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Abstract

HAO XU: How To E�ciently Implement An OSHL-Based Automatic
Theorem Prover.

(Under the direction of David Plaisted.)

Ordered Semantic Hyper-linking (OSHL) is a general-purpose instance-based

�rst-order automated theorem proving algorithm. Although OSHL has many use-

ful properties, previous implementations of OSHL were not very e�cient. The

implementation of such a theorem prover di�ers from other more traditional pro-

grams in that a lot of its subroutines are more mathematical than procedural. The

low performance of previous implementations prevents us from evaluating how the

proof strategy used in OSHL matches up against other theorem proving strategies.

This dissertation addresses this problem on three levels. First, an abstract, gener-

alized version genOSHL is de�ned which captures the essential features of OSHL

and for which the soundness and completeness are proved. This gives genOSHL

the �exibility to be tweaked while still preserving soundness and completeness. A

type inference algorithm is introduced which allows genOSHL to possibly reduce

its search space while still preserving the soundness and completeness. Second,

incOSHL, a specialized version of genOSHL, which di�ers from the original OSHL

algorithm, is de�ned by specializing genOSHL. Its soundness of completeness follows

from that of genOSHL. Third, an embedded programming language called STACK

EL, which allows managing program states and their dependencies on global muta-

ble data, is designed and implemented. STACK EL allows our prover to generate

iii



instances incrementally. We also study the performance of our incremental theorem

prover that implements incOSHL.
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Chapter 1

Introduction

incOSHL is an automated �rst-order instance-based incremental theorem prover.

The algorithm implemented in incOSHL is based on a non-incremental automatic

theorem proving (ATP) algorithm called OSHL [33]. The original OSHL algorithm

was implemented in Prolog, in a theorem prover which was also called OSHL [33].

An extension of the original algorithm with the U Rules was implemented in Caml,

in a theorem prover called OSHL-U [28].1 The ideas of OSHL have also found their

way into a separately developed theorem prover Equinox [11].

OSHL belongs to the larger category of ATP strategies called instance-based

methods. The general idea of instance-based methods is: in order to test if a set of

logical formulas is satis�able, we generate instances of it and test if the instances

are satis�able; if they are, then we try to generalize the model for these instances

to a general model for the set of logical formulas; otherwise, these instances are

a counterexample for the set of logical formulas. This process is analogous to the

following problem solving method used in geometry: Given a general, abstract

problem, we �rst draw a geometry diagram and try to �gure out how to solve this

problem in this particular diagram. The diagram does not represent the general,

1The U Rule was shown to accelerate the prover, but they makes the extended algorithm

incomplete. As a result, the theorem prover has to fall back to the original algorithm if the

extension cannot �nd a solution.



abstract problem. Rather, it represents an instance of the problem.

There are many instance-based methods [9, 15, 33, 11, 27, 7, 23]. OSHL di�ers

from other instance-based methods in that OSHL works entirely on the ground

level. It is an interesting question whether a strategy like that can be e�cient.

The evaluation of ATP algorithms has traditionally been based on the perfor-

mance of particular implementations of those algorithms. The low inference rate

(IR) of the previous OSHL-based provers put them at a disadvantage in such evalu-

ations. To compare, at the time they were being developed, they were able to gener-

ate instances only on an order of magnitude of 10 clauses per second on commodity

hardware [27], while state-of-the-art implementations of resolution-based ATP algo-

rithms were able to generate clauses at a much higher inference rate [34]. What was

perhaps encouraging was that despite having signi�cantly lower IR, OSHL-based

theorem provers were capable of proving some hard problems [27, 50], which Ot-

ter [26] could not prove, in a conventional testing setup. However, in general, the

number of problems they could prove (NOPP) in TPTP [44] was lower than that

of state-of-the-art theorem provers. This gave rise to the following questions:

1. If the IR of an OSHL-based theorem provers is improved, will its NOPP

improve, too?

2. Is there any way to improve the IR of an OSHL-based theorem prover?

3. Is there any way, other than improving the IR, to improve the NOPP for

OSHL-based theorem provers?

To answer the �rst question, we need to either �nd a way to implement an

OSHL-based theorem prover with high IR and test it against problems in TPTP, or

simulate such an implementation. As an example of simulation, we can let a slower

theorem prover run X times longer than a faster theorem prover, as if the slower
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prover were implemented in a way such that it was X times more e�cient than

it actually is. While this second approach might seem attractive at �rst glance,

since it avoids the harder problem of actually improving the IR, there are two

potential problems that may put the feasibility of the second approach in question.

The �rst problem is that the IR of the fastest previously implemented OSHL-based

theorem prover was thousands of times lower than state-of-the-art theorem provers.

The scalar X would be required to be on an order of magnitude of 1000, which is

impractical considering the size of TPTP, if we were to run a full simulation. The

second, more subtle problem is that letting a theorem prover run X times longer

does not necessarily make it generate X times more instances. For example, it may

be increasingly more time consuming for a prover to generate new instances as the

number of instances generated grows. I will show some evidence of this in Section

8.3. Without alleviating this nonlinear complexity, simply increasing the running

time will only reduce the IR. The �rst approach requires signi�cantly more e�ort,

but in the long run, can be much more bene�cial, as once we have an e�cient

implementation, we can start to explore all kinds of new ideas, and show whether

they are signi�cant or not without having to worry about question 1 any more. This

leads us to the second question.

When approaching the second question, I took an approach that starts from a

more general problem, �nds a solution to it, and then applies the solution to our

speci�c application. The more general problem here is to provide a general frame-

work and tools that are not tied to a speci�c algorithm, to ease the development of

instance-based theorem provers, so that, when we want, we can easily experiment

with all kinds of new ideas rapidly, while still maintaining relatively high e�ciency

of the implementation. I will describe in Chapter 6 a low-level framework for im-

plementing ATP algorithms that combines coroutines and dependency of program
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states on global mutable data. This framework is exposed to programmers in a

well-de�ned, statically-typed embedded language interface called the STACK EL.

Our theorem prover is the �rst theorem prover that I know of which is implemented

based on a systematic, language-based approach. As a macro-based embedded lan-

guage in C/C++, the STACK EL provides some high level constructs that are

essential to proof search, with the e�ciency closer to that of C/C++. The biggest

advantage of this approach is that it permits people to implement provers e�ciently

with little man power. Perhaps these techniques will be useful for other technical

areas as well.

The third question is equally as important because, after all, the performance of

the a theorem prover is measured by NOPP, even though IR is an important factor.

I will show a term algebra based type inference extension that helps reduce the

search space of the OSHL algorithm.2 One essential feature of type inference is that

it tries to discover the semantics that are embedded in the syntax of a problem. For

example, if one makes a statement: �The average height of a human is greater than

the average height of a tiger,� it is clear from the syntax that the following phrase is

not relevant: �the average height of the average height of a tiger,� since the function

�the average height of� is only applied to human or tiger in our statement, and not

to some number that is the average height of a tiger. This suggests that we can infer

the semantics of symbols from where and how they appear in a problem. This is

the basic idea of type inference. Type inference has the potential application in any

theorem prover that needs to generate instances by �don't know� non-determinism.

Our theorem prover seems to be the �rst application of type inference to theorem

proving that I am aware of in this way.

Before developing the current version of our theorem prover, I developed two

2Some people might think it is more accurate to call it sort inference.
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previous versions. The �rst version, written in Java, was called OSHL-S. The ob-

jective of developing OSHL-S was:

• develop e�cient data structures and subroutines for the original OSHL algo-

rithm;

• develop a caching mechanism for OSHL;

• experiment with type inference.

OSHL-S had an average inference rate on the order of magnitude of 100 clauses

per second, which was slightly faster than the previous OSHL implementation. I

applied Java pro�ler to �nd the hot spot of the prover code for optimization, which

helped improve the performance. Bytecode engineering tools were also considered

and experimented with for improving the e�ciency of the prover. Even though

applying bytecode engineering tools could potentially improve the performance of

the prover, it would still be limited by the Java virtual machine. On the other hand,

the caching mechanism designed was both less adequate and more fragmented than

the current version. It was less adequate in that some of the general data structure

that were intended to be applied to multiple places were not customizable enough

� some glue code had to be written to adapt the general data structure to a speci�c

use. It was fragmented in that in some of the places where the general cache data

structure could not be adapted to, a di�erent data structure was written. This

created several sets of data structures that had to be maintained separately which

increased the overhead for development and maintenance.

With all the bytecode engineering and high complexity of cache data structures,

the e�ort to maintain the code base became higher and higher and it became increas-

ingly di�cult to signi�cantly improve the performance of the prover. Eventually,
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the complexity of maintaining the Java code base seemed to far exceed that of reim-

plementing the prover from scratch in C/C++. I started to reimplement OSHL-S

in C/C++. While designing the architecture of the new prover, I rethought the

caching mechanism, a center piece of OSHL-S that had the potential to greatly

improve the e�ciency of the prover, and divided the program into two strata. The

lower stratum, which is implemented as a macro-based embedded language called

the STACK EL, deals with general control structures such as program states and

activation records. The STACK EL provides a familiar syntax similar to a stand

alone program language, by using macros only (hence is portable) and is fully inter-

operable with C/C++. The higher stratum deals with prover speci�c subroutines

and data structures. The bootstrapping of the development took longer, since I had

to develop the STACK EL �rst. However, once the �rst version STACK EL was

functional, it became much faster to write code for the prover and make changes

to the code written. The strati�cation of the prover code allowed me to develop,

maintain, and optimize the two strata of code separately, which greatly improved

the e�ciency and maintainability of the prover. Also, the caching mechanism was

embedded into the STACK EL, giving it more �exibility and avoiding the inade-

quacy and fragmentation of the caching mechanism in the Java version of OSHL-S.

Overall, the C/C++ version of OSHL-S implemented a similar algorithm as OSHL-

S. With more e�cient data structures and several other improvements, it achieved

an average inference rate on the order of magnitude of 1000 clauses per second.

The most important feature of the current version, which is called incOSHL,

is that it is capable of generating instances incrementally. incOSHL is based on

an improved version of the STACK EL which provides the capability of handling

dependency of program states on global mutable data, a crucial feature that enables

incremental instance generation, and performs static checking for code written in
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the embedded language, which helps catch bugs. incOSHL also has a more e�-

cient, region-based memory management mechanism and supports garbage collec-

tion. Combining these features, incOSHL achieves a much higher e�ciency than

OSHL-S. The lessons learned were:

• Java does not provide enough access to low level runtime environment, which

is suitable for web development, but not for programs that require extremely

high e�ciency such as theorem provers;

• choosing the right programming languages for a software project with high

complexity is crucial;

• strati�cation in software design is important for the e�ciency of development

and maintenance of a complex software project;

• it takes trial and error to come to the right design � it is important to always

make sure that the code base is maintainable.

This dissertation focuses on the theoretical and practical aspects of incOSHL.

This dissertation is organized as follows:

In the second chapter, we introduce some preliminaries. In the third chapter

we introduce genOSHL, a general theoretical framework for designing OSHL-based

ATP algorithms, and incOSHL, a sound and complete instance-based ATP algo-

rithm based on a customization of the genOSHL algorithm. In the fourth chapter,

we introduce type inference. In the �fth chapter, we introduce a non-incremental

implementation of incOSHL. In the sixth chapter, we introduce the STACK EL, a

novel low-level algorithm-independent embedded language for implementing ATP

algorithms that supports implicit and explicit dependencies of program states on

global mutable data. In the seventh chapter, we introduce an incremental imple-

mentation of incOSHL based on the STACK EL. In the eighth chapter we provide
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some experimental results about our implementation of incOSHL.
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Chapter 2

Preliminaries

2.1 Classical First-order Logic

In this section, we brie�y overview classical �rst-order logic and its basic con-

cepts. A logic usually consists of formal languages, deduction systems, and seman-

tics. We will look at the formal languages, deduction systems and semantics of

classical �rst-order logic.

2.1 First-order Languages

2.1 Symbols

A �rst-order language consists of

• Variables

• Function symbols

• Predicate symbols

• Connectives, which usually include ¬ (negation), ∨ (disjunction), ∧ (conjunc-

tion), and ⊃(implications)

• Quanti�ers, which usually include ∀ (for all) and ∃ (there exists), and



• Parentheses ( and ).

Every function symbol has an arity, i.e., the number of argument it takes. A

nullary function symbol is sometimes called a constant. Every predicate symbol

also has an arity. In classical �rst-order logic, connectives ¬, ∨, and ∧, quanti�er

∀ form a minimum set of connectives and quanti�ers from which other connectives

and quanti�ers can be de�ned.

2.1 Terms

Terms are de�ned recursively by the following rules:

1. A variable is a term.

2. If t1, t2, . . ., tn, where n is a nonnegative integer, are terms, and f is an n-ary

function symbol, then f(t1, t2, . . . , tn) is a term.

3. All terms are formed using Rule 1 or Rule 2.

When n = 0, we write f instead of f().

A term is ground if it does not contain any variables. We denote the set of

all possible ground terms generated from a �nite set F of function symbols by

Terms(F ). We denote the set of all possible terms generated from a �nite set F of

function symbols and a �nite set V of variable symbols by Terms(F, V ).

2.1 Substitutions and Uni�ers

A substitution is a function from variables to terms. If a substitution maps only

�nite number of variables X1, . . . , Xn to terms t1, . . . , tn and all other variables to

themselves, we write it as [t1, . . . , tn/X1, . . . , Xn]. We extend a substitution θ to
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terms as follows:

θ(t) =


t′, t is a variable and t′ = θ(t)

f(t′1, . . . , t
′
n) t = f(t1, . . . , tn) and t

′
1 = θ(t1), . . . , t

′
n = θ(tn)

We say that a term s is an instance of a term t, if there is a substitution θ such

that s = θ(t).

A substitution σ is a uni�er to two terms s and t if σ(s) = σ(t). It is a

most general uni�er if for every other uni�er σ′, there exists a substitution η such

that σ′(s) = η(σ(s)). For example, the most general uni�er of g(X, f(Y )) and

g(f(Z), f(f(b))) is [f(Z)/X, f(b)/Y ], or [X/Z, f(X)/X, f(b)/Y ]. A substitution is

a renaming if it is a one-one mapping from variables to variables. For example,

[Y/X,Z/Y ] is a renaming, but neither [Y/X, Y/Z] nor [Y/Z, f(b)/Y ] is. Usually,

there are more then one most general uni�ers, but they are all equivalent up to

renaming. We denote an arbitrarily chosen most general uni�er of two terms s and

t by mgu(s, t).

2.1 Atoms

If we consider predicate symbols as a special kind of function symbols that may

only occur at the top level of a term, then atoms are terms whose top level function

symbol is a predicate symbol.

2.1 Formulas

First-order formulas are de�ned recursively by the following rules:

1. An atom is a formula.

2. If α is a formula, so is ¬α.
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3. If both α and β are formulas, so is α ∨ β.

4. If both α and β are formulas, so is α ∧ β.

5. If both α and β are formulas, so is α ⊃ β.

6. If α is a formula and x is a variable, then ∀xα is a formula.

7. If α is a formula and x is a variable, then ∃xα is a formula.

8. All formulas are formed using Rule 1, Rule 2, Rule 3, Rule 4, Rule 5, Rule 6,

or Rule 7.

2.1 Deduction Systems

A deduction system usually consists of axioms and rules of inference. In some

deduction systems, there are only rules of inference and no axioms. An axiom

is usually a formula. Sometimes when there are an in�nite number of axioms, a

deduction system may provide axiom schemes � templates that can be used to

generate the axioms of the deduction system. Rules of inference allow us to derive

formulas from formulas. If a formula is an axiom or can be derived from axioms

using one or more rules of inference, then the formula is a theorem.

For classical �rst-order logic, there are several well-known deduction systems,

including the Hilbert-style deduction system, natural deduction, and Gentzen's se-

quent calculus. Most, if not all, commonly used deduction systems for classical

�rst-order logic are equivalent, in the sense that they all derive the same set of

theorems.

Automatic theorem provers usually implement none of the foregoing deduction

systems. Instead, they use rules of inference that are tailored speci�cally for mech-

anized inference.
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2.1 Semantics

An interpretation of a �rst-order language assigns meanings to function symbols

and predicate symbols, based on a given domain D. An interpretation assigns to

1. each variable to an object in D

2. each nullary function symbol an object in D,

3. each n-ary function symbol, where n > 0, an n-ary function from Dn to D,

4. each nullary predicate symbol a member of {TRUE,FALSE}, and

5. each n-ary predicate symbol, where n > 0, an n-ary function from Dn to

{TRUE,FALSE}.

Given an interpretation of a �rst-order language, we can determine the truth

value of a formula in that �rst-order language. If an interpretation I makes a

formula α true, then we say that I is a model of α, or that I satis�es α, which we

denote by I |= α; otherwise, we say that I falsi�es α, or that α contradicts I, which

we denote by I 6|= α. If I |= α for every formula α in a set S of formulas, then we

write I |= S.

A formula or a set of formulas is

• valid if it is satis�ed by every interpretation;

• satis�able is it is satis�ed by some interpretation;

• unsatis�able if it is satis�ed by no interpretation.

The dichotomy of syntax and semantics leads to the question of �what is the

relation between being provability and validity?� In classical �rst-order logic and
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commonly used deduction systems, the answer is simple: a theorem is a valid for-

mula and vice versa. (The proof of this can be found in textbooks) The forward

direction is called �soundness� and the converse direction is called �completeness.�

2.2 Clauses and Literals

In automatic theorem proving, we use the concepts of literals and clauses.

2.2 Literals

A literal is either an atom or the negation of an atom. A literal is a positive

literal if it is an atom. A literal is a negative literal if it is the negation of an atom.

The complement L of a literal L is de�ned as ¬A = A and A = ¬A, where A is an

atom.

Similar to terms, a literal is ground if it does not contain any variables. We

extend a substitution θ to a literal L as follows:

θ(L) =


A′, L is an atom and θ(L) = A′

¬A′, L = ¬A and A′ = θ(A)

We say that a literal L is an instance of a literal N , if there is a substitution θ such

that L = θ(N).

2.2 Clauses

A clause is a �nite set of literals. A formula can be constructed from a non-empty

clause in the following way. Given a non-empty clause {L1, . . . , Ln}, with variables

X1, . . . , Xm, the constructed formula is ∀X1 . . . ∀Xm(L1∨ . . .∨Ln). Because in �rst-

order classical logic, universal quanti�ers can be switched and ∨ is commutative and

associative, the order in which the variables and literals appear in the constructed
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formula does not make any substantial di�erence, which is consistent with our view

of a clause as a set. A clause is ground if all the literals that belong to the clause

are ground. We extend a substitution θ to a clause {L1, . . . , Ln} as follows:

θ({L1, . . . , Ln}) = {L′1, . . . , L′n} where L′1 = θ(L1), . . . , L
′
n = θ(Ln)

We say that a clause C is an instance of a clause D, if there is a substitution θ such

that C = θ(D). We denote the set of all ground instances of all clauses in a set S

of clauses by Gr(S).

A ground clause C is true in an interpretation I, written I |= C, if and only if

I |= L for some L ∈ C. The empty clause is falsi�ed by every interpretation. A set

of clauses T is true in I, written I |= T , if and only if I |= D for all D ∈ T . Any

formula can be converted to the clausal form. When converting a set of formulas to

the clausal form, we can preserve their satis�ability, but the resulting set of clauses

is not necessarily equivalent to the original set of formulas.

A special class of clauses are Horn clauses. A Horn clause is a clause in which

there is at most one positive literal. If a problem does not include non-Horn clauses,

then it is usually called a Horn problem; otherwise, a non-Horn problem.

2.3 Automatic Theorem Proving

Automatic theorem proving deals with automating the process of logical infer-

ence in a logical system by writing computer programs. In this paper, our logical

system will be classical �rst-order logic.

The completeness of a classical �rst-order logic says that if a logical formula is

valid then there must be a proof for it. In theory, validity in classical �rst-order

logic is semidecidable, which means that there exist algorithms for checking if a
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formula is valid but there does not exist any algorithm for checking if a formula is

invalid. For example, in a Hilbert-style deduction system, it is possible to �nd a

proof for a valid formula by enumerating all possible proofs.

Therefore, theoretically, brute force search algorithms are su�cient, but in prac-

tice, they do not work because they are ine�cient. Since the search space is ex-

tremely large for a such an approach for proof search, it is impossible to prove

even some simple problems by brute force search within a reasonable amount of

time. The main challenges of automatic theorem proving research are to �nd proof

strategies that can �nd proofs more e�ciently and to �nd ways to implement these

strategies e�ciently.

2.3 Herbrand Interpretation

A special class of interpretations is called the Herbrand Interpretations. Given a

�rst-order language, the domain of a Herbrand Interpretation is the set of all terms

in that language. A Herbrand Interpretation assigns to

1. each nullary function symbol f f itself,

2. each n-ary function symbol f , where n > 0, an n-ary function f ∗, such that

f ∗(t1, . . . , tn) = f(t1, . . . , tn), i.e., the denotation of a function symbol is a

function that constructs new terms using the function symbol itself.

3. each nullary predicate symbol a member of {TRUE,FALSE}, and

4. each n-ary predicate symbol an set n-ary function from terms to {TRUE,

FALSE}.

The only wildcard here in a Herbrand Interpretation is the interpretation of

predicate symbols. Herbrand Theorem says that every satis�able formula has a
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Herbrand Interpretation. This essentially says that we can view Herbrand Inter-

pretations as canonical models for satis�able formulas. Satis�ability in classical

�rst-order logic is reduced to satis�ability under Herbrand Interpretations.

Objects in the domains of Herbrand Interpretations are purely syntactical and

are determined by the input formulas. This property of the Herbrand Interpretation

makes it easy for computers to work with interpretations of formulas in a �rst-order

language.

In mathematics, an indicator function is a function de�ned on a set A to the set

{TRUE,FALSE}. An indicator function indicates membership in a subset of A. If

the indicator function maps an element to TRUE, then the element is a member of

that subset; if the indicator function maps an element to FALSE, then the element

is not a member of that subset. Given an interpretation of a formal language, the

interpretation assigns an element in {TRUE,FALSE} to every ground literal in

that language. This allows us view an interpretation as an indicator function which

indicates membership of the subset of all ground literals to which the interpretation

assigns TRUE.

In our algorithm, we take a similar approach to representing interpretations. An

interpretation I is represented by a set of ground literals. I is a model of a ground

literal L if and only if L ∈ I; I is a model of a non-ground literal if and only if it

is a model of all ground instances of that literal. We assume in our algorithm that

there is an initial interpretation I0 where satis�ability can be e�ectively computed.

Interpretations can be constructed from I0 by adding new literals to it. Now, an

interpretation I becomes a pair of I0, an initial interpretation, and a setM of literals

that are added to I0. (I0,M) is a model of a ground literal L if and only if

1. either L ∈M ,

2. or L /∈ M and L is satis�ed by I0 (in this case, we can assume that L /∈ M
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since the case L ∈M is covered by 1)

The case for non-ground literals is the same as before.

2.3 Proof Strategy

Proof strategies usually also can be expressed in the form of rules of inference.

They work in a similar way to deduction systems. However, most proof strategies

are not sound and complete in the same sense that a deduction system is sound and

complete.

In general, when we say that a proof strategy is sound and complete, we are

using the word �sound� and �complete� relative to the input set of formulas and two

types of output of the proof strategy. We will denote these two types of output

TRUE and FALSE:

1. Soundness means that given a set of formulas, if the proof strategy returns

TRUE, then the set of formulas is satis�able; if the proof strategy returns

FALSE then the set of formulas is unsatis�able.

2. Given a set of formulas, if it is unsatis�able, then the proof strategy always

returns FALSE in �nite number of steps.

2.3 Resolution-based Methods

Resolution [37] is an early proof strategy for classical �rst-order logic and clas-

sical propositional logic that involves essentially one rule of inference � the rule of

resolution � and no axioms1. To apply the classic resolution 2, all logical formulas

1Sometimes for classical �rst-order logic, factoring is counted as a separate rule

2There is a more general version of resolution that does not require this, but it is less commonly

used in automatic theorem provers.
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have to be converted to the clausal form. The rule of resolution, in its propositional

form, looks like

C ∪ {L} D ∪ {L}
C ∪D

where L is a literal, C is a set of literals not containing L, and D is a set of literals

not containing L. The intuition is that the clause C ∪D is a logical consequence of

C ∪ {L} and D ∪ {L} (this can be proved in classical propositional logic).

In resolution, the empty clause indicates FALSE (unsatis�able); and that no

new clauses can be generated indicates TRUE (satis�able). A derivation from a

set of clauses to an empty clause, if it exists, is called a refutation proof. A logical

formula is valid if and only if we can �nd a refutation proof of its negation. For

example, A ⊃ B is valid if and only if we can �nd a refutation proof of ¬(A ⊃ B).

In this sense, resolution is sound and complete.

The simplicity of the deduction system is where the power of resolution comes

from. With resolution, even if we apply brute force search, we are limiting the search

to only one possibility in terms of rules of inference and axioms. Of course, we still

need to choose on which clauses and how the rule of resolution is to be applied. This

is where numerous re�nements to resolution came along. Re�nements to resolution

include the purity principle [38], tautology deletion, subsumption based deletion,

unit preference [47], unit resolution, unit resulting resolution, hyper-resolution [39],

linear resolution [24, 25], linear resolution with selection function [22], ordered res-

olution, semantic resolution [42], set of support [48], etc. These re�nements help

improve the performance of the original resolution to various extents.

Resolution has also been extended with rules to handle equality, including de-

modulation [49], paramodulation [29, 35], and its restricted version called superpo-

sition [6]. E [40] implements the superposition calculus.

19



One of the problems with resolution-based proof strategies is that they are less

e�cient on non-Horn problems than on Horn problems [31]. This leads us to the

discussion of instance-based methods.

2.3 Instance-based Methods

Instance-based methods are based on instance generation. Resolution may or

may not be applied to the generated instances and is not an essential feature. This

allows instance-based methods to avoid some of the problems with resolution and

provides a di�erent perspective to automatic theorem proving.

An early proof strategy that in�uenced many instance-based methods is DPLL

[13, 12]. The original DPLL algorithm works only for the classical propositional

logic, a logic without quanti�ers.

There are many variants of DPLL. This brief introduction does not go into the

details but summarizes the general ideas behind DPLL. In general, DPLL works

on a set S of input clauses and maintains a set M of predicates that represents a

partial model such that for any predicate A

• M |= A i� A ∈M

• M 6|= A i� A ∈M

It starts with M being an empty set, and the goal is to show the satis�ability

of S. DPLL usually consists of several rules. No matter which variant it is, the

essential idea is basically the same:

• If for some atom A in some clause C in S, neither M |= A or M |= A, then

� either add Ad to M

� or add A
d
to M
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• If for some atom A in some clause C in S, M 6|= A′ for all A′ ∈ C\{A}, then

� If M |= A, do nothing

� If M 6|= A, backtrack to some A′d, add A′ to M

� Otherwise, add A to M .

Intuitively, if some literal is not de�ned in the model, then it updates the model

by arbitrary guessing its truth value. We call this literal a decision literal, which

is indicated by the superscript d. If the model makes all but one literal in a clause

false, then there are three possibilities for the remaining literal:

• If the model makes the remaining literal true, then it does nothing.

• If the model makes the remaining literal false, then it backtracks to a decision

literal and add the complement of that literal to the model as a non-decision

literal. If there is no decision literal left, then it returns FALSE.

• If the remaining literal is unde�ned in the model, then it adds that literal to

the model.

If the model makes all clauses true, the it returns TRUE.

DPLL is sound and complete. An important di�erence between DPLL and

resolution is that while resolution could generate clauses that contain more and

more literals, that is not possible for DPLL. This signi�cantly reduces the storage

requirement of DPLL. Another di�erence is that DPLL can be easily integrated

with semantics [5], while it seems harder to integrate semantics e�ectively with

resolution. Moreover, DPLL �nds a model when it returns TRUE, but resolution

does not build any model. Modern SAT solvers based on DPLL can handle problems

with over one million of variables [17]. Despite the success of DPLL, an obvious

drawback of it is that it does not work on classical �rst-order logic, and there is
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no easy way to lift it directly to the �rst-order level, either. However, it inspired a

series of development in instance-based proof strategies for classical �rst-order logic.

Model evolution [9] is a calculus for classical �rst-order logic which generalizes

the ideas of FDPLL [7]. Given a set of input clauses, model evolution maintains a

candidate model. In each iteration, it tries to �nd clauses that are not satis�ed by

the model and tries to repair the model based on those contradictions. It also has

additional simpli�cation rules. One of the key di�erences between model evolution

and OSHL is that the candidate models that model evolution maintain may contain

non-ground literals, while the models maintained by OSHL contain only ground

literals. Darwin [8] implements the model evolution calculus.

Inst-Gen [21, 15] is a calculus for classical �rst-order logic that combines reso-

lution with instance generation. Instead of generating the combine clause as the

rule of resolution does, Inst-Gen only generates instances of the two clauses being

resolved

C ∪ {L} D ∪ {L′}
θ(C ∪ {L}) θ(D ∪ {L′})

where θ uni�es L and L′. The generated clauses are periodically instantiated to

ground clauses and a separate proof procedure is used to test the satis�ability of

the ground clauses. iProver [20] implements Inst-Gen.

OSHL [33] maintains a model and in each iteration, it tries to �nd a contradicting

ground instance of the input clause that contradicts the current model and updates

the current model to satisfy that instance. It allows combining nontrivial semantics

with instance generation, which could improve the e�ciency of proof search [50].

OSHL di�ers from other instance-based methods in that it works completely on

the ground level. OSHL has been extended with the U rules [27] which provides

signi�cant speedup on certain problems [27].
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2.4 Order

In this section, we introduce some general notion of order and de�ne orders that

are used in this paper.

De�nition 1. An order is a pair 〈D,≤〉 of a set D and an operator from D2 to

{TRUE,FALSE} (We write a ≤ b if and only if ≤ (a, b) = TRUE) such that for

every a, b, c ∈ D

1. a ≤ a

2. a ≤ c if a ≤ b and b ≤ c

The order is strict if a = b if a ≤ b and b ≤ a for all a, b ∈ D.

The order is total if either a ≤ b or b ≤ a for all a, b ∈ D.

The order is well-founded if there does not exist an in�nite sequence a1, a2, . . . ∈

D such that a2 ≤ a1, a3 ≤ a2, . . ..

The order is downward �nite if for any element a ∈ D, the set {x ≤ a | x ∈ D}

has �nite number of elements.

All orders de�ned in this section are based on those already de�ned in the original

OSHL paper [33].

2.4 Size Order

First, we de�ne the size order. The size of a term (or an atom) α, written

size(α), is de�ned by the number of occurrences of variables, predicate symbols,

and function symbols in that term (or an atom). The size order, written ≤s, on

terms or atoms is de�ned as:

α ≤s β if and only if size(α) ≤ size(β).

The size order is a well-founded non-strict total order.
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2.4 Lexicographic Order

Next, we de�ne the lexicographic order. The lexicographic order can be consid-

ered as a dictionary order.

To make the de�nition clearer, we use the notion of a ��atterm.� Given a term

(or an atom) α, a �atterm of α, written flat(α) is de�ned as follows:

1. If α is a variable, then flat(α) = α.

2. If α is a nullary function or predicate symbol, then flat(α) = α.

3. If α is of the form x(t1, . . . , tn), where n is a natural number, and x is an n-ary

function or predicate symbol, then flat(α) = x flat(t1) . . . f lat(tn).

Intuitively, a �atterm is a string of symbols obtained by removing commas and

parentheses from a term or an atom. Given a �atterm a, we denote the ith symbol

in the �atterm, starting from index 1, by ai. For example, flat(f(a, b)) = fab, and

(fab)1 = f , (fab)2 = a, and (fab)3 = b. The size of a term t, written size(t), is the

number of symbols in flat(t).

Given a total order ≤ on all function symbols and predicate symbols, the lexi-

cographic order [46] with respect to this total order, written ≤l, on terms or atoms

is de�ned as:

α ≤l β if and only if

• α identi�es with β or

• there exists an index i such that

� for all i′ < i, flat(α)i
′
= flat(β)i

′

� and

∗ size(α) = i− 1 < size(β)
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∗ or flat(α)i ≤ flat(β)i

For example, if we use words as examples, we have star ≤l starry ≤l word.

2.4 Size-lexicographic Order

Now, we can de�ne the size-lexicographic order. The intuition is that it �rst

orders terms (or atoms) by size, then by the lexicographical order. The size-

lexicographic order, written ≤sl, on terms (or atoms) is de�ned as: α ≤sl β if

and only if either size(α) < size(β) or size(α) = size(β) and α ≤l β. On terms

(or atoms), ≤sl is a well-founded strict total order.

We can extend this order on atoms to literals as follows: given two literals L

and N , we say that L ≤sl N if and only if A ≤sl A′, where A is the atom of L and

A′ is the atom of N , or N = ¬L.

2.4 Maximum and Minimum with Respect to An Order

Before we move on to orders on clauses and models, we de�ne several notations

that will be useful in the our discussion.

De�nition 2. Given an order ≤ on a set X, if there is exactly one element e such

that e ≤ e′ for every element e′ in some subset Y of X, then we denote this element

by min≤(Y ).

Given an order ≤ on a set X, if there is exactly one element e such that e′ ≤ e for

every element e′ in some subset Y of X, then we denote this element by max≤(Y ).

Given an order ≤, we write α < β if and only if α ≤ β but it is not the case

that β ≤ α.

We denote the empty set by ∅. We denote the power set of a set X by P(X).

Given two set X and Y , the set di�erent X\Y denotes the set {a ∈ X | a /∈ Y }.

25



2.4 Orders on Clauses

The size order can be extended to clauses as follows: De�ne the size size(C) of

a clauses C as the maximum size of any literal in C; given two clauses C and D,

C ≤s D if and only if size(C) ≤ size(D).

Since no clause contains both a literal and its negation, the size-lexicographic

order can be extended to non-empty clauses as follows: C ≤sl D if and only if

max≤sl
(C) ≤sl max≤sl

(D).

2.4 Orders on Models

Now, we de�ne an order on models, which is essential to our proof of complete-

ness of our modi�ed OSHL algorithm. As we de�ned earlier, a model is a pair of

an initial model and a set of ground literals. We de�ne our order on models based

on an order on (possibly in�nite) sets of ground literals.

De�nition 3. The order ≤M on sets of ground literals is de�ned as M1 ≤M M2 if

and only if

1. M1 =M2 or

2. M1 ⊂M2 or

3. both

(a) both M2\M1 and M1\M2 are not empty and

(b) min≤sl
(M2\M1) ≤sl min≤sl

(M1\M2). (Since M2\M1 and M1\M2 are

disjoint, min≤sl
(M2\M1) 6= min≤sl

(M1\M2)))

For example, if we have atoms p, q, r with order p ≤sl q ≤sl r and sets M1 =

{p, q} andM2 = {q, r}, then we havemin≤sl
(M2\M1) = r andmin≤sl

(M1\M2) = p.

Therefore, we have M2 ≤M M1.
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The ordering ≤M is extended to models as follows: (I0,M1) ≤M (I0,M2) if and

only if M1 ≤M M2.

2.5 Notations Used in the Type Inference Algorithm

2.5 Vectors

In our discussion of type inference, we will use vectors of sets and functions. In

this subsection, we introduce some general notations related to vectors.

We denote the zero-dimensional vector by � and an n-dimensional vector with

components c1, ..., cn by [c1, . . . , cn]. We also use a notation for vectors which is

similar to the summation operator: [ci]
n
i=1 represents vector [c1, . . . , cn]. We denote

the dimension of a vector v by dim(v). When we talk about the domain and the

codomain of a function, we denote the set of all n-dimensional vectors of objects in

a set τ by [τ ]n.

We denote the projection from a vector to its ith component by πi. We extend

projection to sets of vectors as follows:

πi(A) = {πi(v) | v ∈ A}

We let all letters and words in bold type run over vectors or functions whose domain

is a set of vectors. Following the conventions of mathematics, we identify a one

dimensional vector [a] with a scalar a.

De�nition 4. To make the presentation concise,

1. Given a domain D, we denote the function f(x) = ∅ for all x ∈ D by
−→
0 .

2. We denote the vector [
−→
0 ]ni=1 by 0n. We write 0 if n is clear from context.
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3. We denote the vector [πi]
n
i=1 (where the ith component is the projection πi)

by idn. We write id if n is clear from context.

4. We denote the vector [∅]ni=1, where all components are the empty set ∅, by en.

We write e if n is clear from context.

If an object a is a component of a vector v, then we write a ∈ v. Given a vector

v and an object a, denote the vector obtained by replacing the ith component of v

by a by v[a/i].

We denote the vector formed by appending an object a to the left of an existing

vector v by a : v and the vector formed by appending an object a to the right of

an existing vector v by v : a. We denote the vector formed joining two vectors s

and t by (s, t).

Given a term t, we denote by v(t) the vector of variables in t, in the order they

appear in flat(t). For example, v(f(X, Y )) = [X, Y ].

