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ABSTRACT 
 

Michael Joseph Hackett: Paclitaxel-2'-O-pentadecylhemiglutarate: A Prodrug Strategy for 
Albumin Based Drug Delivery (Under the direction of Moo J. Cho, Ph.D.) 

  

Delivery of antineoplastic agents to solid tumors remains a great challenge in 

formulation development.  Preclinical successes often do not translate into clinical therapies 

due to the intrinsic imperfections of current models.  The presented formulation begins with 

clinical observations indicating the ubiquitous protein, serum albumin, naturally accumulates 

selectively in spontaneously developed tumors.  Albumin then provides a natural shuttle for 

therapeutic agents to solid tumors.  To test this, a fatty diacid, 3-pentadecylglutaric acid 

(PDG), was synthesized.  This fatty acid has the capacity to bind albumin tightly while 

concomitantly binding a therapeutic moiety, in this case paclitaxel.  The paclitaxel-2'-O-

pentadecylhemiglutarate conjugate binds albumin tightly but the extreme hydrophobicity led 

to poor loading efficiency and the formation of 120 nm albumin aggregates; a similar 

phenomenon observed in the clinically approved ABRAXANE.  This aggregation was found 

to be the result of a specific interaction between paclitaxel and albumin.   

Dissociation of the conjugate from albumin is exceedingly slow with less than 3% 

released over 48 h under sink conditions.  When administered to tumor bearing mice, the 

formulation behaved similarly to covalently attached albumin conjugates.  Rapid and uniform 

organ distribution was observed followed by a slow re-emergence of complex into the 

vasculature giving rise to a half-life of 23 h. This is comparable to the half-life of the protein 

itself in mice.  Tumor accumulation was moderate (~1%) and biochemical stability analysis 
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of the conjugate suggests little conversion (<6% over 72 h) to free drug would occur.  

Despite decreased cytotoxicity, lower doses of the conjugate demonstrated comparable 

efficacy to TAXOL without the need for surfactants. 

Modification of paclitaxel was accomplished in a single step using PDG anhydride 

presenting a cost-effective method for improving the pharmacokinetics of a drug.  

Conceptually, this study lays the foundation for using the PDG technology for modifying 

other therapeutic agents. The success of the formulation is highly dependent on the 

selected therapeutic modality which can be broadly limited to any therapeutic agent bearing 

a nucleophilic moiety.  It is expected a more hydrophilic drug that does not exhibit albumin 

binding may lead to increased efficacy in addition to improved pharmacokinetics.    
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PREFACE 
 

I was trained as a synthetic chemist by Phil Garner, Ph.D. at Case Western as an 

undergraduate.  While I enjoyed it, I was unfulfilled and wanted a way to translate the 

compounds I made into medically useful products.  I thus applied to the Medicinal Chemistry 

program at the UNC School of Pharmacy, or so I thought.  During website reconstruction, 

the Med Chem website was down and assuming the four listed programs were all just 

ramifications of one program, I used the information for the only functional website; 

Molecular Pharmaceutics.  I received a call from Dr. Cho informing me of my mistake along 

with an elevator pitch on behalf of the MoPh program.  I had never heard of drug delivery 

but the idea of designing drugs to be delivered specifically within the body sounded as 

amazing as it did impossible.  Intrigued, I recalled the best advice, courtesy of Dr. Garner, I 

received while looking for grad schools; “follow the science.”  So I did and joined the MoPh 

program in the summer of 2006 to the elation of the Med Chem department I am sure.   

After a rotation with Dr. Huang, I recall talking to Cho about joining his lab to work on 

PRINT particles.  On my first day I entered the lab and the smell of aldrithiol and 

dichloromethane washed over me; I knew I was home.  Well, first I replaced the 

dichloromethane smell with ether.  Then I knew I was home.  Cho and I worked on a few 

preliminary projects together while I finished classes, but the projects were unsuccessful.  

Cho then discussed a project of using a fatty acid for binding albumin.  He mentioned it in 

passing as an interesting idea but having had several students take on the idea and fail in 

the past, he had all but given up hope.  I loved the idea and immediately set to work making 
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the same mistakes as everyone in the past.  Then, after some 30 trips back to the drawing 

board, I scribbled out a new molecule to make my life easier.  Like Archimedes standing in 

the tub only to notice the water level rise, or the apple falling on Newton’s head; I too had a 

Eureka moment.  I showed the molecule to Cho who immediately shared my enthusiasm, 

and within a few hours I returned with a synthetic scheme to make the 3-cetylglutaric 

anhydride.   

Several months later, having survived the LAH and KCN involved in the synthesis, I 

was purifying over a gram of the molecule in AcCl by filtration.  Some water was aspirated 

into the vacuum flask which immediately reacted with the AcCl releasing a great deal of heat 

which exploded the suspension out the top of the filter barely missing my and Patrick 

Guley’s faces.  Rather than restart the synthesis, I decided to keep my face and design a 

new one.  Again, within a day I had designed a brand new synthesis which shortened the 

number of steps and the toxicity of the involved reagents and . . . it failed . . . consistently.  

Eventually it was tweaked into the synthesis presented in Chapter III which is shorter, easier 

and less dangerous than the initial synthesis.  Recently we’ve even thought of shortening it 

further via Michael addition of a Grignard but that’s another story.  The result was the 3-

cetylglutaric anhydride truncated by one methylene; 3-pentadecylglutaric anhydride now 

affectionately named PDG. 

Cho’s idea of using a fatty acid to bind albumin was coming to fruition and our zeal 

prompted us to take off at breakneck speed; only to realize we had no idea where we were 

going.  Eventually we regained our composure and focus.   We had not been averse to 

challenges up to this point nor were we strangers to struggle.  So we decided to shoot for 

the moon and undertook paclitaxel as our first endeavor.  Edison said it best. 
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  “If I find 10,000 ways something won't work, I haven't failed. 

 I am not discouraged, because every wrong attempt discarded 

 is another step forward.” 

      -Thomas Alva Edison   
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FORMULATIONS OF PACLITAXEL: REVIEW 
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1. Introduction 

Paclitaxel (PTX) is a water-insoluble taxane primarily indicated for the treatment of 

breast, non-small cell lung and ovarian cancers.  As a small molecule, PTX can move swiftly 

by diffusion dictated only by a concentration gradient.  Peripheral delivery of PTX can then 

be effective locally as well as distributing throughout the tumor core.  PTX molecules can 

easily partition into tumor cell membranes followed by slower release into the cytosol for 

microtubule bundling. For PTX to be effective in eradicating a solid tumor, it must accrue a 

minimum required concentration sustained for a desired period of time.  Accumulation of a 

large fraction of the total dose at the target site warrants a safer, more effective treatment; a 

corollary being shortened and/or fewer doses.  Most of the recent developmental efforts 

have incorporated mechanisms to achieve the pharmaceutical requirements presented 

above. Chemical efforts for identifying other taxane analogs have met the same fate of rapid 

clearance (1, 2). Likewise, approaches with PTX derivatives including chemical delivery 

systems (i.e., prodrugs) have also been far from achieving delivery targeted to solid tumor 

(3, 4).    This dilemma in developing a parenteral formulation for lipophilic antineoplastic 

agents for targeted delivery to a solid tumor is not a unique problem with PTX.  This general 

problem is indeed one of the most challenging issues contemporary research scientists are 

facing.   

2. The Problems Associated with TAXOL 

Like any other water-insoluble drug molecules, PTX will not be present in the 

circulation as a molecular dispersion (i.e., true solution).  At a therapeutically meaningful 

concentration (~ 1 µM), over 95% of PTX exists as bound to serum albumin and 

orosomucoid and a smaller amount bound to LDL/HDL (5, 6). Since the concentration of 

albumin (~40-50 mg/ml) is much greater than the other proteins, the majority of PTX in the 

circulation should be bound to albumin.  Its 1:1 specific binding to albumin is with an 
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association constant close to 106 M-1 while multiple non-specific bindings are estimated by 

molecular docking to be approximately 105 M-1 (7). Observed values tend to suggest weaker 

binding (8).  The compound has a lower affinity for erythrocytes and platelets but a very high 

affinity for the major surfactant in Cremophor EL (CrEL), polyethyleneglycol 

glyceroltriricinoleate.  In the presence of CrEL, very little protein binding occurs and an 

entirely different pharmacokinetic profile emerges (9).  Due to the complex nature of the 

various interactions, the pharmacokinetics observed subsequent to IV injection of CrEL-

based PTX formulation (i.e., TAXOL) can lie anywhere between the kinetics of albumin 

bound PTX and CrEL encapsulated PTX. 

The result is a rapid elimination of PTX from the circulation; 90% of PTX disappears 

within 3.5 hrs after 3-hr infusion in cancer patients (10). This is patently not due to metabolic 

degradation since the sum of major metabolites at a given time is less than 1% of the total 

(11). If one considers the long plasma half-life of albumin, ~ 19 days in humans (12), the 

above finding agrees with the facile transfer of PTX from its albumin complex to CrEL.  PTX 

tends to accumulate in the liver where metabolism and biliary excretion occur (13).  The 

rapid clearance has detrimental implications in delivery of PTX to the solid tumor. In this 

context, a more suitable vehicle must be employed for effective tumor delivery to see 

substantial improvements over TAXOL. 

TAXOL is a 1.2 mg/mL emulsion in 10% EtOH, 10% Cremophor EL and 80% normal 

saline which is commonly infused over 3 hours every 2-3 weeks.  The large quantity of CrEL 

is not well tolerated with most patients causing grade IV neutropenia and grade III 

hypersensitivity thus requiring a prophylactic regimen of dexamethasone (14).  Being so 

abundant, the surfactant is believed to saturate the liver thus retarding the extravasation and 

consequential metabolism and elimination of PTX (9).  This gives rise to non-linear or dose-

dependent pharmacokinetics showing disproportionately slower elimination of the drug at 
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higher doses.  Coupled with multiple cytochrome P450 dependent metabolism, this leads to 

significant inter-individual pharmacokinetics and difficult dosing of TAXOL (15).  Constrained 

within the linear kinetic range, TAXOL is cleared rapidly from the body with a terminal half-

life of 4 h when administered as a 6 h infusion (16).  Outside the linear kinetic range at 

higher dosing or shorter infusions, for example 3 h, the half-life increases to 7-8 h (10).  The 

accumulation of TAXOL in solid tumors is minimal leading to non-specific tissue uptake and 

toxicity.  Despite this undesirable phenomenon, TAXOL is highly prescribed and moderately 

effective speaking volumes to the potency of the drug.  A targeted formulation containing 

PTX should prove much more effective and tolerable for patients.   

3. Desired Features of PTX Formulations  

Drug delivery is an emerging field defined by a desire to formulate drugs for 

increased accumulation in a specific target tissue while minimizing non-specific 

accumulation and accompanying toxicity.  This can be accomplished in several ways such 

as a benign prodrug only activated under specific tissue conditions, targeting to a specific 

feature of a tissue by way of a targeting ligand, affiliation with a carrier or any combination 

therein.  For development of a new formulation, there are many attributes to consider (17-

19).  This review will focus on the desirable characteristics as they pertain to PTX. 

Solubility.  Paclitaxel is poorly soluble at 10 ug/mL in water at room temperature (20).  

The ideal formulation should be able to solubilize PTX ad infinitum such that it can be 

sterilized in a conventional manner and administered parenterally without further 

manipulations such as reconstitution or mixing with other solutions. The drug concentration 

in the formulation should be high so bolus injection is possible.   Given the physicochemical 

properties of PTX, these may be impossible requirements to satisfy. 
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In Vivo Stability.  When administered intravenously as TAXOL, PTX binds albumin, 

orosomucoid, endothelial cells, erythrocytes, platelets, while presumably residing inside the 

CrEL micelles for a significant period of time.  Ideally a delivery vehicle should preclude non-

specific association of the drug such as this while in the serum.  The formulation should be 

biochemically stable and resist hepatic, renal and reticuloendothelial clearance. Then the 

drug will be available for tumor-targeted delivery.  All organs are characterized by having 

leaky vasculature depending on the structure of endothelium.  A normal continuous 

endothelium has pores sizes between 1.8-2.0 nm which prevents extravasation of most 

macromolecules (21).  As an example, albumin of molecular weight 66.5 kDa has an 

assumed diameter of approximately 4 nm with the longest dimension extending 9.5 nm (22).  

In rapidly growing tumors, the vasculature can be quite leaky with large gaps in the vicinal 

endothelium.  Observed pores in the tumor endothelia can be much larger ranging from 200 

- 2000 nm (23).  Compare this to the kidney which is defined by having fenestrated 

endothelia of approximately 12-30 nm (21).  The endothelium here tends to be anionic 

making it resistant to most serum proteins carrying net negative charges while facilitating 

extravasation of cationic carriers.  The liver and spleen are defined by having sinusoidal or 

discontinuous endothelia with pores up to 150 nm (21).  These endothelia are also anionic 

thus having a higher extraction of cationic carriers.   

The liver and spleen are lined with highly phagocytic cells attributed to the filtration of 

particles from the vasculature.  Collectively they are called the reticuloendothelial system 

(RES).  These cells can be avoided in several ways including steric hindrance via the 

addition of polyetheyleneglycol (PEG), minimizing opsonization and the inability to 

extravasate effectively through the sinusoidal endothelia (24).    Considering the large 

difference in vascular pores between the tumor and the liver, a large carrier can facilitate 

RES aversion but still effectively extravasate into the tumor.  Smaller particles, typically 20 
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nm or less, appear able to avoid RES uptake as well (25).  Lastly, if the carrier is or appears 

natural, it may have an inherent resistance.  Macrophages, for instance, have been shown 

to express FcRn, the albumin/IgG protection receptor (26).  The measure of a successful 

formulation will be a protracted serum half-life.   This is desirable as the crowded tumor can 

only slowly filter the blood thus a prolonged retention in the circulation will promote a 

sustainable infusion of drug into the tumor. 

Targeting.  Targeting can occur passively or actively.  Passive targeting to tumors is 

typically attributed to the leaky vasculature associated with the vicinal endothelium (27).  

Rapidly expanding tumors compromise lymphatic drainage while concomitantly inundating 

the endothelium with a deluge of growth factors.  Macromolecules in the circulation are then 

filtered into the tumor, similar to the spleen and liver.  Once in the tumor periphery, active 

targeting can be accomplished by presentation of a tumor-specific targeting ligand.  This 

ligand can be directly attached to the carrier, often with a linker, minimizing steric hindrance 

for specific receptors overexpressed on tumor cells.  This provides a greater chance of 

tumor cell encounter and subsequent endocytosis.  Examples include nutrients such as 

tetrahydrofolate (28), hormones such as tamoxifen (29) or peptides such as the tripeptide 

Arg-Gly-Asp (RGD) which targets integrin proteins on the endothelium (30).  

Release.  With the highly convective force of blood pushing macromolecules out of 

the vasculature into the tumor periphery but with no mode of drainage, convective forces 

within the tumor weaken and diffusion predominates (31).  Small molecules then are 

unrestricted as they are driven by diffusion, but macromolecular carrier or therapeutic 

motility will be greatly impeded.  Ideally, PTX should be released at this time in the tumor 

periphery.  This can occur by manipulating specific elements of the tissue such as acidity, 

enzyme expression or internalization into cells. The tumor microenvironment is moderately 

acidic compared with normal tissue with a pH around 6-7 (32).  A very highly acid sensitive 
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compound such as carboxylated dimethyl maleic acid could facilitate release (33).  Enzyme 

overexpression tends to be tumor dependent.  Some general examples of targeted enzymes 

include the cathepsins (34) and matrix metalloproteases (MMPs) (35), both of which are 

involved in cleavage of the extracellular matrix to allow rapid growth (36).   

If the carrier is endocytosed by tumor cells, it will be processed into a mature 

endosome and subsequent lysosome.  The mature endosome provides a checkpoint for 

release of chemically attached PTX from the carrier as well as endosomal transfer of the 

carrier to the cytosol.  One method for endosomal release requires a weak base. During 

endosomal maturation, V-class proton pumps decrease the pH inside endosomes to 

approximately 5.  This proton flux can be buffered by a weak base triggering more protons 

to be pumped.  As protons enter the endosome, chloride counter-ions follow.  This creates 

an osmotic gradient prompting the diffusion of water into the endosome with subsequent 

swelling and potential rupture or leakage from endosome to cytosol.  This mechanism is 

referred to as the proton sponge hypothesis (37).  Other methods include membrane 

disruption (38) or the use of highly cationic cell penetrating peptides such as the 

transactivator of transcription (TAT) peptide from human immunodeficiency virus (39).  The 

result should be the complete release of PTX from the carrier and the released vehicle 

should be non-toxic and non-immunogenic.  

Development.  From a manufacturing perspective, a vehicle should be simple.  It 

should be highly scalable, economical and easy to manufacture.  From a practitioner’s 

perspective, the commercial formulation should be stable, easy to formulate for 

administration and be administered quickly, infrequently and innocuously. 

Many alternative formulations to TAXOL have been proposed.  These run the gamut 

from clinically approved through preclinical proof of concept.  There is no known magic 
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bullet formulation for PTX and these ideal characteristics are meant only as a basis of 

comparison.  The great number and variation in the methods of PTX delivery are 

nevertheless encouraging. 

4. Natural Drug Carriers  

There are several options available for natural carriers but the most commonly used 

is also the most abundant, serum albumin. Albumin is maintained at ~40-50 mg/mL 

concentrations in the vasculature and 25 mg/mL in the interstice; twice as great as the 

penultimately abundant, IgG (40).  Both albumin and IgG are naturally protected from 

degradation throughout the body by the Brambell receptor, FcRn (12).  While expressed on 

all endothelia, FcRn has now been discovered in the kidney (41), hepatocytes (42) and on 

monocytes (26).  This protection is manifest in 19 and 21 day half-lives for albumin and IgG 

respectively, in humans. This perfectly satisfies the pharmacokinetic requirements for 

formulation development (12).  In addition to natural protection, albumin both passively and 

actively deposits in solid tumors where it is rapidly degraded; putatively because the most 

abundant protein provides the most abundant sustenance (43).  Passive accumulation of 

albumin is believed to occur due to the leaky vasculature of the tumor endothelium (27).  

Active accumulation is believed to occur via an overexpression of albondin (gp60) and 

secreted protein acidic and rich in cysteines, SPARC, at the tumor endothelium (44).  These 

proteins are responsible for albumin flux into the interstice; gp60 transcellularly and SPARC 

paracellularly.  Despite this accumulation, albumin is still degraded extensively throughout 

the body; 15% in the liver (45), 10% in the kidneys (46) and 40-60% in the muscle and skin 

(47, 48). Other potential natural carriers include IgG, LDL/HDL and transferrin which all 

demonstrate similar passive tumor accumulation as albumin (49, 50).  The half-lives of LDL 

and transferrin can drop to 1/3 of their intrinsic half-life due to catabolism by a growing 

tumor.  Consequently, these particles are naturally programmed carriers for tumoral delivery 
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although little has been done with these particles for PTX delivery.  Synthetic LDL has been 

formulated and administered (51, 52) while transferrin has been used primarily as a 

targeting ligand (53, 54). 

The only clinically approved alternative to TAXOL is Abi-007 (ABRAXANE).  

ABRAXANE is formulated by suspending PTX with albumin followed by nebulization under 

high pressure.  This consequently entraps the hydrophobic PTX molecules inside the 

albumin core resulting in 130 nm particles.  This greatly narrows the technology to apply 

only to hydrophobic drugs with moderately high affinity for albumin.  The particles are 

believed to break down in serum but the albumin may or may not retain the native form.  If 

the albumin is unable to refold properly, it could reduce or relinquish its affinity for all major 

receptors.  This does not appear to be the case for gp60 or SPARC (44), but at the time of 

this writing there has been no mention associating ABRAXANE with FcRn.  ABRAXANE is 

much better tolerated than TAXOL and docetaxel allowing greater doses of PTX and shorter 

30 minute infusions on the same schedule as TAXOL; every 3 weeks (44, 55, 56).  A dose 

of ABRAXANE contains 100 mg of PTX for every 900 mg albumin or about 8.5 eq of PTX 

per albumin for a 10% loading capacity.  The complexity of formulation requires recombinant 

albumin instead of native albumin extant in the patient. 

Another technology utilizing albumin involves a PTX prodrug attached to a tumor- 

specific cleavable peptide and a free maleimide (Fig. I-1 ) (57).  Albumin is known to have 35 

cysteines with 17 locked in disulfides leaving only Cys34 with a free thiol.  This thiol is known 

to react quickly via Michael addition across maleimides.  Unlike ABRAXANE, this approach 

does use the native albumin of the patient with efficient binding complete within 30 minutes.  

It then has a tumor specific release mechanism for prostate cancer due to the 

overexpression of prostate-specific antigen (PSA).  This allows flexibility to generate tumor- 

specific release mechanisms for various malignancies as well as a more generalized  
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Figure I-1.  Synthesis and theoretical in vivo decomposition of the sequentially labile Michael 
adduct of PTX. When albumin begins to accumulate in a solid tumor, specific cleavage by 
the often prostate-specific antigen (PSA) facilitates spontaneous decomposition of the p-
aminobenzyloxycarbonyl (PABC) carbonate at the 2’-OH of PTX releasing the free drug.  
The free drug is then able to diffuse throughout the tumor tissue.  Figure reproduced with 
permission from Eur J Cancer (57). 
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approach for a commonly overexpressed enzyme such as cathepsins or matrix 

metalloproteases (MMPs).  Scalability can be expensive requiring the synthesis of a 

hexapeptide-maleimide conjugate and subsequent condensation with a Leu-p-

aminobenzyloxycarbonyl-PTX conjugate.  As demonstrated, this only allows a 1:1 

albumin:PTX construct which constitutes about 1% loading capacity.  Adding more PTX 

molecules is synthetically feasible but they will be conjugated further from the carrier which 

could subsequently destabilize the construct.  This technology is not cargo specific, and has 

been demonstrated with a variety of drugs including doxorubicin (ε-

maleimidocaproyl)hydrazone (Doxo-EMCH) which is in clinical trials (58).  With minor 

chemical modifications this technology could potentially allow the simultaneous injection of 

multiple classes of drugs for combination therapy (59).  

When administered intravenously, maleimide-based albumin conjugates dilute about 

90% during the distribution phase as albumin permeates the body extensively.  After 

equilibration, the conjugates will slowly eliminate with half-lives approaching that of the 

native protein.  This is demonstrated in Fig. I-2  where a maleimide derivative of an anti-HIV 

peptide is chemically conjugated to albumin in vivo (60).  The observed half-lives of 25.8 h 

for rats and 102.4 h for rhesus monkeys correlate well with the half-lives of intact albumin; 1 

and 5 days respectively.  Extrapolation of these data suggests the half-life of albumin 

conjugates in humans could approach 19 days.   

