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ABSTRACT 

KIMBERLY E MAXFIELD: Genetic Dissection of Therapeutic Intervention Targets in 
Triple Negative Breast Cancer 

(Under the direction of Angelique Whitehurst) 
 
Triple negative breast cancer (TNBC) is the most aggressive and metastatic type 

of breast cancer, accounting for 20% of all breast cancer diagnoses. Currently, there are 

no TNBC-specific targeted therapies in the clinic and therefore, broad-spectrum cytotoxic 

chemotherapeutic regimens remain the standard of care. Due to high rates of innate drug 

resistance, many TNBC patients do not respond to these regimens and, therefore, have no 

other therapeutic options. Our group employed a pan-genomic loss of function screen to 

systematically dissect the molecular architecture that functionally supports TNBC to 

uncover new therapeutic entry points. We further applied a paclitaxel-based synthetic 

lethal approach to increase our discovery space to also identify those molecular 

components that modulate chemoresponsiveness. To encompass the heterogeneity found 

within the TNBC patient population, we screened four triple negative tumor-derived 

breast cancer cell lines that represent the spectrum of TNBC oncogenic aberrations and 

chemoresponse profiles. We also accounted for the two molecular subtypes, claudin-low 

and basal-like that comprise the majority of TNBC cases. These screens revealed a 

number of core modulators of tumor cell viability and paclitaxel-induced cellular stress 

that have not been previously appreciated for supporting TNBC biology at the cell 

autonomous level. In particular, this strategy implicated the signaling supported by the 

cytokine receptor, CXCR3, and its ligand, CXCL9, to promote mitotic fidelity and tumor 
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cell survival in the basal-like TNBC molecular subtype. In addition, we uncovered a 

requirement for the AMPK family member, SIK2, as a key nutrient sensor that may 

inhibit excessive autophagy. Inhibition of SIK2 enhanced autophagic flux and a loss of 

cell viability in a variety of TNBC genetic backgrounds. Finally, we discovered that 

cancer testes antigen transcription factor, ZNF165, directly repressed expression of 

negative TGFβ regulators thereby specifying a pro-tumorigenic TGFβ gene expression 

profile. Given that the expression of ZNF165 is otherwise restricted to the male testes, 

ZNF165 may represent a mechanism by which tumors engage anomaly-expressed 

proteins to promote survival. Taken together, our screening approach uncovered novel 

TNBC tumor cell vulnerabilities that identified cellular processes that could lead to new 

therapeutic approaches. 
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CHAPTER I: Introduction 

The Global Burden of Breast Cancer 

 Currently, breast cancer is one of the most common forms of cancer affecting 

women (1). Following the development of targeted therapies and improved 

mammography technologies and guidelines in the 1980s and 1990s, the breast cancer 

mortality rate dropped 40 % from 1990 to 2006. However, the incidence of breast cancer 

is increasing globally in both developed and developing nations. The lifetime risk of 

breast cancer is currently 1 in 8 and breast cancer remains the primary cause of death in 

women (2, 3). 

 

Breast Cancer Heterogeneity 

 Most breast tumors arise from abnormal growth of the epithelial cells that form 

the milk-producing gland at the apex of the milk duct (lobular carcinoma) or that line the 

duct itself (ductal carcinoma). As a whole, breast tumors are a very heterogeneous group 

of tumors at the level of morphological and biological features, gene expression profiles, 

patient outcomes and therapeutic responses (4, 5). These differences can be classified 

based on both histopathologic and molecular features. This section discusses breast 

cancer heterogeneity and the current classification systems along with their defining 

characteristics.  

 

 Pathologic Classification of Breast Cancer – Through pathologic evaluation, a  
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few key receptors have been identified to define several distinct breast cancer subtypes. 

The next three paragraphs will discuss estrogen receptor (ER) positive breast cancer, 

HER2 amplified breast cancer and triple negative breast cancer (TNBC).  

 

 Estrogen Receptor Positive (ER+) Breast Cancer - Two thirds of diagnosed 

breast tumors are classified as hormone receptor positive based on expression of the 

growth-promoting estrogen and/or progesterone receptors (ER and PR, respectively). Of 

premenopausal women, ER+ breast cancer comprises 60 % of diagnosed breast tumors. 

For post-menopausal women, this percentage jumps to 75 % (6, 7). The estrogen and 

progesterone receptors are nuclear hormone receptors that remodel chromatin and drive 

pro-proliferative gene networks. Upon estradiol binding, the estrogen receptor 

translocates to the nucleus, binds to its estrogen response elements (ERE) and drives the 

transcription of pro-proliferative genes such as IGF-1, CCND1 and IRS-1 (8, 9). Most 

estradiol is locally synthetized and, therefore, tumors can engage an estradiol autocrine 

loop to promote cell autonomous tumor cell proliferation (10-12). It has been known for 

over a century that hormone ablation (removal of hormone producing tissues) had anti-

cancer effects in ovarian, breast and pituitary tumors. In the late 1960s, ER expression 

was discovered as a prognostic marker for hormone ablation therapy in breast cancer. By 

the mid-1980s, estrogen receptor positive breast tumors were demonstrated to be highly 

dependent on estrogen receptor signaling and were responsive to inhibition of ER 

signaling (9, 13). ER+/ progesterone receptor positive (PR+) breast tumors are generally 

not classified as aggressive tumors. These tumors are typically classified as highly 

differentiated and slow growing. They are also highly correlated with lower grades, and 
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recurrence rates. With the Food and Drug Administration (FDA) approval of ER+ 

specific targeted therapies in 1977 (discussed in the next section), it is now standard 

clinical practice to evaluate ER+ expression prior to treatment decisions (9, 14, 15). 

 

 Human Epidermal Growth Factor Receptor 2 (HER2) Amplified Breast Cancer - 

Twenty to thirty percent of breast tumors are amplified for the HER2 receptor (16-18). 

HER2 is a member of the Epidermal Growth Factor Receptor Family (EGFR), which 

includes HER1, 2, 3, and 4. These receptor tyrosine kinases are upstream of MAPK and 

PI3K/ AKT signaling and are critical for cell growth, survival and proliferation (19). 

Following ligand binding, HER receptors can either homodimerize or heterodimerize to 

drive downstream activation proliferation and survival pathways. There are no HER2 

specific ligands and, therefore, HER2 predominately acts as a co-receptor for the other 

HER2 family members (20, 21). On the surface of a HER2 amplified breast tumor cell, 

the number of HER2 receptors on the cell surface can be increase by up to a million fold 

compared to non-tumorigenic tissue (19, 22). Without the presence of a ligand, excess 

HER2 receptors induce dimerization to potently drive downstream pro-tumorigenic 

signaling. The HER2 receptor was first discovered as the transforming component of the 

avian erythroblastosis tumor virus that was highly homologues to HER1 (or EGFR) (23-

26). In 1987, HER2 amplification was then found in breast cancer and quickly correlated 

with large, advanced grade, rapidly dividing tumors and poor prognosis (22, 27). 

Consistent with this, HER2 amplification can be observed in early stage disease, such as, 

neoplastic ductal carcinoma in situ (27-29). Prior to the development of HER2 targeted 

therapy (discussed in the next section), HER2 amplified tumors had the second worst 
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chemotherapeutic response and patient prognosis after triple negative breast cancer (16-

18).  

 

 Triple Negative Breast Cancer (TNBC) - The remaining 15-20 % of breast tumors 

are classified in the histopathologic subtype called triple negative breast cancer (TNBC). 

This subtype is defined by a lack of expression of the estrogen receptor, progesterone 

receptor and is not HER2 amplified. TNBC tumors are very aggressive, progress quickly 

to metastasis, and over-represented in younger women minorities (30). Little is known 

about the etiology of TNBC.  Systematic genomic evaluation of large TNBC patient 

cohorts reveals that no known common molecular aberrations collectively define TNBC. 

Loss of function mutations in the tumor suppressor, TP53, is the only tested oncogenic 

aberration with a mutational frequency higher than 10% (31). Without a targetable 

oncogenic aberration, the development of TNBC targeted therapies is challenging.  

 

 Molecular Classification of Breast Cancer – With the advent of gene expression 

technologies, the heterogeneity of breast cancer was further investigated using cDNA 

microarrays. This approach resulted in stratification of breast cancer into six distinct 

molecular subtypes called luminal A, luminal B, HER2-enriched, normal-like, basal-like 

and claudin-low (32). Each of these subtypes has a unique gene expression profile that 

translates into distinct patient prognosis and chemotherapeutic responses, suggesting that 

breast cancer heterogeneity is founded in fundamental differences in the underlying 

tumor architecture (33, 34). There is also significant overlap between the molecular 

subtypes and the histopathologic subtypes, suggesting that the expression of hormone and 
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growth receptors is an important determinate of the overall tumorigenic gene expression 

signature. The next paragraphs describe the molecular subtypes and how they relate to the 

histopathologic subtypes. 

 

 Luminal Subtypes - There are two luminal subtypes, luminal A and luminal B. 

Both are characterized by expression of keratins, integrin β4 and laminin (32, 33). When 

considered together, the luminal subtypes are highly correlated ER and PR positive breast 

tumors without HER2 amplification (32, 33, 35, 36). Consistent with ER+/PR+ tumors, 

luminal tumors are more differentiated and less proliferative than the HER2-enriched, or 

basal-like and claudin-low subtypes (32, 33). The main difference between luminal A and 

luminal B subtypes is a proliferation signature found in the luminal B subtype. Luminal 

tumors have very low pCR rates to cytotoxic chemotherapeutics. However, luminal 

tumors are usually low grade and not aggressive and given that there are currently 

available targeted therapies (discussed below), patient prognosis for luminal breast 

tumors are the best among all the breast cancer (37-40).  

 

 HER2-Enriched Subtype - HER2 amplified tumors are accompanied by a unique 

expression profile and, therefore, comprise their own HER2-enriched subtype (32). These 

tumors exhibit a proliferative gene signature and are low in the luminal, basal-like and 

claudin-low gene markers. Notably, about 50 % of the HER2 enriched subtype contains 

ER+ and non-HER2 amplified tumors, suggesting there may be another mutation event 

driving the same expression profile seen with HER2 amplification (32, 33, 35, 36).  
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 Normal-Like Subtype - The normal-like subtype encompasses normal breast tissue 

from reduction mammoplasty and a small number of tumor samples. These samples 

typically have high levels of stromal and immune infiltrates, generating controversy over 

whether this subtype is an artifact of the contaminating normal stromal and immune cells 

(32, 35).  

 

 Claudin-Low and Basal-Like Subtypes - The two remaining molecular subtypes, 

basal-like and claudin-low, are predominately, but not exclusively, categorized as TNBC, 

encompassing 75 % - 80 % of all TNBC cases. However, these subtypes have 

dramatically different morphologies, expression profiles and chemoresponsiveness (32, 

36). Basal-like tumor cells are epithelial in morphology with concurrent expression of 

epithelial markers like E-cadherin, Cytokeratin and EpCAM. The basal-like name 

originates from the expression of the cytokeratins 5, 6 and 17, characteristic of the basal 

layer found in the skin (33, 35, 41). In contrast, the claudin-low subtype is more 

mesenchymal with a fibroblast-like morphology and characterized by lack of expression 

of epithelial markers. The name ‘claudin-low’ originates from the lack of the adherens 

junction protein, claudin. These tumors also exhibit features of tumor initiating cells 

(TICs), which is driven by enhanced Transforming Growth Factor Beta (TGFβ) 

signaling-induced transcription of ZEB, TWIST1 and SNAI1 (33, 35, 41, 42). 

Furthermore, claudin-low tumors are more chemoresistant than basal-like tumors and are 

often enriched in residue disease following treatment with chemotherapy (32, 33, 35, 43).  
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Therapeutic Approaches in Breast Cancer  

 The pathological and molecular subtypes discussed above have prognostic and 

predictive capacities in the clinic that directly inform breast cancer treatment decisions. 

The following paragraphs outline the standard of care therapeutic approaches in breast 

cancer. 

 

Current Therapeutic Approaches in ER+ Breast Cancer – Selective estrogen 

receptor modulators (SERMS) are one of the first targeted therapies in the field of 

oncology. The primary mechanism of action of first generation SERMS is direct binding 

to the estrogen receptor, antagonizing the downstream pro-proliferative estrogen 

receptor-induced transcription (2, 8). Tamoxifen is the founding member of SERMS and 

was first identified during attempts to make contraceptives in the early 1960s (44, 45). 

After failing as an anti-fertility treatment, tamoxifen was demonstrated to improve 

response and overall survival rates in ER+ breast cancer patients and was approved by the 

FDA in 1977 (13, 46). Currently, tamoxifen is the first line treatment for ER+ breast 

cancer and treatment is typically maintained for 5 years (47). Following its 

implementation in the clinic, tamoxifen has drastically improved ER positive breast 

cancer patient prognosis with close to 80 % five year survival rates (37-40). Tamoxifen is 

also used as a preventative measure in high-risk patients without increasing the risk of 

osteoporosis (48). However, depending on the tissue, tamoxifen can have either anti-

estradiol effects or pro-estradiol effects. Therefore, there are significant toxicities 

associated with tamoxifen treatment, particularly in post-menopausal women. These 

include an increased risk of endometrial cancer, vaginal bleeding and discharge and blot 
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clots (49, 50).  Furthermore, estradiol can have non-genomic effects and has been shown 

to activate oncogenic signaling cascades such as RAS/RAF/ MAPK. Therefore, inhibition 

of the estrogen receptor may not attenuate all the pro-tumorigenic effects of estradiol 

(51). Given these limitations, aromatase inhibitors are being explored as alternatives to 

SERMs. Aromatase is the key enzyme in the steroid synthesis pathway that converts 

testosterone to estradiol, and pharmacological inhibition directly prevents estradiol 

synthesis (2, 8). Thus far, three aromatase inhibitors have been developed; anastrazole, 

letrozole, and exemestane. The most promising inhibitor is letrozole, which reduces the 

risk of recurrence by 31 % and disease free survival by 18 % when compared to 

tamoxifen-treated patients with significantly less side effects (52-55). Currently, 

aromatase inhibitors are FDA-approved for breast cancer prevention and clinical trails are 

underway to further explore a role in breast cancer treatment (48) (Clinicaltrials.gov, 

NCT00530868 and NCT00382070) 

 

 Current Therapeutic Approaches in HER2 Amplified Breast Cancer – A 

successful targeted therapeutic approach has been developed for HER2-amplified 

classification of breast cancer. Trastuzumab is a humanized monoclonal antibody that 

binds directly to the extracellular domain of HER2 and attenuates tumor progression by 

triggering receptor internalization and subsequent degradation (56). As an antibody, 

trastuzumab also engages the immune system and recruits natural killer cells to bind to 

CD16 surface receptor to trigger antibody-dependent cellular cytotoxicity (ADCC) (57, 

58). Furthermore, trastuzumab binding interferes with receptor dimerization and 

attenuates downstream MAPK and PI3K/ AKT signaling to prevent cell proliferation (59-
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61). Trastuzumab was first discovered at Genentech in the early 1990s as having growth 

inhibition capabilities on breast cancer tumor-derived cell lines that exhibited HER2 

amplification (62, 63). Two seminal studies in 2001 and 2002 revealed that trastuzumab 

treatment almost doubled initial response rates and survival time over standard 

chemotherapy in HER2 amplified breast cancer (17, 64). Trastuzumab is now the first 

line therapeutic for HER2 amplified breast cancer patients. Given that traztuzumab 

functions both directly and indirectly, traztuzumab is also used in combination with other 

chemotherapeutic agents, such as paclitaxel, in non-HER2 amplified tumors, although, 

the success of these regimens remains unclear. HER2 expression is now routinely 

evaluated in the clinic prior to treatment decisions (16, 18, 65).  

 

Current Therapeutic Approaches in TNBC – By definition, TNBC lacks 

expression of both the estrogen receptor, progesterone receptor and further it is without 

HER2 amplification. These characteristics make TNBC patients ineligible for tamoxifen-

based and trastuzumab-based therapies. Given that there is no known unifying targetable 

oncogenic aberration found in TNBC, the current standard of care remains cytotoxic 

chemotherapeutic agents where the anti-mitotic, paclitaxel, is a critical component (66, 

67). In the 1960s, paclitaxel was originally discovered from an National Cancer Institute 

(NCI)-sponsored screening initiative to identify natural products with anti-cancer effects 

(68). Decades later in the early 1990s, paclitaxel was found to have potent anti-cancer 

properties in ovarian cancer (69). Given this success, paclitaxel was quickly tested and 

incorporated into the standard of care for non-small cell lung cancer (NSCLC) and breast 

cancer by the mid-1990s (70-72). Paclitaxel functions by directly binding to β-tubulin, 
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thus inhibiting the microtubule dynamicity required for proper mitotic spindle alignment 

during mitosis (73). Inhibition of proper spindle alignment engages the spindle assembly 

checkpoint and prevents mitotic progression. Paclitaxel’s mechanism of cell death relies 

on the cell’s ability to initiate apoptosis following a prolonged mitotic arrest (74). 

Currently, in TNBC, paclitaxel is part of chemotherapeutic regimens that include 

platinum-based or topoisomerase inhibitor DNA damaging agents as part of a 

combination therapy (30).  Fortunately, many TNBC patients initially respond to 

paclitaxel-based therapies, with pathological complete response (pCR) rates reported to 

range from 26 - 45 %, making them the highest response rates among all the breast 

cancer subtypes (75). However, the majority of chemonaïve TNBC tumors retain residual 

disease and exhibit high rates of relapse within the first three years of treatment. Without 

additional treatment options these patients present with poor clinical prognosis (33, 75). 

Unfortunately, due to the vast heterogeneity of TNBC breast tumors, the cellular 

mechanisms underlying the innate paclitaxel resistance remain poorly understood.  

 

Paclitaxel Treatment in the Molecular Subtypes of TNBC – The molecular 

subtypes have provided some insight into the basis of TNBC paclitaxel response 

heterogeneity. The two molecular subtypes that comprise the majority of TNBC, basal-

like and claudin-low, have drastically different pCR rates to paclitaxel-based therapies. 

Basal-like tumors are highly responsive to first line paclitaxel/ anthracycline-based 

chemotherapy with pCR rates of 73 % (76). Claudin-low tumors are more chemoresistant 

with strikingly lower pCR rates (35 %) following treatment with the same 

chemotherapeutic regimens as basal-like tumors (33). This suggests that within TNBC, 
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there are fundamental differences in the cellular architecture that are responsible for 

determining paclitaxel-responsiveness. Currently, there are ongoing clinical trials 

evaluating the efficacy of paclitaxel/ platinum based therapies in combination with 

additional chemotherapeutics, such as cyclophosphamide. Furthermore, these trials are 

exploring different dosing regimens to uncover more effective therapeutic strategies 

while limiting drug concentration (66, 67, 77) (Clinicaltrials.gov - NCT02299999). 

