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Abstract

We propose a Bayesian generalized low rank regression model (GLRR) for the analysis of both 

high-dimensional responses and covariates. This development is motivated by performing 

searches for associations between genetic variants and brain imaging phenotypes. GLRR 

integrates a low rank matrix to approximate the high-dimensional regression coefficient matrix of 

GLRR and a dynamic factor model to model the high-dimensional covariance matrix of brain 

imaging phenotypes. Local hypothesis testing is developed to identify significant covariates on 

high-dimensional responses. Posterior computation proceeds via an efficient Markov chain Monte 

Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of 

GLRR and its comparison with several competing approaches. We apply GLRR to investigate the 

impact of 1,071 SNPs on top 40 genes reported by AlzGene database on the volumes of 93 regions 

of interest (ROI) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI).
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1 Introduction

The emergence of high-dimensional data in genomics and neuroimaging, among other areas, 

has presented us with a large number of predictors as well as many response variables, 

which may have strong correlations. For instance, in imaging genetics as an emerging field, 

such problems frequently arise when multivariate imaging measures, such as volumes of 

cortical and subcortical regions of interest (ROIs), are predicted by high-dimensional 

covariate vectors, such as gene expressions or single nucleotide polymorphisms (SNPs). The 

joint analysis of imaging and genetic data may ultimately lead to discoveries of genes for 

some complex mental and neurological disorders, such as autism and schizophrenia (Cannon 
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and Keller, 2006; Turner et al., 2006; Scharinger et al., 2010; Paus, 2010; Peper et al., 2007; 

Chiang et al., 2011a,b). This motivates us to develop low rank regression models (GLRR) 

for the analysis of high-dimensional responses and covariates under the high-dimension-

low-sample-size setting.

Developing models for high-dimensional responses and covariates poses at least four major 

challenges including (i) a large number of regression parameters, (ii) a large covariance 

matrix, (iii) correlations among responses, and (iv) multicollinearity among predictors. 

When the number of responses and the number of covariates, which are denoted by d and p, 

respectively, are even moderately high, fitting conventional multivariate response regression 

models (MRRM) usually requires estimating a d × p matrix of regression coefficients, 

whose number pd can be much larger than the sample size. Although accounting for 

complicated correlation among multiple responses is important for improving the overall 

prediction accuracy of multivariate analysis (Breiman and Friedman, 1997), it requires 

estimating d(d + 1)/2 unknown parameters in a d × d unstructured covariance matrix. 

Another notorious difficulty is that the collinearity among a large number of predictors can 

cause issues of over-fitting and model misidentification (Fan and Lv, 2010).

There is a great interest in developing new statistical methods to handle these challenges for 

MRRMs. The early developments involve a separation approach–variable selection to 

reduce dimension and then parameter estimation, when both p and d are moderate compared 

to the sample size (Breiman and Friedman, 1997). For instance, Brown et al. (2002) 

introduced Bayesian model averaging incorporating variable selection for prediction, which 

allows for fast computation for dimensions up to several hundred. Recently, much attention 

has been given to shrinkage methods for achieving better stability and improving 

performance (Tibshirani, 1996). Notably, the most popular ones are the L1 and L2 penalties. 

The L2 penalty forces the coefficients of highly correlated covariates towards each other, 

whereas the L1 penalty usually selects only one predictor from a highly correlated group 

while ignoring the others. L1 priors can be seen as sparse priors since they create a 

singularity at the origin whose gravity pulls the smaller coefficients to zero under maximum 

a posteriori (MAP) estimation. There are fully Bayesian approaches with sparse priors for 

univariate responses like the Bayesian LASSO (Park and Casella, 2008), a generalization of 

the LASSO (Kyung et al., 2010), and the double Pareto (Armagan et al., 2011), among many 

others. These methods, however, are primarily developed under the univariate-response-

high-dimensional-covariate setting.

There have been several attempts in developing new methods under the high-dimensional-

response-and-covariate setting. When both p and d are moderate compared to the sample 

size, Breiman and Friedman (1997) introduced a Curds and Whey (C&W) method to 

improve prediction error by accounting for correlations among the response variables. Peng 

et al. (2010) proposed a variant of the elastic net to enforce sparsity in the high-dimensional 

regression coefficient matrix, but they did not account for correlations among responses. 

Rothman et al. (2010) proposed a simultaneous estimation of a sparse coefficient matrix and 

sparse covariance matrix to improve on estimation error under the L1 penalty. Similarly, Yin 

and Li (2011) presented a sparse conditional Gaussian graphical model in order to study the 

conditional independent relationships among a set of gene expressions adjusting for possible 
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genetic effects. Furthermore, several authors have explored the low rank decomposition of 

the regression coefficient matrix and then use sparsity-inducing regularization techniques to 

reduce the number of parameters (Izenman, 1975; Reinsel and Velu, 1998; Tibshirani, 1996; 

Turlach et al., 2005; Chen et al., 2012; Vounou et al., 2010). For instance, Chen et al. (2012) 

and Vounou et al. (2010) considered the singular value decomposition of the coefficient 

matrix and used the LASSO-type penalty on both the left and right singular vectors to ensure 

its sparse structure. Since all variable selection methods require a selection of a proper 

amount of regularization for consistent variable selection, some methods, such as stability 

selection and cross validation, are needed for such selection (Meinshausen and Buhlmann, 

2010). They, however, do not provide a standard inference tool (e.g., standard deviation) on 

the nonzero components of the left and right singular vectors or the coefficient matrix. 

Moreover, frequentist inference is the primary approach for making statistical inferences in 

the high-dimensional-response-and-covariate setting.

In this paper, we propose a new Bayesian GLRR to model the association between genetic 

variants and brain imaging phenotypes. A low rank regression model is introduced to 

characterize associations between genetic variants and brain imaging phenotypes, while 

accounting for the impact of other covariates. We assume shrinkage priors on the singular 

values of the regression coefficient matrix, while not explicitly requiring orthonormality of 

left and right singular vectors. This facilitates fast computation of the regression coefficient 

matrix. We consider a sparse latent factor model to more flexibly capture the within-subject 

correlation structure and assume a multiplicative gamma process shrinkage priors on the 

factor loadings, which allow for the introduction of infinitely many factors (Bhattacharya 

and Dunson, 2011). We propose Bayesian local hypothesis testing to identify significant 

effects of genetic markers on imaging phenotypes, while controlling for multiple 

comparisons. Posterior computation proceeds via an efficient Markov chain Monte Carlo 

(MCMC) algorithm.