Albumin is intrinsically a useful carrier for antineoplastics.  It also has many useful 

features for drug loading.  Albumin is a fatty acid carrier having 6-7 binding sites in the 

nanomolar dissociation range (61).  This could be exploited by the use of acylated prodrugs.  

This technique would not require recombinant albumin, provided the prodrug is soluble as 

micelles, and would not be constrained to any specific drug molecule.  An example of this is 

the long-circulating insulin detemir (LEVEMIR) (62).  This technique allows a moderate  
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Figure I-2.  Serum pharmacokinetics of an anti-HIV peptide conjugated to Cys34 of albumin.  
Both panels show a ten-fold decrease in concentration prior to the protracted half-life.  This 
is not clearance from the system but distribution throughout the body.  At equilibrium, the re-
emergence of extravascular conjugate into the circulation is what gives rise to the long 
terminal half-life.  Results in rats (A) and rhesus monkeys (B) show half-lives of 1 and 4.3 
days which corresponds well with the half-lives of native albumin in the respective species.  
Figure reproduced with permission from Antimicrob Agents Chemother (60). 
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drug:carrier ratio, although not as high as ABRAXANE.  While albumin does accumulate in 

tumors, it also extensively permeates the tissues, particularly muscle, giving the prodrugs 

ample time for dissociation (63).  Binding of fatty acids does cause a natural transition in the 

structure of albumin (64) which may or may not affect the affinity for intrinsic receptors.  

Albumin has many nucleophlic lysines and electrophilic glutaric/aspartic anhydrides which 

can be used for direct conjugation of a large quantity of drugs.  This is not cargo specific and 

could allow a large proportion of drug loading but would be difficult to accomplish in vivo 

thus requiring recombinant albumin.  Additionally, it has been shown the more lysine 

residues that are modified, the affinity for the gp60 receptor drops while the affinity for 

scavenger receptors such as gp18 and gp30 increase (65, 66).  This could greatly reduce 

the circulation life of the complex.   

5. Synthetic Macromolecular Drug Carriers    

Synthetic carriers offer another opportunity for drug delivery.  Because they are 

entirely synthetic, they can be constructed to specific dimensions and functionality providing 

meticulous control over the final product.  This can allow the generation of very high 

capacity carriers with mechanisms for triggered drug release.  Once built to the desired size, 

the carrier can be derivatized with cargo, targeting moieties, steric protection, release 

mechanisms; all the important components necessary for a successful delivery vehicle.  This 

is necessary as these carriers, despite often being made of natural products, are biologically 

foreign and treated as such.  Overcoming this resistance can lead to the addition of many 

amenities which can be synthetically taxing and expensive. 

An example of a polymer made of natural components is the amino acid based 

scaffold of poly-(L)-glutamic acid (PLG).  PLG-PTX completed phase III clinical trials but was 

not sufficient to file a new drug application (67, 68).  PLG-PTX begins with a 36-kDa polymer 

of repeating glutamic acid residues which are coupled with the 2’-OH on PTX attaining 20% 
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loading capacity (69).  This prodrug should be quite labile due to large quantities of 

esterases and peptidases with non-specific hydrolytic activity.  Being amino acid based, 

degradation of the particles occurs readily, however, release of PTX from the polymer is 

slow (70).  PTX is released as a monoglutamyl ester at the 2’-OH.  Comparable doses of 

PTX versus PLG-PTX show PLG-PTX is less potent.  This is most likely due to the inability 

of the glutamyl-PTX monomer to bind tubulin as is seen with succinic acid derivatives at the 

2’-OH of PTX (71-73).  PLG-PTX shows mostly accumulation in the spleen and liver, 

followed closely by the kidneys and lungs.  The accumulation in the tumor is about a quarter 

of the liver and spleen accumulation per gram of tissue.  All these organs have persistent 

concentrations of drug, even after 6 days (74).  Since PLG-PTX is completely chemistry 

based, it has the potential for further modification with a release mechanism similar to the 

aforementioned p-aminobenzyloxycarbonyl (PABC). This could facilitate PTX release 

without greatly affecting the synthetic load, the solubility or the drug loading.  The addition of 

another equivalent of glutamic acid residues prior to PTX allows an increase in the loading 

capacity of the polymer and resulted in the spontaneous formation of ~20 nm particles which 

could greatly alter the pharmacokinetics of the formulation (75).    

Similar to PLG, other benign polymers can be formulated such as polylactic-co-

glycolic acid (PLGA) polymers.  These lipophilic polymers are water insoluble and thus 

dissolved in a solvent such as chloroform.  As opposed to chemical conjugation, these 

polymers form coacervates around the hydrophobic molecules.  Dissolution of PTX and 

PLGA as well as polyethyleneglycol-biotin modified polylactic acid are added to a 2.5% o/w 

emulsion (76).  The 40 kDa PLGA polymers can adsorb at the interface with PTX in the 

core.  Replacing the oil phase with water stabilizes the 220 nm coacervate due to van der 

Waals interactions with PTX.  This method allowed up to 18% drug loading of a biotin 

targeted formulation.  Pharmacokinetic (PK) analysis was not performed but the formulation 
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showed only 20-30% drug leakage over 3 days in PBS at 37°C.  This led to only a very 

moderate increase in efficacy (76).  Other PLGA formulations have been derivatized with 

various targeting ligands such as the RGD peptide (77), wheat germ agglutinin (78) and 

transferrin (79).  The half-life of the transferrin-modified PLGA particles is about 5.5 h and 

biodistribution shows primarily uptake in the liver, spleen and kidneys indicative of filtration 

and reticuloendothelial system (RES) sequestration (79).  This is surprising although not 

uncommon as the particles of about 200 nm diameter should be too large for the various 

fenestrations aside from the tumor.  This distribution is most likely a result of a high degree 

of shear flexibility promoting extravasation.      

Another class of synthetic polymers is dendrimers which have been used extensively 

and are some of the more highly functionalized of the synthetic carriers.  Traditional 

polyamidoamine (PAMAM) dendrimers are symmetrical polymers built by alternating 

ethylenediamine and methyl acrylate moieties (80).  Initially ethylenediamine is reacted with 

4 equivalents of methyl acrylate via Michael addition resulting in 4 methyl esters.  This is 

called generation 0.5 (G0.5). Next, all the esters are condensed with a large excess of 

ethylenediamine.  This keeps the net number of functional groups constant but converts the 

surface to cationic amines and the generation is incremented by a half-step; G1.0.  Cationic 

dendrimers are known to be toxic so the final condensation can be done with ethanolamine 

allowing which coats the surface with primary alcohols.  This removes the charge from the 

surface of the dendrimer whil still providing a nucleophilic moiety for functionalization (81).  

Alternatively, the amines can be capped, most commonly with acetyl groups.   

One such formulation began with a G5 dendrimer with 82 out of 110 primary amines 

acetylated. To the remaining amines were grafted 2’-O-paclitaxelhemisuccinate, 

fluoresceinisothiocyanate (FITC) and tetrahydrofolate as a drug, tracer and targeting ligand 

respectively (Fig. I-3 )  (80).  The final product contained an average 5 FITC fluorescent  
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Figure I-3.  Structure of G5 dendrimer derivatized with paclitaxel (PTX), folic acid (FA) and 
fluoresceinisothiocyanate (FITC).  This construct is designed to target tumor cells which 
commonly overexpress the folate receptor. The PTX is used for cytotoxicity and FITC as a 
fluorescent tracer.  At 20 nm, diffusion of the dendrimer in the tumor environment will be 
minimal, so uptake will most likely occur peripherally.  Figure reproduced with permission 
from Biomacromolecules (80). 
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tracers, 4.8 folates and 3 PTX succinate molecules per dendrimer.  The loading capacity in 

this formulation is low (~6%) but can be improved via the addition of triazine moieties 

allowing triple the cargo loading without a large increase in size (82).  These dendrimers 

allowed 18-30% PTX loading by mass with ~18% by weight dendrimer and the rest 

polyethyleneglycol (PEG).  Each dendrimer is approximately 26 kDa which is roughly 1/3 of 

an albumin molecule so the loading capacity is comparable to ABRAXANE.  Being 

comparable to albumin in final molecular weight, it will utilize mostly convection for 

movement, redering diffusion within the tumor a slow processs.  Due to their size, 

dendrimers should be essentially invisible to phagocytic systems.  The dendrimers will 

however be subject to extravasation through the sinusoids of the liver and the smaller 

fenestrations in the kidneys, particularly if the dendrimer is cationic.  

While the folate receptor is ubiquitous, it is highly overexpressed in several tumor cell 

lines which would promote receptor mediated endocytosis in the tumor microenvironment 

(83).  The large number of unused amines and capped amines allows the potential for 

conjugating more drug or more targeting ligand.  This could improve toxicity and avidity and 

could be titrated to find an optimal ratio.  Grafted on the dendrimer surface, the folate may 

not be readily accessible to the folate receptors, however this could be remedied by 

conjugating PEG moieties with folate on the distal end.  Due to diffusion constraints, the 

dendrimers will most likely only encounter folate receptors on peripheral tumor cells.  Once 

internalized the dendrimer has a built-in endosomal escape mechanism with the internal 

tertiary amines providing a weak base to act as a proton sponge.     

Drug release does not have to be induced by peptidases or esterases alone. Alternative 

release mechanisms include the PABC self-immolative release mechanism (84) mentioned 

earlier as well as disulfides (85) which can release in the cytosol and possibly the 

endosome.  Thermally-sensitive dendrimers have also been developed which can promote 
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drug release due to specific heating of the tumor environment (86).  This has been 

accomplished in the past for thermally-sensitive liposomes (87) by use of near-infrared 

lasers (88). Recently it has been proposed dendrimers be rendered entirely self-immolative 

(89).  This technique, if the trigger can be highly tumor specific, would allow complete and 

instantaneous release of the drug at the active site along with the benign building blocks of 

the dendrimer.  An acid-sensitive cap or enzyme-specific cap could be a very useful 

triggering mechanism, particularly for endosomal release.  If a single dendrimer coated with 

a targeting ligand and PTX were endoctyosed, it would have the osmotic pressure of a 

single molecule.  If upon acidification, the entire dendrimer immolated into 1000 non or 

monoionized membrane impermeable fragments, the osmotic pressure should theoretically 

increase 1000 fold.  This alone may potentially be a useful tool for endosomal escape for 

larger membrane impermeable therapies. 

6. Lipid-Based Formulations  

One technology undergoing phase III clinical trials is a stabilized nanoemulsion 

containing PTX.  The α-tocopherolpolyethyleneglycolsuccinate (TPGS), nanodroplets of 

about 40-80 nm contain a derivative of vitamin E, and 10 mg/mL PTX.  This is higher than 

TAXOL (1.2 mg/mL) but the loading capacity is comparatively low at about 8% (90).  The 

concentrations attained with this formulation are much greater thus expediting infusion times 

to 15 minutes.  The simplicity of the formulation and familiarity of administration are 

beneficial but despite the better solubility and infusion rate, this formulation still suffers from 

neutropenia related toxicities (91).  At 40-80 nm, these particles could be subject to both 

renal and hepatic filtration in addition to tumor extravasation (92).  The addition of vitamin E 

could be advantageous for a variety of reasons.  One shortcoming of PTX is several tumors 

are PTX resistant due to overexpression of P-glycoprotein (P-gp) (93).  The surfactant 

TPGS has been shown to act as an inhibitor for P-gp which could allow PTX to be more 
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effiective in these tumors (94).  Additionally, TPGS has been shown to have adjuvant toxicity 

with PTX, putatively by inducing caspase-8 (95).  If synergistic, this could require lower 

dosing of PTX compared to TAXOL thus decreasing the chance of neutropenia.  The use of 

intact drug in this formulation could make it more potent than typical prodrugs.  There is, 

however, an issue of stability as the particles may be prone to flocculation (96). 

Another formulation in phase III clinical trials is docosahexaenoic acid PTX (DHA-

PTX).  This formulation uses an ω-3 fatty acylated PTX at the 2’-OH to improve solubility in 

the TAXOL vehicle.   Formulation only requires 20% of the CrEL of TAXOL but still only 

yields 3% drug loading (97).  As with other 2’-OH derivatives, this derivative does not bind 

microtubules and will require hydrolysis for full toxicity (98).  After hydrolysis, the released 

DHA has been extensively shown to sensitize tumors to apoptosis (99-101).  While more 

tolerable than TAXOL, this formulation still suffers from neutropenia (102) due to the CrEL 

which demonstrates toxicity even at 20% of the dose.  An increase in half-life of the 

formulation is observed in humans despite the decrease in CrEL; 112 h as compared to 85 h 

for TAXOL (103).  LDL is known to efficiently bind unsaturated fatty acids, much better than 

albumin, and could provide a good vehicle for this molecule (104).  Partial binding of LDL 

could explain the slightly protracted half-life observed for DHA-PTX.  

Last is a technology involving a squalenoic acid derivative of PTX (sqPTX).  Initially 

this technology was developed by directly conjugating squalenoic acid to the hydrophilic 

nucleoside antagonist gemcitabine (difluorodeoxycytidine, dFdC) (105).  The resultant 

amphiphile showed self assembly into particles when diluted into water from a water 

miscible co-solvent.  This technology has now also been applied to the notoriously 

hydrophobic PTX (106).  Despite having no apparent hydrophilic headgroup, this monomer 

spontaneously aggregates into nanoassemblies of ~100 nm.  The addition of a 

triethyleneglycol or undecaethyleneglycol linker between the PTX and squalenoic acid 



20 

 

resulted in an increase in particle size up to ~300 nm.  Both were able to solubilize PTX to a 

concentration of 5 mg/mL.  The 100 nm sqPTX nanoassemblies were highly resistant to 

hydrolysis from pH 4-9 and were resistant to enzymatic hydrolysis in serum.  As with other 

2’-OH prodrugs, it is unable to bind microtubules thus requiring hydrolysis for activation, 

particularly as the conjugate experiences greatly reduced cytotoxicity compared to PTX.  

The PEGylated conjugates appear more cytotoxic and prone to hydrolysis in serum thus the 

cytotoxicity is most likely derived from higher PTX concentrations.  The 100 nm size may 

result in an increased liver and spleen accumulation due to RES uptake.   

The tumor localized sqPTX may not readily release PTX so a tumor specific 

cleavage of the sqPTX could be added to render a more potent formulation.  Considering 

this technology contains only two molecules of similar molecular weight, the drug loading is 

high at 70% and the manufacture inexpensive.  The sqPTX or one of the pegylated prodrugs 

could be built into a carrier such as a liposome as was done with sqdFdC (107), although 

the amphiphilic nature of sqdFdC may make it more amenable than sqPTX for this process.  

Derivatization of the liposomes with PEG could help shield the particles from detection by 

the RES (108).  Derivatization with targeting ligands on the distal end of PEG at tunable 

concentrations for increased avidity and receptor mediated endocytosis could facilitate 

intratumoral delivery.  Liposomes tend to offer a poor drug loading for PTX (~3%) and 

sqPTX would not see much improvement (109).    

7. Summary    

There are many different vehicles to formulate PTX for a more targeted and effective 

delivery and no single formulation exemplifies all the ideal characteristics of a delivery 

vehicle.  Natural carriers offer an interesting concept of using millions of years of biological 

evolution to design drug carriers that can be utilized in a myriad of ways.  There is very little 

control over the vehicle though as small changes can disrupt the natural tendencies of the 
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carrier.  These formulations tend to result in lower loading capacities and non-specific tissue 

destinations.  However, this approach is relatively inexpensive and effective provided the 

formulation can piggyback on the natural abundance of the carrier as opposed to requiring a 

recombinant carrier.   

Synthetic carriers offer the most control as they are limited only by synthetic 

potential.  This can allow higher loading capacity, endosomal escape mechanisms and more 

controlled and well-defined vehicles with the ability to titrate the level of drug and targeting 

ligand.  These macromolecules can be tailored to specific tumors based on easily 

exchangeable targeting ligands but may experience greater biological resistance due to the 

unnatural composition of the vehicles requiring the addition of a steric enhancer such as 

PEG.  This high degree of tunability comes at a cost.  The more functionalized the vehicle, 

the more taxing and expensive the synthesis.  

Lastly the lipid based technologies appear the most flexible having the ability to use 

natural carriers such as albumin or LDL, self-associate into vesicles or micelles or be 

integrated into synthetic carriers such as liposomes.  These formulations are perhaps the 

least expensive and easiest to manufacture but may experience issues with solubility.    

There is no express vehicle for targeted delivery or inherent release mechanisms.  As a 

result, these formulations may be more susceptible to non-specific sequestration or 

immunogenicity.  As all these ideas coalesce and develop, it will be interesting to see how 

the formulations adapt.  As the old adage says: the early bird gets the worm, but the second 

mouse gets the cheese. 
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FATTY ACIDS AS THERAPEUTIC AUXILIARIES: REVIEW 

 

 

This chapter is being submitted for publication as a review to the Journal of Lipid Research 

and is formatted in the style of this journal. 
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1. Introduction  

When a drug is administered parenterally to a patient with a systemic disorder, it is 

immediately diluted throughout 6 liters of blood and potentially 18 L of interstitial volume.  

The site of action for the drug will typically encompass only a very small fraction of total body 

volume so concentrations of drug at the target will be minimal.  This dissipative nature of 

distribution poses a major problem for drug formulation leading to poor efficacy and high 

toxicity.  The nascent discipline of drug delivery endeavors to selectively alter the distribution 

of a drug for accumulation at the target site with diminution at non-specific sites.  This can 

be accomplished by utilizing a targeting mechanism that takes advantage of the specific 

milieu associated with the site of action.  Arguably the simplest method of targeting is to 

ascertain extant mechanisms by which the body naturally engages the tissue of interest and 

piggyback on them; for example, endemic hepatic expression of the asialoglycoprotein 

receptor (1) or the accumulation and consumption of serum albumin in arthritic joints (2).  

There are a myriad of delivery mechanisms, far too many to recount in a single review.  This 

review will focus on a subset of technologies utilizing fatty acids and triglycerides to improve 

the drug profiles for oral and intravenous administration.   

2. Formulations to Improve Oral Absorption 

Ingested lipids are highly insoluble and thus aggregate as micelles or submicron 

emulsions depending on composition.  The presence of these lipids in the intestines triggers 

the release of lipases, phosphoplipases and bile salts designed to hydrolyze triglycerides to 

diacylglycerides and monoacylglycerides releasing free fatty acids.  Glycerides and long-

chain fatty acids bind apical fatty acid binding proteins which deliver them to the 

endoplasmic reticulum (ER) of the enterocyte (3).  Shorter-chain fatty acids which exhibit 

higher solubility can bind monocarboxylic acid transporters (4).  Fatty acids can be 

transported to the portal vein for first-pass transfer to the liver, presumably via albumin 
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binding.  Alternatively, fatty acids can be reacylated into triglycerides and incorporated in 

chylomicrons which are delivered to the lamina propria and eventually the systemic 

circulation via the thoracic duct (3). These particles eventually mature into very low-density 

lipoprotein (VLDL) then low-density lipoprotein (LDL) or high-density lipoprotein (HDL) if they 

contain a large quantity of phospholipids.  Lymphatic absorption is a potentially useful 

mechanism for oral drug delivery to the systemic circulation as it bypasses the first-pass 

clearance of the liver altogether.  

2.1. Caprates  

One method to promote absorption of high solubility, low permeability molecules 

such as peptides is co-formulation with medium-chain fatty acids.  Caprates (C10:0) are 

believed to induce the transient opening of tight junctions facilitating paracellular absorption 

(5).  This process has been thoroughly demonstrated in Caco-2 cell culture (6), rat ilea (7), 

human ilea (8) and human colon biopsies (9).  While mechanistically complex, caprates and 

caprylates (C8:0) are believed to modulate tight junctions through phospholipase C induced 

release of Ca2+ and subsequent protein kinase C activation (6; 10).  This phenomenon is not 

observed for lauric acid (C12:0), although lauric acid too is believed to facilitate paracellular 

permeability (11).  These fatty acids are non-toxic and have been used successfully in many 

formulations (12).  High doses of sodium caprate alone have shown success for the 

absorption of 2’-O-methoxyethyl phosphorothioate antisense oligonucleotide gapmers 

against tumor necrosis factor-α achieving up to 13% bioavailability in humans (13). After 

absorption by the paracellular route, these molecules will be directed to the liver where a 

substantial portion may be extracted and degraded (14).  This is the most likely reason 

bioavailabilities remain low.  This idea has been streamlined through the Gastrointestinal 

Permeation Enhancement Technology (GIPET) (15).  The technology involves formulating a 

drug along with caprate and caprylate salts in an enteric soft gel.  Hydrophilic molecules like 
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peptides can quickly dissolve and diffuse through the intestinal lumen. Conversely, fatty acid 

salts will dissolve slower as they need to form micelles and possibly partition into bile salt 

emulsions before binding monocarboxylic acid transporters.  This process may be 

significantly slower, leaving the peptide in a hazardous environment with the highly 

proteolytic brush border enzymes (16; 17).  Application of the technology to low molecular 

weight heparin resulted in a doubling of the bioavailability, however this number is still quite 

low at approximately 8%.  The relative bioavailability of oral acyline, a gonadotropin 

hormone releasing antagonist, increased up to 16-fold in beagles (12) and showed activity in 

human volunteers (18) despite a very modest total bioavailability. 

2.2. Triglyceride Formulations  

Alternatively fatty acids can be used to elude first-pass metabolism by disguising a 

drug as a triglyceride.  Valproic acid was esterified at the sn-2 position on the glycerol 

backbone of lysophosphatidylcholine (19).  This molecule showed an ability to absorb 

across the gut lumen of rats and get packaged into chylomicrons for distribution to the 

lymphatics.  The technology was only able to achieve 9% bioavailability, 60% of which was 

due to lymphatic uptake.  The prodrug showed great resistance to lipases in vitro suggesting 

the issue may not be premature release of valproic acid for portal absorption.  The 

bioavailability appears dependent on several factors including the vehicle and the 

pre/postprandial state; in both cases, the presence of other lipids.  Formulation in peanut oil 

containing mostly palmitic (C16:0), stearic (C18:0), oleic (C18:1), and linoleic (C18:2) ester 

triglycerides promoted an increase in bioavailability. This is consistent with several other 

reports on long-chain triglycerides (20-22).  Alternatively, formulation with medium-chain 

triglycerides containing caprate and caprylate esters provided lower bioavailabilities.  The 

postprandial state also increased bioavailability compared with the starved state.  Standard 

rat chow is approximately 3% lipid, a vast majority of which are long-chain ω-fatty acids (23).  
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Common to both successful scenarios is the presence of long-chain triglyceride.  This 

observation has been noted in several other reports on lymphatically absorbed drugs as well 

(24-26).  Long-chain fatty acids have been associated with an increase in chylomicron 

formation in the Golgi apparatus of enterocytes (26) which should promote increased 

lymphatic delivery.  This methodology is amenable to both hydrophobic and hydrophilic 

small molecules.  It may be difficult, however, to apply to large hydrophilic molecules such 

as oligonucleotides or peptides due to the requisite membrane partitioning. 