However, improvement of paclitaxel response rates requires an increased understanding 

of the cellular determinates of paclitaxel responsiveness, leading to the design of more 

informed combination therapies. The TNBC molecular subtypes may provide a platform 

to start exploring fundamental differences in paclitaxel responsiveness.  

 

Current Investigation into Targeted Therapies for TNBC 

 TNBC is the most aggressive form of breast cancer and the standard of care has 

significant limitations. As a result, TNBC has the worst prognosis among the breast 

cancer subtypes. Investigating new therapeutic strategies for TNBC is currently a priority 

in the breast cancer field. The following paragraphs describe the current state of targeted 

therapy research in TNBC. 

 

PARP Inhibitors - There is one targeted therapeutic approach currently under 

investigation that will benefit TNBC patients. This approach leverages loss of function 

mutations in the gene, BRCA1, found almost exclusively within the basal-like molecular 

subtype of TNBC (66). BRCA1 mutant tumors account for 5-10 % of all breast tumors 

and about 25 % of TNBC tumors, and are associated with aggressive disease and poor 
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patient prognosis (78, 79). BRCA1 is a member of the homologous-recombination 

double-stranded DNA repair pathway and BRCA1 mutant tumors are exquisitely 

sensitive to therapeutic inhibition of PARP1 (79). PARP1 is a key component of a second 

DNA-damage repair pathway, Base Excision Repair (79, 80) and, therefore, inhibition of 

PARP1 creates a synthetic lethal interaction with loss of BRCA1 to attenuate the tumor 

cell’s ability to buffer oncogene-induced replicative stress. Initial clinical trials reported 

an overall response rate of 41 % with the PARP1 inhibitor, Olaparib, compared to 22 % 

with chemotherapy in BRCA1 mutant breast cancer (81). Currently, Olaparib and the 

new generation PARP1 inhibitor, Veliparib, are in clinical trials in combination with 

paclitaxel and carboplatin with BRCA1 mutation status as a biomarker for clinical trial 

enrollment (Clinicaltrials.gov, NCT00516724 and NCT01078662) (82).  

 

EGFR Inhibitors - A high proportion of TNBC tumors are EGFR (or HER1) 

amplified, with some studies reporting amplification frequencies as high as 50 % (83). 

This has particular relevance in the breast cancer field given that 43 % - 89 % of NSCLC 

have EGFR amplifications and EGFR-amplified NSCLC patients clinically respond to 

inhibition of EGFR using Erlotinib and Gefitinib (84, 85). Furthermore, as also seen in 

NSCLC, EGFR amplification is a negative prognostic predicator in TNBC (86). 

However, the initial clinic trials have not mirrored the clinical responses seen in NSCLC, 

showing modest improvements in progression free survival from 1.5 months to 3.7 

months (87). Therefore, the predictive capacity of EGFR amplification to EGFR 

inhibitors in TNBC remains under investigation (66, 67).  Current clinical trials are using 

EGFR monoclonal antibody, cetuximab, or EGFR inhibitors in combination with 
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paclitaxel and carboplatin (Clinicaltrials.gov, NCT00232505 and NCT00463788).  

 

VEGF and VEGFR Inhibitors - Given that TNBC tumors are often characterized 

as rapidly proliferating, VEGF inhibitors and paclitaxel are being explored as a new 

combination therapy. Inhibition of VEGF prevents formation of new vasculature within 

the tumor mass, thus preventing tumor progression (88). Hypoxia or other oncogenic 

signaling modules, such as TGFβ, can induce VEGF secretion. Once secreted, VEGF 

binds to its tyrosine kinase receptor to induce pro-angiogenic cellular processes such as 

cell proliferation, cell motility and prostaglandin production (89). Currently, there are two 

methods of VEGF signaling inhibition under evaluation. First, there are VEGF inhibitors 

that bind directly to the VEGF ligand. Second, there are VEGF Receptor (VEGFR) 

inhibitors that bind to the cell surface receptor (66, 67, 88). Clinical trials with the VEGF 

monoclonal antibody, bevacizumab, have shown conflicting results causing the FDA to 

withdraw its approval in TNBC (66, 67, 90). Clinical trials with tyrosine kinase inhibitors 

targeting VEGFR, such as sorenib and sunitinib, in combination with paclitaxel, are also 

underway (Clinicaltrails.gov NCT00622466 and NCT00825734). Initial studies using 

sorafenib were promising but due to high rates of toxicity, the feasibility of implementing 

sorenib into TNBC therapies remains unclear (91). Sunitinib clinical trials have showed 

little or no efficacy, but the enrollment criteria for these trials was only limited to non-

amplified HER2 tumors. Therefore, the patient population was a mix of TNBC and 

ER/PR+ tumors (92, 93). 

 

mTOR and PI3K Inhibitors - mTOR inhibitors are also being explored in TNBC 
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therapeutics. mTOR is a signaling node for many essential cellular processes like cell 

proliferation, translation and autophagy. mTOR activity is directly downstream of PI3K 

and AKT signaling (94). Next to TP53, gain of function mutations in PI3K is the second 

most frequent oncogenic aberration in TNBC, at mutations rates close to 10 % (31, 95). 

The mTOR inhibitor, everolimus, has exhibited clinical promise in relapsed trastuzumab-

resistant breast cancer by increasing progression free survival by 34 % (96). However, 

everolimus is associated with severe side effects like hyperglycemia. Initial clinical trials 

evaluating everolimus as a monotherapy in PTEN mutant TNBC showed no clinical 

benefit (97). Currently, combination therapies between everolimus and the PI3K 

inhibitors, GDC-0941 and BKM120, are being evaluated with paclitaxel in metastatic 

breast cancer (Clinicaltrials.gov - NCT00915603, NCT00930930) 

 

Additional Inhibitors - There are a handful of additional targets that have showed 

promise in pre-clinical models and are now transitioning into clinical trials. The SRC, c-

Kit and PDGFRβ inhibitor, dasatinib, in combination with paclitaxel, was successful in 

pre-clinical models and shown an increase, albeit modest, in the initial response rate and 

progression free survival in TNBC patients in phase I clinical trials (98, 99). Inhibition of 

the interleukin 6 inflammatory pathway, JAK/STAT, using the inhibitor ruxolitinib, 

showed potent inhibition of the stem-like breast cancer cells in vitro and in vivo mouse 

models (100). Lastly, inhibitors targeting the chaperone protein HSP90 (PU-H71 and 

ganetespib), have also shown anti-cancer effects in in vitro and mouse studies and are 

now entering clinical trails (101, 102) (ClinicalTrials.gov - NCT02474173, 

NCT01677455). 
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Providing Therapeutic Alternatives for TNBC Patients 

The development of effective targeted therapies has altered the therapeutic 

landscape of breast cancer.  The development of tamoxifen-based and trastuzumab-based 

therapies allows for effective treatment for ER+ and HER2 amplified breast cancer, 

which encompasses 80 – 85 % of all breast cancer diagnosis. If resistance to these first 

line therapeutics occur, chemotherapeutic regimens are used as a second line treatment. 

Given that there are no targeted therapies exist for TNBC, the current standard of care 

remains paclitaxel-based chemotherapeutic regimens. These regimens are effective but 

exhibit significant clinical limitation due to 50 % - 80 % innate paclitaxel resistance. 

Developing targeted therapies for TNBC is problematic without a clear understanding of 

the pathology and etiology of the disease or the cellular mechanisms determining drug 

response. As described above, many TNBC targeted therapies currently under 

investigated are based on clinical expression correlations or application of therapeutic 

strategies successful in other tumor types. Other than the PARP inhibitor, Olaparib, these 

approaches have thus far only yielded modest improvements over paclitaxel-based 

therapies in a small numbers of TNBC patients. A deeper understanding of the functional 

requirements for TNBC viability and chemotherapeutic response is needed to make more 

informed and precise treatment decisions and provide effective therapeutic alternatives. 

 

Summary of Dissertation 

The goal of this work is to perform a systematic and unbiased analysis of the 

TNBC functional landscape to identify cell autonomous tumor cell vulnerabilities that 

may translate into new TNBC therapeutic strategies. To do this, I employed a pan-
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genomic loss of function screening approach that leads to a compendium of modulators 

of TNBC viability and chemotherapeutic response not previously implicated in TNBC 

tumor cell biology. To identify novel therapeutically tractable and tumor cell selective 

dependencies, I design and execute a secondary retest ‘pipeline’ to nominate 3 novel 

TNBC vulnerabilities, CXCR3, SIK2 and ZNF165, for mechanistic elaboration (Chapter 

II). Through follow-up studies, I find that CXCR3 cytokine signaling supports TNBC 

viability in a cell autonomous manner through maintenance of a high fidelity mitosis. 

This effect may be biased to the basal-like subtype, which nominates a new combination 

therapy between the CXCR3 inhibitor, AMG487 and paclitaxel using the basal-like 

subtype as a biomarker for sensitivity (Chapter III). I next uncover that SIK2 acts as an 

autophagic break to promote the pro-tumorigenic effects of autophagy. I hypothesize that 

autophagy-dependent tumors may be particularly sensitive to inhibition of SIK2 and, 

therefore, SIK2 may be a viable therapeutic target in autophagy-dependent metastatic 

disease (Chapter IV). I further reveal that ZNF165 is a driver of oncogenic TGFβ 

signaling and TNBC survival and could serve as a biomarker for responsiveness to TGFβ 

inhibition (Chapter V). Taken together, this work leverages a functional genomics 

approach to uncovered new cellular mechanisms supporting TNBC biology that could 

inform future treatment strategies. This work also highlights the strength of pan-genomic 

screening approaches to reveal new vulnerabilities that lead to the elaboration of new 

therapeutically actionable concepts (Chapter VI).  
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CHAPTER II: Employing Loss of Function RNAi Screens to Uncover Cell 

Autonomous Mechanisms Supporting Triple Negative Breast Cancer  

 

Introduction 

RNA Interference (RNAi) is an effective tool for the analysis of gene function. 

RNAi was first discovered in plants when non-coding RNA (ncRNA) molecules were 

identified as interfering with gene expression. These ncRNA molecules targeted specific 

mRNA for degradation prior to translation using base complementarity (103-105). In 

subsequent studies, RNAi mechanisms were found to be present across all phyla and 

critical for many developmental programs and removal of foreign DNA following viral 

infection (106). RNAi was first used as an experimental tool to manipulate gene 

expression in Caenorhabitis elegans in 1998 (107). Since then, RNAi techniques have 

been successfully adapted for loss of function studies across many model systems 

including Drosophila melanogaster, Caenorhabitis elegans, Homo sapiens, and Mus 

musculus (108). With the advent of commercially available RNAi genome libraries, 

RNAi has been successfully employed in large-scale functional genomic screening efforts 

and played an essential role uncovering novel modulators of host/ pathogen interactions, 

cell and organelle morphology, axon guidance and motility, cell cycle, mitosis and 

tumorigenesis (108-113). Given this success, there are now publically available databases 
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cataloguing RNAi screens performed in Homo sapiens, Caenorhabitis elegans and 

Drosophila melanogaster to provide a resource and hypothesis-generating tool for the 

scientific community (114-116).  

 

High throughput functional RNAi screens have played a critical role in our 

current understanding of tumor cell biology and chemotherapeutic response. The first 

RNAi screen dissecting chemotherapeutic response was performed in 2005 and used 

treatment of a sublethal dose of three chemotherapeutic agents (paclitaxel, cisplatin and 

etoposide) to identify kinases and phosphatases that when lost, sensitize tumor cells to an 

otherwise innocuous chemotherapeutic insult. This approach uncovered the 

pseudophosphatase, MK-STYX, as a modulator of chemotherapeutic response in HeLa 

cells (117, 118). MK-STYX was later verified to support cytochrome c release for 

activation of apoptosis (119). This study lay the groundwork for many subsequent 

chemosensitizer RNAi screens that have provided mechanistic insight into 

chemotherapeutic drug response for cisplatin, paclitaxel, etoposide, tratuzimab, 

tamoxifen, gemcitabine, and fluorouracil (120-125). For example, a chemosensitizer 

screen using the anti-mitotic paclitaxel in NSCLC identified a novel yet critical 

connection between the RNA polyadenylation machinery and maintenance of a bipolar 

mitotic spindle (126).  

 

These screens have also led to new therapeutic strategies in the clinic. For 

example, the genome excision repair protein, HR23B, sensitizes cutaneous T-cell 

lymphoma (CTCL) cells to histone deacetylase (HDAC) inhibitors through proteasome 
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deregulation. Consequently, HR23B expression is being explored as a biomarker for 

sensitivity to HDAC inhibitors in CTCL patients (127, 128).  

 

The intersection of multiple RNAi screens can be further leveraged to reveal 

selective tumor cell dependencies. Luo and Ellegde et al. performed a siRNA screen in 

both RAS-mutant and RAS-wildtype colorectal cancer cells to identify genes that 

specifically support mutant RAS-driven tumor cell viability. This approach uncovered an 

increased sensitivity to mitotic perturbation in RAS-mutant colorectal cancer cells, 

revealing that these RAS-mutant cells were more sensitive to treatment with anti-mitotics 

(129). Taken together, over the past 10 years, RNAi screens have emerged as a powerful 

technique to uncover new regulators of chemotherapeutic response and new biological 

concepts that can lead to novel therapeutic intervention strategies. 

 

 Given the lack of therapeutic options for TNBC patients, our goal is to begin to 

identify tumor cell dependencies that may be therapeutically actionable. Here, we design 

and execute an unbiased pan-genomic loss of function siRNA screen to uncover novel 

TNBC tumor cell vulnerabilities. We used four tumor-derived cell lines to model the 

TNBC patient population and employed the chemosensitizer screening strategy to 

uncover genes that either directly support TNBC viability or modulate chemotherapeutic 

response to the first line TNBC chemotherapeutic, paclitaxel. This approach revealed 

many known and unknown modulators of TNBC tumor cell biology and paclitaxel 

responsiveness. Through a retest pipeline to prioritize penetrant, tumor-selective and 

therapeutically tractable screen hits, we nominated 3 genes; CXCR3, SIK2 and ZNF165, 
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for further study as a new TNBC vulnerabilities. 

 

Results 

 Modeling Triple Negative Breast Cancer for RNAi Screening – TNBC is 

defined by a lack of hormone and growth receptor expression.  Therefore, it is composed 

of a diverse set of breast tumors that encompasses many different oncogenic aberrations, 

molecular subtypes and chemoresponse profiles (30). To model this heterogeneous 

patient population in our screening platform, we employed tumor-derived cell lines, 

which retain many of their clinically relevant features (41). Furthermore, these cell lines 

are easily cultured in the laboratory, display growth rates that achieve multiple population 

doublings during the screen time frame, and can reproducibly achieve greater than 90% 

siRNA transfection efficiency (Table 1). These attributes make these tumor-derived cell 

lines ideal TNBC models for high throughput siRNA screening. We initially evaluated 15 

TNBC tumor-derived cell lines for the above parameters and selected four cell lines that 

encompassed the breadth of TNBC heterogeneity and were conducive to efficient high 

throughput screening (Figure 1A). 

 

 TNBC Screen Design – The screen platform used here was modeled after one of 

the first paclitaxel chemosensitizing screen performed in the H1155 lung cancer cell line 

(122). We obtained the Dharmacon pan-genomic siRNA library arrayed in a 96 well 

format, with each well containing a pool of 4 siRNAs targeting 1 gene. First, cells were 

reverse transfected into the 96 well format and then treated with either vehicle or a 

sublethal dose of paclitaxel forty-eight hours post-plating. Cell viability was evaluated 96 
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Table 1: Characteristics of Breast Cancer Tumor-Derived Cell Lines in Laboratory 
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hours post plating (Figure 1B). This two-pronged approach allows for identification of 

two types of TNBC tumor cell vulnerabilities. The vehicle-treated arm reveals genes that 

directly support tumor cell viability (Monogenic Lethal). The paclitaxel-treated arm 

allows for identification of genes that are not necessarily directly required for tumor cell 

survival but are required to buffer chemotherapeutic cellular stress (Synthetic Lethal) 

(Figure 1C). Furthermore, identification of therapeutically tractable genes that are 

synthetic lethal with paclitaxel may nominate new combination therapies in TNBC. 

Taken together, our screening platform is designed to uncover TNBC Achilles’ heels and 

nominate new therapeutic strategies.  

 

 Evaluation of Screen Validity – Following execution of four pan-genomic 

screens, we employed a z score metric of ≥ -2 to identify screen outliers (130). For 

monogenic lethals, we applied the z score metric to the vehicle-treated viability score 

(Figure 1C). For synthetic lethal, we applied the z score metric to the ratio of viability 

score with sublethal dose to paclitaxel to the vehicle treated viability score (Figure 1C). 

This method revealed 2000 unique siRNAs as screen outliers across both monogenic and 

synthetic lethal arms. As expected, the top monogenic lethals identified are known 

supporters of cellular housekeeping functions that all eukaryotic cells require like 

ubiquitin and proteasomal subunits required for protein homeostasis (Figure 2A). We also 

identified siRNAs with known functions in tumorigenesis such as RBBP9, which has a 

role in cell cycle progression and can drive transformation (Figure 2A) (131). Related to 

paclitaxel-induced cellular stress, our screens uncovered several genes that are known to   
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Figure 1. Pan-Genomic Loss of Function Screening Strategy to Identify TNBC 
Molecular Vulnerabilities. A. Characterization of TNBC tumor-derived cells lines used 
in siRNA screens. Top: Cell line name with indicated oncogenic mutations and molecular 
subtype. Bottom Left: Paclitaxel dose response curve TNBC screening cell lines. 
Indicated TNBC cell lines plated in 96 well format and treated 48 hours post plating with 
indicated paclitaxel doses. CTG assay was performed 96 hours post plating and values 
represent viability relative to 0 nM paclitaxel (n=3) ± Standard Deviation (s.d). Sublethal 
paclitaxel dose used for siRNA screen indicated. Bottom Right: Biological response of 
TNBC cell lines used in screen at sublethal paclitaxel screening dose. Indicated TNBC 
cell lines were processed as above and incubated with hoeschst stain 96 hours post 
plating. Representative images displayed. B. Screening time line: TNBC cell lines plated 
in 96 well format and treated 48 hours post plating with indicated paclitaxel doses. CTG 
assay was performed 96 hours post plating. C. Pan-genomic siRNA screening strategy to 
uncover monogenic lethal and synthetic lethal genes in each of the TNBC screening cell 
lines.   
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modulate paclitaxel sensitivity in tumor cells, in particular, TACC3 and CASC1 (Figure 

2A) (132, 133). Identification of these genes provides validation that we performed a 

high fidelity screen that is capable of uncovering biology related to TNBC tumor cell 

survival and chemotherapeutic response. Given that the majority of the screen outliers 

have not been previously implicated in TNBC tumor cell biology, our screens represent a 

compendium of putative TNBC vulnerabilities that may lead to a deeper understanding of 

TNBC biology and identification of new therapeutic entry points. 

