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ABSTRACT

Fang-Shu Ou: Quantile Regression Models for Interval-censored Failure Time Data
(Under the direction of Jianwen Cai and Donglin Zeng)

Quantile regression models the conditional quantile as a function of independent vari-

ables providing a complete association between the response and predictors. Quantile

regression can describe the association at different quantiles yielding more information

than the least squares method which only detects associations with the conditional mean.

Quantile regression models have gained popularity in many disciplines including medicine,

finance, economics, and ecology as they can accommodate heteroscedasticity.

A specific type of failure time data is called interval-censored where the failure time is

only known to have occurred between certain observation times. Such data appears com-

monly in medical or longitudinal studies because disease onset is known to have occurred

between scheduled visits but the exact time is unknown. Quantile regression has been ex-

tended to survival analysis with random censoring time. Most methods focus on survival

analysis with right-censored data while a few were developed for data with other censoring

mechanisms. Despite the fact that the development for censored quantile regression flour-

ishes, limited work has been done to handle interval-censored failure time data under the

quantile regression framework.

In this dissertation, we developed a new method to analyze interval-censored failure

time data using conditional quantile regression models. Our method can handle both Case

I and Case II interval-censored data and allow the censoring time to depend on covari-

ates. We developed an estimation procedure that is computationally efficient and easy to

implement with inference performed using a subsampling method. The consistency and
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asymptotic distribution of the resulting estimators were established using modern empir-

ical process theory. The developed method was extended as a computational tool to ana-

lyze interval-censored data for accelerated failure time models. The estimators from differ-

ent quantiles were combined to increase the efficiency of the estimators. The small sample

performances were demonstrated via simulation studies. The proposed methods were illus-

trated with current status datasets, data from the Voluntary HIV-1 Counseling and Test-

ing Efficacy Study Group and calcification study, and Case II interval-censored data, data

from the Atherosclerosis Risk in Communities Study and breast cosmesis data.
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CHAPTER 1: INTRODUCTION

Regression analysis has typically been performed using the least squares method since

the time of Gauss. The least squares method summarizes the relationship between the de-

pendent variable and independent variables by a conditional mean function. When the

homoscedasticity assumption fails; however, the least squares method cannot provide a

complete picture of the relationship between the response and predictors.

Quantile regression, on the other hand, models the conditional quantile as a function of

independent variables providing a solution when heteroscedasticity is present and offers a

more detailed perspective regarding associations. The conditional median is less sensitive

to skewness than the conditional mean making it a more reliable measure of the central

tendency. When there is heteroscedasticity, quantile regression can describe the association

at different quantiles yielding more information than the least squares method which only

detects associations with the conditional mean. Quantile regression models have gained

popularity in many disciplines including medicine, finance, economics, and ecology as they

can accommodate heteroscedasticity. In survival analysis, ease of interpretation is partic-

ularly appealing since the estimates can be directly interpreted as the effect on survival

time.

For failure time data, the distribution of the response variable tends to be highly right

skewed with possible heterogeneity. In recent decades, quantile regression has been ex-

tended to survival analysis with random censoring time. Most methods focus on survival

analysis with right-censored data while a few were developed for doubly censored data,

left-truncated/right-censored data, and recurrent event data.
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A specific type of failure time data is called interval-censored where the failure time is

only known to have occurred between observation times. Such data appears commonly in

medical or longitudinal studies because subjects schedule follow-ups where disease status

is determined. The disease then is known to have manifested between scheduled visits but

the exact time is unknown. There are two subtypes of interval-censored data, Case I and

Case II. Case I interval-censored data refers to interval-censored failure time data where

all observed intervals had either zero or infinity as one of the end points, i.e. all observa-

tions are either right- or left-censored. Case II interval-censored data is interval-censored

failure time data where we know the event occurred either prior to the first observation

time, between observation times, or after the final observation time. Despite the fact that

the development for censored quantile regression flourishes, only one published manuscript

discussed the method developed to handle interval-censored failure time data under the

quantile regression framework. This existing publication did not provide any theoretical

justification regarding the method proposed and can only handle categorical covariates in

the model.

In this dissertation, we developed a new method to analyze interval-censored failure

time data using conditional quantile regression models. Our method can handle both Case

I and Case II interval-censored data and allow the censoring time to depend on covariates.

We developed an estimation procedure that is computationally efficient and easy to im-

plement with inference performed using a resampling based method. The consistency and

asymptotic distribution of the resulting estimators will be established using modern empir-

ical process theory. The small sample performances will be demonstrated via simulation

studies and the methods developed will be illustrated with the females’ data from The

Voluntary HIV-1 Counseling and Testing Efficacy Study Group. The Voluntary HIV-1

Counseling and Testing Efficacy Study Group had two follow-up visits scheduled for all

participants but the status of sexually transmitted disease was only determined in the first

2



follow-up; therefore, it is a typical Case I interval censored failure time data.

The Atherosclerosis Risk in Communities Study is a prospective epidemiologic study

with five follow-up visits. During each visit, the disease status, such as diabetes, hyper-

glycemia, and hypercholesterolemia, was determined using biomarkers. If a biomarker

value exceed a certain threshold then the participant was diagnosed as having the disease.

Accordingly, we only know the disease occurred between the last and the current follow-

up but the exact onset time is unknown; thus, it is Case II interval-censored data. We ex-

tended our method developed for Case I interval-censored data to Case II data and applied

it on the data from Atherosclerosis Risk in Communities Study.

The accelerated failure time (AFT) model is an alternative to the well established pro-

portional hazards models. An AFT model assumes that the effect of a covariate is to ac-

celerate or decelerate the course of a disease by some constant. Several methods have been

developed for applying AFT models to interval-censored data; however, the implementa-

tions are computationally intensive and the asymptotic inference often involves nonpara-

metric functional estimation. Under the AFT model assumption, the quantile estimates

from different quantiles should have the same coefficients and differ only in intercepts. We

used the quantile regression framework developed for interval-censored data to estimate

the coefficients in AFT models then combine the estimates from different quantiles to in-

crease efficiency of our estimates.
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CHAPTER 2: LITERATURE REVIEW

2.1 Quantile Regression

The first attempt of regression analysis using least absolute deviations may be dated

back to 1760 by the Croatian Jesuit Roger Boscovich who was interested in a problem con-

cerning ellipticity of the earth and a geometric algorithm was proposed as the solution.

Boscovich’s proposed method is a peculiar hybrid of mean and median ideas, i.e. the inter-

cept is estimated as a mean and the slope is estimated as a median. With the development

of the least squares at the end of the 18th century, Boscovich’s estimator faded into his-

tory. Until a century later, Francis Ysidro Edgeworth modified Boscovich’s conditions and

proposed to minimize the sum of absolute residuals. A geometric algorithm was developed

for the bivariate case but the approach was rather awkward. The least absolute deviation

method did not become practical on a large scale until the simplex algorithm for linear

programming was developed in the late 1940s. Koenker (2005) and Portnoy et al. (1997)

provide interesting historical introductions to least absolute deviations.

The τ th quantile of a random variable, Y , is defined as

Qτ (Y ) = inf{y : FY (y) ≥ τ},

where FY (y) denotes the cumulative distribution function of Y and 0 < τ < 1. Extend this

ideal to a regression model with p-dimensional covariate X here the first component is one
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allowing an intercept in the model, the τ th conditional quantile is defined as

Qτ (Y |X = x) = inf{y : FY (y|x) ≥ τ},

where FY (y|x) denotes the conditional cumulative distribution function of Y given X =

x. Similarly to the least squares method which fits the conditional means as a function of

covariates, the linear quantile regression model fits the conditional quantile as a function

of covariate, i.e.

Qτ (Y |X) = X ′β(τ),

where β(τ) is the quantile coefficient that may depend on τ . β(τ) can be interpreted as

the marginal change in the τ th quantile caused by an increase in covariate values.

Several advantages of quantile regression are worth mentioning. Quantile regression

provides a complete picture of the relationship between response variable and covariates;

therefore, it can detect relationships which may be overlooked by the least squares method.

It is robust to outliers in response variable and the estimation and inference are distribution-

free. For example, Dunham et al. (2002) analyzed the relationship between the abundance

of Lahontan cutthroat trout and the ratio of stream width to depth. While a least squares

regression estimated no linear change in mean density across ratio, the quantile regression

estimates shows a nonlinear, negative relationship of cutthroat trout densities across 13

streams and over 7 years in the upper quantiles (Figure 2.1).

Figure 2.2 shows a toy example to demonstrate the robustness of quantile regression

when outliers are present. The data was generated from a linear regression model with

iid normal error with one additional data point (solid dot) added as an outlier. The 0.5

quantile (median) estimate is denoted by the solid line and the least square estimate is

denoted by the dash line. It is clear that the median fit was not influenced by the outlier.

Figure 2.3 and Figure 2.4 (taken from Koenker (2005)) show partial results from an
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investigation carried out by Abrevaya (2002). The outcome of interest was infant birth

weight and the covariates included were various demographic characteristics and maternal

behavior. Please see Koenker (2005) for a detailed description of the data source, covari-

ates used, and quantiles estimated. The data has been centered to yield a reference group,

a girl born to an unmarried, white mother with less than a high school education, who is

27 years old and had a weight gain of 30 pounds, did not smoke, and had her first prena-

tal visit in the first trimester of pregnancy. Since the data has been centered, the inter-

cept of the model (far left panel of Figure 2.3) can be interpreted as the estimated condi-

tional quantile function of the birth-weight distribution of the reference group. The me-

dian birth-weight of the reference group is about 3300 grams and the 5th percentile of the

birth-weight is about 2500 grams which is the conventional definition of a low-birth-weight

baby.

The far right panel of Figure 2.3 shows the difference in birth-weight of infants born to

black versus white mothers. The birth-weight of infants born to black mothers is signifi-

cantly less than those born to white mothers, especially in the lower tail of the distribu-

tion. At the 5th percentile of the conditional distribution, infants born to black mother are

more than 300 grams lighter than infants born to white mother. The horizontal line indi-

cates the results from ordinary least-squares which would conclude that the birth-weight

of infants born to black mothers are about 200 grams less on average than those born to

white mothers.

The mother’s weight gain entered the model as a linear and a quadratic term. The two

far right panels of Figure 2.4 show the effect of a mother’s weight gain. Based on the re-

sults of ordinary least-squares (the horizontal line), there is a very minor quadratic effect

for mother’s weight gain and, on average, a 1 pound increase in mother’s weight, leads to

an infant birth-weight increase of 10 grams. Using quantile regression, we are able to see a
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Figure 2.3: Quantile regression for birth.

more complete picture of the relationship between a mother’s weight gain and infant birth-

weight. Figure 2.5 shows the marginal effect of mother’s weight gain for all quantiles eval-

uated at four specific levels of mother’s weight gain. These 4 levels are roughly the 10th,

25th, 75th, and 90th percentile of mother’s weight gain.

Figure 2.4: Quantile regression for birth (continued).

Conditional on low weight gain by the mother, the marginal effect of 1 pound increase

of mother weight was about 30 grams at the lowest quantile and the effect diminished to

only 5 grams at the higher quantiles (top-left panel of Figure 2.5). This relationship per-

sisted at the slightly higher level of mother’s weight gain but the marginal effect was not

as pronounced (top-right panel of Figure 2.5). This declining marginal effects of mother’s

weight gain is minimal conditional on high weight gain by the mother (bottom two panels
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of Figure 2.5). For mothers who already gained about 40 pounds, each additional 1 pound

of weight gain would only increase infant weight by about 5 to 10 grams. The ability to

draw conclusions at a specific quantile of interest is the advantage of using quantile regres-

sion.
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Figure 2.5: Effect of mother’s weight gain.

Unlike the least squares method, quantile regression models are invariant to monotone

transformations (Koenker 2005). Specifically, let h(·) be a monotone nondecreasing func-

tion on <, then for any random variable Y , Qh(Y )(τ) = h(QY (τ)); that is, the quantiles of

the transformed random variable h(Y ) are simply the transformed quantiles of the original

Y . This property is immediate from the elementary fact that, for any strictly monotone h,

P (Y ≤ y) = P (h(Y ) ≤ h(y)).

2.1.1 Estimation

Median regression, also known as L1 regression, is an extension of the sample median

when covariates are available. The solution for an observed sample is obtained by solving
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the following function,

min
β∈Rp

n∑
i=1

|yi − x′iβ|, (2.1)

where {y1, · · · , yn} is the random sample and xi is the covariates associate with random

sample yi where the first component of xi is a constant one. Koenker and Bassett (1978)

generalized the median regression to the τ th quantile (0 < τ < 1) by simply replacing the

absolute value in Equation (2.1) with the loss function, ρτ (·), i.e.

min
β∈Rp

n∑
i=1

ρτ (yi − x′iβ), (2.2)

where the quantile loss function is defined as

ρτ (u) = u(τ − I(u < 0)) (2.3)

The piecewise linear loss function, ρτ (·) is illustrated in Figure 2.6.

ρτ(u)

τ − 1

1 τ

1

u  

Figure 2.6: Quantile regression loss function

We now review several algorithms available to solve Equation (2.2) namely the simplex,

interior point, and smoothing algorithms.
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Simplex Algorithm Equation (2.2) is equivalent to

min
β∈Rp

 ∑
i∈{i:yi≥xiβ}

τ |yi − x′
iβ|+

∑
i∈{i:yi<x′

iβ}

(1− τ)|yi − x′
iβ|


= min
β,u,v

τ1′n u+ (1− τ)1′n v (2.4)

such that y − x′β = u− v,β ∈ Rp, and u ≥ 0,v ≥ 0,

where y = (y1, · · · , yn)′,x = (x1, · · · , xn)′, 1n is a (n × 1) vector of the value 1, and

( · )+ denotes the positive part. Taking this one step further, let φ = (β)+, ψ = (−β)+,

B = [x − x I − I], θ = (φ′, ψ′, u′, v′)′, and d = (0′,0′, τ1′n, (1 − τ)1′n)′ where

0′ = (0, 0, · · · , 0)p). We may reformulate the problem as a standard linear programming

minimization problem with primal form:

min
θ
d′θ such that Bθ = y, θ ≥ 0.

Thus, the Equation (2.2) may be solved using the simplex method. The simplex method

starts at a feasible vertex and travels from vertex to vertex along the edge of the polyhe-

dral constraint set. The path is chosen by the steepest descent and the algorithm contin-

ues until arriving at the optimum.

In the special case when τ = 0.5, i.e. median regression, the simplex method algo-

rithm developed by Barrodale and Roberts (1973) is often used for solving the optimiza-

tion problem since it appears to be superior computationally to other algorithms. The

Barrodale and Roberts algorithm is implemented in two stages. Stage 1 only chooses the

columns in x or −x as pivotal column during the first p iterations. Stage 2 interchanges

nonbasic columns with basic columns in I or −I. The basic columns in x and −x are

forced to remain in the basis during Stage 2. Stage 1 will be executed p times and Stage

2 will be executed until no suitable vector can enter or leave the basis. The Barrodale and
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Roberts algorithm can be extended for any given quantile as described by Koenker and

d’Orey (1987). The simplex method provides an extremely efficient solution to quantile re-

gression when the dataset size is moderate, for example, less than 5000 observations and

50 covariates. However, the computational speed became unsatisfactory for large datasets.

Interior Point Algorithm To overcome the computational difficulty of the simplex

method when the dataset is large, interior point algorithms for linear programming were

applied to quantile regression. Instead of traveling along the exterior of the constraint

set, Newton steps were taken within the interior of a deformed constraint set toward the

boundary. Consider the canonical linear program

min{c′x |Ax = b, x ≥ 0} (2.5)

and assume that there is a strictly feasible solution in the interior of the constraint set.

One way to find the solution is to decrease c′x while ensuring the boundary of the feasible

set is not crossed. We can achieve this by augmenting the objective function by a logarith-

mic barrier term. Let

B(x, µ) = c′x− µ
∑

log(x),

and we would minimize B(x, µ|Ax = b) while reducing µ to zero. The inequality con-

straints in Equation (2.5) is replaced by the penalized log barrier, thus minimizing

B(x, µ|Ax = b) by taking the Newton steps

min
q

{
c′q − µ q′X−1 1n +

1

2
µ q′X−2 q|Aq = 0

}
,
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where X = diag(x) =



x1 0 · · · 0

0 x2 · · · 0

...
... . . . ...

0 0 · · · xp


.

To use the logarithm barrier for quantile regression, we first rewrite the linear program-

ming problem (Equation (2.4)) in its dual representation,

max
λ
{y′λ |X ′λ = 0, λ ∈ [τ − 1, τ ]n},

or, by setting a = λ+ 1− τ ,

max
a
{y′a |X ′a = (1− τ)X ′1n, a ∈ [0, 1]n}. (2.6)

Adding slack variables, s, such that a+ s = 1n, we have the barrier function

B(a, s, µ) = y′a+ µ
∑
i

(log ai + log si),

and the Newton steps

max
δa
{y′δa + µδ′a(A

−1 − S−1)1n −
1

2
µδ′a(A

−2 + S−2)δa}

such that X ′δa = 0 where A = diag(a) and S = diag(s).

Since similar methods may be applied to both primal and dual formulations, attach-

ing both formulations simultaneously actually improves the performance of the algorithm.

Mehrotra (1992) implement the primal-dual log barrier approach successfully using the

predictor-corrector step and it is extended for problems with free variables and problems

with bounds on primal variables by Lustig et al. (1992). A detailed presentation of interior-

point methods in quantile regression can be found in Portnoy et al. (1997).
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Smoothing Algorithm When a dataset is large, another suitable estimation method

is found through smoothing. The original non-differentiable objective function in Equation

(2.2) can be approximated by a smooth Huber function (Huber 1973) to create the objec-

tive function,

min
β∈Rp

n∑
i=1

Hγ,τ (yi − x′iβ), (2.7)

where

Hγ,τ (t) =


t(τ − 1)− 1

2
(τ − 1)2γ if t ≤ (τ − 1)γ

t2/(2γ) if (τ − 1)γ ≤ t ≤ τγ

tτ − 1
2
τ 2γ if t ≥ τγ

and the γ is a positive real number referred to as the “threshold”. Hγ,τ (·) is a continuous

differentiable function, as illustrated in Figure 2.7. The minimizer of Equation (2.7) is

close to the minimizer of Equation (2.2) when γ is small and will produce the proper es-

timator before γ converge to zero. The smooth approximation method was originally de-

veloped by Madsen and Nielsen (1993) to solve linear L1 estimation problems and was fur-

ther extended by Chen (2007) to general quantile regression. The computational speed of

the smoothed function is comparable to interior point method and is superior for a “fat”

dataset, i.e. when the ratio of covariates to observations is greater than 0.05 and when xx′

is a non-sparse matrix (Chen 2007).

2.1.2 Inference

Methods to perform inference of quantile estimators can be separated into three types,

namely direct estimation, inversion of a rank test, and resampling based methods. We will

review the basic idea behind each method and compare their strengths and weaknesses.

Direct Estimation Consider the simplest case of

yi = x′iβ + ui,
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ρτ

Hγ, τ

(τ − 1)γ τγ

Figure 2.7: Huber function approximation of a quantile regression loss function. Dashed
line is the Huber function approximation and the solid line is the quantile loss function.

where i indexes subject, yi is the response, xi is the covariate, and {ui} are iid F with den-

sity f and the density in a neighborhood of τ is greater than 0 (i.e. f(F−1(τ)) > 0). Un-

der mild conditions, Koenker and Bassett (1978) showed

√
n(β̂(τ)− β(τ))

d→ N (0, w2(τ, F )D−1),

where β(τ) = β + F−1(τ)e1, e1 = (1, 0, · · · , 0)′, w2(τ, F ) = τ(1 − τ)/f 2(F−1(τ)), and

D = limn→∞ n
−1
∑

i xix
′
i.

When the error terms are non-iid; however, the asymptotic behavior of β̂(τ) is more

complicated and it takes on the sandwich form (Koenker and Machado 1999)

√
n(β̂(τ)− β(τ))

d→ N (0, τ(1− τ)H−1J H−1),

where J(τ) = limn→∞ n
−1
∑

i xix
′
i and H(τ) = limn→∞ n

−1
∑

i xix
′
ifi(F

−1
i (τ)).

In either the iid or non-iid cases, the asymptotic variance of the quantile estimates

depend upon the reciprocal of the density function evaluated at the quantile of interest

termed the “sparsity function” (Tukey 1965) or “quantile-density function” (Parzen 1979).

The dependence on the sparsity function should not be surprising since the precision would
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depend on how dense the observations are near the quantile of interest. In the iid case,

the estimation of the sparsity function is well developed (Siddiqui 1960, Bofingeb 1975,

Sheather and Maritz 1983, Welsh 1988, Hall and Sheather 1988). For the non-iid case, the

estimation of Hn may be performed either using an extension of the methods used for the

iid case (Hendricks and Koenker 1992) or by a method based on kernel density estimation

(Powell 1991).

Inversion of a Rank Test Since direct estimation requires estimation of nuisance

parameters (i.e. H), a method which provides a valid test without estimating H could

be beneficial. The inversion of a rank test developed by Gutenbrunner et al. (1993) does

avoid estimation of Hn.

Gutenbrunner and Jurecková (1992) observed that Hájek-Šidák rankscores (Hájek et al.

1967) may be viewed as a special case of a more general form for linear model. By invert-

ing the test, confidence intervals can be efficiently computed for quantile estimators.

Consider the model Qτ (Y |X1, X2) = X1β1 +X2β2 and a test for the null hypothesis

H0 : β2 = ξ vs. H1 : β2 6= ξ where ξ is q-dimensional and τ is fixed. Under the null hypoth-

esis and using the dual representation of Equation 2.6, the linear programming problem

can be solved using

â(ξ) = max
a
{(Y −X2ξ)

′a |X ′1a = (1− τ)X ′11n, a ∈ [0, 1]n}.

The rank test statistic is defined as

Tn = Sn(ξ)′(τ(1− τ) q2
n)−1Sn(ξ)→d χ2

q,

where q2
n = n−1X ′2(I −X1(X ′1X1)−1X ′1)X2,

Sn = n−1/2X ′2 b̂n(ξ)
d∼ N (0, τ(1− τ)q2

n)
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under the null with b̂n(ξ) = â(ξ)− (1− τ). We can reject H0 if Tn(ξ) > χ2
(q,1−α).

Confidence intervals for β2 may be constructed by inverting the rank test. Different

values of ξ can be tested and the collection of all ξ for which the null hypothesis is not

rejected forms an approximate (1− α)-th confidence interval for β2. A more detailed devel-

opment of this test can be found in Gutenbrunner et al. (1993).

The most important feature of this approach is that it is scale invariant and; therefore,

avoids estimation of the sparsity function. The test can be carried out in conjunction with

the simplex method (Koenker and d’Orey 1994).

Resampling Based Methods There are quite a few implementations of resampling

methods for quantile regression inference. There are four basic types, namely, the x-y pair

bootstrap, residual bootstrap, Markov chain marginal bootstrap (MCMB), and distinct

resampling method devised by Parzen et al. (1994).

The x-y pair bootstrap resamples x-y pairs from the original dataset with replacement.

The sampled data uses the original design points; therefore, it is able to accommodate

some heteroscedasticity. A slight variation of the x-y pair bootstrap was introduced by

Rao and Zhao (1992) and Chatterjee et al. (2005). Their methods also resample x-y pairs

with replacement but then each of the bootstrapped observations is weighted by a ran-

domly generated weight for estimation. Commonly used random variables for generating

random weights are the exponential distribution with rate parameter equal to one and

Poisson(1) since their mean and variance are both one.

The residual bootstrap resamples with replacement from the residual vector. The sam-

pled residual vector is then added back to the fitted vector X ′β̂(τ) for estimation. It as-

sumes that the error process is iid. A wild bootstrap procedure was proposed by Feng

et al. (2011) for quantile regression. In their procedure, after the residuals are sampled,

the absolute values of the residuals are multiplied by randomly generated weights before

they are added back to the fitted vector for estimation.
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The Markov chain marginal bootstrap (MCMB) was developed by He and Hu (2002)

and it reduced the complexity of the bootstrap by resampling the marginal estimating

equation at each bootstrap step. Due to this sampling scheme, only a one-dimensional

equation is solved each time instead of the multi-dimensional equations. The resulting se-

quence of estimates, by construction, is a Markov chain. This method appears to perform

well for data with heteroscedasticity in simulation studies.

The method developed by Parzen et al. (1994) is quite different from the bootstrap

methods. It is based on a pivotal estimating function and is designed to handle data with

heteroscedasticity. In practice, the procedure is carried out by augmenting the data with

one additional observation for esitmation. The one additional observation is chosen such

that the response variable, yn+1, is an extremely large number so I(yn+1 − x′n+1β ≤ 0)

is always 0 and xn+1 = n1/2 u/τ where u is generated by a random vector U which is a

weighted sum of independent and centered Bernoulli variables: n−1/2
∑

i xi(ζi − τ) where

{ζi} is a random observation from Bernoulli(τ).

2.2 Censored Quantile Regression

Quantile regression for data with “fixed ” censoring times was first introduced in the

econometrics discipline by Powell (1984; 1986). The term “fixed” here means that the cen-

sored values for the dependent variable are assumed to be known for all observations. One

such data example is the pollutant concentration in the environment, where left censoring

is typical due to detection limits of measuring instruments. It is also called the “Tobit ”

model after Tobin (1958) which can be written in the form

yi = max{0, x′iβ + ui} i = 1, · · · , n,
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where yi is the dependent variable, xi is the covariate for subject i, and ui ∼ N(0, σ2). The

censored median regression estimator was defined in Powell (1984) to be the minimizer of

1

n

∑
i

|yi −max{0, x′iβ}|.

Later on, Powell (1986) extended the “maximum score” estimator proposed by Manski

(1975) to more general quantiles. It proposed the censored regression quantile estimator

to be the minimizer of
1

n

∑
i

ρτ (yi −max{0, x′iβ}) ,

where ρτ (·) is the quantile loss function as defined in (2.3). While this approach estab-

lished an ingenious way to correct for “fixed” censoring, the objective function was not

convex with respect to the parameters making it difficult to obtain a global minimizer.

