrations. In particular, we apply our temporal registration to the robot learning methods

of van den Berg et al. [35] and Bowen et al. [16]. Throughout this section, we will use Name-K∆

to indicate the various temporal registration methods (e.g. DTW-1 or PTR-12). Note that when

K∆ = 1, as in DTW-1 or PTR-1, these are equivalent to their unconstrained variants, DTW and
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(a) Demonstrations with medium Gaussian observation noise

(b) Trajectory learned with DTW-1 (c) Trajectory learned with PTR-3

Figure 5.8: Learning a simulated drawing task with reference trajectory shown in gray.

the forward-backward algorithm respectively. All computation was performed on an Intel Xeon

E5-1680 CPU with 8 cores running at 3.40GHz.

5.5.1 Applied to the van den Berg et al. Method

We first consider the method of van den Berg et al. [35] and the tasks of superhuman performance

of a drawing task and a knot tying task.

Simulated Drawing Task For the simulated drawing task, instead of using human demonstra-

tions, we perturbed a canonical figure eight using one of two noise models. The goal then, was to

recover this canonical motion, allowing us to empirically evaluate different temporal registration

approaches both in terms of learning time and error. The first noise model is that assumed by

the underlying model (Eq. (4) in [35]), where observations within a demonstration are corrupted

by independent and identically distributed Gaussian noise as seen in Figure 5.8. Results for low,

medium, and high noise amplitudes with various numbers of demonstrations are shown in Figure 5.9.

We performed the same experiments with Brownian motion noise, effectively adding Gaussian

velocity noise, as shown in Figure 5.10. While this does not match the assumptions of the underlying

model, it produces demonstrations much more similar to what a human might. Results are shown

in Figure 5.11.

Under both noise models, our method of PTR exhibited lower error relative to DTW, particularly

with high noise and when only a small number of demonstrations are available. The improvements
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Figure 5.9: Results for the simulated drawing task with Gaussian observation noise. The standard
deviations of the low, medium, and high noise variants were 0.05, 0.15, and 0.45 where the reference
trajectory had unit height. PTR exhibited lower error relative to DTW, particularly when only a
small number of demonstrations are available.

(a) Demonstrations with Brownian motion noise

(b) Trajectory learned with DTW-1 (c) Trajectory learned with PTR-3

Figure 5.10: Learning a simulated drawing task with reference trajectory shown in gray.
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Figure 5.11: Results for the simulated drawing task with Brownian motion noise. The infinitesimal
variances of the low, medium, and high noise variants were 0.05, 0.15, and 0.45 where the reference
trajectory had unit height. PTR exhibited lower error relative to DTW, particularly when only a
small number of demonstrations are available.

Figure 5.12: Using the method of van den Berg et al. [35] we learned a task wherein the Baxter
robot tied a knot significantly faster than demonstrated.

were most dramatic when the noise model matched the underlying method assumptions because

noise which violates the independence assumptions introduces bias that temporal registration alone

cannot correct. Both approaches required comparable learning time.

Physical Knot Tying Task Our physical knot tying task was similar to that described by van

den Berg et al. However, it was demonstrated and executed on the Baxter robot, which has more

restrictive dynamics limitations than the Berkeley Surgical Robot on which the original experiments

were performed. As in the original paper, we divided the task into three phases, an initial loop, a

grasp, and an extraction (see Figure 5.12), but unlike in that paper, we learned all three phases rather

than only the first and third. We performed five demonstrations at 20Hz of the first two phases

87



Phase Registration Max Motion Speedup Learning Time (s)

1

DTW-1 2.5 0.40
PTR-1 2.3 0.64
DTW-3 2.4 0.33
PTR-3 3.3 0.52

2

DTW-1 2.2 0.05
PTR-1 3.0 0.35
DTW-3 2.7 0.04
PTR-3 3.1 0.19

3

DTW-1 1.1 0.85
PTR-1 - 0.57
DTW-3 2.0 0.35
PTR-3 3.2 1.20

Table 5.1: Results for the knot-tying task using the method of van den Berg et al. with different
temporal registration approaches. Motion speedup indicates the maximum multiple of the average
demonstration speed at which the task was still performed successfully.

and three of the third. For an execution to be considered successful, we required the robot to tie a

slip knot without exceeding its kinematic or dynamics limitation, including avoiding self-collisions.

To evaluate methods in the context of van den Berg et al.’s superhuman performance, we executed

the algorithms at progressively greater speeds until the method failed and recorded the maximum

multiple of the average demonstration speed at which the task was still performed successfully.

Results separated by task phase are shown in Table 5.1.

