CALCULATING ITEM DISCRIMINATION VALUES USING SAMPLES OF EXAMINEE SCORES AROUND REAL AND ANTICIPATED CUT SCORES: EFFECTS ON ITEM DISCRIMINATION, ITEM SELECTION, EXAMINATION RELIABILITY, AND CLASSIFICATION DECISION CONSISTENCY

Darin S. Earnest

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Education.

Chapel Hill 2014

Approved by:

Gregory J. Cizek

Gary S. Cuddeback

Jeffrey A. Greene

Stephen Johnson

William B. Ware

© 2014 Darin S. Earnest ALL RIGHTS RESERVED

ABSTRACT

Darin S. Earnest: Calculating item discrimination values using samples of examinee scores around real and anticipated cut scores: Effects on item discrimination, item selection, examination reliability, and classification decision consistency (Under the direction of Gregory J. Cizek)

This study examined the degree to which limiting the calculation of item discrimination values to groups of examinee scores near real and anticipated cut scores affected item discrimination, item selection, examination reliability, and classification decision consistency. Three examinations used to credential individuals in health-related professions were used to answer the research questions. To replicate as closely as possible the context in which many credentialing examinations are developed, each of the examinations consisted of small samples of examinees and were analyzed using classical test theory procedures.

Item discrimination values, as expressed by the point-biserial statistic, were calculated for each examination item. Restricted item discrimination values were then calculated for each item using subsets of examinee scores. The restricted values were based on scores within 0.50 *SD*, 0.75 *SD*, and 1.00 *SD* of five unique cut score locations. Differences between unrestricted and restricted item discrimination values were measured. Two 50-item test variants for each examination were created to evaluate the effect restricted item discrimination values had on item selection, examination reliability, and classification decision consistency. Form A variants included the 50 most discriminating items using

unrestricted discrimination values. Form B variants included the 50 most discriminating items using restricted discrimination values.

The results of the study indicated that (a) item discrimination values were lower when their calculation was limited to groups of scores near cut scores; (b) using restricted item discrimination values as the criterion by which items were selected for test variants resulted in the selection of items that were different than those selected when unrestricted values were used as the selection criterion; (c) differences in examination reliability between test variants were found to be statistically significant, with scores of variants based on restricted item discrimination values producing lower estimates; and (d) test variants based on restricted item discrimination values produced slightly lower observed classification decision consistency estimates than variants based on unrestricted item discrimination values. The results of the study were tied to several aspects of the test development process for credentialing examinations, including issues related to sample size, cut score location, and examination validity. To my family.

ACKNOWLEDGEMENTS

Many people have supported me throughout this process. First, I could not have been successful in completing this journey without the love and encouragement of my wife, Annee. For your continual support and understanding, I am truly grateful. Thank you, Henry, George, Jane, Ruby, Eleanor, and Walter for letting me work when I needed to and for motivating me each and every day.

I am also grateful for the amazing and steadfast support of my advisor and mentor, Dr. Gregory Cizek. Thank you for believing in me and for your invaluable advice. I would also like to thank the members of my dissertation committee: Dr. Gary Cuddeback, Dr. Jeffrey Greene, Dr. Stephen Johnson, and Dr. William Ware. I truly appreciate the assistance and feedback that each provided me throughout this process.

Finally, thank you to the leadership and faculty of the Department of Foreign Languages at the United States Air Force Academy for giving me this opportunity. It is my great honor and privilege to serve with you.

TABLE OF CONTENTS

LIST OF TABLESx
LIST OF FIGURESxiii
CHAPTER 1: INTRODUCTION1
Research Questions7
Need for the Study7
CHAPTER 2: LITERATURE REVIEW10
Item Discrimination and the Test Development Process
Credentialing Examinations
Test Development with Small Samples of Examinee Responses
Summary
CHAPTER 3: METHOD
Participants40
Materials41
Examination 141
Examination 245
Examination 346
Data Analysis47
Research Question 149
Research Question 256

CHAPTER 4: RESULTS	62
Research Question 1	62
Examination 1	64
Examination 2	78
Examination 3	90
Summary – Research Question 1	102
Research Question 2	
Examination 1	103
Examination 2	108
Examination 3	111
Summary – Research Question 2	113
CHAPTER 5: DISCUSSION	
Limitations	115
Refinement of Items Used in the Study	116
Item Selection Criteria	117
Key Findings	120
Effect on Item Discrimination Values	121
Effect on Item Selection	
Effect on Examination Reliability	
Effect on Classification Decision Consistency	134
Recommendations for Future Research	135
Conduct Research with Less Refined Items	136
Use Test Specifications to Guide Item Selection	

	lop Longer Tests to Assess Effects of Restricted imination Values	137
Use o	of Non-Classical Test Theory Approaches	138
Effec	ts of Restricted Discrimination Values on Standard Setting	139
Conclusion		139
APPENDIX A: ITE	M DISCRIMINATION VALUES – EXAMINATION 1	142
APPENDIX B: ITE	M DISCRIMINATION VALUES – EXAMINATION 2	
APPENDIX C: ITE	M DISCRIMINATION VALUES – EXAMINATION 3	
REFERENCES		232

LIST OF TABLES

able 1.1 - Test Development Process	4
able 2.1 - States with Most and Fewest Licensed Occupations	25
able 3.1 - Summary of Examination Characteristics	41
able 3.2 - Descriptive Statistics for Examinations Used	44
able 3.3 - R Packages Used to Complete Procedures	48
able 3.4 - Description of Item Discrimination Values Calculated	53
able 4.1 - Conditions for the Calculation of Restricted Point-biserials	63
able 4.2 - Descriptive Statistics of Discrimination Values Calculated for Examination 1	72
able 4.3 - Correlation Matrix of Item Discrimination Values Calculated for Examination 1	73
able 4.4 - Results of the One-way Repeated Measures ANOVA for Examination 1	75
able 4.5 - Results of Tukey's HSD Test for Examination 1 - Unrestricted vs. Restricted Values	77
able 4.6 - Descriptive Statistics of Discrimination Values Calculated for Examination 2	85
able 4.7 - Correlation Matrix of Item Discrimination Values Calculated for Examination 2	87
able 4.8 - Results of the One-way Repeated Measures ANOVA for Examination 2	88
able 4.9 - Results of Tukey's HSD Test for Examination 2 - Unrestricted vs. Restricted Values	89
able 4.10 - Descriptive Statistics of Discrimination Values Calculated for Examination 3	97
able 4.11 - Correlation Matrix of Item Discrimination Values Calculated for Examination 3	99
able 4.12 - Results of the One-way Repeated Measures ANOVA for Examination 3	.100

Table 4.13 - Results of Tukey's HSD Test for Examination 3 - Unrestricted vs. Restricted Values
Table 4.14 - Descriptive Statistics of Test Forms A and B – All Examinations104
Table 4.15 - Items and Discrimination Values for Form A andForm B – Examination 1
Table 4.16 - Descriptive Statistics of Form A and Form B Discrimination Values – Examination 1
Table 4.17 - Items and Discrimination Values for Form A andForm B – Examination 2
Table 4.18 - Descriptive Statistics of Form A and Form B Discrimination Values – Examination 2
Table 4.19 - Items and Discrimination Values for Form A andForm B – Examination 3
Table 4.20 - Descriptive Statistics of Form A and Form B Discrimination Values – Examination 3
Table 5.1 - Descriptive Statistics of Discrimination Values – All Examinations
Table 5.2 - Change in Direction of Discrimination Values – All Examinations
Table 5.3 - Descriptive Statistics of Selected Groups of Scores
Table 5.4 - Descriptive Statistics of Forms A and B Test Variants – All Examinations128
Table 5.5 - Descriptive Statistics for Unique Form A andForm B Test Variant Items – All Examinations
Table A.1 - Item Discrimination Values for Examination $1 - C_{X1}$
Table A.2 - Item Discrimination Values for Examination $1 - C_{X2}$
Table A.3 - Item Discrimination Values for Examination $1 - C_{X3}$
Table A.4 - Item Discrimination Values for Examination 1 – C _{X4}
Table A.5 - Item Discrimination Values for Examination 1 – C _{X5}
Table B.1 - Item Discrimination Values for Examination $2 - C_{X1}$

Cable B.2 - Item Discrimination Values for Examination $2 - C_{X2}$.179
Cable B.3 - Item Discrimination Values for Examination $2 - C_{X3}$.186
Cable B.4 - Item Discrimination Values for Examination $2 - C_{X4}$.193
Cable B.5 - Item Discrimination Values for Examination $2 - C_{X5}$.200
Cable C.1 - Item Discrimination Values for Examination $3 - C_{X1}$.207
Table C.2 - Item Discrimination Values for Examination $3 - C_{X2}$.212
Table C.3 - Item Discrimination Values for Examination $3 - C_{X3}$.217
Table C.4 - Item Discrimination Values for Examination $3 - C_{X4}$.222
Cable C.5 - Item Discrimination Values for Examination 3 – C _{x5}	.227

LIST OF FIGURES

Figure 2.1 -	Example of item characteristic curve (ICC)	.18
Figure 2.2 -	Probabilities of consistent classifications using two forms	.32
Figure 3.1 -	Histogram of total scores for Examination 1	43
Figure 3.1 -	Histogram of total scores for Examination 2	45
Figure 3.1 -	Histogram of total scores for Examination 3	47
Figure 4.1 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X1} for Examination 1	65
Figure 4.2 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X2} for Examination 1	66
Figure 4.3 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X3} for Examination 1	67
Figure 4.4 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X4} for Examination 1	68
Figure 4.5 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X5} for Examination 1	69
Figure 4.6 -	Boxplot highlighting distribution of item discrimination values under each condition for Examination 1	.70
Figure 4.7 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X1} for Examination 2	79
Figure 4.8 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X2} for Examination 2	80
Figure 4.9 -	Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X3} for Examination 2	81
Figure 4.10	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X4} for Examination 2	82
Figure 4.11	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 <i>SD</i> , 0.75 <i>SD</i> , and 0.50 <i>SD</i> of C _{X5} for Examination 2	83

Figure 4.12	- Boxplot highlighting distribution of item discrimination values under each condition for Examination 2
Figure 4.13	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 <i>SD</i> , 0.75 <i>SD</i> , and 0.50 <i>SD</i> of C _{X1} for Examination 391
Figure 4.14	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 <i>SD</i> , 0.75 <i>SD</i> , and 0.50 <i>SD</i> of C _{X2} for Examination 392
Figure 4.15	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 <i>SD</i> , 0.75 <i>SD</i> , and 0.50 <i>SD</i> of C _{X3} for Examination 393
Figure 4.16	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 <i>SD</i> , 0.75 <i>SD</i> , and 0.50 <i>SD</i> of C _{X4} for Examination 394
Figure 4.17	- Plots of unrestricted and restricted item discrimination values based on scores within 1.00 <i>SD</i> , 0.75 <i>SD</i> , and 0.50 <i>SD</i> of C _{X5} for Examination 395
Figure 4.18	- Boxplot highlighting distribution of item discrimination values under each condition for Examination 396
Figure 5.1 -	Pie charts representing breakdown of Form B test variant items for each examination
Figure 5.2 -	Pass/fail consistency tables for Examination 1 and associated test variants
Figure 5.3 -	Pass/fail consistency tables for Examination 2 and associated test variants
Figure 5.4 -	Pass/fail consistency tables for Examination 3 and associated test variants

CHAPTER 1

INTRODUCTION

Examinations, and the roles they play in a variety of fields, have been the source of much debate in recent years. In the educational setting, for example, legislation like the 2001 No Child Left Behind Act (NCLB, 2002) shifted significant attention to student performance on mandatory end-of-grade examinations. The results of these examinations, depending on location, are often taken into consideration when important school-related decisions such as student retention and educator evaluation and compensation are made. In some areas, the results can even affect school and school district operating budgets.

Increased focus on the use of examinations in schools has led to greater scrutiny of the process by which these tests are developed. Ensuring that examinations are valid and reliable is in the interest of all who are affected by their results. To that end, the American Educational Research Association (AERA), the American Psychological Association (APA), and the National Council on Measurement in Education (NCME) jointly developed and published the *Standards for Educational and Psychological Testing* (1999; hereafter, *Standards*). According to the *Standards*, "The proper use of tests can result in wiser decisions about individual programs than would be the case without their use and also can provide a route to broader an more equitable access to education and employment" (p. 1). The intent of the *Standards* is to "promote the sound and ethical use of tests" and to provide a basis for "evaluating the quality of testing practices" (p. 1).

Education is not the only field, however, in which the results of examinations can be significant and consequential. Government agencies and other professional organizations frequently require applicants for credentials to pass license- or certification-granting examinations. Lawyers, physicians, electricians, and barbers are all examples of professionals who are required to receive government-issued licenses before being authorized to practice in their respective fields. Likewise, non-governmental entities often use examinations as part of the process to certify persons to perform tasks or operations that require specific skill sets. An information technology company, for instance, may require technicians to pass an examination before authorizing them to work on certain software programs. Tests that are used to grant certifications or award professional recognitions are frequently referred to as credentialing examinations.

Like other types of tests, credentialing examinations need to be developed in a manner that ensures their results produce desired thresholds of validity and reliability. According to the *Standards* (AERA, APA, & NCME, 1999), "Tests and testing programs should be developed on a strong scientific basis. Test developers and publishers should compile and document adequate evidence bearing on test development" (p. 43). In addition to the guidelines listed in the *Standards*, credentialing examinations may also be required to meet additional criteria. Depending on the nature of the organization using the examination, compliance with guidelines set forth by national and international standards organizations, such as the American National Standards Institute (ANSI; 2013) and the International Organization for Standardization (ISO; 2013) may also be desired or required. Standardization organizations such as these ensure that licensure and certification

requirements are consistent among relevant parties. Adhering to these standards may also provide legal defensibility for the developers and administrators of these examinations.

The process by which credentialing examinations are developed is similar to that which is used for other types of tests. According to Downing (2006), the typical test development process is comprised of 12 steps. These steps are included in Table 1.1. The process begins with gaining an understanding of the purpose of the examination, the desired inferences to be made by test scores, as well as the general format to be used. Additional steps include defining the content to be used, creating test specifications, developing examination items, designing and assembling the test, and test production. Following these procedures, items are frequently field-tested, scored, and analyzed to judge the appropriateness of their inclusion in final versions of examinations. If applicable, a standard setting process may be used to recommend a minimum passing score for the test. This is followed by the development of a test reporting protocol, the establishment of an examination item bank, and the creation of technical reports that document the development process. Each step in this process is as important as the next and frequently serves as evidence for claims of examination validity.

Table 1.1

Test Development Process

Step	Examples of development tasks and concerns
1. Overall plan	Guidance for test development activities Confirm desired test interpretations Test format
2. Content definition	Sampling plan Content-related validity evidence
3. Test specifications	Content domain sampling Desired item characteristics
4. Item development	Item writer training Item review, editing
5. Test design and assembly	Design/create test forms Develop pretesting considerations
6. Test production	Publishing/printing activities Security/quality control
7. Test administration	Standardization issues Proctoring, security, timing issues
8. Scoring test responses	Quality control Item analysis
9. Passing scores	Standard setting Comparability of standards
10. Reporting test results	Accuracy, quality control Misuse/retake issues
11. Item banking	Security issues Usefulness, flexibility
12. Test technical report	Documentation of validity evidence Recommendations

Note. Test development steps adapted from Downing (2006).

The development process for credentialing examinations can be affected by the unique characteristics these tests frequently exhibit. Unlike large-scale standardized tests used in education, credentialing examinations are often developed and administered for organizations representing occupations or fields with relatively few potential members. As such, the resources these groups are able to devote to test development and administration may be relatively limited. Although not wholly unique to credentialing examinations, examinees seeking a license or certification must also typically reach a predetermined minimum score, or cut score, in order to pass the examination and, therefore, be eligible to receive the desired credential. Tests with cut scores are also sometimes referred to as competency or mastery examinations because obtaining a score at or higher than the cut score infers examinee mastery or competency over a specified set of content standards. These attributes make credentialing examinations different than many standardized tests used in education, such as those used to measure the aptitude of prospective first-year college students. Such examinations are administered to thousands of examinees each year, creating large sets of data by which the development process is significantly aided.

The focus of this study is on one step in the process used to develop credentialing examinations. This step, frequently referred to as *item analysis*, is used to assess the degree to which field-tested items are suitable for inclusion in final versions of examinations. Item analysis, which Crocker and Algina (2008) defined as "the computation and examination of any statistical property of examinees' responses to an individual test item" is included in Step 6 of Downing's (2006) development process (p. 311). The statistical properties most commonly used to assess individual examination items are *item difficulty* which, in classical test theory (CTT) terms, is the proportion of examinees that respond to an item correctly; and

item discrimination, which measures the degree to which an item differentiates between examinees who possess more of some characteristic intended to be measured by a test (e.g., subject area mastery) and those who possess less of the characteristic. This differentiation is typically operationalized as the difference between those examinees who perform relatively well on an examination and those who perform relatively poorly.

The procedures used to calculate item discrimination values for credentialing examinations with relatively small samples of field-test data are the focus of this study. A number of statistics are currently used to gauge item discrimination. A common characteristic among these methods, however, is that in calculating the discrimination values they consider scores from all examinees. In this study, discrimination values calculated using these traditional methods are referred to as *unrestricted*, because they incorporate data from all examinees. This research studies the effects of limiting the data used to calculate item discrimination to that of examinees who score around the test cut score. These values are referred to as *restricted* because they consider only a limited subset of examinee scores. In addition to examining how restricting scores used in the calculation of discrimination values affects the values themselves, the study investigates the effects of restricted discrimination values on certain aspects of test development, including item selection, examination reliability, and classification decision consistency.

Research Questions

The following research questions are addressed in this study:

- What are the effects on item discrimination values when the values are calculated using restricted samples of examinee test scores within varying ability ranges around real or anticipated cut scores?
- 2. What are the effects of calculating item discrimination values based on varying ranges of examinees around cut scores on item selection, examination reliability, and classification decision consistency?

Need for the Study

The current study represents a unique contribution to the field of test development for credentialing examinations. Current procedures used to calculate item discrimination values, although appropriate and effective for many types of tests, may not be ideal for competency examinations. In addition, the study's emphasis on tests with small samples of examinees represents the realistic—and under-studied—conditions of many testing programs, particularly those used by credential-granting organizations. Using small sample sizes also necessitates the use of classical test theory procedures, which, despite the emergence of more sophisticated measurement models, remain popular among developers of credentialing examinations. Some of the important potential benefits of this study are described in the following paragraphs.

First, although a variety of procedures may be used to calculate item discrimination values, a common characteristic of these procedures is that they each use the entire population of previous examinees as the criterion group when calculating the discrimination

values. In this manner, they treat scores of examinees at both the extreme upper and lower ends of a distribution of test scores as they do scores from examinees near the examination cut score. The focus of competency examinations, however, is on candidates near the cut score. By limiting the basis for calculating discrimination values to scores of examinees near the actual or estimated cut score, greater emphasis may be applied to items that discriminate more effectively amongst examinees with ability levels closest to those for which the test was designed to distinguish.

If the sample of examinees on which discrimination values are calculated is restricted, the restriction is likely to affect the selection of items for competency examinations. It is expected that discrimination indices based on criterion groups having a narrower range of ability or performance would produce uniformly attenuated discrimination indices. However, if discrimination values based on responses within a restricted sample of examinees are significantly different than those calculated using all examinees, the items selected for an examination will be dependent on the method employed. In other words, restricting the range of test scores used to calculate discrimination values permits items that discriminate among examinees with ability levels closest to those the cut score operationalizes to be selected over those that discriminate in other areas within the range of test scores.

The degree to which limiting the calculation of item discrimination values to scores of examinees around cut scores affects other aspects of test development also warrants further research. This study specifically examines how calculating discrimination values in this manner affects examination reliability and classification decision consistency.

Second, an important aspect of this research is that it was conducted within the context of competency examinations with relatively small numbers of examinees. Limiting the research to small-sample examinations is of particular benefit to developers of tests used to credential individuals. Unlike many large-scale educational achievement examinations for which item analysis may rely on large numbers of student responses and test scores, credentialing tests, due to their very nature, are often limited to smaller pools of examinees. Much of the research related to item analysis has focused on tests with large numbers of examinees. Fewer, however, have examined these issues as they specifically relate to examinations with smaller samples of available test scores. Focusing the study in this manner represents a significant contribution to small-sample examination development.

Finally, whereas the research presented here focused on examinations with small samples of response data, classical test theory procedures were appropriate and were used throughout. These procedures, though less computationally complex than more recent measurement theories, are still widely used by those responsible for developing credentialing examinations. The results of classical test theory-based procedures are also frequently viewed as being easier to interpret by individuals without backgrounds in measurement theory or statistics than the more complex models. As such, the results of this study are generalizable to a large segment of the test development field.

CHAPTER 2

LITERATURE REVIEW

The subjects addressed in this study draw upon relevant literature from three major areas of research: (a) analyses regarding item discrimination and its role in the test development process, (b) studies pertaining to the development of mastery or competency examinations used to credential individuals, and (c) research related to test development when relatively small samples of examinee scores are available. Significant research from each of these three areas is described in the sections that follow.

Item Discrimination and the Test Development Process

Assessing the degree to which items discriminate between examinees who possess more of some knowledge, skill, or ability and those who exhibit less is an important element in the process by which items are selected for inclusion in all types of examinations. This process, commonly referred to as item analysis, is used to compute the statistical properties of examinee responses to individual test items (Crocker & Algina, 2008). The goal of item analysis is to ensure that items selected for examinations yield levels of reliability and validity that sufficiently support the test's intended purpose. Items that discriminate between high- and low-performing examinees are typically viewed as being desirable and, as such, worthy of being included in an examination; items that do not are frequently removed from consideration for inclusion in an examination.