Several methods have been proposed to mitigate the related computational issues (Buchin-

sky and Hahn 1998, Chernozhukov and Hong 2002).

In much of survival analysis, however, censoring time is not always observed. To ac-

commodate random censoring time, several methods were proposed in recent decades. The

methods developed initially required stringent assumptions. A median regression model for

random censoring was proposed by Ying et al. (1995) which required the censoring time

to be independent of covariates. The model must be fit through minimization of discrete

functions and may have multiple local minima. A simulated annealing algorithm is usually

used to solve the minimization problem which can be computationally intensive. Honore

et al. (2002) extended Powell’s approach to incorporate random censoring, but it still re-

quired independence between the censoring time and covariates. Yang (1999) developed

a median regression model which used weighted empirical survival and hazard functions

when estimating. This method required more stringent demands for the error term, i.e.
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the error terms have to be iid. For the remainder of this section, unless specified other-

wise, Ti denotes the event time, Ci denotes the censoring time, and Yi = min(Ti, Ci) where

the index i refers to subject. Moreover, xi denotes the covariate associated with subject i

and δi = I(Ti ≤ Ci) is the censoring indicator.

Under conditional independence, i.e. failure time and censoring time are independent

conditional on covariates and without assuming stringent constraints on an error distribu-

tion, Portnoy (2003) innovatively proposed a recursively reweighted estimator. Specifically,

Portnoy (2003) assumes all conditional quantiles are linear to estimate the quantile coeffi-

cients at a
√
n rate. The algorithm generalizes the Kaplan-Meier estimator to the quantile

regression setting and reduces to the Kaplan-Meier estimator when these is no censoring

and only a single sample. Let {τ ∗j : j = 1, 2, · · · } be the set of all breakpoints where the

piecewise linear function changes the gradient. The algorithm (Portnoy 2003) proceeds as

follows.

1. For the first breakpoint, τ ∗1 , compute the first quantile using the (uncensored) quan-

tile regression while pretending there is no censoring. For data that was censored,

use the censored time as the response.

2. Define the weights, wi(τ), for τ > τ̂i as

wi(τ) =
τ − τ̂i

(1− τ̂i)
,

for censored observations. Suppose we already solved β̂(τ) and weights wi(τ) for all

censored observations lying below the β̂(τ ∗j ) plane. For τ > τ ∗j such that no addi-

tional censored point was crossed, β(τ) is the minimizer of

∑
i 6∈K

ρτ (Yi − x′iβ) +
∑
i∈K

{wi(τ)ρτ (Ci − x′iβ) + (1− wi(τ)(Y ∗i − x′iβ))} ,

20



where K denotes the indices for censored observations lying below β̂(τ ∗j ) and Y ∗i is

any value large enough to exceed all {x′iβ : i ∈ K}.

3. Suppose there is at least one censored observation such that Ci > x′iβ̂(τ ∗j ) but

Ci < x′iβ̂(τ ∗j+1) then these observations need to be split,reweighted (as defined in step

2), then continue pivoting as in step 2.

4. The algorithm stops when either the next breakpoint is one or only censored obser-

vations remain.

The disadvantage of this method is that the quantile can not be computed until the entire

lower quantile regression process is computed first (hence, assuming all lower quantiles are

linear). The recursive scheme also complicated asymptotic inference.

To overcome inferential difficulties, Peng and Huang (2008) and Peng (2012) developed

a new quantile regression method for survival data subject to conditionally independent

censoring and used a martingale-based procedure which makes asymptotic inference more

tractable. Unlike the method by (Portnoy 2003) which uses concepts from the Kaplan-

Meier estimator, Peng and Huang (2008) linked their approach to the Nelson-Aalen esti-

mator of the cumulative hazard function. Define N(t) = I(Y ≤ t, δ = 1) and Ni(t) is the

sample analog of N(t). Peng and Huang (2008) considered the estimating equation

n1/2Sn(β, τ) = 0, (2.8)

where

Sn(β, τ) = n−1
∑
i

xi

[
Ni(e

x′iβ(τ))−
ˆ τ

0

I(yi ≥ ex
′
iβ(u))dH(u)

]
and H(x) = −log(1− x) for 0 ≤ x < 1.

ΛT (t|X) = −log{1− Pr(T ≤ t|X)}
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is the cumulative hazard function of Ti conditional on Xi so Mi(t) = Ni(t) − ΛT (t ∧ Ti|xi)

is the martingale process associated with the counting process Ni(t) and the conditional

expectation of Mi(t) equals zero (E{Mi(t)|xi} = 0). Thus, we have

E

{
n−1/2

∑
i

Xi

[
Ni(e

X′
iβ0(τ))− ΛT [eX

′
iβ0(τ) ∧ Yi|xi]

]}
= 0,

where β0(·) denotes the true value of β(·). Noting the fact that the quantile function is

monotone in τ and FT [ex
′
iβ0(u)|xi] = τ , we have

ΛT [ex
′
iβ0(τ) ∧ Yi|xi] = H(τ) ∧H{FT (Yi|xi)} =

ˆ τ

0

I(Yi ≥ ex
′
iβ0(u))dH(u),

where H(t) is defined as above. Combining these facts, one finds the estimating equation

defined in Equation (2.8). Similar to Portnoy (2003), the method proposed by Peng and

Huang (2008) still has the drawback that the entire lower quantile regression process needs

to be computed before higher quantiles can be estimated. Both methods, Portnoy (2003)

and Peng and Huang (2008), produced very similar estimates in small-sample simulation

studies (Koenker 2008) and have been implemented in an R package (Koenker 2013).

Huang (2010) developed a new concept of quantile calculus while allowing for zero-

density intervals and discontinuities in a distribution. The grid-free estimation procedure

introduced by Huang (2010) circumvented grid dependency as in Portnoy (2003) and Peng

and Huang (2008).

To avoid requiring that all lower quantiles are linear, Wang and Wang (2009) proposed

a locally weighted method. Their approach assumes linearity at one prespecified quan-

tile level of interest, thus relaxing the assumption of Portnoy (2003) and Peng and Huang

(2008). The weighting scheme developed in Wang and Wang (2009) can be done in one

single step making it much simpler than the recursive weighting scheme used in Portnoy
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(2003). Specifically, estimators of Wang and Wang (2009) are the minimizer of the follow-

ing weighted objective function,

n−1

n∑
i=1

[wi(F0)ρτ (Yi − x′iβ) + {1− wi(F0)}ρτ (Y ∗ − x′iβ)] ,

where Y ∗ is a very large number such that Y ∗ > x′iβ,

wi(F0) =


1 if δi = 1 or F0(Ci|xi) > τ

τ−F0(Ci|xi)
1−F0(ci|xi) if δi = 0 and F0(Ci|xi) < τ

,

and F0(·|x) is the cumulative distribution of survival time conditioned on the covariates.

It is proposed that F0(·|x) is estimated nonparametrically using the local Kaplan-Meier

estimator. Since F0(·|x) needs to be estimated nonparametrically using kernel estimations,

their method suffers the curse of dimensionality and hence can only handle a small number

of covariates.

Wey et al. (2014) developed a tree based approach to generate the weights used in

Wang and Wang (2009). By avoiding the use of a kernel, their approach can generate

weights for data with moderate to high dimensions including discrete covariates while as-

suming only local linearity.

Quantile regression models for failure time data with other censoring mechanisms have

also been developed. For doubly censored failure time data where the outcome of interest

is subject to both left censoring and right censoring, different methods were proposed by

Lin et al. (2012) and Ji et al. (2012). A method developed by Lin et al. (2012) generalized

the idea of Portnoy (2003) to the case of doubly censored data. Let Li and Ri denote the
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left and right censoring time, respectively. Ỹi is defined as max(Li,min(Ti, Ri)) and

δi =


1 if Li < Ti < Ri no censoring

2 if Ti ≥ Ri right censored

3 if Ti ≤ Li left censored

.

The estimator in Lin et al. (2012) is the minimizer of

∑
δi=1

ρτ (Ti − x′iβ) +
∑
δi=2

{
wri (τ)ρτ (Ri − x′iβ) + (1− wri (τ))ρτ (Ỹi − x′iβ)

}
+
∑
δi=3

{
wli(τ)ρτ (Li − x′iβ) + (1− wli(τ))ρτ (−Ỹi − x′iβ)

}
,

where

wri (τ) =
τ − τRi
1− τRi

, if δi = 2 and τ > P (Ti < Ri|Ri, xi) ; 1 otherwise

wli(τ) =
τLi − τ
τLi

, if δi = 3 and τ < P (Ti < Li|Li, xi) ; 1 otherwise.

Ji et al. (2012), on the other hand, generalized the method proposed by Peng and Huang

(2008) to doubly censored data. It also considered an estimating equation as in Equation

(2.8) but redefine Sn(β, τ) as

Sn(β, τ) = n−1
∑
i

xi

{
Ni[g(x′iβ(τ))]−

ˆ τ

0

I[Li < g(x′iβ(u)) ≤ Yi] dH(u)

}
,

where g(·) is a known monotone link function,H(x) = −log(1− x) for 0 ≤ x < 1, and Ni(t)

is the counting process defined as Ni(t) = I(Yi ≤ t, δi = 1).

Zhou (2011) proposed a weighted method for randomly left truncated data where the

weights are related to the weighting scheme proposed by He and Yang (2003). Noticeably,

the estimation procedure reduces to the classical quantile regression when no truncation
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presents; however, it is not the case for most recursive methods. Shen (2014) extended the

weighted method proposed by Zhou (2011) to left-truncated and right-censored data. Most

recently, Sun et al. (2015) generalized the quantile regression models to accommodate re-

current events data.

The literature for quantile regression models on interval-censored data is lacking. To

the best of our knowledge, the only median regression method available for interval-censored

data is proposed by Kim et al. (2010), which extended the median regression developed by

McKeague et al. (2001). Let TLi and TRi be the last visit time prior to event occurrence

and first visit time after event occurred for subject i, respectively. Also let

δ̃i = I(TRi < ∞), which is an indicator function for the interval-censored observations.

Define 0 = s0 < s1 < · · · < sq < sq+1 = ∞ as the unique order points of TLi and TRi and

αi,j = I(TLi ≤ sj ≤ TRi) for the interval-censored cases where j = 1, · · · , q. Kim et al.

(2010) proposed that estimators be the root of

1

n

n∑
i=1

xi

{
δ̃i

q∑
j=1

wij

[
I(sj ≥ x′iβ)− 1

2

]
+ (1− δ̃i)

[
I(TLi ≥ x′iβ) + I(TLi < x′iβ)ui −

1

2

]}
= 0,

where wij = αij fj|x/(Sx(TLi)− Sx(TRi)) for the interval-censored observations and

ui = Sx(x
′
iβ)/Sx(TLi) for the right-censored observations, and Sx(t) = Pr(T > t|X = x).

Under the discrete failure time assumption, fl|x, can be estimated using a self-consistency

algorithm (Turnbull 1976) and then be used to calculate Sx(sk) = 1 −
∑

l≤k fl|x. The esti-

mating procedure consists of estimating an initial value then iterating between estimation

of f̂x, Ŝx for weight (wi1, · · · , wiq) and ui calculation; and the estimation of the parameter.

There are a couple of drawbacks to this method. First, the asymptotic properties of the

estimates were not established for the estimates; and second, it can only be applied when

the covariates have a finite number of values.
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2.3 Accelerated Failure Time Models for Interval-Censored Failure Time Data

The accelerated failure time (AFT) model relates the covariates linearly to the loga-

rithm of the survival time,

log(T ) = XTβ + ε,

where X is the p-dimensional covariate vector and ε is the error term which is independent

of X. When the error distribution is left unspecified, the AFT model can be thought of

as a semiparametric alternative to the Cox model or relative risk model. Since the non-

parametric maximum likelihood estimator is not directly applicable to AFT models with

interval-censored data, an inference procedure is more difficult.

Rabinowitz et al. (1995) proposed a class of score statistics that may be used for es-

timation and confidence procedures. Consider data from n subjects, indexed by i. Let Ti

denote the log survival time and Zi be a p-dimensional covariate for subject i. Rabinowitz

et al. (1995) considered the linear regression model,

Ti = ZT
i β + εi,

where εi are independent and identically distributed residuals with distribution function

F and density f . Let Xi,L and Xi,U be the last examination times preceding Ti and the

first examination after Ti, respectively. Consider a function g with domain [0, 1], satisfying

g(0) = g(1) = 0, let

ζi(b) =
g[F{Xi,U(b)}]− g[F{Xi,L(b)}]
F{Xi,U(b)} − F{Xi,L(b)}

Zi,

and let

Š(b) =
n∑
i

ζi(b).

Under the condition g(0) = g(1) = 0, E{Š(b)} = 0. Unfortunately, Š(b) is not available for

inference since the nuisance parameter F is unknown. Rabinowitz et al. (1995) proposed
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to estimate F then substitute the estimated F into Š(b). The estimate of β can be defined

as a zero of Š(b) with the nuisance parameter F replaced by the estimated F .

Under the current status data setting, Murphy et al. (1999) and Shen (2000) developed

likelihood-based methods. Consider the AFT model,

log(T ) = XTβ + ε,

where T is the survival time and the error term ε has a density function F . Let C denote

the observation time and δ ≡ I{T ≤ C}. Murphy et al. (1999) considered a penalized

nonparametric maximum likelihood estimator in the AFT model under the current status

setting. Consider the log likelihood

Ln(β, F ) =
1

n

n∑
i=1

{δi logF (ci − βxi) + (1− δi) log[1− F (ci − βxi)]}.

The penalized likelihood is defined as

Ln(β, F )− λ̂2
nJ

2(F ),

where the penalty J(F ) is defined as

J2(F ) =

ˆ
D

F
′′
(u)2du,

the domain D is taken to be a finite interval which contains the support of C − βX for ev-

ery β, and the smoothing parameter λ̂2
n determines the severity of the penalty. For asymp-

totics, the smoothing parameter, λ̂2
n, satisfy

λ̂2
n = op

(
1

n1/2

)
,

1

λ̂n
= Op(n

2/5),
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and may be data-dependent. The asymptotic properties of penalized maximum likelihood

was established and a
√
n convergence rate of the parameter estimates is possible under

certain conditions.

Shen (2000) constructed a likelihood based on the random-sieve likelihood. Let F (εi(θ))

be the cdf with jump sizes {pi}ni=1 at {εi}ni=1 and let G({pi}, θ) be

(
∑n

i=1 xiεi(θ)pi,
∑n

i=1 ε
2
i (θ)pi − σ2) where σ2 is the finite variance of ε. The profile random-

sieve log-likelihood is defined as

n∑
i=1

(log[F (εi(θ))]
δi) + log[1− F (εi(θ))]

1−δi),

and the constraints are defined as

G({pi}, θ) = 0.

The maximum random-sieve likelihood estimate can be obtained by maximizing the profile

random-sieve log-likelihood over a random sieve

Fn = {(pi) : G({pi}, θ) = 0,
n∑
i=1

pi ≤ 1, 0 ≤ pi ≤ 1}.

The profile random-sieve log-likelihood for θ is then given by

sup
{F∈Fn}

n∑
i=1

[δi logF (εi(θ)) + (1− δi) log(1− F (εi(θ)))],

and estimate of θ maximizes the profile random-sieve log-likelihood.

Under a general interval-censored data setting, Betensky et al. (2001) studied a simple

numerically efficient estimation procedure. The examination time and event time were as-

sumed to be independent in Betensky et al. (2001). The examination times from the same

individual were used as independent observations for estimation. When calculating the

standard error of the estimates, the dependence between different measurements obtained
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from the same individual was then accounted for. Specifically, consider data from n sub-

jects, indexed by i. Let Ti denote the survival time and Zi be a p-dimensional covariate for

subject i. Betensky et al. (2001) considered the linear regression model

log(Ti) = ZT
i β + εi,

where εi are independent and identically distributed residuals independent of Zi and Xi

where Xi denote the subject’s collection of examination times. Let Xi,L and Xi,U be the

last examination times preceding Ti and the first examination after Ti, respectively. Let

Yij be the indicator that the ith subject’s event time precedes the jth examination time of

subject i: Yij = 1{Ti ≤ Xij}, with Xij being ancillary for F and β. Treating examination

times from the same subject as independent observations, the conditional likelihood given

the ancillaries was defined as

n∏
i=1

ni∏
j=1

F{Xij(β)}Yij [1− F{Xij(β)}]1−Yij ,

where Xij(β) ≡ log(Xij) − ZT
i b for a p-dimensional vector b. Let F̂b denote the nonpara-

metric maximum likelihood estimator of F with b = β then F̂b can be calculated using the

pool adjacent violators algorithm with Yij and Xij(b). Similar to Rabinowitz et al. (1995),

Betensky et al. (2001) considered the scores,

S(b) =
n∑
i=1

ni∑
j=1

[Yij − F̂b{Xij(b)}]Zi.

To get the estimates of β, S(b) can be computed for a fine grid of values of b and the esti-

mators can be set to the b which made S(b) closest to zero. The confidence interval for β

can also be calculated while taking into account the correlation between the examination

times within the same subject.

29



To overcome the numerical difficulty presented in previous methods and to include

higher-dimensional covariates, Tian and Cai (2006) proposed to construct the estimator

by inverting a Wald-type test for testing a null proportional hazards model. Consider an

accelerated failure time model,

log(T ) = βTZ + ε.

Let C denote the observation time and δ ≡ I{T ≤ C}. Assume that the distribution of

the residual ε = log(T ) − βTZ is independent of the covariate Z which is equivalent to

assuming that

λε(t|Z) = λ0(t),

where λε(·|Z) is the hazard function of ε conditional on the covariate Z and λ0(·) is some

unknown baseline hazard function. One way to test this assumption is to fit the model

Sε(t|Z) = S0(t)exp(γ
T
0 Z),

using residual data, {(log(Ci) − βTZi, δi, Zi) : i = 1, · · · , n} and then test the hypothesis

H0 : γ0 = 0 based on an estimator of γ0. Since the distribution of ε(β) = log(T ) − βTZ

is independent of Z if and only if β is at the true value, we can estimate β by solving the

estimating equations,

γ̂n(β) = op(n
−1/2).

The estimation procedure can be carried out by 1) computing the nonparametric maxi-

mum likelihood estimators of β in a set of working proportional hazard models indexed

by β then 2) finding the estimates which satisfy γ̂n(β) = op(n
−1/2). The first step can

be solved using algorithms developed for nonparametric maximum likelihood estimators.

When the covariate is one-dimensional, a grid search can be used to find the β. When the
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covariates are high-dimensional, a Markov chain Monte Carlo based procedure was devel-

oped to obtain the point estimator and a consistent estimator of its variance-covariance

matrix simultaneously. Tian and Cai (2006) also extended the method to general interval-

censored data.
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CHAPTER 3: QUANTILE REGRESSION MODELS FOR CURRENT
STATUS DATA

3.1 Introduction

Quantile regression (Koenker and Bassett 1978) is a robust estimation method for re-

gression models which offers a powerful and natural approach to examine how covariates

influence the location, scale, and shape of a response distribution. Unlike linear regres-

sion analysis, which focuses on the relationship between the conditional mean of the re-

sponse variable and explanatory variables, quantile regression specifies changes in the con-

ditional quantile as a parametric function of the explanatory variables. It has been applied

in a wide range of fields including ecology, biology, economics, finance, and public health

(Cade and Noon 2003, Koenker and Hallock 2001). Quantile regression for censored data

was first introduced by Powell (Powell 1984; 1986), where the censored values for the de-

pendent variable were assumed to be known for all observations (also known as the “To-

bit” model). While this approach established an ingenious way to correct for censoring,

the objective function was not convex over parameter values making global minimization

difficult. Several methods have been proposed to mitigate related computational issues

(Buchinsky and Hahn 1998, Chernozhukov and Hong 2002).

In most survival analysis, however, censoring time is not always observed. To accom-

modate a random censoring time, several methods were proposed over the past few decades.

Early methods (Ying et al. 1995, Yang 1999, Honore et al. 2002) required stringent as-

sumptions on the censoring time, i.e. the censoring time must be independent of covari-

ates. Under conditional independence assumption where failure time and censoring time
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are independent conditional on covariates, Portnoy (2003) proposed a recursively reweighted

estimator. Unfortunately, the quantile cannot be computed until the entire lower quantile

regression process was computed first. The recursive scheme also complicated asymptotic

inference. To overcome inferential difficulties, Peng and Huang (2008) and Peng (2012)

developed a quantile regression method for survival data subject to conditionally indepen-

dent censoring and used a martingale-based procedure which made asymptotic inference

more tractable. However, the method developed by Peng and Huang (2008) still has the

same drawback as in Portnoy (2003), namely, the entire lower quantile regression process

must be computed first. Huang (2010) developed a new concept of quantile calculus while

allowing for zero-density intervals and discontinuities in a distribution. The grid-free esti-

mation procedure introduced by Huang (2010) circumvented grid dependency as in Port-

noy (2003) and Peng and Huang (2008). To avoid the necessity of assuming that all lower

quantiles were linear, Wang and Wang (2009) proposed a locally weighted method. Their

approach assumed linearity at one prespecified quantile level of interest and thus relaxed

the assumption of Portnoy (2003); however, their method suffered the curse of dimension-

ality and hence can only handle a small number of covariates.

Current status data arise extensively in epidemiological studies and clinical trials, es-

pecially in large-scale longitudinal studies where the event of interest, such as disease con-

traction, is not observed exactly but is only known to happen before or after an examina-

tion time. Many likelihood-based methods have been developed for current status data,

such as proportional hazard models, proportional odds models, and additive hazard mod-

els (see Sun (2007) for a survey of different methods). Despite the fact that the develop-

ment for censored quantile regression flourishes, the aforementioned methods were devel-

oped for right-censoring and are not suitable for current status data. To the best of our

knowledge, the only method available for quantile regression models on interval-censored

33



data was proposed by Kim et al. (2010) which was a generalization of the method pro-

posed by McKeague et al. (2001). The proposed method can only be applied when the

covariates took on a finite number of values since the method required estimation of the

survival function conditional on covariates. The proposed method performed well in sim-

ulation studies , yet no theoretical justifications were offered. In this paper, we develop

a new method for the conditional quantile regression model for current status data while

allowing the censoring time to depend on the covariates.

The remaining paper is organized as follows. In Section 3.2, the proposed model is in-

troduced and we establish estimation and inference procedures. Consistency and asymp-

totic distribution are presented in Section 3.3 with technical details deferred to Section 3.6.

In Section 3.4, the small-sample performance is demonstrated via simulation studies and

the application to data from the Voluntary HIV-1 Counseling and Testing Efficacy Study

Group is given. Section 3.5 discusses the method presented herein.

3.2 The Method

3.2.1 Model and Data

Let T denote failure time and let X denote a k × 1 covariate vector with the first com-

ponent set as one. We consider a quantile regression model for the failure time,

QT (τ | X) = XTβ(τ), τ ∈ (0, 1), (3.9)

where QT (τ | X) is the conditional quantile defined as

QT (τ | X) = inf{t : pr(T ≤ t | X) ≥ τ}

and the vector of unknown regression coefficients, β(τ), represents the covariate effects on

the τth quantile of T which may depend on τ . Each element of β(τ) can be interpreted as
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an estimated difference in τth quantile by one unit change of the corresponding covariate

while other variables in the model are held constant. Our interest lies in the estimation

and inference on β(τ).

Let C denote observation time and define δ ≡ I(T ≤ C) where I(·) is the indicator

function. For the current status data, T is not observed and the observed data consist of

n independent replicates of (C,X, δ), denoted by {(Ci, Xi, δi)i=1,··· ,n}. It is assumed that

T is conditionally independent of C given X. Since T is unobserved, we cannot directly

estimate the conditional quantile function QT (τ | X) in Equation (3.9) making a standard

quantile regression unsuitable for our problem.

The τth conditional quantile of a random variable Y conditional on X can be charac-

terized as the solution to the expected loss minimization problem,

Z(β) = E{E[ρτ (Y −XTβ(τ)) | X]}, (3.10)

where ρτ (u) = u[τ − I(u < 0)]. Furthermore, quantiles possess “equivariance to monotone

transformations” (Koenker 2005) which means that we may analyze a transformation h(Y )

since the conditional quantile of h(Y ) is h(XTβ(τ)) if h(·) is nondecreasing (Powell 1994).

In current status data, we observe realizations of the transformed variable δ ≡ I(T ≤ C)

or, equivalently, (1 − δ) ≡ I(T > C) where the transformation is h(T | C) = I(T > C)

which is monotone nondecreasing. We apply the same transformation to the conditional

quantile, XTβ(τ), and use the transformed conditional quantile, I(XTβ(τ) > C), in the

subsequent analysis. The objective function in (3.10) is well-defined and is sufficient to

identify the parameters of interests (Powell 1994). We can thus substitute (1 − δ) and

I(XTβ > C) in Equation (3.10) and get

Z(β) = E[E{ρτ [(1− δ)− I(XTβ(τ) > C)] | X,C}]. (3.11)

35



Equation defined in (3.11) is used to identify β(τ) since it contains only the observable

variables (C,X, δ). We can show that the derivative of Z(β) with respect to β is zero at

the true β (see Section 3.6 for details). Due to censoring, it is possible that not all β(τ)

can be estimated using the observed data. We provide a sufficient condition to guarantee

the identifiability for a fixed quantile in Section 3.3.1.

3.2.2 Parameter Estimation and Algorithm

To simplify notation, we use β instead of β(τ) henceforth. Assuming the formulation

from Equation (3.11), the regression quantile estimator β̂n (Koenker and Bassett 1978) is

the minimizer of the objective function

Zn(β) =
n∑
i=1

ρτ [(1− δi)− I(XT
i β > Ci)]

=
n∑
i=1

[
τI(δi = 0)I(XT

i β − Ci ≤ 0) + (1− τ)I(δi = 1)I(XT
i β − Ci > 0)

]
=

n∑
i=1

wi I[yi(X
T
i β − Ci) ≤ 0] (3.12)

where

yi =

 1 if δi = 0

−1 if δi = 1
, wi =

 τ if δi = 0

1− τ if δi = 1
.