A minimum of three samples was used for the non-degenerate variant, which corresponds to

a 0.15 second window in each demonstration. In the first phase of the task, DTW-1 failed first

Figure 5.13: Using the method of Bowen et al. [16] we learned a task wherein the Baxter robot
scooped powder from the yellow container and transferred it into the magenta one without spilling
while avoiding obstacles in the environment.
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Demonstrations Registration Success Learning Time (s)

10
Viterbi-1 80% 2.86
PTR-1 90% 78.64
PTR-12 100% 87.31

5
Viterbi-1 60% 3.16
PTR-1 80% 36.37
PTR-12 90% 36.12

Table 5.2: Results for the powder transfer task using the method of Bowen et al. [16] with different
demonstration counts and temporal registration approaches. PTR-12 had the highest success rate,
regardless of the number of demonstrations.

due to incorrect placement of the rope, while PTR-1 and DTW-3 encountered self-collisions. Only

PTR-3 reached the velocity limits of the robot. In the second and easiest phase, the cause of failure

for every temporal registration method was reaching the velocity limits of the robot. However,

some methods resulted in smoother registrations and subsequent motions, permitting overall faster

execution. In the third and most difficult phase, DTW-1 exceeded the velocity limits of the robot

while the other three methods failed to extract the arm through the newly-formed loop in the rope.

In the case of PTR-1, even at 1x demonstration speed, this was the cause of failure because the

registration failed to isolate a crucial part of the task. PTR-3 successfully achieved the highest

speedup for all phases of the knot-tying task, showing the benefits of probability-weighted temporal

registration with the non-degenerate registration feature.

5.5.2 Applied to the Bowen et al. Method

We next consider the method of Bowen et al. [16], which used the Viterbi algorithm for temporal

registration, so it is this approach we compare against.

We performed a powder transfer task on the Baxter robot shown in Figure 5.13, as specified in

[16]. In this task, the robot is to scoop powder onto a spoon from a source container (the yellow

bucket) and transfer it to a destination container (the magenta thermos) while avoiding obstacles

(e.g., the plant on the table and the white hanging lamp shade). The robot learned the task using

the method of Bowen et al. [16] from 10 kinesthetic demonstrations (in which no obstacles were

present). Task models were learned using three different temporal registration approaches. To

evaluate each model, we introduced the obstacles and randomly sampled scenarios with container
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positions such that the transfer would always cross the centerline of the table to ensure each scenario

was challenging. An execution was considered successful if it transferred powder from one container

to the other without spilling. Results are shown in Table 5.2.

As with the van den Berg method, the use of PTR yielded a measurably better task model in

terms of success rate relative to the Viterbi algorithm for temporal registration. Learning times

for PTR were substantially longer, but still very reasonable for an off-line process. The primary

cause of the failures that occurred during task execution was slightly missing the cup during the

dumping motion, resulting in spilled powder. We observe that the number of demonstrations had a

marginally greater impact when using the Viterbi algorithm for registration than when using PTR.

As with the method of van den Berg et al., PTR-12 performed best.

5.6 Conclusion

Many existing methods for robot learning from demonstrations, including those presented in

Chapters 2, 3, and 4, require registering a time sequence of observations to a reference model, either

for aligning demonstrations during preprocessing or as an integral part of task model estimation.

We introduced probability-weighted temporal registration (PTR), a more general form of temporal

registration that explicitly captures uncertainty in the registration. Instead of assuming each

observation is registered to (at most) one time step of the reference model like DTW, we use the

forward-backward algorithm to compute probability-weighted assignments and avoid degenerate

registrations. We applied PTR to two learning methods from prior work on both simulated and

physical tasks and showed that incorporating PTR into robot learning algorithms can yield higher-

quality task models that enable faster task executions and higher task success rates. In the following

chapter, we return to the problem of planning using the learned model, but in the domain of mobile

manipulation.
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CHAPTER 6

Motion Planning for Learned Mobile Manipulation Tasks

In this chapter, we introduce Task-Guided Gibbs Sampling (TGGS) to accelerate motion planning

in the context of learned mobile manipulation tasks by utilizing the same task model described in

Chapter 2. TGGS enables the motion planner to more quickly sample configurations that are likely

to be important for task success without relying on manual heuristics, thereby producing successful

plans faster than sampling methods that do not explicitly consider the task and environment

together, like goal-biasing or obstacle-biasing.

Our method depends on the task model which is used by the motion planner to generate plans

that successfully perform the task to also inform the sampling strategy. Specifically, the method

we propose combines local optimization with a Markov Chain Monte Carlo (MCMC) approach

to effectively project the task space distribution learned from the demonstrations into the robot’s

configuration space. This sampling strategy is applicable to both the bounded subspace of the

(a) (b) (c) (d)

Figure 6.1: (a) The Fetch robot’s task is to pour liquid from the grasped pitcher into the green
bowl on the table. (b) Roadmap of base motions biased towards those most likely to be useful
(yellow) while avoiding the obstacle point cloud (white). (c) End-effector positions for sampled arm
configurations biased towards those most likely to be useful (blue). (d) End-effector positions for
configurations in the hybrid roadmap (green) with the base (yellow) and end-effector (red) motion
of the final plan.
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manipulator as well as the unbounded subspace of the mobile base. While we apply this approach

to our task model and the Fetch robot is used in the experiments, we believe TGGS could also be

adapted to a number of other models and robots.

Like many low-cost mobile manipulators, the Fetch robot’s mobile base uses differential drive,

which presents the challenge of nonholonomy. Fast motion planning for nonholonomic robots with 10

or more degrees of freedom remains computationally difficult, especially when asymptotic optimality

is desirable, as when soft task constraints are present. Fortunately, the configuration spaces of many

mobile manipulators, including the Fetch robot, have a large subspace that is holonomic: that of

the manipulator arm. TGGS leverages this property by partitioning the sampling across holonomic

and nonholonomic degrees of freedom, which accelerates sampling-based motion planners for learned

mobile manipulation tasks while preserving their asymptotic optimality guarantees.

