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ABSTRACT 

Marquet Minor: Cell Type and Tissue Specific Functions of CD73 
(Under the direction of Natasha Snider) 

CD73 is a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored 

glycoprotein that converts extracellular adenosine 5'-monophosphate (AMP) to adenosine. CD73 

couples closely with ecto-apyrase (CD39), which supplies the AMP substrate via sequential 

dephosphorylation of extracellular ATP. CD73-generated adenosine functions in an autocrine 

and paracrine manner to control numerous physiological responses by activating one of four 

subtypes of G-protein-coupled adenosine receptors: A1R, A2AR, A2BR, and A3R.  Missense 

mutations in the CD73-encoding gene NT5E cause the rare, adult-onset vascular disease named 

‘arterial calcifications due to deficiency of CD73’ (ACDC). Aside from direct human disease 

involvement, cellular and animal model studies have revealed key functions of CD73 in tissue 

homeostasis and pathophysiologic responses in the cardiovascular and central nervous system, as 

well as epithelial tissues, including the lung, kidney and liver. This review covers CD73 

functions in multiple organ systems, with a focus on novel findings from the last 3-5 years.  

 

 

 

 

 

 



iv 
 

 

 

TABLE OF CONTENTS 

LIST OF FIGURES …………………………………………………………………………… vii 

LIST OF ABBREVATIONS ………………………………………………………………….  viii 

CHAPTER 1: INTRODUCTION ……………………………………………………………….. 1 

 Structural and molecular features of CD73 ……………………………………………... 2   

 Evidence for non-enzymatic CD73 functions …………………………………………… 2 

 Physiological and disease relevance of CD73 …………………………………………... 3 

CHAPTER 2: CD73 FUNCTIONS IN THE CARDIOVASCULAR SYSTEM ……………….. 4 

 CD73 expression and distribution in the cardiovascular system ………………………... 4 

 Cell type-dependent roles of CD73 after myocardial infarction (MI) …………………... 5 

CHAPTER 3: CD73 FUNCTIONS IN THE CENTRAL NERVOUS SYSTEM ………………. 7 

 CD73 expression and distribution in the central nervous system (CNS) ………………... 7 

 CD73 controls locomotion ………………………………………………………………. 8 

Thalamic CD73 tunes the plasticity of the auditory cortex ……………………………... 9 

 

 



v 
 

CD73 on tissue-resident cells regulates CNS inflammation …………………………….. 9 

Neuronal CD73 regulates nociception …………………………………………………. 10 

CHAPTER 4: CD73 FUNCTIONS IN THE LUNG …………………………………………... 12 

 CD73 expression and distribution in the lung ………………………………………….. 12 

CD73 promotes maintenance of tissue barrier function in the lungs                       
during hypoxia and hyperoxia ………………………………………………………… 

 

CD73 protects against lung infection, inflammation and fibrosis ……………………... 13 

CD73 may contribute to asthma pathogenesis …………………………………………. 13 

CHAPTER 5: CD73 FUNCTIONS IN THE KIDNEY ………………………………………... 15 

 CD73 expression and distribution in the kidney ……………………………………….. 15 

CD73 regulates renal ischemia-reperfusion (I/R) injury ………………………………. 15 

CD73 regulates hypertension-associated renal injury ………………………………….. 15 

Other functions of CD73 in the aging and injured kidney ……………………………... 16 

CHAPTER 6: CD73 FUCNTIONS IN THE LIVER ………………………………………….. 17 

 CD73 expression and distribution in the liver …………………………………………. 17 

CD73 regulates hepatic fibrosis ………………………………………………………... 17 

CD73 regulates hepatic steatosis ………………………………………………………. 18 

CD73 regulates hepatic fibrosis ………………………………………………………... 18 

CD73 regulates hepatocyte injury ……………………………………………………… 18 

12 



vi 
 

CHAPTER 7: CD73 FUNCTIONS IN THE IMMUNE SYSTEM ……………………………. 20 

 CD73 expression on immune cells …………………………………………………….. 20 

CD73 regulates immune cell migration ………………………………………………... 20 

CD73 regulates chronic inflammation …………………………………………………. 21 

CHAPTER 8: CD73 FUNCTIONS IN OTHER TISSUES AND CELL TYPES ……………... 22 

Gastrointestinal system ………………………………………………………………… 22 

Bone ……………………………………………………………………………………. 22 

            Inflammation of the eye ………………………………………………………………... 23 

Reproductive tissues …………………………………………………………………… 23 

Skin and Muscle ………………………………………………………………………... 23 

REFERENCES ………………………………………………………………………………… 27 

 

 

 

 



vii 
 

LIST OF FIGURES 

Figure 1 - Relative levels of CD73 protein expression across human  
organ systems and tissues ……………………………………………………………………… 25 

Figure 2 - Reported phenotypes of the CD73 knockout mice …………………………………. 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF ABBREVIATIONS AND SYMBOLS 

Γδ  Gamma-delta  

A1R  Adenosine receptor A1 

A2AR  Adenosine receptor A2A 

A2BR  Adenosine receptor A2B 

A3R  Adenosine receptor A3 

A1R-/-  Adenosine receptor 1 knockout mouse model 

A2AR-/- Adenosine receptor 2A knockout mouse model 

A2BR-/- Adenosine receptor 2B knockout mouse model 

ACDC  Arterial calcifications due to deficiency of CD73 

AMP  Adenosine 5'-monophosphate 

AMPASE Class of enzymes that catalyze the dephosphorylation of AMP into a nucleoside 
and a free phosphate ion 

 

APCP  Adenosine 5′-(α,β-methylene)diphosphate 

ARDS  Acute respiratory distress syndrome 

ATP  Adenosine triphosphate 

BAL Bronchoalveolar lavage 

CAMP Cyclic adenosine monophosphate 

CCl4  Carbon tetrachloride 



ix 
 

CD39  Ecto-apyrase 

CD4+ Cluster of differentiation 4 expressing  

CD73 Ecto-5’-nucleotidase 

CGRP  Calcitonin gene-related peptide 

CNS Central nervous system 

EAE  Experimental autoimmune encephalomyelitis 

EAU  Experimental autoimmune uveitis 

ELF2  E74-like factor 2 

ENT  Equilibrative nucleoside transporter 

EPDC  Epicardium-derived cell 

FP-1201 Recombinant human interferon beta-1a 

GPI  Glycosylphosphatidylinositol 

GVHD  Graft vs host disease 

IB4  Isolectin B4 

IFN-β1  Interferon beta 

IFN-γ  Interferon gamma 

IGG3  Immunoglobulin G 3 

IGM  Immunoglobulin M 



x 
 

IL1-β  Interleukin 1 beta 

IL-6  Interleukin 6 

IL-11  Interleukin 11 

IL17A  Interleukin-17A 

IL-17  Interleukin 17 

I/R  Ischemia-reperfusion 

K8/K18 Keratins 8 and 18 

L3-5  Lumbar vertebrae 3-5 

LPS  Lipopolysaccharide 

M1  Pro-inflammatory macrophages 

M2  Macrophages that are anti-inflammatory 

MC3T3-E1 Mouse osteoblastic cell line 

MDB  Mallory-Denk bodies 

MI  Myocardial infarction 

MRGPRD Mas-related G-protein coupled receptor member D 

MSC  Mesenchymal stem cell 

NAD  Nicotinamide adenine dinucleotide 

NECA   5′-(N-ethylcarboxamido)adenosine 



xi 
 

NT5E  Ecto-5’-nucleotidase-encoding gene 

NT5E-/- NT5E knockout mouse model 

P62  Nucleoporin 62 

PAP  Prostatic acid phosphatase 

PH  Measure used to determine the acidity or basicity of a solution 

SP1  Specificity protein 1 

TAA  Thioacetamide 

TGFβ  Transforming growth factor beta 

TGF-β1 Transforming growth factor beta 1 

TH1 Type 1 helper T cells 

TH17 Pro-inflammatory helper T-cells that produce interleukin 17 

TNAP Tissue Non-specific Alkaline Phosphatase 

TNF-α  Tumor necrosis factor alpha 

TRPV1 Transient receptor potential cation channel subfamily V member 1 

VEGF  Vascular endothelial growth factor 

WT  Wild-type 



1 
 

 

 

 

 

CHAPTER 1: INTRODUCTION 

The enzymatic dephosphorylation of 5´-nucleotides, such as adenosine 5´-

monophosphate (AMP) is widespread across mammalian systems and represents a key step in 

purine salvage pathways to modulate purinergic signaling (Ipata & Balestri, 2013; Zimmermann, 

Zebisch, & Strater, 2012). This catalysis occurs inside the cell or in the extracellular space. The 

major enzyme catalyzing the formation of extracellular adenosine from AMP is ecto-5´-

nucleotidase, encoded by the NT5E gene (Zimmermann et al., 2012). Ecto-5’-nucleotidase was 

named CD73 in 1989 after it was shown that its engagement by specific antibodies induced T 

cell activation (Thompson, Ruedi, Glass, Low, & Lucas, 1989). In this review, we refer to the 

protein as CD73 and the gene as NT5E.  Extracellular adenosine produced by CD73 acts on 

adenosine receptors (A1R, A2AR, A2BR, and A3R) to activate downstream signaling (Antonioli, 

Blandizzi, Pacher, & Hasko, 2013; Chen, Eltzschig, & Fredholm, 2013; Eltzschig, 2009; 

Fredholm, 2007).  Through its function as the major extracellular source of adenosine, CD73 is a 

key regulator of tissue homeostasis and pathophysiologic responses related to immunity, 

inflammation, and cancer, covered in recent reviews (Antonioli, Pacher, Vizi, & Hasko, 2013; 

Beavis, Stagg, Darcy, & Smyth, 2012; Colgan, Eltzschig, Eckle, & Thompson, 2006; Roberts, 

Lu, Rajakumar, Cowan, & Dwyer, 2013). The focus of this review is to highlight known and 

emerging tissue-specific functions of CD73 in the brain and spinal cord, the heart, and epithelial 

tissues. 
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Structural and molecular features of CD73. Molecular and structural studies have 

revealed that CD73 is glycosylphosphatidylinositol (GPI)-anchored protein that is functionally 

coupled with another enzyme, ecto-apyrase (CD39), which supplies the AMP substrate for 

CD73(Antonioli, Pacher, et al., 2013). Characterization of the human CD73 protein using X-ray 

crystallography has revealed that human CD73 is a dimer and that its dimerization interface is 

formed via the C-terminal domain (K. Knapp et al., 2012). The crystal structure of CD73 from 

the T. thermophiles bacteria species differs from the human structure at the N-terminal metal ion-

binding domain and the C-terminal substrate-binding domain. While structurally the bacterial 

and human proteins are different, the ecto-nucleotidase function is evolutionarily conserved 

(Knapp, Zebisch, & Strater, 2012).    