In Section 2, we introduce the NIH Alzheimer's Disease Neuroimaging Initiative (ADNI) 

dataset. In Section 3, we introduce GLRR and its associated Bayesian estimation procedure. 

In Section 4, we conduct simulation studies with a known ground truth to examine the finite 

sample performance of GLRR and compare it with the conventional LASSO method. 

Section 5 illustrates an application of GLRR in the joint analysis of imaging, genetic, and 

clinical data from ADNI. Section 6 presents concluding remarks.

2 Generalized Low Rank Regression Models

2.1 Model Setup

Consider imaging genetic data from n independent subjects in ADNI. For each subject, we 

observe a d × 1 vector of imaging measures, denoted by Yi = (yi1, …, yid)T, and a p × 1 

vector of clinical and genetic predictors, denoted by Xi = (xi1, …, xip)T, for i = 1, …, n. Let Y 
= (yik) be an n × d matrix of mean centered responses, X = (xij) be an n × p matrix of 

standardized predictors, B = (βjk) be a p × d matrix of regression coefficients, and E = (∊ik) 

be an n × d matrix of residuals. We consider a multivariate response regression model given 

by
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(1)

where ∊i ~ Nd(0, Σ = Θ−1), in which Θ = Σ−1 is the d × d precision matrix. There are several 

statistical challenges in fitting model (1) to real data. When both p and d are relatively large 

compared to n, the number of parameters in B equals p × d and can be much larger than n. 

Furthermore, the number of unknown parameters in Σ equals d(d+1)/2. In addition to the 

number of unknown parameters, there are some additional complexities arising from 

practical applications, including different scales for different response variables and 

collinearity among the predictors.

In model (1), multiple responses are measured from the same subject and share a set of 

common predictors. Therefore, the regression coefficient matrix B can have two-way linear 

dependence coming from both the correlated responses and covariates. This shared mean 

structure can lead to a low rank mean parameter matrix B. We exploit this shared structure 

of B by decomposing it as

(2)

where r is the rank of B, Bl = δlulvl
T is the l−th layer for l = 1, …, r, Δ = diag(δ1, …, δr), U = 

[u1, …, ur] is a p × r matrix, and V = [v1, …, vr] is a d × r matrix. In (2), it is assumed that 

genetic variates that are associated with phenotypes may be relatively sparse and each 

column of U may group informative SNPs with similar association into clusters. Thus, under 

such assumption, a small rank of B may capture the major dependence structure between Yi 

and Xi.

Given the large number of parameters in Σ, we consider a Bayesian factor model to relate 

the random effects ∊i to the latent factors ηi as

(3)

where Λ is a d × ∞ factor loading matrix, ηi ~ N∞(0, I∞), and ξi ~ N(0, Σξ) with 

. As shown in Hyun et al. (2014), the factor model (3) is useful for 

delineating the medium-to-long-range (or global) spatial dependence of neuroimaging data. 

Another advantage of (3) is that it bypasses the challenging issue of selecting the number of 

factors through a delicate prior setting. To achieve dimensionality reduction, one would 

typically restrict the dimension of the latent factor vector ηi to be orders of magnitude less 

than that of ∊i. By following Bhattacharya and Dunson (2011), we choose a prior that 

shrinks the elements of to zero as the column index increases. Thus, it bypasses the 

challenging issue of selecting the number of factors. Finally, our GLRR integrates the low 

rank model (2) and the Bayesian factor model (3). Specifically, our GLRR can be written as

(4)
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Other than genetic markers, such as SNP's, it is common that Xi has a subvector, denoted by 

XPi, consisting of several prognostic variables, such as age, gender, and disease status in real 

applications. There are two different methods to deal with prognostic factors in the presence 

of genetic markers. The first method is a two-step approach. The first step is to fit the 

MRRM solely with these prognostics factors as covariates and then calculate the fitted 

residuals as adjusted responses. The final step is to fit model (4) to the adjusted responses 

with genetic markers as X. The second method is to fit model (4) with both prognostic 

factors and genetic markers as covariates. Let BP be the pP × d matrix of coefficients 

associated with the prognostic factors and XSi and BS be, respectively, the subvector of Xi 

and the submatrix of B associated with genetic markers. It may be reasonable to assume that 

BP may be unstructured and BS admits the decomposition given by 

. In this case, the model can be written as

(5)

We take the second approach and fit model (5) in real data analysis.

2.2 Low Rank Approximation

The decomposition (2) is similar to the standard singular value decomposition (SVD), but it 

differs from SVD. Specifically, it is unnecessary that the columns of U and V in (2) are 

orthonormal and this allows that ujl and vjl can take any value in (−∞, ∞), since 

identifiability is not critical for making inference on B. Thus, the decomposition (2) can be 

regarded as a generalization of SVD in Chen et al. (2012). Moreover, compared to SVD, this 

decomposition leads to better computational efficiency, since sampling a unit vector in a 

high-dimensional sphere is computationally difficult. Nevertheless, each layer Bl is a 

factorization with unit rank, which amounts to estimating a common p × 1 vector of distinct 

regression coefficients and making the rest of the coefficients some linear combinations of 

this vector with d additional parameters. Within the l-th layer, each column of Bl shares the 

same ul and δl, which facilitates the exploitation of a common dependence structure among 

the covariates collected from the same set of subjects. Similarly, each row of Bl shares the 

same vl and δl facilitating the exploitation of a common dependence structure among the 

responses from the same set of subjects. The number of parameters at each layer is p + d and 

the total number of parameters equals r × (p + d). Since r << min(p, d), the use of the 

decomposition (2) leads to a huge dimension reduction.

