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ABSTRACT 

ALEXANDROS CHRISTODOULOU: VARIATION IN WORD DURATION AND 
PLANNING 

(Under the direction of Jennifer E. Arnold) 
 

Word duration varies as a function of predictability (e.g., Bell et al., 2009; 

Lieberman, 1963; Fowler & Housum, 1987; Gahl & Garnsey, 2004; Watson, Arnold, & 

Tanenhaus, 2008) and planning difficulty (e.g., Bell et al., 2003; Clark & Fox Tree, 2002; 

Fox Tree & Clark, 1997). Both findings suggest that planning is related to word duration 

variation. However, the role of planning in word duration variation is debated (e.g., 

Arnold & Watson, under review; Ferreira, 2007). In four experiments I tested the 

hypotheses that planning an upcoming word and variation in the timing of planning an 

upcoming word leads to word duration variation of an utterance-initial word. Speakers 

named two pictures while trying not to pause. The utterance-initial word was long in 

duration when followed by a low frequency word. Furthermore, looks to the right object 

modulated the effect of frequency on word duration. Early looks led to word reduction 

when the second word was high frequency. Late looks led to long word duration 

regardless of frequency. The results support the role of planning on word duration. 

Theories of utterance planning should consider evidence of word duration variation apart 

from the traditional speech onset time and utterance duration measures.   
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CHAPTER 1 

INTRODUCTION 

Utterance planning can influence word duration variation. For example, imagine 

that So-Yeon is hungry and goes to order a sandwich. At the sandwich store the 

ingredients are behind a glass display. As she scans the ingredients’ display she sees 

olives. Because she usually orders tomatoes, which are usually located next to the olives, 

she decides to begin speaking. Right before she starts articulating olives she looks next 

to the olives but unfortunately she finds pickles. She decides to prolong the articulation 

of o..l..i..v..e..s.. to look next to the pickles. At the onset of o..l..i..v..e..s.. she is relieved 

to find tomatoes. In case she cannot easily find the tomatoes, she could insert the 

conjunction and to allow additional time to find them in the display. Furthermore, she 

should also abide by social conversational rules of being brief and fluent (Clark, 2002; 

Clark & Wasow, 1998; Grice, 1975). Under these conditions, will there be evidence that 

variables that influence utterance planning, such as the timing and difficulty of planning 

words upcoming in the discourse, influence word duration?  

Utterance planning occurs at two separate stages, the grammatical encoding 

stage, and the phonological encoding stage (Bock & Levelt, 1994; Levelt, 1989). 

Planning at these two stages occurs after an intended message has been generated. In 

this dissertation I will consider this stage as part of utterance planning because message 

generation interacts with utterance planning (Brown-Schmidt & Tanenhaus, 2006; 

Brown-Schmidt & Konopka, 2008). In the previous example about ordering a sandwich, 
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the generation of the concept to order olives and tomatoes corresponds to the message 

generation. Retrieval of the target words followed by word order determination and the 

appropriate suffix addition (i.e. the addition of the plural –s) corresponds to the 

grammatical encoding stage. Retrieval of instructions about how each word should 

sound corresponds to the phonological encoding stage.  

Utterances can be considered preplanned when all phonological information of 

the utterance is planned prior to speech onset (Sternberg, Monsell, Knoll, & Wright, 

1978; Sternberg, Wright, & Monsell, 1980;). Utterance planning can also occur 

incrementally when speakers plan only a minimal unit of grammatical or phonological 

information prior to speech onset (Griffin, 2001; Kempen & Hoenkamp, 1987; Levelt & 

Meyer, 2000; Meyer, 1996; Meyer, Sleiderink, & Levelt, 1998; Schriefers & Teruel, 

1999; Wheeldon & Lahiri, 1997). There is evidence that rehearsed utterances can be 

preplanned whereas extemporaneous speech is usually planned incrementally (Sternberg 

et al., 1978, 1980; Wheeldon & Lahiri, 1997). 

Furthermore, there is a debate on the unit of grammatical and phonological 

planning. The length of the unit i.e. a syllable or a word defines the scope of planning or 

how much information is planned prior to speech onset (Allum & Wheeldon, 2007; 

2009; Levelt & Meyer, 2000; Meyer, 1996; Meyer et al., 1998; Oppermann, Jescheniak, 

& Schriefers, 2010; Schnur, Costa, & Caramazza, 2006; Schriefers & Teruel, 1999; 

Wagner, Jescheniak, & Schriefers, 2010; Wheeldon & Lahiri, 1997). Specifically for 

phonological planning some evidence suggests that the unit can be as small as a syllable 

(Schriefers & Teruel, 1999; Meyer, Belke, Haecker, & Mortensen, 2007) or a 

phonological word i.e. a content word and a function word (Wheeldon & Lahiri, 1997). 
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Other evidence suggests that it can be as large as three phonological words (Oppermann, 

et al., 2010; Schnur, et al., 2006). Therefore the unit of phonological planning, or the 

scope of planning, is variable. This suggests that the amount of incremental planning 

relative to the amount of preplanning can vary.  

The effect of utterance planning on word duration is supported by findings that 

words are long before disfluent pauses (Bell et al., 2003; Cark & Fox Tree, 2002; Fox 

Tree & Clark, 1997; Shriberg, 2001). Disfluent pauses are non-grammatically motivated 

pauses that tend to have long duration e.g. longer than 200 ms or 250 ms (Goldman 

Eisler, 1968; Levelt, 1989). Pausing and the associated long word duration therefore 

occur because of planning. The effect of utterance planning on word duration is also 

supported by findings that words are long when utterance planning is difficult e.g. when 

the speaker is describing an unfamiliar object as in figure 1 (Christodoulou, 2009). In 

both phenomena it is reasonable to assume that speakers try to create additional planning 

time by extending the duration of their words.  

Even though there is evidence that utterance planning is related to word duration 

variation, there is yet no direct evidence that variation in the incrementality of planning 

is also related to word duration variation. Ferreira & Swets (2002) provide evidence that 

utterance duration varies when speakers switch from preplanning to incremental 

planning. Speakers calculated arithmetic sums and stated the sum using the following 

phrase the sum is. Speech onset time was short but the duration of the phrase was long 

when the sum was difficult to calculate and when speakers were under a deadline to 

begin speaking. However from this finding it is not clear which words in the phrase 

varied in duration and whether pausing drove the utterance duration effect.  
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Overall planning strategy of preplanning vs. incremental planning (or the relative 

degree of incrementality) can be detected by using a global measure such as utterance 

duration in addition to the measure of speech onset time as in Ferreira and Swets (2002). 

Changes in speech onset time relative to changes in utterance duration should index 

changes in the amount of information preplanned relative to the amount of information 

planned incrementally. These measures however cannot accurately index processing 

time of a specific upcoming word in an utterance. For example, in the simple utterance 

olives and tomatoes, speech onset time and total utterance duration cannot provide an 

accurate measure of the timing of the second word planning. Such a measure can be 

informative about the relationship between planning and word duration given evidence 

that the probability of a following or a preceding word can influence the current word 

duration (e.g., Bell et al., 2003, 2009; Jurafsky, Bell, Gregory, & Raymond, 2001).  

Griffin (2003) provides evidence that the timing of planning in a two-word 

utterance relative to speech onset can vary according to the duration of the utterance-

initial word. For example, speech onset time is short when the two-word sequence is 

windmill carrot rather than wig carrot. The timing of planning can be defined as the 

difference between speech onset time and when information about a particular word in 

an utterance has been significantly processed, such as the onset of the last fixation to the 

object to be named (e.g. Griffin & Bock, 2000). This is also called the eye-voice span.  

The eye-voice span should index visual processing of an object to be named, as 

well as lexical processing time for the object (Griffin, 2001; Meyer & van der Meulen, 

2000; Meyer et al., 1998, 2003, 2007). Processing could occur either before or after 

speech onset. However, it is an imperfect measure of lexical processing because as 
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Morgan and Meyer (2005) suggest, speakers tend to look to the next object prior to 

complete processing of the previous word. Speakers tend to shift their gaze to the next 

object when the current word has been phonologically planned (Meyer & van der 

Meulen, 2000; Meyer et al., 1998, 2003, 2007). Therefore, this measure is suitable for 

answering questions about how much information up to phonological encoding has been 

planned prior to referring to the target object. 

I am interested in isolating the point in time at which processing of the second 

object begins, even if it occurs in parallel with some residual processing of the first 

object. Therefore I will define the eye-voice span as the difference between the onset of 

the first fixation to a second object and speech onset time. This measure should index 

the onset of processing the second object. In comparison, Griffin and Bock’s (2000) eye-

voice span definition is the difference between the onset of the last fixation at the target 

object and the onset of the word referring to that object. I will return to the issue of 

parallel processing in the general discussion. 

The combination of evidence of variation in incrementality (Ferreira & Swets, 

2002; Griffin, 2003) with the effect of predictability on word duration (Bell et al., 2003, 

2009; Jurafsky et al., 2001) might suggest a direct relationship between variation in 

incrementality and variation in word duration. Their relationship could suggest that 

slight adjustments to the timing of planning have measurable consequences on word 

duration. These adjustments could occur if speakers use flexible rules about speech 

initiation.  

For example on one occasion the speaker might see the tomatoes and decide to 

initiate speech after phonologically encoding part of the word. In a different occasion the 
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speaker might see the tomatoes and decide to initiate speech without phonologically 

encoding the word. This could potentially occur if the speaker starts speaking betting 

they will find the tomatoes and plan the word while articulating the first word.  

This example leads to one of the main research questions addressed in this 

dissertation, which is whether the timing of planning can affect word duration. If 

speakers modulate word duration to accommodate planning needs, word duration could 

be long when they have not already begun processing the second word. Olives could 

therefore vary in duration because of variation in the speed of accessing visual, 

grammatical or phonological information of artichokes or tomatoes. Thus, my first 

hypothesis of how planning can affect word duration is that variation in the timing of 

planning a word upcoming in the utterance such as artichokes or tomatoes affects the 

duration of an utterance-initial word such as olives.  

The other main research question is whether word duration varies because of 

planning difficulty of upcoming words. Artichoke is lower in frequency compared to 

tomato and should be slower to access in the mental lexicon (e.g., Oldfield & Wingfield, 

1965). Therefore, olives could be longer in duration when followed by artichokes 

compared to tomatoes, if speakers plan while speaking and if they modulate word 

duration in order to accommodate planning needs. On the other hand, if planning is 

unrelated to word duration, the duration of olives should be unchanged in the previous 

two scenarios keeping other factors constant such as rate of speech.  

The second hypothesis of how planning can affect word duration is that the long 

duration of planning associated with a low frequency word such as artichoke can lead to 

long duration of olives. If speakers modulate word duration because of planning an 
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upcoming word, an upcoming word that requires long planning time such as artichoke 

should lead to long word duration compared to an upcoming word that requires short 

planning time such as tomato.  

This process on its own could affect the duration of olives or it could be 

modulated by the variation in the second word timing of planning. Variation in the 

timing of planning could override any effects of planning difficulty by making both high 

and low frequency words easy or difficult to plan together with the first word. For 

example if the artichokes or tomatoes are located next to the olives, speakers could 

preplan part or all of artichokes or tomatoes prior to speech onset. This should reduce 

the need to modulate word duration because of planning. Otherwise, the need to 

modulate word duration because of planning could be minimized only for words that do 

not require long planning time such as tomatoes. Therefore, a low frequency upcoming 

word should lead to long utterance-initial word duration independent of the timing of 

planning. 

The duration of utterance planning or timing of planning variation could also 

lead to pausing. For example Goldman Eisler (1968) has shown that conceptual 

complexity leads to more frequent pausing. Even though this effect is theoretically 

interesting on its own, I will not focus on it. To minimize the degree of pausing in the 

reported experiments I will ask speakers to try not to pause when naming consecutive 

objects (e.g., Griffin, 2003). 

The purpose of this dissertation is to test the hypothesis that planning affects 

word duration using the dual-picture naming task (e.g., Meyer, 1996). The hypothesis 

aims to distinguish between different proposals of whether planning should be related to 
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word duration variation (e.g., Arnold & Watson, under review; Ferreira, 2007). The 

secondary purpose of this thesis is to understand how planning is related to word 

duration. I address this by testing two separate hypotheses: (1) planning a difficult 

upcoming word leads to long word duration compared to planning an easy upcoming 

word (2) the timing of planning the upcoming word leads to word duration variation.  

In the following sections I provide evidence for word duration variation and for 

variation in the amount and timing of planning. I then describe predictions about how 

planning can affect word duration. I close the introductory chapter with the experimental 

paradigm that will allow the test of the relationship between planning and word duration. 

Variation in Word Duration 

Word duration varies in conversational speech (e.g., Bell et al., 2009) and part of 

this variation is possibly because of planning demands (e.g. Bell et al., 2003). However, 

there is little work on how utterance planning can affect word duration. This is probably 

because word duration is sensitive to multiple factors that co-occur in natural speech 

such as the presence of syntactic or prosodic boundaries (e.g., Ferreira 1993) and the 

rate of speech (e.g., Fosler-Lussier, Morgan, 1999). 

Word duration can vary in different ways. This is exemplified in the 

phenomenon of reduction. Reduction can occur in different forms: reduction in acoustic 

duration, changes in vowel quality (e.g., the definite article can have two variants thee 

and thu), segment deletion (e.g., in the word confirmed the d sound is not pronounced). 

In this dissertation I will only measure acoustic duration because I am interested in word 

duration variation and not just reduction. 
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A well established phenomenon related to word reduction is Givenness (e.g., 

Fowler & Housum, 1987). Words or their referents that are given in the discourse tend 

to be reduced in duration. This phenomenon is one of the different discourse properties 

that can influence the accessibility of information (i.e., ease of accessing information 

relevant to the discourse; Arnold, 2010). For example in the following hypothetical 

discourse segment: 

I ate a sandwich 

The sandwich had olives    

The second mention of sandwich will be reduced in duration because its referent and 

lexical form have already been presented in the discourse (Balota, Boland & Shields, 

1989; Bard et al., 2000; Fowler & Housum, 1987).  

Word duration is inherently variable. In certain situations a word can be short as 

in the case of reduction. However, in other situations a word can be long as in the case 

of the presence of a following disfluency (e.g., Bell et al., 2003). Therefore, the 

reduction literature needs to be complemented by the disfluency literature (and planning 

literature) in order to fully understand why word duration varies because of processing 

demands. Here I will refer to two separate phenomena, reduction and lengthening, only 

because of how the different literatures have categorized word duration as either reduced 

or lengthened. However, I will not assume that reduction is a different phenomenon than 

lengthening, rather that word duration varies between reduced and lengthened values. 

Reduction is related to the context in which a word appears. Lieberman (1963) 

proposed that the probability of a word given the preceding semantic context leads to 

word duration variation. For example, the word nine is more probable and thus reduced 
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in duration in the sentence: “a stitch in time saves __” compared to the sentence: “the 

time is__”. Since Lieberman’s (1963) work, predictability has been recast in different 

ways. One line of research treats predictability as the probability of a word or syllable 

appearing within the context of another word or syllable (Aylett & Turk, 2004; Bell et 

al., 1999, 2002, 2003, 2009; Jurafsky et al., 2001, 2002).  

There are currently two prominent hypotheses about how predictability relates to 

reduction. According to the probabilistic reduction hypothesis (PRH) (e.g. Jurafsky et 

al., 2001) words are reduced according to the conditional probability of a given word. 

For example in the two-word sequence, Harrison Ford, Ford is highly predictable given 

the word Harrison (i.e., if I just heard Harrison there is a good chance it will be 

followed by Ford). Similarly, in the two-word sequence Burt Reynolds, Burt is highly 

predictable given the word Reynolds (i.e., if I just heard Reynolds there is a good chance 

it was preceded by Burt).  

According to the smooth signal redundancy hypothesis (SSRH) speakers produce 

utterances “whose elements have similar probabilities of recognition” (Aylett & Turk, 

2004). This is a similar concept to conditional probability in that a word or syllable is 

likely to be recognized when it is predictable given the preceding or following word or 

syllable. Probable words or syllables are then reduced because the listener needs only 

minimal amount of exposure to successfully recognize them. For example, in the three-

syllable sequence Burt-Rey-nolds, the syllable nolds will be reduced because it will be 

easy for a listener to recognize given the preceding two syllables. Therefore both the 

SSRH and the PRH make the same prediction about the relationship between 
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information redundancy and word duration. Redundant words given the context tend to 

be reduced.  

According to both the PRH and SSRH the source of reduction is at the lexical or 

sublexical level. However, words are embedded in superordinate linguistic structures 

such as syntactic structures. A different line of research argues that predictability 

measures that lead to word duration variation should also include measures at the level 

of syntax (Gahl & Garnsey, 2004; Gahl & Garnsey, 2006; Gahl, Garnsey, Fisher, & 

Matzen, 2006; Tily et al., 2009). Verb bias is the probability of a verb appearing in a 

specific syntactic context. For example, the verb confirm is usually followed by a direct 

object (see the following example (1)) as opposed to a sentential complement (see the 

following example (2)).  

(1) The CIA director confirmed the rumor once it had spread widely. 

(2) The CIA director confirmed the rumor should have been stopped sooner. 

Gahl & Garnsey (2004) showed that verbs followed by a complement matching their 

bias have a higher chance of undergoing final –t/-d deletion.  

 However, there is also evidence that the source of reduction can occur at even 

higher levels of linguistic planning, the discourse level. At this level, speakers integrate 

the current utterance with the context of the previous and potentially following 

utterance(s). The most common phenomenon at the discourse level is that words are 

reduced when they, or their referents, are given in the discourse (Bard & Aylett, 1999; 

Bard et al, 2000; Fowler, 1988; Fowler & Housum, 1987; Fowler, Levy, & Brown, 

1997). For example, Fowler and Housum (1987) analyzed recorded speech from six 

different radio shows (a monologue and five interviews) and found that words (e.g., the 
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word match when referring to a tennis match) that appeared at least twice in the 

discourse were shorter compared to their first mention. 

 Furthermore, a referent that is predictable independent of the discourse history 

can lead to duration variation. Watson, Arnold, & Tanenhaus (2008) analyzed utterances 

of game moves in a game of Tic-Tac-Toe. Words referring to a predictable location such 

as blocking a winning move were reduced compared to words referring to unpredictable 

locations. 

 Another phenomenon that has been studied with relation to word duration 

variation is lengthening. Words are long in duration when followed by a disfluent pause 

(i.e., a non syntactically motivated pause) and when the speaker encounters conceptual 

difficulty. One of the best examples of how disfluent pausing is related to word duration 

variation comes from disfluent repetitions (Shriberg, 1999, 2001). For example, when a 

speaker tries to describe a conceptually unfamiliar image as the one in figure 1 they 

might say something like: 

the(R1) …. the(R2) blue sunset over a lake.   

The first mention of the(R1) is prolonged compared to the second mention of the(R2). 

The effect of lengthening on word duration generalizes to all types of lexical 

disfluencies such as when speakers insert words like um or uh in the utterance (Bell et 

al., 2003; Clark & Fox Tree, 2002; Fox Tree & Clark, 1997).  

Evidence from a different line of experimentation suggests that task conceptual 

difficulty can influence word duration (Christodoulou, 2009). For example, I asked 

speakers to describe unfamiliar pictures such as in figure 1 using the following carrier 
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phrase: click on the (color of object). I found that conceptually unfamiliar pictures led to 

longer color word duration compared to familiar pictures.    

 

 

Figure 1. Example of a familiar vs. unfamiliar picture 
from Christodoulou (2009). The picture next to the apple 
was commonly referred to as the sunset over a lake. 

 

The combination of evidence from the reduction and lengthening literature 

suggests that planning can affect word duration variation. The effect of predictability on 

word duration could be mediated by planning. Even though a word might be highly 

probable given the lexical, syntactic, or discourse context; the word, the context, and 

how the word fits into the context has to be planned on line. For example, when the 

speaker plans the two-word sequence Burt Reynolds, the duration of Burt will be 

reduced potentially because the two words are easy to plan together. In this example, 

this would entail planning Reynolds before the onset of Burt.  

 Both disfluent contexts and cases of conceptual difficulty are related to lexical 

planning difficulty. In both cases it is reasonable to assume that speakers are slowing 

down their rate of articulation because upcoming information is difficult to retrieve. 
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Therefore, by slowing down the rate of articulation the speaker tries to buy additional 

planning time.  

 In sum, there is evidence to suggest that planning affects word duration. 

However, there is variation in the timing of planning (e.g., Griffin, 2003). This raises the 

question of whether word duration variation is sensitive to differences in the timing of 

planning. In the following section, I describe evidence of scope of planning variation 

and timing of planning variation and how it could be related to word duration.  

Variation in Planning 

The timing of planning varies (Griffin, 2003; Meyer, 1996; Schriefers & Teruel, 

1999; Wagner et al., 2010). There is however limited evidence that this variation is 

related to word duration variation. One possibility for the limited evidence is that 

research on utterance planning has mainly focused on traditional measures of speech 

onset time and utterance duration (e.g., Ferreira & Swets, 2002; Meyer et al., 2007; 

Schriefers & Teruel, 1999; Wheeldon & Lahiri, 1997). In a multiword utterance speech 

onset time may not be sensitive to minor changes in planning demands. Furthermore, 

even though utterance duration should be correlated with word duration it is confounded 

with pausing.  