We de�ne the product function
∏

: [P(τ)]n → P [τ ]n as follows:

∏
([Ai]

n
i=1) = {[ai]ni=1 | ai ∈ Ai for 1 ≤ i ≤ n}

This operator is similar to the standard Cartesian product, but instead of producing

tuples, it produces vectors. For example,
∏
([{a, b}, {c, d}]) = {[a, c], [a, d], [b, c],

[b, d]}.

Given a vector v of variables and a vector t of terms with the same dimension,

we denote the substitution that substitutes the ith component of t for the ith

component of v, for all possible indices i, by [t/v].
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2.5 Term Functions and Reverse Term Functions

In this subsection, we assume that there is a �xed set F of function symbols

and a �xed set V of variables symbols from which all terms are constructed and

abbreviate Terms(F, V ) to Terms.

De�nition 5. Given a term t and a vector of variables X that contains every

variable in v(t), the term function
−→
tX is a function [Terms]dim(X) → Terms such

that

−→
tX(t) = t[t/X]

Intuitively, it substitutes the ith component in t for the ith variable in X in term

t. For example,
−−−−→
f(X)X(a) = f(a) and

−−−−−−→
f(X)[X,Y ]([a, c]) = f(a).

We can extend term functions to [P(Terms)]dim(X) → P(Terms) as follows:

Given a set A of vectors of terms,

−→
tX(A) = {t[t/X] | t ∈

∏
A}

For example,
−−−−→
f(X)X({a, b}) = {f(a), f(b)} and

−−−−−−→
f(X)[X,Y ]([{a, b}, {c, d}]) =

{f(a), f(b)}. When X is clear from context, we may omit X and write only
−→
t .

De�nition 6. Given a term t and a vector of variables X that contains every vari-

able in v(t), the reverse term function
←−
tX is a function Terms→ P([Terms]dim(X))

such that

←−
tX(s) = {t | s = t[t/X]}
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For example,

←−−−−
f(X)X(f(a)) = {a}

and

←−−−−−−
f(X)[X,Y ](f(a)) = {[a, a], [a, f(a)], [a, f(f(a))], . . .}

As the second example suggests, a reverse term function
←−
tX(s)may return an in�nite

set if any variable in X does not occur in t.

We can extend reverse term functions to P(Terms) → P([Terms]dim(X)) as

follows: Given a set B of terms,

←−
tX(B) = {t | t[t/X] ∈ B}

For example,

←−−−−
f(X)X({f(a), f(b), g(c)}) = {a, b}

and

←−−−−−−
f(X)[X,Y ]({f(a), f(b), g(c)}) = {[a, a], [b, a], [a, b], [b, b], [a, c], [b, c], . . .}

When X is clear from context, we may omit X and write only
←−
t .
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2.5 Operators on Functions

We denote function composition using operator ◦:

(f ◦ g)(x) = f(g(x)) (2.5.1)

and f ◦ . . . ◦ f︸ ︷︷ ︸
repeat n times

by fn.

We de�ne a functional union operator t over functions sharing a common

codomain on which the set union operator ∪ is de�ned as follows:

De�nition 7. Given two functions f and g of this kind,

(f t g)(x) = f(x) ∪ g(x) (2.5.2)

It can be easily proved that t is commutative and associative.

We de�ne a functional subset operator @ over functions sharing a common

codomain on which the subset operator ⊂ is de�ned as follows:

De�nition 8. Given two such functions f and g with common domain A, f @ g if

and only if for every a ∈ A, f(a) ⊂ g(a).

It can be easily proved that @ is transitive.

2.5 Forms of Functions

De�nition 9. In our type inference algorithm, we will be dealing with function

objects of the following forms:

• Form 1: A term function
−→
t ;

• Form 2: A reverse term function composed with two projections πp ◦
←−
t ◦ πq.
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• Form 3: A functional union of �nite number of functions of Form 1 or Form

2, i.e.,
⊔n
k=1 fk where each fk is a function of the form

−→
t or πp ◦

←−
t ◦ πq.

• Form 4: A vector of functions of the form [fk]
n
k=1 where each fk is a function

of the Form 3.

We de�ne two operators (−)→ and (−)← on the set of all expressions of Form 3.

Given an expression F of Form 3, F→ and F← are de�ned as follows:

F→ =
⊔

fk is of Form 1

fk

F← =
⊔

fk is of Form 2

fk

For example, if F =
−−−−−−→
f(X)[X,Y ] t π1 ◦

←−−−−−−−−
g(X, Y )[X,Y ] ◦ π2, then F→ =

−−−−−−→
f(X)[X,Y ] and

F← = π1 ◦
←−−−−−−−−
g(X, Y )[X,Y ] ◦ π2. By the commutativity of t, F = F→ t F←.

We extend this notation to expressions of Form 4:

f→ = [(πi(f))
→]

dim(f)
i=1

f← = [(πi(f))
←]

dim(f)
i=1

For example, if f = [
−−−−−−→
f(X)[X,Y ]tπ1 ◦

←−−−−−−−−
g(X, Y )[X,Y ] ◦π2,

−−−−−−−−→
g′(X, Y )[X,Y ]tπ1 ◦

←−−−−−−
f ′(X)[X,Y ] ◦

π2], then f→ = [
−−−−−−→
f(X)[X,Y ],

−−−−−−−−→
g′(X, Y )[X,Y ]] and f← = [π1 ◦

←−−−−−−−−
g(X, Y )[X,Y ] ◦ π2, π1 ◦

←−−−−−−
f ′(X)[X,Y ] ◦ π2].

2.5 Extension of Operators to Vectors

For every nonnegative integer n, we extend the subset operator⊂ to n-dimensional

vectors of sets as follows:

[Ai]
n
i=1 ⊂ [Bi]

n
i=1 if and only if Ai ⊂ Bi for every 1 ≤ i ≤ n.

For example, [{a}, {c}] ⊂ [{a, b}, {c, d}].
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We extend the subset operator ∪ to n-dimensional vectors of sets as follows:

[Ai]
n
i=1 ∪ [Bi]

n
i=1 = [Ai ∪Bi]

n
i=1 (2.5.3)

For example, [{a}, {c}] ∪ [{b}, {d}] = [{a, b}, {c, d}].

We extend the subset operator t to n-dimensional vectors of functions as follows:

[fi]
n
i=1 t [gi]

n
i=1 = [fi t gi]ni=1 (2.5.4)

For example, [f, g] t [f ′, g′] = [f t f ′, g t g′].

We extend function application to n-dimensional vectors of functions as follows.

Assume that x is in the domain of fi for 1 ≤ i ≤ n.

[fi]
n
i=1(x) = [fi(x)]

n
i=1 (2.5.5)

We extend the function composition operator ◦ to n-dimensional vectors of func-

tions as follows. Give a vector [fi]
n
i=1 of functions such that for any element x in

the domain of g, g(x) is in the domain of fi for 1 ≤ i ≤ n.

[fi]
n
i=1 ◦ g = [fi ◦ g]ni=1 (2.5.6)

For example, [f, f ′] ◦ [g, g′] = [f ◦ [g, g′], f ′ ◦ [g, g′]]. Note that our extension of

function composition is asymmetric: it treats the the left operand and the right

operand di�erently. Indeed, ◦ is left-distributive over t but not right-distributive

over t.

Lemma 10. (f t g) ◦ h = f ◦ h t g ◦ h
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Proof. Suppose that

f = [f1, . . . , fn] (2.5.7)

and

g = [g1, . . . , gn] (2.5.8)

(f t g) ◦ h(x) = [fi t gi]ni=0 ◦ h(x) by (2.5.4)

= [(fi t gi) ◦ h]ni=0(x) by (2.5.6)

= [((fi t gi) ◦ h)(x)]ni=0 by (2.5.5)

= [(fi t gi)(h(x))]ni=0 by (2.5.1)

= [fi(h(x)) ∪ gi(h(x))]ni=0 by (2.5.2)

= [fi(h(x))]
n
i=0 ∪ [gi(h(x))]

n
i=0 by (2.5.3)

= [(fi ◦ h)(x)]ni=0 ∪ [(gi ◦ h)(x)]ni=0 by (2.5.1)

= [fi ◦ h]ni=0(x) ∪ [gi ◦ h]ni=0(x) by (2.5.5)

= ([fi ◦ h]ni=0 t [gi ◦ h]ni=0)(x) by (2.5.2)

= (f ◦ h t g ◦ h)(x) by (2.5.6)

Since function application is not right-distributive over ∪, for example,
−−−−−→
f(X, Y )

([{a}, ∅]∪ [∅, {a}]) 6=
−−−−−→
f(X, Y )([{a}, ∅])∪

−−−−−→
f(X, Y )([∅, {a}]), ◦ is not right-distributive

over t. But we can prove that

Lemma 11. If f(A) =
⋃
{f ′(a) | a ∈ A} for some set-valued function f ′ then

f ◦ (
⊔∞
k=1 gk) =

⊔∞
k=1(f

′ ◦ gk).
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Proof.

(f ◦ (
∞⊔
k=1

gk))(x) = f((
∞⊔
k=1

gk)(x))

= f(
∞⋃
k=1

gk(x))

=
∞⋃
k=1

f ′(gk(x))

=
∞⋃
k=1

(f ′ ◦ gk)(x)

=
∞⊔
k=1

(f ′ ◦ gk)(x)

2.5 Path

This subsection introduces the de�nitions of a path and related terminologies.

These terminologies are mainly used in proofs in Section 4.4.3. Essential to the

discussion in that subsection is the concept of paths. Using paths allows us to

formally express the idea of dealing with di�erent variables in a term separately.

Readers can skip this whole subsection if they are not going to read those proofs.

De�nition 12. A path is a vector of alternating symbols and integers of the form

[x0, k1, x1, . . . , kn, xn], where

1. xi is a function symbol or predicate symbol for 0 ≤ i < n,

2. xn is a function symbol, a predicate symbol, or a variable, and

3. ki is an integer for 0 ≤ i ≤ n.

We denote the rightmost component of a path p by rm(p). Given a term (or

an atom), we can generate a unique set of paths from this term (or atom) that
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contains all information in that term (or atom). Having this set allows us to deal

with parts of the terms separately when proving properties about the e�ect of

repeated substitution on terms (or atoms).

De�nition 13. The path set of a term (or an atom) t, written pset(t), is de�ned

as follows:

pset(X) = {[X]}

pset(f) = {[f ]}

pset(f(t1, . . . , tn)) =
n⋃
k=1

{f : (k : p) | p ∈ pset(tk)}

The path set of a term (or an atom) contains all paths in that term (or atom).

For example, if t = g(f(a), X), then pset(t) = {[g, 1, f, 1, a], [g, 2, X]}. In order to

work with substitutions, we need to de�ne how substitutions are applied to paths.

De�nition 14. Given a substitution θ and a path p, the application of θ to p is

de�ned as

θ(p) =


p, rm(p) is not a variable

{(p′,q) | q ∈ pset(θ(rm(p)))} rm(p) is a variable,p = p′ : rm(p)

For example, if θ = [f(a)/X], then θ([g, 1, f, 1, a]) = {[g, 1, f, 1, a]} and θ([g, 2,

X]) = {[g, 2, f, 1, a]}.

Given a substitution θ and a path set P , the result of applying θ on P is de�ned

as:

θ(P ) =
⋃
p∈P

θ(p)

To prove properties about the e�ect of repeated substitution on terms (or atoms),
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we need the notion of �generators� and �histories� of a path.

De�nition 15. We say that a path p is a generator of a path p′ with respect to θ

if p′ ∈ θ(p). Given a list θ1, θ2, . . . , θn of substitutions, a term (or an atom) t, and a

path p ∈ (θ1 ◦θ2 ◦ . . .◦θn)(t), we de�ne the history of p with respect to θ1, θ2, . . . , θn

and t as the list p0, . . . ,pn such that pn = p and pk−1 is a generator of pk with

respect to θk for 0 < k ≤ n.

For example, if θ = [f(a)/X], then [g, 2, X] is a generator of [g, 2, f, 1, a] because

θ([g, 2, X]) = {[g, 2, f, 1, a]}. It is easy to see that if P is a path set of some term

(or atom), then the generator of any p′ in P , if it exists, is unique. Finally, we need

to notion of �loops� in a substitution.

De�nition 16. Given a substitution σ, a loop in σ of length n is a list p0, . . . ,pn of

n+ 1 distinct paths such that p1 ∈ σ(p0), . . . ,pn ∈ σ(pn−1) and rm(pi) 6= rm(pj)

for 0 ≤ i < j ≤ n except rm(p0) = rm(pn).

In fact, if we have a loop p0, . . . ,pn with repeated rightmost components between

p0 and pn, we can always �nd a smaller loop such that there is no path with repeated

rightmost component between them. In this sense, the distinctiveness requirement

is not essential in our de�nition of loops, but it makes some arguments in our proof

more concise.

The following lemma shows that substitution is commutative with the pset func-

tion.

Lemma 17. For every substitution θ and every term (or atom) t, θ(pset(t)) =

pset(θ(t)).

Proof. By induction on size(t).

Basis step.
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Case 1. t is a variable X. pset(t) = {[X]}. θ(pset(t)) = {(�,q) | q ∈

pset(θ(X))} = pset(θ(X)).

Case 2. t is a constant (or nullary predicate symbol) f . pset(t) = {[f ]}.

θ(pset(t)) = {[f ]} = pset(f) = pset(θ(f)).

Induction step. Our induction hypothesis (IH) is for all terms (or atoms) with

size k or less, the equation we want to prove holds. A term (or an atom) with size

k + 1 must have a function symbol (or a predicate symbol) as its top level symbol.

It must have the form f(t1, . . . , tn) for some integer n.

θ(pset(t)) = θ(
n⋃
k=1

{f : (k : p) | p ∈ pset(tk)})

=
n⋃
k=1

θ({f : (k : p) | p ∈ pset(tk)}) (2.5.9)

Notice that when computing θ on a path, the only thing that may change is the

last component of the path and no path can be empty. Therefore, we can extract

the common pre�x outside the substitution:

θ({f : (k : p) | p ∈ pset(tk)}) = {f : (k : q) | q ∈ θ({p | p ∈ pset(tk)})}

= {f : (k : q) | q ∈ θ(pset(tk))}

= {f : (k : p) | p ∈ θ(pset(tk))} (2.5.10)
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θ(pset(t)) =
n⋃
k=1

θ({f : (k : p) | p ∈ pset(tk)}) by (2.5.9)

=
n⋃
k=1

{f : (k : p) | p ∈ θ(pset(tk))} by (2.5.10)

=
n⋃
k=1

{f : (k : p) | p ∈ pset(θ(tk)) by (IH)

= pset(θ(t)) by θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)) (2.5.11)

We have proved the equation for terms of size k + 1.
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Chapter 3

genOSHL and incOSHL

While designing incOSHL, I have made several modi�cations to the original

algorithm that are targeted speci�cally towards obtaining e�cient implementations.

Some of these modi�cations are made to reduce repeated computation; some are

made to reduce the search space; some are made simply to replace one algorithm-

level subroutine that is hard to implement e�ciently with another that can be easily

implemented e�ciently.

In this section, we will �rst introduce a generalized version of the original OSHL

algorithm, genOSHL. genOSHL captures the essential features of OSHL. It has sev-

eral parameters which can be customized for a speci�c version of genOSHL. The

proof of soundness and completeness of genOSHL can be directly applied for any

customization that satis�es certain properties. We also provide details of a cus-

tomization genOSHL, which we call incOSHL, that is implemented in our theorem

prover. We prove the soundness and completeness of incOSHL using the frame-

work we set up in genOSHL. We also compare incOSHL with the original OSHL

algorithm and take a look at the changes that are incorporated into incOSHL.

3.1 OSHL

In this section, we brie�y review the original OSHL algorithm [33]. The basic

idea of OSHL is as follows: Given an initial interpretation I0, a set S of input



T M D

∅ ∅ {p, q}
{p, q} {q} {p,¬q} ⇒ {p}
{p} {p} {¬p, q} ⇒ {q}

{p} {q} {p, q} {¬p,¬q} ⇒ ∅

Table 3.1: Example 1 of the Original OSHL Algorithm

clauses, and a size-lexicographical order ≤sl on ground literals, it maintains a setM

of literals and a set T of ground instances of clauses in S. In each iteration, it �nds

a minimal instance D with respect to ≤sl that contradicts (I0,M) and updates M

and T , until either such a D cannot be found or the empty clause can be derived

from T .

When OSHL updates M and T with D, it �rst performs ordered resolution

using D as the main premise and clauses in T as side premises. Ordered res-

olution on ground clauses is de�ned as follows: if ground clause C has maxi-

mum literal L and ground clause D has maximum literal L, both with respect

to ≤sl, then the ordered-resolvent of C and D, denoted by AR(C,D), is (C\{L})∪

(D\{L)}. After performing ordered resolution, it inserts the resolvent D′ to T

and deletes all clauses in T that are greater than D′ with respect to ≤sl. For ex-

ample, if T ={{p(a), q(a, c)}, {q(a, b), p(f(f(a)))}} and D ={¬p(f(f(a)))}, then

D′ ={q(a, b)} and after adding D′ to T and deleting clauses that are greater than

D′, we have T ={{p(a), q(a, c)}, {q(a, b)}}.

M is generated by taking all the maximum literals of clauses in T . For example,

if T ={{p(a), q(a)}, {q(a), p(f(a))}}, then M ={q(a), p(f(a))}.

The following is an example run of OSHL: Suppose that p ≤sl q, I0 makes all

negative literals true, and S = {{p, q}, {¬p,¬q}, {p,¬q}, {¬p, q}}. The steps run

by the prover are shown in Table 3.1. The �rst non-header row shows the initial

value of T and M and the �rst contradicting instance D. The second row shows
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T M D

∅ ∅ {p, q}
{p, q} {q} {p,¬q} ⇒ {p}
{p} {p} {¬p, q} ⇒ {q}

{p} {q} {p, q}

Table 3.2: Example 2 of the Original OSHL Algorithm

T M D

∅ ∅ {p, q}
{p, q} {q} {r}

{p, q} {r} {q, r} {p,¬q,¬r} ⇒ {p}
{p} {p} {r} (repeated)

{p} {r} {p, r} {¬p,¬r} ⇒ ∅

Table 3.3: Example 3 of the Original OSHL Algorithm

the updated T and M by adding D on the �rst row to T and generating M from

T . The contradicting instance D on the second row can be resolved with the clause

in T on the second row, resulting in a new clause D′. This is denoted by D ⇒ D′.

After adding D′ to T , the original clause in T needs to be deleted, the resulting T

is shown on the third row. Repeating this process, on the fourth row the empty

clause is generated which shows that S is unsatis�able.

Table 3.2 shows an example of running OSHL on a satis�able problem. This

problem is the same as the previous problem except that we deleted a clause from

S, making it satis�able: Suppose that S = {{p, q}, {p,¬q}, {¬p, q}}. The steps are

similar to those of the previous problem, but instead of generating the empty clause,

they generate a model for S, which shows that S is satis�able.

Table 3.3 shows a motivating example of why we want to tweak the original

OSHL algorithm. This table shows the steps for proving the following problem:

p ≤sl q ≤sl r, I0 makes all negative literals true, and S ={{p, q}, {r}, {p,¬q,¬r},

{¬p,¬r}}. In this example, the instance {r} is generated twice, the reason being

that after it was �rst generated and added to T , another clause {p} is generated
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and added to T and forced {r}, which is lexicographically greater than {p}, to be

deleted from T . This is redundant computation since {r} does not have any link

with {p}. In our modi�ed version of our algorithm, we will not require T to be

ordered. Instead, we maintain a more relaxed, but more complex property called

�perfect linking.�

3.2 genOSHL

The motivation of creating genOSHL is as follows: The original OSHL is sound

and complete, but in order to �nd an e�cient implementation, some subroutines in

the original OSHL algorithm need to be tweaked. We would like to �nd a systematic

way of �guring out how the tweaking a�ects soundness and completeness of the

resulting algorithm. In this section, we introduce the genOSHL framework, of which

both the original OSHL algorithm and our variant, incOSHL, are instances.

The genOSHL algorithm works on a �xed set of input clauses and generates

a sequence of instances and models. In the following discussion, we will always

assume the following implicit notations: the �xed set of input clauses is S and the

initial interpretation is I0.

The main proof procedure builds a sequence of models. The newest model is

called the current model. The algorithm alternates between two modes. In the �rst

mode, it tries to generate an instance that is contradictory to the current model; in

the second mode, it tries to generate a new model by adjusting the current model so

that the new model satis�es the generated instance. If the prover fails to generate

a contradicting instance in the �rst mode, then it has found a model for the input

clauses; if it fails to generate a new model that satis�es the generated instance, then

it has found a refutation proof for the input clauses.

Now, we formalize this algorithm. We will describe a general OSHL algorithm
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where we intentionally leave some functions (d, simp, m) unde�ned. Instead, we

will list properties that these functions should have. This gives us �exibility to

design the details of those functions, while guaranteeing that whatever functions we

design, as long as they have those properties, the customized genOSHL algorithm

is still sound and complete.

De�nition 18. Given a set S of input clauses, an initial interpretation I0, genOSHL

constructs a sequence of ground clauses Di, a sequence of sets Ti of ground instances

of the input clauses, and a sequence of sets Mi of ground literals, where i ∈ N, as

follows:

D0 = ∅ (3.2.1)

T0 = ∅ (3.2.2)

M0 = ∅ (3.2.3)

Dk+1 = d(S, I0,Mk) s.t. (I0,Mk) 6|= Dk+1 (3.2.4)

Tk+1 = simp(Tk, Dk+1) s.t. Tk ∪ {Dk+1} |= Tk+1 (3.2.5)

Mk+1 = m(Tk+1) s.t. Mk+1 |= Tk+1 (3.2.6)

Intuitively, genOSHL starts with an empty set and an initial model. In each

iteration, the prover tries to �nd a ground instance that contradicts the current

model, then it adjusts the current model to satisfy the contradicting ground in-

stance. In this construction, d is a partial function that chooses a ground instance

of one of the input clauses such that it contradicts the current model. simp is a

function that takes in a set of ground clauses together with another ground clause,

and returns a new set of ground clauses which are logical consequences of the input

of this function. m is a partial function that takes in a set of clauses and returns

a model of it. These three functions are left unde�ned, so that we can customize
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genOSHL later.

The generation of these sequences is controlled by the following recursive func-

tion:

genOSHL(Tk;S) =


FALSE, Tk � ⊥

TRUE, Mk � S

genOSHL(Tk+1;S), otherwise

where we denote �false� by ⊥. genOSHL is a partial function. There are three

possible outcomes of genOSHL.

1. If Dk+1 in (3.2.4) cannot be found, then it means that we cannot �nd any

ground instance that contradicts the current model, i.e., the current model

is a model of the input clauses, i.e., Mk |= S. Hence the input clauses are

satis�able.

2. If Mk+1 in (3.2.6) cannot be constructed, then it means that we cannot ad-

just the current model to satisfy the contradicting clauses, i.e., the set Tk in

unsatis�able. Hence the input clauses are unsatis�able;

3. It runs forever.

We will show later that the algorithm is complete, i.e., if the input clauses are

unsatis�able, the third case will never occur.

We will elaborate on some additional properties that the three functions in

De�nition 18 should have in order to guarantee soundness and completeness of

genOSHL.

3.2 Function d

The function d has three parameters: S the set of input clauses, I0 the initial

interpretation, and M a set of ground literals. d returns an instance of some clause
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in S which is contradictory to (I0,M). There are many ways to �ll in the details of

d, but to ensure the completeness of the algorithm, d should satisfy the following

minimality requirement:

Proposition 19. If S is unsatis�able, then there is

1. an unsatis�able subset S ′ of Gr(S) and

2. a downward �nite order ≤df on S ′

such that d(S, I0,M) always chooses a ground instance in S ′ that is minimal with

respect to ≤df .

When specifying d, we may also specify the set S ′ and ≤df , as we will see in our

discussion of type inference. ≤df only needs to be downward �nite on S ′ and needs

not to be downward �nite on any of its extensions. In our untyped algorithm, S ′ is

Gr(S); in our typed algorithm, S ′ is usually a proper subset of Gr(S). It can be

easily seen that if ≤df is downward �nite on Gr(S), then it is downward �nite on

its restrictions on subsets of Gr(S).

One candidate of ≤df is ≤sl. Another candidate of ≤df is ≤s. If we use ≤s as

the ≤df , then there can be a multiple but �nite number of ground instances that

satisfy the minimality requirement. We may make d arbitrarily choose any one of

those ground instances.

3.2 Function simp and Function m

Similar to d, there are many ways to �ll in the details of simp and m, but to

ensure the completeness of the algorithm, we cannot arbitrarily choose simp and m

in our construction, either. We choose simp and m so that

Proposition 20. simp, m, and Mk have the following properties:
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Mk <S Mk+1 (3.2.7)⋃
simp(T,D) ⊂

⋃
(T ∪ {D}) (3.2.8)

max≤sl
(m(T )) ≤sl max≤sl

(T ) (3.2.9)

Here, we use the notation
⋃
T for

⋃
x∈T x.

Intuitively, the �rst property says that the sequence of models grows strictly

monotonically. This is crucial in our proof of completeness as it ensures that if

S is unsatis�able, then the condition in (3.2.6) will eventually be falsi�ed. This

monotonicity is a key property in the original OSHL algorithm, which is used in

its completeness proof [50]. We extended it to genOSHL. The second property says

that the function simp should not introduce new literals that do not already appear

in its arguments; the third property says that the literals in a model generated by

m should not be larger than the largest literal in its argument, with respect to ≤sl,

so that we have a �nite search space for the models.

3.3 Soundness and Completeness of genOSHL

3.3 Soundness

Now, we prove the soundness of genOSHL.

Theorem 21. If genOSHL halts, returning unsatis�able, then S is unsatis�able; if

genOSHL halts, returning satis�able, then S is satis�able.

Proof. Case 1. If the genOSHL procedure returns unsatis�able at the ith recursion,

then we know that Ti is an unsatis�able set of clauses. We construct a new sequence
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of sets of ground clauses T ′k such that all clauses in T
′
k are ground instances of clauses

in S and T ′k |= Tk for k = 1, . . . , i.

T ′0 = ∅ (3.3.1)

T ′k+1 = T ′k ∪ {Dk+1} (3.3.2)

where Dk+1 was de�ned in (3.2.4). It can be easily seen that T ′k is a set of ground

instances of clauses in S, since allDks are. Now we prove by induction that T ′k |= Tk.

Basis step. T0 = T ′0 = ∅. Therefore, it is trivially true that T0 |= T ′0.

Induction step. Our Induction Hypothesis (IH) is that T ′k |= Tk, by the condition

in (3.2.5), Tk ∪ {Dk+1} |= Tk+1. By IH, and properties of classical �rst-order logic,

T ′k ∪ {Dk+1} |= Tk+1. By de�nition, T ′k+1 |= Tk.

We have proved that T ′k |= Tk for k = 1, . . . , i. Now, since Ti is unsatis�able,

T ′i must also be unsatis�able. Since T
′
i contains only instances of clauses in S, S is

also unsatis�able.

Case 2. If the genOSHL procedure returns satis�able at the ith recursion, then

we know that Mi is a model of S, which is just another way of saying that S is a

satis�able.

3.3 Completeness

We need to show that

Theorem 22. if S is unsatis�able, then genOSHL always halts.

Proof. We prove this by contradiction. We use the following convention: Given a

set A of sets, we denote the union of all sets in A by
⋃
A.

Suppose towards a contradiction that S is unsatis�able and genOSHL never halts
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on input S. We denote the subset and the downward �nite order in Proposition 19

by S ′ and ≤df respectively.

By compactness of classical �rst-order logic, since S ′ is unsatis�able, we can �nd

a �nite unsatis�able set T of ground instances of clauses in S ′. This set T is not

satis�ed by any model, including the in�nite series of models Mk constructed by

genOSHL. This means that for every model Mk there must be some clause D
∗ in

T such that Mk falsi�es D
∗. By the minimality requirement of d, for every ground

instance D chosen by d, D ≤df D∗ for some D∗ in T . By the downward-�niteness

of ≤df and �niteness of T , there are only �nite number of ground instances from

which d can choose D. We denote this �nite set of ground instances by T ∗. Since

each instance in T ∗ is also a clause, which is a �nite set of literals, the set of literals⋃
T ∗ is also �nite.

Next, we can prove by induction that
⋃
Tk ⊂

⋃
T ∗ for all k ∈ N.

Basis step. T0 = ∅. It is trivially true that
⋃
T0 ⊂

⋃
T ∗.

Induction step. Our Induction Hypothesis (IH) is that
⋃
Tk ⊂

⋃
T ∗. By

construction (3.2.5), Tk+1 = simp(Tk, Dk+1). By de�nition, Dk+1 ∈ T ∗, hence

Dk+1 ⊂
⋃
T ∗. By (IH),

⋃
Tk ⊂

⋃
T ∗. Hence,

⋃
(Tk ∪ {Dk+1}) ⊂

⋃
T ∗. By (3.2.8),⋃

Tk+1 ⊂
⋃
(Tk ∪ {Dk+1}). By transitivity of ⊂,

⋃
Tk+1 ⊂

⋃
T ∗.

We have proved that
⋃
Tk ⊂

⋃
T ∗ for all k ∈ N.

By (3.2.9), we have

max≤sl
(Mk) ≤sl max≤sl

(
⋃

T ∗) (3.3.3)

for all k ∈ N.

On the other hand, the series Mk of models is monotonically increasing with

respect to strict order <M , i.e., there are in�nitely many models in this series.

But given a �nite set of literals, we can only construct a �nite set of models. By
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its contrapositive,
⋃∞
k=0Mk must contains in�nitely many literals. By downward-

�niteness of ≤sl, we have a contradiction since (3.3.3) would require
⋃∞
k=0Mk to

contain only �nitely many literals.

3.4 incOSHL

Having de�ned genOSHL and proved its soundness and completeness, we now

customize genOSHL into incOSHL by �lling in the details of the functions d, simp,

and m.

3.4 Function d

The function d used in the incOSHL algorithm �nds a minimal ground instance

of some clause in S with regard to ≤s that contradicts the current model, i.e.

d(S, I0,M) = D such that for every ground instance D′ of some clause in S such

that (I0,M) 6|= D′, D ≤s D′. Usually, there are multiple ground instances that

satisfy this minimality condition. We may arbitrarily choose any one of those ground

instances. In practice, d runs a search subroutine and chooses a �rst instance found.

Next, we show that

Lemma 23. ≤s is downward �nite on gr(S).

Proof. We only need to show that given a natural number N , there are �nitely

many ground instances of S with size less than or equal to N . Since S is a �nite

set of clauses, the goal can be reduced to showing that given a natural number N

and a clause C, there are �nitely many ground instances of C with size less than

or equal to N . Suppose we have a grounding substitution σ. Recall that the size of

σ(C) is

size(σ(C)) = max≤({size(L) | L ∈ σ(C)})
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where ≤ is the usual order on integers. Since σ(C) is always a �nite set of ground

literals, the goal can be further reduced to showing that given a natural number N

and a literal L, there are �nitely many ground instances of L with size less than or

equal to N .

Notice that the function flat de�ned in Section 2.4 is an inclusion, which means

that the cardinality of a set of ground literals with size less than or equal to N

cannot be larger than that of a set of string of predicate symbols and function

symbols with length less than or equal to N , which is �nite, given a �nite number

of predicate symbols and a �nite number of function symbols.

To illustrate the function d, let us take a look at an example.

Suppose that S = {{¬p(X)}, {¬p(f(Y ))}, {p(a)}, {p(f(a))}}, I0 makes all nega-

tive literals true, and the current model is (I0, {p(a), p(f(a))}). d returns a minimal

instance with respect ≤s that contradicts the current model. We can generate the

contradicting instances in three ways:

1. instantiating X to a in {¬p(X)},

2. instantiating X to f(a) in {¬p(X)}, and

3. instantiating Y to a in {¬p(f(Y ))}.

1 will produce {¬p(a)}, both 2 and 3 will produce {¬p(f(a))}. By the minimality

requirement, d returns {¬p(a)}.

3.4 Function simp and Function m

3.4 The Construction

Now, we describe the function m and simp used in the incOSHL algorithm. The

function m maps a set T of ground clauses to the set of all maximum literals of

clauses in T . More formally,
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De�nition 24. The m function of incOSHL is de�ned as

m(T ) = {max≤sl
(D) | D ∈ T}

Given an arbitrary set T , it is not always the case that (I0,m(T )) |= T . For

example, if we had p ≤sl q, T = {{q}, {p,¬q}}, and I0 made all negative literals

true, m(T ) would be {¬q}, which when combined with I0 would not produce a

model for T . In order for m(T ) to be a model of T , both L and L cannot be the

maximum literals of some clauses in T . This example shows the need for a simp

function that avoids this situation. In particular, we can achieve this by ensuring

that the maximum literal of every clause in T is false in I0.

Lemma 25. If no clause in T contains both a literal and its complement, and

I0 6|= max≤sl
(D) for every clauses D in T , then (I0,m(T )) |= T .

Proof. By de�nition of models, for every clause D in T , max≤sl
(D) ∈ m(T ). There-

fore, (I0,m(T )) |= D.

The function application simp(Tk−1, Dk) works in two steps. In Step 1, simp

performs ordered resolution with respect to ≤sl.

simp repeatedly performs ordered resolution with respect to ≤sl on Dk and

clauses in Tk−1. This step can be formally speci�ed by the construction of a series

D′k,s of ground clause as follows

D′k,0 = Dk (3.4.1)

D′k,s+1 = AR(D′k,s, E) where E ∈ Tk−1 (3.4.2)

If an empty clause is reached, then the incOSHL stops under halting condition that

Tk−1 is unsatis�able. If a nonempty clause is reached, it proceeds to Step 2. In Step
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2, we denote this nonempty clause by D′k.

In Step 2, simp calls a subalgorithm called delete. delete constructs Tk by

deleting some ground clauses from Tk−1 and adding D′k. To do so,

De�nition 26. Given Tk−1 from De�nition (18), we constructs a sequence Ek,s of

ground clauses, a sequence Ak,s of sets of ground literals, and a sequence Uk,s of sets

of ground clauses as follows:

Ek,0 = ∅ (3.4.3)

Ak,0 = {max≤sl
(D′k)} (3.4.4)

Uk,0 = Tk−1 (3.4.5)

Ek,s+1 = E where E ∈ Uk,s and Ak,s ∩ E 6= ∅ (3.4.6)

Ak,s+1 = Ak,s ∪ {max≤sl
(Ek,s+1)} (3.4.7)

Uk,s+1 = Uk,s\{Ek,s+1} (3.4.8)

Intuitively, the construction recursively removes clauses from Uk,s that contain

some literal in Ak,s and adds the complement of the maximum literals of the removed

clause to the sets Ak,s+1. The e�ect of this construction is that it removes any

clause Ek,s+1 that is redundant in the following sense: a model of the set Uk,s ∪

{D′k}\{Ek,s+1} generated by applying m to this set is also a model of Uk,s+1∪{D′k}.

We give the de�nition of delete as a recursive function:

De�nition 27. The delete function of incOSHL is de�ned as

delete(Uk,s, Ak,s;D
′
k) =


delete(Uk,s+1, Ak,s+1;D

′
k), Ek,s+1 exists

Uk,s ∪ {D′k}, otherwise

We give the de�nition of simp as a recursive function:
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i Ek,i Ak,i Uk,i

0 ∅ {p} Tk−1
1 {p, q} {p,¬q} {{p, r}, {¬r, r′}}
2 {p, r} {p,¬q,¬r} {{¬r, r′}}
3 {¬r, r′} {p,¬q,¬r,¬r′} ∅

Table 3.4: An Example: delete

De�nition 28. The simp function of incOSHL is de�ned as

simp(Tk−1, D
′
k,s) =


simp(Tk−1, D

′
k,s+1), D′k,s+1 exists

delete(Tk−1, {max≤sl
(D′k,s)};D′k,s), otherwise

To illustrate the functions, let us take a look at an example. Suppose that

1. I0 makes all negative literals true,

2. we are constructing Tk,

3. we have atoms p ≤sl q ≤sl r ≤sl r′, and

4. Tk−1 = {{p, q}, {p, r}, {¬r, r′}}.

The current model generated by m is (I0, {q, r, r′}). Suppose that d returns an

instance {¬q}. In the �rst step of simp, {¬q} resolves with {p, q}. The resolvent {p}

cannot be resolved with any clauses in Tk−1 any more. simp goes to the second step

with D′k = {p}. As illustrated in Table 3.4, Ak,0 = {p}, Uk,0 = Tk−1. Since Ak,0 ∩

{p, q} 6= ∅, we delete {p, q} and set Ak,1 = {p,¬q}, Uk,1 = {{p, r}, {¬r, r′}}. Since

Ak,1 ∩ {p, r} 6= ∅, we delete {p, r} and set Ak,2 = {p,¬q,¬r}, Uk,2 = {{¬r, r′}}. Fi-

nally, since Ak,2∩{¬r, r′} 6= ∅, we delete {¬r, r′} and set Ak,3 = {p,¬q,¬r,¬r′}, Uk,3

= ∅, and we have Tk = Uk,3 ∪ {D′k} = {{p}}.
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3.4 Perfect Linking

Next, let us consider the general notion of �perfect linking.� incOSHL maintains

the �perfect linking� property of Tk in De�nition (18) through ordered resolution

and delete. This allows us to retain more clauses in Tk than the original OSHL

algorithm.