Many item discrimination methods have been developed to assess the relationship between examinee responses to individual test items and test performance. Although the approaches used to calculate discrimination values according to these indices vary, they share a common purpose: to identify test items to which high-scoring examinees have a high probability of responding correctly, and to which low-scoring examinees have a low probability of responding correctly. A description of commonly used item discrimination indices is included in the sections that follow.

The *index of discrimination*, commonly referred to as the *D*-index, was one of the earliest methods developed to calculate item discrimination (Crocker & Algina, 2008). *D* is calculated by dividing examinees into upper- and lower-scoring groups of equal size. The criterion used to identify an examinee as belonging to either group is his or her observed test score. The proportion of examinees responding correctly to a particular item in the lower-scoring group (p_{lower}) is subtracted from the proportion of examinees responding correctly in the upper-scoring group (p_{upper}):

$$D = p_{upper} - p_{lower} \tag{2.1}$$

Scores for this index range between -1.00 and 1.00, with negative values indicating negative discrimination, an undesirable situation in which a smaller proportion of higher-scoring examinees than lower-scoring examinees respond correctly to an item. For tests with dichotomously scored items, the proportion of correct responses to a particular item for a group of examinees also represents that item's average score for the group. Therefore, *D*-

values also represent the difference in average item score between the high- and low-scoring groups (Ebel, 1967).

Although *D*-values are mathematically simple to compute, a number of drawbacks have limited their widespread use. With no known sampling distribution, it is not possible to test for statistical significance between *D*-values or to identify whether a particular *D*-value is significantly greater than zero (Crocker & Algina, 2008). In addition, the index of discrimination can only be used for items that are scored dichotomously. The selection of the upper- and lower-scoring groups can also significantly impact the calculated values, which may be particularly problematic for examinations with a restricted range of scores or where only small numbers of candidates are available.

When item analysis is conducted, D-values may be used to help determine the appropriateness of including individual items in the final version of an examination. Ebel (1965) developed a guideline for interpreting *D*-values:

- 1. If *D* is .40 or greater, the item is performing satisfactorily and no revision is required.
- 2. If *D* is between .30 and .39, little or no revision is required.
- 3. If D is between .20 and .29, the item needs revision.
- 4. If *D* is .19 or lower, the item should not be used.

Items with large positive *D*-values, which represent large differences in the proportion of correct responses between the two groups, are viewed as suitable, while items with small or negative *D*-values are not. According to Ebel, items with small *D*-values, indicating small differences in scores between the lower- and upper-scoring groups, should be revised before

being considered for inclusion in an examination, as, among other reasons, a low *D*-value may simply indicate that the item contains problematic wording.

Several studies have examined the use of variations to the index of discrimination. A classic study by Kelley (1939), for example, explored varying the size of the groups upon which *D*-values are calculated. Instead of using all test scores to establish upper- and lower-scoring groups, Kelley found that utilizing the upper and lower 27% of test scores produced more sensitive and stable results. Beuchert and Mendoza (1979), however, found that when sample sizes were large enough, using the upper and lower 30% or 50% of test scores produced nearly identical results to those produced by the 27% recommended by Kelley. Although Kelley, as well as Beuchert and Mendoza, addressed issues related to the current study, neither focused the calculation of item discrimination values on contiguous groups of varying sizes around examination cut scores. In addition, the researchers emphasized using groups at the extreme ends of test score distributions, a position at odds with the research presented here.

In another important study, Brennan (1972) suggested that using groups of equal size was not necessary when calculating D. Creating groups of equal size, as was done in the research described previously, was a result, according to Brennan, of "the preoccupation of test theory with the normal distribution" (p. 291). Actual score distributions for most examinations, however, are not normal. Brennan called for the creation of a new index, referred to as B, to measure item discrimination. The index is represented by the following formula:

$$B = \frac{U}{n_1} - \frac{L}{n_2}$$
(2.2)

where *U* represents the number of examinees in the upper-scoring group responding correctly;

L represents the number of examinees in the lower-scoring group responding correctly; and

 n_1 and n_2 represent the total number of examinees in the upper- and lower-scoring groups, respectively.

According to Brennan, B allows for an estimate of discrimination that does not require using groups of equal size. An important aspect of B, particularly as it relates to this research, is that it also allows evaluators to select the point along the distribution of test scores that most appropriately divides the upper and lower scoring groups:

Furthermore, regardless of the shape of the distribution of test scores, it seems reasonable to allow the test evaluator the freedom to choose the cut-off points between the upper and lower groups. Only he can determine the cut-off points that yield meaningful and interpretable upper and lower groups based upon his consideration of the test content, student population, and overall expectations for student performance on the test. When the test constructor is free to choose the cut-off points, there is, clearly, no reason to expect that the resulting groups will be of equal size. (p. 292)

Although the calculation of discrimination values used in this research does not utilize any adaptation of D or B, Brennan's claim that the most appropriate method used to calculate item discrimination values may be examination-dependent is relevant. A major consideration in this study is that the focus of mastery examinations is the test cut score. It appears reasonable, therefore, to use the cut score as the central point in the distribution of test scores upon which discrimination values are estimated.

In addition to the index of discrimination, several methods utilizing variations of the

Pearson product-moment correlation coefficient have been developed to measure item

discrimination. These methods are used to calculate the degree to which item performance and overall test performance are correlated. Two of the more commonly used correlational indices are the point-biserial correlation and the biserial correlation. Although both of these indices utilize correlation statistics to describe discriminating power, the results they produce are different. A brief description of each index is included in the paragraphs that follow.

The point-biserial correlation is the observed correlation between examinee performance on a dichotomously scored item and overall test score (Livingston, 2006). For dichotomously scored items, correct responses are scored 1 and incorrect responses are scored 0. The observed correlation between item response and test performance forms the basis for the point-biserial correlation. Like all correlation coefficient values, the pointbiserial values range between -1.00 and 1.00. Negative values represent items that discriminate negatively, while positive values represent those that discriminate positively. Larger values represent items with greater levels of discriminating power.

The point-biserial statistic, r_{pbis} , may be calculated using the following formula:

$$r_{pbis} = \frac{(\mu - \mu_x)}{\sigma_x} \sqrt{p/q}$$
(2.3)

where μ_{+} is the mean total score for those who respond to the item correctly; μ_{x} is the mean total score for the entire group of examinees; σ_{x} is the standard deviation for the entire group of examinees; p is item difficulty; and q is equal to (1 - p) (Crocker & Algina, 2008). A common criticism of the point-biserial statistic is that it may sometimes be spurious because the item score contributes to the total score for each examinee. This can result in inflated discrimination values. The effect is greatest for examinations with relatively few items, resulting in a curious situation in which shorter examinations, which typically produce lower levels of reliability, exhibit higher item discrimination values (Burton, 2001). For examinations with more than 25 items, such as those used in this study, however, the effect is rarely problematic and does not significantly affect discrimination values (Crocker & Algina, 2008).

The biserial correlation index produces results similar to the point-biserial index, but is calculated in a slightly different manner. The biserial, which was first derived by Pearson (1909), treats scores on dichotomously scored items as indicators of an unobservable underlying proficiency. The biserial estimates the correlation between this latent underlying proficiency and total test score.

The biserial statistic, r_{bis} , may be calculated using the following formula:

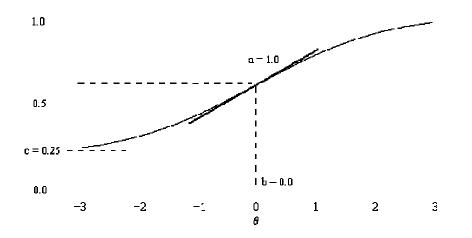
$$r_{bis} = \frac{(\mu + -\mu_x)}{\sigma_x} (p/Y) \tag{2.4}$$

where μ_{+} is the mean total score for those who respond to the item correctly; μ_{x} is the mean total score for the entire group of examinees; σ_{x} is the standard deviation for the entire group of examinees; p is item difficulty; and Y is the Y ordinate of the standard normal curve at the z-score associated with the p

value for the item (Crocker & Algina, 2008).

In general, the biserial statistic produces larger discrimination values than those produced by the point-biserial. This is due to the fact that the *Y* ordinate on the normal curve, which is used to calculate the biserial, will always be larger than \sqrt{pq} , which is used to calculate the biserial (Lord & Novick, 1968). The differences are more profound when item difficulty values are less than 0.25 or greater than 0.75. Differences in item discrimination values, therefore, may be attributed not only to qualitative differences among examination items, but also to the statistic used to estimate the level of discrimination.

Item response theory, a general statistical theory that relates performance on test items to the abilities the test is intended to measure, may also be used to calculate item discrimination values (Hambleton & Jones, 1993). At its core, item response theory estimates the probability that particular examinees will respond in certain ways to items with certain characteristics (Yen & Fitzpatrick, 2006). Although the Rasch, or one-parameter logistic model, provides estimates for item location (i.e., item difficulty) only, the two- (and greater) parameter logistic models estimate difficulty and item discrimination. The discrimination estimate produced by item response theory models is analogous to the itemtotal correlation statistics (i.e., the biserial and point-biserial) used in classical test theory.


Item response theory is also computationally more complex than the classical test theory discrimination indices mentioned earlier. The two-parameter logistic model uses two parameters to describe each item. These parameters include item difficulty, b_i , and item discrimination, a_i . The estimates may be calculated using the following equation:

$$P_{i}(X_{i}=1|\theta) = \frac{1}{1 + \exp[-Da_{i}(\theta - b_{i})]}$$
(2.5)

where P_i represents the probability of a correct response ($X_i = 1$) given a particular ability level (θ); and

D represents a multiplicative constant, typically set at either 1.7 or 1.702 (Yen & Fitzpatrick, 2006).

When the parameters are plotted, they create what are commonly referred to as item characteristic curves (ICCs). The a_i , or discriminating parameter, specifies the slope of the ICC, with steeper slopes indicating greater levels of item discrimination (Luecht, 2006). An example of an ICC produced using a three-parameter logistic model, with the third parameter representing examinee noise or guessing, is shown in Figure 2.1. In the figure, the slope, labeled a, represents item discrimination.

Figure 2.1. Example of item characteristic curve (ICC)

Estimates produced using item response theory require larger sample sizes than those produced using classical test theory. Reise and Yu (1990), for example, found that at least 500 cases were needed to produce dependable item parameter estimates, including item discrimination, when using item response theory, with 1,000 to 2,000 cases required for more accurate estimates. Hambleton and Jones (1993) found that the number of cases required to effectively utilize item response theory depended on the particular model being used; however, in general, they recommended no less than 500 cases be used. Despite its advantages, therefore, when calculating discrimination values, developers of examinations for which relatively small samples of examinee responses are available must typically rely on classical test theory procedures, such as the biserial or point-biserial item-total correlation statistics.

Much of the research associated with item discrimination and its role in the test development process has focused on comparisons between the various indices. Beuchert and Mendoza (1979), for example, analyzed the results of eight studies that compared discrimination values produced by a number of indices. Four of the studies found the values to be virtually indistinguishable. The others found minor, but sufficiently significant, differences leading to a recommendation against using particular indices in certain situations. Using a Monte Carlo statistical simulation approach, Beuchert and Mendoza developed sixteen 100-item examinations and administered them to two pools of simulated examinees, resulting in 32 distinct testing scenarios. The pools of examinees were comprised of 60 and 200 examinees respectively. The researchers then calculated discrimination values for each examination item using ten different discrimination indices. When compared, the differences the various indices produced were, according to the researchers, "extremely small, or

nonexistent in situations intended to accentuate those differences" (p. 116). Based on these results, Beuchert and Mendoza recommended using the most computationally simple index.

In a related study, Oosterhof (1976) compared discrimination values produced by 19 different indices using exploratory factor analysis. His research found the loadings representing each of the discrimination indices to be "impressively high," with six indices exhibiting loadings greater than 0.98 and all but one with loadings greater than 0.85 when loaded against a single common factor (p. 149). Oosterhof summarized his findings in the following manner:

When any of the selected indices are used to evaluate the relative performance of an item, the preference of one index over another minimally affects the resulting analysis. Preference towards a particular index would more appropriately be based on convenience of calculation or intuitive preference. It is inappropriate to suggest that using any of the common indices included in the present study has an appreciable effect on the eventual outcome of an analysis. (p. 149)

A more recent study by Fan (1998) compared the results of item analysis using both item response theory and classical test theory for a 108-item examination given to over 190,000 high school students in Texas. Fan estimated item discrimination values for each item using a two- and three-parameter logistic item response theory model and the pointbiserial statistic. The majority of correlation coefficients for the discrimination values ranged between 0.60 and 0.90. Although this relationship was somewhat weaker than that found for differences in item difficulty values, which was also assessed in the study, Fan indicated that the overall relationship between discrimination values calculated using item response theory and classical test theory to be "moderately high to high" (p. 378). According to Fan,

The findings here simply show that the two measurement frameworks produced very similar item and person statistics both in terms of the comparability of item and person statistics between the two frameworks and in terms of the degree of invariance of item statistics from the two competing measurement frameworks. (pp. 378-379)

Fan's findings are similar to conclusions reached by Thorndike (1982), who, in discussing the then relatively new use of item response theory in test development procedures, wrote:

For the large bulk of testing, both with locally developed and with standardized tests, I doubt there will be a great deal of change. The items that we will select for a test will not be much different from those we would have selected with earlier procedures, and the resulting tests will continue to have much the same properties. (p. 12)

Additional research associated with item discrimination has introduced new or modified versions of previously established indices. Harris and Subkoviak (1986), for example, developed a new index of discrimination, referred to simply as the agreement index. In developing the index, the authors hoped to create a procedure that incorporated certain aspects of item response theory, but which was computationally less complex. Designated $P(X_c)$, the agreement may be calculated using the following formula:

$$P(X_c) = \frac{a_{11} - a_{22}}{N}$$
(2.6)

where a_{11} represents the number of examinees responding to an item correctly; a_{22} represents the number of examinees responding incorrectly; and

N represents the total number of examinees.

 $P(X_c)$ can be interpreted as the probability of agreement between performance on a single item and performance on the overall examination, with ideal items having values equal to 1.00.

In their study, Harris and Subkoviak (1986) compared the selection of items for a set of examinations using both the agreement index and a two-parameter logistic item response theory model. The examinations were varied in terms of numbers of items, including lengths of 30, 50, and 100 items, and numbers of examinees, ranging between 30, 60 and 120. The results indicated that the average correlation between items selected using these two methods was 0.91. According to the authors, the correlation was sufficiently strong as to recommend the use of the agreement index, as estimates are much easier to compute than when using the two-parameter logistic model.

Credentialing Examinations

In many instances, examinations are developed for the purpose of classifying examinees into two or more groups. These types of tests, also frequently referred to as mastery or competency examinations, are used in a variety of fields. Competency examinations are used in education, for example, to identify students who may need remedial instruction, or to determine fitness for graduation. As such, they are not norm-referenced, as many achievement examinations used in education are, but rather are criterion-referenced; that is, examinees must meet specified standards, as operationalized by a pre-determined score, in order to pass. Government agencies and other professional organizations use mastery examinations to credential individuals in a variety of fields and occupations. Doctors, lawyers, and teachers, for example, must pass competency examinations before receiving the credentials they need to practice in their respective fields.

Buckendahl and Davis-Becker (2012) noted that individuals who take competency examinations are "candidates for a license, certification, or other credential" (p. 485). Licenses represent a legal authority to practice in a particular field and are typically awarded by federal or state agencies. In order to begin practicing in fields requiring a governmentissued license, individuals must complete an associated licensure program. In most cases,

these programs require the candidates to pass a competency examination. In contrast to licensure programs, certification programs are not government-regulated, but rather are typically managed within an occupational field and are usually voluntary. A certification attests to the fact that the individual has met a credentialing organization's standards and is entitled to make the public aware of his or her professional competence.

A primary purpose behind using competency examinations as a requirement for granting credentials, both government-regulated licenses and certifications, is ensuring that individuals are properly qualified to practice in their respective fields. The requirement made by many states for certain occupations to obtain licensure is also driven by the desire to promote public safety. According to the *Standards* (AERA et al., 1999):

Tests used in credentialing are intended to provide the public, including employers and government agencies, with a dependable mechanism for identifying practitioners who have met particular standards. Credentialing also serves to protect the profession by excluding persons who are deemed to be not qualified to do the work of the occupation. Tests used in credentialing are designed to determine whether the essential knowledge and skills of a specified domain have been mastered by the candidate. (p. 156)

By requiring individuals in these occupations to obtain licensure, the public may be confident that those providing services will do so in a safe and effective manner. Those responsible for credentialing programs, however, must balance this consideration with the need to ensure credentialing requirements are not so stringent so as to prohibit those who have been trained and who may be qualified from practicing in the field (Clauser, Margolis, & Case, 2006). In some situations, marginally qualified practitioners may be better than too few or no practitioners. In these cases, the public might actually be harmed by exceedingly high credentialing standards.

Government and professional organizations have used examinations to regulate a variety of occupations for hundreds of years. Chinese civil servants, for example, have been required to pass written examinations for nearly three millennia, with similar requirements for the medical and legal fields in place sometime before 500 B.C.E. (DuBois, 1970). Modern use of credentialing examinations originated, to a large degree, in the medical field. Garcia-Ballester, McVaugh, and Rubio-Vela (1989) listed several factors behind the rise of government-regulated standards in the medical field. Among these included: a concern for quality healthcare; a desire to restrict access to the field to those already practicing, in essence creating a monopoly for current practitioners; and political confrontations over the power to regulate certain occupations.

Today, government agencies continue to regulate an ever-growing number of fields. Atkinson (2012) listed the occupations in each state that required licensure as of 2010. California, at the top of the list, licensed 177 professions. Nine additional states licensed over 100 occupations each. Missouri, the state with the fewest number of licensed professions, required licenses for 41 occupations. Table 2.1 lists the ten states with the most and fewest licensed occupations.

Table 2.1

Rank	State	Licensed Occupations	Rank	State	Licensed Occupations
1	California	177	41	Colorado	69
2	Connecticut	155	42	North Dakota	69
3	Maine	134	43	Mississippi	68
4	New Hampshire	130	44	Hawaii	64
5	Arkansas	128	45	Pennsylvania	62
6	Michigan	116	46	Idaho	61
7	Rhode Island	116	47	South Carolina	60
8	New Jersey	114	48	Kansas	56
9	Wisconsin	111	49	Washington	53
10	Tennessee	110	50	Missouri	41

States with Most and Fewest Licensed Occupations

Note. Information derived from Atkinson (2012).

A common subject in the literature associated with credentialing examinations is the procedures by which these tests are developed. Credentialing examinations, not unlike other tests, must be developed in a manner that produces levels of reliability and validity that support the inferences the resulting tests score are intended to make. An important aspect in the development of these tests is the establishment of a cut score. The cut score represents the score examinees must obtain in order to pass the examination, and should, as Cizek (2012a) pointed out, be established using procedures that are as "defensible and reproducible

as possible" (p. 6). Appropriately, therefore, the *Standards* (AERA et al., 1999) recommend that those responsible for setting standards be "concerned that the process by which cut scores are determined be clearly documented and defensible" (p. 54).

The process used to develop cut scores is referred to as *standard setting*. Although a thorough review of the many standard-setting methodologies currently in use is beyond the scope of this study, a brief and general description of typical standard setting procedures is warranted. During standard setting conferences, subject matter experts, who are also frequently referred to as judges or participants, review definitions of the knowledge, skills, and attributes examinees must possess to be deemed minimally qualified for inclusion in a particular proficiency category. For many examinations, these categories may simply represent those who pass the test, and those who do not. Depending on the standard setting method used, the participants then make judgments about either individual examinees or individual test items. Through a variety of method-dependent procedures, the participants' judgments are translated into a recommended cut score. Once approved by the examination's governing body, candidates must score at or above the cut score in order to pass the test.

The accuracy of classifications made when utilizing credentialing examinations with cut scores is, of course, critically important. Because of this, more focus is given to ensuring precision around the cut score. According to the *Standards* (AERA et al., 1999):

Tests for credentialing need to be precise in the vicinity of the passing, or cut, score. They may not need to be precise for those who clearly pass or clearly fail. Sometimes a test used in credentialing is designed to be precise only in the vicinity of the cut score. (p. 157).

The above quote is of particular relevance to the current study. As discussed previously, traditional methods used to calculate item discrimination values consider scores of all examinees, regardless of their proximity to the examination cut score. By restricting the scores upon which discrimination values are calculated to those near the cut score, more precision is applied to those for whom the accuracy of the cut score is most relevant and consequential.

The knowledge and skills needed to practice in licensed fields changes periodically. In many instances advances in technology or methods of practice drive these changes. As such, the examinations used to credential individuals in these fields must also be altered to reflect the changes. When such changes occur, the examination cut score must also be reevaluated. Again, the *Standards* (AERA et al., 1999) describe the importance of this process:

Practice in professions and occupations often change over time. When change is substantial, it becomes necessary to revise the definition of the job, and the test content, to reflect changing circumstances. When major revisions are made in the test, the cut score that identifies required test performance is also reestablished. (p. 157)

In addition to research associated with the establishment and use of cut scores, the literature related to credentialing examinations has also emphasized issues related to examination validity and reliability. Researchers have focused on how these principles, critical to the development of any test, specifically relate to credentialing examinations.