The decomposition (2) differs from two other popular methods including multivariate 

response models and stepwise unit rank regression models. Multivariate response models 

estimate a separate p×1 vector of coefficients for each response totaling p×d parameters. In 

frequentist analysis (Chen et al., 2012), it is common to sequentially explore each layer of B 

based on the ordering of Δ, which leads to stepwise unit rank regressions (SURR). 

Specifically, one first fits the unit rank (r = 1) regression with the observed Y as the response 

to estimate the first layer  and . Subsequently, one fits another unit rank 
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regression with  as the response to estimate the second layer . One can continue 

this process until the r-th rank. Thus, SURR can be viewed as a special case of GLRR.

2.3 Covariance Structure

The covariance structure for Yi is given by

(6)

It is common to impose a constraint on Λ to define a unique model free from identification 

problems, since Σ is invariant under the transformation Λ* = ΛP for any semi-orthogonal 

matrix P with P PT = I. For instance, for identifiability purposes, one may impose a full rank 

lower triangular constraint, which implicitly specifies an order dependence among the 

responses (Geweke and Zhou, 1996). However, it is unnecessary to impose such a constraint 

on Λ if our primary interest is on covariance matrix estimation. Specifically, we will specify 

a multiplicative gamma process shrinkage prior in (7) on a parameter expanded loading 

matrix with redundant parameters. The induced prior on Σ is invariant to the ordering of the 

responses. This shrinkage prior adaptively selects a truncation of the infinite loadings to one 

having finite columns. Thus, it facilitates the posterior computation and provides an accurate 

approximation to the infinite factor model.

2.4 Priors

We first consider the priors on the elements of all layers Bl. When dealing with two highly 

correlated covariates, the L1 prior tends to pick one and drop the other since it is typically a 

least angle selection approach to force some coefficients to zero, whereas the L2 prior tends 

to force the coefficients towards each other to produce two highly correlated coefficients. In 

GLRR, since our primary interest is to exploit the potential two-way correlations among the 

estimated coefficients, we choose the L2 prior. Let Ga(a, b) be a gamma distribution with 

scale a and shape b. Specifically, we choose

where a0, b0, c0, d0, e0, and f0 are prefixed hyper-parameters. The number of predictors p is 

included in the hyperprior of τu to have a positive-definite covariance matrix of high 

dimensional ul and fix the scale of ul. Similarly, we add the dimension d to all hyper-priors 

for τv,l. Moreover, we standardize all predictors to have zero mean and unit variance, and 

thus a single prior is sensible for all elements of ul. The varying dispersions τv,1, …, τv,d are 

chosen to account for different scales of different responses. For example, the volumes of 
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different ROIs vary dramatically across ROIs, so it is more sensible to use separate 

dispersions for different ROIs.

We place the multiplicative gamma process shrinkage prior (Bhattacharya and Dunson, 

2011) on Λ in order to increasingly shrink the factor loadings towards zero with the column 

index. Such shrinkage priors avoid the drawback of order dependence from the lower 

triangular constraint on Λ for identifiability. We use inverse gamma priors on the diagonal 

elements of Σξ. Specifically, these priors are given as follows:

(7)

where ψg for g = 1, …, ∞ are independent random variables, τλh is a global shrinkage 

parameter for the h-th column, and the ϕkhs are local shrinkage parameters for the elements 

in the h-th column. Moreover, v, a1,, a2, aσk and bσk are prefixed hyper-parameters. When a2 

> 1, the τλh's increase stochastically with the column index h, which indicates more 

shrinkage favored over the columns of higher indices. The loading component specific prior 

precision  allows shrinking the components of Λ. Straightforward Gibbs sampler can 

be applied for posterior computation

2.5 Posterior Computation

We propose a straightforward Gibbs sampler for posterior computation after truncating the 

loadings matrix to have k* << d columns. An adaptive strategy for inference on the 

truncation level k* has been described in (Bhattacharya and Dunson, 2011). The Gibbs 

sampler is computationally efficient and mixes rapidly. Starting from the initiation step, the 

Gibbs sampler at the truncated level k* proceeds as follows:

1. Update (ul, τu) according to their conditional distributions

where .

2. Update (vl, τv,k) according to their conditional distributions

for k = 1, …, d, where .

3. Update (δl, τδ) according to their conditional distributions
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where .

4. Update the kth row of Λk*, denoted by τk, from its conditional distribution

where η = (η1, …, ηn)T, Ek = (∊1k, …, ∊nk)T is the kth column of E = Y − XB, and 

 for k = 1, …, d.

5. Update ϕkh from its conditional distribution

6. Update ψ1 from its conditional distribution

and update ψh, h ≥ 2 from its conditional distribution

where  for h = 1, …, k*.

7. Update , k = 1, …, d, from its conditional distribution

8. Update ηi, i = 1, …, n, from conditionally independent posteriors

where ∊i is the ith row of E.
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2.6 Determining the Rank of B

We consider different methods for determining the rank of B. For frequentist inference, 

many regularization methods have been developed to recover the low rank structure of a 

matrix, such as B, by shrinking δℓ's to zero in (2) (Chen et al., 2012). For Bayesian 

inference, it may be tempting to use Bayesian model averaging and allow varying number of 

layers in order to improve prediction performance, but it limits us on making statistical 

inference on each layer of B, U, and V . We take a fixed-rank approach and use some 

selection criteria to choose an optimal value of r. Specifically, we consider five different 

selection criteria including the Akaike information criterion (AIC), the Bayesian information 

criterion (BIC), the normalized prediction error (PEN), the multivariate R2, and the 

normalized model error (MEN) for GLRR. Let , where  is the posterior estimate of 

B based on the MCMC samples. Let  be the error sum of 

squares and p* = r(p + d) be the number of parameters in B. The five evaluation criteria are, 

respectively, given by

(8)

The numerator and denominator of the MEN are, respectively, the model error and 

measurement error of model (4) (Yuan et al., 2007). Thus, the MEN is the ratio of the model 

error over the measurement error as a percentage of the total magnitude of all parameters. 

Similarly, the PEN and R2 are defined as percentages, which makes comparisons more 

meaningful and readily comparable across studies.