In this section I present evidence about the possible relationship between 

variation in the timing of planning and word duration. I also highlight some factors that 

need to be controlled to draw conclusions about their relationship. These factors include: 

utterance length (Sternberg et al., 1978, 1980; Griffin, 2003; Meyer, 1996), type of 

naming task (e.g., Griffin, 2003; Meyer, 1996), control for when to plan (Ferreira & 
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Swets, 2002; Griffin, 2003), and speaker characteristics (Schriefers & Teruel, 1999; 

Wagner et al., 2010).  

The timing of planning upcoming information is in part determined by decisions 

about articulation initiation. Speakers can use different criteria about when to initiate 

articulation. For example, in the minimal utterance olives and tomatoes, speech onset 

could occur after preparing the syntactic or phonological information of the first word, 

as in incremental planning (e.g., Griffin, 2001; Kempen & Hoenkamp, 1987; Levelt, 

1989; Levelt & Meyer, 2000; Meyer, 1996; Meyer et al., 1998). It could also occur when 

phonological information of up to all words in the utterance has been prepared, as in 

preplanning (Goldman Eisler, 1968; Sternberg et al., 1978, 1980).  

Figure 2 contrasts incremental planning (top panel) with preplanning (bottom 

panel) in a dual-picture naming task. The difference between the two types of planning 

can be seen as two ends on a continuum. However, there also needs to be categorical 

distinction between the two given evidence that speakers can switch between the two 

different types of planning (Ferreira & Swets, 2002; Wagner et al., 2010).  

The two pictures at the top of the figures depict the objects to be named and the 

red dashed line the onset of articulation. In both figures each rectangle represents a 

different planning stage according to dominant models of utterance and lexical planning 

(Bock & Levelt, 1994; Dell, 1986; Levelt, Roelofs, Meyer, 1999). The depicted stages 

are similar to the described planning stages according to Bock & Levelt (1994). First the 

speaker visually inspects the target object, which leads to accessing conceptual 

information about the object. The conceptual information is then semantically and 

syntactically encoded before being phonologically encoded. At the final stage the 
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planning system assembles and starts executing the motor commands for the production 

of the target words.  

According to incremental planning, speech onset time occurs earlier compared to 

preplanning. This is because speakers can start articulating the first word as they retrieve 

semantic/ syntactic information of the second word. However, according to preplanning, 

speech onset is delayed until all linguistic information of both words is retrieved. 

We can observe variation in the timing of planning by comparing tasks that 

encourage incremental planning (Meyer, 1996; Schriefers & Teruel, 1999) with those 

that encourage preplanning (Alario, Costa, & Caramazza, 2002; Costa & Caramazza, 

2002; Schnur et al., 2006; Sternberg et al., 1978; 1980). We can also observe variation 

when comparing speakers with different characteristics within a single task, such as 

error rate in naming accuracy and speech rate (Schriefers & Teruel, 1999; Wagner et al., 

2010). Furthermore, some speakers can change their criterion of when to initiate 

articulation and therefore switch from incremental planning to preplanning and vice 

versa. This change can be induced by a deadline to begin speaking (Ferreira & Swets, 

2002) or by manipulating cognitive load (Wagner et al., 2010).  

There is evidence that speakers can initiate articulation only after preparing 

phonological information of a single word prior to speech onset. For example, Meyer 

(1996) in experiment 3 asked speakers to name two pictures using noun phrase 

conjunctions such as the bag and the arrow while ignoring a superimposed interfering 

word. The word was phonologically related or unrelated to the name of the first or the 

second picture. An example picture-word pair would be bag – bat. The interfering  
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Figure 2. Example of incremental planning vs. preplanning. 
The pictures at the top of the diagram depict two example 
stimuli pictures from a hypothetical dual-picture naming task. 
Each rectangle depicts a different planning stage. The red 
dashed line depicts the onset of speech 
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word decreased speech onset time only when it was related to the first word but not the 

second word.  

This finding suggests that the phonological information of only the first word 

was available prior to speech onset. In a separate experiment Meyer (1996) found that 

semantic information of both words was available prior to speech onset. The 

combination of the two findings by Meyer (1996) suggests that the timing of planning 

the second word differs for phonological compared to semantic information. This 

difference can be interpreted according to an incremental planning account. The speaker 

starts planning phonological information of the first word after accessing syntactic 

information of the second word. They then plan phonological information of the second 

word after accessing syntactic information of the first word.  

On the other hand, other evidence suggests that sometimes speakers can initiate 

articulation after preparing two phonological words (roughly a function word and a 

content word) (Alario et al., 2002; Costa & Caramazza, 2002; Cholin, Dell, & Levelt, 

2011; Schnur et al., 2006; Schriefers & Teruel, 1999). For example Schnur et al. (2006) 

asked participants to describe actions performed in single pictures e.g., the orange girl 

jumps while ignoring a phonologically related word. This utterance contains three 

phonological words (1. The orange, 2. girl 3. jumps). Their results showed that speech 

onset time was significantly reduced even for phonological distractors related to the 

verb. As Schnur et al. (2006) suggests, the difference in the degree of incremental 

planning between tasks could be related to conceptual integration. The orange girl jumps 

refers to a single entity whereas the bag and the arrow refers to two distinct entities that 

are not strongly conceptually related in the utterance.  
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Therefore, the findings so far suggest that speakers can vary the amount of 

preplanned information according to task demands. If we assume that planning has a 

higher chance of affecting word duration when speakers plan as they speak, it is 

therefore preferable to use a dual-picture naming task as opposed to a single-picture 

naming task because it encourages incremental planning. 

However, apart from task demands, speaker internal characteristics such as 

cognitive load can lead to variation in the timing of planning. Wagner et al. (2010) 

manipulated cognitive load in a dual-picture naming task as in Meyer (1996). In two 

experiments they varied syntactic complexity as follows:  

(1) The frog is next to the mug (simple sentence) 

(2)  The red frog is next to the red mug (complex sentence) 

In two additional experiments they combined picture naming with a secondary task. In 

one experiment the speakers learned to pair the outcome of a conceptual categorization 

task with either of the two syntactic forms used in the previous experiments. For 

example, if the frog and the mug fit into a drawer, the speakers were instructed to 

produce a simple sentence as opposed to a complex sentence. In the last experiment 

speakers were required to memorize five words or digits before stimulus onset. Upon 

utterance production they were given a recognition task of the previously memorized 

list.  

 The degree of incrementality varied according to syntactic complexity. Complex 

sentences increased the interference effect for the first noun. The interference effect was 

even stronger when syntactic complexity was paired with the categorization task. 

Interestingly, when syntactic complexity was paired with the span task the interference 
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effect for the second noun increased while the interference effect of the first noun 

remained stable. The authors therefore concluded that the degree of incrementality is 

flexible because of differences in cognitive load. This raises questions about when the 

speaker encounters cognitive load in other production tasks and how it can affect the 

timing of planning. Planning two difficult words together could increase cognitive load, 

which in turn could affect the timing of planning the second word.  

 The word duration variation literature suggests that word duration is long when 

the speaker encounters planning difficulty (e.g., Christodoulou, 2009). This could 

potentially occur because the speaker adopts a higher degree of incremental planning 

under cognitive load as Wagner et al. (2010) suggests. Therefore, one prediction is that 

delayed timing of planning the second word in a two-word utterance, with relation to 

speech onset, leads to long word duration. 

Schriefers & Teruel (1999) categorized speakers as having high vs. low error 

rate/pausing rate. Speakers with low error rate had a lower degree of incremental 

planning and therefore preplanned more than speakers with high error rate. Similarly, 

Wagner et al. (2010) categorized speakers according to speech onset time into slow vs. 

fast speakers. Fast speakers showed a higher degree of incremental planning compared 

to slow speakers. Therefore, both of these studies suggest that the degree of incremental 

planning varies. This variation can come from speaker characteristics of how they 

produce their utterance.  

These results complicate the possible relationship between variation in the timing 

of planning and word duration. On the one hand, assuming that high error rate in naming 

is associated with cognitive load, word duration could be long the less speakers preplan, 
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as the combination of the Wagner et al. (2010) and Christodoulou (2009) results suggest. 

On the other hand, if fast speech rate is associated with short word duration the Wagner 

et al. (2010) results might suggest that word duration could be short when speakers 

preplan less. Therefore, speaker characteristics can potentially provide competing forces 

on word duration. It is therefore important to control these characteristics. This can be 

implemented by using minimal utterances such as in the dual-picture naming task used 

by Griffin (2003) and by statistically controlling for speaker characteristics via 

multilevel modeling (e.g. Baayen, Davidson, Bates, 2008). 

Furthermore, task constrains such as a deadline to begin speaking can lead to 

variation in the degree of incremental planning. In Ferreira & Swets (2002) speakers 

computed arithmetic sums. According to one condition they reported the sum by using 

the carrier phrase “the sum is XX”. In a second experiment speakers were required to 

initiate speech before a specific deadline. Speakers preplanned less but planned more 

incrementally when facing a deadline to begin speaking. Speech onset time was overall 

reduced but utterance duration was overall lengthened when the speaker faced a deadline 

to begin speaking.  

Therefore the Ferreira & Swets (2002) results suggest a relationship between 

variation in the degree of incremental planning and utterance duration. Their results also 

imply an interaction between variation in incrementality and planning difficulty. In the 

first experiment the difficulty of computing the arithmetic sum did not influence the 

duration of the sum is. However, in experiment 2 the same segment was long when 

comparing the more difficult two-addend problems compared to the easier mixed-

addend problems (e.g., 66 + 21 is more difficult compared to 2 + 41). 
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The previous evidence suggests a possible relationship between variation in the 

timing of planning an upcoming word and variation in word duration but only indirectly. 

Evidence by Griffin (2003) suggests a direct relationship between variation in the timing 

of planning and variation in word duration. In a dual-picture naming task, Griffin (2003) 

asked speakers to produce bare nouns such as windmill carrot. Speech onset time, and 

the duration of looks to the right object, were reduced when Word1 was multisyllabic 

such as the word windmill, rather than monosyllabic such as the word wig. This reverse 

length effect disappeared when the speaker introduced additional words between the two 

bare nouns such as next to.  

Griffin (2003) suggests that when Word1 is monosyllabic, the speaker does more 

preplanning of the whole utterance, because the monosyllabic word does not afford 

incremental planning time (i.e., planning while speaking). However, when Word1 is 

multisyllabic the speaker does less preplanning of the whole utterance because the 

multisyllabic word affords enough incremental planning time to plan some of Word2 

while articulating Word1. Griffin (2003) attributes this ability of adjusting the timing of 

Word2 planning to the speaker’s ability to estimate Word1 duration.  

Meyer et al. (2007) proposes a different mechanism that can explain Griffin’s 

(2003) results. They argue that speakers plan incrementally when they can set a self-

imposed deadline of when to start speaking. Speakers prefer to initiate speech after 

processing a single syllable. Instead of presenting all words in a single mixed list, they 

presented monosyllabic words in a separate block from trisyllabic words. They found no 

speech onset difference according to block but they still found an eye-voice span 

difference (i.e. the difference between the last fixation to the left object and speech 
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onset). In a different experiment they replaced the second word with a symbol 

recognition task, and replicated their results. The authors argue that these results are 

compatible with a radical incremental account where speakers can initiate speech after 

preparing only a single syllable. The difference in the timing of planning (as measured 

with the eye-voice span between the last fixation to the left object and the onset of 

speech) occurs because in monosyllabic words the speaker has to look at the right object 

after processing a single syllable, which is also the end of the word. In trisyllabic words 

the speaker does not have to look at the right object until they have processed the third 

syllable.  

Both Griffin (2003) and Meyer et al. (2007) provide evidence that utterance-

initial word duration can provide planning time for the upcoming word. Furthermore, 

Griffin (2003) argues that people make decisions about when to begin speaking based on 

their assumptions about how much planning time they need for Word2 and how much 

time they will have to plan incrementally. Importantly, both of these studies suggest that 

manipulated word length is associated with the timing of planning without requiring 

variation in the scope of planning. Griffin (2003) argues that the timing of planning 

varies because the speaker estimates the amount of available planning time for an 

upcoming word. On the other hand, Meyer et al. (2007) argues that the timing of 

planning varies because of the first word syllable length and independent of planning an 

upcoming word.  

Importantly, as Meyer et al (2007) argue, the two accounts are complementary. 

This raises questions as to whether variation in the timing of planning can lead to word 

duration variation and whether the variation in word duration could occur because of 
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planning the first word or the second word in a two word utterance. This question merits 

further investigation in the face of evidence from the predictability literature. The 

predictability of a word given a preceding or following word can lead to reduction (e.g., 

Bell et al., 2003, 2009; Jurafsky et al., 2001). Reduction could occur because 

predictability shifts the timing of planning the preceding or upcoming word relative to 

the current word. In this dissertation I will focus on how the timing of the second word 

can influence the duration of the first word, in a dual-picture naming task. I will 

accomplish this by controlling the number of syllables and planning difficulty of the first 

word and manipulating planning difficulty of the second word.  

Overall, evidence in this section suggests an inverse relationship between 

variation in the timing of planning a word (or words) upcoming in the utterance and 

word duration when a series of controls are used.  

Predictions about Planning Effects on Word Duration 

There are two views based on the literature that make opposite predictions about 

the role of planning on word duration. One view suggests that planning affects variation 

in word duration (Arnold & Watson, under review; Balota, et al., 1989; Kello, Plaut, & 

MacWhinney, 2000). The other view suggests that planning is unrelated to word 

duration variation (Damian, 2003; Ferreira, 1991, 1993, 2007). 

There are no explicit proposals about the relationship between variation in the 

timing of planning and word duration. However, there is evidence for an inverse 

relationship between variation in the timing of planning an upcoming word and the 

current word duration. Early timing of planning should lead to word reduction. This 

prediction is based on the combination of evidence from the timing of planning variation 
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and word duration variation literature. Nevertheless, this inverse relationship might 

occur only under specific circumstances. These circumstances might include the 

requirement to either not pause (Griffin, 2003) or the requirement to initiate speech 

before a certain deadline (Ferreira & Swets, 2002). 

A proposal about the role of planning on word duration variation is put forth by 

Arnold & Watson (under review). They argue that the source of word duration variation 

is often ambiguous. For example, the discourse structure can guide decisions about 

accenting new and deaccenting old information. Accenting is associated with word 

duration variation but also with pitch and intensity variation. New information tends to 

be long in duration but old information tends to be reduced (e.g., Fowler & Housum, 

1987). However, the source of the reduction is either guided by a linguistic rule that 

requires old information to be deaccented, or by the effect of planning facilitation. 

Repeated words are primed and therefore easier to plan (e.g., Balota et al., 1987).  

 The view that planning facilitation is related to word duration variation is 

supported by Balota et al. (1989). They used a priming task where a target word was 

either preceded or followed by a conceptually related word e.g., cat … dog. The target 

word was significantly reduced when paired with a related vs. an unrelated prime.   

Furthermore, planning inhibition leads to relatively longer pronunciations. 

Inhibited words tend to be difficult to plan because their semantic or phonological 

information requires additional time to become available. For example, Kello et al. 

(2000) found evidence that word duration varies in a word interference task (i.e. a 

Stroop like task) when speakers have to start speaking before a specific deadline. The 

speaker had to name the ink color of the written word. When the ink color was 
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incongruent with the word (e.g., the word red printed in green ink) the speaker should 

have encountered lexical competition. The deadline to begin speaking was determined 

by the average speech onset time in a previous experiment using the same task. When 

the speaker had to beat the deadline and the ink color was incongruent, the speaker 

postponed part of word planning after the onset of speech. This led to long word 

durations.  

An alternate view comes from Ferreira (2007). She argues that the acoustic 

characteristics of an utterance should be influenced differently according to their source. 

She argues that planning should influence only pausing. Word duration and pitch should 

be only determined by linguistic rules. This view is based on some of her previous 

findings. Ferreira (1991) manipulated syntactic complexity of subject and object phrases 

in rehearsed utterances. The following utterances are ordered from least to most 

syntactically complex. The subject phrase always precedes the object phrase. 

(1) The enthusiastic band pleased the very important crowd 

(2) The pianist in the band pleased the senator in the crowd 

(3) The man who was in the band pleased the girl who was in the crowd 

She then measured the duration of the head nouns of each phrase (the underlined words). 

She found no effect of syntactic complexity on word duration even though she found an 

effect on pause duration according to object complexity (i.e., the pause between band 

and pleased was longest in (3) compared to (1)). However, Ferreira (1993) manipulated 

prosodic phrasing and found that words (e.g. cop) at prosodic phrasing boundaries were 

longer compared to words at boundary internal locations. This is predicted by linguistic 
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rules for phrase final lengthening. Her manipulation is exemplified in the following two 

utterances: 

(1) The friend of the cop infuriated the boyfriend of the girls 

(2) The cop who’s a friend infuriated the boyfriend of the girls. 

In (1) cop is at the boundary of the first prosodic phrase. In (2) cop is boundary internal. 

The combination of results by Ferreira (1991, 1993) suggests that prosodic rules 

influence word duration but syntactic complexity does not. Syntactically complex 

utterances are difficult to plan therefore planning is not related to word duration. 

 The most important criticism for Ferreira’s (2007) conclusion about the role of 

planning on word duration is that she uses evidence based on prepared speech. Even 

though this task encourages the access of the full linguistic structure of an utterance, it 

arguably minimizes the effect of planning. Furthermore, it is possible that word duration 

variation effects occurred earlier in the phrase and not at the phrase final word.   

Further support for the view that planning is unrelated to word duration variation 

is provided by Damian (2003). Damian (2003) failed to replicate the Kello et al. (2000) 

study using the same Stroop task, but also using three additional lexical interference 

tasks. However, upon comparing the deadlines between experiments, the deadline was 

earlier in the Kello et al. (2000) study. Therefore, the Kello et al. (2000) participants 

might have been more prone to plan less prior to speech onset, compared to the Damian 

(2003) participants. The deadline for the Kello et al. (2000) was 589 ms whereas the 

deadline in Experiment 4 for the Damian (2003) study was 642 ms. Nevertheless, the 

fact that the effect was not replicated in three variants of the task might suggest that the 



 28 

effect only occurs under very specific circumstances, such as when speakers are forced 

to start speaking before they are fully prepared.  

Further support for the lack of a planning effect on word duration is provided by 

Schriefers & Teruel (1999) who used a standard picture-word interference (PWI) task. 

Speakers named the color of a depicted picture along with the depicted object e.g., red 

dog. They analyzed the duration of both words in their first experiment. However, they 

failed to find any evidence that planning facilitation leads to word duration variation of 

either word. Nevertheless, their evidence must be treated with caution because the 

coding of word boundaries was done perceptually and not based on acoustic landmarks.  

In sum, the word duration variation and planning literature suggests a 

relationship between planning and word duration. Planning facilitation should lead to 

short word duration whereas planning difficulty should lead to long word duration 

(Arnold & Watson, under review; Balota et al., 1989; Bell et al, 2003, 2009; Clark & 

Fox Tree, 2002 Christodoulou, 2009; Fowler & Housum, 1987; Fox Tree & Clark, 1997; 

Kello et al., 2000). However, this proposal is disputed on the grounds that syntactic 

complexity or planning inhibition may not impact word duration (Damian, 2003; 

Ferreira 1991, 1993, 2007; Schriefers & Teruel, 1999).  

Evidence from the scope and timing of planning literature in conjunction with 

the word duration variation literature suggests an inverse relationship between planning 

variation and word duration (Christodoulou, 2009; Griffin, 2003; Ferreira & Swets, 

2002; Wagner et al., 2010). However, this inverse relationship might only occur when 

speakers are forced to either preplan but preplanning is difficult (Griffin, 2003). It might 

also occur when speakers are forced to plan incrementally and incremental planning is 
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difficult (Ferreira & Swets, 2002). In other words, there might need to be tension 

between when speakers should plan and when they can plan. Therefore, the direction of 

the effect of planning variation on word duration cannot be securely determined. It is 

possible that in a different task the timing of planning and word duration could covary. 

This might be the case when the timing of planning occurs early but the speaker cannot 

easily resolve issues with planning difficulty.  

Therefore there are two competing predictions about the relationship between 

planning variation and word duration variation. The two variables could either have an 

inverse relationship or they could covary.  

The purpose of the following studies is to address the debate about the influence 

of planning on word duration. Furthermore, they will address the question of whether 

the timing of planning affects word duration and whether it interacts with the effect of 

planning on word duration. Lastly, even though there is evidence in the literature that 

difficulty of an upcoming word leads to word duration variation (Bell et al., 2003; Clark 

& Fox Tree, 2002; Fox Tree & Clark, 1997), there is no evidence from a well-controlled 

experimental task.   

The purpose of the experiments described in the following chapters is to test two 

hypotheses: (1) planning a difficult upcoming word leads to long duration for the current 

word compared to planning an easy upcoming word (2) variation in the timing of 

planning the upcoming word leads to word duration variation.  
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Experimental paradigm 

In the experiments reported here, I used a picture-naming task previously used to 

answer questions about incremental planning (Griffin, 2003; Meyer, 1996, 1997; Meyer 

et al., 1998; Meyer, Roelofs, & Levelt, 2003; Meyer et al., 2007). I presented 

participants with pairs of objects that consisted of a picture on the left side and a picture 

on the right side of a computer screen. The picture on the left always had a low 

frequency name, whereas the picture on the right either had a low or a high frequency 

name. The participant’s task was to name the objects from left to right while trying not 

to pause (Griffin, 2003; Meyer et al., 2007). 

