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ABSTRACT 
 

ALEXIS WELLS CARPENTER: Synthesis of Hybrid Inorganic/Organic  
Nitric Oxide-Releasing Silica Nanoparticles for Biomedical Applications 

(Under the direction of Professor Mark H. Schoenfisch) 
 
 
 Nitric oxide (NO) is an endogenously produced free radical involved in a number of 

physiological processes.  Thus, much research has focused on developing scaffolds that store 

and deliver exogenous NO.  Herein, the synthesis of N-diazeniumdiolate-modified silica 

nanoparticles of various physical and chemical properties for biomedical applications is 

presented.    

 To further develop NO-releasing silica particles for antimicrobial applications, a 

reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and 

similar NO release characteristics.  Decreasing scaffold size resulted in improved bactericidal 

activity against Pseudomonas aeruginosa.  Confocal microscopy revealed that the improved 

efficacy resulted from faster particle-bacterium association kinetics.   

 To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune 

NO release characteristics were evaluated.  Initially, surface hydrophobicity and NO release 

kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface 

of N-diazeniumdiolate-modified particles.  The addition of fluorocarbons resulted in a 10x 

increase in the NO release half-life.  The addition of short-chained hydrocarbons to the 

particle surface increased their stability in hydrophobic electrospun polyurethanes.  Although 

NO release kinetics were longer than that of unmodified particles, durations were still limited
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to <7 days.  

An alternative strategy for increasing NO release duration involved directly 

stabilizing the N-diazeniumdiolate using O2-protecting groups.  O2-Methoxymethyl 1-(4-(3-

(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was 

grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 

µmol NO/mg and an NO release half-life of 23 d.  Doping the MOM-Pip/NO-modified 

particles into resin composites yielded antibacterial NO-releasing dental restorative materials.  

A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-

Pip/NO-doped composites compared to undoped controls.   

The greater chemical flexibility of macromolecular scaffolds is a major advantage 

over LMW NO donors as it allows for the incorporation of multiple functionalities onto a 

single scaffold.  To demonstrate this advantage, dual functional particles were synthesized by 

covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing 

silica particles.  The QA functionality proved more effective against Staphylococcus aureus 

than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy.  

Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. 

aureus compared to monofunctional particles. 
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Chapter 1: 

Designing Silica Particles for the Delivery of Therapeutic Nitric Oxide  

  A wide range of nitric oxide (NO)-releasing materials have emerged as potential 

therapeutics  that  exploit  NO’s  vast  biological  roles.    Macromolecular scaffolds, such as silica 

nanoparticles, are particularly promising due to their ability to store and deliver larger NO 

payloads in a more controlled and effective manner compared to low molecular weight NO 

donors.  In this introductory chapter, the synthesis and design of silica particles for drug 

delivery is presented, followed by a discussion on the development of NO-releasing silica 

nanoparticles for therapeutic applications.  

 

1.1  Overview of silica nanoparticles for drug delivery 

  Over the past forty years, nanotechnology has revolutionized scientific research, 

impacting the world in ways that parallel the development of electricity, biotechnology and 

digital information.1  Drawn by the fascinating properties exhibited by materials in the 

nanometer regime (≤100 nm), research in nearly all area of science have directed some focus 

into using nanotechnology.  Drug delivery in particular has benefited from the use of 

nanomaterials as nanomedicine is poised to significantly change the future of healthcare and 

disease treatment.2  

Silica-based nanoparticles represent a significant area in nanomedicine research.3-5 

Although silica does not adopt exceptionally different properties on the nanoscale, its wide-
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spread use arises from well-defined and tunable structures that can be tailored towards a 

desired therapeutic application.  Indeed, any number of functionalities may be incorporated 

into the silica network through facile sol–gel chemistry.  Physical properties such as particle 

size, shape, and porosity can also be easily tuned, allowing researchers to investigate their 

influence on drug delivery (e.g., cellular uptake, clearance/fate, and aggregation).  

Furthermore, silica’s inherent biocompatibility and water-solubility provide two distinct 

advantages when designing practical drug delivery scaffolds.  

  

1.1.1  Sol–gel chemistry  

The sol–gel process to form silica-based materials involves the hydrolysis and 

condensation of silane precursors to form a solid network.6  In basic conditions, hydrolysis 

occurs with the displacement of a labile ligand on the silicon atom by a hydroxyl ion (Figure 

1.1A).  The hydrolyzed monomer then undergoes a condensation reaction with a second 

hydrolyzed molecule to form a siloxane bond (Figure 1.1B).  Hydrolysis and condensation 

continue, forming a colloidal suspension (sol) that cross-links to form a solid network 

suspended in a continuous liquid phase (gel).  Depending on the reaction conditions, the 

condensed products resulting from the sol–gel process can range from highly porous, 

nanocrystalline materials to dense amorphous networks.  In addition to synthetic control, 

other advantages of sol–gel chemistry include mild reaction conditions, low-temperature 

preparation, and easy purification.7   

The type of material that results from sol–gel processing is dependent on the type of 

precursor and the pH of the reaction.  Precursors can be mono-, bi-, tri- or tetrafunctional 

based on the number of hydrolyzable ligands present (Figure 1.2).  Silanes where one or
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Figure 1.1  (A) Hydrolysis and (B) condensation reactions involved in the sol–gel process 
under basic conditions.   
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more of the hydrolyzable groups have been replaced with a non-hydrolyzable organic ligand 

are called organosilanes.  The substituents on the central silicon atom govern the rate of 

hydrolysis and condensation through both steric and inductive effects.  Larger or branched 

ligands hinder the access of nucleophiles to the silicon atom, thereby slowing the rate of 

hydrolysis.  The incorporation of an electron-donating alkyl group also contributes to slower 

hydrolysis as the central silicon atom has a higher electron density and is therefore less 

electrophilic.   

An acid or base catalyst is used to promote hydrolysis and condensation as well as 

govern the structure of the condensed product.6  In acid-catalyzed reactions, the rates of 

hydrolysis are fast and the rates of condensation are slow.  Acidic conditions with low water 

to silane ratios favor the formation of linear and branched polymers that interpenetrate with 

each other to form films.  Alternatively, base-catalyzed sol–gel reactions with high water to 

silane ratios promote slow rates of hydrolysis and rapid condensation, leading to highly 

branched clusters that do not entangle.  The preparation of silica particles is thus usually base 

catalyzed.  Base-catalyzed hydrolysis and condensation of a single tetrafunctional silane, 

such as tetraethoxysilane (TEOS), represents the simplest synthesis of silica particles.  To 

broaden their applicability, it is often desirable to vary the chemical and physical 

characteristics of silica particles.  Thus, modified sol–gel techniques have been developed 

that allow for precise control over particle growth to result in materials with specific 

properties.  The two general classes of silica particles are nonporous silica particles, 

synthesized by the Stöber method or the reverse microemulsion technique, and mesoporous

silica particles, prepared via a surfactant-templated method.   

As shown in Figure 1.3A, the Stöber method involves the hydrolysis and
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Figure 1.2  Silane precursors for sol–gel chemistry can be  (A) monofunctional, (B) 
bifunctional, (C) trifunctional,  or (D) tetrafunctional.
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condensation of silane precursors in a solution of water, an alcohol solvent (typically ethanol) 

and a base catalyst.8  A short-chain alcohol solvent is necessary to create a homogenous 

reaction solution as the tetraalkoxysilane is immiscible with water.  The Stöber method yields 

monodisperse, spherical particles typically in the micron to submicron size range and is 

scalable  to  increase  throughput.    The  Stöber  method  can  be  conducted  in  a  “one-pot”  reaction  

where all reactants are combined simultaneously.  Alternatively, a seeded-growth method 

utilizes small particles that are initially grown and used as seeds upon which larger particles 

form following multi-step addition of more silane precursors.  Lastly, a semi-batch approach 

can be used where one reactant (e.g., silane or catalyst) is added at a constant (typically slow) 

rate to a vessel containing the other reactants.  As will be discussed in Section 1.3.1, each of 

these synthetic strategies allows for particle size to be tuned by changing the concentration of 

water or reactants, reaction temperature, and solvent type.  Particles with specific organic 

functionalities can be created by using a corresponding silane precursor, the details of which 

are discussed in Section 1.4.1.   

The growth of monodisperse particles via the Stöber method can be described using 

the LaMer theory.9,10  These models relate the concentration of hydrolyzed silane 

([monomer]) to reaction time and the number of particles formed.  As hydrolysis reactions 

occur, the [monomer] increases with time until it reaches a critical concentration 

([monomer]nucleation) where initial sites of particle formation (i.e., nuclei) form.  While 

[monomer]  ≥  [monomer]nucleation, hydrolyzed silanes can either react with each other to form 

new nuclei or add to already formed nuclei.  Eventually, [monomer] falls below that of the 

sequential addition of hydrolyzed monomers.  To achieve monodisperse particle populations 

in Stöber reactions, the duration of the nucleation phase should be short such that
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Figure 1.3  Synthetic techniques for synthesizing silica nanoparticles for drug delivery 
include (A) the Stöber method, (B) the reverse microemulsion technique, and (C) surfactant-
templated synthesis. 
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most nuclei are created at the same time and experience the same growth histories.  The 

Stöber method typically produces particles larger than 100 nm as the reaction conditions do 

not stabilize nuclei, causing them to aggregate and form larger particles.  

 The reverse microemulsion technique is a method to produce silica particles less than 

100 nm with improved monodispersity.11  In contrast to the Stöber method where the sol–gel 

process occurs throughout the bulk of the reaction solution, the reverse microemulsion 

confines particle formation to the aqueous interior of micelles stabilized in an organic solvent 

(Figure 1.3B).  Surfactants used to form the micelles can be cationic (e.g., 

cetyltrimethylammonium bromide), anionic (e.g., sodium bis(2-ethylhexyl) sulfosuccinate), 

or nonionic (e.g., Triton X-100 or polyoxyethylene nonylphenyl ether).  Typically a co-

surfactant, such as 1-hexanol, is employed to stabilize the micelles.  The interior of the 

micelles is composed of water and the base catalyst and act as nanoreactors for silica 

nanoparticle synthesis. 

In a reverse microemulsion system, particle formation is also described according to 

the LaMer theory but is believed to occur at a much slower rate.12  Upon addition to the 

reaction mixture, the unhydrolyzed silanes become dispersed throughout the organic phase.  

As they slowly come in contact with the micelles, the silanes are hydrolyzed and enter the 

micelle’s   aqueous interior.13  Nucleation occurs when [monomer] reaches the critical 

concentration (e.g., [monomer]nucleation) within the micelle.  Similar to the Stöber method, the 

decrease in [monomer] after the onset of the nucleation phase occurs mainly through the 

diffusion-controlled growth of particles and nuclei.  However, the diffusion-controlled 

growth occurs at a much slower rate in a microemulsion due to the micellar structure’s  effect  

on viscosity and diffusion coefficients.  As such, the nucleation period is longer, resulting in 
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a greater number of particles and smaller particle sizes.  Furthermore, the nuclei formed in a 

reverse microemulsion are believed to be stabilized by the surfactant molecules, thus the 

extent of nuclei aggregation is lower than in the Stöber method.  Particle growth is confined 

to the micelle, thus particle size can be finely tuned by controlling micelle size.  For example, 

the water to surfactant ratio, surfactant to solvent ratio, the type of organic solvent, and 

reaction time all affect the resulting particle size.  Functionalized particles can be obtained by 

the addition of organosilanes to the emulsion.  The major drawbacks to synthesizing silica 

particles via a reverse microemulsion are low yields and extensive purification steps.  

Particularly for biomedical applications, complete removal of the potentially cytotoxic 

surfactant is necessary and requires copious washing with a variety of alcohols.  The ability 

to achieve small particles with narrow size distributions is the main advantage over the 

Stöber method.   

The two previously discussed techniques for sol–gel chemistry result in nonporous 

silica particles.  More recently, mesoporous silica particles (MSN) have been designed as a 

strategy to achieve greater functionalization potential and drug-loading capacity.14  The 

surface area of MSNs is typically >900 m2/g, while that of Stöber and reverse 

microemulsion-prepared silica particles is typically 5–200 m2/g. The pores of MSNs typically 

have a large volume (>0.9 cm3/g) with tunable sizes of narrow distributions (2–10 nm).  

Mesoporous silica particles are synthesized via a surfactant-templated approach, as illustrated 

in Figure 1.3C.  Surfactants are used to form liquid-crystalline mesophases that act as 

templates for the condensation of silane precursors.  Ammonium hydroxide (NH4OH) and 

sodium hydroxide (NaOH) have both been employed as base catalysts, each also providing 

morphological control as NH4OH and NaOH favor long and short micelles, respectively.15  
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Once the siloxane polymerization is complete, the surfactant molecules are removed either 

by solvent extraction with acidic ethanol or by calcination to reveal empty channels 

throughout the silica network.   

 

1.1.2  Drug delivery 

Silica-based nanomaterials are a popular scaffold for drug delivery due to their low 

cytotoxicity, chemical stability and high capacity for functionalization.4  Compared to “soft”  

nanoparticles (e.g., dendrimers, polymers, and vesicles), silica exhibits increased stability at 

high temperatures and varied pHs and is more resistant to mechanical stresses and 

hydrolysis-induced degradation   

Ideally, a successful drug delivery scaffold would be biocompatible and capable of 

high drug loading.14  Delivery to a specific site (e.g., cell type, tissue, or organ) is a desirable 

trait for most therapeutic applications and can be achieved using targeting moieties, as will 

be discussed later.  The major challenge in developing drug-releasing nanoparticles is the 

need for a scaffold that exhibits zero drug release prior to arrival at the site of interest and 

then provides complete delivery of drug payload.  Furthermore, the rate of drug release from 

the nanoscaffold often governs its biological effect,16 thus triggerable release of therapeutics 

is also desirable.  In general, achieving these goals with soft nanomaterials is difficult due to 

uncontrollable leaching and limited functionalization ability.14   

The two strategies that are used to load drugs onto/into silica particles include

covalent incorporation and non-covalent encapsulation. Covalent incorporation provides a 

more secure drug storage method that decreases the chance of premature release; however, a 

release trigger is required to cleave the bond securing the drug to the scaffold.  The most 
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notable release triggers for covalently loaded drugs include redox chemistry, enzymatic 

cleavage, pH, photolysis and thermolysis.3  Redox chemistry is a common strategy for 

achieving intracellular drug delivery due to the reducing environment present inside cells.  

Drugs can be tethered to organically modified silica scaffolds via reduction-sensitive 

linkages such as disulfide17 or organometallic18 bonds.  Hydrolysable or enzymatically 

cleavable bonds such as esters, carbonates, carbamates, hydrazones and amides are also 

common methods of covalent incorporation into silica.19  Alternatively, pH-sensitive 

functionalities can be incorporated into the silica network that result in drug release once the 

scaffold enters an area of a certain pH.  For example, the interior of endosomes is 

characterized by a lower pH than that of extracellular fluid (pH 5–6.5 vs 7.4, respectively).  

Thus, incorporating groups that are labile at lower pH values allows for selective drug release 

within cells.  Light-responsive materials have been designed where the bond tethering the 

drug to the scaffold is photo-labile such that drug release can be triggered with light 

irradiation.  Gold nanoparticles can be also be used for drug release as they will absorb light 

and convert the energy to heat to trigger thermolytic cleavage.  While UV, visible, and near-

IR active materials have been developed, near-IR irradiation (650–900 nm) is the most 

promising photo-trigger as it is only minimally absorbed by skin and tissue.  When using 

covalent incorporation for drug delivery, one must ensure that the chemical modifications 

necessary to covalently incorporate the drug do not alter the  drugs’ efficacy or  the  scaffolds’  

cytotoxicity.   

Alternatively, drugs may be loaded non-covalently via an encapsulation strategy.  

Mesoporous silica nanoparticles offer an excellent option for drug encapsulation due to the 

presence of large, uniform, and continuous pores.  Drugs can be loaded through the use of 
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diffusion by placing the porous particles in highly concentrated drug solutions; however, the 

upper limit of loading is relatively low for this method.  Alternatively, electrostatic 

interactions between the negatively charged silica scaffold and positively charged drug 

molecules can be used to achieve higher loading.  Increased loading of neutral or negatively 

charged drugs proves more difficult.  Liu et al. reported a strategy to coerce negatively 

charged   drugs   into   MSNs   through   the   formation   of   “protocells”. 20  In this method, a 

positively charged liposome is fused around the negatively charged silica particle in a 

solution containing the drug.  The electrostatic interactions between the negatively charged 

drug and the positively charged liposome cause the drug to be forced into the MSNs as the 

liposome encapsulates the silica.   

When drugs are not covalently bound to the scaffold, premature release represents a 

major obstacle.14  Stability of the drug within the scaffold can be promoted through non-

covalent interactions such as electrostatic or hydrogen-bonding.  For example, increased drug 

loading efficiency and extended release profiles of ibuprofen-loaded MSNs were achieved 

with aminosilane-modified MSNs.21  The hydrogen-bonding interactions between the 

protonated primary amines (at pH 7) tethered to the scaffold and the carboxylate groups of 

ibuprofen aided in drug loading stabilization.   

Another method for inhibiting the release of encapsulated drugs from mesoporous 

particles   is   through   the   use   of   “gatekeepers”, whereby zero premature release of drug is 

achieved by “plugging”  the  entrances  of  pores  with protecting groups after drug loading.14, 22  

The aforementioned strategies for releasing covalently bound drugs have been translated to 

the gatekeeping concept.  For example, Lai et al. blocked the entrances to the channels of 

MSNs using cadmium sulfide (CdS) nanoparticles that were tethered to the silica scaffold 
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with disulfide linkages.23  Reduction of the disulfide bond released the gatekeeping particle 

from the pore, allowing the encapsulated drug to diffuse out.  Other metallic nanoparticles as 

well as dendrimers and bulky organic molecules have also been employed as gatekeepers 

with release stimuli ranging from light to oscillating magnetic fields.3, 22   

In summary, silica-based nanoparticles offer a stable and chemically flexible scaffold 

that can be loaded with high concentrations of drug. The numerous opportunities for drug 

loading and release mechanisms are unique to these materials as such functionalities are not 

easily incorporated into soft materials.  

 

1.1.3 Influence of nanoparticle properties on nanoparticle-cell interactions 

Efficient drug delivery is governed by the extent of direct interaction between the 

nanoparticle carrier and the targeted cells.  Although the release of drug into the environment 

surrounding the target may still result in some therapeutic effect, diffusion of the drug away 

from the cell would necessitate a higher dosage to elicit the same therapeutic response if the 

drug were delivered directly into the cell.  Additionally, some drugs may be unable to 

permeate the cell membrane unassisted, thus nanoparticle carriers aid in intracellular 

delivery.  Nanoparticle characteristics (i.e., size, shape, and surface chemistry) govern 

particle-cell interactions both in terms of association and uptake.  As such, much effort has 

been focused on modifying particles accordingly to enhance these interactions and improve 

drug delivery efficiency.    

The smart design of particles for drug delivery requires an understanding of the 

various mechanisms by which a particle may interact with a cell.  Both eukaryotic and 

prokaryotic cells are characterized by a net negative charge, thus electrostatic forces may 
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lead to nanoparticle association.  Indeed, positively charged particles generally exhibit 

greater association and subsequent internalization into mammalian cells than neutral or 

negatively charged particles.24  Similarly, the extent of association between positively 

charged particles and bacteria cells is greater than that of negatively charged particles.25  In 

addition to carrying a negative charge, the surface of both prokaryotes and eukaryotes also 

express hydrophobic character due to membrane lipids.  As such, cells have exhibited an 

affinity for particles expressing lipophilic ligands, such as fatty acids and fatty amines.26  Due 

to the lipid bilayer comprising the cellular envelope, hydrophobic effects will also regulate 

whether a nanoparticle simply adsorbs to the membrane or is capable of penetrating into the 

interior of the cell.27  Lastly, nanoparticle-cell association can be greatly enhanced by 

tethering molecules onto the particle that bind to cell surface receptors.  For example, the 

inclusion of carbohydrates onto nanoparticle surfaces was found to enhance association with 

Escherichia coli by  binding  to  the  FimH  adhesion  protein  in  the  bacterium’s  pili.28  To date, 

several targeting moieties have been designed to increase the association of nanoparticles 

with both prokaryotic and eukaryotic cells, the details of which are discussed in Section 

1.1.4.   

For eukaryotic cells, once an association event has occurred cellular uptake may 

ensue.  The process by which matter is taken into mammalian cells is called endocytosis.  

Phagocytosis and pinocytosis are the two most prominent endocytic mechanisms for 

eukaryotic cells.  Large particles are taken up by phagocytosis (“cell eating”), while small 

particles, fluids, and solutes are taken up by pinocytosis (“cell drinking”).  Phagocytosis 

mostly occurs with macrophages and polymorphonuclear neutrophils, as these immune cells 

are key in cleaning up cellular debris and removing pathogens.  Pinocytosis is a common 
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internalization strategy for all types of mammalian cells and is the generally accepted method 

by which particles are internalized by eukaryotic cells.5, 14, 29  The four main mechanisms for 

pinocytosis include macrophinocytosis, clathrin-mediated endocytosis, caveolae-mediated 

endocytosis, and clathrin- and caveolae-independent endocytosis.29  Macrophinocytosis is an 

actin driven process where protrusions form, collapse, and then fuse onto the cell membrane 

to form large endocytic vesicles with diameters of 0.5–10 µm.  In clathrin-mediated 

endocytosis, a coated pit is created by an assembly of clathrin, forming a vesicle ~120 nm in 

size.  In caveolae-mediated endocytosis, flask-shaped invaginations are formed by the protein 

caveolin, and internalized vesicles (~60 nm) are directed to the endoplasmic reticulum and 

the nucleus.  Clathrin- and caveolin-independent endocytosis occur through cholesterol-rich 

microdomains on the plasma membrane called lipid rafts (40–50 nm).  In general, uptake of 

silica particles into eukaryotic cells occurs through clathrin-coated endocytosis pathways 

although the inclusion of certain ligands may direct other mechanisms of endocytosis.   

 Although endocytosis is a necessary function for eukaryotes, an endocytosis-like 

mechanism has not been identified for prokayrotes.30, 31  Yet, the presence of nanoparticles in 

the interior of bacteria cells has been observed.32-35  It is believed that the route of ingress of 

nanoparticles into uncompromised bacterial cells may be through pores present in the outer 

membrane.25 Since these pores are used to secrete large proteins, only particles of very small 

sizes could pass through the pores.  For example, ring-shaped pores formed by secretin 

proteins (GspD) in Psuedomonas aeruginosa are estimated to have a diameter as large as 9.5 

nm, thus only nanoparticles less than 9 nm could pass.36  Even so, the probability of 

nanoparticle internalization through these large pores is low as the channels are likely gated. 

Most often, the presence of nanoparticles is observed in bacteria with compromised cell 
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membranes.  Thus, it is hypothesized that the particles entered the cellular interior only after 

the membrane had been compromised.25   

The mechanism and extent of cellular uptake is greatly affected by the physical and 

chemical characteristics of the nanoparticle scaffold.  It is generally believed that efficient 

uptake by non-phagocytic cells requires that the particle must be on the submicron scale,14 

although some have reported the internalization of particles as large as 5 µm.29  Overall, 

smaller particles are able to accumulate in the cellular interior to a greater extent than larger 

particles.  For example, the uptake of 50 nm MSNs by HeLa cells was 4, 20, and 11 times 

greater than that of 110, 170, and 280 nm particles, respectively.37  Similarly, the uptake of 

nonporous silica particles also exhibited a size-dependency with 23 nm particles being 

uptaken to a greater extent than larger 85 nm particles.38  The kinetics of internalization was 

also observed to be size dependent, with larger sized particles experiencing a slower rate of 

uptake.  After 60 min incubation, the 85 nm nonporous particles mostly remained physically 

adsorbed to the cell surface, while the majority of the smaller 23 nm particles were 

distributed throughout the cytosol. 38  Similarly, a greater concentration of smaller metallic 

particles has been observed in the interior of bacteria cells compared to that of larger 

particles.39  Due to the lack of endocytic mechanisms in prokaryotic cells, this size 

dependence is likely the result of Brownian motion across a damaged membrane.  A 

dependence of bactericidal efficacy on particle size is evident and is the focus of Chapter 2.  

Particle shape has also been observed to impact drug delivery efficiency by affecting 

particle-cell adhesion strength, internalization rate, cytotoxicity, circulation time and 

biodistribution.29, 40, 41  For example, higher aspect ratio MSNs were found to be internalized 

by human melanoma cells to a greater extent and at a faster rate than spherical particles.40  
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Furthermore, high aspect ratio particles resulted in a greater impact on cell proliferation, 

apoptosis, cytoskeleton formation, adhesion and migration.  In vivo experiments revealed 

that particle shape also governs biodistribution as MSNs with an aspect ratio of 1.5 

accumulated in the liver, while those with an aspect ratio of 5 distributed in the spleen.41  

Furthermore, the lower aspect ratio MSNs experienced a more rapid clearance rate.  Lu et al. 

observed a similar trend with antimicrobial MSNs, where those of higher aspect ratio 

exhibited a greater therapeutic impact.42  It was hypothesized that higher aspect ratios allows 

for greater surface contact between MSNs and the microbes, which in turn allowed for more 

efficient drug delivery directly to the bacterial membrane. 

In addition to physical characteristics, different surface chemistries present on the 

particle scaffold may influence the mechanism of cellular uptake.  For example, amine and 

guanidinium-functionalized MSNs are reportedly taken up by clatherin- and caveolae-

independent mechanisms, compared to the usual clathrin-coated endocytosis of silica 

particles.43  The uptake mechanism greatly impacts the effectiveness of the drug as it dictates 

the localization of the internalized nanoparticle.  Drug delivery to the cytosol of the cell is 

most ideal, but typically internalized particles remain trapped in endosomes.  Methods for 

triggering endosomal release have been achieved by modifying the surface of the particle.43  

For example, Verma et al. found that particles modified with alternating anionic and 

hydrophobic groups in an ordered manner achieved endosomal release whereas particles 

modified with the same functionalities but in a random, unordered fashion remained

trapped in the endosomes.44 

When cellular uptake is undesirable, poly(ethylene glycol) (PEG) and other similarly 

structured polymers can be incorporated onto the particle surface to prevent blood serum 
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proteins from adsorbing to the particle.24  Minimal protein adsorption results in decreased 

phagocytic cellular uptake and increased circulation time.  PEG-modified particles are 

typically used for antitumor therapies where the passive targeting of tumor cells is achieved 

through the enhanced permeation and retention (EPR) effect.  

Uptake of nanoparticles is most commonly monitored by flow cytometry, 

transmission electron microscopy, and confocal fluorescence microscopy.45, 46  

Internalization versus external association can be differentiated via a number of analytical 

techniques.  In flow cytometry, the particles must be fluorescent in order to visualize their 

location on/in the cell.  Particle internalization can be identified by the presence of 

fluorescence after copiously washing the cells or by employing extracellular fluorescence 

quenchers.  The use of transmission electron microscopy (TEM) is advantageous as there is 

no need to modify the particles to allow for visualization.  The localization of particles can be 

elucidated with TEM by using a microtome to obtain 100 nm thin slices of the specimen that 

can be imaged individually.  Stains are normally used for TEM imaging to increase the 

contrast between different cellular compartments.  However, TEM imaging requires fixation 

of the specimen, which can lead to artificially increased uptake.  Alternatively, the use of Z-

stack imaging with confocal microscopy allows for photographic  “slices” to be taken along 

the z-axis of live cells in solution.   Thus, real-time uptake and localization information can 

be obtained.  The presence of particles in the interior or exterior of the cells is determined by 

identifying the location along the z-axis where fluorescence is the greatest.  For now, the 

resolution of the Z-stack method limits this technique to investigating internalization by 

mammalian cells only. 
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1.1.4  Targeting strategies 

 The efficiency of drug delivery can be enhanced by increasing the probability and 

rate of an interaction between the nanoparticle and the intended tissue or cell.  Targeted 

delivery of nanoparticles can be achieved passively through processes such as the enhanced 

permeability and retention (EPR) effect or actively through the use of targeting or directing 

moieties. 

The EPR effect has been used for targeting nanoparticles to tumor sites by taking 

advantage of the fact that solid tumors and inflamed tissue have a more leaky vasculature 

than healthy tissue.2  As nanoparticles circulate throughout the vasculature, they are more 

likely to extravasate into cancerous tissue than normal tissue.  This phenomenon represents a 

passive strategy for the selective delivery of nanoparticles to cancerous tissue over normal 

tissue.  Nanoparticles that utilize the EPR for selectivity must be between 100–300 nm and 

experience long circulation life-times.4, 47  Micron-sized particles are quickly cleared by 

active phagocytosis of the reticuloendothelial system, while particles with diameters below 

100 nm are insufficient due to rapid renal clearance.  Increased circulation times can be 

achieved by modifying particle surfaces with PEG, which prevents non-specific binding of 

proteins and macrophages.  While the EPR effect allows for passive targeting of 

nanoparticles to tumor sites, active targeting strategies allow for increased internalization and 

allow for targeted treatment of other diseases.   