De�nition 29. A ground clauseD has the �perfect linking� property (or is perfectly

linked for short) with respect to a set U of ground clauses, if for every literal L in

D,

1. if I0 |= L, then there exists exactly one clause E ∈ U such that L =

max≤sl
(E);

2. if I0 6|= L, there there exists no clause in U\{D} such that L = max≤sl
(E).

The idea of perfect linking is the following: Suppose the initial interpretation

makes all negative literals true. There is a set of literalsM consists of the maximum

literals of all clauses in U . a clause D is perfectly linked if in D

1. no positive literals are in M , and

2. every negative literals has its complement in M .

In other words, if the current model is (I0,M), then the D is contradictory to

the current model.

For a set to be perfectly linked, every clause in it has to be perfectly linked with

respect to the rest of the set.

De�nition 30. A set U of ground clauses has the �perfect linking� property, if for

every clause E in U

1. E has the �perfect linking� property with respect to the set itself, and
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2. I0 6|= max≤sl
(E).

For example, suppose that we have

1. I0 makes all negative literals true,

2. atoms p ≤sl q ≤sl r ≤sl r′, and

3. U = {{p, q}, {p, r}, {¬r, r′}}.

Then, both {p} and {p,¬q} are perfectly linked with regard to U , but neither

{¬p,¬q} nor {p, q} is since they falsify the �rst and the second condition, respec-

tively. The set U itself is perfectly linked. For example, in {¬r, r′}, r is the max-

imum literal in {p, r}, and r′ is the maximum literal of no other clause then itself

and r′ is false in I0. However, if we had U = {{p,¬q}, {p, r}, {¬r, r′}, {p}}, it would

not be perfectly linked since neither {p,¬q} nor {p, r} would be perfectly linked

with respect to U .

The main purpose of introducing the perfect linking property is to reduce the

number of repeated computations in incOSHL. In the original OSHL algorithm, if

we generate the following clauses in order: {p, q}, {r}, {¬r, r′}, {p}, then after {p}

is generated, all other three clauses are deleted because they are all lexicographically

larger. incOSHL only requires all the generated clauses except those that are deleted

to form a perfectly linked set. The only clause that needs to be deleted is {p, q}.

This allows us to retain {r} and {¬r, r′}, thereby avoiding generating them again.

Next, we prove some properties of perfectly linked ground clauses and perfectly

linked sets.

Lemma 31. If a ground clause D is perfectly linked with respect to U , then D

cannot contain both a literal and its complement.
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Proof. Suppose towards a contradiction that there is a literal L such that L,L ∈ D.

Without loss of generality, assume that I0 |= L. On the one hand, by Clause 1 of

De�nition 29, there is a clause E in U such that L = max≤sl
(E). On the other hand,

by Clause 2 of De�nition 29, there is no clause E in U such that L = max≤sl
(E).

This is a contradiction.

Next, we show that ordered resolution preserves the �perfect linking� property.

Lemma 32. If ground clauses C and D are both perfectly linked with respect to U

and they are ordered-resolvable, then AR(C,D) is also perfectly linked with respect

to U .

Proof. For every literal L in AR(C,D), L belongs to at least one of C and D.

Without loss of generality, we assume that L belongs to C.

1. If I0 |= L, then by the premise that C is perfectly linked, there exists exactly

one clause E ∈ U such that L = max≤sl
(E).

2. If I0 6|= L, then by the premise that C is perfectly linked, there there exists

no clause in U\{C} such that L = max≤sl
(E). We need to show that there

exists no clause in U\{AR(C,D)} such that L = max≤sl
(E). To show this,

we only need to show that there exists no clause in U\{AR(C,D)}\(U\{C})

such that L = max≤sl
(E). Since U\{AR(C,D)}\(U\{C}) ⊂ {C}, we only

need to show that L 6= max≤sl
(C). L cannot be the maximum literal in C

because L ∈ AR(C,D) ∩ C = C\max≤sl
(C).

Corollary 33. If

1. T is a perfectly linked set of ground clauses,
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2. D is a perfectly linked ground clause with respect to T , and

3. D′ is obtained from performing zero or more steps of ordered resolution using

D as the main premise and clauses in T as side premises,

then D′ is also perfectly linked with respect to T .

Proof. By induction on the number of ordered resolutions performed.

3.4 Properties of m in De�nition 24

Now consider a set T ∪ {D}, even if T is perfectly linked and D is perfectly

linked with respect to T , this set may not be perfectly linked. For example, if I0

make all negative literals true, p ≤sl q ≤sl r ≤sl r′, T = {{q, r}, {¬r, r′}}, and

D = {p, q}, then T ∪ {D} is not perfectly linked even though T is perfect linked

and D is perfectly linked with respect to T . The problem here is that adding D to

the set T causes q in clause {q, r} to violate Clause 2 in De�nition 29. Even if we

delete the clause {q, r} from T , the resulting set is still not perfectly linked, as ¬r in

clause {¬r, r′} now violates Clause 1 in De�nition 29. We need to delete this clause,

too, if we want to restore the �perfect linking� property. In fact, it is su�cient to

perform these deletions repeatedly until no violation exists, as captured in delete.

We will prove that this is indeed the case.

First, we show that the initial model I0 must falsify the maximum literal of a

perfectly linked clause that cannot be further ordered-resolved.

Lemma 34. If D is a perfectly linked ground clause with respect to T and not

ordered resolvable with any ground clause in T , then I0 6|= max≤sl
(D).

Proof. Suppose towards a contradiction that I0 |= max≤sl
(D). Since D is perfectly

linked with respect to T , there exists a clause E ∈ T such that max≤sl
(D) =
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max≤sl
(E). This is contradictory to the condition that D cannot be ordered-

resolved with any clause in T .

A consequence of this lemma is that the D in the premise cannot share the same

maximum literal with any clause in T .

Corollary 35. If

1. T is a perfectly linked set of ground clauses and

2. D is a perfectly linked ground clause with respect to T and not ordered resolv-

able with any ground clause in T ,

then there is no clause E in T\{D} such that max≤sl
(D) = max≤sl

(E).

Proof. By Lemma 34,

I0 6|= max≤sl
(D) (3.4.9)

By Clause 2 of De�nition 29 and (3.4.9), there is no clause E in T\{D} such that

max≤sl
(D) = max≤sl

(E)

Now, we switch back to the context of De�nition 18. The following lemma shows

that m generates a model where either L or L is not a member of the generated

model.

Corollary 36. If T is a perfectly linked set, then for every pair (E,F ) of distinct

ground clauses in T , max≤sl
(E) 6= max≤sl

(F ).

Proof. Suppose towards a contradiction that there exist ground clauses E and F

in Tk for some index k, such that max≤sl
(E) = max≤sl

(F ). Both I0 |= max≤sl
(F )

and I0 |= max≤sl
(E), which is a contradiction.
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Next, we show that there is no redundancy in our model.

Corollary 37. If T is a perfectly linked set, then for every pair (E,F ) of distinct

ground clauses in T , max≤sl
(E) 6= max≤sl

(F ).

Proof. By Clause 2 of De�nition 29 and the �perfect linking� property of T , there

exists no clause E ′ ∈ Tl such that max≤sl
(E) = max≤sl

(E ′). Since F ∈ T ,

max≤sl
(E) 6= max≤sl

(F ).

3.4 Properties of delete in De�nition 27

Having proved the key properties of our models, we now turn to delete. The

purpose of delete is to restore the �perfectly linking� property of the set Tk∪{Dk+1}

for every possible index k, so that we can generate a model that has the foregoing

properties.

First, we show that Ak,s captures the �imperfection� of Uk,s for every possible

pair of indices k and s.

Lemma 38. If

1. Uk,0 is perfectly linked,

2. D′k is perfectly linked with respect to Uk,0, and

3. L is a literal in Uk,s ∪ {D′k} that violates either clause of De�nition 29,

then L ∈ Ak,s for every possible pair of indices k and s.

Proof. We prove this lemma by induction on all possible indices s.

Basis step.

First, we show that D′k is perfectly linked with respect to Uk,0 ∪ {D′k}.

Clause 1 of De�nition 29. If I0 |= L ∈ D′k, then by the �perfect linking� property

of D′k with respect with Uk,0, there is exactly one clause E in Uk,0 such that L =
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max≤sl
(E). We only need to show that L cannot be max≤sl

(D′k). We prove this by

contradiction. Suppose towards a contradiction that L = max≤sl
(D′k). Then both

L and L are in D′k, which is contradictory to Lemma 31.

Clause 2 of De�nition 29. By Corollary 33, D′k is perfectly linked with respect

to Uk,0 = Uk,0 ∪ {D′k}\{D′k}.

Second, we show that clauses in Uk,0 which do not contain literals in Ak,0 are

perfectly linked with respect to Uk,0 ∪ {D′k}.

Clause 1 of De�nition 29. Since Uk,0 is perfectly linked, for every literal L

in every clause E ′ in Uk,0, there is exactly one clause E in Uk,0 such that L =

max≤sl
(E). By Corollary 35, D′k cannot share the same maximum literal with any

clause E in Uk,0\{D′k}. Therefore, the clause E remains the only clause such that

L = max≤sl
(E) in set Uk,0\{D′k} ∪ {D′k} = Uk,0 ∪ {D′k}.

Clause 2 in De�nition 29 may not hold. Since Uk,0 is perfectly linked, the only

possible case that Clause 2 may not hold is when a clause E ′ in Uk,0 contains

max≤sl
(D′k). But since max≤sl

(D′k) ∈ Ak,0, we have proved the basis step.

Induction step. Our induction hypothesis (IH) is that if L is a literal in Uk,s ∪

{D′k} that violates either clause in De�nition 29, then L ∈ Ak,s. By construction,

Uk,s+1 ⊂ Uk,s. By (IH), we only need to consider new violations caused by the

di�erence between Uk,s+1 and Uk,s.

Clause 1 of De�nition 29. Since Uk,s+1 ⊂ Uk,s, there may be more violations of

Clause 1 in De�nition 29 in Uk,s+1 than Uk,s, since Uk,s+1 does not contain Ek,s+1

which Uk,s contains. The only possible case of new violation is when a clause E ′ in

Uk,s+1 contains max≤sl
(Ek,s+1). But since max≤sl

(Ek,s+1) ∈ Ak,s+1, we have proved

the induction step for Clause 1.

Clause 2 of De�nition 29. Since Uk,s+1 ⊂ Uk,s, there are no more violations of

Clause 2 of De�nition 29 in Uk,s+1 than in Uk,s.
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Using this lemma, we can show that the delete function in De�nition (27) indeed

restores the �perfect linking� property.

Lemma 39. If

1. Uk,0 is perfectly linked,

2. D′k is perfectly linked with respect to Uk,0, and

3. the construction of the series Uk,s stops at the (i+ 1)st iteration,

then Uk,i ∪ {D′k} is perfectly linked for every possible pair of indices k and s.

Proof. Since Uk,s stops at the (i+1)st iteration, we know that there is no clause in

Uk,i that contains any literal in Ak,i. By Lemma 38, there are no more violations of

the �perfect linking� property in Uk,i ∪ {D′k}.

Corollary 40. Given our m function in De�nition 24 and our simp function in

De�nition 28, Tk in De�nition (18) is perfectly linked for every possible index k.

Proof. By induction on all possible indices k.

Basis step.T0 = ∅ is perfectly linked.

Induction step. Our induction hypothesis (IH) is that Tk is perfectly linked.

Since (I0,Mk) 6|= Dk, for every literal L in Dk+1, if I0 |= L, then there is a clause

E in Tk such that L = max≤sl
(E); if I0 6|= L, then there is no clause E in Tk such

that L = max≤sl
(E). Therefore, Dk+1 is perfectly linked with respect to Tk. By

Corollary 33, D′k+1 is also perfectly linked with respect to Tk. By the �niteness of Tk,

the construction of Uk,s will eventually stop. By Lemma 39, Tk+1 = simp(Tk, Dk+1)

is perfectly linked.
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3.4 Proof of Proposition 20

We use the following de�nitions in our proof of Proposition 20.

De�nition 41. The deletion set Delk generated from simp(Tk−1, Dk) in De�nition

28 is de�ned as {Ek,1, . . . , Ek,n} where n is the maximum integer such that En exists.

The deletion set contains all clauses that are in Tk−1 but not in simp(Tk−1, Dk).

De�nition 42. The addition set Addk generated from simp(Tk−1, Dk) in De�nition

28 is de�ned as {D′k}.

The addition set contains all clauses (only one in our case) that are not in Tk−1

but are in simp(Tk−1, Dk). One property of these two sets is that the newly added

clause cannot be deleted.

Lemma 43. Delk ∩ Addk = ∅.

Proof. Because Delk ⊂ Tk−1, we only need to show that Addk ∩ Tk−1 = ∅, i.e.,

D′k /∈ Tk−1. By Lemma 34, I0 6|= max≤sl
(D′k). By Clause 2 of De�nition 29, there is

no clause in Tk−1 that contains max≤sl
(D′k). Therefore, D

′
k /∈ Tk−1.

The following lemma shows that all deleted clauses are larger than the added

clauses.

Lemma 44. For every ground clause E in Delk, max≤sl
(D′k) <sl max≤sl

(E).

Proof. Prove max≤sl
(D′k) <sl max≤sl

(Ek,s) for all s ∈ {1, . . . , i} by induction.

Basis step. Ek,1 ∩ A0 6= ∅. Since max≤sl
(D′k) is the only member of A0, it must

be that

max≤sl
(D′k) ∈ Ek,1 (3.4.10)
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By Corollary 35,

max≤sl
(D′k) 6= max≤sl

(Ek,1) (3.4.11)

By the property of D′k that it cannot be ordered-resolved with any clause in Uk,0

and Uk,1 ⊂ Uk,0,

max≤sl
(D′k) 6= max≤sl

(Ek,1) (3.4.12)

By (3.4.10), (3.4.11), and (3.4.12), max≤sl
(D′k) <sl max≤sl

(Ek,1).

Induction step. Our induction hypothesis (IH) is that for every l ≤ s,max≤sl
(D′k)

<sl max≤sl
(Ek,l). Since Ek,s+1 ∩ Ak,s 6= ∅. Ek,s+1 either contains max≤sl

(D′k) or

max≤sl
(Ek,l) for some l ≤ s.

Case 1. Ek,s+1 contains max≤sl
(D′k). By a similar argument as that in the basis

step, we have max≤sl
(D′k) <sl max≤sl

(Ek,1).

Case 2. Ek,s+1 contains max≤sl
(Ek,l) for some l ≤ s. By a similar argument as

that in the basis step, we have

max≤sl
(Ek,l) <sl max≤sl

(Ek,s+1) (3.4.13)

By (IH),

max≤sl
(D′k) <sl max≤sl

(Ek,l) (3.4.14)

By de�nition of ≤sl,

max≤sl
(Ek,l) ≤sl max≤sl

(Ek,l) (3.4.15)
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By (3.4.13), (3.4.14), and (3.4.15), max≤sl
(D′k) <sl max≤sl

(Ek,s+1).

Now, we show that

Lemma 45. Proposition 20 holds for the simp in De�nition 28 and m in De�nition

24.

Proof. (3.2.8) holds since AR does not introduce any new literals. (3.2.9) holds since

d does not introduce any new literals. Next, we prove (3.2.7). We need to show

that Mk <M Mk+1 for every possible index k. Expanding the de�nitions, we obtain

min≤sl
{max≤sl

(E) | E ∈ Addk} <sl min<sl
{max≤sl

(E) | E ∈ Delk}. Substituting

the de�nition of Addk and simplifying, we havemax≤sl
(D′k) <sl min≤sl

{max≤sl
(E) |

E ∈ Delk}, which is true according to Lemma 44.

We have already proved all the necessary properties that guarantee the sound-

ness and completeness of incOSHL.

Theorem 46. incOSHL is sound and complete

Proof. By Theorem 21, Theorem 22, Lemma 25, and Lemma 45.

3.5 Changes in incOSHL

Having described the proof procedure of incOSHL, I would like to list the main

di�erences between incOSHL and OSHL. First, OSHL requires Dk to be minimum

with respect to ≤sl, while incOSHL relaxes the ordering requirement for Dk to be

minimal with respect to ≤s. The rationale of removing the lexicographic component

of ≤sl is that the lexicographic ordering is not necessarily an intrinsic characteristic

of the input clauses, and removing it makes generating Dk less computationally

intensive. Second, OSHL deletes all clauses that are larger than D′k with respect to

≤sl from Tk, in order to keep the set Tk+1 for going out of order, while incOSHL
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does not view the series Tk of sets of ground clauses are being ordered. Instead,

incOSHL uses the simp function to maintain the perfect linking condition. As a

result, there are usually less changes from Tk to Tk+1. This has three impacts:

1. There may be more literals in the model, hence the need for a more e�cient

data structure.

2. Number of repeated instance generations is reduced.

3. The incremental version of this algorithm is more e�cient.
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Chapter 4

Type Inference

In this chapter, we introduce a new feature that was not present in previous

OSHL work. This feature is called �type inference.�

Compilers and automated theorem provers are similar in that they both process

expressions in a certain language. The di�erence is that compilers usually deal

with programming language comprising control structures such as branching and

recursion, while automatic theorem provers usually deal with �rst order languages.

Despite the similarity, most static analysis techniques used in compilers are not

directly applicable to automatic theorem provers. Static analysis using inferred

types [30] is one of the most widely used techniques in programming language

design and implementation. One of the roles that types play in a programming

language is to eliminate expressions that lead to an error or diverge before they are

evaluated. The same idea can be applied to a set of clauses: constructing types

that eliminate instances that are not needed for �nding a refutation proof before

starting the proof search.

We call the resulting algorithm combining genOSHL with type inference type-

dGenOSHL. typedGenOSHL infers types from untyped clauses as a preprocessing

step. The type information is used to instantiate free variables in d, which reduces

the search space, while preserving the completeness of our algorithm.



To see how type inference reduces the search space, we look at a simple example.

To prove that clauses {P (X)}, {¬P (f(f(a))} are unsatis�able, we only need in-

stances {P (f(f(a)))} and {¬P (f(f(a)))}. Instances such as {P (a)} are irrelevant.

In an untyped setting, if genOSHL generate smaller terms before larger terms, it

will generate {P (a)} before generating P (f(f(a)), since {P (a)} has a smaller size.

However, we know that {P (a)} is irrelevant to our proof.

In a typed setting, incOSHL will �rst unify {P (f(f(a)))} and {P (X)}, resulting

in a most general uni�er [f(f(a))/X]. Then it generates a grammar

X ::= f(f(a))

and generates terms based on this grammar. This way it only generates instances

that are relevant.

In general, type inference generates a function

[P(Terms)]dim(X) → [P(Terms)]dim(X)

for a set X of variables, from the set S of input clauses by performing uni�cation.

Then it �nds the �xpoint of this function. Each component of the �xpoint is a set

of terms which corresponds to the variable in the same position in X. The variable

is called a type and the set of the terms is the extension of the type. In our type

inference algorithm, a variable can only have one extension. One constraint for

these sets of terms is that we need to �nd such sets that are as small as possible

(to reduce search space as much as possible) and can be e�ciently enumerated. In

the current solution, the sets of terms are represented �nitely as functional unions

of term functions.

68



In this chapter, to avoid excessively detailed notations, we will assume that S

denotes the set of input clauses, in which clauses are renamed to not share common

variables, that X is a vector of variables containing all variables in S, and that X

is the subscript of all term functions and reverse term functions.

4.1 Generating the Set Equation

4.1 An Example

Before we proceed with our discussion of the type inference algorithm, we look

at another example.

Example 47. Suppose that we have input clauses {p(X)} and {¬p(f(f(Y )))}, if

we unify p(X) and p(f(f(Y ))), then we obtain a most general uni�er [f(f(Y ))/X].

We know that if we want to generate two ground instances from these two literals

such that they are complements of each other, we need to generate instances that

respect the most general uni�er. In particular, if we instantiate X to term s, and Y

to term t, we want that s = f(f(t)). This means that if we limit the instantiation of

X and Y to two subsets of the set of all terms, then we need to ensure that for each

term t that Y can be instantiated to, there is a term s that X can be instantiated

to such that s = f(f(t)), if possible, and vice versa.

Let X = [X, Y ]. What we want here is a dim(X)-dimensional vector inst of sets

of terms such that, for every variable in X, we can restrict the instantiation of that

variable to the corresponding set in inst while keeping genOSHL complete. Our

goal of type inference is to �nd such a vector inst and �nd a �nite representation

of it.
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Using notations introduced in Section 2.5, we can write down the idea we dis-

cussed in the previous paragraph as a system of set equations:

−−−−−−→
f(f(Y ))Y (π2(inst)) = π1(inst) (4.1.1)

←−−−−−−
f(f(Y ))Y (π1(inst)) = π2(inst) (4.1.2)

We can combine equations (4.1.1) and (4.1.2) into one equation:

[
−−−−−−→
f(f(Y ))Y ◦ π2,

←−−−−−−
f(f(Y ))Y ◦ π1](inst) = inst (4.1.3)

In this example, our goal of type inference can now be stated as �nding the �xpoint

of [
−−−−−−→
f(f(Y ))Y ◦π2,

←−−−−−−
f(f(Y ))Y ◦π1]. An obvious �xpoint is [∅, ∅] which is also obviously

not what we want here. We want a nonempty �xpoint. In order to ensure this, we

expand (4.1.3) to the following.

[
−−−−−−→
f(f(Y ))Y ◦ π2 t −→cX,

←−−−−−−
f(f(Y ))Y ◦ π1 t −→cX](inst) = inst (4.1.4)

where c is a �xed constant. Intuitively, we added (at least) a constant c in each

component of inst so that the solution is nonempty.

Now we can take the smallest �xpoint. In this example, we can easily see that

it is inst = [{f(f(c), c}, {c}].

In general, a �xpoint may contain in�nite sets. We need to �nd a �nite way to

represent a �xpoint. We will use formal grammars to do this.
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4.1 The Algorithm

In this subsection, we will describe an algorithm for generating a set equation

that captures the ideas discussed in the previous subsection.

4.1 Generating µ(S)

We construct the following sets. Given a set S of clauses, the set µ(S) is de�ned

as follows:

µ(S) = {mgureg(L,N) | L,N ∈
⋃

S}

µ(S) is the set of all most general uni�ers of two literals L and N , where both L and

N appear in S. The function mgureg generates a most general uni�er that satis�es

the following regularity requirement:

De�nition 48. A most general uni�er σ of two terms s and t is regular if and only

if

1. For every variable X ∈ v(s) or X ∈ v(t), if σ(X) 6= X, then

(a) there does not exist variable Y such that X ∈ v(σ(Y )).

(b) for every variable Y ∈ v(σ(X)), Y ∈ v(s) or Y ∈ v(t).

2. For every variable X that does not appear in s or t, σ(X) = X.

The following example shows some examples of regular and non-regular most

general uni�ers.

Example 49. Suppose we have literals g(X, f(Y )) and g(f(Z),W ). A regular

most general uni�er is [f(Z)/X, f(Y )/W ]. Condition 1(a) in De�nition 48 elimi-

nates most general uni�er [f(X)/X,X/Z, f(Y )/W ] from being regular. Condition

1(b) eliminates most general uni�er [f(Z ′)/X,Z ′/Z, f(Y )/W ] from being regular.
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Condition 2 eliminates most general uni�er [f(Z)/X, f(Y )/W,X ′/Z ′] from being

regular.

Irregular most general uni�ers will be problematic in our type inference algo-

rithm because they cause types to be mixed up and introduce unde�ned types in

our algorithm. Therefore, we only consider regular most general uni�ers. If two

terms are uni�able, there always exists a regular most general uni�er.

4.1 Generating pair(µ(S))

To make the presentation more concise, we construct �pairs� from most general

uni�ers. Given a substitution σ, the set pair(σ) is de�ned as follows1:

pair(σ) = {〈X, t〉 | σ(X) = t and X 6= t}

Example 50. pair([f(f(a))/X, g(a, Z)/Y ]) = {〈X, f(f(a)〉, 〈Y, g(a, Z)〉}.

We extend pair to sets of substitutions in a natural manner. Give a set A of

substitutions,

pair(A) =
⋃
σ∈A

pair(σ)

4.1 Generating F(pair(µ(S)))

We de�ne a function F : P(V × Terms(F, V )) → [P(Form1 ∪ Form2)]dim(X),

where V is the set of all variables, F is the set of all function symbols, Form1 is

the set of all term functions of Form 1 from De�nition 9, and Form2 is the set of

all functions of Form 2 from De�nition 9.

1This step essentially breaks down substitutions to pairs. Pairs make it explicit which variables

we need to deal with, which makes it easier to present the formalism for the following steps.

72



Given a pair 〈X, t〉, let j be the index of X in X. We de�ne vector F(〈X, t〉) as

a vector identical to e (recall that e denotes a vector of empty sets) except

1. πj(F(〈X, t〉)) = {
−→
t }

2. for every variable Y in v(t), πi(F(〈X, t〉)) = {πi ◦
←−
t ◦πj}, where i is the index

of Y in X.

Example 51. If X = [X, Y, Z], then F(〈Y, g(a, Z)〉) = [∅, {
−−−−→
g(a, Z)}, {π3 ◦

←−−−−
g(a, Z) ◦

π2}]. The �rst component comes from the vector e; the second component comes

from 1; and the third component comes from 2.

We extend F to a set P of pairs as follows:

F(P ) =
⋃

〈X,t〉∈P

F(〈X, t〉)

Example 52. If X = [X, Y, Z], then

F({〈X, f(f(a)))〉, 〈Y, g(a, Z)〉})

= F(〈X, f(f(a)))〉) ∪ F(〈Y, g(a, Z)〉)

= [{
−−−−→
f(f(a))}, ∅, ∅] ∪ [∅, {

−−−−→
g(a, Z)}, {π3 ◦

←−−−−
g(a, Z) ◦ π2}]

= [{
−−−−→
f(f(a))}, {

−−−−→
g(a, Z)}, {π3 ◦

←−−−−
g(a, Z) ◦ π2}]

The vector that we are interested in is F(pair(µ(S))). We will generate all

terms for all variables based on this vector. However, there is still a problem. If we

look at the vector generated in Example 52, then we can see that
←−−−−
g(a, Z) generates

smaller terms from larger terms. In our search algorithm for a proof, we would like

to start from smaller terms and go up to larger terms monotonically. Therefore,

we would like to �nd a way to remove reverse term functions from the generated
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vector. Simply removing them will result in a vector that is too coarse to generate

all useful terms, as shown in the following example

Example 53. If X = [X, Y ], and we have clauses S = {{p(X), q(X)}, {¬P (f(a))},

{¬Q(f(Y ))}}, then we know that in order to �nd a proof, we need to instantiate

Y to a. We have

F(pair(µ(S))) = [{
−−→
f(a),

−−−→
f(Y )}, {π2 ◦

←−−−
f(Y ) ◦ π1}]

However, simply removing π2 ◦
←−−−
f(Y ) ◦ π1 from this vector results in vector [{

−−→
f(a),

−−−→
f(Y )}, ∅], which does not generate anything for Y .

What we need is to re�ne the generated sets.

4.1 Generating G(pair(µ(S)))

We introduce a construction E as follows

E0(A) = A

Ek+1(A) = Ek(A) ∪ e[πq(A) ∪ {
−→
Y }/p][πp(A) ∪ {

−→
Y }/q] where

X = πp(X), Y = πq(X), and
−→
X ∈ πq(A)

E(A) =
∞⋃
k=0

Ek(A)

The basic idea of E is: If
−→
X ∈ πq(A), then it means that the variable at index q

should generate the same terms as the variable X; therefore, we merge the set at

index q in A and the set at index p in A.
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Example 54. If X = [X, Y ]. We have

E([{
−−→
f(a),

−→
Y }, {π2 ◦

←−
Y ◦ π1}, {

−−−−→
f(f(b))}])

= [{
−−→
f(a),

−→
X,
−→
Y , π2 ◦

←−
Y ◦ π1}, {

−−→
f(a),

−→
X,
−→
Y , π2 ◦

←−
Y ◦ π1}, {

−−−−→
f(f(b))]

Here, we merge set at index 1 with set at index 2 because
−→
Y belongs to the set at

index 1. After merging, both sets contain
−→
X ,
−→
Y , and all other functions from the

original sets.

We introduce a construction G that re�nes F.

De�nition 55. We obtain a set G(P ) from a set F(P ) as follows.

G0(P ) = F(P )

Gk+1(P ) = E(Gk(P ) ∪ F(pair(σ))) where there is

a variable X with index i in X,

a function πi ◦←−s ◦ πj ∈ πi(Gk(P )),

a function
−→
t ∈ πj(Gk(P )) such that

mgureg(s, t) = σ

G(P ) =
∞⋃
k=0

Gk(P )

Intuitively, this construction expands term functions into reverse term functions:

each iteration in this construction expands
−→
t into the reverse term function←−s and

generates new term functions and reverse term functions.

Example 56. Following Example 53, we have

F(pair(µ(S))) = [{
−−→
f(a),

−−−→
f(Y )}, {π2 ◦

←−−−
f(Y ) ◦ π1}]
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If we apply construction G, then we have

G0(pair(µ(S))) = [{
−−→
f(a),

−−−→
f(Y )}, {π2 ◦

←−−−
f(Y ) ◦ π1}]

To construct G1(pair(µ(S))), we choose a variable Y with index 2, a function

π2 ◦
←−−−
f(Y ) ◦ π1, and a function

−−→
f(a). We have mgureg(f(Y ), f(a)) = [a/Y ] and

F(pair([a/Y ])) = [∅, {−→a }]

Therefore,

G1(pair(µ(S))) = E(G0(pair(µ(S))) ∪ F(pair([a/Y ])))

= E([{
−−→
f(a),

−−−→
f(Y )}, {π2 ◦

←−−−
f(Y ) ◦ π1}] ∪ [∅, {−→a }])

= [{
−−→
f(a),

−−−→
f(Y )}, {π2 ◦

←−−−
f(Y ) ◦ π1,−→a }]

Here, we added −→a to the vector. Therefore, we can safely delete π2 ◦
←−−−
f(Y ) ◦ π1

from it, and we are still able to generate term a when instantiating Y . If we keep

performing this construction, eventually we have

G(pair(µ(S))) = [{
−−→
f(a),

−−−→
f(Y )}, {π2 ◦

←−−−
f(Y ) ◦ π1,−→a ,

−→
Y }]

4.1 Adding A Constant to G(pair(µ(S)))

We choose a �xed constant c, add −→c to each component of G(pair(µ(S)))

and combine all functions in πi(G(pair(µ(S)))) into one using the
⊔

operator for

1 ≤ i ≤ dim(X). We denote the resulting vector by
⊔
(G(pair(µ(S)))∪ [−→c ]dim(X)

i=1 ),

which is a vector of functions of the form
⊔n
k=1 fk, where each fk is a function of
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the form
−→
t or πi ◦

←−
t ◦ πj.

Example 57. Following Example 56, we choose the constant to be a, and our

vector looks like[
−−→
f(a) t

−−−→
f(Y ) t −→a , π2 ◦

←−−−
f(Y ) ◦ π1 t −→a t

−→
Y ].

For some set that generates at least one term, adding a constant is not necessary.

For example, if we have a set {
−−→
f(a),

−−−→
f(Y )} in our vector, then we do not need to

add a constant to that set. In our theorem prover implementation, we implemented

this optimization. But for the presentation of the general algorithm, we assume

that a constant is added to every set in our vector for simplicity.

4.1 Generating An Equation

To make the representation succinct, we denote the vector
⊔
G(pair(µ(S)) ∪

[−→c ]dim(X)
i=1 ) generated from the implicit set S of input clauses by f . The �xpoint of

f is a solution to the following equation:

f(inst) = inst (4.1.5)

where inst is a vector of sets of terms that we want to solve.

4.2 Solving the Equation

4.2 Finding the Least Fixpoint

We want to �nd a solution to (4.1.5) that is as small as possible. Ideally, we

want to �nd the least �xpoint of 4.1.5. This �xpoint I∗ can be constructed as the
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limit of the following sequence (recall that e = [∅, . . . , ∅])

I0 = e

Ik+1 = f(Ik) ∪ Ik

I∗ =
∞⋃
k=1

Ik

Given any vector h of functions, we de�ne a construction h∗ (where h is the pa-

rameter of this construction) as the limit of the following sequence

h(0) = id

h(k+1) = h ◦ h(k) t h(k)

h∗ =
∞⊔
k=0

h(k)

Indeed, f∗ and I∗ are equivalent in the following sense.

Lemma 58. I∗ = f∗(e).

Proof. Prove by induction that Ik = f (k)(e).

Basis step. I0 = e = id(e) = f (0)(e).

Induction step. Our induction hypothesis (IH) is Ik = f (k)(e).

Ik+1 = f(Ik) ∪ Ik

= f(f (k)(e)) ∪ f (k)(e) by (IH)

= (f ◦ f (k))(e) ∪ f (k)(e)

= (f ◦ f (k) t f (k))(e)

= f (k+1)(e)
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The advantage of using f∗ to represent the �xpoint is that we can perform

symbolic computations over the functions without having to generate the actual

sets of terms.

4.2 Simplifying the Least Fixpoint

The goal of simpli�cation is to ensure that the terms in the extension of types

can be generated inductively. We use the word �inductively� in the following sense:

larger terms are generated from smaller terms. Recall that the coe�cient f to our

set equation (4.1.5) is a vector of functions of the form
⊔n
k=1 fk, where each fk is

a function of the form
−→
t or πp ◦

←−
t ◦ πq. Among these functions, term functions

are inductive, but reverse term functions are not since they produce smaller terms

from larger terms. The goal of this section is to show that f→∗ = f∗.

4.2 Bounding Expressions in f∗

First, we establish an upper bound for expression of the form πp ◦←−s ◦
−→
t , where

s and t are terms, in terms of term functions that appear in f→. This is important

since f∗ contains subexpressions of this form but (f→)∗ does not. We will establish

this upper bound through the following lemmas.

The �rst lemma gives an explicit representation of the set produced by applying

←−s ◦ −→t to some set of vectors of terms.

Lemma 59. Given

1. two terms s1 and s2 with regular mgu σ,

2. a vector X of variables containing all variables in s1 and s2, and

3. a set A of dim(X)-dimensional vectors of terms,

we have
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{t | −→s1(t) = −→s2(t′), t′ ∈ A} = (←−s1 ◦ −→s2)(A) (4.2.1)

Proof. We prove that {t | −→s1(t) = −→s2(t′), t′ ∈ A} ⊂ (←−s1 ◦−→s2)(A) and (←−s1 ◦−→s2)(A) ⊂

{t | −→s1(t) = −→s2(t′), t′ ∈ A}.

{t | −→s1(t) = −→s2(t′), t′ ∈ A} ⊂ (←−s1 ◦ −→s2)(A). For every

t ∈ {t | −→s1(t) = −→s2(t′), t′ ∈ A}

we show that

t ∈ (←−s1 ◦ −→s2)(t′)

We have

(←−s1 ◦ −→s2)(t′) = ←−s1(−→s2(t′))

= ←−s1(−→s1(t))

Since t ∈ ←−s1(−→s1(t)), we have

t ∈ (←−s1 ◦ −→s2)(t′)

(←−s1 ◦ −→s2)(A) ⊂ {t | −→s1(t) = −→s2(t′), t′ ∈ A}. We need to show that for every

t′′ ∈ A and every

t ∈ (←−s1 ◦ −→s2)(t′′) (4.2.2)
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we have

t ∈ {t | −→s1(t) = −→s2(t′), t′ ∈ A} (4.2.3)

By (4.2.2),

−→s1(t) ∈ −→s1((←−s1 ◦ −→s2)(t′′))

= −→s1(←−s1(−→s2(t′′))) (4.2.4)

Case 1. If −→s2(t′′) is not an instance of s1, then

←−s1(−→s2(t′′)) = ∅

Therefore, �for all (4.2.2), (4.2.3)� is trivially true because we can �nd any t that

satis�es (4.2.2).

Case 2. If −→s2(t′′) is an instance of s1, then

−→s1(←−s1(−→s2(t′′))) = {−→s2(t′′)} (4.2.5)

By (4.2.4) and (4.2.5),

−→s1(t) = −→s2(t′′)

Since t′′ ∈ A,

t ∈ {t | −→s1(t) = −→s2(t′), t′ ∈ A}
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The second lemma gives a bound to the set in the previous lemma in terms of

some term functions.