Evidence for non-enzymatic CD73 functions. CD73 function and regulation differ 

between cell types with respect to phospholipase sensitivity, shedding from the cell membrane, 

and ability to trigger intracellular signals in response to antibody stimulation, which suggests a 

potential signaling function independent of adenosine (Airas et al., 1997). Indeed, several studies 

highlight important functions of CD73 that are independent of its activity as an AMPase, 

including: (i) T-cell activation via protein interactions to deliver a co-stimulatory signal (Resta & 

Thompson, 1997); (ii) promoting adhesion of lymphocytes to the endothelium (Airas et al., 

1995) by inducing integrin clustering; (Airas, Niemela, & Jalkanen, 2000) (iii) conferring 

resistance to apoptosis of leukemic cells via GPI-anchor-dependent mechanisms (Mikhailov et 

al., 2008); (iv) inducing phosphorylation of endothelial and lymphocyte proteins in response to 

antibody ligation (Airas et al., 1997; Dianzani et al., 1993); and inhibition metastasis of breast 

cancer cells after membrane clustering and internalization (Terp et al., 2013). Presently it is not 
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known whether these observations are linked to a common function, such as CD73 potentially 

functioning as a receptor for a putative ligand, which has yet to be defined.  

Physiological and disease relevance of CD73. CD73 is ubiquitously expressed in 

humans, but its expression pattern varies across tissues and cells types (Figure 1). CD73-

generated adenosine plays a pivotal role in several physiological functions including: epithelial 

ion and fluid transport, tissue barrier maintenance, hypoxia, ischemic preconditioning, and 

inflammation (Colgan et al., 2006). Mutations in NT5E leading to catalytically nonfunctional 

CD73 cause ACDC, a disease that manifests with symptomatic arterial and joint calcifications in 

humans (St Hilaire et al., 2011). ACDC has an autosomal recessive pattern of inheritance and is 

adult onset.  

The mouse Nt5e-/- knockout model recapitulates some, but not the full spectrum, of the 

human pathology (Li, Price, Sundberg, & Uitto, 2014). Part of the mechanism by which 

mutations of the human NT5E gene contribute to disease is attributed in part to defective 

intracellular trafficking of CD73 (Fausther, Lavoie, Goree, Baldini, & Dranoff, 2014).  Global 

deletion of the mouse gene (Nt5e) leads to hypoxia-induced vascular leakage in multiple tissues, 

most profoundly in the lung (Thompson et al., 2004).  The Nt5e-/- mice, which were generated 

and first described by Linda Thompson and her colleagues fifteen years ago (Thompson et al., 

2004) have been used in numerous studies since then to uncover a number of phenotypes, as 

described in Figure 2. The initial characterization of the Nt5e-/- mice provided the foundational 

knowledge to further examine CD73 in various pathophysiological states.  This review will 

address the current understanding of CD73 function and regulation landscape at the cell and 

tissue-specific level.  
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CHAPTER 2: CD73 FUNCTIONS IN THE CARDIOVASCULAR SYSTEM 

CD73 expression and distribution in the cardiovascular system.  Robert Berne showed 

55 years ago that adenosine production in the heart is stimulated in response to hypoxia and 

proposed that adenosine mediates local metabolic control of coronary blood flow (the adenosine 

hypothesis) (Berne, 1963). A brief historical account of some of the studies (Eltzschig et al., 

2003; Koszalka et al., 2004) leading to the recognition of CD73 as a key player in the 

cardiovascular system was provided by Ray Olsson in 2004 (Olsson, 2004). Other relevant work 

on CD73 and purinergic signaling in the heart was highlighted in a review by Burnstock and 

Pelleg (Burnstock & Pelleg, 2015).  Here we focus on the most recent work regarding cell type 

specific functions of CD73 in the cardiovascular system.   

In the cardiovascular system CD73 is expressed on smooth muscle cells (Yang et al., 

2015), endothelial cells (M. Ohta et al., 2013; Pluskota et al., 2013), and resident lymphocytes 

(Bonner, Borg, Burghoff, & Schrader, 2012). The Human Protein Atlas reports moderate levels 

of CD73 protein expression on normal human smooth muscle cells, endothelial cells, and 

cardiomyocytes (Uhlen et al., 2015), whereas Bonner et al. noted lack of CD73 on these cell 

types in mouse heart (Bonner et al., 2013). It is possible that disruption of the tissue architecture 

during digestion and processing for cell sorting activated mechanical signaling to trigger 

downregulation of surface CD73 from non-immune cells in the latter study (Bonner et al., 2013). 

For example, hepatocytes in vivo express CD73, but this expression is dramatically 

downregulated during the process of liver digestion and cell isolation (Snider et al., 2013). One 
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potential molecular mechanism may be through the actions of the mechanosensitive cytoskeletal 

protein kindlin-2, a modulator of integrin signaling in endothelial cells and cardiomyocytes 

(Dowling et al., 2008) that regulates CD73 trafficking to the membrane (Pluskota et al., 2013). In 

the Bonner et al. study, the resident leukocyte population, in particular T cells had the highest 

level of CD73 per cell and highest proportion of CD73-positive cells. However, ~50% of the 

resident T cells expressed CD73, in contrast to almost ~90% of T cells in the circulation that 

were CD73 positive. Therefore, assessing functional contributions to CD73 on different cell 

types in the heart and vasculature will require additional studies utilizing cell type-specific 

deletion of CD73 in cells and in mice. The key functions of CD73 reported relate to supporting 

recovery after myocardial infarction (MI), protection during in heat failure (Quast, Alter, Ding, 

Borg, & Schrader, 2017), promoting atherosclerosis (Yang et al., 2015), supporting aortic valve 

function (Zukowska et al., 2017) and blocking arteriogenesis (Boring et al., 2013). We will 

highlight recent work related to the cell-specific roles of CD73 in MI below. 

Cell type-dependent roles of CD73 after myocardial infarction (MI). Healing and 

recovery of tissue function following myocardial infarction is dependent on T cell-expressed 

CD73, which decreases inflammation through the generation of adenosine (Borg et al., 2017). 

Specifically, circulating T cells invade the injured heart after infarction and upregulate 

expression of hydrolyzing enzymes that act on ATP, cAMP, and NAD, culminating in adenosine 

production via CD73. Activation of A2AR and A2BR leads to reduction in the release of 

inflammatory mediators. T cells from Nt5e-/- mice are skewed toward Th1 and Th17 types, 

resulting in increased levels of their respective pro-inflammatory cytokine products IFN-γ and 

IL-17 (Borg et al., 2017). When co-cultured with mesenchymal stem cells, monocytes upregulate 

CD73 expression in vitro and in vivo in post-MI swine heart (Monguio-Tortajada et al., 2017). 
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This promotes an anti-inflammatory state and implicates CD73 in the healing functions of 

mesenchymal stem cells.  

Interestingly, a functionally significant upregulation of CD73 on epicardium-derived cells 

(EPDCs) following MI promotes the release of pro-inflammatory cytokines and pro-fibrogenic 

matrix proteins (Hesse et al., 2017). EPDCs, which are normally quiescent in the adult heart, are 

activated and give rise to multiple cell types following ischemic heart injury. The increased 

production of CD73-generated adenosine from EPDCs leads to A2BR activation, which 

stimulates the release of pro-inflammatory cytokines (IL-6, IL-11, and VEGF) (Hesse et al., 

2017). Although the overall in vivo evidence thus far suggests a protective, anti-inflammatory 

function of CD73, a critical understanding of the cell-specific mechanisms for how CD73 

regulates cardiac remodeling or healing after MI may promote development of potential 

therapeutic avenues around CD73 function.  
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CHAPTER 3: CD73 FUNCTIONS IN THE CENTRAL NERVOUS SYSTEM 

CD73 expression and distribution in the central nervous system (CNS). 

Immunohistochemical localization of CD73 in mouse brain performed in two independent 

studies revealed intense staining in the striatum (Augusto et al., 2013; Kulesskaya et al., 2013) as 

well as global pallidus, choroid plexus and meninges (Kulesskaya et al., 2013). Of note, these 

structures did not show any positive signal with an anti-CD73 antibody in brain sections from 

Nt5e-/- mice, establishing specificity of the assay (Kulesskaya et al., 2013). Biochemically CD73 

appears to contribute ~90% of the 5’-nucleotidase activity across the brain, but the spatial 

distribution and the identity of the predominant cell types that exhibit CD73 activity in the 

mouse brain was not determined (Kulesskaya et al., 2013). The Human Protein Atlas reports 

highest expression of CD73 in the cerebellum (Purkinje and granular cell layer) and cortical 

endothelial cells (Uhlen et al., 2015), which is in stark contrast to previous work in mouse brain 

reporting complete lack of 5’-nucleotidase activity in the granular layer of the cerebellum and 

blood vessels (Langer et al., 2008). Several potential factors may account for this discrepancy, 

including assay sensitivity (e.g. antibody detection versus enzymatic activity) and differences in 

CD73 distribution between mouse and human brain. The cell type specific distribution of CD73 

in the mouse spinal cord was characterized with the use of specific neuronal subtype markers, 

showing strong expression on L3-L5 dorsal root ganglion neuron membranes, particularly on the 

subset of neurons that express nociceptive neuron markers (IB4, Mrgprd, CGRP, and TRPV1) 

(Sowa, Taylor-Blake, & Zylka, 2010). Axon terminals in lamina II of the spinal cord express 
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CD73, along with another ecto-nucleotidase, prostatic acid phosphatase (PAP). Similar to CD73, 

PAP hydrolyzes AMP to produce adenosine and both proteins and their corresponding activities 

decrease in response to nerve injury (Sowa, Taylor-Blake, et al., 2010). Since the activities of 

CD73 and PAP enzymes are sensitive to the pH, Sowa et al. proposed that functional 

predominance of one enzyme may be relevant under certain conditions, such as during 

inflammation or tissue acidosis (Sowa, Taylor-Blake, et al., 2010). Multiple studies to date have 

implicated CD73 in major CNS functions, including locomotion and behavior  (Augusto et al., 

2013; Kulesskaya et al., 2013), memory functions and plasticity (Blundon et al., 2017; 

Zlomuzica, Burghoff, Schrader, & Dere, 2013), sleep regulation (Zielinski, Taishi, Clinton, & 

Krueger, 2012), thermoregulation (Muzzi et al., 2013), host-pathogen interactions during brain 

infection (Mahamed, Mills, Egan, Denkers, & Bynoe, 2012), inflammation (Mills et al., 2008; 

Petrovic-Djergovic et al., 2012; Xu et al., 2018), and nociception. We highlight several studies 

where the mechanisms of CD73 have been well described. 