Nanoparticles can be actively directed or targeted to specific cells by including 

specific functionalities into the silica scaffold.  The incorporation of magnetic materials, such 

as iron oxide nanoparticles, provides the ability to direct and concentrate the drug at the 

diseased site by applying an external magnetic field.48-50  For example, Gang et al. reported 
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that nanoparticles loaded with a chemotherapeutic agent and smaller magnetite (Fe3O4) 

nanoparticles could be magnetically directed to a tumor site and resulted in a 15-fold higher 

drug concentration at the tumor site compared to freely circulating drug.51  Additionally, 

once the nanoparticle carrier has reached the targeted site, the application of an oscillating 

magnetic field can be used for heat generation to trigger drug release.52, 53 

Other active targeting strategies involve incorporating ligands on the particle surface 

that may increase the affinity of the intended cell for the particle by seeking a particular 

aspect that is more present on the targeted cell than other cells.  The most direct method of 

active targeting is to employ molecules that bind to receptors on the targeted cell surface.47  

For example, proteins, such as antibodies and glycoproteins, have been tethered to particle 

surfaces for active targeting.  Transferrin and transferrin receptor antibodies have proven 

effective antitumor targeting moieties as the majority of cancer cells overexpress transferrin 

receptors.54  Conjugating nanoparticles with the secondary human immunoglobulin (IgG) 

that targets protein A on the bacteria cell wall resulted in a significant increase in binding of 

the nanoparticles to bacteria compared to unmodified controls.55, 56  Moreover, the addition of 

the glycoprotein D-mannose onto nanoparticles was also found to increase binding to the 

bacteria cell wall compared to unmodified controls.28, 57 Avidity, the strength of multiple 

bonding interactions, can be enhanced through the use of larger multivalent targeting 

moieties; however, sterics limits the number of groups that can be tethered to the particle 

surface.  Smaller biomolecules have been employed to increase the probability of binding to 

the target.  One such type of small biomolecules are aptamers, which are a recently 

developed targeting strategy composed of single-stranded oligonucleotides such as DNA or 

RNA.58  The advantage of aptamers is their ability to bind to a wide range of non-nucleic 
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acid targets including peptides, proteins, and even whole cells with high affinity and 

specificity.  Other small molecules such as carbohydrates, vitamins, or peptides can also be 

tethered to the particle surface to actively target tumor cells.5, 47  For example, the addition of 

folic acid ligands allows for high-affinity binding to the folate receptor that is overexpressed 

on numerous types of cancer cells compared to normal cells.59  The fusion of nanoparticles to 

the cell membrane (and subsequent uptake into the cytoplasm) can be further enhanced by 

incorporating cell-penetrating peptides such as RGD, allatostatin 1, PLL, and arginine-rich 

peptides.60  The active targeting of prokaryotic cells has also been investigated by tethering 

the clinically used antibiotic glycopeptide vancomycin to nanoparticles for targeting Gram-

positive bacterium.  Vancomycin binds to the terminal peptide (D-alanyl-D-alanine) on the 

cell wall of Gram-positive bacteria through five hydrogen-bonds, increasing the avidity of 

the bacterium for the vancomycin-modified nanoparticles.61, 62   

In addition to increasing the efficiency of drug-delivering silica particles, the 

incorporation of targeting strategies also lowers the potential toxicity associated with 

exposure of non-diseased tissue, decreasing side-effects.  For example, the addition of folic 

acid ligands to silica particles was shown to increase preferential uptake by cancer cells up to 

five times that of normal cells.63 

   

1.2  Silica nanoparticles for the delivery of nitric oxide 

 Thus far, the use of silica nanoparticles for drug delivery was discussed broadly to

introduce the advantages inherent to these materials.   At this point, the focus is narrowed to 

describe the use of silica particles for delivering nitric oxide (NO), a small gaseous 

endogenously produced diatomic radical at the center of a wide variety of physiological 
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processes.  First identified for its cardiovascular role,64-66 NO is now known to play key roles 

in  human physiology and pathophysiology, including cancer biology, the innate immune 

response, as well as the wound healing cascade.67-72  Due to the fastidious nature of NO 

chemistry   and   biology,   a   thorough   knowledge   of   NO’s   physiological   effects   is   vital   to  

designing successful therapies.   

 

1.2.1  The biological and therapeutic roles of nitric oxide  

In the vascular endothelium, NO is generated to maintain proper blood flow and 

pressure.73  When NO is produced from vascular endothelial cells, it influences the cellular 

activities of smooth muscle cells, platelets, and immune cells (Figure 1.4).  After generation, 

NO diffuses into vascular smooth muscle cells and reacts with the iron of soluble guanylate 

cyclase.  This activation of guanylate cyclase results in the production of cyclic guanosine 

monophosphate (cGMP), leading to relaxation of the smooth muscle cells and an overall 

dilation of blood vessels.   Deficiencies in NO occur when the endothelium is injured or not 

functioning properly as is the case for several cardiovascular conditions, including 

atherosclerosis, heart failure, hypertension, arterial thrombotic disorders, coronary heart 

disease, and stroke.72  The administration of exogenous NO or the upregulation of 

endogenous NO production has vasoactive effects for treating ischemic heart disease, heart 

failure, and hypertension.74  

In cancer biology, NO is  often  described  as  a  “double-edged sword”  serving  as  either 

a tumor progressor or suppressor based on concentration and duration of exposure (Figure 

1.5).75  High NO concentrations produce reactive nitrogen species, which along with reactive 

oxygen species can cause oxidative and nitrosative stress that lead to DNA base deamination,
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Figure 1.4  Schematic  of  nitric  oxide’s  role  in  the  vascular  endothelium  and  its  effects  on  
cellular activities.  
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nitrosylation of enzymes, impaired cellular function, enhanced inflammatory reactions, 

inhibited mitochondrial respiration and tumor cell apoptosis.76  Alternatively, low 

concentrations of NO present anti-apoptotic effects and promote angiogenesis thereby 

increasing nutrient delivery and facilitating tumor growth.  All three isoforms of nitric oxide 

synthase (NOS) have been found in human solid tumors and are typically at higher levels 

than in normal tissue, indicating that NO may be a mediator of tumor progression.77  

Alternatively, the production of NO is part of the innate antitumor immune response 

mechanism of macrophages.  This complex relationship between NO concentration and 

tumor development/regression has ignited much research into both pro- and anti-NO cancer 

therapies.  Anti-NO therapies are essentially NOS inhibitors, which have shown to decrease 

endogenous NO levels and subsequently decrease tumor growth.75  Use of NOS inhibitors 

requires long term, systemic administration that can cause hypertension and tumor regrowth 

if treatment is halted prior to complete eradication.78  Pro-NO cancer therapies aim to 

increase NO concentrations at the tumor site to cause apoptosis and/or necrosis of cancer 

cells.77   

Nitric oxide is also a potent antimicrobial agent, released from inducible nitric oxide 

synthase (iNOS) in macrophages to eliminate pathogens.79  As depicted in Figure 1.6, NO 

exhibits antimicrobial effects both alone and upon reaction with oxygen or reactive oxygen 

intermediates (e.g., superoxide and hydrogen peroxide) to form other antimicrobial species 

including peroxynitrite, RSNOs, nitrogen dioxide, dinitrogen trioxide, and dinitrogen 

tetroxide.79  These reactive species can then interact with microbial proteins, DNA and 

metabolic enzymes, ultimately disrupting vital cellular structures and functions and leading 

to  potent  antimicrobial   efficacy.     Evidence  of  NO’s  efficacy  against  Gram-positive, Gram-
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Figure 1.5 The dual role of nitric oxide in cancer biology. 
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Figure 1.6 The numerous antibacterial mechanisms of nitric oxide and its byproducts (A) 
lead to decreased bacterial viability and decreased adhesion on NO-releasing surfaces (B) 
compared to control surfaces (C). Images of bacteria were obtained using atomic force 
microscopy
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negative, and fungal microbes is well documented.79-84  Furthermore, NO is capable of 

eliminating not only planktonic bacteria but also biofilms,85 which contribute to the 

persistence of infections due to their protective exopolysaccharide matrix that resists 

penetration of immune cells and antibiotics.86  The broad spectrum and multi-mechanistic 

nature of NO suggest it may be the basis for a new paradigm of antimicrobials that decrease 

the chance of resistance.  

Nitric oxide is also active in each phase of the wound healing cascade, indicating that 

NO-based therapeutics would be advantageous for promoting proper wound healing.87, 88  

The wound healing cascade consists of blood coagulation, inflammation, cell proliferation, 

lesion contraction, and remodeling.  This process begins immediately following tissue injury 

and continues up to months after the initial wounding.  Coagulation occurs to limit further 

blood loss by platelet adhesion and clot formation.  The secretion of growth factors activates 

fibroblasts, endothelial cells, and macrophages in an attempt to regain normal homeostatis.87, 

88  During the inflammation phase, neutrophils, macrophages, and lymphocytes collectively 

defend against invading microorganisms and help to remove damaged tissue.  Proliferation 

involves fibroblast migration, angiogenesis and re-epithelialization, beginning three days 

following injury and lasting up to several weeks.  During lesion contraction, the area of 

damage is reduced to prepare for remodeling, the last phase of wound healing.  This final 

phase consists of changes in the extracellular matrix (ECM) composition, decreases in 

macrophage and fibroblast density, and reduction in growth factor migration.  Finally, 

avascularization occurs upon decreased metabolism of neovascular tissues to form a flat 

surface.   Rapid recovery with minimal scarring and maximal function are the ultimate goal 

of wound healing.  However, in the case of severe injuries or because of preexisting 
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conditions (e.g., diabetes), the cascade leading to proper wound healing is not achievable 

without therapeutic intervention.89  The therapeutic potential for NO in promoting normal 

wound healing is indicated by its pro-angiogenic and anti-inflammatory nature as well as its 

ability to promote cellular proliferation/differentiation and collagen deposition. 

Although   many   details   still   remain   to   be   elucidated   regarding   NO’s   role   in  

physiology, the positive role of NO in a variety of human diseases is widely accepted.90-92  

As described above, the application of exogenous NO can be used for blood pressure 

regulation, tumor regression, elimination of microbial infection, and promotion of proper 

wound healing.  However, the administration of NO for these applications is not a trivial task 

due to the highly reactive nature of NO.  Gaseous NO can be used for some medical 

applications, but control over dosage and location is difficult.  Thus, gaseous NO is mainly 

used topically or for inhaled pulmonary treatment.  More controlled NO administration is 

achieved via compounds that can reversibly bind NO and release it upon some stimuli (i.e., 

NO donors).   

A wide variety of NO donors exist including metal nitrosyls, S-nitrosothiols 

(RSNOs), organic nitrites and nitrates, and N-diazeniumdiolates (NONOates).  S-

nitrosothiols and N-diazeniumdiolates represent the most widely used classes of NO donors 

for biomedical applications due to their ability to release NO under physiological conditions.  

S-nitrosothiols are endogenous NO donors that may be formed exogenously by reacting 

thiols with nitrosating agents (e.g. alkyl nitrite, dinitrogen trioxide, or nitrous acid) (Figure 

1.7).93  The release of NO from RSNOs occurs via numerous mechanisms. The S–N bond 

may be cleaved photolytically or thermally to generate NO and a thiyl radical.  Alternatively, 

the reaction of an RSNO with Cu(I) generates a thiolate, NO and Cu(II).  Regeneration of 
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Cu(I) occurs when the thiolate reacts with Cu(II), leading to a catalytic decomposition of 

RSNOs.  If free thiols are present, transnitrosation may occur where the nitroso functionality 

is transferred and may subsequently decompose via the aforementioned pathways.   

As shown in Figure 1.8, N-diazeniumdiolates are formed on amine sites upon 

exposure to gaseous NO in the presence of a base via one of two proposed mechanisms.94  In 

one mechanism, an NO dimer (N2O2) is first formed that subsequently reacts with the amine 

resulting in the formation of the NONOate (Figure 1.8A).  Alternatively, the amine may 

serve as the nucleophile, attacking one molecule of NO to first form a nitrosoamine radical 

anion that undergoes electrophilic attack on a second molecule of NO (Figure 1.8B).  The 

NO dimer mechanism is the more accepted version.94  Typically, a strong base such as a 

metal alkoxide is added to the system to promote NONOate formation.  In the presence of a 

strong base, the proposed mechanisms are altered as the amine is likely first deprotonated to 

facilitate nucleophilic attack.  The decomposition of N-diazeniumdiolates occurs in the 

presence of a proton source (i.e., aqueous physiological conditions) to release two molecules 

of NO and regenerate the parent amine (Figure 1.8C).  The ability to store two moles of NO 

per binding site is an advantage of NONOates over RSNOs; however, NONOates are 

plagued by the possibility of forming carcinogenic nitrosoamines.  In aerobic conditions, 

N2O3 is an oxidative product of NO and can react with secondary amines to form 

nitrosamines.

 

1.2.2  Small molecule NO donors and their limitations 

A number of low molecular weight (LMW) compounds have been designed that employ NO 

donor functionalities as NO delivery compounds. Some LMW NO donors have
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Figure 1.7  Reactions for S-nitrosothiol formation and degradation.  
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Figure 1.8  The two proposed mechanisms of N-diazeniumdiolate formation involve (A) the 
formation of the NO dimer or (B) the formation of nitrosamine anion.  (C) The 
decomposition of NONOates via proton-initiated decomposition. 
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found clinical success, such as the use of sodium nitroprusside for blood pressure regulation 

and glyceryl trinitrate and isosorbide mononitrate for treating angina, anal fissures, heart 

failure and pulmonary hypertension.67 Despite their clinical use, common LMW NO donors 

are plagued by significant drawbacks, including hypotension, headaches, and cyanide 

poisoning.  Furthermore, continued use and reduced bioconversion of NO prodrugs can lead 

to tolerance.  Most of these drawbacks could be alleviated with directed NO administration 

as LMW NO donors typically diffuse quickly requiring higher doses.  However, small 

molecule scaffolds do not lend themselves to the inclusion of the targeting moieties.   

Indeed, the major challenge in developing a clinically successful NO-based 

therapeutic is the need for effective and selective NO delivery.  The therapeutic consequence 

of any NO-based drug depends strongly on the concentration and duration of NO delivered.  

As discussed above, micromolar NO concentrations can inhibit the growth of tumor cells, 

while picomolar NO concentrations have an angiogenic effect leading to cell proliferation.75  

As a result, NO-based therapies must store and deliver a precise NO dose and exhibit specific 

durations to be effective.  In addition, NO delivery must be selective due  to  NO’s  short  half-

life (seconds) limiting its sphere of influence to ~100 µm from its origin.95  Thus, it is 

necessary that these parameters (i.e., delivery site, NO concentration, and rate of NO release) 

be controllable and tunable.   

 

1.2.3  The development of silica particles for NO delivery 

 One strategy for achieving effective and selective NO delivery is through the use of 

macromolecular scaffolds.96  Examples of such scaffolds include biopolymers (i.e., nucleic 

acids, proteins, lipids, carbohydrates), dendrimers, zeolites, metal-organic frameworks, 
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synthetic polymers and films, and nano- or microparticles.  Macromolecular NO-releasing 

therapies have many advantages, the most significant of which is greater chemical tunability 

to allow for targeting, tuning NO release characteristics, and improving biocompatibility. 

Furthermore,   given  NO’s   short  half-life, delivery of high NO doses at a localized site is a 

clear advantage over LMW NO donors.  As a result of targeted delivery, the effectiveness of 

the NO-releasing drug may be increased and the occurrence of side effects including 

tolerance and toxicity may be decreased.  Macromolecular scaffolds can also be modified to 

delay or stimulate NO release in order to achieve tunable NO release characteristics, as 

different disease states require certain NO levels.  With gaseous or LMW NO donors, control 

of these parameters is difficult to achieve.  In Section 1.1, numerous examples were provided 

illustrating the potential of silica nanoparticles for drug delivery.  As a result of promising 

preliminary research on silica-based nanomedicine, silica nanoparticles have also been 

developed for use as NO release vehicles.   

The first report of NO-releasing silica particles was by Zhang et al., where 

aminosilanes were grafted onto the surface of fumed silica and subsequently N-

diazeniumdiolated.97  This work proved the ability to significantly increase the duration of 

NO release through the use of a macromolecular scaffold, as the half-lives (t1/2) of the 

surface-grafted N-diazeniumdiolate-modified silica particles were much longer than the half-

lives of the corresponding N-diazeniumdiolated aminosilane monomers.  Inspired by this 

work, Frost et al. translated this chemistry to prepare S-nitrosothiol-modified particles by 

coupling N-acetyl-L-cysteine or N-acetyl-D,L-penicillamine to primary amines grafted onto 

fumed silica particles via amide chemistry.98  While these works pioneered future A 

homogenous particle design where sites for NO donor formation are incorporated
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throughout the entire particle would theoretically allow for significantly higher NO payloads.  

Motivated by this concept, Shin et al. synthesized hybrid particles by hydrolyzing and co-

condensing TEOS or TMOS with one of three aminosilanes (i.e., N-(6-aminohexyl)-

aminopropyltrimethoxysilane (AHAP), (N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane 

(AEAP), or (aminoethylaminomethyl)phenethyltrimethoxysilane (AEMP)) (Figure 1.9).99  N-

diazeniumdiolates  were  subsequently  formed  on  secondary  amines  site  via  a  “post-formation 

strategy”.  The amount of aminosilane incorporated throughout the particle was varied from 

10–77 mol%, allowing for a range of NO release totals and nanoparticle sizes to be achieved.  

As expected, the amount and type of aminosilane greatly influenced the observed NO release 

payloads and kinetics. In general, increasing the amount of aminosilane added to the sol 

resulted in an increase in nitrogen content in the resulting particles.  Following particle 

formation, the chemical environment surrounding the amine sites was also observed to 

influence N-diazeniumdiolate formation and degradation. For example, the total NO payloads 

from TEOS-based particles with 10 mol% AEAP and AHAP were 0.145 and 0.380 µmol/mg, 

respectively.  Surprisingly, the 10 mol% AEAP had higher nitrogen content (3.39 wt%) than 

10 mol% AHAP (2.74 wt%), as determined by elemental analysis. The type of backbone 

silane was also found to influence the total NO payload.  Particles composed of 10 mol% 

AHAP and 90 mol% TMOS or TEOS released 0.101 or 0.380 µmol/mg, respectively.  For 

this system, elemental analysis showed that higher NO payloads were achieved due to higher 

nitrogen contents as the 10 mol% AHAP/TEOS particles contained 2.74 wt% N, while the 10 

mol% AHAP/TMOS particles contained only 1.45 wt% N.   

In addition to NO totals, the kinetics of NO release were also found to depend on the 

backbone silane.  Particles composed of 10 mol% AHAP co-condensed with TEOS were
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Figure 1.9 Aminosilanes (A-G) and tetraalkoxysilanes (H-I) used to synthesize hybrid silica 
particles. (A) N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP), (B) N-(2-
aminoethyl)-3-aminopropyltrimethoxysilane (AEAP), (C) (aminoethylaminomethyl)-
phenethyltrimethoxysilane (AEMP) (D) 3-methylaminopropyltrimethoxysilane (MAP), (E) 
N-(2-aminohexyl)-11-aminoundecyltrimethoxysilane (AEAUD), (F) (3-trimethoxysilane)-
diethylenetriamine (DET), (G) N-(6-aminohexyl)aminomethyl-trimethoxysilane (AHAM), 
(H) tetramethoxysilane (TMOS), and (I) tetraethoxysilane (TEOS). 
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characterized by a t1/2 of 0.9 h whereas 10 mol% AHAP co-condensed with TMOS had a 

shorter t1/2 of 0.2 h. Again, this is likely because lower AHAP incorporation with TMOS 

leads to lower NO loading and thus shorter release duration.  Varying the type of aminosilane 

also resulted in changes in NO release kinetics. Since NONOate decomposition is proton-

initiated, the kinetics of NO release directly related to the rate that the NONOates react with 

water.  As such, faster NO release kinetics were observed from smaller particle sizes as more 

of their functional groups are closer to the particle surface compared to larger diameter 

particles.  It also follows that aminosilanes with more hydrophobic character would lead to 

longer NO release kinetics. This was evidenced with the AEMP-containing particles, which 

exhibited long half-lives of 5.4–6.0 h due to the hydrophobic conjugated ring present in the 

silane structure.  Unexpectedly, the longest half-life was achieved with 10 mol% 

AEAP/TEOS, even though the AEAP precursor is not significantly more hydrophobic than 

AEMP or AHAP.  Clearly, the environment within the silica matrix has as great an effect on 

N-diazeniumdiolate stability as the properties of the silane precursors.   

While the homogenous particle design allowed for higher NO loading than the 

surface-grafted particle system, the maximum NO loading was still limited by the low 

porosity and limited mobility of amines within the silica network.  Hydrogen-bonding 

between amines and silanol groups was believed to limit the availability of amines to be

converted to N-diazeniumdiolates.  Thus, subsequent work by Shin and Schoenfisch involved 

forming N-diazeniumdiolates  on  the  aminosilane  precursors  prior  to  particle  formation  (“pre-

formation  method”)  to  achieve  higher  NO  payloads.100  By forming the N-diazeniumdiolate 

moiety on the aminosilane precursors prior to incorporation within a silica particle, NO donor 

sites were present throughout the entire particle and total NO payloads per particle were 
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increased.  In addition to the aminosilanes previously employed, the aminosilanes used to 

prepare particles via the pre-formation method were expanded to include N-(6-

aminohexyl)aminomethyltrimethoxysilane (AHAM), N-(2-aminohexyl)-11-aminoundecyl-

trimethoxysilane (AEAUD), and (3-trimethoxysilane) diethylenetriamine (DET).   

The pre-formation method yielded NO totals that were orders of magnitude greater 

than what was achieved by the post-formation method.  The largest conversion efficiency 

(i.e., number of N-diazeniumdiolates per secondary amines) via the post-formation strategy 

was 52%, while the pre-formation method resulted in particles where ~100% of amine sites 

were N-diazeniumdiolated.  Exceptionally large NO totals of up to 11 µmol/mg were 

achieved, while the highest NO total achieved with the post-formation method was 1.7 

µmol/mg.  Based on elemental analysis, the pre-formation method also allowed for greater 

aminosilane incorporation, which contributed to improved NO loading.  As a result of these 

higher NO loadings, the duration of NO release was also significantly increased.  For 

example, NO release durations of up to 101 h were achieved with N-diazeniumdiolated 

DET/TMOS particles, which is nearly 6 times longer than durations measured from post-

formation particles.  Unfortunately, the pre-formation strategy was burdened by a decrease in 

control over particle formation.  As a result of the instability of the N-diazeniumdiolate 

group, it is likely that both modified and unmodified aminosilanes were present in the sol.  

Just as the addition of one organosilane complicates particle formation compared to a sol 

containing only tetraalkoxysilane monomers, the addition of two types of organosilanes 

complicates the reaction further.  Moreover, excess base, salt and other possible byproducts 

from the N-diazeniumdiolate reaction make controlled particle formation significantly more 

difficult with the pre-formation strategy compared to the post-formation method. 
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The therapeutic utility of surface-grafted and homogenous NO-releasing particles was 

preliminarily evaluated for use as thromboresistant and antimicrobial therapies, 

respectively.97, 101, 102 Surface-grafted silica particles were doped into polyurethane coatings 

on the inner walls of excorporeal blood circulatory tubes to evaluate their ability to inhibit 

thrombosis on blood-contacting devices.97  The NO release from these polymers mimicked 

the NO flux from stimulated endothelial cells (i.e., ~7 pmol cm-2 s-1) and effectively 

decreased platelet adhesion and activation.  The homogenous NO-releasing silica particles 

capable of higher NO payloads were evaluated for their antimicrobial efficacy.  Hetrick et al. 

observed >99% killing of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus 

aureus, Staphylococcus epidermidis, and Candida albicans biofilms.101   

 

1.2.4 Limitations of NO-releasing silica particles  

The work of Zhang and Meyerhoff97 and Shin, Hetrick and Schoenfisch99-102 

exemplified the therapeutic potential of NO-releasing silica particles.  Encouraged by these 

reports, much remains to be discovered in terms of what specific particle characteristics can 

be tuned to improve these materials.  As has been discussed in previous sections, the 

chemical and physical characteristics of silica nanoparticles greatly affect their therapeutic 

potential.  More precise control over the physical and chemical properties of NO-releasing 

silica particles would allow for investigations in nanoparticle-dependent therapeutic effects 

and broaden the impact of these materials.   

To pinpoint the effect of a certain aspect, all other chemical and physical parameters 

must remain constant, a synthetic feat that is not trivial.  For example, Shin et al. observed a 

change in particle size, amine content, NO storage capacity, and NO release kinetics merely 
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by changing the backbone of 10 mol% AHAP silica particles from TMOS to TEOS.99  As 

discussed above, the use of alternative synthetic techniques for sol–gel chemistry, such as the 

reverse microemulsion, might allow for greater size control while keeping other particle 

characteristics constant.  Additionally, the therapeutic impact of NO-releasing nanoparticles 

may be enhanced by modifying the particle surface chemistry (e.g., surface charge and 

hydrophobicity).  Furthermore, expanding the chemical flexibility of NO-releasing silica 

particles may enable the design of multifunctional scaffolds as combination strategies that are 

characterized by increased therapeutic efficacy.103, 104   

 

1.3 Modifying physical properties of NO-releasing silica nanoparticles  

The development of NO-releasing silica particles for therapeutic applications requires 

that the physical properties be optimized as these characteristics will greatly influence 

nanoparticle-cell interactions and drug delivery efficiency.  Efficient delivery is of the utmost 

importance given NO’s   reactive nature and concentration-dependent biological effects. 

Physical characteristics may govern NO release kinetics by influencing the rate of water 

diffusion into the network and subsequent NONOate degradation.  For example, smaller 

particles are characterized by significantly higher surface area to volume ratios compared to 

larger particles.  Thus, NO release may be faster for smaller particles as a greater percentage 

of the NONOates are closer to the particle surface where they will contact water more 

quickly.  Furthermore, NONOates present at the interior of nonporous scaffolds will be more 

protected from decomposition than those present at the interior of porous particles due to 

decreased water diffusion.  In this section, methods for tuning size, shape and porosity of 

silica nanoparticle systems are discussed.  
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1.3.1 Size 

A wide range of particle sizes can be achieved with the Stöber method by changing 

specific reaction parameters including solvent type, reaction temperature, and concentration 

of water or ammonia.  The use of larger molecular weight water-miscible alcohol solvents 

can result in an increase in particle size.  Hydrolysis is slowed in solvents with larger molar 

volumes and results in a lower overall number of nuclei formed.  As discussed in Section 

1.1.1, when fewer nuclei are formed the resulting particles are fewer in number and larger in 

size.10  Indeed, TEOS particles synthesized in methanol, ethanol, or propanol exhibited 

average sizes around 30, 200, and 300 nm, respectively.105  Decreased hydrolysis rates and 

increased particle sizes can also be achieved by decreasing the reaction temperature.10  

Lastly, the concentration of water and ammonia may be varied to control particle size in a 

Stöber reaction.  Increasing water concentration above 9 M results in a decrease in particle 

size by promoting hydrolysis.8, 106, 107 Conversely, decreasing water concentration below 9 M 

increases particle size as a result of greater nuclei aggregation.10, 106  Generally, an increase in 

ammonia concentrations results in improved particle morphology (i.e., spherical shape) as 

high ammonia concentrations are required to provide sufficient stability of the particles in 

solution.  Thus, non-spherical and aggregated particles are often observed at low ammonia

concentrations.107, 108 

With the reverse microemulsion technique, particle size is governed by the size and 

stability of the micelle, which is impacted by the type of organic solvent, the water to 

surfactant ratio, the water to solvent ratio, and the ammonia concentration.11, 38  The viscosity 

and polarity of the organic solvent, as well as the size and molecular structure, influence the 

intermolecular forces between the surfactant molecules and the organic phase.  As a result, 
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the identity of the organic solvent greatly impacts the micelle diameter and the resulting 

particle size.109  Smaller organic solvent molecules can penetrate deeper into the surfactant 

layer, decreasing the overall size of the water droplet.  As the size of the water droplet 

decreases, the resulting particle size decreases.38  The water to solvent ratio (R) in a reverse 

microemulsion also affects particle size.13  At low R values, most water molecules are bound 

to the surfactant molecules comprising the micelle. The mobility of hydroxide (OH-) is thus 

limited, and hydrolysis and nucleation are not favored.  Additionally, less water results in 

fewer TEOS monomers present per micelle, decreasing the probability of intramicellar 

nucleation.  At large R values, both hydrolysis and condensation are favored as most water 

molecules are unbound.  There are also more TEOS monomers per micelle, favoring 

intramicellar nucleation and the formation of particles with smaller diameters.  As ammonia 

catalyzes the hydrolysis of the silane precursors, its concentration in the micelles also has a 

great effect on particle size and morphology.13  At low water concentrations, increasing 

ammonia concentration promotes hydrolysis and nucleation resulting in smaller particle 

sizes. At larger water concentrations, increasing ammonia concentration causes an increase in 

particle size as particle agglomeration occurs within the micelle.  A loss in control over 

particle morphology can occur at too high of ammonia concentrations due to siloxane bond 

cleavage.  The last parameter affecting particle size in reverse microemulsion syntheses is 

reaction time.  Interdroplet percolation occurs when two micelles collide and transfer silica 

cores, which may fuse and form one larger particle.38  Thus, increasing reaction time leads to 

a greater probability of interdroplet percolation, ultimately resulting in larger particles. 

Analagous to non-porous silica particles, the size of MSNs is controlled by modifying 

the rate of nucleus formation and monomer condensation.14  Methods for tuning particle 
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morphology include tuning reactant (silane or base) concentrations and varying reaction 

temperature.  For example, increasing reaction temperature results in an increase in the 

length of mesporous silica nanorods.110  Additionally, changing the type and concentration of 

surfactant will result in a change in particle size.  For example, lower surfactant 

concentrations will lead to less particle aggregation and a narrower size distribution (300–

600 nm).111 Co-condensation of an organosilane along with a tetraalkoxysilane also affects 

the resulting MSN particle size.  Huh et al. found that the incorporation of hydrophobic 

organosilanes resulted in a decrease in particle size compared to the unmodified MCM-41 

counterpart.112   

 

1.3.2 Shape 

The ability to create silica particles of various shapes is generally only achievable 

with surfactant-templated MSNs because the Stöber and reverse microemulsion techniques 

inherently produce spherical particles.  Since MSN grow along the micelles, their shape may 

be tuned by changing the geometry of the micelle.   

As with solid silica particles, the addition of an organosilane during the silane 

polymerization greatly impacts particle morphology of MSNs.  For example, the co-

condensation of TEOS with 3-aminopropyltrimethoxysilane resulted in curved hexagonal 

tubular structures.14  Alternatively, co-condensing TEOS with a polyaminosilane N-(2-

aminoethyl)-3-aminopropyltrimethoxysilane or 3-[2-(2-aminoethylamino)ethyl]propyl-

trimethoxysilane yielded MSNs of twisted columns or micron spheres, respectively.112  The 

incorporation of ureidopropyltrimethoxysilane also yielded micron-sized spheres but with a 

raspberry-like surface.  The influence of silane type on the resulting particle morphology is 
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attributed to the orientation that the organosilanes adopt with respect to the surfactant 

molecules during polymerization.  Hydrophilic silanes will orient themselves with their 

nonhydrolyzable groups positioned away from the micelles, while hydrophobic silanes will 

align such that the nonhydrolyzable portions are associated towards the hydrophobic domains 

of the micelle.   