We validate our new approach analytically and then empirically using the Fetch robot to perform

two household tasks in randomly-generated scenarios.

This chapter is based on work previously published in [21].

6.1 Related Work

Motion planning for mobile manipulation is challenging because of the high number of degrees

of freedom. Various methods that lack completeness address this problem, including potential

fields [12, 14] and local optimization [59]. However, completeness guarantees are important in

many applications involving complex environments and higher-dimensional spaces. Probabilistically

complete sampling-based motion planners that build roadmaps or trees in the robot’s configuration

space are effective in such spaces [116, 117] and can incorporate a class of task constraints [29, 53],

even at reactive rates using elastic roadmaps [118].

Only some sampling-based motion planners consider plan cost, and asymptotic optimality

guarantees become important when planning for tasks where feasibility is no longer sufficient

for success [106]. But in high-dimensional spaces, the convergence of asymptotically optimal

motion planners may be impractically slow. Even when only completeness is required, biased

sampling may improve performance [119], particularly for challenging problems with narrow passages

[120, 121, 122, 123]. Similarly, cost-based task constraints [124] may induce narrow passages in cost

space that make planning more challenging, and biased sampling is again effective [27, 125, 126, 17].
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In this chapter, we introduce a new sampling strategy that can be used for efficiently constructing

motion planning roadmaps for learned mobile manipulation tasks while retaining asymptotic

optimality of the motion planner. We apply this approach to one task model here (from Chapter 2),

although it could be adapted to motion planning for tasks represented by other models that may be

learned from demonstrations [127, 9].

Additionally, our approach relies on decomposing the configuration space of the robot. Related

approaches have been considered in the contexts of hierarchical planning [128, 129] and hybrid

planning [130], but without asymptotic optimality guarantees. We also note that high-level methods

have considered this problem in a more traditional task planning framework [131, 132, 133], but

these approaches depend on methods that can compute motion plans for low-level actions, which is

precisely the domain of our method.

6.2 Problem Definition

We consider a mobile manipulator that consists of a holonomic arm with darm degrees of freedom

and a mobile base (which may be holonomic or nonholonomic) with dbase degrees of freedom.

Given a set of arm configurations Qarm ⊂ Rdarm and a set of base configurations Qbase ⊆ Rdbase, let

Farm ⊆ Qarm denote those arm configurations which are potentially free for some base configuration

(i.e., those that are not in self-collision). Similarly, let Fbase ⊆ Qbase denote those base configurations

which are potentially free for some arm configuration (i.e., those for which the base itself does not

collide with the environment). Finally, let Q = Qarm ×Qbase ⊂ Rdarm + dbase denote the combined

configuration space and F ⊆ Farm ×Fbase denote the free configuration space.

In addition to the above sets, we assume as input to the method an initial configuration q0 ∈ F

and a task model. The task model depends on a feature function φa(q) ∈ Y ⊆ Rb where a is an

environment description that encodes the positions of salient objects (e.g. the bowl in Figure 6.1).

We call Y the feature space, and the task model consists of a finite sequence of feature space

multivariate Gaussian distributions {µ1,Σ1,µ2,Σ2, . . . ,µT ,ΣT }. One can think of these feature

space distributions as defining distributions over configurations when pulled back along φ, conditional

on a given environment described by a. Task models of this form can be estimated from expert

demonstrations for a variety of useful tasks [16, 127, 9].

The output of the motion planner is a feasible configuration space path π comprising a sequence

of local plans which maximizes similarity to this task model. In this chapter, we use the specific
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Arm PRM

Base RRG

Figure 6.2: Hybrid roadmap (green) formed by the Cartesian product of an arm PRM (blue) and a
base RRG (yellow) while avoiding obstacles (red).

definition of similarity described in Chapter 2 which we summarize in Section 6.3.2.

6.3 Motion Planning using the Learned Model

The problem of planning motions for mobile manipulation tasks presents a number of challenges

but also a degree of structure. Notably, any mobile base that uses differential drive (e.g. the

Fetch robot) is nonholonomic and thus so is the robot as a whole. This precludes a large class of

motion planners [134], including probabilistic roadmaps with linear edges. However, the subspace of

configuration space that represents only the arm is holonomic.

In Section 6.3.1, we first describe and analyze a hybrid roadmap that leverages this inherent

structure by using different roadmap constructions for different subspaces of the problem as

appropriate. Next, in Section 6.3.2, we apply a learned task model to this hybrid roadmap. Then,

in Section 6.3.3, we describe how the nature of this construction lends itself to efficient sampling of

high-quality configurations in both roadmaps using Gibbs sampling.

6.3.1 Mobile Manipulation Hybrid Roadmap

Mobile manipulators are generally characterized by low-dimensional base motion, usually SE(2),

combined with a high-dimensional manipulator, R5(S1)3 in the case of the Fetch robot. The

combined configuration space is often 11-dimensional or greater. Additionally, we are not interested

94



in merely feasible plans but ones which also have low costs, ideally approaching the optimal solution

in the limit.