The advantage of using the dual-picture naming task instead of analyzing 

naturally occurring speech is that I can manipulate specific characteristics of the pictures 

and measure the timing of planning using the eye-voice span (e.g., Grfiffin & Bock, 

2000). For the purposes of this dissertation, the eye-voice span will be defined as the 

difference between the onset of the first fixation to the critical object (i.e. the right object 

in the display) and the onset of speech. The definition of this measure is different that 

Griffin & Bock (2000) who defined it as the difference between that onset of the last 

fixation to the critical object and the onset of the noun referring to the target picture. 

Furthermore, by keeping the utterance to only two words I minimize any possible 

confounds with utterance complexity measures such as utterance length. Additionally, I 

am able to minimize any influence of a prosodic representation on word duration 

variation, such as pre-boundary lengthening (e.g., Ferreira, 1993). 

Lexical planning requires longer processing time when word frequency is low as 

opposed to when it is high (Oldfield & Wingfield, 1965). Therefore, in the low 
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frequency condition the speaker should require more processing time compared to the 

high frequency condition either in the form of pausing before Word1 (the name of the 

left object) or in the form of extending Word1 duration to plan Word2 (the name of the 

right object). Therefore, planning low frequency words should take longer compared to 

planning high frequency words.  

According to theories of incremental planning, early planning stages of the right 

word can overlap with the articulation of the left word (e.g., Kempen & Hoenkamp, 

1987; Meyer & Levelt, 2000). The production system can thus minimize working 

memory requirements of the task by distributing lexical planning over an extended 

period of time (Levelt & Meyer, 2000). For example, incremental planning allows 

working memory to free up resources to plan the right word by pushing the left word 

into the articulatory process. Nevertheless, second word planning cannot be completely 

postponed after the first word is fully articulated. This would require a significant pause 

between the two words that would violate task constraints.  

In the current task, the speaker will then have the choice to either preplan both 

words or to plan part of Word2 after speech onset. If the speaker preplans both words, 

there should be little need for incremental planning. Therefore, the need for word 

duration variation should be minimized. If the speaker plans part of Word2 after speech 

onset, the need for incremental planning should be higher.  

A difference in speech onset time according to Word2 planning difficulty will 

constitute evidence for preplanning. The absence of a by-condition difference on speech 

onset time will constitute evidence for incremental planning. 
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However, even if speakers have a dominant response of either preplanning or 

incremental planning, there could still be some variation on the timing of Word2 

planning. Therefore, independent of the dominant type of planning, word duration could 

fluctuate. For example, according to one outcome speech onset time might not vary 

according to Word2 planning difficulty. Even if there is evidence for incremental 

planning, the speaker on certain trials might plan less incrementally. This could shift the 

timing of Word2 planning earlier than the usual timing determined by incremental 

planning.  

To test my main hypotheses first I need to identify how speakers perform in my 

version of the dual-picture naming task. The purpose of Experiment 1 is to address this 

issue. Previous literature suggests that Word2 planning does not affect speech onset time 

(e.g., Meyer et al., 2007). Therefore speech onset time should not differ according to 

Word2 frequency in the current task. However, this effect is arguably mediated by the 

degree of pausing and Word1 duration variation. These factors were not statistically 

accounted for in previous studies. It is possible that speech onset time will vary once 

other confounds are accounted for.  

Previous literature also suggests that planning difficulty affects word duration 

(Bell et al., 2003; Clark & Fox Tree, 2002; Fox Tree & Clark, 1997). Word1 duration 

should be long when Word2 is low frequency as opposed to high frequency. However, 

this effect has not been previously tested in an experimentally controlled task. It is 

possible that word duration variation does not occur when speakers plan a sequence of 

unrelated bare nouns. This will therefore be the first test of the first hypothesis. 
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The purpose of experiments 2-4 is to accurately measure the timing of Word2 

planning and to impose additional manipulations on the timing of planning. Experiment2 

is identical to experiment1 with the addition of the eye-voice span (e.g., Griffin & Bock, 

2000). In Experiment 3 I manipulate the time available for incremental planning by 

allowing speakers to introduce the conjunction and between the two bare nouns. This 

manipulation is informed by the second experiment in Griffin (2003). She showed that 

the relationship between Word1 duration and the timing of planning disappears when 

speakers can add the phrase next to between the two bare nouns. In Experiment 4 I 

manipulate the time available for preplanning by imposing two different deadlines to 

begin speaking. This manipulation is informed by the deadline procedures used in the 

literature that suggests speakers use long word duration when the deadline is short 

(Ferreira & Swets, 2002; Kello et al. 2000).  
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CHAPTER 2 

EXPERIMENT 1: THE EFFECT OF WORD2 FREQUENCY ON WORD1 
DURATION 

 

 The purpose of Experiment 1 was to establish how speakers respond in the 

current version of the dual-picture naming task. It also served the purpose of testing the 

first hypothesis that difficulty of planning Word2 will lead to Word1 duration variation. 

 Speakers named two pictures from left to right while trying not to pause. The 

name of the picture on the right varied in frequency (high vs. low) as a means of varying 

planning difficulty. Low frequency should lead to a higher level of planning difficulty 

compared to high frequency. I predicted that the low frequency condition would lead to 

long Word1 duration compared to the high frequency condition. I measured speech 

onset time, word duration, and pause duration. 

 There are two possible outcomes that could fail to support the role of planning on 

word duration. One possible outcome (outcome 1) is that neither speech onset time nor 

Word1 duration would vary according to Word2 planning difficulty. A second possible 

outcome (outcome 2) is that speech onset time would vary because of Word2 planning 

difficulty but Word1 duration would not vary. 

 There are also two possible outcomes that could support the role of planning on 

word duration. One possible outcome (outcome 3) is that speech onset time would not 

vary but Word1 duration would vary because of Word2 planning. A second possible 
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outcome (outcome 4) is that both speech onset time and Word1 duration would vary. 

 Both outcomes 3 & 4 could provide evidence for the mechanism that leads to 

word duration variation. Evidence for outcome 3 would suggest the speaker was most 

probably planning incrementally, because Word2 did not influence speech onset time. 

Therefore, word duration variation could potentially occur under circumstances where 

incremental planning is taxed. In other words, Word2 duration variation could occur 

when the speaker plans one word at a time but then needs extra time during Word1 

articulation to plan Word2. 

 Evidence for outcome 4 would suggest the speaker was both preplanning and 

planning incrementally. Therefore according to this account word duration variation 

could occur when speakers are potentially slowing down their overall rate of processing. 

Furthermore, according to this outcome the speaker could have some information about 

Word2 prior to speech onset.  

Method 

Participants 

A total of 27 students from the community at UNC Chapel Hill participated in 

the experiment in exchange for course credit. Three participants were excluded from the 

analysis and replaced because of equipment failure. All participants were native 

speakers of English or bilinguals of English and another language. 

Equipment 

I used the experimental software Psycript 2.3.0 (Slavin, 2006) installed on a Mac 

mini (OSX 10. 4.11). The stimuli were presented on an IBM 23 in. monitor. The 

participants’ spoken utterances were recorded using an Audio-Technica head-worn 
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cardioid condenser microphone, attached to a Marantz portable solid-state recorder. The 

recorded utterances were auto-segmented with the P2FA set of scripts (Yuan & 

Liberman, 2008) and analyzed after checking for segmentation errors using the software 

program Praat (Boersma & Weenink, 2011). Data management and analysis in Praat was 

aided in part by the GSU Praat tools Owren (2008) and in part by Praat scripts 

developed by the author.  

Materials 

 I used colored object drawings taken from the Rossion & Pourtois (2004) 

pictorial set. The Rossion & Pourtois (2004) set is a colorized version of the non-

colorized line drawings created by Snodgrass & Vanderwart (1980). I chose the 

colorized picture set as opposed to the non-colorized set because according to Rossion & 

Pourtois (2004) color improves perceptual recognition and naming agreement of the 

non-colorized objects of Snodgrass & Vanderwart (1980). 

 I used a total of 72 drawings, which I divided into three sets. The first set 

comprised 24 pictures with low frequency names to be presented on the left side of the 

screen. I will refer to this as the L-target set. I used pictures with low frequency names 

as opposed to high frequency names to maximize the difficulty of full utterance 

preplanning.  

The second and third set each comprised 24 pictures to be presented on the right 

side of the screen. The second set comprised pictures with low frequency names and the 

third set comprised pictures with high frequency names. I will refer to set two as the low 

frequency set and set three as the high frequency set. These two sets defined the two 

experimental conditions (high vs. low frequency names).  
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Items were assigned to each frequency group on the basis of frequency counts 

reported in Snodgrass & Vanderwart (1980). I selected 72 items with equal numbers of 

monosyllabic and disyllabic words. I then selected 36 items with the highest log 

frequency values for each syllable length for the high frequency group (range: 1.36 - 

2.88). I selected 36 items with the lowest frequency values for the low frequency groups 

(range: 0 - 1.11). I tested whether the high and low frequency right object sets differed in 

frequency with a one-way ANOVA (three levels: L-target set vs. low frequency vs. high 

frequency) (F (69,2) = 150.28, p < 0.001). Post hoc comparisons using the Tukey HSD 

test indicated that the mean log frequency of the L-target set (M = 0.35, SD = 0.39) and 

the low frequency set (M = 2.14, SD = 0.44) were significantly different from the high 

frequency set (M = 0.38, SD = 0.39) but did not significantly differ from each other. 

The three sets were matched on other measures that could influence the acoustics 

of the spoken utterances such as name agreement, visual complexity, and concept-image 

agreement. Name agreement quantifies difficulty in uniquely identifying a name for an 

object. I used the H statistic of name agreement (Snodgrass & Vanderwart, 1980), which 

is the percentage of the most frequent name adjusted for the number of different names 

provided for the same object. High name agreement (e.g., 0) is indicative of a high 

chance in uniquely identifying a name. Visual complexity quantifies difficulty in 

processing an object perceptually. This was measured by asking participants to report on 

a 5-point scale (1 simple, 5 complex) their perceived complexity of the depicted object 

(Snodgrass & Vanderwart, 1980). Typically, complex objects require more visual 

processing time compared to less complex objects. Concept-image agreement quantifies 

the difficulty in recognizing an object given prior expectations about what the object 
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should look like. This was measured by asking participants to visualize a concept and 

then rate the match on a 5-point scale (1 low agreement, 5 high agreement) between the 

visualized object and the object they were presented with (Snodgrass & Vanderwart, 

1980). All ratings were obtained from Rossion & Pourtois (2004) except for the H 

statistic, which was obtained from Snodgrass and Vanderwart (1980). Means and 

standard deviations for picture characteristics according to set are provided in table 1. 

 

Table 1 

Means (and standard deviations) for properties of critical objects 

  Left Object Right High Frequency Right Low Frequency 
  Mean Std.dev Mean Std.dev Mean Std.dev 
Log word 
frequency 
(SV80) 

0.35 0.39 2.14* 0.44 0.38 0.39 

Codability 
(SV80) 

0.43 0.42 0.41 0.44 0.36 0.36 

Codability 
(RP04) 

0.43 0.51 0.54 0.79 0.28 0.41 

Visual 
Complexity 
(RP04) 

2.84 1.05 2.48 0.77 2.91 0.94 

Imageability 
(RP04) 

3.90 0.58 3.56 0.80 3.84 0.87 

Familiarity 
(RP04) 

3.03 1.09 4.33* 0.75 2.92 0.91 

Note. SV80 refers to picture characteristics as reported in Sondgrass and Vanderwart 
(1980). RP04 refers to picture characteristics as reported in Rossion and Pourtois (2004). 
Mean Values with an asterisk are significantly different from all other mean values in 
the same row.  
*p<0.01 

 

In sum, the materials were controlled for the following characteristics: difficulty 

of retrieving the appropriate name of an object, difficulty in visually identifying the 
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object, surprise in the way the object is depicted. The frequency manipulation was 

confounded with conceptual familiarity, which is to be expected. This was confirmed 

with a one-way ANOVA (F (2,69) = 17.16, p < 0.001). A post hoc Tukey HSD test 

indicated that the familiarity of the L-target set (M = 3.03, SD = 1.09) and the low 

frequency set (M = 2.92, SD = 0.91) was significantly different than the high frequency 

set (M = 4.33, SD = 0.75) but the two sets did not differ from each other. This difference 

does not invalidate our frequency manipulation because its purpose is to modulate 

preplanning difficulty. However, it does suggest that the locus of any outcome is not 

restricted to one level of planning. Frequency effects are typically attributed to the 

phonological planning stage (Jescheniak & Levelt, 1994; Jurafsky, Bell, & Girand, 

2000) and possibly at the lexical retrieval stage (Alario, Costa, & Caramazza, 2002; 

Dell, 1990; Gahl, 2008). The difference in conceptual familiarity in addition to name 

frequency suggests that the locus of any possible outcome could potentially originate 

before the lexical retrieval stage. 

Design 

 I used the three picture sets to create pairs of pictures. One picture from the L-

target set was paired with one picture from the low frequency and one picture from the 

high frequency set while keeping the number of syllables constant. I matched the paired 

pictures according to number of syllables, similar to Meyer et al.’s (2007) second 

experiment. Meyer et al. (2007) manipulated the age of acquisition (AoA) of the objects 

on the left side of the screen, which is highly correlated with frequency. All target words 

of objects on the left and right side were disyllabic except for two. The purpose of 

matching all words on number of syllables was to isolate the effect of planning difficulty 
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(AoA) of the left picture name on speech onset. Their experimental results showed that 

the speech onset time in the early AoA condition was shorter by 27 ms compared to the 

late AoA condition. Their results were significant by subjects and marginally significant 

by items. 

This procedure resulted in two matched picture pairs, which I treated as an item. 

For example, the picture of a skunk from the first set was paired with the picture of a 

deer from the second set and the picture of a hand from the third set. These matched 

drawing pairs were treated as a single item as depicted in figure 3. This design afforded 

a within item comparison between high and low frequency words. Overall there were 24 

items that occurred in both frequency conditions (48 distinct pairings). 

 

  

High frequency 

  

Low frequency 

Figure 3. Example of an experimental item. This figure depicts a single item that 
occurred in both frequency conditions. The picture on the left (skunk) was paired with 
two other pictures (hand, deer).  
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I then created two lists where each column represented a frequency condition and 

each row an item. I combined the two lists by using a Latin Square. This methodology 

allows the creation of two experimental lists where items are not repeated but the 

participant is exposed to equal numbers of each level of the independent variable. 

Therefore, the participant is exposed to all items but only in a single condition. 

I also tried to encourage a trial-by-trial evaluation of difficulty by inserting an 

additional 22 filler items. The filler items were created by combining two picture sets 

with varying number of syllables. Thus, the resulting pairs varied in syllable length. Half 

of the pairs always had a multisyllabic left name and a short right name (monosyllabic 

or disyllabic). The other half of the pairs had always a short left name (monosyllabic or 

disyllabic) and a multisyllabic right name. All fillers were present in both experimental 

lists. 

Procedure 

Participants were tested individually. They were seated in front of a computer 

screen at a distance of approximately 2 feet where they could clearly see the stimulus 

pictures. First, a lab assistant or I gave them a brief overview of the task followed by 

instructions about performing the task. We explained that they had to try not to pause 

between the two words and that they would have a chance to practice the task for 12 

trials. During the practice trials we gave participants feedback if they were pausing 

significantly between the two words or if they were inserting extra words such as uh, 

um, and, the. None of the practice items appeared in the experimental session. After 

completing the practice session we informed the participants that the actual experiment 
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would take place and that it would take longer than the practice session. I rotated the 

experimental lists for each participant. Furthermore, the experimental software 

randomized the order of trial presentation.  

For each trial the sequence of events was the following. The participants first 

saw a red X in the middle of the screen. They were instructed to click on the X to initiate 

the trial. They would then immediately hear a beep and the two pictures appeared on the 

left and right part of the screen. The purpose of the beep was to inform them that the 

trial had started, however they were not told they needed to start speaking as soon as the 

beep sounded. They then named the two pictures and clicked on either of the two, to 

move onto the next trial. This sequence of events was identical for all trials.  

When the session was over, we asked the participants a series of questions about 

the experiment and gave them a full debriefing on the purpose of the experiment. The 

recordings were then transcribed and submitted to acoustic analysis. 

Statistical Analysis 

I analyzed the data using mixed effects models with subjects and items treated as 

cross-classified random variables (Baayen, Davidson, & Bates, 2008). These are general 

linear models that can address issues of clustering of observations within datasets. The 

clustering is a result of the nesting of observations within speakers and within words. 

For example, speaker Miri can have a general tendency to use long words. However, 

speaker Vicki can have a general tendency to use short words. These characteristics will 

result in positive intra speaker word duration correlations but negative inter speaker 

word duration correlations. 
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I built separate models for each outcome variable (Word1 duration, Speech onset 

time). The models included two different types of parameters, random effects and fixed 

effects. The fixed effects were further divided into control variables and predictor 

variables that were theoretically motivated. In my design I had four different sets of 

control variables. The first set included variables that were the result of the experimental 

design (block, list, trial order, number of syllables, initial and final phoneme category). 

The second set included variables coding for the initial and final phoneme category of 

Word1 and Word2. I used the following categories: 1. Vowel, 2. Stop, 3. Affricate, 4. 

Fricative, 5. Liquid, 6. Nasal. The third set included participant characteristics such as 

sex and outcome variables that were the result of performing the required task (subject 

error rate, item error rate, subject disfluency rate, item disfluency rate). The third set 

included picture characteristic variables (codability, familiarity, imageability, visual 

complexity). 

The random effects included subject and item id variables that introduced 

individual intercepts for each subject and item. I also included slope adjustments to each 

intercept where it was warranted by the design. The individual slopes represented 

differences in the response of each subject and item to the independent variable(s). For 

example speaker Miri who uses overall long words, might show a larger difference in 

word duration between the two frequency conditions compared to speaker Vicki who 

uses overall short words. The prerequisite for including a random slope was for each 

speaker to have at least one observation in each design cell. This was not feasible in 

cases where the experimental design did not allow this or in cases where a subject or an 

item was missing all data in one of the cells. 
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The model fitting process included four different phases. First, I introduced the 

random effects structure. I then introduced the control variables according to set number 

order. Thirdly, I introduced the predictor variables. At the last step I conducted model 

criticisms to inspect for outliers that might be influencing the fit of the model. 

The model fitting process was guided by considerations for parsimony and for 

colinearity. According to parsimony, the model with the least number of parameters 

justified by the complexity of the data should be retained. Colinearity refers to the 

correlation between predictor variables. The result of colinearity is the explanation of 

non-unique variance in the outcome variable, which tends to inflate type 2 error. To 

mitigate any issues of colinearity I centered the control and predictor variables. 

Furthermore, I only retained control variables that were not collinear with any predictor 

variables. However, control variables were allowed to be collinear with each other. 

At each phase I created successively nested models. This means that each 

superordinate model was identical to the following subordinate model except for a minor 

change in parameter specification. I then retained the most parsimonious model (the 

model with the least number of parameters) if a more complex model was not explaining 

a significantly higher amount of variance. This criterion was implemented in two 

different ways. When introducing fixed effects I only retained parameters associated 

with a t value of 1.5 or higher. When introducing the random effects structure I 

conducted successive log likelihood tests for each nested model. This allowed me to 

eliminate correlations between intercepts and slopes. Furthermore, I only retained 

control variables that had a partial correlation value with a predictor variable of less than 

0.2. This last criterion addressed any issues of colinearity between the fixed effects. 
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None of the theoretically important variables had a correlation higher than 0.2. Only 

interaction terms between two predictor variables and a predictor variable in the 

interaction, or two interaction terms with shared predictors were allowed to have a 

partial correlation higher than 0.2. None of those correlations were higher than 0.5. 

Serious colinearity issues arise when predictor variables have a partial correlation of 0.7 

or higher and only result in loss of power.  

Results 

 The experimental results show that the low frequency condition led to longer 

Word1 duration than the high frequency condition. However, Word2 frequency did not 

affect speech onset time. This pattern of results is depicted in Figure 4. All significant 

control variables for both Word1 duration and speech onset time are listed in table 2. 

 

Figure 4. Experiment 1 Speech onset time and Word1 duration sample based means 
according to condition 
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Table 2 

Control predictors for each model in Experiment 1 

 

Note. Design variables refer to variables relevant to the design of the experiment. 
Phoneme variables refer to variables relevant to the onset and offset of Word1 
and Word2. Performance variables refer to speaker characteristics and error and 
disfluency rate. Characteristics refer to Word1 or Word2 picture characteristics. 
 

Exclusions and error rate analysis 

 The overall error rate before exclusions was (18% or 106 trials out of 576 trials). 

Items and subjects with a combined naming and accuracy error rate higher than 33% 

were excluded from further analyses. This threshold of 33% has been previously used in 

experiments with high memory load (e.g., Wagner et al. 2010). This led to the exclusion 

of three items (72 trials or 12.5% of the original data) and the replacement of two 

participants. After the exclusions the error rate was reduced to 12.5% (or 72 trials). I 

also excluded trials with disfluencies. I considered a disfluency the insertion of a word 

between the target words or before the first target word, such as um, uh, and, a, the or 

Variable types Predictors Word1 
duration 

Speech 
onset 

Design Number of syllables X  
 List   
 Trial X X 
 Pause X X 
Phoneme Word1 onset X  
 Word1 offset   
 Word1 offset*Word2 onset   
Performance Sex   
 Error rate by subject   
 Error rate by item   
 Disfluency rate by subject   
 Disfluency rate by item   
Characteristics  Frequency   
 Word 1 Familiarity   
 Imageability   
 Word 2 Codability  X 
 Word1 Visual complexity   
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any mispronunciation of either of the two target words. This led to the exclusion of 24 

trials (4.2% of the original data). Furthermore, I excluded trials with speech onset time 

longer than 2000 ms (20 trials or 3.5% of the data) and pause duration longer than 200 

ms (52 trials or 9% of the data). Lastly I excluded four additional observations because 

of miscellaneous errors. Overall I excluded 29% of the data (or 168 trials out of 504) 

after excluding the three items or 41.6% (or 240 trials out of 576) including the three 

excluded items. 