To illustrate the effectiveness of all five criteria, we independently simulated 100 data sets 

from model (4) with (n, p, d) = (100, 200, 100) and a rank 5 matrix B. For each simulated 

data set, we used the Gibbs sampler to draw posterior samples to estimate B and then 

calculated the five selection criteria in (8) as the rank varied from 1 to 10. Finally, based on 

all 100 simulated data sets, we calculated the mean and standard deviation of each selection 

criterion as the rank varied from 1 to 10. As shown in Figure 1, PEN, MEN, R2, and AIC 

stabilize around the true rank, whereas BIC reaches the minimum at the true rank. This may 

indicate that BIC outperforms other selection criteria for determining the true rank of B. This 

result also agrees with the findings in Bozdogan (1987) such that in parametric settings, AIC 

tended to select a larger model than the true model even for large sample sizes, whereas BIC 

is asymptotically consistent in estimating the true model.

2.7 Thresholding

Based on the MCMC samples obtained from the Gibbs sampler, we are able to identify three 

different sets of information including (i) SNPs that significantly contribute to a large 

portion of imaging phenotypes, (ii) imaging phenotypes that are associated with those SNPs 

in (i), and (iii) important individual SNP effects on individual imaging phenotypes. 
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Statistically, (i), (ii), and (iii) can be formulated as testing significant elements in U, V , and 

B, respectively. For the sake of space, we focus on (i). Suppose that we draw a set of 

MCMC samples  for m = 1, …, M. Due to the magnitude ambiguity of U, we 

normalize each column of U = (ujl) to calculate . Moreover, we develop a specific 

strategy to deal with the sign ambiguity of U*. For the l–th column of U*, we use the 

normalized MCMC samples  to empirically determine the j0–th row such 

that  for all j′ ≠ j0. Then, we fix  to be 

positive for l = 1, …, r and m = 1, …, M.

To detect SNPs in (i), we suggest to calculate the median and median absolute deviation 

(MAD) of , denoted by  and su,jl, respectively, since the MCMC samples 

may oscillate dramatically between the positive solution and the negative solution due to the 

sign ambiguity for all j, l. Then, one may formulate it as testing the local null and alternative 

hypotheses for  relative to su,jl given by

where T* is a specific threshold for each . One may calculate the probability of 

 given the observed data and then adjust for multiple 

comparisons (Müller et al., 2004; Wang and Dunson, 2010). Another approach is to directly 

calculate tu,jl and apply standard multiple comparison methods, such as the false discovery 

rate, to determine T* (Benjamini and Hochberg, 1995). We have found that these two 

methods lead to similar results, and thus we take the second approach. Moreover, this 

Bayesian thresholding method works well even when different responses are not on the 

same scale. Compared to the `hard' thresholding methods used in shrinkage methods (Chen 

et al., 2012; Peng et al., 2010; Rothman et al., 2010; Yin and Li, 2011), this Bayesian 

thresholding method accounts for the variation of each  and has a probabilistic 

interpretation.

3 Simulation Study

3.1 Simulation Setup

We carried out some simulation studies to examine the finite-sample performance of the 

GLRR and its posterior computation. We generated all simulated data according to model 

(4). The simulation studies were designed to establish the association between a relatively 

high-dimensional phenotype vector with a set of continuous covariates or a set of commonly 

used genetic markers (e.g., SNP). For each case, 100 simulated data sets were generated.

We simulated ∊i ~ Nd(0, Σ) and used two types of covariates including (i) continuous 

covariates generated from Xi ~ Np(0, ΣX) and (ii) actual SNPs from ADNI data set. We 

determined Σ and ΣX as follows. Let p0 be the binomial probability, which controls the 

sparsity of the precision matrix. We first generated a p×p matrix A = (ajj′) with ajj = 1 and 
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ajj′ = uniform(0, 1) × binomial(1, p0) for j ≠ j′, set ΣX = AAT, and standardized ΣX into a 

correlation matrix such that ΣX,jj = 1 for j = 1, …, d. Similarly, we used the same method to 

generate Σ, the covariance matrix of ∊i. For both Σ and ΣX, we set about 20% of the 

elements of Σ−1 and  to be zero, yielding that the means of the absolute correlations of Σ 

and ΣX are close to 0.40, respectively. We chose actual SNPs from the ADNI data set. 

Specifically, we only considered the 10,479 SNPs collected on chromosome 19, screened 

out all SNPs with more than 5% missing data and minor allele frequency (MAF)< 0.05, and 

randomly selected 400 SNPs from the remaining SNPs. For n = 1, 000 case, 500 subjects 

were randomly chosen and then replicated twice, whereas for the n=100 case, 100 subjects 

were randomly chosen from ADNI data set.

We considered five structures of B in order to examine the finite-sample performance of 

GLRR under different scenarios.

• Case 1: Xi ~ Np(0, ΣX) and a “+” structure was preset for B with (p, d) = (100, 100) 

with the elements of B being set as either 0 or 1.

• Case 2: Xi × Np(0, ΣX) and B was set as a 200 × 100 matrix with the true rank r0 = 

5. Specifically, we set B = UΔV with U = (ujl), Δ = diag(δll) = diag(100, 80, 60, 40, 

20), and V = (vlk) being 200 × 5, 5 × 5, and 5 × 100 matrices, respectively. 

Moreover, we generated all elements ujl and vlk independently from a N(0, 1) 

generator and then orthonormalized U and V.

• Case 3: Covariates are actual SNPs and B has the same structure as that in Case 2 

but with (p, d) = (400, 100).

• Case 4: Xi ~ Np(0, ΣX) and B was set as a 200 × 100 matrix with high degrees of 

correlation among elements with an average absolute correlation of 0.8, and then 

20% of the elements of B were randomly forced to 0. After enforcing zeros, the true 

rank is 100 and the average absolute correlation is close to 0.7.

• Case 5: Covariates are actual SNPs and B is the same as that in Case 4 with (p, d) = 

(400, 100).