The type of surfactant used to template the growth of MSN can also be modified to 

gain morphological control over MSNs.  The structure and packing of the micelle is greatly 

affected by the characteristics of the surfactant.  Again, since particle growth occurs around 

the micelles, it follows that micelle geometries will affect particle geometries.  This was 

observed experimentally by Trewyn et al. who utilized a range of room-temperature ionic 

liquids including 1-tetradecyl-3-methylimidaxolum bromide, 1-hexadecyl-3-

methylimidazolium bromide, 1-octadecyl-3-methylimidazolium bormide and 1-

tetradecyloxymethyl-3-methylimidazolium chloride to achieve spheres, ellipsoids, rods and 

tubes, respectively.113   

 

1.3.3  Porosity 

By definition, porosity is the volume of the voids in a network per unit mass.  Pores

are classified according to size as nanopores (≤2  nm), mesopores (2–50 nm), and macropores 

(0.05–10 µm).114  As drug type and release rates are dependent on the porosity of the delivery 

scaffold, much effort has focused on developing methods to control the porosity of silica 

particles to accommodate drug delivery needs.  

Nanoporous silica particles can be achieved without the use of a surfactant through a 

modified Stöber synthesis where an n-alkyltrialkoxysilane is added to the reaction as a 
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porogen.115  The hydrophobic ligands of the organosilanes orient towards each other with the 

hydrolyzable groups directed out towards the aqueous reaction conditions.  As hydrolysis and 

condensation proceed, hydrophobic pockets are formed throughout the silica network.  After 

particle formation, the organic groups can be removed by calcination to reveal silica particles 

with hollow nanopores.  Similarly, primary alkyl amines have also been included in a 

modified Stöber reaction to form nanopores throughout the silica scaffold.116  However, 

nanoporous silica particles are limited in the size and amount of drugs that may be loaded 

within the small diameter pores. 

Silica particles with larger mesopores are created through the use of the surfactant-

templated method (Section 1.1.1).  The pore volume of MSNs can be increased with no 

change in pore diameter by decreasing the reaction temperature.117  Post-synthesis 

hydrothermal treatment in acidic conditions was also found to increase pore diameter.117  

Control of pore structure and dimensions has been exemplified with additives such as 1,3,5-

substituted benzenes, long chain alkyls, and alkylamines as well as co-surfactants.118 

Alternatively, control over pore structure can also be achieved through the use of polymer 

additives.  For example, the triblock copolymer Pluronic P-123 was used in addition to 

CTAB to create larger pore diameters of 8 nm.   

 

1.4  Modifying chemical properties of NO-releasing silica nanoparticles 

 As discussed in Section 1.1.3, particle surface charge and hydrophobicity will 

influence nanoparticle-cell interactions and in turn govern drug delivery efficiency.  For NO-

releasing silica particles specifically, chemical properties will have a considerable effect on 

drug delivery both in terms of NONOate formation and degradation rate as well as cellular 
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interactions.  Below, methods for tuning the chemical properties of NO-releasing 

silicaparticles are discussed.   

 

1.4.1 Particle architecture 

To create N-diazeniumdiolate-modified particles, the silica network must be modified 

to include secondary amine sites.  The location of the amines within the network impacts 

both N-diazeniumdiolate formation and degradation rates.  Organically modified silica 

particles can be constructed via surface-grafted, core-shell or homogenous particle designs.   

The surface-grafting method involves condensing organosilanes with silanols present 

on the surface of a preformed particle.  This method allows for control over the scaffolds’ 

physical properties because the preformed particles are generally made from TEOS alone.  In 

the case of nonporous particles, the amount of organic functionalities that can be surface-

grafted is constrained by the low number of silanol groups present on the particle surface.  

Theoretically, there is a maximum of ~8 µmol silanols per m2 of silica, and at most only 

~50% can be modified due to steric hinderance.119  Surface-grafting aminosilanes onto 

nonporous particles, typically 5–200 m2/g, does not allow for significant NO-loading.  

Conversely, surface-modifications of MSNs result in a greater degree of functionalization 

due to a significantly larger specific surface area (>900 m2/g).14  Large NO payloads thus can 

be achieved by surface-grafting aminosilanes onto MSNs.42  The external surface is 

selectively modified by functionalizing prior to surfactant removal.14  The internal surfaces 

may then be modified following external modification and surfactant removal to impart a 

second functionality.   

A core-shell particle design allows for larger organic content while still employing a 
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template particle for fine control of particle morphology.  In this design, a core particle is 

formed typically from a tetraalkoxysilane (i.e., TMOS or TEOS).  A silica shell containing 

additional tetraalkoxysilane and an organosilane is then condensed around it.5  Since particles 

synthesized from TEOS or TMOS alone are generally monodisperse, the core-shell design 

yields particles with well-defined sizes and morphologies while still allowing for greater 

organosilane incorporation compared to surface-grafting.   

A homogeneous particle design allows for the greatest degree of functionalization 

because the organic groups are present throughout the entire scaffold.  To achieve equal 

distribution, organically modified silanes are hydrolyzed and co-condensed with a 

tetraalkoxysilane.  Although this method allows for greater concentrations of specific 

functionalities, the inclusion of a second type of silane during the sol–gel process typically 

disrupts uniform particle formation.  As a result, the synthesis of hybrid particles often 

requires greater effort in optimizing reaction conditions to achieve control over particle 

monodispersity and size.  In general, methods to ensure that the rate of hydrolysis and 

condensation of the two silanes are similar aid in obtaining well-defined hybrid particles.  If a 

large disparity exists between the rates of hydrolysis of the two silanes, a pre-hydrolysis step 

can be used for the silane with a slower rate.  Immiscibility between the two silanes may also 

disrupt homogeneous mixing and subsequently complicate uniform particle formation.   

 

1.4.2 Particle composition  

 For NONOate-based materials, NO payloads are governed by both the total number 

of amines present and their accessibility to deprotonation and reaction with NO.  Clearly, the 

ability to incorporate larger aminosilane concentrations into nanoparticles will increase the 
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potential for greater NO payloads.  However, the immobility and steric hindrance of amines 

fixed within a solid silica network result in conversion efficiencies (%Econv) around 30%.97, 99  

As previously discussed, Shin and Schoenfisch obtained greater NO payloads (%Econv≈100)  

by synthesizing particles composed of N-diazeniumdiolate-modified aminosilane precursors 

and a backbone tetraalkoxysilane.  The efficiency of N-diazeniumdiolate formation is 

significantly greater on aminosilane monomers dissolved in solution compared to those 

immobilized in a solid network.100   

In addition to NO payload, the chemical composition of the particle will govern the 

NO release kinetics.  For example, the structure of the aminosilane has been shown to affect 

NO release kinetics by altering intra/intermolecular bonding stabilization and 

hydrophobicity.  The inclusion of primary amines that can participate in hydrogen-bonding to 

stabilize the NONOate structure will prolong NO release.  As such, particles composed of the 

mono-aminosilane 3-methylaminopropyltrimethoxysilane (MAP; one secondary amine) 

exhibit fast NO release kinetics, whereas those of the di-aminosilane N-(2-aminoethyl)-3-

aminopropyltrimethoxysilane (AEAP; one secondary, one primary amine) have longer NO 

release kinetics.  Furthermore, the accessibility of the NONOate to protons (i.e., water) will 

influence NO release kinetics.  Increasing the hydrophobicity of the particles to decrease the 

diffusion of water into the silica network will also extend NO release.  For example, particles 

composed of (aminoethylaminomethyl)phenethyltrimethoxysilane (AEMP), which contains a 

conjugated ring, or N-(2-aminohexyl)-11-aminoundecyltrimethoxysilane (AEAUD), which 

contains a long alkyl chain, are characterized by longer NO release kinetics than particles 

composed of MAP.      

Nitric oxide release can be tuned by both changing the structure of the amine to
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which the NONOate is bound and/or by modifying the structure of the NONOate group 

directly.  O2-Protected NONOates are synthesized upon reaction of N-diazeniumdiolates with 

alkyl halides, epoxides, alkyl sulfates and aryl halides.94   These modified NONOates were 

designed to undergo hydrolytic or enzymatic cleavage such that the protecting group is 

removed in physiological conditions.  These functionalities are stable in basic conditions and 

withstand high temperatures, making them amenable to a wide variety of processing or post-

synthesis modifications.   

 

1.4.3 Surface chemistry 

The chemistries present on the particle surface will influence drug delivery efficiency 

by affecting NO release and governing nanoparticle-cell interactions.   As discussed in 

Section 1.1.3, the hydrophobicity and surface charge expressed by a particle will govern a 

cell’s affinity for it.  This is particularly important for NO-releasing particles due to the 

reactive nature of NO as well as its concentration/duration-dependent therapeutic effects.   

The surfaces of NO-releasing particles may be modified by grafting functional silanes 

onto the particle or covalently binding ligands to reactive groups near the particle surface.  

Surface-grafting is limited by the number of surface silanols, especially with hybrid particles.  

Covalent modification via ring-opening reactions, Michael additions, or N-

hydroxysuccinimide/ethyl(dimethylaminopropyl)carbodiimide (NHS/EDC) chemistry with 

primary amines present on the particle surface provide facile methods to modify particle 

surfaces.  Hydrophobicity may be modified through the addition of long-chain alkanes or 

fluorinated groups as discussed in Chapter 3.  Positively charged particles can be achieved 

through the inclusion of primary amines or quaternary ammoniums.  Alternatively, the



 

 49 

addition of carboxylates and phosphates yield negatively charged particles.  Lastly, particles

may be modified with targeting moieties (Section 1.1.4) to direct NO delivery. 

 

1.5  Summary of dissertation research 

 The goal of my dissertation research was to design and synthesize NO-releasing silica 

nanoparticles with physical and chemical properties that may influence their therapeutic 

consequence.  Specifically, my research aimed to:  

1. develop synthetic techniques to achieve control over particle size, monodispersity, 

amine-content and surface chemistry of silica nanoparticles; 

2.  evaluate the influence of particle size on the bactericidal efficacy of nitric oxide-

releasing silica nanoparticles; 

3.  achieve N-diazeniumdiolate-based silica particles with prolonged NO release 

duration; and, 

4.  synthesize NO-releasing quaternary ammonium-modified silica nanoparticles as 

dually functional antimicrobials. 

In this introductory chapter, I sought to explain and justify the development of silica 

nanoparticles as drug delivery scaffolds.  The inherent physical and chemical flexibility of 

these materials represent advantages over other macromolecular scaffolds.  For example, 

specific properties can be tuned to influence nanoparticle-cell interactions and drug delivery 

efficiency.  This introduction also serves to demonstrate the therapeutic potential of NO-

releasing silica nanoparticles and describe methods for improving their effectiveness by 

tuning both their physical and chemical properties.  In Chapter 2, the reverse microemulsion 

technique is used to achieve silica particles of three distinct size and equal amine-content.  
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These scaffolds allowed for the study of the influence of scaffold size of NO-releasing silica 

nanoparticles on the bactericidal efficacy against P. aeruginosa.  In Chapter 3, the surface 

hydrophobicity of silica particles was modified via surface grafting to yield tunable and 

prolonged NO release kinetics.  Modifying particle surface chemistry was also found to 

enhance the stability of the particles in porous hydrophobic polymer films.  In Chapter 4, O2-

protected N-diazeniumdiolates are employed to achieve NO-releasing silica particles with 

NO release kinetics longer than any other silica particle scaffold to date.  The extended NO 

release scaffolds proved effective at inhibiting adhesion of plaque bacteria to dental 

composites compared to materials with shorter NO release durations.  Lastly, the chemical 

flexibility of silica particles is demonstrated Chapter 5.  Specifically, NO release is combined 

with quaternary ammonium groups to achieve multi-mechanistic antimicrobial 

nanomaterials.  Finally, Chapter 6 provides an overall summary of my dissertation work and 

suggests future steps for designing more effective NO-release scaffolds. 
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Chapter 2: 

Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica 

Nanoparticles 

2.1 Introduction 

The endogenous free radical nitric oxide (NO) is involved in numerous physiological 

processes, including neurotransmission, wound healing, blood pressure regulation, platelet 

adhesion, and the immune response.1-5  While the delivery of exogenous gaseous NO has 

been shown to elicit promising antimicrobial effects against Gram-positive and Gram-

negative bacteria, and even antibiotic-resistant strains,6 the utility of NO as an effective 

therapeutic has been limited due to its reactive and concentration-dependent behavior.  As a 

result, much research has focused on the development of NO donors that store and generate 

NO in a controlled manner.7-11  Examples of NO donors that reversibly bind NO include 

metal nitrosyls, S-nitrosothiols, N-diazeniumdiolates, and organic nitrates.  N-

Diazeniumdiolate NO donors, formed upon the reaction of secondary amines with NO under 

basic conditions, are of particular interest as they undergo proton-initiated decomposition in 

physiological solution (pH 7.4, 37 °C) to release two equivalents of NO per functional 

group.7   

Although useful as tools for studying the role of NO in biology, most low molecular 

weight (LMW) NO donors release NO indiscriminately with undesirable cytotoxicity to 

healthy cells.3, 12, 13  In Section 1.2.3, macromolecular NO-releasing silica particles
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synthesized via the Stöber method were introduced as a new class of NO release materials 

that store/release substantial levels of NO with great potential for future targeting strategies 

due to versatile surface chemistries for attaching cell targeting and/or tracking (i.e., 

fluorescent) ligands.14, 15  Employing a hybrid silica design allows for a wide range of NO 

doses and release kinetics by changing the type and concentration of the aminosilane 

precursor.  Silica particles have also proven effective at delivering NO to bacteria (i.e., 

Pseudomonas aeruginosa) with greater  bactericidal action than comparable small molecule 

NO donors.13 Other recent reports corroborate the utility of nanomaterials for delivering 

antimicrobial agents.16    Indeed, nanoparticles composed of silver,17-20 copper,21-23 zinc 

oxide,24-28 titanium dioxide,24, 29, 30 and magnesium oxide exhibit a broad range of 

bactericidal activity. As discussed in Section 1.1.3, the bactericidal efficacy of such materials 

is dependent on both the chemical composition and the particle diameter, with smaller 

diameters generally enhancing killing. For example, Morones et al. reported more effective 

Escherichia coli (E. coli) killing using smaller diameter (~1–10 nm) silver nanoparticles due 

to greater particle interaction with the bacteria.17  Likewise, Nair et al. observed tunable 

killing as a function of particle size for zinc oxide nanoparticles, with the greatest killing 

efficacy observed for the smallest particle system prepared.28  Since particle association with 

bacteria appears to be critical to antimicrobial activity,17, 31-33 we sought to study the 

influence of nanoparticle size on nanoparticle-bacteria interactions and the resulting 

bactericidal efficacy of NO-releasing nanoparticles.  In this chapter, a reverse microemulsion 

approach was used to synthesize monodisperse NO-releasing silica particles of three distinct 

sizes (50, 100, and 200 nm) with equal NO release.  The size-dependent antibacterial action 

of these particles against Pseudomonas aeruginosa was then evaluated.   
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2.2 Materials and methods 

Tetraethoxysilane (TEOS) and N-(6-aminohexyl)aminopropyltrimethoxysilane 

(AHAP) were purchased from Gelest (Morrisville, PA).  Triton X-100, 1-hexanol, heptane, 

pentane, sodium methoxide (NaOMe, 5.4 M solution in methanol), dimethylformamide, 

methanol, and rhodamine isothiocyanate were purchased from Acros Organics (Morris 

Plains, NJ). Ethanol, butanol, and 1-propanol were purchased from Fisher Scientific (Fair 

Lawn, NJ).  Tryptic soy broth, tryptic soy agar, and minimum essential media (MEM) were 

purchased from Becton, Dickinson and Company (Sparks, MD).  Pseudomonas aeruginosa 

(ATCC #19143) was purchased from American Type Culture Collection (Manasses, VA).  

L929 mouse fibroblasts were obtained from the UNC Tissue Culture Facility (Chapel Hill, 

NC).  Nitric oxide (99.5%), nitrogen (N2), and argon (Ar) gases were purchased from 

National Welders (Raleigh, NC).  Distilled water was purified using a Millipore Milli-Q UV 

Gradient A-10   system   (Bedford,  MA)   resulting   in   a   total   organic   content   of   ≤6   ppb   and   a  

final  resistivity  of  18.2  mΩ·∙cm. 

 

2.2.1 Reverse microemulsion synthesis of amine-functionalized silica nanoparticles  

Amine-functionalized silica nanoparticles of select sizes were synthesized by 

adjusting the type and volume of organic solvent used in the reverse microemulsion.34-36  

Initially, reverse micelles were formed by mixing 3.54 g Triton X-100, 3.6 mL 1-hexanol, 

and the appropriate amount and type of organic solvent for 30 min.  Then, 240 μL  water,  120  

μL   ammonium   hydroxide   solution   (28   wt%   in   water),   and   40   μL   TEOS   were   added  

sequentially in 30 min intervals.  Hydrolysis and condensation were allowed to proceed for 3 

or 18 h, depending on the desired particle size, to form a TEOS seed particle.  The organic 
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solvent type and volume as well as the reaction time for initial TEOS seed growth for each 

particle size are listed in Table 2.1. Following the formation of the TEOS core particle, an 

additional  40  μL   (0.179  mmol)  TEOS  was  added   to   the  microemulsion,   after  which  84  μL  

(0.335 mmol) AHAP was added 30 min later.  Hydrolysis and co-condensation of TEOS and 

AHAP were allowed to proceed for an additional 18 h to form the amine-functionalized shell.  

The emulsion was broken upon the addition of ethanol.  Silica precipitates were collected via 

centrifugation at 3645 g for 5 min.  The supernatant was removed, and the particles were 

washed by resuspension in 1-butanol, 2-propanol, and ethanol, sequentially.  To ensure 

removal of Triton X-100, particles were resuspended in 45 mL of a 50/50 ethanol/water (v/v) 

solution, sonicated for 5 min in chilled water, and collected via centrifugation (3645 g, 5 

min). This process was repeated three times before a final wash with ethanol to aid in drying 

of the particles.  The resulting surfactant-free particles (confirmed by UV-Vis) were dried in 

vacuo overnight. Product yields were typically between 10–20 mg per reaction.  

 

2.2.2 N-Diazeniumdiolation of amine-functionalized silica nanoparticles 

 The procedure for loading NO onto the core-shell particles was modified from a 

previously reported method.14, 37  Briefly, particles were suspended in a 1:9 mixture of DMF 

and methanol (5 mg mL-1) by sonication.  Sodium methoxide, the base catalyst (5.4 M in 

MeOH), was added in either a 2.5:1 for 50 nm particles or 5:1 for 100 and 200 nm particles 

molar ratio relative to the concentration of secondary amines as determined by elemental 

analysis.  Following thorough mixing of this solution (vortexed for 1 min), 3.5 mL aliquots 

were placed in vials equipped with a stir bar. The open vials were then placed in a 160 mL 

Parr general purpose stainless steel pressure vessel with magnetic stirring and connected to
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Table 2.1  Variable synthetic parameters for each amine-functionalized nanoparticle size. 

Particle 
Size 
(nm) 

Organic Solvent  TEOS Core Particle 
Reaction Time 

(h) 
Type Volume 

(mL) 
 

50 pentane 45.6  3 
100 heptane 15.2  3 
200 heptane 15.2  18 
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an in-house NO reactor.  Oxygen was removed from the solutions by purging with Ar three 

times rapidly, followed by three 10 min Ar purges at 8 bar. The vessel was then filled to a 

pressure of 10 bar with NO that had been scrubbed with KOH.  The pressure in the reactor 

was maintained at 10 bar for 72 by repressuring with fresh NO to accommodate loss due to 

reaction and/or gas leak.  After 72 h, the NO was released from the vessel, and the solutions 

were again purged with Ar to remove unreacted NO.  The resulting N-diazeniumdiolate-

modified silica nanoparticles were collected by centrifugation (3645g, 5 min), washed three 

times with ethanol, and dried in vacuo.  The NO donor-modified nanoparticles were then 

stored in a vacuum sealed package at -20 °C until further use (up to one week).  No loss in 

NO loading was observed for particles stored in this manner up to 8 d (the longest period 

investigated) as determined by chemiluminescence upon comparing NO release immediately 

following diazeniumdiolate formation to that measured on day 8. 

 

2.2.3 Nitric oxide release measurements 

Total amounts of NO released from each particle size were evaluated using the Griess 

assay.38 The NO-loaded particles were placed in oxygenated phosphate buffered saline (PBS) 

upon which the liberated NO is oxidized to nitrite (NO2
-).  After removing the particles via 

centrifugation, the supernatant containing NO2
- was reacted with 1 wt% solutions of 

sulfanilamide and N-1-naphthylethylenediamine to form an azo-compound. By detecting the 

absorbance at 540 nm and comparing the results to a calibration curve, the concentration of 

NO released from the particles is deduced.   While the Griess assay allows for the 

measurement of total NO concentrations, real-time diazeniumdiolate degradation and NO 

release kinetics were determined using a Sievers NOA 280i chemiluminescence NO analyzer 
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(Boulder, CO) in PBS (pH 7.4) at 37 °C, as described previously.39  The absence of nitrite 

byproducts was confirmed by equal total NO concentrations measured from the Griess assay 

and the NOA.  Prior to analysis, the NO analyzer was calibrated with air passed through a 

NO zero filter (0 ppm NO) and a 26.39 ppm NO standard gas (balance N2). 

 

2.2.4 Nanoparticle characterization 

The hydrodynamic particle diameter and zeta potential (i.e., surface charge) were 

measured using a Malvern Zetasizer Nano-ZS (Malvern Instruments, Ltd.; Worcestershire, 

UK) equipped with a 10 mW HeNe laser (633 nm) and a NIBS® detector at an angle of 

173°. All samples were prepared at 1 mg/mL concentrations in PBS (size) or phosphate 

buffer (zeta potential) and analyzed at 37 °C to mimic the media used for NO-release and 

bacteria assays.  Phosphate buffer (non-saline, pH 7.4) was employed for zeta potential 

measurements because the high ionic content of PBS was found to corrode the folded 

capillary electrodes.40  Particle size and morphology were also characterized using a JEOL 

100 CX II Transmission Electron Microscope (TEM) at 100 kV. 

Covalent incorporation of AHAP and TEOS within the silica network was confirmed 

using solid-state cross-polarization/magic angle spinning (CP/MAS) 29Si NMR with a Bruker 

360 MHz DMX spectrometer (Billerica, MA) equipped with wide-bore magnets (triple-axis 

pulsed field gradient double-resonance probes).  Samples were packed into a 4 mm rotor 

(double-resonance frequency of 71.548 Hz) and spun at a speed of 10 kHz.  Chemical shifts 

were determined in parts per million relative to a tetramethylsilane external standard. 

Elemental analysis was performed using a PerkinElmer CHN/S O Elemental Analyzer Series 

2400 (Waltham, MA) instrument.  
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2.2.5 Bactericidal assays   

Pseudomonas aeruginosa was cultured to a concentration of 108 colony forming units 

(CFUs) per mL, collected via centrifugation, resuspended in sterile PBS and adjusted to a 

concentration of 106 CFU mL-1.  This starting concentration was chosen to accurately show 

at least 3 logs reduction as the limit of detection for the plate counting method is 2.5x103 

CFU mL-1.41  Aliquots of the 106 CFU mL-1 bacteria suspension were added to pre-massed 

amounts of nanoparticles to obtain the following concentrations 0, 0.025, 0.05, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 mg/mL.  The nanoparticle/bacteria suspensions were vortexed 

for 30 s to adequately suspend the nanoparticles, then incubated at 37 °C with gentle 

agitation.  Aliquots were then taken from each suspension after 2 and 24 h and diluted 10- 

and 100-fold in PBS before plating on tryptic soy agar.  Bacterial viability was measured 

after incubating plates at 37 °C overnight by counting observed colonies.  

 

2.2.6 Confocal microscopy studies 

Nanoparticles were fluorescently labeled by covalent modification with rhodamine 

isothiocyanate (RITC).42  Briefly, 50 mg of particles were suspended in 100 mL ethanol and 

mixed with 5 mg RITC, protected from light, for 48 h.  The particles were then washed 

copiously with ethanol using the suspension/centrifugation method described above until a 

colorless supernatant was achieved.  All confocal images were obtained with a Zeiss 510 

Meta Laser Scanning Confocal Microscope.  Brightfield and fluorescent images (543 nm 

HeNe excitation laser) were collected at room temperature with a N.A. 1.2 C-apochromat 

water immersion lens with either a 40 or 63  objective as indicated for each image. 

Pseudomonas aeruginosa cultures (106 CFU mL-1) were placed in a glass bottom petri dish 
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and allowed to adhere for 45 min at 37 °C prior to imaging.  The slide was then rinsed with 

fresh PBS to remove loosely or unadhered bacteria.  Brightfield images of untreated bacteria 

were obtained as controls. For all experiments, suspensions of rhodamine isothiocyanate 

(RITC)-modified AHAP/TEOS nanoparticles (500 µL of 10 µg mL-1 in PBS) were added to 

the bacteria on the glass slide.  To observe association of NO-releasing particles with bacteria 

over time, fluorescence images were taken immediately following the addition of particles at 

20 s intervals for 40 min.  To compare the influence of particle size on the extent of particle-

bacteria association, fluorescence images were obtained of bacteria treated with 10 µg mL-1 

of 50, 100, and 200 nm particles for 10 min.  After the 10 min incubation period, the 

suspension was removed, and the bacteria were copiously washed with fresh PBS to remove 

unassociated particles.  Fresh PBS was then added, and the bacteria were imaged.   

 

2.2.7 Cytotoxicity assays    

In vitro cellular toxicity of both control (i.e., control AHAP/TEOS particles) and NO-

releasing particles of all three sizes was evaluated using L929 fibroblast cells. Briefly, the 

fibroblasts were cultivated in MEM supplemented with 10% fetal bovine serum (v/v, FBS) 

and 1% penicillin/streptomycin, then incubated in 5% CO2/95% air under humidified 

conditions at 37 C. After attaining confluency, the cells were trypsinized and then seeded 

onto tissue-culture treated polystyrene 96-well plates at a density of 3x105 cells mL-1. Three 

days later, cells were incubated with control and NO-releasing nanoparticles at a 

concentration range of 0–3.2 mg mL-1 for 2 h and 0–0.8 mg mL-1 for 24 h. Subsequently, the 

particles were aspirated, cells were  washed  with   sterile  PBS   three   times,  and  100  μL   fresh  

media was added to the cells. Cellular viability was assessed using the MTS assay (CellTiter 
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96 Aqueous Non-Radioactive Cell Proliferation Assay; Promega, Madison, WI). Briefly, the 

MTS  reagent  (20  μL) was added to each well until a purple formazan color was formed in the 

control  (untreated)  wells.  The  supernatant  (90  μL)  from  each  well  was  then  transferred  to  a  

new 96-well plate prior to reading the absorbance at 490 nm using a microplate reader 

(Thermoscientific Multiskan® EX; Waltham, MA). Untreated cells were used as controls and 

results were expressed as percent viability relative to the untreated controls.  

 

2.3 Results and discussion 

While metallic and metal oxide nanoparticles with diameters of 1 to 500 nm have 

been reported to exhibit toxicity towards both Gram-positive and Gram-negative 

microorganisms, nanoparticles of  diameters  ≤100  nm  are  generally  more  effective biocides.16 

As such, we set out to investigate the influence of particle size on the bacteria killing efficacy 

of NO-releasing silica particles with diameters above, below, and equal to 100 nm.  To 

achieve these specific sizes, the reverse microemulsion technique was used as it provides a 

method for synthesizing silica-based particles in the nanometer range with excellent control 

over size and particle composition by changing any number of synthetic parameters including 

the amount of water and ammonium hydroxide,43-45 reaction time, the type of organic 

solvent, and the ratios of water to surfactant, surfactant to co-surfactant, and surfactant to 

organic solvent.34, 45, 46  A clear benefit of this method is the ability to tune particle size while 

keeping the aminoalkoxysilane:alkoxysilane ratio constant.35, 43, 47, 48  In general, particles 

synthesized by the reverse microemulsion method have a smaller size and narrower 

distribution than those produced via the Stöber method.34, 49  Narrow size distributions are 

essential when investigating the influence of nanoparticle size on bacterial interactions.



 

 70 

Furthermore, the use of the reverse microemulsion technique provides a facile method for 

core-shell particle designs such that a variety of functionalities are easily incorporated as part 

of the silica scaffold.34-36, 43, 47, 48 

 

2.3.1 Size-controlled synthesis of amine-functionalized silica nanoparticles   

Scheme 2.1 illustrates the reverse microemulsion approach used to obtain amine-

functionalized silica nanoparticles.  For the three sizes (50, 100, and 200 nm), the micelles 

were prepared using Triton X-100 (surfactant) and 1-hexanol (co-surfactant) suspended in 

pentane or heptane.  Following micelle formation, an aqueous phase was introduced by 

adding water and ammonium hydroxide, sequentially. Following the formation of a stable 

microemulsion as indicated by a clear and colorless solution (step 1 of Scheme 2.1), the 

amine-modified silica nanoparticles were synthesized.  N-(6-aminohexyl)aminopropyl-

trimethoxysilane (AHAP) and tetraethoxysilane (TEOS) were chosen for study based on 

prior work that demonstrated NO-releasing AHAP/TEOS particles to be effective against P. 

aeruginosa and not toxic to fibroblast cells.13  The addition of pure aminosilane to the 

microemulsion resulted in amorphous silica particulates at low yields (1–2 mg) (Figure 

2.1.E). Thus, it was necessary to include a tetraalkoxysilane backbone to promote 

condensation as was seen for our previously reported particle systems.14, 15  However, the 

simultaneous addition of both AHAP and TEOS resulted in particles of a wide size 

distribution, especially at high AHAP concentrations (Figure 2.1).  By adopting a sequential 

silane addition method, the monodispersity of the particles was greatly improved.  Thus, 

TEOS was added initially to the microemulsion to form monodisperse TEOS seed particles 

(step 2 of Scheme 2.1) prior to shell modification with 65 mol % AHAP
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Figure 2.1 Transmission electron micrographs of silica particles resulting from the 
addition of (A) 0, (B) 27, (C) 53, (D) 77, or (E) 100 mol% aminosilane (balance TEOS).  
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1. Micelle Formation                                 2.  TEOS Core Particle                             3.  AHAP/TEOS Shell
Synthesis                                                   Addition

TEOS

3 or 18 h

TEOS +AHAP

18 h

 

Scheme 2.1 Synthesis of amine-functionalized silica nanoparticles via a reverse 
microemulsion. Step 1 involves micelle formation.  Step 2 is the addition of 
tetraethoxysilane (TEOS) to the  emulsion  to  form  monodisperse  “seed”  particles.    Lastly,  
step 3 is the subsequent addition of TEOS and AHAP that co-condense to form the 
AHAP/TEOS silica nanoparticles. 
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(balance TEOS), as shown in step 3 of Scheme 2.1.  The reverse microemulsion process 

allowed for higher aminosilane incorporation than was previously achievable via the 

Stöber process (10 mol %, balance TEOS)14 due to diffusion controlled particle growth.  