CD73 controls locomotion. In the striatum CD73 is closely associated with the A2AR in 

the post-synaptic compartment, and this interaction appears to be important for controlling 

locomotion because Nt5e-/- mice have decreased locomotor activity compared to WT mice after 

repeated amphetamine administration, phenocopying A2AR knockout mice (Augusto et al., 

2013). In contrast, baseline locomotion in the Nt5e-/- mice is elevated when measured in the 

elevated plus maze, open field test, circadian activity test, and monitoring in the housing cages, 

although the mechanisms behind these observations were not investigated (Kulesskaya et al., 

2013). Therefore, the effect of CD73 on locomotion appears to be context specific, and likely 

mediated by the spatiotemporal dynamics of the signaling pathways over which CD73 exerts 

control, together with other ecto-nucleotidases and adenosine receptor subtypes.  
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Thalamic CD73 tunes the plasticity of the auditory cortex. The auditory cortex of adults, 

unlike newborns, lacks the plasticity required to tune neural circuitry upon passive exposure to 

auditory inputs from the environment (Kehayas & Holtmaat, 2017). Recently, Blundon et al. 

(Blundon et al., 2017) identified CD73-generated adenosine and subsequent A1R activation to be 

a key mechanism for age-dependent decline in auditory cortex plasticity. Genetic deletion of the 

A1Rs from the auditory thalamus of mature mice promoted plasticity of the auditory cortex after 

passive tone exposure (Blundon et al., 2017). Compared to neonates, thalamic expression of 

CD73 in mature mice was significantly elevated, which paralleled increased adenosine 

production (Blundon et al., 2017). In mature Nt5e–/– mice exposed to a pure tone there was 

induction in auditory cortex plasticity, and tone-exposed Nt5e–/– mice distinguished frequencies 

better than tone-naive Nt5e–/– mice (Blundon et al., 2017). These results may have implications 

for restoring cortical plasticity via CD73 manipulations in learning and other contexts, such as 

recovery after stroke.  

CD73 on tissue-resident cells regulates CNS inflammation. Given the central role of 

adenosine as an immunomodulator, several studies have addressed the function of CD73 in brain 

inflammation (Mills et al., 2008; Petrovic-Djergovic et al., 2012; Xu et al., 2018). Using genetic 

and pharmacological approaches, Petrovic-Djergovic and colleagues demonstrated a protective 

role of CD73 in neuroinflammation due to ischemic stroke (Petrovic-Djergovic et al., 2012). 

Specifically, Nt5e–/– mice were more susceptible to ischemic stroke injury, and the ischemic 

tissue had increased influx and activation of macrophages and pro-inflammatory markers, such 

as IL1-β, IL6, and TNF-α (Petrovic-Djergovic et al., 2012). This effect was reversed by 

administration of soluble CD73, suggesting that the effect was adenosine-mediated (Petrovic-

Djergovic et al., 2012). Furthermore, bone marrow transplantation experiments demonstrated 
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that the protective effect of CD73 stemmed from tissue-resident cells, as opposed to CD73 on 

circulating immune cells that infiltrated after the injury (Petrovic-Djergovic et al., 2012). While 

the specific role of CD73 on astrocytes has not been examined, it is possible that astrocytes play 

an key role in this model, since astrocytes contribute to CD73-generated adenosine (Chu, Xiong, 

& Parkinson, 2014) and control neuronal injury following ischemic stroke (Takano, Oberheim, 

Cotrina, & Nedergaard, 2009).  

Surprisingly, CD73 is pro-inflammatory in a mouse model of experimental autoimmune 

encephalomyelitis (EAE), which mimics inflammation associated with multiple sclerosis (Mills 

et al., 2008). Whereas WT mice displayed weak tail and partial hind limb paralysis and weak tail 

by 3 weeks of disease onset, the Nt5e-/- mice only had a weak tail and the disease did not worsen 

over time (Mills et al., 2008). Lymphocyte infiltration into the brain was significantly blunted in 

the Nt5e-/- mice, implicating CD73 as a facilitator for the entry of pathogenic T cells into the 

CNS (Mills et al., 2008). Similar to the stroke model, adoptive transfer studies demonstrated a 

role for CD73 on non-hematopoietic cells, potentially choroid plexus epithelial cells, which 

expressed CD73 in the WT mice (Mills et al., 2008). Modulation of blood-brain barrier function 

via CD73-generated adenosine and activation of A1R and A2AR receptors in one potential 

mechanism behind the increased lymphocyte infiltration and inflammation in the EAE model 

(Carman, Mills, Krenz, Kim, & Bynoe, 2011). Combined, these two studies demonstrate that 

CD73 can exert pro- or anti-inflammatory effects in the brain, depending on the specific 

inflammatory condition and the cell types involved, which is an important consideration for 

potential therapeutic applications of CD73 modulators in CNS inflammation.  

Neuronal CD73 regulates nociception. CD73 and two additional nucleotidases (PAP and 

tissue non-specific alkaline phosphatase) generate extracellular adenosine in the spinal cord to 
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regulate the function of pain sensing neurons (Street et al., 2013; Street & Zylka, 2011). A series 

of elegant studies on Nt5e-/- mice, utilizing supplementation with soluble mouse CD73 enzyme, 

demonstrated that CD73 plays a key role in regulating nociception in the mouse spinal cord 

(Sowa, Voss, & Zylka, 2010; Xu et al., 2018). Intrathecal administration of soluble mouse CD73 

protein elicited dose-dependent and long-lasting (2 days) antinociceptive effects in response to 

heat-induced pain (Sowa, Voss, et al., 2010). Similarly, soluble CD73 had antinociceptive effects 

in inflammatory and neuropathic pain models (Sowa, Voss, et al., 2010). At the molecular level, 

these effects were the result of adenosine-dependent A1R activation, since soluble CD73 did not 

produce antinociceptive effects in A1R-/- mice (Sowa, Voss, et al., 2010). The relative 

contribution of CD73 on hematopoietic cells versus neurons in the inflammatory pain models is 

not presently clear, because studies using bone marrow chimera have not been performed. 

However, upon spinal cord injury, CD73 promotes polarization of macrophages and microglia to 

the M2 anti-inflammatory phenotype, suggesting that immune cells may play at least a partial 

role in the protective mechanism of CD73 in pain models (Xu et al., 2018).  
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CHAPTER 4: CD73 FUNCTIONS IN THE LUNG 

CD73 expression and distribution in the lung. Together with tissue non-specific alkaline 

phosphatase, CD73 is known to be the major regulator of adenosine production on airway 

surfaces (Picher, Burch, Hirsh, Spychala, & Boucher, 2003). Human Protein Atlas reports high 

CD73 expression on human pneumocytes, which exhibit both cytoplasmic and membrane 

distribution. CD73 is also expressed and enzymatically active on primary human nasal and 

bronchial epithelial cells where it controls proper cilia beating frequency and ion transport, thus 

demonstrating its role in mucociliary clearance which is protective in the development of 

infectious lung diseases (Picher et al., 2003). 

 

CD73 promotes maintenance of tissue barrier function in the lungs during hypoxia 

and hyperoxia. One of the earliest phenotypes reported using the global CD73-null mice showed 

vascular leakage in response to normobaric hypoxia in multiple tissues, which was most 

pronounced in the lung (Thompson et al., 2004). Hypoxia-induced vascular leakage was only 

partially reversed by adenosine receptor agonists and administration of soluble CD73, leaving 

open the possibility for additional non-enzymatic functions of CD73 that may be compromised 

in the Nt5e-/- mice. In humans, acute respiratory distress syndrome (ARDS) leads to pulmonary 

vascular leakage and clinical trials utilizing recombinant IFN-β1 (FP-1201) as a treatment 

strategy have revealed the potential to induce CD73 expression in the lungs and reduce mortality 

in patients with ARDS (Bellingan et al., 2017; Bellingan et al., 2014). Specifically, these studies 
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demonstrated that CD73 was significantly upregulated ex vivo in peri-bronchiolar vessels of 

cultured human lung tissue in response to IFN-β1 treatment, and that IFN-β1 attenuated 28-day 

mortality (8% of IFN-β1 treated patients died, versus 32% in the control group) (Bellingan et al., 

2014). CD73 is highly upregulated in response to hyperoxia, and Nt5e-/-  mice develop more 

severe pulmonary edema during hyperoxic lung injury. The latter effect, which is also 

phenocopied in A2AR-/- mice, is attributed to loss of barrier function in the setting of decreased 

adenosine production (Davies et al., 2014). 

CD73 protects against lung infection, inflammation and fibrosis. CD73-null mice 

exhibit increased weight loss and inflammation in response to intratracheal administration of 

lipopolysaccharide (LPS) (Ehrentraut et al., 2013) concomitant with significant transcriptional 

upregulation of TNFα, IL-1β, and IL-6. These effects were attributed to adenosine generation by 

regulatory T cells and the phenotypes of the Nt5e-/-  mice were partially rescued by 

administration of soluble CD73. Deletion of CD73 does not affect baseline adenosine levels in 

the lungs, but it prevents adenosine production in response to bleomycin treatment (Volmer, 

Thompson, & Blackburn, 2006). Consequently, bleomycin treated Nt5e-/-  mice exhibit enhanced 

inflammation, collagen production, and more severe fibrosis, which were attenuated by 

intranasal administration of exogenous nucleotidase. Treatment with the CD73 inhibitor APCP 

or the non-selective adenosine receptor antagonist CGS 15943 caused increased susceptibility of 

mice to S. pneumoniae lung challenge, although the effect was more pronounced upon CD73 

inhibition (Bou Ghanem et al., 2015).  

CD73 may contribute to asthma pathogenesis. Although CD73 function is known to be 

critical for regulating airway diseases, its involvement in asthma is poorly understood. CD73 

expression is upregulated in the lungs of ovalbumin-treated mice (Bentley et al., 2010), and a 



14 
 

single study  reported that Nt5e-/-  mice are protected against ovalbumin-induced airway 

hyperresponsiveness and inflammation (Schreiber, Castrop, & Kunzelmann, 2008). To our 

knowledge, CD73 expression and activity in asthma patients has not been examined, with the 

exception of demonstration that BAL fluid from a patient with asthma contained a subpopulation 

of CD73-expressing cells that were thought to represent a mesenchymal progenitor cell type able 

to differentiate into fat, bone or cartilage (Bentley et al., 2010). Whether CD73 is simply a 

marker of these cells, or an active player in MSC-mediated regulation of inflammatory and 

fibrotic responses in the lungs remains to be determined.    
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CHAPTER 5: CD73 FUNCTIONS IN THE KIDNEY 

CD73 expression and distribution in the kidney. The enzymatic activity of CD73 in the 

kidneys is nearly highest of all the tissues in the body (Colgan et al., 2006; Thompson et al., 

2004).  In rat kidneys CD73 decorates the apical membranes of the proximal convoluted tubule, 

intercalated cells of the distal nephron, and is also expressed in the peritubular space (Shirley, 

Vekaria, & Sevigny, 2009).  Similar to other tissues, renovascular function is under the control 

of adenosine produced by both CD73 and TNAP (Jackson, Cheng, Verrier, Janesko-Feldman, & 

Kochanek, 2014). 