 

 Identification of Top Priority Candidates for Mechanistic Elaboration - We 

were interested in identifying novel vulnerabilities in TNBC that are tumor cell selective 

and could translate into new therapeutic strategies. Given the extensive tumor cell 

heterogeneity in our screening platform and in the TNBC population, we first identified 

those siRNAs that are defined as hits in at least two cell lines. This analysis included 

siRNAs identified as hits either the monogenic lethal or synthetic lethal screening arm. 

This will increase the discovery space of our screen and increase the likelihood of 

elaborating a penetrant phenotype. We are interested in new therapeutic entry points and, 

therefore, narrowed our search to siRNA targeting genes that are considered 

therapeutically tractable or have a well-defined tumor cell selective expression pattern, 

which is indicative of a large therapeutic window. We next evaluated loss of these screen 

hits in the context of normal immortalized breast epithelia to enrich for vulnerabilities 

that are specific to the transformed state (Figure 2B). This analysis nominated CXCR3, 

SIK2 and ZNF165 for mechanistic elaboration to uncover new aspects of TNBC biology 

that are therapeutically tractable.  The following three paragraphs will provide 
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background on each of these proteins along with rationale for their selection for further 

mechanistic elaboration. 

 

CXC Motif Receptor 3 (CXCR3) - Our functional genomics approach identified 

siRNA targeting CXCR3 as a potent supporter of TNBC viability and paclitaxel-induced 

cellular stress in multiple genetic backgrounds (Figure 3A). Additionally, one of its 

ligands, CXCL9, was identified as synthetic lethal with paclitaxel in the HCC1806 TNBC 

tumor-derived cell line (Figure 3A). CXCR3 is the primary cytokine G-protein coupled 

receptor for members of the CXC ELR-negative cytokine subfamily, which includes 

CXCL4, 9, 10, and 11 (134, 135). CXCR3 cytokine signaling has been primarily studied 

for promoting chemotaxis following injury-induced cytokine release in CD4+ Type-1 

helper and CD8+ cytotoxic lymphocytes (135-137). CXCR3 also has known functions in 

angiogenesis and wound repair (138-140). Identification of both CXCR3 and CXCL9 

from our screening platform suggests that CXCR3/CXCL9 cytokine signaling supports 

tumor cell viability and buffers against chemotherapeutic insult in a cell autonomous 

manner. This is a previously undefined role for cytokine signaling; therefore, mechanistic 

elaboration of CXCL9/ CXCR3 signaling in TNBC could uncover new mechanisms by 

which tumor cells can remodel signaling modules to promote the tumorigenic phenotype.  

 To verify the screen observations were not due to siRNA-off target effects, we 

evaluated loss of CXCR3 in both the SUM149 and HCC1806 tumor-derived cell lines 

with two independent siRNA pools and observed reduced TNBC tumor cell viability 

along with concomitant CXCR3 mRNA depletion (Figure 3B). Repeating this analysis 

with CXCL9 in HCC1806 cells produced similar results (Figure 3C). Furthermore, small 
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molecule inhibitors targeting CXCR3 are commercially available and in clinical trials for 

immune disorders (76) and; therefore, could be repurposed to define new therapeutic 

strategies in TNBC. Given that our screen identified both the receptor, CXCR3, and its 

ligand, CXCL9, and CXCR3 is therapeutic tractability, further investigation was focused 

on the CXCR3/ CXCL9 signaling axis as a vulnerability in TNBC. 

 SIK2 (Salt Inducible Kinase) - Our pan-genomic siRNA screen identified siRNA 

targeting SIK2 as both synergizing with the first line chemotherapeutic, paclitaxel in 

SUM159 cells and supporting tumor cell viability WHIM12 cells (Figure 3D). SIK2 is an 

AMPK-related kinase containing a targetable canonical ATP binding pocket thus making 

it an attractive therapeutic target. SIK2 has also recently been implicated with a role in 

ovarian cancer (141, 142), suggesting SIK2 is an important kinase during tumor 

evolution. To verify our screen observations were not due to siRNA off-target effects, we 

evaluated loss of SIK2 in both the SUM159 and WHIM12 tumor-derived cell lines with 

two independent siRNA pools. We observed reduced TNBC tumor cell viability along 

with concomitant SIK2 mRNA depletion (Figure 3E). Through a collaboration with 

Arrien Pharmacueticals, Inc, we obtained a SIK2 selective small molecule inhibitor to 

facilitate the evaluation of SIK2 as a therapeutic target. Given the therapeutic tractability 

of SIK2, its recently defined role in ovarian cancer and our access to a novel small 

molecule inhibitor, we decided to further investigate SIK2 as a vulnerability in TNBC. 
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Figure 2. Screen Validation and Secondary Screen Retest Pipeline. A. Z score 
distributions of monogenic and synthetic lethal arms of each of the four pan-genomic 
screens performed. Screen hits defined with z score ≥ -2. B. Flow-chart of follow-up 
criteria.   
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 Zinc Finger 165 (ZNF165) - Our functional genomics approach identified siRNA 

targeting ZNF165 as a supporter of TNBC tumor cell viability in multiple TNBC genetic 

backgrounds (Figure 3F). Furthermore, ZNF165 was the most potent collaborator with 

paclitaxel in the chemoresistant WHIM12 TNBC tumor-derived cell line (Figure 1A & 

2A). ZNF165 is an unstudied zinc finger domain containing protein and is categorized as 

a cancer-testis antigen (CTA). Characteristic of CTAs, ZNF165 mRNA expression is 

testis-restricted but is reactivated in multiple types of cancer including breast, colorectal, 

bladder, and liver (143, 144). This suggests ZNF165 may be functionally contributing to 

the tumorigenic platform while exhibiting an extraordinarily wide therapeutic window. 

To validate our screen findings, we depleted ZNF165 in two TNBC cell lines where it 

was identified as a hit and observed reduced TNBC tumor cell viability with two 

independent siRNA pools along with concomitant ZNF165 mRNA depletion (Figure 

3G). Traditionally, zinc finger proteins are not considered targetable because they lack an 

active site binding pocket for which a small molecule inhibitor can be designed. 

However, zinc finger domains mediate DNA binding and zinc finger proteins are often 

implicated in transcriptional regulation (145, 146). Given ZNF165’s expression profile, 

functional elaboration of ZNF165’s role in TNBC tumor cell biology may reveal tumor-

specific signaling modules and downstream targets that could nominate additional TNBC 

therapeutic entry points. 

 

Discussion 

 We leveraged a pan-genomic loss of function screening platform to systematically 

identify therapeutic intervention targets in TNBC. We selected a panel of four TNBC 
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tumor-derived cell lines that display the distribution of oncogenic aberrations, molecular 

subtypes and chemoresponsiveness found among TNBC patients. Our two-pronged 

approach allowed for the identification of genes that directly support TNBC tumor cell 

viability and genes that are required for buffering chemotherapeutic cellular stress. Here 

the anti-mitotic, paclitaxel, was used as a chemotherapeutic stressor due to its role as the 

standard of care chemotherapeutic regime for TNBC patients. Therefore, mechanistic 

elaboration of genes that synergize with paclitaxel may lead to new combination 

therapies or stratification strategies identifying sensitive subsets of TNBC patients.  

 Across all four genetic backgrounds, our screen identified 2000 modulators to 

TNBC tumor cell viability and paclitaxel-induced cellular stress. These hits included both 

known and unknown modulators of TNBC tumor cell biology. Known modulators 

include genes like RBBP9, CASC1 and TACC3 with previously defined roles in tumor 

cell survival and chemosensitivity (131, 133, 147). This suggests that we performed a 

high fidelity screen that reveals biology functionally contributing to TNBC tumor cell 

viability. With this validation, our screen can be viewed as a means to compile TNBC 

vulnerabilities. Given that we modeled TNBC tumor diversity to encompass the TNBC 

patient heterogeneity, our screen can be leveraged to address many different questions 

and generate hypotheses about TNBC tumor cell biology associated with oncogenic 

aberrations, chemoresponse profiles and/ or molecular subtypes. 
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Figure 3. Identification of Top Priority Candidates for Mechanistic Elaboration. A. 
Heat map of screen z scores of CXCR3 and its ligands, CXCL9, 10 and 11. M – 
monogenic lethal z score. S – synthetic lethal z score. B. Left: Indicated TNBC cell lines 
were transfected with indicated siRNAs and cell viability was measured 96 hours post 
transfection (Cell Titer Glo®, CTG). Values represent viability relative to siCTRL (n = 
3) ± S.D. Right: Total RNA was isolated from SUM149 cells transfected with either 
siCTRL or siCXCR3 and quantitative polymerase chain reaction (qPCR) was used to 
quantitate relative CXCR3 mRNA expression. Bars represent mean (n = 2) ± range. C. 
Left: Indicated TNBC cell lines were transfected with indicated siRNAs and cell viability 
was measured 96 hours post transfection (CTG). Values represent viability relative to 
siCTRL (n=3) ± S.D. Right: Total RNA was isolated from SUM149 cells transfected 
with either siCTRL or siCXCL9 and qPCR was used to quantitate relative CXCL9 
mRNA expression. Bars represent mean (n = 2) ± range.  D. Heat map of screen z scores 
of SIK2. M – monogenic lethal z score. S – synthetic lethal z score. E. Left: Indicated 
TNBC cell lines were transfected with indicated siRNAs and cell viability was measured 
120 hours post transfection (CTG). Values represent viability relative to siCTRL (n = 3) 
± S.D. Right: Total RNA was isolated from SUM159 cells transfected with either 
siCTRL or siSIK2 and qPCR was used to quantitate relative SIK2 mRNA expression. 
Bars represent mean (n = 2) ± range. F. Heat map of screen z scores of ZNF165. M – 
monogenic lethal z score. S – synthetic lethal z score. G. Left: Indicated TNBC cell lines 
were transfected with indicated siRNAs and cell viability was measured 96 hours post 
transfection (CTG). Values represent viability relative to siCTRL (n = 3) ± S.D. Right: 
Total RNA was isolated from indicated cell lines transfected with either siCTRL or 
siZNF165 and qPCR was used to quantitate relative ZNF165 mRNA expression. Bars 
represent mean (n = 3) ± S.D. 
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 We further employed a secondary screen retest pipeline approach to prioritize 

TNBC vulnerabilities that are tumor-specific and therapeutically tractable. This strategy 

led to three candidates – CXCR3, SIK2 and ZNF165 - that were identified as supporting 

TNBC viability and chemotherapeutic response across multiple genetic backgrounds 

without affecting normal immortalized mammary epithelia. The remaining chapters will 

explore the cellular mechanisms behind CXCR3 (Chapter III), SIK2 (Chapter IV) and 

ZNF165 (Chapter V) supporting TNBC viability. These follow-up studies highlight the 

strength of RNAi screening approaches to uncover novel biological concepts and 

nominate new TNBC therapeutic strategies.  

 

Materials and Methods: 

Cell lines and reagents - Cell lines were obtained from American Type Culture 

Collection (ATCC) with the following exceptions: SUM159, SUM149 and HuMEC (gift 

from Charles Perou, UNC Lineberger Cancer Center), MDA-MB-436, MDA-MB-468, 

MDA-MB-231, HCC1806 (gift from Gray Pearson, UT Southwestern) and WHIM12 

(gift from Matthew Ellis, Baylor College of Medicine). All cell lines were cultured in 

provider’s recommended medium. siRNAs were obtained from GE Healthcare 

(siGENOME siRNA) or Sigma (Mission® siRNA). CTRL siRNA used was either siRNA 

targeting FNDC3B, or non-targeting control #5 or #2 (GE Healthcare).  

 

siRNA Transfections - Transfection conditions were optimized using Lipofectamine® 

RNAiMAX and a lethal siRNA targeting Ubiquitin B (UBB) and a non-targeting control 

siRNA. Transfection efficiency was calculated as the CTG luminescence values of (1-
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siUBB/siCTRL).  

 

siRNA screen and data processing - Pan-genomic siGenome SMART pool siRNA 

library from GE Healthcare was purchased in 96 well plate format, for a total of 214 

master plates. siRNAs were dissolved in 1X siRNA buffer (GE Healthcare) at a final 

concentration of 5 µM and stored at -80 °C. The library contained 4 independent siRNAs 

targeting a single gene pooled in a single well. siRNAs were diluted to 250 nM in serum 

free medium. Thirty microliters of this solution (4.3 pmoles of siRNA) was then 

aliquoted into empty plates and mixed with 10 mL of a Lipofectamine® RNAiMax (Life 

Technologies) solution (0.1 µL RNAiMAX in 9.9 µL/well Opti-MEM® (Life 

Technologies) and incubated for 20 minutes. Cells were harvested in parallel and diluted 

to target density in 60 µL of growth medium and then dispensed onto the siRNA-lipid 

mixture and incubated. Forty-eight hours post plating, cells were treated with either 35 ul 

of media or 35 µL of 3.85X paclitaxel for a final concentration of 1 nM and incubated for 

an additional 48 hours. Ninety-six hours post plating, cell viability was measured using 

15 µL of CellTiter-Glo® (CTG) (Promega) assay system according to manufacturer’s 

protocol. Measurements were made with a Pherastar Plus (BMG) plate reader. Twenty-

four master siRNA plates were used per day for a total of 9 plating days for each screen. 

Raw values were row-median and plate-median normalized by day and a Z score metric 

was then applied (130). siRNA pools with z-scores < -2 were considered outliers. 

 

Cell Viability Assays - Cells were reverse transfected in 96 well format. Forty-eight 

hours post plating, cells were fed with 35ul of complete media. Ninety-six hours post 
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plating, luminescence values were read following addition of 15 µL of Cell Titer-Glo® 

(CTG) (Promega) on a Pherastar Plus (BMG) plate reader. 

 

Gene expression - Total RNA was isolated using RNA isolation kit (Sigma) and reverse 

transcribed using the High-Capacity cDNA Reverse Transfection Kit (Life Technologies) 

according to manufacturer’s instructions. An Applied Biosystems Real-Time PCR system 

and either Solaris™, or TaqMan® Real-Time PCR gene expression assays were used. 

Gene expression assays were multiplexed with RPL27 or GAPDH as control assays. 

Relative expression values were calculated using the comparative Ct method.  
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CHAPTER III:  Cytokine CXCR3/ CXCL9 Signaling Axis Supports Mitotic Fidelity 

and Survival in Basal-Like Triple Negative Breast Cancer1 

 

Introduction 

Our screening approach identified siRNA targeting CXCR3 as a potent supporter 

of TNBC viability and paclitaxel-induced cellular stress in multiple genetic backgrounds 

(Figure 3A&B). Additionally, one of the ligands of CXCR3, CXCL9, was also identified 

as supporting paclitaxel-induced cellular stress in the HCC1806 TNBC tumor-derived 

cell line (Figure 3A). Identification of both the receptor and ligand, CXCR3 and CXCL9, 

from our screening platform suggests that cell autonomous CXCR3/CXCL9 cytokine 

signaling is supporting tumor cell viability and buffering against chemotherapeutic stress.  

CXCR3 is a cytokine G-protein coupled receptor. Its ligands include the CXC ELR-

negative cytokine subfamily, CXCL4, 9, 10, and 11 (134, 135). CXCR3 cytokine 

contributes to chemotaxis following injury-induced cytokine release in CD4+ Type-1 

helper and CD8+ cytotoxic lymphocytes (135-137); however, CXCR3 has also been 

implicated in angiogenesis and wound repair (138-140). CXCR3 small molecule 

inhibitors have been employed to treat immune disorders like psoriasis, and graft vs. host 

disease (148). CXCR3 signaling was even proposed to be a biomarker for transplant 

organ rejection (149, 150). However, clinical trials targeting CXCR3 in these contexts 

                                                
1 All figures contributed by Kimberly E Maxfield 
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have failed due to lack of efficacy (76). Mechanistic elaboration of CXCL9/ CXCR3 

signaling in the context of TNBC could uncover new mechanisms by which tumor cells 

can repurpose cytokine signaling to promote the tumorigenic phenotype and may 

translate into to new therapeutic strategies in TNBC.  

 

 Since its initial discovery in 1996, three CXCR3 isoforms have been discovered: 

CXCR3-A, CXCR3-B and CXCR3-Alt. The two A and B isoforms are due to an 

alternative-splicing event that leads to an alternative translational start site and excludes 

the first 50 extracellular N terminal amino acids from CXCR3-A. This region of the 

receptor is thought to dictate the differences in ligand binding affinity (135, 151). 

Although both isoforms can bind all CXCR3’s ligands, CXCR3-A has a higher affinity 

for CXCL9, 10, and 11 while CXCL4 preferentially binds CXCR3-B (137, 151).  

 

 The CXCR3-A and –B isoforms also have opposing physiological functions. 

CXCR3-A signaling drives downstream cell proliferation, survival, and motility while 

CXCR3-B signaling inhibits cell growth, motility and sensitizes cells to apoptotic stimuli 

(135, 152). CXCR3-A signaling is pertussis toxin sensitive, induces Ca2+ release upon 

ligand stimulation and modulates the actin cytoskeleton in a ROCK-dependent manner, 

suggesting Gαi coupling (151, 153-155). Intracellular levels of cAMP increase upon 

CXCR3-B stimulation, which suggests Gαs coupling (151). Stimulation of CXCR3 has 

also been shown to induce ERK, AKT and SRC phosphorylation events (156), however, 

given that CXCR3-A and CXCR3-B only differ by a small N terminal deletion in 

CXCR3-A and therefore cannot be uniquely targeted, the exact regulation of and cellular 
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consequences resulting from CXCR3 signaling remains poorly understood.  

 

 There are also differences in the expression pattern between the CXCR3-A and -B 

isoforms. The pro-proliferative CXCR3-A is predominately expressed in undifferentiated 

hematopoietic stem cells and motile immune cells while anti-proliferative CXCR3-B is 

the primary isoform in differentiated epithelial, endothelial cells and fibroblasts (135). 

The CXCR3-Alt isoform contains a drastically different C terminal amino acid sequence 

when compared to both CXCR3-A and B. This translates into only ≤ 5 predicted 

transmembrane loops and therefore the functionality of this isoform remains to be 

elucidated (157).  

 

 In breast cancer, melanoma and colon cancer, increased expression of CXCR3 

and/or its ligands is correlated with more aggressive, metastatic disease and poor patient 

outcomes (158, 159). Furthermore, CXCL9, 10 and 11 paracrine and autocrine loops 

have been observed in primary breast cancer samples (160). In breast cancer tumor-

derived cell lines, introducing oncogenic gain of function RAS mutations induces 

CXCL9/10 autocrine loops and silences expression of the anti-proliferative CXCR-B 

isoform (159). Ligand stimulation of CXCR3 in breast cancer induces Ca2+ release and 

actin cytoskeletal rearrangements leading to increased cellular motility (135, 137, 154), 

suggesting that CXCR3-A is the predominate isoform expressed on tumor cells. 