Lemma 60. Given

1. two variable-disjoint terms s1 and s2 with regular mgu σ,

2. a vector X of variables containing all variables in s1 and s2, and

3. a set A of vectors of terms with length dim(X),

4. a variable X in s1 with index p in X,

then there exists an integer K such that

πp({t | −→s1(t) = −→s2(t′), t′ ∈ A}) ⊂ πp(f
(K)
σ (A)) (4.2.6)

where fσ = G(pair(σ)).

Proof. First, note that there are four groups of variables here:

1. Variable Y in s1 such that σ(Y ) = Y

2. Variable Y in s2 such that σ(Y ) = Y

3. Variable Y in s1 such that σ(Y ) 6= Y

4. Variable Y in s2 such that σ(Y ) 6= Y

It can be easily seen that Group 1 and Group 3 are disjoint and Group 2 and

Group 4 are disjoint. We de�ne a directed graph 〈V,E〉, where

1. V is the set of all variables in s1 and s2, and

2. E is the set de�ned as follows: for every variable Y ,
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(a) If Y belongs to Group 1, then there is an edge 〈Y, Z〉 ∈ E for all Z in

Group 4 such that Y appears in σ(Z). This edge corresponds to reverse

term function πr ◦
←−−
σ(Z) ◦ πq where r is the index of Y in X and q is the

index of Z in X.

(b) If Y belongs to Group 3, then there is an edge 〈Y, Z〉 ∈ E for all Z that

appears in σ(Y ). These edges correspond to term function
−−−→
σ(Y ).

Fact 1: there is no cycle in this graph. Suppose towards a contradiction that

this is not the case. Since in our construction of the graph, 2(a) generates an edge

from Group 1 to Group 4 and we do not generate any edge going out from Group

4, 2(a) does not generate any cycle. Therefore, only 2(b) may generate cycles, i.e.,

there is a list X1, . . . , Xn of variables such that

• If n = 1, X1 appears in σ(X1) and X1 6= σ(X1). This is contradictory to

De�nition 48.

• If n = 2, X2 appears in σ(X1), ..., Xn appears in σ(Xn−1) and X1 appears

in σ(Xn). Therefore, X2 appears in σ(X1) and X2 6= σ(X2). This is also

contradictory to De�nition 48.

Fact 2: for every variable Y in Group 1, there is a variable Z such that there is

an edge 〈Y, Z〉. We prove that there must be a variable Z in Group 4 such that Y

appears in σ(Z). Suppose towards a contradiction that such Z does not exist. Then,

Y is a variable that only appears in σ(s1) but not σ(s2) which is a contradiction.

Fact 3: for every variable Y in Group 3, either σ(Y ) is ground or there is a

variable Z such that there is an edge 〈Y, Z〉. It is trivial to see that this is true.

In summary, for every variable Y in Group 1 or Group 3, we can trace back to

variables in Group 2 or Group 4. Each edge either corresponds to a term function
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or a reverse term function. Therefore, we can construct all terms in σ using these

functions by following the edges.

We want to prove that there exists an integer K such that for every t′ ∈ A, and

every t such that −→s1(t) = −→s2(t′), πp(t) ⊂ πp(f
(K)
σ (A)). Let t = σ(X).

Case 1. t = X. X belongs to Group 1. By Fact 2 and 2(a), there is a variable

Z in Group 4 in X such that X appears in σ(Z). Let the index of Z in X be q. We

know that if −→s1(t) = −→s2(t′), then πp(t) ∈ (πp ◦
←−−
σ(Z) ◦ πq)(t′). Since πp ◦

←−−
σ(Z) ◦ πq

appears in fσ. We only need K = 1.

Case 2. t 6= X. X belongs to Group 3. Now, since σ is a most general uni�er,

σ(s1) = σ(s2). Let s = σ(s1). For every variable Y in v(s), by De�nition 48, it

belongs to either Group 1 or Group 2. Either way, it is not a�ect by σ. Suppose

that Y belongs to Group 1. Since [t/X](s1) is an instance of s, there must be a

substitution η such that [t/X](s1) = η(s). Therefore, η(Y ) = [t/X](Y ). Similarly,

if Y belongs to Group 2, there is a substitution η′ such that [t′/X](s2) = η′(s) and

η′(Y ) = [t′/X](Y ).

Let all variables in s belonging to Group 2 be X1, . . . , Xm and have indices

p1, . . . , pm in X and all variables in s belonging to Group 1 be Y1, . . . , Yn and have

indices r1, . . . , rn in X. We can construct a new vector

t′′ = e[πp1(t
′)/p1] . . . [πpm(t

′)/pm][πr1(t)/p1] . . . [πrm(t)/pm]

such that [t′′/X](s) = [t/X](s1) = [t′/X](s2). Therefore, [t/X](X) = ([t′′/X] ◦

σ)(X).

πp(t) =
−→
t (t′′) (4.2.7)

By Case 1, for 1 ≤ i ≤ n, we can �nd a variable Zi in Group 4 with index qi
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such that

πri(t) ∈ (πri ◦
←−−−
σ(Zi) ◦ πqi)(t′) (4.2.8)

By (4.2.8), we have

t′′ ⊂ (fσ t id)(t′) (4.2.9)

Since

−→
t @ πp(fσ) (4.2.10)

By (4.2.7), (4.2.9), and (4.2.10), we have

πp(t) =
−→
t (t′′)

⊂ (πp(fσ))(t
′′)

⊂ (πp(fσ))((fσ t id)(t′))

= πp((fσ ◦ (fσ t id))(t′))

Therefore, we only need K = 2.

In summary, we only need K = 2 in both cases.

Combining the previous two lemmas, we have

Lemma 61. Given

1. variable-disjoint terms s1 and s2 with regular mgu σ,

2. a vector X of variable containing all variables in s1 and s2, and

3. a variable X and an index p such that X ∈ v(s1) and πp(X) = X,
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then there exists an integer K such that

πp ◦←−s1 ◦ −→s2 @ πp ◦ f (K)
σ

where fσ = G(pair(σ)).

Proof. Directly follows from Lemma 59 and Lemma 60.

In the following subsections, we prove some of the properties of f→. The main

goal is to show that f→ has the same limit as f .

4.2 (f→)∗(e) Is a Fixpoint of (4.1.5)

First, we show that applying f← to f→ does not generate any more new terms

than those generated by (f→)∗.

Lemma 62. f← ◦ f→ @ (f→)∗.

Proof. It is su�cient to show that for every function of the form πp ◦
←−
t ◦ πq that

appears in f← and every function of the form −→s that appears in πq(f
→), πp◦

←−
t ◦−→s @

πp ◦ (f→)∗. By Lemma 61, we have

πp ◦
←−
t ◦ −→s @ πp ◦ f (K)

σ

@ πp ◦ (f→)∗

Next, we show that applying f→ to (f→)∗ does not generate any more new terms.

Lemma 63. f→ ◦ (f→)∗ @ (f→)∗
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Proof. We can prove by induction that

(f→)(k
′) @ (f→)(k) (4.2.11)

for all k′ < k.

Every component of f→ is a function of the form
⊔n
i=1

−→
ti for some n. Without

loss of generality, we consider the 1st component. By left-distributivity of ◦ over t,

we only need to show that for every term function
−→
ti , we have

−→
ti ◦(f→)∗ @ π1◦(f→)∗.

Given a vector v, expanding the de�nition of term functions,

(
−→
ti ◦ (f→)∗)(v) = {

−→
ti (v

′) | v′ ∈
∏
(f→)∗(v)}

By (4.2.11), we have for every vector v′ ∈
∏
(f→)∗(v) there exists k such that

v′ ∈
∏
(f→)(k)(v). Therefore,

−→
ti (v

′) ∈ −→
ti ((f

→)(k)(v))

⊂ (
n⊔
i=1

−→
ti )((f

→)(k)(v))

= π1(f
→)((f→)(k)(v))

= π1((f
→ ◦ (f→)(k))(v))

⊂ π1((f
→)(k+1)(v))

⊂ π1((f
→)∗(v))

Therefore,

(
−→
ti ◦ (f→)∗)(v) ⊂ π1((f

→)∗(v))

Hence,
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−→
ti ◦ (f→)∗ @ π1 ◦ (f→)∗

Next, we show that applying (f→)∗ to (f→)∗ does not generate any more new

terms.

Lemma 64. (f→)∗ ◦ (f→)∗ @ (f→)∗.

Proof.

(f→)∗ ◦ (f→)∗ =
∞⊔
k=0

(f→)(k) ◦ (f→)∗

=
∞⊔
k=0

((f→)(k) ◦ (f→)∗)

We prove by induction that (f→)(k) ◦ (f→)∗ @ (f→)∗.

Basis step. k = 0. Trivial.

Induction step. Our induction hypothesis (IH) is that for k, (f→)(k) ◦ (f→)∗ @

(f→)∗. We need to show that (f→)(k+1) ◦ (f→)∗ @ (f→)∗

(f→)(k+1) ◦ (f→)∗ = (f→ ◦ (f→)(k) t (f→)(k)) ◦ (f→)∗ by expanding the de�nition

= f→ ◦ (f→)(k) ◦ (f→)∗ t (f→)(k) ◦ (f→)∗ by Lemma 10

= f→ ◦ (f→)(k) ◦ (f→)∗ t (f→)∗ by (IH)

@ f→ ◦ (f→)∗ t (f→)∗ by (IH)

@ (f→)∗ t (f→)∗ by Lemma 63

= (f→)∗
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Next, we show that ◦ is right-distributive over t when f← is its left operand.

Lemma 65. f← ◦ (
⊔∞
k=1 gk) =

⊔∞
k=1(f

← ◦ gk).

Proof. Every component of f→ is a function of the form
⊔n
i=1(πpi ◦

←−si ◦πqi) for some

n. Without loss of generality, we consider the 1st component.

n⊔
i=1

(πpi ◦←−si ◦ πqi) ◦ (
∞⊔
k=1

gk) =
n⊔
i=1

((πpi ◦←−si ◦ πqi) ◦ (
∞⊔
k=1

gk)) by Lemma 10

=
n⊔
i=1

∞⊔
k=1

((πpi ◦←−si ◦ πqi) ◦ gk) by Lemma 11

=
∞⊔
k=1

n⊔
i=1

((πpi ◦←−si ◦ πqi) ◦ gk) by switchability of
⊔

=
∞⊔
k=1

((
n⊔
i=1

(πpi ◦←−si ◦ πqi)) ◦ gk) by Lemma 10

Next, we show that (f→)∗(e) is bounded by (f ◦ (f→)∗)(e).

Lemma 66. (f→)∗(e) ⊂ (f ◦ (f→)∗)(e).

Proof. We prove by induction that every 0 ≤ k,

((f→)(k))(e) ⊂ (f ◦ (f→)∗)(e)

Basis step. ((f→)(0))(e) = e ⊂ (f ◦ (f→)∗)(e).
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Induction step. Our induction hypothesis (IH) is ((f→)(k))(e) ⊂ (f ◦ (f→)∗)(e).

((f→)(k+1))(e) = (f→ ◦ (f→)k t (f→)k)(e)

= (f→ ◦ (f→)k)(e) ∪ (f→)k(e)

⊂ (f ◦ (f→)∗)(e) ∪ (f→)k(e)

⊂ (f ◦ (f→)∗)(e) ∪ (f ◦ (f→)∗)(e) by (IH)

= (f ◦ (f→)∗)(e)

Next, we show that (f ◦ (f→)∗)(e) is bounded by (f→)∗(e).

Lemma 67. (f ◦ (f→)∗)(e) ⊂ (f→)∗(e).

Proof. Note that

f((f→)∗(e)) = (f← t f→)((f→)∗(e))

= f←((f→)∗(e)) ∪ f→((f→)∗(e))

By Lemma 63, f→((f→)∗(e)) ⊂ (f→)∗(e). We only need to prove f←((f→)∗(e)) ⊂

(f→)∗(e)

f←((f→)∗(e)) = f←((
∞⊔
k=0

(f→)(k))(e))

= (f← ◦ (
∞⊔
k=0

(f→)(k)))(e) (4.2.12)

= (
∞⊔
k=0

(f← ◦ (f→)(k)))(e) by Lemma 65

We prove by induction that (f← ◦ (f→)(k))(e) ⊂ (f→)∗(e).
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Basis step. k = 0. (f← ◦ (f→)(0))(e) = e ⊂ (f→)∗(e).

Induction step. Our induction hypothesis (IH) is (f← ◦ (f→)(k))(e) ⊂ (f→)∗(e).

(f← ◦ (f→)(k+1))(e) = (f← ◦ (f→ ◦ (f→)(k) t (f→)(k)))(e)

= (f← ◦ f→ ◦ (f→)(k) t f← ◦ (f→)(k))(e) by Lemma 11

⊂ ((f→)∗ ◦ (f→)(k) t f← ◦ (f→)(k))(e) by Lemma 62

⊂ ((f→)∗ ◦ (f→)∗ t f← ◦ (f→)(k))(e)

⊂ ((f→)∗ t f← ◦ (f→)(k))(e) by Lemma 64

⊂ ((f→)∗ t (f→)∗)(e) by (IH)

= (f→)∗(e)

Corollary 68. (f→)∗(e) is a �xpoint of (4.1.5).

Proof. This corollary follows directly from Lemma 66 and Lemma 67.

Theorem 69. If f is the coe�cient of a set equations of the form (4.1.5), then

f∗(e) = (f→)∗(e).

Proof. By Corollary 68, (f→)∗(e) is a �xpoint of f . By monotonicity, (f→)∗(e) ⊂

f∗(e). Since f∗(e) is the least �xpoint of f , f∗(e) ⊂ (f→)∗(e). Therefore, f∗(e) =

(f→)∗(e).

4.3 The Generation of Terms

Given the function vector f→, we convert it to a formal (not necessarily context-

free) grammar so that we can generate terms inductively.

For every variable X in X,
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• Let p be the index of X in X

• πp(f→) must have the form
⊔n
i=1

−→
ti for some integer n and terms t1, . . . , tn

• Generate formal grammar rule X ::= t1 | . . . | tn

Example 70. If we have

1. X = [X, Y ] and

2. S = {{p(X),¬p(f(X))}, {¬p(X)}, {p(f(f(a)), q(Y )}, {¬q(g(a, a))}},

then we have

f→ = [−→a t
−−→
f(a) t

−−−→
f(X),

−−−−→
g(a, a)]

We can convert this to a formal grammar

X ::= a | f(a) | f(Y )

Y ::= g(a, a)

This allows us restrict the instances ofX to the sequence of terms a, f(a), f(f(a)), . . .

and those of Y to the term g(a, a).

The terms generated this way are used in our d function from Section 3.4.1 to

instantiate remaining free variables in an input clause after unifying some of its

literals with literals in the current model. Using f→ in d allows the prover to

reduce the search space by avoiding instantiating free variables to terms that are

not generated by f→.

Example 71. Following Example 70, if the initial interpretation makes all negative

literals true, then we know that the �rst contradicting instance must be an instance
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of {p(f(f(a)), q(Y )}. But how do we instantiate Y ? In genOSHL, we will proba-

bly try the following sequence a, f(a), f(f(a)), g(a, a). But in typedGenOSHL, we

can only generate g(a, a) for Y . This reduces the search space and improves the

performance.

The remaining question is whether this restriction preserves the completeness

of the genOSHL. If we reexamine the proof of completeness for genOSHL, we can

notice that the key question here is whether or not we can still �nd a contradicting

set of instances of the input clauses if we restrain variable instantiation to f→. We

will show below that the answer is a�rmative.

The intuition of this proof is as follows: given an unsatis�able set of input

clauses, we can always �nd a resolution proof for it. To show that there is a set

of contradicting ground instances, we try to construct a ground resolution proof

from the resolution proof, restricting variable instantiation to terms generated by f .

We can do this because we have proved in the previous subsection that the terms

generated by f→ are the same as those generated by f . We then prove by induction

on the resolution proof that this construction can be done for any resolution proof.

To make our discussion easier, we give the de�nition of a resolution proof as

follows:

De�nition 72. Given a variable disjoint set S of input clauses, a resolution proof

of S is a full binary tree where every node has a (n + 1)-tuple 〈C,L1, . . . , Ln〉 of a

clause and n literals such that

1. For the root, C = ∅ and n = 0;

2. For other nodes, n > 0 and L1, . . . , Ln ∈ C;

3. For leaves, C is a variant of some clause in S with fresh variables;
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4. For any internal node 〈D,M1,M2, . . . ,Mn〉 with children 〈C1, L11, L12, . . . L1k1〉

and 〈C2, L21, L22, . . . , L2k2〉, where n, k1, and k2 are integers, there exists

σ = mgureg(L11, . . . , L1k1 , L21, . . . , L2k2)

such that for any other literals L in C1, σ(L) 6= σ(L11), for any other literal

L in C2, σ(L) 6= σ(L21), and

D = (σ(C1)\{σ(L1)}) ∪ (σ(C2)\{σ(L2)})

The third condition guarantees that clauses in leaves are variant disjoint. For

each occurrence of literal L in a resolution proof, we de�ne its originating literal set

L0 as follows:

De�nition 73. Given a a resolution proof,

1. For leaves 〈D,M1,M2, . . . ,Mn〉, the origination literals M0
i = Mi for 1 ≤ i ≤

n.

2. For any internal node 〈D,M1,M2, . . . ,Mn〉 with children 〈C1, L11, L12, . . . L1k1〉

and 〈C2, L21, L22, . . . , L2k2〉, for 1 ≤ i ≤ n,

M0
i =

⋃
L∈C1∪C2,Mi=σ(L)

L0

where

σ = mgureg(L11, . . . , L1k1 , L21, . . . , L2k2)

It is possible that L0 contains multiple literals for some literal L which appears

in internal nodes. For example, if we have leaf nodes 〈{p(X), q(X)}, q(X)〉 and
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〈{p(Y ),¬q(Y )},¬q(Y )〉 and internal node 〈{p(X)}, . . .〉 such that the leaf nodes

are subtrees of the internal node, then, for the occurrence of p(X) in the internal

node, (p(X))0 = {p(X), p(Y )}.

We give the de�nition of ground resolution proofs as follows:

De�nition 74. Given a input clause S, a ground resolution proof of S is a full

binary tree where every node a pair 〈C,L〉 of a clause and a literal such that

1. For the root, C = ∅ and L = ⊥;

2. For other nodes, L ∈ C;

3. For leaves, C is a ground instance of some clause in S;

4. For an internal node 〈D,M〉 with children 〈C1, L1〉 and 〈C2, L2〉,

L1 = L2

and

D = (C1\{L1}) ∪ (C2\{L2})

Given a resolution proof, we want to �nd a way to instantiate variables in all

leaves such that the instantiation uses terms in f∗(e) only. We de�ne the type of a

variable in a resolution proof as follows:

De�nition 75. Given a variable disjoint set S of input clauses and a resolution

proof of S, for each leaf 〈C,L〉, there is a clause D ∈ S such that C = ρ(D) for

some renaming ρ. For each variable X ∈ v(C), we call the inverse image of X under

ρ the type of X. We denote the type of a variable X by τX .
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We start our construction of a ground resolution proof from a resolution proof

by generating equational constraints from originating literal sets as follows:

For every internal node 〈D,M1,M2, . . . ,Mn〉 with children 〈C1, L11, L12, . . . ,

L1k1〉 and 〈C2, L21, L22, . . . , L2k2〉,

1. Generate regular most general uni�er as follows:

(a) Let L0
1 =

⋃
1≤i≤k1 L

0
1i. Let L1 be an arbitrary literal in L0

1.

(b) Let L0
2 =

⋃
1≤i≤k2 L

0
2i. Let L2 be an arbitrary literal in L0

2.

(c) For all L′2 ∈ L0
2, generate mgureg(L1, L′2)

(d) For all L′1 ∈ L0
1, generate mgureg(L

′
1, L2)

2. For every regular most general uni�er σ generated, for every variable X ∈ X

such that σ(X) = s and s 6= X, generate equational constraint X = s.

This construction generates a list of equational constraints. Any solution σ to

these equations will guarantee that σ(L1) = σ(L′2) for all L
′
2 ∈ L0

2 and σ(L
′
1) = σ(L2)

for all L′1 ∈ L0
1. By transitivity, σ(L′1) = σ(L′2) for all L

′
2 ∈ L0

2 and all L′1 ∈ L0
1.

These set of constraints are also minimal in the following sense: If σ(L′1) = σ(L′2) for

all L′2 ∈ L0
2 and all L

′
1 ∈ L0

1, then σ must also be a solution to this set of constraints.

Lemma 76. Any ground instantiation of the resolution proof must satisfy these

constraints.

Proof. We can prove this easily by contradiction.

Lemma 77. If constraints X = t1, . . . , X = tn are generated, then t1, . . . , tn are

uni�able.

Proof. Otherwise there is no instantiation that can satisfy these constraints.
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This means that we can simplify the constraints so that each variable appears

at most once on the left-hand side of an equation. The following lemma shows that

we cannot have any non-trivial cycles in our constraints:

Lemma 78. If constraints X1 = t1, . . . , Xn = tn are generated and X1 appears in

t2, X2 appears in t3, ..., and Xn appears in t1, then t1 = X2, t2 = X3, ..., and

tn = X1.

Proof. Otherwise there is no instantiation that can satisfy these constraints.

Constraints that form cycles only have one form: equality between two variables.

This means that we sort variables by the following order.

De�nition 79. Given a set of equational constraints generated from a resolution

proof, de�ne order ≺ on variables as follows: X ≺ Y if and only if Y is bound to a

non-variable term t containing X.

Given this order, we can generate an instantiation of the variables starting from

the minimum variable and build up to the maximum variable. The remaining

question is whether this solution is in f∗(e).

Lemma 80. If
−→
t appears in πp(f

∗) for some index p, then πq ◦
←−
t ◦ πp appears in

πq(f
∗) for every index q such that πq(X) ∈ v(t).

Proof. By construction F.

Lemma 81. If
−→
X appears in πq(f

∗), X = πp(X), and Y = πq(X) for indices q and

p, then {
−→
X,
−→
Y } ⊂ πq(f

∗) = πp(f
∗).

Proof. By construction E.

The following lemma is based on the following idea: Suppose that we �x a

variable X and take a subset of the constraints of the form X = t or Y = X. If

97



we know that
−→
t1 , . . . ,

−→
tn are all term functions that appear in πp(f) where p is the

index of X in X, then we can simplify these constraints to another set of constraints

in which X does not appear.

Lemma 82. Given a list X1 = t1, . . . , Xn = tn of constraints and indices p1, . . . , pi

such that

1. πpi(X) = Xi for 1 ≤ i ≤ n and

2.
−→
ti appears in πpi(f) for 1 ≤ i ≤ n,

we can �nd a solution [t/X] to these constraints such that πi(t) appears in f∗, for

1 ≤ i ≤ dim(X).

Proof. Prove by induction on the number of distinct variables.

Basis step. n = 0. Trivial.

Induction step. Our induction hypothesis (IH) is if there are less than k distinct

variables, then this lemma holds. We need to prove that it holds for k variables.

First, delete all trivial constraints of the form X = X. We pick a variable X in

X which does not appear in any term except itself. Let the index of X be p. Given

two constraints involving X, there are three cases:

Case 1. X = s,X = t for some terms s and t. Unify s with t, generating regular

most general uni�er σ. For every variable Y such that σ(Y ) 6= Y , generate new

constraint Y = σ(Y ). Let the index of Y be q. We need to show that σ(Y ) appears

in πq(f). By premise 2, we know that −→s and
−→
t appear in πp(f). Since σ(Y ) 6= Y ,

either Y ∈ v(s) or Y ∈ v(t). Without loss of generality, suppose Y ∈ v(s). By

Lemma 80, πq ◦←−s ◦πp appears in πq(f). By construction G, σ(Y ) appears in πq(f).

Case 2. X = s, Y = X for some term s and some variable Y . Let the index of

Y be q. Generate new constraint Y = s. By premise 2, we know that −→s appears

in πp(f) and
−→
X appears in πq(f). By Lemma 81, −→s appears in πq(f).
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Case 3. Y = X,Z = X for some variables Y and Z. Let the index of Y be q.

Let the index of Z be r. Generate new constraint Y = Z. By premise 2, we know

that
−→
X appears in πq(f) and πr(f). By Lemma 81,

−→
Z appears in πq(f).

We �x one constraint involving X and perform the foregoing operation on this

constraint and every other constraint involving X. The newly generated constraints

are su�cient to guarantee that constraints involving X are satis�ed. We remove all

constraints involving X.

Now we have a new list of constraints that has only k variables. By (IH), we

can �nd a solution [t/X], where and all terms in t appears in f∗.

To construct a solution for the original set of constraints, we arbitrarily pick a

constraint involving X in the original set of constraints.

Case 1. The constraint involving X is X = s. We can �nd a solution to the

original set of constraints by substituting −→s (t) for X: [t/X][−→s (t)/p]. By premise

2, −→s appears in f . Therefore, −→s (t) appears in f∗.

Case 2. The constraint is Y = X. Let the index of Y be q. We can �nd a solution

to the original set of constraints by substituting
−→
Y (t) for X: [t/X][

−→
Y (t)/p]. By

premise 2,
−→
X appears in πq(f). By Lemma 81,

−→
Y appears in πp(f). Therefore,

−→
Y (t)

appears in f∗.

Lemma 83. We can �nd an instantiation of a resolution proof to a ground resolu-

tion proof even if we restrict instantiation to f∗(e).

Proof. By Lemma 82 we can �nd a set of contradicting instances of clauses in S. We

arbitrarily instantiate remaining variables by terms generated by their type which

results in a set T of contradicting ground instances of clauses in S.

Theorem 84. typedGenOSHL is complete.

Proof. Let S ′ be the set of all ground instances generated from S by restricting

instantiation to f∗(e). By Lemma 83, we can �nd a contradicting set T of ground
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instances which is a subset of S ′. If we use this S ′ in our function d, then type-

dGenOSHL is complete.

4.4 Algorithm G

Ideally, the construction G in De�nition 55 would terminate when no new term

functions can be added any more after �nite number of iterations. One problem

with most general uni�ers is that they can map a variable to a term that has size

exponential to the size of the two input terms. A classic example [36] is the following:

Consider terms

h(x1, . . . , xn, f(y0, y0), . . . , f(yn−1, yn−1), yn)

and

h(f(x0, x0), . . . , f(xn−1, xn−1), y1, . . . , yn, xn)

Their most general uni�er maps each xi or yi to a term of size 2i+1 − 1. This

means that it is possible that our construction may keep generating new, larger

term functions, which may lead to a sequence Gk(P ) that contains in�nitely many

growing sets. Consequently, our construction of G(P ) may not terminate in �nite

steps. To alleviate this problem, we introduce a di�erent kind of uni�er: θ-mgu.

This section introduces θ-mgu and shows that if we replace the most general

uni�ers in our construction G from De�nition 55 by θ-mgus, then the minimum

solution to equation 4.1.5 is at least as large as the minimum solution when we

do not replace most general uni�ers by θ-mgus; and if we replace the most general

uni�ers in our construction G from De�nition 55 by θ-mgus, then the construction

always terminates. Readers not interested in the termination property can skip this

section.
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4.4 The Algorithm

Algorithm G is the algorithm we use to compute θ-mgus of a set of pairs of

terms. It is tailored to the speci�c need of our type inference preprocessor. We

follow the following conventions in our description of the algorithm G:

1. Assume that every function symbol (or predicate symbol) has a �xed arity.

2. Given a substitution θ, a term t, and a variable X such that θ(X) = X and

X 6= t, denote the substitution obtained by appending t/X to θ by θ[t/X].

For example, if θ = [f(X)/Y ], then θ[f(Y )/X] = [f(X)/Y, f(Y )/X].

3. Denote failure by ⊥.

De�nition 85. We de�ne the algorithm G as a derivation⇒. It starts with a triple

G, [], [], where G is a set of pairs of terms and [] is an empty substitution, and each

derivation step falls into one of the following eight cases.

1. G ∪ {〈t, t〉}, θ, σ ⇒ G, θ, σ

2. G ∪ {〈f(s1, . . . , sn), f(t1, . . . , tn)〉}, θ, σ ⇒ G ∪ {〈s1, t1〉, . . . , 〈sn, tn〉}, θ, σ

3. G ∪ {〈f(s1, . . . , sm), g(t1, . . . , tn)〉}, θ, σ ⇒ ∅,⊥,⊥, where f 6= g

4. G∪{〈f(s1, . . . , sn), X〉, θ, σ} ⇒ G∪{〈X, f(s1, . . . , sn)〉, θ, σ}, where θ(X) = X

5. G ∪ {〈X, t〉}, θ, σ ⇒ G ∪ {〈θ(X), t〉}, θ, σ, where θ(X) 6= X

6. G∪{〈t, Y 〉}, θ, σ ⇒ G∪{〈X, θ(Y )〉}, θ, σ, where t is either a non-variable term

or a variable such that θ(t) = t, and θ(Y ) 6= Y

7. G ∪ {〈X, t〉}, θ, σ ⇒ G, θ[t/X], [σ(t)/X] ◦ σ, where t is either a non-variable

term or θ(t) = t, θ(X) = X, and X /∈ v(σ(t))
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8. G ∪ {〈X, t〉}, θ, σ ⇒ ∅,⊥,⊥, where t is not a variable, θ(X) = X, and X ∈

v(σ(t))

The �rst case is when we try to unify one term to itself. This is a trivial case. We

just need to delete the pair of the term and itself from G. The second case is when

we try to unify two terms with the same top-level function symbols or predicate

symbols. Since we assume that every function symbol (or predicate symbol) has a

�xed arity, we do not have to deal with the case where there are di�erent numbers

of subterms. The third case is when we try to unify two terms with di�erent top-

level function symbols or predicate symbols. This leads to failure. The fourth case

switches a non-variable term with an unbound variable. The �fth case is when we

try to unify a bound variable X with a term t. We replace the pair with a new

pair, replacing the variable X with the term θ(X). The sixth case is when we try

to unify a non-variable term t with a bound variable Y . We replace the pair with a

new pair, replacing the variable Y with the term θ(Y ). The seventh case is when we

try to unify an unbound variable X with a non-variable term t, where X does not

occur in t. In this case, we update uni�ers θ and σ to map the variable to the term.

The eighth case is when we try to unify an unbound variable X with a non-variable

term t, where X occurs in t. This leads to failure.

Following the standard notational conventions, we denote k step derivation,

where k ≥ 0 is an integer, from G, θ, σ to G′, θ′, σ′ by G, θ, σ ⇒k G′, θ′, σ′ and

zero or more step derivation from G, θ, σ to G′, θ′, σ′ by G, θ, σ ⇒∗ G′, θ′, σ′. The

derivation terminates when either ∅,⊥,⊥ or ∅, θ, σ for some substitutions θ and σ

is reached.

Algorithm G di�ers from the standard uni�cation algorithm in the following

manner. No substitution is applied to the remaining pairs of terms to be uni�ed

when the uni�er being constructed is updated. Also, Algorithm G computes two
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uni�ers θ and σ.

σ is a most general simultaneous uni�er of all pairs in the initial set G. On

the one hand, note that any variable X bound by θ is replaced by θ(X). This is

equivalent to repeatedly applying θ to G. Our main theorem will show that the

e�ect of this is equivalent to applying σ to G. On the other hand, it can be easily

proved that θ(X) = X if and only if σ(X) = X. Therefore, we can replace G with

σ(G) and tests like θ(X) = X with σ(X) = X and obtain a variant of the standard

uni�cation algorithm. Also, σ is regular (De�nition 48). In contrast, in general, θ

is not necessarily a uni�er of s and t and is not idempotent. However, the main

theorem of this section will show that θ and σ are equivalent in a certain sense,

hence θ has as much information as σ does. θ has a property which σ does not

have: if we replace the most general uni�er in construction G (De�nition 55), then

G will always generate a smaller term function, from which the termination of G

easily follows.

In order to distinguish these two di�erent kinds of most general uni�ers, we

de�ne the following:

De�nition 86. Given terms s and t such that {〈s, t〉}, [], [] ⇒∗ ∅, θ, σ for some

θ 6= ⊥ and σ 6= ⊥, we say that θ is the θ-mgu of s and t, written mguθ(s, t), and σ

is the σ-mgu of s and t, written mguσ(s, t).

4.4 Termination of Algorithm G

In this subsection, we show that G terminates on all inputs. We can �nd a very

simple termination proof for this algorithm based on the termination proof of the

standard uni�cation algorithm.

Theorem 87. Algorithm G terminates.

Proof. We de�ne a vector z as follows.
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Let l be the number of distinct variables in G. Assign to each variable X an

integer zX by doing the following repeatedly.

1. If X /∈ v(θ(Y )) for all Y 6= X, assign zX = l

2. If X ∈ v(θ(Y )) for some Y 6= X, and for every variable Y 6= X such that

X ∈ θ(Y ), zY is assigned, assign zX = min≤({zY | X ∈ v(θ(Y ))})− 1.

According to this assignment, if Y ∈ v(θ(X)), then zY < zX . This is useful

because in Case 5 (and similarly Case 6) of De�nition 85, we replace a variable X

by θ(X). The property of our construction here ensures that for every variable Y

in θ(X), we have zY < zX . We de�ne an l dimensional vector z = [zi]
l
i=1 as follows.

zi is the number of variables X (count repeated variables) in G such that zX = i for

all indices i. We de�ne an order <Z on all possible values of z as follows. z <z z
′ if

and only if there is an index k such that zl = z′l, zl−1 = z′l−1, . . . , zk+1 = z′k+1 and

zk < z′k. We say that an operation does not increase z if the operation does not

make the resulting z larger with respect to <z.

We will show that all operations in G leads to one of the following

1. Decrease z.

2. Keep z unchanged and decrease the total number of symbols in G.

3. Keep z and the total number of symbols in G unchanged and decrease the

number of pairs whose �rst component is a variable.

We show this by case analysis on a single derivation step.

Case 1. Removing an element from G does not increase z and decreases the total

number of symbols in G.

Case 2. Since size(f(s1, . . . , sn)) > size(s1) + . . .+ size(sn), and size(g(t1, . . . ,

tn)) > size(t1) + . . .+ size(tn), replacing 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 by 〈s1, t1〉, . . .

, 〈sn, tn〉 keeps z unchanged and decreases the total number of symbols in G.
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Case 3. Replacing a nonempty set with an empty set does not increase z and

decreases the total number of symbols in G.

Case 4. Switching the two components keeps z and the total number of symbols

in G unchanged and decreases the number of pairs who �rst component is a variable.

Case 5. Replacing 〈X, t〉 by 〈θ(X), t〉 in G keeps zl, zl−1, . . . zzX+1 unchanged and

decreases zzX since by construction, every variable Y in θ(X) has a smaller zY than

zX .

Case 6. Replacing 〈X, Y 〉 by 〈X, θ(Y )〉 in G keeps zl, zl−1, . . . zzY +1 unchanged

and decreases zzY since by construction.

Case 7. Appending [t/X] to θ does not increase the zY for any variable Y in t.

Hence it does not increase z. Removing an element from G does not increase z and

decreases c.

Case 8. Removing an element from G does not increase z and decreases the total

number of symbols in G.

4.4 The Equivalence of σ and θ

The �rst lemma shows that θ and σ bind the same set of variables

Lemma 88. If G, [], [] ⇒∗ G′, θ, σ and θ 6= ⊥, then θ(X) = X if and only if

σ(X) = X.

Proof. We prove by induction on the derivation of G, [], []⇒∗ G′, θ, σ.

Basis step. θ = σ = []. Trivial.

Induction step. Our induction hypothesis (IH) is that for every derivation

G, [], [] ⇒k Gk, θk, σk, θk(X) = X if and only if σk(X) = X. Now, consider the

derivation step Gk, θk, σk ⇒ Gk+1, θk+1, σk+1. The only case where θk+1 6= θk or

σk+1 6= σk is Case 7. Therefore, we only need to consider this case.
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Case 7. Since θk(X) = X, By (IH), σk(X) = X. By the condition that X /∈

v(σk(t)), X 6= t and X 6= σk(t). Therefore, θk+1(X) 6= X and σk+1(X) 6= X.

Suppose towards a contradiction that there is a variable Y such that σk(Y ) 6= Y ,

but σk+1(Y ) = Y . We have ([σk(t)/X] ◦ σk)(Y ) = Y . Therefore,

σk(t) = Y (4.4.1)

and

σk(Y ) = X (4.4.2)

By the condition that t is either a non-variable term or σk(t) = t and (4.4.1),

t = Y (4.4.3)

By (4.4.3) and (4.4.1)

σk(Y ) = t (4.4.4)

By (4.4.2) and (4.4.4), X = t, which is contradictory to X /∈ v(σk(t)).

The next lemma shows that σ is idempotent, i.e., σ ◦ σ = σ.

Lemma 89. If G, [], []⇒∗ G′, θ, σ and θ 6= ⊥, then σ is idempotent.