Asymptotically-optimal variants of rapidly-exploring random graphs, e.g RRG* [3], are applicable

to such motion planning problems. However, in high-dimensional spaces, these planners can exhibit

very slow convergence to optimality. On the other hand, less general methods like probabilistic

roadmaps (e.g. PRM*) may exhibit faster convergence for multiple queries but often rely on

additional structure, like an optimal local planner. Furthermore, applying PRM* to unbounded

spaces, like SE(2), necessitates additional heuristics because new configurations will be added from

the entire space unlike RRG* which only extends to configurations near those already explored.

We show that these planners can be combined to plan for mobile manipulation tasks in such

a way that their relative strengths are exploited in the subspaces where they are most applicable.

Specifically, we propose to build an RRG* of pure base motions and a separate PRM* of pure

manipulator motions. We then search in the Cartesian product of the resulting graphs to find

asymptotically-optimal motion plans. Additionally, this approach allows for eager collision checking

on the base during roadmap construction but lazily checking for arm collisions during the shortest

path search.

Let Cbase(ebase,qarm) denote the cost of traversing edge ebase in the base roadmap with arm

configuration qarm and Carm(qbase, earm) denote the cost of traversing edge earm in the arm roadmap

at base configuration qbase. Every edge in the Cartesian product graph is composed of a vertex

from one graph and an edge from the other. This implies that the arm and base are never actuated

simultaneously. Let C(e) be either Cbase or Carm as applicable. We assume Cbase and Carm are

non-negative and Lipschitz continuous. We extend this cost to a path π in the obvious way:

C(π) =
∑
e∈π

C(e).

Algorithm 6.1 BuildHybridRoadmap(q0, nbase, narm)
Input: Initial configuration q0, number of samples n
Gbase ← BuildBaseRoadmap(Fbase, q0, nbase)
Garm ← BuildArmRoadmap(Farm, q0, narm)
return Gbase × Garm // graph Cartesian product
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Theorem 2. If both BuildBaseRoadmap and BuildArmRoadmap are asymptotically-optimal

with respect to Cbase and Carm for all qarm and qbase respectively, then BuildHybridRoadmap

(see Algorithm 6.1) is asymptotically-optimal with respect to C with the restriction that only the

base or arm are actuated at any given time.

Proof. For any ε > 0, consider a feasible path π such that C(π) < C∗ + ε
2 where C∗ is the infimum

of costs among feasible paths. If no such path exists, then the theorem holds vacuously. Let πbase

denote the set of edges in π which correspond to base motions and πarm those which correspond to

arm motions. Observe that, by associativity, C(π) = C(πbase) + C(πarm).

We next note that because the base and arm do not actuate simultaneously, πbase can be

divided up into no more than |π| sub-paths, each with qarm constant in each sub-path. Let Kbase

denote the Lipschitz constant of Cbase. By assumption, for all δ > 0 there exists marm such that

BuildArmRoadmap(Farm, q0, marm) includes a reachable configuration q′i,arm that is ε
8Kbase|π| -

close to a given qi,arm with probability 1− δ
4|π| . Thus, with probability at least (1− δ

4|π|)
|π| ≥ 1− δ

4

this holds for each such qarm.

Now, consider one of these sub-paths πi,base with shared qi,arm. Again by assumption, there exists

nbase such that with probability at least 1− δ
4|π| there is a path π

′
i,base in BuildBaseRoadmap(Fbase,

q0, nbase) with C(π′i,base,qi,arm) < C(πi,base,qi,arm) + ε
8|π| . By Lipschitz continuity of Cbase, we have

C(π′i,base,q′i,arm) < C(π′i,base,qi,arm) +Kbase
ε

8Kbase|π| = C(π′i,base,qi,arm) + ε
8|π| < C(π′i,base,qi,arm) +

ε
4|π| . Together, these sub-paths form π′base with C(π′base) < C(πbase) + ε

4 with probability at least

(1− δ
4)2 ≥ 1− δ

2 .

The above argument applies similarly to πarm, with π′arm, mbase, and narm. So, for n =

max(mbase, nbase,marm, narm), with probability at least (1− δ
2)2 ≥ 1− δ there exists a path π′ in

BuildHybridRoadmap(q0, n, n) such that C(π′) = C(π′base) + C(π′arm) < C(π) + ε
2 < C∗ + ε.

�

The condition that BuildBaseRoadmap be asymptotically optimal with respect to Cbase for

all qarm and the corresponding condition for BuildArmRoadmap may initially seem too strong.

However, these conditions are satisfied with many useful metrics for mobile manipulators. In the

experiments we performed, we let Cbase(πbase) be a non-negative scalar multiple of the time required

to execute πbase, which is independent of qarm and thus the assumption holds using an RRG* with
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Figure 6.3: (a) Hidden Markov model defining a distribution of sequences of feature space vectors
with the hidden state comprising discrete time steps. (b) Restricted structure of the hidden Markov
model.

a closed-form local planner to optimally satisfy the non-holonomic constraints [135]. Because the

manipulator arm is holonomic, asymptotic optimality of PRM* holds for all non-singular Carm by

local metric equivalence, so the dependence on qbase is similarly unproblematic. More generally,

however, asymptotic optimality of the method relies on that of the underlying methods, which may

be chosen based on the requirements imposed based on the cost metrics.