Consistent with a role in promoting cell motility, CXCR3 expression is correlated with 

increased invasive and metastatic capabilities both in vitro and in vivo (42, 158, 159, 

161). Small molecule inhibition of CXCR3 can also attenuate breast carcinoma 
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metastasis to the lung in a murine model (42), suggesting that tumorigenic expression is 

critical for acquiring metastatic potential.  

 

Discovery of CXCR3 and CXCL9 in our functional genomics platform uncovers 

a novel cell autonomous role for CXCR3 and its ligand, CXCL9, in TNBC tumor cell 

viability and chemosensitivity. Here, we reveal that CXCR3 are required for a high 

fidelity bipolar spindle during mitosis, loss of which induces a prolonged mitotic arrest 

and subsequent death. We further show that this vulnerability may be biased to the basal-

like subtype. This research uncovers a new cell autonomous role for CXCR3 cytokine 

signaling in tumorigenesis and nominates CXCR3 as a therapeutic target in combination 

with the first line chemotherapeutic, paclitaxel, using the basal-like subtype as a 

biomarker for sensitivity. 

 

Results 

 CXCR3 Supports Basal-Like Tumor Cell Viability – Identification of CXCR3 

in our screen nominates CXCR3/CXCL9 signaling as supporting TNBC viability. To test 

if CXCR3 is supporting long-term TNBC tumor cell survival, we measured apoptosis 

using active caspase 3 immunoblot following CXCR3 siRNA depletion and observed that 

loss of CXCR3 induces active caspase 3. This apoptotic response is correlated with loss 

of long-term viability as measure by a clonogenic replating assay (Figure 4A). In our 

screens, CXCR3 was identified as a hit in the two basal-like cell lines. To test if CXCR3 

is a basal-like selective vulnerability, we depleted CXCR3 within the isogenic basal-like 

and claudin-low compartments of the SUM149 cell line. The parental SUM149 cell line 
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clusters with the basal-like subtype but a small stable subset of SUM149 cells clusters 

with the claudin-low subtype (33). Using the cell surface markers, EpCAM and CD49f, 

Fluorescence Activated Cell Sorting (FACS) can be employed to separate the SUM149 

parental cell line into its basal-like (EpCAM high and Cd49F low) and claudin-low 

(EpCAM low and CD49f high) subpopulations. Following FACS analysis, we then 

measured apoptosis using active caspase 3 immunoblot following CXCR3 siRNA 

depletion and observed that CXCR3 only supported survival in the basal-like 

compartment of the SUM149, despite equal protein depletion (Figure 4B). We next tested 

the effect of CXCR3 on apoptosis across diverse basal-like genetic backgrounds. We 

observed that CXCR3 protein is detectable in all cell lines regardless of subtype but loss 

of CXCR3-induced apoptosis was seen in the basal-like cell lines 96 hours post 

transfection (Figure 4C), suggesting that the basal-like subtype may be more sensitive to 

CXCR3 depletion. Given CXCR3 protein expression is present regardless of sensitivity, 

CXCR3 expression may not responsible for the difference in sensitivity. Taken together, 

these data suggest that CXCR3 cytokine is supporting Basal-Like tumor cell survival. 

 

 CXCR3 Supports Basal-Like Mitotic Fidelity - Since our screen identified a 

collaboration between CXCR3 depletion and the anti-mitotic chemotherapeutic, 

paclitaxel (Figure 3A), we next asked if loss of CXCR3 modulated tumor cell mitosis. 

Following depletion of CXCR3, we observed an accumulation of multipolar misaligned 

mitotic spindles compared to control transfected cells (Figure 5A). We further found that 

loss of CXCR3 increased the number of cells in mitosis (mitotic index), measured by   
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Figure 4. CXCR3 Supports Tumor Cell Viability. A. Top: Indicated TNBC cell lines 
transfected with indicated siRNAs were re-plated at limiting dilution 96 hours post 
transfection. Bottom: Indicated TNBC cell lines were transfected with indicated siRNAs 
and immunobloted with indicated antibodies 96 hours post transfection. B. Whole cell 
lysates (WCL) of SUM149 cells separated into their claudin-low and basal-like 
compartments using fluorescence activated cell sorting (FACS) and transfected with 
indicated siRNAs were immunoblotted with indicated antibodies 96 hours post 
transfection. C. WCLs from indicated cell lines transfected with indicated siRNAs were 
immunoblotted with indicated antibodies 96 hours post transfection.   
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immunofluorescence staining of serine 10 phosphorylation on histone H3B, which is a 

mitotic-specific phosphorylation event initiated by aurora kinases (162). We observed a 

mitotic index increase with multiple independent siRNA pools targeting CXCR3. We 

further observed an accumulation of the mitotic-specific cyclin, Cyclin B1 (163). This 

suggests the mitotic defects seen following CXCR3 siRNA depletion are not due to 

siRNA off-target effects (Figure 5B). To further understand siCXCR3-induced mitotic 

defects, we employed time-lapse video microscopy to observe mitotic progression in real 

time. We generated SUM149 cells stably expressing GFP (Green Fluorescent Protein)-

Histone H2B, to allow for visualization of nuclei. SUM149-GFP-H2B cells were for 

monitored mitotic transit time and cell fate 48 to 96 hours post siCXCR3 transfection. 

This analysis revealed that CXCR3 depletion significantly increases mitotic transit time 

and that an increased mitotic transit time is correlated with mitotic catastrophe, defined as 

either an aberrant micronucleated mitotic exit or initiation of apoptosis during metaphase 

(Figure 5C) (164). This is consistent with our group’s previous findings that prolonging 

metaphase increases likelihood of a mitotic catastrophe and thus decreasing tumor cell 

viability in NSCLC (133). Furthermore, we found that codepletion of CXCR3 and 

MAD2, an obligate component of the spindle assembly checkpoint (165), rescues the 

mitotic index increase but also increases the proportion of damaged micronucleated cells 

(Figure 5D), suggesting that loss of CXCR3 signaling induces mitotic damage, which 

triggers the spindle assembly checkpoint and prevents mitotic progression. Prolonged 

engagement of the spindle assembly checkpoint then leads to induction of apoptosis. 

Lastly, we observed that loss of CXCR3 signaling induces mitotic index increase 

specifically in the basal-like subtype (Figure 5E). Taken together, these data suggest a 
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novel cell-autonomous role for CXCR3/ CXCL9 signaling supporting mitotic fidelity that 

is required for Basal-Like breast cancer cell survival. 

 

Discussion 

 Our pan-genomic screening TNBC screening approach uncovered a novel 

cell autonomous role for CXCR3 cytokine signaling supporting tumor cell viability 

through promoting mitotic spindle alignment. We show that loss of CXCR3 signaling 

impedes proper spindle alignment, stalling mitotic progression through activation of the 

spindle assembly checkpoint followed by induction of apoptosis (Figure 6). This is the 

first report of a cytokine receptor with a cell autonomous role in mitotic spindle 

alignment. In tumorigenesis, CXCR3 has been primarily studied as a driver of cell 

motility through actin cytoskeleton rearrangements (137, 155, 166, 167). This has been 

shown to promote metastasis in multiple tumor types including breast and prostate (42, 

152, 153, 158). However, the actin cytoskeleton also plays an important role during 

mitosis. Actin filaments form a cortex surrounding the periphery of the cell that provides 

a mechanical link between the plasma membrane and microtubule-based mitotic spindle. 

This link allows for the tension needed to form a bipolar spindle (168, 169). The 

formation of the actin cortex is initiated at the onset of mitosis and is facilitated by actin-

associated proteins, such as Mitotic Spindle Positioning, G-Protein Signaling Modulator 

2, Cofilin 1 and Moesin (76, 162, 165, 170-175). We have preliminary evidence that 

CXCR3/CXCL9 signaling modulates the actin cytoskeleton in TNBC. Attenuation of 

CXCL9 signaling induces the loss of actin stress fibers (data not shown). Given this, we 
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Figure 5. CXCR3 Supports Mitotic Fidelity. A. Left: SUM149 cells transfected with 
indicated siRNAs for 72 hours were fixed, immunostained with indicated antibodies. 
Right: SUM149 cells transfected with indicated siRNA were processed as above. Mitotic 
spindle alignment was quantitated manually for 100 cells per condition. Bars represent 
mean (n = 2) ± range. B. Left: SUM149 cells transfected with indicated siRNAs for 72 
hours were fixed, immunostained with indicated antibodies. Middle: SUM149 cells 
transfected with indicated siRNA were processed as above. Percent of serine 10 
phosphorylated Histone 3B positive cells were quantitated manually for 100 cells per 
condition. Bars represent mean (n = 4) ± S.D. Right. WCLs from SUM149 cells 
transfected with indicated siRNAs were immunoblotted with indicated antibodies 72 
hours post transfection C. Left: SUM149 cells expressing GFP-Histone H2B were 
transfected with indicated siRNAs. At 48 hours post-transfection, cells were imaged by 
live time-lapse microscopy from 48-96 hours post-transfection. Manual single-cell 
lineage tracing was performed to identify mitotic transit time and mitotic exit phenotype 
for a total of 100 cells per condition over two independent transfections. Right: 
Representation of mitotic transit time of cells described above grouped by mitotic exit. P 
values represents unpaired Student’s t test. D. Left: SUM149 cells transfected with 
indicated siRNAs for 72 hours were fixed, immunostained with indicated antibodies. 
Percent serine 10 phosphorylated Histone 3B positive cells were quantitated manually for 
100 cells per condition. Bars represent percent serine 10 phosphorylated Histone 3B 
positive cells (n = 3) ± S.D. Right: SUM149 cells processed as above. Micronucleated 
cells were quantitated manually for 100 cells per condition. Bars represent percent 
micronucleated cells (n = 3) ± S.D. P values represent unpaired Student’s t test. E. 
Indicated cell lines transfected with indicated siRNAs for 72 hours were fixed, 
immunostained with indicated antibodies. Serine 10 phosphorylated Histone 3B positive 
cells were quantitated manually for 100 cells per condition. Bars represent percent serine 
10 phosphorylated Histone 3B positive cells (n = 3) ± S.D.
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hypothesize that loss of CXCR3 signaling disrupts the actin cortex that provides the 

tension needed to form a bi-polar mitotic spindle. Loss of this tension then prevents 

proper mitotic spindle formation thus triggering the spindle assembly checkpoint and 

subsequent apoptosis. Consistent with this, our original pan-genomic screen also 

identified the actin-interacting protein and actin-cortex modulator, cofilin (175), as 

selectively required for tumor cell viability in the same basal-like cell lines that were 

CXCR3-dependent.  

 

 Our results also suggest that CXCR3 may be selectively supporting tumor cell 

survival and mitotic fidelity in the basal-like molecular subtype. Through cDNA 

microarray profiling, TNBC can be subdivided into two molecular subtypes; basal-like 

and claudin-low. These two subtypes have distinct gene expression profiles, 

morphologies, chemoresponse profiles and patient prognosis in the clinic (33). 

Furthermore, claudin-low and basal-like tumors also have strikingly differential pCR 

responses to paclitaxel-based chemotherapeutic regimens. Patients with basal-like tumors 

are twice as likely to achieve pCR than patients with claudin-low tumors (33), suggesting 

that basal-like and claudin-low tumors have differential abilities to withstand mitotic 

stress. Consistent with this, loss of CXCR3 only induced mitotic defects in basal-like cell 

lines despite equal protein depletion, suggesting there may be fundamental differences 

with the maintenance of mitotic fidelity between claudin-low and basal-like tumors.  

 

 Our original screen identified synthetic lethal relationship between siCXCR3 and 

siCXCL9-induced mitotic stress and paclitaxel in the SUM149 and HCC1806 basal-like 

tumor-derived cell lines, respectively. Our findings also uncovered a mitotic role for  
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Figure 6. Model of CXCR3/ CXCL9 Signaling Supporting Mitotic Fidelity and 
Survival. A. CXCL9 binds to CXCR3 and induces ROCK-mediated alterations in the 
actin cytoskeleton. This disruption alters the actin cortex to prevent proper mitotic 
spindle alignment.  
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CXCR3 in basal-like breast cancer, suggesting that inhibition of CXCR3 may synergize 

anti-mitotic mechanism of paclitaxel. This nominates CXCR3 as a new TNBC 

therapeutic target. Currently, AMG487 is in clinical trials for immune disorders and,  

therefore, could be repurposed to form a new paclitaxel combination therapy using basal-

like breast cancer as a biomarker for sensitivity.  

 

Materials and Methods: 

Cell lines and reagents - Cell lines were obtained from ATCC with the following 

exceptions: SUM159, SUM149 and HuMEC (gift from Charles Perou, UNC Lineberger 

Cancer Center), HCC1806 (gift from Gray Pearson, UT Southwestern) and WHIM12 

(gift from Matthew Ellis, Baylor College of Medicine). All cell lines were cultured in 

provider’s recommended medium. Antibodies were obtained from Santa Cruz (GAPDH, 

Rabbit IgG), Abcam (CXCR3, Pericentrin), Sigma (β-tubulin) and Cell Signaling 

Technologies (Cleaved Caspase-3), Millipore (Serine10 Phospho-Histone 3B). siRNAs 

were obtained from GE Healthcare (siGENOME siRNA) or Sigma (Mission® siRNA). 

CTRL siRNA used was non-targeting control (GE Healthcare).  

 

Cell Viability Assays - Cells were reverse transfected in 96 well format. Forty-eight 

hours post plating, cells were fed with 35ul of complete media. Ninety-six hours post 

plating, luminescence values were read following addition of 15 µL of Cell Titer-Glo® 

(CTG) (Promega) on a Pherastar Plus (BMG) plate reader. 

 

Generation of stable cell lines - SUM149 stable cell lines were generated through 
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retroviral-mediated transduction of pCLNCX-GFP-H2B (a gift from Gray Pearson, UT-

Southwestern) and VSV-G. Following infection stable populations were selected using 

appropriate antibiotics.  

 

Colony formation assay - Cells were reverse transfected with 10 pmoles of siRNA using 

RNAiMax® (Life Technologies). Ninety-six post transfection, cells were replated at 

limiting dilution in 6-well format. Cells were fed twice weekly until controls reached 

confluency at which point colonies were fixed in 3.7 % formaldehyde and stained with 

Geimsa (Sigma).  

 

Gene expression - Total RNA was isolated using RNA isolation kit (Sigma) and reverse 

transcribed using the High-Capacity cDNA Reverse Transfection Kit (Life Technologies) 

according to manufacturer’s instructions. An Applied Biosystems Real-Time PCR system 

and either Solaris™, or TaqMan® Real-Time PCR gene expression assays were used. 

Gene expression assays were multiplexed with RPL27 or GAPDH as control assays. 

Relative expression values were calculated using the comparative Ct method.  

 

Immunoblotting - Whole cell lysates were prepared in 2x Laemmli sample buffer and 

resolved using SDS-PAGE. Gels were transferred to Immobilon® PVDF (Millipore) or 

nitrocellulose (Bio-rad) membranes, blocked in tris-buffered saline containing 0.1 % 

Tween20 (TBST) and either 5 % non-fat dry milk or bovine serum albumin (BSA), or 

Odyssey® blocking buffer and incubated with indicated primary antibodies for 1 hour or 

overnight. After washes in TBST, appropriate HRP-coupled secondary antibodies 
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(Jackson Immunoresearch) were used for chemiluminescence. 

 

Immunofluorescence - Cells plated on glass coverslips were fixed with 3.7 % 

formaldehyde and permeabilized with 0.05% Triton X-100 for ten minutes. Cells were 

blocked and washed in 1 % BSA, 0.1 % Tween-20 in 1X PBS (PBTA). Cells were 

incubated with primary antibodies for 1 hour followed by three washes in PBTA. 

Coverslips were then incubated with Alexa Fluor®-conjugated secondary antibodies 

(Invitrogen) for 30 minutes followed by 3 washes in PBTA and a wash in H2O. Prolong® 

Gold Antifade reagent with DAPI (Life Technologies) was used to mount slips on glass 

slides and images were acquired on either a Zeiss Axioimager upright microscope (Zeiss) 

with a CCD camera.  

 

Fluorescence Activated Cell Sorting – SUM149 cells were trypsinized and filtered 

using 40µM cell strainers. Cells were then spun at 450g for 5 minutes followed by 

resuspension in Hanks’s Balanced Salt Solution (HBSS) with 2% FBS. Cells were then 

incubated with EpCAM-FITC and CD49f-PE-Cy5 antibodies for 30 minutes at 4°C. 

Cells were then washed 2X with HBSS with 2 % FBS and were immediately sorted by 

FITC and Cy5 using Beckman Coulter CyAn ADP using Summit 4.3. Populations 

enriched for EpCAM high/ Cd49F low and EpCAM low/ Cd49F high were collected and 

immediately replated in normal growth media. All experiments were set up within 48 

hours of FACS sorting.  

 

High-Content Imaging - SUM149 cells stably expressing GFP-histone 2B were reverse 
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transfected with the indicated siRNAs in 96 well format. Forty-eight hours post-

transfection, the cells were imaged on a BD Pathway 855 bio-imager using a 20X high-

NA objective. Images were taken every 15 minutes for the next 48 hours and an image 

sequence was generated using Image J.
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CHAPTER IV: AMPK Family Member, SIK2, Restricts Autophagy to Support 

Tumor Cell Viability in Triple Negative Breast Cancer2 

 

Introduction 

 In our pan-genomic siRNA screen to identify new therapeutic entry points in 

TNBC, siRNAs targeting Salt Inducible Kinase 2 (SIK2) were identified as synergizing 

with the first line chemotherapeutic, paclitaxel in SUM159 cells and as required for 

tumor cell viability WHIM12 cells (Figure 3D&E). SIK2 is one of three SIK family 

members in the AMPK family of related kinases (176, 177). SIK1 and SIK2 are very 

closely related with their main difference at the level of tissue expression. SIK1 is 

primarily expressed in the adrenal glands where it modulates adrenocorticotropic 

hormone release. SIK2 is highly expressed in adipocytes, hepatocytes and pancreatic β 

cells and plays a role in modulating gluconeogenesis (178). SIK3 is expressed 

ubiquitously but has an extensive C terminal elongation, making it less homologous than 

SIK1 and 2. While overall SIK3’s role is also less understood, along with SIK2, it has 

been implicated in energy homeostasis (178, 179).   