According to the *Standards* (AERA et al., 1999), test validity is "the degree to which evidence and theory support the interpretation of test scores entailed by proposed uses" (p. 9). The interpretation of test scores produced by credentialing examinations is that examinees who pass the test are qualified to receive the associated credential and, therefore, are qualified to practice in their respective fields. According to Clauser et al. (2006):

Because the primary interpretation based on scores from licensing and certifying tests is that the examinee is (or is not) suitable for licensed or certified practice, it follows that a central issue of validity theory in this context is the question of whether the test scores properly classify examinees. (p. 716)

Obtaining the evidence necessary to support claims of examination validity is referred to as test validation. Cizek (2012b) summarized this process:

Validation is the ongoing process of gathering, summarizing, and evaluating relevant evidence concerning the degree to which that evidence supports the intended meaning of scores yielded by an instrument and inferences about standing on the characteristic it was designed to measure. (pp. 35-36)

As it specifically relates to credentialing examinations, gathering validity evidence can, at times, be somewhat challenging. Whereas the degree to which credentialing tests accurately classify examinees is the critical validity concern, it follows that a thoughtful analysis of this question might compare the performance of examinees who pass the examination with those who fail. Examinees who fail, however, are typically not allowed to practice in the field, and, therefore, such comparisons are normally not possible (Clauser, Margolia, & Case, 2006)

Margolis, & Case, 2006).

A more realistic approach to gathering validity evidence for credentialing

examinations may be one in which evidence supporting the appropriateness of the

examination's interpretive argument is identified. According to Kane (1992):

A test-score interpretation always involves an interpretive argument, with the test score as a premise and the statements and decisions involved in the interpretation as conclusions. The inferences in the interpretive argument depend on various assumptions, which may be more-or-less credible. Because it is not possible to prove all of the assumptions in the interpretive argument, it is not possible to verify this interpretive argument in any absolute sense. The best that can be done is to show that the interpretive argument is highly plausible, given all available evidence. (p. 527)

According to Clauser et al. (2006), an area that is particularly important to the interpretive argument made by credentialing examinations is evidence that the test was constructed using rigorous development procedures. These procedures must ensure that the

examination content realistically reflects the knowledge and skills needed by those seeking licensure or certification.

Raymond and Neustel (2006) underscored the importance of ensuring that the content associated with credentialing examinations reflected requirements for safe and effective practice in the fields for which credentials are awarded. According to the authors, this can be accomplished through the use of practice analyses, which "identify the job responsibilities of those employed in the profession" (p. 181). After conducting these analyses, the knowledge, skills, and attributes of the associated responsibilities may be obtained. These, in turn, aid developers in establishing a test blueprint, or specification. Raymond and Neustel listed several useful tools to aid in the conduct of practice analyses, including task inventory questionnaires, task statements, and job responsibilities scales.

Although the majority of their study evaluated various methodologies used to ensure appropriate content, Raymond and Neustel (2006) also highlighted the importance of using empirical data, such as computed "statistical indices of item-domain congruence..." to inform the item selection process (p. 206). This process, inevitably, includes an analysis of the discriminating power of potential examination items.

Clauser et al. (2006) also examined methods used to identify appropriate content for credentialing examinations. Like Raymond and Neustel (2006), the authors emphasized the importance of generating job responsibility inventories. In order to limit the size and scope of the examination, however, Clauser et al. suggested restricting task inventories to those activities that ensured public safety:

The topic of task list should include only those elements that are necessary to protect the public; entries that might be necessary for success in the field but are not required for safe practice should be omitted. (p. 705)

Reliability is also the focus of considerable research related to credentialing examinations. Put simply, examination reliability is the "desired consistency (or reproducibility) of test scores" (Crocker & Algina, 2008, p. 105). Over time, several methods have been developed to measure reliability. Early procedures relied on administering the same examination multiple times. Utilizing the test-retest method, for example, the developer administers an examination to a group of examinees, waits a predetermined amount of time, and then re-administers the examination. The correlation between examinee test scores, referred to in this context as the *coefficient of stability*, is then calculated (Crocker & Algina, 2008). Similar methods require administering alternate test forms to examinees and calculating the correlation between scores on the forms.

Other approaches used to estimate reliability rely on single administrations of examinations. One such procedure is the split-half method, in which a single examination form is administered to a group of examinees. Before the test is scored, however, the examination is divided into two equivalent halves. The halves are scored as if they were separate examinations, and the correlation between test scores is calculated for each examinee. The method assumes that the halves are strictly parallel. In addition, because the split-half tests contain fewer items than the whole examination, the coefficient underestimates the reliability of the full-length test. The Spearman Brown correction was designed to overcome this problem (Crocker & Algina, 2008).

Some of the most popular reliability estimates, however, rely on covariances between examination items. Possibly the most popular method, developed by Cronbach (1951), produces a unique estimate for the internal consistency of test scores. The method,

commonly referred to as Cronbach's alpha, or coefficient alpha, can be calculated using the following formula:

$$\hat{\alpha} = \frac{k}{k-1} \left(1 - \frac{\sum \hat{\sigma}_i^2}{\hat{\sigma}_x^2} \right)$$
(2.7)

where k is the number of items on the examination;

 $\hat{\sigma}_i^2$ is the variance of item *i*; and

 $\hat{\sigma}_{r}^{2}$ is the total test variance (Crocker & Algina, 2008).

Using coefficient alpha, it is possible to treat each test item as a subtest and, therefore, to estimate the degree of reliability between the subtests.

Although coefficient alpha is commonly used as an estimate of reliability for all types examinations, including those used to credential individuals, the literature suggests that other forms of reliability estimates may also be appropriate when an examination is used to make classification decisions. According to Haertel (2006):

When continuous scores are interpreted with respect to one or more cut scores, conventional indices of reliability may not be appropriate, and the standard error of measurement may not be directly informative concerning classification accuracy. Such cases arise when examinees above a cut score are classified as passing or proficient, for example. Instead of standard errors, users may be concerned with questions such as the following: What is the probability that an examinee with a true score above the cut score will have an observed score below the cut score, or conversely? What is the expected proportion of examinees who would be differently classified upon retesting? (p. 99)

Classification decision consistency indices have been developed to measure the degree to which the same decisions are made from two different sets of measurements. One of the earliest indices, referred to simply as \hat{P} , can be explained using a two-by-two table,

similar to that shown in Figure 2.2. The cells in the table represent the proportions of examinees who are classified as either masters or non-masters after taking different forms of the same examination. The cell labeled \hat{P}_{11} , for example, represents the proportion of examinees classified as masters by both forms. The cell labeled \hat{P}_{10} represents the proportion of examinees classified as masters using the first form, but as non-masters using the second form.

		Decisions Based on Form 1		
		Non-master	Master	
Decisions Based	Non-master	\hat{P}_{00}	\hat{P}_{01}	
on Form 2	Master	\hat{P}_{10}	\hat{P}_{11}	

Figure 2.2. Probabilities of consistent classifications using two forms (Crocker & Algina, 2008)

The estimated probability of a consistent decision, therefore, can be calculated using the following formula:

$$\hat{P} = \hat{P}_{11+} \hat{P}_{00} \tag{2.8}$$

Values for \hat{P} can range between 0.00 and 1.00, with 0.00 representing complete inconsistency and 1.00 representing total consistency.

Although \hat{P} was recommended as a measure of classification decision consistency (Hambleton & Novick, 1973), the index is not without flaw. For example, a value greater than 0.00 would be expected by chance, even if the measurements used were uncorrelated. In an effort to overcome this situation, Swaminathan, Hambleton, and Algina (1974) recommended using Cohen's (1960) κ as a measure of classification decision consistency. The coefficient can be calculated using the following formula:

$$\kappa = \frac{P - P_c}{1 - P_c} \tag{2.9}$$

where P_c , also referred to as the *chance consistency*, is the probability of a consistent decision, and may be calculated using the following formula:

$$P_c = P_{1.}P_{.1} + P_{0.}P_{.0} \tag{2.10}$$

The four elements used to calculate P_c represent the margin sums in the hypothetical table displayed in Figure 2.2. That is, P_1 represents the probability of a mastery classification on one form and $P_{.1}$ represents a similar probability on the other form. The same holds true for P_0 and $P_{.0}$, which represent misclassifications on the forms. The interpretation of κ is somewhat different than that of \hat{P} , as it represents the increase in decision consistency over that expected by chance. The coefficient is 0.00 when there is no increase, and 1.00 when there is maximum increase (Crocker and Algina, 2008).

A limitation of the classification decision consistency indices discussed thus far is that they each require multiple administrations. Subkoviak (1976) and Huynh (1976) developed procedures by which *P* and κ could be estimated from a single administration. The approaches produce estimates using a hypothetical form that is exchangeable with the examination from which data is gathered (Crocker & Algina, 2008). Huynh's method has been shown to produce fairly accurate estimate of *P* and κ for parallel tests with as few as 10 items (Subkoviak, 1978).

Issues related to the validity and reliability of credentialing examinations are also significant when the legal defensibility of such tests are considered. According to Atkinson (2012), "as the number of regulated professions which use an examination as one criterion of eligibility increases so will the likelihood of a legal challenge" (p. 506). Although much of the attention competency examinations receive is on the score that defines passing and failing, Atkinson found that legal challenges rarely contest the cut scores themselves. Rather, legal challenges are focused on the entire test development process. According to Atkinson: "The basis for legally substantiating an examination program and its Pass/Fail determination discriminating between those recognized as establishing competence and those who have not, will necessitate an analysis of the entire examination development ..." (p. 511).

Legal defensibility is an important consideration within the context of the current study because item analysis, including the calculation and evaluation of item discrimination values, is a critical step in the test development process. If calculating discrimination values using only restricted samples of examinee responses is more appropriate for credentialing examinations, the issue becomes relevant to the test's defensibility.

Very few studies have assessed the role item discrimination plays in the development of credentialing examinations. Although not specific to credentialing tests, Harris and Subkoviak (1986) discussed the importance of item discrimination in the development of

mastery examinations in general. They advocated developing tests that maximize score differences between groups who pass and fail, while simultaneously minimizing score differences within these groups:

For a mastery test, this means selecting items that discriminate between masters and non-masters, as opposed to within masters and within non-masters. The consensus appears to be that a good mastery item is one which masters answer correctly and non-masters answer incorrectly. (p. 496)

More closely related to the current study, Buckendahl and Davis-Becker (2012) conducted research regarding the establishment of passing standards for credentialing examinations. Although the majority of their work emphasized the processes used to develop recommended cut scores for credentialing tests, and the not methodologies used to conduct item analysis, the authors highlighted an important consideration related to the development of credentialing examinations. The organizations responsible for credentialing individuals often do not have the resources needed to support all aspects of a comprehensive test development process. Raymond and Neustel (2006) also underscored this point. According to them, "credentialing organizations often lack the resources required for the types of thorough experimentation and investigation required to support [their] claims..." (p. 205). This is an important consideration within the context of the current research because it may explain, at least in part, why item analysis for credentialing examinations frequently must rely on small samples of examinee responses. Credentialing organizations, in many cases, simply do not have resources available to collect the large numbers of responses necessary to conduct a more complete analysis of potential test items. In some cases, these constrained resources are not only financial in nature, but are also related to the fact that in many fields, the pool of potential examinees is relatively small.

Test Development with Small Samples of Examinee Responses

An important aspect of the current study is that is utilizes tests for which relatively small numbers of examinee responses are available for item analysis. As discussed earlier, this is a realistic condition under which many credentialing examinations are developed. Jones, Smith, and Talley (2006) characterized this situation as one in which fewer than 200 examinee responses were available for analysis "either because the testing program is new or because the target population is inherently small" (p. 487).

A primary consideration in such situations is the process by which field-test data may be gathered for further analysis. According to the *Standards* (AERA et al., 1999), this process should be documented and should utilize examinees drawn from the population for which the examination was constructed:

When item tryouts or field tests are conducted, the procedures used to select the sample(s) of test takers for item tryouts and the resulting characteristics of the sample(s) should be documented. When appropriate, the sample(s) should be as representative as possible of the population(s) for which the test is intended. (p.44)

According to Jones et al. (2006), for examinations with relatively small numbers of possible test takers, this recommendation can be challenging because the developer must be in a position "to make sound statistical inferences while working within the constraints imposed by the testing system; namely, that there are fewer than 200 test takers available to participate in field testing – perhaps far fewer" (p. 493).

Millman and Greene (1989) suggested starting with a preliminary tryout of test items given to as few as five or six members of the target population or subject matter experts. The tryout would be followed by interviews aimed at ascertaining the examinees' thoughts regarding the test and individual test items. Jones et al. (2006) also provided recommendations for dealing with examinations for which relatively small pools of examinees are available. They suggested recruiting a stratified sample of examinees that is distributed similarly to the projected population. Such a strategy can help ensure that the sample is diverse enough to allow for a meaningful evaluation of the items' discriminating properties.

Once field-test data is collected, a determination regarding the appropriate measurement model to use must be made. As discussed previously, in many cases, analysis of items may be limited to classical test theory, as other models, such as item response theory, require larger numbers of examinees. Jones et al. (2006) examined the potential use of various measurement models under three different conditions: (a) when there are no pretest data, (b) when a pretest sample up to N = 100 is available, and (c) when a pretest sample of N = 100 to 200 is available.

According to Jones et al. (2006), when no item response data is available, developers must rely on rigorous item review procedures that emphasize item appropriateness, alignment with test specifications, content domain representativeness, potential item bias, and the adequacy of instructions. The previously described recommendation by Millman and Greene (1989), that the items may be administered to a handful of subject matter experts, may also be beneficial. Thorndike (1982) suggested that item difficulty and discrimination parameters might be estimated using regression analysis. This approach requires previously used items with known item parameters as well as judges who estimate the difficulty of new items.

For examinations with sample sizes of N = up to 100, Jones et al. (2006) found itemlevel statistics, to include item discrimination values, to be stable using classical test theory procedures. Citing a study conducted by Farish (1984), the authors found that when utilizing a random sampling of examinee responses, item discrimination values converged with full

sample statistics when *N* was as small as 40. According to Jones et al., "In the end, if the item pool is small, sample sizes as low as N = 50 may provide enough information to select desirable test items for inclusion in new test forms" (p. 506). The authors also discussed the use of item response theory for samples in this range. For tests being developed on $N \le 100$ examinee responses, they found that the one-parameter logistic model could be effective in estimating item difficulty. The one-parameter model, as discussed earlier, however, holds all discrimination values as equal, and, therefore, is not appropriate for studies investigating the role of discrimination in item selection.

Finally, for sample sizes of N = 100 to 200, Jones et al. (2006) found that classical test theory and item response theory procedures produced stable item parameters, which "facilitates making reliable item selection decisions within a larger item pool" (pp. 506-507).

In addition to the research conducted by Jones et al. (2006), other studies have compared the utility of classical test theory and item response theory in dealing with smallscale examinations. Not surprisingly, for examinations with 200 or fewer examinee responses, most suggest using classical test theory. Hambleton and Jones (1993), for example, found that whereas the number of cases required to use item response theory depended, to a certain extent, on the model being employed, at least 500 cases were desired.

Summary

The preceding sections described the relevant literature in three areas: (a) research related to item discrimination and its role in the test development process, (b) the development of credentialing examinations, and (c) the development of examinations when relatively small samples of examinee data are available. As seen in the works presented, the

literature is both wide-ranging and relevant to the current study. None of these studies, however, have examined the calculation and use of item discrimination values as approached in the current study. That is, none have evaluated how restricting the calculation of item discrimination values to the scores of examinees near the cut scores of credentialing examinations with limited sample sizes affects item selection, examination reliability, and classification decision consistency. The current research, therefore, represents a unique and valuable contribution to the expansion of knowledge in this important field.

CHAPTER 3

METHOD

Three examinations were used to measure the effect restricting scores upon which item discrimination values were calculated to those near cut scores had on the discrimination values themselves, item selection, examination reliability, and classification decision consistency. Detailed information regarding participants, materials used, and data analysis procedures are included in the sections that follow.

Participants

The participants in this study were examinees who took one of three tests used to credential individuals in health-related professions. As seen in Table 3.1, the number of participants varied according to examination. Utilizing examinations with various examinee population sizes allowed for a closer analysis of how the dependent variables were affected by sample size. The examinations used were also selected because the examinee population size for each is relatively small, reflecting realistic conditions under which many credentialing examinations are developed. In each case, the examinee population size is $N \leq 500$, thus necessitating the use of classical test theory procedures, as opposed to other approaches, such as item response theory, that would ordinarily require larger sample sizes.

Table 3.1.

Examination	Туре	Stakes	Ν	Number of Items	Scoring	Timing
Examination 1	C	Ъđ	400	175	D	9 h ours
Examination 1	C	М	490	175	D	8 hours
Examination 2	С	M-H	161	200	D	4 hours
Examination 3	С	L	76	175	D	4 hours

Summary of Examination Characteristics

Note. The following legend explains the symbols used in this table:

N = sample size; Type: C = certification; Stakes: L = Low, M = Medium, H = High; N = number of examinees; Scoring: D = dichotomous; Timing: number of hours permitted.

Materials

Three examinations were used in this study. Each examination was used to credential individuals in a health-field profession. Responses to test items were used to answer the research questions. A brief description of each examination used is included in the following sections.

Examination 1

Examination 1, the largest data set used, included responses from 490 examinees to a 175-item test used to credential individuals in the environmental health field. To be eligible to take the examination, candidates must hold a bachelor's degree or higher in engineering, chemistry, physics, or the biological or physical sciences. In addition, each candidate must have had at least four years of work experience in the environmental health field. Candidates

were given eight hours to complete the test. The examination is accredited by the American National Standards Institute (ANSI, 2013), which ensures it meets internationally recognized standards pertaining to certification of personnel. The examination, which is offered internationally, is considered to have low to medium stakes, with certification influencing some employment decisions. Descriptive statistics for Examination 1 (as well as for the other examinations used in the study) are included in Table 3.2. In addition, histograms representing total score distributions for Examinations 1, 2, and 3 are included in Figures 3.1, 3.2, and 3.3, respectively.

As seen in Table 3.2, scores for Examination 1 ranged between 46 and 161 with a mean score of 111.42. The distribution of scores was slightly negatively skewed, with a skewness value of -0.44. The *SD* was 19.55 and the *SEM* was 5.79. Examination reliability, expressed in terms of internal consistency using coefficient alpha, was 0.91.

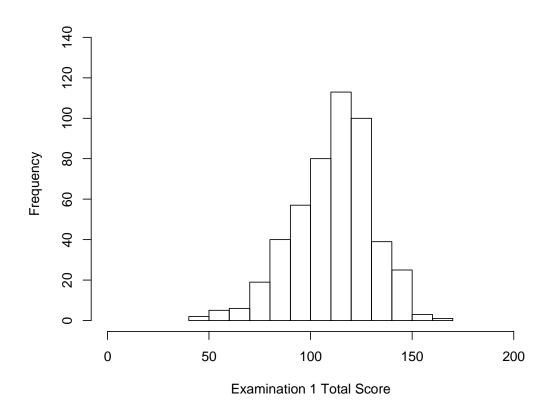
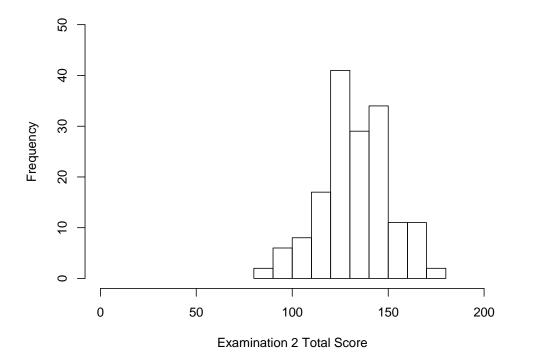


Figure 3.1. Histogram of total scores for Examination 1.

Table 3.2.


Descriptive Statistics for Examinations Used

Examination	Ν	No. Items	М	SD	SEM	Min	Max	Skewness	Kurtosis	α
Examination 1	490	175	111.42	19.55	5.79	46	161	-0.40	0.30	0.91
Examination 2	161	200	134.27	18.23	5.84	82	174	-0.20	0.02	0.90
Examination 3	76	149	115.04	9.01	4.44	93	134	-0.13	-0.35	0.76

Examination 2

Examination 2 is also used to credential individuals in a health-related field. The data set included responses from 161 examinees to 200 test items. To be eligible to take the examination, candidates must have at least an associate's degree and must be practicing in the field. Examinees are given four hours to complete the test. The examination is considered to have medium to high stakes, with scores influencing some employment and retention decisions.

Scores for Examination 2 ranged between 82 and 174, with a mean score of 134.27. The score distribution for Examination 2 was also slightly negatively skewed, as evidenced by its skewness value of -0.20. The *SD* was 18.23 and the *SEM* was 5.84. Examination reliability, expressed in terms of coefficient alpha, was estimated to be 0.90.

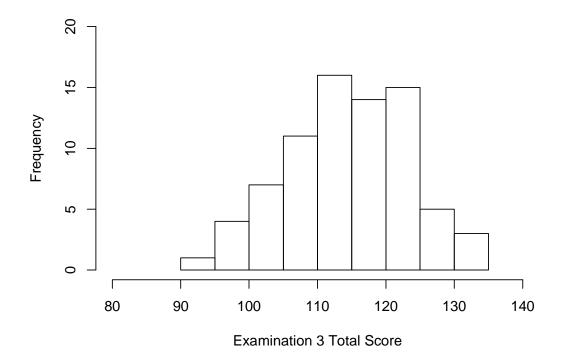


Figure 3.2. Histogram of total scores for Examination 2.

Examination 3

Examination 3, which yielded the smallest data set used, included responses from 76 examinees to 149 test items. The examination originally contained 150 items, but one item was eliminated from scoring after the examination was administered, resulting in 149 scored items. Examination 3 is used as a credentialing test for registered nurses. The intended purpose of the test is to measure nurses' understanding of diabetes. All examinees were practicing registered nurses. The examination was offered internationally through a network of computer-based testing centers. Candidates were given four hours to complete the examination. The test is considered to have low stakes, with results not impacting hiring or performance reviews.

Scores for Examination 3 ranged between 93 and 134. The mean score was 115.04. As was the case with Examinations 1 and 2, the distribution of test scores for Examination 3 was negatively skewed, with a skewness value of -0.35. The reliability estimate for Examination 3, again as expressed using coefficient alpha, was 0.76.