2.3. Submicron Lipid Particles 

Submicron particles have been the subject of oral delivery recently due to their ability 

to carry a multitude of cargoes as well as their stability and targetability.  Being too large for 

significant paracellular absorption and lack of membrane permeability, these formulations 

require a different approach. The gastrointestinal tract is lined with a plethora of cells.  M 

cells are associated with a great deal of lymphatic innervations due to their function of 

sampling antigen from the intestines and passing it to the various antigen presenting cells 

within the lymph (27).  M cells have a thin glycocalyx and undergo frequent 

macropinocytosis.  Most commonly, particle absorption from the intestines is believed to 

occur through M cells and enterocytes, however, the endocytosis via enterocytes tends to 

be more destructive as M cells are devoid of lysosomes (28).  Targeting to Peyer’s Patches 

therefore presents an opportunity for higher lymphatic absorption of particles, particularly for 

inducing mucosal immunity.  The common mucosal immune system is an autonomous 

system of immunity protecting various mucosal organs, most notably the airway, gut, eye 

and genitals (29).  It is estimated about 80% of immunocytes are involved in the common 

mucosal immune system which is designed to protect the vast area of mucosal organs thus 

preventing systemic infection.  Commonly lipid particles are used for vaccine delivery due to 

the nature of lymphatic absorption of lipids (28).  Formulation of antigens in w/o/w multiple 
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emulsions containing squalene solubilized in saline with nonionic poloxamer surfactants 

allowed successful stabilization and delivery of a recombinant fusion protein from E. coli to 

Peyer’s Patches (30).  The fusion protein was unable to induce mucosal immunity 

subsequent to parenteral administration.  An orally viable tuberculosis vaccine was also 

developed for mucosal immunization (31).  When formulated with vegetable oil, this strain of 

the mycobacterium was stabilized in the gastrointestinal tract for absorption by M cells.  The 

lipid did not affect the efficacy of the vaccine even leading to greater protection when 

compared to the standard subcutaneous vaccine.   

3. Acylation of Therapeutic Molecules 

3.1. Albumin Binding 

Another approach to improve the therapeutic potential of peptides or proteins is by 

chemical modification with lipid moieties, either through a non-reversible or a reversible 

linkage. The lipids do not greatly affect the solubility of proteins, as they tend to be less than 

10% of the weight of the conjugate.  The lipids will most likely confer binding to serum 

proteins, specifically albumin. The merits for binding albumin as a drug carrier are well 

established (32; 33).  Albumin is a highly soluble protein which can confer solubility to 

hydrophobic drugs (34). It has a 19-day half-life in humans (35) and it is extremely abundant 

at 40-50 mg/mL in the vasculature. It can thus greatly retard elimination from the system.  

While the primary function of albumin is plasma expansion, it is also a carrier for fatty acids 

(36).  Albumin has 6-7 fatty acid binding sites for long-chain fatty acids (37) with dissociation 

constants in the nanomolar range (38).  The high affinity for the fatty acid binding sites is 

due to hydrophobic channels in the protein which cradle the aliphatic tail and cationic lysine 

or arginine residues at the apex of the channel which anchor the anionic carboxylate 

electrostatically (39; 40).  While it may be appealing to make a fatty acid conjugate of a drug 
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to utilize these pockets, the process can disrupt the electrostatic interaction at the surface of 

albumin. 

This high affinity is believed to be derived from two sources; hydrophobic interactions 

within the binding pocket which is primarily an entropy-driven process and the primarily 

enthalpy-driven electrostatic interactions with the anionic carboxylate of fatty acids.  To test 

this hypothesis, in an unpublished study, fluoresceinamine (FLA) was used as a drug 

surrogate and derivatized with a short diethyleneglycol linker.  The surrogate was 

subsequently attached to stearic acid (SA) and 3-pentadecylglutaric (PDG) acid via an 

amide as shown in Fig.  II-1.  The only difference between the two molecules is the 

carboxymethyl group on the PDG acid which is hypothesized to anchor the conjugate to the 

protein as shown in Fig. II-2 .  Both conjugates were subjected to isothermal titration 

calorimetry analysis at 30°C so the physicochemical paramet ers could be extracted.  The 

results show a 3.5 fold increase in affinity of PDG-FLA for delipidated human serum 

albumin.  This is derived from greater than twofold increase in enthalpy for the PDG 

conjugate compared to the SA conjugate.  However, the SA-FLA conjugate does show 1.5-

fold higher entropy compared to the PDG conjugate.  This could be a result of the 

carboxymethyl group on PDG preventing the proper seating of the conjugate in the binding 

pocket which could be remedied by increasing the tail length.  If true, the two conjugates 

should bind with comparable changes in entropy.  In this case, the calculated KA for the 

PDG-FLA conjugate would be approximately 125 fold higher than the FLA-SA conjugate due 

solely to retention of the carboxylate.   

3.2. Non-Reversible Lipidization 

In non-reversible methods of lipidization, peptide or proteins are typically modified 

with reactive fatty acid derivatives (e.g., fatty acid chloride or anhydride) at the α-amino or  



 

 

 

 

Figure II-1.   FLA conjugates for isothermal titration calorimetry 
soluble lipid conjugates were synthesized to determine the physicochemical parameters 
involved in albumin binding.  It is expected the fatty acid tail
contribute to positive entropy and the 
FLA, fluoresceinamine; PDG, 3
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FLA conjugates for isothermal titration calorimetry analysis.  These water
soluble lipid conjugates were synthesized to determine the physicochemical parameters 
involved in albumin binding.  It is expected the fatty acid tail and anionic carboxylate 

entropy and the negative enthalpy, respectively.   SA, stearic acid.
FLA, fluoresceinamine; PDG, 3-pentadecylglutaric acid.   

 

 

analysis.  These water- 
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Figure II-2.  A schematic representation of the hydrophobic and electrostatic interactions 
involved in fatty acid-albumin binding (A).  The addition of a cargo such as fluoresceinamine 
may utilize only the hydrophobic interaction (B) or both hydrophobic and electrostatic 
interactions (C) depending on the modification chemistry. 
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the ε-lysyl amino groups, resulting in a stable amide bond (41-44).  One example is the non-

reversible lipidization of cystatin, a 13 kDa protein isolated from chicken albumen that is a 

known inhibitor of cathepsin-B.  Palmitoylation of the amino groups in this protein increased 

the membrane adsorptive proclivity of the protein for endocytic internalization and 

subsequent inhibition of lysosomal cathepsin-B (45).  This adsorption was determined to be 

dependent on the tail length of the fatty acid; increasing inhibition with increased tail length 

through stearic acid (C18:0) (46).  The maturation of the late endosome to lysosome would 

promote binding of the internalized cystatin molecules to cathepsins that are commonly 

found in these vesicles, assuming the palmitoylated protein survives the conditions of the 

lysosome.  While successful in vitro, membrane adsorption is non-specific, so systemic 

administration would conceivably benefit from the use of a carrier such as a liposome or 

lipoprotein for targeted accumulation and release. 

The seminal use of fatty acids for this purpose was myristoylated insulin detemir 

(LEVEMIR, Novo Nordisk, Denmark), which was approved by the FDA in 2005.  Insulin is a 

5.8 kDa polypeptide consisting of two chains linked by three disulfides.  In LEVEMIR, the 

polypeptide is myristoylated at the penultimate lysine residue (B29) (47).  Intact insulin 

polypeptide is terminated with threonine (B30), however in LEVEMIR the terminal threonine 

is removed.  It was found removal of the terminal threonine increased the affinity of 

LEVEMIR for albumin by approximately 3.5-fold (48).  The reason for this change in affinity 

is most likely due to how the molecule fits in the albumin binding pocket.  It is presumed the 

myristoyl amide as well as the whole lysine side chain fit in the pocket (48).  If true, the 

binding pocket could accommodate 20 atoms from the ω-position of the myristic acid to the 

α-carbon branching point of lysine.  Assuming the amide does not perturb binding in the 

pocket, this distance would be comparable to arachadic acid (C20:0) which is known to bind 

albumin (49).  Therefore, in LEVEMIR the C-terminus of the B chain sits at atop of the 
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pocket for electrostatic interactions with lysine or arginine.  If threonine is left at the C-

terminus, as with native insulin, the C-terminal carboxyl group would shift three atoms away 

from the binding pocket making formation of the salt-bridge less likely.  The result of this 

high affinity albumin conjugate is an increase in the half-life of insulin from 2.8 h to 8.8 h and 

no loss of activity when administered subcutaneously (47; 50).  

More recently, a second lipidized protein drug, liraglutide (VICTOZA, Novo Nordisk), 

was also approved by the FDA in 2010 (51).  VICTOZA is an analog of glucagon-like 

peptide (GLP-1), a 37-amino acid native peptide hormone that has a short pharmacological 

half-life of about 1 h.  VICTOZA differs from GLP-1 in the substitution of Lys34 to Arg34, and 

in the palmitoylation at Lys26 via a γ-glutamic acid spacer.  This modification results an 

improved pharmacokinetic profile, which is attributed to albumin-binding of liraglutide 

following administration.  Due to the long half-life of 11-15 h following subcutaneous 

injection, this lipidized analog is suitable for once-daily injection.  Another insulin analog, 

insulin degludec, is also in development by Novo Nordisk.  Similar to VICTOZA, insulin 

degludec is palmitoylated at an ε-lysyl amino group (B29) via a γ-glutamic acid spacer, and 

also has the terminal threonine removed.  Promising results from phase 2 clinical trials of 

insulin degludec have shown that subcutaneous administration three times a week produced 

glycemic control comparable to insulin glargine, an FDA approved long-acting basal insulin 

analogue in patients with type I (52) and type II diabetes (53).  

3.3. Reversible Lipidization 

The non-reversible lipidization of protein or peptide drugs has some limitations 

including the incompatibility between lipidization reagents and proteins/peptides in solution, 

and the loss of biological activity of the protein or peptide drug following modification. One 

technology to promote the half-life of the protein as well as maintain activity is reversible 

aqueous lipidization (REAL technology) (54).  This methodology involves the use of water-
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soluble acylation reagents thus circumventing the requirement of organic solvents used in 

non-reversible lipidization.  Additionally, in vivo reversible bonds (i.e. disulfide or pH-

sensitive bonds) are utilized to link the lipid moiety to the protein or peptide allowing 

regeneration of free protein or peptide following administration.  In this prodrug approach the 

disulfide bonds between cysteine residues in the protein are reduced, and the resultant free 

thiols are reacted with an activated disulfide of palmitoylated cysteine (55).  The weak 

reducing conditions of the serum can then slowly delipidate the modified protein allowing 

refolding and providing a controlled release of intact, bioactive protein.  Reversible 

lipidization using a pH-sensitive linkage involves the modification of free amino groups on 

the protein using an amine-reactive lipidization reagent.  The free protein is then slowly 

regenerated in vivo by hydrolysis at physiological pH (56).   

REAL technology has been applied to both peptides and proteins demonstrating 

increases in half-life.  When applied to Tyr3-octreotide (TOC), a ~1 kDa somatostatin analog 

for controlled delivery to the liver (57; 58), the half-life of 125I-labeled TOC and REAL-TOC 

increased from 4.2 h to 6.6 h (57).  When REAL was applied to the diuretic desmopressin 

(~1 kDa) (59), an increase in stability, potency and half-life was observed (60).  Similar 

improvements in pharmacokinetics, stability, and bioactivity have been observed for other 

proteins and peptides, including enkephalin (~0.5 kDa) (56), calcitonin (~3.4 kDa) (61) and 

interferon alpha (~20 kDa) (62). These benefits are most likely the result of binding to serum 

albumin.  Similar to insulin detemir, where palmitoylation is occurring through an amide of a 

terminal amino acid, the carboxylate on cysteine should be readily available for fulfilling the 

electrostatic interaction involved in albumin binding.  In support of this hypothesis, changing 

the REAL technology’s cysteine to cysteamine by decarboxylation or masking the charge 

with a methyl ester caused drastic decreases in the efficacy of the drug (63).  Both 
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modifications would eliminate the electrostatic interaction thus disrupting the high-affinity 

nature of albumin binding. 

In addition to the improved pharmacokinetic profile, lipidization has also been utilized 

as an approach to facilitate the oral delivery of protein and peptide drugs.  Two examples 

are the oral administration of calcitonin (61), and enkephalin (56).  The studies have shown 

that, compared to unmodified protein, the lipidized peptide drugs show improvements in the 

pharmacological activity as well as an increased maximal plasma concentration and AUC. 

Although the mechanism of enhanced oral absorption is unclear, lipidization is a viable 

approach in oral protein or peptide delivery. 

4. Lipoproteins as Carriers 

Aside from albumin, the other major family of natural lipid carriers is the lipoproteins.  

Lipoproteins are particles formed by the aggregation of triglycerides with less than 5% each 

of phospholipids, cholesterol and esterified cholesterol.  The whole complex is stabilized by 

a massive apolipoprotein (64).  The particles differ by composition, size and stabilizing 

protein yielding several classes; chylomicrons, VLDL, intermediate density lipoprotein (IDL), 

LDL and HDL (65; 66).  Primarily, VLDL/LDL/HDL are used as drug carriers.  VLDL 

receptors are commonly expressed in the capillary endothelium of muscle, heart and 

adipose tissues while LDL receptors tend to be expressed highly in the liver as well as many 

tumor tissues (65; 67).  HDL is also cleared primarily by the liver using the scavenger 

receptor SRB1 but is also heavily consumed by various cancerous cells (68).  The particles 

are stable with biological half-lives of several days, as well as an assumed protection from 

reticuloendothelial clearance (65; 69).  These particles provide competition for the binding of 

fatty acid substrates with albumin yielding comparable delivery potentials (70), although how 

long the complex remains intact in vivo is not clearly understood.   
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4.1. Lipoproteins in Gene Delivery 

In an exemplarily thorough study using various acylated siRNAs, it was found 

cholesterol and long-chain fatty acid, including stearic and behenic (C22:0) acids, 

conjugated siRNA show preferential binding to lipoproteins.  Conversely, myristoylated, 

palmitoylated and oleoylated siRNA bind exclusively to albumin (71).  The behenic and 

stearic derivatives bound HDL/LDL with “dissociation constants” of 100 µM and 300 µM, 

respectively.  The affinity was estimated by the ratio of bound/unbound cholesterol siRNA at 

given concentrations of lipoprotein.  Rather than a dissociation constant, this is better 

described as a partition coefficient as there is no specific binding site provided by the lipid 

aggregates but rather a propensity to partition into the particle.  This affinity is further 

confounded by the significant variability in composition of natural lipoprotein particles as 

opposed to the known and well characterized structure of albumin.  The behenic and stearic 

derivatives bound albumin with dissociation constants of approximately 200 µM and 

saturated the protein at 3.6 molar equivalents.  These values are in stark contrast to the free 

fatty acids which bind in the low nanomolar dissociation range with ~6 binding sites for 

stearic acid and 4 for behenic acid (38; 49).  Here again, the acylation chemistry eliminates 

the carboxylate moiety of all fatty acids so albumin binding affinity is expected to decrease.  

In this instance the loss of affinity is several orders of magnitude.   

A major concern for these complexes is in vivo stability.  The higher the “affinity”, the 

more the kinetics will mimic the kinetics of the carriers themselves.  These proteins are all 

catabolized throughout the body hence the respective ratio of catabolism in various systems 

is also important in terms of both efficacy and toxicity.  To answer these questions, the 

pharmacokinetics of a cholesterol conjugate of siRNA (Fig. II-3 ) was analyzed in mice using 

a dual label; 125I on the carrier (LDL, HDL, or albumin) and 32P on the cholesterol siRNA.  All 

three carriers demonstrated protracted half-lives whereas the conjugated siRNAs were  
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Figure II-3.  The serum pharmacokinetics of a cholesterol derivative of 32P-labeled siRNA 
and various 125I-labeled serum components known to bind cholesterol.  Notice the relatively 
weak binding of the cholesterol-esterified siRNA to the serum components resulted in a 
significantly different profile compared to the carriers alone. Figure reproduced with 
permission from Nat Biotech (71). 
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completely cleared from the vasculature within 5 hours clearly reflecting the relatively low 

affinity of the conjugates for the carriers.  The biodistribution of cholesterol siRNA 

associated with the various carriers (Fig. II-4) shows a relatively uniform distribution 

throughout the body with a slight preference for the liver when bound to albumin or HDL.  

The LDL-bound cholesterol conjugate of siRNA by contrast shows minimal uptake in any 

tissue aside from the liver.   

4.2. Use of Lipoproteins in Targeting Specific Dise ase-State Cells 

Delivery via HDL has recently focused on cancerous cells.  The carriers used are 

recombinant, formed by suspending triglycerides with bacterially expressed Apolipoprotein 

A1 (Apo-A1) followed by heating and sonication (72).  The advent of Apo-A1 fusion proteins 

delineated two possibilities; the fusion protein could be therapeutic or, since the Apo-A1 sits 

at the interface, the fusion protein could include a targeting peptide (73).  In one instance, 

interleukin-11α was selected as a targeting peptide as the receptor is highly expressed in 

various cancer cell lines (74; 75). These technologies showed selective targeting to 

osteosarcoma masses and the addition of a cytotoxic peptide demonstrated efficacy in vitro.  

Efficacy was also demonstrated in vivo by fusing the cell penetrating TAT peptide from the 

human immunodeficiency virus to Apo-A1 carrying unmodified doxorubicin in the particle 

(73).  The particles release about 40% of the encapsulated doxorubicin within 5 h in normal 

saline containing 1% BSA.  Intratumoral injection of the rHDL showed efficacy of about 30% 

reduced tumor volume compared to the untreated control.  The results were comparable 

regardless of the presence of the TAT peptide or the rHDL itself, as free doxorubicin had 

comparable efficacy.  Considering the release rate, most of the doxorubicin is probably 

released quickly into the tumor.  To prevent this leakage or dissociation, the doxorubicin 

could be acylated, which would greatly increase the permeability into rHDL.  Commonly, ω-3 

fatty acids such as docosahexaeoic acid and linolenic acid are used as these not only  
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Figure II-4. Biodistribution analysis of albumin, LDL and HDL bound cholesterol-esterified 
[32P]-siRNA 4 h post tail-vein injection to mice.  Primarily the liver promotes the greatest 
release of the cholesterol conjugate from the lipoprotein carriers. Whereas albumin and HDL 
distribute the conjugate uniformly, LDL shows accumulation solely in the liver.  Figure 
reproduced with permission from Nat Biotech (71). 
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promote membrane permeability, but the ω-3 fatty acids show increased sensitization and 

even moderate toxicity to a variety of tumor cells (76-78).  A similar approach involved using 

recombinant Apo-A1Milano, a mutant with higher affinity for the HDL receptor (79).  These 

particles were loaded with 10-hydroxycamptothecin at up to 80% efficiency and showed a 

controlled release of 25% of the dose over 24 h when dialyzed in buffer.  Biodistribution in 

naïve mice shows primarily uptake in the kidneys and to a lesser extent the liver and spleen.  

Biodistribution was not yet performed on tumor bearing mice at the time of this writing. 

As with HDL, small synthetic LDL particles have been developed.  Coined “nano-

LDL”, the lipoprotein is a synthetic LDL receptor-binding domain coupled with a lipid-binding 

motif for the purpose of targeting cancerous cells; as an example glioblastoma multiforme 

(80).  The particle was formed with phospholipids and triglycerides as well as an oleic acid 

derivative of paclitaxel (PTX) (81).  The nano-LDL was able to solubilize the paclitaxel 

prodrug at 0.33 mg/mL and was shown to be very toxic to multiple glioblastoma multiforme 

cell lines expressing variable amounts of the LDL receptor.  It is suggested most neurons do 

not express high levels of the LDL receptor, which could make this vehicle very selective for 

glioblastoma multiforme cells in the brain.  The difficulty for LDL to cross the blood-brain 

barrier coupled with the ubiquitous expression of the LDL receptor systemically will preclude 

the use of this approach for parenteral administration.  Considering the apolipoprotein used 

is synthetic, this may simply require a change in the targeting motif for systemic cancers.  

Brain accumulation has been demonstrated using particles coated in serum ApoE or solid 

lipid nanoparticles coated with Tween 80 either of which may be incorporated into nano-LDL 

as well (82).   

Aside from cancer, LDL is often associated with atherosclerosis.  An excess of 

oxidized LDL, due to high concentrations of bloodborne lipid and cholesterol, leads to 

consumption in aortic vasculature by macrophages transforming them into foam cells (83).  
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Over time, more macrophages are attracted and the vasculature becomes congested and 

the excess cholesterol forms plaques.  Oxidized LDL may bind these plaques more tightly 

than native LDL facilitating undesirable accumulation of the lipoprotein (84) although this 

appears to decrease with progression of the disease.  This spontaneous accumulation of 

LDL at the target site makes it an ideal carrier for a therapeutic (85).  The steroid, 

dexamethasone, has been shown to prevent the transformation to foam cells.  Palmitoyl 

dexamethasone was then easily packaged into human LDL collected by ultracentrifugation 

from serum.  Biodistribution in atherosclerotic mice showed a decrease in distribution to the 

liver and increase to the target site, the aorta.  This persisted for 7 days and successfully 

protected early atherosclerotic lesions from worsening but it did not affect the underlying 

dyslipidemia.  Due to the difficulty in isolating large quantities of human LDL, the potential 

for transferring bloodborne pathogens and variability in particles, native LDL may be a 

difficult vehicle to use systemically (86).  Synthetic LDL-like emulsions, as in the case nano-

LDL, may prove more efficient for development (81; 87).  The lipid composition of the 

emulsion can be more properly controlled preventing off site targeting.  Monounsaturated 

fatty acids for instance tend to promote uptake and cholesteryl ester hydrolysis in 

macrophages (88). 

5. Concluding Remarks 

Employing fatty acids in delivering both large and small therapeutic agents has the 

potential to increase oral bioavailability as well as provide increased half-life, stability and 

permeability.  Large hydrophilic compounds may benefit from paracellular absorption using 

tight junction modifiers such as medium-chain fatty acids.  As this does not avoid hepatic 

first pass, in many instances, it does not greatly increase oral bioavailability but may be 

useful for macromolecules which would otherwise not be absorbed intact.  Targeting to the 

lymphatics via chylomicron partitioning in the ER of enterocytes can increase bioavailability 
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by circumventing hepatic first pass clearance although the process appears slow.  This may 

be the result of the slow formation of chylomicrons, a step that includes difficulty for fatty 

acid drug conjugate to become triglyceride.  Nonetheless, the formulation of a lymphatically 

absorbed drug with long-chain triglycerides, which are known to induce the formation of 

chylomicrons, increases the bioavailability of drug.  The oral route also provides a useful 

method for mucosal vaccination.  Targeted delivery of antigens to M-cells in the Peyer’s 

Patches allows uptake of the antigen by antigen presenting cells of the common mucosal 

immune system.  All these methods are designed to improve the profile of poorly 

bioavailable drugs and the results in most cases are very moderate.  The drugs then should 

be metabolically stable and highly potent to be successful. 