Proof. We prove by induction on the derivation of G, [], []⇒∗ ∅, θ, σ.

Basis step. σ = []. It is idempotent.

Induction step. Our induction hypothesis (IH) is that for every derivation

G, [], []⇒k Gk, θk, σk, σk is idempotent. Now, consider the derivation step Gk, θk, σk
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⇒ Gk+1, θk+1, σk+1. The only case where σk+1 6= σk is Case 7. Therefore, we only

need to consider this case.

Case 7. Since θk(X) = X, by Lemma 88, σk(X) = X. Therefore,

σk ◦ [σk(t)/X] = [σk(σk(t))/X] ◦ σk (4.4.5)

By (IH) and (4.4.5),

σk ◦ [σk(t)/X] = [σk(t)/X] ◦ σk (4.4.6)

By our construction, X does not occur in σk(t). Therefore,

[σk(t)/X] ◦ [σk(t)/X] = [σk(t)/X] (4.4.7)

Therefore

σk+1 ◦ σk+1 = ([σk(t)/X] ◦ σk) ◦ ([σk(t)/X] ◦ σk) by construction

= [σk(t)/X] ◦ [σk(t)/X] ◦ σk ◦ σk by (4.4.6)

= [σk(t)/X] ◦ σk ◦ σk by (4.4.7)

= [σk(t)/X] ◦ σk by (IH)

= σk+1 by construction

An immediate corollary of this lemma is that σ contains no loop.

Corollary 90. If G, [], [] ⇒∗ G′, θ, σ and θ 6= ⊥, then there is no loop with length

greater than one in σ.
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Proof. Suppose towards a contradiction that there is a loop p0, . . . ,pn of length n >

1. By Lemma (89), we can easily prove by induction that pi ∈ σ(p1) for 1 ≤ i < n.

Hence rm(pi) ∈ v(σ(rm(p1))). Since rm(pn) = rm(p1), rm(p1) ∈ v(σ(rm(p1))).

This is contradictory to the idempotency of σ.

The next lemma is our main lemma. It shows that θ contains no loop. Since θ is

not always idempotent, we need to �nd a di�erent way of proving its "looplessness."

Lemma 91. If G, [], [] ⇒∗ G′, θ, σ and θ 6= ⊥, then for every term s and every

nonnegative integer r,

1. there is no loop with length r or less in θ and

2. for every path p ∈ pset(θr(s)) such that rm(p) is a variable and θ(rm(p)) =

rm(p), p ∈ pset(σ(s)).

Proof. We prove by a two level induction.

Level 1. We �x s and induct on r.

Basis step. r = 0. It is trivially true.

Induction step. Our induction hypothesis (IH1) is that the lemma holds for

r − 1.

1. there is no loop with length n such that 0 ≤ n ≤ r − 1 in θ and

2. for every path p ∈ pset(θr−1(s)) such that rm(p) is a variable and θ(rm(p)) =

rm(p), p ∈ pset(σ(s)).

We need to prove that it also holds for r.

Level 2. We prove by induction on the derivation of G, [], []⇒∗ G′, θ, σ.

Basis step. θ = [], σ = []. It is trivially true.

Induction step. Our induction hypothesis (IH2) is that for every derivation

G, [], []⇒k Gk, θk, σk,
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1. there is no loop of length r in θk

2. for every path p ∈ pset(θrk(s)) such that rm(p) is a variable and θk(rm(p)) =

rm(p), p ∈ pset(σk(s)).

Now, consider the derivation step Gk, θk, σk ⇒ Gk+1, θk+1, σk+1. The only case

where θk+1 6= θk or σk+1 6= σk is Case 7. Therefore, we only need to consider this

case.

Case 7. By construction, there is a variable X and a term t such that θk+1 =

[t/X] ◦ θk.

1. We prove that there is no loop of length r in θk+1.

Suppose towards a contradiction that θk+1 contains a loop p0, . . . ,pn. By (IH2),

θk does not contain loops of length r. There must be an index 0 ≤ i < r such that

pi+1 /∈ θk(pi) but pi+1 ∈ θk+1(pi). By the condition in our construction that

θk(X) = X (4.4.8)

the only di�erence between θk and θk[t/X] is that the former maps X to itself but

the latter maps X to t. Therefore, it must be the case that

rm(pi) = X (4.4.9)

rm(pi+1) ∈ v(t) (4.4.10)

We can always rotate the loop so that i = 0.

rm(p0) = X (4.4.11)

rm(p1) ∈ v(t) (4.4.12)
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Without loss of generality, we may assume

p0 = X (4.4.13)

and p1 ∈ pset(t). Now, consider other paths in the loop. According to the de�nition

of a loop, rm(p1), . . . , rm(pr−1) are di�erent from rm(p0) which is X. Therefore,

they are not a�ected by the change from θk to θk+1, i.e.,

θk(pj) = θk+1(pj) for all 0 < j < r (4.4.14)

Therefore,

pj+1 = θk(pj) for all 0 < j < r (4.4.15)

Therefore,

pr = θr−1k (p1)

∈ θr−1k (pset(t)) by (4.4.12) (4.4.16)

Since rm(pr) = rm(p0) = X,

θk(pr) = {pr} (4.4.17)

110



Therefore,

pr ∈ θk(pr) by (4.4.17)

⊂ θrk(pset(t)) by (4.4.16)

= pset(θrk(t)) by Lemma 17

= pset(σk(t)) by (IH2)

Therefore, X ∈ v(σk(t)). This is contradictory to the condition in our construction

that not X /∈ v(σk(t)).

2. We prove that for every path p ∈ pset(θrk+1(s)) such that rm(p) is a variable

and θk+1(rm(p)) = rm(p), p ∈ pset(σk+1(s)).

Suppose that p is a path such that

p ∈ pset(θrk+1(s)) (4.4.18)

θk+1(rm(p)) = rm(p) (4.4.19)

We need to show that p ∈ pset(σk+1(s)). Let the history of p with respect to a list

of r θk+1s and s be p0, . . . ,pr. Since rm(pr) is a variable, rm(pi) must also be a

variable for 0 ≤ i < r. There must be an integer r′ ≤ r such that

pi 6= pj for 0 ≤ i < j ≤ r′ (4.4.20)

pi = pj for r
′ < i < j ≤ r (4.4.21)

We have proved that there is no loop of length r in θk+1. Therefore, rm(p0), . . . ,

rm(pr′) must be mutually distinct.

Case 7.1. rm(pi) 6= X for 0 ≤ i ≤ r. It can be easily proved by induction that

there is a history of p with respect to a list of r θks and t which coincides with

111



p0, . . . ,pr:

pi ∈ pset(θik(s)) for 0 ≤ i ≤ r (4.4.22)

In particular,

pr ∈ pset(θrk(s)) (4.4.23)

Since rm(pr) 6= X,

θk(rm(pr)) = θk+1(rm(pr))

= rm(pr) by (4.4.19) (4.4.24)

By (4.4.23), (4.4.24), and (IH2),

pr ∈ pset(σk(s)) (4.4.25)

Again, since rm(pr) 6= X,

[σk(t)/X](pr) = {pr} (4.4.26)

Therefore,

pr ∈ [σk(t)/X](pset(σk(s))) by (4.4.25) and (4.4.26)

= pset([σk(t)/X](σk(s))) by Lemma 17

= pset(([σk(t)/X] ◦ σk)(s)) by (2.5.1)

= pset(σk+1(s)) by construction
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Case 7.2. There exists an integer i such that

rm(pi) = X (4.4.27)

By the condition of our construction,

X /∈ v(θk+1(X)) (4.4.28)

By (4.4.19) and (4.4.28),

X 6= rm(pr′) (4.4.29)

Therefore, i is unique.

Now, let us take a look at pj for 0 ≤ j ≤ i. Since rm(pj) 6= X for 0 ≤ j ≤ i,

pj ∈ θjk(s) for 0 ≤ j ≤ i (4.4.30)

In order to apply (IH1), observe that

θk(rm(pi)) = θk(X) by (4.4.27)

= X by the condition in our construction

= rm(pi) by (4.4.27) (4.4.31)

Now, by (4.4.30), (4.4.31), and the second clause of (IH1),

pi ∈ pset(σk(s)) (4.4.32)
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Next, let us take a look at pj for i < j ≤ r′. Since rm(pj) 6= X for i < j ≤ r′,

pj ∈ θ
j−(i+1)
k (pi+1) for i < j ≤ r (4.4.33)

In order to apply (IH1), observe that

θk(rm(pr′)) = θk+1(rm(pr′)) by (4.4.33)

= rm(pr′) by (4.4.19) (4.4.34)

Now, by (4.4.33), (4.4.34), and the second clause of (IH1),

pr′ ∈ σk(pi+1) (4.4.35)

Also,

pi+1 ∈ θk[t/X](pi)

= [t/X](pi) by (4.4.27) (4.4.36)

114



Combining all equations, we have

pr = pr′

∈ σk(pi+1) by (4.4.35)

⊂ σk([t/X](pi)) by (4.4.36)

⊂ σk([t/X](pset(σk(s)))) by (4.4.32)

= pset(σk([t/X](σk(s)))) by Lemma 17

= pset((σk ◦ [t/X] ◦ σk)(s)) by (2.5.1)

= pset(([σk(t)/X] ◦ σk)(s)) by Lemma (89)

= pset(σk+1(s))

An immediate corollary following Lemma 91 is that applying θ repeatedly does not

generate an in�nite sequence of distinct terms

Corollary 92. If G, [], []⇒∗ G′, θ, σ and θ 6= ⊥, there exists an integer K such that

θK+1 = θK.

Proof. Arbitrarily pick a term t. Let K be the total number of distinct variables

that appear in θ and t. Suppose towards a contradiction that θK+1(X) 6= θK(X)

for some variable X. There must be a path p such that p ∈ pset(θK+1(X)) but

p /∈ pset(θK(X)). Let the history of p with regard to k+1 θs and t be p0, . . . ,pK+1.

Since p /∈ pset(θK(X)), pK+1 6= pK . rm(p0), . . . , rm(pK) must all be variables.

There are k+1 variables here, there must be two variables that are the same, which

means that there is a loop in θ. This is contradictory to Lemma 91.

Next, some equations that we will use in the proof of the main theorem of this

subsection.
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Lemma 93. 1. If σ is idempotent, then

[σ(t)/X] ◦ σ = σ ◦ [t/X] ◦ σ (4.4.37)

2. If θ(X) = X, then

θ ◦ [t/X] = [t/X] ◦ θ (4.4.38)

θ ◦ [t/X] = θ[t/X] (4.4.39)

Proof. 1. Suppose that variable Y is in σ(X). By the idempotency of σ, we have

σ(Y ) = Y .

Case 1. Y = X. [σ(t)/X](Y ) = σ(t) = σ([t/X](X)) = σ([t/X](Y )).

Case 2. Y 6= X. [σ(t)/X](Y ) = Y = σ(Y ) = σ([t/X](Y )).

2. It is easy to see that these equations hold true since θ(X) = X.

θ is equivalent to σ in the following sense:

Theorem 94. If G, [], []⇒∗ G′, θ, σ and θ 6= ⊥, there exists an integer K such that

θK = σ.

Proof. By induction on the derivation of G, [], []⇒∗ ∅, θ, σ.

Basis step. θ = [] = σ. K = 0.

Induction step. Our induction hypothesis (IH) is if G, [], [] ⇒k Gk, θk, σk and

θk 6= ⊥, there exists an integer K such that θKk (X) = σk(X) for all variables X in

G. Now consider the derivation step Gk, θk, σk ⇒ Gk+1, θk+1, σk+1. Case 1, 2, 3, 4,

5, 6, 8 do not change θk or σk.

We only need to consider Case 7.
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Case 7. By Corollary 92, there exists an integer K ′ such that

θK
′+1

k = θK
′

k (4.4.40)

By the condition in our construction that

θk(X) = X (4.4.41)

[σk(t)/X] ◦ σk = ([σk(t)/X] ◦ σk)K
′
by Lemma 89

= (σk ◦ [t/X] ◦ σk)K
′
by (4.4.37) in Lemma 93

= (θKk ◦ [t/X] ◦ θKk )K
′
by (IH)

= [t/X]K
′ ◦ θ2KK′

k by (4.4.41) and (4.4.38) in Lemma 93

= [t/X]K
′ ◦ θK′

k by 2KK ′ > K ′ and (4.4.40)

= ([t/X] ◦ θk)K
′
by (4.4.41) and (4.4.38) in Lemma 93

= (θk[t/X])K
′
by (4.4.41) and (4.4.39) in Lemma 93

We may use the θ-mgu instead of the σ-mgu. θ-mgu has the following property.

Lemma 95. Given terms s and t, if θ = mguθ(s, t), then for every variable X, we

have size(θ(s)) ≤ max<({size(s), size(t)}).

Proof. By induction on derivation {〈s, t〉}, [], []⇒∗ ∅, θ, σ.

Now, we replace σ in the previous section by θ in our construction of G from the

previous section. Denote the resulting sequence by G′k(P ), and its limit by G′(P ).
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The construction G′ is

G′0(P ) = F(P )

G′k+1(P ) = G′k(P ) ∪ F(pair(θ)) where there is

a variable X,

a function πi ◦←−s ◦ πj ∈ FX ,

a function
−→
t ∈ Fπj(X) such that

mguθ(s, t) = θ

G′(P ) =
∞⋃
k=0

G′k(P )

An immediate theorem following Lemma 95 is that the construction G′ always

terminates in �nite number of iterations.

Theorem 96. The exists an integer K such that G′K(P ) = G′K+1(P ) = . . .

Proof. The simpli�cation only generates term functions based on terms with sizes

that are smaller or equal to existing terms. Since there are only �nitely many terms

within a given size bound, eventually the construction will stop generating new term

functions.

4.5 Equivalent Types

4.5 Examples

In this subsection, we discuss a topic that is extremely important in the imple-

mentation of our type inference algorithm: how to simplify the types generated by

our type inference algorithm to reduce the redundancy in the generated types. In

order to simplify generated types, we need algorithms for �nding equivalent types.

If two types are equivalent, then we only need to generate one instantiation set for

118



both of them. The goal of this subsection is not to �nd a complete set of simpli�ca-

tions that reduce the types to a minimum set, but to �nd out simpli�cations that

apply to commonly seen patterns of generated types.

Let us �rst look at a few examples of redundant types.

Example 97.

Z ::= c | g(c) | g(Z) (4.5.1)

In (4.5.1), g(c) is redundant since the term function g(c) can be generated by

composing g(Z) with c. To eliminate the redundancy in the this example, we need

a way to �nd out, given a term s that appears on the right-hand side of a formal

grammar rule, whether there is a another term t on the right-hand side of the formal

grammar rule that is more general than s.

Example 98.

X ::= c | g(Z) (4.5.2)

Z ::= c | g(Z) (4.5.3)

In (4.5.2), type X is redundant since it generates exactly the same terms as

type Z. To eliminate the redundancy in this example, we just need to compare two

formal grammar rules and see if they are �syntactically� the same.

Example 99.

X ::= c | g(X) (4.5.4)

Z ::= c | g(Z) (4.5.5)
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In (4.5.4), type X is redundant since it generates exactly the same terms as type

Z. To eliminate the redundancy in this example, we need to compare two formal

grammar rules and see if they generate the same set of terms by induction.

Example 100.

X ::= c | g(Z) (4.5.6)

Z ::= c | g(X) (4.5.7)

In (4.5.6), the type X is redundant since it generates the exactly the same terms

as the type Z. In order to eliminate this redundancy, we need to compare two

formal grammar rules and see if they generate the same set of terms by simultaneous

induction.

Example 101.

X ::= . . . | Z (4.5.8)

In (4.5.8), type X is redundant since it generates exactly the same terms as type

Z. To eliminate the redundancy, we simply remove identify type X with type Z.

We require that this kind of simpli�cation is done for every equation. Note that

we cannot simply replace all occurrences of X by Z in other formal grammar rules.

For example, if we have

Y ::= f(X,Z)

Replacing X by Z would make it a formal grammar rule with a (possibly) smaller

set of generated terms in which all the terms must have the form f(Z,Z), i.e., the
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two arguments of f must be the same:

Y ::= f(Z,Z)

4.5 Finding Redundant Terms

We use a very simple algorithm for �nding redundant terms in our formal gram-

mar. Given a term t that appears on the right-hand side of the formal grammar

rule for variable X, construct a new formal grammar rule that is the same as this

rule except that t is removed from the right-hand side. Replace the former rule by

the latter rule in our formal grammar. We want to test if any term generate by t

can still be generated for X.

We maintain a set U of unvisited pairs of variables and terms. Initially, U =

{〈X, t〉}. Run the procedure redundant(U) de�ned as follows:

1. If U is empty, then return TRUE;

2. Pick a pair 〈X, t〉 from U .

3. For every term s that appears on the right-hand side of the formal grammar

rule for variable X,

(a) If t is an instance of s with t = σ(s) where σ is regular, then

i. Let X1, . . . , Xn be all variables such that σ(Xi) 6= Xi for 1 ≤ i ≤ n,

let U ′ = U ∪ {〈X1, σ(X1)〉, . . . , 〈X1, σ(X1)〉}\〈X, t〉.

ii. Run redundant(U ′)

iii. If it returns TRUE, then return TRUE

iv. If it returns FALSE, then continue with Step 3

(b) If t is not an instance of s, then continue with Step 3
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4. Return FALSE

For example, for Example 97 in the previous subsection, we want to show that

g(c) is redundant. We have

Z ::= c | g(c) | g(Z)

If we remove g(c), we have

Z ::= c | g(Z)

We start with

U = {〈Z, g(c)〉}

Pick the pair 〈Z, g(c)〉 from U , and try to see if there is a term in c | g(Z) that is more

general then g(c). In the �rst try, we try term c, which fails. So we continue to try

the next term g(Z). Now g(c) is an instance of g(Z) with substitution [c/Z]. Given

this substitution, we need to �nd out if Z is more general then c. We recursively

call procedure redundant on the set {〈Z, c〉}. In our recursive call, we have

U = {〈Z, c〉}

Pick the pair 〈Z, c〉 from U , and try to see if there is a term in c | g(Z) that is more

general than c. In the �rst try, we try c, which succeeds, c is an instance of c with

substitution []. Since this substitution is trivial, we return TRUE. This return

value bubbles up to the top level.

It is easy to see that this algorithm terminates since the second component of
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the pair always gets smaller. This algorithm can be used to eliminate redundancy

like that in the Example (97) in the previous subsection, but has some limitations

when it is applied to other kinds of redundancy. The main limitation is that it does

not combine terms. For example, we know that

Z ::= c | g(c) | g(g(Z)) (4.5.9)

produces exactly the same set of terms as

Z ::= c | g(Z) (4.5.10)

But there is no way to use this algorithm to simplify (4.5.9) to (4.5.10).

4.5 Finding Equivalent Types

Now, we look at redundancy like that of the Example (99) and Example (100).

Example (98) is a special case of this kind of redundancy.

We use the following algorithm for testing if every term generated for X is also

generated for Z, given variables X and Z. Again, this is not necessarily complete

in the sense that it may not return TRUE if every term generated for X is also

generated for Z, but it will always return FALSE if there exists a term generated

for X which is not generated for Z. We maintain a set U of unvisited pairs and a

set V of visited pairs. Initially, U = {〈X,Z〉}, V = ∅.

Run the procedure instance(U, V ) de�ned as follows:

1. If U is empty, then return TRUE

2. Pick a pair 〈s, t〉 from U

(a) If s is a variable, then
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i. Let V ′ = V ∪ {〈s, t〉}, U ′ = U ∪ {〈s′1, t〉, . . . , 〈s′n, t〉}\V ′, where s ::=

s′1 | . . . | s′n is a formal grammar rule

ii. Return instance(U ′, V ′)

(b) Else if t is a variable then

i. For each term function t′ that appears on the right-hand side of the

formal grammar rule for t,

A. Let V ′ = V ∪ {〈s, t〉}, U ′ = U ∪ {〈s, t′〉}\V ′

B. Run instance(U ′, V ′)

C. If it returns TRUE, then return TRUE

D. If it returns FALSE, then continue with Step 2(b)i

ii. Return FALSE

(c) Else if t is an instance of s with t = σ(s) where σ is regular, then

i. Let X1, . . . , Xn be all variables such that σ(Xi) 6= Xi for 1 ≤ i ≤ n,

ii. Let V ′ = V ∪ {〈s, t〉}, U ′ = U ∪ {〈X1, σ(X1)〉, . . . , 〈X1, σ(X1)〉}\V ′.

iii. Run instance(U ′, V ′)

iv. If it returns TRUE, then return TRUE

v. If it returns FALSE, then return FALSE

(d) Else (t is not an instance of s)

i. return FALSE

For example, for Example 99, we have

X ::= c | g(X)

Z ::= c | g(Z)

124



We start with

U = {〈Z,X〉}

Pick the pair 〈Z,X〉 from U . Since Z is a variable, we enter Step 2(a)i. We construct

new pairs using the term on the right-hand side of the formal grammar rule for Z

and recursively run instance where we have

V = {〈Z,X〉}

U = {〈c,X〉, 〈g(Z), X〉}

Pick the pair 〈c,X〉 from U . Since X is a variable and c is not, we enter Step 2(b)i.

We want to test if any term in c | g(X) is more general than c. In the �rst try, we

test if c is more general than c. We recursively run instance with

V = {〈Z,X〉, 〈c,X〉}

U = {〈c, c〉, 〈g(Z), X〉}

Pick the pair 〈c, c〉 from U . We enter Step 2(c)i. c is an instance of c. Therefore,

we recursively run instance with

V = {〈Z,X〉, 〈c,X〉, 〈c, c〉}

U = {〈g(Z), X〉}

Pick the pair 〈g(Z), X〉 from U . Since X is a variable and g(Z) is not, we enter

Step 2(b)i. We want to test if any term in c | g(X) is more general than g(Z). In

the �rst try, we test if c is more general than g(Z), which fails. In the second try,
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we test if g(X) is more general than g(Z). g(Z) is an instance of g(X) with uni�er

[Z/X]. Since 〈Z,X〉 is already in V , we run instance recursively where we have

V = {〈Z,X〉, 〈c,X〉, 〈c, c〉, 〈g(Z), g(X)〉}

U = ∅

It returns TRUE which bubbles up to the top level.

It easy to see that this algorithm terminates, since neither U nor V contain any

term that is larger in size than any term that appears in the formal grammar and

eventually V will saturate.
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Chapter 5

incOSHL, the Non-incremental Version

In this chapter, we look at the data structures and subroutines of the imple-

mentation of incOSHL. In the more abstract construction that we have seen so far,

the genOSHL function, the simp function, and the m function have been given

in enough details to be implemented relatively straightforwardly, the only variable

left is the implementation of the d function. Basically, in our de�nition of the d

function, we are just saying that d should choose a minimal instance of the input

clauses with respect to ≤s that contradicts the current model. How to �nd such an

instance e�ciently is the main topic of the rest of the paper. The version of im-

plementation described in this chapter is the simplest and most ine�cient version.

The basic idea of this version is really simple: when the algorithm tries to �nd a

new instance, it

1. starts by looking for an instance of size 1, the smallest possible size of any

instance, that contradicts the current model;

2. if it �nds an instance of this size, then it returns this instance as the result of

d;

3. if it cannot �nd an instance of this size, then it looks for an instance of size

2, that contradicts the current model;

4. so on and so forth.



The reason this version of incOSHL implementation is call �non-incremental� is

that it restarts from scratch every time the global data is modi�ed, which results

in a lot of repetitive computation. Here, there are two main pieces of data that

are global, one is the model, the other is the current size of which the algorithm is

looking for an instance. One of the reasons why these two pieces of data are global

is that they are used by almost all subroutines that we are going to de�ne. A more

essential reason is that making them global enables us to construct an incremental

version of incOSHL implementation, which we will elaborate in Chapter 7.

To avoid presenting overwhelming details, we will use a Java-based pseudo-code

for describing both the data structures and the subroutines of incOSHL. The pseudo-

code should still be considered �algorithms� rather than actual code. However, as

readers will see, they can be turned into real code fairly easily.

5.1 Some Pseudo-code Notations

In this section, we introduce some language constructs and rules for our pseudo-

code that are not found in Java. We will list their syntax and give an informal

explanation of their semantics.

1. As with most pseudo-code, we do not require explicit declaration of local vari-

ables. We do, however, require a subroutine's parameter types and return type

to be explicitly speci�ed, since they are considered part of the subroutine's

speci�cation.

2. We allow methods to return tuples. For example, we can de�ne a method

( i n t , i n t ) id2( i n t x, i n t y) {

r e tu rn (x, y);

}
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We allow assigning a tuple returned from a method to a tuple of variables.

For example, we can write

(x, y) = id2(a, b);

We use underscore �_� to represent a return value that we do not need.

(_, _) = id2(a, b);

3. We introduce the either-or control structure.

e i t h e r <stmt > or <stmt >

where each �<stmt>� is replaced by a pseudo code statement. To see how

an either-or statement works, let us assume that there is a stack containing

program states, which we will call the �backtrack thread.� When an either-or

control structure is executed, a program state will be pushed onto the back-

track thread, the statement following �either� will be executed immediately

after that. The program state that gets pushed onto the backtrack thread is

as if the program control is immediately before the statement following �or�.

The �or� clause can take a guard

e i t h e r <stmt > or i f (<expr >) <stmt >

The e�ect of the guard is that the program state is saved only if �<expr>�

evaluates to true at the time the either-or structure starts to execute.

4. To pop a program state from the �backtrack thread,� we use the backtrack

statement:

backtrack

A backtrack statement pops the top program state from the �backtrack thread�

and restores that program state. As you can see, the either-or control structure
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and the backtrack statement are dynamically scoped, rather than lexically

scoped.

5. The truncate statement

t runcate

clears all program states saved. The truncate statement will not be used in

our fully incremental version to be described in Section 7.2, but before that we

still need it for our non-incremental version and partially incremental version.

5.2 Data Structures

In this section, we take a look at the data structures used in our incOSHL imple-

mentation. These data structure are shared by both the incremental version and the

non-incremental version of incOSHL implementation. For ease of presentation, all

the data structures de�ned here are simpli�ed and some variable names are renamed

from the actual source code to match the terminology used in this dissertation. We

will also only give the interface of each class, instead of listing full implementation

details such as private members and method bodies.

The �rst class is the SymbolId class.

c l a s s SymbolId {

boolean isFuncSymbol;

i n t arity;

}

In our algorithm, each symbol has a unique id and each id is represented by a unique

SymbolId object in our pseudo-code. The �isFuncSymbol� �eld is true if the symbol

is a function symbol (or a predicate symbol), and false if the symbol is a variable. If

�isFuncSymbol� is true, then the �arity� �eld stores the arity of the function symbol
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(or the predicate symbol); if �isFuncSymbol� is false, then the �arity� �eld stores

0. In the real implementation, however, we use a more e�cient way to handle

symbolId, which basically uses a 64-bit unsigned integer to store the id. Function

symbols and variables have their own value ranges. Hence the �isFuncSymbol� is

implicitly encoded. The arity is also encoded by the lower bits of the 64-bit integer,

given the observation that the neither the arity of a function symbol, nor the number

of function symbols is likely to be large. The current version supports up to 16K

(214) function symbols with arity up to 255 (28 − 1) and up to 4M (222) variable

symbols.

The next class is the Symbol class.

c l a s s Symbol {

SymbolId key;

Symbol next;

}

A Symbol object represents the occurrence of a symbol in a term. For example,

the term f(f(a)) is represented by three Symbol objects that represent f , f , and a,

respectively, where the two occurrences of fs are represented by two di�erent Symbol

objects. The �key� �eld store the unique id of the symbol. Di�erent occurrences

of the same symbol have the same �key.� The �next� �eld of a Symbol object

points to a Symbol object representing the occurrence of the symbol on its right.

The �next� �eld of the Symbol object that represents the occurrence of rightmost

symbol in a term points to �null.� For example, in term f(a), the �next� �eld of

the Symbol object that represents the occurrence of f points to the Symbol object

that represents the occurrence of a and the �next� �eld of the Symbol object that

represents the occurrence of a points to �null.� In the actual source code, the

Symbol objects are not stored in linked list, but an array, and the next �eld is not
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needed any more. They also contains extra metadata about the term such as, if this

symbols is a variable, whether this is the �rst occurrence of this variable, which are

�lled in as part of the preprocessing step and are used in the proof search to reduce

unnecessary repeated computation.

The next class is the Term class.

c l a s s Term {

Symbol firstSymbol;

i n t termSize;

}

A Term object represents a term. Here, we use the word �term� in a more general

sense which includes both �rst-order logic terms and atoms. The ��rstSymbol� �eld

of a Term object points to a Symbol object that represents the occurrence of the

leftmost symbol of the term. For example, the ��rstSymbol� �eld of a Term object

that represents the term f(f(a)) points to a Symbol object that represents the �rst

occurrence of f . The �termSize� �eld stores the number of symbols in the term, i.e.,

the value of the size(−) function. In actual source code, the �rstSymbol �eld is

stored separately, as a term may have di�erent metadata when it occurs in di�erent

places. But since we do not use any of those metadata in our pseudo-code, we just

store it in the Term object, which is simpler to present. Also in actual source code,

all terms are perfectly shared. A global object called the �term matrix� is used to

create new terms and look up existing terms. Once references to terms are obtained,

term equality is compared simply by pointer comparison.

The next class is the Literal class.

c l a s s Literal {

Term atom;

boolean isPositive;

Literal complement;
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Clause modelClause;

}

A Literal object represents a literal. The �complement� �eld stores its complement.

The �modelClause� �eld works as follows: in the kth iteration of our construction in

Chapter 3, it points to a ground clause in Tk whose maximum literal is a complement

of this literal. We only need to give a meaningful value to this �eld for objects

representing ground literals that are false in the initial model I0. Recall Condition

1 of the �perfect linking� property: there is exactly one clause in Tk whose maximum

literal is a complement of any literal in this group. Hence it is well-de�ned.

The next class is the TrieNode class.

c l a s s TrieNode {

SymbolId key;

TrieNode funcChild;

TrieNode sibling;

TrieNode lookup(SymbolId );

boolean available;

Term subterm(TrieNode start);

TrieNode insert(Symbol );

TrieNode remove(Symbol );

}

A trie is a term indexing [41] data structure. Our implementation is a dictionary

stored in a standard �child-sibling� tree. Each node in the tree stores a symbol and

each path in the tree corresponds to a term. For example, the trie in Figure 5.2.1

stores terms f(a), g(a, a), and g(b, a). A TrieNode object represents a node in a

trie. The �key� �eld stores the unique id of the symbol stored in the current node.

The �funcChild� �eld points to one of its child nodes and the �sibling� �eld points

to its sibling node. The �lookup� method looks up a child with a unique symbol
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Figure 5.2.1: A Trie

id. This method will always return a TrieNode object, but the TrieNode object's

�available� �eld may be false. The �available� �eld indicates whether a TrieNode

object actually represent an existing trie node. The �subterm� method returns a

subterm with symbols starting from �start� (exclusive) and ending at the current

node (inclusive). The �insert� method inserts a new path into the trie and returns

the leaf node of the path. The �remove� method removes a path from the trie and

returns the leaf node of the path.

The next class is the Sub class.

c l a s s Sub {

Sub push(SymbolId , Term);

Term lookup(SymbolId );

}

A substitution is stored in a linked stack. A Sub object represents both a node in

such a stack and the substitution represented by the portion of the stack below the

node (including the node). The data structure is immutable to avoid inconsistencies

during backtracking. The �push� method takes in a unique symbol id (which must

be that of a variable) and a term and returns a new Sub object representing a
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new substitution which is the same as the substitution that the current Sub object

represents except it maps the unique symbol id to the term. For example, if we have

a Sub object that represents the substitution [f(a)/X][a/Y ], then by invoking the

push method on symbol Y and term g(a), we obtain a Sub object that represents

the substitution [f(a)/X][g(a)/Y ].

The next class is the PerfectlyLinkedSet class.

c l a s s PerfectlyLinkedSet {

Clause findClauseToDelete(Set);

vo id deleteClause(Clause );

vo id addClause(Clause );

}

The �addClause� method adds a clause to the set, which may make the set no longer

perfectly linked. The ��ndClauseToDelete� method �nds a clause that needs to be

deleted towards restoring the perfect linking property of the set. The �deleteClause�

method actually deletes a clause from the set.

The next class is the Clause class.

c l a s s Clause {

Literal [] literals;

vo id sort ();

}

A clause object contains an array of literals. The �sort� method does an in-place

sort of the array of literals in descending order, so that the �rst literal is always the

maximum literal.

Finally, we look at class ClauseTreeNode.

c l a s s ClauseTreeNode {

boolean isLeaf;

Literal literal;
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Figure 5.2.2: A Clause Tree

ClauseTreeNode [] subtrees;

}

Clause trees are used to store input clauses. Each ClauseTreeNode object represents

a node in a clause tree. The �isLeaf� �eld indicates whether this is a leaf node. The

�literal� �eld stores a literal, except in root and leaf nodes, where �isLeaf� is null. A

clause is represented by a path from the root of the clause tree (exclusive) to a leaf

(exclusive) in the clause tree. 1 The �subtrees� array stores pointers to root nodes

of all subtrees. An example of the clause tree containing clauses {p, q}, {p, q, r},

{r, r′} is shown in Figure 5.2.2. Again, in the actual source code, ClauseTreeNode

objects contain extra metadata about the clauses, which are �lled in as part of the

preprocessing step and are used in the proof search to reduce unnecessary repeated

computation.

1In our implementation, we do not actually create objects for the leaf nodes. The �isLeaf� node

indicates whether there is a leaf under the current node.
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5.3 Subroutines

In this section, we look at the subroutines of the non-incremental version of

incOSHL. There are four main subroutines:

1. �lookup� �nds an instance of a term from a trie. This subroutine implements

the uni�cation algorithm. It takes in a term and a trie of ground terms. It

returns, if possible, a substitution such that the returned substitution instan-

tiates the input term to a term in the input trie.

2. �inverseLookup� �nds an instance of a term not in a trie. This subroutine

implements the disuni�cation algorithm [32]. It takes in a term and a trie of

ground terms, and returns, if possible, a substitution, such that the returned

substitution instantiates the input term to a term not in the input trie.

3. �traverse� traverses a ClauseTree object, and calls �lookup� and �inverseLookup�

to generate an instance of a clause stored in the ClauseTree object which con-

tradicts the current model.

4. �updateModel� updates the current model and generates a new model that

makes a contradicting instance true.

We assume that

1. There is a global variable �globalSizeLimit� which is the current size of which

the algorithm is trying to �nd a contradicting instance.

2. There is a global variable �trieRoot� which is the root node of the trie that

indexes the current model;

3. There is a global variable �perfLinkedSet� that represents Tk, the current set

of ground instances.
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5.3 Finding an Instance of a Term from a Trie

The �lookup� subroutine looks like:

(TrieNode , Sub , i n t )

lookup( i n t n, TrieNode node , Symbol symbol , Sub sub) {

i f ( symbol == n u l l ) {

r e tu rn (node , sub , n);

} e l s e i f ( symbol.key.isFuncSymbol ) {

nodeNew = node.lookup(symbol.key);

i f ( ! nodeNew.available ) {

backtrack ;

} e l s e {

r e tu rn lookup(n, nodeNew , symbol.next , sub);

}

} e l s e { // symbol is a variable

subterm = sub.lookup(symbol );

i f ( subterm == n u l l ) {

(nodeNew , retterm , nNew) = branch(n, cnode , cnode , 1);

subNew = sub.push(symbol.key , retterm );

r e tu rn lookup(nNew , nodeNew , symbol.next , subNew );

} e l s e {

nInput = n + subterm.termSize - 1;

i f ( nInput > globalSizeLimit) {

backtrack ;

}

(nodeNew , subNew , nNew) =

lookup(nInput , node , subterm.firstSymbol , sub);

r e tu rn lookup(nNew , nodeNew , symbol.next , subNew );

}

}

}
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The �lookup� subroutine looks up an instance of a term from a trie. It takes in

four parameters:

1. �n� is a lower bound to the size of any term in the trie that matches the input

term. If �n� is greater than �globalSizeLimit� then it means that even if we

continue further down, no more instances with size �globalSizeLimit� can be

found. The initial value of �n� should be the size of the input term.

2. �node� is the current trie node. It indicates our progress down the trie. The

nodes between the root (exclusive) and the current nodes (inclusive) have

already been matched with a pre�x of the input term.

3. �sub� is the substitution generated from matching that pre�x with the trie.

4. �symbol� is the next symbol in the input term to be matched with a children

of the current trie node.

The �lookup� subroutine is recursive in two ways. First, after matching a symbol

with a node, it recursively invokes itself to match the next symbol. Second, if a

variable has already been bound to a term, then when the same variable appears

again, the subroutine recursively invokes itself using the term that is bound to

the variable as the new input term, and the current node as the new starting

node; when the recursive invocation returns, it resumes from the node where the

recursive invocation �nishes. For example, if the input term is g(X,X), then we

know when the second X is encountered, X must have been bound to some term.