Figure 3.3. Histogram of total scores for Examination 3.

Data Analysis

Many of the procedures described in this study were conducted using jMetrik item analysis software (Version 3.0 for Mac; Meyer, 2013). jMetrik is an open source computer program used to conduct a variety of psychometric analyses, including item discrimination value calculation. It also generates descriptive statistics for examination data sets. In addition, R (version 2.15.2, GUI 1.53; R Core Team, 2012) was used to conduct several procedures and to generate graphical products. The R packages used to complete these operations are included in Table 3.3.

Table 3.3

Package	Functions
base (R Core Team, 2012)	Descriptive statistics
car (Fox & Weisberg, 2011)	Descriptive statistics
cocron (Diedenhofen, 2013)	Coefficient alpha significance testing
graphics (R Core Team, 2012)	Histograms Data plots Boxplots
psych (Revelle, 2013)	Descriptive statistics Item analysis
psychometric (Fletcher, 2010)	Reliability estimates
stats (R Core Team, 2012)	Correlation analysis ANOVA

R Packages Used to Complete Procedures

The three data sets were first screened for missing or miscoded data. As indicated in Table 3.1, all items in each of the examinations used were scored dichotomously; correct responses were scored with a 1, while incorrect responses were scored with a 0. Descriptive statistics, as depicted in Table 3.2, were then calculated for each examination. The remainder of this section outlines the procedures used to answer the study's two research questions.

Research Question 1

The first research question addressed the degree to which item discrimination values are affected when those values are calculated using scores from samples of examinees within ability ranges around real or anticipated cut scores. To begin, unrestricted discrimination values – those calculated in a traditional manner using all examinee responses available – were calculated for all examination items. Calculating unrestricted discrimination values was necessary, as these values served as a baseline against which the restricted values were subsequently compared.

The point-biserial statistic, r_{pbis} , was used to estimate item discrimination throughout this study. As described previously, the point-biserial is calculated as follows:

$$r_{pbis} = \frac{\mu - \mu_x}{\sigma_x} \sqrt{p - q} \tag{3.1}$$

where μ_+ is the mean total score for those who respond to the item correctly; μ_x is the mean total score for the total group of examinees;

 σ_x is the standard deviation for the total group of examinees;

p is the item's difficulty index; and

q is equal to (1 - p) (Crocker & Algina, 2008).

The point-biserial correlation, which is the observed correlation between item performance and test performance, was selected because it is one of the most commonly used estimates of item discrimination, thus facilitating replications of the procedures used in this study. In addition, previously described research (Oosterhof, 1976; Beuchert & Mendoza, 1979) found differences between estimates produced by the various discrimination indices to be insignificant. Use of the point-biserial, as opposed to any other discrimination statistic, therefore, was deemed to have not affected the outcome of the study.

Next, the actual examination cut score, C_{X1} , was used as a center point for several groups of test scores upon which restricted point-biserial statistics were subsequently calculated. The actual cut score is defined as the score the examination's governing body or agency approved as the minimum score required in order to pass the test. The restricted point-biserials were calculated in the same manner as the unrestricted values, but were based on fewer test scores. Each group of test scores was centered on the original cut score, but varied in size according to the following increments:

- Original cut score ± 1.00 SD
- Original cut score ± .75 SD
- Original cut score $\pm .50$ SD

Thus, the three groups of test scores upon which the restricted point-biserials were calculated varied in size according to distance from the original cut score. The largest group included all examinee scores within 1.00 *SD* of the original cut score. The next largest group included those within .75 *SD* of the original cut score. The smallest group included only those scores within .50 *SD* of the original cut score.

Focusing on smaller groups of test scores around the examination cut score allowed for an increased focus on that portion of the distribution of scores for which classification accuracy is most important. According to Clauser et al. (2006), classification accuracy is the central issue of validity theory with regards to credentialing examinations. Likewise, the *Standards* (AREA et al., 1999) call for precision "in the vicinity of the passing, or cut, score" (p. 157). It seems important, therefore, to clarify the degree to which test items discriminate

among those examinees who obtain scores near the examination cut score. It was also important to assess how the size of the group of test scores considered affected the item discrimination values. By calculating restricted discrimination indices for the three groups of test scores described earlier, this analysis was made possible.

The process described thus far was repeated at four additional cut score locations. These locations were set at the actual cut score plus 1 *SEM* (C_{X2}) and minus 1 *SEM* (C_{X3}), and the actual cut score plus 2 *SEM* (C_{X4}) and minus 2 *SEM* (C_{X5}). These new cut score locations then also served as central points around which item discrimination values for three groups of test scores were calculated: scores ± 1.00 *SD*, scores ± .75 *SD*, and scores ± .50 *SD*. Calculating discrimination values at these four additional cut score locations was important because in many instances the cut scores recommended by the results of a standard setting procedure vary from year to year. Adjustments to examination cut scores are not uncommon, and may be due to changes in the examination itself, or the composition of the standard setting panel.

When discrimination values are calculated using limited groups of examinee test scores around cut scores, the cut score represents a unique location in the distribution of all test scores. A change in the location of cut score represents a different point in that distribution. It is helpful to assess, therefore, the degree to which the location of the cut score affects item discrimination values when those values are calculated using limited samples of examinee test scores. Using the actual cut score, as well as the actual cut score, plus and minus 1 and 2 *SEM*, as central points around which groups of scores are used to calculate discrimination values helped to determine how changes in the location of the cut score affected those values.

The procedures used to answer Research Question 1 resulted in the calculation of 16 unique discrimination values for each examination item: 1 unrestricted point-biserial calculated using all available test scores, and 15 restricted point-biserial calculated using three groups of test scores around each of the five cut scores. The location and size of the groups upon which the 15 restricted values were calculated are depicted in Table 3.4

After the 15 sets of restricted point-biserials were calculated for each examination item, the values were compared to their corresponding unrestricted point-biserials. The initial analysis of differences between the restricted and unrestricted values was based on visual comparisons. Each set of restricted values was jointly plotted with the corresponding unrestricted values, allowing for a better understanding of differences and general trends. Next, a series of boxplots were produced. Each boxplot represented one of the 15 conditions under which the restricted point-biserials were calculated. These boxplots were displayed alongside a boxplot representing the unrestricted values. The procedure allowed for a visual comparison of means and the variation of values between the 15 sets of restricted pointbiserials and the unrestricted set.

Actual differences between the restricted and unrestricted values were also calculated. For each condition, the item-level differences were characterized with regard to their direction and magnitude. The mean item discrimination value for the examination was also calculated for each condition. These mean values were then compared to the mean value of the unrestricted point-biserials. These procedures provided further insights into general trends regarding changes in magnitude and direction of the item discrimination values as the conditions were applied.

Table 3.4.

Cut score	Cut score location	Size of group used to calculate point-biserial
C _{X1}	Actual cut score	$\begin{array}{l} C_{X1} \pm 1.00 \; SD \\ C_{X1} \pm .75 \; SD \\ C_{X1} \pm .50 \; SD \end{array}$
C _{X2}	$C_{X1} + 1 SEM$	$\begin{array}{l} C_{\rm X2} \pm 1.00 \; SD \\ C_{\rm X2} \pm .75 \; SD \\ C_{\rm X2} \pm .50 \; SD \end{array}$
C _{X3}	C _{X1} – 1 <i>SEM</i>	$\begin{array}{l} C_{\rm X3} \pm 1.00 \; SD \\ C_{\rm X3} \pm .75 \; SD \\ C_{\rm X3} \pm .50 \; SD \end{array}$
C _{X4}	$C_{X1} + 2 SEM$	$\begin{array}{l} C_{\rm X4} \pm 1.00 \; SD \\ C_{\rm X4} \pm .75 \; SD \\ C_{\rm X4} \pm .50 \; SD \end{array}$
C _{X5}	$C_{X1} - 2 SEM$	$\begin{array}{l} C_{\rm X5} \pm 1.00 \; SD \\ C_{\rm X5} \pm .75 \; SD \\ C_{\rm X5} \pm .50 \; SD \end{array}$

Description of Item Discrimination Values Calculated

Note. Point-biserial statistics were used to estimate item discrimination values.

The procedures described thus far helped to establish a broader understanding of how limiting examinee scores upon which discrimination values are calculated to those within a specified distance of an examination cut score affects those values. To examine the degree to which the differences between restricted an unrestricted values were or were not statistically significant, however, two addition procedures were conducted. First, a correlation analysis of the 16 sets of point-biserials was conducted. The correlation coefficients generated were tested for statistical significance at the $\alpha = .05$ level. A correlation matrix was produced and

is included in the results. The correlation analysis helped to determine where the relationships between the sets of point-biserials were strongest and weakest. This was important as it helped to identify those conditions that resulted in the greatest differences between restricted and unrestricted values.

Next, in order to ascertain the presence of statistically significant differences among the sets of point-biserials, a one-way analysis of variance (ANOVA) procedure was conducted. ANOVA procedures are used to test for differences among the means of two or more samples (Huck, 2008). In this study, item discrimination value was the dependent variable and the conditions under which the values were calculated served as the independent variables. The analysis was used to test for differences among the means of the 15 sets of restricted point-biserials and the unrestricted set. The null hypothesis tested, therefore, was:

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \dots \mu_{16}$

Four assumptions are associated with ANOVA procedures. These include independence, randomness, normality, and homogeneity of variance (Huck, 2008). Because the procedure involved the analysis of the same sets of items under various conditions, the assumption of independence could not be assumed. As a result, a one-way repeated measures ANOVA technique was used to analyze the data. Repeated measures ANOVAs are frequently used when participants or other entities are measured according to some factor over repeated occasions (Huck, 2008).

The purpose of ANOVA using repeated measures is identical to that of those without repeated measures: to test the null hypothesis that the means among the groups of data are

equal. Repeated measures ANOVAs, however, are also subject to the assumption of sphericity. This assumption is satisfied when the population variances, as well as all of the bivariate correlations, are identical (Huck, 2008). When the assumption is not met, the *F*-value produced by the ANOVA will be too large. Mauchly's (1940) test, a procedure frequently used to assess sphericity, was used in this study to evaluate compliance with this assumption. The null hypothesis for the Mauchly test is that the differences in variances between the groups from which the samples were drawn are all equal. This null hypothesis can be expressed in the following terms:

H₀:
$$\sigma_{y_{1-y_{2}}}^{2} = \sigma_{y_{1-y_{3}}}^{2} = \sigma_{y_{2-y_{3}}}^{2}$$
...

Violations of the sphericity assumption were corrected using an approach developed by Greenhouse and Geisser (1959). This Greenhouse-Geisser technique bases the critical *F*value on the degrees of freedom that would have been appropriate if only two levels of the repeated measure had been used. By doing so, the approach assumes maximum violation of the sphericity assumption, and produces a conservative *F* statistic (Huck, 2008). Finally, analysis of differences was conducted using Tukey's honest significant difference (HSD) test. All of the procedures associated with the repeated measures ANOVA used in this study were tested at the $\alpha = .05$ level of significance.

In sum, then, the procedures used to characterize the differences between the unrestricted point-biserials and the restricted values included visual comparisons, analysis of differences in discrimination values at the individual item and examination levels, a correlation analysis, and ANOVA procedures. Collectively, these procedures led to a better understanding of Research Question 1.

Research Question 2

The second research question addressed the degree to which restricted item discrimination values affects certain key test specifications, including item selection, examination reliability, and classification decision consistency. This section outlines the procedures followed to answer this question.

In order to evaluate how restricted point-biserials affect the aforementioned psychometric aspects of credentialing examinations, each examination used in this study was treated as a test bank from which items were drawn to create two forms of a new 50-item examination. The bank's 50 most discriminating items, as determined by the items' unrestricted point-biserial values, were used to create a pseudo form, *Form A*. A second pseudo form, *Form B*, was also created, comprised of the bank's 50 most discriminating items as determined by the items' restricted point-biserial values. The restricted point-biserials used to select items for Form A were based on examinee scores within 1.00 *SD* of the actual examination cut score (C_{X1}). The forms were created for each of the examinations used in this study.

After the two forms were created, item selection consistency across the forms was evaluated. Because the criteria by which items were selected for the two forms were different – Form A utilized unrestricted discrimination values and Form B utilized restricted values – it was anticipated that they would likely include different items. Any observed differences in items between the two forms would indicate that the use of restricted point-

biserials resulted in the selection of items that were different than those selected using unrestricted, or traditionally calculated, point-biserials.

Form A and Form B were also used to measure how restricted item discrimination values affected examination reliability. The estimate of examination reliability used in this study was coefficient alpha (Cronbach, 1951). Coefficient alpha was selected because it is a versatile and widely used measure of examination reliability, which requires, unlike other reliability estimates, only a single test administration. Coefficient alpha was calculated for the test variants using the following equation:

$$\hat{\alpha} = \frac{k}{k-1} \left(1 - \frac{\Sigma \hat{\sigma}_i^2}{\hat{\sigma}_x^2} \right)$$
(3.2)

where *k* is the number of items on the examination;

 $\hat{\sigma}_i^2$ is the variance of item *i*; and

 $\hat{\sigma}_x^2$ is the total test variance (Crocker & Algina, 2008).

The coefficients were tested for significant differences at the α = .05 level of significance using the *cocron* package (Diedenhofen, 2013) in R (R Core Team, 2012). The package incorporates earlier work by Alsawalmeh and Feldt (1994) who developed a model by which the null hypothesis of equal coefficient alphas among dependent samples can be tested. This null hypothesis can be stated in the following terms:

$$H_0 = \alpha_1 - \alpha_2 = 0$$

Alsawalmeh and Feldt's model can be expressed in the following terms:

$$W \approx \frac{1 - \hat{\alpha}_2}{1 - \hat{\alpha}_1} (F_{\nu, \nu}), \qquad \nu = \frac{N - 1 - 7r_{1,2}^2}{1 - r_{1,2}^2}$$
(3.3)

where α_1 and α_2 are the coefficient alpha values for the examinations; and $r_{1,2}^2$ is the squared correlation coefficient between the examination total scores.

It is important to note, however, that the reliability estimates for both forms were calculated using all examinee test scores. Although the items selected for Form B were those that were most discriminating among examinees with total scores within 1.00 SD of the original cut score only, using this subset of scores to calculate examination reliability for Form B would have resulted in it being less reliable than Form A in all cases. This is because the number of cases, or N size, directly affects reliability, with, all other things being equal, examinations with more cases generally producing larger reliability coefficients than examinations with fewer cases (Crocker & Algina, 2008). The selection of items for Form B was based on a substantially smaller number of cases. Because those cases were all within 1.00 SD of the cut score, they were also much more homogenous than the group of scores used to select items for Form A (i.e. all cases). The homogeneity of a group of examinees is an important factor that affects the magnitude of reliability estimates. In general, higher levels of group homogeneity result in lower estimates of reliability because in such situations, total test variance is diminished (Crocker & Algina, 2008). As documented in Equation 3.2, total test variance is an element in the calculation of coefficient alpha. It was necessary to base all estimates of reliability, therefore, on all test scores available. In

summary, then, although the items found on Form A and Form B were selected using divergent methods for calculating item discrimination, estimates of reliability for both forms were based on all test scores available.

Similar procedures were used to measure the degree to which using restricted item discrimination values as the item selection criterion affected examination classification decision consistency. In this study, Cohen's (1960) κ was used to estimate classification decision consistency. As described in Chapter 2, the coefficient can be calculated using the following formula:

$$\kappa = \frac{P - P_c}{1 - P_c} \tag{3.4}$$

where P_c , also referred to as the *chance consistency*, is the probability of a consistent decision, and may be calculated using the following formula:

$$P_c = P_{1.}P_{.1} = P_{0.}P_{.0} \tag{3.5}$$

where P_{1} represents the probability of a mastery classification on one form of an examination;

 $P_{.1}$ represents a similar probability on the another equivalent form; and

 $P_{0.}$ and $P_{.0}$, which represent misclassifications on the forms.

Coefficient κ represents the increase in decision consistency over that expected by chance. The coefficient is equal to 0.00 when there is no increase, and 1.00 when there is maximum increase (Crocker & Algina, 2008). The discussion of test forms in the preceding paragraph may be somewhat confusing within the context of the current study. Although the tests created to answer Research Question 2 are referred to as Form A and Form B, they are treated as distinct non-equivalent examinations. Their purpose was to make possible an assessment of how using two distinct methods for calculating item discrimination values affected item selection, reliability, and classification decision consistency. The use of forms within the calculation of Cohen's (1960) κ refers to equivalent or parallel forms of the same examination. This does, however, raise the question of how classification decision consistency can be calculated using only a single examination, in this case, Form A and Form B. Modifications to κ made by Huynh (1976) allowed for its calculation when only a single examination is available. Using this modification, estimates for classification decision consistency were calculated for Form A and Form B.

The difference in classification decision consistency between the forms was also tested for significant differences. Using a formula developed by Donner, Shoukri, Klar, and Bartfay (2000), coefficient κ values for two dependent groups can be tested for significant differences. To conduct this test, the following formula is used:

$$Z_{VD} = \frac{\hat{\kappa}_1 - \hat{\kappa}_2}{[\operatorname{var}(\hat{\kappa}_1) + \operatorname{var}(\hat{\kappa}_2) - 2\operatorname{cov}(\hat{\kappa}_1, \hat{\kappa}_2)]}$$
(3.6)

where κ_1 and κ_2 represent the classification decision consistency ratings for the two examinations.

The formula tests the null hypothesis that the difference between the coefficients is zero:

$$\mathbf{H}_0 = \mathbf{\kappa}_1 - \mathbf{\kappa}_2 = \mathbf{0}$$

The test for differences between κ coefficients was also tested at the α = .05 level of significance.

The procedures described in this section were used to answer Research Question 2. That is, they led to a determination of the degree to which using restricted item discrimination values as a criterion for selecting examination items affected item selection, examination reliability, and classification decision consistency. The procedures were conducted for each of the three examination used in this study. By doing so, greater insight into the role sample size plays in these considerations was possible.

The three variables examined in Research Question 2, namely item selection, examination reliability, and classification decision consistency, are critical elements in the gathering of validity evidence for credentialing examinations. Understanding how examinations with items that were selected using restricted discrimination values affects these specifications, therefore, becomes a valuable endeavor. Again, according to the *Standards* (AERA et al., 1999), examinations used for credentialing individuals "may not need to be precise for those who clearly pass or clearly fail," as "sometimes a test used in credentialing is designed to be precise only in the vicinity of the cut score" (p. 157).

CHAPTER 4

RESULTS

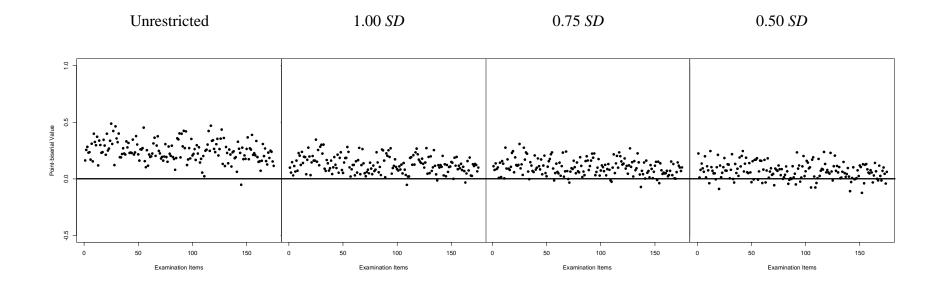
Utilizing examinee scores from three examinations used to credential individuals in health-related professions, the study examined the degree to which limiting scores upon which item discrimination values are calculated to those near actual or anticipated cut scores affected the item discrimination values, item selection, examination reliability, and classification decision consistency. An initial analysis of the data used found that there were no missing or miscoded responses. Procedures were then followed to answer the study's two research questions. Research Question 1 addressed the effect on item discrimination values. Research Question 2 examined the effect on item selection, examination reliability, and classification decision consistency. The results for each research question are addressed in the sections that follow.

Research Question 1

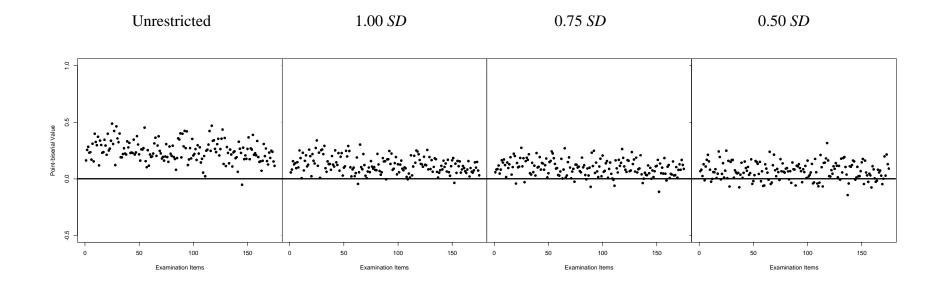
Research Question 1 examined the effect limiting scores upon which item discrimination values are calculated to those near actual or anticipated cut scores had on item discrimination values themselves. To accomplish this, the unrestricted point-biserial statistic, r_{pbis} , was calculated for each examination item. Restricted point-biserials were then calculated for all items under each of 15 conditions. These conditions, as well as the cut scores and examinee scores that were considered under each condition, are listed in Table 4.1. Differences between the restricted and unrestricted values were then analyzed. The results for each examination are presented individually in the sections that follow.