CD73 regulates renal ischemia-reperfusion (I/R) injury. Adenosine receptor signaling 

promotes renal I/R injury, based on findings that A2BR-/- are protected in I/R (Grenz et al., 2008).  

Additionally, genetic deletion or pharmacological inhibition of CD73, CD39, or both in mice 

revealed that CD73 and CD39 exacerbate I/R injury (Rajakumar et al., 2010; Roberts et al., 

2013).  Proximal tubular CD73 in particular is important for regulating renal I/R injury (Sung et 

al., 2017).  In contrast to this reported injury-promoting role, CD73 plays a protective role in the 

context of isoflurane-mediated protection against renal I/R injury. Mice pretreated with a CD73 

inhibitor or an adenosine receptor antagonist are insenstitive to this isofluorane-mediated 

protection (Kim et al., 2013). 

CD73 regulates hypertension-associated renal injury.  CD73 is upregulated and 

generates adenosine in a model of hypertensive nephropathy induced by angiotensin II (Zhang et 

al., 2013).  CD73-generated adenosine promotes hypertension associated with chronic kidney 

disease through A2BR, which is driven by hypoxia-inducible factor-α (Zhang et al., 2013).  In 
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contrast to this hypertension promoting role, CD73 is protective through A2BR signaling in the 

context of diabetic neuropathy in the mouse kidney (Tak et al., 2014).  CD73 is also protective in 

the rat kidney in a diabetic neuropathy model induced via streptozotocin (Taskiran et al., 2016).  

Furthermore, pharmacological antagonists for A3R alleviate fibrosis driven by diabetic 

neuropathy in rat kidneys (Kretschmar et al., 2016).   

Other functions of CD73 in the aging and injured kidney. CD73 knockout mice exhibit 

spontaneous proteinuria and renal functional deterioration as they age because of an autoimmune 

inflammation affecting the glomerular endothelium (Blume et al., 2012). Pharmacological 

inhibition or genetic deletion of CD73 in mice leads to more severe kidney injury in sepsis 

models (via cecal ligation) compared to WT mice (Hasko et al., 2011).  Polymorphisms in NT5E  

have been implicated in the development of calcific uremic arteriolopathy in dialysis patients, 

which is associated with end stage kidney disease (Rothe et al., 2017).   
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CHAPTER 6: CD73 FUNCTIONS IN THE LIVER 

CD73 expression and distribution in the liver. In the normal human liver CD73 is 

expressed  on the apical membrane of hepatocytes as well as endothelial cells, which express 

CD73 at lower levels compared to hepatocytes (Matsuura, Eto, Kato, & Tashiro, 1984). During 

myofibroblast differentiation of activated hepatic stellate cells in culture there is transcriptional 

upregulation of NT5E (Fausther, Sheung, Saiman, Bansal, & Dranoff, 2012), but this is in 

contrast to significant downregulation observed in human liver fibrosis, regardless of etiology or 

severity (Snider et al., 2013). CD73 recently has emerged as a critical regulator of hepatocyte 

responses to different forms of injury (Hart et al., 2008; Peng et al., 2009; Peng et al., 2008; 

Snider et al., 2013), illuminating common disease mechanisms that may be exploited 

therapeutically.  

CD73 regulates hepatic fibrosis. Nt5e-/- mice were previously reported to be resistant to 

hepatic fibrosis (Peng et al., 2008) induced by carbon tetrachloride (CCl4) or thioacetamide 

(TAA), which is surprising because genetic or pharmacologic inhibition of adenosine A2AR 

causes exacerbated liver injury in inflammation and fibrosis injury models (Chan et al., 2006; A. 

Ohta & Sitkovsky, 2001). If adenosine has a protective role in hepatic fibrosis, then removal of 

the major enzymatic source of extracellular adenosine (CD73) should exacerbate the pathology, 

but the opposite is seen. One of several possible interpretations is that constitutive Nt5e deletion 

eliminated an adenosine-independent function of CD73 that promotes hepatic fibrosis. If that is 

the case, it may also help explain the resistance of CD73-/- mice to ethanol-induced steatosis 

(Peng et al., 2009) and Mallory-Denk body-associated hepatocellular injury (Snider et al., 2013) 
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CD73 regulates hepatic steatosis. An early phenotype of ethanol consumption that 

damages the liver is the development of hepatic steatosis, which is the accumulation of fat in the 

liver.  WT mice develop hepatic steatosis while mice lacking CD73 or adenosine A1 or A2B 

receptors are protected after alcohol treatment (Peng et al., 2009).  Additionally, in vitro studies 

using cultured murine hepatocyte cell lines supported these findings, suggesting adenosine 

generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis 

(Peng et al., 2009).  These data demonstrate that CD73 is important in the role acute liver 

diseases, and it would be beneficial to determine if CD73 can mediate the progression into 

chronic liver diseases.  

CD73 regulates hepatic fibrosis. Several studies have shown the importance of CD73 in 

chronic liver disease models, such as liver fibrosis.  For example, studies utilizing chemical 

injury (carbon tetrachloride or thioacetamide treatment) for the induction of liver fibrosis in mice 

illustrated that Nt5e-/- mice were protected from the development of liver fibrosis or cirrhosis, 

while WT mice developed fibrosis and cirrhosis(Peng et al., 2008).  Liver fibrosis is 

accompanied by the activation of liver myofibroblasts, that typically originate from hepatic 

stellate cells and portal fibroblasts (Iwaisako et al., 2014).  Although CD73 is expressed in 

murine liver fibrosis models and liver myofibroblasts, NT5E is transcriptionally down-regulated 

via mediation by Elf2-like transcription factors in mouse-activated liver myofibroblasts 

(Fausther, Lavoie, Goree, & Dranoff, 2017).  Conversely, other studies have shown NT5E 

transcriptional up-regulation through promoter response elements for SP1 and SMAD 

transcription factors (Fausther et al., 2012).  

CD73 regulates hepatocyte injury. In the context of hepatic ischemia, CD73 is induced 

at the transcriptional and protein level (Hart et al., 2008) and serves a protective function. Nt5e-/- 
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mice develop more severe injury, which can be reversed by administration of soluble enzyme 

(Hart et al., 2008).  Based on this a proposed method to elicit hepatoprotection during hepatic 

ischemia/reperfusion would be to inhibit adenosine uptake (Zimmerman et al., 2013).  

Equilibrative nucleoside transporters (ENTs) are responsible for the uptake of adenosine, and 

transcriptional downregulation of ENTs are correlated with ischemia and reperfusion during 

human liver transplantation and during murine liver ischemia and reperfusion (Zimmerman et al., 

2013).  Ultimately, these studies provide the framework for potential therapies to manage 

ischemia and reperfusion by maintaining extracellular adenosine levels.  

The formation of hepatocyte Mallory-Denk bodies (MDBs), which are aggregates of 

keratins 8 and 18 (K8/K18), ubiquitin, and the ubiquitin-binding protein p62, are generally 

associated with the development of chronic liver diseases (Snider et al., 2013).  We previously 

have demonstrated that CD73 modulates the formation of MDBs in a strain-related manner 

(Snider et al., 2013).  In mice livers that lacked CD73, chemical-induced liver injury (in the form 

of MDBs) was prevented, but this protection was not observed in WT mice under the same 

experimental conditions (Snider et al., 2013). 
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CHAPTER 7: CD73 FUNCTIONS IN THE IMMUNE SYSTEM 

CD73 expression on immune cells. The role of CD73 has been most extensively studied 

in context of the immune system (Antonioli, Pacher, et al., 2013; Resta, Yamashita, & 

Thompson, 1998). CD73 is expressed in macrophages, monocytes, dendritic cells, and 

neutrophils (Antonioli, Pacher, et al., 2013; Resta & Thompson, 1997; Resta et al., 1998; Saze et 

al., 2013). It is highly expressed on lymphocytes, particularly T cells and B cells (Conter, Song, 

Shlomchik, & Tomayko, 2014; Kaku, Cheng, Al-Abed, & Rothstein, 2014; Saze et al., 2013). In 

T cells, thymic γδ lineage commitment relies on T cell receptor ligand-induction of CD73 

expression.  

CD73 regulates immune cell migration. The expression of CD73 on the cell surface has 

been shown to play a key role in immune cell migration in response to inflammatory stimuli. 

Upon LPS treatment in mice, CD73 on endothelial cells restricts the migration of lymphocytes 

into the draining lymph nodes through the activation of A2Rs (Takedachi et al., 2008; Thompson 

et al., 2008). Mills et al showed that the infiltration of T cells into the central nervous system 

during experimental autoimmune encephalomyelitis in mice is regulated by CD73 that is highly 

expressed in the choroid plexus (Mills et al., 2008). In the absence of CD73 in the immune cells, 

the number of infiltrating lymphocytes increases and further exacerbates the inflammation or 

condition. CD73 KO mice that were infected with Toxoplasma gondii showed a higher 

propensity for neutrophil and T cell infiltration, inducing an immune-mediated pathology 

(Mahamed, Toussaint, & Bynoe, 2015). The administration of the adenosine receptor agonist, 

NECA attenuated the severity of inflammation, suggesting a key role of the adenosine-
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generating function of CD73. Similarly, CD4+ T cells that lack CD73 produce a stronger immune 

response against bacterial infection, and generate pro-inflammatory cytokines like TNFα, IFN γ, 

IL17A, and keratinocyte chemoattractant.  

CD73 regulates chronic inflammation. In the germinal center, follicular dendritic cells 

interact with B cells via CD73 and induce maturation (Airas & Jalkanen, 1996). Interestingly, B1 

cells, which are a part of the humoral response, express a 5-fold increase in CD73 compared to 

the adaptive immune B2 cells (Conter et al., 2014). Allard et al further showed that the lack of 

CD73 and subsequent adenosine signaling in B1 cells delayed isotype switching from the 

primary response IgM antibody to the pro-inflammatory IgG3 antibody (Allard, Charlebois, 

Gilbert, Stagg, & Chrobak, 2018). However, this delay in isotype switching did not alter the 

protective response to infection. In a chronic state of inflammation, CD73-expressing T follicular 

helper cells regulate the differentiation and maintenance of B cells in to plasma cells, suggesting 

an important role of CD73 in establishing humoral immunity (Conter et al., 2014). While 

macrophages and monocytes express cell surface CD73 in both mice and humans, their 

polarization towards a pro-inflammatory M1 or anti-inflammatory M2 phenotype is independent 

of CD73 (Eichin, Laurila, Jalkanen, & Salmi, 2015).  