The subroutine recursively invokes itself, looking for an instance of the term that X

is bound to from the current node. Since in our algorithm, the trie contains ground

terms only, this second kind of recursion has at most two levels. But this algorithm

can be easily generated to tries containing non-ground terms using �versions.� (See

source code for more details about versions)
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Figure 5.3.1: TrieNode Objects Returned by the �lookup� Subroutine

The �lookup� subroutine returns three return values:

1. The �rst one is the node in the trie where the an instance of the input term

is found. The node is not necessarily a leaf node of the trie if �lookup� is not

called on �trieRoot.� This is illustrated in Figure 5.3.1. (1) If we start from

the root, and the input term is g(X, a), then an instance of the input term

is g(b, a). The subroutine ends at the rightmost node containing a. (2) If we

start from the node containing g, and the input term is X, then an instance

of the input term is b, a subterm of g(b, a). The subroutine ends at the node

containing b.

2. The second one is the new substitution.

3. The third one is the new lower bound. If this call is a recursive call, then this

return value re�ects the lower bound of the top level call.

The �branch� subroutine, invoked in the �lookup� subroutine, �nds a subterm

starting from the current node.

(TrieNode , Term , i n t )

branch( i n t n, TrieNode start , TrieNode curr , i n t np) {
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i f ( numberOfPlaceholders == 0 ) {

r e tu rn (curr , curr.subterm(start), n);

} e l s e {

r e tu rn branchTryTargetNodes(n, start , curr , 1);

}

}

(TrieNode , Term , i n t )

branchTryTargetNodes( i n t n, TrieNode start , TrieNode curr , i n t np) {

e i t h e r {

nInput = n + curr.symbol.arity;

i f ( nInput > globalSizeLimit ) {

backtrack ;

} e l s e {

r e tu rn branch(nInput , start , curr , np + arity - 1));

}

} or {

i f (curr.sibling == n u l l ) {

backtrack ;

}

r e tu rn branchTryTargetNodes(n, start , curr.sibling , np);

}

}

The �branch� subroutine takes in four parameters. �n� is a lower bound to the size

any term in the trie that matches the input term. �start� is the starting node. �curr�

is the current node. �np� is the number of placeholders.

�branch� simply generates all subterms starting from the start term. The nodes

between the starting node (exclusive) and the current nodes (inclusive) is a pre�x

of terms that it generates. For example, as shown in Figure 5.3.2, suppose that it

starts from the root, and one placeholder. It can go down to the node containing
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Figure 5.3.2: A Example Of the �branch� Subroutine

g, generate the pre�x g, and place it in the placeholder. Since g has arity 2, it

generates two new placeholders. Next, it can go down to the node containing b,

generate the pre�x b, and place it in one of the new placeholders. Since b has arity

0, it does not generate any new placeholders. Next, it can go down to the node

containing a, generate the pre�x a, and place it in the other new placeholder. Since

a has arity 0, it does not generate any new placeholders. It stops there and returns

the generated term.

The nondeterminism for choosing which child node to go down is encapsulated

in the either-or control structure in the �branchTryTargetNode� subroutine.

5.3 Finding an Instance of a Term That Is Not in a Trie

We view the problem of �nding an instance of a term that is not in a trie as a

problem of �nding an instance of a term in the complement trie. The complement

of a trie is a trie containing all terms not in the former trie. For example, the

complement trie of the trie in Figure 5.2.1 looks like that in Figure 5.3.3. We

cannot show the whole complement trie since it has an in�nite number of nodes.

The complement of a �nite set in a in�nite set is in�nite. The solution is that we
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Figure 5.3.3: A Complement Trie

grow the complement trie in a lazy manner. The �lookupInverse� subroutine looks

like:

(TrieNode , Sub , i n t )

lookupInverse( i n t n, TrieNode node , Symbol symbol , Sub sub) {

i f ( symbol == n u l l ) {

return (node, sub, n);

} e l s e i f ( symbol.key.isFuncSymbol ) {

nodeNew = node.lookUp(symbol.key);

r e tu rn lookupInverse(n, nodeNew , symbol.next , sub);

} e l s e { // symbol is a variable

subterm = sub.lookup(symbol );

i f ( subterm == n u l l ) {

(nodeNew , retterm , nNew) = branchInverse (n, node , node , 1);

subNew = sub.push(symbol.key , retterm );

r e tu rn lookupInverse(nNew , nodeNew , symbol.next , subNew );

} e l s e {

nInput = n + subterm.termSize - 1;
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i f ( nInput > globalSizeLimit) {

backtrack ;

}

(nodeNew , subNew , nNew) =

lookupInverse(nInput , node , subterm.firstSymbol , sub);

r e tu rn lookupInverse(nNew , nodeNew , symbol.next , subNew );

}

}

}

The key di�erences between this subroutine and the �lookup� subroutine are high-

lighted in the code. First of all, when the end of the term is reached, it returns

the substitution and the corresponding TrieNode object anyway. If the TrieNode

object is available, then the caller of this function should discard the result. Second,

instead of calling the �branch� subroutine, it calls the �inverseBranch� subroutine.

The �branchInverse� subroutine considers all possible terms that a variable can

be instantiated to. It depends on a array �functionSymbols� of all possible function

symbols generated when parsing the input clauses. The �inverseBranch� subroutine

looks like:

(TrieNode , Term , i n t )

branchInverse( i n t n, TermCacheNode currTCN , TrieNode node ,

i n t nPlaceholders) {

i f ( nPlaceholders == 0 ) {

r e tu rn (node , currTCN.term , n);

} e l s e {

r e tu rn branchInverseTryFuncSymbols(n, currTCN , node ,

nPlaceholders , 0);

}

}
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(TrieNode , Term , i n t )

branchInverseTryFuncSymbols( i n t n, TermCacheNode superTCN ,

TrieNode node , i n t nPlaceholders , i n t i) {

e i t h e r {

s = functionSymbols[i];

newTCN = superTCN.lookup(s);

nodeNew = node.lookup(s);

nInput = n + s.arity;

i f (nInput > globalSizeLimit) {

backtrack ;

} e l s e {

r e tu rn branchInverse(nInput , newTCN , nodeNew ,

nPlaceholders + s.arity - 1);

}

} or i f (i + 1 != numberOfFunctionSymbols ) {

r e tu rn branchInverseTryFuncSymbols(n, superTCN , node ,

nPlaceholders , i + 1);

}

}

5.3 Traversing a Clause Tree

Now we take a look at how to traverse a clause tree to �nd an instance of a

clause that contradicts the current model. Recall that we assume that there is a

global variable �trieRoot� which is the root node of the trie that indexes the current

model.

(ClauseTreeNode , Sub)

traverse(ClauseTreeNode node , Sub subInit) {

i f (node.literal == n u l l ) {

retsub = subInit;

} e l s e i f (node.literal.isPositive) {
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(retnode , retsub , _) = lookupInverse(node.literal.atom.termSize ,

trieRoot , node.literal.atom.firstSymbol , subInit );

i f ( retnode.available ) {

backtrack ;

}

} e l s e {

(_, retsub , _) = lookup(node.literal.atom.termSize ,

trieRoot , node.literal.atom.firstSymbol , subInit );

}

i f (node.isLeaf) {

r e tu rn (node , retsub );

} e l s e {

r e tu rn traverseSubtrees(node , retsub , 0);

}

}

(ClauseTreeNode , Sub)

traverseSubtrees(ClauseTreeNode node , Sub subNew , i n t index) {

e i t h e r

r e tu rn traverse(node.subtree(index),subNew );

or i f (index + 1 < node ->degree)

r e tu rn traverseSubtrees(node , subNew , index + 1);

}

The �traverse� subroutine tries to �lookup� or �lookupInverse� the literal stored in

current node. If the literal is null, it means the current node is the root node of the

clause tree and we should directly traverse its subtrees. The �traverseSubtrees� sub-

routine tries to traverse all subtrees of the current node. Again, the non-determinism

is encoded in the either-or structure of the �traverseSubtrees� subroutine.
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5.3 Updating the Model

Recall that we assume that there is a global variable �perfLinkedSet� that rep-

resents Tk, the current set of ground instances. The �updateModel� method tries

to update the �perfLinkedSet� so that it can generate a model and returns whether

this is possible.

boolean

updateModel(ClauseTreeNode node , Sub sub) {

gc = node.instance(sub);

wh i l e (gc.literals [0]. modelClause != n u l l ) {

gc = gc.orderResolve(gc.literals [0]. modelClause );

i f (gc.literals.length == 0) {

r e tu rn f a l s e ;

}

}

perfLinkedSet.addClause(gc);

trieRoot.insert(a.literals [0]. atom.firstSymbol );

wh i l e ((c = perfLinkedSet.findClauseToDelete ()) != n u l l ) {

trieRoot.remove(a.literals [0]. atom.firstSymbol );

perfLinkedSet.deleteClause(c);

}

r e tu rn t rue ;

}

This subroutine is basically a direct implementation of the simp function of in-

cOSHL. First, it does ordered-resolution. Next, it adds the resolvent to the current

set of ground clauses. Then, it deletes some clauses to make the new set of ground

clauses perfectly linked. Note that the ��ndClauseToDelete� method, the detail of

which we did not show, should never delete �gc,� the newly added clause. This has

been taken care of in the actually source code.
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Now, recall that we assume that there is a global variable �clauseTreeRoot� that

stores the root of our clause tree. The main loop looks like:

boolean

mainLoop () {

f o r (;;) {

globalSizeLimit = 1;

f o r (;;) {

t runcate ;

e i t h e r {

(noderet , subret) = traverse(clauseTreeRoot , new Sub ());

break ;

} or {

i f (saturated ()) {

r e tu rn t rue ;

}

globalSizeLimit ++;

}

}

i f ( !updateModel(noderet , subret) ) {

r e tu rn f a l s e ;

}

}

}

The �mainLoop� iteratively generates instances that contradict the current model

and updates the model. It returns whether the input clauses are satis�able. If

it returns false, then it means that the subroutine has found an unsatis�able set

of ground instances of the input clauses. If it returns true, the it means that the
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subroutine has found a model for the input clauses.2 When generating instances, it

starts with �globalSizeLimit�, the variable that stores the upper limit of the size of

a clause that can be generated, equaling 1. If no instance can be generated under

the size limit, then it �rst tests if the instance generation process has saturated,

i.e., no instance can be generated any more (satis�able). If the answer is yes, then

it returns true; otherwise, it increments the variable and retries. When an instance

is generated but the model cannot be updated (unsatis�able) any more, it returns

false.

2Since validity in classical �rst-order logic is semidecidable, this does not happens for every

satis�able set of input clauses.
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Chapter 6

A Language-based Approach to E�ciency

We have discussed details of our non-incremental version of incOSHL. The re-

maining problem is how to implement them e�ciently. We have mentioned in the

previous chapter about an incremental version of our incOSHL algorithm. Before

showing the details of it, we would like to introduce the STACK EL, an embedded

language written mainly using C/C++ macros, that enables a maintainable imple-

mentation of the incremental version of incOSHL. The main rationale of providing

an embedded language instead of directly implementing the incremental version

in C is to improve the e�ciency of development and maintenance of our imple-

mentation. In our experience with implementing the Java version of OSHL-S, the

complexity of a direct implementation is too high for a one person project, not to

mention ease of maintenance. Since theorem provers, like any other software, are

constantly evolving, ease of development and maintenance is a key factor in the

successful evolution of a theorem prover. We followed the guideline of strati�cation

in making this design decision, encapsulating all the common, low-level operations

into a generic embedded language, and leaving only the high-level, prover-speci�c

operations to the prover-speci�c code. As a result, both the embedded language

and the theorem prover are made easier to test, debug, and modify.



The STACK EL is an embedded language which implements the language con-

structs used in the algorithms in Chapter 5. In particular, it provides in the em-

bedded language itself constructs such as function declaration, function de�nition,

function call, function return which parallel those of the host language but support

the additional features of the STACK EL such as saving and restoring program

states and global mutable data dependency.

In this implementation of the STACK EL, we make use of one of the oldest

features in the C Programming Language � macros. There are many debates around

whether one should or should not use macros, especially around the issue of hygienic

macros. Using macros allows the STACK EL to provide an embedded language that

looks and feels like a standalone programming language, while o�ering the following

bene�ts:

• It is fully interoperable with C/C++.

• It is statically typed.

• STACK EL code is C/C++ code and is as portable as any C/C++ code. It

does not require any external tools or non-standard runtime library. This is

extremely important if one wants to run the code on a server without full

administrator privileges.

6.1 The Concrete Syntax of the STACK EL

In this section, we show the concrete syntax of the STACK EL as embedded

in C/C++. We follow the C/C++ convention that all-capitalized identi�ers are

macros.
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6.1 Function Declaration

The syntax for function declaration is as follows

#define LEVEL_ <function name > <level >

PROTO(<function name >,

(<parameter 1 type >, ..., <parameter m type >),

< r e tu rn value 1 type >, ..., < r e tu rn value n type >)

It declares a function with name �<function name>� at level �<level>� with m

parameters and n return values, where m and n can be up to 10 in the current

implementation. The level of a function is used to allow functions on di�erent levels

to see each other's stack frame. This is useful, for example, to avoid passing lots

of constant values around when operations in a nested function call need to access

variables declared in the function that make the nested function call. The main

purpose of the �PROTO� macro is to generate a list of de�nitions that can be used

for typechecking.

As an example of function declaration,

#define LEVEL_lookup 1

PROTO(lookup ,

( i n t , Trie *, PMVMInstruction *, Sub *),

Trie *, Sub *, i n t )

declares a lookup function at level 1, with four parameters and three return values.

6.1 Function De�nition

The syntax for function de�nition looks like:

#define FUN <function name >

PARAMS(

<parameter 1 type >, <parameter 1 name >,

...,
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<parameter m type >, <parameter m name >)

RETURNS(< r e tu rn value 1 type >, ..., < r e tu rn value n type >)

BEGIN

DEFS(

<local variable 1 type >, <local variable 1 name >,

...,

<local variable l type >, <local variable l name >)

<statements >

END

It de�nes a function with name �<function name>� with m parameters, n return

values, and l local variables, where m, n, and l can be up to 10 in the current

implementation. For example,

#define FUN lookup

PARAMS(

i n t , n,

Trie *, curr ,

PMVMInstruction *, inp ,

Sub *, sub)

RETURNS(Trie *, Sub *, i n t )

BEGIN

DEFS(Term *, subterm ,

PMVMInstruction *, varInp ,

Trie *, varNode)

...

END

de�nes a function named �lookup.�
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6.1 Accessing Variables

To access a parameter or a local variable from the current stack frame, either

for l-value or r-value, use the following syntax:

VAR(<local variable name or parameter name >)

For example, in our �lookup� function, we can use

VAR(varNode)

and

VAR(curr)

as normal C/C++ expressions.

6.1 Function Call

To call a function, use the following syntax:

FUNC_CALL(<function name >,

(<argument 1>, ..., <argument m>),

<l-value 1>, ..., <l-value n>)

where the l-values are used to store the return values. For example,

FUNC_CALL(lookup ,

(1, trieRoot , inp , new Sub()),

nodeNew , subNew , nNew)

In this example, we have also shown that we can mix and match C/C++ elements

with the STACK EL, here �1� is a C/C++ integer literal, �trieRoot�, �inp�, �node-

New�, �subNew�, and �nNew� are all C/C++ variables, and �new Sub()� is a C++

expression.

To tail-call a function, use the following syntax:
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FUNC_TAIL_CALL(<function name >,

(<argument 1>, ..., <argument m>))

No l-value is provided to store the return values. The macro directly passes the

return value on to the caller of the current function. The number of return values of

the function being called and their types should match those of the calling function.

For example, if we are within the �lookup� function, then we can write:

FUNC_TAIL_CALL(lookup ,

(1, trieRoot , inp , new Sub ()))

To return from a function, use the following syntax:

RETURN(< r e tu rn value 1>, ..., < r e tu rn value m>)

Again, the number of return values and their types should match those of the

function from which it returns. For example, if we are within the �lookup� function,

then we can write:

RETURN(trieRoot , inp , new Sub())

6.1 Working with Program States

To save a program state, use the following syntax:

SAVE_STATE(< r e tu rn l abe l >)

The �<return label>� is a program label from where the program execution should

be resumed when the program state is restored. For example,

SAVE_STATE(rp)

rp:

...
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The return label does not have to follow immediately after the SAVE_STATE

macro.

To restore a program state, use the following syntax:

RESTORE_STATE

To truncate, use the following syntax:

TRUNCATE_STACK

Our higher-level pseudo-code constructs can be translated into our lower level

macros as follows: The either-or control structure and the backtrack statement are

implemented using SAVE_STATE and RESTORE_STATE as follows:

e i t h e r <statement 1> or <statement 2>

is implemented by

SAVE_STATE(rp)

<statement 1>

goto cont;

rp:

<statement 2>

cont:

e i t h e r <statement 1> or i f (<expr >) <statement 2>

is implemented by

i f (<expr >)

SAVE_STATE(rp)

<statement 1>

goto cont:

rp:

<statement 2>

cont:
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and

backtrack

is implemented by

RESTORE_STATE

6.1 Additional Features

There is a more powerful version of SAVE_STATE with declares dependency of

program states on global mutable data and anchored program states:

SAVE_STATE_WITH_THREAD_DEPENDENCY_AND_ANCHOR(< r e tu rn l abe l >,

<thread object >, <thread id >,

<dependency object >, <dependency type >,

<anchor >)

1. Instead of having one backtrack threads, we have multiple backtrack threads.

The current thread is where we �nd program states to restore but we can

switch to other threads if necessary. The additional parameters �<thread

object>�, and �<thread id>� are used for this purpose.

2. Instead of making every program state saved in every thread available for

RESTORE_STATE, we may say that some program states are unavailable

based on the state of certain global objects. The additional parameters �<de-

pendency object>�, and �<dependency type>� are used for this purpose.

3. �<anchor>� indicates whether this state is anchored. An anchored program

state is a program state which does not get popped from the current backtrack

stack, even after it is restored.

To declare a data dependency for all future actions, use the following syntax:
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SAVE_DATA_DEPENDENCY

We will elaborate these addition features in Section 6.2.4 and Section 6.2.5.

6.2 The implementation of the STACK EL

The implementation of the STACK EL is based on the idea of the Spaghetti

stack (or heap-allocated stack frames [4], or cactus stack [16], or saguaro stack, or

in-tree). Spaghetti stacks have been used in various programing language runtime

implementations, such as Scheme, Standard ML of New Jersey, and Interlisp [10].

In the STACK EL, each function is also a coroutine, which can yield/resume

program control anywhere in the function. It has been shown [19] that the optimal

strategy of implementing such coroutines is to allocate stack frames of �real corou-

tines� from the heap, while allocating stack frames of �fake coroutines� � coroutines

that never yield/resume control from a stack. The implementation of the STACK

EL takes advantage of the tight integration with C/C++, a bene�t of embedding,

and make the following distinction: �real coroutines� are written using the EL, which

are allocated on a memory region, a heap-like data structure, �fake coroutines� are

written in C/C++, which, naturally, are allocated on the system stack. In addi-

tional to the basic spaghetti stack, STACK EL has an important feature which is

global mutable data dependency. This feature enables the e�cient reuse of saved

program state, even if the global mutable data has been changed.

6.2 Memory Management Using Memory Regions

A memory region is a low-level data structure that is used extensively in the

current implementation of incOSHL. It has a few key capabilities that make it a

better choice then the system provided malloc/free. A memory region consists of a

158



linked list of nodes. The metadata of the memory region, such as the total size and

the pointer to the �rst node, are stored on the �rst node. Similarly, the metadata

about each node is stored in the node itself. There is no extra allocation except for

nodes. This way, we can make the size of a node to be a multiple of the size of a

operating system memory page and get relatively high performance when allocating

and deallocating nodes. If all objects allocated in a memory region are of the same,

�xed-size type, then the memory region can also be used as an object pool.

A memory region may grow by allocating new nodes if it run out of space.

Objects allocated in a memory region can be deleted, but the memory that they

occupy is not reclaimed until one of the following happens:

1. The whole memory region is deallocated.

2. In memory regions that are used as object pools, a new object is created at

the location of the previous freed object.

The structs for a node and a region are:

s t r u c t region_node {

uns igned char *block; // pointer to memory block

size_t size; // size of the memory block in bytes

size_t used; // used bytes of the memory block

s t r u c t region_node *next; // pointer to the next region

};

s t r u c t region {

size_t alloc_size; // size allocated

s t r u c t region_node *head , // pointer to the first node

s t r u c t region_node *active; // pointer to the last node

s t r u c t region_desc *free; // pointer to a free list

};
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Most of the members of these structs are quite straightforward. The �free� member

of the �region� struct is used when the region is used as an object pool where �free�

points to the free list.

Our implementation uses a memory region in one of three following ways:

1. Use it as a one time allocation bu�er. The objects allocated in the memory

region remain allocated for the whole cycle of the theorem prover. Objects

allocated this way are those that are used globally and generated only during

the preprocessing phase.

2. Use it as a garbage collected bu�er. The objects allocated in the memory

region cannot be �freed� and its space will be recycled when the garbage

collector is called explicitly and programmatically. Most objects, including

stack frames of the coroutines, are allocated this way.

3. Use it as an object pool. The objects allocated in the memory region are of

the same type. The objects can be �freed� and their space will be recycled

when a new object is created at the location of the previously freed object.

6.2 The STACK EL Stack

A STACK EL stack, similar to a Spaghetti stack, can be viewed as a tree. Each

path of the tree corresponds to a separate stack, with the leaf node being the top of

the stack. In a sequential setting, there is alway one path that is currently active.

Other paths represent stacks used by coroutines which have yielded control. The

leaf of the active path is the active stack frame. The tree structure of a STACK EL

stack allows di�erent stacks to share a common lower portion of the stack, avoiding

the need to copy the whole stack when saving and restoring program states.

In our STACK EL, each either-or control structure causes the STACK EL stack
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Figure 6.2.1: A STACK EL Stack

to save the current program state and create a new branch from the active stack

frame. Multiple encounters of one or more either-or control structure create a tree

like structure where the tree nodes are stack frames. For example, as shown in

Figure 6.2.1, where the rectangles are stack frames, the arrows with solid lines

pointing from one stack frame to another stack frame indicate that the former is

created while the latter is being active. The highlighted path represents the active

stack. Other inactive stacks share certain nodes with the active stack.

In terms of memory management, all stack frames are allocated in a memory

region designated for stack frames only. This memory region is garbage-collected

programmatically when the memory is near full. The garbage collector uses a very

simple generational copy-based algorithm.

In the absence of either-or control structures, the STACK EL stack acts as if

it is a normal stack, i.e., it grows with function call and retracts with function

returns. When it grows, it allocates from the stack frame memory region. When

it retracts, it does nothing. The garbage collection subroutine starts from the

active frame, follows the arrows with solid lines, keeps all reachable frames, and
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deletes all unreachable frames. This way, simply leaving a frame unreferenced is

su�cient for later reclaiming its memory space. In the presence of either-or control

structures, the STACK EL stack cannot always retract with function returns. For

example, in Figure 6.2.1, when a function return occurs in stack frame (1), the

stack frame should be garbage-collected, but stack frame (2) should not always be

garbage-collected, since it is shared by the path to the left of the current active

path. Stack frame (3) should not be garbage-collected, either, since it is part of

a saved program state. Without extra pointers, stack frames like (2) and (3) can

easily become unreferenced. This is where the objects represented by circles come

into play. The SAVE_STATE action marks the current stack frame as still �in use�

by creating a special type of object, denoted by a circle in the �gure, representing a

saved program state. The special object contains a pointer to the currently active

stack frame, so that no matter where the active stack frame changes to, this stack

frame will always be referenced by the special object, and will not be eligible for

garbage collection, until a RESTORE_STATE action deletes the special object.

(The dotted line signi�es that the two special objects are in the same �thread.�)

To implement the special object, we have the following data structure (the struct

is simpli�ed and names are renamed to match the terminology of this dissertation)

s t r u c t ProgramState {

vo id *programPointer;

StackFrame *stackFrame;

ProgramState* prevInThread;

bool anchor;

...

}

where �programPointer� points to a label in the program from where the program

execution should resume, �stackFrames� points to the active stack frame when the
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state is saved (and restored), �prevInThread� points to a ProgramState object rep-

resenting the previous program state in the thread, and �anchor� indicates whether

this program state is an anchored program state. All ProgramState objects are

allocated in a designated memory region which is used as an object pool.

6.2 Tail-Call Optimization on the STACK EL Stack

The implementation of function calls should take tail-call optimization into con-

sideration, since there are lots of tail-calls in our algorithm.

A tail-call is a special function call that has the form:

r e tu rn <function call >;

i.e., the return value of the next level of function call is returned immediate from

the current level of function call � the function call is the last operation before

the current function returns. As we have seen, there are lots of tail-calls in our

subroutines. Therefore, it is extremely important for our implementation of the

STACK EL stack to support tail-call optimizations.

In a linear stack, tail-call optimization includes two parts:

1. reusing the caller's stack frame for that of the callee and

2. returning directly from the callee to the caller's caller.

This is illustrated in Figure 6.2.2. On the top is a regular function call. When

the function call is initiated, a new stack frame is allocated for the callee. When

the callee returns, the callee's stack frame is deleted, and the active stack frame

switches back the caller's stack frame. On the bottom is a tail-call. When the

function call is initiated, a new stack frame is created at the location of the current

stack frame, overwriting the stack frame of the caller. When the callee returns,

the active stack frame switches directly to that of the caller's caller, avoiding the
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caller altogether. In fact, there is a well-known technique in the functional pro-

gramming community called continuation-passing style (CPS) transformation which

transforms a functional program with both tail and non-tail calls into one that is

semantically equivalent but only has tail-calls. This technique has been applied in

compilers for functional programming languages to eliminate the need for a runtime

stack altogether.

curr level
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curr level
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Figure 6.2.3: Tail Call Optimization in STACK EL Stacks
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Now if we reexamine tail-call optimization in the context of our STACK EL

stack, we �nd that we can do optimization 2 but not optimization 1. To see why,

recall that in our STACK EL stack, which is a tree, di�erent paths can share the

lower portion of stack frames. Overwriting any stack frames in that portion from

one path may a�ect another path that shares that stack frame. Therefore, in our

implementation, we only do optimization 2, as shown in Figure 6.2.3.

6.2 Threads

One of the motivations of saving and restoring program states is to reduce re-

peated computation. However, a Spaghetti stack based implementation only guar-

antees the correctness of data stored on the stack. Any global mutable data stored

outside the stack, such as the trie in our algorithm, are not covered. Sometimes, the

global mutable data are important to achieve reasonable performance and passing

those data around as function arguments or making them immutable is simply not

an option.

Threads provide a mechanism to deal with changes in the global mutable data

and help manage the dependency of program states on global mutable data. The

general idea of threads is that we provide a form of implicit data dependency from

program state to the thread it is in. It is called implicit because the availability of a

program state is not directly tested based on the special object storing the program

state, but is implicitly determined by switching between threads. The program

states in the current thread are available, the program states in other threads are

not available.

The STACK EL supports multiple threads. Multiple threads are useful when

we want to save some program state that is reserved for the future. One example

of program states like this is those when the �lookup� subroutine �nds out that
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the lower bound of any instance that can be generated is larger than the current

�globalSizeLimit.� In our non-incremental version, such program states are not

saved and the algorithm simply backtracks. A more e�cient way to deal with these

program states is to perform a SAVE_STATE, storing them in threads reserved

for the future when �globalSizeLimit� has been raised to allow instances with larger

sizes. The idea of future threads is illustrated in Figure 6.2.4.

In our pseudo code, we introduce a variant of the the either-or control structure

which is:

e i t h e r <stmt > or in_thread [<id >] <stmt >

where �<id>� is an id of a thread. Any program state stored in a thread other than

the active thread is reserved for future use. Accompanying this statement is:

switch_to_thread(<id >)

which allows us to switch to a certain thread with id �<id>�. Another feature that

will be used is an anchored program state:
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anchored

Normal program states are popped and discarded when they have been restored

once. Anchored program states are program states that will not be popped or

discarded even if they have been restored.

To implement multiple threads, we extend the ProgramState struct from Section

5.2 as follows:

s t r u c t ProgramState {

vo id *programPointer;

StackFrame *stackFrame;

ProgramState* prevInThread;

bool anchor;

int threadId;

...

}

The added member, as highlighted, stores the id of the thread this program state

is in. There is an array of �thread pointers� pointing to the top program state

in each thread. There is also an �active thread� pointer, which is global across

multiple threads, that points to the top program state in the active thread. Saving

a program state to or restoring a program state from the active thread updates the

�active thread� pointer and saving a program state to a non-active thread updates

the corresponds pointer in our array of thread pointers. A switch to a thread

amounts to assigning the corresponding pointer in our array of thread pointers to

the �active thread� pointer.

Next, we look at an example of the application of threads. When global mutable

data are modi�ed, there are several possible changes regarding program states.

Some of the saved states become unavailable because the sequence of computation

that lead to that program state depended on the part of the mutable global data
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that has been modi�ed. For example, suppose that we have a global mutable object

G and a function f0 that does the following: if test(G) is true, then it returns the

result of some computation independent of G; otherwise, it returns 0.

i n t

f0() {

i f (test(G)) {

r e tu rn computeSomethingIndependentOfG ();

} e l s e {

r e tu rn 0;

}

}

Also, suppose that we have a function ��ip� which modi�es G so that the test(G)

�ips. We use the function as follows:

G = ...; // initialize G so that it makes test(G) true

System.out.println(f0());

flip (); // modify G so that it makes test(G) false

System.out.println(f0());

flip (); // modify G so that it makes test(G) true

System.out.println(f0());

It is obvious that at the end of its execution, the third value printed should be the

same as the �rst value printed, and the second value is 0. computeSomethingInde-

pendentOfG is called twice, which is a redundancy. To avoid this redundancy, we

can write an incremental version of f0 using threads. Our �rst try looks like the

following:

i n t

f1() {

i f (test(G)) {

p = computeSomethingIndependentOfG ();

168



anchored in_thread [0];

r e tu rn p;

} e l s e {

anchored in_thread [1];

r e tu rn 0;

}

}

This function has two anchored program states before its two return statements.

The anchored program states tell the runtime to save the program states imme-

diately before the program returns, so that they can be restored later. The two

anchored program states are saved in di�erent threads, so that we can switch be-

tween them by switching between threads. We use this function as follows:

G = ...; // initialize G so that it makes test(G) true

counter = 0;

System.out.println(f1());

flip ();

System.out.println(f1());

i f ( counter < 1 ) {

counter ++;

flip ();

switch_to_thread(test(G)?0:1);

backtrack ;

}

The �rst two calls to f1 remains the same, the third call to f1 is done by switching

to the correct thread and backtrack. This way, the redundancy in f0 is reduced.

But there is still a problem with f1! If we use it in the following way:

G = ...; // initialize G so that it makes test(G) true

counter = 0;

System.out.println(f1());
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i f ( counter < 2 ) {

counter ++;

flip ();

switch_to_thread(test(G)?0:1);

backtrack ;

}

the program does not print the second value at all. To see why, after the call to

f1, the �rst anchored program state is saved. The second anchored program state,

however, is not saved because the branch of the if statement which it is in has not

been executed. After ��ip� and after we switch threads, the saved anchor becomes

unavailable, and the backtrack statement will not be able to �nd any available

program state to restore. To solve this problem, we need to take future program

states into consideration. We modify f1 as follows:

i n t

f1() {

i f (test(G)) {

e i t h e r {

p = computeSomethingIndependentOfG ();

anchored in_thread [0];

r e tu rn p;

} or in_thread [1] {

anchored in_thread [1];

r e tu rn 0;

}

} e l s e {

e i t h e r {

anchored in_thread [1];

r e tu rn 0;

} or in_thread [0] {
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p = computeSomethingIndependentOfG ();

anchored in_thread [0];

r e tu rn p;

}

}

}

To see how this works, when f1 is called, it executes �test(G)� and depending on

its result, it returns the correct value. Before it saves the anchored program state,

it saves a non-anchor program state in a di�erent thread. Since this program state

is in a di�erent thread from the thread where the anchor is saved, it is restored, if

and only if we have switched to that thread, if and only if test(G) gives a di�erent

result.1

6.2 Explicit Global Mutable Data Dependency

In this subsection, we will describe one of the most important features of the

STACK EL � explicit global mutable data dependency. Here, �explicit global mu-

table data dependency� has two dimensions:

1. The STACK EL allows programmers to programmatically mark a program

state as being dependent on a piece of global mutable data, so that if the

global mutable data has been modi�ed, the program state becomes available

or unavailable. On some global mutable data, such as those of the boolean

type, the program state can jump back and forth between being available and

being unavailable. An example is the producer/consumer problem. If we have

a bu�er of size 1 to store products, and two program states, one immediately

1The actual source code is based on save_state and restore_state which reduces the repeated

code.
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Unavailable

Figure 6.2.5: Explicit Data Dependency

before the producer produces a product, another immediate before the con-

sumer consumes a product, then at any time one of of the program states is

available and the other is unavailable. If the bu�er is full, then the producer's

program state is unavailable and the consumer's program state is available;

otherwise, the producer's program state is available and the consumer's pro-

gram state is unavailable.

2. The STACK EL also allows programmer to programmatically mark a program

state as being dependent on another program state. This feature essentially

puts program states into a tree2 and allows programmers to make a whole sub-

tree unavailable by making the root of that subtree unavailable, as illustrated

in Figure 6.2.5. In this �gure, the circles represent program states and the

triangle represents some global mutable data. Available program states are

represented by circles with solid line and unavailable ones dotted lines. The

line with a dot on one end represents dependency. The global mutable data

has two di�erent values, one represented by solid lines, and the other repre-

sented by dotted lines. One of the program states has a direct dependency to

2Circular dependency is not supported and it is left for programmers to ensure that there is no

circular dependency.
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the global mutable data. The program state is available when the global data

has one value and unavailable when the global data has the other value. When

this program state becomes available, program states that depend on it can

be either available or unavailable; when it becomes unavailable, all program

states that depend on it become unavailable; when it becomes available again,

the program states that depend on it restore their original availability.

In our pseudo-code syntax, we introduce the following new constructs.

First, another variant of the the either-or control structure is:

e i t h e r <stmt > or depending_on[<obj ref >] <stmt >

where �<obj ref>� is a reference to some mutable global object. We can think

of the global object as turning on and o� a switch of availability of the program

state saved. The program state become available when �<obj ref>� is a value other

than the current value. For example, if �<obj ref>� is of boolean type and the

current value is true, then the program state becomes available when the value

becomes false. An unavailable program state cannot be restored. Accompanying

this statement is:

upda t e_ava i l a b i l i t y (<obj ref >)

which allows us to update the availability of program states depending on the �<obj

ref>�. And

dependency(<obj ref >)

which declares that all saved program states in the future will depend on �<obj

ref>�. The program state remains available when �<obj ref>� remains the same

value. For example, if �<obj ref>� is of boolean type and the current value is false,

then the program state remains available only when the value remains false. The

�dependency� statement creates a �sticky� dependency in that once the statement is
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encountered, all future saved program states are dependent on it; but the �Sticky�

dependency is canceled when the program backtracks to a saved program state that

does not depend on �<obj ref>�. However, any state that depends on �<obj ref>�

still remains dependent on �<obj ref>�.

We will see next how these constructs are implemented. We �rst extend the

ProgramState struct from the previous subsection as follows:

s t r u c t ProgramState {

vo id *programPointer;

StackFrame *stackFrame;

ProgramState* prevInThread;

bool anchor;

i n t threadId;

FLAG_TYPE availability;

ProgramState *super;

ProgramState *child;

ProgramState *prev;

ProgramState *next;

ProgramState *directDataDependencyNext;

...

}

As shown in Figure 6.2.5, the dependencies between program states are stored in

a tree. We call this kind of trees �indirect data dependency trees.� There can

be multiple indirect data dependency trees, forming an indirect data dependency

forest. Each tree is implemented as a �child-sibling� tree. �child� points to the

child node and �next� points to the sibling node. In addition, �super� is the reverse

pointer of �child� and �prev� is the reverse pointer of �next�. �availability� is a �xed

length bit vector type that stores the availability indicator of the current node.

There are separate bits to indicate whether this node is disabled by a direct data
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dependency on global mutable data and whether it is disabled by dependency on

another program state. �directDataDependencyNext� is used for a di�erent linked

list which we explain next.

To support direct data dependency on global mutable data, we need an extra

data structure for each piece of global mutable data which a program state can

depend on. The data structure contains pointers to a ProgramState object:

s t r u c t DirectDataDependency {

ProgramState *dependentNodesHead;

ProgramState *dependentNodesTail;

}

This structure, together with �directDataDependencyNext� in the ProgramState

struct, forms a linked list. For each piece of global mutable data, this linked list

stores pointers to all program states that directly depend on this piece of global

mutable data.