Stat/Cut Score	Group	Examination 1	Examination 2	Examination 3
No. Items		175	200	149
SD		19.55	18.23	9.01
SEM		5.79	5.84	4.44
C _{X1} (Actual C _X)	+/- 1.00 SD +/- 0.75 SD +/- 0.50 SD	11596 - 134101 - 129106 - 124	$128 \\ 110 - 146 \\ 115 - 141 \\ 119 - 137$	$106 \\ 97 - 115 \\ 100 - 112 \\ 102 - 110$
C _{X2} (+ 1 <i>SEM</i>)	+/- 1.00 SD +/- 0.75 SD +/- 0.50 SD	$121 \\ 102 - 140 \\ 107 - 135 \\ 112 - 130$	134 116 – 152 121 – 147 125 – 142	$111 \\ 102 - 119 \\ 104 - 117 \\ 106 - 114$
C _{X3} (- 1 <i>SEM</i>)	+/- 1.00 SD +/- 0.75 SD +/- 0.50 SD	$110 \\ 90 - 128 \\ 95 - 123 \\ 100 - 118$	$123 \\ 104 - 140 \\ 109 - 135 \\ 114 - 131$	102 93 - 110 95 - 108 98 - 106
C _{X4} (+ 2 <i>SEM</i>)	+/- 1.00 SD +/- 0.75 SD +/- 0.50 SD	127 108 - 146 112 - 141 117 - 136	140 122 – 157 127 – 153 131 - 148	115 106 – 123 109 – 121 111 – 119
C _{X5} (- 2 <i>SEM</i>)	+/- 1.00 SD +/- 0.75 SD +/- 0.50 SD	$104 \\ 84 - 122 \\ 89 - 118 \\ 94 - 113$	117 99 – 134 103 – 129 108 – 125	98 89 - 106 91 - 103 93 - 101

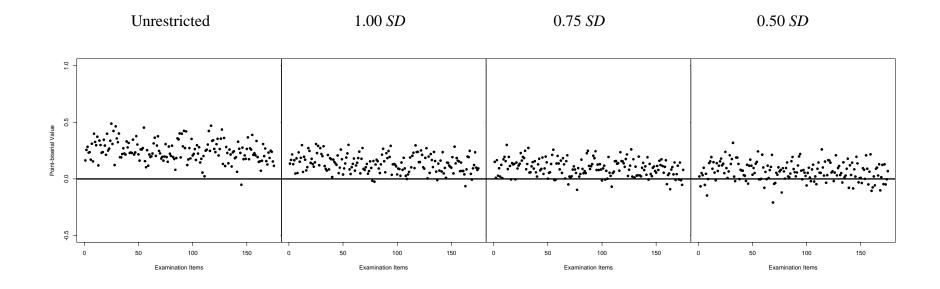
Conditions for the Calculation of Restricted Point-biserials

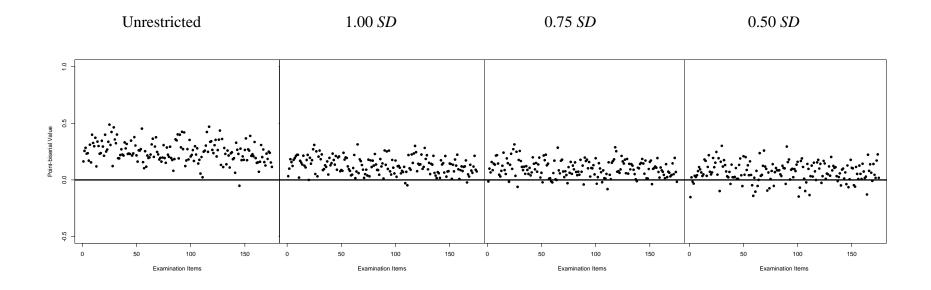

Note. Ranges indicate examinee scores considered in the calculation of item discrimination values at each cut score location.

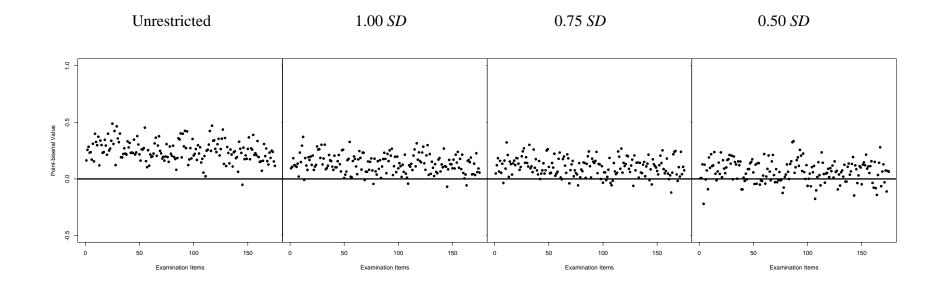
Examination 1


Examination 1, which in terms of sample size was the largest test used in the study, consisted of 490 examinee responses to 175 items. The initial analyses of differences between restricted and unrestricted discrimination values were based on visual comparisons. First, the unrestricted and restricted discrimination values for each of the five cut scores used were plotted. Figure 4.1 displays the unrestricted values plotted along side the restricted values calculated using scores within 1.00 *SD*, .75 *SD*, and .50 *SD* of C_{X1} (the actual cut score). Figures 4.2, 4.3, 4.4, and 4.5 show the same information for C_{X2} , C_{X3} , C_{X4} , and C_{X5} , respectively.

The plots displayed in Figures 4.1 through 4.5 suggest that unrestricted item discrimination values are, in general, larger than their corresponding restricted values. This appeared to be the case at each of the five cut score locations examined. As the size of the groups of test scores used to calculate the restricted discrimination values became smaller, the discrimination values themselves were generally smaller. For example, item discrimination values calculated using only scores within .50 *SD* of the cut scores appeared to be smaller than values calculated using scores within .75 *SD* and 1.00 *SD* of the cut scores.


To further understand general trends associated with the differences in the discrimination values calculated, a boxplot was also produced. As seen in Figure 4.6, the distribution of unrestricted point-biserials included larger discrimination values than any other group of values. As suggested by the plots in Figures 4.1 through 4.5, the boxplot also indicates that the values decrease as the size of the group used to calculate them becomes smaller.


Figure 4.1. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X1} for Examination 1.


Figure 4.2. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X2} for Examination 1.

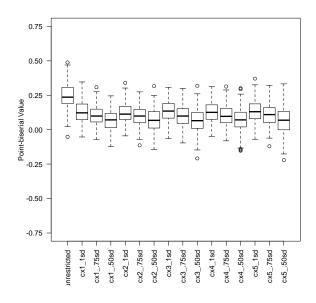

Figure 4.3. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X3} for Examination 1.

Figure 4.4. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X4} for Examination 1.

Figure 4.5. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X5} for Examination 1.

Figure 4.6. Boxplot highlighting distribution of item discrimination values under each condition for Examination 1.

To gain additional insights into the discrimination values associated with each of the 15 conditions, several descriptive statistics were calculated. These statistics are included in Table 4.2. The descriptive statistics support the trends observed in both the data plots (Figures 1.4 through 4.5) and the boxplot (Figure 4.6). The mean item discrimination value for the unrestricted group was M = 0.25 (SD = 0.09), which was larger than the mean value for any other group. In addition, at each cut score location, the mean item discrimination value decreased as the size of the group used to calculate the value became smaller. For example, when scores within 1.00 *SD* of C_{X1} were used, the mean item discrimination value was M = 0.13 (SD = 0.08). When scores within 0.75 *SD* of C_{X1} were used, the mean discrimination value was M = 0.10 (SD = 0.07). The mean value was M = 0.07 (SD = 0.08) when scores within 0.50 *SD* of C_{X1} were considered. As displayed in the table, this was consistent for each cut score location. The table also indicates the minimum and maximum

value for each condition, as well as the range of values. In addition, it includes the number of test scores that were considered for each of the conditions examined. The set of restricted values that included the most examinee scores was that which considered scores within 1.00 *SD* of C_{X3} . Calculations for this set included 344 scores. The set with the fewest scores included those within 0.50 *SD* of C_{X5} . For this set, only 152 test scores were used to calculate the point-biserials.

To further understand the nature of the relationships between the sets of discrimination values, a correlation table was produced. The correlation table is included in Table 4.3. As seen in the table, 102 of the 120 correlation coefficients calculated were significantly different than zero at the α = .05 level of significance. Of particular interest were the relationships between the unrestricted discrimination values and each of the 15 restricted sets of values. In each case, the correlation coefficient between these sets of values was found to be significantly different than zero. The strongest correlation observed was between discrimination values calculated using examinee scores within 1.00 *SD* of C_{X1} and values calculated using scores between 0.75 *SD* of C_{X1}, *r*(173) = .84, *p* < .001. The weakest correlation, .02, was found between four sets of values. In each of these instances, the correlation was found to be not significantly different than zero. The majority of correlation coefficients expressed positive relationships between the sets of values, with only 12 of the 120 coefficients expressing negative relationships.

Descriptive Statistics of	of Discrimination	Values Calculated	for Examination 1

Cut Score	Group	M	SD	Min	Max	Range	Skew	n
Unrestricte	d	0.25	0.09	-0.05	0.49	0.54	0.11	490
C_{X1}	+/- 1.00 <i>SD</i>	0.13	0.08	-0.05	0.35	0.40	0.35	339
	+/- 0.75 <i>SD</i>	0.10	0.07	-0.07	0.31	0.38	0.33	287
	+/- 0.50 SD	0.07	0.08	-0.12	0.25	0.37	0.14	198
C _{X2}	./ 1.00 CD	0.12	0.07	0.04	0.24	0.29	0.27	217
	+/- 1.00 SD +/- 0.75 SD	0.12 0.10	0.07 0.07	-0.04 -0.11	0.34 0.27	0.38 0.39	0.37 0.03	317 267
	+/- 0.73 SD +/- 0.50 SD	0.10	0.07	-0.11	0.27	0.39	0.03	207
C _{X3}	17- 0 . 30 SD	0.07	0.00	-0.14	0.32	0.40	0.12	200
	+/- 1.00 <i>SD</i>	0.14	0.08	-0.06	0.31	0.37	0.11	344
	+/- 0.75 <i>SD</i>	0.10	0.08	-0.10	0.30	0.40	0.02	255
	+/- 0.50 <i>SD</i>	0.07	0.09	-0.21	0.32	0.53	-0.05	171
C _{X4}	+/- 1.00 <i>SD</i>	0.13	0.07	-0.05	0.31	0.36	0.17	292
	+/- 0.75 <i>SD</i>	0.10	0.08	-0.08	0.31	0.39	0.22	240
	+/- 0.50 <i>SD</i>	0.07	0.09	-0.15	0.30	0.45	-0.13	169
C _{X5}	+/- 1.00 SD	0.14	0.08	-0.07	0.37	0.44	0.13	307
	+/- 0.75 SD	0.14	0.08	-0.12	0.37	0.44	0.15	239
	+/- 0.50 SD	0.07	0.08	-0.12	0.32	0.55	-0.11	152

Correl	ation M	<i>latrix</i>	of Item	Discrin	nination	Values	Calcu	lated	for	r Examination 1	1

			C _{X1}			C _{X2}			C _{X3}			C _{X4}			C _{X5}	
UNR	UNR 1.00	1.00 <i>SD</i>	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD
\underline{C}_{X1}																
1.00 SD	0.76*	1.00														
0.75 SD	0.67*	$0.84* \\ 0.45*$	1.00 0.59*	1.00												
0.50 SD	0.41*	0.45*	0.59*	1.00												
<u>C_{X2}</u>																
<u>0 X2</u> 1.00 SD	0.68*	0.83*	0.83*	0.55*	1.00											
0.75 SD	0.53*	0.69*	0.67*	0.60*	0.82*	1.00										
0.50 SD	0.34*	0.54*	0.55*	0.27*	0.59*	0.69*	1.00									
C																
<u>C_{X3}</u> 1.00 SD	0.79*	0.82*	0.76*	0.42*	0.64*	0.48*	0.38*	1.00								
0.75 SD	0.79*	0.82*	0.70*	0.42*	0.50*	0.48*	0.38	0.78*	1.00							
0.50 SD	0.45*	0.50*	0.53*	0.22*	0.34*	0.02	-0.24*	0.53*	0.68*	1.00						
\underline{C}_{X4}																
1.00 SD	0.60*	0.68*	0.65*	0.47*	0.84*	0.81*	0.59*	0.46*	0.34*	0.14	1.00					
0.75 SD	0.50*	0.61*	0.49*	0.21*	0.79*	0.74*	0.76*	0.39*	0.15*	-0.08	0.81*	1.00	1.00			
0.50 SD	0.34*	0.44*	0.22*	-0.16*	0.48*	0.54*	0.42*	0.19*	-0.07	-0.08	0.48*	0.63*	1.00			
<u>C_{X5}</u>																
\underline{CXS} 1.00 SD	0.79*	0.62*	0.54*	0.38*	0.43*	0.26*	0.05	0.81*	0.81*	0.61*	0.30*	0.15*	-0.02	1.00		
0.75 SD	0.62*	0.50*	0.33*	0.07	0.23*	0.02	-0.10	0.76*	0.66*	0.65*	0.08	0.02	0.05	0.82*	1.00	
0.50 SD	0.34*	0.42*	0.12	-0.25*	0.06	-0.17*	-0.17*	0.47*	0.56*	0.43*	-0.06	-0.02	0.20*	0.46*	0.62*	1.00

Note. * p = < .05.

The final procedure performed for each examination with respect to Research Question 1 was the one-way, repeated measures ANOVA. This was used to test for differences among the means of the unrestricted discrimination values and the 15 sets of restricted values. In the ANOVA conducted, the discrimination values served as the dependent variable and the conditions under which those values were calculated served as the independent variables, or groups. The purpose of the analysis was to test the null hypothesis that the group mean discrimination values were equal.

The analysis began with an evaluation of ANOVA assumptions. The discrimination values, which served as the dependent variable, were not independent. Each group in the ANOVA consisted of the same subjects, or in this case, examination items, tested under different conditions. Because of this, a repeated measures ANOVA approach was taken. Normality was assessed using two procedures. First, the Shapiro-Wilk normality test (R Core Team, 2012) was performed. The procedure tests the null hypothesis that the data are normally distributed. The results indicated that all but one of the sets of data was normally distributed. The set for which the null hypothesis was rejected included values calculated using scores within 1.00 *SD* of C_{X1} , W = 0.98, p = .04. Assessing skewness values was the second test for normality. As seen in Table 4.2, the skewness value for each of the sets of data fell between -1.00 and 1.00. According to Huck (2008), skewness values that fall within this range are typically considered to approximate a normal distribution. Based on this criterion, the data were deemed to have sufficiently satisfied the assumption of normality.

Because the procedure involved a repeated measures approach, the data also needed to satisfy the assumption of sphericity. In a traditional ANOVA procedure, that is, one that does not involve repeated measures, sphericity is not required, but rather the assumption of

homogeneity of variance is tested. Sphericity is satisfied when the variances and bivariate correlations among the sets of data are equal (Huck, 2008). This assumption was tested using Mauchly's (1940) procedure, which tests the hull hypothesis that the variances and bivariate correlations among the groups are equal. The results of Mauchly's test, W < .001, p < .001, indicated that the assumption of sphericity was not met. When the assumption is not met, the *F*-statistic will be positively biased and, therefore, the risk of Type I error increases. The Greenhouse-Geisser (1959) correction, estimated to be $\varepsilon = 0.28$, was applied to the degrees of freedom in order to obtain a valid critical *F*-value. The results of the ANOVA, to include the Greenhouse-Geisser correction for sphericity, are included in Table 4.4.

Table 4.4

Source	Model	SS	df	MS	F	р
Condition	Sphericity Assumed	5.265	15.000	0.351	94.539	<.001*
	Greenhouse-Geisser Corrected	5.265	4.200	1.254	94.539	<.001*
Error	Sphericity Assumed	9.690	2610.000	0.004		
	Greenhouse-Geisser Corrected	9.690	730.800	0.013		

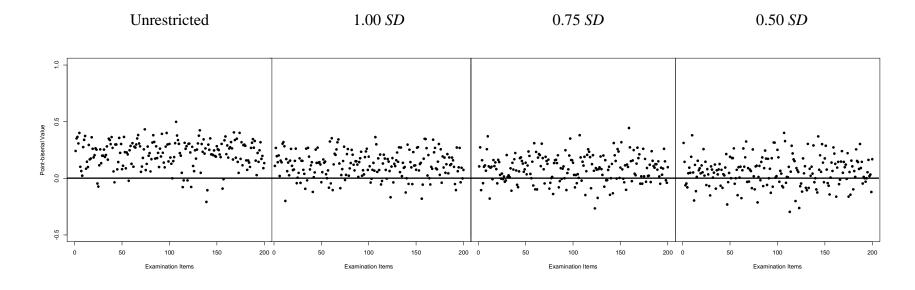
Results of the One-way Repeated Measures ANOVA for Examination 1

Note. The Greenhouse-Geisser correction, estimated at $\varepsilon = 0.28$, was used to correct for the violation of the sphericity assumption. * = Significant at $\alpha = .05$ level of significance.

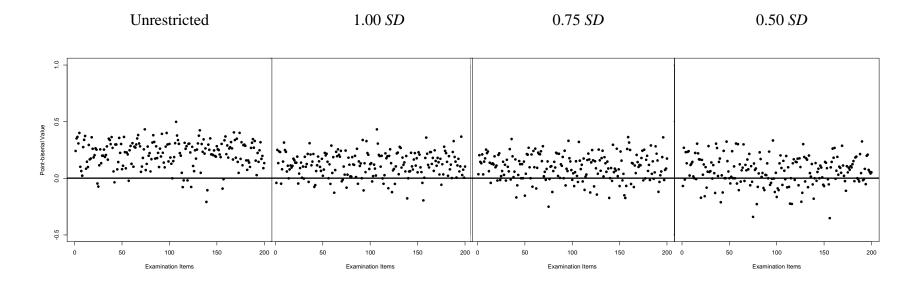
As observed in Table 4.4, the results of the corrected ANOVA indicated that differences between the sets of values were significantly greater than zero, F(4.2, 730.8) =94.539, p < .001. As such, the null hypothesis of equal means among the groups of discrimination values was rejected. To assess where differences existed, Tukey's honest significant difference (HSD) test was conducted. Although Tukey's HSD was utilized to identify significant differences among all groups, the primary objective was to identify differences between each of the restricted groups and the unrestricted group. The results of this analysis are included in Table 4.5. As seen in Table 4.5, a significant mean difference was observed between the unrestricted set of discrimination values and each of the restricted sets when tested at the $\alpha = .05$ level of significance. In each instance, the mean unrestricted value was larger than the mean restricted value.

Table 4.5.

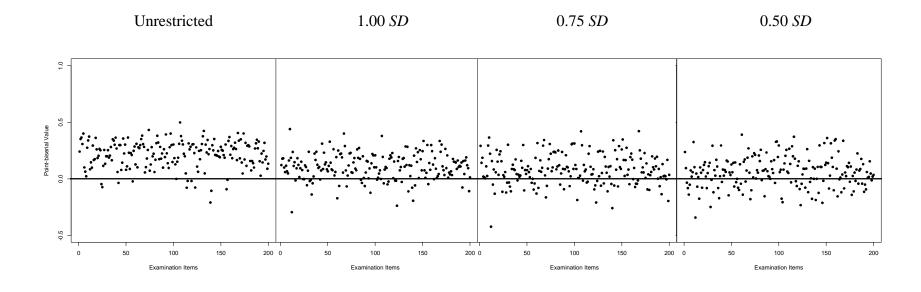
Condition	Con	dition	Mean difference	р
	Cut score	Group size		
Unrestricted	C _{X1}	+/- 1.00 SD	0.119	<.001*
		+/- 0.75 <i>SD</i>	0.143	<.001*
		+/- 0.50 <i>SD</i>	0.177	<.001*
	C _{X2}	+/- 1.00 <i>SD</i>	0.123	<.001*
	112	+/- 0.75 <i>SD</i>	0.149	<.001*
		+/- 0.50 <i>SD</i>	0.177	<.001*
	C _{X3}	+/- 1.00 <i>SD</i>	0.101	<.001*
	110	+/- 0.75 <i>SD</i>	0.149	<.001*
		+/- 0.50 <i>SD</i>	0.182	< .001*
	C_{X4}	+/- 1.00 <i>SD</i>	0.120	<.001*
	- 74	+/- 0.75 <i>SD</i>	0.148	<.001*
		+/- 0.50 <i>SD</i>	0.178	<.001*
	C _{X5}	+/- 1.00 SD	0.113	<.001*
		+/- 0.75 SD	0.140	<.001*
		+/- 0.50 SD	0.180	<.001*

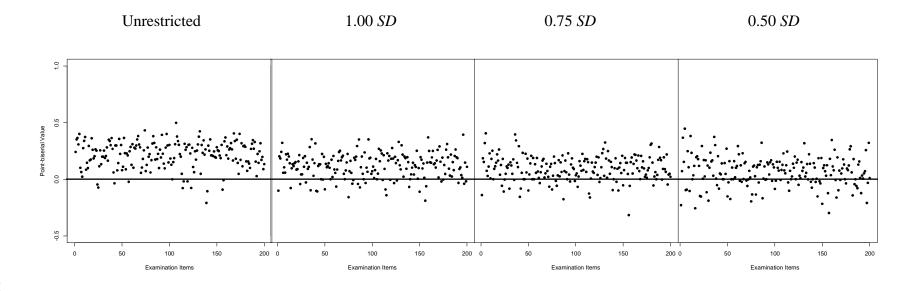

Results of Tukey's HSD Test for Examination 1 - Unrestricted vs. Restricted Values

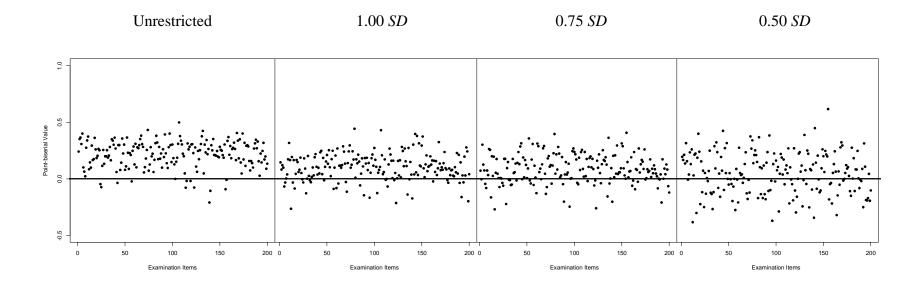
Note. * = Significant at the α = .05 level of significance.