The Cartesian product graph of these roadmaps need not be explicitly constructed. Rather an

implicit representation can be lazily traversed by simply traversing the constituent graphs. Note

also that because F may be a subset of Fbase ×Farm, collision checking must still be performed on

the edges of the hybrid roadmap. In our implementation, this is done lazily during the graph search

described in the following subsection.

6.3.2 Task Roadmap

To extend the hybrid roadmap described above to motion planning for a task, we use another

Cartesian product to construct a spatio-temporal roadmap as described in Chapter 3 and Algo-

rithm 6.2. This approach extends an asymptotically-optimal planner to maximize similarity to

a learned task model comprising a finite sequence of time steps by permitting the cost metric to

depend on task progress in the form of the current time step.

Algorithm 6.2 MotionPlanForTask(q0, nbase, narm, T )
Input: Initial configuration q0, numbers of samples nbase and narm, number of time steps T
Gs ← BuildHybridRoadmap(q0, nbase, narm)
Gt ← TaskStructure(T ) // Graph of time steps: linear graph with T vertices
v0 ← NearestVertex(Gs, q0)
return ShortestPath(Gs × Gt, (v0, 1), V(Gs)× {T})

The construction of the spatio-temporal roadmap Gst = Gs × Gt is necessitated by our choice for

Carm, which depends on the current time step t. The specific choice of Carm depends on the learned
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task model. In this chapter, we consider the model defined in Chapter 3 by a time-homogeneous

hidden Markov model (HMM) with a restricted structure and discrete state space of time steps that

capture task progress [16]. We denote the time step by t and number them sequentially 1, 2, . . . , T

(see Figure 6.3).

Under this model, an observation is a feature space vector y ∈ Y . Recall that y = φa(q) lifts a

configuration q into this feature space conditional on an environ description a that encodes the

positions of salient objects in the environment. This transformation enables the model to capture

relationships between the environment and configurations, e.g. that the pitcher must be placed

over the bowl before pouring in Figure 6.1. The specific choices of φa used for the experiments are

discussed in their respective subsections of Section 6.4, but the method requires only that it be

differentiable. We model the observation distribution by a multivariate Gaussian distribution with

a per-time step mean µt and covariance matrix Σt.

φai(qi) = yi ∼ N (µti ,Σti)

In general, the pullback of such a distribution in feature space along φa is improper, which is

nevertheless sufficient for planning. However, we note that if φa is a submersion, then the pullback

is a proper distribution in configuration space.

Because the model was estimated from successful demonstrations, we expect a plan which is

similar to the task model to be likely to accomplish the task. Following this intuition, we define

edge costs Carm that when minimized, maximizes the probability density function of the learned

model. To do so, we first assign a cost to individual configurations for each time step as follows:

c(q, t) = − log p(φ(q) | µt,Σt)

= 1
2
(
(φ(q)− µt)TΣ−1

t (φ(q)− µt) + log det 2πΣt

)
.

Then, we let Carm be simply the path integral over this cost
∫
c(q(s), t) ds. This is the continu-

ous analog of the summation that arises from the Markov assumption made by the task model.
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Specifically, rather than the following distribution over discrete paths:

p(q0, . . . ,qn | t) ∝
n∏
i=0

p(qi | t) = e−
∑n

i=0 c(qi,t),

we instead define a distribution using a functional over configuration space curves:

p(q | t) ∝ e−
∫
c(q(s),t) ds.

Due to the structure of the spatio-temporal roadmap Gst, the cost of the same local plan

associated with an edge in the hyrbid roadmap is often needed under multiple metrics, one for each

time step. This structure allows the computation to be accelerated by a pre-computation as follows:

(φ(q)− µt)TΣ−1
t (φ(q)− µt)

= Tr
(
(φ(q)− µt)TLtL

T
t (φ(q)− µt)

)
= Tr

(
LT
t (φ(q)− µt)(φ(q)− µt)TLt

)
= Tr

(
LT
t

(
φ(q)φ(q)T − 2µtφ(q)T + µtµT

t

)
Lt
)

where LtLT
t = Σ−1

t is the Cholesky decomposition of Σ−1
t . So,

∫ S
0 c(q(s)) ds =

S log det 2πΣt +
∫ S

0 (φ(q)− µt)TΣ−1
t (φ(q)− µt) ds = (6.1)

S log det 2πΣt + Tr
(
LT
t

(
A− 2bµT

t + Sµtµ
T
t

)
Lt
)

whereA =
∫ S

0 φ(q)φ(q)T ds andb =
∫ S

0 φ(q) ds .

Note that A and b are independent of t and can thus be precomputed numerically for a local path.

Once this is done, edge costs may be computed using only simple matrix operations, making them

very efficient to compute.

Under these definitions of Carm and Cbase, the cost of a plan can be rewritten as

C(π) =
∫ S

0
g(π(s), t) ds (6.2)

99



(a) (b) (c)

Figure 6.4: (a) Sweeping task using the Fetch robot. (b) Biased RRG* of base motions (yellow)
around the obstacle point cloud (white). (c) Hybrid roadmap (green) with the base (yellow) and
end-effector (red) motion of the final plan.

where g(q, t) = κ if the base is moving at time s and g(q, t) = c(q, t) if the arm is moving. κ is the

weight with which base movement is penalized.