When saving a state with

depending_on[<obj ref >]

the saved state is added to the linked list corresponding to the piece of global

mutable data referenced in this clause.

There is always an �active dependency state� pointer which points to a program

state which a newly saved state depends on. When saving a state, if the �active

dependency state� pointer is not null, then the save state is added to the indirect

data dependency forest, as a child node of the current active dependency state;

otherwise it is added as a root.

Normal SAVE_STATEs do not update the �active dependency state� pointer,

To update the �active dependency state� pointer, we use the statement

dependency[<obj ref >]
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It creates a ProgramState object, without associating it with any thread, and up-

dates the �active dependency state� pointer to point to the newly generated Pro-

gramState object.

Finally,

upda t e_ava i l a b i l i t y (<obj ref >)

is implemented as one function for each piece of global mutable data. The function

maps the state of the piece of global mutable data to the availability of the program

state that directly depends on it.

Explicit data dependency can be used together with threads. Program states in

one thread may depend on program states in another thread.

Next, we look at an example of how to apply explicit data dependency.

We follow the example from the previous subsection and see how it can be

implemented using explicit data dependency instead of threads. Recall that we

have a function

i n t

f0() {

i f (test(G)) {

r e tu rn computeSomethingIndependentOfG ();

} e l s e {

r e tu rn 0;

}

}

which can be used as follows:

G = ...; // initialize G so that it makes test(G) true

System.out.println(f0());

flip (); // modify G so that it makes test(G) false

System.out.println(f0());
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flip (); // modify G so that it makes test(G) true

System.out.println(f0());

It is obvious that at the end of its execution, the third value printed should be the

same as the �rst value printed, and the second value is 0. computeSomethingInde-

pendentOfG is called twice which is a redundancy.

To avoid this redundancy, we can write an incremental version of f0, this time

using explicit data dependency:

i n t

f1() {

i f (test(G)) {

p = computeSomethingIndependentOfG ();

anchored depending_on[G];

r e tu rn p;

} e l s e {

anchored depending_on[G];

r e tu rn 0;

}

}

We use this function as follows:

G = ...; // initialize G so that it makes test(G) true

counter = 0;

System.out.println(f1());

flip ();

System.out.println(f1());

i f ( counter < 1 ) {

counter ++;

flip ();

backtrack ;

}
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Now, we do not need to explicitly call �switch_to_thread.� However, the bur-

den has been shifted to the ��ip� function. We need to modify ��ip� to call �up-

date_availability�.

vo id

flip() {

...

upda t e_ava i l a b i l i t y (G);

}

Similar to the previous example, if we use it in the following way:

G = ...; // initialize G so that it makes test(G) true

counter = 0;

System.out.println(f1());

i f ( counter < 2 ) {

counter ++;

flip ();

backtrack ;

}

then we need to take future program states into consideration:

i n t

f1() {

i f (test(G)) {

e i t h e r {

p = computeSomethingIndependentOfG ();

anchored depending_on[G];

r e tu rn p;

} or {

anchored depending_on[G];

r e tu rn 0;

}
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} e l s e {

e i t h e r {

anchored depending_on[G];

r e tu rn 0;

} or {

p = computeSomethingIndependentOfG ();

anchored depending_on[G];

r e tu rn p;

}

}

}

To see how this works, when f1 is called, it executes �test(G)� and depending on the

result, it returns the correct value. Before it saves the anchored program state, it

saves a non-anchored program state with an either-or branch. Since this program

state is saved before the anchor, it is below the anchor in the �active thread.�

Therefore, it is only restored when the anchored program state is unavailable, which

means that �test(G)� has been �ipped to a di�erent value.3

6.2 Static Checking of the STACK EL

It should be clear now that we have implemented a runtime whose behavior

vastly di�ers from that of the system stack. These new constructs do not have the

same level of support from the host language compiler as host language constructs

do. A naive design would result in an embedded language with minimum static

checking, resulting in embedded language programs that are error-prone and hard

to debug. STACK EL has been designed to ensure that the embedded language

enjoys the some of the basic type safety provided by C with little or no runtime

3The source code is based on save_state and restore_state which reduces the repeated code.
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overhead. It essentially acts as a translator from the problem of static checking on

the embedded language to the problem of static checking on the host language.

The implementation of the static checking for the STACK EL borrowed many

of the ideas from Internet forums. Some of the ideas have been used, although in

quite di�erent forms, in the implementation of the Boost MPL [18]. Therefore, we

are not going to reiterate them in details here. What we want to emphasize is that

as far as we know, the STACK EL is the �rst macro-based embedded language that

implements all of the following features:

• It is mainly based on C/C++ macros, no external tools are need. Therefore,

it is portable.

• It is an embedded language that provides a programming interface similar to

a generic programming language.

• It systematically integrates static checks with the EL syntax with little or no

runtime over head, such as:

1. The syntax is correct, such as the PARAMS-RETURNS-BEGIN-END

sequence

2. EL function parameters usages are correctly typed

3. EL local variables usages are the correctly typed

4. The number of argument in an EL function call matches the correspond-

ing EL function declaration.

5. The types the EL arguments match the corresponding EL function dec-

laration.

6. The number of values an EL function returns matches the corresponding

EL function declaration.
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7. The types of values an EL function returns matches the corresponding

EL function declaration.

8. The return type of the callee in a tail function call matches the return

type of the caller.

As an example of static checking, suppose that we have

#define FUN lookup

PARAMS(

Trie *, curr ,

Sub *, sub)

RETURNS ()

BEGIN

DEFS(Trie *, varNode)

...

END

The following

VAR(varNode )=VAR(curr)

compiles but the following

VAR(sub)=VAR(curr)

does not. The latter would generate a type error by the (unmodi�ed) g++ compiler:

error: cannot convert '__type_lookup_curr {aka Trie*}' to

'__type_lookup_sub {aka LinkedStack <Term*>*}' in assignment

In fact, if one writes STACK EL programs using an integrated development envi-

ronment (IDE) such at Eclipse or Netbeans, since the STACK EL is compatible

with the auto-completion feature of those IDEs, the IDEs may show a list of sug-

gestions when one types �->� after a �VAR� macro. (Of course, credits for the
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auto-completion feature should be given to the IDE developers.)
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Chapter 7

incOSHL, the Incremental Version

In this chapter, we look at the incremental version of our incOSHL algorithm

that we mentioned earlier. The basic idea of the incremental version is:

1. After it fails to �nd an instance of certain size, it incrementally searches for

an instance of a di�erent size.

2. After it �nds an instance, it incrementally searches for the next instance.

Here, being incremental means that the computation that has been performed

before is not performed again. For example, if a subtree of the global trie has been

fully traversed and no instance was found (regardless of size), then that subtree

should not be traversed again.

The subtle part here is how to deal with changing global data. For example,

even if we have traversed a subtree of the global trie and have not found any

instance, if a new term is inserted which happens to be in that subtree, then we

need to revisit that subtree when generating a new instance. However, every time

we revisit an already visited subtree, we should only revisit the nodes that has been

added, removed, or modi�ed.



7.1 Application of Threads

In this section we look at how to incorporate a simple global data dependency to

improve the e�ciency of our algorithms: program states that depend on the value

of �globalSizeLimit.� In our modi�ed algorithm, we have multiple future threads;

each thread is given a unique integral id indicating the value of �globalSizeLimit�

required for states in this thread to become available.

First, we take a look at the modi�ed �lookup� algorithm. We will use a syntax

sugar

resume in_thread [X]

where X is a parameter. It is equivalent to

e i t h e r

backt rack ;

or in_thread [X]

; // do nothing

This construct is used when a subroutine detects that the generated instances will

have a size larger than �globalSizeLimit.� It saves the current program state in

thread X, backtracks, and resumes when thread X becomes active.

The �lookup� subroutine is modi�ed as follows:

(TrieNode , Sub , i n t )

lookup( i n t n, TrieNode node , Symbol symbol , Sub sub) {

i f ( symbol == n u l l ) {

r e tu rn (node , sub , n);

} e l s e i f ( symbol.key.isFuncSymbol ) {

nodeNew = node.lookup(symbol.key);

i f ( ! nodeNew.available ) {

backtrack ;

} e l s e {
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r e tu rn lookup(n, nodeNew , symbol.next , sub);

}

} e l s e { // symbol is a variable

subterm = sub.lookup(symbol );

i f ( subterm == n u l l ) {

(nodeNew , retterm , nNew) = branch(n, cnode , cnode , 1);

subNew = sub.push(symbol.key , retterm );

r e tu rn lookup(nNew , nodeNew , symbol.next , subNew );

} e l s e {

nInput = n + subterm.termSize - 1;

i f ( nInput > globalSizeLimit) {

resume in_thread[nInput];

}

(nodeNew , subNew , nNew) =

lookup(nInput , node , subterm.firstSymbol , sub);

r e tu rn lookup(nNew , nodeNew , symbol.next , subNew );

}

}

}

The only change is highlighted. Comparing with the non-incremental version of this

subroutine, this version stores the program state in thread with id �nInput� before

backtracking.

The �branch� subroutine, the �lookupInverse� subroutine, and the �branchIn-

verse� subroutine can be modi�ed similarly.

(TrieNode , Term , i n t )

branch( i n t n, TrieNode start , TrieNode curr , i n t np) {

i f ( numberOfPlaceholders == 0 ) {

r e tu rn (curr , curr.subterm(start), n);

} e l s e {

r e tu rn branchTryTargetNodes(n, start , curr , 1);
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}

}

(TrieNode , Term , i n t )

branchTryTargetNodes( i n t n, TrieNode start , TrieNode curr , i n t np) {

e i t h e r {

nInput = n + curr.symbol.arity;

i f ( nInput > globalSizeLimit ) {

resume in_thread[nInput];

}

r e tu rn branch(nInput , start , curr , np + arity - 1));

} or {

i f (curr.sibling == n u l l ) {

backtrack ;

}

r e tu rn branchTryTargetNodes(n, start , curr.sibling , np);

}

}

(TrieNode , Sub , i n t )

lookupInverse( i n t n, TrieNode node , Symbol symbol , Sub sub) {

i f ( symbol == n u l l ) {

r e tu rn (node , sub , n);

} e l s e i f ( symbol.key.isFuncSymbol ) {

nodeNew = node.lookUp(symbol.key);

r e tu rn lookupInverse(n, nodeNew , symbol.next , sub);

} e l s e { // symbol is a variable

subterm = sub.lookup(symbol );

i f ( subterm == n u l l ) {

(nodeNew , retterm , nNew) = branchInverse(n, node , node , 1);

subNew = sub.push(symbol.key , retterm );

r e tu rn lookupInverse(nNew , nodeNew , symbol.next , subNew );
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} e l s e {

nInput = n + subterm ->termSize - 1;

i f ( nInput > globalSizeLimit) {

resume in_thread[nInput];

}

(nodeNew , subNew , nNew) =

lookupInverse(nInput , node , subterm.firstSymbol , sub);

r e tu rn lookupInverse(nNew , nodeNew , symbol.next , subNew );

}

}

}

(TrieNode , Term , i n t )

branchInverse( i n t n, TermCacheNode currTCN , TrieNode node ,

i n t nPlaceholders) {

i f ( nPlaceholders == 0 ) {

r e tu rn (node , currTCN.term , n);

} e l s e {

r e tu rn branchInverseTryFuncSymbols(n, currTCN , node ,

nPlaceholders , 0);

}

}

(TrieNode , Term , i n t )

branchInverseTryFuncSymbols( i n t n, TermCacheNode superTCN ,

TrieNode node , i n t nPlaceholders , i n t i) {

e i t h e r {

s = functionSymbols[i];

newTCN = superTCN.lookup(s);

nodeNew = node.lookup(s);

nInput = n + s.arity;

i f (nInput > globalSizeLimi) {
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resume in_thread[nInput];

}

r e tu rn branchInverse(nInput , newTCN , nodeNew ,

nPlaceholders + s.arity - 1);

} or i f (i + 1 != numberOfFunctionSymbols ) {

r e tu rn branchInverseTryFuncSymbols(n, superTCN , node ,

nPlaceholders , i + 1);

}

}

The �traverse� subroutine and �traverseSubtrees� subroutine remain unchanged.

The mainLoop can now be modi�ed to take advantage of threads:

boolean

mainLoop () {

f o r (;;) {

t runcate ;

f o r (i = 1; i <= maxThreadId; i ++) {

e i t h e r

; // do nothing

or anchored in_thread [i]; {

i f (saturated ()) {

r e tu rn t rue ;

}

globalSizeLimit ++;

switch_to_thread(globalSizeLimit );

backtrack ;

}

}

globalSizeLimit = 1;

switch_to_thread (1);

(noderet , subret) = traverse(clauseTreeRoot , new Sub ());

i f ( ! updateModel(noderet , subret) ) {
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r e tu rn f a l s e ;

}

}

}

Compared with the non-incremental version, this algorithm does not have the loop

that increments �globalSizeLimit.� Instead, it has an initial loop that saves in each

thread an anchored program state that handles the failure condition of the traverse

subroutine. Each iteration of the outer loop either generates an instance or returns.

Inside the loop, the subroutine �rst the truncates the stack; then, it sets up the

anchors; after that, it sets �globalSizeLimit� and switches to the thread with id 1;

after that, it calls the �traverse� subroutine to search for a clause instance. If an

instance is found, then it updates the model and either returns if the update fails,

or goes to the next iteration of the outer loop; if an instance is not found, then it

backtracks, increments �globalSizeLimit,� switches to a new thread, and tries again.

Note that we still need the truncate statement but on a higher level, since the

updateModel subroutine modi�es other global mutable data that we have not taken

into consideration so far.

7.2 Application of Explicit Global Mutable Data Dependency

Now let us take a look at how we can make use of explicit global mutable data

dependency to improve the e�ciency of our algorithm. In the previous section, we

have already seen how we can reuse computation when the value of �globalSizeLimit�

increases. Now, we want to reuse computation when the trie storing all literals in

the current model is modi�ed. This modi�cation essentially makes our theorem

prover scan each path of the search tree only once, as opposed to many times in the

versions we have seen so far. Every new instance is generated incrementally.
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First, the mainLoop now looks like:

boolean

mainLoop () {

globalSizeLimit = 1;

f o r (i = 1; i <= maxThreadId; i ++) {

e i t h e r

; // do nothing

or anchored in_thread [i]; {

i f (saturated ()) {

r e tu rn t rue ;

}

globalSizeLimit ++;

switch_to_thread(globalSizeLimit );

backtrack ;

}

}

switch_to_thread (1);

(noderet , subret) = traverse(clauseTreeRoot , new Sub ());

i f ( ! updateModel(noderet , subret) ) {

r e tu rn f a l s e ;

}

switch_to_thread (1);

backtrack ;

}

Compared with the previous version, this algorithm does not have the outer loop.

We have deleted the truncate statement and added two statements at the end:

switch_to_thread(1) and backtrack. It still has the initial loop that saves in each

thread an anchored program state that handles the failure condition of the traverse

subroutine. The subroutine �rst sets up the anchors; then, it sets globalSizeLimit

and switches to the thread with id 1; after that, it calls the �traverse� subroutine to
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search for a clause instance. If an instance is found, then it updates the model and

either returns if the update fails, or switches back to thread with id 1, backtracks,

and searches for a clause instance that contradicts the new model; if an instance

is not found, then it backtracks, increments �globalSizeLimit,� switches to a new

thread, and tries again.

To see how this works, �rst notice that the �updateModel� subroutine modi�es

the global state so that the availabilities of program states may change during a

call to this subroutine. Since we are not truncating the threads any more, we can

backtrack at the end of mainLoop. When doing the backtracking, we will go back

to a previous saved state that is available after the modi�cation of our model. As

long as the dependencies are correctly encoded, our incremental version works to

the same e�ect as our non-incremental version.

Next, let us take a look at how the trie can be modi�ed. There are two ways

to modify our trie. One is to insert a literal. Those literals are in the set Addk.

The other is to delete a literal. Those literals are in the set Delk. Logically, when

adding a literal, some nodes, internal or leaf, will be added to the trie. If any of

these nodes already has a TrieNode object created but its �available� �eld is set of

false, then adding the node to the trie simply amounts to �ipping the �available�

�eld. When deleting a literal, some nodes, internal or leaf, will be deleted from the

trie. Similarly, deleting a node simply amounts to �ipping the �available� �eld.

Now let us take a brief moment to think about examples of what data depen-

dencies we need to take into consideration when modifying out subroutines.

1. Suppose that we have a literal L, if (inverse) lookup of L fails in the current

trie, it does not mean (inverse) lookup of L will fail in all future tries. We

need to save the program state where (inverse) lookup fails, and come back

later when the trie changes. This a case of dependency on future objects that
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have not been created yet. For example, suppose that we have a literal f(a, b)

which is not in our trie. If we run the �lookup� subroutine we listed in the

previous section to look for an instance of our literal, which can only be itself,

in our trie, the �lookup� subroutine will simply backtrack out, without saving

any state. Even if f(a, b) is added into our trie in the future, the �lookup�

subroutine in the previous section will not revisit it anymore unless it starts

afresh.

2. Suppose that we have a clause with two negative literals L and N . If I0 make

all negative literals true, then in order for an instance of the clause to be false,

we need to match both L and N to literals in the current trie. This is done

by calling the �lookup� subroutine, twice. After the �rst call, it will generate

a substitution θ, which we will use as the initial substitution for the second

call. There is a dependency right here. Any action that will be taken in the

second call depends on the data that the literal θ(L) is in the trie. Naturally,

we want to make any state generated during the second call depend on the

global object which is the leaf node in the trie that represents θ(L).

3. Following the previous example, if we have also found an instance in the trie

for N , then we have another dependency from any future actions after the

second call to that instance in the trie. In particular, when the second call to

�lookup� returns, we have a new substitution θ′ and an instance of the input

clauses which contradicts the current model. Whether this instance of the

input clauses contradicts a model partly depends on whether θ′(N) is the trie

that represents that model.

To incorporate these dependencies, we modify the �traverse� subroutine. We

will use a syntax sugar
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resume depending_on[X]

where X is a parameter. It is equivalent to

e i t h e r

backt rack ;

or depending_on[X]

; // do nothing

The idea is that we save the current program state but make it unavailable if X has

not been changed, backtrack, and resume when X has been changed.

The �traverse� subroutine looks like:

(ClauseTreeNode , Sub)

traverse(ClauseTreeNode node , Sub subInit) {

i f (node.literal == n u l l ) {

retsub = subInit;

} e l s e i f (node.literal.isPositive) {

(retnode , retsub , _) = lookupInverse(node.literal.atom.termSize ,

trieRoot , node.literal.atom.firstSymbol , subInit );

i f ( retnode.available ) {

resume depending_on[retnode.available ];

}

} e l s e {

(retnode , retsub , _) = lookup(node.literal.atom.termSize ,

trieRoot , node.literal.atom.firstSymbol , subInit );

}

dependency(retnode.available);

i f (node.isLeaf) {

anchored;

r e tu rn (node , retsub );

} e l s e {

r e tu rn traverseSubtrees(node , retsub , 0);
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}

}

The resume statement encodes 1 on Page 191. The dependency statement encodes

2 on Page 192. The anchor statement encodes 3 on Page 192.

To incorporate 3 on Page 192, we also need to modify the �lookup� subroutine.

(TrieNode , Sub , i n t )

lookup( i n t n, TrieNode node , Symbol symbol , Sub sub) {

i f ( symbol == n u l l ) {

r e tu rn (node , sub , n);

} e l s e i f ( symbol.key.isFuncSymbol ) {

nodeNew = node.lookup(symbol.key);

i f ( ! nodeNew.available ) {

resume depending_on[newNode.available];

}

r e tu rn lookup(n, nodeNew , symbol.next , sub);

} e l s e { // symbol is a variable

subterm = sub.lookup(symbol );

i f ( subterm == n u l l ) {

(nodeNew , retterm , nNew) = branch(n, cnode , cnode , 1);

subNew = sub.push(symbol.key , retterm );

r e tu rn lookup(nNew , nodeNew , symbol.next , subNew );

} e l s e {

nInput = n + subterm.termSize - 1;

i f ( nInput > globalSizeLimit) {

resume in_thread [nInput ];

}

(nodeNew , subNew , nNew) =

lookup(nInput , node , subterm.firstSymbol , sub);

r e tu rn lookup(nNew , nodeNew , symbol.next , subNew );

}
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}

}

The highlighted code saves the current state for possible future exploration. We

need also to make a similar modi�cation to other subroutines to incorporate 3 on

Page 192. The �branch� subroutine is modi�ed as follows:

(TrieNode , Term , i n t )

branch( i n t n, TrieNode start , TrieNode curr , i n t np) {

i f ( numberOfPlaceholders == 0 ) {

r e tu rn (curr , curr.subterm(start), n);

} e l s e {

r e tu rn branchTryTargetNodes(n, start , curr , 1);

}

}

(TrieNode , Term , i n t )

branchTryTargetNodes( i n t n, TrieNode start , TrieNode curr , i n t np) {

e i t h e r {

nInput = n + curr.symbol.arity;

i f ( nInput > globalSizeLimit ) {

resume in_thread [nInput ];

}

r e tu rn branch(nInput , start , curr , np + arity - 1));

} or {

i f (curr.sibling == n u l l ) {

resume depending_on[curr.sibling];

}

r e tu rn branchTryTargetNodes(n, start , curr.sibling , np);

}

}

The �lookupInverse� and the �branchInverse� subroutine remain unchanged. The
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Figure 7.3.1: A Clause Tree

�updateModel� subroutine does not have to be modi�ed, either, but the �insert�

and �remove� methods in the �TrieNode� class have to be modi�ed so that when

adding or deleting a trie node, the availability of the program states that directly or

indirectly depend on the trie node will be updated, using the �update_availability�

statement. We leave the details of this modi�cation to the source code.

7.3 Optimality of the Incremental Version of incOSHL

In this section, we establish the optimality of the incremental version of in-

cOSHL. Before giving a de�nition of optimality, we �rst look at an example that is

considered non-optimal. Take the non-incremental version of incOSHL for example.

Suppose that

1. p <sl q <sl r <sl r
′

2. the input set S of clauses is {{p, q}, {p, r}, {p, r′}},

3. the initial interpretation I0 makes all negative literals true,

4. we are at iteration k,
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5. Tk = {{p, q}}, and

6. Mk = {q}.

The clause tree constructed from S looks like that in Figure 7.3.1. It is easy to

see that one instance that contradicts the current model is {p, r}. If we simulate

the non-incremental version of incOSHL from Chapter 5, the list of steps that are

needed for generating {p, r} are

1. run �lookupInverse� on p, success

2. run �lookupInverse� on q, failure, backtrack

3. run �lookupInverse� on r, success, return {p, r}

Now, we generate Tk+1 and Mk+1 where

1. Tk+1 = {{p, q}, {p, r}} and

2. Mk+1 = {q, r}

Now, we try to generate another instance that contradicts the current model

(I0,Mk+1). This instance can only be {p, r′}. If we simulate the non-incremental

version of incOSHL from Chapter 5 again, the list of steps that are needed for

generating {p, r′} are

1. run �lookupInverse� on p, success

2. run �lookupInverse� on q, failure, backtrack

3. run �lookupInverse� on r, failure, backtrack

4. run �lookupInverse� on r′, success, return {p, r′}
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Figure 7.3.2: A Decision Tree

Apparently, Step 1 and Step 2 are simply repeating Step 1 and Step 2 of the

previous iteration. This is redundant computation. We can see this by looking at

the decision tree in Figure 7.3.2. In the kth iteration, we have already made the

path of decision in dashed box (1). In the k+1 iteration, we do not need to remake

the �rst two decisions in that path again, since adding r to Mk+1 does not a�ect

those decisions that we have made; however, we do need to remake the third decision

in that path, and switch to the new decision in dashed box (2), since adding r to

Mk+1 does a�ect this decision.

Our incremental version of incOSHL, to the contrary, does not have any redun-

dancy of this kind. If in the kth iteration, we made the decision in dashed box (1),

then in the k + 1st iteration, we only need to make the decision in dashed box (2).

In general, the incremental version of incOSHL has the property that once an edge

in the decision tree has been visited, the �traverse� subroutine and any subroutine

that it calls will not revisit this edge anymore.
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In the following discussion, we use the following minimal untyped formal lan-

guage: We assume that f generates all function names, v, v1, v2, . . . generate all

variables, tid generates all thread ids, and ref generates all object references.

prog ::= fdef1 . . . fdefn stmt program

fdef ::= f(v1, v2, . . . , vn) stmt function de�nition

stmt ::= v1 = v2; assignment

| v = f(v1, v2, . . . , vn); function call

| if(v) stmt1 else stmt2 conditional

| either stmt1 or mod1 . . . modn stmt2 either-or

| anchored; anchor

| dependency; dependency

| backtrack; backtrack

| switch_to_thread[id]; switch thread

| update_availability[ref ]; update availability

| return v; return

| {stmt1 . . . stmtn} block

mod ::= in_thread[id] thread

| depending_on[ref ] dependency

| anchored anchored

This formal language is su�cient given that we implement all constants and oper-

ators as functions.

Now we give a formal de�nition of a decision tree. We represent the deci-

sion tree as nested tuples. A tuple (x, y, z) denotes a tree node x with left sub-

tree y and right subtree z. For example, (y, success, failure) denotes a deci-

sion tree node y with left subtree success and right subtree failure. Similarly,
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(y, (y, success, failure), failure) denotes a decision tree node y with left subtree

(y, success, failure) and right subtree failure. We say there is an edge from every

node to any of its subtrees. Our algorithm for generating decision trees uses the

following tree concatenation operator ⊕: Given two decision trees T1 and T2, T1⊕T2

is de�ned as replacing all success in T1 by T2. For example, if

T1 = (y, success, failure)

and

T2 = (x, success, failure)

then

T1 ⊕ T2 = (y, (x, success, failure), failure)

De�nition 102. Given a sequence Q of statements, the decision tree D(Q) is

de�ned as follows:

1. If Q is of the form backtrack;Q′, where Q′ is a sequence of statements, then

D(Q) = failure.

2. If Q is of the form x = f(y);Q′, where x and y are variable, f is a function

de�ned by statement P , and Q is a sequence of statements, then D(Q) =

D(P )⊕D(Q′).

3. If Q is of the form return e;Q′, where e is an expression without function calls

in it and Q′ is a sequence of statement, then D(Q) = success.

4. If Q is of the form if(e) s else t;Q′, where e is a boolean expression without
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function calls in it, s and t are statements, and Q′ is a sequence of statements,

then D(Q) = (e,D(s Q′),D(t Q′)).

5. If Q is of the form either s ormod1 . . . modn t;Q
′, where s and t are statements

and Q′ is a sequence of statements, then D(Q) = (e,D(s Q′),D(t Q′)).

6. If Q is of the form {s1 . . . sn}Q′, where s1, . . . , sn are statements, Q′ is a

sequence of statements, then D(Q) = D(s1 . . . snQ′).

7. If Q is of the form sQ′, where s is a statement, Q′ is a sequence of statements,

and none of the above applies, then D(Q) = D(Q′).

For example, if we have the following pseudo-code

boolean

f( i n t x) {

y = x + 1;

i f ( y > 0 )

r e tu rn t rue ;

e l s e

backt rack

}

then we can convert it to our minimal language:

f(x) {

zero = 0;

one = 1;

y = +(x,one);

e = >(y,zero);

i f ( e ) {

t = t rue ;

r e tu rn t;

}
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Figure 7.3.3: Decision Tree of �factorial�

e l s e

backt rack ;

}

The decision tree of the sequence of statements in �f� looks like (e, success, failure).

For another example, if we have the following function written in our pseudo-

code:

i n t

factorial( i n t x) {

i f ( x > 0 ) {

r e tu rn x * factorial(x - 1);

e l s e

r e tu rn 1;

}

then we can convert it to the following in our minimal language:

factorial(x) {

zero = 0;

one = 1;

e = >(x,zero);

i f ( e ) {

y = -(x,one);
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z = factorial(y);

f = *(z,x);

r e tu rn f;

} e l s e {

r e tu rn one;

}

}

The decision tree of the sequence of statement in �factorial� is an in�nite tree

that looks like (e, (e, ..., success), success), as shown in Figure 7.3.3. It is clear that

the decision tree includes all possible paths for all possible inputs to this function.

Now, if we look at our incremental version of the �mainLoop� subroutine from

Section 7.2, then we can see that the traverse subroutine is only called once. There-

fore we have the following formal de�nition of optimality:

De�nition 103. The �mainLoop� is optimal if no edge in the decision tree

D(traverse(clauseTreeRoot,new Sub()))

is visited twice.

We have already seen an example where the non-incremental version of incOSHL

is not optimal. Now we prove that

Theorem 104. The incremental version of incOSHL is optimal.

Proof. First, observe that mainLoop only calls the traverse subroutine once. Second,

we observe that all anchored program states lead to returning to the mainLoop.

Therefore there are no edges under any anchored program state, i.e., backtracking

to anchored program states will not cause double visit of an edge in the decision

tree.

203



The remaining question is what does Theorem 104 say exactly in terms of in-

stance generation? To answer this question we need to look at our decision tree.

Each path in our decision tree either leads to failure or a unique Sub object and

ClauseTreeNode object pair. The signi�cance of Theorem 104 is that using it we

can show that

Theorem 105. mainLoop generates every Sub object and ClauseTreeNode object

pair at most once.

Proof. This can be proved by examining every if statement and every either-or

structure.

There are two kinds of if statements. The �rst kind of if statement has a con-

dition whose value does not depend on external data. Only one branch will ever

be executed in this kind of if statement. Therefore, it has the same e�ect as the

branch that actually get executed. The second kind of if statement has a condition

whose value depends on external data, but encloses only one resume statement. By

the de�nition of decision trees, this kind of if statements only produce one branch

that is not failure. Therefore, the if statement has the same e�ect as the non-failure

branch.

All the either-or statements have two branches that choose either di�erent

branches in the clause tree, or di�erent branches in the trie. If they choose dif-

ferent branches in the clause tree, then the eventually returned ClauseTreeNode

object will be di�erent, if they choose di�erent branch in the trie, then the eventu-

ally returned Sub object will be di�erent.

By Theorem 104, mainLoop only generate any Sub object and ClauseTreeNode

object pair once.

The remaining question now is: how signi�cant is the time spent on the �traverse�

subroutine versus the time spent on the rest of the prover, mainly the �updateModel�
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subroutine. This will be one of the topics of the next chapter where we present test

results of our theorem prover.

Before concluding this section, we take a look at STACK EL from a di�erent

prospective. In a broader sense, the incremental version of incOSHL can be thought

of as implementing a multi-level cache that has the following properties:

1. Caching: This is the basic point of a cache. If two sequences of computational

steps, even if they lead to di�erent results, share a common initial sequence of

computational steps, then the result of the shared initial sequence is cached

when one sequence of computational steps is performed; when the second

sequence of computational steps is performed, the result of the shared ini-

tial sequence is retrieved e�ciently without performing that sequence again.

Theorem 104 shows that this is true. It essentially guarantees that each com-

putational step is only computed once. The caches, in essence, are the STACK

EL stack.

2. Lazy evaluation: Computational steps are executed in a lazy manner. When

there is a �don't know� nondeterminism, only one branch is tried. The second

branch is tried only if the �rst branch does not generate a solution. This is

guaranteed by the either-or control structure.

3. Updatability: Global mutable data can be updated incrementally. This can

be achieved either using threads or explicit data dependency. The STACK

EL, when combined with proper programming, guarantees that the available

saved program states are always consistent with the current state of global

mutable data.

4. Composability: Because the caches are the STACK EL stack, di�erent com-

ponents of the cache can be composed in any way a normal program can be
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composed. Cache components can be nested like functions are nested. For

example, we can considered the caches for instances of literals as nested caches

of the cache for instances of the clause. This is naturally done by simply call-

ing the subroutine for generating literal instances within the subroutine for

generating clause instance. Similarly, caches can also be put side by side by

an either-or structure or an if statement.

5. Customizability: Like composability, the caches can be customized in any way

a program can be customized. This makes the caches extremely �exible.

6. Static Checking and Optimization: Since STACK EL is implemented as macros

and the macro are expanded during the compile time, the static checking

mechanism also works during compile time. The STACK EL also makes

heavy use of constant expressions, taking advantage of the optimization of

the underlying compiler.

7.4 Other Features

We mention in this chapter some other features of our theorem prover. One of

the features is randomization of the input clauses. Since the result of the prover is

highly dependent on certain key orders, randomizing these orders will allow us to

avoid being �xed on a particular con�guration. The orders that can be randomized

are:

1. The lexical order on function or predicate symbols ≤l.

2. The order of literals in a clause, when inserting the clause into the clause tree.

3. The order in which clauses are inserted into the clause tree.
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Another feature is super symbols. A super symbol is a combination of several

adjacent function symbols in a term. For example, if we have term g(a, f(X)),

then we combine g, a, and f into a super symbol. Using super symbols reduces the

number of recursions in �lookup� and �lookupInverse� in two ways:

1. It reduces the number of symbols

2. It ensures that a function, predicate, or super symbol is alway either followed

by a variable symbol or the end of a term. This way we can combine the

lookup/lookupInverse of the non-variable symbol with the lookup/lookupIn-

verse of a variable symbol into one function call.

When the super symbol feature is enabled, the prover tries combine as many

function symbols into super symbols as possible. Super symbol works purely on the

implementation level, and it does not a�ect the semantics, in particular the term

order, of the proof strategy.

A third feature is relevance [27]. The relevance of a clause instance is de�ned as

the number of inference steps used to generate the instance. Our theorem prover

implemented an optional strategy of favoring instances with lower relevance.

A fourth feature is sorting of clause trees. Our prover allows each node to

precompute and store the lower bound of any instances generated by a clause under

it and sort the subtrees of a node by their lower bounds in ascending order. This

way the �traverse� subroutine can stop searching when it sees a subtree with a lower

bound that exceeds the current �globalSizeLimit� because any subtrees after it will

have a higher or equal lower bound.

Finally, for our debugging and pro�ling needs, our STACK EL and theorem

prover come with functions that generate logs that can be used for o�ine debugging,

functions that provide online veri�cation of intermediate results and functions that

generate pro�ling data.
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Chapter 8

Performance Study

We selected from the latest TPTP [43] library (v5.3.0) all problems that are

unsatis�able, in clausal normal form, and without equality, and used this subset for

our tests. This subset includes 1528 problems with varying di�culty ratings and

across multiple problem categories. Their distribution is given in Table 8.1. The

�rst column is the name of the TPTP category; the second column is the number

of problems in our subset in that category; the third column is the average rating

of the problems in our subset in that category. The TPTP technical report gave a

detailed description of the rating: �... gives the di�culty of the problem, measured

relative to state-of-the-art ATP systems ... The rating is a real number in the range

0.0 to 1.0, where 0.0 means that all state-of-the-art ATP systems can solve the

problem (i.e., the problem is easy), and 1.0 means no state-of-the-art ATP system

can solve the problem (i.e., the problem is hard).� [44]

Each TPTP category contains a certain type of problems. Among the twenty

�ve categories in our problem set, ALG stands for General Algebra, ANA stands for

Analysis, CAT stands for Category Theory, COL stands for combinatory logic, COM

stands for Computing Theory, FLD stands for Fields (in Algebra), GEO stands

for Geometry, GRA stands for graph theory, GRP stands for Groups (in Algebra),

HWV stands for Hardware Veri�cation, KRS stands for Knowledge Representation,

LAT stands for Lattices (in Algebra), LCL stands for Logic Calculi, MGT stands



TPTP Category Total # Avg. TPTP Rating

ALG 1 0.0000
ANA 16 0.4031
CAT 1 0.0000
COL 21 0.0671
COM 8 0.2900
FLD 161 0.4317
GEO 3 0.4067
GRA 1 0.0000
GRP 21 0.0838
HWV 11 0.0273
KRS 9 0.0000
LAT 11 0.0164
LCL 285 0.3460
MGT 22 0.0273
MSC 18 0.2422
NLP 7 0.0000
NUM 19 0.0937
PLA 43 0.5086
PUZ 60 0.1747
RNG 8 0.2500
ROB 1 1.0000
SET 45 0.0969
SWV 143 0.2608
SYN 608 0.0883
TOP 5 0.0600

Table 8.1: Problem Distribution

for Management, MSC stands for Miscellaneous, NLP stands for Natural Language

Processing, NUM stands for Number Theory, PLA stands for Planning, PUZ stands

for Puzzles, RNG stands for Rings (in Algebra), ROB stands for Robbins Algebra,

SET stands for set theory, SWV stands for Software Veri�cation, SYN stands for

Syntactic, and TOP stands for Topology. [3]

We also selected from the latest TPTP [43] library all problems that are satis-

�able, in clausal normal form, and without equality, which includes 415 problems,

and used this subset to verify the correctness of incOSHL. incOSHL didn't generate
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any false proof on this problem set.