Genetic deletion of CD73 promotes T cell expansion, and production of pro-

inflammatory cytokines IFNγ and IL-6 in a mice model of graft vs host disease (GvHD) 

(Tsukamoto et al., 2012). Specifically, blocking the enzymatic activity of CD73 induced a 

stronger alloreactive T cell activity, suggesting that the adenosine-generating function is 

important in the progression of GvHD (Wang et al., 2013). Thus, these suggest an important 

function of CD73 in the immune cells in attenuating the severity of inflammation or condition 

through the adenosine signaling. 
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CHAPTER 8: CD73 FUNCTIONS IN OTHER TISSUES AND CELL TYPES 

Gastrointestinal system. CD4+ T cells that lack CD73 produce a stronger immune 

response against bacterial infection, and generate pro-inflammatory cytokines like TNFα, IFN-γ, 

IL17A, and keratinocyte chemoattractant. This type of cytokine milieu resulted in more severe 

Helicobacter felis-induced gastritis or murine salmonellosis compared to the WT mice due to the 

failure of T regulatory cells lacking CD73 to attenuate inflammation. However, there was a 

significant enhancement of bacterial clearance in CD73 KO mice that were infected with H. felis 

or Salmonella (Alam et al., 2014; Alam et al., 2009). CD73 KO mice also exhibited a more 

severe condition of experimental inflammatory colitis compared to WT mice (Kaku et al., 2014). 

Upon adoptive transfer of CD73-expressing B1 cells from WT mice to CD73 KO mice, the 

disease severity was reduced (Kaku et al., 2014).  

Bone. The role of adenosine signaling in the development and differentiation of bone 

tissue, osteoblasts, and osteoclasts has been implicated in several studies.  For example, a study 

demonstrated that adenosine receptor activation induced mitogenesis and triggered a protective 

response in regard to cell death (Fatokun, Stone, & Smith, 2006; Shimegi, 1998).  Additionally, 

in human primary osteoblast cells it was shown that pharmacological activation of adenosine 

receptors promoted proliferation, and proliferation was halted with antagonism (Costa et al., 

2011). CD73 is a known marker of osteochondroprogenitor cells, which readily form bone after 

transplantation (Singh et al., 2015) and CD73-null mice develop bone deficiencies, such as 

osteopenia (Takedachi et al., 2012).  Furthermore, in vitro studies using MC3T3-E1 cells 

demonstrated CD73-generated adenosine signals through the adenosine A2B receptor to 
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modulate osteoblast differentiation.  Recently, it was demonstrated that CD73-generated 

adenosine in human amniotic fluid stem cells enhances osteogenic potential via TGFβ induction 

(Hau et al., 2017).  Overall, CD73 and CD73-generated adenosine are important in the process of 

bone development and growth. In terms of pathologic conditions, CD73-deficient mice are 

significantly more susceptible to developing collagen-induced arthritis compared to wild-type 

mice (Chrobak et al., 2015). In the absence of CD73, there is enhanced production of 

proinflammatory cytokines in the joints and augmented Th1 T cell responses, leading to joint 

destruction. Importantly, using bone marrow transplants it was shown that the protective activity 

of CD73 originated from nonhematopoietic cells (Chrobak et al., 2015).  

Inflammation of the eye. CD73 marks an intermediate stage in γδ T cells from which 

their ability to express effector genes IFNγ or IL-17 is resolved (Coffey et al., 2014). Related to 

this function, it was reported that CD73 expression on γδ T cells is dynamically regulated during 

experimental autoimmune uveitis (EAU) and that low CD73 expression on γδ T cells correlated 

with enhanced Th17 response-promoting activity. Mice lacking CD73 showed decreased 

susceptibility to developing EAU (Liang et al., 2016). 

Reproductive tissues. In CD73-deficient mice, it was demonstrated that CD73-generated 

adenosine is important to initiate and maintain penile erections (Wen et al., 2011).  In humans, 

the expression of ecto-nucleotidases, such as CD73, fluctuates in concert with the menstrual 

cycle and changes after menopause in the endometrium (Aliagas et al., 2013).   

Skin and Muscle. Nt5e-/- mice have lower susceptibility to developing bleomycin-

induced skin fibrosis (Fernandez et al., 2013). This response, also seen in the CD39-deficient 

mice, was associated with reduced expression of the profibrotic mediators, TGF-β1 and 

connective tissue growth factor, and decreased myofibroblast cell populations (Fernandez et al., 
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2013).  In Nt5e-/- mice that were fed a high fat diet, CD73 plays a protective role in the 

development of dyslipidemia and intramyocellular lipid accumulation in the muscle of mice 

(Burghoff et al., 2013).  Ultimately, CD73 function is critical in various tissues and processes in 

the body, therefore, it is essential to potentially exploit CD73 and adenosine signaling in the 

development of novel therapies that can be utilized to improve health. 
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Figure 1. Relative levels of CD73 protein expression across human organ systems and 
tissues. The expression data on CD73 (Gene: NT5E) were collected from the Human Protein 
Atlas Project (https://www.proteinatlas.org/). Note that CD73 is ubiquitous and abundantly 
expressed in most tissue types. 
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Figure 2. Reported phenotypes of the CD73 knockout mice. Unless otherwise specified, all 
studies utilized the whole body knockout model. Green upward pointing arrow denotes that the response 
was elevated in the CD73 knockout mouse; red downward arrow denotes that the response was decreased 
in the CD73 knockout mouse. In cases where conditional knockouts (cKO) were used, this is specified in 
the parenthesis.  

 

 
 
 

 
 
 
 
 
 
 



27 
 

REFERENCES 
 

Airas, L., Hellman, J., Salmi, M., Bono, P., Puurunen, T., Smith, D. J., & Jalkanen, S. (1995). CD73 is 
involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular 
adhesion protein 2 identifies it as CD73. J Exp Med, 182(5), 1603-1608.  

 
Airas, L., & Jalkanen, S. (1996). CD73 mediates adhesion of B cells to follicular dendritic cells. Blood, 

88(5), 1755-1764.  
 
Airas, L., Niemela, J., & Jalkanen, S. (2000). CD73 engagement promotes lymphocyte binding to 

endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J 
Immunol, 165(10), 5411-5417.  

 
Airas, L., Niemela, J., Salmi, M., Puurunen, T., Smith, D. J., & Jalkanen, S. (1997). Differential 

regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion 
molecule, on lymphocytes and endothelial cells. J Cell Biol, 136(2), 421-431.  

 
Alam, M. S., Kuo, J. L., Ernst, P. B., Derr-Castillo, V., Pereira, M., Gaines, D., . . . Williams, K. (2014). 

Ecto-5'-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine 
salmonellosis. Sci Rep, 4, 4486. doi:10.1038/srep04486 

 
Alam, M. S., Kurtz, C. C., Rowlett, R. M., Reuter, B. K., Wiznerowicz, E., Das, S., . . . Ernst, P. B. 

(2009). CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory 
cytokine production and Helicobacter felis-induced gastritis in mice. J Infect Dis, 199(4), 494-
504. doi:10.1086/596205 

 
Aliagas, E., Vidal, A., Torrejon-Escribano, B., Taco Mdel, R., Ponce, J., de Aranda, I. G., . . . Martin-

Satue, M. (2013). Ecto-nucleotidases distribution in human cyclic and postmenopausic 
endometrium. Purinergic Signal, 9(2), 227-237. doi:10.1007/s11302-012-9345-0 

 
Allard, D., Charlebois, R., Gilbert, L., Stagg, J., & Chrobak, P. (2018). CD73-A2a adenosine receptor 

axis promotes innate B cell antibody responses to pneumococcal polysaccharide vaccination. 
PLoS One, 13(1), e0191973. doi:10.1371/journal.pone.0191973 

 
Antonioli, L., Blandizzi, C., Pacher, P., & Hasko, G. (2013). Immunity, inflammation and cancer: a 

leading role for adenosine. Nat Rev Cancer, 13(12), 842-857. doi:10.1038/nrc3613 
 
Antonioli, L., Pacher, P., Vizi, E. S., & Hasko, G. (2013). CD39 and CD73 in immunity and 

inflammation. Trends Mol Med, 19(6), 355-367. doi:10.1016/j.molmed.2013.03.005 
 
Augusto, E., Matos, M., Sevigny, J., El-Tayeb, A., Bynoe, M. S., Muller, C. E., . . . Chen, J. F. (2013). 

Ecto-5'-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine 
A2A receptor functions. J Neurosci, 33(28), 11390-11399. doi:10.1523/JNEUROSCI.5817-
12.2013 

 
Beavis, P. A., Stagg, J., Darcy, P. K., & Smyth, M. J. (2012). CD73: a potent suppressor of antitumor 

immune responses. Trends Immunol, 33(5), 231-237. doi:10.1016/j.it.2012.02.009 
 
Bellingan, G., Brealey, D., Mancebo, J., Mercat, A., Patroniti, N., Pettila, V., . . . Ranieri, V. M. (2017). 

Comparison of the efficacy and safety of FP-1201-lyo (intravenously administered recombinant 
human interferon beta-1a) and placebo in the treatment of patients with moderate or severe acute 



28 
 

respiratory distress syndrome: study protocol for a randomized controlled trial. Trials, 18(1), 536. 
doi:10.1186/s13063-017-2234-7 

 
Bellingan, G., Maksimow, M., Howell, D. C., Stotz, M., Beale, R., Beatty, M., . . . Jalkanen, S. (2014). 

The effect of intravenous interferon-beta-1a (FP-1201) on lung CD73 expression and on acute 
respiratory distress syndrome mortality: an open-label study. Lancet Respir Med, 2(2), 98-107. 
doi:10.1016/S2213-2600(13)70259-5 

 
Bentley, J. K., Popova, A. P., Bozyk, P. D., Linn, M. J., Baek, A. E., Lei, J., . . . Hershenson, M. B. 

(2010). Ovalbumin sensitization and challenge increases the number of lung cells possessing a 
mesenchymal stromal cell phenotype. Respir Res, 11, 127. doi:10.1186/1465-9921-11-127 

 
Berne, R. M. (1963). Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. 