We chose noninformative priors for the hyperparameters of B and set α0 = β0 = a0 = b0 = c0 

= d0 = e0 = f0 = 10−6. Since shrinkage is achieved through dimension reduction by choosing 

r << min(d, p), these noninformative choices of the hyperparameters suit well. For the 

hyperparameters of Σ, we chose somewhat informative priors in order to impose the 

positive-definiteness constraint and set ν = a1 = b2 = aσk = bσk = 1 for k = 1, …, d. The 

induced prior of Σ ensure that Σ is positive definite, while the prior variances are large 

enough to allow Σ to be primarily learned from the data. For each simulated dataset, we ran 

the Gibbs sampler for 10,000 iterations with 5, 000 burn-in iterations.

As a comparison, we considered a multivariate version of LASSO (Peng et al., 2010), 

Bayesian LASSO (BLASSO) (Park and Casella, 2008), and group-sparse multitask 

regression and feature selection (G-SMuRFS) (Wang et al., 2012) for all simulated data. For 

LASSO, we fitted d separate LASSO regressions to each response with a single tuning 

parameter across all responses by using a 5-fold cross validation. Since variances of all 

columns X and E are relatively equal, the variances of all columns of Y should be close to 
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each other. In this case, a single tuning parameter is sensible. For BLASSO, we chose single 

priors for each column of the response matrix by setting all hyperparameters to unity. For G-

SMuRFS, we used single group and selected the optimal values of the penalty parameters by 

using a 5-fold cross validation.

To compare different methods, we calculated their sensitivity and specificity scores under 

each scenario. For all regularization methods, since we choose all possible values of the 

tuning parameters for calculating their sensitivity and specificity scores, it is unnecessary to 

use the cross validation method to select the tuning parameters. Let I(·) be an indicator 

function of an event and , where  and sβ,jk denote the posterior mean and 

standard deviation of βjk, respectively. Specifically, for a given threshold T0, sensitivity and 

specificity scores are, respectively, given by

where TP(T0), TP(T0), TP(T0), and TP(T0) are, respectively, the numbers of true positives, 

false positives, true negatives, and false negatives, given by

Varying T0 gives different sensitivity and specificity scores, which allow us to create 

receiver operating characteristic (ROC) curves. In each ROC curve, sensitivity is plotted 

against 1-specificity. The larger the area under the ROC curve, the better a method in 

identifying the true positives while controlling for the false positives.

3.2 Results

We first performed a preliminary analysis by using five data sets simulated according to the 

five structures of B and n = 1, 000. See Figure 2 for the true B and estimated  by using 

GLRR3 (GLRR with r = 3), GLRR5 (GLRR with r = 5), BLASSO, G-SMuRFS, and 

LASSO under Case 1-Case 5. Inspecting Figure 2 reveals that for relatively large sample 

sizes, the fitted GLRR with r close to the true rank does a better job in recovering the 

underlying structure of B, while BLASSO and G-SMuRFS perform reasonably well for all 

cases. For the ”+” structure of B with the true rank r0 = 2 in Case 1, GLRR3 performs the 

best, whereas LASSO does a poor job. For B with the true rank r0 = 5 in Cases 2 and 3, 

GLRR5 performs the best. The LASSO method performs reasonably well in recovering B 

for continuous X, when B is a 200 × 100 matrix, whereas it performs poorly when X is the 

SNP matrix. For the high-rank B in Cases 4 and 5, LASSO performs the best in recovering 

B, while GLRR3 and GLRR5 perform reasonably well.
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Secondly, we examined the finite sample performance of LASSO, BLASSO, G-SMuRFS, 

GLRR3, and GLRR5 under Cases 1-5 for n = 100. In each case, 100 simulated data sets 

were used and the mean and standard deviation of each of the five selection criteria were 

calculated. The results are presented in Table 1. Inspecting Table 1 reveals that GLRRs 

outperform LASSO in most cases. As p increases, GLRRs outperform LASSO in terms of 

MEN, PEN, and R2. Under Cases 3 and 5, GLRRs outperform LASSO with much smaller 

errors as well as lower standard deviations for MEN and PEN. LASSO performs much 

better for continuous covariates than for discrete SNPs, but such patterns do not appear for 

GLRRs. The results of GLRRs and BLASSO are comparable in terms of both AIC and BIC, 

but the number of parameters under GLRRs is much smaller than that under BLASSO. 

BLASSO and G-SMuRFS perform well in terms of both model error and prediction. The 

high R2 and low prediction error of BLASSO and G-SMuRFS in the high dimension cases 

may be caused by over-fitting and model misidentification (Fan and Lv, 2010).

Thirdly, we used the ROC curve to compare LASSO, BLASSO, G-SMuRFS, GLRR3, and 

GLRR5 under Cases 1-5. See Figure 3 for details. For Case 1, BLASSO demonstrates 

consistently the best power for almost every level of specificity, while G-SMuRFS is the 

second best. GLRR3 and GLRR5 fall in the middle. For Case 4, all the methods appear to be 

comparable with GLRR3 and GLRR5. For Cases 2, 3, and 5, GLRRs consistently 

outperform all other methods.

We also compared the timing of each method in a personal laptop with Intel Core i5 1.7 

GHz processor and 4 GB memory. It takes LASSO and G-SMuRFS roughly 5 minutes to 

choose the optimal penalty and calculate estimates for a single sample of Case 5. All 

Bayesian methods take much longer since one has to sample many MCMC samples. 

Specifically, BLASSO takes about 2.75 hours to generate 10,000 samples plus 10,000 

thousand burn-ins. For the same number of samples, GLRR3 takes about 30 minutes and 

GLRR5 takes about 40 minutes.

4 The Alzheimer's Disease Neuroimaging Initiative

4.1 Imaging Genetic Data

Imaging genetics is an emergent trans-disciplinary research field to primarily evaluate the 

association between genetic variation and imaging measures as continuous phenotypes. 

Compared to traditional case control status, since imaging phenotypes may be closer to the 

underlying biological etiology of many neurodegenerative and neuropsychiatric diseases 

(e.g., Alzheimer), it may be easier to identify underlying genes of those diseases (Cannon 

and Keller, 2006; Turner et al., 2006; Scharinger et al., 2010; Paus, 2010; Peper et al., 2007; 

Chiang et al., 2011b,a). A challenging analytical issue of imaging genetics is that the 

numbers of imaging phenotypes and genetic markers can be relatively high. The aim of this 

data analysis is to use GLRR to specifically identify strong associations between imaging 

phenotypes and SNP genotypes in imaging genetic studies.