 I compared the error rate across frequency conditions using F1 and F2 

ANOVAS. The error rate did not differ between the low (M =10%, SD = 5%) and high 

(M = 10%, SD = 6%) frequency conditions (F1 (1,51) = 1.13, p = 0.29, F2 (1,40) = 0.33, 

p = 0.57). Also, disfluency rate did not differ between the low (M = 2%, SD = 3%) and 

the high (M = 2%, SD = 3%) frequency conditions (F1 (1,51) = 0.01, p = 0.91, F2 (1,40) 

= 0.29, p = 0.59). 

Word1 duration analysis 

Word2 frequency influenced Word 1 duration. The final model for log word 

duration included random intercepts for items and subjects with uncorrelated random 

slopes for condition. The model included controls for number of syllables, trial order, 

duration of pausing, phoneme category of Word1 onset.  

The predictor was Word2 frequency category, which had a significant effect on 

the log of Word1 (β = 0.0466, t = 4.43, p < 0.001). To interpret model-implied effects I 

used the effects package (Fox, J., 2003). When computing the predicted values for a 

specific predictor variable, the effects package holds all other control variables at their 

median. I then back-transformed the data to the original scale. Word1 duration was 
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49.32 ms longer when Word2 was low frequency as opposed to high frequency. All 

fixed effects and their associated significance values can be found in table 3. 

 

Table 3 

Experiment1 Word1 duration fixed effect model 

estimates and significance values after MCMC 

sampling 

 

Note. Trial# refers to the order of trial presentation. 
W1onset refers to the phoneme category of Word1. 
W2freq refers to W2 frequency category 
 

Speech onset time analysis  

Word2 frequency did not influence speech onset time. The final model for log 

speech onset time duration included random intercepts for subjects and items with 

uncorrelated random slopes for condition, only for item intercepts. I did not include 

random slopes by condition for subjects because they were accounting for 0 variance.  

The model included controls for duration of pausing, trial number, and codability for 

Word2. The predictor was Word2 frequency category, which did not have a significant 

effect on the log of speech onset time (β = 0.0133, t = 1.18, p = 0.24). All fixed effects 

and their associated significance values can be found in table 4. 

 

 b SE t p 
Intercept 2.6602 0.0169 157.5500 0.0000 
Syllables 0.0673 0.0245 2.7400 0.0064 
Pause 0.0113 0.0061 1.8400 0.0669 
Trial# 0.0004 0.0003 1.2200 0.2227 
W1onset 0.0247 0.0103 2.4000 0.0170 
W2freq 0.0466 0.0105 4.4300 0.0000 
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Table 4 

Experiment 1 Speech onset time fixed effect model 

estimates and significance values after MCMC 

sampling 

 b SE t p 
Intercept 3.0124 0.0174 172.7600 0.0000 
Pause -0.0114 0.0056 -2.0400 0.0422 
Trial# 0.0009 0.0003 2.8500 0.0047 
W1H 0.0722 0.0212 3.4000 0.0007 
W2frequency 0.0133 0.0113 1.1800 0.2376 

Note. Trial# refers to the order of trial presentation. 
W1H refers to codability of Word1.  
 

Discussion 

 The results of Experiment 1 provide evidence that speakers were planning 

incrementally. Word1 duration was long when followed by a low frequency as opposed 

to a high frequency word. However speech onset time did not differ. The finding that 

speakers were planning incrementally is consistent with previous evidence in the 

literature that the dual-picture naming task encourages incremental planning as opposed 

to complete utterance preplanning (e.g., Meyer, 1996). The results are compatible with 

outcome 3 that supports the role of planning on word duration.  

 Arguably, planning incrementally is rather risky in this task because the speaker 

bets that he or she can plan at least most of the phonological information of Word2 

without a complete estimate of how much time Word2 planning will take. Therefore, the 

speaker runs the risk of failing to meet the task demands of not pausing between the 

target words. This strategy could be potentially motivated by the benefit of incremental 

planning of minimizing Word1 buffering (e.g., Griffin, 2003; Levelt & Meyer, 2000). If 
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we assume that speakers are planning serially, the speaker will have to buffer Word1 

while retrieving information about Word2. Incremental planning would then be 

preferred if speakers favor minimizing word buffering over ensuring fluent delivery.  

Another reason why incremental planning could be preferred is possibly because 

the limited look-ahead of Word2 planning is adequate to accommodate fluent delivery. 

In a secondary analysis on Word1 duration I also included observations with pauses 

longer than 200ms. I then introduced an interaction term between Word2 frequency and 

the presence of a pause longer than 200 ms.  

The effect of Word2 frequency on Word1 duration was robust even after 

including trials with pauses longer than 200 ms and independent of the presence of those 

pauses. The fixed effects of the model can be inspected in Appendix B. These results 

suggest that even in cases where words were not closely planned together, the speaker at 

least began planning Word2 during the articulation of Word1. Therefore, the limited 

look-ahead could accommodate planning coordination even in cases that could be 

categorized as disfluent. 

In sum, in the first experiment speakers planned incrementally. The first 

experiment provided evidence that Word2 planning difficulty affected Word1 duration. 

Low Word2 frequency led to long Word1 duration. 
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CHAPTER 3 

EXPERIMENT 2: THE EFFECT OF WORD2 FREQUENCY AND REVS ON 

WORD1 DURATION 

 

 The purpose of Experiment 2 was to test both hypotheses that Word2 planning 

difficulty and the timing of Word2 planning affects Word1 duration. In Experiment 2 I 

used the same dual-naming task as Experiment 1 and I also added an eyetracking 

measure to identify the precise timing of Word2 planning. 

Experiment 1 results suggested that speakers only planned Word1 prior to speech 

onset. However, this does exclude the possibility of trial-by-trial variation in how much 

Word2 information was available prior to speech onset. In other words, even though on 

average speakers planned only Word1 prior to speech onset, on some trials speakers 

could have planned some information of Word2 prior to speech onset. 

As an index of the point when Word2 planning began, I measured the right 

object eye-voice span (REVS), which is the difference between the time of the first 

fixation to the right object with relation to the onset of speech (e.g., Griffin & Bock, 

2000). A negative REVS (Early REVS) suggests that the timing of Word2 planning 

occurred before the onset of speech. A positive REVS (Late REVS) suggests that the 

timing of Word2 planning occurred after the onset of speech. In figure 5 I depict only 

two scenarios for REVS as either early or late for the sake of clarity of representation.  
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Figure 5. Depiction of two possible REVS Scenarios. Early REVS occurs when the 
speaker looks at the right object (the lobster) before speech onset. Late REVS occurs 
when the speaker looks at the right object after speech onset 

 

However, the actual measure is continuous. Therefore, the measure captures variation in 

early and late REVS.  

Based on Experiment 1 results I predicted long Word1 duration when Word2 is 

low frequency as opposed to high frequency. Speech onset time should be unrelated to 

Word2 frequency. 

I also tested the hypothesis that the timing of Word2 planning would lead to 

Word1 duration variation. One possible scenario of how the timing of Word2 planning 

could relate to Word1 duration is that early timing of planning would lead to Word1 

reduction. If speakers have some information about Word2 in a subset of trials prior to 

speech onset, this should reduce the need for incremental planning. Furthermore, the 

combination of the variation in planning literature and word duration variation literature 
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suggests an inverse relationship between the timing of planning and word duration 

(Christodoulou, 2009; Griffin, 2003; Ferreira & Swets, 2002; Wagner et al., 2010). 

A different possible pattern of results is that of covariation between REVS and 

Word1 duration. Early REVS could lead to long Word1 duration. When information 

about Word2 is available prior to speech onset, Word1 is long. This pattern would 

suggest that during certain trials, early timing of planning is also associated with 

extensive post speech onset planning. For example this scenario could occur if speakers 

are both preplanning and planning incrementally certain words, potentially because they 

are encountering high cognitive load. 

Method 

Participants 

A total of 33 students from the community at UNC Chapel Hill participated in 

the experiment in exchange for course credit. 10 participants were excluded from the 

analysis and replaced because of equipment failure (n = 8), for high naming error (n = 

2), for not being a native speaker of English (n = 1). All other participants were native 

speakers of English or bilinguals of English and another language. The equipment 

failure rate was mainly due to a faulty microphone issue (n = 7). The audio recordings 

were contaminated with artifact noise that masked the acoustics of the target words. The 

remaining equipment failure was due to the lack of eyetracking data output (n = 1). 

Materials and Procedure 

Experiment 2 was identical to experiment 1 except for the addition of 

eyetracking. Participants wore an Eyelink II eyetracker attached to two PCs. The 

eyetracker was calibrated using a Dell PC running proprietary Eyelink software while 
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the experimental stimuli were presented on an IBM PC running Windows XP. The 

stimuli were presented on a 19’’ screen with 1280X765 resolution with the experimental 

software Exbuilder (Longhurst, 2006).  

All other equipment, material and procedures were identical to Experiment 1 

except for the following changes. I replaced four stimulus pictures that were associated 

with a high error rate in Experiment 1. A list of all the changes in stimuli across all 

experiments is provided in the appendix A. These changes did not lead to any changes in 

the picture characteristic differences between conditions. Frequency and conceptual 

familiarity were significantly different between the low frequency picture sets and the 

high frequency picture set. 

The procedure was different compared to experiment 1 in the following respects. 

Before each trial the participants fixated on a dot in the middle of the screen. During the 

fixation the Eyelink software conducted a drift correction that adjusted for any minor 

changes in the position of the eyetracker with relation to the screen. The trial did not 

begin until the software had detected a stable fixation on the dot to conduct the drift 

correction. The duration of this event varied according to the quality of the track. 

Participants then completed the task by naming the two pictured objects from left to 

right without pausing as in Experiment 1. I used the data analysis software Dataviewer 

by Eyelink to analyze the fixation data. 

Results 

The experimental results show that low Word2 frequency led to longer Word1 

duration than high Word2 frequency. However, Word2 frequency did not affect speech 

onset time. Both of these results are consistent with Experiment 1 results. The pattern of 
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results is depicted in Figure 6. The timing of Word2 planning significantly influenced 

Word1 duration independent of Word2 frequency (see figure 7). All significant control 

variables for both Word1 duration and speech onset time are listed in table 5. 

Exclusions and error rate analysis 

 The overall error rate before exclusions was 16.32% or 94 trials out of 576 trials. 

Items and participants with a combined naming and accuracy error rate higher than 33% 

were excluded from further analyses. This led to the exclusion of two items (48 trials or 

8.3% of the original data) and the replacement of two participants. After the exclusions 

the error rate was reduced to 10.42% (or 60 trials). I also excluded trials with 

disfluencies. This led to the exclusion of 8 trials (1.9% of the original data). 

Furthermore, I excluded trials with speech onset time longer than 200ms (20 trials or 

3.5% of the data) and with pause duration longer than 200 ms (53 trials or 9.2% of the 

data). Lastly I excluded four additional trials because of miscellaneous errors. Overall I 

excluded 26% of the data (or 149 out of 528 trial) after excluding the three items or 34% 

(or 197 out of 576 trial) of the data when including the three excluded items.  

I compared the error rate across frequency conditions. The error rate did not 

differ between the low (M = 9%, SD = 6%) and high (M = 11%, SD = 8%) frequency 

conditions (F1 (1,44) = 0.53, p = 0.47, F2 (1,38) = 0.24, p = 0.62). Disfluency rate did 

not differ between the low (M = 2%, SD = 3%) and high frequency (M = 1%, SD = 2%) 

conditions (F1 (1,44) = 1.9, p = 0.17, F2 (1,38) = 1.66, p = 0.2).  

Eyetracking analysis 

I used the software Dataviewer by Eyelink to extract the time of the first fixation 

to the right object. I then subtracted the speech onset time from the fixation time. This is 
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Figure 6. Experiment 2 Speech onset time and Word1 duration sample based means 
according to condition

Figure 7. Experiment 2 Word1 duration according to Word2 frequency and REVS. 
Early REVS consists of looks to the right object prior to speech onset 
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Table 5 

Control predictors for each model in Experiment 2 

Variable types Predictors Word1 
duration 

Speech 
onset 

Design Number of syllables X  
 List   
 Trial X X 
 Pause X  
Phoneme Word1 onset X  
 Word1 offset   
 Word1 offset*Word2 onset   
Performance Sex   
 Error rate by subject  X 
 Error rate by item   
 Disfluency rate by subject   
 Disfluency rate by item X  
Characteristics  Frequency   
 Word 1 Familiarity   
 Imageability   
 Word1 Codability  X 
 Word1 Visual complexity   
Note. Design variables refer to variables relevant to the design of the experiment. 
Phoneme variables refer to variables relevant to the onset and offset of Word1 and 
Word2. Performance variables refer to error and disfluency rate. Characteristics refer 
Word1 or Word2 picture characteristics. 
  

the right object eye-voice span (REVS). A positive number indicated that the fixation 

occurred after speech onset. A negative number indicated that the fixation occurred 

before speech onset. Speakers showed a preference of looking at the right object after 

the onset of speech. On average they looked at the right object before the onset of 

speech 84% of the time in the high frequency condition and 92% of the time in the low 

frequency condition. I then used this measure to predict Word1 duration and speech 

onset time. 
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Word1 duration analysis 

REVS and Word2 frequency influenced word duration. The final model for log 

word duration included random intercepts for items and subjects with uncorrelated 

random slopes for condition. The model included controls for pausing, number of 

syllables, trial number, phoneme category of Word1 onset, and disfluency rate by item. 

The predictors were the REVS and Word2 frequency category. Word2 frequency 

category had a significant effect on the log of Word1 (β = 0.0255, t = 2.51, p < 0.05). To 

interpret model-implied effects I back-transformed the data to the original scale. Word1 

duration was 21.14 ms longer when Word2 was low frequency as opposed to high 

frequency. REVS1 also had a significant effect on the log of Word1 duration (β = -

0.00007, t = 3.48, p < 0.001). Word1 duration was 131.49 ms shorter when REVS was at 

its maximum negative value as opposed to its maximum positive value. In other words, 

the earlier looks to the right object with relation to speech onset the more reduced 

Word1 duration. Fixed effect coefficients and their associated significance values can be 

inspected in table 6. Model-implied random slopes are depicted in figure 8 and figure 9. 

The purpose of including both figures is to depict important graphical parameters that I 

couldn’t incorporate into a single figure. In figure 8 I used the effects package (Fox, J., 

2003), which provides a rug plot. The rug plot is located just above the X axis and 

provides information about the relative distribution of REVS. In figure 8 I used the 

plotLMER.fnc function included in the Language R package (Baayen, 2011). This figure 

provides confidence intervals in the form of the dashed curves around the model-implied 

lines.  

                                                
1 The effect of REVS also predicts duration when REVS is treated as a categorical variable of looks before 
vs. after the onset of speech. 
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Table 6 

Experiment 2 Word1 duration fixed effect model 

estimates and significance values after MCMC sampling 

  b SE t p 
Intercept 2.61500 0.02284 114.50000 0.0000 
Pause 0.01093 0.00630 1.74000 0.0835 
Syllables 0.05346 0.02822 1.89000 0.0592 
Trial# 0.00114 0.00030 3.74000 0.0002 
W1onset 0.02045 0.01246 1.64000 0.1018 
Item dis 0.44810 0.17220 2.60000 0.0097 
W2freq 0.02548 0.01016 2.51000 0.0127 
REVS 0.00007 0.00002 3.48000 0.0006 
W2freq*REVS -0.00001 0.00003 -0.29000 0.7693 
Note. Trial# refers to the order of trial presentation. 
W1onset refers to initial Word1 phoneme category of. 
Item dis refers to disfluency rate by item. 
 

 

Figure 8. Word2 frequency and REVS predict Word1 
duration in Experiment 2. The black solid line represents the 
model-implied effect of low frequency and the red dashed line 
represents the model-implied effect of high frequency. The 
rug plot depicts the relative distribution of REVS 
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Figure 9. Word2 frequency and REVS predict Word1 
duration in Experiment 2. The dotted blue and red lines 
depict a 95% confidence interval according to MCMC 
sampling. 

 

Speech onset time analysis  

REVS predicted speech onset time. Trials with earlier REVS tended to be trials 

with overall longer latencies. The final model for log speech onset time duration 
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codability for Word1. The predictors were the REVS and Word2 frequency category. 

Word2 frequency category did not have a significant effect on the log of speech onset 
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looks to the right object were associated with long speech onset time. Speech onset time 

was 1128.34 longer when speakers looked at the right object the earliest possible as 

opposed to the latest possible. Fixed effects and their associated significance values can 

be inspected in table 7. Model-implied lines for the effect of REVS and Word2 

frequency on speech onset can be inspected in figure 10. 

 

Table 7 

Experiment 2 Speech onset time fixed effect model 

estimates and significance values after MCMC sampling 

  b SE t p 
Intercept 2.97200 0.01600 185.78000 0.00000 
Trial# 0.00111 0.00036 3.06000 0.00240 
Sub error 0.27640 0.10270 2.69000 0.00750 
W1H 0.07975 0.03360 2.37000 0.01820 
W2freq 0.01344 0.01046 1.28000 0.19990 
REVS -0.00022 0.00002 -9.70000 0.00000 
W2freq*REVS -0.00001 0.00004 -0.33000 0.74190 
Note. Trial# refers to the order of trial presentation. Sub error 
refers to naming error rate by subjects. W1H refers Word1 
codability. 
 

Discussion 

 Experiment 2 replicated Experiment 1 results: low Word2 frequency led to 

longer Word1 duration than high Word2 frequency did, whereas Word2 frequency did 

not affect speech onset time. These results further support the role of planning on word 

duration. Experiment 2 results also provide support for the hypothesis that the timing of 

Word2 planning affects Word1 duration. Early timing of Word2 planning led to Word1 

reduction. 
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Figure 10. REVS predicts Speech Onset Time in Experiment 2. 
The black solid line represents the model-implied effect of low 
frequency and the red dashed line represents the model-implied 
effect of high frequency. The rug plot on the horizontal axis 
depicts the distribution of REVS. 
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not require additional time to plan Word2 while articulating Word1. Therefore, instead 

of slowing down Word1 articulation to allow additional Word2 planning time, the 

speaker could have sped up Word1 articulation to minimize time on task. 

There are also two scenarios where the amount of Word1 planning could have 

changed on a trial-by-trial basis. One possibility is that reduction occurred in trials 

where the overall amount of planning both words was reduced. According to this 

scenario the facility of planning Word1 in addition to Word2 could have contributed to 

Word1 reduction. This could occur if certain speakers found certain combination of 

objects easier to name in sequence compared to other combinations of objects. This 

could have resulted in planning facilitation of Word1, which could have led to its 

reduction. This account requires the coordination of planning Word1 and Word2. 

However, this alternate explanation is unlikely because the paired objects were 

conceptually unrelated to each other. 

A different possibility is that reduction occurred in trials where the facility of 

planning Word1 varied independent of Word2 planning. Even though all left objects had 

low frequency names, there was still variation in their actual frequency counts and other 

picture and lexical characteristics. Word1 frequency and all picture characteristics do not 

appear as a control variables in the word duration model because they were not 

explaining significant variance in the model. However, Word1 frequency was correlated 

with Word1 syllable length, Word1 onset phoneme category and item disfluency rate. 

When excluding those controls, Word1 frequency marginally predicted Word1 duration 

(t = - 1.79) in addition to Word2 frequency and REVS.  
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This follow-up analysis should render an account of only Word1 planning 

influencing Word1 duration less plausible. This is because Word2 frequency and REVS 

predicted Word1 duration in addition to the marginal effect of Word1 frequency on 

Word1 duration. If Word1 frequency were solely responsible for Word1 duration 

variation, Word2 frequency and REVS should have not explained a significant amount 

of variance in Word1 duration after including Word1 frequency in the model. 

 As in Experiment1 I conducted a secondary analysis on Word1 duration where I 

included items with pauses longer than 200 ms. The results showed a significant effect 

of Word2 frequency and REVS independent of the presence of a pause longer than 200 

ms. The table of fixed effects can be inspected in Appendix C. This finding suggests that 

the effect of planning on Word1 duration could occur independent of disfluent pausing.  

 In sum, the current experimental results provided further support for the idea that 

Word2 planning difficulty affected Word1 duration variation. They also provided 

evidence that the timing of planning affected Word1 duration. Early looks to the right 

object led to Word1 reduction. In the next two experiments I will directly manipulate 

factors related to the time available to preplan or plan incrementally.  
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CHAPTER 4 

EXPERIMENT 3: THE EFFECT OF AVAILABLE INCREMENTAL PLANNING 

TIME ON WORD1 DURATION 

 

 In Experiment 3 I further tested the second hypothesis that Word1 duration 

varies according to the timing of Word2 planning. I manipulated the amount of available 

incremental planning by varying the presence of the word and between the two bare 

nouns. In two separate blocks speakers either inserted the word and (and condition) 

while trying to be fluent, or they tried to not pause when producing two bare nouns (no 

pause condition). 