The regression quantile estimator, β̂n, which minimizes Equation(3.12) is difficult to

obtain by direct minimization since Zn(β) is neither convex nor continuous. To overcome

this difficulty, we approximate Zn(β) as a difference of two hinge functions, where the ap-

proximation is controlled via a small constant, ε.
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Zn,ε(β) =
n∑
i=1

wi

{
1

ε

[ ε
2
− yi(XT

i β − Ci)
]

+
− 1

ε

[
− ε

2
− yi(XT

i β − Ci)
]

+

}
=

n∑
i=1

wi

[
1

2
− 1

ε
yi(X

T
i β − Ci)

]
+

+
n∑
i=1

(−wi)
[
−1

2
− 1

ε
yi(X

T
i β − Ci)

]
+

(3.13)

where ε > 0 and [ · ]+ denotes the positive part of the argument. We illustrate the approxi-

mation of a 0/1 loss by the difference between two hinge functions in Figure 3.8.
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Figure 3.8: An illustration of using the difference between two hinge loss functions to
approximate a 0/1 loss. A smaller ε provides a closer approximation.

To mitigate computational difficulties, we utilize the concave-convex procedure pro-

posed by Yuille and Rangarajan (2003). The concave-convex procedure relies on decom-

posing an objective function, f(x), into a convex part, fconvex(x), and a concave part, fconcave(x)

such that

f(x) = fconvex(x) + fconcave(x).

Optimization is carried out with an iterative procedure in which fconcave(x) is linearized at

the current solution x(t),

x(t+1) = arg min
x

[
fconvex(x) + (x− x(t))f

′

concave(x
(t))
]
,
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making each iteration a convex optimization problem. The first value x(0) can be initial-

ized with any reasonable guess.

To apply the concave-convex procedure to our optimization problem, we define the first

term in Equation (3.13) as fconvex(β) and the second term as fconcave(β). The gradient of

the concave part, fconcave(β), is

∂

∂β
fconcave(β) =


∑n

i=1wi
(

1
ε
yiX

′
i

)
if 1

2
+ 1

ε
yi(X

T
i β − Ci) < 0

0 if 1
2

+ 1
ε
yi(X

T
i β − Ci) > 0

Applying the concave-convex procedure to the above decomposition, we obtain

β(r+1) = arg min
β

{
n∑
i=1

wi

[
1

2
− 1

ε
yi(X

T
i β − Ci)

]
+

+
n∑
i=1

wi
1

ε
yiX

′
i(β − β(r)) · I

[
1

2
+

1

ε
yi(X

T
i β

(r) − Ci) < 0

]}
, (3.14)

where β(r) denotes the estimated β at the rth iteration. The final form can be solved with

a standard convex optimization algorithm with a decreasing sequence of ε = {20, 2−1, · · · }.

Specifically, the initial values for both the simulation studies and the real data example

were generated using a coarse grid search. Given the initial value, we solve Equation (3.14)

with ε = 20. The solution with ε = 20 is then used as the initial value to solve Equation

(3.14) with ε = 2−1. This is repeated until the maximum relative change over all covari-

ates is less than one percent. In this study, the fminsearch function from the optimization

toolbox in MATLAB was used to solve for β. The fminsearch function performs uncon-

strained nonlinear optimization to find the minimum of a scalar function of several vari-

ables.
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3.2.3 Inference

The confidence intervals for parameter estimates are obtained using a subsampling

method since the bootstrap does not consistently estimate the asymptotic distribution

for estimators with cube-root convergence (Abrevaya and Huang 2005). The subsampling

method described below is from Politis et al. (1999). Subsampling can produce consistent

estimated sampling distributions under extremely week assumptions even when the boot-

strap fails and it can be used to obtain confidence intervals for parameter estimates. It

should not be used to obtain standard errors; however, since our estimators are not nor-

mally distributed, even asymptotically (Section 3.3.3); therefore, there is no simple relation

between the distribution of the estimators and standard errors (Horowitz 2010, page 108).

The justification for using the subsampling method in our study is discussed further in

Section 3.3.3.

To obtain the confidence intervals of minimizer of Equation (3.13), β̂n,ε, we produce

subsamples K1, K2, · · · , KNn where Kj’s are the Nn ≡
(
n
b

)
distinct subsets of {(Ci, Xi, δi)i=1,··· ,n}

of size b. Let βτ denote the true parameter values and β̂n,ε,b,j denote the estimated value

produced by solving Equation (3.14) using the Kjth dataset.

Define

Ln,b(x) = N−1
n

Nn∑
j=1

I[b1/3(β̂n,ε,b,j − β̂n,ε) ≤ x] and cn,b(γ) = inf{x : Ln,b(x) ≥ γ}.

From Theorem 2.2.1 of Politis et al. (1999), for any 0 < γ < 1, P
[
n1/3(β̂n,ε − βτ ) ≤ cn,b(γ)

]
→

γ under the condition that b → ∞ as n → ∞ and b/n → 0. It follows that for any

0 < α < 0.5,

P
[
cn,b

(α
2

)
< n1/3(β̂n,ε − βτ ) ≤ cn,b

(
1− α

2

)]
→ 1− α
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thus an asymptotic 1− α level confidence interval for βτ can be constructed with

[
β̂n,ε − n−1/3cn,b

(
1− α

2

)
, β̂n,ε − n−1/3cn,b

(α
2

)]
.

Symmetric confidence intervals can be obtained by modifying the above approach slightly.

Define

L̃n,b(x) = N−1
n

Nn∑
j=1

I[b1/3 |β̂n,ε,b,j − β̂n,ε| ≤ x] and c̃n,b(γ) = inf{x : L̃n,b(x) ≥ γ}.

Again , if b → ∞ as n → ∞ and at the same time b/n → 0, a symmetric confidence

interval for βτ can be constructed as

[
β̂n,ε − n−1/3c̃n,b(1− α), β̂n,ε + n−1/3c̃n,b(1− α)

]
. (3.15)

Symmetric confidence intervals are desirable because they often have nicer properties

than the nonsymmetric version in finite samples (Banerjee and Wellner 2005). This fact

was also observed in our simulation studies; hence, symmetric confidence intervals are rec-

ommended and used in this paper.

To avoid large scale computation issues, a stochastic approximation from Politis et al.

(1999) is employed where B randomly chosen datasets from {1, 2, · · · , Nn} are used in the

above calculation. Furthermore, the block size is chosen using the method implemented in

Delgado et al. (2001) and Banerjee and Wellner (2005). Briefly, the algorithm for choosing

block size is described below.

Step 1: Fix a selection of reasonable block sizes b between limits blow and bup.

Step 2: Draw M bootstrap samples from the actual dataset.

Step 3: For each bootstrap sample, construct a subsampling symmetric confidence inter-

val with asymptotic coverage 1 − α for each block size b. Let Rm,b be one if β̂n,ε was
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within the mth interval based on block size b and zero otherwise.

Step 4: Compute ĥ(b) = M−1
∑M

m=1 Rm,b.

Step 5: Find the value b̃ that minimizes |ĥ(b) − α| and use b̃ as the block size when con-

structing confidence interval for the original data.

3.3 Asymptotic Properties

3.3.1 Identifiability

Prior to deriving the asymptotic properties of the proposed estimator, we will discuss a

set of sufficient conditions for identifiability.

For a fixed quantile τ , let

Zn(β) =
1

n

n∑
i=1

[
τI(δi = 0)I(XT

i β − Ci ≤ 0) + (1− τ)I(δi = 1)I(XT
i β − Ci > 0)

]
,

and

Z(β) = E[τI(δ = 0)I(X ′β − C ≤ 0) + (1− τ)I(δ = 1)I(X ′β − C > 0)].

Let βτ denote a minimizer of Z(·). The following conditions will be used in subsequent

theorems.

Condition 1. The support of fX is not contained in any proper linear subspace of <k.

Condition 2. For a fixed τ , with probability one, both the support of the conditional den-

sity of C given X, fC|X(·), and the support of the conditional density of T given X, fT |X(·),

contain XTβτ in their interiors.

Condition 1 is the typical full-rank condition.

Lemma 3.3.1. Under Conditions 1 and 2, βτ is identifiable, i.e. βτ is the unique mini-

mizer of Z(·).
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We prove Lemma 3.3.1 by showing Z(β) − Z(βτ ) > 0, ∀β 6= βτ . A detailed proof

is provided in Section 3.6. In our real data application, we suggest an empirical way to

identify quantiles which are estimable.

3.3.2 Consistency

For a fixed quantile τ , let

Zn,ε(β) =
n∑
i=1

(
τI(δi = 0)

{
I(XT

i β − Ci ≤ −
ε

2
) + I(|XT

i β − Ci| <
ε

2
)

[
−1

ε
(XT

i β − Ci −
ε

2
)

]}
+(1− τ)I(δi = 1)

{
I(X ′β − Ci >

ε

2
) + I(|XT

i β − Ci| ≤
ε

2
)

[
1

ε
(XT

i β − Ci +
ε

2
)

]})

We assume the following conditions for the consistency theorem.

Condition 3. Let β ∈ B where B is a compact subset of <k which contains βτ as an inte-

rior point.

Condition 4. MT ≡ supT,X fT |X(T | X) < ∞ and MC ≡ supC,X fC|X(C | X) < ∞ where

fC|X and fT |X are the conditional density of C given X and T given X, respectively.

Let β̂n,ε be the minimizer of Zn,ε(·) in B.

Theorem 3.3.2. Under Conditions 1–4, β̂n,ε converges to βτ in probability as n → ∞ and

ε→ 0.

The proof follows by first showing that the collection of functions in Zn(β) is a VC-

subgraph class and hence Zn(β) converge almost surely uniformly to Z(β). In addition,

Zn,ε(β) converges almost surely uniformly to Zn(β) as n → ∞ and ε → 0; thus we can

conclude that Zn,ε(β) converges almost surely uniformly to Z(β). Next, we prove that Z(·)

is continuous. Conditions 1 and 2 provide sufficient conditions for identifiability and hence,

βτ is the unique minimizer of Z(·). Since we assumed B is compact, we can then conclude
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that β̂n,ε converges to βτ in probability by a standard argument for M-estimators (Theo-

rem 2.1 of Newey and McFadden (1994)). A detailed proof is provided in Section 3.6.

3.3.3 Asymptotic Distribution

This section shows that n1/3(β̂n,ε − βτ ) converges to a nondegenerate distribution. The

convergence rate is atypical because our objective function (3.12) is non-smooth and not

everywhere differentiable; this is sometimes called the “sharp-edge effect” (Kim and Pollard

1990). We will make the following assumptions which guarantee the asymptotic distribu-

tion will be nondegenerate, namely

Condition 5. The ε which is used in Equation (3.13) is o(n−2/3).

Condition 6. The true distribution P of C, T and X is absolutely continuous with respect

to Lebesgue measure.

Condition 7. X is bounded.

Condition 8. Let V (βτ )i,j = Px
[
XiXjfC|X(X ′βτ | X)fT |X(X ′βτ | X)

]
and V (βτ ) is posi-

tive definite where Xi and Xj are elements of X.

We may now proceed with the main result.

Theorem 3.3.3. Under Conditions 1–8, the process{
n2/3

[
Zn
(
βτ + sn−1/3

)
− Zn (βτ )

]
: s ∈ <k

}
converges in distribution to a Gaussian pro-

cess
{

Γ(s) : s ∈ <k
}
with continuous sample paths, mean s′V (βτ )s/2, and covariance H,

where V is the second order expansion of Z(β) at βτ , and

H(s, r) = lim
α→∞

αPC,X

{[
τ − FT |X(C | X)

]2
[
I

(
X ′r ∨X ′s

α
< C −X ′βτ ≤ 0

)
+ I

(
0 < C −X ′βτ <

X ′r ∧X ′s
α

)]}

when it exists. Furthermore, n1/3(β̂n,ε − βτ )→d arg inf Γ(s).
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Theorem 2 follows by verifying the conditions of the main theorem from Kim and Pol-

lard (1990). Provided that V is positive definite, we can conclude that n1/3(β̂n,ε − βτ ) con-

verges to a nondegenerate distribution. A detailed proof is provided in Section 3.6.

Subsampling can produce consistent estimated sampling distributions for our estima-

tor and it is an immediate consequence of Theorem 2.2.1 from Politis et al. (1999). In our

study, we choose block size b = Nγ where γ = {1/3, 1/2, 2/3, 3/4, 0.8, 5/6, 6/7, 0.9, 12/13,

0.95} thus b → ∞ and b/N → 0 as N → ∞. n1/3(β̂n,ε − βτ ) converges to a nondegenerate

continuous distribution. All conditions in Theorem 2.2.1 from Politis et al. (1999) are met

thus we can construct confidence intervals as stated in Section 3.2.3.

3.4 Numerical Studies

3.4.1 Simulation

Two simulation studies were carried out to test the finite sample performance of our es-

timator. We used conditional quantile functions which were linear in the covariate for each

studies. In the first scenario, Simulation 1, the conditional quantile functions had identi-

cal linear coefficient and differed only in intercept. In the second scenario, Simulation 2,

both the intercepts and covariate effects varied over the quantiles. Simulation 1 represents

a situation where the errors are independent and identically distributed and Simulation 2

represents a situation where the errors are heteroscedastic.

In Simulation 1, the covariate is X ≡ (1, X1, X2)′ where X1 ∼ Uniform [0, 2] and X2 ∼

Bernoulli(0.5). The unobserved failure times, T , were generated from the linear model,

T = 2 + 3X1 + X2 + 0.3U . The observation times, C, were generated from the lin-

ear model, C = 1.9 + 3.2X1 + 0.8V when X2 = 0 and C = 3.1 + 2.8X1 + 0.8V

when X2 = 1. Both U and V were generated from N(0, 1). The proportion of events oc-

curred prior to observation time, δ = 1, was about 50%. The underlying 0.25 quantile is

QT (0.25|X) = 1.798+3X1+X2, the underlying 0.50 quantile is QT (0.50|X) = 2+3X1+X2,
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and the underlying 0.75 quantile is QT (0.75|X) = 2.202 + 3X1 + X2. Since it is possible

that T and/or C are negative, in a survival analysis context, we can treat T and C as the

logarithm of survival time and logarithm of observation time, respectively. In Simulation

2, the covariate setup is the same as in Simulation 1. Unobserved failure times were gen-

erated from the linear model, T = 2 + 3X1 + X2 + (0.2 + 0.5X1)U and the observa-

tion times, C, were generated from the linear model C = 1.8 + 3.2X1 + 0.8X2 + 0.8V .

Both U and V were generated from exponential distribution with rate equal to one. The

proportion of events occurred prior to observation time, δ = 1, was about 50%. The

underlying 0.25 quantile is QT (0.25|X) = 2.058 + 3.144X1 + X2, the underlying 0.50

quantile is QT (0.50|X) = 2.139 + 3.347X1 + X2, and the underlying 0.75 quantile is

QT (0.75|X) = 2.277 + 3.693X1 + X2. For each scenario, we reported the mean bias, mean

squared error, and median absolute deviation based on 1000 simulations. Sample sizes

were chosen to be n = 200, 400, and 800 for each simulation setup. We interested in es-

timation of 0.25th, median, and 0.75th quantiles. Since the unobserved event time, T , and

the observation time, C, were generated as a function of covariates and the error terms

were generated from distributions which had positive density in the neighborhood of quan-

tiles of interests, our simulation setup satisfy the identifiability conditions in Lemma 3.3.1.

For each simulated dataset, the procedure described at the end of Section 3.2.2 was

used to estimate β. Symmetric confidence intervals as in Equation (3.15) were calculated

based on a stochastic approximation with 500 subsamples. To decrease computational

burden, the block size was determined via a pilot simulation in the same fashion as de-

scribed in Banerjee and McKeague (2007). In a small scale simulation study, we examined

the block size chosen by the algorithm described in Section 3.2.3 and by the pilot simula-

tion method described in Banerjee and McKeague (2007). The block sizes chosen by either

method produced similar average coverage which indicated the coverage presented in this

section is a good representation of the coverage when confidence intervals are constructed
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using the algorithm described in Section 3.2.3. The optimal subsampling block size was

determined from the following selected block sizes: {n1/3, n1/2, n2/3, n3/4, n0.8, n5/6, n6/7, n0.9,

n12/13, n0.95}.

Table 4.5 and Table 3.2 summarize the results for Simulation 1 and Simulation 2 with

sample size equal to 200, 400, and 800 at the 0.25th, median, and 0.75th quantiles. In the

tables, “Truth” is the true parameter value; “Bias” is the mean bias of the estimates from

all replicates; “MSE” is the mean squared error; “MAD” is the median absolute deviation

of the estimates; “CP” is the average coverage from subsampling symmetric confidence in-

tervals; and “Length” is the average confidence interval length. The tables show that the

regression coefficient estimators have negligible bias.

In Simulation 1, the bias has a decreasing trend as the sample size increases for all

quantiles and parameters. The mean squared errors and median absolute deviations de-

crease as the sample size increases for all quantiles and parameters. The subsampling con-

fidence interval coverage is slightly lower than the nominal 95% level in smallest sample

size (N=200) but the empirical coverage probability is close to 95% as the sample size in-

creases. In Simulation 2, the bias for all quantiles is small for all sample sizes. There is a

general decreasing trend for bias when the sample size increases. The mean squared errors

and median absolute deviations decrease as the sample size increases for all quantiles and

parameters. The average 95% confidence interval coverage rate is a bit low for the smallest

sample size (N=200) but gets closer to the nominal 0.95 level as the sample size increases.

In both scenarios, the median absolute deviations for sample size 800 is roughly 63% of the

median absolute deviation for sample size 200 which is consistent with the cube-root rate.

The algorithm converge in all of our simulation studies. Non-convergence of the algo-

rithm would be an indication that the data might not have sufficient information to sup-

port the estimation at the specified quantile. The computation time to estimate one quan-

tile for each of the 100 simulated dataset ranged from 30 to 42 seconds for sample sizes
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200 to 800 using a computer equipped with an Intel(R) Core(TM) i5-2500 CPU @3.30GHz

3.60 GHz CPU and 4.00 GB RAM. The computation times are similar for the two simula-

tion scenario.

To illustrate the strength and limitation of the proposed method, an accelerated failure

time (AFT) model with normally distributed errors was fit to the simulated datasets. Ta-

ble 3.3 shows the results from the AFT models. When the error distribution in the AFT

model is correctly specified, as in Simulation 1, the estimates have negligible bias. The

true parameter values of the AFT model is the same as the true parameter value at the

0.5 quantile because the Normal distribution is symmetric; therefore, the conditional mean

is the same as the conditional median. Since the error terms are correctly specified, the

parametric method has higher efficiency than the proposed method which can be seen

from the much smaller confidence interval length. When the error distribution is incor-

rectly specified, as in Simulation 2, the estimates are alarmingly biased. The coverage per-

centage is low for β2 and is extremely low for both β0 and β1 even though the confidence

intervals are narrow. Our method has a lower efficiency than the parametric method when

the error distribution can be correctly specified in the parametric method. On the other

hand, when the error distribution is incorrectly specified in the parametric method, our

proposed method clearly outperforms the parametric method in terms of unbiased estima-

tion and retaining proper coverage levels. The strength of our proposed method lies in the

fact that it is a semiparametric method thus we do not need to know the true underlying

distribution of the error terms in the AFT model.
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Table 3.1: Simulation results for Simulation 1, based on 1000 simulation replicates.

N τ Parameter Truth Bias MSE MAD CP Length
200 0.25 β0 1.798 0.026 0.036 0.117 0.921 0.679

β1 3.000 -0.010 0.022 0.097 0.941 0.542
β2 1.000 0.020 0.028 0.110 0.923 0.604

0.50 β0 2.000 0.002 0.032 0.120 0.931 0.633
β1 3.000 -0.006 0.018 0.088 0.946 0.500
β2 1.000 0.012 0.025 0.106 0.935 0.547

0.75 β0 2.202 -0.011 0.039 0.138 0.925 0.695
β1 3.000 -0.010 0.023 0.100 0.931 0.544
β2 1.000 0.010 0.029 0.109 0.927 0.602

400 0.25 β0 1.798 0.007 0.020 0.097 0.942 0.530
β1 3.000 -0.002 0.012 0.074 0.958 0.415
β2 1.000 0.009 0.018 0.094 0.943 0.476

0.50 β0 2.000 -0.004 0.017 0.083 0.940 0.472
β1 3.000 0.002 0.010 0.066 0.944 0.372
β2 1.000 0.006 0.014 0.074 0.938 0.423

0.75 β0 2.202 -0.005 0.020 0.098 0.945 0.527
β1 3.000 -0.001 0.012 0.074 0.950 0.411
β2 1.000 -0.002 0.016 0.087 0.939 0.473

800 0.25 β0 1.798 0.006 0.012 0.074 0.942 0.403
β1 3.000 -0.001 0.007 0.057 0.946 0.315
β2 1.000 0.002 0.010 0.068 0.941 0.365

0.50 β0 2.000 -0.003 0.010 0.065 0.939 0.367
β1 3.000 0.001 0.006 0.049 0.958 0.288
β2 1.000 0.004 0.009 0.062 0.944 0.338

0.75 β0 2.202 -0.005 0.012 0.073 0.937 0.406
β1 3.000 0.003 0.007 0.054 0.950 0.319
β2 1.000 -0.001 0.010 0.065 0.950 0.365

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error;
MAD is median absolute deviation of the estimates; CP is the empirical coverage probabilities with a
nominal level of 0.95 from subsampling symmetric confidence intervals with 500 subsamples; and Length is
mean confidence interval length.
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Table 3.2: Simulation results for Simulation 2, based on 1000 simulation replicates.

N τ Parameter Truth Bias MSE MAD CP Length
200 0.25 β0 2.058 0.003 0.039 0.073 0.934 0.759

β1 3.144 0.010 0.020 0.087 0.956 0.563
β2 1.000 0.042 0.038 0.090 0.942 0.749

0.50 β0 2.139 0.027 0.030 0.109 0.938 0.662
β1 3.347 0.014 0.035 0.123 0.930 0.657
β2 1.000 0.021 0.040 0.126 0.937 0.745

0.75 β0 2.277 0.059 0.082 0.166 0.931 0.973
β1 3.693 -0.031 0.099 0.203 0.908 1.037
β2 1.000 0.006 0.110 0.209 0.939 1.284

400 0.25 β0 2.058 0.020 0.012 0.053 0.953 0.439
β1 3.144 0.001 0.008 0.059 0.955 0.358
β2 1.000 0.003 0.013 0.063 0.957 0.457

0.50 β0 2.139 0.025 0.016 0.079 0.949 0.480
β1 3.347 0.011 0.019 0.096 0.935 0.495
β2 1.000 0.006 0.022 0.094 0.940 0.550

0.75 β0 2.277 0.039 0.045 0.128 0.952 0.768
β1 3.693 -0.016 0.059 0.158 0.934 0.843
β2 1.000 0.012 0.062 0.160 0.950 0.924

800 0.25 β0 2.058 0.014 0.004 0.040 0.957 0.272
β1 3.144 0.001 0.004 0.041 0.954 0.253
β2 1.000 0.001 0.006 0.050 0.955 0.299

0.50 β0 2.139 0.017 0.009 0.059 0.954 0.350
β1 3.347 0.000 0.010 0.068 0.940 0.373
β2 1.000 0.003 0.012 0.070 0.950 0.414

0.75 β0 2.277 0.026 0.024 0.103 0.968 0.595
β1 3.693 -0.002 0.036 0.126 0.942 0.676
β2 1.000 0.009 0.037 0.124 0.948 0.707

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error;
MAD is median absolute deviation of the estimates; CP is the empirical coverage probabilities with a
nominal level of 0.95 from subsampling symmetric confidence intervals with 500 subsamples; and Length is
mean confidence interval length.
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Table 3.3: Results from accelerated failure time models with normal error, based on 1000
simulation replicates.

Simulation N Parameter Truth Bias MSE MAD CP Length
200 β0 2 0.009 0.010 0.069 0.935 0.371

β1 3 -0.007 0.006 0.052 0.945 0.290
β2 1 0.001 0.008 0.057 0.933 0.332

400 β0 2 0.002 0.005 0.046 0.951 0.263
1 β1 3 -0.001 0.003 0.035 0.955 0.205

β2 1 -0.001 0.004 0.040 0.948 0.236

800 β0 2 -0.0004 0.002 0.033 0.954 0.187
β1 3 0.0001 0.001 0.024 0.948 0.146
β2 1 0.001 0.002 0.020 0.946 0.167

200 β0 2.2 0.269 0.090 0.268 0.497 0.550
β1 3.5 0.326 0.119 0.323 0.149 0.426
β2 1 0.061 0.021 0.095 0.928 0.496

400 β0 2.2 0.281 0.088 0.283 0.185 0.389
2 β1 3.5 0.317 0.107 0.315 0.016 0.301

β2 1 0.056 0.011 0.071 0.913 0.351

800 β0 2.2 0.275 0.080 0.276 0.027 0.274
β1 3.5 0.318 0.105 0.318 0 0.212
β2 1 0.061 0.008 0.065 0.833 0.247

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error;
MAD is median absolute deviation of the estimates; CP is the empirical coverage probabilities with a
nominal level of 0.95; and Length is mean confidence interval length.
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3.4.2 Application

We applied the proposed method to analyze “The Voluntary HIV-1 Counseling and

Testing Efficacy Study Group” data. The detailed study design and outcome of the orig-

inal clinical trials are described in Kamenga et al. (2000) and Coates et al. (2000), respec-

tively. In this study, 3120 individuals and 586 couples were enrolled in Kenya, Tanzania,

and Trinidad. Individual or couple participants were randomly assigned to HIV-1 volun-

tary counseling and testing (VCT) or basic health information (BHI) group. At the first

follow-up (around 6 months after baseline), sexually transmitted diseases (STD) were di-

agnosed and treated. No further testing for sexually transmitted diseases was performed

after the first follow-up.