Examination 2

Examination 2, according to sample size, was the second largest test used in the study. Responses from 161 examinees to the 200-item examination were included in the analysis. The procedures conducted with respect to Examination 1 were also performed for Examination 2. In Figures 4.7 through 4.11, the unrestricted discrimination values are plotted with their corresponding restricted point-biserials for each of the five cut score locations. As was the case with Examination 1, the plots revealed that the unrestricted discrimination values were, in general, larger than the restricted values. The differences between the restricted and unrestricted values, however, appeared to be, at least visually, less stark than was the case with the differences observed in Examination 1. Results of the boxplot, included in Figure 4.12, also suggested that the unrestricted values were larger than the restricted values. In addition, at each cut score location, the mean discrimination value decreased in magnitude as the group of scores used to calculate the values grew smaller in size.


Descriptive statistics for the sets of discrimination values are included in Table 4.6. As seen in the table, the largest mean discrimination value was associated with the unrestricted set, M = 0.22 (SD = 0.12). As was the case with Examination 1, the mean discrimination value decreased as the size of the group of scores considered decreased in size. The smallest mean discrimination value observed was associated with the set of values calculated using scores within 0.50 *SD* of C_{X5}, M = 0.05 (SD = 0.18). This set included 37 examinee scores, which was fewer than for any other set. Values calculated using scores within 1.00 *SD* of C_{X2} considered 115 scores, which was more than any other set of restricted values.


Figure 4.7. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X1} for Examination 2.


Figure 4.8. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X2} for Examination 2.

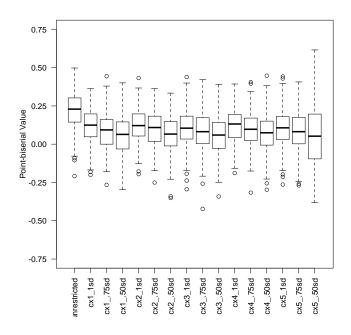

Figure 4.9. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X3} for Examination 2.

Figure 4.10. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X4} for Examination 2.

Figure 4.11. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X5} for Examination 2.

Figure 4.12. Boxplot highlighting distribution of item discrimination values under each condition for Examination 2.

Descriptive Statistics a	of Discrimination	Values Calculated	for Examination 2

Cut Score	Group	М	SD	Min	Max	Range	Skew	n
Unrestricte	ed	0.22	0.12	-0.21	0.50	0.71	-0.67	161
C_{X1}	+/- 1.00 SD	0.12	0.12	-0.20	0.36	0.56	-0.17	111
	+/- 0.75 <i>SD</i>	0.09	0.12	-0.27	0.44	0.71	0.01	85
	+/- 0.50 <i>SD</i>	0.06	0.13	-0.30	0.40	0.70	0.06	67
C _{X2}	+/- 1.00 <i>SD</i>	0.12	0.11	-0.20	0.43	0.63	-0.18	115
	+/- 0.75 <i>SD</i>	0.10	0.12	-0.25	0.36	0.61	-0.25	96
	+/- 0.50 <i>SD</i>	0.06	0.13	-0.35	0.33	0.69	-0.29	64
C _{X3}	+/- 1.00 <i>SD</i>	0.11	0.12	-0.29	0.44	0.73	-0.21	93
	+/- 0.75 <i>SD</i>	0.08	0.13	-0.42	0.42	0.84	-0.06	76
	+/- 0.50 <i>SD</i>	0.06	0.14	-0.34	0.39	0.73	0.05	57
C_{X4}	+/- 1.00 <i>SD</i>	0.12	0.11	-0.19	0.39	0.58	-0.19	109
	+/- 0.75 <i>SD</i>	0.09	0.11	-0.32	0.41	0.72	-0.19	89
	+/- 0.50 <i>SD</i>	0.07	0.13	-0.30	0.45	0.74	-0.03	57
C _{X5}	+/- 1.00 <i>SD</i>	0.10	0.12	-0.26	0.44	0.71	-0.11	82
	+/- 0.75 <i>SD</i>	0.09	0.13	-0.27	0.41	0.68	-0.12	60
	+/- 0.50 <i>SD</i>	0.05	0.18	-0.38	0.62	1.00	-0.02	37

The correlation matrix developed for Examination 2 is included in Table 4.7. Among the 120 correlation coefficients calculated, 99 were found to be significantly different than zero at the $\alpha = 0.05$ level of significance. The strongest correlation observed was between values calculated using scores within 1.00 *SD* of C_{X2} and values calculated using scores within 1.00 *SD* of C_{X4}, r(198) = 0.83, p < .001. The weakest correlation observed was between values calculated using scores within 0.75 *SD* of C_{X2} and values calculated using scores within 0.75 *SD* of C_{X5}. The correlation between these sets of values was not significantly different than zero. The majority of coefficients were positive, with only 24 of the 120 expressing negative relationships.

One-way repeated measures ANOVA was also conducted for the sets of discrimination values associated with Examination 2. Tests for normality were similar to those conducted for Examination 1. The Shapiro-Wilk normality test (R Core Team, 2012) results indicated that the assumption of normality was not satisfied for one of the sets of values. The null hypothesis of normality was rejected for the set of unrestricted discrimination values, W = 0.97, p < .001. As seen in Table 4.6, however, the skewness values for each set of point-biserials ranged between -1.00 and 1.00, indicating the data approximated normality. The data were, therefore, deemed suitable for further analysis.

Mauchly's (1940) test indicated that the assumption of sphericity had not been satisfied, W < 0.001, p < .001. The Greenhouse-Geisser (1959) correction, $\varepsilon = 0.28$, was once again applied to the degrees of freedom in order to combat the effects associated with the violation of the sphericity assumption. The results of the ANOVA are included in Table 4.8.

Correl	lation 1	Matrix	of Item	ı Discriminatior	ı Values	Calcu	lated	fo	r Examinat	tion 2

			C _{X1}			C _{X2}			C _{X3}			C _{X4}			C _{X5}	
	UNR	1.00 SD	0.75 SD	0.50 SD	1.00 <i>SD</i>	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD	1.00 SD	0.75 SD	0.50 SD
UNR	1.00															
\underline{C}_{X1}	0 66*	1.00														
1.00 SD 0.75 SD	$0.66* \\ 0.48*$	1.00 0.69*	1.00													
0.75 SD 0.50 SD	0.33*	0.51*	0.70*	1.00												
<u>C_{X2}</u>					4.00											
1.00 <i>SD</i>	0.69*	0.70*	0.61*	0.52*	1.00	1.00										
0.75 SD 0.50 SD	0.56* 0.36*	0.71* 0.40*	0.61* 0.48*	0.51* 0.12	0.82* 0.49*	1.00 0.59*	1.00									
0.50 5D	0.50	0.40	0.40	0.12	0.49	0.57	1.00									
<u>C_{X3}</u>																
1.00 SD	0.55*	0.73*	0.69*	0.53*	0.41*	0.37*	0.22*	1.00								
0.75 SD	0.43*	0.70*	0.51*	0.51*	0.27*	0.20*	-0.09	0.78*	1.00	1.00						
0.50 SD	0.25*	0.50*	0.53*	0.49*	0.22*	0.14*	-0.28*	0.54*	0.70*	1.00						
<u>C_{X4}</u>																
<u>CX4</u> 1.00 SD	0.62*	0.53*	0.40*	0.26*	0.83*	0.78*	0.52*	0.20*	0.06	-0.04*	1.00					
0.75 SD	0.54*	0.35*	0.13	-0.11	0.65*	0.52*	0.59*	0.01	-0.18*	-0.34*	0.74*	1.00				
0.50 SD	0.27*	0.26*	-0.14	-0.27*	0.38*	0.42*	0.20*	-0.12*	-0.18*	-0.14*	0.48*	0.59*	1.00			
C																
\underline{C}_{X5}	0.51*	0.52*	0.44*	0.46*	0.29*	0.17*	-0.08	0.77*	0.77*	0.57*	0.06	-0.13	-0.18*	1.00		
1.00 SD 0.75 SD	0.31*	0.32*	0.44*	0.46^{+} 0.10	0.29*	-0.05	-0.08 -0.25*	0.77^{*} 0.64*	0.77* 0.58*	0.37* 0.46*	-0.08	-0.13 -0.17*	-0.18 [*] 0.11	1.00 0.71*	1.00	
0.73 SD 0.50 SD	0.22*	0.35*	-0.03	-0.24*	-0.17*	-0.23*	-0.25	0.04	0.56*	0.40	-0.08	0.05	0.06	0.71	0.49*	1.00

Note. * p = < .05.

Results of the	One-way Repeated	Measures ANOVA for Examination 2
,	~ 1	5

Source	Model	SS	df	MS	F	р
Condition	Sphericity Assumed	4.571	15.000	0.305	27.046	<.001*
	Greenhouse-Geisser Corrected	4.571	4.200	1.088	27.046	<.001*
Error	Sphericity Assumed	33.636	2985.000	0.011		
	Greenhouse-Geisser Corrected	33.636	835.800	0.040		

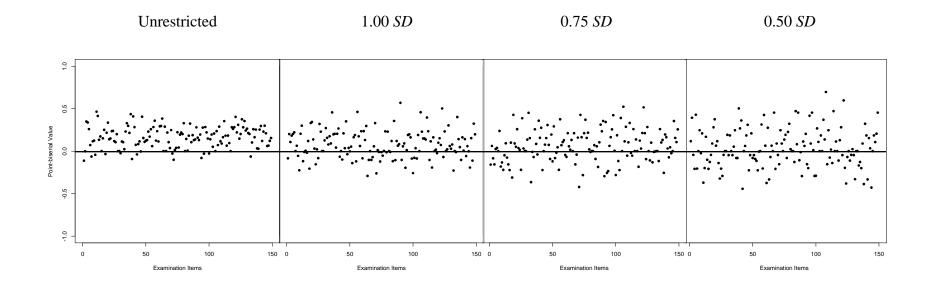
Note. The Greenhouse-Geisser correction, estimated at $\varepsilon = 0.28$, was used to correct for the violation of the sphericity assumption. * = Significant at $\alpha = .05$ level of significance.

As seen in the table, the sphericity-corrected ANOVA produced a significant result, F(4.20, 835.80) = 27.046, p < .001, indicating that differences among the group means existed. Tukey's HSD was used to identify those differences. The results of this test are included in Table 4.9.

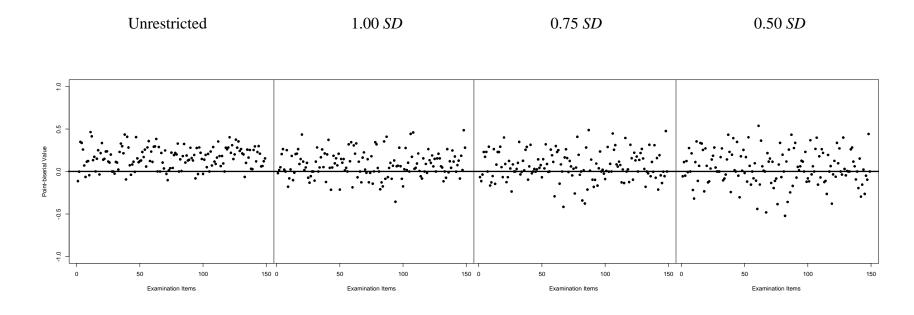
Condition	Con Cut score	dition Group size	Mean difference	р
Unrestricted	C _{X1}	+/- 1.00 SD	0.096	<.001*
		+/- 0.75 <i>SD</i>	0.128	<.001*
		+/- 0.50 <i>SD</i>	0.153	<.001*
	C _{X2}	+/- 1.00 SD	0.095	<.001*
	- 12	+/- 0.75 SD	0.116	<.001*
		+/- 0.50 <i>SD</i>	0.152	<.001*
	C _{X3}	+/- 1.00 SD	0.108	<.001*
	- 113	+/- 0.75 SD	0.133	<.001*
		+/- 0.50 <i>SD</i>	0.155	<.001*
	C_{X4}	+/- 1.00 SD	0.098	<.001*
	$\mathcal{O}_{\Lambda 4}$	+/- 0.75 SD	0.121	<.001*
		+/- 0.50 SD	0.148	<.001*
	C	+/- 1.00 SD	0.111	<.001*
	C _{X5}	+/- 0.75 SD	0.111	< .001*
		+/-0.50 SD	0.165	<.001*

Results of Tukey's HSD Test for Examination 2 - Unrestricted vs. Restricted Values

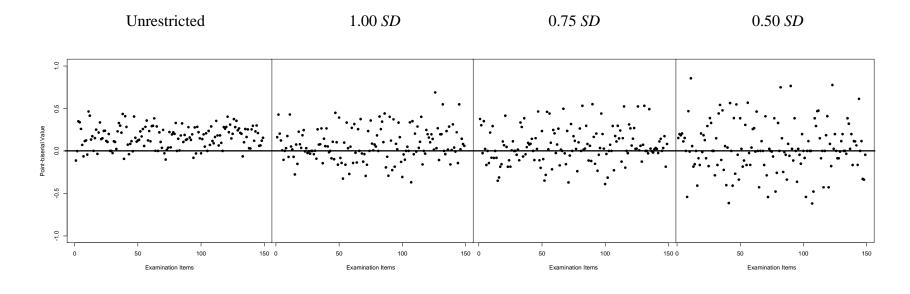
Note. * = Significant at the α = .05 level of significance.

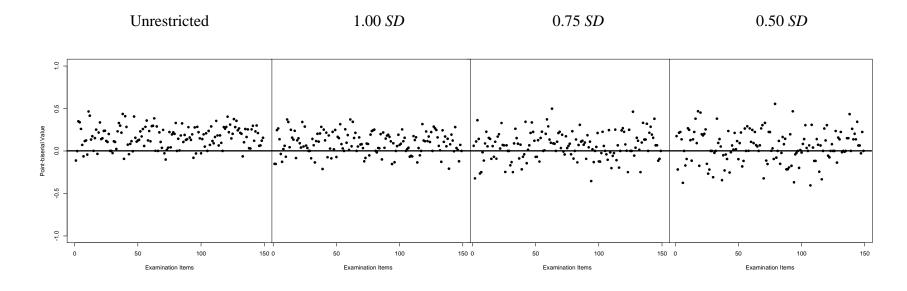

As was the case with Examination 1, significant differences were identified between the unrestricted set of values and each of the restricted sets. In each instance, the unrestricted mean discrimination value was greater than the unrestricted mean values.

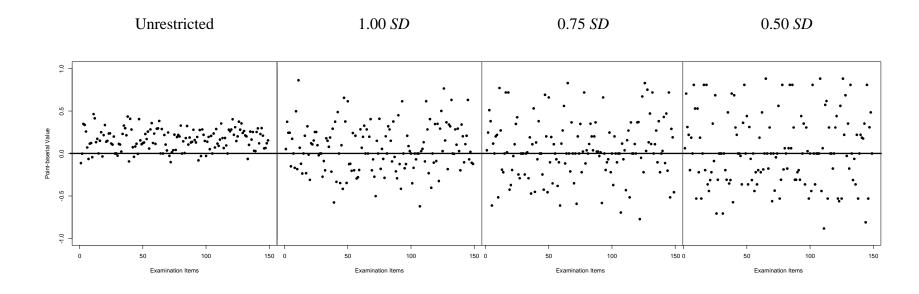
Examination 3


Examination 3, which was the smallest test used in this study, consisted of 149 items. Responses from 76 examinees were included in the analysis. The same procedures described for Examination 1 and Examination 2 were conducted for Examination 3. The plots depicting the location of unrestricted and restricted discrimination values for each cut score considered are included in Figures 4.13 through 4.17. Unlike the plots highlighting the same information for Examinations 1 and 2, the plots for Examination 3 indicated no discernable visual relationship between the unrestricted and restricted point-biserials. The restricted discrimination values, in particular, appeared to vary greatly when compared to those observed for the previous examinations.

The boxplot, included in Figure 18, indicated a somewhat more familiar pattern, with the mean discrimination value for the unrestricted set being larger than the mean values for the restricted sets. As was the case with the previous examinations, the mean discrimination value for each set appeared to decrease as the size of the group of scores considered decreased.


Descriptive statistics for the values calculated are included in Table 4.10. As the table indicates, the largest mean discrimination value was that associated with the unrestricted set, M = 0.16 (SD = 0.13). This was the lowest unrestricted mean discrimination value among all of the examinations considered in the study. The largest mean discrimination value among the restricted sets represented point-biserials calculated using scores within 1.00 *SD* of C_{X4}. This set considered 52 examinee scores, which was more than any other restricted set. The set with the fewest number of scores included those within 0.50 *SD* of C_{X5}. Only six scores were included in the calculations for this set.


Figure 4.13. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X1} for Examination 3.


Figure 4.14. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X2} for Examination 3.

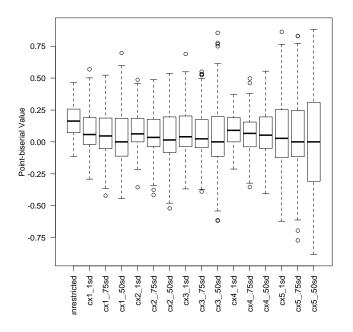

Figure 4.15. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X3} for Examination 3.

Figure 4.16. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of C_{X4} for Examination 3.

Figure 4.17. Plots of unrestricted and restricted item discrimination values based on scores within 1.00 SD, 0.75 SD, and 0.50 SD of C_{X5} for Examination 3.

Figure 4.18. Boxplot highlighting distribution of item discrimination values under each condition for Examination 3.

Descriptive Statistics of Discrimination Values Calculated for Examination 3
--

Cut Score	Group	М	SD	Min	Max	Range	Skew	n
Unrestricte	ed	0.16	0.13	-0.11	0.46	0.58	-0.02	76
C_{X1}	+/- 1.00 <i>SD</i>	0.08	0.17	-0.29	0.57	0.86	0.34	37
	+/- 0.75 <i>SD</i>	0.06	0.19	-0.42	0.52	0.94	0.09	25
	+/- 0.50 <i>SD</i>	0.04	0.23	-0.44	0.70	1.14	0.30	17
C _{X2}	+/- 1.00 <i>SD</i>	0.08	0.15	-0.36	0.49	0.84	0.18	43
	+/- 0.75 <i>SD</i>	0.06	0.17	-0.42	0.49	0.90	0.04	36
	+/- 0.50 <i>SD</i>	0.05	0.21	-0.52	0.54	1.06	-0.12	25
C _{X3}	+/- 1.00 <i>SD</i>	0.08	0.19	-0.37	0.69	1.06	0.36	23
	+/- 0.75 SD	0.06	0.20	-0.39	0.55	0.94	0.37	20
	+/- 0.50 <i>SD</i>	0.04	0.29	-0.62	0.86	1.47	0.24	11
C _{X4}	+/- 1.00 <i>SD</i>	0.09	0.13	-0.21	0.37	0.58	-0.10	52
	+/- 0.75 <i>SD</i>	0.06	0.16	-0.35	0.50	0.85	-0.02	33
	+/- 0.50 <i>SD</i>	0.05	0.19	-0.41	0.55	0.96	-0.08	26
C _{X5}	+/- 1.00 <i>SD</i>	0.06	0.28	-0.62	0.86	1.48	0.25	13
	+/- 0.75 <i>SD</i>	0.05	0.34	-0.77	0.83	1.60	0.16	8
	+/- 0.50 <i>SD</i>	0.04	0.42	-0.88	0.88	1.76	0.29	6

The correlation matrix for Examination 3 is included in Table 4.11. Unlike the previous examinations considered, far fewer correlations were significant for Examination 3. Among the 120 correlation coefficients calculated, only 78 were found to be significantly different than zero at the $\alpha = 0.05$ level of significance. In addition, 42 coefficients expressed negative relationships, which was more than both Examination 1 (12) and Examination 2 (24). The strongest correlation existed between the set of values calculated using scores within 1.00 *SD* of C_{X2} and the set that included scores within 0.75 *SD* of C_{X2}, r(147) = 0.79, p < .001.

One-way repeated measures ANOVA was also conducted with respect to Examination 3. Unlike the previous examinations, however, the Shapiro-Wilk normality test (R Core Team, 2012) identified several groups of data for which the null hypothesis of normality was rejected. The problematic groups were those calculated using scores within 0.75 SD of C_{X3} , 0.50 SD of C_{X3} , 0.75 SD of C_{X5} , and 0.50 SD of C_{X5} . An analysis of group skewness values, however, indicated that each fell within -1.00 to 1.00. These values are included in Table 4.10. Once again, therefore, the decision was made to proceed with the ANOVA.

The assumption of sphericity was also violated, with Mauchly's (1940) test producing a significant result, W < 0.001, p < .001. The Greenhouse-Geisser (1959) correction, $\varepsilon =$ 0.28, was applied to the degrees of freedom to correct the positively biased *F*-statistic. As seen in Table 4.12, the results of the ANOVA were significant, F(4.20, 621.60) = 2.989, p =.016. The results indicated the presence of a significant difference between at least two of the group means.