Of note, adding AHAP alone to the microemulsion resulted in poor shell formation and 

low yield.  Due to the mismatched hydrolysis and condensation rates of the two silane 

precursors,50 TEOS was added 30 min prior to the addition of AHAP during shell 

modification to achieve monodisperse particle populations.   

To tune particle size, a variety of synthetic parameters were adjusted (Table 2.1).  

The viscosity, polarity and molecular structure of the organic solvent are known to 

influence the intermolecular forces between the surfactant molecules and the organic 

phase, and thus greatly impact the micelle diameter and the resulting particle size.51  

Smaller organic solvent molecules can penetrate deeper into the surfactant layer, 

decreasing the overall size of the water droplet and ensuing particles.34  For this reason, 

pentane was used to prepare the smallest AHAP/TEOS particles (50 nm), while heptane 

was used to form the larger diameter particles (i.e., 100 and 200 nm).  Thus, increasing 

reaction time can ultimately lead to larger particles.34  For example, a 3 h TEOS seed 

reaction resulted in 5 nm particles whereas 12 nm seed particles were achieved after 18 h 

under the same solvent conditions.  Additionally, increasing the volume of organic 

solvent decreases the occurrence of interdroplet percolation, resulting in smaller particles. 

The resulting particle sizes and surface charges of the three synthesized systems are 

provided in Tables 2.2 and 2.3.  While electron microscopy provided a means to examine 

particle morphology, dynamic light scattering (DLS) allowed for the measurement of the 

hydrodynamic diameter and solution behavior of the particles.52  When interpreting
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Table 2.2 Particle size as determined by transmission electron microscopy (TEM) and 
dynamic light scattering (DLS). 

 

 

Particle 
Size 
(nm) 

TEM  DLS 

Diameter 
(nm) 

 Z-Ave 
(nm) PDI 

Number  
PSD 
(nm) 

Volume  
PSD 
(nm) 

50 56 ±  7  80.0 ± 3.1 0.150 ± 0.041 52.7 ± 3.3 66.8 ± 3.4 

100 93 ± 14  129.5 ± 13.7 0.087 ± 0.042 98.4 ± 6.7 127.3 ± 11.9 

200 199 ± 27  209.0 ± 3.9 0.041 ± 0.029 191.0 ± 1.8 221.7 ± 8.8 
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Table 2.3  Zeta potential values of AHAP/TEOS and N-diazeniumdiolate AHAP/TEOS 
silica nanoparticles as determined by Laser Doppler Velocimetry.  

 

 

 

 

 

 

 

 

Particle 
Size 
(nm) 

          Zeta Potentialb 

R2NH 
(mV) 

R2N[N(O)NO]- 
(mV) 

50 +11.8 ± 1.2 -5.2 ± 3.9 

100 +12.5 ± 1.1 +5.9 ± 2.3 

200 +11.4 ± 1.1 +8.4 ± 0.3 
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nanoparticle size, both DLS and electron microscopy data must be considered together for 

proper size characterization as particle size measurements from DLS better represent the 

entire particle population and the actual size in solution.  The Z-average diameter, 

polydispersity index (PDI), and particle size distributions (PSD), and diameters as measured 

from transmission electron microscopy (TEM) are provided in Table 2.2.  Taken together, the 

parameters reported in Table 2.2 provide a comprehensive evaluation of the actual particle 

sizes present during bacteria assays.  Z-average diameters result from the cumulants analysis 

of the intensity of light scattered from the sample, thus it may only be compared between 

samples that were prepared in the same dispersant and measured by the same technique. The 

number PSD is a measure of the particle size distribution based on the number of particles 

that are a particular size within the sample. Alternatively, the volume PSD is a measure of the 

particle size distribution based on the volume of the sample that is occupied by certain sizes. 

Both the Z-average and the volume PSD are skewed to larger sizes as larger particles will 

scatter more light and account for significantly more signal/volume than smaller particles.  

The polydispersity index (PDI) is a width parameter of the mean size calculated from the 

cumulants analysis, and ranges from 0 to 1, with a 0 indicating a stable suspension and a 

perfectly monodisperse population. Although no official standard exists, a PDI of <0.2 is 

considered  to  be  monodisperse,  while  a  PDI  ≤0.1  is considered to be highly monodisperse.53  

With respect to the synthesized silica particles, we observed increasing PDI values as the 

particle diameter decreased, indicating that while all sizes were monodisperse and formed 

stable suspensions in PBS, decreasing particle size resulted in a slight increase in size 

distribution.  This monodispersity was further corroborated by TEM (Figure 2.2 and Table 

2.2).  Collectively, the DLS and TEM data indicate that these particle systems are suitable for
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Figure 2.2  TEM micrographs of (A) 200, (B) 100, and (C, D) 50 nm AHAP/TEOS silica 
nanoparticles.  Scale bar is 1 µm for A–C and 0.2 µm for D. 
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investigating the influence of particle size on particle-bacteria interactions based on their 

narrow size distribution and solution stability.  

Solid state 29Si nuclear magnetic resonance (NMR) confirmed the covalent 

incorporation of the aminosilane into the silica network.  Cross-polarization (CP) and magic 

angle spinning (MAS) techniques were used to enhance the sensitivity toward silicon atoms 

near CHx or OH groups and improve peak resolution.54, 55  As shown in Figure 2.3, the 

spectrum of each particle system contained both T- and Q-bands, representing silicon atoms 

that are bound to three (AHAP) and four (TEOS) oxygen atoms, respectively.  Changes in 

the neighboring oxygen environments surrounding the observed silicon atom were indicated 

by peak splitting within the T- and Q-bands denoted by superscripted numbers corresponding 

to the number of siloxane bonds.54  The 29Si NMR spectra therefore confirmed successful co-

condensation and incorporation of AHAP and TEOS into the scaffold for each particle size. 

Of note, the ratios of the T-band to Q-band intensities are not reflective of the actual ratios of 

AHAP to TEOS within the particle because the core particles are likely pure SiO2 and free of 

hydrogens. 

Elemental analysis allowed for a more quantitative investigation of AHAP 

concentration within each particle system.  We hypothesized that the amine content would 

remain constant regardless of particle diameter because the molar amounts of silane 

precursors (both TEOS and AHAP) were held constant for all three systems.  Furthermore, 

the wt% N measured from CHN analysis may be translated to AHAP concentration as it is 

the only nitrogen-contributing component within the silica network.   For the smallest 

particle system (50 nm), we measured a wt% N of 5.39, corresponding to 1.93 µmol AHAP 

per mg of particles.  While the nitrogen amount increased slightly for the 100 nm particles
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Figure 2.3  Solid state CP/MAS 29Si NMR of (A) 50 nm, (B) 100 nm, and (C) 200 nm 
AHAP/TEOS nanoparticles.  The T-band (ca. -70 ppm) represents silicon atoms that are 
bound to three oxygen atoms (i.e., AHAP).  The Q-band (ca. -100 ppm) indicates silicon 
atoms with four siloxane bonds (i.e., TEOS).   

-250 -200 -150 -100 -50 0 50 100 

C 

B 

A 

Chemical Shift (ppm) 

T 2 

T 3 

Q 2 

Q 3 

Q 4 



 

 80 

(6.64 wt% N or 2.37 µmol AHAP per mg of particles), the larger 200 nm particle system was 

characterized by a slightly lower nitrogen content (5.29 wt% N corresponding to 1.89 µmol 

N per mg of particles), indicating a similar amine content regardless of a change in particle 

size for the three systems synthesized here.   

 

2.3.2 N-Diazeniumdiolate NO donor functionalization  

Nitric oxide was loaded onto the silica scaffolds via N-diazeniumdiolate formation on 

the secondary amine sites of AHAP by exposing the particles to high pressure of NO in the 

presence of a base catalyst (NaOMe) (Scheme 2.2).14, 37  N-diazeniumdiolate formation was 

confirmed via NO release and zeta potential (i.e., surface charge) changes observed after NO 

loading (Table 2.3).  Initially, each particle system was characterized by a slightly positive 

charge of ca. +12 mV, an expected result due to the protonated primary amines at pH 7.4.  

Following NO loading, the zeta potential for each size became neutral (zeta potential 

between -10 and +10 mV)40 from the contribution of the zwitterionic N-diazeniumdiolate 

functionality (Scheme 2.2).  The particles regained their positive charge within 10 min as the 

result of N-diazeniumdiolate decomposition and regeneration of parent amines. 

As shown in Table 2.4, the total amount of NO released from the particles was 

1.49±0.29, 1.26±0.17, and 1.01±0.08 µmol mg-1 for the 50, 100, and 200 nm AHAP/TEOS 

particles, respectively.  Based on the AHAP content per mg particle (Table 2.4), NO donor 

loading efficiencies were determined to be 38.6, 26.6, and 26.7% for 50, 100, and 200 nm 

particles, respectively.  Such NO loading efficiency is consistent with previously reported N-

diazeniumdiolate-modified silica particles.14, 37  The greater conversion efficiency for the 

smallest particle size may be attributed to the increased surface area to volume ratio,
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Scheme 2.2  N-Diazeniumdiolate formation on aminosilane-modified silica nanoparticle. 
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resulting in a larger concentration of amines nearer to the particle surface and therefore more 

accessible to reaction.   These hybrid silica particles have low porosity with surface areas 

(SBET) of 4–20 m2/g and pore volumes of 0.008–0.989 cm3/g (at p/po = 0.99) as determined 

from nitrogen adsorption-desorption isotherms.  Indeed, the high density and low porosity 

resulting from the co-condensation method used to synthesize amine-modified hybrid silica 

materials have been previously observed.14, 15  As a result of low porosity, amine sites farther 

from the particle surface are less accessible to diazeniumdiolation.  To ascertain the dose of 

NO delivered from the particles over the course of the bactericidal assays, the total amounts 

of NO released over 2 and 24 h were measured and are provided in Table 2.4.  As expected, 

each particle system was depleted of NO by 24 h.  The NO release data indicates that over 

the course of 24 h, bacteria were exposed to similar amounts of NO regardless of 

nanoparticle size as there is no statistical difference in the total amount of NO released from 

each particle system.  Since NO release occurs upon protonation of the secondary amine of 

the N-diazeniumdiolate, it is inevitable that the kinetics of NO release differ slightly for each 

particle size based on the N-diazeniumdiolate groups’ proximity to the particle surface and 

therefore differing rate of contact with the aqueous solvent.  As shown in Figure 2.4, the 

instantaneous release of NO from the particles was characterized by an initial burst of NO 

due to immediate decomposition of surface N-diazeniumdiolate NO donors upon solution 

immersion.  This instantaneous maximum concentration of NO release is defined as  [NO]m. 

The particles exhibited a [NO]m of 49.7, 43.5, and 44.7 ppm mg-1 from the 50, 100, and 200 

nm particles, respectively.   
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Table 2.4 Nitrogen content, NO release properties, and extent of amine to N-
diazeniumdiolate conversion for the amine-functionalized silica nanoparticles.  

 

Particle 
Size 
(nm) 

µmol 
AHAPa 

per  
mg  

particle 

[NO]t
b 

(μmol mg-1) 
% Cc [NO]m

d 

(ppm mg-1) 
tm

e 

(min) 
td

f 
(h) 

2 h total 

50  1.93 0.47 ± 0.02 1.49 ± 0.29 39 49.7 ± 16.8 0.8 ± 0.1 15.2 ± 2.1 
100  2.37 0.38 ± 0.01 1.26 ± 0.17 27 43.5 ± 5.2 0.6 ± 0.1 13.0 ± 3.8 
200  1.89 0.42 ± 0.01 1.01 ± 0.08 27 44.7 ± 8.0 0.7 ± 0.1 9.9 ± 1.6 
aDetermined by CHN elemental analysis of control particles, b[NO]t, total number of moles of NO released 
per mg of particle as measured by the Griess assay, c Percent conversion of secondary amines to N-
diazeniumdiolate based on assumption that 100% diazeniumdiolate conversion would result in 2 mol NO 
per 1 mol of AHAP in particle scaffold, d[NO]m, maximum concentration of NO released as measured with 
NOA. etm, time required to reach [NO]m, ftd, duration of NO release. 
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Figure 2.4 Real time NO release profile for 50 (black), 100 (red), and 200 (blue) nm NO-
releasing AHAP/TEOS particles from t=0 to t=24 h. Inset: NO release from t=0 to t=0.2 h, 
corresponding to the shortest time period at which particle-bacteria association was 
investigated with confocal microscopy. 
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 2.3.3 Effect of nanoparticle size on bactericidal activity against Pseudomonas aeruginosa   

Based on prior work suggesting particles less than 100 nm are more effective 

antimicrobial materials,16 we hypothesized that the 50 nm NO-releasing silica nanoparticles 

would be more effective at bacteria killing than the larger 100 and 200 nm particles.  

Minimum bactericidal concentration (MBC) assays were performed under nutrient-free 

conditions in phosphate buffered saline (PBS) to eliminate bacteria replication as our goal 

was  to  more  accurately  emphasize  the  role  of  size  on  the  particle’s  bactericidal  activity.    The 

MBCs listed in Table 2.5 were determined as a function of NO-releasing nanoparticle size 

against 106 colony forming units (CFU) mL-1 P. aeruginosa cultures.  The minimum particle 

concentrations required to achieve complete killing (3 log reduction) after short (2 h) and 

long (24 h) exposures were thus determined using bacteria in the healthiest state (i.e., mid-

log growth stage).41  As shown in Table 2.5, the smaller particles were notably more effective 

at killing P. aeruginosa after 2 h compared to larger particles (MBC2h of 0.8 mg mL-1 for 50 

nm versus 1.5 mg mL-1 for 100 and 200 nm NO-releasing AHAP/TEOS particles, 

respectively).  This two-fold difference in MBC2h is significant given that there is only a 

slight difference in total NO released after 2 h from each particle size (Table 2.4).  The total 

NO released from each particle size after 24 h was not statistically different, yet a two-fold 

difference in MBC24h was still observed.  Furthermore, the increased NO release exposure 

resulted in nearly a 4-fold decrease in the particle concentrations required to kill P. 

aeruginosa with MBC24h of 0.2 mg mL-1 for 50 and 100 nm and 0.4 mg mL-1 for 200 nm 

NO-releasing particles (Table 2.5).  Of note, the 100 nm particles exhibited similar 

bactericidal properties as the 200 nm particles at short incubation times, while at longer 

periods the bactericidal efficacy of the 100 nm particles resembled that of the 50 nm
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Table 2.5 Minimum bactericidal concentration of NO-releasing AHAP/TEOS of each 
size after 2 and 24 h incubation with P. aeruginosa. 

Particle Size MBC2h MBC24h 
nm mg/mL mg/mL 
50 0.8 0.2 
100 1.5 0.2 
200 1.5 0.4 
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Table 2.6 Viability of P. aeruginosa following treatement with blank (i.e., in PBS only) or 
control (i.e., non-NO-releasing control AHAP/TEOS particles).  Initial bacteria concentration 
is 106 CFU/mL. 

 
Dose Exposure Time Bacterial Viability 

 
mg/mL h CFU/mL 

Blank (PBS) 0 2 6.3(±0.5)x106 

 
0 24 8.6(±0.2)x106 

50 nm 0.8 2 1.2(±0.2)x106 

 
0.2 24 9.6(±2.3)x106 

100 nm 1.5 2 3.5(±0.4)x106 

 
0.2 24 2.7(±0.2)x106 

200 nm 1.5 2 1.27(±0.03)x106 

 
0.4 24 5.2(±1.5)x106 
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nanoparticles.  This data corroborates the well-known relationship between biocidal activity 

and materials in the nanoscale (i.e., materials with size measuring 100 nm or less in one 

dimension).  The considerable decrease in MBC over time indicates that the efficacy of the 

NO-releasing nanoparticles improves as more NO is released.  Neither blanks (i.e., in PBS 

only) nor control (non-NO-releasing) AHAP/TEOS particles at MBC concentrations affected 

P. aeruginosa viability (Table 2.6). 

Although the observed relationship between particle size and MBC may be expected, 

the mechanism for this phenomenon remained uncertain.  Confocal microscopy was thus 

used to qualitatively observe particle fate.  To allow for visualization using fluorescence 

imaging, the surface-accessible primary amines of the AHAP particles were chemically 

modified with rhodamine isothiocyanate (RITC).42 Although NO release was decreased 

slightly (by 9%), no change in particle size or particle surface charge was observed following 

RITC modification. Similar to the non-fluorescent particles, a slight decrease in zeta potential 

was noted following diazeniumdiolation of the RITC-modified particles (ca. +13 mV to ca. 

+7 mV for control and NO-releasing, respectively).  Initially, a time-based experiment was 

conducted where the bacteria were treated with RITC-modified NO-releasing AHAP/TEOS 

particles, and images were collected at 20 sec intervals over the course of 40 min.  The 

particles rapidly associated with the bacteria within 2 min (Figure 2.5), a favorable attribute 

given the bolus release of NO.  Immediately following this interaction, membrane 

degradation, cellular collapse, blebbing and decreased adhesion to the substrate were 

observed and attributed to the antimicrobial action of NO (e.g., lipid peroxidation) (Figure 

2.6).56  Such severe morphological changes hindered our ability to distinguish between 

individual bacteria cells.  Thus, the remaining confocal experiments were carried out using



 

 89 

 

A

B

C

Brightfield RITC Overlay

D

E

 

Figure 2.5 Scanning confocal images of P. aeruginosa treated with 50 nm RITC-modified 
NO-releasing AHAP/TEOS nanoparticles. Brightfield, fluorescence (RITC), and overlay 
images were acquired (A) 0 (addition of particles), (B) 2.4, (C) 6.4, (D) 19.5, and (E) 39 min 
after  addition  of  10  μg  mL-1 nanoparticles. Scale bars are 10 µm. 
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Figure 2.6 Scanning confocal images of P. aeruginosa treated with 50 nm RITC-modified 
NO-releasing AHAP/TEOS nanoparticles. Brightfield image (A) was acquired before 
addition of 10 μg mL-1 nanoparticles and fluorescence overlay image (B) was acquired after 
10 min incubation with nanoparticles. Scale bars are 5 µm.  
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RITC-modified control AHAP/TEOS particles to maintain bacteria viability and potentially 

glean information on particle-bacteria association.  Given that the size and surface charge are 

similar between the NO-releasing and control RITC-modified particles, particle-bacteria 

interactions that occur with control particles are an accurate representation of those that occur 

with NO-releasing RITC particles.  When P. aeruginosa were exposed to particles at 50 µg 

mL-1 for longer than 30 min, fluorescence was present in all bacteria regardless of the particle 

size.  By exposing the bacteria to decreased doses of 50, 100, and 200 nm RITC-modified 

nanoparticles (i.e., 10 µg mL-1) for shorter time (i.e., 10 min), a difference in the rate and 

extent of association was observed fluorescently (Figure 2.7).  The greatest RITC 

fluorescence was observed upon treatment of bacteria with the 50 nm nanoparticles (Figure 

2.7A).  Bacteria exposed to 100 nm nanoparticles exhibited some fluorescence but at a lower 

magnitude than the 50 nm treated cells (Figure 2.7B).  Finally, little fluorescence was 

observed from the cells treated with the 200 nm particles (Figure 2.7C).  Collectively, these 

results indicate that although all particle systems tested interact with the bacteria, the smaller 

diameter particles do so more rapidly.  As shown in the inset of Figure 2.4 and provided in 

Table 2.4, a large amount of NO is released within the initial 10 min.  Therefore, the rate of 

association governs the amount of NO delivered to the bacteria.  Greater association with 

decreasing particle diameter corroborates our finding that smaller particles were more 

bactericidal at lower concentrations than larger particles. Indeed, the faster diffusion rate of 

smaller particles allows for a more rapid association with bacteria.  As such, a larger portion 

of the stored NO is likely delivered to the bacteria from the 50 nm particles compared to the 

100 and 200 nm particles, thereby lowering the necessary particle and overall NO 

concentrations required for effective killing.   
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Figure 2.7 Overlay of fluorescence and brightfield scanning confocal microscopy images of 
P. aeruginosa treated with 10 µg mL-1 of (A) 50, (B) 100, and (C) 200 nm RITC-modified 
AHAP/TEOS silica nanoparticles for 10 min. Magnification is 63 , and scale bar is 5 µm. 
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2.3.4 Cytotoxicity against L929 mouse fibroblasts   

The use of NO-donor functionalized silica scaffolds is motivated by both the 

synthetic versatility and biologically inert qualities of silica.57  To be useful as a potential 

therapeutic, such materials must possess favorable toxicity to normal cells.  The cytotoxicity 

of both NO-releasing and control AHAP/TEOS particles was thus evaluated against L929 

mouse fibroblasts.  Fibroblast viability screening represents a first test for evaluating 

cytotoxicity of both systemic and topical antibacterial agents as these cells play a critical role 

in wound healing.58, 59 Although our lab has previously observed that AHAP/TEOS particles 

synthesized via the Stöber method exhibited no toxicity toward fibroblast cells,13 the 

cytotoxicity of the particles reported herein was not obvious due to the modified synthesis 

(i.e., reverse microemulsion). In addition, our prior report did not investigate the role of size 

on toxicity. The MTS assay was used to measure cell viability after exposure to both control 

and NO-releasing particles for 2 and 24 h to mimic the two exposure times of the bactericidal 

assays.  Particle concentrations up to double the MBC values for each time point were tested 

to evaluate cytotoxicity above the concentration required for bacteria killing. Theoretical 

total NO doses delivered from each particle concentration after 2 and 24 h were calculated 

from the NO release data and are provided in Table 2.7.   As shown in Figure 2.8A, no 

toxicity was observed after 2 h from the NO-releasing particles up to their respective MBC2h 

doses regardless of particle size.  Control particles of 50 and 100 nm were also not toxic at 

their respective bactericidal concentrations. However, the MBC2h dose of control 200 nm 

particles (1.6 mg mL-1) decreased fibroblast viability by 36%.  Although toxicity was 

observed at the highest concentration tested (3.2 mg mL-1) for control 50 nm and both NO- 

releasing and control 200 nm particles, we note that these concentrations were well above the
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Figure 2.8 Cytotoxicity of control and NO-releasing particles against L929 mouse fibroblast 
cells as measured using the MTS assay after (A) 2 h exposure at 0 (white), 0.4 (light grey), 
0.8 (grey), 1.6 (dark grey), and 3.2 (black) mg mL-1 and after (B) 24 h exposure at 0 (white), 
0.1 (light grey), 0.2 (grey), 0.4 (dark grey), and 0.8 (black) mg mL-1. 
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Table 2.7 Concentration of NO corresponding to the particle concentrations tested in 
cytotoxicity assays.  

Particle 
Size 
(nm) 

Particle  
Dose 

Total NO Dose 
2 h 24 h 

(mg mL-1) (µmol) 
50  0.1 0.05 0.15 
 0.2 0.09 0.30 
 0.4 0.19 0.60 
 0.8 0.37 1.19 
 1.6 0.75 2.38 
 3.2 1.49 4.77 
100  0.1 0.04 0.13 
 0.2 0.08 0.25 
 0.4 0.15 0.50 
 0.8 0.30 1.01 
 1.6 0.61 2.02 
 3.2 1.22 4.03 
200  0.1 0.04 0.10 
 0.2 0.08 0.20 
 0.4 0.17 0.40 
 0.8 0.34 0.81 
 1.6 0.68 1.62 
 3.2 1.35 3.23 
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therapeutic doses required for complete bacteria killing (0.8 and 1.5 mg mL-1, respectively). 

As shown in Figure 2.8B for 24 h treatment, no significant toxicity was observed for either 

NO-releasing or control particles at concentrations up to 2x MBC24h for all three sizes. Taken 

together, these results indicate that increased treatment time with NO-releasing AHAP/TEOS 

particles has the combined advantage of lower therapeutic dose required for sufficient 

bacteria killing with negligible effect on fibroblast cell viability.    

 

2.4  Conclusions 

A reverse microemulsion synthesis was developed to prepare three sizes of highly 

monodisperse aminosilane-modified silica nanoparticles.  The particles were characterized by 

high amine-loading with surface accessible primary amines that allowed for straightforward 

coupling of fluorescent markers.  Conjugation of other biorecognition agents should be 

compatible in the same way, further expanding the potential therapeutic utility of these 

scaffolds.  By maintaining constant NO loading/release for each particle size, the relationship 

between nanoparticle size and bactericidal efficacy was probed.  At shorter exposure time, 

the smaller NO-releasing silica nanoparticles (50 nm) were found to exhibit the greatest 

bactericidal activity. Such behavior may be attributed to their increased rate of association 

and subsequent greater NO payload delivered directly to the bacteria.  We hypothesize that 

increasing the rate at which NO-releasing particles associate with bacteria may further 

improve their antibacterial properties. Future research should focus on how the amount and 

kinetics of NO delivered into bacterial cells influences the observed bactericidal efficacy.  

Although particles with both neutral and positive surface charges were shown to interact with 

the bacteria, the rate of particle association is likely influenced by particle surface charge as 
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bacteria are characterized by a net negative charge. More effective antibacterial nanoparticle 

therapeutics may be realized by understanding the role of particle-bacteria interactions on 

bactericidal activity. 
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Chapter 3: 

Surface Modification of Nitric Oxide-Releasing Silica Nanoparticles  

3.1   Introduction 

Nitric oxide (NO) is produced endogenously as a regulator of numerous physiological 

processes including angiogenesis, wound healing, vasodilation, and the immune response.1  

As such, much research has been devoted to designing methods for delivering exogenous NO 

in a manner that mimics its biological generation in order to treat medical conditions such as 

hypertension, ischemia/reperfusion injury, thrombosis, restenosis, and cancer.2  The major 

factor inhibiting the clinical success of NO-based therapeutics stems from the gaseous and 

reactive nature of NO that make it difficult to control its delivery both in terms of release 

kinetics and location.    

Improved control over NO delivery can be achieved by incorporating NO donors, 

such as N-diazeniumdiolates and S-nitrosothiols, into macromolecular scaffolds to achieve 

biologically relevant NO release activity.3  For example, Zhou et al. designed polymers 

doped with S-nitrosothiol-modified silica particles to achieve NO fluxes that mimicked NO 

generation by endothelial cells (i.e., 1–4x10-10 mol cm-2 s-1).4  The advantage of N-

diazeniumdiolate (NONOate)-based materials over other NO donor moieties (e.g., S-

nitrosothiols) is their ability to store two molecules of NO per amine site with subsequent 

controlled release under physiological conditions without the need for an external trigger. 

Unfortunately, the labile nature of the NONOate functionality in aqueous media often results 

in materials with relatively short NO release durations (i.e., less than 24 h).  While fast 
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release of large NO payloads (i.e., micromolar) are sufficient for some applications, such as 

eradicating tumor or bacteria cells, the release of lower levels of NO (i.e., picomolar) for 

extended periods are required for other therapies (e.g., wound healing and treatment of 

cardiovascular dysfunctions).1  Methods for extending the NO release duration of N-

diazeniumdiolate-based macromolecules are thus needed to broaden their therapeutic impact.    

Due to the proton-initiated decomposition of N-diazeniumdiolate NO donors, the 

chemical environment surrounding the NONOate governs NO release kinetics.5  The 

zwitterionic NONOate can be stabilized directly through hydrogen bonding.  For example, 

silica nanoparticles composed of the diamine N-(6-aminohexyl)aminopropyl-

trimethoxysilane (AHAP) exhibit slower release kinetics compared to particles composed of 

the monoamine N-methylaminopropyltrimethoxysilane (MAP) as the primary amine of 

AHAP can stabilize through  hydrogen bonding.6  Another strategy for prolonging NONOate 

lifetimes is to increase the hydrophobicity of the environment surrounding the NO donor, 

thus slowing water diffusion and protonation of the N-diazeniumdiolate-bearing amine.  Koh 

et al. doped N-diazeniumdiolate-based silica particles into polyurethanes of increasing 

hydrophobicity to achieve materials with prolonged NO release.7  Electrospun polyurethane 

fibers capable of NO release are particularly attractive for applications such as wound 

healing and implant coatings due to their porous nature.8  Unfortunately, silica particles can 

leach from the fibers in physiological conditions (i.e., pH 7.4, 37 °C), preventing their 

development as implant coatings.   

Based on the proton-initiated decomposition of N-diazeniumdiolates to release NO, 

we hypothesize that NO release durations from silica nanoparticles will be extended by 

modifying the particle surface with hydrophobic groups.  Increasing the surface
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hydrophobicity of the NO-releasing particles may further improve their stability in 

hydrophobic polymers.  In this Chapter, the surface hydrophobicity of NO-releasing silica 

particles was varied by grafting ethyl-, isobutyl-, octadecyl-, or 

heptadecafluorotrimethoxysilane onto the surface of particles synthesized by co-condensing 

AHAP with tetramethoxysilane (TMOS).  The influence of modifying the surface 

hydrophobicity on NO payloads and release kinetics was then evaluated, along with studies 

doping the hydrophobic particles into electrospun polymer fibers. Specifically, NO release 

and dopant stability were evaluated as a function of surface modification and polymer type. 

  

3.2   Materials and Methods 

 N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP), ethyltrimethoxysilane, 

isobutyl-trimethoxysilane, octadecyltrimethoxysilane, (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)-trimethoxysilane, and tetramethoxysilane (TMOS) were purchased from 

Gelest, Inc. (Morrisville, PA).  Ethanol, aqueous ammonium hydroxide solution (28 wt%), 

anhydrous toluene, anhydrous N,N-dimethylformamide, anhydrous tetrahydrofuran, 

anhydrous methanol, sodium methoxide (5.4 M solution in methanol), and potassium tert-

butoxide (20 wt% in tetrahydrofuran) were purchased from Fisher Scientific (Fair Lawn, NJ).  