To remove the correlation effects in couples, only females (N=2172) were included in

our analysis. Furthermore, we excluded females who did not have the first follow-up (N=377),

who had STD symptoms at baseline (N=876), and who had missing STD outcomes at

their first follow-up (N=16). The final analysis included 903 females aged 17-66 (median=26)

of which 48.5% (N=438) were in the VCT group.

The first follow-up was between 121 and 582 days (median=198 days) after the base-

line visit. Histograms for the numbers of days between the baseline visit and first follow-

up for the VCT and BHI groups are shown in Figure 3.9. There does not appear to be a

difference in follow-up time between the VCT and BHI groups. In our analysis, the out-

come “Any STD” is defined as any positive lab results or any self-reported STD symptom

presented at the first follow-up. The STD tested were Trichomonas vaginalis, Neisseria

gonorrhoeae, Chlamydia trachomatis, and syphilis. Self-reported STD symptoms included

pain or burning around vagina when urinating, non-traumatic sores or boils around vagina,

itching around vagina, abnormal vaginal discharge, and pain in the bottom of stomach

(not related to a menstrual period or using an IUD). Among 903 females, 333 (26.9%)

contracted “Any STD” by first follow-up (141 from the VCT group and 192 from the BHI
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group). The (unobserved) failure time of interest was the number of days to “Any STD”

contraction after the baseline visit. The analysis examined the effect of VCT versus BHI

and the effect of participants’ age on the quantiles of time to “Any STD.”
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Figure 3.9: Days between baseline visit and first follow-up for 903 females in voluntary
counseling and testing (VCT) and basic health information (BHI).
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Figure 3.10: Nonparametric maximum likelihood estimator (NPMLE) of the (unobserved)
failure time distribution function stratified by voluntary counseling and testing (VCT) vs.
basic health information (BHI) and age (below or above median age).

Before applying our proposed method on the data, nonparametric maximum likelihood

estimator (NPMLE) of the (unobserved) failure time distribution function was carried out
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for the data (Wellner and Zhan 1997, Gentleman and Vandal 2011). NPMLE was used to

determine whether certain quantiles can be reasonably estimated based on the data avail-

able. The NPMLE of distribution function stratified by VCT versus BHI and by age (be-

low or above median age) is shown in Figure 3.10.

Based on the NPMLE in Figure 3.10, it is clear that the data may provide enough in-

formation for estimation only for quantiles less than 0.4th for VCT group; thus, we fo-

cused only on 0.05 to 0.35 quantiles per 0.05 increments when performing data analysis.

We centered the age at 30 then divided it by 5. We also divided the time between base-

line visit and first follow-up by 30.5 to convert the time form days to months. Our pro-

posed model was fitted for the lower quantiles and symmetric confidence intervals were

constructed by subsampling where the block size was chosen based on the algorithm pre-

sented in Section 3.2.3. The results are summarized in Table 3.4 and Figure 3.11.
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Figure 3.11: HIV data: effect on delaying STD contraction. VCT stands for voluntary
counseling and testing and BHI stands for basic health information. The vertical bars are
symmetric confidence interval constructed using a subsampling method.

The results indicated that VCT had statistically significant delay effect in STD con-

traction compared to BHI at 0.05, 0.15, 0.20, and 0.35 quantiles. Older age also showed
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Table 3.4: Results of analyzing “The Voluntary HIV-1 Counseling and Testing Efficacy
Study Group” data, effect on delaying STD contraction in months.

Quantile Parameter Estimate Lower C.I. Upper C.I.
0.05 Intercept 3.103 -1.129 7.334

VCT vs. BHI 1.538 0.151 2.924
(Age− 30)/5 0.328 -0.995 1.651

0.10 Intercept 3.130 -1.753 8.012
VCT vs. BHI 1.509 -0.019 3.037
(Age− 30)/5 0.328 -1.127 1.783

0.15 Intercept 1.295 -2.192 4.781
VCT vs. BHI 1.616 0.108 3.125
(Age− 30)/5 0.948 -0.019 1.915

0.20 Intercept 1.303 -1.090 3.696
VCT vs. BHI 1.697 0.174 3.221
(Age− 30)/5 0.933 0.308 1.558

0.25 Intercept 1.305 -2.053 4.664
VCT vs. BHI 1.639 -2.017 5.295
(Age− 30)/5 0.937 -1.211 3.085

0.30 Intercept 1.215 -1.613 4.042
VCT vs. BHI 0.424 -5.817 6.665
(Age− 30)/5 2.856 0.697 5.015

0.35 Intercept 2.563 -0.258 5.383
VCT vs. BHI 6.774 2.363 11.184
(Age− 30)/5 2.203 0.490 3.915

VCT stands for voluntary counseling and testing; BHI stands for basic health information.

a significant delay in STD contraction at 0.20, 0.30, and 0.35 quantile. Specifically, com-

pared to BHI, participants in VCT delayed STD contraction by about 1.5-1.7 months for

0.05 to 0.20 quantiles and by about 6 months at 0.35 quantiles. Each 5 years increase

in age delayed STD contraction by around 0.5 month at the lower quantiles examined

to around 2.5 months at higher quantiles albeit the effects were only significant at some

quantiles. The effect of VCT in delaying STD contraction had a pretty constant effect at
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lower quantiles among quantiles examined and the effect changed more dramatically at

higher quantiles. The dramatic changes at the higher quantile may suggest some identifia-

bility issue for the higher quantile. In theory, the intercept term should be non-decreasing

but our point estimate for the intercept did not have such a pattern. From Figure 3.10

we can see that from 0 to 0.4 quantile, the NPMLE only have one or two jumps which

indicate that there is very limited information available to distinguish different quantiles

if they are within the same jump. Thus, our estimated intercepts did not have a non-

decreasing pattern and they all had wide confidence intervals. Quantile regression mod-

els provided two unique advantages in analyzing the HIV data. First, compared to logis-

tic regression which is the analysis method of choice for the original clinical trial (Coates

et al. 2000), quantile regression provided a more intuitive interpretation of the VCT effect.

Rather than presenting an odds ratio, quantile regression allows us to interpret the VCT

effect as days in delaying STD contraction. Second, quantile regression allowed us to ex-

amine the VCT effect in different quantiles. Specifically, it might be of interest to know

the effect of VCT in the lower quantiles as we might hope VCT has a greater delaying ef-

fect in lower quantiles. Based on our results, VCT indeed have a statistical significant ef-

fect in most lower quantiles examined; thus, it indicated that VCT was effective to reduce

unprotected sexual intercourse in most of the lower quantiles. For example, 0.05 quantile

of time to STD contraction for 30 years old females in VCT group were 1.5 months higher

than females in BHI group albeit it had no statistical significant effect in changing the odd

of STD contraction (Coates et al. 2000).

3.5 Discussion

To solve the non-convex objective function in Equation (3.12), we used the difference

between two convex hinge functions Equation (3.13) to approximate the objective func-

tion. One practical issue is how to choose a good initial value. Currently, we used a coarse
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grid search to generate the initial value. A grid search can be done in low dimension data

but it is not practical when the data is high dimensional. Further work is needed to inves-

tigate a practical method to produce reasonable initial value for high dimensional data.

In real data analysis, it may be the case that not all quantiles are estimable. It is not

due to the estimation procedure but the sparse data structure. Consider a situation where

a disease requires a long incubation period, if the observation times are all concentrated

in a short period, most subjects would not have developed any symptoms yet. We will

have most people at δ = 0 at the end of the observation period. In this case, the higher

tail quantiles will not be estimable because we simply do not have enough information.

We recommend to obtain a NPMLE of the cumulative density function stratified by co-

variates as we did for the HIV data. The NPMLE results can provide useful information

about what quantiles can be reasonably estimated.

The method proposed in this paper can be easily extended to type II interval-censored

data. For example, suppose the event occurred in interval (L,R], we can simply treat this

as 2 records in current status data format. The first record would have C = L, and δ = 0

and the second record would have C = R, and δ = 1 then the same optimization rou-

tine can be carried out for estimation. Extension to right censored data is also possible.

Intuitively, the non-censored observations can be treated as the event occurred within a

very small interval and right-censored observation can be treated as current status with C

equals the censoring time and δ = 0. This extension will not require the “global linearity

assumption” which is commonly assumed in existing quantile regression models for right-

censoring data (Portnoy 2003, Peng and Huang 2008). Furthermore, models with varying

coefficient or nonparametric quantile regression model may be useful for practical purposes

which warrant future investigation.
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3.6 Proof of lemma and theorems

Proof of Lemma 3.3.1.

Z(β)− Z(βτ ) = PC,X

[{
τI(δ = 0)I(X

T

β ≤ C) + (1− τ)I(δ = 1)I(X
T

β > C)
}

−
{
τI(δ = 0)I(X

T

βτ ≤ C) + (1− τ)I(δ = 1)I(X
T

βτ > C)
}]

= PC,X

[
{τI(δ = 0)− (1− τ)I(δ = 1)}

{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}]

= PC,X

[
{τ − I(δ = 1)}

{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}]

= PC,X

[{
τ − FT |X(C|X)

}{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}]

=

ˆ
X

ˆ
C|X

{
τ − FT |X(C | X)

}
{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}
dPC|X dPX

=

ˆ
X

ˆ
(X

T
β≤C<XT

βτ )
⋃

(XT βτ≤C<XT β)

∣∣∣∣ˆ c

XT βτ

fT |X(t) fC|X(c) dt

∣∣∣∣ dc dPX
Condition 2 insures that the integrand of the inner integral is strictly positive. We can

then apply Theorem 1.6.6 (b) from Ash and Doléans-Dade (2000) which states “Let h be

Borel measurable. If h ≥ 0 and
´

Ω
hdµ = 0, then h = 0 a.e.”. Since the integrand,

fT |X(t) fC|X(c), is positive, we can conclude that the inner most integral is positive using

a contrapositive argument. Applying the same theorem two more times, along with the

full rank condition in Condition 1, we can then conclude that, Z(β) − Z(βτ ) > 0 for all

β 6= βτ and hence, βτ is identifiable.

Remark It is true that the derivative of Z(β) with respect to β is zero at the true β.

Z(β) is defined as

Z(β) = E
{
τI(δ = 0)I(X

T

β − C ≤ 0) + (1− τ)I(δ = 1)I(X
T

β − C > 0)
}

=

ˆ
X

(ˆ ∞
X
T
β

τ dFC|X +

ˆ X
T
β

0

FT |X(c) dFC|X − τ
ˆ ∞

0

FT |X(c) dFC|X

)
dFX .
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We can take the derivative of Z(β) with respect to β as,

∂

∂β
Z(β) =

ˆ
X

{
−τfC|X(XTβ)X + FT |X(XTβ) fC|X(XTβ)X

}
dFX .

By definition, FT |X(XTβτ ) = τ , so it is immediate that ∂
∂β
Z(β) |β=βτ= 0.

Proof of Theorem 3.3.2. We shall prove this theorem by showing

sup
β∈B
|Zn,ε(β)− Z(β)| → 0 almost surely (3.16)

and then showing Z(β) is continuous. By Lemma 3.3.1, βτ is the unique minimizer of Z(·)

and since B is assumed, we can use Theorem 2.1 of Newey and McFadden (1994) to con-

clude that β̂n,ε → βτ in probability.

We can show Equation (4.33) is true by proving

sup
β∈B
|Zn(β)− Z(β)| → 0 almost surely, sup

β∈B
|Zn,ε(β)− Zn(β)| → 0 almost surely

since

sup
β∈B
|Zn,ε(β)− Z(β)| ≤ sup

β∈B
|Zn,ε(β)− Zn(β)|+ sup

β∈B
|Zn(β)− Z(β)| (3.17)

The class of indicator functions I(δ = 0), I(δ = 1), I1 ≡ {I(X
T
β − C ≤ 0) : β ∈ B},

and I2 ≡ {I(X
T
β − C > 0) : β ∈ B} are examples of Vapnik-C̆ervonenkis (VC)-subgraph

classes. τ and 1 − τ are fixed functions and thus by Lemma 2.6.18 (i) and (vi) of van der

Vaart and Wellner (1996), the classes τ I(δ = 0) I1 and (1 − τ) I(δ = 1) I2 are also VC-

subgraph classes. Finally, (v) of the same lemma gives that Z ≡ {Zn(β) : β ∈ B} is a

VC-subgraph class. Since Z is a VC-subgraph class, it is also a Glivenko-Cantelli class;

hence, supβ∈B |Zn(β)− Z(β)| → 0 almost surely.

Since I(|XT

i β−Ci| ≤ ε/2) is a VC class of functions, Pn{I(|XT

i β−Ci| ≤ ε/2)} converges

to P{I(|XT

i β − Ci| ≤ ε/2)} uniformly over B where Pn is the empirical measure and P is
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the true underlying measure. Thus, we have

sup
β∈B
|Zn,ε(β)− Zn(β)| ≤ sup

β∈B
Pn{I(|XT

i β − Ci| ≤ ε/2)}

−→
n↑∞

sup
β∈B

P{I(|XT

β − C| ≤ ε/2)}

= sup
β∈B

PXPC|X(|XT

β − C| ≤ ε/2 | X)

≤ PX(εMC | X) = εMC (3.18)

By Condition 4, Equation (4.35) is bounded and converges to 0 as ε → 0, thus we can

conclude that supβ∈B |Zn,ε(β)− Zn(β)| → 0 almost surely as n→∞ and ε→ 0.

Since each term on the right hand side of Equation (4.34) converges to 0 almost surely,

we can conclude that supβ∈B |Zn,ε(β)− Z(β)| → 0 almost surely as n→∞ and ε→ 0.

To show that Z(·) is continuous, we re-express Z(·) as

Z(β) = E
{
τI(δ = 0)I(X

T

β − C ≤ 0) + (1− τ)I(δ = 1)I(X
T

β − C > 0)
}

=

ˆ
X

[
τ

ˆ ∞
XT β

{
1− FT |X(c)

}
dFC|X + (1− τ)

ˆ X
T
β

0

FT |X(c)dFC|X

]
dFX

=

ˆ
X

(ˆ ∞
XT β

τ dFC|X +

ˆ X
T
β

0

FT |X(c) dFC|X − τ
ˆ ∞

0

FT |X(c) dFC|X

)
dFX . (3.19)

Only the first two inner integrals are functions of β. Under Condition 4, both of these

inner integrals are bounded and continuous with respect to β; therefore, Z(·) is continu-

ous.

Proof of Theorem 3.3.3. Before proceeding with the proof, we will state the main theorem

from Kim and Pollard (1990). The theorem concerns estimators defined by minimization

of process Png(· , θ) = 1
n

∑
i≤n g(ξi, θ), where {ξi} is a sequence of independent observations

taken from a distribution P and {g(·, θ) : θ ∈ Θ} is a class of functions indexed by a subset
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Θ of <d. Pn denotes the expectation with respect to the empirical process. The envelope

GR(·) is defined as the supremum of |g(·, θ)| over the class gR = {g(·, θ) : |θ − θo| ≤ R} .

Kim and Pollard (1990) Let {θn} be a sequence of estimators for which

(i) Png(· , θn) ≤ infθ∈Θ Png(·, θ) + op(n
−2/3).

Suppose

(ii) θn converges in probability to the unique θ0 that minimizes Pg(·, θ);

(iii) θ0 is an interior point of Θ.

Let the functions be standardized so that g(·, θ0) ≡ 0. If the classes gR, for R near 0,

are uniformly manageable for the envelopes GR and satisfy

(iv) Pg(·, θ) is twice differentiable with second derivative matrix V at θ0;

(v) H(s, t) = limα→∞ αPg(·, θ0 + s/α)g(·, θ0 + t/α) exists for each s, t in <d and

lim
α→∞

αPg(·, θ0 + t/α)2I {|g(·, θ0 + t/α)| > εα} = 0

for each ε > 0 and t in <d;

(vi) PG2
R = O(R) as R → 0 and for each ε > 0 there is a constant K such that

PG2
RI{GR > K} < εR for R near 0;

(vii) P |g(·, θ1)− g(·, θ2)| = O(|θ1 − θ2|) near θ0;

then the process n2/3Png(·, θ0 + tn−1/3) converges in distribution to a Gaussian process

Z(t) with continuous sample paths, expected value tTV t/2 and covariance kernel H.

If V is positive definite and if Z has nondegenerate increments, then n1/3(θn − θ0) con-

verges in distribution to the (almost surely unique) random vector that minimizes Z(t).

Now we proceed with our proof of theorem 2. It will be convenient to define a version
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of the original objective function centered at the true value βτ ,

g(β) =
{
τI(δ = 0)I(X

T

β ≤ C) + (1− τ)I(δ = 1)I(X
T

β > C)
}

−
{
τI(δ = 0)I(X

T

βτ ≤ C) + (1− τ)I(δ = 1)I(X
T

βτ > C)
}

= {τI(δ = 0)− (1− τ)I(δ = 1)}
{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}

= {τ − I(δ = 1)}
{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}
.

Under the true distribution P , we haveP (g(β)) = Z(β) − Z(βτ ). The minimum value of

P (g(·)) is then obtained at the arg min of Z(·) and P (g(βτ )) = 0. The estimator we use

here is β̂n,ε which is the minimizer of Zn,ε(·) defined as in (3.13).

The first condition of the main theorem from Kim and Pollard (1990) is satisfied under

Condition 5. By the definition of β̂n,ε, we have Zn,ε(β̂n,ε) ≤ inf
β
Zn,ε(β) + op(n

−2/3). We also

have Zn(β̂n,ε)− infβ Zn(β) ≥ 0 by definition.

Zn(β̂n,ε)− inf
β
Zn(β) ≤Zn,ε(β̂n,ε) + Pn{I(|C −XT

βn,ε| < ε/2)}

− inf
β∈β

[
Zn,ε(β)−Pn{I(|C −XT

β| < ε/2)}
]

≤Zn,ε(β̂n,ε)− inf
β
Zn,ε(β) + 2 sup

β
Pn{I(|C −XT

β| < ε/2)}

=Zn,ε(β̂n,ε)− inf
β
Zn,ε(β) + 2 sup

β
P (|C −XT

β| < ε/2) + op(ε n
−1/2)

≤Zn,ε(β̂n,ε)− inf
β
Zn,ε(β) + 2εMC + op(n

−7/6) = op(n
−2/3)

Therefore, Zn(β̂n,ε) ≤ infβ Zn(β) + op(n
−2/3) which satisfied the first condition. The second

condition, β̂n,ε → βτ in probability, has been verified in Theorem 3.3.2. The third condi-

tion is satisfied by assuming Condition 2.

The remaining four conditions of the theorem deal with the nature of expectation of g
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under the measure P . P (g) may be expressed as

P (g(β)) = P
[
{τ − I(δ = 1)}

{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}]

= PC,X

{
P [{τ − I(δ = 1)} | C,X]

{
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}}

= PC,X

[{
τ − FT |X(C | X)

} {
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}]

where FT |X(· | ·) is the conditional distribution of T given X. This expectation is domi-

nated by:

P |g(β)| = P
∣∣∣{τ − FT |X(C | X)

} {
I(X

T

β ≤ C < X
T

βτ )− I(X
T

βτ ≤ C < X
T

β)
}∣∣∣

≤ P
{
I(X

T

β ≤ C < X
T

βτ ) + I(X
T

βτ ≤ C < X
T

β)
}
≤ 1.

Since P is absolutely continuous with respect to Lebesgue measure, for any sequence dn →

0, the dominated convergence theorem tells us P (g(β + dn)) → P (g(β)). In other words,

P (g(β)) is continuous with respect to β.

We may expand P (g(β)) with a Taylor expansion. The first derivative is found by in-

terchanging integration (expectation) and differentiation to find

∂

∂βi
P (g(β)) =

ˆ
X

{
τ − FT |X(X

T

β | X)
}
Xi fC|X(X

T

β | X)

{−I(X
T

β < X
T

βτ )− I(X
T

βτ < X
T

β)} dPX

=

ˆ
X

{
FT |X(X

T

β | X)− τ
}
Xi fC|X(X

T

β | X) dPX ,

where fC|X is the density of the observation time C conditioned on X and Xi is an ele-

ment of Xi. Evaluated at βτ , the term FT |X(βτX | X) − τ equal to zero by definition of

the τth quantile, making the derivative equal zero as would be expected for an extrema.
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Taking one step further, the second derivative would be

V (β)i,j =
∂2

∂βi∂βj
P (g(β))

=

ˆ
X

(
FT |X(X

T

β | X)− τ
)
XiXj

∂

∂C
fC|X(X

T

β | X) dPX

+

ˆ
X

XiXjfC|X(X
T

β | X)fT |X(X
T

β | X) dPX .

At βτ , the first integral vanishes and only the second remains taking the form

V (βτ )i,j =

ˆ
X

{
XiXjfC|X(X

T

βτ | X)fT |X(X
T

βτ | X)
}
dPX

As the entries are dominated by

|V (βτ )i,j| ≤ MCMTM
2
|X|,

where M|X| is the bound over all |Xi| and MC and MT are defined in Condition 4. V (βτ )i,j

will be well defined verifying the fourth condition of the theorem. Writing

V (βτ ) = PX(XX
T

h(X)), with h(X) = fC|X(X
T

β | X)fT |X(X
T

β | X) ≥ 0,

show that V (βτ ) would be a symmetric positive semi-definite matrix since it is a positive

mixture of the positive semi-definite terms XXT . A sufficient condition for V (βτ ) to be

positive definite is that the Lebesgue measure of the set {X : fC|X(X
T
βτ | X)fT |X(X

T
βτ |

X)fX(X) > 0} is greater than zero.
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To control asymptotic covariance of Z(s), let

H(s, r) = lim
α→∞

αP{g(βτ + r/α)g(βτ + s/α)}

= lim
α→∞

αPC,X

{{
τ − FT |X(C | X)

}2

[
I{XT

(βτ + r/α) ≤ C < X
T

βτ} − I{X
T

βτ ≤ C < X
T

(βτ + r/α)}
]

[
I{XT

(βτ + s/α) ≤ C < X
T

βτ} − I{X
T

βτ ≤ C < X
T

(βτ + s/α)}
]}

= lim
α→∞

αPC,X

[{
τ − FT |X(C | X)

}2

{
I

(
X

T
r ∨XT

s

α
≤ C −XT

βτ < 0

)
+ I

(
0 ≤ C −XT

βτ <
X

T
r ∧XT

s

α

)}]
,

where ∨ and ∧ denote maximum and minimum, respectively. Using Condition 4 and 7, we

have

PC,X

[{
τ − FT |X(C | X)

}2

{
I

(
X

T
r ∨XT

s

α
≤ C −XT

βτ < 0

)
+

I

(
0 ≤ C −XT

βτ <
X

T
r ∧XT

s

α

)}]

≤
ˆ
X

MC
|XT

r| ∧ |XT
s|

α
dPX ≤MC

(‖s‖1 + ‖r‖1)M|X|
α

= O(α−1),

hence, along with Condition 6, H(s, r) is well defined by the dominated convergence theo-

rem satisfying the fifth condition.

Let GR be the envelope of gR ≡ {g(β) : ‖β − βτ‖∞ < R ≤ ε̃}, i.e.,

GR = |τ − I(δ = 1)| I(|C −XT

βτ | < Rmax |Xj|) ≤ I(|C −XT

βτ | < Rmax |Xj|)

A sufficient condition for the class gR to be uniformly manageable is that its envelope
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function GR is uniformly square integrable given that {g(β)} is VC-subgraph (Moham-

madi and Van De Geer 2005). Since GR is bounded by one, it is uniformly square inte-

grable for R close to zero. Together with the fact that {g(β)} is VC-subgraph, we con-

clude that gR is uniformly manageable. Then

P (G2
R) ≤

ˆ
X

ˆ
<
I(|C −XT

βτ | < Rmax |Xj|) dPC|X dPX

≤
ˆ
X

2MCRmax(|Xj|) dPX ≤ R(2MCM|X|) = O(R).

For any ε > 0, we can use K = 2, then E{G2
R I(GR > K)} = 0 < εR since GR is less than

K everywhere. Combining these two traits satisfying the sixth condition of the theorem.

The final condition is verified by letting GR,β be the envelope of {g(β̃) − g(β) : ‖β̃ −

β‖∞ < R}, i.e.,

GR,β = |τ − I(δ = 1)| I(|C −XT

β| < Rmax |Xj|) ≤ I(|C −XT

β| < Rmax |Xj|).

Using the same integration inequalities as used in the preceding for GR we find that P |g(β̃)−

g(β)| = O(‖β̃ − β‖∞) = O(‖β̃ − β‖1) over all β, β̃ in an ε̃ neighborhood of βτ since ‖ · ‖∞

and ‖ · ‖1 are equivalent metrics.

As the seven conditions are satisfied, the conclusion of the main theorem in Kim and

Pollard (1990) follows which in turn proved Theorem 2.
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CHAPTER 4: QUANTILE REGRESSION MODELS FOR CASE II
INTERVAL-CENSORED FAILURE TIME DATA

4.1 Introduction

Quantile regression (Koenker and Bassett 1978) describes how covariates influence the

location, scale, and shape of a response distribution. It specifies changes in the conditional

quantile as a parametric function of explanatory variables and it is a more stable candi-

date to describe central tendency than the conditional mean model when the data is het-

eroscedastic. Quantile regression has been extended to handle censored data in survival

analysis, providing a useful alternative to traditional Cox proportional hazards models

since it relaxes the proportionality constraint and is robust when heterogeneity is present

in the data.

Early methods (Ying et al. 1995, Yang 1999, Honore et al. 2002) required that the cen-

soring time must be independent of covariates which is too restrictive for many real data

applications. Conditional independence is a weaker condition assuming that failure time

and censoring time are independent conditional on covariates. Combining conditional inde-

pendence and without assuming constraints on an error distribution, Portnoy (2003) pro-

posed a recursively reweighted estimator. Unfortunately, the quantile can not be computed

until all lower quantile regression estimators are computed first. The recursive scheme also

complicates asymptotic inference. To overcome inferential difficulties, Peng and Huang

(2008) developed a quantile regression method for survival data subject to conditionally

independent censoring and used a martingale-based procedure which makes asymptotic in-

ference more tractable. However, it still has the same drawback as Portnoy (2003), namely,
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the entire lower quantile regression process must be computed first. To avoid the need

to assume that all lower quantiles are linear, Wang and Wang (2009) proposed a locally

weighted method. Unfortunately, their method suffers from the curse of dimensionality

and hence can only handle a very limited number of covariates. Wey et al. (2014) and

Leng and Tong (2013) proposed some alternatives to Wang and Wang (2009), which allow

conditional independence assumption, yet they still suffer from the curse of dimensionality

as in Wang and Wang (2009).