6.3.3 Task-Guided Gibbs Sampling

While the method described in the previous section is asymptotically optimal, it converges

very slowly in high-dimensional configuration spaces. To improve convergence, we employ biased

sampling. Motivated by importance sampling, our goal is to effectively project the task model from

feature space into configuration space. To do so explicitly would require strong assumptions about

the form of φ. Rather, we observe that we only need to sample from the projected distribution.

Furthermore, these samples do not need to be independent of each other, only approximate the

desired distribution in the limit. Following this insight, we propose to use a Markov Chain Monte

Carlo sampling strategy. Specifically, we employ a variant of Gibbs sampling tightly integrated with

the hybrid nature of the roadmap.

Gibbs sampling is simply an approach to sampling from the joint distribution of two dependent

variables by fixing one and sampling the other conditional on that value, then repeating that process

with the variables’ roles reversed. Following this approach, we sample individual base and arm

configurations separately while the distributions as a whole are interdependent. To sample an arm
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configuration, we first select a base configuration q̂base at random from the base roadmap Gbase.

We then sample a feature vector ŷ at random from the task model. Finally, we numerically solve

for the arm configuration that results in a feature vector most similar to ŷ given q̂base by solving

the following nonlinear least-squares minimization problem:

arg min
qarm
‖φâ(q̂base,qarm)− ŷ‖Σ−1

Sampling a base configuration proceeds similarly and different numbers of base and arm samples

can be accomodated by simply skipping some extension steps (see Algorithm 6.3). This procedure

replaces Algorithm 6.1. Because the configurations in Gbase are also in Fbase, we are effectively

biasing the distribution of arm configurations towards those which achieve the task with the base in

feasible locations. Similarly, we are sampling base configurations which are useful when the arm is

not in a self-colliding state.

The sampling approach described above can be readily adapted to sampling from a sequence of

multivariate normal distributions as found in the task model. We first select a number of samples n

to compute in a batch to ensure the samples are spread evenly across the distributions. Rather than

sampling a fixed number from each of the discrete distributions, we gradually alter the distribution

from which ŷ is sampled at each iteration. Specifically, we linearly interpolate between adjacent

distributions in the model, which can be computed by a simple procedure. For each i < n, we

consider continuous t = i · (T − 1)/n. Because normal distributions are additive, we can interpolate

between them in multiple equivalent ways. Perhaps the most intuitive way is by the explicit

parameters:

µ(i) = (t− btc) · µbtc + (dte − t) · µdte

Σ(i) = (t− btc) ·Σbtc + (dte − t) ·Σdte

However, sampling using Σ directly requires that we compute the Cholesky decomposition

which takes Θ(b3) time. This is reasonable to perform for each distribution in the model, but

unnecessary for each sample. Instead, we observe that, similar to the previous section, we are only

interested in sampling from the distribution, not explicitly constructing it. So it suffices to sample
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y− ∼ N (0,Σbtc) and y+ ∼ N (0,Σdte), and appropriately combine these samples, yielding:

ỹi = (t− btc) · µbtc + (dte − t) · µdte +
√
t− btc · y− +

√
dte − t · y+ .

This follows from the additive property of normally distributed random variables.

Algorithm 6.3 BuildHybridRoadmapGibbs(q0, nbase, narm)
Input: Initial configuration q0, number of samples n

Gbase ← {q0}

Garm ← {q0}

n← max(nbase, narm)

for i← 1 to n do

q̂base ← randomly from V(Gbase) // sample arm using fixed base

ŷ1 ← Sample(N (µ(i),Σ(i)))

qarm ← arg minqarm(φâ(q̂base,qarm)− ŷ1)TΣ−1
i (φâ(q̂base,qarm)− ŷ1)

if (i · narm rem n) < narm then

Extend(Garm, qarm)

end if

q̂arm ← randomly from V(Garm) // sample base using fixed arm

ŷ2 ← Sample(N (µ(i),Σ(i)))

qbase ← arg minqbase(φâ(qbase, q̂arm)− ŷ2)TΣ−1
i (φâ(qbase, q̂arm)− ŷ2)

if (i · nbase rem n) < nbase then

Extend(Gbase, qbase)

end if

end for

return Gbase ×Garm

Examples of the resulting base roadmap and hybrid roadmaps are shown for a sweeping task in

Figure 6.4 and for a liquid pouring task in Figure 6.1d.
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6.3.4 Guiding Manifolds

In prior work [17], numeric optimization was used to seed the roadmap with local minima of each

distribution to find high quality paths quickly in unconstrained space. There were generally finitely

many such minima because the feature space was well-behaved and higher-dimensional than the

configuration space. This is not always the case for mobile manipulators, where the configuration

space may be larger than the feature space or the Jacobian of φ may be singular. One effect of this

is that the local minima no longer form a so-called guiding path but a guiding manifold for each

distribution. Generally, this manifold is where the configuration exactly satisfies the learned means,

that is φâ(q) = µ.