Sodium trimethylsilanolate was purchased from Sigma Aldrich (St. Louis, MO).  Nitrogen 

(N2), argon (Ar), and nitric oxide calibration (26.81 PPM, balance N2) gases were purchased 

from National Welders (Raleigh, NC).  Pure nitric oxide gas (99.5%) used for N-

diazeniumdiolate formation was purchased from Praxair (Sanford, NC).  Distilled water was 

purified using a Millipore Milli-Q UV Gradient A-10 system (Bedford, MA), resulting in a

total organic  content  of  ≤6  ppb  and  a  final  resistivity  of  18.2  mΩ·∙cm. 
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3.2.1   Stöber synthesis of amine-containing silica nanoparticles 

Hybrid inorganic/organic silica nanoparticles were synthesized via a modified Stöber 

method. Briefly, AHAP (1.173 mL) and TMOS (0.708 mL) were premixed and added to a 

mixture of ethanol (59.16 mL), water (27.84 mL), and 28 wt% ammonium hydroxide (9.8 

mL).  The reaction was stirred at room temperature for 2 h.  The resulting white particle 

precipitates were collected by centrifugation (3645g, 10 min, 4 °C) and washed thrice with 

ethanol to remove unreacted reagents.  The particles were then dried in vacuo and stored in a 

sealed container until further use. 

 

3.2.2   Grafting of organosilanes onto the surface of silica nanoparticles  

A suspension of AHAP silica particles (50 mg) in 10 mL toluene was prepared via 

sonication.  Pyridine (100 µL) and an organosilane (200 µL) were added, and the reaction 

was refluxed overnight.  An excess of organosilanes was used as the silanes were found to 

condense with silanols on the glassware.  The surface-modified silica particles were collected 

by centrifugation (3645 g, 10 min, 4 °C), washed twice with toluene, then twice with 

ethanol.  The particles were then dried in vacuo and stored in a sealed container until further 

use.   

 

3.2.3 N-diazeniumdiolate-modification of AHAP and surface-modified AHAP silica
nanoparticles 

Each particle composition was suspended in N,N-dimethylformamide or methanol via 

sonication at a concentration of 5 mg/mL. Sodium methoxide, potassium tertbutoxide (5 wt% 

in THF), or sodium trimethylsilanolate was then added in a 1:3 mol ratio of secondary amine 

to base.  The mixtures were vortexed, aliquoted into 4 mL glass vials, placed in a 160 mL 
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Parr general purpose pressure vessel, and connected to an in-house NO reactor.  The 

solutions were stirred magnetically with removal of oxygen by purging with Ar. The vessel 

was then filled to a pressure of 10 bar with NO that had previously been scrubbed with KOH.  

After 72 h, the NO was released from the vessel, and the solutions were again purged with Ar 

to remove unreacted NO.  The resulting N-diazeniumdiolate-modified silica nanoparticles 

were collected by centrifugation (3645g, 10 min, 4 °C), washed thrice with ethanol, and dried 

in vacuo overnight.  Particles were stored at -20 °C in a vacuum sealed container until use. 

 

3.2.4  Particle-doped electrospun polymer fibers 

 Electrospun fibers were prepared using a custom electrospinning apparatus previously 

described.9  Briefly, a Series 205B High Voltage Power Supply (Bertan Associates, Inc.) was 

used to apply a voltage of 6 kV to a stainless steel blunt-tip needle (22 gauge) on a syringe 

containing the particle/polymer suspensions.  A grounded steel plate covered in aluminum 

foil was positioned perpendicular to the direction of flow, 15 cm from the needle tip.  A 

syringe pump (Kent Scientific, Torrington, CT) was used to eject the particle-doped polymer 

solutions at a rate of 0.015 mL/min.  The particle/polymer solutions were prepared by first 

dissolving 40 mg of polymer into 1.6 mL of a 3:1 (v/v) mixture of tetrahydrofuran and N,N-

dimethylformamide, then adding 0.4 mL of a 40 mg/mL particle suspension in methanol.    

 

3.2.5  Materials characterization 

Particle morphology and size were evaluated using a Hitachi S-4700 Scanning

Electron Microscope (Pleasanton, CA).  Solid-state nuclear magnetic resonance (SS NMR) 

experiments were performed on an 11.7 T (500 MHz) spectrometer.  A 3.2 mm HCN Balun 
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probe was used for 13C detection with samples spun at the magic angle with a rate of 12 kHz.  

For 19F detection, a 1.6 mm HFXY FastMAS probe was utilized with samples spun at the 

magic angle with a rate of 25 kHz.  The direct polarization (DP) technique was applied for 

both 13C and 19F detection, and a solid state echo was incorporated to reduce background 

signal.  X-ray photoelectron spectroscopy (XPS) was performed on a Kratos Axis Ultra DLD 

X-ray Photoelectron Spectrometer with a monochromatic Al Kα   X-ray source (150 W).   

Electrons were collected at an angle of 90 degrees from the sample surface from a 300 x 700 

µm area on the sample with pass energy set to 20 eV for high resolution spectra.  All spectra 

were obtained with a step size of 0.1 eV and calibrated to the C 1s peak at 284.6 eV.  

 Particle-doped polymer fibers were visualized with an FEI Quanta 200 field emission 

gun environmental scanning electron microscope (ESEM) without additional coating.  

Stability of the particles within the polymer fibers was investigated by submerging the 

particle-doped fibers (10–40 mg) in 15 mL of phosphate buffered saline (PBS, pH 7.4) for 7 

d and performing silicon elemental analysis on the soak solutions using a Teledyne Leeman 

Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES).  Metal wire was 

used to ensure the hydrophobic fiber mats remained submerged in the soak solution.  

Analysis was performed in the axial configuration at 251.611 nm calibrated with 0.01–50 

ppm silica particle standard solutions of the corresponding particle system in PBS.  

Real-time nitric oxide release was measured using a Sievers NOA 280i

Chemiluminescence NO Analyzer (Boulder, CO) connected to a customized reaction vessel.  

Briefly, NO-releasing materials (i.e., particles or particle-doped fibers) were submerged in 

deoxygenated PBS (pH 7.4) at 37 °C with NO carried to the analyzer by passing N2 through 

the solution at a constant rate of 70 mL/min.  The analyzer was calibrated with air passed
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through a NO zero filter (0 ppm NO) and a 26.39 ppm NO standard gas (balance N2).   

 

3.3   Results and Discussion 

3.3.1  Surface modification of amine-containing silica nanoparticles 

The hydrolysis and co-condensation of an organosilane and a tetraalkoxysilane under 

dilute, basic conditions produces spherical inorganic/organic hybrid silica particles.10  On the 

surface of the resulting particles are both nonhydrolyzable organic groups and hydrolyzable 

silanol groups.  Thus, additional silanes can be added through condensation with the surface 

silanols, in essence adding a third organic component for preparing hybrid silica 

nanoparticles (Scheme 3.1).  Using such surface grafting methods, organosilanes of varying 

hydrophobicity were coupled to the surface of amine-containing silica particles (Figure 3.1).  

As shown in Figure 3.2, the surface grafting method did not result in a change in particle size 

or morphology.  

The number of silanes grafted to the particle surface depends on both the particle and 

the ligand.  For example, increasing the surface area of the particle allows for a greater 

number of surface silanols to facilitate ligand attachement.  Neue described a relationship 

between  surface  area  and  silanol  coverage  (χ)  in  terms  of  µmol/m2 according to Eq 3.111  

         12
1

100
%1C100

%

nC
MWCSAn

C

 

where %C is carbon weight percent of modified particles as determined from elemental 

analysis, nC is the number of carbon atoms on the ligand, and MW is the molecular weight of 

the attached ligand.  As the molecular weight of the ligand increases, the number of ligands 

that can be added to the particle should decrease due to steric hinderance.  Theoretically, the 

(Equation 3.1) 
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Scheme 3.1 Organosilanes are grafted onto the surface of hybrid silica nanoparticles through 
a condensation reaction between surface silanols on the particle and methoxides on the 
organosilane.  
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A CB D  
Figure 3.1  Structures of silanes of increasing hydrophobic character: (A) ethyltrimethoxy-
silane, (B) isobutyltrimethoxysilane, (C) octadecyltrimethoxysilane, and (D) (heptadeca-
fluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane.  
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greatest χ   achievable is ~4 µmol/m2 when grafting a monofunctional amine onto TEOS 

particles in ideal conditions (i.e., anhydrous and singly hydrolyzable silane).11  This number 

is decreased for hybrid silica particles as the number of surface silanols is reduced compared 

to particles synthesized from a tetraalkoxysilane alone.  The %C as determined by CHN 

elemental analysis of unmodified AHAP, ethyl-AHAP, isobutyl-AHAP, octadecyl-AHAP, 

and heptadecafluoro-AHAP was 15.69, 15.14, 15.42, 15.66, and 15.35%, respectively.  The 

lack of significant changes in the %C following surface grafting appears to be the result of 

the larger carbon content of AHAP prior to surface modification.  Since the addition of 

organic groups to the particle surface did not significantly change their carbon content per 

mass, Eq 3.1 could not be used to calculate surface coverage for our particles.   

 Solid-state nuclear magnetic resonance (SS NMR) spectroscopy with direct 

polarization and magic angle spinning (DP/MAS) was used to confirm the presence of 

surface-bound ligands.  Previous reports have shown that organosilanes bound to the surface 

of silica nanoparticles can be observed using SS NMR.12  As shown in Figure 3.3A, the 

peaks obtained from SS 13C NMR of unmodified AHAP were broad and difficult to evaluate 

quantitatively.  In general, the peaks obtained from SS NMR are broader than those obtained 

from liquid samples due to the decreased mobility of ligands attached to a solid compared to 

those freely moving in solution.13  The rigid structure of the nonporous particles that result 

from the Stöber synthesis further limits the mobility of the ligands, resulting in the broad 

peaks shown in Figure 3.3.  The chemical shifts of carbon-bound carbons in AHAP were 

between 20–35 ppm, and silicon-bound carbons appeared at 12 ppm.  Carbons bound to the 

secondary amine appeared at 51 ppm, and carbons bound to the primary amine at 42 ppm.  

Unfortunately, the chemical shifts of the alkyl surface groups overlapped with those of
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Figure 3.2  Scanning electron micrographs of (A) unmodified AHAP (d=148±23 nm), (B) 
ethyl-AHAP (d=146±22 nm), (C) butyl-AHAP (d=144±18 nm), (D) octadecyl-AHAP 
(d=152±17 nm), and (E) heptadecafluoro-AHAP (d=152±22 nm).  Scale bar = 1 µm. 
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AHAP carbons, which were broader and of a larger intensity (Figure 3.3B–F).  Thus, no 

quantitative information could be gleaned from the DP/MAS experiments.  Of note, the 

presence of the surface groups was indicated by a decrease in the intensity of the AHAP peak 

at 21 ppm and broadening of the shoulder peak at 24 ppm.  Furthermore, the fluorine-bound 

carbons were apparent in the SS 13C NMR spectrum of heptadecafluoro-AHAP at 110 ppm.  

Solid-state 19F NMR of the heptadecafluoro-AHAP confirmed the addition of the fluorinated 

ligand (Figure 3.4).  The peaks in the 19F NMR were more narrow than those in the 13C 

spectra because the fluorinated ligands are only on the particle surface and therefore have 

greater mobility.  Fluorines attached at the terminal carbons were confirmed by the presence 

of peaks at -85 and -86.9 ppm, with fluorines at the C2 position appearing at -130 ppm and 

fluorines at the C3-C8 positions appearing at -125 ppm.   

X-ray photoelectron spectroscopy (XPS) was employed to more conclusively confirm 

the presence of the alkylsilanes (i.e., ethyl, butyl, and octadecyl) on the particle surface.  

Although XPS is traditionally used to observe chemical environments on flat surfaces, this 

technique has more recently been used investigate the surface modifications of silica 

particles.14  In addition to identifying the types of elements present in a sample, XPS analysis 

can also provide semi-quantitative data regarding the relative amounts of chemical species 

present on or near the surface.15  Table 3.1 lists the atomic concentrations obtained from XPS 

analysis of unmodified and surface-modified AHAP.  To more directly evaluate the addition 

of surface-bound ligands, the number of carbons was normalized to nitrogens, as the nitrogen 

concentration should not change with surface modification.  As expected, the C/N ratio was 

greater for all surface-modified particles compared to that of the unmodified AHAP.  The 

addition of ethyl- or isobutyltrimethoxysilane resulted in an increase in C/N from 5.91
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Figure 3.3  Solid state direct polarization-magic angle spinning (DP-MAS) 13C NMR 
spectrum of (A) unmodified AHAP and (B) ethyl-, (C) butyl-, (D) octadecyl-, and (E) 
heptadecafluoro-AHAP silica nanoparticles.  
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Figure 3.4 Solid state direct polarization-magic angle spinning (DP/MAS) 19F NMR 
spectrum of heptadecafluoro-AHAP silica nanoparticles. 
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 (AHAP) to 7.29 and 9.30, respectively.  The C/N ratio of the octadecyl-AHAP was slightly 

less than that of the isobutyl-AHAP, indicating that a fewer number of 

octadecyltrimethoxysilanes were condensed onto the particle surface, as predicted by Eq. 3.1 

for ligands of larger MW.  The heptadecafluoro-AHAP were characterized by the greatest 

C/N ratio (12.02), even though this ligand is also characterized by a large MW.  Thus, sterics 

alone are not the only ligand-dependent factor governing surface coverage.  The increased 

C/N of heptadecafluoro-AHAP suggests that solubility may also influence the extent of 

condensation onto the particle surface.  As fluorocarbons have a lower solubility in toluene 

compared to hydrocarbons,16 it may be more favorable for the fluorocarbon-based silane to 

condense on the particle surface than remain in solution. 

Dynamic light scattering (DLS) was used to evaluate the extent to which the 

hydrophobicity of the particles was affected by surface modification.  Traditionally, DLS is 

used to determine the hydrodynamic radius of particles by focusing a laser on a sample of 

particles in solution and detecting the scattered light;17 however, information regarding how 

particles behave in solution can also be elucidated from DLS analysis.18  For example, the 

extent to which particles aggregate or sediment in solution may be characterized using the 

sample count rate, a parameter extracted from the number of photons detected per second.17  

A decrease in count rate would result from particle sedimentation as fewer particles would be  

suspended in solution and scatter light.  Suspensions of unmodified and surface-modified 

AHAP were prepared at equal concentrations (0.5 mg/mL) in PBS to assess the impact of 

hydrophobicity on particle behavior.  The count rate of unmodified AHAP remained constant 

throughout the experiment, indicating the particles formed a stable suspension in PBS.  The 

addition of hydrophobic ligands to the surface of AHAP decreased the derived count rate,
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Table 3.1  Atomic concentrations (%) and C/N ratios of unmodified AHAP and surface-
modified AHAP silica nanoparticles as determined with X-ray photoelectron spectroscopy 
(XPS).  

 Atomic Concentrations C/N 

 C 1s N 1s O 1s Si 2p F 1s  

AHAP 41.74 7.06 34.10 16.50 - 5.91 

Ethyl-AHAP 42.64 5.85 32.6 16.26 - 7.29 

Isobutyl-AHAP 43.23 4.65 24.14 11.35 - 9.30 

Octadecyl-AHAP 46.62 5.85 29.39 16.32 - 8.12 

Heptadecafluoro-AHAP 34.39 2.86 16.82 10.28 34.65 12.02 
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indicating such particles were less stable in aqueous media (i.e., PBS) compared to control 

(unmodified) AHAP particles (Figure 3.5).  As expected, the relative hydrophobicity of the 

particles increased in relation to the hydrophobicity of the surface-grafted ligand as 

determined by decreasing count rates.  

 

3.3.2  N-diazeniumdiolate modification 

A number of solvents and bases were evaluated to determine the solution conditions 

that would allow for the greatest amine to NONOate conversion efficiency for the surface-

modified AHAP particles.  A stability test was initially conducted to select an appropriate 

solvent for N-diazeniumdiolate formation.  Each particle system was suspended via 

sonication in hexane, tetrahydrofuran, N,N-dimethylformamide, or methanol (5 mg/mL) and 

allowed to sit undisturbed for 30 min.  All particle systems were found to be most stable (i.e., 

remain suspended) in methanol (MeOH) or N,N-dimethylformamide (DMF), thus these two 

solvents were selected for N-diazeniumdiolate formation testing.  To facilitate NONOate 

formation, a strong organic base is added to deprotonate the secondary amine and improve its 

nucleophilic character.19  The three bases tested were sodium methoxide, potassium tert-

butoxide, and sodium trimethylsilanolate.  Each particle system was suspended in either 

MeOH or DMF at a concentration of 5 mg/mL with a 3.5:1 equivalent of base to secondary 

amine. Overall, the NO loading was lower when MeOH was used as the solvent compared to 

DMF (Table 3.2).  The Hildebrand solubility parameter of DMF is closer to those of alkanes 

and fluorocarbons than MeOH,20 suggesting increased swelling may occur  in DMF and 

allow greater diffusion of base and NO into the silica network.  Sodium methoxide facilitated 

the greatest conversion efficiency in DMF.  
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Figure 3.5  Derived count rate from dynamic light scattering analysis of unmodified and 
surface-modified AHAP particles (0.5 mg/mL) in phosphate buffered saline.  
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Table 3.2  Amine to N-diazeniumdiolate conversion efficiency of surface-modified AHAP 
particles using sodium methoxide in either a 1:9 mixture of MeOH in DMF or pure MeOH. 
 

  %Econv   
  1:9 MeOH/DMF MeOH 
Ethyl-AHAP/NO 5.6% 1.3% 
Butyl-AHAP/NO 5.4% 1.5% 
Octadecyl-AHAP/NO 3.0% 0.6% 
Heptadecafluoro-AHAP/NO 2.9% 0.1% 
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 The NO release properties of unmodified AHAP/NO and surface-modified 

AHAP/NO are provided in Table 3.3.  Each system reached a maximum instantaneous NO 

concentration ([NO]max) within the first few minutes upon solution immersion, as is 

characteristic of N-diazeniumdiolate NO donors.  This maximum NO level results from the 

initial, fast diffusion of water into the scaffold.  As would be expected, the addition of 

hydrophobic surface ligands decreases the observed [NO]max.  Effects of surface ligand on 

the NO release kinetics were also evident in the NO release half-life (t1/2) data.  As expected, 

the addition of the hydrophobic surface groups increased t1/2 as the diffusion of water into the 

silica scaffold slowed, and the average lifetime of the NONOate functionalities was 

prolonged.  For example, increasing the alkyl chain length of the surface ligand from ethyl to 

butyl and octadecyl caused an increase in t1/2 from 0.3 to 0.5 and 1.1 h, respectively.  

Heptadecafluoro-AHAP exhibited the longest t1/2 of 2.7 h due to the extremely hydrophobic 

properties of fluorocarbons.   

While the addition of hydrophobic groups to the particle surface allowed for tunable 

NO release kinetics, the NO payloads exhibited by the surface-modified AHAP/NO were 

lower than that of unmodified AHAP.  Decreased diffusion of the base into the silica network 

due to the increased surface hydrophobicity would result in decreased NO donor conversion 

efficiency.  These results corroborate those previously observed by Shin et al., in which silica 

particles composed of more hydrophobic aminosilanes exhibited lower amine to N- 

diazeniumdiolate conversion efficiencies.21  Moreover, the total NO payload delivered from 

heptadecafluoro-AHAP was nearly half that of the hydrocarbon-modified systems.  The low 

conversion efficiency suggests the access of the solvated base to amines is even more limited 

for fluorocarbon-modified particles compared to hydrocarbon-modified particles.  Increased
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Table 3.3  Nitric oxide release characterization of unmodified AHAP/NO and surface-
modified AHAP/NO silica nanoparticles, including maximum instantaneous NO 
concentration ([NO]max), time required to reach [NO]max (tmax), total amount of NO released 
([NO]T), and the time required for the systems to release half of [NO]T (t1/2). 

 

 
[NO]max 
ppb/mg 

tmax 
min 

[NO]T 
µmol/mg 

t1/2 
h 

AHAP/NO 1528±86 2.2±0.4 0.279±0.03 0.6±0.04 

Ethyl-AHAP/NO 2861±800 1.2±0.1 0.110±0.004 0.3±0.1 

Isobutyl-AHAP/NO 1624±318 1.4±0.1 0.106±0.02 0.5±0.1 

Octadecyl-AHAP/NO 474±174 2.6±0.3 0.120±0.036 1.1±0.1 

Heptadecafluoro-AHAP/NO 85±2 1.3±0.2 0.051±0.005 2.7±0.2 
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 NO loading with tunable NO release kinetics might be achieved by first forming the 

NONOate moieties throughout the network, then modifying the particle surface.  

3.3.3 Particle-doped electrospun fibers 

 Electrospun polymer fibers have been previously used as tissue engineering scaffolds, 

wound dressings, and implant coatings.8 Imparting NO release to such porous materials may 

further enhance their utility due to the positive role of NO in mitigating the foreign body 

response and improving tissue integration.22-24  Our laboratory has previously reported NO-

releasing electrospun polymer fibers by incorporating small molecule and macromolecular 

NO donors into the fibers.9, 25  While the use of silica particles allowed for a greater range of 

NO release payloads and kinetics compared to the small molecule NO donor, particle 

leaching was observed at levels up to 85% that incorporated within the fibers.25  We 

hypothesized that increasing the surface hydrophobicity of the particle dopants may enhance 

their stability in the hydrophobic Tecoplast fibers.   

The solvent and concentration of the polymer solution, as well as the particle 

concentration, needle diameter, feed rate, applied voltage, and collection distance used in 

these experiments were based on previously optimized experimental parameters.9, 25  

Scanning electron micrographs of the resulting particle-doped fibers are shown in Figure 3.6.  

Ethyl-AHAP/NO and butyl-AHAP/NO are more uniformly incorporated within the fibers 

compared to octadecyl-AHAP/NO and heptadecafluoro-AHAP/NO, which formed large 

aggregates within the fiber mats.  The diameters of octadecyl-AHAP/NO- and 

heptadecafluoro-AHAP/NO-doped fibers were similar to that of the fibers doped with 

unmodified AHAP/NO, which were also not uniformly dispersed throughout the fibers. 

Conversely, the diameters of the ethyl-AHAP/NO- and butyl-AHAP/NO-doped fibers were
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Figure 3.6  Scanning electron microscopy images of Tecoplast electrospun polymer fibers 
doped with 5 wt% (A,F) AHAP/NO (d=318±90 nm), (B,G) ethyl-AHAP/NO (d=353±185 
nm), (C,H) butyl-AHAP/NO (d=427±141 nm), (D,I) octadecyl-AHAP/NO (d=299±101 nm), 
and (E,J) heptadecafluoro-AHAP/NO (d=309±176 nm) silica nanoparticles.  Scale bars = 5 
µm for A–E and 2 µm for F–J. 
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slightly larger, suggesting more uniform particle incorporation increases fiber diameter.   

The stability of the NO-releasing particles within the Tecoplast electrospun fibers was 

evaluated by soaking the fibers in PBS at 37 °C and measuring silicon content in the soak 

solution with ICP-OES after 7 d.  As shown in Table 3.4, unmodified AHAP/NO-doped 

fibers were characterized by 40% particle leaching, which was slightly less than the 59% 

leaching previously reported with 100 nm AHAP silica particles.25  The decrease in particle 

leaching is likely the result of the larger particle diameters (d=150 nm), as increasing particle 

size is known to enhance the stability of particles within electrospun fibers.25  Fibers doped 

with ethyl-AHAP/NO and butyl-AHAP/NO exhibited increased stability, as particle leaching 

decreased to 15% and 11%, respectively.  The addition of the more hydrophobic octadecyl- 

and heptadecafluoro-trimethoxysilane ligands to the particle surface did not alter particle 

leaching from the fibers.  In fact, heptadecafluoro-AHAP/NO were less stable than 

unmodified AHAP/NO as indicated by 55% particle leaching.  These results corroborate the 

morphological data obtained by ESEM that indicated ethyl-AHAP/NO and butyl-AHAP/NO 

were better incorporated within the fibers compared to AHAP/NO, octadecyl-AHAP/NO, 

and heptafluoro-AHAP/NO. 

  Nitric oxide release from the particle-doped Tecoplast electrospun fibers was 

evaluated with chemiluminescent detection (Table 3.3).  In general, increasing the 

hydrophobicity of the particle dopant resulted in lower NO fluxes and prolonged NO release 

durations.  For example, Tecoplast fibers doped with heptadecafluoro-AHAP/NO exhibited 

the lowest [NO]max and longest td.   The total NO released ([NO]T) from the AHAP/NO- 

doped electrospun fibers was nearly double that of the surface-modified particle systems, as 

expected based on the higher NO payload of the unmodified AHAP/NO scaffolds.  The
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Table 3.4 Characterization of Tecoplast electrospun polymer fibers doped with unmodified 
and modified NO-releasing silica particles including nitric oxide release, and particle 
leaching.   
 

Particle Dopant [NO]T
 b

 
(nmol/mg) 

[NO]
 max

c 

(pmol mg-1s-1) 
t
d
d 

(h) 

Particle 
Leachinge  

(%) 

AHAP/NO 13.8±3.1 4.2±1.1 12.9±1.1 40.4±0.3 

Ethyl-AHAP/NO 2.6±0.5 2.7±0.2 10.1±4.1 15.5±0.3 

Butyl-AHAP/NO 2.1±0.2 1.3±0.3 9.0±5.1 11.5±0.9 

Octadecyl-AHAP/NO 8.7±0.2 4.1±0.8 15.3±8.8 42.2±1.5 

Heptadecafluoro-AHAP/NO 2.0±0.9 0.4±0.2 20.9±5.7 55.1±2.3 
a As measured by scanning electron microscopy; b Total nmol NO released per mg of particle as determined by 
chemiluminescent nitric oxide analyzer (NOA); c Maximum instantaneous concentration of NO release as 
measured by NOA; d Duration of NO release; eAs determined by ICP-OES. 
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heptadecafluoro-AHAP/NO-doped fibers had the lowest NO payload, an expected result 

based on the low NO loading of these particles.  Overall, the duration of NO release was not 

significantly influenced by changing particle hydrophobicity; however, heptadecafluoro-

AHAP/NO-doped fibers did exhibit prolonged NO release durations.  Of note, the NO 

release durations of the ethyl-AHAP/NO- and butyl-AHAP/NO-doped fibers were nearly as 

long as that of AHAP/NO-doped fibers even though the modified systems were characterized 

by less than one-fifth of the total NO storage.  The addition of ethyl and butyl groups to the 

particle surface may result in NO-releasing particle-doped electrospun fibers with enhanced 

stability and increased NO release durations.   

 

3.4 Conclusions 

 Due to the concentration dependence of NO’s  therapeutic  activity,  methods  for  tuning  

the NO release kinetics from macromolecular scaffolds are desirable as materials could thus 

be tailored to fit specific applications.  As described herein, the addition of hydrophobic 

ligands to the surface of silica nanoparticles allows for a wide range of NO release kinetics 

(t1/2 = 0.3–2.7 h) without affecting particle size or morphology.  Unfortunately, surface 

modifications with hydrocarbon- and fluorocarbon-based silanes decreased the amine to 

diazeniumdiolate conversion efficiencies.  Future studies should focus on investigating 

whether first forming the N-diazeniumdiolate prior to surface modification will improve NO 

payloads.  The ability to modify particle surface properties broadens the utility of these NO-

releasing systems, as demonstrated by their increased stability as dopants in electrospun 

polymer fibers.  The addition of ethyl and butyl groups to the particle surface improves their 

stability in the fibers with little influence on fiber diameter and NO release kinetics.  Further
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tuning of surface hydrophobicity using octadecyl and heptadecafluoro ligands did not 

enhance dopant stability, suggesting that an optimal hydrophobicity may exist for achieving 

stable polymer composites.  
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Chapter 4: 

O2-Protected Diazeniumdiolate-Modified Silica Nanoparticles for Extended Nitric 

Oxide Release  

4.1 Introduction 

  Given the proven antimicrobial nature of nitric oxide (NO) and the use of silica 

particles in commercial oral-care products, NO-releasing silica nanoparticles may prove 

useful for combating the plaque bacteria infections that plague dental restorative treatments.  

Indeed, 50–60% of restorative treatments result in secondary caries that necessitate 

replacement of the restoration.1  While dental composites modified with antimicrobial agents 

have been proposed to prolong the life-time of restorative materials, sustained release over 

the course of days–weeks has yet to be achieved.2-4     

The gaseous and reactive nature of NO requires the use of NO donors (e.g., N-

diazeniumdiolates, S-nitrosothiols, and metal nitrosyls) to achieve controlled therapeutic NO 

delivery.5, 6  N-diazeniumdiolate (NONOate) are among the most widely used NO donors as 

they are comprised of two molecules of NO covalently bound to an amine site, thus allowing 

for greater NO payloads compared to donors that store only one molecule of NO per donor 

site (e.g., S-nitrosothiols).  Moreover, the NONOate functionality results in the spontaneous 

generation of NO in physiological solutions via a highly efficient proton-initiated 

decomposition.  While advantageous, the labile nature of N-diazeniumdiolates often hinder 

the preparation of materials with prolonged release durations necessary for promoting 

implant integration.  Modifying macromolecular scaffolds, such as silica nanoparticles, with
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NO donors allows for more localized NO-release payloads and greater tunability of NO-

release kinetics by controlling water diffusion into the scaffold.6  Unfortunately, NO release 

from NONOate-based silica particles remains limited to only days at best.7, 8  The stability of 

the NONOate can be increased by adding a protecting group at the O2-position.  Release of 

NO then requires hydrolytic or metabolic cleavage of the protecting group prior to N-

diazeniumdiolate decomposition.9, 10  Indeed, O2-protected NONOates bound to LMW 

structures exhibit half-lives on the order of days compared to seconds or minutes for 

unprotected analogs.  O2-substituted diazeniumdiolate NO donors have previously been used 

to covalently modify proteins and polymers to yield materials with extended NO release.9, 11, 

12  To date, these structures have not been used to modify silica nanoparticle scaffolds, which 

hold great promise in a wide range of biomedical applications as discussed in Chapter 1.   