Am J Physiol, 204, 317-322. doi:10.1152/ajplegacy.1963.204.2.317 
 
Blume, C., Felix, A., Shushakova, N., Gueler, F., Falk, C. S., Haller, H., & Schrader, J. (2012). 

Autoimmunity in CD73/Ecto-5'-nucleotidase deficient mice induces renal injury. PLoS One, 7(5), 
e37100. doi:10.1371/journal.pone.0037100 

 
Blundon, J. A., Roy, N. C., Teubner, B. J. W., Yu, J., Eom, T. Y., Sample, K. J., . . . Zakharenko, S. S. 

(2017). Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine 
signaling. Science, 356(6345), 1352-1356. doi:10.1126/science.aaf4612 

 
Bonner, F., Borg, N., Burghoff, S., & Schrader, J. (2012). Resident cardiac immune cells and expression 

of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One, 7(4), e34730. 
doi:10.1371/journal.pone.0034730 

 
Bonner, F., Borg, N., Jacoby, C., Temme, S., Ding, Z., Flogel, U., & Schrader, J. (2013). Ecto-5'-

nucleotidase on immune cells protects from adverse cardiac remodeling. Circ Res, 113(3), 301-
312. doi:10.1161/CIRCRESAHA.113.300180 

 
Borg, N., Alter, C., Gorldt, N., Jacoby, C., Ding, Z., Steckel, B., . . . Schrader, J. (2017). CD73 on T Cells 

Orchestrates Cardiac Wound Healing After Myocardial Infarction by Purinergic Metabolic 
Reprogramming. Circulation, 136(3), 297-313. doi:10.1161/CIRCULATIONAHA.116.023365 

 
Boring, Y. C., Flogel, U., Jacoby, C., Heil, M., Schaper, W., & Schrader, J. (2013). Lack of ecto-5'-

nucleotidase (CD73) promotes arteriogenesis. Cardiovasc Res, 97(1), 88-96. 
doi:10.1093/cvr/cvs286 

 
Bou Ghanem, E. N., Clark, S., Roggensack, S. E., McIver, S. R., Alcaide, P., Haydon, P. G., & Leong, J. 

M. (2015). Extracellular Adenosine Protects against Streptococcus pneumoniae Lung Infection by 
Regulating Pulmonary Neutrophil Recruitment. PLoS Pathog, 11(8), e1005126. 
doi:10.1371/journal.ppat.1005126 

 
Burghoff, S., Flogel, U., Bongardt, S., Burkart, V., Sell, H., Tucci, S., . . . Schrader, J. (2013). Deletion of 

CD73 promotes dyslipidemia and intramyocellular lipid accumulation in muscle of mice. Arch 
Physiol Biochem, 119(2), 39-51. doi:10.3109/13813455.2012.755547 

 
Burnstock, G., & Pelleg, A. (2015). Cardiac purinergic signalling in health and disease. Purinergic 

Signal, 11(1), 1-46. doi:10.1007/s11302-014-9436-1 
 



29 
 

Carman, A. J., Mills, J. H., Krenz, A., Kim, D. G., & Bynoe, M. S. (2011). Adenosine receptor signaling 
modulates permeability of the blood-brain barrier. J Neurosci, 31(37), 13272-13280. 
doi:10.1523/JNEUROSCI.3337-11.2011 

 
Chan, E. S., Montesinos, M. C., Fernandez, P., Desai, A., Delano, D. L., Yee, H., . . . Cronstein, B. N. 

(2006). Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J 
Pharmacol, 148(8), 1144-1155. doi:10.1038/sj.bjp.0706812 

 
Chen, J. F., Eltzschig, H. K., & Fredholm, B. B. (2013). Adenosine receptors as drug targets--what are the 

challenges? Nat Rev Drug Discov, 12(4), 265-286. doi:10.1038/nrd3955 
 
Chrobak, P., Charlebois, R., Rejtar, P., El Bikai, R., Allard, B., & Stagg, J. (2015). CD73 plays a 

protective role in collagen-induced arthritis. J Immunol, 194(6), 2487-2492. 
doi:10.4049/jimmunol.1401416 

 
Chu, S., Xiong, W., & Parkinson, F. E. (2014). Effect of ecto-5'-nucleotidase (eN) in astrocytes on 

adenosine and inosine formation. Purinergic Signal, 10(4), 603-609. doi:10.1007/s11302-014-
9421-8 

 
Coffey, F., Lee, S. Y., Buus, T. B., Lauritsen, J. P., Wong, G. W., Joachims, M. L., . . . Wiest, D. L. 

(2014). The TCR ligand-inducible expression of CD73 marks gammadelta lineage commitment 
and a metastable intermediate in effector specification. J Exp Med, 211(2), 329-343. 
doi:10.1084/jem.20131540 

 
Colgan, S. P., Eltzschig, H. K., Eckle, T., & Thompson, L. F. (2006). Physiological roles for ecto-5'-

nucleotidase (CD73). Purinergic Signal, 2(2), 351-360. doi:10.1007/s11302-005-5302-5 
 
Conter, L. J., Song, E., Shlomchik, M. J., & Tomayko, M. M. (2014). CD73 expression is dynamically 

regulated in the germinal center and bone marrow plasma cells are diminished in its absence. 
PLoS One, 9(3), e92009. doi:10.1371/journal.pone.0092009 

 
Costa, M. A., Barbosa, A., Neto, E., Sa-e-Sousa, A., Freitas, R., Neves, J. M., . . . Correia-de-Sa, P. 

(2011). On the role of subtype selective adenosine receptor agonists during proliferation and 
osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol, 226(5), 
1353-1366. doi:10.1002/jcp.22458 

 
Davies, J., Karmouty-Quintana, H., Le, T. T., Chen, N. Y., Weng, T., Luo, F., . . . Blackburn, M. R. 

(2014). Adenosine promotes vascular barrier function in hyperoxic lung injury. Physiol Rep, 2(9). 
doi:10.14814/phy2.12155 

 
Dianzani, U., Redoglia, V., Bragardo, M., Attisano, C., Bianchi, A., Di Franco, D., . . . et al. (1993). Co-

stimulatory signal delivered by CD73 molecule to human CD45RAhiCD45ROlo (naive) CD8+ T 
lymphocytes. J Immunol, 151(8), 3961-3970.  

 
Dowling, J. J., Gibbs, E., Russell, M., Goldman, D., Minarcik, J., Golden, J. A., & Feldman, E. L. (2008). 

Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac 
structure and function. Circ Res, 102(4), 423-431. doi:10.1161/CIRCRESAHA.107.161489 

 
Ehrentraut, H., Clambey, E. T., McNamee, E. N., Brodsky, K. S., Ehrentraut, S. F., Poth, J. M., . . . 

Eltzschig, H. K. (2013). CD73+ regulatory T cells contribute to adenosine-mediated resolution of 
acute lung injury. FASEB J, 27(6), 2207-2219. doi:10.1096/fj.12-225201 



30 
 

 
Eichin, D., Laurila, J. P., Jalkanen, S., & Salmi, M. (2015). CD73 Activity is Dispensable for the 

Polarization of M2 Macrophages. PLoS One, 10(8), e0134721. doi:10.1371/journal.pone.0134721 
 
Eltzschig, H. K. (2009). Adenosine: an old drug newly discovered. Anesthesiology, 111(4), 904-915. 

doi:10.1097/ALN.0b013e3181b060f2 
 
Eltzschig, H. K., Ibla, J. C., Furuta, G. T., Leonard, M. O., Jacobson, K. A., Enjyoji, K., . . . Colgan, S. P. 

(2003). Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in 
posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med, 
198(5), 783-796. doi:10.1084/jem.20030891 

 
Fatokun, A. A., Stone, T. W., & Smith, R. A. (2006). Hydrogen peroxide-induced oxidative stress in 

MC3T3-E1 cells: The effects of glutamate and protection by purines. Bone, 39(3), 542-551. 
doi:10.1016/j.bone.2006.02.062 

 
Fausther, M., Lavoie, E. G., Goree, J. R., Baldini, G., & Dranoff, J. A. (2014). NT5E mutations that cause 

human disease are associated with intracellular mistrafficking of NT5E protein. PLoS One, 9(6), 
e98568. doi:10.1371/journal.pone.0098568 

 
Fausther, M., Lavoie, E. G., Goree, J. R., & Dranoff, J. A. (2017). An Elf2-like transcription factor acts as 

repressor of the mouse ecto-5'-nucleotidase gene expression in hepatic myofibroblasts. Purinergic 
Signal, 13(4), 417-428. doi:10.1007/s11302-017-9570-7 

 
Fausther, M., Sheung, N., Saiman, Y., Bansal, M. B., & Dranoff, J. A. (2012). Activated hepatic stellate 

cells upregulate transcription of ecto-5'-nucleotidase/CD73 via specific SP1 and SMAD promoter 
elements. Am J Physiol Gastrointest Liver Physiol, 303(8), G904-914. 
doi:10.1152/ajpgi.00015.2012 

 
Fernandez, P., Perez-Aso, M., Smith, G., Wilder, T., Trzaska, S., Chiriboga, L., . . . Chan, E. S. L. (2013). 

Extracellular generation of adenosine by the ectonucleotidases CD39 and CD73 promotes dermal 
fibrosis. Am J Pathol, 183(6), 1740-1746. doi:10.1016/j.ajpath.2013.08.024 

 
Fredholm, B. B. (2007). Adenosine, an endogenous distress signal, modulates tissue damage and repair. 

Cell Death Differ, 14(7), 1315-1323. doi:10.1038/sj.cdd.4402132 
 
Grenz, A., Osswald, H., Eckle, T., Yang, D., Zhang, H., Tran, Z. V., . . . Eltzschig, H. K. (2008). The 

reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med, 5(6), e137. 
doi:10.1371/journal.pmed.0050137 

 
Hart, M. L., Much, C., Gorzolla, I. C., Schittenhelm, J., Kloor, D., Stahl, G. L., & Eltzschig, H. K. (2008). 

Extracellular adenosine production by ecto-5'-nucleotidase protects during murine hepatic 
ischemic preconditioning. Gastroenterology, 135(5), 1739-1750 e1733. 
doi:10.1053/j.gastro.2008.07.064 

 
Hasko, G., Csoka, B., Koscso, B., Chandra, R., Pacher, P., Thompson, L. F., . . . Nemeth, Z. H. (2011). 