 

 Despite only having a few bona fida substrates identified, SIK2 is known as an 

inhibitor of de novo cellular energy production under ample cellular nutrient conditions 

(178). One of SIK2’s direct substrates, CRTC2, is a transcription factor that translocates 

                                                
2 All figures contributed by Kimberly E Maxfield 
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into the nucleus under low energy conditions to drive transcription of gluconeogenesis 

genes. In the presence of insulin, SIK2 phosphorylates CRTC2 targeting it for 

proteasomal degradation and preventing its downstream pro-gluconeogenesis 

transcription (180, 181). Additional SIK2 direct substrates include Class IIa HDAC and 

p35. SIK2 phosphorylation of HDAC promotes HDAC nuclear translocation to further 

prevent expression of energy promoting genes like insulin transporter, GLUT4 (182, 

183). SIK2’s phosphorylation of p35 leads to p35 degradation and promotion of insulin 

secretion (184). Little is known about the regulation of SIK2 kinase activity but as a 

member of the AMPK-related family, SIK kinases can be activated by the tumor 

suppressor, LKB1, in vitro (177). In vivo, SIK2 kinase activity is inhibited by cAMP/ 

PKA through phosphorylation of its serine 358 residue (185). Taken together, SIK2 is 

emerging as an important energy sensing kinase and identification in our screen 

nominates SIK2 as a functionally supporting TNBC. 

 

 Consistent with a role in energy homeostasis, SIK2 has recently been implicated 

in autophagy. Autophagy is an evolutionarily conserved cell survival pathway resulting in 

lysosomal degradation of cytoplasmic components to increase nutrient and energy 

availability under low nutrient conditions. Autophagy initiation is primarily under control 

of two kinases; AMPK activates autophagy and mTOR inhibits autophagy. When AMPK 

senses low nutrient conditions, it induces autophagy through an inhibitory 

phosphorylation event on Raptor/ mTOR and an activating phosphorylation event on 

ULK1 (186). Furthermore, AMPK-induced phosphorylation of Raptor will inactivate the 

mTOR complex and release mTOR-mediated inhibition of autophagy (187-189). AMPK-
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induced phosphorylation of ULK1 will then initiate the autophagosome initiation 

complex by forming an ULK1-mATG13-FIP200 complex to drive downstream 

autophagosome formation (189, 190). mTOR’s inhibitory phosphorylation event on 

ULK1 is mediated by upstream insulin receptor signaling through AKT to prevent 

autophagy initiation (191-193). AKT can also directly inhibit autophagy with an 

inhibitory phosphorylation event on Beclin 1, abrogating all autophagosome formation 

(194). SIK2 was introduced as altering autophagy from a study that revealed 

overexpression of SIK2 increased the number of autophagic vesicles in HEK293T cells. 

However, the exact nature of SIK2’s role was not elucidated (174). Furthermore, large-

scale proteomic studies identified autophagosome-associated protein GABARAPL as a 

putative interactor with SIK2 (195), suggesting SIK2’s energy sensing role may include 

modulation of autophagy. 

 

SIK2 has recently been implicated in tumorigenesis but it was identified in a 

cellular context seemingly unrelated to its energy-sensing capabilities. SIK2 was 

identified as an outlier in a loss of function siRNA screen to uncover mechanisms of 

tumorigenic polyploidy in ovarian cancer. This study further implicated SIK2 in 

centrosome splitting during mitosis and was found to synergize with the first line 

chemotherapeutic, paclitaxel (141). This work led to the development of a SIK family 

inhibitor, which is in preclinical development in ovarian cancer. Now that a tumorigenic 

role for SIK2 is starting to gain traction, additional preliminary studies are evaluating 

roles for SIK2 in tumor types like glioma and prostate cancer (196, 197).  
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 Here, our pan-genomic screening approach identified SIK2 as a vulnerability in 

multiple TNBC genetic backgrounds. Despite seeing collaboration with paclitaxel, we did 

not observe any centrosomal defects following SIK2 depletion. Upon evaluation of SIK2 

in autophagy, we show that SIK2 acts as an autophagic break in TNBC cell lines and 

releasing this break causes a loss of TNBC tumor cell viability. We further show that 

SIK2 supports AKT survival signaling, which is a known inhibitor of autophagy. This 

work identifies SIK2 as novel TNBC vulnerability by acting as an autophagic brake that 

may allow tumor cells to benefit from the tumor-promoting aspects of autophagy. SIK2 

was recently implicated in supporting ovarian cancer and this work promoted 

development of SIK family small molecule inhibitors for the evaluation of SIK2 as a 

therapeutic evaluation (141). Through a collaboration with Arrien Pharmaceuticals, Inc, 

we obtained one of these inhibitors, ARN3236, and demonstrated that treatment drove 

excessive autophagic flux in TNBC, further nominating SIK2 as a new TNBC therapeutic 

entry point.  

 

Results 

 SIK2 Supports TNBC Viability – Following validation of SIK2 as a screen hit, 

(Figure 3D&E), we next evaluated the penetrance of the SIK2 dependency in a large 

panel of TNBC tumor-derived cell lines and found a range of SIK2 dependencies (Figure 

7A). This suggests that SIK2 is a selective vulnerability among TNBC tumors. Of note, 

the HCC1806 cell line retested as siSIK2 sensitive whereas in the HCC1806 pan-genomic 

screen was not identified as a hit, suggesting SIK2 was a false negative in the screen 

(Figure 3D&7A). In siSIK2 sensitive lines, we also saw loss of long term viability 
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following siRNA depletion of SIK2 in a clonogenic replating assay, further suggesting 

SIK2 is required for long-term TNBC survival (Figure 7B). However, we did not observe 

induction of active caspase 3 following SIK2 siRNA depletion, suggesting the loss of 

viability following SIK2 depletion is not due to induction of apoptosis (Figure 7C). We 

next examined SIK2-sensitive cell lines for centrosomal defects following SIK2 depletion 

since SIK2 has been recently implicated in centrosome splitting in ovarian cancer (141). 

However, we also did not observe any centrosomal defects following siRNA depletion of 

SIK2 in our TNBC tumor-derived cell lines (Figure 7D).  These data suggest that SIK2 is 

a selective vulnerability in TNBC through a centrosome-independent mechanism. 

 

 SIK2 Acts as an Autophagic Break – To further examine SIK2 in TNBC, we 

next evaluated a role for SIK2 in autophagy. SIK2 acetylation was recently implicated in 

autophagic progression (174) and large-scale proteomic studies identified the autophagy-

associated protein, GABARAPL2 (152, 153), as a putative binding partner of SIK2 (195). 

Furthermore, identification of an apoptosis-independent autophagic death was recently 

implicated as an important survival pathway in multiple myeloma (173). Following 

siRNA depletion of SIK2, we observed loss of both LC3-I, and the autophagosome-

associated LC3-II (Figure 8A), suggesting loss of SIK2 alters the number of autophagic 

vesicles within the cell. Upon protein synthesis, LC3 is immediately cleaved to become 

LC3-I, followed by phosphatidylethanolamine-modification to become LC3-II. This 

lipidation leads to autophagosome incorporation upon initiation of autophagy (198). 

Therefore, LC3 protein levels are often used as a quantitative measure of autophagic 

vesicles within a cell (198). To determine if the loss of LC3-II protein was due to   
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Figure 7. SIK2 Supports TNBC Tumor Cell Viability. A. Indicated TNBC cell lines 
were transfected with indicated siRNAs and cell viability was quantitated 120 hours post 
transfection (CTG). Values represent viability relative to siCTRL (n = 3) ± S.D. B. 
Indicated TNBC cell lines transfected with indicated siRNAs were re-plated at limiting 
dilution 120 hours post transfection. C. WCLs from of indicated cell lines transfected 
with indicated siRNAs were immunoblotted with indicated antibodies 120 hours post 
transfection. D. SUM159 cells transfected with indicated siRNAs were fixed, 
immunostained with indicated antibody targeting pericentrin for centrosome 
visualization. Number of centrosomes per cell was quantitated manually for 100 cells per 
condition. Bars represent percent of total cell number (n = 2) ± range. 
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inhibition of autophagy or increase in autophagic flux, we depleted SIK2 with two 

independent siRNA pools in SUM159 cells stably expressing GFP-LC3-II, which will 

allow for visualization of autophagic vesicles. Following a pharmacologic block of 

autophagasome/lysosome fusion using chloroquine (199), we observed excessive 

accumulation of GFP-LC3 positive puncta in chloroquine treated cells depleted of SIK 

when compared to siCTRL chloroquine treated cells, suggesting loss of SIK2 drives 

autophagic flux (Figure 8B). To evaluate this observation on the population level, we 

employed FACS analysis in the GFP-LC3-II stably expressing U2OS osteosarcoma cell 

line, which exhibits increased basal autophagy facilitating reproducible GFP detection 

during FACS. We first confirmed the same GFP-LC3-II accumulation following siSIK2 

at the single cell level seen in the TNBC SUM159 GFP-LC3-II line (Figure 8C - Top). 

Following FACS analysis in U2OS-GFP-LC3 cells, we observed greater total GFP 

fluorescence in the siSIK2 chloroquine treated cells compared to siCTRL chloroquine 

treated cells indicative of an accumulation of GFP-LC3-II positive autophagosomes, 

which is consistent with loss of SIK2 driving autophagic flux (Figure 8C - Bottom). 

Furthermore, we found that loss of SIK2 leads to increased serine 555 phosphorylation on 

ULK1, which is AMPK autophagy-promoting phosphorylation site (Figure 8D) (200), 

indicating that loss of SIK2 enhances autophagy-promoting cellular signaling. We also 

obtained a selective SIK2 inhibitor from Arrien Pharmaceuticals and recapitulated the 

accumulation of GFP-LC3-II puncta following SIK2 inhibition in conjunction with 

chloroquine treatment (Figure 8E). This suggests that SIK2 is pharmacologically 

targetable in TNBC and siSIK2-induced increase in autophagic flux is not due to siRNA 

off-target effects. Taken together, these data suggest SIK2 functions as an autophagic 
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break in TNBC.  

 SIK2 Supports TNBC Viability by Attenuating Autophagy Initiation - An 

increase in the autophagy-activating phosphorylation site of ULK1 following siSIK2 also 

suggests that SIK2 modulates autophagy upstream of autophagosome initiation. To test 

this, we codepleted SIK2 with an obligate component of the autophagosome formation 

machinery, ATG5 (201, 202), in SUM159 GFP-LC3-II cells. We observed that loss of 

ATG5 rescued siSIK2-induced accumulation of GFP-LC3-II puncta and loss of 

endogenous LC3-II both at the single cell and population level (Figure 9A). Furthermore, 

codepletion with ATG5 rescued TNBC viability loss following siSIK2 (Figure 9B), 

indicating SIK2 supports tumor cell viability through restricting excessive autophagy. 

 

 SIK2 Supports AKT Survival Signaling - SIK2 has been previously reported to 

alter AKT signaling in ovarian cancer (141). AKT alters cell growth and autophagy in 

response to nutrient status and is a known inhibitor of autophagy (193). To evaluate a role 

for SIK2 in AKT signaling in TNBC, we depleted SIK2 with two independent siRNA 

pools in SUM159 cells and observed loss of the RICTOR-activating serine 473 

phosphorylation site on AKT (Figure 9C) (203). We further found concomitant loss of 

the AKT-specific phosphorylation sites on AKT downstream targets, GSK3β and Beclin1 

(Figure 9C&D), providing additional evidence that loss of SIK2 is leading to 

compromised AKT signaling. Beclin 1 serves as the main initiator of autophagosome 

formation in response to signaling from ULK1 and AKT (204). The AKT-induced serine 

295 phosphorylation on Beclin1 is an inhibitory site (Figure 9D) (194), suggesting that 

SIK2 supports AKT signaling that leads to inhibition of Beclin 1-induced autophagy.  
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Figure 8. SIK2 Acts as an Autophagic Break. A. WCLs from indicated cell lines 
transfected with indicated siRNAs were immunoblotted with indicated antibodies 72 
hours post transfection. B. SUM159 cells expressing GFP-LC3 were transfected with 
indicated siRNAs. Forty-eight hours post-transfection, cells were exposed to 50mM 
chloroquine for 16 hours. Sixty-four hours post transfection, cells were fixed and 
mounted. C. Top: U2OS cells expressing GFP-LC3 were transfected with indicated 
siRNAs. Forty-eight hours post-transfection, cells were exposed to 50mM chloroquine 
for 16 hours. Sixty-four house post transfection, cells were fixed and mounted. Bottom: 
U2OS cells expressing GFP-LC3 processed as above were fixed and subject to FACS 
analysis. CQ: chloroquine. D. WCLs from SUM159 cells transfected with indicated 
siRNAs were immunoblotted with indicated antibodies 72 hours post transfection. E. 
U2OS cells expressing GFP-LC3 treated with 1000 nM of SIK2 inhibitor, ARN3236, for 
48 hours followed by 16 hours of 50mM chloroquine treatment were fixed and mounted.  
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Figure 9. SIK2 Supports TNBC Viability by Attenuating Autophagy and Survival 
Signaling. A. Left: SUM159 expressing GFP-LC3 were transfected with indicated 
siRNAs. Forty-eight hours post-transfection, cells were exposed to 50mM chloroquine 
for 16 hours. Sixty-four hours post transfection, cells were fixed and mounted. Right: 
WCLs from SUM159 cells transfected with indicated siRNAs were immunoblotted with 
indicated antibodies 72 hours post transfection. B. Left: WHIM12 cells were transfected 
with indicated siRNAs and CTG assay was performed 120 hours post transfection. 
Values represent viability relative to siCTRL (n = 3) ± S.D. Right: SUM159 cells were 
transfected with indicated siRNAs were imaged 96 hours post transfection using phase-
contrast microscopy. C. WCLs from SUM159 cells transfected with indicated siRNAs 
were immunoblotted with indicated antibodies 48 hours post transfection. D. WCLs from 
SUM159 cells transfected with indicated siRNAs were immunoblotted with indicated 
antibodies 72 hours post transfection. 
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Taken together, SIK2 acts as an autophagic break possibly through supporting AKT 

signaling that is required for tumor cell viability in a subset of TNBC tumors. 

 

Discussion 

 Our pan-genomic siRNA screening approach identified SIK2 as a vulnerability 

and a collaborator with paclitaxel in WHIM12 and SUM159 tumor-derived cell lines, 

respectively. We further showed this viability loss was due to excess autophagy. During 

tumor initiation, autophagy acts as a tumor suppressor by promoting protein turnover and 

reprieve from metabolic stress. However, autophagy switches to become tumor 

promoting in late-stage tumors that are under increased metabolic stress due to increased 

proliferation and/or are poorly vascularized (205). Furthermore in aggressive tumors, 

autophagy is also thought to be protumorigenic by facilitating anoikis-resistance 

following ECM detachment during metastatic progression (206, 207). Given this, we 

hypothesize that SIK2 may become a dependency in late-stage metastatic tumors that 

require autophagy for survival but need an autophagic break to prevent excessive 

autophagy from reducing tumor cell viability.  

 

 We further found that SIK2 supports the AKT activation. AKT inhibits autophagy 

directly through inhibitory phosphorylation of Beclin and indirectly through activation of 

mTORC1(193, 194). SIK2’s known substrates all modulate cellular energy production; 

however, none of the known substrates have been directly implicated in serine 473 

phosphorylation of AKT, suggesting that SIK2 may directly phosphorylate AKT or 

modulate RICTOR kinase activity (Figure 10). This work may nominate new SIK2 
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substrates and may implicate SIK2 as a novel obligate component of the RICTOR/ AKT/ 

mTORC1 nutrient signaling pathway. 

 

 Furthermore, an anti-cancer synergistic relationship between HDAC inhibitors 

and mTOR inhibitors has been observed in several tumors types including prostate, head 

and neck squamous cell carcinoma and B cell leukemia (208, 209). This synergy has 

revealed significant crosstalk between chromatin acetylation and the AKT/ mTORC2 

pathway but the exact nature of this relationship in still under investigation (102, 208, 

209). One of SIK2’s bona fide targets is HDAC4 that is known to drive expression of 

genes like the insulin-regulated glucose transporter, GLUT4 (182), suggesting that SIK2 

might play a role in this synergistic relationship. Further exploration of SIK2’s role in 

tumorigenic energy signaling may reveal important mechanisms of signaling crosstalk 

that could inform future TNBC therapeutic strategies.  

 

 Lastly, our screen identified a collaboration between SIK2 and the first line 

antimitotic chemotherapeutic, paclitaxel. However, we did not find mitotic defects 

following SIK2 depletion, suggesting that in TNBC, SIK2 and paclitaxel do not synergize 

due to both impinging on the mitotic spindle. Paclitaxel has been reported to modulate 

autophagic flux in breast and cervical cancer tumor-derived cell lines by altering the 

cellular metabolic profile (210, 211). Furthermore, recent evidence has suggested that 

during mitosis following nuclear envelope breakdown, inhibition of autophagy is 

necessary to protect the mitotic spindle from autophagy-mediated degradation (212). The 

exact details of this mechanism are still unclear but releasing the inhibition of autophagy 
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in the context of a mitotic stressor, such as paclitaxel, could lead to a synergistic 

relationship. We obtained a SIK2 inhibitor of Arrien Pharmaceuticals, Inc, which upon 

treatment, increased autophagic flux. Taken together, we hypothesize that paclitaxel 

treatment in conjunction with SIK2 inhibition may collaborate and possibly represent a 

new combination therapy in TNBC autophagy-dependent tumors. 

 

Materials and Methods 

Cell lines and reagents - Cell lines were obtained from ATCC with the following 

exceptions: SUM159, SUM149 and HuMEC (gift from Charles Perou, UNC Lineberger 

Cancer Center), HCC1806, MDA-MB-231, MDA-MB-436, MDA-MB-468,  (gift from 

Gray Pearson, UT Southwestern), WHIM12 (gift from Matthew Ellis, Baylor College of 

Medicine) and U2OS-GFP-LC3 (gift from Micheal White, UT Southwestern). All cell 

lines were cultured in provider’s recommended medium. Antibodies were obtained from 

Santa Cruz (ERK1/2, Total Beclin), Biolegend (SIK2), Abcam (Pericentrin), Sigma (β-

tubulin) and Cell Signaling Technologies (SIK2, Cleaved Caspase-3, LC3B, Total ULK1, 

Phospho-Serine555 ULK1, Total AKT, Phospho-Serine473 AKT, Total GSK3β, 

Phospho-Serine 21 GSK3β), Phospho-Solutions (Phospho-Serine295 Beclin 1). siRNAs 

were obtained from GE Healthcare (siGENOME siRNA) or Sigma (Mission® siRNA). 

CTRL siRNA used was non-targeting control (GE Healthcare). Chloroquine was 

purchased from Sigma-Aldrich. The SIK2 inhibitor, ARN3236, was obtained from Arrien 

Pharmaceuticals, Inc through a Material Transfer agreement.  
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Figure 10. Model of SIK2 Attenuating Autophagy to Promote Tumor Cell Survival. 
SIK2 supports AKT signaling that in turn activates mTOR. mTOR phosphorylates ULK1 
to prevent downstream autophagy. AKT also directly phosphorylates Beclin to inhibit 
autophagic initiation.  
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Cell Viability Assays - Cells were reverse transfected in 96 well format. Forty-eight 

hours post plating, cells were fed with 35ul of complete media. One hundred and twenty 

hours post plating, luminescence values were read following addition of 15 µL of Cell 

Titer-Glo® (CTG) (Promega) on a Pherastar Plus (BMG) plate reader. 