We ran the test on variations of the following default con�guration:

1. The system is UNC's KillDevil Cluster [1]:

(a) Hardware:

i. 119 Dell C6100 servers, each with 2.93 GHz Intel X5670 and 48 GB

main memory.

ii. 17 Dell C6100 servers, each with 2.93 GHz Intel X5670 and 96 GB

main memory.

iii. 32 Dell C6100 servers, each with 2.93 GHz Intel X5670 and 48 GB

main memory.

iv. An additional 2 Dell R910 servers, each with 2.00 Ghz Intel X7550

and 1 TB main memory are used to run certain problems with higher

memory limit.

(b) Software:

i. The operating system running on the cluster is RHEL 5.6 (Tikanga)

ii. The job and resource management is handled by LSF

iii. The complier used is g++ (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52)

2. For all jobs, we set a system resource limit to the following unless otherwise

stated:

(a) LSF memory limit is set to 40G. If the memory usage of a job exceeds

hard memory limit, then the LSF will kill this job.

(b) Prover memory limit is set to 20G. This is a parameter passed into all

provers.
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(c) Hard time limit is set to 300s. If a job runs more than this amount of

time, then the job is killed by the GNU coreutils's �timeout� command.

(d) Prover time limit is set to 240s. This is a parameter passed into all

provers.

3. incOSHL settings:

(a) Type inference: by default it is turned on.

(b) Relevance: by default it is turned o�.

(c) The initial model: by default it makes all negative literals true.

(d) Pro�ling is turned o�. This means only basic statistics are printed.

8.1 Inference Rate

As we stated in the introduction, one of the main goals of this version of incOSHL

is to improve the inference rate over previous implementation of OHSL. Let ti be the

time spent on the ith problem, and ni be the number of clause instances generated.

Let N be the number of problems. The average inference rate is calculated as

∑N
i=1 ni∑N
i=1 ti

(8.1.1)

The reason we do not calculate the average inference rate as

∑N
i=1

ni

ti

N
(8.1.2)

is to prevent some problems to dominate the average inference rate. For example,

suppose that we have an easy problem that runs for only 0.001 seconds and gener-

ated 10 clause instances and a hard problem that runs for 240 seconds and generated

211



TPTP Category Total # Avg. Inf. Rate (inst./s)

ALG 1 8000.0
ANA 16 637.1
CAT 1 550.0
COL 21 350.6
COM 8 8054.8
FLD 161 819.5
GEO 3 12902.2
GRA 1 1600.0
GRP 21 2191.2
HWV 11 18128.6
KRS 9 2800.0
LAT 11 3950.0
LCL 285 18098.8
MGT 22 2131.3
MSC 18 31061.7
NLP 7 88312.5
NUM 19 123.4
PLA 43 3182.3
PUZ 60 6167.9
RNG 8 153.9
ROB 1 31.8
SET 45 61645.1
SWV 143 134481.6
SYN 608 10697.4
TOP 5 725.9
Overall 1528 36043.8

Table 8.2: Inference Rate

10 clause instances. If we use (8.1.2), then the average inference rate is 5.000× 103

instances per second. If we use (8.1.1), then the inference rate is 8.333×10−2, which

more accurately re�ects the situation.

Table 8.2 shows the inference rate of incOSHL in each TPTP category and the

overall inference rate on all categories. The �rst column shows the TPTP category.

The second column shows the total number of problems in our test set in that cat-

egory. The third column shows the average inference rate in that category. The

inference rate is rounded down to one decimal place. We reuse the �rst column to
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Figure 8.2.1: �updateModel� Time mti vs total time ti. The problems in the kth
bucket have the property k−1

10
≤ mti

ti
< k

10
.

also include the overall inference rate. Some of the categories have a low average in-

ference rate. Future research may include looking into what caused these categories

to have low inference rate.

8.2 �traverse� versus �updateModel�

One question that we raised in the previous chapter was: in practice, how sig-

ni�cant is the time spent the �traverse� versus the time spent on the �updateModel�

subroutine1. If the �updateModel� subroutine takes a small portion of the time,

then Theorem 104 is signi�cant, since it shows that �traverse� is not wasting time

by performing repeated search. One the other hand, if the �updateModel� subrou-

tine takes a large portion of the time, then it could mean that the overhead for

maintaining global mutable date dependency is large and may a�ect the e�ciency

of the theorem prover.

On our problem set, we ran incOSHL in the default con�guration except that

model pro�ling is turn on, which allows us to pro�le the total time the prover spend

1We only count the �updateModel� time because other overhead is too small to be signi�cant.
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on updating models. The statistics of the results are shown in Figure 8.2.1. If

we denote the total prover time of problem i by ti, and the total �updateModel�

time of problem i by mti, then we want to see whether mti/ti is low on a majority

of the problems. To see this, we divided the problems into 10 buckets by their

�updateModel� time. We excluded problems whose ti is 0 2 (234 in total) and

problems whose test run gets killed by the LSF system either for exceeding the

hard time limit or LSF memory limit (67 in total). The problems in the kth bucket

have the property

k − 1

10
≤ mti

ti
<

k

10

The chart shows that a majority (66.91%) of our problems has a mti/ti ratio of less

than 0.1. For the kth bucket, where k > 1, the lower bound of average mti/ti ratio

is k/10. The average mti/ti ratio in the �rst bucket is 8.701× 10−3. This means for

a majority of the problems, the time spent on �traverse� dominates the time spent

on �updateModel�.

8.3 Incremental versus Nonincremental

This section shows how the incremental version of incOSHL compares with the

nonincremental version of incOSHL. We implemented both the incremental version

and nonincremental version of our algorithm. The only di�erence between the in-

cremental version and the nonincremental version of our implementation is that

the nonincremental version does not use features like threads and explicit data de-

pendency on global mutable data. The nonincremental version still saves program

states and backtracks, but limits the program states to only those that can be used

when the global mutable data have not been modi�ed. We wrote pro�ling code to

2run time is within the lowest distinguishable time unit by the system
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Figure 8.3.1: Incremental vs Nonincremental COM006-1

pro�le the accumulative time for the �rst n instances generated and use R to plot

the generated sequence. Figure 8.3.1 shows the comparison of the accumulative time

of approximately the �rst 3000 instances generated by the incremental versions of

incOSHL and the nonincremental version of OSHL. We ran on problem COM006-1

and set the time limit to 30 seconds. The accumulative time of the nonincremental

version is indicated by the dashed line. The accumulative time of the incremental

version is indicated by the solid line. As we can see, the cost of generating new in-

stances for the nonincremental version, because of repeated computation, increases

much faster than the non incremental version. The nonincremental version only

generated about 3000 instance within 30 seconds and could not prove the problem.

In contrast, the incremental version generated about 1 × 106 instances within 30

seconds and found a proof for the problem. Figure 8.3.2 shows the behavior of the

incremental version. As you can see, the accumulative cost is almost linear, mean-

ing that the cost of generating new instances does not increase signi�cantly with
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Figure 8.3.2: Incremental Behavior COM006-1

the number of instances already generated.

Figure 8.3.3 shows the results of tests on problem ANA002-1. The accumulative

time of the nonincremental version is indicated by the dashed line. The accumulative

time of the incremental version is indicated by the solid line. Not only does the

cost of generating new instance for the nonincremental version increase much faster

than the non incremental version, the speed of increase for the nonincremental

version also increases as more instances are generated. The nonincremental version

could not prove the problem. In contrast, the incremental version found a proof

for the problem. Figure 8.3.4 shows the behavior of the incremental version. The

accumulative cost is not linear any more, meaning that the cost of generating new

instances increased with the number of instances already generated.

Figure 8.3.5 shows similar results on problem PLA004-1. The acculturative time

of the nonincremental version is indicated by the dashed line. The accumulative

time of the incremental version is indicated by the solid line. Cost of generating
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Figure 8.3.4: Incremental Behavior ANA002-1
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Figure 8.3.5: Incremental vs Nonincremental PLA004-1

new instance for the nonincremental version shows a super linear increase. Neither

could prove the problem in 30 seconds. Figure 8.3.6 shows the behavior of the

incremental version. The accumulative cost is not linear, either, meaning that the

cost of generating new instances increased with the number of instances already

generated.

On all of these three problems, we see at least 10 times speedup in the incremen-

tal version. The incremental version signi�cantly improved the performance over

the nonincremental version.

The incremental version of incOSHL is faster and uses more memory space

than the non-incremental version of incOSHL. This is a space-speed trade-o�. The

original OSHL algorithm is space-e�cient [28]. As a result, if we implement it in

a non-incremental way, without introducing any cache, the implementation should

also be space-e�cient. However, as we have shown in this section, the performance

of the non-incremental implementation is much worse than the performance of the
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Figure 8.3.6: Incremental Behavior PLA004-1

incremental implementation on harder problems. The question then is what data we

cache in the incremental implementation and whether they are necessary. A large

chunk of data that we cache is program states, i.e., nodes with unvisited children

and successful leaves in our decision tree. Nodes with unvisited children need to be

cached because we may need to resume from there later; successful leaves need to

be cached because an instance may be deleted from our set of instances and added

back later. For every cached program state, we also need to cache all the activation

records that lead to that program state. Most of these are needed to guarantee

the optimality property of our implementation without mixing the semantics of

incOSHL into the STACK EL. Even though these data are far less than a complete

execution history of the program, it still constitutes a large cache. However, it

should be noted that the size of the cache is always bounded by the size of the

search space. Suppose that we limit our term size to a constant. Thus, our search

space is also �nite. If we restrict our decision tree to this search space, then we
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Untyped Typed Ratio

# Problems Solved 693 848 122.4%
Avg. # Inst. Generated 4.016× 105 2.971× 105 73.98%

Table 8.3: Untyped vs Typed: Proof Time and Number of Instances Generated

know that the size of the cache is bounded by the size of this restricted version of

our decision tree. However, in our non-incremental implementation, this decision

tree may be revisited as many times as the number of instances generated. Given

this observation and that on the current hardware platform, it is easier to scale up

main memory capacity than CPU speed, the space-time trade-o� that we made in

the incremental version of incOSHL seems reasonable.

8.4 Typed versus Untyped

The improvement of e�ciency by incorporating type inference is measured in

the following dimensions:

1. The number of problems that resulted in more than one type.

2. The number of problems solved in an untyped setting versus number of prob-

lems solved in a typed setting.

3. The reduction of number of instances.

For the �rst dimension, we ran the tests in the default setting. This way the

prover will output the number of types resulting from type inference. Out of the

1528 problems tested, there are 795 problems that result in more than 1 types. That

is, type inference a�ects 52.03% of the problems tested.

For the second dimension, we ran both the tests in the default setting and in

a setting that is the same as the default one except that type inference is turned
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TPTP Cat. Total # All neg. only All pos. only Both Neither

ALG 1 0 0 1 0
ANA 16 4 0 6 6
CAT 1 0 0 1 0
COL 21 0 0 21 0
COM 8 0 1 7 0
FLD 161 55 0 8 98
GEO 3 0 0 2 1
GRA 1 0 0 1 0
GRP 21 14 0 7 0
HWV 11 8 0 3 0
KRS 9 0 0 9 0
LAT 11 2 0 9 0
LCL 285 8 0 26 251
MGT 22 7 0 15 0
MSC 18 1 0 14 3
NLP 7 0 0 7 0
NUM 19 4 0 8 7
PLA 43 6 20 3 14
PUZ 60 6 0 41 13
RNG 8 6 0 0 2
ROB 1 0 0 0 1
SET 45 8 0 33 4
SWV 143 11 1 62 69
SYN 608 67 0 353 188
TOP 5 1 0 3 1
Sum 1528 208 22 640 658

Table 8.4: All Negative versus All Positive

o�. The result is shown in �rst row of Table 8.3. This table shows that with type

inference the prover solves 22.4% more problems.

The second row of Table 8.3 shows that among the 690 problems that are solved

under both the typed setting and the untyped setting, the prover generates 26.02%

less instances under the typed setting than under the untyped setting.
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8.5 Initial Interpretation

Previous work has shown that the choice of semantics can signi�cantly a�ect the

performance of the OSHL algorithm. For example, the original version of OSHL can

solve 41% of SYN problems with all negative semantics and 71% of SYN problems

with all positive semantics (on a signi�cantly older TPTP version). [50] Our test

results show that this is still true for incOSHL but to a lesser extent. We ran the tests

twice, once using an initial interpretation that makes all negative literals true and

once using an initial interpretation that makes all positive literals true. The results

are shown in Table 8.4, categorized by TPTP problem categories. The �rst column

shows the TPTP category; the second column shows the number of problems in our

test set in each category; the third column shows the number of problems solved

under the initial interpretation that makes all negative literals true but not under

the initial interpretation that makes all positive literal true; the fourth column shows

the converse; the �fth columns shows the number of problems solved under both

initial interpretations; the sixth column shows the number of problems solved under

neither interpretation. The summary row shows that there are 208 problem that are

solved only under the initial interpretation that makes all negative literals true, 22

problems that are solved only under the initial interpretation that makes all positive

literals true, 640 under both, and 658 under neither. The results show that the

all negative initial interpretation outperforms the all positive initial interpretation.

There is no essential di�erence between the two initial interpretations. The reason of

the di�erence in performance is the particular way the test problems are formulated.
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TPTP Cat. Total # w/o Rel. only w/ Rel. only Both Neither

ALG 1 0 0 1 0
ANA 16 0 0 10 6
CAT 1 0 0 1 0
COL 21 0 0 21 0
COM 8 2 0 5 1
FLD 161 2 12 61 86
GEO 3 0 0 2 1
GRA 1 0 0 1 0
GRP 21 0 0 21 0
HWV 11 0 0 11 0
KRS 9 0 0 9 0
LAT 11 0 0 11 0
LCL 285 2 0 32 251
MGT 22 0 0 22 0
MSC 18 4 0 11 3
NLP 7 0 0 7 0
NUM 19 1 2 11 5
PLA 43 1 2 8 32
PUZ 60 2 3 45 10
RNG 8 1 1 5 1
ROB 1 0 0 0 1
SET 45 0 0 41 4
SWV 143 4 0 69 70
SYN 608 9 0 411 188
TOP 5 0 0 4 1
Sum 1528 28 20 820 660

Table 8.5: With Relevance versus Without Relevance

8.6 Relevance

We ran the tests twice, once using the default setting, and once using a setting

that is the same as the default except relevance is turned on. The result is shown

in Table 8.5, categorized by TPTP problem categories. The �rst column shows the

TPTP category; the second column shows the number of problems in our test set

in each category; the third column shows the number of problems solved without

relevance but not with relevance; the fourth column shows the converse; the �fth
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Problem TPTP Rating

FLD059-1.p 0.1
LCL027-1.p 0.06
LCL187-1.p 0.11
LCL188-1.p 0.11
LCL360-1.p 0.06
NUM003-1.p 0.06
NUM004-1.p 0.06
NUM017-1.p 0.72
PLA006-1.p 0.06
PLA017-1.p 0.11
SET013-1.p 0.5
SET015-1.p 0.5
SYN639-1.p 0.44
SYN640-1.p 0.5
SYN646-1.p 0.44
SYN647-1.p 0.5

Table 8.6: Problems proved under increased memory limit

columns shows the number of problems solved with or without relevance; the sixth

column shows the number of problems solved neither with nor without relevance.

The summary row shows that there are 28 problems solved only without relevance,

20 problems solved only with relevance, 640 under both, and 658 under none. The

results show that running without relevance outperforms running with relevance.

8.7 Increasing Memory Limit

Under the default setting, incOSHL proved 848 out of 1528 problem. Among

the 680 problems that incOSHL failed to prove 437 reached the prover memory

limit, 173 timed out, 67 exceed system resource limit, 2 reached term size limit, and

one contains the �false literal� that is not supported by the current parser. For a

majority of the problems that incOSHL failed to prove, it simply ran out of memory.

We increased the LSF memory limit to 512G and incOSHL memory limit to 256G.

Table 8.6 lists problems with TPTP rating > 0 which can be proved under this
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Total # incOSHL iProver E Darwin

ALG 1 1 1 1 1
ANA 16 12 14 15 8
CAT 1 1 1 1 1
COL 21 21 21 21 21
COM 8 8 8 5 6
FLD 161 77 115 127 100
GEO 3 2 2 2 2
GRA 1 1 1 1 1
GRP 21 21 21 21 21
HWV 11 11 11 11 11
KRS 9 9 9 9 9
LAT 11 11 11 11 11
LCL 285 34 200 264 260
MGT 22 22 22 22 22
MSC 18 15 13 12 14
NLP 7 7 7 7 7
NUM 19 14 19 19 18
PLA 43 29 34 35 16
PUZ 60 50 53 52 52
RNG 8 7 7 8 7
ROB 1 0 0 0 0
SET 45 41 45 45 44
SWV 143 74 137 75 97
SYN 608 420 607 601 563
TOP 5 4 5 5 0
Sum 1528 897 1364 1370 1292

Table 8.7: Theorem Provers Comparison (NOPP)

con�guration. The majority of the rest of the problems timed out.

8.8 Comparison with Other Theorem Provers

We compare incOSHL with leading state-of-art theorem provers that are avail-

able to the public domain. Leading state-of-the-art theorem provers are provers

that have won at least one CASC competition title and perform better than av-

erage state-of-the-art theorem provers. The purpose of this comparison is to show
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how much di�erence there is between incOSHL and other leading state-of-the-art

theorem provers.

Compared to leading state-of-the-art prover implementations, incOSHL is a rel-

ative new comer. It is inevitable that incOSHL lacks certain key features that are

available on other theorem provers that have been under development for years.

One feature that incOSHL lacks is a sophisticated set of strategies and strategy

selection. Many theorem provers provide a large combination of di�erent strategies

that can be tweaked to work with di�erent problem categories. A strategy selection

mechanism allows the theorem prover to analyze the input problem and automati-

cally choose a combination of strategies. A simplistic example would be to use an

instance-based strategy for non-Horn problems and to use a resolution-based proof

strategy for Horn problems. In contrast, incOSHL, as its predecessors in the OSHL

prover family, uses a uniform strategy on all problems. Another characteristic of

many leading theorem provers is that they are optimized toward the existing TPTP

Library, and as a result it is di�cult to separate performance due to the strategy

from performance due to the �ne tuning against the TPTP Library [43]. Opti-

mization towards particular problem categories in the TPTP Library could be also

extremely helpful in achieving good results in the CASC competition. For example,

in CASC-23 (2011), out of 75 problem randomly selected for the EPT (e�ectively

propositional theorem) division, 40 of them belong to SWV and 27 of them belong

to SYN. [2] This is a result of these two categories having the majority of problems

that qualify for the EPT division. In practice this could easily lead to bias towards

a certain type of problems when doing prover optimization. Of course, this is not

to say that a theorem prover optimized to perform better in particular divisions

necessarily does not perform well in other divisions. In fact, years of CASC results

have shown that the winner of one division usually performs reasonably well in some
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other divisions as well. In contrast, incOSHL has not been optimized towards the

TPTP Library. This is consistent with our goal of developing an implementation

of the OSHL algorithm using e�cient data structures and subroutines and to pro-

vide a maintainable prover framework, so that we can study the performance of

the basic OSHL algorithm and provide a platform for additional development and

exploration.

In previous work [27, 50], Otter, a uni�cation-based theorem prover with a single

uniform strategy, was the choice of �standard of comparison� in the evaluation of

various OSHL-based implementations and extensions. However, Otter development

has been discontinued in 2004, hence it may not represent the state of the art.

Because of a lack of �standard of comparison,� we instead simulate an optimal

strategy selection by letting incOSHL run with the following four con�gurations

and combining the results such that if a problem is proved under any con�guration,

it is counted as proved by incOSHL:

1. Initial interpretation that makes all negative literals true, without relevance

(848)

2. Initial interpretation that makes all negative literals true, with relevance (840)

3. Initial interpretation that makes all positive literals true, without relevance

(662)

4. Initial interpretation that makes all positive literals true, with relevance (731)

Although this somewhat compensates for a lack of strategy selection mecha-

nism, it does not fully o�set the lack of a sophisticated combination of strategies in

incOSHL. After all, incOSHL still runs on a uniform strategy.

For our experiment, we also want to o�set the e�ort of optimization towards

larger TPTP categories, since incOSHL is not optimized for the TPTP Library. As
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readers may have already noticed, among the 25 TPTP categories in our test set,

di�erent TPTP categories have di�erent numbers of problems. Ideally, we would

like each category to have the same number of problems. One possibility would be

to randomly choose in bigger categories a subset that matches the size of smaller

categories. However, this would limit our problems selected to fewer problems and

to the size of the minimum category. Simply discarding smaller categories would

reduce the variety of kinds of problems that we test on. Therefore, we measure the

performance on a category basis by calculating the following e�ciency index (EI).

Let Ni be the total number of problems in the ith category, Si be the number of

problems solved in that category, and N be the total number of categories. The

e�ciency index is computed as follows

∑N
i=1

Si

Ni

N

The theorem provers that we compare with include:

• iProver [20] is a theorem prover that combines instance-based inference using

a SAT solver with resolution . It won the EPR [45] division at CASC-23

(2011), CASC-J5 (2010), CASC-22 (2009) and CASC-J4 (2008).

• E [40] is a saturation-based theorem prover for �rst-order logic with equality.

It won the CNF [45] division at CASC-23 (2011) and received the �best overall�

special award at CASC-J5 (2010).

• Darwin is an instance-based theorem prover based on the model evolution

calculus [9], which lifts the propositional procedure DPLL to �rst-order logic.

Darwin won the ERP division in CASC-21 (2007) and CASC-J6(2006). Dar-

win is no longer actively maintained since 2010.
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Max incOSHL iProver E Darwin

ALG 1.00 1.00 1.00 1.00 1.00
ANA 1.00 0.75 0.88 0.94 0.50
CAT 1.00 1.00 1.00 1.00 1.00
COL 1.00 1.00 1.00 1.00 1.00
COM 1.00 1.00 1.00 0.63 0.75
FLD 1.00 0.48 0.71 0.79 0.62
GEO 1.00 0.67 0.67 0.67 0.67
GRA 1.00 1.00 1.00 1.00 1.00
GRP 1.00 1.00 1.00 1.00 1.00
HWV 1.00 1.00 1.00 1.00 1.00
KRS 1.00 1.00 1.00 1.00 1.00
LAT 1.00 1.00 1.00 1.00 1.00
LCL 1.00 0.12 0.70 0.93 0.91
MGT 1.00 1.00 1.00 1.00 1.00
MSC 1.00 0.83 0.72 0.67 0.78
NLP 1.00 1.00 1.00 1.00 1.00
NUM 1.00 0.74 1.00 1.00 0.95
PLA 1.00 0.67 0.79 0.81 0.37
PUZ 1.00 0.83 0.88 0.87 0.87
RNG 1.00 0.88 0.88 1.00 0.88
ROB 1.00 0.00 0.00 0.00 0.00
SET 1.00 0.91 1.00 1.00 0.98
SWV 1.00 0.52 0.96 0.52 0.68
SYN 1.00 0.69 1.00 0.99 0.93
TOP 1.00 0.80 1.00 1.00 0.00
Avg. 1.00 0.80 0.89 0.87 0.79

Table 8.8: Theorem Provers Comparison (EI)

The result are shown in Table 8.7. The comparison shows that although in-

cOSHL is lagging behind leading state-of-the-art theorem provers in the total num-

ber of problems solved, it is comparable in performance in ANA, COL, COM,

GRP, HWV, KRS, LAT, MGT, MSC, NLP, NUM, PLA, PUZ, RNG, SET, and

TOP. Among these categories, ANA, COM, MSC, PLA, PUZ, and RNG have an

average TPTP rating greater than 0.1. The four main categories in which incOSHL

is lagging behind are FLD, LCL, SWV, and SYN. The e�ciency index is shown in

Table 8.8. The average e�ciency index of incOSHL among 25 TPTP categories is
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Total # incOSHL iProver E Darwin

ALG 1 1 1 1 1
ANA 9 6 8 8 2
CAT 1 1 1 1 1
COM 6 6 6 3 4
FLD 161 77 115 127 100
GRA 1 1 1 1 1
HWV 11 11 11 11 11
KRS 8 8 8 8 8
LAT 1 1 1 1 1
LCL 3 3 3 3 3
MGT 11 11 11 11 11
MSC 9 9 9 8 9
NLP 7 7 7 7 7
NUM 8 7 8 8 8
PLA 2 2 2 2 2
PUZ 36 34 36 36 35
SET 30 26 30 30 29
SWV 107 39 101 39 62
SYN 299 152 298 295 276
TOP 5 4 5 5 0
Sum 716 406 662 605 571

Table 8.9: Theorem Provers Comparison (NOPP, non-Horn Problems)

0.80, compared to 0.89 of iProver, 0.87 of E, and 0.79 of Darwin.

An important category of problems are the Horn problems. Horn problems are

a subset of �rst-order logic problems that can be e�ciently decided from the syntax

of the problems. They are also a subset of UR-resolvable problems. Both SLD-

Resolution [14] and UR-Resolution are complete on Horn problems. Among the

285 problems in LCL, only three are non-Horn problems.3 These problems can be

e�ciently solved by employing a completely separate strategy based on resolution,

3Coincidentally, the categories in which incOSHL lags behind leading state-of-the-art theorem

provers have the most number of problems. It is possible that the leading theorem provers has

been heavily optimized towards these categories.
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MAX incOSHL iProver E Darwin

ALG 1.00 1.00 1.00 1.00 1.00
ANA 1.00 0.67 0.89 0.89 0.22
CAT 1.00 1.00 1.00 1.00 1.00
COM 1.00 1.00 1.00 0.50 0.67
FLD 1.00 0.48 0.71 0.79 0.62
GRA 1.00 1.00 1.00 1.00 1.00
HWV 1.00 1.00 1.00 1.00 1.00
KRS 1.00 1.00 1.00 1.00 1.00
LAT 1.00 1.00 1.00 1.00 1.00
LCL 1.00 1.00 1.00 1.00 1.00
MGT 1.00 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 0.89 1.00
NLP 1.00 1.00 1.00 1.00 1.00
NUM 1.00 0.88 1.00 1.00 1.00
PLA 1.00 1.00 1.00 1.00 1.00
PUZ 1.00 0.94 1.00 1.00 0.97
SET 1.00 0.87 1.00 1.00 0.97
SWV 1.00 0.36 0.94 0.36 0.58
SYN 1.00 0.51 1.00 0.99 0.92
TOP 1.00 0.80 1.00 1.00 0.00
Sum 1.00 0.88 0.98 0.92 0.85

Table 8.10: Theorem Provers Comparison (EI, non-Horn Problems)

which incOSHL lacks but can be easily incorporated. The comparisons on non-

Horn problems are shown in Table 8.9. Again, we compute the e�ciency index on

all non-Horn problem, as shown in table 8.10. Compared with that of all problems,

including Horn and non-Horn problems, incOSHL increased 0.08, iProver increased

0.09, E increased 0.05, and Darwin increased 0.06. The increase is probably the

result of changing the problem set to its non-Horn subset. Nevertheless, the di�er-

ence in the changes is interesting, E has increased the least. This may have shown

that instance-based theorem provers perform better on non-Horn problems than

saturation-based theorem provers.

Even without a sophisticated set of strategies, incOSHL is still able to prove

some interesting problems, as shown in Table 8.11. We only included problems
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TPTP Name Rating

ANA002-1.p 0.8
ANA002-2.p 0.7
ANA002-3.p 0.8
ANA002-4.p 0.6
COM003-1.p 0.5
COM005-1.p 0.8
COM006-1.p 0.9
FLD011-3.p 0.6

MSC015-1.022.p 0.67
PLA004-1.p 0.56
PLA004-2.p 0.56
PLA005-1.p 0.56
PLA005-2.p 0.56
PLA009-1.p 0.56
PLA009-2.p 0.56
PLA011-1.p 0.56
PLA011-2.p 0.56
PLA013-1.p 0.56
PLA014-1.p 0.56
PLA014-2.p 0.56
PLA021-1.p 0.56

PLA031-1.006.p 0.67
RNG001-2.p 0.72
SET012-1.p 0.6
SYN802-1.p 0.6
SYN894-1.p 0.67

Table 8.11: Harder problems proved by incOSHL

with TPTP rating ≥ 0.5.

To conclude this section, we look at how well incOSHL performs on harder

problems (TPTP rating greater than) compared to other theorem provers. The

number of problems proved is shown in Table 8.12 and the e�ciency index on

harder problems is shown in Table 8.13. incOSHL has an e�ciency index of 0.67,

while iProver has 0.82, E has 0.79, and Darwin has 0.68. If incOSHL uses a simple

strategy selection that o�oads horn problems in LCL to a saturation-based strategy

which results in an e�ciency index of 0.7 (the lowest among the three compared
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Total # incOSHL iProver E Darwin

ANA 16 12 14 15 8
COL 21 21 21 21 21
COM 5 5 5 2 3
FLD 146 62 100 112 85
GEO 2 1 1 1 1
GRP 20 20 20 20 20
HWV 2 2 2 2 2
LAT 3 3 3 3 3
LCL 283 32 198 262 258
MGT 10 10 10 10 10
MSC 9 6 4 4 5
NUM 11 7 11 11 10
PLA 39 25 30 31 12
PUZ 20 11 13 13 12
RNG 8 7 7 8 7
ROB 1 0 0 0 0
SET 18 15 18 18 17
SWV 96 40 90 40 51
SYN 186 93 185 181 141
TOP 2 1 2 2 0
Sum 898 373 734 756 666

Table 8.12: Theorem Provers Comparison (NOPP, TPTP rating > 0)

provers), then the average e�ciency index would be 0.7.

The comparison on harder non-Horn problems is shown in Table 8.14 and Table

8.15. On harder non-Horn problems, incOSHL has an e�ciency index of 0.76, while

iProver has 0.96, E has 0.83, and Darwin has 0.69.

233



Max incOSHL iProver E Darwin

ANA 1.00 0.75 0.88 0.94 0.50
COL 1.00 1.00 1.00 1.00 1.00
COM 1.00 1.00 1.00 0.40 0.60
FLD 1.00 0.42 0.68 0.77 0.58
GEO 1.00 0.50 0.50 0.50 0.50
GRP 1.00 1.00 1.00 1.00 1.00
HWV 1.00 1.00 1.00 1.00 1.00
LAT 1.00 1.00 1.00 1.00 1.00
LCL 1.00 0.11 0.70 0.93 0.91
MGT 1.00 1.00 1.00 1.00 1.00
MSC 1.00 0.67 0.44 0.44 0.56
NUM 1.00 0.64 1.00 1.00 0.91
PLA 1.00 0.64 0.77 0.79 0.31
PUZ 1.00 0.55 0.65 0.65 0.60
RNG 1.00 0.88 0.88 1.00 0.88
ROB 1.00 0.00 0.00 0.00 0.00
SET 1.00 0.83 1.00 1.00 0.94
SWV 1.00 0.42 0.94 0.42 0.53
SYN 1.00 0.50 0.99 0.97 0.76
TOP 1.00 0.50 1.00 1.00 0.00

Average 1.00 0.67 0.82 0.79 0.68

Table 8.13: Theorem Provers Comparison (EI, TPTP rating > 0)

Total # incOSHL iProver E Darwin

ANA 9 6 8 8 2
COM 3 3 3 0 1
FLD 146 62 100 112 85
HWV 2 2 2 2 2
LCL 1 1 1 1 1
MSC 3 3 3 3 3
NUM 1 1 1 1 1
PLA 1 1 1 1 1
PUZ 4 3 4 4 3
SET 12 9 12 12 11
SWV 71 16 65 15 27
SYN 117 63 116 115 94
TOP 2 1 2 2 0
Sum 372 171 318 276 231

Table 8.14: Theorem Provers Comparison (NOPP, TPTP rating > 0, non-Horn)
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Max incOSHL iProver E Darwin

ANA 1.00 0.67 0.89 0.89 0.22
COM 1.00 1.00 1.00 0.00 0.33
FLD 1.00 0.42 0.68 0.77 0.58
HWV 1.00 1.00 1.00 1.00 1.00
LCL 1.00 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00 1.00
NUM 1.00 1.00 1.00 1.00 1.00
PLA 1.00 1.00 1.00 1.00 1.00
PUZ 1.00 0.75 1.00 1.00 0.75
SET 1.00 0.75 1.00 1.00 0.92
SWV 1.00 0.23 0.92 0.21 0.38
SYN 1.00 0.54 0.99 0.98 0.80
TOP 1.00 0.50 1.00 1.00 0.00

Average 1.00 0.76 0.96 0.83 0.69

Table 8.15: Theorem Provers Comparison (EI, TPTP rating > 0, non-Horn)
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Chapter 9

Conclusion

On the theoretical level, we introduced genOSHL, an abstract, generalized ver-

sion of OSHL which captures the essential features of OSHL. We proved the sound-

ness and completeness of genOSHL. Then, we introduced incOSHL, a specialized

version of genOSHL, which di�ers from the original OSHL algorithm. We also in-

troduced a type inference algorithm which allows genOSHL to possibly reduce its

search space while still preserving the soundness and completeness.

On the practical level, we designed and implemented a low-level framework that

combines coroutines with dependency of program states on global mutable data.

This framework is exposed to programmers in a well-de�ned embedded program-

ming language called the STACK EL. The STACK EL allows relatively easy mod-

i�cation to the source code while still preserving key properties that ensure high

performance. We also introduced our implemented incOSHL with type inference

in the STACK EL in a relatively detailed form of pseudo-code. We described a

simpler, non-incremental implementation and how we applied various programming

constructs provided by the STACK EL to create an optimal, incremental imple-

mentation. The incremental version of incOSHL has much improved performance

over previous generation OSHL. By incorporating the STACK EL, and including

e�cient implementations of many key data structures in C++, incOSHL has laid a

solid foundation for future OSHL work.



We also studied the performance of our incremental theorem prover on a set of

test problems chosen from a wide variety of categories. We showed that OSHL can

be implemented e�ciently so that it has relatively high inference rate. We showed

that our prover is capable of proving about half of the problems in our test sets.

We showed that type inference helps both reduce the search space and improve

the NOPP. We compared our theorem prover with leading state-of-the-art theorem

provers. We showed that the e�ciency index of our theorem prover is comparable to

other state-of-the-art theorem provers, despite a lack of sophisticated combinations

of strategies.

Possible future research includes:

1. Special handling of unit clauses: Unit input clauses and any unit clauses

derived from input clauses using resolution have the property that their com-

plements can never be true in a model of the input clauses. This suggests that

we can handle unit clauses in a way that di�ers from how we handle non-unit

clauses. Once we �nd a unit clause, we can immediately modify the model,

and never revoke that modi�cation during the proof search. On the one hand,

this may allow more e�cient data structures, since the delete operation is not

needed for unit clauses. On the other hand, this may allow more e�cient

caching, since backtracking is not needed for unit clauses.

2. Developing more strategies and a strategy selection mechanism: Future re-

search may include incorporating special strategies for special classes of prob-

lems (such as the Horn problems) and a mechanism for detecting problems

that are suitable for the special strategies and dispatching those problems to

the special strategies. For example, the performance of our theorem prover

can be signi�cantly improved if we combine our relatively uniform strategy
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with a resolution-based strategy, such as unit resulting resolution or hyper-

resolution, for Horn problems.

3. Equality: Many TPTP problems contain a special predicate for equality.

Equality could be handled axiomatically, but it is not e�cient. Usually, proof

strategies are extended with direct support for equality for better performance.

incOSHL currently does not have support for equality. Adding support for

equality to the proof strategy may improve the performance of incOSHL on

problems with equality.

4. More re�ned types: Our type inference algorithm may infer for every variable a

subset of all terms which are used to instantiate that variable. One interesting

question would be: Can we further reduce that subset, thereby reducing the

search space of our proof strategy?

5. Understanding the variation of inference rate on di�erent problems: As we

have shown in our performance study, incOSHL has a high average inference

rate, but on some of the problems, the inference rate is much lower than the

average inference rate. It would be interesting to looking into those problems

and �nd out why the inference rate is low for those problems.

6. More sophisticated semantics: One of the features of the original OSHL al-

gorithm is that it allows manually adding sophisticated semantics. Although

the incOSHL proof strategy allows the same level of support for sophisticated

semantics, it is not implemented in the current version of the theorem prover.

Future research may include �nding an e�cient way to implement support for

sophisticated semantics and automatic semantic generation.

7. Reducing cache space: One of the problems of our implementation of incOSHL

is that the incremental version consumes a lot of memory space. Some of
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the space used by the cache can be reduced if the lower-level system, i.e., the

generic embedded language STACK EL is aware of the semantics of the higher-

level system, i.e., the incOSHL data structures and subroutines, and makes use

of the semantics to discard unused cache. A naive injection of the incOSHL

semantics into the STACK EL would blur our strati�cation and would reduce

modularity of the code. Future research may include �nding a clean, modular

way to integrate application-speci�c semantics into the STACK EL.

8. Trying the prover on more problems: Future research may include trying the

prover on problems not in the TPTP library and �ne tuning the prover for

the CASC competition.
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