Parenterally administered drugs can be improved via acylation with various fatty 

acids.  Lipidized therapeutics exhibit greater half-lives allowing less frequent dosing.  The 

addition of fatty acids can disrupt the structure of larger therapeutics such as peptides or 

proteins rendering them less effective.  The increase in hydrophobicity can also lead to non-

specific adsorptive endocytosis.  Reversible lipidization can rectify these issues by slowly 

releasing intact peptides or proteins into the system.  This has been successfully applied to 

peptides and proteins of various sizes for both parenteral and oral administration.  Lipidized 

therapeutics can also be used to target albumin or serum lipoproteins.  This provides an 

alternative to the ubiquitous concept of pegylation for prolonging circulatory life.  Acylation is 

highly reversible due to copious amounts of esterases and lipases found throughout the 

body.  The chemistry is cost-effective, straightforward and the myriad of potential fatty acids 

allows tailoring of prodrugs for a specific purpose.   

A major concern for using protein complexation is the stability of the complex in vivo.  

In the case of albumin, the complex is concentration driven.  At the time of injection, 

complexation would be highly favorable.  After distribution, dissociation may become more 
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favorable.  Albumin deposits fatty acids throughout the body (36), most notably the 

parenchymal cells of the liver, heart and muscle.  This process can be highly efficient; 

cardiomyocytes extract 30-60% of the serum fatty acid content each pass although the 

mechanism of uptake is poorly understood.  The fatty acylated prodrugs that bind albumin 

behave differently than the natural substrates; certainly the drastic fluctuations in affinity are 

partly responsible. Possibly the complexes do not stay intact during FcRn, also known as 

Brambell receptor, recycling.  The prodrug may be ejected upon conformational change or 

the complex itself may not bind leading to degradation in the lysosome.   

Serum proteins are now the subject of investigation for tumoral delivery due to their 

passive accumulation via leaky endothelium.  These particles are large and driven mostly by 

convection which does not readily occur in the tumor; that is, they are not expected to 

penetrate tumor tissues effectively (89).  This may preclude binding to specific receptors 

expressed on tumor cells in the inner tissue, however decomposition in the periphery with 

subsequent drug release and diffusion may still be effective.  This process is believed to 

occur for albumin but may be slow compared to the catabolism of albumin throughout the 

rest of the body.  LDL and HDL have shorter half-lives than albumin and expression of their 

respective receptors are common.  This can have a significant impact on toxicity.  It is clear 

the complexes do not behave similar to the carriers.  The proteins have half-lives of multiple 

days whereas complexes are cleared much more rapidly.  Whether this is purely an issue of 

“affinity” or lack of protection by natural process such as FcRn recycling is not well 

understood.  Because these issues exist for synthetic drug delivery vehicles as well, the use 

of natural carriers may prove to be simpler, less-expensive and evolutionarily advantageous.  
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A DICARBOXYLIC FATTY ACID DERIVATIVE OF PACLITAXEL 

 

 

 

This chapter is being submitted for publication to Bioconjugate Chemistry and is formatted in 
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1. Abstract  

 TAXOL remains a potent chemotherapy for breast, lung and ovarian cancers, 

however the resultant hypersensitivity and neutropenia from the Cremophor EL in the 

formulation undermines the health of already debilitated patients.  To combat the poor 

solubility of the active ingredient, paclitaxel, a fatty diacid was synthesized for chemical 

ligation to the drug and subsequent binding of the conjugate to the highly soluble and 

ubiquitous protein, serum albumin.  The cyclized form of the lipid, 3-pentadecylglutaric 

(PDG) anhydride, is reactive to a variety of nucleophiles including the 2’-OH on paclitaxel.  It 

was discovered that the binding of the PDG derivative of paclitaxel to albumin resulted in the 

formation of 120 nm aggregates.  This was also found when paclitaxel alone was bound to 

albumin.  When injected intravenously to tumor bearing mice, the TAXOL formulation of 

paclitaxel was cleared rapidly, primarily to the liver, with a half-life of 7 hours.  In the case of 

the PDG derivative of paclitaxel, the drug is quickly distributed uniformly giving rise to a 23 h 

half-life after equilibration. This is comparable to the half-life of human serum albumin in 

mice supporting strong albumin binding in vivo.  The derivative is only moderately taken up 

by subcutaneously established tumors and is slowly hydrolyzed (<5% over 72 h) in serum, 

tumor cytosol and tumor tissue homogenate.  The PDG derivative is less cytotoxic than the 

parent paclitaxel thus requiring hydrolysis for full potency.  While superior to TAXOL in terms 

of serum pharmacokinetics, the PDG formulation should be comparable to the clinically 

approved paclitaxel-albumin product, ABRAXANE, another formulation that leads to 

aggregates of ~130 nm upon reconstitution.   

2. Introduction 

Paclitaxel (PTX) is a mitotic spindle inhibitor primarily indicated for ovarian cancer or 

in combination therapy for the treatment of non-small cell lung cancer and breast cancer.  

Notoriously insoluble, paclitaxel requires dissolution in ethanol and a surfactant Cremophor 
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EL in the commonly known product, TAXOL.  The large quantities of Cremophor EL lead to 

neutropenia and hypersensitivity in patients thus requiring a prophylactic regimen of 

dexamethasone1.  A second-generation formulation devoid of the surfactant uses the 

endogenous serum protein albumin as a vehicle.  Abi-007, also known as ABRAXANE, 

utilizes the intrinsic binding of PTX to albumin to entrap the drug in submicron particles of 

approximately 130 nm after co-nebulization1.  ABRAXANE showed itself superior to TAXOL 

in efficacy, half-life and toxicity and is currently indicated as a second line therapy for breast 

cancer2,3. 

At a vascular concentration of 40-50 mg/mL (0.6-0.75 mM) albumin is the most 

abundant serum protein4.  The high vasculature concentrations of albumin are maintained 

due to recycling via a protective protein known as the Brambell receptor (FcRn) which grants 

albumin a 19-day half-life in humans4.  This is an ideal characteristic sought by many 

synthetic vehicles for drug delivery in the literature today. The use of albumin as a drug 

carrier is not a novel concept, particularly for antineoplastics5.  It has been hypothesized 

albumin is the major sustenance for growing tumors6.  The high vascular concentrations 

beget high tumoral concentrations making albumin easily accessible as a nutritional 

source7,8.  This tumoral accretion is believed to proceed via passive filtration and 

sequestration in the tumor microenvironment via leaky endothelia5,9.  It has also been 

proposed albumin is actively transported into tumors via a selective overexpression of gp60 

(albondin) and the secreted protein acidic and rich in cysteine (SPARC) at the vicinal tumor 

endothelium10.  These proteins have been shown to facilitate transcytosis and paracellular 

transit of albumin across endothelia respectively.  The net result is a large concentration of 

albumin localized in a highly proteolytic tissue11,12.  Combined, these characteristics mold 

the paradigm of a desirable drug carrier. 
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The primary function of abumin is plasma expansion accomplished by maintaining an 

oncotic pressure across the vasculature with high (0.60-0.75 mM) intravasculature and lower 

(0.30 mM) extravasculature concentrations13.  Ancillary to expansion, albumin acts as a 

sponge for various metals, hydrophobic xenobiotics and fatty acids13.  Albumin is shown to 

have 6-7 binding sites for long chain fatty acids with Kd in the nanomolar range14,15.  These 

highly specific binding sites are due to hydrophobic channels in the protein which cradle the 

fatty acid tails.  The apex of these channels, at the protein/water interface, provides lysine or 

arginine cations which anchor the anionic carboxylate in place16,17.  Drug-fatty acid 

conjugation is typically accomplished through amides or esters consequently removing the 

electrostatic interaction of conjugate and protein18 such as in taxoprexin19 and squalenoyl-

paclitaxel20.  This will decrease the affinity of the conjugate for the protein as demonstrated 

through the myristoylated insulin, LEVEMIR21.  In the present study a new fatty acid, 3-

pentadecylglutaric (PDG) acid, is described that can be conjugated to a variety of 

nucleophiles.  The product of the reaction is a fatty acid conjugate that maintains an anionic 

carboxylate for the purpose of generating long-circulating albumin bound conjugates.  The 

technology is demonstrated through PDG-paclitaxel (PP), but could potentially be applied to 

any nucleophilic therapeutic. 

3. Experimental Procedures 

3.1. Materials   

All chemicals involved in the synthesis were purchased from Sigma-Aldrich at >98% 

purity and used without further purification.  Delipidated human serum albumin was also 

purchased from Sigma-Aldrich at 96% purity.  All solvents were purchased from BDH and 

were ACS grade or higher.  Paclitaxel was purchased from AK Scientific (Union City, CA) 

and used without further purification.  CT26 murine colon carcinoma cells were obtained 

from ATCC and grown at 37°C at 5% CO 2 in RPMI-1640 media supplemented to 10% fetal 



63 

 

bovine serum, 1% penicillin and streptomycin.  Cells were passaged twice before 

implantation to mice.  Tritium labeled PP and PTX were synthesized by Moravek 

Biochemicals (Brea, CA) at a specific activity of 11 Ci/mmol and 36 Ci/mmol respectively 

with tritium substitutions at the ortho positions on the benzamide ring of paclitaxel.  All 

animals were female BALB/c 6-8 week old, 18-20 g mice from NCI.  Mice were allowed 1 

week acclimation prior to beginning studies.   All animal studies were performed under 

approval of the University of North Carolina Office of Animal Care and Use in accordance 

with the standards set forth by the Institutional Animal Care and Use Committee. 

3.2. Spectroscopy  

Mass spectra were obtained on an Agilent 1100-DAD-FLD Ion trap ESI mass 

spectrometer in MeOH or MeCN. 1H NMR and 13C NMR spectra were recorded on an Inova 

400 MHz NMR at 30° C in CDCl 3 or CD3OD; chemical shifts are referenced to TMS (δ 0.00 

ppm) for 1H NMR and CDCl3
 (δ 77.23 ppm) or CD3OD (δ 49.15 ppm) for 13C NMR.  Spectral 

data for all intermediates are provided in the Appendix  as Figs.  A-8-A-21.  UV/Vis 

spectrophotometry was carried out on a Shimadzu UV-2401PC.  Scintillation counting was 

conducted on a Packard Tri-Carb 2900TL. Dynamic Light Scattering was conducted on a 

Malvern Zetasizer Nano ZS detecting 173° non-invasive  backscatter.   

3.3. Synthesis of Ethyl-( E)-octadec-2-enoate (1)   

A suspension of pyridiniumchlorochromate (PCC), 7.98 g, (37 mmol, 1.5 eq) and 

NaOAc, 3.06 g, (37 mmol, 1.5 eq) was stirred in 250 mL anhydrous DCM in a two-neck flask 

equipped with an addition funnel and a condenser under nitrogen atmosphere.  After 5 mins 

of stirring at room temperature, the solution became black.  Hexadecanol, 6 g, (24.7 mmol, 1 

eq) was dissolved in 125 mL anhydrous DCM and added to the reaction via the addition 

funnel at room temperature over 1 h.  The mixture was stirred at room temperature for 
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another 2 h and (carboethoxymethylene)triphenylphosphorane, 12.10 g, (34.7 mmol, 1.4 eq) 

was added through the sidearm and the solution refluxed for 48 h.  The reaction mixture was 

adsorbed on a plug of silica and eluted with EtOAc to remove the PCC and NaOAc.  The 

eluent was concentrated and re-dissolved in 5% EtOAc in petroleum ether then eluted on 

silica gel with the same.  The product was recovered as a colorless oil which solidifies upon 

cooling (6.54 g, 85% yield over two steps). This specific product has been synthesized and 

characterized before so only the 1H NMR and MS is provided22. 1H NMR (400 MHZ, CDCl3) 

δ 6.96 (m, 1H, HC=CH-CH2), 5.81 (d, 1H, HC=CH-CH2), 4.18 (m, 2H, O-CH2CH3), 2.19 (q, 

2H, γCH2), 1.54 (s, 1H, -CH2-CH-CH2), 1.45 (t, 2H, δCH2), 1.30-1.26 (m, 29H, -CH2CH2-,-

OCH2CH3), 0.88 (t, 3H, CH3).  ESI-MS (pos, MeOH): 333.5 [M+Na]+. 

3.4. Synthesis of 3-Pentadecyldiethylglutarate (2)   

Sodium metal, 111 mg, (4.83 mmol, 3 eq) was stirred in 10 mL dry EtOH at 0°C until 

the solution became clear.  To this was added diethylmalonate, 386 mg, (367 µL, 2.42 

mmol, 1.5 eq) and (1), 500 mg, (1.61 mmol, 1 eq) in 5 mL dry EtOH.  The solution was 

refluxed for 3 h and cooled to ambient.  The solution was concentrated, diluted with water 

and extracted with EtOAc.  The EtOAc layer was dried over magnesium sulfate, filtered and 

concentrated to a colorless oil.  The oil was dissolved in DMSO at a concentration of 6 mL/g 

and to it was added 1 equivalent of H2O and 2 equivalents of NaCl and the solution refluxed 

for 5 h.  Dilution with water and extraction into EtOAc yielded a colorless oil.  The product 

was purified on silica gel eluting with 5% EtOAc in petroleum ether (603 mg, 94% over two 

steps).  1H NMR (400 MHz, CDCl3) δ 4.13 (q, 4H, -OCH2CH3), 2.34 (m, 5H, -CH2-CH-CH2-), 

1.33-1.24 (m, 34H, -CH2CH2-,-OCH2CH3), 0.88 (t, 3H, CH3). 
13C NMR (100 MHz, CDCl3) δ 

172.8, 60.4, 38.9, 34.2, 32.4, 32.1, 29.8, 26.8, 22.9, 14.4, 14.3. ESI-MS (pos, MeOH) m/z 

399.7 [M+H]+, 421.8 [M+Na]+, 437.8 [M+K]+. 
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3.5. Synthesis of 3-Pentadecylglutaric acid (3)   

To a solution of (2), 1.06 g, (2.66 mmol, 1 eq) in 15 mL MeOH was added 30 mL 2 N 

NaOH.  The mixture was heated to a reflux with stirring for 6 h causing the suspension to 

become clear.  The solution was cooled to ambient, acidified to pH 1 with concentrated HCl 

and extracted with methyl tert-butyl ether.  The organic layer was dried with magnesium 

sulfate, filtered and concentrated.  The product was collected as a white solid (900 mg, 

99%).  The compound was pure by TLC 10% Me2CO in petroleum ether. 1H NMR (400 MHz, 

CD3OD) δ 2.33-2.27 (m, 5H, CH2-CH-CH2), 1.37-1.29 (m, 28H, -CH2CH2-), 0.90 (t, 3H, -

CH3). 
13C NMR (100 MHz, CD3OD) δ 176.7, 39.6, 35.2, 33.5, 33.3, 30.9, 27.8, 23.9, 14.6.  

ESI-MS (neg, MeOH) m/z 341.7 [M-H]-.  

3.6. Synthesis of 3-Pentadecylglutaric anhydride (4 )   

The intermediate (3), 900 mg, (2.63 mmol, 1 eq), was suspended in 3 mL EtOAc and 

heated gently until dissolved.  To the solution was added trifluoroacetic anhydride (TFAA), 

773 mg, (0.513 mL, 3.68 mmol, 1.4 eq) and the solution was capped and heated to 37°C 

with shaking for 2 h.  The solution was evaporated and the solid taken up in hot EtOAc and 

precipitated with cold petroleum ether followed by cooling the suspension to -18°C.  

Filtration of the solid and drying under vacuum produces the product as a fluffy white 

powder in quantitative yield (853 mg, 100%). 1H NMR (400 MHz, CDCl3) δ 2.89 (dd, 2H, 

CH2-CH-CH2), 2.43 (dd, 2H, CH2-CH-CH2), 2.19-2.12 (m, 1H, CH2-CH-CH2), 1.40-1.26 (m, 

28H, -CH2CH2-), 0.88 (t, 3H, -CH3).  
13C NMR (100 MHz, CDCl3) δ 167.1, 36.3, 34.7, 32.1, 

29.8, 28.9, 26.5, 22.9, 14.3. ESI-MS (pos, MeCN) m/z 325.4 [M+H]+, 347.6 [M+Na]+.  

3.7. Synthesis of Paclitaxel-2’-O-3-pentadecylhemig lutarate (5)   

Intermediate (4), 21 mg, (64.5 µmol, 1.1 eq), PTX, 50 mg, (58.6 µmol, 1 eq) and 4-

dimethylaminopyridine (DMAP), 0.7 mg,(5.86 µmol, 0.1 eq) were dissolved in 0.8 mL dry 
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pyridine and the reaction stirred overnight at room temperature.  The reaction was 

concentrated by rotary evaporation and the solids taken up in DCM and washed with 0.1 N 

HCl.  The DCM was dried with magnesium sulfate, filtered and concentrated.  The solid was 

adsorbed onto silica and eluted with 1:1 EtOAc in petroleum ether supplemented with 1% 

AcOH.  The product was recovered as a white solid. (58.4 mg, 85%).  1H NMR (400 MHz, 

CDCl3) δ 8.12 (d, 2H, ArH), 7.75 (d, 2H, ArH),  7.62-7.24 (m, 11H, ArH), 6.29 (s, 1H, C10), 

6.24 (t, 1H, C-13), 5.99 (dd, 1H, C-3’), 5.68 (d, 1H, C-2), 5.50 (d, 1H, C-2’), 4.97 (d, 1H, C-

5), 4.40 (dd, 1H, C-7), 4.29 (d, 1H, C-20), 4.20 (d, 1H, C-20), 3.80 (d, 1H, C-3), 2.56-2.50 

(m, 1H, -CH2-CH-CH2-), 2.45 (s, 3H, OAc), 2.40-2.28 (m, 3H, -CH2-CH-CH2-, C-6α), 2.24-

2.13 (m, 7H, OAc, C-14, -CH2-CH-CH2-), 2.00-1.85 (m, 4H, C-18, C-6β), 1.66 (s, 3H, C-19), 

1.26-1.19 (m, 31H, -CH2CH3, C-17), 1.13 (s, 3H, C-16), 0.88 (t, 3H, -CH2CH3). 
13C NMR 

(100 MHz, CDCl3) δ 204.0, 176.7, 171.9, 171.5, 170.2, 168.3, 167.7, 167.2, 142.9, 137.1, 

133.8, 133.0, 132.2, 130.5, 129.0, 127.1, 84.7, 81.3, 79.2, 75.8, 75.3, 74.4, 72.2, 58.7, 53.1, 

45.8, 43.4, 38.0, 35.7, 34.1, 32.2, 29.9, 29.7, 27.1, 22.9, 22.3, 21.0, 15.0, 14.3, 9.8. ESI-MS 

(pos, MeOH) m/z 1201.1 [M+Na]+. 

3.8. Cytotoxicity of PP  

The cytotoxicity of PP and PTX were analyzed by the NCI as part of the NCI-60 DTP 

Human Tumor Cell Line Screen23.  Various human cancer cell lines were plated at 5000-

40000 cells/well and treated with five concentrations of PP or PTX from 10 nM to 100 µM.  

The effect on cell growth is compared to cell lines fixed at t=0 and the untreated control via 

the Sulforhodamine B test.  Dose response curves were then generated across 60 cell lines 

and the 50% growth inhibition (GI50), total growth inhibition (TGI) and 50% lethal 

concentration (LC50) values were determined for each cell line. 
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3.9. Biochemical Stability of PP   

CT26 cells were grown in a flask to confluency (~4 million cells) and the cells 

washed then scraped off the flask and suspended in 5 mL Hank’s balanced salt solution 

(HBSS).  The suspension was then centrifuged at 600 x g for 5 minutes at 4°C.  The 

supernatant was removed and replaced with 0.5 mL fresh HBSS.  The cells were 

homogenized on ice using a Potter-Elvehjem homogenizer attached to an Hitachi 12-Volt 

3/8" cordless peak lithium ion micro driver drill at 1300 rpm while continuously plunging for 

15 minutes.  The suspension was centrifuged at 6000 x g to pellet the cell debris, the 

supernatant diluted to 1 mL and separated into 10 x 100 µL aliquots and stored at -18°C 

until use.  Prior to use, the aliquots had to be recombined and diluted twofold to attain the 

volume necessary to run an experiment in duplicate. 

An 8-week old female BALB/c mouse was inoculated with 5 x 105 CT26 cells on the 

right flank and the tumor allowed to grow to ~1000 mm3, as calculated using the volume of 

an ellipsoid (see III.14).  At this point, the mouse was anesthetized with 0.1 mL 100 mg/mL 

ketamine administered intraperitoneally (i.p.) with subsequent cervical dislocation.  The 

tumor mass was harvested, washed with PBS and blotted dry.  The tumor was weighed and 

diluted with 2 volumes of PBS.  The suspension was coarsely homogenized on ice using a 

PowerGen® 700 tissue homogenizer at speed 7 for 5 minutes until no lumps of tissue 

remained.  The tissue homogenate was mixed thoroughly, separated into 1 mL aliquots and 

stored at -18°C until use. 

For serum preparation, 8 female 8-week old BALB/c mice were anesthetized with 0.1 

mL 100 mg/mL ketamine i.p. until unresponsive to toe pinching.  The mice were then 

exsanguinated by cardiac puncture with subsequent cervical dislocation.  The whole blood 

was pooled and stored at 4°C overnight.  The fibrin cl ot was pelleted by centrifuging the 
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suspension at 6000 x g at 4°C and the supernatant remov ed and separated into 500 µL 

aliquots. 

Standard curves were generated by combining PP (160-1 µM) and PTX (1–160 µM) 

in EtOH with aliquots of the test matrix (serum, cell or tissue homogenate) at a 1:10 (v/v) 

ratio respectively.  The matrices were then diluted with equal volumes of 1 N HCl and 

precipitated with 8 volumes of MeCN containing 500 nM docetaxel as internal standard.  To 

examine the stability of the PP, the highest stock of PP in EtOH (160 µM) was diluted into 

each matrix in duplicate at a (v/v) ratio of 1:10.  The matrices were warmed to 37°C in a 

waterbath and shook vigorously.  Each matrix was sampled at given times by taking 20 µL 

samples and adding 20 µL 1N HCl followed by 160 µL MeCN containing 500 nM docetaxel.  

The precipitate was pelleted at 800 x g for 2 minutes and the supernatant removed for 

analysis.   