 

Generation of stable cell lines - SUM159 stable cell lines were generated through 

lentiviral-mediated transduction of pCDH-GFP-LC3 (gift from Channing Der, UNC-

Chapel Hill Lineberger) delta 8.9 packaging plasmid and VSV-G envelope plasmid. 

Following infection stable populations were selected using appropriate antibiotics.  

 

Colony formation assay - Cells were reverse transfected with 10 pmoles of siRNA using 

RNAiMax® (Life Technologies). Ninety-six hours post-transfection, cells were replated 

at limiting dilution in 6-well format. Cells were fed twice weekly until controls reached 

confluency at which point colonies were fixed in 3.7 % formaldehyde and stained with 

Geimsa (Sigma).  

 

Gene expression - Total RNA was isolated using RNA isolation kit (Sigma) and reverse 

transcribed using the High-Capacity cDNA Reverse Transfection Kit (Life Technologies) 

according to manufacturer’s instructions. An Applied Biosystems Real-Time PCR system 

and either Solaris™, or TaqMan® Real-Time PCR gene expression assays were used. 

Gene expression assays were multiplexed with RPL27 as control assays. Relative 

expression values were calculated using the comparative Ct method.  
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Immunoblotting - Whole cell lysates were prepared in 2x Laemmli sample buffer and 

resolved using SDS-PAGE. Gels were transferred to Immobilon® PVDF (Millipore) or 

nitrocellulose (Bio-rad) membranes, blocked in tris-buffered saline containing 0.1 % 

Tween20 (TBST) and either 5 % non-fat dry milk or bovine serum albumin (BSA), or 

Odyssey® blocking buffer and incubated with indicated primary antibodies overnight. 

After washes in TBST, appropriate HRP-coupled secondary antibodies (Jackson 

Immunoresearch) were used for chemiluminescence. 

 

Immunofluorescence - Cells plated on glass coverslips were fixed with 3.7 % 

formaldehyde and permeabilized with 0.05 % Triton X-100 for ten minutes. Cells were 

blocked and washed in 1 % BSA, 0.1 % Tween-20 in 1X PBS (PBTA). Cells were 

incubated with primary antibodies for 1 hour followed by three washes in PBTA. 

Coverslips were then incubated with Alexa Fluor®-conjugated secondary antibodies 

(Invitrogen) for 30 minutes followed by 3 washes in PBTA and a wash in H2O. Prolong® 

Gold Antifade reagent with DAPI (Life Technologies) was used to mount slips on glass 

slides and images were acquired on either a Zeiss Axioimager upright microscope (Zeiss) 

with a CCD camera. 

 

Fluorescence Activated Cell Sorting – U2OS GFP-LC3 cells were reverse transfected 

with 10 pmoles of indicated siRNA using RNAiMax® (Life Technologies). Sixteen 

hours prior to FACS analysis, cells were treated with either vehicle or 50mM 

Chloroquine. Seventy-two hours post transfection, cells were trypsinized, 2X washed 

with PBS and fixed with EtOH cells for 30 minutes at 4C. Cells were then washed 2X 
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with PBS and sorted by GFP fluorescence using Beckman Coulter CyAn ADP using 

Summit 4.3 and analyzed using ModFit 4.0 DNA Analysis software. A minimum of 1.0 x 

104 events were used for analysis. 
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CHAPTER V: Cancer Testes Antigen, ZNF165, Promotes TGFβ Pathway 

Activation and Drives Expression of the WISP1 Oncogene3 

 

Introduction 

Our functional genomics approach identified siRNA targeting Zinc Finger 165 

(ZNF165) as a supporter of TNBC tumor cell viability in multiple TNBC genetic 

backgrounds (Figure 3G). Furthermore, ZNF165 was the most potent synergizer with 

paclitaxel in the chemoresistant WHIM12 TNBC tumor-derived cell line (Figure 1A and 

3F). ZNF165 is a zinc finger domain containing protein and is characterized as a cancer-

testis antigen (CTA). Characteristic of CTAs, ZNF165 mRNA expression is testis-

restricted but is reactivated in multiple types of cancer including breast, colorectal, 

bladder, and liver, where upon re-expression, it induces a humoral immune response 

(143, 144). Zinc finger domains mediate DNA binding and zinc finger proteins are often 

implicated in transcriptional regulation (145, 146), therefore, ZNF165 is a putative 

transcription factor. However, no mechanistic data is known about ZNF165’s function in 

spermatogenesis or tumor cells.  

                                                
3 Elements of the work referenced in this chapter will be published in Nature 
Communications. The original citation is as follows: 
Kimberly E. Maxfield and Patrick J. Taus, Kathleen Corcoran, Joshua Wooten, Jennifer 
Macion, Yunyun Zhou, Mark Borromeo, Rahul K. Kollipara, Jingsheng Yan, Yang Xie, 
Xian-Jin Xie, and Angelique W. Whitehurst. (2015). Comprehensive Functional 
Characterization of Cancer-Testis Antigens Defines Obligate Participation in Multiple 
Hallmarks of Cancer. Nature Communications. In press. 
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 Cancer-Testis Antigens (CT-antigens, CTAs) were discovered from efforts to 

identify tumor antigens by isolating patient-derived cytotoxic T-lymphocytes (CTLs) 

(213, 214). Since their discovery, greater than 250 genes have been classified as CTAs 

with testes/cancer-biased expression patterns (215). Anomalous expression of testis 

proteins in somatic tissue evokes a cellular and/or humoral immune response because the 

testes are immune privileged due to the development the auto-antigens during 

spermatogenesis. Therefore, upon re-expression, these proteins are recognized as foreign 

and presented through the classical Major Histocompatibility Complex pathways (MHC) 

(216). Many of these proteins were originally considered as targets for immunotherapy 

(217-219). The CTA, NY-ESO-1, has exhibited efficacy in melanoma and synovial 

sarcoma patients using vaccination or adoptive T-cell transfer, respectively (220, 221). 

 

Few CTAs have defined roles in either testis or tumor cells. Murine knockout 

models have been generated for twenty-four CTAs, the majority of which only exhibit 

gametogenic defects. In normal physiology, CTAs have been shown to contribute to 

chromosome pairing during meiosis, sperm motility, translational regulation during 

sperm maturation, chromatin remodeling, and transcriptional regulation (222). In 

tumorigenesis, CTAs have roles in centrosomal clustering, regulation of microtubule 

dynamics, p53 silencing and modulation of differentiation signaling (122, 147, 223-225). 

This suggests that CTAs participate in diverse, malignant behaviors. Further investigation 

of CTAs, such as ZNF165, could reveal novel aspects of tumor cell biology that could be 

therapeutically leveraged. 
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 In this chapter, we start to functionally annotate ZNF165 in TNBC tumorigenesis. 

Given ZNF165 is a putative transcription factor, we employed ChIP-seq analysis to 

reveal that ZNF165 directly binds to distal regulator regions of and represses expression 

of the negative regulators of the TGFβ pathway, SMURF2 and SMAD7. This leads to 

enhanced TGFβ signal transduction and significant modulation of the TGFβ-induced 

transcriptional network to promote expression of oncogenes. Furthermore, we show that 

ZNF165 is required for TNBC tumor progression in vivo and exhibits a tumor selective 

protein expression pattern. Our work reveals how gametogenetic programs can disrupt on 

normal signaling modules to promote tumorigenic behaviors. 

 

Results 

 ZNF165 Selectively Supports TNBC viability and TGFβ Signaling - In an 

orthogonal dataset evaluating CTA participation in tumorigenic behaviors, ZNF165 was 

identified as selectively supporting TNBC viability in comparison to other tumor types 

including sarcoma, prostate, lung, and melanoma (Figure 11A). Furthermore, ZNF165 

was also identified as supporting TGFβ-induced transcription in the WHIM12 TNBC 

tumor-derived cell line, which is the same cell line that requires ZNF165 for its viability 

(Figure 11B). To confirm this observation is not due to siRNA off-target effects, we 

evaluated ZNF165 depletion with two independent siRNA pools on the canonical TGFβ 

target gene, SNAI1, and observed that ZNF165 is required for TGFβ-induced 

transcription of SNAI1 (Figure 11C). Inhibition of TGFβ is a high value therapeutic 

intervention target in late stage disease because activation of TGFβ signaling drives 

epithelial to mesenchyme transition (EMT) that is required for highly metastatic and 
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aggressive tumors (226). However, TGFβ is an important developmental cytokine that 

can drive both differentiation and self-renewal depending on the cellular context and has 

been shown to be tumor suppressive differentiation in early tumorigenesis (226). 

Therefore, understanding the cellular contexts that differentiate between the tumor-

promoting and tumor-suppressive roles of TGFβ is critical for successfully 

implementation of TGFβ inhibitors in the clinic (227). By leveraging the intersection of 

our two unbiased screening approaches, we identified that ZNF165 is essential for the 

TNBC viability while supporting TGFβ signaling in these cells. 

 

 ZNF165 is a Putative Transcription Factor that Directly Represses 

Expression of TGFβ Negative Regulators - ZNF165 is an uncharacterized member of 

the SCAN-(C2H2)n sub-family of zinc finger proteins and contains a SCAN 

heterodimerization domain and five C2H2 motifs, which are classical zinc finger domains 

that mediate association with DNA (Figure 12A) (143, 228, 229). ZNF165 also localizes 

to the nucleus in tumor cells and associates with 9 proteins with gene-regulatory activity 

(Figure 12B&C) (146, 230). Given these indications of transcriptional activity, we 

performed ChIP-Seq analysis in WHIM12 cells stably expressing ZNF165-V5 to identify 

putative target genes. This analysis returned 281 ZNF165 binding sites associated with 

447 genes. De novo motif enrichment identified 3 motifs that comprised ~90 % of these 

binding sites (Figure. 12D - Left), confirming that ZNF165 either directly binds or is part 

of a complex that directly binds DNA. This analysis also nominates these motifs as the 

direct ZNF165 binding sequences. Genomic Regions Enrichment of Annotation Tool   
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Figure 11. ZNF165 is Selectively Required in TNBC and Supports TGFβ signaling. 
A. siZNF165 Z-scores in each cell line from the cancer-testis antigen (CTA) cell viability 
screen (CTG) M: Melanoma, L: Lung Adenocarcinoma, P: Prostate Cancer, Br: Luminal 
Breast Cancer, O: Ovarian, S: Sarcoma. B. Top: Schematic of time course of the TGFβ-
induced SMAD Binding Element (pSBE) luciferase assay from the CTA signaling 
screen. TGFβ signaling screen was performed prior to siZNF165 induce cell viability 
defects. Bottom: Raw screening data from WHIM12 pSBE signaling screen displayed as 
change in fold induction of TGFβ-induced luciferase activity. Arrow indicates ZNF165 
as a screen hit in WHIM12. C. Total RNA was isolated from WHIM12 cells transfected 
with either siCTRL or siZNF165 and exposed to either 3 hours of vehicle or 10 ng/mL 
TGFβ 48 hours post transfection. qPCR was used to quantitate relative SNAI1 mRNA 
expression. Bars represent mean (n = 3) ± S.D.  
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(GREAT) pathway analysis revealed that genes associated with ZNF165-peaks are 

significantly enriched in the TGFβ signaling pathway (23 genes; q = 6.96 x 10-3) (Fig. 

12D - Right). This gene set included SMURF2 and SMAD7, TGFβ target genes that 

negatively regulate signaling by degrading the canonical TGFβ signal transducer, 

SMAD2/3 (Figure 12E) (231, 232). We validated these findings by ChIP-qPCR (Figure 

12F). To test if these SMURF2 and SMAD7 binding sites have transcriptional 

consequences, we evaluated SMURF2 and SMAD7 mRNA following ZNF165 stable 

overexpression and found attenuation SMURF2 and SMAD7 mRNA (Figure 12G).  

Depletion of ZNF165 led to an accumulation of SMURF2 mRNA upon siRNA depletion 

in two independent cell lines (Figure 12H). Taken together, our data suggests that 

ZNF165 directly inhibits SMURF2 and SMAD7 gene expression. 

 

 ZNF165 Globally Modulates TGFβ-Induced Transcription – Given that 

ZNF165 supports TGFβ signaling and directly represses SMURF2 expression, we next 

investigated ZNF165 in TGFβ signal transduction. An increase in SMURF2 protein 

would be predicted to lead to a loss of SMAD2 protein. Indeed, we found that depletion 

of ZNF165 with two independent siRNA pools led to an accumulation of SMURF2 

protein and an attenuation of SMAD2 protein (Figure 13A). Conversely, WHIM12-

ZNF165-V5 cells exhibited an accumulation of SMAD2/3 protein and transient 

overexpression of ZNF165 in H1299 cells (a NSCLC-derived cell line chosen for its high 

level of transfection efficiency not attainable in the TNBC setting) was also sufficient to 

stabilize SMAD2/3 (Figure 13B). Loss of ZNF165 also led to loss of the active 
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Figure 12. ZNF165 Directly Represses Negative Feedback Regulators of the TGFβ 
pathway. A. Domain map of ZNF165. SCAN: SCAN oligomerization domain; ZN-
H2C2: canonical zinc finger motifs. B. Forty-eight hours after transfection with ZNF165-
V5, HeLa cells were fixed and immunostained with indicated antibodies. C. Interaction 
data for ZNF165 based on yeast 2-hybrid proteomic analyses. D. Left: Motifs identified 
using the HOMER findMotifsGenome module based on the WHIM12-ZNF165-V5 ChIP-
Seq. P-values represent hypergeometric distribution analysis. Right: GREAT pathway 
enrichment from WHIM12-ZNF165-V5 ChIP-Seq. Binomial FDR q-values calculated 
from Poisson distribution in HOMER findPeaks module using Bonferroni and FDR 
correction method. E. WHIM12-ZNF165-V5 ChIP-Seq peak located in distal regulatory 
region of SMURF2 and SMAD7. TSS: Transcription Start Site. F. ChIP-qPCR of 
WHIM12-ZNF165-V5 cells immunopreciptated with V5 antibody using primers 
designed to the SMURF2 and SMAD7-associated chromatin regions identified in the 
WHIM12-ZNF165-V5 Chip-Seq. Bars represent mean of percent of input pulled (n = 2) 
± range. G. Total RNA from WHIM12-ZNF165-V5 was isolated and qPCR was used to 
quantitate relative levels of SMURF2 and SMAD7. Bars represent mean (n = 3) ± 
Standard Error Mean (S.E.M). H. WHIM12 and SUM159 cells were transfected with 
indicated siRNAs for 48 hours. qPCR was used to quantitate relative SMURF2 mRNA 
expression (right). Bars represent mean (minimum of n = 2) ± range.  
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phosphorylated form of SMAD2 that is required for TGFβ-induced transcription (Figure 

13C). To further test this, we evaluated the SMAD2 sub-cellular localization in response 

to TGFβ  stimulation following siRNA depletion of ZNF165 and observed loss of 

SMAD2 nuclear translocation required for SMAD2-mediated transcription (Figure 13D). 

Given this, we next wanted to evaluate the effect of ZNF165 on TGFβ transcriptional 

output. Using a SMAD Binding Element (SBE) reporter system, we observed that 

exogenous expression of ZNF165 was sufficient to drive TGFβ-induced transcription 

(Figure 13E). Furthermore, using whole genome expression profiling in SUM159 and 

WHIM12 cells depleted of ZNF165 and stimulated with TGFβ, we found that 28 % and 

25 % of all TGFβ modulated genes were affected by ZNF165 depletion, representing an 

enrichment with a probability of P = 1.09 x 10-13 and 3.69 x 10-11, respectively by random 

chance according to hypergeometric distribution analysis (Figure 13F). This suggests that 

ZNF165 expression significantly modulates the transcriptional response to TGFβ 

stimulation in TNBC. In agreement with the ChIP analysis, canonical TGFβ targets that 

are negative feedback regulators (SMURF2 and SMAD7) were activated upon ZNF165 

depletion (Figure 13G) (231-234). ZNF165 was also required for the expression of 30 of 

the TGFβ-modulated genes, many of which mediate neoplastic processes (WISP1, 

DPYSL3, USP2, CRAYB, GPR124, FGD4, and RASGRP1) (Figure 13G) (235-246). 

Taken together, these data suggest that ZNF165 expression is sufficient to enhance TGFβ 

signal transduction, significantly modulating the TNBC TGFβ transcriptional network to 

promote expression of oncogenes. 
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 ZNF165 Drives Expression of Putative Oncogene, WISP1 - One of the most 

dramatically repressed genes that required ZNF165 for TGFβ induction was WISP1, a 

poorly characterized oncogene that promotes growth and survival in colon cancer (Figure 

13G) (239, 247-250).  We find that ZNF165 depletion leads to reduced WISP1 protein 

accumulation while overexpression of ZNF165 is sufficient to stimulate the activity of 

luciferase fused to the WISP1 promoter and enhance WISP1 mRNA and protein (Figure 

14A,B&C). With respect to TGFβ signaling, WISP1 makes an obligate contribution to 

osteogenic differentiation by supporting BMP-2-induced SMAD 1/5/8 activation (251). 