Interval-censored data arise extensively in epidemiological studies and clinical trials,

especially in large-scale longitudinal studies where the event of interest, such as disease on-

set, can not be observed precisely, and is only known to occur between two examination

times. Despite the fact that the development for censored quantile regression flourishes,

the aforementioned methods were developed for right-censoring; hence, are not suitable

for interval-censoring. To the best of our knowledge, the only method available for quan-

tile regression models on interval-censored data was proposed by Kim et al. (2010) which

is a generalization of the method developed by McKeague et al. (2001). The proposed

method can only be applied when the covariates take on a finite number of values since

the method requires estimation of the survival function conditional on covariates. The pro-

posed method performed well in simulation studies, yet no theoretical justifications were

offered. In this paper, we develop a new method for the conditional quantile regression

model for Case II interval-censored data while allowing the censoring time to depend on

the covariates without requiring the global linearity assumption.

The remaining paper is organized as follows. In Section 4.2, the proposed model is in-

troduced and we establish estimation and inference procedures. Consistency and asymp-

totic distributions are presented in Section 4.3 with technical details deferred to Section 4.7.

In Section 4.4 and Section 4.5, small-sample performance is demonstrated via simulation

studies and an application to data from the Atherosclerosis Risk in Communities Study is
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given. Section 4.6 provides further discussion of the method presented herein.

4.2 Model and Inference Procedure

4.2.1 Models and Data

Let T denote failure time and let X denote a k × 1 covariate vector with the first com-

ponent set as one. We consider a quantile regression model for the failure time,

QT (τ |X) = XTβ(τ), τ ∈ (0, 1), (4.20)

where QT (τ |X) is the conditional quantile defined as QT (τ |X) = inf{t : pr(T ≤ t|X) ≥

τ} and the vector of unknown regression coefficients, β(τ), represents the covariate effects

on the τth quantile of T which may depend on τ . Our interest lies in the estimation and

inference on β(τ).

Let (L,R) be two random observation times satisfying L < R with probability 1.

Define δ1 ≡ I(T ≤ L) and δ2 ≡ I(L < T ≤ R) where I(·) is the indicator func-

tion. It is assumed that T is conditionally independent of L and R given X. For Case II

interval-censored data, T is not observed and we instead observe n independent replicates

of (L,R,X, δ1, δ2) denoted by {(Li, Ri,Xi, δi1, δi2)i=1,2,··· ,n}.

The τth conditional quantile of T conditional on X can be characterized as the solu-

tion to the expected loss minimization problem (Powell 1994),

Z(β) = E{ρτ (T −XTβ(τ))|X}, (4.21)

where ρτ (u) = u{τ − I(u < 0)}. Furthermore, quantiles possess “equivariance to monotone

transformations” (Powell 1994) which means that we may analyze a transformation h(T )

since the conditional quantile of h(T ) is h(XTβ(τ)) if h(·) is nondecreasing (Powell 1994).

Consider the transformations h1(T |L,R) = I(T > L) and h2(T |L,R) = I(T > R) which
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are monotone nondecreasing, we can then apply the same transformation to the condi-

tional quantile, XTβ(τ) and use the transformed conditional quantile, I(XTβ(τ) > L)

and I(XTβ(τ) > R), in the subsequent analysis. The objective function in Equation

(4.21) is well-defined irrespective of the existence of moments of the data and is sufficient

to identify the parameters of interests (Powell 1994). We can thus substitute (1 − δ1),

I(XTβ > L), (1− δ1 − δ2), and I(XTβ > R) in Equation (4.21) and get

Z1(β) =E[ρτ{(1− δ1)− I(XTβ(τ) > L)}|X,L,R] and (4.22)

Z2(β) =E[ρτ{(1− δ1 − δ2)− I(XTβ(τ) > R)}|X,L,R]. (4.23)

We can then estimate β(τ) using Equations (4.22) and (4.23) simultaneously since they

contain only the observable variables (L,R,X, δ1, δ2). Due to censoring, it is possible that

not all β(τ) can be estimated using the observed data. We provide a sufficient condition to

guarantee the identifiability for a fixed quantile in Section 4.3.1.

4.2.2 Parameter Estimation and Algorithm

We will suppress τ in β(τ) for notational simplicity. Assuming the formulation from

Equation (4.22), the regression quantile estimator β̂n (Koenker and Bassett 1978) is the

minimizer of the objective function

Z1
n(β) =

n∑
i=1

ρτ{(1− δi1)− I(XT
i β > Li)}

=
n∑
i=1

{
τI(δi1 = 0)I(XT

i β − Li ≤ 0) + (1− τ)I(δi1 = 1)I(XT
i β − Li > 0)

}
=

n∑
i=1

wi1 I{yi1(XT
i β − Li) < 0}, (4.24)
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where

yi1 =

 1 if δi1 = 0

−1 if δi1 = 1
and wi1 =

 τ if δi1 = 0

1− τ if δi1 = 1
.

Similarly, assuming the formulation from Equation (4.23), the regression quantile estima-

tor β̂n is also the minimizer of the objective function

Z2
n(β) =

n∑
i=1

ρτ{(1− δi1 − δi2)− I(XT
i β > Ri)} =

n∑
i=1

wi2 I{yi2(XT
i β −Ri) < 0}, (4.25)

where

yi2 =

 1 if δi1 = 0 and δi2 = 0

−1 if δi1 = 1 or δi2 = 1
and wi2 =

 τ if δi1 = 0 and δi2 = 0

1− τ if δi1 = 1 or δi2 = 1
.

To produce an estimate β̂n using information from both observation times, we combine

Equation (4.24) and (4.25) to from the objective function,

Zn(β) =
n∑
i=1

wi1 I{yi1(XT
i β − Li) < 0}+

n∑
i=1

wi2 I{yi2(XT
i β −Ri) < 0}. (4.26)

The regression quantile estimator, β̂n, which minimizes Equation (4.26) is difficult to ob-

tain by direct minimization since Zn(β) is neither convex nor continuous. To overcome this

difficulty, we approximate Zn(β) as a difference of two hinge functions, where the approxi-

mation is controlled by a small constant (see Figure 4.12). Specifically, the approximation
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Figure 4.12: An illustration of using the difference between two hinge loss functions to
approximate a 0/1 loss.

is defined as the following.

Zn,ε(β) =
n∑
i=1

wi1

[
1

ε

{ ε
2
− yi1(XT

i β − Li)
}

+
− 1

ε

{
− ε

2
− yi1(XT

i β − Li)
}

+

]
+

n∑
i=1

wi2

[
1

ε

{ ε
2
− yi2(XT

i β −Ri)
}

+
− 1

ε

{
− ε

2
− yi2(XT

i β −Ri)
}

+

]
=

n∑
i=1

[
wi1

{
1

2
− 1

ε
yi1(XT

i β − Li)
}

+

+ wi2

{
1

2
− 1

ε
yi2(XT

i β −Ri)

}
+

]
+

n∑
i=1

[
(−wi1)

{
−1

2
− 1

ε
yi1(XT

i β − Li)
}

+

+ (−wi2)

{
−1

2
− 1

ε
yi2(XT

i β −Ri)

}
+

]
(4.27)

where ε > 0 and {x}+ = max(x, 0).

To mitigate computational difficulties, we utilize the concave-convex procedure pro-

posed by Yuille and Rangarajan (2003). The concave-convex procedure relies on decom-

posing an objective function, f(x), into a convex part, fconvex(x), and a concave part, fconcave(x)

such that f(x) = fconvex(x) + fconcave(x). Optimization is carried out with an iterative pro-

cedure in which fconcave(x) is linearized at the current solution x(t),

x(t+1) = arg minx
{
fconvex(x) + (x− x(t))f

′
concave(x

(t))
}
, making each iteration a convex

optimization problem. The first value x(0) can be initialized with any reasonable guess.

71



To apply concave-convex procedure to our optimization problem, we define the first

term in Equation (4.27) as fconvex(β) and the second term as fconcave(β). The gradient of

the concave part, fconcave(β), is

∂

∂β(τ)
fconcave(β) =

n∑
i=1

wi1

(
1

ε
yi1X

T
i

)
· I
{

1

2
+

1

ε
yi1(XT

i β − Li) < 0

}
+

n∑
i=1

wi2

(
1

ε
yi2X

T
i

)
· I
{

1

2
+

1

ε
yi2(XT

i β −Ri) < 0

}

Applying the concave-convex procedure to the above decomposition, we obtain

β(r+1) = arg min
β

{
n∑
i=1

[
wi1

{
1

2
− 1

ε
yi1(XT

i β − Li)
}

+

+ wi2

{
1

2
− 1

ε
yi2(XT

i β −Ri)

}
+

]
+

n∑
i=1

wi1

{
1

ε
yi1X

T
i (β − β(r))

}
· I
{

1

2
+

1

ε
yi1(XT

i β − Li) < 0

}

+
n∑
i=1

wi2

{
1

ε
yi2X

T
i (β − β(r))

}
· I
{

1

2
+

1

ε
yi2(XT

i β −Ri) < 0

}}
, (4.28)

where β(r) denotes the estimated β(τ) at the rth iteration.

The final form can be solved with a standard convex optimization algorithm with a de-

creasing sequence of ε = {20, 2−1, · · · }. Specifically, given the initial value, we solved Equa-

tion (4.28) with ε = 20 using the optimization toolbox in MATLAB. The solution with

ε = 20 was then used as the initial value to solve Equation (4.28) with ε = 2−1. This was

repeated until the maximum relative change over all covariates was less than one percent.

Since the continuous approximation to the object function is not convex, a good initial

value is necessary to circumvent the multitude of local minima. Observe that the objective

function in Equation (4.26) bears a resemblance to that of of the support vector machine

(SVM), i.e. the loss is added when XT
i β is on the “wrong side” of the observation times

Li or Ri. We thus use a weighted SVM to produce the initial value since it is a quadratic

programming problem which is easy to compute. We first stack the observations such that
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ỹ = [y11, y21, · · · yn1, y12, y22, · · · , yn2]′, C̃ = [L1, L2, · · · , Ln, R1, R2, · · · , Rn]′,

w̃ = [w11, w21, · · ·wn1, w12, w22, · · · , wn2]′, and X̃i = X̃n+i = Xi for i = 1, · · · , n. We can

then formulate a weighted-SVM as the solution to

min
β

1

2
‖β‖2 + d

2n∑
j=1

w̃jξj subject to

 ỹj(X̃
′
jβ − C̃j) ≥ 1− ξj ∀j

ξj ≥ 0
, (4.29)

where d is the “cost” parameter and can be selected using cross-validation. Equation (4.29)

can be solved using a standard quadratic programming solver. The solution to Equation

(4.29) can be used as the initial value in our proposed algorithm. One should note that,

in our formulation, the intercept term is included in the ‖β‖2 term which differs from the

typical SVM. The initial value used in both simulation studies and real data analysis was

produced using this method.

4.2.3 Inference

The confidence intervals for parameter estimates are obtained using a subsampling

method since bootstrap does not consistently estimate the asymptotic distribution for esti-

mators with cube-root convergence (Abrevaya and Huang 2005). The subsampling method

described below is from Politis et al. (1999). Subsampling can produce consistent esti-

mated sampling distributions under extremely weak assumptions even when the bootstrap

fails. The justification for using the subsampling method in our study is discussed further

in Section 4.3.3.

To obtain the confidence intervals for the minimizer of (4.27), β̂n,ε, we produce subsam-

ples K1, K2, · · · , KNn where Kj’s are the Nn ≡
(
n
b

)
distinct subsets of

{(Li, Ri, Xi, δi1, δi2)i=1,··· ,n} of size b. Let βτ denote the true parameter values and β̂n,ε,b,j

denote the estimated value produced by solving (4.28) using the Kjth dataset.
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Define

Ln,b(x) = N−1
n

Nn∑
j=1

I{b1/3(β̂n,ε,b,j − β̂n,ε) ≤ x} and cn,b(γ) = inf{x : Ln,b(x) ≥ γ}.

From Theorem 3.3.3 given later, for any 0 < γ < 1, P
(
n1/3(β̂n,ε − βτ ) ≤ cn,b(γ)

)
→ γ

under the condition that b → ∞ as n → ∞ and b/n → 0. It follows that for any 0 < α <

0.5, P
(
cn,b
(
α
2

)
< n1/3(β̂n,ε − βτ ) ≤ cn,b

(
1− α

2

))
→ 1 − α thus an asymptotic 1 − α level

confidence interval for βτ can be constructed with

[
β̂n,ε − n−1/3cn,b

(
1− α

2

)
, β̂n,ε − n−1/3cn,b

(α
2

)]
.

Symmetric confidence intervals can be obtained by modifying the above approach slightly.

Define

L̃n,b(x) = N−1
n

Nn∑
i=j

I{b1/3 |β̂n,ε,b,j − β̂| ≤ x} and c̃n,b(γ) = inf{x : L̃n,b(x) ≥ γ}.

Again, if b → ∞ as n → ∞ and b/n → 0, a symmetric confidence interval for β̂ can be

constructed as [
β̂n,ε − n−1/3c̃n,b(1− α), β̂n,ε + n−1/3c̃n,b(1− α)

]
. (4.30)

Symmetric confidence intervals are desirable because they often have nicer properties

than the nonsymmetric version in finite samples (Banerjee and Wellner 2005). This fact

was also observed in our simulation studies; hence, symmetric confidence intervals are rec-

ommended and used in this paper.

To avoid large scale computation issues, a stochastic approximation from Politis et al.

(1999) is employed where B randomly chosen datasets from {1, 2, · · · , Nn} are used in the

above calculation. Furthermore, the block size is chosen using the method implemented in

Delgado et al. (2001).
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4.3 Asymptotic Properties

4.3.1 Identifiability

We first provide a set of sufficient conditions for identifiability.

For a fixed quantile τ , let Zn(β) be the summation of Equation (4.24) and Equation

(4.25), that is,

Zn(β) =
1

n

n∑
i=1

[τI(Ti > Li)I(XT
i β − Li ≤ 0) + (1− τ)I(Ti ≤ Li)I(XT

i β − Li > 0)

+ τI(Ti > Ri)I(XT
i β −Ri ≤ 0) + (1− τ)I(Ti ≤ Ri)I(XT

i β −Ri > 0)]

=
1

n

n∑
i=1

[τ{I(Ti > Li)I(XT
i β − Li ≤ 0) + I(Ti > Ri)I(XT

i β −Ri ≤ 0)}

+ (1− τ){I(Ti ≤ Li)I(XT
i β − Li > 0) + I(Ti ≤ Ri)I(XT

i β −Ri > 0)}]

(4.31)

and

Z(β) = E[τ{I(T > L)I(XTβ − L ≤ 0) + I(T > R)I(XTβ −R ≤ 0)}

+ (1− τ){I(T ≤ L)I(XTβ − L > 0) + I(T ≤ R)I(XTβ −R > 0)}].
(4.32)

Let βτ denote a minimizer of Z(·). We assume the following conditions.

Condition 9. The support of fX is not contained in any proper linear subspace of <k.

Condition 10. For a fixed τ , with probability one, the support of the conditional densities

of L and R given X, fL|X and fR|X , and the support of the conditional density of T given

X, fT |X , contain XTβτ in their interiors.

Lemma 4.3.1. Under Conditions 9 and 10, βτ is the unique minimizer of Z(β).

We prove Lemma 4.3.1 by showing Z(β)− Z(βτ ) > 0, for any β 6= βτ . A detailed proof

is provided in Section 4.7.
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4.3.2 Consistency

Let β̂n,ε be the minimizer of Zn,ε(·) in B and for a fixed quantile τ , let

Zn,ε(β) =

n∑
i=1

(
τI(Ti > Li)

{
I(XT

i β − Li ≤ −
ε

2
) + I(|XT

i β − Li| <
ε

2
)

[
−1

ε
(XT

i β − Li −
ε

2
)

]}
+ (1− τ)I(Ti ≤ Li)

{
I(XTβ − Li >

ε

2
) + I(|XT

i β − Li| ≤
ε

2
)

[
1

ε
(XT

i β − Li +
ε

2
)

]}
+ τI(Ti > Ri)

{
I(XT

i β −Ri ≤ −
ε

2
) + I(|XT

i β −Ri| <
ε

2
)

[
−1

ε
(XT

i β −Ri −
ε

2
)

]}
+(1− τ)I(Ti ≤ Ri)

{
I(XTβ −Ri >

ε

2
) + I(|XT

i β −Ri| ≤
ε

2
)

[
1

ε
(XT

i β −Ri +
ε

2
)

]})

We assume the following conditions for the consistency theorem.

Condition 11. Let β ∈ B where B is a compact subset of <k which contains βτ as an

interior point.

Condition 12. MT ≡ supT,X ft|X(T |X) < ∞, ML ≡ supL,X fL|X(L|X) < ∞, and

MR ≡ supR,X fR|X(R|X) <∞.

Theorem 4.3.2. Under Conditions 9–12, β̂n,ε converges to βτ in probability as n → ∞

and ε→ 0.

The proof follows by first showing that the collection of functions in Zn(β) is a VC-

subgraph class and hence Zn(β) converges almost surely uniformly to Z(β). In addition,

|Zn,ε(β) − Zn(β)| → 0 as n → ∞ and ε → 0; thus we can conclude that Zn,ε converges

almost surely uniformly to Z(β). Next, we prove that Z(·) is continuous. Condition 9 and

10 provided sufficient conditions for identifiability and hence, βτ is the unique minimizer

of Z(·). Since we assumed B is compact, we can then conclude that β̂n,ε converges to βτ

in probability by a standard argument for M-estimators (see Theorem 2.1 of Newey and

McFadden (1994)). A detailed proof is provided in Section 4.7.

76



4.3.3 Asymptotic Distribution

In this section, we show that n1/3(β̂n,ε − βτ ) converges to a nondegenerate distribution.

The convergence rate is atypical because our objective function (4.27) is non-smooth and

not everywhere differentiable; this is sometimes called the “sharp-edge effect” (Kim and

Pollard 1990). We will make the following assumptions which guarantee the asymptotic

distribution will be nondegenerate.

Condition 13. ε = o(n−2/3).

Condition 14. The true distribution P of L, R, T and X is absolutely continuous with

respect to Lebesgue measure.

Condition 15. X is bounded.

Condition 16. Let V (βτ )i,j = Px
[
XiXj{fL|X(XTβτ |X) + fR|X(XTβτ |X)}fT |X(XTβτ |X)

]
and V (βτ ) is positive definite where Xi and Xj are elements of X.

We may now proceed with the main result.

Theorem 4.3.3. Under Conditions 9–16, the process{
n2/3

[
Zn
(
βτ + sn−1/3

)
− Zn (βτ )

]
: s ∈ <k

}
converges in distribution to a Gaussian pro-

cess
{

Γ(s) : s ∈ <k
}
with continuous sample paths, mean sTV (βτ )s/2, and covariance H,

where V is the Hessian matrix of Z(β) at βτ , and H is defined in Equation (4.37) of Sec-

tion 4.7. Furthermore, n1/3(β̂n,ε − βτ )→d arg min Γ(s).

Theorem 2 follows by verifying the conditions of the main theorem from Kim and Pol-

lard (1990). Provided that V is positive definite, we can conclude that n1/3(β̂n,ε − βτ ) con-

verges to a nondegenerate distribution. A detailed proof is provided Section 4.7.

Subsampling can produce consistent estimated sampling distributions for our estimator

as an immediate consequence of Theorem 2.2.1 from Politis et al. (1999). In our study,

we choose block size b = Nγ where γ = {1/3, 1/2, 2/3, 3/4, 0.8, 5/6, 6/7, 0.9, 0.95} thus
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b → ∞ and b/N → 0 as N → ∞. n1/3(β̂n,ε − βτ ) converges to a nondegenerate continuous

distribution. All conditions in Theorem 2.2.1 from Politis et al. (1999) are met thus we

can construct confidence intervals as detailed in Section 4.2.3.

4.4 Simulation Studies

Two simulation studies were carried out to examine the finite sample performance of

our estimator. In the first scenario, Simulation 1, the conditional quantile functions had

identical linear coefficient and differed only intercept. In the second scenario, Simulation 2,

both the intercept and covariate effects varied over the quantiles. Simulation 1 represents

a situation where the errors are independent and identically distributed and Simulation 2

represents a situation where the errors were heteroscedastic.

In Simulation 1, the covariate is X ≡ (1, X1, X2)T where X1 ∼ Uniform [0, 2] and X2 ∼

Bernoulli(0.5). The unobserved failure times were generated from the linear model, T =

2 + 3X1 + X2 + 0.3U . The observation times, L and R, were generated from the linear

model, 1.9+3.2X1 +0.8V when X2 = 0 and 3.1+2.8X1 +0.8V when X2 = 1. Both U and

V were generated from N(0, 1). Twenty-eight percent of events occurred prior to the left

observation time and 44% of events occurred between the left and right observation times.

In Simulation 2, the covariate setup is the same as in Simulation 1. Unobserved failure

times were generated from the linear model, T = 2 + 3X1 + X2 + (0.3 + 0.2X1)U . The

observation times, L and R, were generated from the linear model, 1.9 + 3.2X1 + 0.8V .

The proportion of events occurring prior to left observation time and in between the left

and right observation times was about 34% and 40%, respectively.

For each scenario, we report the mean bias, mean squared error, and median absolute

deviation based on 1000 simulations. Sample sizes were chosen to be n = 200, 400, and 800

for each simulation setup. We are interested in estimation of 25th, median, and 75th per-

centiles. For each simulated dataset, the procedure described at the end of Section 4.2.2
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was used to estimate β. Symmetric confidence intervals were calculated based on a stochas-

tic approximation with 500 subsamples. To decreases the computational burden, the block

size was determined via a pilot simulation in the same fashion as described in Banerjee

and McKeague (2007). The optimal subsampling block size was determined from the fol-

lowing selected block sizes: {n1/3, n1/2, n2/3, n3/4, n0.8, n5/6, n6/7, n0.9, n0.95}.

Table 4.5 and Table 4.6 summarize the results for Simulation 1 and Simulation 2 with

sample size equal to 200, 400, and 800 at the 25th, median, and 75th percentiles. In the

tables, “Truth” is the true parameter value; “Bias” is the mean bias of the estimates from

all replicates; “MSE” is the mean squared error; “MAD” is the median absolute deviation

of the estimates; “CP” is the average coverage from subsampling symmetric confidence in-

tervals; “Length” is the average confidence interval length.

The tables show that the regression coefficient estimators have negligible bias. In Sim-

ulation 1, the bias has a decreasing trend as the sample size increases for all quantiles and

parameters. The mean squared errors and median absolute deviations decrease as the sam-

ple size increases for all quantiles and parameters. The subsampling confidence interval

coverage fluctuates around the nominal level 95% with slight over coverage for some in-

stances. In Simulation 2, the bias for all quantiles is small for all sample sizes. There is a

general decreasing trend for bias when the sample size increases. The mean squared errors

and median absolute deviations decrease as the sample size increases for all quantiles and

parameters. The average 95% confidence interval coverage rate is a bit high for the small-

est sample size but gets closer to the nominal 0.95 level as the sample size increases.

4.5 Application

We now apply the proposed method to analyze the Atherosclerosis Risk in Commu-

nities (ARIC) study data. The detailed study design and objective are described else-

where (The ARIC Investigators 1989). ARIC enrolled 15,792 participants aged 45 to 64
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Table 4.5: Simulation results for Simulation 1, based on 1000 simulation replicates.

N τ Parameter Truth Bias MSE MAD CP Length
200 0.25 β0 1.7977 0.0124 0.0222 0.1024 0.9500 0.5561

β1 3.0000 -0.0041 0.0137 0.0776 0.9670 0.4441
β2 1.0000 0.0136 0.0178 0.0898 0.9620 0.5056

0.50 β0 2.0000 0.0024 0.0187 0.0915 0.9610 0.5188
β1 3.0000 -0.0018 0.0115 0.0707 0.9560 0.4025
β2 1.0000 0.0067 0.0156 0.0854 0.9650 0.4523

0.75 β0 2.2023 0.0016 0.0252 0.1065 0.9400 0.5621
β1 3.0000 -0.0083 0.0149 0.0774 0.9470 0.4379
β2 1.0000 -0.0015 0.0185 0.0856 0.9590 0.4924

400 0.25 β0 1.7977 0.0054 0.0130 0.0761 0.9570 0.4383
β1 3.0000 -0.0016 0.0076 0.0586 0.9660 0.3364
β2 1.0000 0.0060 0.0112 0.0686 0.9620 0.3939

0.50 β0 2.0000 0.0048 0.0096 0.0652 0.9650 0.3891
β1 3.0000 -0.0027 0.0059 0.0492 0.9750 0.3055
β2 1.0000 -0.0002 0.0093 0.0645 0.9610 0.3495

0.75 β0 2.2023 -0.0013 0.0134 0.0784 0.9650 0.4290
β1 3.0000 0.0005 0.0080 0.0611 0.9620 0.3329
β2 1.0000 0.0010 0.0104 0.0656 0.9520 0.3855

800 0.25 β0 1.7977 0.0028 0.0074 0.0550 0.9670 0.3272
β1 3.0000 -0.0018 0.0046 0.0453 0.9660 0.2560
β2 1.0000 0.0005 0.0060 0.0526 0.9630 0.3011

0.50 β0 2.0000 -0.0038 0.0063 0.0494 0.9670 0.3009
β1 3.0000 0.0003 0.0035 0.0386 0.9740 0.2286
β2 1.0000 0.0035 0.0049 0.0438 0.9550 0.2754

0.75 β0 2.2023 -0.0000 0.0071 0.0581 0.9620 0.3319
β1 3.0000 -0.0013 0.0043 0.0409 0.9650 0.2570
β2 1.0000 0.0022 0.0061 0.0494 0.9680 0.2996

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error;
MAD is median absolute deviation of the estimates; CP is the empirical coverage probabilities with a
nominal level of 0.95 from subsampling symmetric confidence intervals with 500 subsamples; Length is
mean confidence interval length.
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Table 4.6: Simulation results for Simulation 2, based on 1000 simulation replicates.