The development of GLRR is motivated by the analysis of imaging, genetic, and clinical 

data collected by ADNI. “Data used in the preparation of this article were obtained from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The 

Zhu et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute 

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-

year publicprivate partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and University of California, San 

Francisco. ADNI is the result of efforts of many coinvestigators from a broad range of 

academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but 

ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have 

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early 

AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 

and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to 

be followed in ADNI-2. For up-to-date information, see www.adni-info.org. ”

Our problem of interest is to establish the association between SNPs on the top 40 AD 

candidate genes as listed on the AlzGene database (www.alzgene.org) as of June 10, 2010 

and the brain volumes of 93 regions of interest, whose names and abbreviation are given in 

the supplementary document, while accounting for other covariates, such as age and gender. 

By using the Bayesian GLRR, we can easily carry out formal statistical inferences, such as 

the identification of significant SNPs on the differences among all 93 ROI volumes.

The MRI data, collected across a variety of 1.5 Tesla MRI scanners with protocols 

individualized for each scanner, included standard T1-weighted images obtained using 

volumetric 3-dimensional sagittal MPRAGE or equivalent protocols with varying 

resolutions. The typical protocol included: repetition time (TR) = 2400 ms, inversion time 

(TI) = 1000 ms, flip angle = 8°, and field of view (FOV) = 24 cm with a 256×256×170 

acquisition matrix in the x–, y–, and z–dimensions yielding a voxel size of 1.25×1.26×1.2 

mm3. The MRI data were preprocessed by standard steps including anterior commissure and 

posterior commissure correction, skull-stripping, cerebellum removing, intensity 

inhomogeneity correction, segmentation, and registration (Shen and Davatzikos, 2004). 

Subsequently, we carried out automatic regional labeling by labeling the template and by 

transferring the labels following the deformable registration of subject images. After 

labeling 93 ROIs, we were able to compute volumes for each of these ROIs for each subject.

The Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA) was used to geno-type 818 

subjects with 228 Normal Controls (NC), 397 MCI, and 193 AD in the ADNI 1 database, 

which resulted in a set of 620,901 SNP and copy number variation (CNV) markers. Since 

the Apolipoprotein E (APOE) SNPs, rs429358 and rs7412, are not on the Human 610-Quad 

Bead-Chip, they were genotyped separately. These two SNPs together define a 3 allele 
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haplotype, namely the ∊2, ∊3, and ∊4 variants and the presence of each of these variants was 

available in the ADNI database for all the individuals. The software EIGENSRAIT in the 

package of EIGENSOFT 3.0 was used to calculate the population stratification coefficients 

of all subjects. To reduce population stratification effects, we only used 761 Caucasians 

from all 818 subjects. We used the baseline T1 MRI scans and genetic data from all 742 

Caucasians.

By following Wang et al. (2012), we selected SNPs belonging to the top 40 AD candidate 

genes by using quality control methods. The first line quality control steps include (i) call 

rate check per subject and per SNP marker, (ii) gender check, (iii) sibling pair identification, 

(iv) the Hardy-Weinberg equilibrium test, (v) marker removal by the minor allele frequency, 

and (vi) population stratification. The second line preprocessing steps include removal of 

SNPs with (i) more than 5% missing values, (ii) minor allele frequency smaller than 10%, 

and (iii) Hardy-Weinberg equilibrium p−value < 10−6. This left us with 1,071 SNPs on 37 

genes. We used the 1071 SNP and APOE-∊4 to form X, that gives p = 1, 072.

4.2 Results

We fitted GLRR (5) with all the baseline volumes of 93 ROIs in 749 subjects as a 

multivariate response vector, the 1,072 selected SNPs as X matrix, and age, 

intracerebroventricular volume (ICV), gender, education and handedness as prognostic 

related covariates. To determine the rank of B, GLRR was fitted for up to r = 10 layers. By 

comparing the five different selection criteria, we chose r = 3 layers for the final data 

analysis. We ran the Gibbs sampler for 20, 000 iterations after 20, 000 burn-in iterations. 

Based on the MCMC samples, we calculated the posterior median and maximum absolute 

deviation (MAD) of the normalized U and V, and B, and then we used the standard normal 

approximation to calculate the p−values of each component of U, V, and B. The upper left 

panel of Figure 4 presents the estimated posterior median map of B, in which the elements 

with their p−values greater than 0.01 were set to zero, which reveals sparsely distributed 

points along the horizontal and vertical directions in the estimated B, indicating that the low-

rank model would fit the ADNI data reasonably well.

We used 1.426 × MAD to compute robust standard errors from the posterior median based 

MAD for each element of B and used a normal approximation to compute its −log10(p). 

Specifically, we created two new matrices based on the estimated B in order to detect 

important ROIs and SNPs. We first applied this thresholding method to B in order to 

compute a new matrix Bbin, in which βjk was set at zero if its −log10(p) is less than 10, and 

set to 1 otherwise. Then, we calculated a 93 × 93 matrix  and a 1072 × 1072 matrix 

. See the upper middle and right panels of Figure 4. The second row of Figure 4 

presents the −log10(p) maps of B, U, and V, respectively.

We selected the top ROIs corresponding to the largest diagonal elementsof  which 

are listed in the first column of Table 2. We also picked the top ROIs based on the −log10(p)

−values in each column of V, which are shown in the second, third, and fourth columns in 

Table 2. The locations of these ROIs are shown in Figure 5. Among these ROIs, the left and 

right sides rank close to each other, which may indicate structural brain symmetry.
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We ranked the SNPs in the BbinBbin
T according to the sum of the columns, and in the first 

three columns of the U matrix by their −log10(p)−values. The top 20 most significant SNPs 

and their corresponding genes are listed in Table 3 under columns BbinBbin
T, U1, U2, and U3, 

respectively. To investigate the top SNPs and their relationship with ROI volumes in the 

coefficient matrix. we retained SNPs, which are correlated with at least one ROI at a 

significant level smaller than 10−6.3. For each SNP, we highlighted the locations of ROIs 

with correlation at a significant level smaller than 10−6.3, which are shown in Figure 6. 