The supernatant was run on an Aquasil C18 reversed phase column (2.1 x 50 mm) 

with 5 µm particles and 80 Å pore size using 20 µL injections.  The eluent was a binary 

gradient containing 0.1% formic acid in water (A) and 0.1% formic acid in MeOH (B).  The 

gradient began with 1 minute of 30% B followed by a linear increase over 2 minutes to 95% 

B.  The eluent was then held constant at 95% B for 15 sec followed by a 30 sec linear 

decrease down to 30% B and 30 sec re-equilibration at 30% B. The solvent pump used was 

a Shimadzu SCL-10Avp operating at a flow rate of 0.75 mL/min with an injection loop of 100 

µL.  Analysis was by an API 4000 Triple Quadrupole LC/MS/MS mass spec (AB Sciex 

Instruments) scanning for parent to daughter transitions of 854-525 m/z (PTX) and 854-525 

m/z (PP) in negative mode.  The 1178-854 transition for PP was inconsistent so the 

daughter paclitaxel and its subsequent daughter fragment were used for analysis for both 

standard curve and stability study.   
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Concentrations were determined by integrating the area under the curve for the 

various peaks and assigning a concentration per the standard curves.  The extraction 

efficiencies of both PP and PTX were determined for the three matrices.  This was done by 

spiking the individual matrices in duplicate with radiolabeled stock of either PP or PTX.  

Aliquots of the stock were weighed out and analyzed by liquid scintillation counting (LSC) to 

determine the concentration.  Next the matrices were extracted with 1 volume of 1 N HCl 

and 4 volumes of MeCN.  The samples were centrifuged at 16.1 x 1000g for 5 mins and the 

supernatants quantiated by LSC.  Efficiencies were calculated as a ratio of concentration 

found from the extraction over the initial concentration in the matrix x 100.   

3.10. Formulation of PP with Albumin   

A 10x stock solution of PP in t-BuOH is made and confirmed via UV 

spectrophotometry after dilution in EtOH (ε228=30,593 M-1cm-1, EtOH).  The PP stock is then 

added to a 5% (w/v) stock of delipidated HSA in water (Sigma, A1887) at a 1:10 volume 

ratio of EtOH:HSA (ε278=39,800 M-1cm-1, water)24 which immediately causes turbidity due to 

precipitation of PP.  The sample was shell-frozen and lyophilized over 24 h.  The sample 

was then reconstituted in 0.1 M phosphate buffer at pH 7.4 and filtered through a 0.22 µm 

PVDF filter. (Millipore Billerica, MA)  If the stock contains [3H]-PP, it is quantified via LSC.  If 

the stock is not radiolabeled, it is extracted by diluting with one volume of 1 N HCl and eight 

volumes of MeCN then added a quantity sufficient of EtOH to make the volume 5 mL in a 

volumetric flask and analyzed via UV-Vis.  The loading efficiency of PP is inconsistent with a 

maximum loading of about 50% for higher doses. 

3.11. Formulation of PTX as TAXOL   

Paclitaxel solutions were prepared at either 6 mg/mL or 9.4 mg/mL in 1:1 (v/v) 

EtOH:Cremophor EL. The drug concentration was confirmed by diluting with EtOH and 
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analyzing by UV abosrobance (ε228=29.800 M-1cm-1, EtOH).  The organic stock was diluted 

5-fold with PBS to produce a concentration of about 1.2 mg/mL or 1.9 mg/mL respectively 

immediately prior to injection. 

3.12. Dialysis of PP-Human Serum Albumin (HSA) Comp lex   

To determine whether the PP-HSA complex would dissociate over time, the complex 

was dialyzed against delipidated human serum albumin in phosphate buffer to create sink 

conditions.  Dialysis was conducted across a Spectra Por 12-14 kDa MWCO regenerated 

cellulose dialysis membrane with 500 µL fiberglass compartments.  A 0.1 M phosphate 

buffer pH 7.4 containing 0.01% NaN3 was diluted 10:1 (v/v) with EtOH.  This EtOH-

containing buffer was saturated by shaking with solid PP for 24 h at 37°C then cooled to 

ambient and filtered through a 0.22 µm PVDF filter.  Albumin was dissolved in phosphate 

buffer without EtOH at concentrations of 40 mg/mL and 10 mg/mL as confirmed by UV.  

Finally a stock solution of [3H]-PP in EtOH was made to a concentration of 15 mg/8.63 x 107 

dpm/mL.  The PP stock was added to the albumin stocks in a 1:10 (v/v) ratio and the stocks 

were filtered through a 0.22 µm PVDF filter.  These stocks were analyzed by LSC for PP 

content and UV for HSA content. 

The saturated solution of [3H]-PP in 0.1 M phosphate buffer pH 7.4 was dialyzed 

against blank phosphate buffer for 5 h with sampling of both compartments every hour to 

determine how quickly free PP could establish equilibrium.  The albumin solutions loaded 

with PP were sampled after shaking for 24 h at 37°C a nd the compartment replenished with 

fresh aliquots of the initial contents.  After another 24 h of shaking at 37°C, all contents were  

analyzed.  Analysis involved weighing 200 µL aliquots of the sample into scintillation vials 

and adding 5 mL Ultima Gold scintillation cocktail followed by LSC (Table III-1). 
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Table III-1.  Dynamic dialysis of [3H]-PP-HSA against delipidated HSA.  [3H]-PP-HSA in 
compartment A was dialyzed against delipidated HSA in compartment B across a 
regenerated cellulose membrane with a MW cutoff of 12-14 kDa (Spectra Por).   After 48 h, 
only 3% of PP bound in the form of PP-HSA had dialyzed across the membrane. As shown 
by the first 5 entries, free PP can diffuse freely across the membrane within hours 
suggesting dissociation of PP from the PP-HSA complex is very slow. 
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3.13. Pharmacokinetics/Biodistribution of [ 3H]-PP-HSA and [ 3H]-TAXOL   

Female, 6-8 week old BALB/c mice were administered 5 x 105 CT26 murine colon 

carcinoma cells in 0.1 mL HBSS on the right flank.  When the tumors were ~1000 mm3, the 

mice received the radiolabeled dose as formulated in 4% HSA in 0.1 M phosphate buffer 

(0.08 mg PP equiv to 0.058 mg PTX/1.75 x 107 dpm/0.1 mL) or as TAXOL (0.147 mg 

PTX/2.22 x 106  dpm/0.1 mL) via the tail vein. 

Approximately 5 minutes prior to the timepoint, the mice were injected i.p. with 0.1 

mL 100 mg/mL ketamine.  Once unresponsive to toe pinching, the mice were exsanguinated 

via cardiac puncture with subsequent cervical dislocation.  The whole blood was quickly 

weighed as 200 µL aliquots in triplicate.  The target organs were harvested, washed with 

PBS, blotted dry and small (~100 mg) pieces excised, weighed and stored in scintillation 

vials in duplicate.  The target organs include the liver, lungs, heart, kidneys, spleen, tumor 

and injection site on the tail. 

To the whole blood aliquots was added 1 mL of Solvable® tissue solubilizer. (Perkin 

Elmer, 6NE9100)  The sample was incubated for 1 hour at 55°C turning brownish-green.  To 

this was added 100 µL of 0.1 M ethylenediaminetetraacetic acid disodium followed by 300 

µL 30% H2O2 in 100 µL aliquots.  The reaction can be quite vigorous and was allowed to 

continue at room temperature until the foaming subsided.  The samples were then heated to 

55°C for an additional hour yielding clear to slightl y yellow solutions.  The samples were 

cooled to ambient and 15 mL Ultima Gold scintillation cocktail was added and mixed 

thoroughly.  The samples were rested in the liquid scintillation counter for 1 h to adapt to 

light and temperature prior to counting. 

To the organs was added 1 mL of Solvable® followed by heating to 55°C for 2 h.  

Once dissolved (yellow to slightly yellow) the samples were cooled to ambient and 200 µL of 
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30% H2O2 was added in 100 µL aliquots.  The samples were then heated to 55°C again for 

30 min.  The samples were cooled to ambient and 15 mL Ultima Gold scintillation cocktail 

was added and thoroughly mixed.  The samples were rested in the LSC for 1 h to adapt to 

light and temperature prior to counting.   

Aliquots of PP stock were weighed in triplicate and analyzed via liquid scintillation 

counting. A tumor bearing mouse was then anesthetized with 0.1 mL 100 mg/mL ketamine 

i.p. and exsanguinated via cardiac puncture.  The mouse was sacrificed and the target 

organs harvested.  Aliquots of 175 µL, 200 µL and 225 µL of blood were weighed and 

spiked with a weighed amount of PP stock (~1 x 104 dpm).  Additionally, ~75, 100 and 125 

mg samples of organs were washed, blotted dry and weighed then spiked with a weighed 

amount of PP stock (~1 x 104 dpm).  The samples were then processed in the same fashion 

as the unknown samples.  The counting efficiency was calculated as the ratio of dpm in the 

organ sample / calculated PP stock dpm x 100.  The efficiencies were plotted as a function 

of organ or blood mass and fitted with a linear regression.  The calculated efficiency was 

then used to correct the counts for the unknown samples based on blood volume or organ 

mass. 

3.14. Pharmacodynamics of PP-HSA and TAXOL   

Female, 6-8 week old BALB/c mice were administered 5 x 105 CT26 murine colon 

carcinoma cells in 0.1 mL HBSS on the right flank.  The mice were separated into groups; 

mice that developed tumors quickly and mice that developed tumors after a delay.  When 

the quickly developed tumors were 600-700 mm3 (n = 4 mice/group), the mice received their 

first dose.  About 10 days later, the delayed tumors (n = 2 mice/group) were given their first 

injections with average tumor volumes of 400-700 mm3.  The dosing schedule for PP (7 

mg/kg with respect to PTX) and PTX (10 mg/kg) was every 3 days for 15 days25.  Efficacy 

was analyzed via tumor size measurements every three days.  Tumors were measured 
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directly using digital calipers and the volume quantitated as an ellipsoid using the formula (l 

x w2 x 
�

�
) where width is the longest measured diameter.  Both formulations were compared 

to a control group given injections of PBS on the same dosing schedule.  Mice were 

sacrificed when the width of the tumor exceeded 2 cm.  Results were compared using a 

one-way ANOVA for n=6 mice per group. 

4. Results 

4.1. Chemistry   

The synthesis of 3-alkylglutaric anhydrides has already been demonstrated26.  This 

synthetic scheme was shortened and modified (Scheme III-1 ).  Hexadecanol was oxidized 

to palmitaldehyde using PCC and subsequently subjected to Wittig olefination using the 

ylide (carboethoxymethylene)triphenylphosphorane22.  The α,β-unsaturated ethyl ester was 

then be used as a Michael acceptor for sodiomalonate under refluxing conditions27.  The 

resultant triester is then decarboxylated and saponified to the 3-alkylglutaric acid27.  

Dehydration of the diacid can be affected with TFAA in EtOAc at 37°C 28.  PDG anhydride 

itself is reactive to amines and alcohols thus it could react with paclitaxel at three 

positions29,30.  Paclitaxel is known to be reactive to glutaric anhydride at the 2’-OH position at 

room temperature.  The 7-OH is only reactive under heated conditions and the 1-OH is 

unreactive29,30.  Mixing PDG and PTX in pyridine with a catalytic amount of DMAP allows 

complete reaction at room temperature in 24 h (Scheme III-2 ).  

4.2. Pharmaceutics 

Paclitaxel is very poorly soluble (~10 ug/mL)31 and adding a fatty acid to this 

molecule only exacerbates the issue.  The solubility of PP was calculated using a radiolabel 

at about 0.36 µg/mL (0.26 µg/mL PTX) in 0.1 M phosphate buffer at pH 7.4, room 

temperature.  In the presence of HSA, the solubility of PP should increase dramatically to a 
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Scheme III-1.  Synthesis of PDG anhydride from hexadecanol.  PCC, 
pydridiniumchlorochromate; NaOAc, sodium acetate; TFAA, trifluoroacetic anhydride 
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Scheme III-2.  Synthesis of PP.  The reaction is performed at room temperature as heating 
the solution will cause a mixture of isomers with the 7-ester. H* corresponds to the sites 
replaced with [3H] in the radiolabeled compounds synthesized by Moravek Biochemicals. 
(Brea, CA). DMAP, 4-dimethylaminopyridine. 
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theoretical maximum of the number of fatty acid binding sites multiplied by the concentration 

of HSA.  This would be a solubility of about 3.6 mM (3.07 mg/mL with respect to PTX) 

conservatively assuming a 40 mg/mL physiological solution of albumin and 6 fatty acid 

binding sites.  After two weeks of equilibration, the concentration of PP with respect to PTX 

(54 µg/mL) was substantially less than the theoretical maximum (Fig. A-1 ). 

To improve solubility, PP was dissolved in a water miscible co-solvent, t-BuOH, and 

introduced to aqueous albumin at 10% (v/v).  We found albumin to be structurally stable to t-

BuOH at this concentration via circular dichroism analysis (Fig. A-3 ).  This is unsurprising as 

other small alcohols at this concentration do not perturb its secondary or tertiary structure32.  

Distilled water was chosen as a solvent as electrolytes tend to create an unfavorable 

environment for PP leading to increased precipitation.  After loading, the suspension was 

shell frozen and lyophilized to a cake which was reconstituted in an isotonic system.  

Filtration of the suspension yields a clear blue solution indicating particles due to Tyndall 

scattering.  Analysis using Dynamic Light Scattering showed aggregates of 120 nm 

diameter. 

The slow equilibration and poor solubility of PP precluded determination of the 

dissociation constant via conventional methods such as isothermal titration calorimetry or 

equilibrium dialysis.  Instead, the PP-HSA complex was formed and the stability of the 

complex was examined.  Dialysis of a PP solution over 5 h showed a rapid equilibrium could 

be attained within this time period.  In contrast, dialysis of the PP-HSA complex against 

comparable concentrations of delipidated HSA, which should act as a sink for free PP, 

showed only about 3% of PP was released from the complex over two days at 37°C for 5% 

and 1% concentrations of HSA (Table III-1 ). 
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4.3. Cytotoxicity   

The IG50, TGI and LC50 were determined for PP and PTX via the NCI-60 DTP Human 

Tumor Cell Line Screen.  The results for all three values consistently showed a superior 

cytotoxicity of PTX to PP by at least an order of magnitude up to several orders.  For 

simplicity, representative data on the TGI is presented (Table III-2 ).  Due to the large 

number of cell lines, only two were selected from each cancer type which demonstrated the 

greatest toxicity for PTX and PP. 

4.4. Biochemical Stability   

Prior to the experiment, stock solutions of [3H]-PP and [3H]-PTX in EtOH were 

introduced to various milieu at a 1:10 (v/v) ratio.  Subsequent to incubation for a given 

period of time, samples were taken and extracted with 1 volume of 1 N HCl and 8 volumes 

of MeCN, vortexed and pelleted.  For undiluted murine serum, PP and PTX were 

quantitatively extracted.  For CT26 cytosolic fraction, PP was extracted at 97% efficiency 

and PTX at 91%.  For CT26 tissue homogenate, PP was extracted at 90% efficiency and 

PTX at 94% efficiency.  Results of the stability study are presented as an average of 

duplicates and results from LC/MS were corrected for extraction efficiency.  The stability 

study of PP in serum, tumor cytosol and tumor tissue homogenate is shown in Fig. III-1 .  

The PP is stable in this particular concentration of cell homogenate attaining under 1% 

conversion to PTX after 36 h.  The PP is similarly stable in serum attaining about 1.5% 

conversion to PTX within 72 h.  Under the experimental conditions, the PP was also stable 

in the tumor tissue homogenate only attaining 5.5% conversion to PTX after 72 h.   

4.5. Pharmacokinetics/Biodistribution   

The PP formulation shows a rapid distribution (Fig. III-2 ) from the vasculature over 6 

h accounting for a 10-fold dilution of concentration as is common for albumin based  
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Table III-2.   Total Growth Inhibition of PP and PTX from the NCI-60 DTP Human Tumor Cell 
Line Screen.  For simplicity, only the TGI data is presented for 2 cell lines representative of 
each type of cancer.  The cell lines were selected  as having the highest toxicity for PTX and 
PP.  The results show PTX is consistently more cytotoxic than PP most likely due to the 
slow conversion of PP to PTX. 

 

 

 



 

 

Figure III-1. Biochemical stability of PP in various biological milieus.
PP and PTX were quantified by LC/MS over 36 or 72 h in duplicate in undiluted murine 
serum, CT26 murine tumor cell homogenate and CT26 tumor 
formulation appears to be highly stable to all three matrices sh
to free PTX over the course of 72 h.  
quantitated by LC/MS; extraction from the various tissues was shown to be 
90% for all matrices.  Error bars represent the s
duplicate. 
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tability of PP in various biological milieus.  The concentrations of 
PP and PTX were quantified by LC/MS over 36 or 72 h in duplicate in undiluted murine 
serum, CT26 murine tumor cell homogenate and CT26 tumor tissue homogenate.  
formulation appears to be highly stable to all three matrices showing under 6% conversion 
to free PTX over the course of 72 h.  The data is presented as a fraction of the total amount 
quantitated by LC/MS; extraction from the various tissues was shown to be 

Error bars represent the standard deviation of matrices performed in 

 

The concentrations of 
PP and PTX were quantified by LC/MS over 36 or 72 h in duplicate in undiluted murine 

homogenate.  The PP 
owing under 6% conversion 

The data is presented as a fraction of the total amount 
quantitated by LC/MS; extraction from the various tissues was shown to be greater than 

tandard deviation of matrices performed in 
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Figure III-2. Serum pharmacokinetics for [3H]-PP-HSA and [3H]-TAXOL in CT26 tumor 
bearing mice. as determined by liquid scintillation counting of serum samples in triplicate.  
The insert magnifies the terminal phase of each treatment which was used to calculate the 
half-life, t1/2 in Table III-2 , and shows the disparity of clearance rates between the two 
formulations.  The reason for the rebound in PP concentration at 6 h is unknown but may be 
due to enterohepatic recycling.  Error bars represent the standard deviation calculated from 
n = 3 mice in triplicate. 
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therapies33.  The concentration then rebounds to about 20% of the initial concentration with 

a secondary peak that is within the quantified error.  This concentration is then cleared very 

slowly with a half-life of 23 h.  Biodistribution analysis shows accumulation primarily in the 

liver and spleen (Fig. III-3 ).  The concentration in these organs is slowly diminished with 

quantifiable concentrations remaining at 72 h.  The tumor rapidly accumulates 1-3% of the 

dose/g tissue which remains constant through 72 h.  The rebound in concentration observed 

in the serum is mirrored in the various organ tissues.  Paclitaxel from the TAXOL formulation 

shows a similarly rapid distribution (Fig. III-2).  There is no rebound and the estimated 

terminal half-life of the formulation is 7 h.  Biodistribution analysis shows accumulation 

primarily in the liver and kidneys (Fig. III-4), which eliminate PTX quickly from the system.  

The tumor shows a comparable uptake of about 3% of the dose/g tissue however 

concentrations approach the lower limit of detection by 6 h.  

The serum pharmacokinetics were analyzed using non-compartmental analysis. The 

major pharmacokinetic parameters were extracted and presented in Table III-3 .  The PP 

formulation shows a 3.5-fold increased serum half-life due to a lower systemic clearance 

and volume of distribution.  Consequently, while at only half the dose of TAXOL, PP shows 

a higher C0, area under the curve (AUC) and mean residence time (MRT) in the system.   

4.6. Pharmacodynamics   

The albumin bound form of PP is expected to be significantly better tolerated than 

TAXOL due to the lack of required solvents and surfactants for dissolution as well as the 

slow release profile from the protein.  This is in similar fashion to ABRAXANE.  Due to the 

slowed clearance of PP compared to TAXOL, the bound PTX should have greater exposure 

to the tumor site albeit with only very moderate uptake.  No mice died during the experiment 
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Figure III-3.  Time resolved biodistribution of [3H]-PP-HSA in CT26 tumor bearing mice.  The 
liver and spleen are the major sinks for PP, however, the concentrations of PP in the 
respective tissues do not quickly drop but appear to mirror the serum concentrations.  This 
could suggest the PP is intact in the various organs and is leeching back into the 
vasculature over time thus giving rise to the 23 h terminal half-life of the formulation.  Error 
bars represent the standard deviation for n= 3 mice measured in duplicate. 
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Figure III-4.  Time resolved biodistribution of [3H]-TAXOL in CT26 tumor bearing mice.  The 
liver is the major uptake organ for TAXOL and the concentrations of PTX in the organ 
disappear very rapidly, mirroring the serum concentrations.  This is clearance of PTX from 
the system and is the primary reason the TAXOL formulation has a short 7 h terminal half-
life.  Error bars represent the standard deviation for n = 3 mice in duplicate. 
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Table III-3.  Summary of important pharmacokinetic parameters for [3H]-PP-HSA and [3H]-
TAXOL. The PP formulation shows a much greater retention in the vasculature, most likely 
due to tight albumin binding, which is manifest in a 23 h half-life.  This also results in slower 
clearance from the system and consequently higher exposure to the tumor tissue even 
though the dose of PP is almost half the dose of TAXOL.  A non-compartmental model was 
fitted to both formulations with a weighting of 1/Y using Winnonlin (Pharsight).  C0, estimated 
initial serum concentration; Vd, volume of distribution; Cl, systemic clearance; AUC, area 
under the curve; MRT, mean residence time.  
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but all were sacrificed when the tumor burden exceeded allowable limits; this precluded 

continuation of the study after 9 days for most of the mice.  Within this timeframe at a lower 

dose of 7 mg/kg with respect to PTX in the PP formulation compared to 10 mg/kg formulated 

as TAXOL, there was no statistical difference between any treatment group as analyzed by 

one-way ANOVA (Fig. III-5 ).  

5. Discussion 

The purpose of synthesizing the PP conjugate was to improve the solubility and 

pharmacokinetics of PTX by mimicking the endogenous serum protein, albumin.  Loading of 

albumin with PP was exceedingly slow taking 2 weeks to reach only 54 µg/mL with respect 

to PTX.  This is in contrast to the expected 3 mg/mL at saturation of 6 binding sites of 4% 

HSA. The slow binding could be a result of rate-limiting dissolution. To facilitate the kinetics 

of binding, PP was dissolved in t-BuOH prior to mixing with a solution of 4% HSA in water.  

Much of the PP precipitates but this process can result in much higher concentrations of PP; 

adding 12 eq of PP allowed full saturation of 6 binding sites of HSA.   