N τ Parameter Truth Bias MSE MAD CP Length
200 0.25 β0 1.7977 0.0162 0.0359 0.1230 0.9560 0.7387

β1 2.8651 -0.0110 0.0317 0.1136 0.9720 0.6823
β2 1.0000 -0.0005 0.0358 0.1289 0.9590 0.7421

0.50 β0 2.0000 0.0065 0.0286 0.1153 0.9680 0.6508
β1 3.0000 -0.0179 0.0251 0.1075 0.9570 0.5744
β2 1.0000 0.0141 0.0295 0.1158 0.9530 0.6305

0.75 β0 2.2023 0.0033 0.0336 0.1251 0.9560 0.7263
β1 3.1349 -0.0163 0.0265 0.1051 0.9620 0.6353
β2 1.0000 0.0044 0.0341 0.1178 0.9630 0.7157

400 0.25 β0 1.7977 -0.0041 0.0196 0.0919 0.9720 0.5572
β1 2.8651 -0.0028 0.0177 0.0848 0.9650 0.5178
β2 1.0000 0.0059 0.0213 0.0974 0.9620 0.5632

0.50 β0 2.0000 -0.0035 0.0164 0.0840 0.9580 0.4974
β1 3.0000 -0.0056 0.0133 0.0782 0.9600 0.4331
β2 1.0000 0.0025 0.0174 0.0859 0.9580 0.4914

0.75 β0 2.2023 0.0011 0.0195 0.0960 0.9670 0.5534
β1 3.1349 -0.0032 0.0156 0.0816 0.9640 0.4766
β2 1.0000 -0.0043 0.0206 0.0956 0.9670 0.5444

800 0.25 β0 1.7977 -0.0023 0.0111 0.0707 0.9690 0.4158
β1 2.8651 -0.0054 0.0097 0.0630 0.9660 0.3838
β2 1.0000 0.0062 0.0132 0.0794 0.9650 0.4289

0.50 β0 2.0000 0.0008 0.0098 0.0649 0.9580 0.3748
β1 3.0000 -0.0038 0.0078 0.0563 0.9500 0.3335
β2 1.0000 -0.0007 0.0093 0.0634 0.9680 0.3797

0.75 β0 2.2023 0.0055 0.0127 0.0749 0.9600 0.4204
β1 3.1349 -0.0007 0.0096 0.0653 0.9570 0.3667
β2 1.0000 -0.0018 0.0137 0.0791 0.9560 0.4231

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error;
MAD is median absolute deviation of the estimates; CP is the empirical coverage probabilities with a
nominal level of 0.95 from subsampling symmetric confidence intervals with 500 subsamples; Length is
mean confidence interval length.
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years between 1987 and 1989 (visit 1) from 4 communities and followed them for a max-

imum of 5 visits. The first 4 visits were approximately 3 years apart and the last visit

(visit 5) was done between 2011 and 2013 for a maximum follow-up of 24 years. We fo-

cus on the African American population with at least 2 visits (N=3861). We choose to

focus on African Americans because the prevalence of hypertension in African Americans

is among the highest in the world (AHA Writng Group 2010). We excluded those partici-

pants who had hypertension at visit 1 (N=2381) and participants with missing body mass

index (BMI) (N=2). The final analysis included 1478 African American adults aged 45-64

(median=51) of which 60.4% (N=893) were female.

Hypertension was defined as diastolic blood pressure ≥ 90 mm Hg or systolic blood

pressure (BP) ≥ 140 mm Hg or reporting the use of medication known to treat hyperten-

sion. Among 1478 adults in the analysis sample, 866 (58.6%) developed hypertension by

the end of the study. The (unobserved) failure time of interest is the logarithm of number

of months to hypertension development after visit 1. The analysis examines the effect of

age, gender, BMI, and systolic BP on the quantiles of logarithm of time to hypertension.

These covariates are chosen because they are strong predictors of incident hypertension

(AHA Writng Group 2010).

Before applying our proposed method to the data, nonparametric maximum likelihood

estimation (NPMLE) of the (unobserved) failure time distribution function was carried

out for the data (Wellner and Zhan 1997). NPMLE was used to determine whether certain

quantiles can be reasonably estimated. The NPMLE of distribution functions stratified by

each covariate is shown in Figure 4.13. The continuous covariates were dichotomized by

the median of each covariate.

Based on the NPMLE in Figure 4.13, it shows that we may have difficulty distinguish

quantiles above 0.6. The long flat segment of NPMLE most likely due to the fact that visit
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Figure 4.13: Nonparametric maximum likelihood estimator (NPMLE) of the (unobserved)
failure time distribution function stratified by covariates.
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Table 4.7: Results of analyzing “Atherosclerosis Risk in Communities (ARIC) study” data,
effect on time to hypertension onset in years

Quantile Parameter Estimate Lower C.I. Upper C.I.
0.2 Intercept 2.875 2.115 3.636

Age 0.013 -0.410 0.437
Male 0.334 -0.562 1.230
BMI -0.258 -0.619 0.104
Systolic BP -1.521 -2.099 -0.943

0.3 Intercept 4.152 3.811 4.493
Age 0.234 -0.094 0.562
Male 0.658 0.023 1.292
BMI -0.651 -1.150 -0.152
Systolic BP -1.130 -1.665 -0.596

0.4 Intercept 5.156 4.754 5.559
Age 0.194 -0.100 0.489
Male 0.170 -0.671 1.011
BMI -0.212 -0.509 0.086
Systolic BP -0.462 -0.974 0.050

0.5 Intercept 5.298 5.061 5.535
Age 0.074 -0.096 0.244
Male 0.323 -0.220 0.867
BMI 0.029 -0.142 0.201
Systolic BP -0.308 -0.523 -0.094

BMI: Body Mass Index; BP: Blood Pressure.

4 and visit 5 are almost 15 years apart. Since we only have enough information for estima-

tion for quantiles between 0.2 to around 0.6, we focused on 0.2 to 0.5 quantiles with incre-

ments of 0.1. We centered the age at 50 then divided it by 5, centered the BMI at 28 then

divided by 5, and centered systolic BP at 115 then divided by 10. Our proposed model

was fitted for the lower quantiles and symmetric confidence intervals were constructed

by subsampling where the block size was chosen based on the algorithm presented in Sec-

tion 4.2.3. The results are summarized in Table 4.7 and Figure 4.14.
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Figure 4.14: ARIC data: effect on time to hypertension onset. The vertical bars are sym-
metric confidence interval constructed using a subsampling method.
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The results indicate that age has no statistically significant effect on log-time to hy-

pertension onset at all quantiles examined. Gender has positive estimates at all quantiles

examined but it is only statistically significant at 0.3 quantile. BMI has negative estimates

at the lower quantiles examined but it is only significant at 0.3 quantile. Systolic BP is

negatively associated with log-time to hypertension onset, i.e. higher systolic BP at visit 1

associate with shorter time to hypertension. Interestingly, the effect of systolic blood pres-

sure appears to be the strongest at the lowest quantile and the effect extenuates at higher

quantiles.

Each 5 unit increase of BMI at visit 1 shortens the time to hypertension by about 50%

at 0.3 quantile. Each 10 mm Hg increase of systolic BP at visit 1 shorten the time to hy-

pertension by about 80% at 0.2 quantile but the effect diminished to about 30% at 0.5

quantile. The systolic BP effect on shortening time to hypertension is large in the quan-

tiles examined which may suggest that lowering the systolic BP can be most beneficial to

delay hypertension onset.

Interestingly, the age is not significantly associated with time to hypertension onset

which is different from the conclusion of most literature. One possible explanation is that

older age is a significant predictor of greater awareness, treatment, and control of high

blood pressure (Wyatt et al. 2008); therefore, older African American may be controlling

their blood pressure by means other than medication and hence older age is not associated

with shorter time to hypertension. The age effect on hypertension among African Ameri-

can warrents more investigation.

4.6 Discussion

To solve the non-convex objective function in (4.26), we used the difference between

two convex hinge functions (4.27) to approximate the objective function. We also offer a
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practical solution to the issue of selecting good initial values. The computational proce-

dure proposed is efficient and easy to implement.

Identifiability is a common issue for interval-censored data. We provided theoretical

justification in the article and in practice, we recommend using nonparametric maximum

likelihood estimator (NPMLE) of the (unobserved) failure time distribution function to

explore whether certain quantiles are identifiable. This appeared to work well in our real

data example.

The method proposed in this paper can be extended to handle multivariate interval-

censored data and it can also be adapted to analyze right censored data. Nonparametric

quantile regression models are also possible which will add greater flexibility in the func-

tional form. Furthermore, models with varying coefficient or mixed censoring mechanism

will be useful in practice which warrant future investigation.
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4.7 Proofs of Lemma and Theorems

Proof of Lemma 4.3.1.

Z(β)− Z(βτ ) = PL,R,X [ τ{I(T > L)I(XTβ − L ≤ 0) + I(T > R)I(XTβ −R ≤ 0)}

+ (1− τ){I(T ≤ L)I(XTβ − L > 0) + I(T ≤ R)I(XTβ −R > 0)}]

− τ{I(T > L)I(XTβτ − L ≤ 0)− I(T > R)I(XTβτ −R ≤ 0)}

−(1− τ){I(T ≤ L)I(XTβτ − L > 0)− I(T ≤ R)I(XTβτ −R > 0)}
]

= PL,R,X {[τI(T > L)− (1− τ)I(T ≤ L)][
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]
[τI(T > R)− (1− τ)I(T ≤ R)]

[
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]}
= PL,X

{
[τ − I(T ≤ L)]

[
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]}
+ PR,X

{
[τ − I(T ≤ R)]

[
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]}
= PL,X

{[
τ − FT |X(L|X)

] [
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]}
+ PR,X

{[
τ − FT |X(R|X)

] [
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]}
=

ˆ
X

ˆ
L|X

[
τ − FT |X(L|X)

] [
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]
dPL|X dPX

+

ˆ
X

ˆ
R|X

[
τ − FT |X(R|X)

] [
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]
dPR|X dPX

=

ˆ
X

ˆ
(XT β≤L<XT βτ )

⋃
(XT βτ≤L<XT β)

∣∣∣∣ˆ l

XT βτ

fT |X(t) fL|X(l) dt

∣∣∣∣ dl dPX
+

ˆ
X

ˆ
(XT β≤R<XT βτ )

⋃
(XT βτ≤R<XT β)

∣∣∣∣ˆ r

XT βτ

fT |X(t) fR|X(r) dt

∣∣∣∣ dr dPX
Condition 10 insures that the integrand of the inner integrals is strictly positive. Since the

integrands, fT |X(t) fL|X(l), and fT |X(t) fR|X(r), are positive, we can conclude that the in-

ner most integrals are positive.We can then conclude that, Z(β)− Z(βτ ) > 0 for all β 6= βτ

and hence, βτ is identifiable.
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Proof of Theorem 4.3.2. We shall prove this theorem by showing

sup
β∈B
|Zn,ε(β)− Z(β)| → 0 almost surely (4.33)

and then showing Z(β) is continuous. By Lemma 4.3.1, βτ is the unique minimizer of Z(·)

and since B is assumed, we can use Theorem 2.1 of Newey and McFadden (1994) to con-

clude that β̂n,ε → βτ in probability.

We can show Equation (4.33) is true by proving supβ∈B |Zn(β) − Z(β)| → 0 almost

surely and supβ∈B |Zn,ε(β)− Zn(β)| → 0 almost surely since

sup
β∈B
|Zn,ε(β)− Z(β)| ≤ sup

β∈B
|Zn,ε(β)− Zn(β)|+ sup

β∈B
|Zn(β)− Z(β)| (4.34)

The class of indicator functions I(T ≤ W ), I(T > W ), for W ∈ {R,L}, I1 ≡ {I(XTβ −

W ≤ 0) : β ∈ B,W ∈ {R,L}}, and I2 ≡ {I(XTβ −W > 0) : β ∈ B,W ∈ {R,L}} are

Vapnik-C̆ervonenkis (VC)-subgraph classes. τ and 1 − τ are fixed functions and thus by

Lemma 2.6.18 (i) and (vi) of van der Vaart and Wellner (1996), the classes τ I(T > W ) I1

and (1 − τ) I(T ≤ W ) I2 are also VC-subgraph classes for W ∈ {R,L} Finally, (v) of

the same lemma gives that Z ≡ {Zn(β) : β ∈ B} is a VC-subgraph class. Since Z is a

VC-subgraph class, it is also a Glivenko-Cantelli class; hence, supβ∈B |Zn(β) − Z(β)| → 0

almost surely.

Since I(|XTβ−W | ≤ ε/2) is a VC class of functions for W ∈ {R,L}, Pn[I(|XTβ−W | ≤

ε/2)] converges to P [I(|XTβ − W | ≤ ε/2)] uniformly over B where Pn is the empirical
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measure and P is the true underlying measure. Thus, we have

sup
β∈B
|Zn,ε(β)− Zn(β)| ≤ sup

β∈B
Pn[I(|XTβ − L| ≤ ε/2) + I(|XTβ −R| ≤ ε/2)]

−→
n↑∞

sup
β∈B

P [I(|XTβ − L| ≤ ε/2) + I(|XTβ −R| ≤ ε/2)]

≤ sup
β∈B

PX [PL|X(|XTβ − L| ≤ ε/2|X)] + sup
β∈B

PX [PR|X(|XTβ −R| ≤ ε/2|X)]

≤ PX(εML|X) + PX(εMR|X) = ε(ML +MR). (4.35)

By Condition 12, Equation (4.35) is bounded and converges to 0 as ε → 0, thus we can

conclude that supβ∈B |Zn,ε(β) − Zn(β)| → 0 almost surely as n → ∞ and ε → 0. Since

each term on the right hand side of Equation (4.34) converges to 0 almost surely, we can

conclude that supβ∈B |Zn,ε(β)− Z(β)| → 0 almost surely as n→∞ and ε→ 0.

To show that Z(·) is continuous, we re-express Z(·) as

Z(β) = E
[
τI(T > L)I(XTβ − L ≤ 0) + (1− τ)I(T ≤ L)I(XTβ − L > 0)

+τI(T > R)I(XTβ −R ≤ 0) + (1− τ)I(T ≤ R)I(XTβ −R > 0)
]

=

ˆ
X

{
τ

ˆ ∞
XT β

[
1− FT |X(l)

]
dFL|X + (1− τ)

ˆ XT β

0

FT |X(l)dFL|X

}
dFX

+

ˆ
X

{
τ

ˆ ∞
XT β

[
1− FT |X(r)

]
dFR|X + (1− τ)

ˆ XT β

0

FT |X(r)dFR|X

}
dFX

=

ˆ
X

{ˆ ∞
XT β

τ dFL|X +

ˆ XT β

0

FT |X(l) dFL|X − τ
ˆ ∞

0

FT |X(l) dFL|X

}
dFX

+

ˆ
X

{ˆ ∞
XT β

τ dFR|X +

ˆ XT β

0

FT |X(r) dFR|X − τ
ˆ ∞

0

FT |X(r) dFR|X

}
dFX .

(4.36)

Only the first two inner integrals for L and R are functions of β. Under Condition 12,

both of these inner integrals are bounded and continuous with respect to β; therefore, Z(·)
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is continuous.

Before proceeding with the proof, we will state the main theorem from Kim and Pol-

lard (1990). The theorem concerns estimators defined by minimization of process

Png(· , θ) = 1
n

∑
i≤n g(ξi, θ), where {ξi} is a sequence of independent observations taken

from a distribution P and {g(·, θ) : θ ∈ Θ} is a class of functions indexed by a subset Θ of

<d. Pn denotes the expectation with respect to the empirical process. The envelope GR(·)

is defined as the supremum of |g(·, θ)| over the class gR = {g(·, θ) : |θ − θo| ≤ R} .

Kim and Pollard (1990) Let {θn} be a sequence of estimators for which

(i) Png(· , θn) ≤ infθ∈Θ Png(·, θ) + op(n
−2/3).

Suppose

(ii) θn converges in probability to the unique θ0 that minimizes Pg(·, θ);

(iii) θ0 is an interior point of Θ.

Let the functions be standardized so that g(·, θ0) ≡ 0. If the classes gR, for R near 0,

are uniformly manageable for the envelopes GR and satisfy

(iv) Pg(·, θ) is twice differentiable with second derivative matrix V at θ0;

(v) H(s, t) = limα→∞ αPg(·, θ0 + s/α)g(·, θ0 + t/α) exists for each s, t in <d and

lim
α→∞

αPg(·, θ0 + t/α)2I {|g(·, θ0 + t/α)| > εα} = 0

for each ε > 0 and t in <d;

(vi) PG2
R = O(R) as R → 0 and for each ε > 0 there is a constant K such that

PG2
RI{GR > K} < εR for R near 0;

(vii) P |g(·, θ1)− g(·, θ2)| = O(|θ1 − θ2|) near θ0;

then the process n2/3Png(·, θ0 + tn−1/3) converges in distribution to a Gaussian process

Z(t) with continuous sample paths, expected value tTV t/2 and covariance kernel H.

If V is positive definite and if Z has nondegenerate increments, then n1/3(θn − θ0) con-

verges in distribution to the (almost surely unique) random vector that minimizes Z(t).
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Now we proceed with our proof of theorem 2.

Proof of Theorem 3.3.3. It will be convenient to define a version of the original objective

function centered at the true value βτ ,

g(β) = τ{I(T > L)I(XTβ − L ≤ 0) + I(T > R)I(XTβ −R ≤ 0)}

+ (1− τ){I(T ≤ L)I(XTβ − L > 0) + I(T ≤ R)I(XTβ −R > 0)}

− τ{I(T > L)I(XTβτ − L ≤ 0)− I(T > R)I(XTβτ −R ≤ 0)}

− (1− τ){I(T ≤ L)I(XTβτ − L > 0)− I(T ≤ R)I(XTβτ −R > 0)}

= [τ − I(T ≤ L)]
[
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]
+ [τ − I(T ≤ R)]

[
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]
.

Under the true distribution P , we have P (g(β)) = Z(β) − Z(βτ ). The minimum value of

P (g(·)) is then obtained at the arg min of Z(·) and P (g(βτ )) = 0. The estimator we use

here is β̂n,ε which is the minimizer of Zn,ε(·) defined as Equation (4.27).

The first condition of the main theorem from Kim and Pollard (1990) is satisfied under

Condition 13. By the definition of β̂n,ε, we have Zn,ε(β̂n,ε) ≤ inf
β
Zn,ε(β) + op(n

−2/3). We also

have Zn(β̂n,ε)− infβ Zn(β) ≥ 0 by definition.

Zn(β̂n,ε)− inf
β
Zn(β) ≤ Zn,ε(β̂n,ε) + Pn[I(|L−XTβn,ε| < ε/2)] + Pn[I(|R−XTβn,ε| < ε/2)]

− inf
β∈β

{
Zn,ε(β)−Pn[I(|L−XTβ| < ε/2)]−Pn[I(|R−XTβ| < ε/2)]

}
≤Zn,ε(β̂n,ε)− inf

β
Zn,ε(β) + 2 sup

β

{
Pn[I(|L−XTβ| < ε/2)] + Pn[I(|R−XTβ| < ε/2)]

}
=Zn,ε(β̂n,ε)− inf

β
Zn,ε(β)

+ 2 sup
β

{
P(|L−XTβ| < ε/2) + P(|R−XTβ| < ε/2)

}
+ op(ε n

−1/2)

≤Zn,ε(β̂n,ε)− inf
β
Zn,ε(β) + 2ε(ML +MR) + op(n

−7/6) = op(n
−2/3)
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Therefore, Zn(β̂n,ε) ≤ infβ Zn(β) + op(n
−2/3) which satisfies the first condition. The second

condition, β̂n,ε → βτ in probability, has been verified in Theorem 4.3.2. The third condi-

tion is satisfied by assuming Condition 10.

The remaining four conditions of the theorem deal with the nature of expectation of g

under the measure P . P (g) may be expressed as

P (g(β)) = PL,R,X
{

[τ − I(T ≤ L)]
[
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]
+ [τ − I(T ≤ R)]

[
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]}
= PL,X

{[
τ − FT |X(L|X)

] [
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

]}
+ PR,X

{[
τ − FT |X(R|X)

] [
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

]}
where FT |X is the conditional distribution of T given X. Since |τ − FT |X(·|X)| < 1, the

expectation is dominated by:

P |g(β)| ≤ PL,X
{
I(XTβ ≤ L < XTβτ )− I(XTβτ ≤ L < XTβ)

}
+ PR,X

{
I(XTβ ≤ R < XTβτ )− I(XTβτ ≤ R < XTβ)

}
≤ PL,X

{
I(XTβ ≤ L < XTβτ ) + I(XTβτ ≤ L < XTβ)

}
+ PR,X

{
I(XTβ ≤ R < XTβτ ) + I(XTβτ ≤ R < XTβ)

}
≤ 2

Since P is absolutely continuous with respect to Lebesgue measure, for any sequence

dn → 0, the dominated convergence theorem tells us P (g(β + dn)) → P (g(β)). In other

words, P (g(β)) is continuous with respect to β.
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We may expand P (g(β)) with a Taylor expansion. The first derivative is found by in-

terchanging integration (expectation) and differentiation to find

∂

∂βi
P (g(β)) =

ˆ
X

[
τ − FT |X(XTβ|X)

]
XifL|X(XTβ|X)[−I(XTβ < XTβτ )− I(XTβτ < XTβ)] dPX

+

ˆ
X

[
τ − FT |X(XTβ|X)

]
XifR|X(XTβ|X)[−I(XTβ < XTβτ )− I(XTβτ < XTβ)] dPX

=

ˆ
X

[
FT |X(XTβ|X)− τ

]
Xi(fL|X(XTβ|X) + fR|X(XTβ|X)) dPX ,

where Xi is an element of Xi. Evaluated at βτ , the term FT |X(XTβτ |X)−τ is equal to zero

by definition of the τth quantile, making the derivative equal zero as would be expected

for an extrema. Taking one step further, the second derivative would be

V (β)i,j =
∂2

∂βi∂βj
P (g(β))

=

ˆ
X

{
FT |X(XTβ|X)− τ

}
XiXj(

∂

∂L
fL|X(XTβ|X) +

∂

∂R
fR|X(XTβ|X)) dPX

+

ˆ
X

fT |X(XTβ|X)XiXj[fL|X(XTβ|X) + fR|X(XTβ|X)] dPX .

At βτ , the first integral vanishes and only the second remains taking the form

V (βτ )i,j =

ˆ
X

fT |X(XTβ|X)XiXj[fL|X(XTβ|X) + fR|X(XTβ|X)] dPX

As the entries are dominated by |V (βτ )i,j| ≤ (MR + ML)MTM
2
|X|, where M|X| is the

bound over all |Xi| and MC and MT are defined in Condition 12, V (βτ )i,j will be well

defined verifying the fourth condition of the theorem. Writing V (βτ ) = PX(XXTh(X))

with h(X) = [fL|X(XTβ|X) + fR|X(XTβ|X)]fT |X(XTβ|X) ≥ 0, show that V (βτ ) would

be a symmetric positive semi-definite matrix since it is a positive mixture of the positive

semi-definite terms XXT . A sufficient condition for V (βτ ) to be positive definite is that
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the Lebesgue measure of the set {X : h(X) > 0} is greater than zero.

To control asymptotic covariance of Z(s), let

H(s, q) = lim
α→∞

αP [g(βτ +
q

α
) g(βτ +

s

α
)]

= lim
α→∞

αPL,R,X

{[{[
τ − FT |X(L|X)

] [
I(XT (βτ +

q

α
) ≤ L < XTβτ )

−I(XTβτ ≤ L < XT (βτ +
q

α
))
]}

+
{[
τ − FT |X(R|X)

] [
I(XT (βτ +

q

α
) ≤ R < XTβτ )− I(XTβτ ≤ R < XT (βτ +

q

α
))
]} ]

×
[{[

τ − FT |X(L|X)
] [
I(XT (βτ +

s

α
) ≤ L < XTβτ )− I(XTβτ ≤ L < XT (βτ +

s

α
))
]}

+
{[
τ − FT |X(R|X)

] [
I(XT (βτ +

s

α
) ≤ R < XTβτ )− I(XTβτ ≤ R < XT (βτ +

s

α
))
]} ]}

= lim
α→∞

α

[
PL,X

{[
τ − FT |X(L|X)

]2
[
I

(
XT q ∨XT s

α
≤ L−XTβτ < 0

)
+ I

(
0 ≤ L−XTβτ <

XT q ∧XT s

α

)]}

+ PR,X

{[
τ − FT |X(R|X)

]2
[
I

(
XT q ∨XT s

α
≤ R−XTβτ < 0

)
+ I

(
0 ≤ R−XTβτ <

XT q ∧XT s

α

)]}

+ PL,R,X

{[
τ − FT |X(L|X)

]
×
[
τ − FT |X(R|X)

]
(
I(XT (βτ +

q

α
) ≤ L < XTβτ )I(XT (βτ +

s

α
) ≤ R < XTβτ )

+ I(XTβτ ≤ L < XT (βτ +
q

α
))I(XTβτ ≤ R < XT (βτ +

s

α
))

+ I(XT (βτ +
q

α
) ≤ R < XTβτ )I(XT (βτ +

s

α
) ≤ L < XTβτ )

+ I(XTβτ ≤ R < XT (βτ +
q

α
))I(XTβτ ≤ R < XT (βτ +

s

α
))

− I(XT (βτ +
s

α
) ≤ L < XTβτ ≤ R < XT (βτ +

q

α
))

−I(XT (βτ +
q

α
) ≤ L < XTβτ ≤ R < XT (βτ +

s

α
))
)}]

(4.37)
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where ∨ and ∧ denote maximum and minimum, respectively. Using Condition 12 and 15,

we have

|P [g(βτ + q/α)g(βτ + s/α)]| ≤ P{|g(βτ + q/α)||g(βτ + s/α)|} ≤ 2 · P{|g(βτ + s/α)|}

≤ 2

ˆ
X

(ML +MR)
|XT s|
α

dPX ≤ 2(ML +MR)
(‖s‖1)M|X|

α
= O(α−1),

hence, along with Condition 14, H(s, r) is well defined by the dominated convergence theo-

rem satisfying the fifth condition.