There are different patterns of SNPs' effects on ROIs: i) rs10792821 (PICALM), rs9791189 

(NEDD9), rs9376660 (LOC651924), and rs17310467 (PRNP) are significantly correlated 

with a small number of ROIs with relative large coefficients; ii) rs4933497 (CH25H) and 

rs1927976 (DAPK1) are significantly correlated with a small number of ROIs with relative 

small coefficients; iii) rs1411290 (SORCS1), rs406322 (IL33), and rs1018374 (NEDD9) are 

significantly correlated with a large number of ROIs with medium coefficients; iv) 

rs1411290 (SORCS1), rs406322 (IL33) is significantly correlated with a large number of 

ROIs with small coefficients. Figure 7 shows the heatmap of coefficients among these 10 

SNPs and the ROIs on the left and right hemispheres, respectively. The ROIs are chosen 

such that each ROI is significantly correlated to at least one of the 10 SNPs at a significance 

level small than 10−6.3. We were able to detect some SNPs, such as rs439401 (gene APOE), 

among others. The use of imaging measures as endophenotype may dramatically increase 

statistical power in detecting much more informative SNPs and genes, which deserve further 

investigation in Alzheimer's research. In contrast, most GWA studies often use case-control 

status as the response variable, which leads to substantially power loss.

The correlation structure among imaging phenotypes and that among SNPs are characterized 

by the columns in U and V, respectively. Each column of U represents a group of SNPs that 

are similarly associated with a group of ROIs determined by the corresponding column of V. 

The identified correlated phenotypes and genotypes largely agree with the spatial and LD 

structure, which are shown in Table 3 and Figure 5. Multiple SNPs from the same gene 

appear in the same columns of U. However, due to different objectives, the structure 

captured by U and V may not be exactly identical to the correlation structure of imaging 

phenotypes only based on the phenotypes, and the LD structure of genotypes, respectively.

5 Discussion

We have developed a Bayesian analysis GLRR to model the association between high-

dimensional responses and high-dimensional covariates with an novel application in 

imaging genetic data. We have introduced a low rank regression model to approximate the 

large association matrix through the standard SVD. We have used a sparse latent factor 

model to more flexibly capture the complex spatial correlation structure among high-

dimensional responses. We have proposed Bayesian local hypothesis testing to identify 

significant effects of genetic markers on imaging phenotypes, while controlling for multiple 

comparisons. GLRR dramatically reduces the number of parameters to be sampled and 

tested leading to a remarkably faster sampling scheme and effcient inference. We have 

shown good finite-sample performance of GLRR in both the simulation studies and ADNI 

data analysis. Our data analysis results have confirmed the important role of well-known 
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genes such as APOE-∊4 in the pathology of ADNI, while highlighting other potential 

candidates that warrant further investigation.

Many issues still merit further research. First, it is interesting to incorporate common variant 

and rare variant genetic markers in GLRR (Bansal et al., 2010). Second, external biological 

knowledge, e.g., gene pathways, may be the incorporated in the model through the use of 

more delicate priors to further regularize the solution (Silver et al., 2012). Third, it is 

important to consider the joint of genetic markers and environmental factors on high-

dimensional imaging phenotypes (Thomas, 2010). Fourthly, the key features of GLRR can 

be adapted to more complex data structures (e.g., longitudinal, twin and family) and other 

parametric and semiparametric models. For instance, for longitudinal neuroimaging data, we 

may develop a GLRR to explicitly model the temporal association between high-

dimensional responses and high-dimensional covariates, while accounting for complex 

temporal and spatial correction structures. Finally, it is important to combine different 

imaging phenotypes calculated from other imaging modalities, such as diffusion tensor 

imaging, functional magnetic resonance imaging (fMRI), and electroencephalography 

(EEG), in imaging genetic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Simulation results: the box plots of five selection criteria including , 

, , AIC, and BIC against rank r from the left to the right based on 

100 simulated data sets simulated from model (4) with (n, p, d) = (100, 200, 100) and the 

true rank r0 = 5.
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Figure 2. 
Simulation results: comparisons of true B image and estimated true B images by using 

LASSO, BLASSO, G-SMuRFS, GLRR3, and GLRR5 under five different scenarios. 

) and BIC were calculated for each estimated . The sample size is n = 1000. 

Columns 1-5 correspond to Cases 1-5, respectively. The true ranks of B under Cases 1-5 are, 

respectively, 2, 5, 5, 100 and 100. The top row contains true B maps under Cases 1-5 and 

rows 2–6 correspond to the estimated  under LASSO, Bayesian LASSO, G-SMuRFS, 

GLRR3, and GLRR5, respectively. For simplicity, only the first 100 rows and 100 columns 

of B were presented. Moreover, all plots in the same column are on the same scale.
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Figure 3. 
Comparisons of GLRR3, GLRR5, and LASSO under Cases 1-5: mean ROC curves based on 

GLRR3 (red line), GLRR5 (blue line), LASSO (black line), G-SMuRFS (dottedd line) and 

BLASSO (dashed line). For each case, 100 simulated data sets of size n = 100 each were 

used.
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Figure 4. 
Results of ADNI data: the posterior estimate of  matrix after thresholding out elements 

whose p− values are greater than 0.001 (left panel),  (middle panel) and 

(right panel) in the first row; and the − log10 p– value matrices corresponding to B (left 

panel), U (middle panel), and V (right panel) in the second row.
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Figure 5. 