Correlation Matrix of Item Discrimination Values Calculated for Examination 3

			C _{X1}			C _{X2}			C _{X3}			C _{X4}			C _{X5}	
UNR	UNR 1.00	1.00 SD	0.75 SD	0.50 SD	1.00 <i>SD</i>	0.75 SD	0.50 SD	1.00 <i>SD</i>	0.75 SD	0.50 SD	1.00 <i>SD</i>	0.75 SD	0.50 SD	1.00 <i>SD</i>	0.75 SD	0.50 SD
<u>C_{X1}</u> 1.00 SD 0.75 SD 0.50 SD	0.47* 0.13 -0.06	1.00 0.52* 0.10	1.00 0.44*	1.00												
<u>C_{X2}</u> 1.00 SD 0.75 SD 0.50 SD	0.46* 0.28* 0.25*	0.55* 0.50* 0.56*	0.27* 0.14 0.15	0.22* -0.04 -0.30*	1.00 0.79* 0.51*	1.00 0.66*	1.00									
<u>C_{X3}</u> 1.00 SD 0.75 SD 0.50 SD	0.38* 0.33* 0.26*	0.13 0.36* 0.32*	0.09 0.21* -0.08	0.26* 0.14 -0.43*	-0.08 -0.05 -0.23*	-0.28* -0.23* -0.31*	-0.31* -0.26* -0.08	1.00 0.69* 0.32*	1.00 0.56*	1.00						
<u>C_{X4}</u> 1.00 SD 0.75 SD 0.50 SD	0.67* 0.36* 0.20*	0.20* -0.16 -0.22*	-0.12 -0.28* -0.44*	-0.39* -0.21* -0.10	0.38* 0.20* 0.34*	0.28* -0.01 0.08	0.44* -0.24* -0.23*	-0.17* 0.05 0.12	-0.14 0.17* 0.04	0.15 0.14 0.10	1.00 0.43* 0.29*	1.00 0.64*	1.00			
<u>C_{X5}</u> 1.00 SD 0.75 SD 0.50 SD	0.38* 0.28* 0.21*	-0.01 -0.18* -0.25*	-0.29* -0.39* -0.34*	-0.37* -0.37* 0.09	-0.18* -0.04 0.11	-0.25* 0.11 0.07	-0.10 0.07 -0.02	0.72* 0.49* 0.45*	0.46* 0.04 -0.10	0.58* 0.03 -0.30*	0.11 0.14 0.02	0.19* 0.11 0.06	0.19* 0.19* 0.11	1.00 0.69* 0.50*	1.00 0. 75*	1.00

Note. * p = < .05.

Source	Model	SS	df	MS	F	р
Condition	Sphericity Assumed	2.104	15.000	0.140	2.989	<.001*
	Greenhouse-Geisser Corrected	2.104	4.200	0.501	2.989	.016*
Error	Sphericity Assumed	104.188	2220.00	0.047		
	Greenhouse-Geisser Corrected	104.188	621.600	0.168		

Results of the One-way Repeated Measures ANOVA for Examination 3

Note. The Greenhouse-Geisser correction, estimated at $\varepsilon = 0.28$, was used to correct for the violation of the sphericity assumption. * = Significant at $\alpha = .05$ level of significance.

The results of Tukey's HSD test are included in Table 4.13. Unlike Examinations 1 and 2, significant differences were not observed between the unrestricted set of values and each of the restricted groups. Significant differences were not observed between the unrestricted group and four of the restricted groups. The groups between which a significant difference with the unrestricted set was not observed included values calculated using scores with 1.00 *SD* of C_{X1} , 1.00 *SD* of C_{X2} , 1.00 *SD* of C_{X3} , and 1.00 *SD* of C_{X4} . Significant differences between the unrestricted group and each of the other sets, however, were identified, with the mean unrestricted discrimination value being greater than the mean values of the restricted groups.

Condition	Con	dition	Mean difference	р
	Cut score	Group size		1
Unrestricted	C _{X1}	+/- 1.00 SD	0.087	.081
		+/- 0.75 <i>SD</i>	0.105	.008*
		+/- 0.50 <i>SD</i>	0.128	<.001*
	C _{X2}	+/- 1.00 <i>SD</i>	0.081	.148
	<u> </u>	+/- 0.75 <i>SD</i>	0.100	.015*
		+/- 0.50 <i>SD</i>	0.119	<.001*
	C _{X3}	+/- 1.00 <i>SD</i>	0.088	.068
		+/- 0.75 <i>SD</i>	0.102	.011*
		+/- 0.50 <i>SD</i>	0.125	<.001*
	C_{X4}	+/- 1.00 <i>SD</i>	0.072	.326
	211	+/- 0.75 <i>SD</i>	0.103	.010*
		+/- 0.50 <i>SD</i>	0.111	.003*
	C _{X5}	+/- 1.00 <i>SD</i>	0.104	.009*
	210	+/- 0.75 <i>SD</i>	0.113	.002*
		+/- 0.50 SD	0.124	<.001*

Results of Tukey's HSD Test for Examination 3 - Unrestricted vs. Restricted Values

Note. * = Significant at the α = .05 level of significance.

Summary – Research Question 1

For Research Question 1, results of the analysis based on visual comparisons suggested that at each cut score location, the unrestricted set of discrimination values was, on average, greater in value than the restricted sets. This was evident in both the plots and boxplots. It was particularly true for Examinations 1 and 2, but less apparent for Examination 3, which, according to sample size, was the smallest examination used in the study. The results of the ANOVA supported this initial assessment, indicating that for Examinations 1 and 2, the difference between the unrestricted set of discrimination values and the sets of restricted values was statistically significant. In the case of Examination 3, the difference between the unrestricted set of discrimination 3, the difference between the unrestricted set of the 15 restricted sets was significant. Where significant differences were found, the mean unrestricted point-biserial was larger than the mean restricted item discrimination value.

Research Question 2

Research Question 2 examined the degree to which using restricted item discrimination values affected item selection, examination reliability, and classification decision consistency. The results of the procedures conducted to answer this research question for each examination are included in the sections that follow.

Examination 1

To examine the effect restricted item discrimination values had on item selection, two 50-item forms were created. Form A included the 50 most discriminating items from Examination 1, using unrestricted point-biserials as the criterion for selection. Form B included the 50 most discriminating items, using restricted point-biserials as the selection criterion. The set of restricted values used to create Form B was based on scores within 1.00 *SD* of C_{X1} . Descriptive statistics for the Examination 1 forms, as well as for those associated with the other examinations used in the study, are included in Table 4.14.

The items selected for Form A and Form B are included in Table 4.15. As indicated in the table, selecting items based on their restricted point-biserial value, as opposed to their unrestricted value, resulted in Form B including 19 items that were not included in Form A.

The test variants for Examination 1, as well as for Examinations 2 and 3, therefore, included both similar and dissimilar items. Because each form included items that were also included on its corresponding test variant, dependent samples tests were used when evaluating differences in reliability and decision consistency. For each test conducted, however, a similar test using independent sample procedures was also performed. In each case, the result of the independent samples test was identical to the dependent samples test.

103

Descriptive statistics were calculated for the discrimination values associated with both forms. As seen in Table 4.16, the mean discrimination value for Form A, M = 0.39 (*SD* = 0.08) was slightly larger than the mean value for Form B, M = .37 (*SD* = 0.09). To further investigate the difference in mean discrimination values, however, a dependent samples *t*-test was conducted.

Descriptiv	e Statistics	of Test Forms A and B – All Exa	minations

Exam	Form	М	SD	Min	Max	Range	Skew	п	α	SEM	κ^*	к 95% CI
1												
	Form A	32.47	8.94	5.00	49.00	44.00	-0.49	490	0.89	3.01	0.69(.01)	[0.67, 0.71]
	Form B	30.94	8.65	6.00	48.00	42.00	-0.23	490	0.87	3.13	0.67(.01)	[0.65, 0.69]
2												
	Form A	33.34	8.16	8.00	49.00	41.00	-0.49	161	0.87	2.94	0.66(.02)	[0.62, 0.70]
	Form B	34.32	7.59	17.00	49.00	32.00	-0.32	161	0.85	2.94	0.63(.02)	[0.59, 0.68]
3												
	Form A	38.97	6.22	24.00	49.00	25.00	-0.62	76	0.83	2.59	0.59(.04)	[0.51, 0.67]
	Form B	39.76	5.45	25.00	47.00	22.00	-0.94	76	0.78	2.55	0.52(.05)	[0.43, 0.62]

Note. * Numbers in parentheses indicate SE for κ .

	For	m A			Fo	orm B	
Item	r_{pbis}	Item	r_{pbis}	Item	r _{pbis}	Item	r_{pbis}
(795	0.572	16275	0.270	(795	0.572	16705	0.260
6785	0.573	16375	0.370	6785	0.573	16725	0.369
16720	0.556	15600	0.369	8120	0.553	17240	0.368
8120	0.548	15635	0.366	16210	0.533	2830	0.362
16845	0.521	2830	0.364	16720	0.532	15810	0.350
16210	0.510	3535	0.363	16845	0.513	*3570	0.323
16710	0.489	16840	0.362	16710	0.492	16910	0.312
7240	0.480	16725	0.356	10645	0.473	2900	0.312
10645	0.473	16760	0.355	7240	0.452	*16615	0.309
15450	0.461	12895	0.353	14185	0.447	*16940	0.306
14185	0.446	17240	0.351	15450	0.443	*16135	0.306
17430	0.442	7185	0.340	17430	0.442	*15355	0.300
15905	0.437	16910	0.337	16005	0.438	*15430	0.295
16740	0.436	15585	0.332	10005	0.437	*17595	0.291
16005	0.436	15810	0.329	16740	0.429	*15395	0.288
2545	0.432	15705	0.326	10560	0.407	*16060	0.288
2175	0.427	12960	0.317	15890	0.407	*6620	0.281
5925	0.425	17370	0.317	2175	0.401	*15755	0.280
10005	0.417	16690	0.312	16110	0.395	*16635	0.273
16765	0.415	2900	0.311	2545	0.391	*13695	0.265
15890	0.413	2385	0.300	16765	0.388	*3520	0.260
16110	0.410	17500	0.294	15635	0.385	*16745	0.257
6710	0.407	1870	0.292	3535	0.384	*17010	0.254
13245	0.392	17580	0.278	2250	0.381	*17385	0.249
10560	0.379	16445	0.277	13245	0.380	*12965	0.249
2250	0.374	14275	0.264	15600	0.370	*16305	0.170

Items and Discrimination Values for Form A and Form B – Examination 1

Note. * = Item exclusive to Form B.

Form	М	SD	Min	Max	Range	Skew
Form A	0.39	0.08	0.26	0.57	0.31	0.51
Form B	0.37	0.09	0.17	0.57	0.40	0.31

Descriptive Statistics of Form A and Form B Discrimination Values – Examination 1

The data were first tested for compliance with the assumption of normality. Results of the Shapiro-Wilk normality test (R Core Team, 2012) revealed that the data were normally distributed, Form A: W = 0.97, p = .14, Form B: W = 0.97, p = .21. Results of the *t*-test revealed that the differences between discrimination values for Form A and Form B were not significant, t(49) = 1.66, p = .10.

In terms of examination reliability, the estimate for Form A, $\alpha = 0.89$, was slightly higher than the estimate for Form B, $\alpha = 0.87$. These estimates, as well as other descriptive statistics, are included in Table 4.14. The result of the test for significant differences among coefficient alphas was significant, t(488) = 5.93, p < .001, and, consequently, the null hypothesis of equal reliability estimates was rejected. The difference in examination reliability, therefore, was significant.

The classification decision consistency coefficient, κ , was also calculated for Form A and Form B. Huynh's (1976) modification to κ , which allows for an estimate based on a single test administration, was used for this purpose. As discussed in Chapter 3, the classification decision coefficients were to be compared using a method proposed by Donner

et al. (2000). Upon further investigation, however, the method required the κ coefficients to be based on multiple test administrations. This was not possible for the data used in this study. Additional studies and models were considered, but each required the classification decision consistency coefficients to be based on multiple test administrations (Barnhart & Williamson, 2002; McKenzie et al., 1996; Williamson, Lipsitz, & Manatunga, 2000) or to utilize independent samples (Fleiss, 1981; Lipsitz, Williamson, Klar, Ibrahim, & Parzen, 2001). Whereas no identified model for testing significant differences in κ coefficients fit the data and context used in this study (κ based on dependent samples from a single test administration), a test was not possible. The comparison of classification decision consistency coefficients, therefore, was limited to an analysis of their associated 95% confidence intervals. These intervals are included in Table 4.14.

A degree of caution should be used when characterizing differences between statistics using confidence intervals. Whereas one may conclude that a significant difference at the α = .05 level of significance exists when 95% confidence intervals do not overlap, it may be misleading to suggest that a significant difference does not exist when the confidence intervals do overlap. Previous research has shown that statistics with overlapping confidence intervals may, in fact, be significantly different (Odeuyungbo, Thabane, & Markle-Reid, 2009). As seen in Table 4.14, the classification decision consistency estimate for Form A, κ = 0.69 (*SE* = 0.01, 95% CI [0.67, 0.71]) was slightly higher than that of Form B, κ = 0.67 (*SE* = 0.01, 95% CI [0.65, 0.69]. Had the 95% confidence intervals not overlapped, the null hypothesis of no significant difference between κ coefficients could have been rejected. In this case, however, the confidence intervals did overlap. It is plausible, although not a certainty, therefore, that there is no significant difference between the classification decision consistency coefficients associated with Form A and Form B.

Examination 2

The procedures used to create Form A and Form B for Examination 1 were also conducted for Examination 2. As seen in Table 4.17, using restricted point-biserials resulted in Form B including 22 items that were not included in Form A.

Descriptive statistics for the discrimination values associated with the Examination 2 forms are included in Table 4.18. Once again, the mean item discrimination value was slightly larger for Form A, M = 0.37 (SD = 0.05), than it was for Form B, M = 0.35 (SD = 0.08). A dependent samples *t*-test was conducted to test for differences among the group means. The Shapiro-Wilk normality test (R Core Team, 2012) indicated that the data approximated normality, W = 0.98, p = .41. Results of the *t*-test indicated that the difference between mean discrimination values was not significant, t(49) = 1.90, p = .06.

	F	orm A			F	Form B	
Item	r_{pbis}	Item	r_{pbis}	Item	r _{pbis}	Item	r_{pbis}
100152	0.524	100155	0.262	100152	0 5 4 5	100160	0.220
108153	0.524	108155	0.363	108153		108162	0.338
108486	0.454	108507	0.363	108143		*60242	0.337
90390	0.450	108146	0.361	108486		108494	0.336
108492	0.448	59231	0.360	40885		*40944	0.333
108178	0.443	94586	0.358	90390		*51781	0.331
108143	0.436	108162	0.357	108487		*108478	0.328
108138	0.428	108189	0.356	108178	0.434	*108479	0.326
40885	0.423	108494	0.354	51787	0.432	*108144	0.323
51787	0.417	51793	0.348	62140	0.423	*41645	0.321
62140	0.413	108487	0.346	108154	0.423	*108198	0.320
40655	0.413	108182	0.346	40969	0.418	*62132	0.319
94582	0.407	94566	0.338	40992	0.418	108189	0.318
40969	0.402	108156	0.338	41181	0.415	62136	0.316
108509	0.397	108515	0.330	108176	0.409	*108193	0.307
108489	0.394	108166	0.327	94582	0.395	*108197	0.297
108477	0.394	84442	0.326	40655	0.387	*90398	0.265
108154	0.390	108201	0.324	84442	0.376	108515	0.264
40992	0.389	59149	0.319	*108187	0.372	*108481	0.255
108177	0.389	108506	0.317	94566	0.369	*108512	0.252
41181	0.385	108180	0.303	108492		*108488	0.242
51817	0.380	40668	0.303	108138		*90400	0.240
40657	0.379	108152	0.298	*59128		*108158	0.228
108176	0.375	108483	0.295	60258		*62135	0.225
108204	0.373	60258	0.293	108180		*108502	0.225
62136	0.368	108167	0.292	108477	0.340	*59138	0.170
02150	0.500	100107	0.204	1007//	0.540	57150	0.137

Items and Discrimination Values for Form A and Form B – Examination 2

Note. * = Item exclusive to Form B.

Form	М	SD	Min	Max	Range	Skew
Form A	0.37	0.05	0.28	0.52	0.24	0.47
Form B	0.35	0.08	0.16	0.55	0.39	-0.07

Descriptive Statistics of Form A and Form B Discrimination Values – Examination 2

As indicated in Table 4.14, the examination reliability estimate for Form A, $\alpha = 0.87$, was slightly larger than the estimate for Form B, $\alpha = 0.85$. Further analysis also revealed that the difference between examination reliability estimates was significant, t(159) = 2.20, p = .03. Thus, the null hypothesis of equal coefficient alphas was rejected.

In terms of classification decision consistency, the κ coefficient associated with Form A, $\kappa = 0.66$ (*SE* = 0.02, 95% CI [0.62, 0.70]) was slightly greater than the estimate for Form B, $\kappa = 0.63$ (*SE* = 0.02, 95% CI [0.59, 0.68]). As was the case with Examination 1, the confidence intervals for the forms associated with Examination 2 overlapped. A similar conclusion, therefore, may be made: It is plausible that the observed difference in classification decision consistency between Form A and Form B is not statistically significant.

Examination 3

For Examination 3, the use of restricted point-biserials resulted in Form B including 22 items that were not included in Form A. These items are annotated in Table 4.19. Descriptive statistics for the discrimination values for Form A and Form B are included in Table 4.20. The mean discrimination value for Form A, M = 0.33 (SD = 0.08), was slightly higher than that of Form B, M = 0.29 (SD = 0.13). Prior to conducting the *t*-test, the values were also tested for normality. The Shapiro-Wilk test (R Core Team, 2012) revealed that the data were normally distributed, Form A: W = 0.98, p = .74, Form B: W = 0.97, p = .18. Results of the test indicated that the difference between mean discrimination values was not significant, t(49) = 1.85, p = .07.

Examination reliability estimates were also calculated for the Examination 3 forms. As indicated in Table 4.14, the reliability estimate for Form A, $\alpha = 0.83$, was again larger than the estimate for Form B, $\alpha = 0.78$. Once again, further analysis revealed that the difference between examination reliability estimates was significant, t(74) = 2.10, p = .04.

Finally, Form A and Form B were compared with regard to classification decision consistency. As seen in Table 4.14, the estimate for Form A, $\kappa = 0.59$ (*SE* = 0.04, 95% CI [0.51, 0.67]) was larger than for Form B, $\kappa = 0.52$ (*SE* = 0.05, 95% CI [0.43, 0.62]).

	For	rm A			F	orm B	
Item	r_{pbis}	Item	r_{pbis}	Item	r_{pbis}	Item	r_{pbis}
160005	0.540	160048	0.313	160084	0.518	160050	0.310
160041	0.467	160549	0.311	160552	0.516	*160021	0.309
160557	0.455	160055	0.311	160057	0.483	160048	0.307
160034	0.449	160056	0.309	160030	0.464	160064	0.265
160057	0.443	160548	0.308	160074	0.464	160053	0.261
160032	0.443	160011	0.306	160005	0.458	*160013	0.260
160051	0.419	160558	0.306	159998	0.444	160028	0.240
160541	0.417	160559	0.305	160032	0.443	*160047	0.228
160550	0.407	160573	0.298	160557	0.442	*160026	0.214
160029	0.402	160569	0.295	160041	0.422	*160020	0.208
160030	0.400	159999	0.293	160541	0.404	*160578	0.207
159998	0.399	160526	0.290	160051	0.402	*160536	0.200
160074	0.396	160535	0.285	160079	0.398	*160577	0.197
160555	0.396	160018	0.276	160550	0.396	*160025	0.190
160079	0.392	160050	0.263	160055	0.392	*159996	0.176
159997	0.378	160028	0.261	160014	0.365	*160527	0.167
160552	0.367	160035	0.253	160526	0.355	*160072	0.156
160006	0.366	160570	0.247	*160031	0.352	*160039	0.140
160084	0.353	160572	0.245	160006	0.346	*160554	0.129
160547	0.343	160064	0.242	*160540	0.332	*160533	0.125
160564	0.336	160059	0.233	160035	0.331	*160000	0.110
160014	0.335	160046	0.218	160034	0.330	*160575	0.077
160556	0.335	160566	0.196	160564	0.324	*160090	0.074
160537	0.333	160017	0.178	160535	0.312	*160545	0.057
160053	0.315	160089	0.175	159999	0.312	*160568	0.053

Items and Discrimination Values for Form A and Form B – Examination 3

Note. * = Item exclusive to Form B.

Form	М	SD	Min	Max	Range	Skew
Form A	0.33	0.08	0.18	0.54	0.37	0.19
Form B	0.29	0.13	0.05	0.52	0.46	-0.14

Descriptive Statistics of Form A and Form B Discrimination Values – Examination 3

Once again, the 95% confidence intervals overlapped, suggesting that a conclusion similar to those drawn regarding the other examinations may be made: It is plausible that the differences in κ between Form A and Form B are not statistically significant.

Summary – Research Question 2

The procedures conducted to answer Research Question 2 suggested that using restricted point-biserials as the criterion for selection significantly affected the items selected. For Examination 1, 19 of the 50 items selected for Form B were not selected for Form A. For Examinations 2 and 3, 22 of the 50 items selected for Form B were not selected for Form A. Analysis of the item discrimination values indicated that the difference in mean point-biserial between forms for each examination was not significant. The results also revealed, however, a significant difference in examination reliability. For each examination, the observed reliability estimate for Form A was slightly larger than that of Form B. In each case, further analysis found the difference in reliability between forms to be statistically significant. Finally, classification decision consistency was calculated for each form.

Observed estimates revealed that the κ coefficient associated with Form A was larger than that of Form B for each examination. Analysis of the 95% confidence intervals, however, prevented a rejection of the null hypothesis of equal classification decision consistency estimates. It is plausible, therefore, that the observed difference between forms was not statistically significant. Further discussion and analysis of the results presented here are included in Chapter 5.