Thus, we examined whether WISP1 influenced TGFβ signaling in the TNBC tumorigenic 

context. We observed that WISP1 is required for TGFβ-induced SMAD2/3 

phosphorylation (Figure 14D). Furthermore, overexpression of WISP1 was sufficient to 

promote activation of a luciferase reporter fused to the SBE (Figure 14E), thereby 

suggesting that in addition to repressing negative feedback, ZNF165 directly supports 

feed forward amplification of TGFβ signaling through WISP1 activation. Furthermore, 

WISP1 is essential for viability in multiple TNBC settings (Figure 14F). Taken together, 

this analysis indicates that ZNF165 expression directly promotes TGFβ pathway activity 

by repressing negative feedback and promoting expression of target oncogenes essential 

for feed forward amplification of TGFβ  signaling and TNBC survival.  
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Figure 13. ZNF165 Globally Modulates the TGFβ Transcriptional Response. A. 
WCLs from WHIM12 transfected with indicated siRNAs for 48 hours were 
immunoblotted with indicated antibodies. B. Left: WCLs from WHIM12-ZNF165-V5 
cells were immunoblotted with indicated antibodies 48 hours post transfection. Right: 
WCLs from H1299 cells transiently transfected with indicated cDNAs were 
immunoblotted with indicated antibodies. C. WCLs from SUM159 cells transfected with 
indicated siRNAs and exposed for 30 minutes to either vehicle or 10 ng/mL TGFβ 60 
hours post transfection were immunoblotted for indicated antibodies. D. SUM159 cells 
transfected with indicated siRNAs and exposed for 30 minutes with either vehicle or 10 
ng/mL TGFβ 60 hours post transfection were fixed, immunostained with indicated 
antibodies. E. Indicated cDNAs were co-transfected with the SMAD Binding Element 
(SBE) luciferase reporter into HEK293T cells. Following 24 hours of 100 ng/mL TGFβ 
stimulation, luciferase activity was measured. Bars represent mean (n = 11) ± S.E.M. F. 
For SUM159 cells (top) and WHIM12 cells (bottom), fraction of genes modulated 
following siZNF165 based on SAM analysis of Affymetrix microarray data (FDR ≤ 10 
%) (left pie chart). Fraction of TGFβ-induced genes significantly modulated by 
siZNF165 (Student’s t-test, p ≤ 0.05). P-value for enrichment calculated by 
hypergeometric distribution analysis. G. TGFβ-induced genes from the SUM159 
Affymetrix microarray (SAM analysis) ranked by siZNF165 effect on TGFβ induction. 
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 ZNF165 Supports TNBC Viability In Vitro and In Vivo - We next elaborated 

on our initial discovery that ZNF165 was essential for the viability of WHIM12 TNBC 

cells by assessing this phenotype in a larger cohort of tumor and normal-immortalized 

cell lines. Here, we found that depletion of ZNF165 reduced viability in TNBC, but not 

normal immortalized breast epithelia (Figure 15A). Furthermore, depletion of ZNF165 

led to activation of caspase-3 and a decrease in long-term growth as observed by 

clonogenic replating assays (Figure 15B&C), suggesting that ZNF165 is required for long 

term survival in TNBC. To next examine the role of ZNF165 during tumorigenesis, we 

assessed the consequences of ZNF165 depletion in a mouse xenograft model. WHIM12 

cells stably infected with shZNF165 were injected subcutaneously and tumor growth was 

monitored for 6 weeks. In comparison to the control shRNA group, tumors from 

shZNF165 mice were attenuated in growth and exhibited reduced Ki-67 staining (Figure 

16E&F). Taken together, these findings suggest that ZNF165 promotes tumorigenesis by 

activating the TGFβ pathway, which in TNBC, is essential for tumor cell survival in part 

through activation of the WISP1 oncogene.  

 

As member of the CTA cohort, ZNF165 exhibits a testes-biased mRNA 

expression pattern (144). To evaluate ZNF165 protein expression in TNBC, we examined 

ZNF165 protein expression in 10 primary TNBC, 3 normal, and 5 benign-adjacent 

tissues, including 2 matched pairs of tumor and benign-adjacent tissue.  ZNF165 protein 

expression was detectable in 9 of the 10 tumor tissues tested, with minimal accumulation 

in benign or normal breast-derived samples (Figure 15F), confirming ZNF165’s 

therapeutically attractive expression profile. 
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Figure 14. WISP1 is a TGFβ and ZNF165-modulated gene that promotes TGFβ 
signaling and is required for TNBC viability. A. Left: Total RNA was isolated from 
WHIM12-ZNF165-V5 and vector control cells and qPCR was used to quantitate relative 
expression of WISP1 mRNA. Bars represent mean (n = 2) ± range. Right: Parallel WCLs 
were immunoblotted with indicated antibodies. B. Left: SUM159 cells were transfected 
with indicated siRNAs for 48 hours, total RNA was collected and qPCR was used to 
quantitate relative expression of WISP1 mRNA. Bars represent mean (n = 2) ± range. 
Right: Parallel WCLs were immunoblotted with indicated antibodies. C. HEK293T cells 
co-transfected with ZNF165-Myc and WISP1 (-1KB) promoter luciferase reporter were 
measured for luciferase activity 48 hours post transfection. Bars represent mean (n = 16) 
± S.E.M. D. WCLs from SUM159 cells transfected with indicated siRNAs and exposed 
for 30 minutes to either vehicle or 10 ng/mL TGFβ 60 hours post transfection were 
immunoblotted for indicated antibodies. E. Indicated cDNAs were co-transfected with the 
SMAD Binding Element (SBE) luciferase reporter into HEK293T cells. Following 24 
hours of 10 ng/mL TGFβ stimulation, luciferase activity was measured. F. Indicated 
TNBC cell lines were transfected with indicated siRNAs and cell viability was measured 
120 hours post transfection (CTG). Values represent viability relative to siCTRL (n=3) ± 
S.D. 
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Discussion 

Our pan-genomic siRNA screening approach identified ZNF165 as a vulnerability and 

collaborator with paclitaxel in TNBC. Through leveraging multiple screening platforms, 

we found that upon reactivation in TNBC, ZNF165 enhances TGFβ signaling through 

dual mechanisms. First, ZNF165 directly represses negative feedback regulators of TGFβ 

signaling, SMURF2 and SMAD7. This promotes a pro-tumorigenic TGFβ transcriptional 

network and in turn promotes feed forward amplification of TGFβ signaling and survival 

through expression of the oncogene, WISP1. The pro-tumorigenic features of TGFβ in 

late stage disease have made it a high value intervention target, particularly in TNBC 

(252, 253); however, TGFβ is a pleiotropic cytokine with important roles in normal 

physiology, thereby limiting the efficacy of direct inhibition (254). Given our results 

here, we hypothesize that re-expression of ZNF165 represents a mechanism by which 

tumors harness the tumor promoting capabilities of TGFβ signaling and may represent a 

mechanism to inhibit TGFβ signaling in a tumor cell-specific fashion (Figure 16). This 

work further highlights how re-expression of gametogenic genes in a somatic cell can 

wreak havoc on normal homeostatic regulatory mechanisms.  There are ≥ 250 cancer 

testes antigens, few of which have annotated function. Our study suggests elaborating 

CTA functions can reveal cryptic aspects of the tumor cell regulatory environment that 

may lead to new intervention targets.  

 

We further show that ZNF165 directly binds and represses negative regulators of 

TGFβ signaling to enhance protumorigenic TGFβ transcriptional response, suggesting 

that ZNF165 is a transcriptional repressor. Large-scale proteomic studies implicated   
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Figure 15. ZNF165 is Required for TNBC Tumor Cell Survival In Vitro and In Vivo 
and is Upregulated in TNBC Patients Samples. A. Indicated TNBC cell lines were 
transfected with siCTRL or siZNF165 and cell viability was measured (CTG) 96 hours 
post transfection. Values represent viability relative to siCTRL (n=3) ± S.D. B. WCLs of 
SUM159 and WHIM12 cells transfected with indicated siRNAs were immunoblotted 
with indicated antibodies 72 and 48 hours post transfection, respectively. C. Indicated 
TNBC cell lines transfected with siZNF165 were re-plated at limiting dilution 48 hours 
post transfection. D. Left: Tumor growth curves for WHIM12 cells harboring shCTRL 
(n=11) or shZNF165 (n=9) ± S.E.M. Middle: Weight of WHIM12 xenograft tumors at 
time of harvesting. Right: Total RNA from WHIM12 cells expressing shCTRL or 
shZNF165 was isolated and qPCR was used to quantitate relative expression of ZNF165 
mRNA prior to tumor implantation. E. Left: Tumors from D were stained for Ki-67. Bars 
represent mean total fluorescence across three randomly chosen fields corrected for 
background staining ± S.E.M (left). Right: Representative Ki-67 images. Scale bars 
represent 50 µm. F. WCLs from TNBC patient samples obtained from UNC Lineberger 
Tissue Procurement Center were immunoblotted for indicated antibodies. T: Tumor, BA: 
Benign-Adjacent.  
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several Krueppel-associated box (KRAB)-domain containing zinc finger proteins as 

direct binding partners to ZNF165 through their SCAN oligomerization domains, 

specifically ZNF446, ZNF250 and ZKSCAN8 (Figure 12A&C) (146, 195). KRAB 

domains are canonically transcriptionally repressive domains and function by recruiting 

methyltransferases to the DNA to transcriptionally silence (255). Given this, ZNF165 

may interact with KRAB-domain containing proteins to repress downstream 

transcription. Furthermore, our ChIP-Seq analysis revealed the ZNF165 binding sites to 

be in the proximal regulatory regions of SMURF2 and SMAD7, which are over 100 

kilobases away from the transcription start site. Enhancer regions are short DNA motifs 

located up to 1 megabase either upstream or downstream from the transcription start site 

that is essential for transcriptional modulation. Combinations of transcriptional 

coactivators and corepressors bound to the enhancer regions determine its effect on 

downstream transcriptional activity. Enhancer activity is associated with certain 

chromatin marks, such as Histone 3 Lysine 27 acetylation (H3K27ac) or Histone 3 

Lysine 4 monomethylation (H3K4me1) (256, 257). Enhancer regions can also be silenced 

by KRAB domain-dependent methylation marks such as Histone 3 Lysine 9 

trimethylation (257). Taken together, we hypothesize that ZNF165 interacts with KRAB-

domain containing proteins and bind to enhancer regions to repress downstream 

transcription (Figure 16). 

 

 Our mechanistic analysis here focused on two negative regulators of the TGFβ 

pathway, SMURF2 and SMAD7. However, our ChIP-seq and expression profiling 

analysis revealed many direct and indirect targets of ZNF165 that have implicated 
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tumorigenic functions. For example, ZNF165 both directly binds to chromatin associated 

with and suppresses mRNA expression of the WNT signaling negative regulators and 

phosphatases of MAPK growth signaling, which would in turn release the pro-oncogenic 

WNT signaling and promote pro-proliferative MAPK signaling. This suggests that 

ZNF165 may also corrupt multiple signaling modules in addition to enhancing pro-

tumorigenic TGFβ to promote tumorigenesis. Further mechanistic elaboration of 

additional signaling pathways affected by ZNF165 in TNBC may lead to additional 

ZNF165-mediated therapeutic exploits.   

 

 Our pan genomic screen identified a collaboration between loss of ZNF165 and 

the 1st line anti-mitotic chemotherapeutic, paclitaxel. One of the main characteristics of 

protumorigenic TGFβ signaling is conferring chemoresistance by promoting a TIC-like 

mesenchymal phenotype. Furthermore, treatment with first line chemotherapeutic agents 

like paclitaxel can induce TGFβ autocrine loops that drive the acquisition of stem-like 

features effectively producing chemoresistant tumors that lead to patient relapse (43, 

252). Of our four TNBC screening cell lines, ZNF165 was identified as an outlier in the 

two TNBC claudin-low lines in comparison to the two basal-like cell lines. Of the two 

molecular subtypes that encompass TNBC, the claudin-low subtype is characterized as 

the more mesenchymal and chemoresistant. Activation of TGFβ signaling can also drive 

the claudin-low phenotype and TGFβ inhibition in claudin-low tumors causes loss of 

some of their stem-like features (42, 258, 259). Given this, we hypothesize that the 

ZNF165 might be essential for promoting pro-tumorigenic TGFβ signaling in the 

claudin-low phenotype and could be therapeutically leveraged as a  
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Figure 16. Model of ZNF165 Enhancing TGFβ Signaling to Support Expression of 
Pro-survival Oncogenes. ZNF165 binds to the enhancer regions of SMURF2 and 
SMAD7 to repress expression and enhance pro-oncogenic TGFβ in part through up 
regulation of WISP1. 
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biomarker for predicting a synergistic relationship between TGFβ inhibition and 

paclitaxel in claudin-low tumors.  

 

Material and Methods 

Cell lines and reagents - Cell lines were obtained from ATCC or John Minna (UT-

Southwestern) with the following exceptions: SUM159, SUM149 and HuMEC (gift from 

Charles Perou, UNC Lineberger Cancer Center), HCC1806 (gift from Gray Pearson, UT 

Southwestern), WHIM12 (gift from Matthew Ellis, Baylor College of Medicine), 

HME50-hTERT (gift from Jerry Shay, UT Southwestern). All cell lines were cultured in 

provider’s recommended medium. Antibodies were obtained from Santa Cruz (GAPDH), 

Novus Biologicals (ZNF165), Abcam (WISP1, SMURF2), Millipore (total SMAD2/3), 

Calbiochem (Phospho-specific Serine 465/467 SMAD2), Life Technologies (V5), Sigma 

(β-tubulin), and Cell Signaling Technologies (Cleaved Caspase-3). Transforming Growth 

Factor-β (TGFβ) was obtained from Cell Signaling. siRNAs were obtained from GE 

Healthcare (siGENOME siRNA) or Sigma (Mission® siRNA). CTRL siRNAs either 

were non-targeting control (GE Healthcare).  Unless otherwise noted cDNAs were in 

pLX302 or pLX304 which contains a C-terminal V5 tag and was used for transient 

transfection.  Full length ZNF165 was cloned into pCMV-myc (Clontech). WISP1 (-1kb) 

promoter luciferase construct was in pLightSwitch (Switchgear Genomics). For TGFβ 

reporter assays used stable expression of pSBE; (gift from Ben Major, University of 

North Carolina at Chapel Hill) (260). For TGFβ transient assays, pTL-Luc.SMAD 

construct and pRL-CMV (gift from Deborah Chapman, University of Pittsburgh) were 

used. For ZNF165 shRNA: ZNF165-TRIPz™-TetO-shRNA clones V3THS_366604 and 
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V3THS_366599 (Dharmacon), and TRIPZz™-Non-Silencing Control were used.   

 

Whole genome expression analysis - Triplicate microarray analysis of SUM159 and 

WHIM12 cells depleted of ZNF165 was performed at the Functional Genomics Core 

(University of North Carolina at Chapel Hill) on Human GeneChip® 1.0 ST Arrays 

version 1.1 (Affymetrix). Microarray analysis was performed on 250 ng of RNA isolated 

and terminally labeled with the WT Expression Kit (Ambion® Life Technologies). Raw 

data was normalized using robust multi-array average (RMA) and significant analysis of 

microarrays (SAM) analysis identified significantly modulated genes. Datasets were 

deposited at the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), 

accession number GSE63986. 

 

Generation of stable cell lines - Stable cell lines were generated through either lentiviral 

or retroviral-mediated transduction of expression constructs.  For ZNF165 stable cell 

lines, WHIM12 cells were transduced with pLX302-ZNF165 using lentiviral infection. 

Following infection, stable populations were selected using appropriate antibiotics.  

 

Luciferase assay - For signaling assays, HEK293T cells were reverse transfected with 

100 ng of luciferase reporter constructs and 2 ng pRL-CMV, and 100 ng indicated 

cDNAs using Fugene6® (Promega). Forty-eight hours post transfection, luciferase 

activity was measured using the Dual-Glo® Luciferase Assay System (Promega) 

following indicated exposures to TGFβ. Immunofluorescence for transfected cDNA was 

performed in parallel to verify transfection efficiency.  For WISP1 promoter luciferase 
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assay, HEK293T were reverse transfected as stated above with 100 ng pLightSwitch-

WISP1(-1kb) promoter (Switchgear Genomics) and indicated cDNAs. Forty-eight hours 

post transfection, luciferase activity was quantitated with Renilla Luciferase Assay 

system (Promega). Luciferase values were normalized to cell number quantitated using 

CTG.  

 

Colony formation assay - Cells were reverse transfected with 10 pmoles of siRNA using 

RNAiMax® (Life Technologies). Forty-eight post transfection, cells were replated at 

limiting dilution in 6-well format. Cells were fed twice weekly until controls reached 

confluency at which point colonies were fixed in 3.7 % formaldehyde and stained with 

Geimsa (Sigma).  

 

Gene expression - Total RNA was isolated using TRIzol® (Invitrogen) or an RNA 

isolation kit (Sigma) and reverse transcribed using the High-Capacity cDNA Reverse 

Transfection Kit (Life Technologies) according to manufacturer’s instructions. An 

Applied Biosystems Real-Time PCR system and either Solaris™, SYBR® Green, or 

TaqMan® Real-Time PCR gene expression assays were used. Gene expression assays 

were multiplexed with RPL27, GAPDH or Actin as control assays. Relative expression 

values were calculated using the comparative Ct method.  

 

Immunoblotting - Whole cell lysates were prepared in 2x Laemmli sample buffer and 

resolved using SDS-PAGE. Gels were transferred to Immobilon® PVDF (Millipore) or 

nitrocellulose (Bio-rad) membranes, blocked in tris-buffered saline containing 0.1 % 
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Tween20 (TBST) and either 5 % non-fat dry milk or bovine serum albumin (BSA), or 

Odyssey® blocking buffer and incubated with indicated primary antibodies for 1 hour or 

overnight. After washes in TBST, appropriate HRP-coupled secondary antibodies 

(Jackson Immunoresearch) or IRDye® antibodies (LI-COR) were used for 

chemiluminescence or fluorescence detection (LI-COR Odyssey®), respectively.  

 

Immunofluorescence - Cells plated on glass coverslips were fixed with 3.7 % 

formaldehyde and permeabilized with 0.05 % Triton X-100 for ten minutes. Cells were 

blocked and washed in 1 % BSA, 0.1 % Tween-20 in 1X PBS (PBTA). Cells were 

incubated with primary antibodies for 1 hour followed by three washes in PBTA. 

Coverslips were then incubated with Alexa Fluor®-conjugated secondary antibodies 

(Invitrogen) for 30 minutes followed by 3 washes in PBTA and a wash in H2O. Prolong® 

Gold Antifade reagent with DAPI (Life Technologies) was used to mount slips on glass 

slides and images were acquired on either a Leica DM55000 B upright microscope or a 

Leica TCS SP5 Confocal Microscope.  

 

Chromatin Immunoprecipitation (ChIP) and ChIP-Seq - WHIM12-ZNF165-V5 cells 

were grown to 75 % confluency and cross-linked with 1 % formaldehyde for 10 minutes 

at room temperature. Cross-linking was quenched with 0.125M glycine for 5 minutes at 

room temperature. Nuclei were isolated by dounce homogenization in hypotonic buffer 

(20 mM HEPES pH 7.9, 10 mM KCl, 1 mM EDTA, 10 % glycerol, 1µg/mL pepstatin, 2 

µg/mL leupeptin, 2 µg/mL aprotinin and 50 µM bestatin) followed by centrifugation at 

600g for 5 minutes and then lysed in RIPA buffer (10 mM Tris-HCl, 150 mM NaCl, 1 % 
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NP-40, 1 % Deoxycholate, 0.1 % SDS, 1 mM EDTA, 1 µg/mL pepstatin, 2 µg/mL 

leupeptin, 2 µg/mL aprotinin and 50 µM bestatin).  DNA was sheared using Diagenode 

Bioruptor® to a range of 300-500 bp fragments. Chromatin was immunoprecipitated 

using 2 µg of ChIP-Grade anti-V5 (Abcam) over night at 4 °C followed by a 2-hour 

incubation with Protein A/G beads. ChIPed DNA was recovered by reverse crosslinking 

with an overnight incubation at 65 °C. Excess RNA and protein were removed with 100 

µg RNAse and 10 µg Proteinase K, respectively and the remaining DNA was purified 

using the Zymogen Zymo-Spin™ ChIP-Grade DNA Clean-Up Kit. 5 ng of ChIP-ed 

DNA underwent library preparation using the KAPA HTP Library Preparation Kit. 