This manipulation is informed by Griffin (2003). She found that Word1 length 

influenced the timing of Word2 planning only when speakers did not insert the phrase 

next to between naming the two bare nouns of the dual-naming task. This most probably 

occurred because speakers did not have to estimate the duration of Word1 when two 

words intervened between the two target words. The additional phrase allowed speakers 

to always plan incrementally. 

The manipulation of the available time for incremental planning is related to the 

degree of planning coordination. When there is ample time for incremental planning the 

planning coordination between Word1 and Word2 should be less important. This is 

because Word2 planning could safely occur completely after speech onset and during 
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articulation of Word1. 

If speakers choose to do less preplanning because they know they will have more 

time available for incremental planning, the and/no pause manipulation should 

significantly shift the timing of planning. Word1 duration variation should then only 

occur in the no pause block as opposed to the and block. Otherwise, if the timing of 

Word2 planning is not shifted significantly between the and and no pause block, word 

duration variation should still occur according to Word2 frequency independent of the 

timing manipulation. 

Speech onset time should be shorter in the and block compared to the no pause 

block. This will support the idea that speakers are shifting their timing of Word2 

planning after speech onset. I do not expect an interaction between Word2 frequency 

and experimental block on speech onset time because Word2 frequency does not affect 

speech onset time in the current task. 

The critical prediction is that Word2 frequency should influence Word1 duration 

only in the no pause condition. This is because the presence of the word and should 

allow for incremental planning without the need to prolong Word1. Whether a main 

effect of experimental block is also observed is an open question.  

Method 

Participants 

A total of 33 students from the community at UNC Chapel Hill participated in 

the experiment in exchange for course credit. Nine participants were excluded from the 

analysis and replaced because of equipment failure (n = 8), for not being a speaker of 

American English (n =1). All other participants were native speakers of American 
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English or bilinguals of English and another language. The equipment failure rate was 

due to the experimental software. It overwrote the eyetracking data files for participants 

with two-digit participant numbers. We discovered the error after running 20 

participants. We resumed conducting the experiment within a day of fixing the issue.  

Materials and Procedure 

Experiment 3 was identical to Experiment 2 except for the addition of a new 

independent variable. I manipulated the degree of incremental planning independent of 

Word2 frequency by varying the number of words in the target utterance. In one 

condition participants were instructed to use two bare nouns when naming the two 

pictures. In a second condition they were instructed to introduce the connector and 

between the two bare nouns. In both conditions the participants were asked to not pause 

between words. Participants were exposed to both conditions and in separate blocks. 

Each block consisted of a single experimental list. Therefore, participants saw both 

experimental lists and both instruction conditions. The presentation order of the blocks 

was counterbalanced across participants and across experimental lists. The presentation 

order of the experimental lists was counterbalanced across participants. 

All other equipment, material and procedures were identical to Experiment 2 

except for the following changes. I replaced two stimulus pictures that were associated 

with a high error rate in experiment 2. A list of all the changes in stimuli across all 

experiments is provided in appendix A. I used the experimental software OpenSesame 

(Mathot, Schreij, Theeuwes, 2012) to present the experimental stimuli. Audio recording 

was conducted directly onto the presentation PC via a modified python script 

incorporated into the experimental software. I used the same condenser microphone as 
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in previous experiments connected to the PC through the Icicle preamplifier made by 

Blue. 

The procedure was different compared to Experiment 2 in the following respects. 

Before each trial the participants fixated on a dot in the middle of the left side of the 

screen. I moved the location of the fixation point to match the position used by Griffin 

(2004) and Meyer et al. (2007). I also added an additional event between the appearance 

of the fixation point and the onset of the stimuli. The fixation point changed shape when 

the eyetracker had completed drift correction. The new shape stayed on the screen for 

800 ms. I implemented this change to mitigate any issues of difference in level of inter 

and intra subject preparedness at trial onset. For example, in cases where the duration of 

the drift correction was prolonged, the participant might not have been adequately 

prepared for the trial to start. The participant could now anticipate the onset of the trial 

at the cue of the change in the fixation shape. The participants then named the pictures 

from left to right and hit the spacebar at the end of the utterance. They then hit the 

spacebar again to initiate the next trial. 

Results 

The experimental results show that the and/no pause manipulation did not affect 

Word1 duration. However, Word1 duration was longer when Word2 was low frequency 

rather than high frequency. Also, Word2 frequency did not affect speech onset time. 

Both of these results are consistent with the previous experimental results. The overall 

pattern of results based on sample means is depicted in Figure 11. Furthermore, there 

was an interaction between Word2 frequency and REVS. Word1 duration was reduced 

when the speaker looked at the right object prior to speech and when Word2 was high 
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frequency (see figure 12). All significant control variables for both Word1 duration and 

speech onset time are listed in table 8. 

 

 

Figure 11. Speech onset time and Word1 duration sample based means according to 
condition in Experiment 3. 
 

 

Figure 12. Experiment 3 Word1 duration according the Word2 frequency and REVS. 
The left panel represents the condition where the word and was introduced. The right 
panel represents the condition where the speaker tried to not pause.  
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Table 8 

Control predictors for each model in Experiment 3 

Variable types Predictors Word1 
duration 

Speech 
onset 

Design Number of syllables X  
 List   
 Combination of list and 

Block 
 X 

 Block order X X 
 Trial X  
 Pause X  
Phoneme Word1 onset X X 
 Word1 offset X  
 Word1 offset*Word2 onset   
Performance Sex   
 Error rate by subject   
 Error rate by item   
 Disfluency rate by subject   
 Disfluency rate by item   
Characteristics  Frequency   
 Word 1 Familiarity  X 
 Imageability   
 Word1 and Word 2 

Codability 
 X 

 Word1 Visual complexity   
Note. Design variables refer to variables relevant to the design of the experiment. 
Phoneme variables refer to variables relevant to the onset and offset of Word1 and 
Word2. Performance variables refer to error and disfluency rate. Characteristics refer 
Word1 or Word2 picture characteristics. 
 

Exclusions and error rate analysis 

 The overall error rate before exclusions was 10.24%, or 118 trials out of 1152 

trials). Items with a combined naming and accuracy error rate higher than 33% were 

excluded from further analyses. This led to the exclusion of one item (24 trials or 4.2% 

of the original data). After the exclusions the error rate was reduced to 8.33% (or 72 
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trials). I also excluded trials with disfluencies. This led to the exclusion of 18 trials 

(1.56% of the original data). 

Furthermore, I excluded trials with speech onset time longer than 2000 ms (15 

trials or 1.3% of the data) and pause duration longer than 200 ms (120 trials or 10.42% 

of the data). Lastly I excluded four additional trials because of miscellaneous errors. 

Overall I excluded 24.05% of the data (or 277 trials out of 1104 trials) after excluding 

one item or 28.22% (or 325 trials out of 1152) before excluding the one item. 

 I compared the error rate across frequency conditions and type of instructions. 

The error rate was marginally higher in the low (M = 2.65%, SD = 2.38%) compared to 

the high (M = 1.52%, SD = 1.76%) frequency condition (F1 (1,90) = 2.98, p = 0.08, F2 

(1, 86) = 0.67, p = 0.41). The error rate did not differ when speakers inserted the word 

and (M = 1.74%, SD = 2.03%) from when speakers were asked not to pause (M = 

2.43%, SD = 2.25%) (F1 (1,90) = 2.62, p = 0.11, F2 (1,86) = 1.14, p = 0.29). There was 

also no interaction between the frequency condition and the type of instructions (F1 

(1,90) = 0.04, p = 0.84, F2 (1,86) = 0.58, p = 0.81). 

I also compared disfluency rate across frequency conditions and type of 

instructions. The disfluency rate did not differ in the low (M = 0.02%, SD = 0.06%) 

compared to the high (M = 0.05%, SD = 0.11%) frequency condition (F1 (1,90) = 0, p = 

0.99, F2 (1,86) = 0.54, p = 0.46). The disfluency rate was marginally higher when 

speakers were asked not to pause (M = 0.05%, SD = 0,11%) from when speakers were 

asked to insert the word and (M = 0.22%, SD = 0.06%) but only by subjects (F1 (1,90) 

= 3.56, p = 0.62, F2 (1,86) = 1.54, p = 0.46). There was also a marginal interaction 
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between the frequency condition and the type of instructions by subjects but not by 

items (F1 (1,90) = 3.58, p = 0.62, F2 (1,86) = 2.16, p = 0.14). 

Eyetracking analysis 

 The fixation data analysis was the same as in Experiment 2. Speakers showed a 

preference of looking at the right object after speech onset. On average they looked at 

the right object after the onset of speech 84% of the time. The average proportion of 

looking to the right object after speech onset was similar between experimental blocks. 

In the and condition speakers looked at the right object 87% of the time after speech 

onset. In the no pause condition they looked at the right object 80% of the time after 

speech onset. This suggests that the and manipulation induced a similar degree of 

incremental planning compared to the no pause condition. 

Word1 duration analysis 

REVS and Word2 frequency influenced word duration. REVS also interacted 

with Word2 frequency. However, the and/no pause manipulation did not influence 

Word1 duration. The final model for log word duration included random intercepts for 

items and subjects with uncorrelated random slopes for condition and experimental 

block. The model included controls for number of syllables, trial number, block order, 

pause duration, phoneme category of Word1 onset and offset. The predictors were the 

and/no pause manipulation (Experimental block), REVS and Word2 frequency 

category. Word2 frequency category had a significant effect on the log of Word1 (β = 

0.0163, t = 2.26, p < 0.05). To interpret model-implied effects I back-transformed the 

data to the original scale. Word1 duration was 16 ms longer when Word2 was low 
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frequency as opposed to high frequency. REVS2 had a significant effect on the log of 

Word1 duration (β = 0.0001, t = 3.85, p < 0.001). Word1 duration was 133 ms shorter 

when REVS was at its maximum negative value as opposed to its maximum positive 

value. In other words, the earlier looks to the right object with relation to speech onset 

the more reduced Word1 duration. However, there was a significant interaction between 

REVS and Word2 frequency category (β = -0.0001, t = -2.03, p = 0.05). The interaction  

 

Table 9 

Experiment 3 Word1 duration fixed effect model 

estimates and significance values after MCMC sampling 

  b SE t p 
Intercept 2.67900 0.01603 167.12000 0.0000 
Pause 0.00629 0.00316 1.99000 0.0467 
Syllables 0.03057 0.01737 1.76000 0.0787 
First -0.02965 0.01004 -2.95000 0.0032 
Trial# 0.00079 0.00024 3.30000 0.0010 
W1onset 0.02567 0.00712 3.61000 0.0003 
W1offset 0.01310 0.00484 2.71000 0.0070 
W2freq 0.01634 0.00724 2.26000 0.0242 
REV 0.00006 0.00001 3.85000 0.0001 
Inst 0.00119 0.01113 0.11000 0.9153 
W2freq*REV -0.00004 0.00002 -2.03000 0.0428 
Note. First refers to experimental block order. Trial# refers 
to the order of trial presentation. W1onset refers to initial 
Word1 phoneme category. W1offset refers to final Word1 
phoneme category. Inst refers to the experimental block of 
inserting and or not pausing. 
 

                                                
2 The effect of REVS also predicts duration when REVS is treated as a categorical variable of looks before 
vs. after the onset of speech. 
 



 74 

 

Figure 13. The interaction between Word2 frequency and REVS predict Word1 duration 
in Experiment 3. The black solid line represents the model-implied effect of low 
frequency and the red dashed line represents the model-implied effect of high frequency. 
The rug plot on the horizontal axis depicts the distribution of REVS 

 
Figure 14. The interaction between Word2 frequency and REVS predict Word1 duration 
in Experiment 3. The blue line represents high Word2 frequency and the red line low 
Word2 frequency. The dotted blue and red lines depict a 95% confidence interval 
according to MCMC sampling. 
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suggests that Word1 duration was long independent of Word2 frequency category when 

the speaker looked at the right object after the onset of speech. However, Word1 

duration was reduced when Word2 frequency was high and the speaker looked at the 

right object before speech onset. Fixed effects and their associated significance values 

can be inspected in table 9. The pattern of results can be inspected in figures 13 and 14. 

Speech onset time analysis  

REVS and the interaction between REVS and Word2 frequency influenced 

speech onset time. However, the and/no pause manipulation did not influence speech  

onset time. The final model for log speech onset time duration included random 

intercepts for items and subjects. All slopes for Word2 frequency and experimental 

block were uncorrelated. The model included controls for block order, the combination 

of block and experimental list, Word1 onset phoneme category, codability for Word1 

and Word2, Word1 familiarity. The predictors were the REVS and Word2 frequency 

category. Word2 frequency category did not have a significant effect on the log of 

speech onset time (β = 0.0033, t= 0.64, p = 0.52). In other words, difficulty of Word2 

planning did not affect speech onset time. REVS unsurprisingly had a significant effect 

on the log of speech onset time (β = -0.0001, t = -7.03, p = < 0.001). This suggests that 

when speakers looked at the right object before speech onset, speech onset time was 

longer. Speech onset time was 242 ms longer when speakers looked at the right object 

before speech onset as opposed to after speech onset. REVS also interacted with Word 2 

frequency (β = -0.0001, t = -2.04, p = < 0.05). Fixed effects and their associated 

significance values can be inspected in table 10. The pattern of results can be inspected 

in figures 15 and 16.  
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Table 10 

Experiment 3 Speech onset time fixed effect model estimates and 

significance values after MCMC sampling 

  b SE t p 
Intercept 2.95400 0.01336 221.13000 0.00000 
Version -0.02031 0.00998 -2.04000 0.04190 
First -0.05390 0.00805 -6.69000 0.00000 
W1fam -0.00928 0.00765 -1.21000 0.22570 
W1H 0.07738 0.02692 2.87000 0.00420 
W2H 0.01856 0.00835 2.22000 0.02600 
W2freq 0.00335 0.00522 0.64000 0.52010 
REV -0.00010 0.00001 -7.03000 0.00000 
Inst 0.01154 0.00833 1.39000 0.16620 
W2freq*REVS -0.00004 0.00002 -2.04000 0.04180 
Inst*REVS 0.00004 0.00003 1.55000 0.12040 
Note. Version refers to the combination of experimental list and 
experimental block. W1fam refers to Word1 familiarity. W1H 
and W2H refer to Word1 and Word2 codability. Inst refers to 
the experimental block of inserting and or not pausing. 

 

Discussion 

 Experiment 3 successfully replicated the effect of Word2 frequency and REVS 

on Word1 duration. Word1 duration was longer when followed by a low frequency 

Word2 as opposed to a high frequency Word2. Also, early REVS led to a reduction of 

Word1 duration. Therefore I again found support for the hypotheses that both planning 

difficulty and the timing of planning affects word duration.  

 Furthermore, Experiment 3 provided evidence of an interaction between the 

timing of planning and Word2 frequency. The interaction occurred because of trial-by-

trial variation in the timing of planning with relation to the onset of speech as opposed to 

the independent manipulation of Word2 timing of planning. 
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Figure 15. The interaction between Word2 frequency and REVS predict speech onset 
time in Experiment 3. The black solid line represents the model-implied effect of low 
frequency and the red dashed line represents the model-implied effect of high frequency. 
The rug plot on the horizontal axis depicts the distribution of REVS. 

 

Figure 16. The interaction between Word2 frequency and REVS predict speech onset 
time in Experiment 3. The blue line represents high Word2 frequency and the red line 
low Word2 frequency. The dotted blue and red lines depict a 95% confidence interval 
according to MCMC sampling. 
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The and/no pause manipulation led to a change in the proportion of trials where 

speakers fixated the right object prior to speech onset. As predicted, speakers looked less 

frequently at the right object prior to speech onset when they inserted the word and  

between the two target words. However, this change in the REVS did not significantly 

affect Word1 duration. This potentially occurred because the rate of incremental  

planning was overall high in the task. The interpretation that the degree of incremental 

planning did not change is supported by the lack of a significant effect of the insertion of 

and on speech onset time. 

Despite the lack of a difference according to the and/no pause manipulation in 

the degree of incremental planning, there is some evidence that planning coordination 

was an important part of word duration variation. When REVS occurred early with 

relation to speech, Word1 duration was reduced when Word2 was high frequency. 

However, when REVS occurred late with relation to speech Word1 duration was long 

independent of Word2 frequency. This finding suggests that high frequency words can 

ease coordination of planning because they require less amount of planning. Supporting 

evidence comes from the fact that speech onset time only varied according to the 

interaction between Word2 frequency and REVS. Given that speech onset time did not 

differ according to Word2 frequency this result suggests that a high frequency Word2 

required less preplanning time compared to a low frequency Word2. 

The main effect of REVS and its interaction with Word2 frequency were no 

longer significant when I treated REVS as categorical (before vs. after speech onset). 

This is potentially the case because speakers had a general tendency to look at the right 

object after speech onset. In a secondary analysis, to demonstrate that looks to the right 
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object prior to speech onset were influential on the interaction I excluded all looks prior 

to speech onset. The interaction term was now marginal.  

Experiment 2 results suggested that Word1 duration variation might have not 

been solely due to Word2 planning difficulty. I therefore outlined three possible 

scenarios of how Word1 duration could have varied. The first and second scenario 

required the coordination of Word1 and Word2 planning. However, the second scenario 

is highly unlikely given the experimental design. I will therefore not discuss it any 

further. The third scenario required only variation in Word1 planning. According to the 

presence of an interaction between Word2 frequency and REVS I can safely exclude the 

third scenario. 

I also conducted a secondary analysis where I included pauses longer than 200ms 

for the word duration model. As in Experiment 2 the results showed that both effects of 

REVS and Word2 frequency were significant. You can find the fixed effects table for 

the model in appendix D. 
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CHAPTER 5 

EXPERIMENT 4: THE EFFECT OF AVAILABLE PREPLANNING TIME ON 

WORD1 DURATION 

 

 In Experiment 4 I varied the available preplanning time. I used a manipulation 

that required participants to start speaking before a specific deadline. In two separate 

blocks the speakers had to start speaking either before a 2000 ms or a 960 ms deadline. 

2000 ms was the maximum allowable speech onset time for inclusion in data analysis in 

all previous experiments. 960 ms was the average speech onset time in Experiment 1. 

The speakers received feedback on their performance at the end of each trial. 

This way the speaker had to figure out a specific strategy to meet the demands of the 

task. If they failed to meet task requirements, they received negative feedback at each 

trial. Thus participants could keep adjusting their performance on a trial-by-trial basis. 

The deadline manipulation is informed by previous research in incremental 

planning (Ferreira & Swets, 2002). Also Damian (2003) and Kello et al. (2000) used the 

deadline manipulation to test their hypotheses about the relationship between planning 

and word duration. 

Predictions for the current experiment are very similar to Experiment 3. Here I 

will only focus on predictions that might differ between the two experiments. Based on 

the incremental planning literature I would expect speech onset time to be short in the 
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early deadline condition and long in the late deadline condition. However, according to 

Kello et al. (2000) if the speaker encounters heightened cognitive load the early deadline 

condition should lead to longer speech onset compared to the late deadline condition. On 

the other hand Damian (2003) but also Damian and Dumay (2007) suggest that time 

pressure should have no effect on the degree of incremental planning. 

According to the incremental planning literature, Word1 duration could 

potentially be longer in the early compared to the late deadline condition. However, 

there is an alternate possibility that Word1 duration will be reduced in the early 

compared to the late deadline condition. This is predicted by Ferreira & Swets (2002) 

who found that utterance duration was overall reduced when speakers had to meet a 

deadline to begin speaking. This outcome suggests that speakers are overall planning 

faster when they need to meet a deadline. As in all previous experiments, I expect low 

frequency rather than high frequency Word2 to lead to longer Word1 duration.  

Method 

Participants 

A total of 34 students from the community at UNC Chapel Hill participated in 

the experiment in exchange for course credit. Ten participants were excluded from 

analyses and replaced because of equipment failure (eyetracking failure n = 3, voice key 

malfunction, n = 6), because the lab assistant forgot to turn on the microphone (n = 1). 

All other participants were native speakers of American English or bilinguals of English 

and another language. The equipment failure rate was due to either failure with the 

eyetracking system (n = 3) or because of voice key malfunction (n = 6). 
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Materials and Procedure 

Experiment 4 was identical to experiment 3 except for a change in the Word2 

timing manipulation. Participants were instructed to speak before a deadline. In the early 

deadline condition speakers were supposed to start speaking within 960 ms after the 

onset of the stimuli. In the late deadline condition speakers were supposed to start 

speaking within 2000 ms after the onset of the stimuli. In both conditions the 

participants were asked to not pause between words. Participants were exposed to both 

conditions and in separate blocks. Each block consisted of a single experimental list. 

Therefore, participants saw both experimental lists and both instruction conditions. The 

presentation order of the blocks was counterbalanced across participants and across 

experimental lists. The presentation order of the experimental lists was counterbalanced 

across participants. 

All equipment, material and procedures were identical to Experiment 3 except 

for the following adjustments in the procedure. Participants were instructed to try not to 

pause between the two words but also to try and speak as soon as the stimuli appeared 

on the screen, without sacrificing accuracy. At the end of each trial participants received 

feedback on whether they spoke early enough to beat the deadline. They received the 

message “Good!” if they were successful. Otherwise, they received the message “Please 

start speaking earlier.” At the beginning of each block participants were warned that the 

deadline would either be easy or difficult to beat. As in all previous experiments 

participants received 12 practice trials before starting each experimental block. 
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Figure 17. Experiment 4 Speech onset time and Word1 duration sample based means 
according to condition. 