The lifetime of dental composites is often shortened due to the formation of plaque 

biofilms that degrade the material, increasing surface roughness and promoting further 

bacterial adhesion.13  Given that silica particles are a major component of commercial dental 

resin composites for strength and abrasion resistance,14 functionalized silica particles are 

excellent candidates to impart antimicrobial properties to the composite. We hypothesize that 

replacing the non-functionalized silica filler particles with silica particles capable of 

sustained NO release may result in improved antimicrobial dental composites with longer 

lifetimes.   

Herein, mesoporous silica nanoparticles were functionalized with an O2-substituted 

N-diazeniumdiolate-modified organosilane synthesized by coupling an alkyl halide 

organosilane with O2-methoxymethyl 1-(piperazin-1-yl)diazen-1-ium-1,2-diolate.  After 

evaluating the release from the resulting scaffolds, the particles were doped into a dental 
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composite resin to yield a new class of antimicrobial restorative materials.  The ability of 

these materials to decrease adhesion and viability of Streptococcus mutans over a 24 h period 

was evaluated in vitro.  

 

4.2 Materials and Methods 

 Tetraethoxysilane, chloropropyltrimethoxysilane, bromopropyltrimethoxysilane, 

iodopropyltrimethoxysilane, N-(6-aminohexyl)aminopropyltrimethoxysilane, and 

tetramethoxysilane were purchased from Gelest, Inc. (Morrisville, PA).  N,N-

dimethylformamide (anhydrous), methanol (anhydrous), acetonitrile (anhydrous), 

tetrahydrofuran (anhydrous), ethanol, and ammonia solution (30%) were purchased from 

Fisher Scientific (Fair Lawn, NJ).  1-Ethoxycarbonylpiperazine, 5.4 M sodium methoxide in 

methanol, anhydrous sodium carbonate, chloromethyl methyl ether, sodium sulfate, 

magnesium sulfate and cetyltrimethylammonium bromide were purchased from Sigma 

Aldrich (St. Louis, MO).  Nitrogen (N2), argon (Ar), and nitric oxide calibration (26.81 PPM, 

balance N2) gases were purchased from National Welders (Raleigh, NC).  Pure nitric oxide 

gas (99.5%) used for N-diazeniumdiolate formation was purchased from Praxair (Sanford, 

NC).  Reagents for the Griess assay (sulfanilamide, N-1-naphthylethylenediamine, and nitrite 

standard) were purchased from Sigma Aldrich (St. Louis, MO).  Distilled water was purified 

using a Millipore Milli-Q UV Gradient A-10 system (Bedford, MA), resulting in a total 

organic   content   of   ≤6   ppb   and   a   final   resistivity   of   18.2   mΩ·∙cm.  Streptococcus mutans 

(ATCC # 25175) was received from American Type Culture Collection (Manasses, VA).  

Estelite   Σ   Quick   (Tokuyama   Dental)   resin-based dental composite was a gift from UNC 

Dental School. 
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4.2.1 Synthesis of mesoporous silica nanoparticles 

Cetyltrimethylammonium bromide (290 mg) was added to 50 mL of a 5 mM solution 

of ammonium hydroxide in Milli-Q-purified water.  The mixture was stirred for 1 h and 

heated to 40 °C to allow micelle formation.  An initial 110 µL aliquot of tetraethoxysilane 

(TEOS) was added to the solution, with subsequent stirring for 5 h.  A second 600 µL aliquot 

of TEOS was then added, and the solution was stirred for an additional 2 h.  The particles 

were then allowed to age without stirring at 40 °C for 24 h.  The resulting mesoporous silica 

nanoparticles were collected by centrifugation at 16,770 g for 20 mins, washed thrice with 

ethanol and dried in vacuo.  The surfactant was removed by stirring the particles in 50 mL 

acidic ethanol (1:9 HCl:EtOH) at 60 °C overnight.   

 

4.2.2 Synthesis of O2-methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl)piperazin-1-yl)diazen-
1-ium-1,2-diolate 

 
O2-Methoxymethyl 1-(piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was 

prepared as previously described.9  Briefly, 10 g of 1-ethoxycarbonylpiperazine was 

dissolved in 30 mL of methanol with 1.167 mL 5.4 M sodium methoxide in methanol.  The 

solution was placed in a Parr stainless steel pressure vessel connected to an in-house NO 

reactor, purged thoroughly with Ar, then pressurized to 10 bar with NO that had been 

scrubbed with KOH.  The pressure was maintained at 10 bar for 2 d, after which it was 

released and the solutions were again purged with Ar to remove unreacted NO.  Cold ether 

was added, and the resulting white precipitate (1) was collected by filtration, washed with 

cold methanol followed by ether and dried in vacuo.  To a slurry of 1 (2.2 g) and anhydrous 

sodium carbonate in tetrahydrofuran (100 mL) was added 0.75 mL chloromethyl methyl 

ether and 1 mL methanol simultaneously and dropwise under nitrogen at 0 °C.  The mixture 
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was then brought to room temperature and stirred overnight.  The reaction was then filtered, 

evaporated to dryness, and taken up in dichloromethane.  The product (2) was dried over 

sodium sulfate, filtered through magnesium sulfate, and evaporated to dryness.  The 

ethoxycarbonyl protecting group was then removed by heating 2 to reflux in 10% ethanolic 

sodium hydroxide for 1 h.  After cooling to room temperature, the ethanol was removed and 

the residue was extracted in dichloromethane, filtered, extracted with aqueous hydrochloric 

acid, washed with dichloromethane, and then made basic with aqueous sodium hydroxide.  

Lastly, the product was extracted with dichloromethane, dried over sodium sulfate and 

filtered through magnesium sulfate.  Removal of dichloromethane yielded MOM-Pip/NO, 

which was further purified by Flash 40 chromatography using a 4x15 cm KP-Sil column and 

an eluent of 10:1 dichloromethane/methanol. 

Hünig’s  base  (0.79  mmol) was added to a solution of MOM-Pip/NO (0.53 mmol) in 1 

mL anhydrous N,N-dimethylformamide.  Chloro-, bromo-, or iodopropyltrimethoxysilane 

(0.58 mmol) was then added, and the reaction was allowed to proceed for 24 h at 60 °C to 

yield O2-methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl)piperazin-1-yl)diazen-1-ium-1,2-

diolate (MOM-Pip/NO-TMS).  N,N-dimethylformamide was removed by vacuum and the 

residue was taken up in THF.  The insoluble HI   salt   of   Hünig’s   base   was   removed   by  

filtration, and the solvent was removed.  The percent yields from chloro-, bromo- and 

iodotrimethoxysilane were 58, 81 and 94% as determined by 1H NMR.  1H NMR (CD3CN)  δ 

0.61 (t, SiCH2), 1.64 (m, SiCH2CH2CH2), 2.57 (t, Si(CH2)2CH2N), 2.83 (t, NCH2CH2N), 3.41 

(s, OCH2OCH3), 3.51 (s, Si(OCH3)3), 3.55 (t, NCH2CH2N), 5.16 (s, OCH2OCH3) ppm.  13C 

NMR (CD3Cl)   δ   6.46   (SiCH2CH2), 12.08 (SiCH2CH2), 50.56 (SiOCH3), 50.97 (CH2NCH-

CHN), 54.48 (OCH2OCH3), 57.07 (CH2NCH2CH2N), 59.94 (SiCH2CH2CH2N), 97.88
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(OCH2OCH3) ppm.  ESI/MS (in CH3CN): 353.08 m/z. 

 

4.2.3  Synthesis of O2-protected diazeniumdiolate-modified silica nanoparticles  

MOM-Pip/NO-TMS was dissolved in 1 mL tetrahydrofuran and added to a 

suspension of 10 mg of MSNs in 9 mL tetrahydrofuran.  The mixture was refluxed overnight, 

and the resulting MOM-Pip/NO-modified MSNs were collected by centrifugation (3645 g, 

10 min), washed twice with tetrahydrofuran, then twice with ethanol.  The particles were 

then dried in vacuo overnight, and stored in a vacuum-sealed container protected from light 

at -20 °C until further use.  

 

4.2.4 Synthesis of unprotected diazeniumdiolate-modified silica nanoparticles 

 Silica nanoparticles composed of N-(6-aminohexyl)-aminopropyltrimethoxysilane 

(AHAP) and tetramethoxysilane (TMOS) were synthesized via a modified Stöber method as 

previously described.15  Briefly, AHAP (1.173 mL) and TMOS (0.708 mL) were mixed and 

added to a solution of ethanol (59.16 mL), water (27.84 mL), and ammonium hydroxide (9.8 

mL).  After 2 h reaction at room temperature, the resulting particles were collected by 

centrifugation (3645 g, 10 min, 4 °C) and washed three times with ethanol.  After drying in 

vacuo, 20 mg of AHAP particles were suspended by sonication in 4 mL of a 1:9 mixture of 

methanol and N,N-dimethylformamide with 50 µL 5.4 M sodium methoxide in methanol.  

The particles suspensions were then purged with Ar and exposed to NO in the same manner

as described above.  After 3 d, the resulting N-diazeniumdiolate-modified silica nanoparticles

 (AHAP/NO) were collected by centrifugation (3645 g, 10 min, 4 °C), washed three times

with ethanol, and dried in vacuo.  
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4.2.5 Characterization 

Total amounts of NO released from the particles were evaluated using the Griess 

assay.  MOM-Pip/NO-modified particles were suspended in oxygenated phosphate buffered 

saline (PBS, pH 7.4) and liberated NO was converted to nitrite (NO2
-).  Aliquots of the 

particle suspension were taken at the time points indicated in Figure 4.5.  The particles were 

removed by centrifugation, and 50 µL aliquots of the supernatant were reacted with equal 

volumes of 1 wt% solutions of sulfanilamide and N-1-naphthylethylenediamine.  The 

formation of an azo compound was detected by measuring the absorbance at 540 nm and 

comparing the results to a calibration curve constructed using nitrite standards to determine 

the total NO released from the particles.  Real-time nitric oxide release was monitored using 

a Sievers NOA 280i Chemiluminescence NO Analyzer (Boulder, CO) connected to a 

customized reaction vessel.  Nitric oxide-releasing materials were placed in deoxygenated 

media at 37 °C with NO carried to the analyzer by passing N2 through the solution at a 

constant rate of 70 mL/min.  The analyzer was calibrated with air passed through a NO zero 

filter (0 ppm NO) and a 26.39 ppm NO standard gas (balance N2).   

 Particle size and morphology were characterized using a Hitachi S-4700 Scanning 

Electron Microscope (Pleasanton, CA).  Covalent incorporation of MOM-Pip/NO-TMS onto 

the MSNs was confirmed using solid-state cross-polarization/magic angle spinning 

(CP/MAS) 29Si NMR with a Bruker 360 MHz DMX spectrometer (Billerica, MA) equipped

with wide-bore magnets (triple-axis pulsed field gradient double-resonance probes).  Samples

were packed into a 4 mm rotor (double-resonance frequency of 71.548 Hz) and spun at 10

kHz.  Chemical shifts were determined in parts per million relative to a tetramethylsilane 

external standard.  Nitrogen adsorption/desorption isotherms were obtained using a 
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Micromeritics Tristar II Porosimeter (Norcross, GA) after outgassing the particles at 110 °C  

for 18 h.  The specific surface area was calculated using Brunauer-Emmet-Teller theory.  

Carbon, hydrogen and nitrogen content were determined on a Perkin Elmer CHN/S elemental 

analyzer operated in CHN mode.   

 

4.2.6 MOM-Pip/NO-MSN-doped dental composites 

  Particle-doped resins were prepared by mixing 1.4 mg particles into 138.6 mg resin 

with a spatula.  Particle-doped resins were pressed between glass slides into uniform disks 

with a diameter of 1 cm and a thickness of 0.1 cm.  The composites were cured using a 

Translux Power Blue dental curing light (440–480 nm) from Heraeus Kulzer (South Bend, 

IN). 

 

4.2.7  Bacterial adhesion assay 

 Streptococcus mutans was grown to 108 CFU/mL in BHI broth, centrifuged (3645 g, 

10 min), resuspended in PBS, and diluted to 106 CFU/mL in 10% (v/v) BHI in PBS.  

Particle-doped composite resins were placed in 1.0 mL of 106 CFU/mL and incubated at 37 

°C with gentle shaking.  After 24 h, the composites were removed and rinsed with distilled 

water to remove loosely adhered bacteria.  The composites were then placed in 1.0 mL of 

fresh PBS.  Adhered bacteria were removed by sonication (60 kHz, 10 min).  Complete

removal of adhered bacteria was confirmed by imaging the composites with atomic force

microscopy (AFM).  Aliquots (100 µL) were taken from the resulting bacteria suspensions,

plated on BHI agar nutrient plates, and enumerated after incubating for 48 h at 37 °C.     
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4.2.8  Atomic force microscopy imaging of composites 

Prior to imaging, substrates were gently rinsed in sterile water and allowed to dry 

under ambient conditions.  AFM images were collected in contact mode using an Asylum 

MFP-3D AFM (Santa Barbara California) and Olympus TR400PSA silicon nitride probes.  

At least three 10 µm2 images of each substrate were taken at a resolution of 1024x1024 

pixels and scan speed of 1 Hz.  Root-mean-squared (rms) roughness of substrates was 

determined using MFP-3D software over four 2 µm2 scan regions. 

 

4.3  Results and Discussion 

4.3.1  Synthesis of MOM-Pip/NO-modified mesoporous silica nanoparticles 

While the therapeutic utility of NO-releasing macromolecular scaffolds has been 

proven both in vitro and in vivo,5 the need for prolonged NO release scaffolds (i.e., weeks to 

months) remains a major hurdle.  O2-protected diazeniumdiolates are a promising class of 

NO donors as the functionality is still labile in physiological conditions but with significantly 

increased NO release lifetimes.  Previously, Saavedra et al. described the preparation of 

piperazine-based methoxymethyl (MOM)-protected diazeniumdiolates that could be coupled 

to macromolecular structures through reaction with the free secondary amine on the 

piperazine ring.9  Since this seminal report, piperazine-based MOM-protected scaffolds with 

half-lives up to 3 weeks have been developed.9, 11, 12  Based on the advantages of silica 

nanoparticles for drug delivery, we sought to design a new class of extended NO release 

scaffolds by modifying silica particles with methoxymethyl-protected diazeniumdiolate-

based silanes. 

 The incorporation of O2-protected NONOates into silica nanoparticles first required
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the synthesis of an O2-protected NONOate-modified organosilanes.  As shown in Scheme 

4.1, ethoxycarbonyl piperazine was first N-diazeniumdiolated and subsequently alkylated 

with chloromethyl methyl ether.  Removal of the ethoxycarbonyl group revealed MOM-

Pip/NO with a free secondary amine.  Full details of this synthesis have been previously 

described.9  A methoxymethyl protecting group was selected as it hydrolyzes slowly under 

physiological conditions (pH 7.4).  Other protecting groups have been designed that require 

enzymatic cleavage; however, such methodologies are not suitable for polymer dopants 

where access to enzymes would be low.   

As shown in Scheme 4.2, the MOM-protected NONOate silane was synthesized by 

coupling MOM-Pip/NO with an alkylhalide trimethoxysilane.  Initially, 

chloropropyltrimethoxysilane was chosen as the alkylhalide trimethoxysilane based on a 

previous report describing the coupling of MOM-Pip/NO to poly(vinyl chloride).9  

Acetonitrile, N,N-dimethylacetamide and N,N-dimethylformamide (DMF) were tested as the 

reaction solvent, as each is aprotic and has a dielectric constant sufficient for promoting SN2 

reactions.  After 24 h reaction time at 60 °C, DMF proved to be the best solvent as indicated 

by 1H NMR analysis.  The successful formation of MOM-Pip/NO-TMS was indicated by a 

shift in the piperazine protons alpha to the secondary amine from 3.04 to 2.83 ppm. The 

protons alpha to the halide also shifted from 3.57 to 2.57 ppm upon formation of MOM-

Pip/NO-TMS.  However, the reaction of chloropropyltrimethoxysilane and MOM-Pip/NO 

under these conditions only proceeded to 58% completion.  Thus, the more reactive bromo-

and iodopropyltrimethoxysilanes were tested under the same reaction conditions (DMF, 24

h, and 60 °C).  The reaction of MOM-Pip/NO with bromopropyltrimethoxysilane went to 

81% completion, while reaction with iodopropyltrimethoxysilane resulted in a near complete
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Scheme 4.1 Synthesis of O2-methoxymethyl 1-(piperazin-1-yl)diazen-1-ium-1,2-diolate 
(MOM-Pip/NO).9 
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Scheme 4.2  Synthesis of O2-methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl)piperazin-1-
yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO-TMS).  
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 reaction (94%) due to the superior leaving group ability of the iodo group.  The successful 

formation of MOM-Pip/NO-TMS was also confirmed with ESI mass spectrometry.  Excess 

Hunig’s  base  was  used   to   stabilize   the  MOM protecting group, which is unstable in acidic 

solutions.  The stability of the MOM protecting group was confirmed by monitoring the 

singlet at 5.16 ppm that corresponds to the protons of the terminal methyl group.   

As discussed in Section 1.1.1, the incorporation of organic functionalities onto silica 

nanoparticles can be achieved via a modified Stöber or a surface grafting method.  Although 

the Stöber method results in particles with the organosilanes incorporated throughout the 

entire particle, large organosilane concentrations often result in less control over particle size 

distribution and morphology.  Moreover, large sterically hindered organosilanes restrict the 

polycondensation reactions required for uniform particle formation.7  Alternatively, the 

surface-grafting method involves condensing organosilanes with surface silanols on 

preformed particles.16  Typically, the preformed particles are synthesized from 

tetraalkoxysilane precursors, allowing for more uniform particles to be easily achieved.  

Particles with large organosilane concentrations can be prepared using mesoporous silica 

nanoparticles (MSN) due to their large specific surface area.  Mesoporous silica 

nanoparticles are synthesized using micellular structures as templates for silica 

polymerization (Figure 4.1).17  Upon hydrolysis, the silicate species bind to the surfactant 

molecules at the micelle interface through electrostatic interactions.  Condensation of silicate 

species ensues, ultimately resulting in particle formation.  The surfactant molecules are then 

removed using an acid wash to yield mesoporous silica particles.  Numerous reports have 

demonstrated the ability to modify particle morphology by altering reaction conditions such 

as pH, temperature, and silane concentration.18, 19  For example, increasing reaction
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Figure 4.1  Synthesis of mesoporous silica nanoparticles (MSNs) involves the condensation 
of silane precursors around micelle structures to yield porous silica nanoparticles.  Following 
surfactant removal, organosilanes can be condensed onto the MSNs through reaction with 
surface silanols. 
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temperature has been found to increase the aspect ratio of the resulting silica particles, while 

increasing alkalinity results in increased aspect ratio and improved monodispersity.20  The 

reaction conditions used here (i.e., pH 11 and 40 °C) resulted in monodisperse rod-shaped 

silica nanoparticles with an aspect ratio of 3 (Figure 4.2).  Using Brauner-Emmett-Teller 

analysis of nitrogen adsorption-desorption isotherms, the MSNs were found to have a 

specific surface area of 1145 m2/g.  

 O2-protected diazeniumdiolate-modified silica particles were subsequently prepared 

by condensing MOM-Pip/NO-TMS onto the MSNs (Figure 4.1).  The successful addition of 

the MOM-Pip/NO-TMS into the silica network was confirmed using solid state 29Si nuclear 

magnetic resonance spectroscopy (SS 29Si NMR) with cross polarization and magic angle 

spinning (CP/MAS).  As shown in Figure 4.3, the resulting SS 29Si NMR spectra consisted of 

two peaks at -110 and -60 ppm corresponding to the Q-band and the T-band, respectively.  

The Q-band results from 29Si bound to four functionalizable groups, representing silicon 

atoms originating from the TEOS precursor.21  The T-band results from 29Si bound to three 

hydrolyzable groups, corresponding to the MOM-Pip/NO-TMS precursor.21  Elemental 

analysis further confirmed MOM-Pip/NO-TMS modification as indicated by an increase in 

the carbon wt% from 8.97 to 17.26% and nitrogen wt% from 0.31 to 6.77%.  Of note, the 

small carbon content present within the particle prior to modification is likely due to 

unreacted ethoxy ligands.  The elemental analysis results indicate that 1.2 µmol MOM- 

Pip/NO-TMS were incorporated per mg of MSNs, which is comparable to the organosilane

concentrations of previously reported amine-modified silica nanoparticles prepared via the 

Stöber method.7  The stability of the MOM-Pip/NO moiety during the functionalization step 

was confirmed by the presence of an absorbance maximum in the UV-Vis spectrum at ca.
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Figure 4.2 Scanning electron micrographs of mesoporous silica nanoparticles synthesized 
via a surfactant templated approach.  



 

 148 

 
 
 
 
 
 
 
 

-200-180-160-140-120-100-80-60-40-2002040

ppm

 
 
Figure 4.3  Solid state CP/MAS 29Si NMR spectrum of MOM-Pip/NO-modified MSNs.  The 
T-band (ca. -60 ppm) indicates silicon atoms bound to three oxygens (i.e., MOM-Pip/NO-
TMS), and the Q-band (ca -100 ppm) represents silicon atoms bound to four oxygens (i.e., 
TEOS). 
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 220 nm (Figure 4.4), which is within the range of that reported for O2-protected 

diazeniumdiolates.9  The addition of MOM-Pip/NO-TMS did not affect particle size or 

morphology as determined by SEM. 

Nitric oxide storage and release from the MOM-Pip/NO-modified particles were 

evaluated by elemental analysis and the Griess assay, respectively.  The MOM-Pip/NO-

modified particles were characterized by a total NO payload of 2.4 µmol NO/mg.  As shown 

in Figure 4.5, the rate of NO generation from the MOM-Pip/NO-modified particles was slow 

and continued for several weeks at 0.5–1.0 pmol mg-1 s-1.  The half-life of NO release was 

ultimately determined to be 23 d, which is significantly longer than any other NO-releasing 

silica particle to date.6  The longest previously reported NO release half-life from silica 

nanoparticles was 4.2 h from Stöber silica particles containing N-diazeniumdiolate-modified 

(3-trimethoxysilyl)diethylenetriamine.8  Thus, NO-releasing silica particles with sustained 

NO release was achieved by covalently incorporating an O2-protected N-diazeniumdiolate 

NO donor within the silica network.   

 

4.3.2 Inhibition of bacterial adhesion 

 Nablo et al. previously showed that the release of NO from xerogel-coated silicon 

rubber implants significantly decreases subcutaneous Staphylococcus aureus infections in 

vivo.22  A number of subsequent studies have demonstrated the ability of NO-releasing 

surfaces to decrease the adhesion of both Gram positive and Gram negative bacteria.23-26  To 

date, most evaluations have employed short exposure periods (0.5–2 h) in non-nutrient

conditions, which are less representative of the complex environment present in vivo.  To

assess the utility of MOM-Pip/NO-modified particles as dopants for antimicrobial dental
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Figure 4.4  UV-Vis absorbance spectrum of MOM-Pip/NO-modified particles with an 
maximum absorbance at 220 nm indicating the presence of the MOM-protected 
diazeniumdiolates. 
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Figure 4.5 Nitric oxide release from MOM-Pip/NO-MSNs. Total NO storage is 2.5 µmol/mg 
as determined by elemental analysis. 
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 restorative materials, we sought to evaluate the ability of these materials to resist bacterial 

adhesion over 24 h exposure times under nutrient conditions (10 vol% BHI in PBS).  

Streptococcus mutans was chosen as the test microbe as it has been implicated as a causative 

cariogenic bacterium.27   

To evaluate the advantage of the sustained NO release scaffolds, composites doped with 

faster NO-releasing unprotected N-diazeniumdiolate-modified AHAP/NO particles were also 

prepared.  Nitric oxide release from the particle-doped composites was evaluated in 10 vol% 

BHI in PBS over 24 h to mimic the bacterial adhesion assays.  The total NO released from 

MOM-Pip/NO- and AHAP/NO-doped composites in this media was 6.7±0.1 and 19.2±0.04 

nmol, respectively.  As shown in Figure 4.6, the NO release flux from the composites was 

low (0.1–0.4 pmol cm-2 s-1).  This result was attributed to NO scavenging by proteins present 

in the nutrient broth and was not unexpected.28  The NO release from MOM-Pip/NO-doped 

composites continually increased during the 24 h exposure period due to the slow 

decomposition rate of the protected N-diazeniumdiolate.  Conversely, the AHAP/NO-doped 

composites reached a maximum NO flux within the first few minutes, and the NO levels 

gradually decreased over the 24 h exposure time.  Both NO-releasing composites exhibited 

NO fluxes below that previously reported to be the minimum required in inhibit adhesion of 

Gram negative Psuedomonas aeruginosa.23, 24 Despite the low NO release, composites doped 

with 1 wt% MOM-Pip/NO particles were characterized by a 3-log decrease in viable adhered   

bacteria compared to control and AHAP/NO-doped composites (Figure 4.7).  No significant 

decrease in bacterial adhesion was observed between the

undoped control and AHAP/NO-doped composite resins.  Hetrick et al. reported a minimum

flux of 20 pmol cm-2 s-1 required to inhibit adhesion of P. aeruginosa to xerogels films.24  
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Figure 4.6  Nitric oxide release in 10 vol% BHI in PBS from dental composites doped with 1 
wt% AHAP/NO (squares) and MOM-Pip/NO (triangle) particles.  
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 However, Dobmeier and Schoenfisch previously noted a 50% reduction in adhesion of P. 

aeruginosa to xerogel microarrays with lower NO fluxes (1.0 pmol cm-2 s-1).23  Both prior 

studies were conducted in nutrient-free media at <2 h exposure times.  The results presented 

here indicate that the NO flux required to decrease the number of viable bacteria adhered to a 

surface is dependent on the substrate, bacterial strain, and exposure conditions (e.g., time and 

media).  

Atomic force microscopy images were obtained for each composite to ensure that 

differences in adhesion were not a result of changes in surface roughness due to the particle 

dopant (Figures 4.8A–C).  The filler silica particles present in the composite were visible in 

each trace and clearly the major contributor to the surface roughness.  Figure 4.8D provides a 

single 10 µm height trace, illustrating that the surface of each composite is similar regardless 

of the presence or absence of a functionalized particle dopant.  Surface roughness 

measurements also confirmed that the addition of MOM-Pip/NO and AHAP/NO particles did 

not significantly alter the surface topography (Figure 4.8E).  These results suggest that the 

reduction in viable S. mutans adhered to MOM-Pip/NO-doped composites was a result of 

their unique NO release.     

 

4.4   Conclusions

While silica nanoparticles have distinct advantages for the therapeutic delivery of 

NO, limited NO release durations remains a major hindrance for their use in many 

biomedical applications.  Herein, we demonstrated that NO-releasing silica particles with 

sustained NO release could be achieved by employing O2-protected N-diazeniumdiolate 

chemistry.  Indeed, O2-protected N-diazeniumdiolate silane-modified silica particles
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Figure 4.7  Viability of adhered S. mutans to control and particle-doped composites 
following 24 h incubation in 10 vol% BHI in PBS. 
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Figure 4.8  Atomic force micrographs of (A) control, (B), AHAP/NO-doped, and (C) MOM-
Pip/NO-doped composites, (D) representative height trace from center section of each image 
(indicated by horizontal red line), and (E) rms surface roughness determined from four 2 µm2 
areas. 
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exhibited an NO release half-life of 3 weeks, the longest duration achieved from a silica 

particle scaffold to date.  As a result, the potential applications of NO-releasing silica 

nanoparticles can be expanded to those requiring long durations of low NO fluxes. 

The therapeutic utility of MOM-Pip/NO-modified silica nanoparticles was 

preliminarily demonstrated by preparing novel antimicrobial dental composites.  The release 

of NO from the MOM-Pip/NO-doped composites effectively decreased the number of 

adhered viable S. mutans compared to control (undoped) composites.  To evaluate the full 

potential of NO-releasing dental composites, future studies should evaluate longer bacterial 

exposure times and whether NO inhibits plaque biofilm formation.  The effectiveness of 

composites doped with MOM-Pip/NO-modified particles in environments mimicking the 

oral cavity should also be evaluated as the lower pH will result in faster NO release, thus 

potentially influencing bacterial adhesion/viability.  Greater NO payloads may be achieved 

by forming composites with larger NO-releasing silica nanoparticle concentrations.  Indeed, 

unmodified silica particles comprise 70–90 wt% of commercial dental composites to provide 

increased modulus, strength, and abrasion resistance.29  Designing new composites composed 

completely of NO-releasing silica particles may yield improved composites with respect to 

resistance to biofilm formation. The effect of the NO-releasing particle dopants on the 

properties of the polymer composites must be evaluated.  Ultimately, a mixture of

unmodified and modified particles may prove necessary to maintain composite integrity.  
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Chapter 5: 

Dual-action Antimicrobials: Nitric Oxide Release from Quaternary Ammonium-

Functionalized Nanoparticles 

5.1  Introduction 

With increasing occurrences of microbial antibiotic resistance,1 alternative 

approaches for fighting infections have become necessary.  Co-administering two 

antimicrobials that act via different mechanisms has been shown to significantly reduce 

microbial resistance and often results in synergy where the two agents are more effective in 

combination than when administered alone.2, 3 As such, researchers are developing strategies 

to modify macromolecular scaffolds (e.g., dendrimers, particles, polymers) with multiple 

antimicrobial agents.4-6 For example, macromolecular scaffolds have been designed to 

consist of a permanent antimicrobial characteristic that remains after the depletion of the 

releasable agent.7 

  Long chain quaternary ammoniums (QA) are a popular non-depleting antimicrobial 

component due to their broad-spectrum efficacy, simple structure, and ability to kill bacteria 

with no affect on the QA structure.8  The positively charged ammonium group promotes 

direct interaction with the negatively charged bacterial membrane, causing chemical 

imbalances by replacing essential metal cations.  Simultaneously, the long alkyl chain of 

QAs inserts into the membrane and cause physical damage.  The simple structure of the QA 

functionalities allows for straight forward integration into polymers,9, 10 films,11-13 

dendrimers,14 and particles,8, 15, 16 while still retaining their antimicrobial properties.  
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Unfortunately, tethering QAs to polymers or particles limits their action to only those 

bacteria that come in direct contact with the macromolecule.  Thus, coupling QA 

functionalities  with  a  second  releasable  agent  may  increase  the  materials’  sphere  of  influence  

and benefits from the advantages of the combination therapies discussed above.  Indeed, QA-

functionalized polymers impregnated with releasable silver ions (Ag+) exhibited a wider zone 

of inhibition than QA polymers alone.7, 17  Similarly, Wong et al. reported improved efficacy 

of QA-functionalized layer-by-layer coatings that leached gentamicin against biofilm 

formation.18   

To date, most combination strategies have only been applied to polymeric coatings or 

films.  Silica nanoparticles are well-poised as scaffolds for combination therapies due to their 

high surface area to volume ratio, chemical flexibility, and limited toxicity to mammalian 

cells.19  Our laboratory has demonstrated the broad spectrum bactericidal efficacy of silica 

nanoparticles that actively release nitric oxide (NO),20-22 a gaseous molecule produced 

endogenously as part of the innate immune response.23  Nitric oxide and its reactive 

byproducts decrease bacterial viability via both lipid peroxidation and reaction with 

membrane proteins, DNA, and metabolic enzymes.23  The key advantage of employing NO 

over other releasable   agents   (e.g.,   silver   and   antibiotics)   involves   NO’s   multimodal  

antimicrobial activity and low toxicity to mammalian cells at concentrations necessary for 

antimicrobial action.24  Furthermore, initial studies suggest the inability of bacteria to 

develop resistance to nanoparticle-derived NO.25  To date, the potential of NO-based 

therapeutics is evident in the immense research efforts focused on designing NO-releasing 

macromolecular scaffolds for biomedical applications.26,27  

The storage of exogenous NO within silica nanoparticles is achieved by forming N-
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diazeniumdiolate NO donors on secondary amine sites incorporated within the silica network 

(Scheme 5.1).22, 28  Upon exposure to physiological solution (pH 7.4, 37 °C), the N-

diazeniumdiolates undergo proton-initiated decomposition to release two molecules of NO 

per secondary amine site.  Moreover, the rate of NO release is dependent on the NO donor 

structure and chemical environment. We hypothesize that the incorporation of long chain 

quaternary ammoniums onto the surface of NO-releasing silica nanoparticles may result in 

increased efficacy compared to singly functionalized particles (i.e., QA or NO release alone).  