Briefly, DNA is end repaired, 3’ end adenylated and barcoded with multiplex adaptors. 

Ampure XP beads are used to purify DNA. Library size is then assessed using the Agilent 

2100 Bioanalyzer. The Invitrogen Qubit® Fluorometer was then used to quantify samples 

prior to normalizing and pooling. Sequencing was performed on the Illumina® HiSeq 

2500 using 50SR V3 reagents. Following sequencing, HOMER findPEAKS module was 

used to identify significantly enriched peaks using an FDR cutoff of 0.001, a cumulative 

Poisson p-value and required a 4-fold enrichment or normalized sequence reads in the 

experimental sample over control sample(261). Genomic Regions Enrichment of 

Annotation Tool (GREAT) was used to assign peak regions to genes and evaluate 

pathway enrichment(262). Datasets were deposited at the NCBI Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/), accession number GSE63986. Homer 

package v4.2 findmotifsGenome.pl module with settings: –size150 –S 10-bits(261) was 

used for de novo motif analysis. Motif analysis was restricted to 150 base pairs 

surrounding peak summit. Homer module identified significantly enriched motifs in peak 
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region over the Homer-generated random background sequences. 

ChIP-qPCR analysis was conducted using custom SYBR® Green assays designed to 

ChIP-Seq peaks (See Supplementary Data 7). The ACRBP open reading frame (ORF) lacked 

enrichment in the WHIM12-ZNF165-V5 ChIP-Seq and was used as a negative control for 

ZNF165-V5 binding. ZNF165-V5 occupancy was evaluated with immunoprecipitation efficiency 

using percent of total input DNA of WHIM12-CTRL and WHIM12-ZNF165-V5 cells.   

 

Xenograft Injections - WHIM12 stably expressing ZNF165-TRIPz™-TetO-shRNA or a 

Non-Targeting control hairpin (200 µL) were injected in the right flank of NOD.cg-

PRKDCSCIDIl2rgtm1Wjl/SzJ (NSG) mice. Twenty-four hours prior to injection, cells were 

treated with 1 µg/mL doxycycline and mice were started on water containing 2 mg/mL 

doxycycline and 1 % sucrose. Tumors were measured twice weekly using a digital caliper 

and volume was calculated using: V = (Longest side) (perpendicular to longest side) 2/ 

(π/6). According to IACUC guidelines, mice bearing tumors greater than 2000 mm3 or 

exhibiting significantly diminished health were sacrificed. Tumors were surgically 

removed, weighed, formalin fixed for 48 hours, sectioned (5 µm) and stained with Ki-67. 

All studies were conducted in accordance with a UTSW IACUC approved protocol.  

 

Human Breast Tissue Procurement - All human breast tissue was obtained 

from the UNC Lineberger Tissue Procurement center in compliance with all the laws and 

guidelines approved by the UNC IRB committee. Snap frozen human breast tissue 

samples were homogenized using mortar and pestle in lysis buffer (1 % Triton X-100, 50 

mM HEPES pH 7.6, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 25 mM β-glycerol 

phosphate, 10 % Glycerol, 1mM EGTA, 1 µg/mL pepstatin, 2 µg/mL leupeptin, 2 µg/mL 
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aprotinin and 50 µM bestatin, 1 mM NaVO4). Samples were sonicated 3X for 5 seconds 

followed by 1 hour incubation on a rotator at 4 °C. Samples were then spun down at 

14,000 rpm for 20 minutes at 4 °C and protein concentrations quantitated using Bio-

Rad™ Protein Assay Dye Reagent.  Samples were diluted to 1 mg/mL in 4X Laemmli 

sample buffer and immunoblotted as described. Coomassie stain (Genlantis) was 

incubated with SDS-PAGE gels for 30 minutes followed by destain for 4 hours. 
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CHAPTER VI: Conclusions and Future Directions 

 

Thesis Summary  

 Triple negative breast cancer is the most aggressive form of breast cancer that is 

defined by the lack of the estrogen and progesterone receptor and is not HER2 amplified. 

This translates into heterogeneous group of tumors that display a wide variety of 

oncogenic aberrations, chemoresponse profiles and molecular subtypes. Despite efforts to 

develop TNBC targeted therapies, the standard of care for TNBC patients remains 

cytotoxic chemotherapeutic regimen, of which the anti-mitotic, paclitaxel, is the 

backbone. However, the vast heterogeneity found in the TNBC patient population results 

in unpredictable drug response, which limits the efficacy of these paclitaxel-based 

therapies. Without additional targeted therapies, TNBC patients who do not respond to 

paclitaxel combination therapies have no other therapeutic options and, therefore, present 

with poor clinical prognosis. We decided to employ a RNAi screening approach to 

uncover new cell autonomous tumor cell vulnerabilities that could be translated into 

additional therapeutic options for TNBC patients. 

 

 In Chapter II, we designed and executed an unbiased pan-genomic loss of 

function screening platform to uncover novel tumor cell vulnerabilities in TNBC that 

may translate into new therapeutic strategies. To model the heterogeneous patient 
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population, we screened four TNBC tumor-derived cell lines that display a variety of 

paclitaxel sensitivity, mutations and molecular subtypes. Across all four genomic-wide 

screens, we identified 2000 genes that were required for tumor cell viability and 

paclitaxel-induced cellular stress. We focused our follow-up efforts on the TNBC 

intervention targets, CXCR3, SIK2 and ZNF165, to highlight the strength of our 

screening approach to uncover new biological concepts and nominate new therapeutic 

strategies that may offer TNBC patients additional therapeutic options.  

 

 In Chapter III, we found that CXCR3/ CXCL9 signaling supports mitotic fidelity 

that is required for tumor cell viability specifically in the Basal-Like molecular subtype. 

Loss of CXCR3 signaling attenuated chromosomal alignment at the mitotic spindle, 

which initiated the spindle assembly checkpoint and induced apoptosis (Figure 6). These 

results suggest a new cell autonomous role of CXCR3/ CXCL9 signaling as supporting 

tumor cell survival. Given there were not expression differences between claudin-low and 

basal-like tumor cells, these findings also suggest fundamental differences between basal-

like and claudin-low abilities to withstand mitotic stress.  

 

 In Chapter IV, we discovered SIK2 as a vulnerability in a subset of TNBC by 

acting as an autophagic break, possibly due to supporting the autophagic-inhibitory 

signaling of AKT (Figure 10). These results suggest that there are differential 

dependencies on autophagy in TNBC tumors and nominates SIK2 as a novel obligate 

component of the AKT/ mTOR nutrient-signaling pathway. Furthermore, small molecule 

inhibition of SIK2 recapitulated our screen findings warranting further investigation of 
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SIK2 as a therapeutic target in TNBC. 

 

 In Chapter V, we elucidated the role of the cancer testis antigen, ZNF165, 

supporting TNBC survival and TGFβ signaling. ZNF165 directly binds and represses 

negative regulators of TGFβ signaling that leads to global modulation of TGFβ 

transcription and promotes the expression pro-tumorigenic genes. One in particular, the 

poorly characterized oncogene, WISP1, provides additional feed-forward amplification of 

TGFβ signaling and is required for TNBC viability. These results suggest that 

reactivation of ZNF165 promotes unrestrained TGFβ activation to promote the 

tumorigenic phenotype (Figure 16). Given its testis specific expression profile, ZNF165 

offers an extraordinarily wide therapeutic window for targeting oncogenic TGFβ 

signaling.  

 

 For the remainder of this chapter, I will explore the broader impacts of the work 

presented. Our mechanistic elaboration of each of our screen hits revealed new aspects of 

TNBC biology that could be therapeutically leveraged, suggesting that exploration of the 

TNBC functional landscape will reveal new therapeutic strategies and biomarkers for 

sensitive subsets of the TNBC patients population. The subsequent paragraphs will focus 

on discussion of the novel therapeutic strategies revealed here. When taken together, this 

work reinforces the current movement away from treating all TNBC patients as clinically 

equivalent and emphasizes the need for increasing our fundamental knowledge of TNBC 

biology to lead us to more informed and precise delivery of chemotherapeutic regimens. 

Our work here also highlights the strength of unbiased discovery-based screening  
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approaches to globally dissect and explore biological concepts and therapeutic strategies.  

 

Future Directions 

 Paclitaxel-Based Therapies in Basal-Like Breast Cancer - TNBC is primarily 

comprised of two molecular subtypes, claudin-low and basal-like, based on cDNA 

microarray (32). These distinct gene expression profiles translate into strikingly 

differently tumors. Basal-Like tumors are characterized as epithelial in nature with the 

canonical epithelial cobblestone morphology and expression of E-cadherin and 

cytokeratin. Claudin-low tumors are stem-like with TIC features with more mesenchymal 

morphology and expression pattern including high expression of EMT markers like 

TWIST and SNAIL (33). These two subtypes also have strikingly differential pCR 

responses to the TNBC first line anti-mitotic chemotherapeutic agents. Patients with 

basal-like tumors are twice as likely to achieve pCR than patients with claudin-low 

tumors (33). Identification of CXCR3 in our screen nominates CXCR3 as a new 

therapeutic intervention target in TNBC. We found that basal-like tumors had an 

increased sensitivity to CXCR3 inhibition, suggesting that leveraging CXCR3 

therapeutically maybe more beneficial for patients with basal-like tumors. An important 

future direction for CXCR3 is to examine the basal-like molecular subtypes as a selection 

criterion for CXCR3 inhibition. With the basal-like subtypes as an enrollment biomarker, 

CXCR3-based therapies may improve treatment options for basal-like patients without 

subjecting claudin-low patients to unnecessary side effects.  

 

Therapeutic Splicing for CXCR3-Sensitive Tumors – CXCR3 exists in two main 
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isoforms (151). The CXCR3-A isoform is the slightly shorter isoform and promotes 

proliferation, survival and motility through coupling with Gαi and ROCK to modulate the 

actin cytoskeleton. CXCR3-B isoform is anti-proliferative and is implicated to signal 

through Gαs, elevating cAMP levels (134, 151, 152, 157, 263). Studies of CXCR3 in 

cancer have identified CXCR3 signaling to alter the actin cytoskeleton and promote 

metastatic potential (152, 153, 158-160, 264), suggesting CXCR3-A is the predominate 

isoform in the tumorigenic setting. Furthermore, increased cytoplasmic detection of 

CXCR3-A is associated with more aggressive tumors, suggesting differences in receptor 

trafficking (42, 152, 159). Given that CXCR3 protein can be detected in all tumor-

derived cell lines regardless of sensitivity, an important future direction is an in-depth 

analysis of CXCR3 isoform composition, localization or signaling kinetics between 

basal-like and claudin-low tumors. This analysis may shed light on the mechanism 

behind CXCR3 selectivity. Furthermore, this analysis may lay the groundwork for a 

splicing-based therapy. A single splicing event is responsible for the differences in the 

CXCR3-A and CXCR3–B isoforms (151). Deregulation of splicing events is known to be 

critical during tumor evolution (265). Currently, new therapeutics are being developed to 

alter MYC-induced splicing in lymphomagenesis (266). Another future direction is to 

explore therapeutically leveraging the opposing tumorigenic functions of the two 

isoforms by targeting CXCR3 sensitive tumors with therapeutics to bias splicing 

machinery. Therapeutic splice switching oligonucleotides are currently in clinical trials 

for Duchenne muscular dystrophy (DMD) and therefore could be explored in TNBC 

basal-like breast cancer (267). 
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Targeting Autophagy-Dependent Tumors – Our screen revealed SIK2 as a TNBC 

vulnerability in a subset of TNBC tumors. Our tumor-derived cell line panel displayed a 

range of sensitivities to SIK2 depletion. During tumor evolution, autophagy has dual 

effects. Autophagy was originally thought to be solely tumor-suppressive by inducing 

cell death in metabolically deregulated neoplastic cells (268, 269). Loss of function 

mutations in the essential autophagy inducer, Beclin 1, are found in more than 40 % of 

breast, ovarian and prostate cancers (270), suggesting autophagy counteracts early 

tumorigenesis. However, once a tumor is established, autophagy can support tumor cell 

survival by increasing nutrient availability in large, poorly vascularized tumors (269, 

271). Given this, autophagy inhibition was investigated as a therapeutic and, by both 

genetic and pharmacological means, can lead to tumor cell death in multiple preclinical 

models (272-274). Furthermore, autophagy inhibitors paired with first line 

chemotherapeutic agents are currently in clinical trials for prostate, glioma, and lung 

(ClinicalTrials.gov - NCT00933803, NCT02432417, NCT02421575). However, the 

understanding the context specific tumor biology that guides autophagy-dependency is 

important for precise application of these therapeutic regimens. We hypothesize that 

SIK2 becomes a vulnerability in tumors needing to harness autophagy to support 

oncogenesis without leading to loss of tumor cell viability. Metastatic tumors are thought 

to be particularly dependent on autophagy following detachment-induced metabolic 

stress and anoikis (207). An important future direction will be to focus on exploring the 

determinants of SIK2 sensitivity. Circulating tumors cells are often a prognostic indicator 

of metastatic disease (275, 276) and therefore, tumor cell burden in the blood stream 

could be explored as predictors of sensitivity to SIK2 inhibition. Most cancer deaths 
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occur from metastatic burden and TNBC tumors are often more aggressive and metastatic 

(35, 277). Therefore, further study of SIK2 in metastatic disease may yield a therapeutic 

alternative to TNBC patients with metastatic disease and improve their overall prognosis. 

 

Leveraging TGFβ as a Therapeutic - TGFβ is a pleiotropic cytokine that drives a 

diverse and seemingly opposing set of developmental programs including differentiation, 

morphogenesis, tissue homeostasis as well as cell regeneration and self-renewal (227, 

254). Under normal physiology, TGFβ is secreted as a pro-peptide by immune cells, like 

activated macrophages. Upon binding to the serine/threonine TGFβ Receptors RI and 

RII, it induces oligomerization and phosphorylation of SMAD2/3. Following this 

activation, phosphorylated SMAD2/3 associates with SMAD4 and translocates to the 

nucleus where it associates with additional transcriptional coactivators to drive 

transcription (254). How a single cytokine can induce both cell differentiation in one cell 

context and promote stemness and self-renewal in another is poorly understood but 

evidence is accumulating for differences in SMAD-associated transcriptional 

coactivators, chromatin structure and signaling pathway crosstalk (227). TGFβ’s dual 

action is also seen during tumor evolution. In early tumorigenesis, TGFβ acts as a tumor 

suppressor by inducing anti-proliferative and differentiation genes like p21. Consistent 

with this, many tumors exhibit loss of function mutations in components of the canonical 

TGFβ pathway components like the TGFβRI and RII and SMAD4 (226). However, later 

stage tumors, TGFβ drives a more aggressive, proangiogenic, immune-evading and 

chemoresistant phenotype and best known as the master regulator of EMT that is required 

for metastatic potential (254). Here, our identification of ZNF165 in two orthogonal 
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datasets as required for TNBC survival and TGFβ signaling, suggests reactivation of this 

gametogenic gene may promote pro-tumorigenic TGFβ signaling. TGFβ inhibitors are 

currently in clinical trials for treatment of metastatic disease however, given its critical 

role in development, clinical implication of TGFβ inhibitors remains unsuccessful (253). 

An important future direction for ZNF165 is to explore ZNF165 expression as a 

biomarker for engagement of pro-oncogenic TGFβ signaling. Therefore, ZNF165 

tumorigenic expression could predict sensitivity of TGFβ inhibition in the clinic. 

Furthermore, TGFβ signaling is particularly active in claudin-low tumors (42, 259) and 

our data suggests that ZNF165 supports TGFβ and supports claudin-Low TNBC 

viability, suggesting that claudin-low patients may be ideal candidates for TGFβ 

inhibition. Given that ZNF165 is selectively expressed the testis, implication of ZNF165 

in the treatment of breast cancer may provide a therapeutic window for targeting TGFβ 

signaling in TNBC.  

 

Precision Chemotherapy 

 All three therapeutic intervention points elaborated here were identified in our 

screen as potently collaborating with paclitaxel in different TNBC contexts. Paclitaxel is 

a backbone for the chemotherapeutic regimens used in TNBC and approximately 26 % - 

45 % of TNBC patients initially respond to paclitaxel-based therapies (33). However, 

significant toxicity and innate drug resistance limits the efficacy of paclitaxel in the clinic 

(69, 73, 278, 279). Our data nominates potential new paclitaxel combination therapies. 

First, basal-like breast tumors may selectively require CXCR3 for survival. Therefore, the 

basal-like subtype might be able to be used as a biomarker to predict sensitivity to a 
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CXCR3 inhibitor, AMG487/ paclitaxel combination therapy. For SIK2, we hypothesize 

that SIK2 dependency is driven by autophagy-dependency. Autophagy is associated with 

anoikis prevention in disseminating metastatic tumor cells (207), therefore ARN3236/ 

paclitaxel based therapies may be effective in aggressive metastatic disease. For ZNF165, 

we found that ZNF165 expression is reactivated in some TNBC tumors and enhances 

pro-tumorigenic TGFβ signaling. Given that synergy between TGFβ inhibition and 

paclitaxel has been demonstrated in TNBC tumor-derived cell lines (252), we 

hypothesize that ZNF165 expression could be used as a biomarker for those tumors 

employing the pro-tumorigenic aspects of TGFβ and thus will be sensitive to TGFβ 

inhibitor/ paclitaxel-based chemotherapeutic regimens. Each of these stories offers a new 

piece of TNBC tumor biology that may allow for more informed and precise application 

of paclitaxel-based therapies. Deconstructing the ‘one size fits all’ approach to TNBC 

treatment will offer subsets of TNBC patients more therapeutic options and translate into 

improved patient prognosis. Small molecule inhibitors against SIK2 are in pre-clinical 

trials and CXCR3 inhibitors and TGFβ inhibitors are currently in clinical trials, allowing 

for evaluation of these precision chemotherapeutic approaches in the patient population. 

 

Leveraging Discovery-Based Strategies to Uncover Biological Concepts  

 My work highlights the strength of siRNA screening approaches to identify new 

vulnerabilities.  These screens allow for the generation of new hypotheses that lead to 

new mechanistic insight into tumor cell biology and nominates new therapeutic entry 

points. Since the first chemosensitizer screen in HeLa cells in 2005 (118), loss of function 

RNAi screens have been leveraged in discovery based biology in many different cellular 
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processes (108, 110, 111, 118, 125, 129). With the advent of new technologies like 

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), sequencing 

technologies and generation of large natural product libraries (280, 281), single 

dimension RNAi screen are evolving into multi-dimensional functional genomic 

platforms (282). In cancer therapeutics, these platforms can correlate mechanistic and 

phenotypic responses with genetic information, followed by overlap with therapeutic 

responses across natural product libraries to facilitate simultaneous identification of new 

therapeutics and their cellular target. These strategies rapidly dissect tumor cell biology 

and identify new therapeutic strategies that will lead to continued improvement of 

therapeutic applications.  
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