 

Figure 18. Experiment 4 Word1 duration according the Word2 frequency and REVS. 
The left panel represents the late deadline condition. The right panel represents the early 
deadline condition.  
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Table 11 

Control predictors for each model in Experiment 4. 

 

 

 

 

 

 

 

 

 

 

Results 

The results showed that Word1 duration was longer when Word2 was low 

frequency rather than high frequency. However, Word2 frequency did not affect speech 

onset time. The pattern of results is depicted in Figure 17. Both of these results are 

consistent with all previous experimental results. Contrary to Experiment 3 there is 

evidence that the timing manipulation affected word duration. Word1 duration was 

shorter in the early deadline compared to the late deadline condition. Furthermore, there 

Variable types Predictors Word1 
duration 

Speech 
onset 

Design Number of syllables X  
 List   
 Combination of list and 

Block 
  

 Block order X X 
 Trial   
 Pause X X 
Phoneme Word1 onset X  
 Word1 offset X  
 Word1 offset*Word2 onset   
Performance Sex   
 Error rate by subject   
 Error rate by item   
 Disfluency rate by subject   
 Disfluency rate by item   
Characteristics  Frequency   
 Word 1 Familiarity   
 Imageability   
 Word1 Codability  X 
 Word1 Visual complexity   
Note. Design variables refer to variables relevant to the design of the experiment. 
Phoneme variables refer to variables relevant to the onset and offset of Word1 and 
Word2. Performance variables refer to error and disfluency rate. Characteristics refer 
Word1 or Word2 picture characteristics. 
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was an interaction between Word2 frequency and REVS. Word1 duration was reduced 

in duration when the speaker looked at the right object prior to speech onset and when 

Word2 frequency was low (see figure 18). All significant control variables for both 

Word1 duration and speech onset time are listed in table 11.  

Error rate analysis 

The overall error rate before exclusions was (16.06% or 185 trials out of 1152 

trials). Items and participants with a combined naming and accuracy error rate higher 

than 33% were excluded from further analyses. This led to the exclusion of two items 

(96 trials or 8.3% of the original data) and the replacement of one participant. After the 

exclusions the error rate was reduced to 13.07% (or 138 trials out of 1056). 

The error rate was higher in the low frequency condition (M = 0.17, SD = 0.12) 

compared to the high frequency condition (M = 0.11, SD = 0.09) in the by subjects 

analysis F1 (1,91) = 7.16, p < 0.01 but only marginal in the by items analysis F2 (1,83) 

= 3.12, p = 0.08. 

The disfluency rate was 3.5% before exclusions (40 trials). After exclusions it 

decreased to 3.12% (or 33 trials). There was no difference in disfluency rate between 

deadline condition or depending on frequency conditions. However, there was a 

significant interaction by subjects and marginally significant by items between the two 

factors (F1 (1,91) = 3.75, p = 0.055, F2 (1,83) = 4.41, p < 0.05). The difference in 

disfluency rate between the two deadline conditions was larger in the high frequency 

compared to the low frequency condition.  
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Speakers also encountered a more difficult time meeting the deadline in the early 

deadline compared to the late deadline condition. You can inspect the success rate in 

meeting the deadline in the following table. 

 

Table 12. Success rate in speaking prior 

to deadline in Experiment 4 

 Early Late 

High 69% 99% 

Low 66% 100% 

 

 I further excluded: (1) latencies longer than 2000 ms (0.06% or 7 trials), (2) trials 

where speakers did not look at the right object before looking at the left object (1.3% or 

13 trials), (3) pauses longer than 200 ms (17.14% or 181 trials). The overall rate of 

exclusion was 37% after excluding the two items (or 395 trials out of 1056) or 43% 

without excluding the two items (or 491 trials out of 1152) 

Eyetracking analysis 

 The fixation data analysis was the same as in Experiment 2. Speakers showed a 

preference of looking at the right object before the onset of speech. On average they 

looked at the right object before the onset of speech 85% of the time. You can consult 

table 13 for a breakdown according to conditions. I then used this measure to predict 

Word1 duration and speech onset time. 
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Table 13 

Proportion of looks to the right object prior 

to speech onset in Experiment 4 

 Early Late 
High 88% 88% 
Low 88% 83% 
 

Word1 duration analysis 

REVS, the deadline condition and Word2 frequency influenced word duration. 

REVS also interacted with Word2 frequency but not with the deadline condition when 

influencing word duration. The final model for log word duration included random 

intercepts for items and subjects with uncorrelated random slopes for condition and 

deadline condition. The model included controls for number of syllables, block order, 

pause duration, phoneme category of Word1 onset and offset. The predictors were the 

REVS and Word2 frequency category. Word2 frequency category had a significant 

effect on the log of Word1 (β = 0.0361, t = 4.18, p < 0.0001). To interpret model-

implied effects I back-transformed the data to the original scale. Word1 duration was 37 

ms longer when Word2 was low frequency as opposed to high frequency. REVS3 had a 

significant effect on the log of Word1 duration (β = 0.0001, t = 3.09, p < 0.05). Word1 

duration was 85 ms shorter when REVS was at its maximum positive value as opposed 

to its maximum negative value. In other words, the earlier looks to the right object with 

relation to speech onset the more reduced Word1 duration. There was also a significant 

interaction between REVS and Word2 frequency category (β = -0.0001, t = -2.06, p < 

0.05). The interaction suggests that Word1 duration was long independently of Word2 
                                                
3 REVS had a significant effect on Word1 duration even when treated as a categorical variable (looks 
before vs. looks after speech onset). 
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frequency category when the speaker looked at the right object after the onset of speech. 

However, Word1 duration was reduced when Word2 frequency was high and the 

speaker looked at the right object before speech onset. Fixed effects and their associated 

significance values can be inspected in table 14. The pattern of results can be inspected 

in figures 19 and 20. 

 

Table 14 

Experiment 4 Word1 duration fixed effect model estimates and 

significance values after MCMC sampling 

 b SE t p 
Intercept 2.6580 0.0148 179.2600 0.0000 
Pause 0.0074 0.0032 2.3000 0.0216 
First -0.0100 0.0078 -1.2800 0.2013 
Syllables 0.0502 0.0175 2.8800 0.0042 
W1onset 0.0230 0.0072 3.2000 0.0015 
W1offset 0.0165 0.0049 3.3500 0.0009 
Instr -0.0298 0.0079 -3.7700 0.0002 
W2freq 0.0361 0.0087 4.1800 0.0000 
REVS 0.0001 0.0000 3.9000 0.0001 
W2freq*Instr 0.0152 0.0096 1.5800 0.1156 
W2freq*REVS -0.0001 0.0000 -2.0600 0.0398 
Pause*Instr 0.0118 0.0052 2.2800 0.0229 
Pause*Syllables 0.0130 0.0053 2.4700 0.0137 
Pause*Instr*REVS -0.0001 0.0000 -2.9400 0.0034 
Pause*W2freq*REVS -0.0001 0.0000 -1.9000 0.0578 
Instr*W2freq*REVS -0.0327 0.0195 -1.6800 0.0935 
Note. Instructions refers to the experimental block of inserting 
and or not pausing. First refers to the block order. Trial# refers 
to the order of trial presentation. W1on refers to Word1 onset 
phoneme category. W1off refers to Word1 offset phoneme 
category. Feed refers to accuracy for beating the speech onset 
deadline. 
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Figure 19. The interaction between Word2 frequency and REVS predict Word1 duration 
in Experiment 4. The black solid line represents the model-implied effect of low 
frequency and the red dashed line represents the model-implied effect of high frequency. 
The rug plot on the horizontal axis depicts the distribution of REVS. 

 

Figure 20. The interaction between Word2 frequency and REVS predict Word1 duration 
in Experiment 4. The blue line represents high Word2 frequency and the red line low 
Word2 frequency. The dotted blue and red lines depict a 95% confidence interval 
according to MCMC sampling. 
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Speech onset time analysis  

The final model for log speech onset time duration included random intercepts 

for items and subjects with uncorrelated random slopes for deadline and subject 

intercepts. The model included controls for block order, codability for Word1 and pause 

duration. The predictors were the deadline condition, REVS and Word2 frequency 

category. I also included interaction terms between the three predictor variables and the 

trial-by-trial feedback speakers received regarding their performance meeting the 

deadline. Word2 frequency category did not have a significant effect on the log of 

speech onset time (β = 0.004, t = 0.6, p = 0.55). In other words, difficulty of Word2 

planning did not affect speech onset time. REVS unsurprisingly, had a significant effect 

on the log of speech onset time (β = -0.0001, t = - 6.79, p = < 0.0001). This suggests that 

when speakers looked at the right object before speech onset, speech onset time was 

longer. Speech onset time was 861 ms longer when speakers looked at the right object 

before as opposed to after speech onset. There was also a significant effect of the 

deadline condition (β = -0.0227, t = -2.55, p < 0.05). In the late deadline condition, 

speakers initiated their utterances 73 ms later compared to the early deadline condition. 

Fixed effects and their associated significance values can be inspected in table 16. The 

pattern of results can be inspected in figure 21. 

Discussion 

 Experiment 4 yet again replicated the effect of Word2 frequency and REVS on 

Word1 duration. Word1 duration was longer when followed by a low frequency Word2 

as opposed to a high frequency Word2. Also, early REVS led to a reduction of Word1 

duration. Lastly, there was an interaction between REVS and Word2 frequency. Word1  
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Table 15 

Experiment 4 Speech onset time fixed effect model estimates and 

significance values after MCMC sampling 

  b SE t p 
Intercept 2.8840 0.0126 229.1400 0.0000 
Pause 0.0026 0.0030 0.8700 0.3865 
First -0.0443 0.0070 -6.3200 0.0000 
W1H 0.0970 0.0288 3.3700 0.0008 
Instr -0.0227 0.0089 -2.5500 0.0110 
W2frequency 0.0040 0.0066 0.6000 0.5491 
REVS -0.0001 0.0000 -6.7900 0.0000 
Feed*Instr 0.2808 0.0185 15.1900 0.0000 
Feed*W2freq -0.0019 0.0133 -0.1400 0.8892 
Feed*REVS 0.0001 0.0000 3.0600 0.0023 
W2Freq*REVS 0.0000 0.0000 0.1100 0.9103 
Feed*W1Freq*REVS -0.0002 0.0001 -2.4100 0.0165 
Note. Instr refers to the experimental block of inserting and or 
not pausing. First refers to the block order. First refers to the 
block order. W1H refers to Word1 codability. Feed refers to 
accuracy for beating the speech onset deadline. 
 

duration was reduced when looks to the right object occurred prior to speech onset and 

when Word2 frequency was high. Therefore I again found support for the hypothesis 

that the timing of planning affects word duration.  

As expected, speakers took less time to begin speaking in the early as opposed to 

the late condition. However, this didn’t appear to require speakers to do additional 

incremental planning, which would have resulted in a longer Word1 duration for the 

early deadline condition. Instead, the early deadline also led to shorter Word1 durations. 

Speakers probably increased their rate of processing in the early deadline condition as 

opposed to the late deadline condition. This is consistent with Ferreira & Swets’ (2003) 

results. Importantly though, the effect of Word2 frequency on Word1 duration still held 

independent of the effect of the deadline condition. 



 92 

 

Figure 21. REVS predicts speech onset time in Experiment 4. The black solid line 
represents the model-implied effect of high frequency and the red dashed line represents 
the model-implied effect of low frequency. The rug plot on the horizontal axis depicts 
the distribution of REVS 
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However, the interaction between REVS and Word2 frequency did not remain 

significant when treating REVS as categorical. This finding is again consistent with 

Experiment 3 results. To show that speech onset was influential for the interaction I did 

a follow up analysis. I excluded all trials with looks that occurred after speech onset (as 

in Experiment 3). The interaction was not significant anymore. 

Similarly to Experiment 3 there was also an interaction between Word2 

frequency and REVS when predicting Speech onset time. However this relationship 

occurred only when speakers were successful at beating the deadline to begin speaking. 

As in all previous experiments, I conducted a secondary analysis where I also 

included trials with pauses longer than 200 ms. All previously significant predictors 

were still significant and independent of an interaction with a pause longer than 200 ms. 

The fixed effect for this model can be consulted in Appendix E.  
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CHAPTER 6 

GENERAL DISCUSSION 

In four different experiments speakers produced two-word utterances e.g., skunk 

hand. The frequency of the second word and the timing of planning the second word 

affected the duration of the first word. Low Word2 frequency led to long Word1 

duration whereas high Word2 frequency led to short Word1 duration. Furthermore, early 

looks with relation to speech onset reduced Word1 duration. Late looks with relation to 

speech onset led to long Word1 duration.  

Even more interestingly, in the last two experiments the timing of Word2 

planning interacted with Word2 frequency. Early looks to the right object with relation 

to speech onset reduced Word1 duration when Word2 frequency was high. However, 

Word2 frequency did not affect Word1 duration when looks to the right object occurred 

late with relation to speech onset. In this case Word1 duration was overall long. This 

suggests that speakers can reduce Word1 duration when they have advance information 

about Word2 planning prior to speech onset. When the speakers estimate that Word2 is 

easy to plan prior to speech onset, they can speed up Word1 articulation. The speed up 

could be driven by a reduced need to plan Word2 while articulating Word1, presumably 

because of early Word2 timing of planning. Otherwise, it could be driven by the facility 

of planning Word2 while producing Word1. In other words, Word1 reduction could 

occur because of preplanning facilitation or incremental planning facilitation. 
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My results are consistent with other studies that suggest planning affects word 

duration. There is substantial evidence that different types of predictability influence 

word duration (e.g., Aylett & Turk, 2004; Bell et al., 2009; Gahl & Garnsey, 2004; 

Fowler & Housum, 1987; Kahn & Arnold, in press; Lieberman, 1963; Watson, Arnold, 

& Tanenhaus, 2008). There is also evidence for the role of planning difficulty on word 

duration (e.g., Bell et al., 2003; Christodoulou, 2009; Clark & Fox Tree, 2002; Fox Tree 

& Clark, 1997). However, none of these studies can safely conclude that planning has a 

direct effect on word duration variation. 

Word duration can cause variation in the timing of planning (Griffin, 2003 but 

also see Meyer et al., 2007). The current experimental results suggest that the inverse 

relationship also holds true. Variation in the timing of planning can cause variation in 

word duration. This finding could potentially inform the literature on the flexibility of 

the scope of planning on possible ways that planning variation can affect speech apart 

from speech onset time (e.g., Schriefers & Teruel, 1999; Wagner et al., 2010). 

The current experimental results could also have implications for research on 

incremental planning. There is some evidence that incremental planning affects 

utterance duration (Ferreira & Swets, 2002). However utterance duration is confounded 

with pause duration. If planning upcoming information influences word duration, the 

question that arises is how does incremental planning affect word duration compared to 

pausing.  

In the current data, word duration variation always covaried with pausing. In all 

analyses I controlled for the possible effect of pausing on word duration and therefore 

the effect of planning on word duration is independent of the effect of pausing. 
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Furthermore, the independent contribution of each effect on word duration held even 

when including disfluent pauses (pauses longer than 200 ms). These results suggest that 

incremental planning could potentially have independent effects on word duration and 

pausing. In other words speakers were not prolonging their words merely to avoid 

pausing. They were varying word duration according to how much information they had 

already planned at the moment they started producing a particular word.  

The effort to avoid pausing could however have a separate contribution on word 

duration. This is because there was variation in meeting this requirement according to 

condition. On average the rate of pausing longer than 200 ms was higher when Word2 

was low frequency as opposed to high frequency. This pattern is depicted in Figure 22.

 

Figure 22. Proportion of trials in which the participant paused longer than 200 ms across 
all experiments, in each Word2 frequency condition, for each experiment.  
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This difference in performance did not drive any of the effects on word duration 

because I excluded all trials with pauses longer than 200 ms in one set of models. In a 

second set of models I included trials with pauses longer than 200 ms but all critical 

effects remained significant. Furthermore, there was no interaction between the presence 

of a pause longer than 200 ms and the effect of Word2 frequency or REVS on Word1 

duration. 

Lastly, the current results could have implications about how speakers are able to 

achieve fluency. According to Griffin (2003), speakers achieve fluent delivery by 

estimating word duration. My results suggest that speakers achieve fluent delivery by 

adjusting Word1 duration. Therefore, a very interesting follow-up to this series of 

studies would be to understand how these two mechanisms interact when speakers try to 

achieve fluent delivery. 

Were Speakers Planning Serially? 

  The logic of the experimental manipulation is based on the assumption that 

speakers plan serially. This means that speakers first look at the left object and then shift 

their eye gaze to the right object when they have finished phonological planning of the 

first word (e.g., Meyer & van der Meulen, 2000; Meyer et al., 1998, 2003, 2007). 

According to this logic the REVS measure should index the onset of right object 

processing.  

However, Malpass and Meyer (2010) found in a dual-picture naming task that 

the duration of looks to the left object were longer when the picture on the right object 

was easy to name. This occurred because speakers processed the right object 

parafoveally, while fixating the left object. This finding suggests that in a dual-picture 
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naming task it is possible to process the two picture names in parallel (at least to a 

certain degree). Therefore, the Malpass and Meyer’s (2010) findings could suggest that 

the REVS measure did not necessarily index the onset of right object processing. 

Speakers could have substantially processed the second object prior to fixating it.  

The influence of parallel processing on Word1 duration however should have 

been minimal. In Experiments 3 and 4 there was an interaction between REVS and 

Word2 frequency when predicting Word1 duration. This suggests that the effect of 

REVS measure on Word1 duration varied according to Word2 planning. The speakers 

most probably looked at the left object and then the right object. If the looks to the right 

object occurred prior to speech onset, the speakers could modulate Word1 duration 

according to their estimate of Word2 planning difficulty. However, looks that occurred 

after speech onset did not help in estimating Word2 planning difficulty because Word1 

duration did not vary according to Word2 frequency. Under a parallel processing 

account, knowledge of Word2 planning difficulty prior to fixating the object should 

have been plausible even when looks to the right object occurred after speech onset. 

Therefore, Word1 duration should have been modulated according to Word2 frequency 

independent of REVS.  

It is also possible that under a parallel processing account, REVS should have 

not predicted speech onset time. If looks to the left object provided information about 

right object processing, then the need to fixate the right object to name it should have 

been minimized. Nevertheless, REVS was a significant predictor of speech onset time in 

all experiments with eyetracking. Early looks to the right object led to long speech onset 

time. Therefore, fixating the right object contributed to an increase in overall processing 
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time, which is not necessarily compatible with a parallel processing account.  

Furthermore, considerable parallel processing should have rendered REVS a non-

significant predictor of Word1 duration.  

In conclusion, speakers most probably planned incrementally. However, even if 

there were some parallel processing of the two objects, Word1 duration variation should 

be mostly attributed to Word2 planning rather than parallel Word1 and Word2 planning. 

However, it still remains an open question whether parallel processing of two objects in 

a dual-naming task could also lead to Word1 duration variation.  

Implications about Theories of Planning and Word Duration Variation 

The current findings support the proposal that planning can affect word duration. 

Previous research has found evidence that planning facilitation can lead to word duration 

variation. (Arnold & Kahn, in press, Arnold & Watson, under review; Balota, Boland & 

Shield, 1989; Shields & Balota, 1991). The basic reasoning of how facilitation can affect 

word duration is via speeding up the rate of processing. For example repeated words in 

the discourse may be reduced because they are facilitated at all levels of representation, 

semantic, phonological and phonetic/articulatory. According to Balota et al. (1989) the 

effect of facilitation can be implemented in a connectionist model (e.g., Dell, 1986) by 

allowing the rate of processing to influence the strength of articulatory movements. 

Faster rate of processing should lead to faster implementation of articulatory movements 

and therefore reduced word duration.  

There are multiple ways that planning can affect word duration in utterances. For 

example previous mention can affect word duration but also planning information that is 

upcoming in the discourse can have an effect (e.g., Christodoulou, 2009; Ferreira & 
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Swets, 2002). The results presented here suggest that both the timing and duration of 

planning can affect word duration.  

 The current results do not support previous research that does not suggest a link 

between planning and word duration (Damian, 2003; Ferreira, 1991, 2007). For example 

according to Ferreira (1991, 1993, 2007) word duration should be only determined by 

the prosodic representation of the utterance.  The discrepancy in the results on word 

duration when manipulating planning with the current results could be attributed to the 

tasks used. Ferreira (1991) used a prepared speech task, which should minimize the 

effect of planning on word duration. Damian (2003) used a word interference paradigm, 

however this task induces a different type of planning than serial planning that should be 

prevalent in everyday speech (e.g. Dell, Burger, & Svec, 1997).  

The Relationship between the Timing of Planning and Word Duration 

Clark & Fox Tree (2002) and also Fox Tree & Clark (1997) argue that long word 

duration can function as a signal to the listener of an upcoming delay. According to this 

account, word duration variation has primarily a communicative intention. In other 

words, speakers might use long word duration to heighten the listeners’ attention to an 

upcoming delay.  

I cannot completely exclude this account, based on the Schober & Brennan 

(2003) argument that speakers can design their utterances for a generic addressee even if 

they are not directly addressing a specific partner. For example, even if a speaker is just 

recording their voice without addressing a conversational partner, his or her speech 

could still be influenced by the general tendency to design the utterance for some 

generic addressee. 
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However, this kind of a process arguably does not drive the frequency effect on 

the first word duration. The primary reason is that word variation occurred also when 

pausing was not disfluent (i.e. less than 200 ms). Therefore, the planning difficulty 

encountered by the speakers in the current experiments was probably not strong enough 

to justify the signaling of an upcoming delay.  