Herein, we investigated the role of QA alkyl chain length and NO release capability on the 

bactericidal efficacy against Gram-positive Staphylococcus aureus and Gram-negative 

Pseudomonas aeruginosa.  

 

5. 2 Materials and methods 

Tetramethoxysilane and N-(6-aminohexyl)aminopropyltrimethoxysilane were 

purchased from Gelest (Morrisville, PA).  Glycidyltrimethylammonium chloride, 

epichlorohydrin, dimethylbutylamine, dimethyloctylamine, dimethyldodecylamine, 

trimethylsilanolate, and propidium iodide (PI) were purchased from Sigma Aldrich (St. 

Louis, MO).  N,N-dimethylacetamide, methanol (anhydrous), ethanol, ammonia solution 

(30%) and tetrahydrofuran (anhydrous) were purchased from Fisher Scientific (Fair Lawn, 

NJ).  Media and reagents for bacteria and mammalian cell assays were purchased from 

Becton, Dickinson and Company (Sparks, MD).  Pseudomonas aeruginosa (P. aeruginosa) 

(ATCC #19143) and Staphylococcus aureus (S. aureus) (ATCC #29213) were obtained from 

American Type Tissue Culture Collection (Manassas, VA), and L929 mouse fibroblasts were 

obtained from the UNC Tissue Culture Facility (Chapel Hill, NC).  4,5-Diaminofluorescein
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Scheme 5.1 Quaternary ammonium (QA) epoxides were synthesized via reaction of 
epichlorohydrin with a dimethylalkylamine and subsequently reacted with the primary 
amines on the surface of AHAP/TMOS particles to yield QA-functionalized silica 
nanoparticles. 
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diacetate (DAF-2 DA) was purchased from Calbiochem (San Diego, CA).  Nitrogen (N2), 

argon (Ar), and nitric oxide calibration (26.81 PPM, balance N2) gases were purchased from 

National Welders (Raleigh, NC).  Pure nitric oxide gas (99.5%) used for N-diazeniumdiolate 

formation was purchased from Praxair (Sanford, NC).  Distilled water was purified using a 

Millipore Milli-Q UV Gradient A-10 system (Bedford, MA), resulting in a total organic 

content  of  ≤6  ppb  and  a  final  resistivity  of  18.2  mΩ·∙cm. 

 

5.2.1 Synthesis of amine-functionalized silica nanoparticles 

The Stöber method was used to form monodisperse, spherical silica nanoparticles 

with amine functionalities throughout the particle scaffold as previously described.29  Briefly, 

a premixed solution of N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP) (1.173 mL) 

and tetramethoxysilane (TMOS) (0.708 mL) was added to a solution of ethanol (59.16 mL), 

water (27.84 mL), and ammonium hydroxide (9.8 mL).  The reaction was stirred at room 

temperature for 2 h.  The resulting white particle precipitates were collected by centrifugation 

(3645g, 10 min, 4 °C) and washed thrice with ethanol to remove unreacted reagents.  The 

particles were then dried in vacuo and stored in a sealed container at room temperature until 

further use.  

 

5.2.2 Synthesis of quaternary ammonium-functionalized silica nanoparticles 

The addition of QA functionalities to the particle surface involved the synthesis of 

quaternary ammonium epoxides (QA-epoxides) that were then subsequently reacted with 

primary amines on the particle scaffold via a ring opening reaction (Scheme 5.1).  To form 

the QA-epoxides, 0.04 mmol epichlorohydrin was reacted with 0.01 mmol N,N-
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dimethylbutylamine, N,N-dimethyloctylamine, or N,N-dimethyldodecylamine at room 

temperature overnight.  The mixture was added dropwise to cold ether while sonicating, and 

the solid/viscous liquid QA-epoxides were collected via centrifugation (810g, 5 min).  The 

supernatant containing excess epichlorohydrin and unreacted trialkylamines was decanted, 50 

mL fresh cold ether was added, and the QA-epoxides were sonicated extensively.  This 

washing procedure was repeated three times, followed by drying of the QA-epoxides in 

vacuo.  The removal of unreacted epichlorohydrin and trialkylamines was confirmed with 1H 

NMR.  Glycidyldimethylbutylammonium chloride (butylQA) was a viscous liquid: 1H NMR 

δ  0.98  (t,  3  H),  1.41  (m,  2H),  1.70  (m,  2H), 2.79 (dd, 1H), 2.98 (t, 1H), 3.24 (dd, 1H), 3.44 (s, 

6H), 3.52 ppm (m, 1H), 3.63 ppm (dt, 2H), and 4.62 ppm (dd, 1H); 13C  NMR  δ  13.8,  19.9,  

25.5, 45.5, 45.3, 53.1, 65.4, and 66.9 ppm; ESI/MS m/z 158.09. 

Glycidyldimethyloctylammonium chloride (octylQA) was a tacky solid; 1H  NMR  δ  0.87  (t,  3  

H), 1.29 (m, 10 H) 1.71 (m, 2H), 2.74 (dd, 1H), 2.98 (t, 1H), 3.10 (dd, 1H), 3.49 (s, 6H), 3.54 

(m, 1H), 3.67 (dt, 2H), and 4.96 ppm (dd, 1H); 13C  NMR  δ  14.2,   22.9,   23.71,   26.6,   29.4,  

32.02, 45.3, 45.5, 53.1, 65.8 and 66.9 ppm; ESI/MS m/z 214.16. 

Glycidyldimethyldodecylammonium chloride (dodecylQA) was a waxy solid; 1H   NMR   δ  

0.87 (t, 3 H), 1.27 ppm (m, 18H), 1.70 ppm (m, 2H), 2.74 ppm (dd, 1H), 2.98 ppm (t, 1H), 

3.08 ppm (dd, 1H), 3.54 ppm (s, 6H), 3.58 ppm (m, 1H), 3.65 (dt, 2H), and 4.97 ppm (dd, 

1H); 13C  NMR  δ  14.2,  23.1,  23.7,  26.5,  29.5,  29.7,  29.8,  29.9,  32.38,  45.3,  45.5,  53.1,  65.4,  

and 66.9 ppm; ESI/MS m/z 270.25. The IR spectra were similar for all QA-epoxides with the 

exception of the intensity of the saturated C-H absorbance at 2919 and 2850 cm-1, which 

increased with increasing alkyl chain length. IR (neat): 3019 cm-1 (methyl C-H), 2920 cm-1 

(saturated C-H), 2850 cm-1 (saturated C-H), 1468 cm-1 (methyl C-H), 1267 cm-1 (epoxy ring),
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972 (quaternary ammonium), 909 cm-1 (epoxy ring).   

A ring opening reaction was subsequently performed between the QA-epoxides and 

the primary amines on the surface of the particle scaffolds (Scheme 5.1).  The amine-

containing silica particles (AHAP, 100 mg) were suspended in 2.5 mL N,N-

dimethylacetamide via sonication, and 20 µL triethylamine was added.  The QA-epoxides 

were dissolved in 5 mL N,N-dimethylacetamide and added in excess to the particle 

suspension.  Dissolution of glycidyltrimethylammonium chloride required heating while all 

other QA-epoxides dissolved readily. The reaction was heated to 110 °C and allowed to 

proceed overnight.  The resulting QA-modified particles were collected via centrifugation 

(3645g, 10 min, 4 °C), washed thrice with ethanol and dried in vacuo.  

 

5.2.3  N-Diazeniumdiolation of silica nanoparticles  

Silica particles were loaded with NO by forming N-diazeniumdiolate NO donors on 

secondary amine sites (Scheme 5.2).  Briefly, 20 mg of AHAP/TMOS or QA-modified 

AHAP/TMOS particles were suspended by sonication in 4 mL of tetrahydrofuran, and 

trimethylsilanolate was added in a 3.5-fold excess relative to secondary amines, as 

determined with elemental analysis.30, 31  The particle suspensions were then placed in a 160 

mL Parr general purpose stainless steel pressure vessel with magnetic stirring and connected 

to an in-house NO reactor.  The solutions were flushed 6 times with Ar to remove oxygen 

from the system, then pressurized to 10 bar with NO that had been scrubbed with KOH.  The 

pressure was maintained at 10 bar for 3 d, after which it was released and the solutions were 

again purged with Ar to remove unreacted NO.  The resulting N-diazeniumdiolate-modified 

silica nanoparticles were collected by centrifugation (3645g, 10 min, 4 °C), washed twice
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Scheme 5.2  N-Diazeniumdiolate NO donors were formed on secondary amines within the 
particle scaffold upon exposure to high pressures of NO in the presence of a base (e.g., 
NaOSiMe3).  In the presence of a proton source (e.g., H2O), these NO donors breakdown to 
regenerate the parent amine and two molecules of NO. 
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with a 50:50 (v/v) mixture of 5 mM NaOH and methanol to remove unreacted base and 

byproducts from the particle suspension.  The NO-loaded particles were then washed twice 

with ethanol and dried in vacuo.   

 

5.2.4 Nitric oxide release measurements 

Real-time NO release in deoxygenated PBS (pH 7.4) at 37 °C was monitored using 

Sievers NOA 280i chemiluminescence NO analyzer (NOA, Boulder, CO) connected to a 

customized reaction cell as described previously.32  The absence of nitrite byproducts was 

confirmed by ensuring that total NO concentrations measured from both the Griess assay and 

the NOA were equal.33  Prior to analysis, the NO analyzer was calibrated with air passed 

through a NO zero filter (0 ppm NO) and a 26.39 ppm NO standard gas (balance N2). 

 

5.2.5 Nanoparticle characterization 

The   particles’   zeta   potentials   (i.e.,   surface   charge)  were  measured   using   a  Malvern  

Zetasizer Nano-ZS equipped with a 10 mW HeNe laser (633 nm) and a NIBS® detector at an 

angle of 173°. All samples were prepared at 0.5 mg/mL concentrations in either 10 mM 

NaOH or 10 mM phosphate buffer, sonicated briefly and analyzed at 37 °C.  Phosphate 

buffer (non-saline, pH 7.4) was employed for zeta potential measurements to mimic the 

media used for bactericidal assays because the high ionic contents of phosphate buffered 

saline were found to corrode the folded capillary electrodes.34  Particle size and morphology 

were characterized using a Hitachi S-4700 Scanning Electron Microscope (Pleasanton, CA).  

Carbon, hydrogen and nitrogen content were determined on a Perkin Elmer CHN/S elemental 

analyzer operating in CHN mode.  X-ray photoelectron spectroscopy (XPS) analysis was 
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performed on a Kratos Axis Ultra DLD X-ray Photoelectron Spectrometer with a 

monochromatic  Al  Kα  X-ray source (150W).   Electrons were collected at an angle of 90 

degrees from the sample surface from a 300 x 700 µm area on the sample.  The pass energy 

was set to 20 eV to allow for high resolution spectra to be obtained.  All spectra were 

obtained with a step size of 0.1 eV and calibrated to the C1s peak at 284.6 eV. 

 

5.2.6 Bactericidal assays 

P. aeruginosa and S. aureus were cultured in tryptic soy broth to a concentration of 

108 colony forming units per mL (CFU/mL), collected by centrifugation, and resuspended in 

PBS or 1% glucose, 0.5% TSB in PBS, respectively.  Of note, S. aureus was not viable in 

PBS alone after 24 h.  Each bacteria was diluted to 106 CFU/mL and treated with the 

appropriate concentration of QA-modified, NO-releasing, or NO-releasing QA-

functionalized silica nanoparticles.  The samples were briefly sonicated and vortexed in order 

to suspend the particles.  After 24 h of incubating at 37 °C, the particle-treated bacteria were 

spiral plated at 10- and 100-fold dilutions on tryptic soy agar plates.  Bacterial viability was 

assessed by counting the number of colonies formed on the agar plate using a Flash & Go 

colony counter (IUL, Farmingdale, NY). 

 

5.2.7  Confocal microscopy for detection of intracellular NO and cell death 

S. aureus was cultured in TSB to a concentration of 1 × 108 cfu/mL, collected via 

centrifugation (3645g, 10 min), resuspended in sterile PBS, and adjusted to 1 × 106 cfu/mL in 

PBS  supplemented  with  10  μM  DAF-2  DA  and  30  μM  PI.  Aliquots  of  the  S. aureus solution 

were incubated in a glass bottom confocal dish for 45 min at 37 °C. A Zeiss 510 Meta 
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inverted laser scanning confocal microscope with a 488 nm Ar excitation laser (2.0%) and a 

BP 505–530 nm filter was used to obtain DAF-2 (green) fluorescence images. A 543 nm 

HeNe excitation laser (25.3%) with a BP 560–615 nm filter was used to obtain PI (red) 

fluorescence images. The bright field and fluorescence images were collected by a N.A. 1.2 

C-apochromat water immersion lens with a 40× objective. Suspensions (1.5 mL) of 

AHAP/NO (1 mg/mL) or dodecylQA-AHAP/NO (1 mg/mL) particles in PBS (supplemented 

with  10  μM  DAF-2  DA,  30  μM  PI)  were  sonicated  and  immediately  added  to  the  S. aureus 

solution (1.5 mL) in the glass confocal dish. Images were collected every 5 min to observe 

intracellular NO concentrations and bacteria cell death. 

 

5.2.8 In vitro cytotoxicity 

L929 mouse fibroblasts were grown in DMEM supplemented with 10% (v/v) fetal 

bovine serum (FBS) and 1 wt% penicillin/streptomycin, and incubated in 5% (v/v) CO2 

under humidified conditions at 37 oC. After reaching 80% confluency, the cells were 

trypsinized, seeded onto tissue-culture treated polystyrene 96-well plates at a density of 

3×104 cells/mL and incubated at 37 oC for 48 h. The supernatant was then aspirated and 

replaced  with  200  μL  fresh  DMEM  and  50  μL  of  either  control  (AHAP,  methylQA,  butylQA,  

octylQA, dodecylQA) or NO-releasing (AHAP/NO, methylQA/NO, butylQA/NO, octylQA 

/NO, dodecylQA/NO) nanoparticle suspensions in PBS at the determined MBCs against P. 

aeruginosa or S. aureus. After incubation at 37 oC for 24 h, the supernatant was aspirated and 

120  μL  mixture  of  DMEM/MTS/PMS  (105/20/1,  v/v/v)  was  added  to  each  well.  After  1.5  h  

incubation at 37 oC, the solution in each well was transferred to a microcentrifuge tube and 

centrifuged for 2 minutes to remove the silica particles.  Ninety microliters of the supernatant 
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was then added to a clean microtiter plate, and the absorbance of the colored solutions was 

quantified at 490 nm using a Thermoscientific Multiskan EX plate reader. The mixture of 

DMEM/MTS/PMS and untreated cells were used as blank and control, respectively. The cell 

viability was calculated by taking the ratio of the absorbance of treated cells to the 

absorbance of untreated cells after subtracting the absorbance of the blank from both. 

 

5.3 Results and discussion 

5.3.1 Nanoparticle synthesis and characterization 

We have previously reported the synthesis of amine-functionalized silica particles 

capable of variable NO storage and release characteristics.22, 28, 35   For this study, particles 

were synthesized by hydrolyzing and co-condensing N-(6-

aminohexyl)aminopropyltrimethoxysilane (AHAP) and tetramethoxysilane (TMOS) via a 

modified Stöber process.  N-(6-aminohexyl)aminopropyltrimethoxysilane was selected as the 

NO-donor precursor due to its suitability for tethering QA functionalities via primary amines.  

The AHAP particles employed in this study were characterized by a spherical morphology 

and diameters of 180±26 nm as determined by scanning electron microscopy (Figure 1A).  

Dynamic light scattering (DLS) analysis indicated that the particles were monodisperse with 

a polydispersity index (PDI) of 0.07±0.02 and a measured Z-average (190±7 nm), consistent 

with diameters observed with SEM.  Employing a monodisperse particle system is important  

for studying antimicrobial efficacy as particle size has been shown to impact bactericidal 

activity.22 

The AHAP silica particles were modified with QA functionalities via a ring-opening 

reaction between surface primary amines and QA-epoxides (Scheme 5.1).  While
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Figure 5.1  Scanning electron micrographs of (A) AHAP (d=180±26 nm), (B) methylQA 
(d=181±27 nm), (C) butylQA (d=187±23 nm), (D) octylQA (d=185±26 nm), and (E) 
dodecylQA (d=187±24 nm) nanoparticles. Scale bar = 500 nm.  
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glycidyltrimethylammonium chloride is commercially available, earlier work demonstrated 

optimal bactericidal efficacy with long chain QAs.9, 36, 37  Quaternary ammonium-epoxides 

containing longer alkyl chains were thus synthesized by reacting epichlorohydrin with 

dimethylbutylamine, dimethyloctylamine, or dimethyldodecylamine (Scheme 5.1).  The 

formation of the QA epoxides was confirmed with 1H and 13C NMR, IR spectroscopy, and 

ESI mass spectrometry (Appendix B).  A shift in the 1H NMR resonances corresponding to 

the protons alpha to Cl/N and those of the nitrogen-bound methyl groups confirmed the 

formation of the QA epoxide.  Infrared absorbance bands indicating the QA-epoxide 

structure were also observed at 970 cm-1 (QA),38 1267 cm-1 (epoxide ring), and at 2920 and 

2850 cm-1 (saturated CH).  The intensity of the saturated CH absorbance increased with the 

increase in the length of the alkyl chain.   

The addition of QA groups to the particle surface was confirmed by monitoring 

changes in the nitrogen environments (N 1s) using X-ray photoelectron spectroscopy (XPS).  

As shown in Figure 5.2A, the N 1s peak for unmodified AHAP particles was fit with two 

component peaks at binding energies of 399 and 400 eV, corresponding to primary and 

secondary amines, respectively.  The N 1s peak of QA-functionalized particles consisted of a 

third component at 402 eV, representing the quaternary ammonium (Figure 5.2B–E).39  The 

R4N+ peak was most intense for the methylQA-modified particles.  The presence of a peak at 

399 eV for all QA-functionalized particles indicates that not all primary amines at the particle 

surface were functionalized. As expected, the synthetic strategy for QA surface modification 

did not influence particle size or morphology (Figure 5.1B–E).   

Quaternary ammonium functionalization was also verified by observing changes in 

the zeta potentials between AHAP and QA-modified AHAP particles using laser doppler
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Figure 5.2  X-ray photoelectron (XPS) spectra of the N 1s peak of (A) AHAP, (B) 
methylQA, (C) butylQA, (D) octylQA, and (E) dodecylQA nanoparticles.  The presence of 
primary (blue), secondary (green) and quaternary (red) amines are indicated by fitted curves 
at binding energies of 399, 401, and 402 eV, respectively. 
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velocimetry (LDV).  In 10 mM phosphate buffer PB, both unmodified AHAP and QA-

modified particles exhibited a positive zeta potential due to the presence of protonated 

primary amines or positively charged QAs, respectively.  In contrast, the zeta potential for 

the unmodified AHAP particles became negative in basic media (10 mM NaOH), whereas 

the QA-functionalized particles remained positively charged (Table 5.1), indicating the 

presence of a permanent, pH-independent positive charge.  A slight decrease in the zeta 

potential for longer chained QA-modified particles was observed with increasing pH, which 

was also accompanied by a decrease in the derived count rates.  Since all samples were 

prepared at the same concentration using similarly sized particles, the decrease in the derived 

count rate indicates sedimenting particles,40 an expected phenomenon for more hydrophobic 

particles.  Of note, the derived count rate and zeta potential of methylQA particles did not 

change regardless of pH.  Overall, the larger count rates for the QA-modified particles in 10 

mM NaOH suggest the positively charged particles are more stabilized in basic solution due 

to an abundance of negatively charged ions supporting the Stern layer.40   

 

5.3.2 Nitric oxide release analysis 

The silica particles were exposed to high pressures of NO in the presence of a base to 

form N-diazeniumdiolates NO donors (i.e., NONOates) on the secondary amines.  As shown 

in Figure 5.2, NONOate formation was confirmed by an absorbance maximum at 253 nm.20  

Figure 5.2 also depicts the absorbance from non-NO-releasing dodecyl-QA-modified AHAP, 

indicating the absence of the peak at 253 nm prior to exposure to NO.  Of note, no 

absorbance maximum is present at 450 nm following exposure to NO, indicating the 

scaffolds are free of cytotoxic nitrosamines.41   
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Table 5.1  Zeta potential measured from AHAP and QA-modified AHAP particle solutions.  

 
Zeta Potential 

(mV) 

 10 mM NaOH 10 mM PB 

AHAP  -9.4±0.6 20.5±1.0 

MethylQA  24.6±1.9 23.7±1.7 

ButylQA  20.9±0.9 16.8±1.1 

OctylQA  23.0±1.4 11.6±1.4 

DodecylQA  22.8±0.6 19.8±0.6 
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Figure 5.3  UV-Vis absorbance spectra of N-diazeniumdiolate-modified AHAP and QA 
silica nanoparticles.  Unmodified dodecylQA is shown for comparison.  
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Nitric oxide storage and delivery was evaluated by monitoring NO production in real 

time via chemiluminescence.  The addition of QA-functionalities did not influence the amine 

to NONOate conversion as each scaffold released similar NO payloads of ca. 0.3 µmol/mg 

(Table 5.2).  As such, the role of QA alkyl chain length on bactericidal efficacy could be 

elucidated since NO release remained constant.  The Griess assay was used to confirm that 

no nitrite was formed during the NONOate reaction and NO liberation.33  As is typical for 

NONOate-based silica particles,28, 35 the real-time NO release profiles exhibited a maximum 

instantaneous NO concentration ([NO]max) that was achieved shortly after the particles were 

introduced into the solution.  The unmodified AHAP/NO and methylQA/NO were 

characterized as having similar [NO]max values (1388±161 and 1034±32 ppb/mg, 

respectively), whereas  butylQA/NO, octylQA/NO, and dodecyl/NO had lower [NO]max 

(882±36, 791±52, 617±68 ppb/mg, respectively).  The decrease in [NO]max with increasing 

alkyl chain may be attributed to the increased surface hydrophobicity that slows the rate of 

water diffusion into the particle scaffold.  Such behavior was further demonstrated by an 

increase in the time to reach [NO]max (i.e., tmax) with increasing QA alkyl chain length.  The 

NO payloads for each particle system were completely depleted by 24 h. 

 

5.3.3 Bactericidal efficacy 

S. aureus and P. aeruginosa are two of the most commonly isolated species in 

chronic wounds and were therefore selected as the test microbes to evaluate the efficacy of 

the QA-functionalized nanoparticles presented herein.42  We sought to test our nanoparticles 

against both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacteria strains as 

previous work has shown that the potency of both NO- and QA-based



 180 

 

 

 

 

 

 

 

 

Table 5.2  Nitric oxide release properties of unmodified and QA-modified silica 
nanoparticles, including total NO release ([NO]T), maximum instantaneous concentration of 
NO ([NO]max), and time to reach [NO]max (tmax). 

 

 
[NO]T 

(µmol/mg) 
[NO]max 
(ppb/mg) 

tmax 
(min) 

AHAP/NO  0.27±0.04 1388±161 1.5±0.2 

MethylQA/NO  0.30±0.03 1034±32 1.8±0.3 

ButylQA/NO  0.27±0.03 882±36 2.3±0.2 

OctylQA/NO  0.28±0.04 791±52 2.9±0.6 

DodecylQA/NO  0.27±0.04 617±68 4.3±0.8 
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antimicrobials depend greatly on the bacterial membrane composition.14, 43  Prior to 

evaluating the bactericidal activity of the dually functional nanoparticles, the efficacy of the 

monofunctional formulations alone (i.e., NO-releasing or QA-functionalized) were evaluated 

to fully understand the benefit of designing a combination approach.   

The AHAP/NO particles proved to be significantly more effective against P. 

aeruginosa compared to S. aureus with MBC24h of 1.5 and 3.5 mg/mL, respectively (Figure 

5.4).  These results are consistent with previously reported N-diazeniumdiolate-based NO-

releasing nanoparticles.21  Conversely, the antimicrobial activity of the QA-functionalized 

particles was greater against S. aureus than P. aeruginosa (Figure 5.4).  Chen et al. also 

reported greater sensitivity of Gram-positive bacteria to QA-based antimicrobials compared 

to Gram-negative bacteria.14  As shown in Figure 5.4, the methylQA particles did not present 

appreciable toxicity to either of the microbes tested.  As expected, the bactericidal efficacy of 

QA-modified particles exhibited a strong dependence on alkyl chain length.  Increasing the 

alkyl chain length from methyl to butyl, octyl and dodecyl resulted in a decrease in MBC24h 

from 4.0, 3.0 and 1.5 mg/mL against S. aureus, respectively.  OctylQA and dodecylQA 

particles were equally effective against P. aeruginosa and more effective than the butylQA 

scaffolds.  Antimicrobial activity of short chained QAs results from the positively charged 

ammonium group complexing with the negatively charged bacterial cell membrane to disrupt 

membrane functions, alter the balance of essential ions (i.e., K+, Na+, Ca2+, and Mg2+), 

interrupt protein activity, and damage bacterial DNA.44  Long alkyl chain QAs can exert 

additional antimicrobial activity by inserting into the bacterial membrane, resulting in 

physical disruption.44  Indeed, longer alkyl chains have been shown to be more effective due 

to deeper penetration into the membrane and concomitant disruption.9, 36, 37     
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Figure 5.4  Minimum bactericidal concentrations (MBC24h) against (A) S. aureus and (B) P. 
aeruginosa for non-NO-releasing (solid) and NO-releasing (hashed) AHAP (red), methylQA 
(green), butylQA (blue), octylQA (magenta), dodecylQA (cyan). Treatment with a 50:50 
(w/w) mixture of dodecylQA and AHAP/NO particles is shown in yellow (hashed). 
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The advantages of combining antimicrobial strategies on the same scaffold have 

previously been demonstrated with QA-functionalized surfaces that release an antimicrobial 

agent, such as silver ion7, 17 or gentamicin.18  Although these releasable therapies are potent 

antimicrobials, resistance concerns plaque their wide-spread use.45, 46  The QA-functionalized 

particles described herein were designed to allow for the release of NO, a broad-spectrum 

antimicrobial with low risk of resistance.25  As shown in Figure 5.4, NO-releasing long chain 

(i.e., octyl and dodecyl) QA-functionalized particles exhibited increased toxicity against S. 

aureus compared to particles functionalized with short chain (i.e., methyl or butyl) QAs or 

NO release alone.  Nitric oxide-releasing AHAP/NO, methylQA/NO, and butylQA/NO were 

equally effective against S. aureus with an MBC24h of 3.5 mg/mL.  Increasing the alkyl chain 

length of NO-releasing QA particles to octyl and dodecyl improved the antimicrobial activity 

with a substantial decrease in MBC24h to 1.5 and 1.0 mg/mL, respectively.  Disruption of the 

bacterial membrane by the long chain QAs may allow for greater oxidative stress due to 

increased intracellular NO levels compared to treatment with AHAP/NO.43  The combination 

of NO release and QA modification (i.e., NO-releasing QA-functionalized particles) did not 

alter the antimicrobial efficacy against P. aeruginosa compared to unfunctionalized NO-

releasing particles (i.e., AHAP/NO).  These results reflect those of the monofunctional 

particles, where the MBC24h of dodecylQA was much greater than that of AHAP/NO against 

P. aeruginosa.   

To prove the advantage of co-treatment with QA-functionalized NO-releasing 

particles, we treated S. aureus and P. aeruginosa to 25% of the MBC24h values of dodecylQA

and AHAP/NO either simultaneous or at 30 min intervals.  Sublethal doses were used to 

avoid complete killing and allow for viable enumeration, and short exposure intervals were 
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used to inhibit the production of new or repaired cells.43  As shown in Figure 5.5, the 

simultaneous addition of the two separate antimicrobial particles resulted in greater 

antimicrobial action against S. aureus than when the microbes were exposed to one agent 

(e.g., AHAP/NO or dodecylQA) followed by the second 30 min later.  In comparison, the 

decrease in P. aeruginosa viability was the same for all combination treatments regardless of 

the addition order.  These latter results were not surprising as the antimicrobial activity of 

NO-releasing dodecylQA was equal to that of NO-releasing AHAP/NO against P. 

aeruginosa.   