The PP is stabilized in the form of 120 nm particles which remain after lyophilization 

and reconstitution in isotonic solutions.  The structural details of the particles is not known, 

however it is hypothesized the paclitaxel moiety of the PP on the surface of albumin can 

interact with other paclitaxel moieties via van der Waals interactions or bind other molecules 

of albumin through  PTX specific binding sites34.  Formulation of PTX without the PDG 

moiety in this manner saturates at 0.5 eq PTX/HSA with formation of 120 nm particles as 

confirmed by DLS.  This finding suggests particle formation is a PTX-specific phenomenon.  

This finding is similar to ABRAXANE but with notably lower saturable concentrations. 

ABRAXANE allows solubilization of 10 equivalents of PTX/HSA compared to a maximum of 

0.5 by simple mixing. 

 



 

 

 

 

 

Figure III-5.  Efficacy of PP-
measured with vernier calipers every 3 days with injections on day 0, 3 and 6.  Mice were 
sacrificed when the tumor burden exceeded allowable limits forcing the study to conclude 
after 9 days.  By one-way ANOVA, no statistical significance ex
treatments within this timeframe.  Error bars represent the standard deviation of a population 
of n = 6 mice.   
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-HSA and TAXOL on subcutaneous CT26 tumors
measured with vernier calipers every 3 days with injections on day 0, 3 and 6.  Mice were 
sacrificed when the tumor burden exceeded allowable limits forcing the study to conclude 

way ANOVA, no statistical significance existed between the three 
treatments within this timeframe.  Error bars represent the standard deviation of a population 

 

 

on subcutaneous CT26 tumors.  Tumors were 
measured with vernier calipers every 3 days with injections on day 0, 3 and 6.  Mice were 
sacrificed when the tumor burden exceeded allowable limits forcing the study to conclude 

isted between the three 
treatments within this timeframe.  Error bars represent the standard deviation of a population 
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The PP conjugate is less cytotoxic than PTX towards a variety of human cancer cell 

lines when tested in vitro (Table III-2) .  The mechanism of action of PTX is to bind and 

prevent microtubulin assembly, however various derivatives of paclitaxel have been shown 

to relinquish this binding capacity yet retain varying degrees of cytotoxicity20,35.  This 

appears to be regiospecific as succinate esters on the 2’-OH or 7-OH also abolish 

microtubule binding29 whereas the 1-OH succinate ester retains it36.  Most likely the PP 

conjugate is also unable to bind microtubules explaining the decreased cytotoxicity.  The PP 

conjugate was shown to be highly stable in a variety of milieu including undiluted murine 

serum, CT26 cellular cytosol and CT26 tissue homogenate over 72 h.  The short time scale 

of 4 h for the in vitro cytotoxicity assay suggests the active PTX will not form which could 

explain why the PP conjugate itself is less toxic. 

Ideally albumin-bound drugs will remain invisible to the liver, reticuloendothelial 

system (RES) as well as various esterases and peptidases encountered in the body.  The 

release mechanism for bound drugs would then be concentration-driven dissociation or 

release due to digestion of the carrier albumin.  A dialysis experiment aimed at assessing 

the off-rate of PP from albumin shows this too is very slow, even when sink conditions are 

created by dialyzing against similar concentrations of delipidated albumin.  Thus, 

spontaneous dissociation from the intact protein may not be the major release mechanism 

for PP in vivo.  Since the PP conjugate is utilizing albumin’s natural utility as a fatty acid 

carrier but is not subject to rapid dissociation, albumin is expected to impart its physiological 

profile to the conjugate.   Upon bolus intravenous injection, a 10-fold dilution of the complex 

should ensue33.  This is not irreversible clearance from the body as the re-equilibration of the 

albumin back into the vasculature via the thoracic duct gives rise to the protracted half-life 

observed.  After equilibration, the concentrations in the organs decreased slowly as the bulk 

of the complex was returning to the vasculature as opposed to being systemically cleared.  
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This observed serum half-life of 23 h is in agreement with another report on human serum 

albumin in mice.  The truncated half-life is derived from human serum albumin lacking the 

ability to bind murine FcRn37, the protein responsible for the protracted half-life. 

The biodistribution analysis (Fig. III-3) suggests the majority of the conjugate is in the 

liver and the spleen which could be indicative of sequestration by the RES, however the 

concentrations in the liver and spleen appear to decrease at the same rate as the other 

organs which are not associated with RES.  The higher uptake could then be simply a 

reflection of organ size and vasculature leakiness.  Considering the PP formulation 

generated 120 nm aggregates, the PP-HSA particles could also be sequestered by the 

parenchymal cells of the spleen and liver.   

The volume of distribution, Vd, is a ratio estimating the amount of drug in the tissues 

as compared to the amount of drug in the blood.  Larger volumes of distribution are common 

for lipophilic drugs suggesting they tend to thoroughly permeate through the tissues of the 

body with little remaining in the blood.  Lower volumes of distribution reflect hydrophilic 

drugs that do not readily permeate the endothelium or lipophilic drugs that are highly protein 

bound causing retention in the vasculature.  The apparent Vd for PTX from the TAXOL 

formulation (120 mL) was much higher than from the PP formulation (36 mL) suggesting 

PTX from the former permeates the tissues more readily. While both species are highly 

lipophilic and bind albumin, the substantial decrease in Vd from TAXOL to PP is indicative of 

a stronger binding of PP with albumin than TAXOL.  Thus, PTX is expected to dissociate 

from albumin more readily than PP in various tissues, particularly the liver and kidneys, 

allowing rapid clearance.  The PP formulation shows a twofold higher initial concentration 

and greater AUC compared to the TAXOL formulation despite being half the dose; again 

most likely due to the large Vd for TAXOL. The longer retention within the vascular bed 

means more drug will be exposed to the tumor due to multiple passes through the tumor 
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vasculature with about a 4.5-fold increase in mean residence time (Table III-3).  Because of 

this, PP may be equitoxic to TAXOL at lower doses.  The tumor accumulation of PP is 

minimal, ~1% dose/g tissue.  This is comparable to TAXOL, however the PTX is cleared 

from the tumor within 6 h when formulated as TAXOL.  When formulated as PP, the 

radioactivity from PTX shows a sustained accumulation in the tumor even at 72 h.  The 

comparable tumor uptake suggests PP-HSA may only be taken up passively by tumors.  As 

such, it is unlikely that  murine gp60, as in the case with  murine FcRn,  plays a role in the 

transcytosis of human serum albumin so no active accumulation of albumin is occurring. 

The notable resurgence of PP at about 6 h is within the expected error. Secondary 

peaks in the circulation can occur for a variety of reasons, the most likely being 

enterohepatic recycling38,39.  In this process, the PP is excreted into the biliary canalicula in 

the liver and passed into the jejunal portion of intestine.  The PP can then be reabsorbed 

into the portal blood stream.  This process is slow and can be modeled as if it happens a 

time τ after the bolus injection40.  Unfortunately, the limited amount of data precluded 

successful modeling in this manner so a noncompartmental model was fit to the data as is 

common for this type of profile41,42.  

Submicron particles, including albumin, do not diffuse far into the high-pressure 

tumors43. In order for the PP-HSA complex to be cytotoxic, the albumin must be degraded in 

the tumor environment releasing PP; further hydrolysis to PTX would promote the greatest 

efficacy.  Digestion in the tumor vicinity of albumin is expected to be rapid12.  Conversely, as 

shown in Fig. III-1 , the PP conjugate appears to be resistant to hydrolysis in both CT26 

tumor cell cytosol as well as the tumor tissue homogenate.  The decreased cytotoxicity will 

require greater doses of the PP conjugate in the tumor environment.  A greater exposure is 

expected in the tumor environment due to the protracted half-life of the PP-HSA formulation, 

however only moderate tumor uptake is observed.  Despite this, tumor accumulation is 
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observed for 72 h (Fig. III-3) for the aggregates whereas the PTX is cleared within 6 h for 

the TAXOL vehicle (Fig. III-4).  The utter insolubility of PP mandates formulation in a 

solution containing albumin. This process entails PP precipitation and protein aggregation.  

As such a careful process control must be satisfied in scale-up. Apart from this, the PP-

containing formulation is capable in providing: (1) a solution devoid of any undesirable 

detergents; (2) a cost-effective method for high affinity albumin binding via the simple 

reaction with PDG’s one-step chemistry, (3) similar characteristics as ABRAXANE and (4) 

superior pharmacokinetics. 
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1. Summary                

 The flagship therapeutic molecule selected for PDG modification was PTX.  As a 

result of high affinity for albumin, it was expected the PP conjugate would have increased 

solubility, stability in vivo, a protracted circulation half-life and tumor accretion.  Degradation 

of the albumin in the tumor periphery would release PP for diffusion into the tumor core.    

Experimentally, the PP conjugate was very slowly hydrolyzed in undiluted serum, CT26 

tumor cell cytosol and CT26 tumor tissue homogenate over 72 h at 37°C.  Like all other PTX 

conjugates at the 2’-OH, the cytotoxicity of the conjugate decreased most likely due to loss 

of microtubulin bundling (1-3).  Dialysis of the PP-HSA complex against equimolar 

concentrations of delipidated HSA showed a great deal of stability.  The aggregates should 

be very stable in vivo with little dissociation of PP over time.  Pharmacokinetic and 

biodistribution analysis showed a large increase in circulatory half-life compared to TAXOL 

but only moderate tumor accumulation although uptake is sustained for 72 h.  The fraction of 

dose that does reach the tumor will be inefficiently hydrolyzed to the more active PTX prior 

to clearance from the system.  The result is a formulation comparable to TAXOL at lower 

doses very similar to ABRAXANE.    

The PP conjugate is approximately 10-fold less soluble than PTX.  This was 

marginally improved by the addition of albumin, however, solutions took two weeks to 

equilibrate and approached significantly lower concentrations than expected.  This was 

thought to be dissolution rate limited, but PP became saturated in solution without HSA 

much more quickly than the albumin containing solutions.  The kinetics of albumin loading 

should be second order with respect to the concentration of PP and the concentration of 

HSA.  The slow rate could be due to the very low solubility of PP but this does not explain 

the very low equilibrium concentration of PP.  Albumin is highly resistant to solvents (4).  

Thus to increase the solubility, PP was first dissolved in a water miscible alcohol; t-BuOH or 
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EtOH.  The solution of PP in either alcohol was then introduced to an aqueous solution of 

albumin. The equilibrium concentration of PP obtained by this method was much higher than 

without the alcohol, even after lyophilization and reconstitution.  This also resulted in the 

formation of aggregates.  These aggregates also formed when PTX alone was dissolved in 

EtOH and added to albumin; there were no aggregates when stearic acid or PDG acid were 

dissolved in EtOH and added to albumin.  Consequently PTX must be responsible for 

aggregation. 

Albumin is believed to provide two binding sites for PTX with dissociation constants 

of 10-6 and 10-5 M by docking studies (5).  Experimental values are lower, and showed EtOH 

may be required to create binding sites for PTX (6).  How the PTX interacts with the albumin 

in these aggregates is unknown at this time.  Adding multiple equivalents of PTX in EtOH to 

the albumin yielded a maximum concentration of 0.5 molar equivalents PTX/HSA.  This 

value was surpassed by PP which dissolved six molar equivalents of PP when 12 were 

added.  This suggests the PP conjugate interacting with the protein in a different manner 

than PTX alone.  The fatty acid should be most stable within the binding pocket of the 

albumin with the PTX sitting on the surface.  This can hypothetically allow the PTX to 

interact with other binding sites on albumin or other PTX molecules through van der Waals 

interactions yielding a heterogeneous matrix (Fig. IV-1).  

2. Ancillary Data 

The resulting particles are dependent on the electrolyte composition of the bulk 

solvent when mixing and after reconstitution.  The loading efficiency is poorly reproducible 

and the aggregation exceedingly difficult to prevent without adding a large quantity of 

surfactant.  When the PP was dissolved in a micellar solution of T80 or a Miglyol emulsion, it 

poorly transferred to bovine serum albumin immobilized on agarose as compared to 

dissolution of an alcoholic solution containing PP.  This could be due to the high energy of  
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Figure IV-1.   Hypothetical configuration of PP-HSA aggregates.  The bound PP molecules 
orient the PTX into the bulk solvent causing PTX-HSA interactions as well as PTX-PTX 
interactions. 
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the albumin bound complex as a large portion of the PTX moiety will be exposed to the bulk 

aqueous phase.  This high free energy could be dissipated by binding albumin or another 

PTX moiety to exclude bulk water.  When micellar solutions of T80 containing PP with or 

without HSA were administered to CT26 tumor bearing mice, about 85% of the PP was 

distributed to various tissues within the first few hours (Figs. A-6, A-7 ).  Subsequent to 

equilibration, the radioactivity was cleared slowly from the serum over 72 h with no rebound 

in concentration as observed for the PP-HSA particles (Fig. A-5 ).  The very similar profile 

compared to the PP-HSA particles of Chapter III  suggests the PP may be able to transfer 

from T80 micelles to albumin and mimic its half-life.  From the immobilized BSA-agarose 

experiment, the T80 micellar solution does allow transfer of PP to albumin readily but less 

efficiently than from EtOH alone (Table A-11 ).  Whether or not the murine albumin forms 

aggregates in vivo after binding PP is unknown, as is the stability of PP-HSA aggregates in 

vivo.  This has not been shown directly as a monomeric solution of PP with HSA has not 

been found that provides high enough concentrations for PK analysis.   

3. Future Experiments 

The lower side-effects expected from a PP-containing formulation may allow a higher 

maximally tolerated dose compared to TAXOL.  A dose escalation study could be conducted 

to determine a more efficacious dose for PP.  Alternatively, improving the formulation begins 

with improving the PP-HSA interaction. The aforementioned in vitro data has demonstrated 

numerous difficulties for the PP molecule to bind albumin. The poor loading efficiency could 

be due to several issues.  First, the very bulky PTX group in PP could sterically hinder the 

binding pocket such that the whole alkyl tail is not able to bind thus decreasing the affinity 

and minimizing binding.  Secondly, the hypothesized convoluted network of binding through 

fatty acid binding sites, PTX binding sites and van der Waals interactions could effectively 

lead to non-covalent cross-linking thus inducing particle formation.  Minimizing these 
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hydrophobic interactions could prevent the formation of 120 nm aggregates allowing 

elucidation of the benefits, if any, of binding native albumin in vivo.   

To test these two hypotheses, the PP conjugate can be synthetically altered.  It has 

been demonstrated succinylation at the hydroxyl on C-7 lowers the affinity of the molecule 

for albumin (7).  Phosphorylation may also inhibit this interaction while also providing two 

negative charges at physiological pH for improving solubility and bulk water deposition 

around PTX in the binding pocket.  This would also create a resistance to aggregation of 

other PTX molecules due to electrostatic repulsion thus removing the van der Waals 

interaction.  With 2.5 anionic charges at physiological pH, this PP derivative may be able to 

form micelles and should not form aggregates when formulated with albumin.  The 

resistance to proper seating in the binding pocket due to steric hindrance can be addressed 

by reacting a tetraethyleneglycol linker between the PTX and the PP molecule.  This would 

improve solubility slightly but more importantly should decrease the steric hindrance of 

binding potentially caused by PTX.  This would not preclude the binding of PTX to other PTX 

molecules or albumin molecules and thus might not eliminate aggregation.  If both are 

unsuccessful, a combination of both modifications may be successful.  Both syntheses can 

be accomplished (Scheme IV-1 ) with the more complex 7-phosphate being previously 

published (8). 

Synthesis of the tetraethyleneglycol substituted PP can be synthesized by reacting a 

carbobenzyloxy (Cbz) protected propionyl(tetraethyleneglycol)ethylamine with paclitaxel and 

DCC with DMAP at room temperature (Scheme IV-1 ).  The Cbz protecting group could then 

be removed by hydrogenolysis and the resulting free amine reacted with PDG anhydride in 

DCM at room temperature.  Synthesis of the phosphorylated derivative is more difficult as 

the 7-position is more sterically hindered than the C-2’ position.  The 2’-OH can be protected 

with a trimethylsilyl ether and the 7-OH reacted with tetrabenzyl pyrophosphate in the  
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Scheme IV-1.  Proposed Synthesis of two PDG-PTX derivatives.   Reaction Conditions i: 
TMSCl, imidazole; ii: LDA/THF/-30°C, O(PO(OCH 2Ph)2)2; iii: EtOH/HCl(aq), PDG 
anhydride/DMAP room temperature; iv: EtOH/Pd/C(10%)/H2; v: 
DCC/HOOC(CH2)2(OCH2CH2)4CH2CH2NHCbz/DMAP; vi: PDG anhydride.  TMSCl, 
trimethylsilyl chloride; LDA, lithium diisopropylamide; EtOH, ethanol; DMAP, 4-
dimethylaminopyridine; DCC, dicyclohexylcarbodiimide; Cbz, carbobenzyloxy. 
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presence of freshly prepared lithium diisopropylamide (LDA).  Deprotection of the 

trimethylsilyl ether with EtOH in HCl(aq) and reacting with PDG anhydride in the presence of 

DMAP at room temperature will esterify the PDG lipid moiety at the 2’-OH position.  

Hydrogenolysis to deprotect the dibenzylphosphate yields the desired compound.  If neither 

of these drugs are as cytotoxic as PTX and hydrolytically resistant like PP then neither 

would be useful as a drug.  Instead of disguising PTX as a water soluble drug, an 

intrinsically water soluble drug may offer insight into the formation of aggregates.   

The opposite end of the spectrum is a high solubility drug which should demonstrate 

no albumin binding such as the nucleotide antagonist difluorodeoxycytidine or gemcitabine 

(dFdC).  Modification can occur at the C4-exocyclic amine or the 5’-OH selectively (9, 10) 

yielding a drug species that should be water soluble as micelles, bind albumin and not 

aggregate (Scheme IV-2 ).  These molecules can be synthesized easily and may be more 

amenable to formulation.  Once synthesized, binding affinity can be analyzed by isothermal 

titration calorimetry.  If the molecules can successfully bind albumin, PK/BD studies can be 

conducted using a radiolabel or by LC/MS.  Favorable pharmacokinetic outcomes would 

lead to cytotoxicity and PD studies. 
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Scheme IV-2.  Proposed synthesis of two PDG-dFdC derivatives. Reaction conditions i: 
((CH3)3CCO)2O; ii: PDG anhydride/DMAP, TFAA/DCM; iii: PDG anhydride/DMAP  DMAP, 4-
dimethylaminopyridine; TFAA, trifluoroacetic anhydride. 
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1. Solubility of PP in the Presence of HSA   

 Stocks of 4%, 3%, 2%, 1% and 0% (w/v) HSA (Sigma A3782) were prepared in PBS.  

A stock (6.97 mg/8.21x105 dpm/mL) of tritiated PP was prepared and concentrated to a 

solid.  The solid was then added to all HSA stock solutions.  The suspensions were sealed 

and shook vigorously in a water bath at 25°C.  The susp ensions were sampled at 1, 2, 3, 7, 

and 14 days followed by centrifugation at 12,000 x g for 5 min, filtration through a 0.1 µm 

inorganic membrane (Whatman Anotop 10, 6809-1012) and 40 µL aliquots of the 

supernatant were diluted in 5 mL Ultima Gold scintillation cocktail and analyzed by LSC 

(Fig. A-1 ).  The concentrations of albumin were constant as confirmed by a BCA assay at 

each timepoint. (Pierce).  

2. Solubility of PP as a Function of pH  

 Several buffers were prepared spanning pH 3.5-10 according to Gomori G., (1955) 

Methods Enzymology, 1;138-146 as presented in (Table A-1 ).  The pH 3.5 buffer contained 

0.075 M formic acid/0.07 M sodium formate/0.03 M sodium chloride.  The pH 4.0 buffer 

contained 0.024 M formic acid/0.07 M sodium formate/0.03 M sodium chloride.  The pH 5.0 

buffer contained 0.034 M acetic acid/0.1 M sodium acetate.  The pH 6.0 buffer contained 

0.006 M sodium succinate/0.031 disodium succinate.  The pH 7.0 buffer contained 0.016 M 

potassium dihydrogenphosphate/0.028 M disodium hydogenphosphate.  The pH 8.0 buffer 

contained 0.16 M tris(hydroxyaminomethane) (Tris) and 0.1 M Tris·hydrochloride.  The pH 

8.5 buffer contained 0.20 M Tris and 0.06 M Tris·hydrochloride.  The pH 9.0 buffer contained 

0.045 M sodium bicarbonate/0.019 sodium carbonate.  The pH 10.0 buffer contained 0.02 M 

sodium bicarbonate/0.027 sodium carbonate.  The pH of the buffers was determined using a 

pH meter (Table A-1 ) (Accumet Basic AB15, Fisher Scientific).  A stock solution of PP was 

prepared in EtOH at 5.55 mg/1.11x106 dpm/mL.  Aliquots of the stock were added to 

eppendorf tubes and the EtOH evaporated with nitrogen; 2 mg for pH 8.0 and above, 1 mg  
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Figure A-1.  Time resolved solubility diagram of PP in the presence of HSA in phosphate 
buffer pH 7.4.  The concentration of PP is given with respect to PTX.  The maximum 
concentration of ~54 µg/mL is well below the expected 3 mg/mL for saturation of 6 binding 
sites of 4% HSA.  The 0% HSA formulation represents the rate at which PP can saturate the 
buffer.  This occurs within 24 h. 
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Expected pH  Actual pH before adding PP  Actual pH after adding PP  
3.5 3.61 3.59 
4.0 4.21 4.18 
5.0 5.35 5.32 
6.0 6.57 6.49 
7.0 7.09 7.17 
8.0 8.08 7.93 
8.5 8.56 8.40 
9.5 9.64 9.47 
10 10.15 9.82 

Table A-1.  Summary of buffers used in pH dependent solubility of [3H]-PP.  All buffers were 
prepared according to (Gomori, G. (1955) “Preparation of Buffers for Use in Enzyme 
Studies”. Method Enzymol 1:138-146.  The addition of the acidic PP molecule was not 
enough to substantially change the pH of any stock. 
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for pH 7 and pH 6, 0.1 mg for pH 5.0 and below.  The samples were capped, sealed 

sonicated for 30 minutes and shook at 37°C for 48 h.  Th e samples were removed and 

allowed to cool to 25°C in a water bath then centrif uged at 16.1 x 1000g for 30 minutes.  

Aliquots of the supernatant were filtered through a 0.22 µm PVDF filter and weighed in 100 

µL triplicates, dissolved in 5 mL Ultima Gold scintillation cocktail and analyzed by LSC (Fig. 

A-2).  The remaining samples were resealed, sonicated for 30 minutes and shook at 37°C 

for another 5 days.  The samples were again cooled to 25°C in a water bath and centrifuged 

at 16.1 x 1000g for 30 minutes.  The bottom of the pH 3.5 and pH 10 tubes was scratched 

with a pipet tube to disturb the cakes.  Large flakes were found at pH 10 and small particles 

found in the pH 3.5 tube suggesting the solutions were saturated.  The samples were 

centrifuged again at 16.1 x 1000g for 30 minutes and the supernatants filtered through a 

0.22 µm PVDF filter and 100 µL aliquots weighed in triplicate, dissolved in 5 mL Ultima Gold 

scintillation cocktail and the samples analyzed by LSC (Fig. A-2 ).   