Let GQ be the envelope of gQ ≡ {g(β) : ‖β − βτ‖∞ < Q ≤ ε̃}, i.e.,

GQ = |τ − I(T ≤ L)| I(|L−XTβτ | < Qmax |Xj|)+

|τ − I(T ≤ R)| I(|R−XTβτ | < Qmax |Xj|)

≤ I(|L−XTβτ | < Qmax |Xj|) + I(|R−XTβτ | < Qmax |Xj|)

A sufficient condition for the class gQ to be uniformly manageable is that its envelope

function GQ is uniformly square integrable given that {g(β)} is VC-subgraph. Since GQ

is bounded by two, it is uniformly square integrable for Q close to zero. Together with the

fact that {g(β)} is a VC-subgraph, we conclude that gQ is uniformly manageable. Then

P (G2
Q) ≤

ˆ
X

ˆ
<
I(|L−XTβτ | < Qmax |Xj|) + I(|R−XTβτ | < Qmax |Xj|) dPL,R|X dPX

≤
ˆ
X

2(ML +MR)Qmax(|Xj|) dPX ≤ Q[2(ML +MR)M|X|] = O(Q).

For any ε > 0, we can use K = 3, then E(G2
Q I(GR > K)) = 0 < εQ since GR is less than

K everywhere. Combining these two traits shows that the sixth condition of the theorem

is satisfied. The final condition is verified by letting GQ,β be the envelope of {g(β̃)− g(β) :
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‖β̃ − β‖∞ < Q}, i.e.,

GQ,β = |τ−I(T ≤ L)| I(|L−XTβ| < Qmax |Xj|)+|τ−I(T ≤ R)| I(|R−XTβ| < Qmax |Xj|).

Using the same integration inequalities as used in the preceding for GQ we find that P |g(β̃)−

g(β)| ≤ O(‖β̃ − β‖∞) = O(‖β̃ − β‖1) over all β, β̃ in an ε̃ neighborhood of βτ since ‖ · ‖∞

and ‖ · ‖1 are equivalent metrics.

As the seven conditions are satisfied, the conclusion of the main theorem in Kim and

Pollard (1990) follows which in turn proved Theorem 2.
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CHAPTER 5: SEMIPARAMETRIC METHODS FOR ACCELERATED
FAILURE TIME MODELS FOR INTERVAL-CENSORED DATA

5.1 Introduction

Interval-censored data occurs when continuous inspection is not feasible and the event

of interest is only known to occur during a time interval. This is common in longitudinal

studies, clinical trials, and epidemiological studies since the information is only collected

at the time of a follow-up or clinical visit. A special case of interval-censored data is called

“current status data" or “Class I" interval-censored data. In current status data, each sub-

ject is only observed once so the information we have is the observation time and whether

an event has occurred prior to the observation time. Several likelihood-based methods

have been developed to perform regression analysis on interval-censored data. For cur-

rent status data, Huang (1996) proposed efficient estimation for the proportional hazard

models, Rossini and Tsiatis (1996) studied proportional odds models, and both Lin et al.

(1998) and Martinussen and Scheike (2002) developed methods for additive hazard models.

For general interval-censored data, methods for proportional hazards models (Finkelstein

and Wolfe 1985, Betensky et al. 2002, Huang and Wellner 1997) and proportional odds

models (Huang and Rossini 1997, Huang and Wellner 1997, Rabinowitz et al. 2000, Shen

1998) are also available.

We consider an accelerated failure time (AFT) model where the logarithm of the sur-

vival time is a linear function of the covariates,

log(T ) = XTβ + ξ, (5.38)
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where T denotes the survival time and X is the p-dimensional covariate vector. The error

term, ξ, is independent and identically distributed (iid) with distribution G and is inde-

pendent of X. When the distribution of the error term is left unspecified, the AFT model

can be considered as a semiparametric alternative approach to the proportional hazards

and proportional odds models for survival analysis. A likelihood-based approach for fit-

ting the AFT model is difficult because the regression parameter β and the distribution

G are both present in the likelihood function. Rabinowitz et al. (1995) proposed a class of

score statistics that may be used for estimation and confidence procedures. Under the cur-

rent status data setting, Murphy et al. (1999) and Shen (2000) developed likelihood-based

methods. Murphy et al. (1999) considered a penalized nonparametric maximum likelihood

estimator and Shen (2000) constructed likelihoods based on the random-sieve likelihood

concept. Under a general interval-censored data setting, Betensky et al. (2001) studied a

simple numerically efficient estimation procedure. The examination time and event time

were assumed to be independent in Betensky et al. (2001). To overcome the numerical dif-

ficulty presented in previous methods and to include higher-dimensional covariates, Tian

and Cai (2006) proposed to construct the estimator by inverting a Wald-type test for test-

ing a null proportional hazards model. The method proposed by Tian and Cai (2006) can

be implemented using a grid search when the covariate is one-dimensional and a Markov

chain Monte Carlo based procedure when the covariates are high-dimensional. Tian and

Cai (2006) applied their method to both current status data and general interval-censored

data.

We propose a semiparametric method to analyze interval-censored data using the ac-

celerated failure time model. We take advantage of the quantile regression framework and

construct the estimators by combining information over multiple quantiles. The proposed

method is applicable to both current status data and general interval-censored data. We

start with fitting the model to general interval-censored data.
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5.2 Model and Inference Procedure

5.2.1 Models and Data

Under the AFT model defined in (5.38), our interest lies in the estimation and infer-

ence of β. Consider a quantile regression model (Koenker and Bassett 1978) for the loga-

rithm of failure time,

Qlog(T )
(τ | X) = β0(τ) +XTβ(τ), τ ∈ (0, 1), (5.39)

where Qlog(T )
(τ | X) is the conditional quantile for logarithm of the survival time and

defined as Qlog(T )
(τ | X) = inf{t : pr(log(T ) ≤ t | X) ≥ τ}. The unknown inter-

cept, β0(τ) and the vector of unknown regression coefficients, β(τ), represent the covariate

effects on the τth quantile of log(T ) which may depend on τ . β0(τ) and each element of

β(τ) can be interpreted as an estimated difference in τth quantile by one unit change of

the corresponding covariate while other variables in the model are held constant. Under

the assumption that the error term, ξ, in (5.38) is iid and is independent of X, the quan-

tile functions of log(T ) should have the same coefficients at different quantiles except the

intercept term. This is equivalent to formulating the quantiles of log(T ) as

Qlog(T )
(τ |X) = Qξ(τ |X) +XTβ, τ ∈ (0, 1). (5.40)

We can then use an estimate for (5.40) as an estimate for (5.38).

Let {(Li, Ri, δi1, δi2, Xi) : i = 1, · · · , n} be n independent and identically distributed

realizations of (L,R, δ1, δ2, X). The random observation times L and R satisfy L < R with

probability 1 and are assumed to be independent of ξ but they may depend on X. δ1 and

δ2 are defined as δ1 = I(T ≤ L) and δ2 = I(T ≤ R) where I(·) denotes the indicator func-

tion and T is the survival time. It is assumed that T is conditionally independent of L and
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R given X. The τth conditional quantile of log(T ) conditional on X can be characterized

as the solution to the expected loss minimization problem (Powell 1994),

Z(β) = E[E{ρτ (log(T )− [β0(τ) +XTβ(τ))]|X}], (5.41)

where ρτ (u) = u{τ − I(u < 0)}. Using the unique “equivariance to monotone transfor-

mations" (Koenker 2005) property of quantile regression, we can apply the monotone non-

decreasing transformations, h1(T |L,R) = I(T > L) and h2(T |L,R) = I(T > R), to

the conditional quantile, β0(τ) + XTβ(τ) and use the transformed conditional quantile,

I(β0(τ) + XTβ(τ) > L) and I(β0(τ) + XTβ(τ) > R), in the analysis. We can thus substi-

tute (1 − δ1), I(β0(τ) + XTβ > L), (1 − δ1 − δ2), and I(β0(τ) + XTβ > R) in Equation

(5.41) and get

Z1(β) =E{E[ρτ{(1− δ1)− [β0(τ) + I(XTβ(τ)] > L)}|X,L,R]} and (5.42)

Z2(β) =E{E[ρτ{(1− δ1 − δ2)− I([β0(τ) +XTβ(τ)] > R)}|X,L,R]}. (5.43)

We can estimate β0(τ) and β(τ) by minimizing (5.42) and (5.43) simultaneously (see Sec-

tion 4.2.1 for more details). A sufficient condition to guarantee the identifiability for a

fixed quantile is provided in Section 4.3.1.

5.2.2 Parameter Estimation and Algorithm

Let β∗ denote the true parameter vector in (5.38). To obtain consistent estimates of

β∗, we can use the estimation routine developed in Section 4.2.2 for general interval-censored

data. Let β̂0,n,ε(τ) and β̂n,ε(τ) denote the estimates of β0(τ) and β, respectively, from a

single τ . Under the iid assumption of ξ, any consistent β̂n,ε(τ) can be used as the estimate

of β∗. To increase efficiency, we propose combining the quantile estimates over k quantiles.
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Specifically, we propose the following estimate of β∗,

β̌n,ε = ω β̂n,ε, (5.44)

where

ω =


ω1,1 · · · ω1,k

...
...

...

ωp,1 · · · ωp,k

 and β̂n,ε =


β̂n,ε(τ1)T

...

β̂n,ε(τk)
T

 . (5.45)

β̂n,ε(τi) is the quantile estimate from individual quantiles τi and ω is a weight matrix where

each column is a weight vector for a specific quantile. It is desired that ω is the set of

weights which minimize the asymptotic variance of the random variables β̃n,ε. More specif-

ically, we define each row by the following

ωi = arg inf
Π∈<k:

∑
Πj=1

ΠT Σi Π,

for i = 1, . . . , p where Σi is the (asymptotic) covariance matrix for the estimators of the

ith element of β across the quantiles. We intensionally do not apply the same weighting

scheme to β0(τ) since it can be considered as being absorbed into the error term, ξ, in

(5.38).

Since ω is unknown in practice, we can use the estimated weight matrix, ω̂n,ε, to calcu-

late the final estimators,

β̃n,ε = ω̂n,ε β̂n,ε, (5.46)

where

ω̂n,ε =


ω̂1,1 · · · ω̂1,k

...
...

...

ω̂p,1 · · · ω̂p,k

 . (5.47)

Our proposed method for estimating ω̂n,ε is described in Section 5.2.3. We use the term
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“weighted quantile average estimator” for β̃n,ε henceforth.

5.2.3 Inference

A k × k empirical variance-covariance matrix can be computed from the subsampling

estimates for each estimator β̂(τ1), · · · , β̂(τk). ω, is then estimated as a solution to

ω̂n,ε,i = arg inf
Π∈<k:

∑
Πj=1

ΠT Σ̂n,ε,i Π,

where Σ̂n,ε,i is the estimated covariance matrix of the ith element of β across quantiles ob-

served from the subsample estimates and solved using any standard quadratic program-

ming technique.

After obtaining ω̂n,ε, we can use the weighted subsampling results to construct confi-

dence intervals. Let K1, K2, · · · , KM denote M subsamples of {(Li, Ri, δi1, δi2, Xi)i=1,··· ,n}

of size b. Let β̃n,ε,q = ω̂n,ε β̂n,ε,q denote the estimated values produced using the Kqth

dataset, where

β̃n,ε,q =


β̃n,ε,q(τ1)T

...

β̃n,ε,q(τk)
T

 .
Define

Ln,i(x) = M−1

M∑
q=1

I
{
b1/3(β̃n,ε,q,i − β̃n,ε,i) ≤ x

}
and cn,i(γ) = inf{x : Ln,i(x) ≥ γ},

for i = 1, . . . , p.

An asymptotic 1 − α level confidence interval for the ith element of β∗ can then be

constructed with

[
β̃n,ε,i − n−1/3cn,i

(
1− α

2

)
, β̃n,ε,i − n−1/3cn,i

(α
2

)]
.
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Symmetric confidence intervals can be obtained by modifying the above approach slightly.

Define

L̃n,i(x) = M−1

M∑
q=1

I
{
b1/3|β̃n,ε,q,i − β̃n,ε,i)| ≤ x

}
and c̃n,i(γ) = inf{x : Ln,i(x) ≥ γ},

Again, if b → ∞ as n → ∞ and b/n → 0, a symmetric confidence interval for the ith

element of β̃n,ε can be constructed as

[
β̃n,ε,i − n−1/3c̃n,i(1− α), β̃n,ε,i + n−1/3c̃n,i(1− α)

]
. (5.48)

Symmetric confidence intervals are desirable because they often have nicer properties

than the nonsymmetric version in finite samples (Banerjee and Wellner 2005). This fact

was also observed in our simulation studies; hence, symmetric confidence intervals are rec-

ommended and used in this paper.

To avoid large scale computation issues, a stochastic approximation from Politis et al.

(1999) is employed where only B randomly chosen datasets from {1, 2, · · · , Nn} are used

in the above calculation. Furthermore, the block size is chosen using the method imple-

mented in Delgado et al. (2001).

The block size can be chosen based on the algorithm described in the end of Section 3.2.3

with a slight modification. For each of the block size considered, we can calculate ω̂n,ε us-

ing the subsample estimates. At Step 3 of the algorithm, we can use β̃n,ε to calculate the

average coverage then follow the algorithm to choose block size.

5.3 Asymptotic Properties

In this section, we prove the consistency and asymptotic distribution of the proposed

estimators under current status data setting. The consistency and asymptotic distribution

of the proposed estimators under Case II interval-censored data setting. can be generalized
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using the objective function, conditions, and Theorems in Section 4.3.

5.3.1 Consistency

Theorem 5.3.1. If Conditions 1-4 of Section 3.3 are satisfied for each τi, i = 1, . . . , k,

and ω̂n,ε →p ω then β̃n,ε converges in probability to β∗ as n→∞ and ε→ 0.

Proof.

β̃n,ε = ω̂n,ε β̂n,ε →d ωβ
∗ =


∑k

j=1 ω1,jβ
∗
1

...∑k
j=1 ωp,jβ

∗
p

 = β∗,

where the limit is an application of the continuous mapping theorem along with Theo-

rem 3.3.2 and the final equality follows since the row sum of ω is 1. Since the limit is to a

single element, convergence in distribution is equivalent to convergence in probability.

5.3.2 Asymptotic Distribution

Theorem 5.3.2. If Conditions 1-8 of Section 3.3 hold for each τi (i = 1, . . . k), and

ω̂n,ε →p ω then n1/3(β̃n,ε − β∗) has the same asymptotic distribution as n1/3ω (β̂n,ε −

β∗). The asymptotic form of n1/3(β̃n,ε − β∗) is a generalization of that described in The-

orem 3.3.3.

Proof.

(β̃n,ε − β∗) = (ω̂n,ε β̂n,ε − β∗) = ω̂n,ε (β̂n,ε − β∗)

This final form has an asymptotic distribution identical the asymptotic distribution of

ω (β̂n,ε − β∗), through an application of Slutsky’s theorem.
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The asymptotic distribution of (β̂n,ε − β∗) can be found by defining

g(β) =
k∑
i=1

[τiI(δ = 0)I(c ≥ β∗i x) + (1− τi)I(δ = 1)I(β∗i x > c)]

−
k∑
i=1

[τiI(δ = 0)I(c ≥ βix) + (1− τ)I(δ = 1)I(βix > c)]

=
k∑
i=1

[I(δ = 1)− τi]

[
I(βix < c ≤ Cx)−

k∑
i=1

I(β∗i x < c < βix)

]
,

where β∗i and βi refer to the rows of the respective matrices, and these rows would only

contain parameters for a single quantile regression estimate. With this g, the 7 conditions

of Kim and Pollard (1990) theorem follow using Conditions 1–8 of Section 3.3 and dupli-

cate the proof of Theorem 3.3.3 using sums of the individual quantile regressions.

5.4 Simulation Studies

Three simulation studies were carried out to examine the finite sample performance of

our estimators. All three simulation studies consider an AFT model where the true model

is log(T ) = β0 + β1X1 + β2X2 + ξ and (β0, β1, β2) = (2, 1, 1), X1 ∼ Bernoulli(0.5),

X2 ∼ Uniform[−1, 1].

In Simulation 1, ξ were generated from (standard) normal distributions and observa-

tion times, L and R, were generated from the linear model, 1.9+I(X1 = 1)+1.1X2 +1.2V

where V are iid N(0, 1). In Simulation 2, ξ were generated from (standard) logistic dis-

tributions and the observation times, L and R, were generated from the linear model,

1.9 + 1.1X2 + 1.5V +X1(0.9 + 0.2X2)where V are iid N(0, 1). In Simulation 3, ξ were gen-

erated from (standard, minimum) extreme-value distributions and the observation times, L

and R, were generated from the linear model, 1.9 + 1.3X2 + V + X1(1 − 0.1X2 + 0.5V )

where V are generated from extreme-value distribution with mean equals 0.1 and scale

equals 0.9.
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For each scenario, we report the mean bias, mean squared error (MSE), standard devi-

ation (Std), coverage probability (CP), and confidence interval length based on 1000 sim-

ulations. Sample sizes were chosen to be n = 200, 400, and 800 for each simulation setup.

In simulation studies, we considered k = 3, 5, and 7. When k = 3, we used quantiles

0.25, 0.50, and 0.75. When k = 5, we used quantiles 1/6, 1/3, 0.50, 2/3, and 5/6. When

k = 7, we used quantiles 1/6, 0.25, 1/3, 0.50, 2/3, 0.75, and 5/6.

For each simulated dataset, the procedure described at the end of Section 4.2.2 was

used to estimate β(τ). Symmetric confidence intervals were calculated based on a stochas-

tic approximation with 500 subsamples. To decrease the computational burden, the block

size was determined via a pilot simulation in the same fashion as described in Banerjee

and McKeague (2007). The optimal subsampling block size was determined from the fol-

lowing selected block sizes: {n1/3, n1/2, n2/3, n3/4, n0.8, n0.85, n0.9, n0.95}. The weight vector,

ωj, were estimated using method described in Section 5.2.3. To compare performance, we

also used a naive weight vector which is defined as [(1/k, · · · , 1/k)p×1]T . We used relative

efficiency (RE) and confidence interval length ratio to compare the efficiency between the

two estimates. Relative efficiency is defined as the ratio of MSE where a value of RE≥ 1

indicates better performance of the weighted quantile average estimator. The numerator

used in the relative efficiency calculation is the smallest MSE among all individual quan-

tiles, 1/6, 0.25, 1/3, 0.50, 2/3, 0.75, and 5/6. Confidence interval length ratio is defined as

the ratio of confidence interval length where a value of confidence interval length ratio≥ 1

indicates better performance of the weighted quantile average estimator. The numerator

used in the confidence interval length ratio calculation is the narrowest confidence interval

length among all individual quantiles, 1/6, 0.25, 1/3, 0.50, 2/3, 0.75, and 5/6. In Simulation

1 and Simulation 2, the MSE and confidence interval length of β̂(τ = 0.5) was used as the

numerator. In Simulation 3, the MSE and confidence interval length of β̂(τ = 2/3) was

used as the numerator.
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Table 5.8–5.10, Table 5.11–5.13, and Table 5.14–5.11 summarize the results for Sim-

ulation 1, Simulation 2, and Simulation 3 with sample size equal to 200, 400, and 800 at

each individual quantile along with the two weighted results. In the tables, “Truth” is the

true parameter value; “Bias” is the mean bias of the estimates from all replicates; “MSE”

is the mean squared error; “Std” is the standard deviation of estimates; “CP” is the aver-

age coverage from subsampling symmetric confidence intervals; and “Length” is the average

confidence interval length. “EqualZ” is the naive weighted estimates using Z quantiles and

“OptimalZ” is the weighted estimates using ω̂j with Z quantiles where Z ∈ {3, 5, 7}.

Table 5.8 to 5.16 show that the regression coefficient estimators from individual quan-

tiles have negligible bias and it is also true for the weighted estimators. The bias in gen-

eral has a decreasing trend as the sample size increases for parameters from individual

quantiles and for weighted estimator. The mean squared errors and standard deviations

decrease as the sample size increases. The subsampling confidence interval coverage fluctu-

ates around the nominal level 95% with slight over coverage for some instances. Table 5.17

shows the relative efficiency and Table 5.18 shows the confidence interval length ratio of

β̃. There is an efficiency gain even for naive weight and this efficiency gain is more pro-

nounced when the distribution is symmetric, as seen in the Normal and Logistic cases.

The relative efficiency using ω̂j is almost always higher than using the naive weight but

the difference is more pronounced for the asymmetric extreme-value distribution. The rel-

ative efficiency in general increased as the sample sizes increased. The incremental gain in

relative efficiency was observed when number of quantiles, k, increased. However, the gain

between combining 5 or 7 quantiles are not obvious which indicating that using a small

number of quantiles may be sufficient to achieve a substantial improvement. Similar con-

clusions can be drawn for confidence interval length ratio.
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5.5 Application

We apply our estimation and inference procedure on two real datasets in this section.

The first dataset contains current status data from a calcification study (Yu et al. 2001).

The calcification study investigated the effects of clinical variables on the time to calcifica-

tion of intraocular lenses, which is an infrequently reported complication of cataract treat-

ment. A patient’s calcification status was determined by an ophthalmologist at a random

time within 36 months after implantation of the intraocular lenses. The severity of calci-

fication was graded 0, 1, · · · , 5. For this analysis, we defined severity > 1 as calcified and

severity ≤ 1 as no calcification. The covariates considered are gender (female vs. male)

and age. Xue et al. (2004) and Cheng and Wang (2011) showed that the relationship be-

tween age and time to calcification is not simply linear; instead, patients around 60 years

old enjoyed the longest time to calcification; therefore, the age variable entered the model

as a linear spline with a knot at 60 then divided by 10. The dataset contains 379 records

and we used the 378 records which have complete data for our analysis.

The nonparametric maximum likelihood estimator (NPMLE) (Wellner and Zhan 1997)

of the (unobserved) logarithm of time to calcification distribution function stratified by

each covariate is shown in Figure 5.15. The continuous covariate, age, was dichotomized

by the mean of age. Based on the NPMLE in Figure 5.15, it is clear that the data may

provide enough information for estimation only for quantiles below 0.2; thus, we focused

on the 0.1, 0.15, and 0.20 quantiles.

The estimation procedure proposed in Section 3.2.2 was used for the 3 lower quantiles.

We used block sizes b = Nγ where γ = {1/3, 1/2, 2/3, 3/4, 0.8, 0.85, 0.9, 0.95}. Five-

hundred subsamples for each of the block size were generated. Weights ω̂j were estimated

and symmetric confidence intervals were constructed using the method described in Sec-

tion 5.2.3. The results are summarized in Table 5.19.

Female sex and advanced age after 60 yrs old are associated with accelerated failure.
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Figure 5.15: Nonparametric maximum likelihood estimator (NPMLE) of the (unobserved)
logarithm of time to calcification distribution function stratified by covariates.
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Advanced age prior to 60 years old; however, is associated with decelerated failure. The

confidence interval for the weighted β is narrower than all the individual quantiles exam-

ined; unfortunately, it is not statistically significant at the 0.95 level.

The second dataset is a general interval-censored failure time data. The breast cosme-

sis data consists of 94 patients who were given either radiation therapy alone (RT, N=46)

or radiation therapy plus adjuvant chemotherapy (RCT, N=48). Every 4 to 6 months,

patients returned to the clinic for a check up and the cosmetic appearance of the patient

was evaluated during the clinic visit. The outcome of interest is time to breast retraction,

an undesired cometic effect. There are 38 patients who did not experience breast retrac-

tion during the study. A detailed description of this study can be found in Finkelstein and

Wolfe (1985) and Finkelstein (1986).

The NPMLE (Wellner and Zhan 1997) of the (unobserved) failure time distribution

function is shown in Figure 5.16. Based on the NPMLE in Figure 5.16, it is clear that the

data may provide enough information for estimation only for quantiles below 0.5; thus,

we focused on the 0.2, 0.4, and 0.5 quantiles. The 0.3 quantile was not used because we

encountered convergence issues which is an indication that we may not have enough data

to estimate that quantile.

The estimation procedure proposed in Section 4.2.2 was used for the 3 lower quantiles.

We used block sizes b = Nγ where γ = {1/3, 1/2, 2/3, 3/4, 0.8, 0.85, 0.9, 0.95}. Five-

hundred subsamples for each of the block sizes were generated. Weights ω̂j were estimated

and symmetric confidence intervals were constructed using the method described in Sec-

tion 5.2.3. The results are summarized in Table 5.20. The weights calculated using the

observed subsampling variance-covariance matrix are 0.282, 0.477, and 0.241 for 0.20, 0.40,

and 0.50 quantiles, respectively.

We obtained a weighted estimate of 0.595 for RT vs. RCT with a confidence interval

(0.164, 1.026) which indicated that patients receiving radiation therapy alone experienced
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Figure 5.16: Nonparametric maximum likelihood estimator (NPMLE) of the (unobserved)
logarithm of failure time distribution function for patients received radiation therapy alone
(RT) and patients received radiation therapy plus adjuvant chemotherapy (RCT).

a significantly delay in breast retraction. The confidence interval length is 0.862 for the

weighted estimate which is much narrower than the confidence interval length from the in-

dividual quantiles (1.596, 1.952, and 1.853 for the 0.2, 0.4, and 0.5 quantiles, respectively).