Ecto-5'-nucleotidase (CD73) decreases mortality and organ injury in sepsis. J Immunol, 187(8), 
4256-4267. doi:10.4049/jimmunol.1003379 

 



31 
 

Hau, K. L., Ranzoni, A. M., Vlahova, F., Hawkins, K., De Coppi, P., David, A. L., & Guillot, P. V. 
(2017). TGFbeta-induced osteogenic potential of human amniotic fluid stem cells via CD73-
generated adenosine production. Sci Rep, 7(1), 6601. doi:10.1038/s41598-017-06780-1 

 
Hesse, J., Leberling, S., Boden, E., Friebe, D., Schmidt, T., Ding, Z., . . . Schrader, J. (2017). CD73-

derived adenosine and tenascin-C control cytokine production by epicardium-derived cells 
formed after myocardial infarction. FASEB J, 31(7), 3040-3053. doi:10.1096/fj.201601307R 

 
Ipata, P. L., & Balestri, F. (2013). The functional logic of cytosolic 5'-nucleotidases. Curr Med Chem, 

20(34), 4205-4216.  
 
Iwaisako, K., Jiang, C., Zhang, M., Cong, M., Moore-Morris, T. J., Park, T. J., . . . Kisseleva, T. (2014). 

Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A, 111(32), E3297-
3305. doi:10.1073/pnas.1400062111 

 
Jackson, E. K., Cheng, D., Verrier, J. D., Janesko-Feldman, K., & Kochanek, P. M. (2014). Interactive 

roles of CD73 and tissue nonspecific alkaline phosphatase in the renal vascular metabolism of 5'-
AMP. Am J Physiol Renal Physiol, 307(6), F680-685. doi:10.1152/ajprenal.00312.2014 

 
Kaku, H., Cheng, K. F., Al-Abed, Y., & Rothstein, T. L. (2014). A novel mechanism of B cell-mediated 

immune suppression through CD73 expression and adenosine production. J Immunol, 193(12), 
5904-5913. doi:10.4049/jimmunol.1400336 

 
Kehayas, V., & Holtmaat, A. (2017). Rejuvenating brain plasticity. Science, 356(6345), 1335-1336. 

doi:10.1126/science.aan8374 
 
Kim, M., Ham, A., Kim, J. Y., Brown, K. M., D'Agati, V. D., & Lee, H. T. (2013). The volatile anesthetic 

isoflurane induces ecto-5'-nucleotidase (CD73) to protect against renal ischemia and reperfusion 
injury. Kidney Int, 84(1), 90-103. doi:10.1038/ki.2013.43 

 
Knapp, K., Zebisch, M., Pippel, J., El-Tayeb, A., Muller, C. E., & Strater, N. (2012). Crystal structure of 

the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. 
Structure, 20(12), 2161-2173. doi:10.1016/j.str.2012.10.001 

 
Knapp, K. M., Zebisch, M., & Strater, N. (2012). Crystallization and preliminary X-ray analysis of the 

open form of human ecto-5'-nucleotidase (CD73). Acta Crystallogr Sect F Struct Biol Cryst 
Commun, 68(Pt 12), 1545-1549. doi:10.1107/S1744309112045447 

 
Koszalka, P., Ozuyaman, B., Huo, Y., Zernecke, A., Flogel, U., Braun, N., . . . Schrader, J. (2004). 

Targeted disruption of cd73/ecto-5'-nucleotidase alters thromboregulation and augments vascular 
inflammatory response. Circ Res, 95(8), 814-821. doi:10.1161/01.RES.0000144796.82787.6f 

 
Kretschmar, C., Oyarzun, C., Villablanca, C., Jaramillo, C., Alarcon, S., Perez, G., . . . San Martin, R. 

(2016). Reduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic 
Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy. PLoS One, 
11(1), e0147430. doi:10.1371/journal.pone.0147430 

 
Kulesskaya, N., Voikar, V., Peltola, M., Yegutkin, G. G., Salmi, M., Jalkanen, S., & Rauvala, H. (2013). 

CD73 is a major regulator of adenosinergic signalling in mouse brain. PLoS One, 8(6), e66896. 
doi:10.1371/journal.pone.0066896 

 



32 
 

Langer, D., Hammer, K., Koszalka, P., Schrader, J., Robson, S., & Zimmermann, H. (2008). Distribution 
of ectonucleotidases in the rodent brain revisited. Cell Tissue Res, 334(2), 199-217. 
doi:10.1007/s00441-008-0681-x 

 
Li, Q., Price, T. P., Sundberg, J. P., & Uitto, J. (2014). Juxta-articular joint-capsule mineralization in 

CD73 deficient mice: similarities to patients with NT5E mutations. Cell Cycle, 13(16), 2609-
2615. doi:10.4161/15384101.2014.943567 

 
Liang, D., Zuo, A., Zhao, R., Shao, H., Born, W. K., O'Brien, R. L., . . . Sun, D. (2016). CD73 Expressed 

on gammadelta T Cells Shapes Their Regulatory Effect in Experimental Autoimmune Uveitis. 
PLoS One, 11(2), e0150078. doi:10.1371/journal.pone.0150078 

 
Mahamed, D. A., Mills, J. H., Egan, C. E., Denkers, E. Y., & Bynoe, M. S. (2012). CD73-generated 

adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central 
nervous system. Proc Natl Acad Sci U S A, 109(40), 16312-16317. doi:10.1073/pnas.1205589109 

 
Mahamed, D. A., Toussaint, L. E., & Bynoe, M. S. (2015). CD73-generated adenosine is critical for 

immune regulation during Toxoplasma gondii infection. Infect Immun, 83(2), 721-729. 
doi:10.1128/IAI.02536-14 

 
Matsuura, S., Eto, S., Kato, K., & Tashiro, Y. (1984). Ferritin immunoelectron microscopic localization 

of 5'-nucleotidase on rat liver cell surface. J Cell Biol, 99(1 Pt 1), 166-173.  
 
Mikhailov, A., Sokolovskaya, A., Yegutkin, G. G., Amdahl, H., West, A., Yagita, H., . . . Eriksson, J. E. 

(2008). CD73 participates in cellular multiresistance program and protects against TRAIL-
induced apoptosis. J Immunol, 181(1), 464-475.  

 
Mills, J. H., Thompson, L. F., Mueller, C., Waickman, A. T., Jalkanen, S., Niemela, J., . . . Bynoe, M. S. 

(2008). CD73 is required for efficient entry of lymphocytes into the central nervous system 
during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A, 105(27), 9325-
9330. doi:10.1073/pnas.0711175105 

 
Monguio-Tortajada, M., Roura, S., Galvez-Monton, C., Franquesa, M., Bayes-Genis, A., & Borras, F. E. 

(2017). Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and 
in a Swine Model of Myocardial Infarction In Vivo. Front Immunol, 8, 1577. 
doi:10.3389/fimmu.2017.01577 

 
Muzzi, M., Blasi, F., Masi, A., Coppi, E., Traini, C., Felici, R., . . . Chiarugi, A. (2013). Neurological 

basis of AMP-dependent thermoregulation and its relevance to central and peripheral 
hyperthermia. J Cereb Blood Flow Metab, 33(2), 183-190. doi:10.1038/jcbfm.2012.157 

 
Ohta, A., & Sitkovsky, M. (2001). Role of G-protein-coupled adenosine receptors in downregulation of 

inflammation and protection from tissue damage. Nature, 414(6866), 916-920. 
doi:10.1038/414916a 

 
Ohta, M., Toyama, K., Gutterman, D. D., Campbell, W. B., Lemaitre, V., Teraoka, R., & Miura, H. 

(2013). Ecto-5'-nucleotidase, CD73, is an endothelium-derived hyperpolarizing factor synthase. 
Arterioscler Thromb Vasc Biol, 33(3), 629-636. doi:10.1161/ATVBAHA.112.300600 

 
Olsson, R. A. (2004). Cardiovascular ecto-5'-nucleotidase: an end to 40 years in the wilderness? Circ Res, 

95(8), 752-753. doi:10.1161/01.RES.0000146278.94064.4b 



33 
 

 
Peng, Z., Borea, P. A., Varani, K., Wilder, T., Yee, H., Chiriboga, L., . . . Cronstein, B. N. (2009). 

Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest, 119(3), 582-
594. doi:10.1172/JCI37409 

 
Peng, Z., Fernandez, P., Wilder, T., Yee, H., Chiriboga, L., Chan, E. S., & Cronstein, B. N. (2008). Ecto-

5'-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in 
hepatic fibrosis. FASEB J, 22(7), 2263-2272. doi:10.1096/fj.07-100685 

 
Petrovic-Djergovic, D., Hyman, M. C., Ray, J. J., Bouis, D., Visovatti, S. H., Hayasaki, T., & Pinsky, D. 

J. (2012). Tissue-resident ecto-5' nucleotidase (CD73) regulates leukocyte trafficking in the 
ischemic brain. J Immunol, 188(5), 2387-2398. doi:10.4049/jimmunol.1003671 

 
Picher, M., Burch, L. H., Hirsh, A. J., Spychala, J., & Boucher, R. C. (2003). Ecto 5'-nucleotidase and 

nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in 
human airways. J Biol Chem, 278(15), 13468-13479. doi:10.1074/jbc.M300569200 

 
Pluskota, E., Ma, Y., Bledzka, K. M., Bialkowska, K., Soloviev, D. A., Szpak, D., . . . Plow, E. F. (2013). 

Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP 
catabolic enzymes via a clathrin-dependent mechanism. Blood, 122(14), 2491-2499. 
doi:10.1182/blood-2013-04-497669 

 
Quast, C., Alter, C., Ding, Z., Borg, N., & Schrader, J. (2017). Adenosine Formed by CD73 on T Cells 

Inhibits Cardiac Inflammation and Fibrosis and Preserves Contractile Function in Transverse 
Aortic Constriction-Induced Heart Failure. Circ Heart Fail, 10(4). 
doi:10.1161/CIRCHEARTFAILURE.116.003346 

 
Rajakumar, S. V., Lu, B., Crikis, S., Robson, S. C., d'Apice, A. J., Cowan, P. J., & Dwyer, K. M. (2010). 

Deficiency or inhibition of CD73 protects in mild kidney ischemia-reperfusion injury. 
Transplantation, 90(12), 1260-1264. doi:10.1097/TP.0b013e3182003d9b 

 
Resta, R., & Thompson, L. F. (1997). T cell signalling through CD73. Cell Signal, 9(2), 131-139.  
 
Resta, R., Yamashita, Y., & Thompson, L. F. (1998). Ecto-enzyme and signaling functions of lymphocyte 

CD73. Immunol Rev, 161, 95-109.  
 
Roberts, V., Lu, B., Rajakumar, S., Cowan, P. J., & Dwyer, K. M. (2013). The CD39-adenosinergic axis 

in the pathogenesis of renal ischemia-reperfusion injury. Purinergic Signal, 9(2), 135-143. 
doi:10.1007/s11302-012-9342-3 

 
Rothe, H., Brandenburg, V., Haun, M., Kollerits, B., Kronenberg, F., Ketteler, M., & Wanner, C. (2017). 