Confocal microscopy was used to study the antimicrobial mechanisms of NO-

releasing dodecylQA/NO particles against S. aureus.  DAF-2, a green fluorescent marker for 

intracellular NO, and PI, a red fluorescent marker for a compromised membrane, were used 

to visualize the effects of the NO-release scaffolds on the bacteria.  As shown in Figure 5.7, 

treatment with dodecylQA/NO resulted in red fluorescence and weak green fluorescence 

after 60 min.  Conversely, treatment with AHAP/NO for the same time period resulted in 

strong green fluorescence due to DAF without the presence of red fluorescence.  Thus, the 

QA-functionalities were observed to cause membrane disruption, even before significant 

intracellular NO concentrations were achieved.  As expected, the intensity of the green 

fluorescence increased with incubation time, indicating elevation of the intracellular NO 

concentrations.  Moreover, the faster release kinetics of AHAP/NO compared to 

dodecylQA/NO resulted in greater intracellular NO concentrations at shorter exposure times.  

Small differences in the physical and chemical properties of nanomaterials have been 

shown to greatly influence nanoparticle-cell interactions,47 suggesting that the use of dual 

function nanoparticles may be more favorable than co-administering two different
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Figure 5.5  Change in bacterial viability of (A) S. aureus and (B) P. aeruginosa following 
exposure to sublethal doses of dodecylQA and/or AHAP/NO nanoparticles either 
simultaneously or at 30 min intervals. 
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Figure 5.6  Confocal microscopy images of S. aureus exposed to (A) dodecylQA/NO and 
(B) AHAP/NO particles exhibit green fluorescence due to intracellular NO (DAF) and red 
fluorescence due to compromised membrane (PI). Scale bar = 1 µm. 
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monofunctional nanoparticles.  To investigate the validity of this hypothesis, the MBC24h of a 

mixture of dodecylQA and AHAP/NO (50:50 w/w) particles was also determined.  The 

MBC24h of the dodecylQA+AHAP/NO particle mixture was 2.0 and 3.0 mg/mL against S. 

aureus and P. aeruginosa, respectively.  The NO and QA concentrations of the 50:50 

dodecylQA+AHAP/NO mixture correspond to the same NO and QA concentrations 

delivered from the MBC24h doses of dodecylQA/NO (i.e., 1.0 and 1.5 mg/mL, respectively).  

Thus, combining NO release and QA-functionalities on the same scaffold proved 

advantageous as a lower total dose of particles was required to induce bactericidal efficacy 

compared to treatment with a mixture of two monofunctional particles.   

 

5.3.4 In vitro cytotoxicity 

The ultimate utility of next generation antimicrobials is often governed by their 

toxicity to mammalian cells, assuming adequate microbial killing.  Although long chain 

quaternary ammonium salts have long been used clinically, they are mostly restricted to 

topical applications due to their toxicity against mammalian cells.37, 48  However, tethering 

QAs to a macromolecular scaffold has been shown to decrease their toxicity toward 

eukaryotic cells.48  We thus evaluated the toxicity of QA- and NO-releasing QA-

functionalized particles against L929 fibroblasts cells (Figure 5.7).  Fibroblast cells represent 

the standard for cytotoxicity screening of new antimicrobials due to their involvement in 

wound healing and the immune response.49, 50  The viability of fibroblasts cells was 

monitored via the MTS assay following 24 h exposure to the MBC24h against both S. aureus 

and P. aeruginosa.  Control AHAP particles exhibited significant toxicity at the high particle 

dose of 6.0 mg/mL due to the presence of primary amines.21, 51  Conversion of the primary
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amines to trimethylQA groups caused a significant decrease in the observed cytotoxicity, as 8 

mg/mL of methylQA particles only decreased viability by 40%.  The cytotoxicity of QA-

functionalized particles against fibroblasts at their MBC increased with increasing alkyl 

chain length.  For example, 4.0 mg/mL butylQA, octylQA or dodecylQA-modified particles 

resulted in a 45, 60, and 94% decrease in viability, respectively.   

Due to the lower concentrations of particles required for microbial killing with NO 

release, the cytotoxicity of NO-releasing QA-particles against fibroblast was notably less.  

For example, the 94% decrease in fibroblast viability for 4.0 mg/mL dodecylQA (MBC24h 

against P. aeruginosa) was reduced to only 31% for dodecylQA/NO (MBC24h of 1.5 

mg/mL).  Unexpectedly, the addition of NO release resulted in an increase in cytotoxicity for 

the short-chained QAs, suggesting that lower fluxes of NO may be more biocompatible to 

mammalian cells.  In combination, the decreased cytotoxicity and increased bactericidal 

efficacy of NO-releasing long chain QA-functionalized particles indicate their advantage 

over QA-functionalized particles alone.   

 

5.4 Conclusions 

Quaternary ammonium (QA)-functionalized particles exhibited antimicrobial action 

against both S. aureus and P. aeruginosa, with long alkyl-chain QAs (e.g., octyl and dodecyl) 

proving more potent than short alkyl-chain QAs (e.g., methyl and butyl).  The 

functionalization of particles with both QA groups and NO donors resulted in particles with 

even more favorable antimicrobial activity against S. aureus compared to monofunctional 

QA-functionalized or NO-releasing particles alone.  Conversely, the antimicrobial activity of 

the hybrid particles against P. aeruginosa was unchanged relative to the NO-releasing only
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Figure 5.7  Percent viability of L929 mouse fibroblasts cells following 24 h exposure to non-
NO-releasing (solid) and NO-releasing (hashed) AHAP (red), methylQA (green), butylQA 
(blue), octylQA (magenta), and dodecylQA (cyan) particles compared to control (untreated) 
cells with the numbers corresponding to the MBC24h against S. aureus and P. aeruginosa (in 
mg/mL dose).  
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particles.  Overall, S. aureus was more sensitive to QA particle treatment, while the inverse 

was true for P. aeruginosa (greater sensitivity to NO).  In addition, hybrid NO release/QA-

functionalized particles proved to be more effective at microbial killing than mixtures of NO-

releasing and QA-functionalized particles. The design of scaffolds expressing multiple 

antimicrobial mechanisms of action may represent an important strategy for lowering the 

concentration of therapy required and reducing the risk of potential resistance.  
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Chapter 6: 

Summary and Future Directions 

6.1  Summary 

 The synthesis of NO-releasing silica nanoparticles of various physical and chemical 

properties was thoroughly evaluated and found to impact both NO release properties and 

therapeutic potential.  Chapter 1 reviewed reported methods for designing and synthesizing 

functionalized silica nanoparticles for biomedical applications, with a focus on their use as 

nitric oxide delivery scaffolds.  The introduction served to instruct on the importance of 

specific particle properties on therapeutic outcome and to provide methods for varying 

physical and chemical characteristics of nanoparticles.  In Chapter 2, physical properties 

(e.g., size) of NO-releasing silica nanoparticles was found to greatly influence their 

bactericidal efficacy.  A reverse microemulsion technique was used to achieve particles of 

specific sizes (diameter= 50, 100 and 200 nm) and monodisperse populations (PDI<0.2), 

while maintaining constant chemical composition (i.e., amine content and NO donors).  The 

role of scaffold size on bactericidal efficacy against P. aeruginosa could thus be evaluated by 

delivering equal NO release payloads.  Minimum bactericidal concentrations improved with 

decreasing particle size, while cytotoxicity of both control and NO-releasing particles against 

L929 mouse fibroblasts was not influenced.  Using fluorescently tagged particles, scaffold-

dependent particle-bacterium interactions were observed via confocal microscopy.  Particles 

with smaller diameters associated with bacteria at a faster rate and to a greater
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extent than particles of larger diameters 

 In Chapter 3, methods for achieving tunable NO release kinetics from silica particles 

were described.  The incorporation of hydrophobic groups onto the particle surface resulted 

in prolonged NO release rates due to the slowed diffusion of water into the scaffold.  The 

surface-modified particles exhibited NO release half-lives ranging from 0.3–2.7 h.  

Increasing   the   particles’   surface   hydrophobicity   also   improved their utility as dopants in 

electrospun polyurethane fibers for NO-releasing porous membranes.  Fibers doped with 

ethyl- and isobutyl-modified particles were characterized by 15 and 11% particle leaching, 

compared to the 40% particle leaching observed from fibers doped with unmodified particles.   

 Chapter 4 described an alternative method for achieving NO-releasing silica particles 

with significantly extended NO release kinetics by directly modifying the N-

diazeniumdiolate NO donor structure.  An O2-protected NONOate-based silane was 

synthesized by coupling iodopropyltrimethoxysilane with O2-methoxymethyl 1-(piperazin-1-

yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO).  The MOM-Pip/NO silane was then surface grafted 

onto mesoporous silica particles to yield macromolecular NO release scaffolds with a total 

NO payload of 2.5 µmol NO/mg and an NO release half-life of 23 d.  These particles 

represent the longest NO-releasing silica particles to date.  Nitric oxide-releasing dental 

composites were prepared by doping MOM-Pip/NO particles into polymer resin composites.  

The MOM-Pip/NO-doped composites resulted in a 3-log reduction in viability of adhered 

Streptococcus mutans compared to composites doped with faster NO-releasing AHAP/NO 

particles and undoped controls following 24 h exposure in nutrient conditions. 

 In Chapter 5, a dually functional antimicrobial silica nanoparticle was described with 

both NO release capabilities and quaternary ammonium functionalities.  Quaternary 
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ammoniums were tethered to the surface of AHAP particles through a ring opening reaction 

between synthesized QA-epoxides and primary amines present on the particle surface.  The 

alkyl chain of the QA group was varied to evaluate structure-dependent bactericidal efficacy.  

Butyl-, octyl-, and dodecylQA-functionalized particles induced a 3-log reduction in S. aureus 

at 4.0, 3.0 and 1.5 mg/mL, respectively.  For P. aeruginosa, octyl- and dodecylQA-

functionalized particles caused a 3-log reduction in viability at 4.0 mg/mL, while butylQA-

functionalized required 8 mg/mL.  Imparting NO release from the QA-functionalized 

particles resulted in a decrease in the MBC against S. aureus compared to NO-releasing or 

QA-functionalized particles alone.  The combination of NO and QA on a single particle did 

not result in improved killing against P. aeruginosa.  Confocal microscopy with fluorescent 

markers for intracellular NO (DAF-2) and compromised membranes (propidium iodide) 

indicated the increased efficacy of QA-functionalized NO-releasing particles against S. 

aureus was due to their ability to cause membrane damage followed by delivery of 

intracellular NO.  

 

6.2 Future Directions 

 The first report of N-diazeniumdiolate-modified silica nanoparticles was established 

only 9 years ago.1  Since then, much work has proven the efficacy of these materials as 

cardiovascular, antimicrobial, anticancer, and wound-healing therapies.1-6  Yet, further 

optimization remains to achieve ideal NO-releasing characteristics as different applications 

require specific NO release totals and kinetics.  Our laboratory and others have advanced the 

synthesis of hybrid silica particles to achieve control over both NO release and particle 

characteristics (i.e., size, shape, composition and surface chemistries).  Translation of the 
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silica scaffolds from research laboratories to the clinic will require the efforts of many, 

including those that specialize in the NO chemistry and nanoparticle synthesis and those that 

specialize in the NO biology of particle-cell interactions.  The results described herein still 

represent the beginning steps toward developing fully optimized NO-releasing 

macromolecules for biomedical applications. 

 

6.2.1  Studies to further investigate the role of nanoparticle size 

 In Chapter 1, smaller particles were shown to be more effective against bacteria.  The 

next logical step is to further decrease particle size below 50 nm to determine the optimal 

scaffold size using constant NO loading and release kinetics.  Since prokaryotic cells do not 

express an endocytotic mechanism, the extent of association of the particles to the bacterial 

surface will govern their efficacy and therefore must be understood.  Nanoparticle-bacterium 

interactions could be quantified using flow cytometry or ICP-OES where the amount of silica 

adhered to the cell is determined and translated to the number of associated particles.7  In 

order to use these methods, careful experimental design will be required to ensure non-

adhered particles are washed from the cells prior to analysis.  Atomic force microscopy may 

also be useful to observe nanoparticle-cell interactions, although quantitative analysis would 

be difficult.  Particle size not only governs the rate of an interaction (i.e., diffusion), but also 

the number of particles that can adhere to a particular microbe and the relative percentage of 

those particles’ surfaces that are directly in contact with the bacterium.  Unfortunately, the 

synthesis of monodisperse nanoparticles with diameters less than 50 nm and large organic 

content (i.e., NO loading) is difficult.  As an alternative approach, a surface grafting method 

may be used to incorporate aminosilanes onto commercially available 14 nm TEOS particles 
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(Nissan Chemical Industries, Ltd, Tokyo, Japan).  The exponential relationship between 

nanoparticle surface area and volume suggests that surface-grafted particles of small sizes 

may be capable of releasing NO payloads similar to an equivalent mass of larger particles.   

 To achieve NO release scaffolds of smaller sizes, future work should focus on NO-

releasing dendrimers, which are extremely monodisperse and have diameters as low as 2 nm.  

Sun et al. has recently observed that the MBCs of NO-releasing dendrimers are significantly 

lower than that of NO-releasing particles, albeit with increased toxicity toward mammalian 

cells.8  Confocal microscopy with DAF/PI fluorescent probes indicate that the dendrimers 

result in greater intracellular NO at a faster rate and to a greater extent than the 50 nm 

AHAP/TEOS particles presented in Chapter 2.  In addition to planktonic cultures, the role of 

particle size and shape in the ability of NO-releasing particles to penetrate into biofilms is an 

equally appealing future direction.  Microbial biofilms are difficult to treat due to their 

protective exopolysaccharide matrix.9  The extent to which NO-releasing scaffolds (silica or 

dendrimers) may penetrate the dense network and deliver NO within the biofilm interior 

should be determined to fully understand their antimicrobial efficacy in more clinically 

relevant environments. 

 

6.2.2   Tuning NO release properties 

 For many applications, the short NO release kinetics typically exhibited by 

NONOate-based silica particles is insufficient.  Methods such as those discussed in Chapters 

3 and 4 are thus desirable for increasing the duration of NO release.  While modifying the 

surface of particles with groups of varied hydrophobicity allowed for tunable release kinetics, 

the decreased conversion efficiency of amines to NONOates resulted in low NO payloads.  
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Conversely, greater NO payloads were achieved using MOM-protected NONOates, but the 

release kinetics were not tunable.  While surface modifying particles pre-loaded with 

NONOates may result in formulations with tunable release kinetics and sufficient NO 

payloads, the labile nature of the NONOate groups limits the opportunities for chemical 

modifications on NO-loaded scaffolds.  Other O2-protecting groups have been designed that 

are stable in acidic conditions and labile in basic conditions.10, 11  Thus, particles could be 

loaded with base-labile O2-protected-NONOates, surface modified with hydrophobic 

functionalities, and then deprotected under basic conditions.  This approach would allow for 

greater NO payloads and tunability of NO release kinetics.     

 Lastly, bimodal NO release may be advantageous for wound healing applications 

where high initial doses are necessary to inhibit microbial colonization, while low NO 

concentrations over extended durations are necessary to facilitate proper wound healing (i.e., 

collagen deposition, reepithelialization, etc.).12  To this end, particles modified with 

NONOate stabilized by different methods (i.e., cation and O2-protected) should be 

investigated.  The use of cation-stabilized (i.e., unprotected) NONOates would provide high 

initial NO fluxes, while the inclusion of protected NONOates would deliver low NO fluxes 

for long durations.  As discussed in Section 1.4.1, MSN are excellent candidates for these 

efforts as they contain two separate functionalizable surfaces.  The outer surface can be 

modified prior to surfactant removal, then the inner surfaces can be modified following 

removal of the surfactant from the pores.  Moreover, the silica network comprising the MSN 

may be formed by co-condensing an organosilane with a tetraalkosilane as a means to add a  

third type of  NONOate.  
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6.2.3 Combination therapies 

 Combination strategies are particularly effective for antimicrobial applications as 

exposure to two agents that act via different mechanisms drastically decreases the probability 

for resistance and often results in synergistic activity.13, 14  In Chapter 5, NO release was 

combined with QAs on the same particle scaffold. While QA-functionalization increased the 

bactericidal efficacy of the silica scaffolds, it also resulted in an increase in toxicity towards 

mammalian cells.  The cytotoxicity of long chain QAs is well reported, thus most current 

applications for QA-based materials are topical or non-biomedical (e.g., anti-biofouling 

surfaces for ship hulls).  To decrease the cytotoxic effects, QA-functionalized particles may 

be doped into polymers or resins to impart antimicrobial properties to biomedically relevant 

matrices.  For example, Beyth et al. prepared resins doped with 1 wt% quaternized 

poly(ethylene imine)  nanoparticles and found that their use as dental composites 

significantly decreased the viability of bacteria within biofilm communities with no observed 

impact on biocompatibility in vivo.15  Polymers or resins doped with NO-releasing QA-

functionalized particles would likely still exhibit beneficial antimicrobial properties superior 

to polymers doped with NO-releasing particles alone.  Nitric oxide release from the surface 

would decrease bacterial adhesion, and the presence of QA functionalities may ensure 

decreased viability of those bacteria that did manage to adhere.  As illustrated in Chapter 3, 

leaching of noncovalently incorporated particles may be decreased due to van der Waals 

interactions between the alkyl chains and hydrophobic polymers.   

 Future work should also investigate the design of macromolecular scaffolds that 

combine NO release with other releasable therapies.  Our laboratory previously reported the 

synergistic effects of co-administering ionic silver (Ag+) with a LMW NO donor, 
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PROLI/NO.16 This work suggests that hybrid NO-releasing nanoparticles containing Ag+ or 

silver nanoparticles embedded within the NO-releasing silica nanoparticle may also exhibit 

synergy. Other metallic nanoparticles with proven antimicrobial activity should also be 

investigated, including copper,17-19 zinc oxide,20-24 and titanium dioxide.20, 25, 26  The 

bactericidal properties of metallic nanoparticles arise from the release of metal ions from the 

particle surface, thus their entrapment within a silica network may decrease their efficacy.  If 

this proves to be true, the metallic particles should be tethered to the surface of the silica 

particle.27  In aerobic conditions, NO reacts with O2 to form NOx species that may react with 

the metallic nanoparticles.  X-ray photoelectron spectroscopy could be used to investigate the 

oxidation states present in the metallic nanoparticles initially and after exposure to relevant 

concentrations of NO.  Additionally, the use of combination therapies has been shown to 

increase the sensitivity of microbes to antibiotics to which they had previously developed a 

resistance toward.14  Future work should investigate the efficacy of nanoparticles that release 

both NO and vancomycin against vancomycin-resistant S. aureus, or nanoparticles that 

release NO and methicillin against methicillin-resistant S. aureus.   

 

6.2.4  Improving the anticancer potential of NO-releasing nanoparticles 

Nitric oxide has an intricate role in cancer biology, serving as a tumor regressor at 

high concentrations and a tumor progressor at low concentrations.28  As discussed in Chapter 

1, nanoparticle-derived NO was observed to inhibit the growth of ovarian cancer cells while 

exhibiting low toxicity to normal (i.e., non-tumor) cells.4  While these results are promising, 

the ultimate utility of NO-releasing particles for cancer therapy remains hindered by 

uncontrolled NO release and the undesirable effects that result from the low levels of NO 
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release (i.e., angiogenesis and tumor growth).  For NONOate-based particles, release of the 

NO payload begins immediately upon introduction into aqueous media, limiting the amount 

of NO that can be delivered directly to the cell.  Methods to target the delivery of the NO-

releasing scaffold would significantly increase the percentage of the NO payload delivered 

directly to the tumor site, and in turn improve their efficacy.  Future work in this area should 

involve designing strategies for targeted delivery and triggered NO release.  

The use of magnetic nanoparticles, such as iron oxide, to actively target nanoparticle-

based therapies was discussed in Section 1.1.4.  This technique could be used to target the 

delivery of NO-releasing silica nanoparticles to specific locations in vivo.  Preliminary 

experiments were conducted to prepare magnetic NO-releasing silica nanoparticles by 

forming a hybrid (i.e., aminosilane and tetraalkoxysilane) silica shell around an iron oxide 

core particle.  Iron oxide nanoparticles were synthesized by a thermal degradation method 

according to a previously reported procedure.29  Briefly, iron pentacarbonyl (1.52 mmol) was 

mixed with dioctyl ether (10 mL ) and oleic acid (4.56 mmol).  The translucent yellow 

reaction was heated to reflux, and the formation of the iron-oleate complex as indicated by a 

black color change and confirmed by an absorption maximum at 330 nm.  After formation of 

the iron-oleate complex, the reaction was cooled to room temperature, and 4.56 mmol of 

dehydrated trimethylamine N-oxide was added to control oxidation.  The temperature was 

increased to 240 °C to induce nucleation and further increased to 320 °C to promote 

nanoparticle growth.  The resulting magnetic particles were monodisperse and characterized 

by a diameter of 7 nm particles (Figure 6.1).  X-ray photoelectron spectroscopy (XPS) 

analysis confirmed that the particles were composed of maghemite (Fe2O3) as indicated by 

binding energies of 710.9 eV and 724.7 eV for the Fe 2p3/2 and 2p1/2 electrons,  respectively.30
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Figure 5 TEM micrograph of 7
nm Fe2O3 nanocrytals.

 

 
Figure 6.1  Transmission electron micrograph of Fe2O3 nanocrystals (diameter = 7 nm) 
synthesized via the thermal degradation of iron pentacarbonyl in dioctyl ether and oleic acid.  
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 The presence of a small satellite peak at 719 eV and the absence of a shoulder on the 2p1/2 

peak further supported the identification.   

As synthesized, the iron oxide nanocrystals are capped with hydrophobic oleate 

groups.  However, encapsulation of the Fe2O3 nanoparticles in silica required their dispersion 

in aqueous solution (i.e., interior of micelles or Stöber conditions).  Thus, the surface of the 

nanocrystals was noncovalently modified with a long-chain alkylsilane, as shown in Figure 

6.2.  The non-polar alkyl chains of the silane associate with the oleate chains on Fe2O3 

through van der Waals interactions, leaving the hydrolyzable methoxy groups oriented 

outward.  The resulting n-octyltrimethoxysilane-capped Fe2O3 nanoparticles were then 

suspended in water and added to a reverse microemulsion composed of pentane (organic 

phase), Triton X-100 (surfactant), hexanol (cosurfactant), and water (aqueous phase).  

Subsequent addition of TEOS and 3-butylaminopropyltrimethoxysilane (BAP) to the reverse 

microemulsion resulted in the formation of ~60 nm amine-containing silica particles with 

Fe2O3 cores (Figure 6.3).  Of note, use of other water-miscible aminosilanes, such as MAP 

and AHAP, resulted in a disruption of the emulsion likely because the silanes diffused too 

quickly into the water droplet.   

The amines on the BAP/TEOS-coated Fe2O3 nanoparticles were converted to N-

diazeniumdiolates as described by Shin et al.31  The total NO released was 3.81 nmol/mg, 

indicating that only a low amount of BAP was incorporated into the silica particle.  Greater 

amine incorporation may be achieved with increased aminosilane concentrations or the 

sequential silane addition that was discussed in Chapter 2.  Alternatively, the Stöber method 

could be used to form a silica shell around the Fe2O3 nanocrystals.  By suspending the n-

octyltrimethoxysilane-capped Fe2O3 nanocrystals in a basic aqueous solution under dilute 
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Figure 6.2  The addition of n-octyltrimethoxysilane to the surface of oleic acid-capped Fe2O3 
nanocrystals via van der Waals interactions allows for their stability in aqueous media and promotes 
the formation of a silica shell. 
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Figure 6.3 Transmission electron micrograph of magnetic NO-releasing silica particles composed of 
Fe2O3 core and a BAP/TEOS shell (diameter = 67 nm). 

Figure 7. TEM image of
BAP3/TEOS coated Fe2O3
nanocrystals. d= 66.5 5.1nm.
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 conditions, a silica shell can be added by sequential addition of small amounts of silane 

precursors.  These dilute reaction conditions are required to inhibit nucleation sites that 

would result in the growth of silica particles without an Fe2O3 core.   

While the inclusion of a magnetic particle addresses the need for targeted delivery, 

methods to delay NO release prior to the particle arriving at the tumor site are also necessary.  

One possible method for achieving delayed NO release would be to encapsulate the 

NONOate-based particle within a liposome.  The lipophilic region of the lipid bilayers would 

inhibit diffusion of water to the particle, limiting the decomposition of the NONOate.  Once 

taken up within the cell, the liposome would be ruptured, and the NO would be released to 

the cellular interior.  Modifications to the NO donor moiety may also be studied to prevent 

premature NO release.  Protected O2-NONOates are excellent candidates, especially those 

with protecting groups that are labile in the acidic and/or reducing environments common to 

intracellular compartments.  For example, the MOM protecting group described in Chapter 3 

is labile at low pH.  Other O2-protecting groups are cleaved selectively by intracellular 

species.  For example, O2-[2,4-dinitro-5-[4-(N-methylamino)-benzoyloxy]phenyl]-1-(N,N-

dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO) is a LMW NO donor that features a 

protecting group cleaved upon nucleophilic aromatic substitution by glutathione, allowing for 

intracellular NO release.32 Alternatively, nanoparticles containing tertiary nitrosothiols or 

metal nitrosyls may be promising for antitumor applications as their NO payload would only 

be released upon irradiation with light.33, 34  Triggerable NO release is most ideal to avoid 

extended periods where low levels of NO are released, which might enable in cell

proliferation and tumor growth. 
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6.2.5  Next generation NO-releasing macromolecular scaffolds 

The two primary NO-releasing scaffolds discussed in this dissertation are silica 

nanoparticles and dendrimers.  The main advantage of silica nanoparticles is their relatively 

low toxicity to mammalian cells.35  When normalized by mass however, the NO release from 

silica particles is restricted by the large relative concentration of Si and O that account for 

most of the particle mass.  Larger particle doses (per mg) are thus required to achieve NO 

levels necessary for the intended therapeutic response compared to LMW donors.  

Undesirable cytotoxicity often arises as a result of these large particle doses, negating the 

motivation for employing silica nanoparticles.  Alternative macromolecular scaffolds, such as 

dendrimers, provide greater NO loading per unit mass, but their ultimate success is hindered 

by toxicity to mammalian cells.36   

Next generation NO-releasing scaffolds should incorporate dendrimers within a 

mesoporous silica particle to take advantage of each  scaffold’s positive properties (i.e., high 

NO loading of dendrimers and low toxicity of silica) while minimizing the negative 

properties.  As such, dendrimer-loaded MSNs may be characterized by larger localized NO 

delivery than silica alone and lower toxicity than dendrimers alone.   

Covalently binding dendrimers to mesoporous silica particles has been reported for 

the purpose of gene transfection carriers.37  For these materials, the dendrimers were bound 

to the outer surface of the MSNs to allow for complexing with plasmid DNA.  In future 

work, the dendrimers should also be loaded within the pores of the MSNs to maximize NO 

storage and delivery.  Binding of dendrimers to the particle surface may result in undesirable 

cytotoxicity, in which case the surface of the MSNs could be passivated with an inert 

functionality.  The dendrimers should be restricted to the particle interior following 
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surfactant removal.  Primary amine-terminated dendrimers, such as poly(amido amine) 

(PAMAM) and poly(ethylene imine) (PEI), could be covalently bound to a MSN 

functionalized with glycidylpropyltrimethoxysilane through ring opening reactions similar to 

those used in Chapter 5.  Lower generation dendrimers would provide greater NO release per 

unit mass and may prove easier to load into the mesopores due to their smaller diameter. 

 

6.3 Conclusions 

 The work presented here illustrates the versatility available when employing silica 

nanoparticles for the delivery of nitric oxide for therapeutic applications.  The preceding 

chapters have described methods for tuning both physical and chemical properties of NO-

releasing silica particles.  Although most of the materials described herein were evaluated for 

their antimicrobial efficacy, the broad therapeutic utility of NO suggests NO-releasing silica 

nanoparticles hold potential in other areas including cardiovascular dysfunctions, cancer 

treatment, and wound healing.  Moreover, NO-releasing silica particles may be doped in 

polymer matrices to prepare biocompatible coatings that improve the fate of biomedical 

implants.  The true success of NO-releasing silica particles for any one of these applications 

will require tuning of specific particle and NO release properties.  Thus, the synthetic 

techniques described herein will greatly impact future developments of NO-releasing silica 

nanoparticles. 
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Appendix A:  

Supplemental Information of Chapter 4 
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Appendix B:  

Supplemental Information of Chapter 5 
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1H NMR of glycidyldimethylbutylammonium chloride.  
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13C NMR of glycidyldimethylbutylammonium chloride 
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1H NMR of glycidyldimethyloctylammonium chloride 
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13C NMR of glycidyldimethyloctylammonium chloride 
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1H NMR of glycidyldimethyldodecylammonium chloride 
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13C NMR of glycidyldimethyldodecylammonium chloride 
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1H NMR of glycidyltridodecylammonium chloride 
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FT-IR spectra of QA-epoxides. 
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Xray photoelectron spectrum of Cl 2p peak for the five particle systems indicating the 
presence of the chloride counter ion in the QA-modified particles.  
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Dynamic light scattering size distribution spectrum for AHAP silica nanoparticles.  

 

 

 

 

Raw correlation data spectra for dynamic light analysis of AHAP (red), methylQA (green), 
butylQA(blue), octylQA (black), dodecylQA (pink) silica nanoparticles at 0.5 mg/mL in 
phosphate buffered saline.  
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Zeta potential distribution spectra of AHAP (pink), methylQA (red), butylQA (green), 
octylQA (blue) and dodecylQA (black) in (A) 10 mM NaOH and (B) 10 mM phosphate 
buffer at 0.5 mg/mL.  
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Phase plots from zeta potential analysis of  AHAP (pink), methylQA (red), butylQA (green), 
octylQA (blue) and dodecylQA (black) in (A) 10 mM NaOH and (B) 10 mM phosphate 
buffer at 0.5 mg/mL. 
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