The much narrower confidence interval length resulted in a significant point estimate for

the weighted estimate while the estimates from the individual quantiles are not statisti-

cally significant.

5.6 Discussion

We have taken advantage of the quantile regression framework to provide a semipara-

metric method for accelerated failure time models using interval-censored data. We pro-

posed to combine information across multiple quantiles to improve upon the efficiency of

the estimators. Based on the simulation studies, the weighted estimators have ignorable
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bias. A subsampling procedure was used to produce confidence intervals for weighted es-

timators and it appeared to perform well. Combining a small number of quantiles, such

as 3, can provide a marked gain in relative efficiency. The gain of using ω̂n,ε is slightly

more than using a naive weighting scheme, i.e. taking the average across quantiles, but

the naive weight method still has decent performance.
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Table 5.8: Normal distribution, N=200

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 0.003 0.166 0.408 0.960 1.467

β2 = 1 -0.032 0.144 0.378 0.954 1.320

0.25 β1 = 1 -0.010 0.137 0.370 0.953 1.346
β2 = 1 -0.017 0.102 0.318 0.953 1.172

1/3 β1 = 1 -0.003 0.116 0.340 0.953 1.261
β2 = 1 -0.014 0.084 0.289 0.953 1.096

0.5 β1 = 1 -0.000 0.105 0.324 0.961 1.197
β2 = 1 -0.011 0.081 0.285 0.952 1.044

2/3 β1 = 1 -0.004 0.109 0.330 0.962 1.263
β2 = 1 -0.022 0.096 0.308 0.966 1.108

0.75 β1 = 1 0.012 0.139 0.372 0.956 1.372
β2 = 1 -0.013 0.109 0.331 0.959 1.216

5/6 β1 = 1 0.028 0.174 0.417 0.953 1.509
β2 = 1 -0.027 0.153 0.390 0.949 1.357

Equal3 β1 = 1 0.001 0.053 0.230 0.969 0.928
β2 = 1 -0.014 0.042 0.204 0.959 0.839

Equal5 β1 = 1 0.005 0.043 0.207 0.967 0.850
β2 = 1 -0.021 0.038 0.194 0.960 0.784

Equal7 β1 = 1 0.004 0.043 0.209 0.958 0.842
β2 = 1 -0.020 0.037 0.192 0.961 0.772

Optimal3 β1 = 1 -0.001 0.052 0.228 0.962 0.898
β2 = 1 -0.022 0.039 0.196 0.961 0.798

Optimal5 β1 = 1 0.003 0.043 0.207 0.955 0.814
β2 = 1 -0.029 0.036 0.187 0.955 0.728

Optimal7 β1 = 1 0.001 0.043 0.207 0.949 0.799
β2 = 1 -0.030 0.035 0.185 0.953 0.715
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Table 5.9: Normal distribution, N=400

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 0.001 0.098 0.313 0.970 1.175

β2 = 1 -0.007 0.076 0.276 0.962 1.013

0.25 β1 = 1 -0.002 0.077 0.278 0.969 1.050
β2 = 1 -0.001 0.057 0.238 0.962 0.915

1/3 β1 = 1 -0.007 0.067 0.258 0.969 0.993
β2 = 1 -0.011 0.048 0.219 0.962 0.843

0.5 β1 = 1 -0.002 0.067 0.258 0.960 0.952
β2 = 1 -0.011 0.048 0.219 0.966 0.819

2/3 β1 = 1 -0.013 0.074 0.271 0.966 1.002
β2 = 1 -0.001 0.051 0.225 0.957 0.859

0.75 β1 = 1 -0.007 0.085 0.292 0.961 1.083
β2 = 1 -0.005 0.063 0.251 0.972 0.931

5/6 β1 = 1 0.005 0.111 0.333 0.970 1.232
β2 = 1 -0.007 0.080 0.282 0.966 1.063

Equal3 β1 = 1 -0.004 0.030 0.174 0.963 0.705
β2 = 1 -0.006 0.022 0.148 0.973 0.625

Equal5 β1 = 1 -0.003 0.024 0.155 0.965 0.633
β2 = 1 -0.007 0.018 0.133 0.974 0.571

Equal7 β1 = 1 -0.004 0.023 0.153 0.960 0.623
β2 = 1 -0.006 0.017 0.132 0.970 0.561

Optimal3 β1 = 1 -0.004 0.029 0.169 0.963 0.678
β2 = 1 -0.007 0.020 0.142 0.970 0.597

Optimal5 β1 = 1 -0.005 0.023 0.151 0.959 0.608
β2 = 1 -0.010 0.017 0.130 0.960 0.539

Optimal7 β1 = 1 -0.005 0.022 0.149 0.954 0.591
β2 = 1 -0.009 0.016 0.128 0.959 0.526
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Table 5.10: Normal distribution, N=800

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 -0.007 0.059 0.243 0.965 0.931

β2 = 1 -0.012 0.044 0.209 0.971 0.806

0.25 β1 = 1 -0.005 0.046 0.215 0.968 0.832
β2 = 1 -0.006 0.034 0.185 0.961 0.709

1/3 β1 = 1 -0.003 0.044 0.210 0.968 0.781
β2 = 1 -0.006 0.030 0.173 0.961 0.659

0.5 β1 = 1 -0.008 0.041 0.202 0.966 0.740
β2 = 1 0.001 0.028 0.168 0.961 0.634

2/3 β1 = 1 0.003 0.044 0.210 0.951 0.781
β2 = 1 0.006 0.031 0.175 0.963 0.664

0.75 β1 = 1 0.004 0.056 0.236 0.952 0.850
β2 = 1 0.001 0.033 0.180 0.975 0.713

5/6 β1 = 1 0.013 0.068 0.260 0.963 0.952
β2 = 1 -0.004 0.047 0.216 0.969 0.832

Equal3 β1 = 1 -0.003 0.019 0.136 0.967 0.536
β2 = 1 -0.002 0.013 0.112 0.970 0.468

Equal5 β1 = 1 -0.001 0.013 0.113 0.973 0.477
β2 = 1 -0.003 0.009 0.097 0.974 0.421

Equal7 β1 = 1 -0.001 0.012 0.111 0.969 0.464
β2 = 1 -0.003 0.009 0.094 0.971 0.412

Optimal3 β1 = 1 -0.003 0.017 0.131 0.970 0.520
β2 = 1 -0.002 0.012 0.109 0.966 0.451

Optimal5 β1 = 1 -0.001 0.012 0.112 0.970 0.458
β2 = 1 -0.004 0.009 0.096 0.963 0.401

Optimal7 β1 = 1 -0.001 0.012 0.110 0.969 0.443
β2 = 1 -0.004 0.009 0.095 0.963 0.390
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Table 5.11: Logistic distribution, N=200

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 -0.160 0.436 0.641 0.958 2.408

β2 = 1 -0.173 0.404 0.612 0.943 2.199

0.25 β1 = 1 -0.059 0.303 0.547 0.948 1.952
β2 = 1 -0.109 0.261 0.500 0.929 1.709

1/3 β1 = 1 -0.009 0.272 0.522 0.944 1.822
β2 = 1 -0.069 0.208 0.451 0.942 1.582

0.5 β1 = 1 0.014 0.240 0.490 0.950 1.725
β2 = 1 -0.048 0.172 0.412 0.945 1.492

2/3 β1 = 1 0.016 0.297 0.545 0.953 1.866
β2 = 1 -0.041 0.213 0.460 0.960 1.622

0.75 β1 = 1 -0.005 0.318 0.564 0.956 2.035
β2 = 1 -0.027 0.256 0.505 0.958 1.771

5/6 β1 = 1 0.002 0.420 0.649 0.962 2.302
β2 = 1 -0.012 0.342 0.585 0.961 2.064

Equal3 β1 = 1 -0.017 0.124 0.351 0.954 1.349
β2 = 1 -0.061 0.101 0.312 0.953 1.182

Equal5 β1 = 1 -0.027 0.117 0.341 0.949 1.259
β2 = 1 -0.069 0.092 0.296 0.936 1.127

Equal7 β1 = 1 -0.029 0.111 0.332 0.945 1.243
β2 = 1 -0.069 0.092 0.296 0.929 1.108

Optimal3 β1 = 1 -0.019 0.129 0.358 0.941 1.308
β2 = 1 -0.066 0.092 0.295 0.938 1.126

Optimal5 β1 = 1 -0.017 0.114 0.337 0.939 1.203
β2 = 1 -0.069 0.080 0.275 0.935 1.041

Optimal7 β1 = 1 -0.025 0.110 0.332 0.930 1.171
β2 = 1 -0.076 0.080 0.272 0.935 1.016
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Table 5.12: Logistic distribution, N=400

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 -0.070 0.294 0.538 0.957 1.919

β2 = 1 -0.089 0.223 0.464 0.957 1.714

0.25 β1 = 1 -0.018 0.181 0.425 0.959 1.592
β2 = 1 -0.030 0.150 0.387 0.951 1.364

1/3 β1 = 1 0.014 0.150 0.388 0.961 1.441
β2 = 1 -0.025 0.116 0.340 0.952 1.224

0.5 β1 = 1 0.003 0.147 0.383 0.959 1.409
β2 = 1 -0.026 0.096 0.308 0.962 1.174

2/3 β1 = 1 0.029 0.167 0.408 0.956 1.513
β2 = 1 -0.023 0.114 0.336 0.954 1.269

0.75 β1 = 1 0.027 0.196 0.442 0.961 1.632
β2 = 1 -0.037 0.149 0.385 0.950 1.406

5/6 β1 = 1 0.018 0.278 0.527 0.961 1.889
β2 = 1 -0.036 0.217 0.465 0.961 1.678

Equal3 β1 = 1 0.004 0.066 0.256 0.973 1.048
β2 = 1 -0.031 0.053 0.228 0.964 0.911

Equal5 β1 = 1 -0.001 0.054 0.233 0.967 0.957
β2 = 1 -0.040 0.047 0.214 0.966 0.853

Equal7 β1 = 1 0.001 0.052 0.227 0.964 0.938
β2 = 1 -0.038 0.046 0.212 0.956 0.835

Optimal3 β1 = 1 -0.001 0.063 0.251 0.967 1.014
β2 = 1 -0.035 0.048 0.217 0.962 0.874

Optimal5 β1 = 1 -0.002 0.053 0.229 0.960 0.910
β2 = 1 -0.042 0.041 0.198 0.958 0.790

Optimal7 β1 = 1 -0.004 0.050 0.225 0.959 0.881
β2 = 1 -0.044 0.040 0.195 0.956 0.766
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Table 5.13: Logistic distribution, N=800

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 -0.028 0.175 0.418 0.966 1.562

β2 = 1 -0.027 0.131 0.362 0.962 1.348

0.25 β1 = 1 0.015 0.122 0.349 0.958 1.278
β2 = 1 -0.017 0.089 0.297 0.953 1.088

1/3 β1 = 1 0.004 0.095 0.308 0.969 1.160
β2 = 1 -0.004 0.079 0.281 0.960 0.989

0.5 β1 = 1 0.001 0.092 0.303 0.954 1.102
β2 = 1 0.003 0.056 0.238 0.971 0.938

2/3 β1 = 1 0.003 0.106 0.325 0.966 1.198
β2 = 1 -0.008 0.075 0.273 0.964 1.023

0.75 β1 = 1 0.007 0.123 0.351 0.976 1.333
β2 = 1 -0.003 0.098 0.313 0.963 1.160

5/6 β1 = 1 0.006 0.203 0.450 0.965 1.581
β2 = 1 -0.009 0.134 0.366 0.972 1.378

Equal3 β1 = 1 0.007 0.043 0.208 0.964 0.816
β2 = 1 -0.006 0.031 0.176 0.971 0.718

Equal5 β1 = 1 -0.003 0.035 0.186 0.964 0.742
β2 = 1 -0.009 0.026 0.162 0.958 0.657

Equal7 β1 = 1 0.001 0.031 0.177 0.964 0.723
β2 = 1 -0.009 0.025 0.159 0.950 0.642

Optimal3 β1 = 1 0.003 0.042 0.204 0.956 0.790
β2 = 1 -0.006 0.028 0.167 0.971 0.686

Optimal5 β1 = 1 -0.006 0.032 0.178 0.961 0.704
β2 = 1 -0.012 0.022 0.149 0.961 0.613

Optimal7 β1 = 1 -0.005 0.030 0.174 0.954 0.680
β2 = 1 -0.015 0.021 0.145 0.949 0.593
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Table 5.14: Extreme-value distribution, N=200

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 -0.061 0.407 0.635 0.943 2.187

β2 = 1 -0.120 0.312 0.544 0.948 1.950

0.25 β1 = 1 -0.025 0.268 0.518 0.958 1.870
β2 = 1 -0.067 0.211 0.455 0.964 1.675

1/3 β1 = 1 0.023 0.189 0.434 0.963 1.592
β2 = 1 -0.040 0.162 0.400 0.945 1.388

0.5 β1 = 1 -0.017 0.128 0.358 0.962 1.365
β2 = 1 -0.049 0.107 0.323 0.952 1.187

2/3 β1 = 1 -0.014 0.120 0.347 0.955 1.276
β2 = 1 -0.024 0.083 0.287 0.963 1.134

0.75 β1 = 1 -0.018 0.124 0.352 0.957 1.319
β2 = 1 -0.021 0.097 0.311 0.964 1.187

5/6 β1 = 1 -0.053 0.138 0.368 0.954 1.396
β2 = 1 -0.031 0.111 0.332 0.970 1.299

Equal3 β1 = 1 -0.020 0.071 0.267 0.968 1.070
β2 = 1 -0.046 0.057 0.234 0.964 0.972

Equal5 β1 = 1 -0.025 0.064 0.252 0.968 1.070
β2 = 1 -0.053 0.050 0.217 0.964 0.972

Equal7 β1 = 1 -0.024 0.064 0.252 0.954 0.973
β2 = 1 -0.050 0.049 0.216 0.961 0.888

Optimal3 β1 = 1 -0.019 0.064 0.252 0.963 1.004
β2 = 1 -0.045 0.049 0.216 0.970 0.902

Optimal5 β1 = 1 -0.027 0.056 0.235 0.943 0.902
β2 = 1 -0.059 0.042 0.198 0.958 0.815

Optimal7 β1 = 1 -0.027 0.056 0.234 0.951 0.890
β2 = 1 -0.051 0.041 0.196 0.956 0.803
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Table 5.15: Extreme-value distribution, N=400

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 -0.011 0.243 0.493 0.963 1.802

β2 = 1 -0.054 0.202 0.446 0.956 1.583

0.25 β1 = 1 0.018 0.176 0.419 0.956 1.526
β2 = 1 -0.031 0.130 0.360 0.956 1.312

1/3 β1 = 1 0.022 0.131 0.362 0.950 1.278
β2 = 1 -0.019 0.091 0.301 0.949 1.097

0.5 β1 = 1 0.010 0.084 0.290 0.955 1.087
β2 = 1 -0.019 0.063 0.250 0.967 0.934

2/3 β1 = 1 -0.003 0.069 0.263 0.962 0.999
β2 = 1 -0.014 0.047 0.217 0.959 0.860

0.75 β1 = 1 -0.013 0.068 0.261 0.968 1.017
β2 = 1 -0.027 0.055 0.233 0.970 0.896

5/6 β1 = 1 -0.032 0.084 0.288 0.958 1.078
β2 = 1 -0.038 0.064 0.250 0.975 0.976

Equal3 β1 = 1 0.005 0.041 0.202 0.962 0.820
β2 = 1 -0.026 0.034 0.184 0.957 0.719

Equal5 β1 = 1 -0.003 0.034 0.184 0.970 0.742
β2 = 1 -0.029 0.029 0.168 0.958 0.666

Equal7 β1 = 1 -0.002 0.033 0.181 0.959 0.729
β2 = 1 -0.029 0.029 0.167 0.957 0.654

Optimal3 β1 = 1 -0.001 0.034 0.184 0.961 0.764
β2 = 1 -0.028 0.029 0.167 0.956 0.667

Optimal5 β1 = 1 -0.012 0.028 0.167 0.960 0.678
β2 = 1 -0.031 0.024 0.150 0.953 0.601

Optimal7 β1 = 1 -0.013 0.028 0.166 0.954 0.661
β2 = 1 -0.033 0.023 0.150 0.948 0.588
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Table 5.16: Extreme-value distribution, N=800

τ Truth Bias MSE Std CP Length
1/6 β1 = 1 0.019 0.154 0.393 0.963 1.462

β2 = 1 -0.027 0.128 0.357 0.960 1.258

0.25 β1 = 1 0.005 0.101 0.318 0.969 1.225
β2 = 1 -0.017 0.079 0.280 0.966 1.048

1/3 β1 = 1 0.015 0.075 0.274 0.969 1.018
β2 = 1 -0.011 0.053 0.230 0.961 0.867

0.5 β1 = 1 0.009 0.049 0.221 0.962 0.847
β2 = 1 0.004 0.036 0.190 0.961 0.716

2/3 β1 = 1 0.009 0.040 0.201 0.961 0.780
β2 = 1 -0.013 0.033 0.175 0.959 0.671

0.75 β1 = 1 0.002 0.042 0.205 0.968 0.788
β2 = 1 -0.013 0.030 0.178 0.964 0.677

5/6 β1 = 1 -0.008 0.049 0.220 0.965 0.839
β2 = 1 -0.013 0.037 0.193 0.968 0.740

Equal3 β1 = 1 0.005 0.023 0.151 0.972 0.630
β2 = 1 -0.009 0.019 0.136 0.964 0.547

Equal5 β1 = 1 0.009 0.018 0.134 0.968 0.560
β2 = 1 -0.012 0.015 0.123 0.963 0.497

Equal7 β1 = 1 0.007 0.017 0.130 0.974 0.548
β2 = 1 -0.013 0.018 0.121 0.955 0.482

Optimal3 β1 = 1 0.001 0.019 0.139 0.973 0.580
β2 = 1 -0.011 0.015 0.124 0.967 0.502

Optimal5 β1 = 1 -0.002 0.015 0.122 0.963 0.506
β2 = 1 -0.016 0.012 0.109 0.961 0.448

Optimal7 β1 = 1 -0.003 0.014 0.119 0.967 0.491
β2 = 1 -0.018 0.012 0.107 0.958 0.434
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Table 5.17: Relative efficiency

β1 β2

ξ Weight N = 200 N = 400 N = 800 N = 200 N = 400 N = 800

Simulation 1 Equal3 1.9836 2.2115 2.1862 1.9424 2.1955 2.2586
Normal Equal5 2.4471 2.7788 3.1769 2.1373 2.6973 3.0158

Equal7 2.4114 2.8685 3.3223 2.1952 2.7670 3.1872

Optimal3 2.0101 2.3422 2.3621 2.0984 2.3891 2.3725
Optimal5 2.4559 2.9367 3.2689 2.2721 2.8223 3.0791
Optimal7 2.4540 2.9953 3.3664 2.3157 2.9174 3.1468

Simulation 2 Equal3 1.9424 2.2376 2.1281 1.6966 1.8040 1.8137
Logistic Equal5 2.0566 2.7077 2.6446 1.8562 2.0241 2.1358

Equal7 2.1625 2.8478 2.9240 1.8657 2.0702 2.2285

Optimal3 1.8638 2.3346 2.2075 1.8747 1.9917 2.0158
Optimal5 2.1078 2.7868 2.9062 2.1375 2.3406 2.5203
Optimal7 2.1730 2.9064 3.0159 2.1517 2.3969 2.6439

Simulation 3 Equal3 1.6844 1.6876 1.7808 1.4611 1.3784 1.6548
Extreme-value Equal5 1.8840 2.0442 2.2294 1.6634 1.6359 1.9990

Equal7 1.8832 2.1170 2.4054 1.6928 1.6540 2.0610

Optimal3 1.8896 2.0387 2.0952 1.7098 1.6438 1.9833
Optimal5 2.1504 2.4681 2.7084 1.9996 2.0094 2.5258
Optimal7 2.1665 2.5012 2.8335 2.0254 2.0180 2.5742

In Simulation 1 and Simulation 2, MSE of β̂(τ = 0.5) was used as the numerator. In Simulation 3, MSE
of β̂(τ = 2/3) was used as the numerator.
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Table 5.18: Confidence Interval Length Ratio

β1 β2

ξ Weight N = 200 N = 400 N = 800 N = 200 N = 400 N = 800

Simulation 1 Equal3 1.2892 1.3511 1.3804 1.2442 1.3111 1.3542
Normal Equal5 1.4075 1.5042 1.5506 1.3321 1.4330 1.5055

Equal7 1.4203 1.5293 1.5924 1.3519 1.4585 1.5387

Optimal3 1.3327 1.4039 1.4218 1.3085 1.3720 1.4034
Optimal5 1.4699 1.5658 1.6150 1.4330 1.5208 1.5782
Optimal7 1.4982 1.6097 1.6693 1.4603 1.5567 1.6248

Simulation 2 Equal3 1.2784 1.3450 1.3503 1.2626 1.2474 1.3075
Logistic Equal5 1.3699 1.4723 1.4846 1.3237 1.3768 1.4285

Equal7 1.3883 1.5029 1.5259 1.3470 1.4060 1.4617

Optimal3 1.3187 1.3897 1.3939 1.3253 1.3439 1.3679
Optimal5 1.4336 1.5485 1.5656 1.4331 1.4866 1.5311
Optimal7 1.4727 1.5998 1.6199 1.4690 1.5334 1.5820

Simulation 3 Equal3 1.1921 1.2179 1.2377 1.1667 1.1965 1.2273
Extreme-value Equal5 1.1921 1.3461 1.3914 1.1667 1.2914 1.3504

Equal7 1.3116 1.3714 1.4216 1.2777 1.3152 1.3827

Optimal3 1.2710 1.3084 1.3439 1.2575 1.2902 1.3383
Optimal5 1.4138 1.4737 1.5416 1.3909 1.4319 1.5010
Optimal7 1.4332 1.5128 1.5891 1.4129 1.4631 1.5484
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Table 5.19: Results of Calcification Data Analysis

τ Covariate Point Estimate Confidence Interval C.I. Length
0.10 Intercept 3.003 ( 1.355, 4.651) 3.296

Female vs. Male -0.224 (-0.905, 0.457) 1.363
Age (per 10 yrs) prior to 60 yrs 0.832 (-3.748, 5.413) 9.161
Age (per 10 yrs) after to 60 yrs -0.469 (-1.604, 0.667) 2.271

0.15 Intercept 3.133 ( 0.211, 6.055) 5.843
Female vs. Male 0.388 (-3.115, 3.891) 7.006
Age (per 10 yrs) prior to 60 yrs 1.416 (-4.202, 7.034) 11.235
Age (per 10 yrs) after to 60 yrs -0.576 (-1.568, 0.417) 1.985

0.20 Intercept 4.061 ( 0.831, 7.291) 6.462
Female vs. Male -0.851 (-3.778, 2.077) 5.855
Age (per 10 yrs) prior to 60 yrs 2.177 (-2.146, 6.500) 8.465
Age (per 10 yrs) after to 60 yrs -0.321 (-1.498, 0.856) 2.354

Weighted Female vs. Male -0.224 (-0.902, 0.454) 1.355
Age (per 10 yrs) prior to 60 yrs 1.159 (-2.943, 5.260) 8.202
Age (per 10 yrs) after to 60 yrs -0.463 (-1.265, 0.340) 1.605

Table 5.20: Results of Breast Cosmesis Data Analysis

RT vs. RCT
τ Intercept Point Estimate (Confidence Interval)
0.2 1.096 0.392 (-0.406, 1.190)
0.4 1.476 0.569 (-0.407, 1.545)
0.5 3.571 0.884 (-0.042, 1.811)

Weighted — 0.595 ( 0.164, 1.026)

RT: radiation therapy alone and RCT: radiation therapy plus adjuvant chemotherapy.
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

In failure time analysis, the data are rarely normally distributed and tend to be right-

skewed. Commonly used methods for failure time analysis describe covariate effects through

relative risk which portrays the odds of event occurrence but does not convey the infor-

mation in the original time scale. Quantile regression models can describe the associa-

tion at different quantiles, providing more detailed relationships when data is skewed and

when heterogeneity is present. The estimate from a quantile regression can be interpreted

as the direct effect on the response variable which is appealing for failure time analysis.

Many methods have been proposed for right-censored failure time data, but there is lim-

ited method available to apply quantile regression on interval-censored failure time data.

This dissertation innovates conditional quantile regression models to analyze interval-

censored failure time data.

The method for Case I interval-censored data, also known as current status data, has

been developed. The asymptotic statistical properties of the estimator have been proven

and the small sample performances have been demonstrated via simulation studies. The

proposed method has also been applied on the females’ data from “The Voluntary HIV-1

Counseling and Testing Efficacy Study Group”.

We extended the method developed for current status data to Case II interval-censored

data. We found that a weighted support vector machine (weighted SVM) method produces

a reasonable initial value for the estimation routine. Using weighted SVM to produce ini-

tial values is an improvement upon the method we used for current status data which was
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a coarse grid search. We also rigourously proved the asymptotic properties of our estima-

tor. The numerical performances have been shown using simulation studies. Our method

has been applied to the African American data from the Atherosclerosis Risk in Communi-

ties (ARIC) study.

Under the accelerated failure time model, the quantiles should be simply a shift at the

intercept. Taking advantage of this fact, we used our method to estimate the covariate ef-

fects under the accelerated failure time model for interval-censored data. The estimates

from different quantiles are combined to increase efficiency. This provided a semiparamet-

ric approach to analyze accelerated failure time model with interval-censored data.

It will be advantageous to construct a formal test to test the validity of using the AFT

model for a given dataset. The test can be used to check the iid assumption of the error

term prior to performing a data analysis. If the test indicates a heteroscedastic error then

an AFT model should not be used and alternative methods should be employed.

It might be of interest of investigate more on the efficiency gain of combining informa-

tion across quantiles. One open question is that whether combining quantiles can improve

the cube-root convergence rate to close to the typical
√
n convergence rate. The other

question is whether it is possible to construct efficient estimators in this manner. These

are interesting statistical questions and warrant further investigations.
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