We find it both intuitive and empirically effective to sample on these guiding manifolds to find

good paths quickly in addition to the random sampling that ensures asymptotic optimality. Seeding

in this way also improves the initial distribution of Gibbs samples, replacing the usual burn-in step

for MCMC samplers. To accomplish this, we locally-optimize randomly sampled configurations

similarly to Section 6.3.3.

arg min
qarm

(φâ(q̂base,qarm)− µt)TΣ−1
t (φâ(q̂base,qarm)− µt)

While this approach does not provide guarantees about the distribution of the resulting samples,

no such guarantee is required because these are only used to seed the roadmap. We note that prior

work has considered similar problems in greater depth [65, 136].

6.4 Results

We evaluated the method on two household tasks: a liquid pouring task and a sweeping task.

In both experiments, the salient objects and obstacles were sensed with the integrated Primesense

RGBD. To demonstrate the real-world applicability of the method, we perform collision detection

directly against the point cloud. The learned models for both tasks each had 12 time steps. All

timings were performed on an Intel Xeon E5-1680 CPU with 8 cores running at 3.40GHz and 64GB

of RAM.

6.4.1 Sweeping Task

In this task, we required the robot to navigate while holding a broom which it then used to

sweep the floor toward a dustpan (see Figure 6.6). In each of the demonstrations and the subsequent

103



Figure 6.5: Household environment used for both tasks, with the floor highlighted in yellow. The
table surface for the liquid pouring task is shown in green.

Figure 6.6: Sweeping task execution.
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Roadmap Sampling Success Planning Time

Hybrid

TGGS 90% 158s

TGGS w/o Cost Optimization 174s

Goal Bias 50% 288s

Uniform 0% 261s

RRG* Goal Bias 20% 281s

Table 6.1: Results for the sweeping task across 10 random scenarios with our full method highlighted
in bold. The cost optimization is that described in (6.1), the goal bias preferred sampling base
positions near the bowl, and uniform sampling was unbiased. Instead of using our hybrid roadmap
approach, the RRG* roadmap was built in the full configuration space.

evaluations, we independently sampled the initial position of the robot and the dustpan uniformly

at random from a 5.5m by 4.8m rectangle on the floor, rejecting those positions in collision with the

environment (see Figure 6.5).

For the task, the feature function was given by:

φa(q) =


q5...11

v(Kend(q)−1Kdustpan(a))

v(Kdustpan(a)−1Kgripper(q))


where v(K) denotes the translational part of affine transformation K, Klink(q) denotes the forward

kinematics of link in configuration q, and Kdustpan(a) denotes the pose of the dustpan in the

environment described by a.

The resulting feature space was 13-dimensional. We performed 14 kinesthetic demonstrations of

the task via teleoperation. The number of demonstrations was one greater than the dimensionality

of the feature space to avoid singular covariance matrices.

We compared our TGGS approach to uniform and goal-biased sampling strategies. Goal-

biasing was performed by sampling base positions in a Gaussian distribution around the dustpan

and sampling arm configurations from a joint-space Gaussian distribution estimated from the

demonstrations. For all sampling strategies, we sampled 250 arm configurations and 50 base

configurations in the hybrid roadmap. The full configuration space RRG* used 7500 samples
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Figure 6.7: Fetch robot executes a liquid pouring task.

because this produced comparable planning times. In all cases, a spatio-temporal roadmap was

constructed from the resulting spatial roadmap and used for planning using the same learned cost

metric. Furthermore, because all of the methods considered were asymptotically optimal, these

results indicate how quickly each method converges to successful plans while in the limit, they will

all converge to equally good solutions. The cost optimization is that described in (6.1), which only

affects planning time, not the resulting path, and thus not the success rate.

Because the number of samples was fixed for each roadmap type, the differences in timings were

largely caused by slower collision checks against the longer edges in the non-task-guided strategies

despite the slower sample computation when using TGGS. The uniform distribution was slightly

faster than goal-biasing because less of the roadmap needed to be explored to guarantee the shortest

path. The most common cause of failure for the goal bias and uniform methods was a lack of

samples low enough to sweep but high enough to avoid collision between the block of the broom

and the floor, which together form a long narrow passage. In contrast, TGGS sampled densely in

this region to produce high-quality sweeping motions.

6.4.2 Liquid Pouring Task

In this task, we required the robot to navigate while holding a pitcher of water and pour the

water into a bowl on a table without spilling (see Figure 6.7). In each of the demonstrations and

the subsequent evaluations, we independently sampled the initial position of the robot uniformly at

random from a 5.5m by 4.8m rectangle, rejecting those positions in collision with the environment

(see Figure 6.5). Similarly, we sampled the bowl’s position uniformly at random from the 1.8m by

0.75m surface of the table.
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Figure 6.8: Plan cost with varying planning times using different sampling approaches on the liquid
pouring task. Solid lines indicate variants using hybrid roadmaps, and the dotted line indicates an
RRG* was used.

For this task, the feature function was given by:

φa(q) =


q6...11

v(Kend(q)−1Kbowl(a))

v(Kbowl(a)−1Kgripper(q))


where v(K) denotes the translational part of affine transformation K, Klink(q) denotes the forward

kinematics of link in configuration q, and Kbowl(a) denotes the pose of the bowl in the environment

described by a. We note that this differs from the feature function used for the sweeping task

only in the omission of one joint, which was found to be unnecessary for capturing this task. The

resulting feature space was 12-dimensional, and we performed 13 kinesthetic demonstrations using

the same method as for the sweeping task.