3. Circular Dichroism of HSA in the Presence of t-B uOH  

  A stock solution of 26 µM of delipidated HSA (Sigma A1887) in 0.1 M phosphate 

buffer was prepared and aliquoted into 5 samples.  To two of the samples was added t-

BuOH to make a 10% (v/v) solution and to two other samples was added enough t-BuOH to 

make a 20% (v/v) solution.  Of the t-BuOH containing solutions, 1 of each concentration was 

lyophilized overnight to a cake and reconstituted in distilled water to regenerate the 26 µM 

solution.  The 5 samples were then analyzed via CD against a blank of phosphate buffer, 

phosphate buffer with 10% (v/v) t-BuOH or phosphate buffer with 20% (v/v) t-BuOH (Fig. A-

3).  The minor differences observed the spectrum were assumed to be due to minor 

concentration differences.  This was confirmed by plotting the absorbance as a function of 

wavelength (Fig. A-4 ).  Taking a ratio of all mdeg (λ) of the highest (yellow, 26 µM HSA 20% 

t-BuOH) and lowest (navy, 26 µM HSA) datasets revealed a constant.  The same was true  
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Figure A-2.  pH dependent solubility of [3H]-PP.  Concentrations at pH 6.5 and below were 
not quantifiable.  TLC on the quantifiable fractions showed only intact conjugate.   
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Figure A-3.  Circular Dichroism analysis of HSA in the presence of t-BuOH.  Data was 
collected using an Applied Photophysics Pistar-180 CD/Fluorescence spectrometer. 
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Figure A-4.  Absorbance spectrum of HSA in the presence of t-BuOH.  The minor 
differences in absorbance are most likely due to dilution with t-BuOH and imprecise 
quantities of water added during reconstitution after lyophilization. 
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when applied to absorbance (λ).  This suggests the dilution of HSA as a result of the t-BuOH 

is the cause of the change in CD spectrum, not any change in structure.  In other words, 

from the absorbance (λ) spectrum, it is clear the concentrations are different between 26 µM 

HSA and 26 µM HSA containing 20% t-BuOH.  If each absorbance is normalized to the 

same absorbance, the CD spectra would superimpose. 

4. Effect of PTX on Aggregation of HSA  

  A stock solution of tritiated PTX (AK Scientific, Union City, CA 65648, Moravek 

Biochemicals, Brea, CA MT 1646) in t-BuOH was prepared at 6.41 mg/1.64x106 dpm/mL.  

Stocks of HSA were also prepared as 4 samples of 40 mg/mL HSA (Sigma A1887) in D5W.  

To the albumin stocks was added 1, 2, 3 or 6.5 eq PTX/HSA at a concentration of 1:10 (v/v) 

t-BuOH:D5W.  Increasing turbidity was observed for increasing equivalents of PTX.  The 

samples were gently heated and shook for 5 min then shell frozen at -78°C and lyophilized 

overnight.  Samples were reconstituted with distilled water to 40 mg/mL HSA and 

subsequently centrifuged at 16.1 x 1000g for 10 min.  The supernatants were removed and 

analyzed by DLS then aliquots dissolved in 5 mL Ultima Gold scintillation cocktail and 

analyzed by LSC.  The pellets were also dissolved in MeOH and 5 mL Ultima Gold 

scintillation cocktail and analyzed by LSC for mass balance (Table A-2 ). 

5. Effect of Loading HSA in Water and Stability of Resultant Particles  

 A 50 mg/mL solution of delipidated HSA (Sigma A1887) in water and a stock of PP in 

t-BuOH (24.7 mg/8.04x105 dpm/mL) were prepared.  To the HSA solution was added 2 eq 

PP in t-BuOH to a final volume of 1:10 (v/v) t-BuOH in water.  The suspension was 

lyophilized to a cake and reconstituted in phosphate buffer.  The suspension was filtered 

through a 0.22 µm PVDF filter yielding a colloidal suspension.  Two aliquots were removed, 

weighed and dissolved in 5 mL Ultima Gold scintillation cocktail for LSC analysis confirming  
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eq 
PTX 

Z ± σ nm 
(PDI) 

Intensity nm 
(%) 

Volume 
nm 
(%) 

Number nm 
(%) 

eq 
loaded 

%PTX 
recovered 

1 70 ± 60 
(0.717) 

165 (90%) 
3 (10%) 

25 (.3%) 
3 (99.7%) 

2 (100%) 0.41 / 1 75% 

2 105 ± 75 
(0.525) 

182 (94%) 
3 (6%) 

3 (100%) 3 (100%) 0.41 / 2 76% 

3 80 ± 60 
(0.556) 

150 (93%) 
3 (7%) 

110 
(0.1%) 

3 (99.9%) 

3 (100%) 0.51 / 3 81% 

6.5 100 ± 70 
(0.484) 

160 (80%) 
30 (12%) 
3 (8%) 

25 (0.3%) 
3 (99.7%) 

3 (100%) 0.47 / 
6.5 

67% 

Table A-2.  Particle size and solubility of PTX in PTX-HSA aggregates. PTX only weakly 
binds HSA and appears to form aggregates with HSA.  Saturation of the protein with PTX 
appears to occur at a 1:2 molar ratio. 
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1.9 eq PP loaded.  The suspension was added to a cuvette, sealed and analyzed by DLS 

over 48 h (Table A-3 ).   

 After 48 h the sample was subject to ultracentrifugation at 14 x 1000g through a 100 

kDa MWCO regenerated cellulose membrane (microcon ultracel YM-100, 42412, lot 

R7PN22647) for 40 min yielding the first filtrate.  The cake was resuspended in 0.1 M 

phosphate buffer and ultracentrifuged at 14 x 1000g through a 100 kDa MWCO regenerated 

cellulose membrane for 40 min yielding the second filtrate.  The cake was then resuspended 

in phosphate buffer yielding the retentate. All three samples were monitored by DLS over 

several days to determine the stability of the individual species (Table A-4 ). 

 From the retentate, 0.6 mL was aliquoted into six samples of 0.1 mL which were then 

diluted fivefold to 1% HSA with 0.1 M phosphate buffer.  To these samples were added 2% 

(w/v) PEG 3350, 2% (w/v) PEG 8000, 20% (v/v) glycerol, L-Arg at a concentration of 0.5 M 

and 0.1% (v/v) Triton X-100.  The remaining sample was saved as an untreated control.  All 

the samples were mixed gently and analyzed by DLS (Table A-5 ). 

6. Stability of PP-HSA Particles to Various Additiv es 

 Stock solutions of500 µL containing 10 mg/mL delipidated HSA (Sigma A1887) were 

prepared in water and additives of various concentrations were dissolved to potentially 

preclude aggregation.  To the final samples was added 2 eq PP in t-BuOH at a final volume 

ratio of 1:10 t-BuOH:water.  The samples were then analyzed using DLS (Table A-6 ).  The 

samples are compared to reference solutions in which 2 eq PP was added to 10 mg/mL 

delipidated HSA (Sigma A1887) in water at 1:10 (v/v) t-BuOH.  Additionally 50 mg/mL 

delipidated HSA (Sigma A1887) in D5W and a fivefold dilution of the previous sample in 

water were prepared with no t-BuOH or PP.  After DLS analysis (Table A-6 ) all samples 

(excluding the D5W and D1W solutions) were shell frozen at -78°C and lyophilized over 3  
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 0 days 1 day 2 days 
Z±σ (PDI) 120 ± 60 nm (0.246) 120 ± 60 nm (0.250) 120 ± 60 nm (0.259) 
Intensity  150 nm (100%) 160 nm (100%) 160 nm (100%) 
Volume  130 nm (100%) 130 nm (100%) 130 nm (100%) 
Number  85 nm (100%) 70 nm (100%) 75 nm (100%) 

Table A-3.  Stability of PP-HSA aggregates by DLS over 48 h.  The PP-HSA aggregates 
appear stable over 48 h at room temperature. 
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First Filtrate 

 0 days  1 day 2 days  3 days  
Z±σ (PDI) 8 ± 2 nm (0.073) 12 ± 6 nm (0.236) 9 ± 4 nm (0.182) 8 ± 3 nm (0.101) 
Intensity  9 nm (100%) 13 nm (95%) 

4000 nm (4%) 
3 nm (1%) 

9nm (97%) 
4000 nm(3%) 

9 nm (100%) 

Volume  7 nm (100%) 8 nm (71%) 
3 nm (29%) 

7 nm (100%) 7 nm (100%) 

Number  6 nm (100%) 3 nm (100%) 5 nm (100%) 5 nm (100%) 
 

Second Filtrate 

 0 days  1 day 2 days  3 days  
Z±σ (PDI) 13 ± 8 nm (0.450) 9 ± 5 nm (0.311) 12 ± 7 nm (0.417) 150 ± 90 nm (0.318) 
Intensity  9 nm (68%) 

275 nm (32%) 
8 nm (89%) 
175 nm (10%) 
5000 nm(1%) 

9  nm (72%) 
325 nm (28%) 

8 nm (59%) 
450 nm (38%) 
80 nm (3%) 

Volume  7 nm (100%) 6 nm (100%) 7 nm (100%) 7 nm (100%) 
Number  6 nm (100%) 5 nm (100%) 6 nm (100%) 6 nm (100%) 
 

Retentate 

 0 days  1 days  2 days  3 days  
Z±σ (PDI) 100 ± 50 nm (0.292) 100 ± 50 nm (0.281) 100 ± 50 nm 

(0.264) 
100 ± 50 nm 
(0.272) 

Intensity  140 nm (100%) 140 nm (95%) 
10 nm (5%) 

125 nm (100%) 
 

145 nm (100%) 

Volume  110 nm (100%) 100 nm (98%) 
7 nm (2%) 

110 nm (100%) 105 nm (100%) 

Number  65 nm (100%) 5 nm (100%) 80 nm (100%) 60 nm (100%) 
Table A-4. Equilibrium of PP-HSA monomers and aggregates over 48 h after ultrafiltration.  
Neither the monomers nor aggregates appear to re-equilibrate over 72 h.  This may not be a 
concentration driven phenomenon.  The concentrations of the various samples are 
unknown; it is possible very little albumin was ultrafiltered. 
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 Phosphate 
Buffer  

2% PEG 
3350 

2% PEG 
8000 

20% 
Glycerol  

0.5 M L-
Arg  

0.1% 
Triton X-

100 
Z±σ 
(PDI) 

80 ± 45 nm 
(0.292) 

95 ± 50 
nm 

(0.297) 

115 ± 60 
nm (0.281) 

80 ± 45 nm 
(0.292) 

30 ± 28 
nm (0.902) 

15 ± 8 nm 
(0.351) 

Intensity  110 nm 
(94%) 

10 nm (6%) 

135 nm 
(100%) 

160 nm 
(100%) 

115 nm 
(94%) 

10 nm (6%) 

275 nm 
(59%) 
15 nm 
(41%) 

12 nm 
(75%) 

100 nm 
(25%) 

Volume  8 nm (98%) 
80 nm (2%) 

95 nm 
(100%) 

140 nm 
(100%) 

9 nm (97%) 
85 nm (3%) 

10 nm 
(99.7%) 
334 nm 
(0.3%) 

8 nm 
(99.9%) 
75 nm 
(0.1%) 

Number  6 nm (100%) 60 nm 
(100%) 

90 nm 
(100%) 

6 nm 
(100%) 

9 nm 
(100%) 

6 nm 
(100%) 

Table A-5.  Stability of PP-HSA aggregates to PEG, glycerol, L-Arg and Triton X-100.  L-Arg 
and Triton X-100 appear to facilitate disaggregation of the particles. Dilution of the particles 
without additive also appears to break the particles indicating it could be a concentration 
driven interaction. This is in contrast to data observed after ultrafiltering the particles. 
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Table A-6.  Effect of various additives on aggregate formation.  Most additives have no 
effect until reconstituted in buffer and only CHAPS, PEG 8000, Pluronic L35 and L-Arg 
appear to be effective. OGP = octylglucopyranoside, CHAPS = 3-[(3-
Cholamidopropyl)dimethylammonio]-1- 
propanesulfonate. 
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days then reconstituted in 0.1 M phosphate buffer.  The samples were filtered through a 

0.22 µm PVDF filter and again analyzed via DLS (Table A-6 ). 

7. Effect of Albumin Batch on Aggregate Formation   

 Stock solutions of 50 mg/mL of two different albumin batches in 0.1 M phosphate 

buffer were prepared; lyophilized powder, fatty acid free, Globulin free, ~99% (agarose gel 

electrophoresis) (Sigma A3782)   and lyophilized powder, essentially fatty acid free ~96% 

(Sigma A1887). Aliquots of 500 µL were ultracentrifuged through a 100 kDa MWCO 

regenerated cellulose membrane (microcon ultracel YM-100, 42412, lot R7PN22647) at 14 x 

1000g for 40 minutes.  The filtrates should have contained monomeric albumin while the 

retentate should contain any aggregates.  The retentates were resuspended in 500 µL 0.1 M 

phosphate buffer and examined using DLS (Table A-7 ).  The samples were then incubated 

at room temperature for 48 h and DLS was run again on the filtrates (Table A-7 ). 

Another batch of 50 mg/mL (Sigma A3782) delipidated HSA in distilled water was 

treated with 3 or 6 eq of PP in t-BuOH (26.4 mg/8.48x105 dpm/mL)  at a ratio of 1:10 or 1:5 

(v/v) t-BuOH:water respectively.  Both suspensions were turbid and centrifuged at 16.1 x 

1000g for 10 min and the supernatant filtered through a 0.22 µm PVDF filter for DLS 

analysis then dissolved in 5 mL Ultima Gold scintillation cocktail for LSC analysis (Table A-

7). 

8. Solvent effect on Aggregate Formation  

  Phosphate buffer appears to help reduce particle size, but also leads to turbidity and 

poor retention of the conjugate via LSC.  Thus it is interesting to determine whether PBS or 

D5W would be better suited for reconstitution.  Solutions of 10 mg/mL HSA (Sigma A1887) 

and 5 mM CHAPS in D5W or water were prepared and 2 eq [3H]-PP (24.7 mg/1.08x106 

dpm/mL) was added in t-BuOH at a 1:10 v/v ratio.  All samples were shell frozen at -78°C  
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24 h 

 5% A3782 5% A3782  
(10% t-BuOH) 

5% A3782  
(10% t-BuOH 3EQ)  

5% A3782  
(20% t-BuOH 6EQ)  

Z±σ (PDI) 5±3 nm (0.302) 18 ± 17nm (0.897) 145 ± 50nm (0.125) 335±105nm (0.096) 
Intensity  3 nm (71%)  

900 nm (19%)  
26 nm (10%) 

290 nm (60%)  
4 nm (35%)  
40 nm (5%) 

163.6 (100%) 365.4 (100%) 

Volume  2 nm (100%)  4 nm (100%)  155 nm (100%) 400 nm (100%) 
Number  2 nm (100%) 3.034 (100%) 115 nm (100%) 320 nm (100%) 

48 h 

 A3782 Filtrate (48h)  A1887 Filtrate (48h)  
Z±σ (PDI) 125 ± 125 nm (1.000) 80 ± 55 nm (0.477) 
Intensity  950 nm (63%) 

6 nm (33%) 
5000 (4%) 

5 nm (60%) 
790 nm (36%) 
5000 (4%) 

Volume  5 nm (99.9%) 5 nm (100%)     
Number  5 nm (100%) 4 nm (100%) 

LSC 

Sample  Mass (g)  Volume (µL)  Ρ (g/mL)  dpm  dpm/mL  mg/mL  
Stock 6µL (1)  0.0036 4.61 0.781 4064 8.82x105 26.4 
Stock 6µL (2)  0.0045 5.76 0.781 4684 8.13x105 26.4 
3EQ 200µL (1) 0.1956 195.6 1 6809 34811 0.80 
3EQ 200µL (2) 0.1996 199.6 1 7053 35336 0.81 
6EQ 200µL (1) 0.1928 192.8 1 2602 13496 0.31 
6EQ 200µL (2) 0.1974 197.4 1 2729 13825 0.32 
Table A-7.  Effect of albumin purification state on formation of PP-HSA aggregates. A3782 
tends to aggregate equally as poorly as A1887 and has poor loadability.  From LSC: 1 eq = 
0.88 mg/mL. 3 eq: 0.91 eq/HSA loaded (33%) 6 eq:0.35 eq/HSA (16% loaded).  This 
suggests the interaction is not due to albumin after purification by a specific method. 
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and lyophilized overnight.  The resultant cakes were resuspended in water, D5W, phosphate 

bufferor PBS and filtered through a 0.22 µm PVDF filter for DLS analysis (Table A-8 ).  The 

filtrates were also weighed out, dissolved in 5 mL Ultima Gold scintillation cocktail and 

analyzed by LSC (Table A-8 ). 

9. Effect of Diluents and Reconstitution Solvent on  PP Loading and Aggregate 

Formation  

  The best formulation involves injecting PP in t-BuOH into HSA dissolved in water 

followed by lyophilization and reconstitution in D5W.  Instead of CHAPS, biologically 

compatible surfactants were examined including T20, T80 and TPGS.  The concentrations 

used were 3 molar eq, 3 molar eq and the CMC of 0.02 mM respectively.  Samples of 500 

µL 10 mg/mL delipidated HSA (Biocell, Rancho Dominguez, CA 3101-00, Albumin, Human, 

Cohn Fraction V) in water were prepared and the surfactant was added.  To the mixtures 

was added 2 eq [3H]-PP (24.7 mg/1.08x106 dpm/mL) in t-BuOH in a 1:10 v/v ratio.  All 

samples were lyophilized overnight.  The samples were reconstituted with 500 µL of either 

D5W or PBS.  The samples were filtered through a 0.22 µm PVDF filter and analyzed via 

DLS then dissolved in 5 mL Ultima Gold scintillation cocktail and analyzed by LSC (Table A-

9).   

10. Effect of Fatty Acids on HSA Aggregate Formatio n   

Stock solutions of 10 mg/mL HSA (Biocell, Rancho Dominguez, CA 3101-00, Sigma 

A3782) were prepared in water.  To the HSA solutions was added 2 eq of stearic acid or 

PDG acid both ~1 mg/mL in t-BuOH at a ratio of 1:10 (v/v) t-BuOH:water.  The samples 

were compared to 10 mg/mL standards of both albumin stocks in water and in 10% t-BuOH 

in water.  No turbidity was observed in any sample, nor did any sample appear colloidal 

which was confirmed by DLS (Table A-10 ).  All samples were shell frozen at -78°C and  
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 D5W/water  Water/D5W Water/0.1M PB  Water/PBS  
Z±σ (PDI) 115 ± 60 nm 

(0.264) 
20 ± 15 nm 

(0.554) 
150 ± 70 nm 

(0.200) 
150 ± 150 nm 

(1.000) 
Intensity  150 nm (100%) 115 nm (52%) 

10 nm (48%) 
190 nm (100%) 1700 nm (73%) 

9 nm (14%) 
70 nm (13%) 

Volume  125 nm (100%) 7 nm (100%) 180 nm (100%) 1900 nm (1%) 
6.5 nm (99%) 

Number  80 nm (100%) 5.5 nm (100%) 100 nm (100%) 5.5 nm (100%) 
# EQ / 
HSA 

0.68 1.1 0.08 0.35 

Table A-8. Effect of diluent and reconstitution solvent on aggregate formation. Ionic systems 
are unfavorable for HSA loading and water is more favorable for loading than D5W.  The 
effect on the secondary structures of albumin after dissolution in water was not examined.  
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 T20 PBS T20 D5W T80 PBS T80 D5W TPGS PBS TPGS 
D5W 

Z±σ 
(PDI) 

85±75 nm 
(0.753) 

110±81 nm 
(0.520) 

125±93 nm 
(0.552) 

130±78 nm 
(0.349) 

115±60 nm 
(0.261) 

100±50 nm 
(0.251) 

Intensity  225 nm 
(87%) 

8nm (13%) 

180 nm 
(93%) 

9 nm (7%) 

240 nm 
(92%) 

9 nm (8%) 

200 nm 
(94%) 

9 nm (6%) 

155 nm 
(100%) 

125 nm 
(100%) 

Volume  230 nm 
(0.2%) 
7 nm 

(99.8%) 

170 nm 
(1%) 
8 nm 
(99%) 

8 nm 
(99.3%) 
90 nm 
(0.3%) 
315 nm 
(0.4%) 

8 nm  
(99%) 

105 nm 
(0.5%) 
275 nm 
(0.5%) 

120 nm 
(100%) 

100 nm 
(100%) 

Number  6 nm 
(100%) 

7nm 
(100%) 

7 nm 
(100%) 

7 nm 
(100%) 

65 nm 
(100%) 

65 nm 
(100%) 

EQ / 
HSA 

0.31 0.52 0.88 1.03 1.05 1.41 

Table A-9.  Effect of T20, T80 and TPGS surfactants on PP-HSA aggregate formation.  Both 
Tweens appear to minimize aggregate formation but T80 offers a higher loading capability.  
Only 50% of the added 2 eq bound HSA. 
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 Z (PDI) Intensity  Volume  Number  
A3782 (Aq)  130±125 nm 

(0.897) 
1000 nm (42%) 
115 nm (31%) 
3 nm (14.6%) 

2 nm (99.9%) 
15 nm (0.1%) 

2 nm (100%) 

A3782 10% t -
BuOH 

125±125 nm 
(1.000) 

950 nm (63%)               
6 nm (33%)                  
5000 nm (4%) 

5 nm (99.9%)                   
1100 nm (0.1%) 

5 nm (100%) 

A3782 10% t -
BuOH 2EQSA 

70±70nm 
(1.000) 

320 nm (84%) 
4 nm (15%) 
5000 nm (1%) 

3 nm (100%) 3 nm (100%) 

A3782 10% t -
BuOH 
2EQPDG 

100±100nm 
(1.000) 

265 nm (81%) 
4 nm (15%) 
5000 nm (4%) 

4 nm (100%) 3 nm (100%) 

Biocell (Aq)  15±10nm  
(0.445) 

9 nm (60%) 
70 nm (30%) 
3500 nm (10%) 

7 nm (99.9%) 
50 nm (0.1%) 

5 nm (100%) 

Biocell 10% t -
BuOH 

14±8nm  
(0.364) 

12 nm (74%) 
115 nm (26%) 

8 nm (99.9%) 
85 nm (0.1%) 

7 nm (100%) 

Biocell 10% t -
BuOH 2EQSA 

55±50nm 
(0.792) 

550 nm (50%) 
10 nm (30%) 
50 nm (13%) 

8 nm (99%) 
40 nm (1%) 

7 nm (100%) 

Biocell 10% t -
BuOH 
2EQPDG 

110±80nm 
(0.499) 

440 nm (49%) 
10 nm (37%) 
40 nm (11%) 

500 nm (0.1%) 
9 nm (99.3%) 
35 nm (0.5%) 

8 nm (100%) 

 A3782 PDG A3782 SA Biocell PDG  Biocell SA  
Z (PDI) 12±7nm  

(0.389) 
11±7nm (0.368) 17±13nm 

(0.579) 
27±21nm 
(0.628) 

Intensity  9 nm (70%) 
115 nm (30%) 

9 nm (74%) 
140 nm (26%) 

120 nm (51%) 
9 nm (49%) 

105 nm (66%) 
9 nm (33%) 
4500 nm (1%) 

Volume  7 nm (100%) 7 nm (100%) 7 nm (99.9%) 
75 nm (0.1%) 

8 nm (99.7%) 
75 nm (0.3%) 

Number  6 nm (100%) 6 nm (100%) 6 nm (100%) 7 nm (100%) 
Table A-10.  Formation of HSA aggregates using stearic or PDG acid.  Both stearic and 
PDG-acid appear to completely solubilize in the presence of albumin but do not form 
aggregates at 2 eq/HSA.  Addition of the lipids without HSA causes turbidity.  This suggests 
the PP-HSA aggregation is a PTX specific phenomenon. 
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lyophilized overnight. The cakes were reconstituted in 0.1 M phosphate buffer and analyzed 

by DLS again (Table A-10 ). 