Previous research suggests that speakers can set a response criterion (Kello et al., 

2000; Lupker, Brown, & Colombo, 1997; Meyer et al., 2003; Meyer et al., 2007). This 

criterion can be set for all trials in an experimental block to aid the speaker with the 

decision of when to start speaking. By setting the criterion once the speaker does not 

have to update it on a trial-by-trial basis. Therefore he or she is always prone to start 

speaking at a specific time point for all trials. 

A possible explanation of why word duration varied according to the second 

word frequency is that speech onset time occurred prior to when speakers were ready to 

start speaking. Therefore, speakers might have developed a strategy where they always 

started speaking knowing they would have to use a long first word duration. Because 

low frequency words require prolonged planning time, the first word duration was 

longer when followed by a low as opposed to a high frequency word.  

According to this account, the effect of REVS on word duration can be 

interpreted as the effect of variation in the ability to meet that deadline. When the 

speaker could comfortably meet the deadline, he or she could have sped up the rate of 

processing Word1 to start planning Word2. However, when the speaker had trouble 

meeting the deadline, the speaker could have slowed down their rate of processing and 

as a result delayed planning of Word2. 
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This interpretation can also accommodate the interaction between REVS and 

Word1 duration. When speakers could comfortably meet the deadline and Word2 was 

easy to plan, Word1 duration was reduced. Potentially this could occur because the 

current rate of processing could accommodate the additional processing of Word2. 

However, when speakers could comfortably meet the deadline and Word2 was difficult 

to plan Word1 duration was not reduced. This potentially could occur because the 

current rate of processing could not easily accommodate the additional processing of 

Word2.  

One problem with the deadline account is that when the experimental 

manipulation is blocked, there should be a difference in speech onset time according to 

experimental block. This result occurred in Experiment 4 but not in Experiment 3. 

Furthermore, according to this account, REVS should have interacted with experiment 

block in Experiment 4. However, this effect did not occur. 

According to a different account, the effect of REVS on Word1 duration could 

be attributed to variation in the degree of incremental planning. On this account, instead 

of a deadline to begin speaking, participants could have adopted a processing deadline 

(e.g., Meyer et al., 2007). Previous research suggests that in the dual-picture naming task 

speakers usually shift planning to upcoming material when they have completed 

planning of a minimum amount of phonological information of Word1 (Meyer & van 

der Meulen, 2000; Meyer et al., 1998; Meyer et al., 2003).  For example, Meyer et al. 

(2007) suggest that this minimum amount could be equal to a single syllable. Therefore, 

when trials allowed faster completion of phonological Word1 information, they could 

easily shift to planning Word2. 
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This account is similar to the previous account in that the effect of early REVS 

on word duration is not motivated by the difficulty of planning Word2. Rather, it is 

motivated by random fluctuation around a predetermined deadline. However, the 

difficulty of planning Word2 modulates the effect of REVS on Word1 duration 

according to the fluctuation around the deadline. 

One problem with this account is that in Experiment 3 REVS did not interact 

with the Word2 timing manipulation. However, this could potentially be attributed to the 

already high degree of incremental planning in the experiment. Therefore this second 

account receives relatively more support compared to the first account. 

According to the last account of why REVS influences Word1, the timing of 

retrieving Word2 information drives the effect. REVS could be indexing variation in the 

ability to plan together Word1 and Word2 (i.e. coordinate their planning). The task 

demands required the participants to try not to pause between the bare nouns. During 

trials where the speaker was able to look at the right object relatively early to speech 

onset, he or she could have been more prone to meet task demands of not pausing by 

trying to preplan the two words. This behavior could also have accounted for the 

interaction between REVS and Word2 frequency. When the speakers looked at the right 

object early relative to the onset of speech and Word2 frequency was high, Word1 

duration was reduced because planning the two words together was easy. However, 

when Word2 duration was low frequency, planning the two words together was difficult. 

When looks to the right object occurred late relative to the onset of speech, the ability to 

plan both words was overall reduced. Therefore Word1 duration was overall reduced. 
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Future Directions and Conclusions 

 Follow up studies could try to tease apart the different accounts of how the 

timing of planning affects Word1 duration. One way of testing whether the degree of 

coordinating preplanning holds would be to use a dual-picture naming task that allows 

participants to inspect both objects for a fixed amount of time prior to speech onset. 

Then vary the amount of preview time. Long preview time should lead to higher ability 

to preplan the two words therefore Word1 should be reduced. 

 A way of testing the processing deadline account is to manipulate the number of 

syllables of Word1 while keeping constant the number of syllables in Word2 (e.g., 

Meyer et al., 2007). The duration of Word1 should be unaffected by REVS and Word2 

difficulty.  

 Lastly, it would be interesting to explore the idea that speakers are using long 

word duration to signal to an upcoming delay. I could use a variant of the two-picture 

naming task where the speaker needs to describe the two objects for a listener to identify 

on his or her screen. In one condition the time of identification by the listener would be 

critical for the successful completion of the task. For example the instructions could 

require the listener to identify both object prior to a certain amount of time. The critical 

question would be whether the degree of Word1 duration variation would be modulated 

by the time pressure manipulation and whether it would interact with planning difficulty 

of Word2. 

 In conclusion, word duration is related to planning. Speakers used long word 

durations when the upcoming word was difficult to plan and when the timing of 
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planning the upcoming word was delayed. Both of those findings suggest that longer 

processing time leads to long word duration.  
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Appendix A 

Items in all four experiments 

 

   Experiment 1 Experiment 2 Experiment 3 & 4 
Item Freq Left Right Left Right Left Right 
1 H skunk hand - - - - 
1 L skunk deer - - - - 
2 H peach door clown - - - 
2 L peach pants clown - - - 
3 H axe dog - - - - 
3 L axe spoon - - - - 
4 H pear foot - - - - 
4 L pear kite - - - - 
5 H sock book - - - - 
5 L sock sled - - - - 
6 H flute car - - - - 
6 L flute vest - - - - 
7 H comb eye - - - - 
7 L comb grapes - - - - 
8 H glove heart - - - - 
8 L glove broom - - - - 
9 H harp bed - - - - 
9 L harp wrench - - - - 
10 H goat ball - - - - 
10 L goat ant - - - - 
11 H snail house - - - - 
11 L snail owl - - - - 
12 H stool tree - - - - 
12 L stool swan - - - - 
13 H zebra jacket - wagon - - 
13 L zebra snowman - - - - 
14 H ashtray football spider - - - 
14 L ashtray beetle spider whistle - - 
15 H toaster chicken - - - - 
15 L toaster giraffe - - - - 
16 H camel flower - - - - 
16 L camel doorknob - - - - 
17 H raccoon glasses - - - - 
17 L raccoon scissors - - - - 
18 H hanger window - - - - 
18 L hanger windmill - - - - 
19 H lettuce bottle - - monkey - 
19 L lettuce lobster - - monkey - 
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   Experiment 1 Experiment 2 Experiment 3 & 4 
Item Freq Left Right Left Right Left Right 
20 H penguin finger - - - - 
20 L penguin ostrich - - - - 
21 H pumpkin table - - - - 
21 L pumpkin thimble - - - cannon 
22 H paintbrush guitar - - - - 
22 L paintbrush pliers - - - - 
23 H donkey pencil - - - - 
23 L donkey squirrel - - - - 
24 H leopard mountain carrot - - - 
24 L leopard mitten carrot - - - 
Note. Freq refers to the frequency category of the right picture within each item. 
A dash suggests that the picture did not change between experiments. 
Experiments 3 and 4 had the same items. 
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Appendix B 

Model specifications and model criticisms for Experiment 1 

Table B1 

Experiment 1 Word1 duration model 

random effect structure 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0032 0.0569 
Sub W2freq 0.0002 0.0129 
Item Intercept 0.0028 0.0525 
Item W2freq 0.0006 0.0246 
Residual  0.0055 0.0742 
 

Table B2 

Experiment 1 Word1 duration model fixed effects partial 

correlations  

 Intercept Syllables Pause Trial# W1onset 
Syllables -0.03     
Pause -0.016 0.049    
Trial# 0.004 -0.031 0.017   
W1onset 0.001 -0.002 -0.062 -0.027  
W2freq 0.008 0.004 -0.046 -0.012 0.014 
Note. Trial# refers to trial order. W1onset refers to the Word1 
initial phoneme category. 

Table B3 

Experiment 1 Speech onset time model 

random effect structure 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0059 0.0768 
Item Intercept 0.0009 0.0298 
Item W2freq 0.0013 0.0363 
Residual  0.0046 0.0680 
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Table B4 

Experiment 1 Speech onset time model fixed 

effects partial correlations 

  Intercept Pause Trial# W2H 
Pause -0.015    
Trial# 0.003 0.007   
W2H -0.007 -0.019 0.052  
W2freq 0.007 -0.021 -0.001 0.036 
Note. Trial# refers to trial order. W2H refers 
to the Word2 codability. 

 

Table B5 

Experiment 1 fixed effects for word duration model 

with pauses longer than 200 ms 

 b SE t P 
Intercept 2.674 0.017 157.440 0.0000 
Syllables 0.075 0.027 2.810 0.0077 
Pause 0.022 0.006 3.700 0.0017 
Trial# 0.000 0.000 1.190 0.2657 
Sex 0.035 0.025 1.440 0.1630 
W1onset 0.024 0.011 2.140 0.0287 
W1offset 0.012 0.008 1.480 0.1409 
W2freq 0.042 0.011 3.650 0.0002 
X200 0.026 0.018 1.430 0.0697 
X200*W2freq -0.026 0.028 -0.930 0.3368 
Note. Trial# refers to trial order. W1onset refers to 
Word1 initial phoneme category. Word1offset refers 
to Word1 final phoneme category. X200 refers to the 
presence of a pause longer than 200 ms 
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Table B6 

Experiment 1 random effect structure for word duration 

model with pauses longer than 200 ms 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0029 0.0536 
Sub W2frequency 0.0000 0.0000 
Item Intercept 0.0032 0.0563 
Item W2frequency 0.0013 0.0359 
Residual  0.0058 0.0764 
 

Table B7 

Experiment 1 fixed effects partial correlations for word duration model with pauses 

longer than 200 ms  

 Intercept Syllable Pause Trial# Sex W1o W2frq X200 
Syllables -0.022        
Pause -0.001 0.018       
Trial# 0.002 -0.031 0.016      
Sex -0.029 0.002 0.014 -0.004     
W1onset 0.016 -0.038 -0.03 -0.019 0.001    
W1offset 0.016 -0.225 0.048 0.021 0 0.187   
W2freq -0.001 0.007 -0.038 -0.003 0.011 0.015 0  
X200 0.013 -0.031 -0.619 -0.063 -0.032 -0.001 -0.014 -0.121 
X200*W2freq -0.053 0.009 -0.032 0.031 0.056 0.007 -0.003 0.05 
Note. Trial# refers to trial order. W1onset refers to Word1 initial phoneme category. 
W1offset refers to Word1 final phoneme category. X200 refers to the presence of a 
pause longer than 200 ms 
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Figure B1. The top row represents model criticism graphs for the Word1 duration model 
in Experiment 1 before outlier exclusions. The second row represents model criticism 
graphs after outlier exclusions (n=3). 
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Figure B2. The top row represents model criticism graphs for the speech onset time 
model in Experiment 1 before outlier exclusions. The second row represents model 
criticism graphs after outlier exclusions (n=2). 

 

 

 

 

 

 

 

 



 113 

Appendix C 

Model specifications and model criticisms for Experiment 2 

 

Table C1 

Experiment 2 Word1 duration model 

random effect structure 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0074 0.0863 
Sub W2freq 0.0000 0.0000 
Item Intercept 0.0034 0.0586 
Item W2freq 0.0005 0.0228 
Residual  0.0047 0.0682 
 

Table C2 

Experiment 2 Word1 duration fixed effect partial correlations  

 Intercept Pause Syllable
s 

Trial# W1onse
t 

Sdis W2fre
q 

Pause -0.018       
Syllables -0.006 0.035      
Trial# -0.003 -0.033 0.005     
W1onset -0.033 -0.004 -0.098 0.001    
Sdis -0.025 -0.041 0.04 0.078 -0.147   
W2freq 0.059 -0.136 -0.024 0 0.031 -0.074  
REVS -0.006 -0.159 0.019 -0.035 -0.058 0.059 0.155 
W2freq*
REVS 0.029 -0.116 -0.019 0.013 0.004 0.092 0.064 
Note. Trial# refers to trial order. W1onset refers to Word1 initial phoneme category. 
Sdis refers to the disfluency rate by subjects. 
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Table C3 

Experiment 2 Speech onset time model random 

effects structure 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0032 0.0566 
Sub W2freq 0.0000 0.0000 
Item Intercept 0.0019 0.0433 
Item W2freq 0.0000 0.0000 
Residual  0.0069 0.0831 

 

Table C4 

Experiment 2 Speech onset time fixed effects partial correlations 

 Intercept Trial# Serr W1H W2freq  
Trial# -0.01      
Serr -0.034 0.022     
W1H -0.026 -0.041 0.023    
W2freq -0.002 0.013 0.26 0.035   
REVS -0.023 -0.029 0.034 -0.012 0.175  
W2freq*REVS 0.049 0.001 -0.08 0.027 0.019  
Note. Trial# refers to trial order. Serr refers to the error rate by 
subjects. W1H refers to the Word1 codability.  
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Table C5 

Experiment 2 fixed effects for word duration model with pauses 

longer than 200 ms 

  b SE t p 
Intercept 2.62000 0.02196 0.00000 0.00000 
Syllables 0.01148 0.00611 0.06140 0.06140 
Pause 0.04854 0.02807 0.08470 0.08470 
Trial# 0.00103 0.00029 0.00030 0.00030 
W1onset 0.02090 0.01208 0.08440 0.08440 
W2onset -0.00730 0.00459 0.11300 0.11300 
Idis 0.20160 0.14080 0.15320 0.15320 
W2H 0.02940 0.01751 0.09410 0.09410 
W2freq 0.02746 0.00849 0.00130 0.00130 
REVS 0.00009 0.00002 0.00000 0.00000 
X200 -0.00113 0.01776 0.94940 0.94940 
W1off*W2on 0.00658 0.00442 0.13740 0.13740 
W2freq*REVS -0.00003 0.00003 0.37670 0.37670 
X200*W2freq 0.03051 0.02606 0.24260 0.24260 
X200*REVS -0.00001 0.00005 0.88300 0.88300 
X200*W2freq*REVS 0.00006 0.00009 0.50820 0.50820 
Note. Trial# refers to trial order. W1onset and W2onset refer to 
the Word1 and Word2 initial phoneme category. Idis refers to the 
disfluency rate by Items. W2H refers to the Word2 codability. 
X200 refers to the presence of a pause longer than 200 ms.  

 

Table C6 

Experiment 2 random effects for word duration 

model with pauses longer than 200 ms 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0068 0.0826 
Sub W2feq 0.0000 0.0000 
Item Intercept 0.0034 0.0580 
Item W2freq 0.0001 0.0083 
Residual  0.0047 0.0687 
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Table C7 

Experiment 2 fixed effects partial correlations for the word duration model with pauses 

longer than 200 ms 

  Intercept Syllables Pause Trial W1onset W2onset W2H  
Intercept -0.004        
Syllables 0 0.001       
Pause -0.001 -0.03 -0.002      
Trial -0.019 -0.002 -0.077 0.014     
W1onset 0.007 0.117 -0.185 -0.003 -0.06    
W2onset 0.011 -0.056 -0.014 0.013 -0.102 0.1600   
Items dis -0.025 -0.023 -0.067 -0.014 0.037 -0.2850   
W2H 0.019 -0.164 -0.05 0.032 0.019 0.1180 -0.009  
W2freq 0.002 -0.119 0.034 -0.028 -0.063 -0.0570 0.021  
REVS 0.008 -0.615 0.01 0.038 -0.013 -0.0780 0.013  
X200 -0.046 -0.011 -0.012 0.029 0.049 -0.2290 0.408  
W1off*W2on 0.03 -0.094 -0.022 0.033 -0.002 0.033 -0.07  
W2freq*REVS -0.014 -0.018 -0.035 0.039 0.033 0.033 0.062  
X200*W2freq -0.035 0.124 0.013 -0.046 0.003 -0.0080 0.11  
X200*REVS 0.004 -0.003 -0.001 0.058 -0.005 -0.0440 -0.088  
 

Table C7 Continued 

  W2freq REVS X200 W1off*
W2on 

W2freq*
REVS 

X200*
W2freq 

X200*
REVS 

Intercept        
Syllables        
Pause        
Trial        
W1onset        
W2onset        
Idis        
W2H        
W2freq 0.192       
REVS 0.035 0.058      
X200 -0.13 -0.043 0.08     
W1off*W2off 0.031 -0.17 -0.018 -0.096    
W2freq*REVS 0.074 -0.012 -0.127 -0.001 -0.18   
X200*W2freq -0.092 0.004 -0.321 0.084 -0.144 0.112  
X200*REVS -0.147 -0.14 0.078 -0.042 0.045 -0.298 -0.408 
Note. The notation is the same as table C5. 
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Figure C1. The top row represents model criticism graphs for the Word1 duration model 
in Experiment 2 before outlier exclusions. The second row represents model criticism 
graphs after outlier exclusions (n=8). 
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Figure C2. The top row represents model criticism graphs for the speech onset time 
model in Experiment 2 before outlier exclusions. The second row represents model 
criticism graphs after outlier exclusions (n=8). 
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Appendix D 

Model specifications and model criticisms for Experiment 3 

Table D1 

Experiment 3 Word1 duration model random 
effects structure 
Groups Name Variance Std.Dev. 
Sub Intercept 0.0036 0.0601 
Sub W2freq 0.0000 0.0000 
Sub Instructions 0.0024 0.0486 
Item Intercept 0.0015 0.0386 
Item W2freq 0.0007 0.0263 
Item Instructions 0.0000 0.0023 
Residual  0.0039 0.0628 
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Table D2 

Experiment 3 Word1 duration fixed effects partial correlations  

 Intercept Pause Syllables First Trial# W1onset 
Pause -0.01      
Syllables 0.002 0.055     
First 0.006 0.066 0.011    
Trial# 0.001 -0.018 0.007 -0.007   
W1onset -0.02 0.032 -0.113 0 0.016  
W1offset 0.039 0.037 -0.096 0.001 0.007 0.249 
W2freq 0.128 -0.053 -0.012 0.017 -0.035 -0.022 
REVS -0.003 -0.068 -0.009 0.025 0.009 -0.057 
Instructions 0.292 0.02 0.003 -0.008 -0.009 0.015 
W2freq*REVS 0.009 0.037 0.005 -0.038 -0.071 0.029 
 

Table D2 Continued 

  W1offset W2freq REV 
Pause    
Syllables    
First    
Trial#    
W1onset    
W1offset    
W2freq 0.012   
REV 0.007 0.043  
Instructions 0 -0.014 -0.146 
W2freq*REV -0.011 0.003 -0.08 

Note. First refers to the experimental block order. Trial# refers to trial 
order. W1onset and W1offset refers to Word1 initial and final phoneme 
category. 
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Table D3 

Experiment 3 Speech onset time model random effects 

structure 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0029 0.0537 
Sub W2freq 0.0002 0.0125 
Sub instructions 0.0008 0.0279 
Item Intercept 0.0012 0.0340 
Item W2freq 0.0001 0.0119 
Item instructions 0.0000 0.0000 
Residual  0.0045 0.0673 
 

Table D4 

Experiment 3 Speech onset time fixed effects partial violations 

 Inter Versn First Ierr W1H W2H W2frq REV instr 
Version 0.032         
First 0.002 0.014        
W1fam 0.033 0 -0.004       
W1H 0.006 0.001 0.004 0.128      
W2H 0.001 0.008 0.003 0.138 0.051     
W2freq 0.001 -0.003 0.019 0.021 0.011 0.132    
REV -0.011 -0.05 0.035 -0.008 -0.005 -0.04 0.054   
Instructions -0.005 0.023 -0.008 -0.003 0.004 -0.028 -0.077 -0.198  
W2fq*REV 0.013 -0.004 -0.047 -0.004 -0.002 0.046 0.004 -0.074 0.019 
Instr*REV -0.054 0.009 -0.016 -0.025 0.001 -0.067 -0.004 -0.014 0.028 
Note. Version refers to the combination of experimental block and experimental list. First 
refers to the experimental block order. W1H and W2H refers to Word1 and Word2 
codability. Instructions refers to the timing manipulation.  
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Table D5 

Experiment 3 fixed effects for word duration model with pauses 

longer than 200 ms 

  b SE t P 
Intercept 2.68300 0.01298 206.67000 0.0000 
Pause 0.01043 0.00299 3.49000 0.0005 
Syllables 0.03111 0.01848 1.68000 0.0926 
First -0.02745 0.01073 -2.56000 0.0107 
Trial# 0.00064 0.00022 2.86000 0.0044 
W1onset 0.03001 0.00754 3.98000 0.0001 
W1offset 0.01509 0.00516 2.92000 0.0036 
W1freq 0.01717 0.00673 2.55000 0.0109 
REVS 0.00005 0.00001 3.93000 0.0001 
X200 0.00198 0.00907 0.22000 0.8273 
Instructions -0.00194 0.01140 -0.17000 0.8647 
W2freq*REV -0.00004 0.00002 -2.21000 0.0271 
W2freq*X200 0.01487 0.01486 1.00000 0.3172 
REVS*X200 -0.00003 0.00002 -1.23000 0.2200 
W2freq*REVS*X200 -0.00002 0.00005 -0.34000 0.7342 
Note. First refers to the experimental block order. Trial# refers to 
the trial order. W1onset and W1offest refer to Word1 onset and 
offset phoneme category. X200 refers to the presence of a pause 
longer than 200 ms.  