The resulting plans were successful in 90% of the evaluations we performed. The single failure

was due to the liquid missing the bowl during the pouring motion, indicating that the method failed

to converge to a sufficiently good plan in the alloted time.

Additionally, we measured plan cost (as defined by (6.2)) with varying planning times using

different sampling approaches (see Figure 6.8) on a representative scenario from the liquid pouring

task. While goal-biasing converged much more quickly than uniform sampling, TGGS was faster

still. Furthermore, using a hybrid roadmap improves convergence even when using goal-biasing.
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6.5 Conclusion

In this chapter we described and analyzed TGGS, an approach to sampling configurations

that incorporates information from a learned model of a mobile manipulation task. This sampling

strategy was tightly incorporated into a hybrid roadmap construction scheme that decomposes the

planning space into that of the manipulator arm and mobile base and uses sampling-based planners

most appropriate to each. We demonstrated the efficacy of this approach on two household tasks

with the Fetch robot.
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CHAPTER 7

Conclusion

To assist an aging population with activities of daily living, robots must be able to perform

numerous tasks in highly unstructured environments. Manually modeling all the potential tasks in

a way that facilitates planning and execution in these environments would be tedious for a technical

user and infeasible for a non-technical one. Instead, we focused on learning a task model from

kinesthetic demonstrations that anyone can perform and using this model to plan motions in novel

environments.

In this dissertation, we addressed the following thesis statement:

Robotic systems can learn, from demonstrations, to perform tasks in unstructured environ-

ments while avoiding obstacles with less prior knowledge by better extracting information from the

demonstrations and leveraging an asymptotically optimal motion planning method during execution.

To support this thesis, we described a model for robotic tasks based on a hidden Markov

model which can be learned from relatively few demonstrations by improving temporal registration.

This model was augmented with time-invariant parameters which were learned by recasting model

estimation as a nonlinear least-squares minimization problem. These learned tasks were subsequently

estimated by adapting a probabilistic roadmap using a Cartesian product graph, an approach which

was made fast enough to be performed reactively by informing configuration sampling using the

task model. Another Cartesian product graph was used to extend this approach to the domain of

mobile manipulators where the previous biased sampling approach was naturally extended to a

Gibbs sampling procedure.

7.1 Limitations and Future Work

There is much ongoing work in automatic task learning and performance. Given the scope of

tasks to which we have applied our method, it seems ideally suited to integration with work on

task-level planning frameworks [137, 138] to perform more complex tasks that combine primitives

learned with our method.
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Other future directions could relax some of the assumptions we made which limit the domains

in which this method could be beneficially applied. These limitations can roughly be categorized

under modeling, planning, and sensing.

Modeling We model a task as a distribution over plans conditional on the environment, however,

by instead modeling some notion of success as a function of the plan, negative (failed) demonstrations

could be incorporated into the learning process to help identify problematic behaviors including in

a reinforcement or active learning paradigm. This would additionally allow the planning phase to

determine when it cannot successfully perform task.

We have also only considered task models with Gaussian observation distributions. While

learning in feature space means this is not overly restrictive, other distributions (e.g. Cauchy) might

be more appropriate for some tasks in some domains. Similarly, relaxing the sequential transition

structure of the hidden Markov model could allow tasks with multiple routes to completion to

be learned. To expand the types of demonstrations from which we can learn, we could consider

per-demonstration latent parameters in addition to the time-variant model parameters and invariant

ones in Chapter 4 and the interpretation of these parameters during the planning phase.

Finally, planning in a state space which incorporates salient aspects of the environment affected

by the robot’s actions could allow the method to learn tasks requring more complex reasoning [81].

A model of this interaction with the environment might also be learned from the demonstrations.

Planning The planning approach is mostly restricted to holonomic robots where we do not need

to consider constraints imposed by the dynamics. However, some tasks require robots with dynamics

considerations (e.g. quadcopters) or even include dynamics as a fundamental part of the task

(e.g. applying constant contact force). More general motion planners would need to be adapted to

perform such tasks.

The planning approaches we considered might also by greatly accelerated by applying additional

heuristics as has been done for traditional motion planners. In particularly, a task-specific admissible

heuristic would allow bidirectional A* to be applied, and by relaxing this heuristic, near-optimality

could still be preserved while further improving performance.

Recently, trajectory optimization method have been developed that locally optimize plans very
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effectively. These approaches could be applied to the cost functions we presented and even combined

with our sampling-based methods (e.g. in a framework like that presented by Kuntz et al. [61]).

Sensing Both the learning and planning phases assume perfect sensing, but in practical scenarios,

occlusions and noise are abundant. For the motion planner in particular, this assumption is

both strong and challenging to relax because the approach we take converges to the mode of the

distribution over trajectories implied by the learned task mode with no consideration for uncertainty.

However, addressing partial and noisy sensing in a principled way would likely be highly beneficial.

With such a framework in place we could also consider predictive models of the environment to

enable faster, safer reactivity, particularly when paired with real-time perception [139].
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