11. Formulation of PP as a Tween 80/Miglyol Emulsio n   

 A 5% (o/w) emulsion was desired so the amount of surfactant to stabilize the 

emulsion was estimated accordingly.   

T80 FW = 1310 g/mol       Miglyol 812 ρ = 0.95 g/mL 

Assume: 200 nm particles (r = 100 nm), 5% oil/water emulsion, T80 molecular surface area 

= 50 Å2/molecule T80 

Total volume: 

5 g Miglyol / 100 g emulsion 

5 g Miglyol * 0.95 g/mL = 4.75 mL Miglyol (Total Volume of Miglyol) 

Drop volume: 

100 nm = 0.1 µm = 0.0001 mm = 0.00001 cm 

V = 4/3πr3 = 4/3 * 3.14 * (0.00001cm)3 = 4.19 x 10-15 mL / drop Miglyol 

Drop surface area: 

100 nm = 1000 Å 

SA = 4πr2 = 4 * 3.14 * (1000 Å)2 = 1.26 x 107 Å2 / drop Miglyol 

T80/drop Miglyol: 

(1.26 x 107 Å2 / drop Miglyol) / (50 Å2/molecule T80) = 2.52 x 105 molecules T80 / drop 

Miglyol 
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Drops Miglyol: 

Total volume / drop volume = 4.75 mL Miglyol / 4.19 x 10-15 mL Miglyol / drop = 1.13 x 1015 

drops Miglyol 

Total T80: 

2.52 x 105 molecules T80 / drop Miglyol * 1.13 x 1015 drops Miglyol = 2.85 x 1020 molecules 

T80 

2.85 x 1020 molecules T80 / 6.022 x 1023 molecules T80 / mol T80 = 4.73 x 10-4 mol T80 

473 µmol T80 * 1.31 mg T80 / µmol T80 = 620 mg T80 

620 mg  T80 / 5 g Miglyol / 94.4 g H2O (0.6 : 5 : 94.4)  

~ 1 g T80 / 5 g Miglyol 812 should be able produce ~200 nm particles. 

Formulation: 

Aqueous: 5% dextrose in water, 1% T80 

Oil: 5% Miglyol 

 Added 5% (w/v) Miglyol 812 to a 1% (v/v) EtOH and 1% (v/v) T80 solution in D5W or 

PBS containing 0.08 mg/8.22x104 dpm/mL [3H]-PP stock.  The sample was vortexed for 5 

minutes then emulsified using a tissue Powergen700 tissue homogenizer (Fisher Scientific) 

on speed 7 for 5 minutes.  

12. Albumin-Agarose Extraction of PP from a Tween 8 0/Miglyol Emulsion   

 BSA-Agarose from Sigma Aldrich (10.1 mg/mL, A3790) was aliquoted as 0.5 mL 

samples which were centrifuged at 3,000 x g for 3 min and the supernatant discarded.  The 

samples were washed twice with D5W, PBS, 1% (v/v) T80 in D5W, 1% (v/v) T80 in PBS, 1% 
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(v/v) EtOH in D5W or 1% (v/v) EtOH in PBS.  The suspensions were centrifuged at 3,000 x 

g for 3 min and the supernatants discarded.  The BSA-Agarose was then resuspended in 

0.4 mL of the test solution.  To the BSA-Agarose samples was added 40 µL of t-BuOH stock 

(Table A-11 ) or 0.4 mL of the Miglyol emulsion which already contained the radiolabeled 

PP.  The samples were rocked at room temperature for 1 h.  The samples were then 

centrifuged at 3,000 x g for 3 min and an aliquot of the supernatant filtered through a 0.22 

µm polycarbonate membrane, (Poretics, Cat: 11013, Material: 1220693, Batch: 215896) 

dissolved in 5 mL Ultima Gold scintillation cocktail and analyzed by LSC to determine the 

percent of the dose that precipitated (Table A-11 ).  The remaining supernatant, along with 2 

washes of the resin with D5W or PBS, were dissolved in 5 mL Ultima Gold scintillation 

cocktail and analyzed by LSC to determine the filtrate concentration (Table A-11 ).    

13. Formulation of PP as Pluronic F-68/Miglyol Emul sion    

 The Miglyol 812 samples were prepared by adding 40 µL of PP stock (0.334 mg/ 

6.18x106 dpm/mL) to 50 µL of Miglyol 812.  The EtOH was removed via a stream of 

nitrogen.  To this was added 200 µL of 2% (w/v) Pluronic F-68 (poloxamer 188) in D5W.  

The two layers were vortexed heavily for 20 minutes then passed through a 0.22 µm 

polycarbonate membrane. (Poretics, Cat: 11013, Material: 1220693, Batch: 215896) This 

was done using an extruder under pressure with nitrogen for 5 extrusions.  The amount of 

material yielded was little ~60 µL.  Because of this, 25 µL of the emulsion was used in 

duplicate. 

14. Albumin-Agarose Extraction of PP from a Pluroni c F-68/Miglyol Emulsion   

  BSA-agarose (10.1 mg/mL, Sigma A3790) was aliquoted as 1 mL fractions into 4 

different 1.5 mL eppendorf tubes.  The tubes were centrifuged at 3,000 x g for 3 min to pellet 

the agarose and the supernatant decanted.  Two samples were washed twice with D5W 

alone.  Washing involved mixing the thoroughly suspending the resin in solvent then  
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t-BuOH stock  0.8 
mg/mL 

 

mass  volume dpm dpm/mL 
0.0191 0.024455826 20167 824630 
0.0199 0.025480154 21066 826761 
0.0199 0.025480154 21027 825231 
0.0384 0.049167734 40480 823304 
0.0396 0.050704225 41227 813088 
0.038 0.04865557 39882 819680 
AVERAGE   822116 

 

D5W super 
dpm 

filtrate dpm  % 
bound 

% 
supernatant 

% 
precipitated 

Miglyol 14235 5701 31 69 15 

      

w/ T80 13119 6954 37 63 7 

      

w/o T80 3994 187 81 19 11 
      
PBS super 

dpm 
filtrate dpm  % 

bound 
% 
supernatant 

% 
precipitated 

Miglyol 9375 4071 55 45 9 

      
w/ T80 5717 2524 72 28 4 

      

w/o T80 3453 795 83 17 6 

Table A-11. Transfer of PP from t-BuOH, a Miglyol 812 emulsion or T80 micelles to BSA 
immobilized on agarose.  All dpms unaccounted for were assumed to be bound.   All values 
reported are % added dose.  PBS appears more conducive to PP transfer than D5W. 
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centrifuging at 3,000 x g for 3 min and decanting the supernatant.  To these solutions was 

then added 300 µL D5W and the suspension was warmed to 37°C in the incubator.  The 

remaining two samples were were washed thrice via the same procedure but with 5 mM 

CHAPS (~3 mg/mL) in D5W.  To these agarose pellets were added 400 µL D5W/5 mM 

CHAPS and the suspensions warmed to 37°C in the incubato r.  To the 1 mL samples of 

BSA-agarose was added 100 µL (0.0334 mg/6.18x105 dpm/mL) of the [3H]-PP stock or 25 

µL Miglyol emulsion.  The samples were heated to 37°C  and shook for 2 h. 

 Standards were run for each formulation (assumed ρ = 1.02 g/mL for Miglyol 

formulation, ρ = 0.789 for EtOH).  For the various formulations, aliquots of the stock solution 

were weighed out, dissolved in 5 mL Ultima Gold scintillation cocktail and analyzed for LSC 

(Table A-12 ).  The samples were analyzed by centrifuging the agarose at 3,000 x g for 3 

mins then removing the supernatant and adding it to a scintillation vial.  The agarose was 

then washed twice with 400 µL D5W, mixed thoroughly and centrifuged again.  All washes 

were pooled with the initial supernatant.  The pellets were then diluted with 100 µL 1N HCl 

and 400 µL MeCN, vortexed heavily and centrifuged at 3,000 x g for 3 min.  The supernatant 

(bound fraction) was removed and added to a scintillation vial.  The resin was washed with 2 

x 400 µL MeCN, vortexed, centrifuged and the supernatant removed and pooled in the 

bound fraction.  Finally the whole resin was washed into a scintillation vial with acetone 

(resin fraction).  To all samples was added 10 mL Ultima Gold XR scintillation cocktail and 

the samples analyzed via LSC (Table A-12 ). 

15. TAXOTERE-like Formulation of PP    

 Prepared a solution of 50 mg/mL delipidated HSA (Sigma A1887) in D5W and a 

stock of [3H]-PP (18.73 mg/1.58x106 dpm/mL) in EtOH.  An aliquot of 40 µL of the stock was 

evaporated and resuspended in 8 µL of 1:1 (v/v) T80:EtOH to which was added 400 µL of  
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Miglyol/Pluronic emulsion      
mass (g)  volume (mL) dpm dpm/mL   25uL 

samples 
0.0052 0.0051 4056 795600 outlier not averaged 
0.0044 0.0043 13024 3019200    
0.0085 0.0083 27899 3347880   dpm added 
AVERAGE   3183540   79589 
       
PP stock in EtOH      10uL 

samples 
mass (g)  volume (mL) dpm dpm/mL    
0.009 0.011406844 22030 1931297 outlier not averaged 
0.0038 0.004816223 87042 18072668    
0.0041 0.005196451 92989 17894712   dpm added 
AVERAGE   17983690   179837 
       
Miglyol 1        
super 
dpm 

bound dpm resin 
dpm 

% super %bound %resin %recovered 

8472 10445 3159 38 47 14 28 
       
Miglyol 2        
super 
dpm 

bound dpm resin 
dpm 

% super %bound %resin %recovered 

9491 6310 1614 55 36 9 22 
       
CHAPS 1       
super 
dpm 

bound dpm resin 
dpm 

% super %bound %resin %recovered 

29090 111281 18147 18 70 11 88 
       
CHAPS 2       
super 
dpm 

bound dpm resin 
dpm 

% super %bound %resin %recovered 

30156 103271 22798 19 66 15 87 

Table A-12. Transfer of PP from a Miglyol emulsion and CHAPS solution to BSA 
immobilized on agarose.  Miglyol 812 again appears to poorly transfer PP to BSA.  The very 
poor recovery of PP from the emulsion could be due to overestimating the specific activity of 
the emulsion due to only a modicum being available for stock characterization. 
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the HSA stock making a final concentration of 1% (v/v) EtOH, 1% (v/v) T80 containing 2 eq 

PP/HSA.  No turbidity was observed in the solution.  The solution was filtered through a 0.22 

µm PVDF filter and the filtrate analyzed by DLS (Table A-13 ).  Aliquots of the filtrate were 

weighed out, dissolved in 5 mL Ultima Gold scintillation cocktail and analyzed by LSC as 

well (Table A-13 ). 

16. Analysis of TAXOTERE-like Formulations for Phar macokinetics   

 To prepare the stock solutions for pharmacokinetic analysis, 6 mg [3H]-PP was 

weighed out and dissolved in a weighed aliquot of 58.5 µL 1:1 (v/v) EtOH:T80 yielding a 

concentration of 97.5 mg/mL.  Half of this stock (30 µL) was diluted to 3 mL with D5W and 

the remaining 30 µL was diluted with 3 mL 50 mg/mL delipidated HSA (Sigma A1887) in 

D5W.  The individual stocks were mixed gently at room temperature, filtered through a 0.22 

µm PVDF filter and the formulation without HSA was diluted 40x from 50 µL (0.0534 g) to 2 

mL (actual dilution 38.2 x) in EtOH using a volumetric flask.  The diluted formulation was 

analyzed by UV to quantify PP (ε228=30,593 M-1cm-1, EtOH).  Aliquots of 250, 100, 50 and 20 

µL of the diluted formulation were then weighed out in triplicate, dissolved in 5 mL Ultima 

Gold XR scintillation cocktail and analyzed by LSC (Table A-14 ).  Additionally, both 

undiluted stocks were weighed out in aliquots of 20, 50 and 100 µL triplicates, dissolved in 5 

mL Ultima Gold XR scintillation cocktail and analyzed by LSC (Table A-14 ).   

17. Pharmacokinetics/Biodistribution of TAXOTERE-li ke Formulations   

 Female 6-8 week old BALB/c mice were inoculated with 5x105 CT26 murine colon 

carcinoma cells on the right flank.  The tumors were allowed to grow for 14 days and the 

mice were randomly sorted into 14 sets of triplicates.  The average tumor size for both 

groups (7 triplicates) was 12.7x8.5 mm for the HSA containing formulation and 12.4x8.3 mm 

for the non HSA formulation (Table A-15 ).  The mice were injected with 0.104 mg/9.40x106 

dpm/0.1 mL for the HSA containing formulation and 0.105 mg/9.47x106 dpm/0.1 mL for the  
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 Z±σ (PDI) Intensity Volume Number 
TAXOTERE-like  21±20 nm (0.911) 205 nm (56%) 

4 nm (26%) 
30 nm (18%) 

3 nm (99.8%) 
25 nm (0.2%) 

3 nm (100%) 

 

sample mass (g)  Volume (µL)  dpm dpm/mL  mg/mL  eq/HSA 
1 0.0262 25.6 3845 150195 1.78 1.93 
2 0.0275 26.8 3917 146157 1.73 1.88 
3 0.0278 27.1 4046 149299 1.77 1.92 

Table A-13.  Particle size analysis of a TAXOTERE-like formulation of PP. The TAXOTERE-
like formulation allows nearly complete solubilization of PP while precluding aggregates from 
forming and only requires 10% of the T80/EtOH used by TAXOTERE. 
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Table A-14.  Characterization of stock solutions of TAXOTERE-like formulations of PP for 
pharmacokinetic analysis.  Since both formulations are derived from the same mother stock, 
the dpm/mg should be constant in both formulations, even if the concentrations are different 
so the HSA containing formulation can be completely quantified from just LSC.  The 
concentrations are nearly identical; 1.04 and 1.05 mg/mL. 
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  With HSA    Without HSA  
 width length volume  width length volume 
 12.34 6.37 970  10.42 8.12 882 
 13.39 6.19 1110  14.04 8.25 1626 
 16.29 12.17 3229  19.24 8.96 3317 
 11.97 8.91 1277  15.47 8.2 1962 
 10.82 8.58 1004  10.87 7.8 922 
 11.55 9.4 1254  13.42 8.01 1443 
 12.53 9.24 1451  12.31 5.93 899 
 10.24 7.61 798  13.47 7.8 1415 
 11.2 8.22 1031  10.36 9.83 1055 
 10.17 9.15 946  12.42 10.67 1646 
 13.42 6.53 1176  11.89 6.07 858 
 14.65 8.1 1738  13.93 6.69 1298 
 19.1 9.33 3404  15.49 12.71 3050 
 10.85 8.87 1044  12.64 10.25 1638 
 9.85 8.41 816  11.99 8.43 1212 
 15.28 5.77 1347  8.43 6.36 452 
 10.94 10.67 1277  10.7 6.99 800 
 10 8.69 869  13.73 10.09 1902 
 14.38 7.72 1596  9.8 9.34 897 
 14.7 7.59 1640  8.3 7.51 517 
 12.26 10.19 1532  11.5 6.6 873 
Average 12.66 8.46 1405  12.40 8.31 1365 

Table A-15.  Tumor sizes of the two treatment groups for the TAXOTERE-like PK study.  
The volume is calculated as (lxw2) where w is the longest diameter. 
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non-HSA containing formulation.  For both experiments, animals were sacrificed at 0.25, 1, 

3, 6, 18, 36 and 72 h.  Prior to sacrifice the mice were anesthetized with 0.1 mL 100 mg/mL 

ketamine hydrochloride intraperitoneally.  Once the mice were unresponsive to toe pinching, 

the mice were exsanguinated by cardiac puncture followed by cervical dislocation.  The 

whole blood was aliquoted as ~200 µL into scintillation vials in triplicate and weighed.  

Target organs were then harvested from the mice, washed thoroughly with PBS, blotted dry 

and small ~100 mg pieces of the organ were weighed in scintillation vials in duplicate.  

 Target organs include the liver, tumor, kidneys, spleen, lungs, heart and injection 

site.  The whole blood was processed by adding 1 mL Solvable® tissue homogenizer (Perkin 

Elmer) and heating to 55°C for 1 h.  The brownish-gr een solution was then treated with 0.1 

mL 0.1 M ethylendiaminetetraacetic acid disodium and 0.3 mL 30% hydrogen peroxide.  

When the foaming settled, the samples were heated to 55°C for an additional hour then 

cooled to ambient and dissolved in 15 mL Ultima Gold XR scintillation cocktail.  The samples 

were equilibrated in the liquid scintillation counter for 1 h prior to counting to adapt to 

temperature and light.  The results of the serum concentrations for both formulations are 

shown in Fig. A-5 .  The organs were processed by adding 1 mL Solvable® tissue 

homogenizer (Perkin Elmer) and heating to 55°C for 2 h.  Once dissolved, the yellow 

solutions were treated with 0.3 mL 30% hydrogen peroxide and once the foaming subsided, 

heated to 55°C for an additional hour.  The samples w ere cooled to ambient and dissolved 

in 15 mL Ultima Gold XR scintillation cocktail.  The samples were all mixed thoroughly to 

ensure complete dissolution then the samples were placed in the scintillation counter for 1 h 

prior to counting to adapt to temperature and light.  The uncorrected biodistribution data is 

provided for the HSA containing (Fig. A-6 ) and non-HSA containing formulations (Fig. A-7 ).  

The LSC data (Table A-16 ) was analyzed by noncompartmental analysis using Winnonlin 

(Pharsight) and the major pharmacokinetic parameters extracted (Table A-17 ).    
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Figure A-5. Serum pharmacokinetics of [3H]-PP in a TAXOTERE-like formulation with or 
without HSA.  Both formulations are nearly superimposable showing the same rapid 
distribution observed with the PP-HSA particles followed by a nearly 24 h terminal half-life.  
Concentrations were calculated by LSC in triplicate without correction by a standard curve.  
Error bars are calculated as the standard deviation from n=3 mice. 

 

  



139 

 

 

 

 

 

 

 

 

 

Figure A-6. Time resolved biodistribution of the [3H]-PP in a TAXOTERE-like formulation 
containing HSA.  Like the PP-HSA particles, there is a rapid accumulation in the liver and 
spleen although clearance from the organs is a slow process.  Tumor accumulation is 
constant but no different from the previous formulation.  Concentrations were quantitated in 
duplicate by LSC without correction by a standard curve.  Error bars are calculated as the 
standard deviation of n=3 mice. 
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Figure A-7.  Time resolved biodistribution of [3H]-PP in a TAXOTERE-like formulation 
without HSA.  Concentrations were quantitated in duplicate by LSC without correction by a 
standard curve.  Error bars are calculated as the standard deviation of n=3 mice.  The BD 
data is also nearly superimposable with the other TAXOTERE-like formulation.   
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With HSA 

 

Without HSA 

Table A-16.  Raw data from the TAXOTERE-like PK/BD experiment used in the PK and BD 
analysis.  C, concentration; σ, standard deviation from n=3 mice. 
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Table A-17.   Summary of important pharmacokinetic parameters obtained from 
TAXOTERE-like PP formulations.  A non-compartmental model was fitted to the data with a 
weighting of 1/Y using Winnonlin (Pharsight).  As with the serum pharmacokinetics and 
biodistribution, these results are very similar to the PP-HSA formulation from Chapter III. 
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18. Spectral Data 

 Raw spectral data for all intermediates synthesized in Chapter III are provided 
including mass spectrometry, 1H NMR and 13C NMR. 
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18.1. Ethyl-( E)-octadec-2-enoate (1) 

 

Figure A-8.  Mass spectrum of ethyl-( E)-octadec-2-enoate (1) . 
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Figure A-9. 1H NMR spectrum of ethyl-( E)-octadec-2-enoate (1) . 
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18.2. 3-Pentadecyldiethylglutarate (2) 

 

Figure A-10. Mass spectrum of 3-pentadecyldiethylglutarate (2) . 
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Figure A-11.  1H NMR spectrum of 3-pentadecyldiethylglutarate (2) . 
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Figure A-12.  13C NMR spectrum of 3-pentadecyldiethylglutarate (2) . 
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18.3. 3-Pentadecylglutaric acid (3) 

 

Figure A-13. Mass spectrum of 3-pentadecylglutaric acid (3) . 
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Figure A-14.  1H NMR spectrum of 3-pentadecylglutaric acid (3) . 
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Figure A-15.  13C NMR spectrum of 3-pentadecylglutaric acid (3) . 
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18.4. 3-Pentadecylglutaric anhydride (4) 

 

Figure A-16. Mass spectrum of 3-pentadecylglutaric anhydride (4) . 
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Figure A-17. 1H NMR spectrum of 3-pentadecylglutaric anhydride (4) . 
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Figure A-18. 13C NMR spectrum of 3-pentadecylglutaric anhydride (4) . 
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18.5. Paclitaxel-2’- O-3-pentadecylhemiglutarate (5) 

 

Figure A-19. Mass spectrum of paclitaxel-2’- O-3-pentadecylhemiglutarate (5) . 
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Figure A-20. 1H NMR spectrum of paclitaxel-2’- O-3-pentadecylhemiglutarate (5) . 
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Figure A-21. 13C NMR spectrum of paclitaxel-2’- O-3-pentadecylhemiglutarate (5) . 