 

 

 

 

 

 

 

 

 

 



 123 

Table D6 

Experiment 3 fixed effects partial correlations for word duration model with pauses 

longer than 200 ms 

  Intercept Pause Syls First Trial# W1on W1off 
Pause 0.003       
Syllables -0.006 0.046      
First 0.009 0.046 0.002     
Trial# 0.001 0.014 0.007 0.001    
W1onset -0.021 0.019 -0.123 0.001 0.015   
W1offset 0.024 0.024 -0.095 0.003 0.004 0.262  
W1frequency 0.001 -0.055 -0.008 0.021 -0.033 -0.007 -0.003 
REVS 0.007 -0.083 -0.006 0.019 -0.024 -0.046 -0.005 
X200 0.004 -0.422 -0.013 -0.001 -0.033 -0.021 0.028 
Instructions -0.002 0.03 0.002 -0.022 -0.001 0.011 0.003 
W2freq*REV 0.01 0.056 0.007 -0.032 -0.053 0.004 -0.008 
W2freq*X200 -0.025 -0.019 0.002 -0.009 0.03 0.018 -0.015 
REVS*X200 -0.022 0.042 0 0 -0.023 0.007 -0.001 
W2frequency
*REVS*X200 0.004 0.01 0.001 0.02 0.053 -0.01 0.005 
 

Table D6 Continued 

  W1freq REVS X200 Instr W2freq
*REV 

W2freq
*X200 

REVS
*X200 

Pause        
Syllables        
First        
Trial#        
W1onset        
W1offset        
W1frequency        
REVS 0.052       
X200 -0.063 -0.02      
Instructions -0.016 -0.126 0.054     
W2freq*REV 0.005 -0.053 -0.031 0.014    
W2freq*X200 0.032 0.015 -0.246 -0.004 -0.11   
Rev*X200 0.001 -0.119 -0.17 0.024 -0.022 0.073  
W2frequency
*REVS*X200 -0.077 -0.019 0.106 0.009 -0.132 -0.244 -0.125 
Note. The notation is the same as table D5 
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Figure D1. The top row represents model criticism graphs for the Word1 duration model 
in Experiment 3 before outlier exclusions. The second row represents model criticism 
graphs after outlier exclusions (n=10). 
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Figure D2. The top row represents model criticism graphs for the speech onset time 
model in Experiment 3 before outlier exclusions. The second row represents model 
criticism graphs after outlier exclusions (n=8). 
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Appendix E 

Model specifications and model criticisms for Experiment 4 

Table E1 

Experiment 4 Word1 duration model random effects 

structure 

Groups Name Variance Std.Dev. 
Sub Intercept 0.0035 0.0591 
Sub W2freq 0.0000 0.0000 
Sub Instructions 0.0009 0.0300 
Item Intercept 0.0015 0.0384 
Item W2freq 0.0011 0.0328 
Item Instructions 0.0000 0.0000 
Residual  0.0036 0.0602 
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Table E2 

Experiment 4 Word1 duration fixed effects partial correlations 

 Intercept Pause First Syllables W1onset W1offset Instr 
Pause -0.026       
First 0.003 0.026      
Syllables -0.014 0.071 -0.006     
W1onset 0.005 0.052 0.014 -0.177    
W1offset 0.042 0.084 0.002 -0.117 0.34   
Instr -0.006 0.074 0.01 0.005 0.006 0.008  
W2freq 0.006 -0.029 0.003 -0.019 -0.001 0.001 0.006 
REVS -0.011 -0.086 -0.044 0.02 -0.072 -0.05 -0.078 
W2freq* 
Instr 

0.001 -0.015 0.007 0.002 -0.006 -0.012 -0.005 

W2freq*
REVS 

0.012 0.032 0.003 0.002 0.015 -0.003 0.041 

Pause* 
Instr 

0.002 0.017 0.024 0.003 -0.013 0.003 -0.017 

Pause* 
Syllables 

0.033 0.019 0.027 -0.027 0.042 0.003 -0.005 

Pause* 
Ins*RVS 

0.011 -0.094 0.016 -0.013 0.01 0.024 -0.116 

Pause* 
W2fq* 
RVS 

0.002 0.004 0.015 -0.009 0.005 0.005 -0.003 

Instr* 
W2frq* 
RVS 

0.003 0.032 0.017 0.005 0.019 0.006 0.008 
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Table E2 continued 

 W2freq REVS W2frq
*Instr 

W2freq
*REVS 

Pause
*Instr 

Pause
*Syls 

Pause
*Instr
*RS 

Pause
*W2q
*RS 

Pause         
First         
Syllables         
W1onset         
W1offset         
Instr         
W2freq         
REVS 0.022        
W2freq*Instr -0.011 0.088       
W2freq*REVS 0.009 -0.231 -0.16      
Pause*Instr -0.002 0.033 0.028 -0.023     
Pause*Syllable
s 

0.049 0.003 0.006 -0.036 -0.024    

Pause*Ins* 
REVS 

-0.008 -0.262 -0.027 0.01 -0.011 -0.014   

Pause*W2fq*
RVS 

-0.093 -0.016 0.03 0.096 0.055 0.029 0.044  

Instr*W2frq* 
REVS 

-0.002 -0.014 -0.026 0.183 -0.076 -0.009 0.007 0.023 

Note. First refers to the experimental block order. W1onset and W1offest refer to Word1 
onset and offset phoneme category. Instr refers to the timing manipulations. 
 

Table E3 

Experiment 4 Speech onset time random effects structure 

Groups    Name         Variance Std.Dev. 
Sub Intercept 0.0016 0.0398 
Sub W2freq 0.0002 0.0126 
Sub Instructions 0.0007 0.0259 
Item Intercept 0.0012 0.0353 
Item W2freq 0.0002 0.0154 
Item Instructions 0.0005 0.0221 
Residual  0.0030 0.0548 
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Table E4 

Experiment 4 Speech onset time model fixed effects partial correlations 

 Intercept Pause First W1H Instr 
Pause -0.031     
First -0.001 0.032    
W1H 0.025 0.012 -0.005   
Instr 0.258 0.041 0.011 0.01  
W2freq 0.111 -0.018 0.013 0.016 0.05 
REVS -0.016 -0.133 0.016 0.012 -0.07 
Feed*Instr -0.115 0.019 0.037 -0.035 0.115 
Feed*W2freq -0.003 0.037 0.001 0.013 -0.003 
Feed*REVS 0.01 -0.02 0.077 0.003 0.039 
W2Freq*REVS 0.008 0.035 0.004 -0.018 0.058 
Feed*W1Freq*REVS 0.002 0.034 -0.012 -0.003 0.077 
 

Table E4 Continued 

 W2frq REVS Fd*Int Feed* 
W2frq 

Fd* 
REVS 

W2Frq*
REVS 

Pause       
First       
W1H       
Instr       
W2freq      
REVS 0.029      
Feed*Instr -0.031 0.069     
Feed*W2freq 0.016 0.12 0.097    
Feed*REVS 0.114 0.114 -0.015 0.235   
W2Freq* 
REVS 

0.019 -0.314 0.093 0.039 0.034  

Feed* 
W1Freq* 
REVS 

0.032 0.046 0.19 0.082 -0.168 0.149 

Note. First refers to the experimental block order. W1H refers to Word1 
codability. Instr refers to the timing manipulations. Feed refers to the feedback 
per trial.  
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Table E5 

Experiment 4 Word1 duration fixed effect model estimates after including pauses longer 

than 200 ms 

  b SE t P 
Intercept 2.6580 0.0146 181.8100 0.0000 
Pause 0.0100 0.0027 3.7400 0.0002 
First -0.0075 0.0062 -1.2100 0.2250 
Syllalbes 0.0524 0.0193 2.7200 0.0067 
W1onset 0.0218 0.0079 2.7400 0.0062 
W2offset 0.0176 0.0054 3.2400 0.0013 
Instructions -0.0313 0.0066 -4.7000 0.0000 
W2freq 0.0298 0.0069 4.3000 0.0000 
REVS 0.0001 0.0000 6.2000 0.0000 
Pause*Syllables 0.0127 0.0045 2.7900 0.0054 
Instr*W2freq 0.0036 0.0084 0.4300 0.6708 
Instr*REVS 0.0001 0.0000 1.8700 0.0616 
W2freq*REVS -0.0001 0.0000 -2.1200 0.0344 
Syls*REVS 0.0000 0.0000 -1.7500 0.0808 
Syls*Instr 0.0151 0.0094 1.6100 0.1083 
First*Instr 0.0960 0.0453 2.1200 0.0345 
Pause*Instr*REVS 0.0000 0.0000 -2.1000 0.0360 
Pause*W2freq&REV 0.0000 0.0000 -2.3000 0.0219 
Pause*Syls*Instr -0.0209 0.0079 -2.6300 0.0086 
First*Instr*REVS -0.0001 0.0001 -2.1600 0.0308 
Note. First refers to the experimental block order. W1onset and W1offest refer 
to Word1 onset and offset phoneme category. Instructions refers to the timing 
manipulations.  
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Figure E1. The top row represents model criticism graphs for the Word1 duration model 
in Experiment 4 before outlier exclusions. The second row represents model criticism 
graphs after outlier exclusions (n=7). 
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Figure E2. The top row represents model criticism graphs for the speech onset model in 
Experiment 4 before outlier exclusions. The second row represents model criticism 
graphs after outlier exclusions (n=10) 
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Appendix F 

Processing Sounds 

 This appendix contains the manual my research assistants and I used to code 

acoustic data for all the experiments. The process included a first pass autosegmentation 

of the sounds using either the P2FA aligner or the Prosodylab-Aligner. At a second stage 

either I or a research assistant hand corrected inaccuracies in boundary alignment 

produced by the autosegmenation algorithm. The different headers in the document 

correspond to separate stages in implementing the autosegmentation and then the had 

correction. In each section I have also included scripts that I developed to automate 

processing of the sound files. I have also included some screen shots that help illustrate 

how boundaries were adjusted after the sounds were first autosegmented.   

Required software and scripts 

 

1. Praat (http://www.fon.hum.uva.nl/praat/) 

2. HTK 3.4 for UNIX (http://htk.eng.cam.ac.uk/) and required subcomponent 

software 

a. Don’t install the latest version (3.4.1) because it won’t work! 

b. You will need the latest xcode developer tools to compile. For the 10.4 

system you will need xcode 2.5. 

(http://developer.apple.com/technologies/tools/xcode.html) 

3. Python 2.5 or 2.6 (http://python.org/)  

4. P2FA (http://www.ling.upenn.edu/phonetics/p2fa/) or Prosodylab Aligner 

(http://prosodylab.org/tools/aligner/)  



 134 

5. Optionally: GSU praat tools 

(https://sites.google.com/site/psyvoso/SoftwareDownload)    

Create TextGrids 

 

 Open and select all sound files in praat. Select Annotate – To TextGrid… 

This creates empty .TextGrids for all selected files  

   

Create text files 

 

 The text files are transcriptions of the recorded utterances and they need to have 

the same name as the sound file and the corresponding .TextGrid. Because we know the 

words the speaker is expected to say, we can automate the transcription process as 

follows: Create an excel file that pairs information of each picture pair with their 

filename.  

 The first two columns represent the names of the pairs of left and right objects 

and the last column their ID. Concatenate the names in the two columns and leave a 

space in between the two names. Replace the two columns with the new column that 

contains the two names with the space in between. Then run the excel macro I have 

created that generates .txt or .lab files named after the ID and containing the two picture 

names with a space in between. I am pasting here the excel macro. 
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################################################################ 
Sub maketexts() 
Dim r As Range, ff As Integer 
For Each r In Range("A2", Range("a" & Rows.Count).End(xlUp)) 
        ff = FreeFile 
        Open r.Offset(, 1).Value For Output As #ff 
            Print #ff, StrConv(r.Offset(, 0).Value, Unicode) 
        Close #ff 
Next 
End Sub 
################################################################ 

Run forced aligner 

 

 The p2fa forced aligner runs on a single sound file at a time. I created a bash 

script that iterates through all the files in a directory. I am pasting the script here. 

 

################################################################ 
 
#!/bin/bash 
 
################################################################ 
# 
# This script loops through all files in a directory and processes each 
# identically named triplet of .wav .txt .TexGrid files with align.py 
# The script will work as long as it is stored in the same directory 
# with the files needed for the analysis. The align.py script does not  
# have to be in the same directory but make sure to provide the path.  
# For example, align.py is stored in ~/documents/p2fa on my computer,  
# change this path to reflect its location on your computer. 
# 
# call the script by cding to the folder with the script and files and  
# typing $ bash batch_align.script . Then hit enter and sit back and  
# relax as all word boundaries are magically identified and coded!  
# 
# Alex Christodoulou, Psychology UNC Chapel Hill 
# 03/08/11 
# 
# Thanks to Ryan Scotton for help with this script! 
# 
################################################################ 
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#list all files that end in .wav and store them in a variable 
allWavFiles=`ls *.wav` 
 
#create a loop 
for wavFile in $allWavFiles 
#call align.py and execute on identically named .wav .txt .TextGrid files 
do ~/documents/p2fa/align.py ${wavFile} ${wavFile%\.*}.txt 
${wavFile%\.*}.TextGrid 
done 
exit #optional line, will exit either way :)  
################################################################ 
 

You need to edit the script to point to the directory the align.py file is in. Also make sure 

that the align.py file is in the p2fa folder with all the downloaded components. Look for 

the do command and then edit the directory. For example, mine is in 

~/documents/p2fa/align.py. Assuming the batch script and all files are in the same 

directory you can call the script as follows: 

1. cd into the folder where the scripts and files are stored  

2. type in terminal: bash batch_align.script  

3. hit return 

4. In the terminal you will see a creation of a series of .tmp files. If the aligner fails 

for a specific file, you will get a warning on the screen with the name of the file. 

The script does not crash, it stops iterating when all files have been processed.  

 

You can also run the forced aligner on a single file.  

1. cd into the folder with your scripts and data 

2. type in terminal: python aligner.py filename.wav filename.txt 

filename.TextGrid 
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Inspect aligned files 

 

 Open all files with their associated .TextGrids in praat. Make sure that you have 

installed GSU praat tools in praat. If all files are saved in Praat_Data, start Praat, click 

Open and select Read sounds and labels. Hit ok or apply and all .wav files with their 

associated .TextGrids will load into praat. Select the first sound file and click Edit with 

Labels. When you are done reviewing the file, select File, Next, to go to the next sound 

and .TextGrid.  

 The forced alignment algorithm creates two separate tiers for the individual 

phones and the word forms. Tier 1 codes for phones and Tier 2 for wordforms. When the 

algorithm detects a pause it tags it with sp, which stands for short pause. If you include 

in the transcription files the code {ns} before or between words, it will try to identify 

background noise. Sp and ns are coded in both tiers. In tier 1 each segment is labeled 

with the corresponding phone. In tier 2 each segment is labeled with the corresponding 

word in capitals. 

 

Adjust transcription files 

  

 The forced aligner takes the transcription files and tries to identify boundaries no 

matter what the actual word is. If there is a mismatch between the transcription and the 

sound, it will still create boundaries according to the transcription file. These files 
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should not be analyzed but if you want to have durations for them, edit the transcription 

files to reflect the words used.  

 

Adjust onset of beep 

 

 In most cases the algorithm does not do a good job at detecting the onset of the 

beep sound at the beginning of each trial. Also, it might detect short pauses between the 

beep sound and the onset of the first word. Originally in the transcription files I had 

included {ns} before the two word transcription. The {ns} coding detects noise in the 

sound file. However, it doesn’t always detect the beep sound, it sometimes detects other 

noises or inaccurately detects the boundaries of the beep. You can either not include the 

{ns} code in your transcriptions and then manually adjust the onset of the beep sound, or 

you can adjust the onset of the beep sound manually after it has been automatically 

detected. The beep sound has a frequency of around 1923 hz which is constant for about 

200 ms so it should be fairly easy to identify its onset. However, with this second 

method you might have to do more editing than just leaving the {ns} code out of the 

transcription. If you adjust the boundaries make sure to archive the original .TextGrids.  

 If you have a beep sound with a different frequency, just measure the frequency 

of the darkest formant. In the following example I have a beep with a dominant 

frequency at 4602 hz.  
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The algorithm has incorrectly identified its onset. I moved the boundary to the onset of 

the 4602 frequency band. 
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Adjust onset of first word 

 Word boundaries should be identified according to information from both the 

spectrum and the spectrogram. I use the spectrogram to roughly identify the onset. I then 

zoom into the region of interest by selecting the area and then hitting the Sel button. For 

example, in the following screen shot I have zoomed into the onset of the word goat. In 

the spectrogram you see the appearance of a sudden grey column. This marks the release 

of the stop consonant g. In the spectrum you see that at the same time point the wave 

changes form. From almost a flat line, there is a sudden onset of oscillation. For most 

stop consonants (p,b,t,d,k,g), the appearance of a gray column will be sufficient 

information to mark the onset of speech. However, you should always consult the 

spectrum for further confirmatory information for the time of the onset.   

 

 You see that the autosegmentation algorithm has marked the onset of the goat 

earlier than it should have. We need to correct this by moving the blue mark to the 

appropriate position I previously identified.  
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 For fricatives such as s,z,f,v,th, and affricates such as ts,tz the onset is marked by 

the appearance of a band of higher frequency. In the following screen shot I have 

zoomed into the onset of the word snail. The algorithm has again marked the onset of s 

earlier than it should have.  
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 To identify the correct boundary, I zoom into the onset of s even further. I place 

the boundary where both the spectrogram and the spectrum provide supportive 

information. The place I placed the onset is where the wave changes form and where the 

higher frequency band starts to appear. 

 

For vowels the onset is more difficult to identify. It is usually marked by the appearance 

of the second formant. The spectrum is very useful for the identification of the vowel 

onset because the onset of the second formant can be somewhat difficult to identify. In 

the following screenshot I have zoomed into the onset of the word axe.  
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The red dots mark the detected formants by praat. However, they are often incorrect, as 

in this case. I zoom into the onset even further to have a better look at the spectrum.  

 

I have marked the onset of a at the point where the wave changes form. It is also the 

place where the wave starts looking more like the oscillations to the right as opposed to 
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the left of it. If you look at the spectrum, the boundary I have placed marks the time 

point where the second formant is clearly evident.  

 Liquids and nasals such as r,l,n,m usually look like vowels. Use the same 

approach as with vowels. In the following screen shot I have zoomed into the onset of 

raccoon.  

 

As with all the previous examples, the algorithm has marked an earlier onset of speech. I 

zoom into the onset a bit further.  
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I moved the boundary to where the waveform starts looking more like the oscillations to 

the right as opposed to the left. The boundary also marks the position of the appearance 

of a second formant. 

  

Adjust offset of first word 

 

The difficulty with identifying the offset of a word lies in the presence of coarticulation 

with the onset of an upcoming word. The following picture is an example of 

coarticulation. 
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You will notice that there is no clear end of snail because l is coarticulated with the 

onset of house. To identify the offset of l, I zoom into the region even further. 

 

The algorithm seems to have done a pretty good job at identifying where the wave 

changes form. You will also notice that the boundary coincides with the end of the blue 
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line, which is the representation of the pitch contour. It also coincides with the last 

vertical blue line in the spectrum which marks praat’s identification of the last vocal 

pulse in the word.  

The following screenshot is another example of a difficult case of coarticulation. I have 

adjusted the boundary according to information in the spectrum and the spectrogram. 

 

I have placed the boundary where I believe the wave changes form and where the 

spectrogram indicates the onset of the w. Here is a zoomed out version. 
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This is a good example of how difficult boundary identification can sometimes be. 

Chances are that you are going to be a bit off in your detection. As long as you are 

consistent throughout your boundary adjustment, this will not be a problem.  

The identification of the offset of a word can be also difficult because of the presence of 

a stop at the end of the measured word, or both at the end of the measured word and the 

upcoming word. The following is an example of the presence of a stop consonant in both 

the end of the measured word and the beginning of the upcoming word.  
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The algorithm has identified a short pause between the two words marked with sp. I 

zoom into the offset of flute.  

 

 I have moved the boundary at the end of the release of the t. There are three 

pieces of information I used to identify the boundary. In the spectrum, this is the point at 
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which the wave changes form. It is very subtle because stop consonants are not 

produced by vibrating the vocal chords. Therefore, any information in the spectrum is 

residual activation from the previous vowel. The second piece of information I use is the 

presence of a dark band that is probably created by the escape of air from the mouth 

after the closure of the mouth. The last piece of information is the yellow intensity 

contour. The contour is at 0 where I have chosen the offset. This signals the end of an 

acoustic event.  

I then adjust the onset of the upcoming word to have an accurate measurement of the 

duration of the pause.  

 

It is important to note here that the duration of the pause is longer than it objectively is. 

This is because we can’t identify the onset of the closure of the stop consonant k. The 

consonant onset can be as long as 80-100ms.  
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