Ecto-5' -Nucleotidase CD73 (NT5E), vitamin D receptor and FGF23 gene polymorphisms may 
play a role in the development of calcific uremic arteriolopathy in dialysis patients - Data from 
the German Calciphylaxis Registry. PLoS One, 12(2), e0172407. 
doi:10.1371/journal.pone.0172407 

 
Saze, Z., Schuler, P. J., Hong, C. S., Cheng, D., Jackson, E. K., & Whiteside, T. L. (2013). Adenosine 

production by human B cells and B cell-mediated suppression of activated T cells. Blood, 122(1), 
9-18. doi:10.1182/blood-2013-02-482406 

 



34 
 

Schreiber, R., Castrop, H., & Kunzelmann, K. (2008). Allergen-induced airway hyperresponsiveness is 
absent in ecto-5'-nucleotidase (CD73)-deficient mice. Pflugers Arch, 457(2), 431-440. 
doi:10.1007/s00424-008-0543-0 

 
Shimegi, S. (1998). Mitogenic action of adenosine on osteoblast-like cells, MC3T3-E1. Calcif Tissue Int, 

62(5), 418-425.  
 
Shirley, D. G., Vekaria, R. M., & Sevigny, J. (2009). Ectonucleotidases in the kidney. Purinergic Signal, 

5(4), 501-511. doi:10.1007/s11302-009-9152-4 
 
Singh, A., Lester, C., Drapp, R., Hu, D. Z., Glimcher, L. H., & Jones, D. (2015). Tetraspanin CD9 and 

ectonucleotidase CD73 identify an osteochondroprogenitor population with elevated osteogenic 
properties. Development, 142(3), 438-443. doi:10.1242/dev.113571 

 
Snider, N. T., Griggs, N. W., Singla, A., Moons, D. S., Weerasinghe, S. V., Lok, A. S., . . . Omary, M. B. 

(2013). CD73 (ecto-5'-nucleotidase) hepatocyte levels differ across mouse strains and contribute 
to mallory-denk body formation. Hepatology, 58(5), 1790-1800. doi:10.1002/hep.26525 

 
Sowa, N. A., Taylor-Blake, B., & Zylka, M. J. (2010). Ecto-5'-nucleotidase (CD73) inhibits nociception 

by hydrolyzing AMP to adenosine in nociceptive circuits. J Neurosci, 30(6), 2235-2244. 
doi:10.1523/JNEUROSCI.5324-09.2010 

 
Sowa, N. A., Voss, M. K., & Zylka, M. J. (2010). Recombinant ecto-5'-nucleotidase (CD73) has long 

lasting antinociceptive effects that are dependent on adenosine A1 receptor activation. Mol Pain, 
6, 20. doi:10.1186/1744-8069-6-20 

 
St Hilaire, C., Ziegler, S. G., Markello, T. C., Brusco, A., Groden, C., Gill, F., . . . Boehm, M. (2011). 

NT5E mutations and arterial calcifications. N Engl J Med, 364(5), 432-442. 
doi:10.1056/NEJMoa0912923 

 
Street, S. E., Kramer, N. J., Walsh, P. L., Taylor-Blake, B., Yadav, M. C., King, I. F., . . . Zylka, M. J. 

(2013). Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate 
adenosine in the dorsal spinal cord. J Neurosci, 33(27), 11314-11322. 
doi:10.1523/JNEUROSCI.0133-13.2013 

 
Street, S. E., & Zylka, M. J. (2011). Emerging roles for ectonucleotidases in pain-sensing neurons. 

Neuropsychopharmacology, 36(1), 358. doi:10.1038/npp.2010.141 
 
Sung, S. J., Li, L., Huang, L., Lawler, J., Ye, H., Rosin, D. L., . . . Okusa, M. D. (2017). Proximal Tubule 

CD73 Is Critical in Renal Ischemia-Reperfusion Injury Protection. J Am Soc Nephrol, 28(3), 888-
902. doi:10.1681/ASN.2016020229 

 
Tak, E., Ridyard, D., Kim, J. H., Zimmerman, M., Werner, T., Wang, X. X., . . . Grenz, A. (2014). CD73-

dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic 
nephropathy. J Am Soc Nephrol, 25(3), 547-563. doi:10.1681/ASN.2012101014 

 
Takano, T., Oberheim, N., Cotrina, M. L., & Nedergaard, M. (2009). Astrocytes and ischemic injury. 

Stroke, 40(3 Suppl), S8-12. doi:10.1161/STROKEAHA.108.533166 
 



35 
 

Takedachi, M., Oohara, H., Smith, B. J., Iyama, M., Kobashi, M., Maeda, K., . . . Murakami, S. (2012). 
CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol, 227(6), 2622-
2631. doi:10.1002/jcp.23001 

 
Takedachi, M., Qu, D., Ebisuno, Y., Oohara, H., Joachims, M. L., McGee, S. T., . . . Thompson, L. F. 

(2008). CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J 
Immunol, 180(9), 6288-6296.  

 
Taskiran, E., Erbas, O., Yigitturk, G., Meral, A., Akar, H., & Taskiran, D. (2016). Exogenously 

administered adenosine attenuates renal damage in streptozotocin-induced diabetic rats. Ren Fail, 
38(8), 1276-1282. doi:10.1080/0886022X.2016.1207054 

 
Terp, M. G., Olesen, K. A., Arnspang, E. C., Lund, R. R., Lagerholm, B. C., Ditzel, H. J., & Leth-Larsen, 

R. (2013). Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast 
cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer 
cells. J Immunol, 191(8), 4165-4173. doi:10.4049/jimmunol.1301274 

 
Thompson, L. F., Eltzschig, H. K., Ibla, J. C., Van De Wiele, C. J., Resta, R., Morote-Garcia, J. C., & 

Colgan, S. P. (2004). Crucial role for ecto-5'-nucleotidase (CD73) in vascular leakage during 
hypoxia. J Exp Med, 200(11), 1395-1405. doi:10.1084/jem.20040915 

 
Thompson, L. F., Ruedi, J. M., Glass, A., Low, M. G., & Lucas, A. H. (1989). Antibodies to 5'-

nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral 
blood T cells to proliferate. J Immunol, 143(6), 1815-1821.  

 
Thompson, L. F., Takedachi, M., Ebisuno, Y., Tanaka, T., Miyasaka, M., Mills, J. H., & Bynoe, M. S. 

(2008). Regulation of leukocyte migration across endothelial barriers by ECTO-5'-nucleotidase-
generated adenosine. Nucleosides Nucleotides Nucleic Acids, 27(6), 755-760. 
doi:10.1080/15257770802145678 

 
Tsukamoto, H., Chernogorova, P., Ayata, K., Gerlach, U. V., Rughani, A., Ritchey, J. W., . . . Idzko, M. 

(2012). Deficiency of CD73/ecto-5'-nucleotidase in mice enhances acute graft-versus-host 
disease. Blood, 119(19), 4554-4564. doi:10.1182/blood-2011-09-375899 

 
Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., . . . Ponten, F. 

(2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419. 
doi:10.1126/science.1260419 

 
Volmer, J. B., Thompson, L. F., & Blackburn, M. R. (2006). Ecto-5'-nucleotidase (CD73)-mediated 

adenosine production is tissue protective in a model of bleomycin-induced lung injury. J 
Immunol, 176(7), 4449-4458.  

 
Wang, L., Fan, J., Chen, S., Zhang, Y., Curiel, T. J., & Zhang, B. (2013). Graft-versus-host disease is 

enhanced by selective CD73 blockade in mice. PLoS One, 8(3), e58397. 
doi:10.1371/journal.pone.0058397 

 
Wen, J., Dai, Y., Zhang, Y., Zhang, W., Kellems, R. E., & Xia, Y. (2011). Impaired erectile function in 

CD73-deficient mice with reduced endogenous penile adenosine production. J Sex Med, 8(8), 
2172-2180. doi:10.1111/j.1743-6109.2011.02316.x 

 



36 
 

Xu, S., Zhu, W., Shao, M., Zhang, F., Guo, J., Xu, H., . . . Lu, F. (2018). Ecto-5'-nucleotidase (CD73) 
attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 
polarization in mice. J Neuroinflammation, 15(1), 155. doi:10.1186/s12974-018-1183-8 

 
Yang, J., Jian, R., Yu, J., Zhi, X., Liao, X., Yu, J., & Zhou, P. (2015). CD73 regulates vascular smooth 

muscle cell functions and facilitates atherosclerotic plaque formation. IUBMB Life, 67(11), 853-
860. doi:10.1002/iub.1448 

 
Zhang, W., Zhang, Y., Wang, W., Dai, Y., Ning, C., Luo, R., . . . Xia, Y. (2013). Elevated ecto-5'-

nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor 
contributes to chronic hypertension. Circ Res, 112(11), 1466-1478. 
doi:10.1161/CIRCRESAHA.111.300166 

 
Zielinski, M. R., Taishi, P., Clinton, J. M., & Krueger, J. M. (2012). 5'-Ectonucleotidase-knockout mice 

lack non-REM sleep responses to sleep deprivation. Eur J Neurosci, 35(11), 1789-1798. 
doi:10.1111/j.1460-9568.2012.08112.x 

 
Zimmerman, M. A., Tak, E., Ehrentraut, S. F., Kaplan, M., Giebler, A., Weng, T., . . . Grenz, A. (2013). 

Equilibrative nucleoside transporter (ENT)-1-dependent elevation of extracellular adenosine 
protects the liver during ischemia and reperfusion. Hepatology, 58(5), 1766-1778. 
doi:10.1002/hep.26505 

 
Zimmermann, H., Zebisch, M., & Strater, N. (2012). Cellular function and molecular structure of ecto-

nucleotidases. Purinergic Signal, 8(3), 437-502. doi:10.1007/s11302-012-9309-4 
 
Zlomuzica, A., Burghoff, S., Schrader, J., & Dere, E. (2013). Superior working memory and behavioural 

habituation but diminished psychomotor coordination in mice lacking the ecto-5'-nucleotidase 
(CD73) gene. Purinergic Signal, 9(2), 175-182. doi:10.1007/s11302-012-9344-1 

 
Zukowska, P., Kutryb-Zajac, B., Jasztal, A., Toczek, M., Zabielska, M., Borkowski, T., . . . Slominska, E. 

M. (2017). Deletion of CD73 in mice leads to aortic valve dysfunction. Biochim Biophys Acta, 
1863(6), 1464-1472. doi:10.1016/j.bbadis.2017.02.008 

 