Results of ADNI data: the top 20 ROIs based on  and the first 3 columns of V. The 

sizes of the dots represent the rank of the ROIs.
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Figure 6. 
Results of ADNI data: at a −log10(p) significance level greater than 6.3, the top row depicts 

the locations of ROIs that are correlated with SNPs rs10792821 (PICALM), rs9791189 

(NEDD9), rs9376660 (LOC651924), rs17310467 (PRNP), rs4933497 (CH25H), 

respectively; the bottom row shows the ROIs correlated with SNPs rs1927976 (DAPK1), 

rs1411290 (SORCS1), rs406322 (IL33), rs1018374 (NEDD9), and rs439401 (APOE). The 

sizes of the dots represent the absolute magnitudes of the regression coefficients.
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Figure 7. 
Heatmaps of coefficients between SNPs and ROIs on the left (left panel) and right (right 

panel) hemispheres. Coefficients with −log10(p)–value smaller than 6.3 are set to 0.
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Table 1

Empirical comparison of GLRR3, GLRR5, LASSO, BLASSO and G-SMuRFS under Cases 1-5 based on the 

five selection criteria. The means and standard deviations of these criteria are also calculated and their 

standard deviations are presented in parentheses. Moreover, UN denotes the unstructured B.

Case/(p, d, n)/X B/r 0 Method MEN PEN R 2 AIC BIC

1 (100,100,100) Continuous “+” 2 LASSO 6.21 (0.83) 3.98 (0.73) 89.50 (2.03) 9.54 (0.08) 12.45 (0.24)

BLASSO 4.63 (0.48) 4.19 (0.57) 92.09 (1.13) 10.82 (0.08) 18.02 (0.07)

G-SMuRFS 5.74 (0.65) 1.88 (0.30) 94.62 (0.71) 10.01 (0.10) 17.22 (0.10)

GLRR3 11.81 (10.96) 3.17 (7.35) 94.71 (7.34) 8.27 (0.47) 8.70 (0.47)

GLRR5 6.81 (6.87) 2.14 (3.69) 94.73 (3.72) 8.16 (0.31) 8.88 (0.31)

2 (200,100,100) Continuous UΔV 5 LASSO 26.64 (2.15) 1.26 (1.49) 97.37 (6.01) 11.94 (0.77) 18.25 (0.93)

BLASSO 22.38 (1.63) 1.24 (0.21) 98.55 (0.33) 13.39 (0.41) 27.78 (0.41)

G-SMuRFS 21.87 (1.69) 1.11 (0.11) 98.20 (0.07) 9.95 (0.10) 24.38 (0.24)

GLRR3 31.56 (6.56) 14.60 (9.24) 83.77 (9.75) 12.88 (0.61) 13.53 (0.61)

GLRR5 21.69 (1.87) 0.36 (1.93) 98.54 (2.22) 8.90 (0.47) 8.88 (0.47)

3 (400,100,100) SNPs UΔV 5 LASSO 50.41 (12.00) 50.87 (11.94) 19.59 (7.78) 12.81 (0.15) 13.66 (0.23)

BLASSO 25.57 (0.02) 10.08 (2.04) 93.24 (3.29) 15.69 (0.39) 43.53 (0.39)

G-SMuRFS 24.28 (0.02) 10.27 (2.01) 91.69 (4.01) 16.96 (0.01) 42.80 (0.01)

GLRR3 20.23 (4.25) 21.39 (13.96) 76.74 (14.20) 11.86 (0.60) 12.93 (0.60)

GLRR5 13.64 (7.88) 4.07 (7.77) 93.60 (7.97) 10.19 (0.60) 11.99 (0.60)

4 (200,100,100) Continuous UN 100 LASSO 22.16 (1.93) 1.27 (1.49) 94.40 (6.16) 12.45 (0.88) 19.11 (1.12)

BLASSO 19.44 (1.16) 1.22 (0.21) 98.32 (0.74) 13.21 (0.79) 27.63 (0.79)

G-SMuRFS 15.00 (1.44) 1.10 (0.01) 98.40 (0.08) 9.74 (0.11) 24.16 (0.11)

GLRR3 18.32 (1.53) 5.16 (0.64) 93.93 (0.73) 12.20 (0.04) 12.85 (0.04)

GLRR5 16.02 (1.59) 4.30 (0.56) 94.26 (0.71) 12.14 (0.03) 13.22 (0.03)

5 (400,100,100) SNPs UN 100 LASSO 39.14 (12.93) 39.11 (12.95) 24.53 (9.53) 14.60 (0.12) 17.22 (0.62)

BLASSO 22.43 (1.13) 12.07 (0.03) 89.31 (0.24) 15.60 (0.35) 41.44 (0.35)

G-SMuRFS 18.58 (0.02) 12.27 (0.01) 88.69 (0.01) 16.96 (0.01) 42.21 (0.01)

GLRR3 19.88 (0.01) 20.01 (0.03) 77.15 (0.04) 13.56 (0.00) 14.64 (0.00)

GLRR5 17.87 (0.01) 17.98 (0.03) 77.81 (0.04) 13.65 (0.00) 14.45 (0.00)
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Table 2

Ranked top ROIs based on the diagonal of  and columns of V.

V 1 V 2 V 3

hiopp.R caud.neuc.L sup.t.gy.L sup.p.lb.L

hiopp.L caud.neuc.R sup.t.gy.R pstc.gy.L

amyg.R post.limb.L mid.t.gy.R sup.o.gy.L

unc.L post.limb.R hiopp.R prec.L

subtha.nuc.R glob.pal.R mid.t.gy.L sup.p.lb.R

sup.t.gy.R ant.caps.R hiopp.L pec.R

amyg.L glob.pal.L amyg.R sup.o.gy.R

sup.t.gy.L putamen. L lat.ve.R prec.gy.L

lat.ve.R putamen. R inf.t.gy.R pstc.gy.R

nuc.acc.L ant.caps.L subtha.nuc.R prec.gy.R

lat.ve.L thal.R amyg.L me.f.gy.L

mid.t.gy.L thal.L unc.L mid.f.gy.R

insula.L tmp.pl.R lat.ve.L ang.gyr.L

sup.f.gy.L subtha.nuc.L inf.f.gy.R sup.f.gy.L

insula.R per.cort.L lat.f-o.gy.L fornix.L

mid.t.gy.R tmp.pl.L parah.gy.L occ.pol.L

mid.f.gy.L subtha.nuc.R inf.t.gy.L ang.gyr.R

unc.R per.cort.R parah.gy.R cun.L

inf.t.gy.R nuc.acc.L nuc.acc.L occ.pol.R

inf.f.gy.R inf.t.gy.R insula.L mid.f.gy.L
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