CHAPTER 5

DISCUSSION

Three areas of test development were emphasized in this study. First, the role item discrimination plays in the test development process was a key aspect of the research. Second, competency examinations used to credential individuals served as the context. Third, the study replicated the realistic conditions that many developers of credentialing examinations face by using relatively small samples of examinees, which, consequently, necessitated the use of classical test theory procedures. Previous research has been devoted to each of these areas individually. Prior to this study, however, no published research has examined the ways in which these areas interact. As such, the research represents a unique contribution to the field of test development.

No study, however, is without limitations. This chapter begins with an outline of limitations that affected the research. Next, a discussion of the study's key findings, specifically as they relate to the research questions, is provided. This is followed by recommendations for future research, practical implications for developers of examinations that incorporate cut scores to foster categorical decisions about examinees (e.g., credentialing examinations), and conclusions.

Limitations

The study was affected by two general limitations. These limitations are presented below and are discussed in greater detail in the sections that follow.

- The items used in the analysis were included in the final versions of their respective examinations. As such, they potentially may have been more vetted than the types of items typically under consideration during the item analysis phase of test development, which this study sought to replicate.
- 2. The criteria by which items were selected for the Form A and Form B test variants potentially did not wholly correspond to methods used by those who develop credentialing examinations.

Refinement of Items Used in the Study

In many ways, this study attempted to replicate certain aspects of the process by which credentialing examinations are developed. Like other types of tests, the process used to develop credentialing examinations includes well-established steps. These steps were highlighted in Table 1.1, which was adapted from research conducted by Downing (2006). As seen in the table, item analysis typically occurs during the eighth step in this process, a step labeled "scoring test responses." During this stage of development, analysis of fieldtested items frequently occurs. One component of this analysis is the calculation and evaluation of item discrimination values.

The procedures conducted in this study, specifically as they relate to Research Question 2, sought to imitate item analysis. Item discrimination values were calculated and used, for example, to select items for the Form A and Form B test variants just as they might be used by test developers to select items for a credentialing examination. The items included in these forms were then used to answer Research Question 2. For the items used in this study, however, the process of item analysis had already occurred. These items were included in the final version of each of their respective examinations, and, therefore, were presumably selected over other less qualified items. The process of item analysis also may have resulted in some form of modification to the items, such as changes in wording or order of response options. A more accurate replication of the item analysis phase of test development might include items that had not yet been selected for inclusion in the final version of an examination, but which, along with many other items, were under consideration for inclusion in the final version.

Although this limitation represents a slight deviation from the typical conditions under which credentialing examination are normally developed, it is unlikely that it affected the study's overall findings. The research conducted was focused on the degree to which using restricted point-biserials affected the discrimination values themselves, item selection, examination reliability, and classification decision consistency. In each instance, the results of the research with respect to the dependent variables just named would likely not have been different had items in earlier phases of development been used. Exploring the effect less refined items might have, however, may be valuable and is discussed in greater detail in the section outlining recommendations for future research.

Item Selection Criteria

Another limitation associated with the current research is that in creating the forms used to answer Research Question 2, item discrimination served as the sole criterion for item selection. Although discrimination is typically an important consideration when selecting

118

items for examinations, other factors, which were not considered here, may also determine the degree to which an item is appropriate for inclusion.

One such consideration, for example, may be *item difficulty*, which, for items scored dichotomously, represents the proportion of examinees who have answered the item correctly (Crocker & Algina, 2008). Item difficulty may be of particular importance for examinations for which examinees are classified into multiple categories, such as basic, proficient, and advanced. For these types of examinations, developers may want to include several items with difficulty levels that correspond to the various performance categories. Item discrimination, in such instances, may be a secondary consideration.

In most cases, however, item statistics, to include both discrimination and difficulty, are not the only factors that determine suitability for inclusion in final-version examinations. According to Livingston (2006), "Statistics alone cannot determine which items on a test are good and which are bad, but statistics can be used to identify items that are worth a particularly close look" (p. 423). Other factors that influence the selection of items are based on test specifications. Such specifications are sometimes referred to as test blueprints, because they specify how the test or form is to be constructed (Schmeiser & Welch, 2006). A test blueprint may specify, for example, that a certain number of items should be associated with particular content standards. Using a third-grade mathematics examination as an example, a test blueprint may direct that 20% of the items should be devoted to each of the following: addition, subtraction, simple multiplication, geometry, and fractions. As such, regardless of the statistics associated with items related to geometry, 20% of the items must cover that content standard. Consequently, it is possible that a geometry-related item with a relatively low item discrimination value may be selected, whereas an addition-related

item with a higher discrimination value may not. Test blueprints may also stipulate other examination characteristics, such as the types of items to be used (i.e., constructed-response versus selected–response formats), the ordering of items (i.e., based on difficulty or content domain), test length, item scoring, and delivery specifications.

An important aspect of this study was the creation of the Form A and Form B test variants used to answer Research Question 2. Because test blueprints were not available for the examinations used in this research, item discrimination was the only criterion considered when selecting items for inclusion in the pseudo-forms. Form A included the 50 most discriminating items using unrestricted discrimination values as the selection criterion. Form B included the 50 most discriminating items using restricted discrimination values as the selection criterion. Had test blueprints been available, those specifications could have also been considered. Examination 3, for example, measured nurses' understanding of diabetes. It is possible that the test blueprint required a certain number of items to cover risk factors for diabetes, others to cover treatment of diabetes, and yet others to cover differences between types of diabetes. Because test specifications were not available, considering these types of issues in the item selection process was not possible.

It is important that the items selected for an examination match the requirements outlined in the test specifications because the items represent portions of the content standards. If the items do not sufficiently cover the content standards as specified by a test blueprint, a case for the validity of the examination is more difficult to make. According to Schmeiser and Welch (2006), "The domains to which test-score inferences are to be made serve as examples of the sources of validity evidence that can be used" (p. 315).

120

Although the process used to select items for the Form A and Form B test variants did not consider these additional factors, the results are still important with respect to the relationship between restricted item discrimination values and those aspects of test development examined in this study, namely, item selection, examination reliability, and classification decision consistency. Item discrimination may not be the only factor considered when selecting items for an examination, but it almost always is a factor of consideration. Despite this limitation, therefore, the research findings presented here are still important and relevant.

Key Findings

The results of the study produced four key findings: one related to Research Question 1 and three related to Research Question 2. The key findings are summarized below. Each key finding is discussed in greater detail in the sections that follow.

- Restricting the calculation of item discrimination values to scores of examinees at or near anticipated cut scores resulted in lower discrimination values than those calculated using all examinee scores. (Research Question 1)
- 2. Using restricted item discrimination values as the primary criterion for item selection resulted in the selection of items that were different than those selected using unrestricted item discrimination values. (Research Question 2)
- Examinations comprised of items selected using restricted item discrimination values as the primary selection criterion produced slightly lower reliability estimates than examinations comprised of items selected using unrestricted item

discrimination values. Differences in reliability estimates between these examinations were significantly greater than zero. (Research Question 2)

4. Examinations comprised of items selected using restricted item discrimination values as the primary selection criterion produced slightly lower observed classification decision consistency estimates than examinations comprised of items selected using unrestricted item discrimination values. The degree to which these differences were statistically significant, however, was uncertain. (Research Question 2)

Effect on Item Discrimination Values

The purpose of Research Question 1 was to determine the effect limiting discrimination values to scores of examinees near real or anticipated cut scores had on item discrimination values. To answer this question, procedures were followed that resulted in the creation of 15 sets of restricted item discrimination values. The sets of restricted values were based on scores within 1.00 *SD*, 0.75 *SD*, and 0.50 *SD* of five distinct cut score locations. As observed in Table 5.1, in all cases, mean restricted item discrimination values. For Examinations 1 and 2, the results of one-way ANOVA analysis indicated that the difference between the unrestricted set of discrimination values and each of the 15 sets of restricted discrimination values was significantly greater than zero. This was also the case for all but four of the sets of restricted discrimination values in Examination 3.

Table 5.1

Descriptive Statistics of	of Discrimination	Values – All Examinations
=	<i>j</i> = <i>i</i> ~ <i>c</i> · <i>i</i> · · <i>i</i> · <i>i</i> · <i>i</i> · · · · · · · · · · · · · · · · · · ·	

Cut Score Group		Examinati M (SD)	ion 1 n	Examinati M (SD)			xamination 3 (SD) n	
Unrestricted		0.25 (.09)	490	0.22 (.12)	161	0.16 (.13)	76	
C _{X1}	+/- 1.00 <i>SD</i>	*0.13 (.08)	339	*0.12 (.12)	111	0.08 (.17)	37	
	+/- 0.75 <i>SD</i>	*0.10 (.07)	287	*0.09 (.12)	85	*0.06 (.19)	25	
	+/- 0.50 <i>SD</i>	*0.07 (.08)	198	*0.06 (.13)	67	*0.04 (.23)	17	
C _{X2}	+/- 1.00 <i>SD</i>	*0.12 (.07)	317	*0.12 (.11)	115	0.08 (.15)	43	
	+/- 0.75 <i>SD</i>	*0.10 (.07)	267	*0.10 (.12)	96	*0.06 (.17)	36	
	+/- 0.50 <i>SD</i>	*0.07 (.08)	200	*0.06 (.13)	64	*0.05 (.21)	25	
C _{X3}	+/- 1.00 <i>SD</i>	*0.14 (.08)	344	*0.11 (.12)	93	0.08 (.19)	23	
	+/- 0.75 <i>SD</i>	*0.10 (.08)	255	*0.08 (.13)	76	*0.06 (.20)	20	
	+/- 0.50 <i>SD</i>	*0.07 (.09)	171	*0.06 (.14)	57	*0.04 (.29)	11	
C _{X4}	+/- 1.00 <i>SD</i>	*0.13 (.07)	292	*0.12 (.11)	109	0.09 (.13)	52	
	+/- 0.75 <i>SD</i>	*0.10 (.08)	240	*0.09 (.11)	89	*0.06 (.16)	33	
	+/- 0.50 <i>SD</i>	*0.07 (.09)	169	*0.07 (.13)	57	*0.05 (.19)	26	
C _{X5}	+/- 1.00 <i>SD</i>	*0.14 (.08)	307	*0.10 (.12)	82	*0.06 (.28)	13	
	+/- 0.75 <i>SD</i>	*0.11 (.08)	239	*0.09 (.13)	60	*0.05 (.34)	8	
	+/- 0.50 <i>SD</i>	*0.07 (.10)	152	*0.05 (.18)	37	*0.04 (.42)	6	

Note. * = Analysis indicated a significant difference between these sets of restricted values and their corresponding set of unrestricted values at the α = .05 level of significance.

One of the reasons the study incorporated three examinations, five distinct cut score locations, and three different bands of examinee scores around those cut score locations was to evaluate how each of those variables affected the results. For Examination 1, which was the largest sample used in study (n = 490), and Examination 2, which was the second largest sample used (n = 161), the location of the cut score appeared to have little influence on the outcome of the results. Regardless of either the location of the cut score or the size of the group around that cut score location considered, the difference between the resulting sets of restricted discrimination values and the unrestricted set of discrimination values was found to be significantly greater than zero. In all cases, the mean restricted discrimination values were smaller than the mean unrestricted discrimination value.

Examination 3, which was the smallest sample used in the study (n = 76), produced results similar to those identified for Examinations 1 and 2, with four exceptions. Although the observed mean discrimination value for each of the sets of restricted values was smaller than the unrestricted set, the difference between the unrestricted set and four of the restricted sets was found to be not significantly greater than zero. Those four sets included values based on scores within 1.00 *SD* of C_{X1}, C_{X2}, C_{X3}, and C_{X4}.

After completing the initial set of procedures used to answer Research Question 1, it was determined that additional two-way ANOVA would be useful in determining the effect cut score location and examinee score group size, as well as any possible interaction between these two factors, had on restricted item discrimination values. The analysis was developed using five levels for the cut score location factor (C_{X1} , C_{X2} , C_{X3} , C_{X4} , and C_{X5}) and three levels for the examinee score group size factor (1.00 *SD*, 0.75 *SD*, and 0.50 *SD*). The procedure, like the one-way ANOVA conducted earlier, incorporated repeated measures.

Violations of the sphericity assumption, which affected each of the examinations, were resolved using the Greenhouse-Geisser (1959) correction.

For each of the examinations used, there was no significant main effect for the cut score location factor or for the interaction of cut score location and examinee score group size. There was, however, a significant main effect for the factor representing the size of the group of scores considered for each examination, Examination 1: F(1.20, 208.80) = 492.35, p < .001; Examination 2: F(1.22, 243.97) = 161.84, p < .001; Examination 3: F(1.75, 259.59) = 14.62, p < .001. The analysis confirmed that cut score location did not significantly affect the magnitude of the restricted item discrimination values. The examinee score group size considered when calculating the discrimination values, however, did significantly affect the restricted point-biserials. For each examination, as the size of the group of scores considered decreased in size, so too did its associated mean item discrimination value.

After the procedures described in Chapter 3 were conducted, an evaluation of the differences between unrestricted discrimination values and restricted values was conducted at the item level. That is, for each item in each examination, differences between the unrestricted discrimination value and the 15 sets of restricted values were examined. The results of this analysis are included in Table 5.2. The table indicates the number of item discrimination values for each examination that either increased or decreased when the restricted conditions were considered.

Table 5.2

		Exami	nation 1	Exami	Examination 2		Examination 3		
Cut Score	Group	- Δ (%)	$+\Delta$ (%)	- Δ (%)	$+\Delta$ (%)	- Δ (%)	$+\Delta$ (%)		
C _{X1}	+/- 1.00 SD	169	6	165	35	106	43		
		(96.6%)	(3.4%)	(82.5%)	(17.5%)	(71.1%)	(28.9%)		
	+/- 0.75 <i>SD</i>	172	3	167	33	106	43		
		(98.3%)	(1.7%)	(83.5%)	(16.5%)	(71.1%)	(28.9%)		
	+/- 0.50 <i>SD</i>	168	7	168	32	102	47		
		(96.0%)	(4.0%)	(84.0%)	(16.0%)	(68.5%)	(31.5%)		
C _{X2}	+/- 1.00 SD	170	5	175	25	109	40		
		(97.1%)	(2.9%)	(87.5%)	(12.5%)	(73.2%)	(26.8%)		
	+/- 0.75 SD	174	1	175	25	109	40		
		(99.4%)	(0.6%)	(87.5%)	(12.5)	(73.2%)	(26.8%)		
	+/- 0.50 SD	169	6	172	28	102	47		
		(96.6%)	(3.4%)	(86.0%)	(14.0%)	(68.5%)	(31.5%)		
C _{X3}	+/- 1.00 SD	170	5	160	40	110	39		
		(97.1%)	(2.9%)	(80.0%)	(20.0%)	(73.8%)	(26.2%)		
	+/- 0.75 SD	171	4	160	40	108	41		
		(97.7%)	(2.3%)	(80.0%)	(20.0%)	(72.5%)	(27.5%)		
	+/- 0.50 SD	172	3	166	34	101	48		
		(98.3%)	(1.7%)	(83.0%)	(17.0%)	(67.8%)	(32.3%)		
C _{X4}	+/- 1.00 SD	162	13	164	36	107	42		
- 284		(92.6%)	(7.4%)	(82.0%)	(18.0%)	(71.8%)	(28.2%)		
	+/- 0.75 <i>SD</i>	169	6	172	28	110	39		
		(96.6%)	(3.4%)	(86.0%)	(14.0%)	(73.8%)	(26.2%)		
	+/- 0.50 SD	169	6	167	33	112	37		
		(96.6%)	(3.4%)	(83.5%)	(16.5%)	(75.2%)	(24.8%)		
C _{X5}	+/- 1.00 SD	171	4	163	37	106	43		
115		(97.7%)	(2.3%)	(81.5%)	(18.5%)	(71.1%)	(28.9%)		
	+/- 0.75 <i>SD</i>	167	8	160	40	102	¥7 (
		(95.4%)	(4.6%)	(80.0%)	(20.0%)	(68.5%)	(31.5%)		
	+/- 0.50 <i>SD</i>	166	9	160	40	93	56		
		(94.9%)	(5.1%)	(80.0%)	(20.0%)	(62.4%)	(37.6%)		

Change in Direction of Discrimination Values – All Examinations

As seen in the table, the discrimination value associated with the vast majority of examination items decreased when a subset of examinee scores was used to calculate the point-biserials. This was particularly true for Examination 1, where the discrimination values of 174 of the 175 items, or 99.4%, decreased in size when their calculation was limited to examinee scores within 0.75 *SD* of C_{X2} . This was the largest percentage of change in either direction for any group of restricted values across all examinations. For Examination 2, as many as 87.5% of unrestricted point-biserials decreased in value when restricted conditions were applied. The largest group of change in Examination 3 was associated with values calculated using scores within 0.50 *SD* of C_{X4} . For this group, 75.2% of values decreased.

The relationship between the percentages of item discrimination values that decreased under restricted conditions and the examination sample size may also be observed. The most dramatic changes appear in the restricted sets associated with Examination 1, which included the largest sample size. Those changes were less dramatic in Examinations 2 and 3, for which the sample sizes were much smaller.

The observed decrease in discrimination values under restricted conditions was likely due in part to the fact that the samples upon which restricted values were calculated were more homogeneous than the samples upon which unrestricted values were calculated. As observed earlier, a key component in the calculation of the point-biserial statistic is the standard deviation of scores considered, which serves as the denominator in the formula:

$$\rho_{pbis} = \frac{\mu - \mu_x}{\sigma_x} \sqrt{p/q} \tag{5.1}$$

where μ_+ is the mean total score for those who respond to the item correctly; μ_x is the mean total score for the entire group of examinees;

 σ_x is the standard deviation for the entire group of examinees;

p is item difficulty; and

q is equal to (1 - p) (Crocker & Algina, 2008).

All else being equal, therefore, smaller standard deviations for the group of scores used in its calculation will result in smaller point-biserial statistics. In some cases, the smaller, more homogeneous groups of scores, along with their smaller standard deviations, resulted in positive point-biserials becoming negative. The standard deviations of the groups of scores used to calculate the unrestricted discrimination values and the restricted values based on scores within 1.00 SD of C_{X1} for each examination are included in Table 5.3. As seen in the table, the standard deviation of scores used to calculate restricted discrimination values are smaller than their corresponding unrestricted values. Although not included in Table 5.3, the standard deviations for each group of restricted values becomes smaller in size as the group used to calculate the values decreases in size. The standard deviations of groups of scores within 1.00 SD of each cut score were closer to the standard deviation of all scores, upon which the unrestricted values were calculated than were any of the other sets of restricted values. This may explain why the only four sets of restricted values that were not found to be significantly different than their corresponding unrestricted discrimination values, as seen in Table 5.1, were each based on scores within 1.00 SD of their associated cut score. The standard deviations of these groups of scores were closer to the standard deviation of the unrestricted set than were any other sets of restricted values in Examination 3.

128

Table 5.3

Exam	Cut score	Group	п	М	SD	Min	Max	Range
1	Unrestricted		490	111.42	19.55	46	161	115
	C _{X1}	+/- 1.00 <i>SD</i>	339	115.23	10.06	96	134	38
2	Unrestricted		161	134.27	18.30	82	174	92
	C_{X1}	+/- 1.00 <i>SD</i>	111	131.43	9.92	112	148	36
3	Unrestricted		76	115.04	9.01	93	134	41
	C_{X1}	+/- 1.00 <i>SD</i>	37	108.57	4.69	98	115	17

Descriptive Statistics of Selected Groups of Scores

Effect on Item Selection

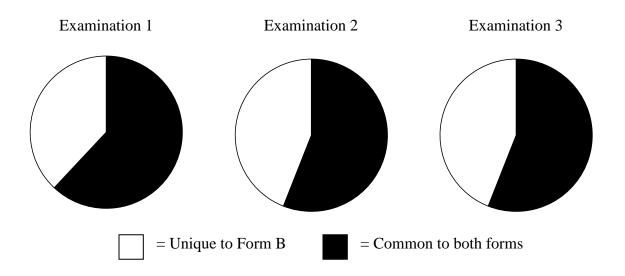

Using restricted item discrimination values as the criterion by which items were selected resulted in the Form B test variant of each examination including numerous items that were not included in the Form A variant, which utilized unrestricted values as the selection criterion. The Form B variant of Examination 1, for instance, included 19 items that were not included in the Form A variant. The Form B variant of Examinations 2 and 3 each contained 22 items that were not included in the Form A variants used to answer Research Question 2, are included in Table 5.4. They are also represented in Figure 5.1.

Table 5.4

Descriptive Statistics of Forms A and B Test Variants – All Examinati

Exam	Form	М	SD	Min	Max	Range	No. Items Unique to Form B	п	α	SEM	κ*	к 95% CI
1												
1	Form A	32.47	8.94	5.00	49.00	44.00		490	0.89	3.01	0.69(.01)	[0.67, 0.71]
	Form B	30.94	8.65	6.00	48.00	42.00	19	490	0.87	3.13	0.67(.01)	[0.65, 0.69]
2												
	Form A	33.34	8.16	8.00	49.00	41.00		161	0.87	2.94	0.66(.02)	[0.62, 0.70]
	Form B	34.32	7.59	17.00	49.00	32.00	22	161	0.85	2.94	0.63(.02)	[0.59, 0.68]
3												
	Form A	38.97	6.22	24.00	49.00	25.00		76	0.83	2.59	0.59(.04)	[0.51, 0.67]
	Form B	39.76	5.45	25.00	47.00	22.00	22	76	0.78	2.55	0.52(.05)	[0.43, 0.62]
	NT 1 '											

Note. * Numbers in parentheses indicate SE for κ .

Figure 5.1. Pie charts representing breakdown of Form B test variant items for each examination.

This finding (i.e., that using restricted item discrimination values when evaluating items for inclusion in the test variants resulted in the selection of items that were different than selected using unrestricted discrimination values) is important because, in many ways, it speaks to the validity of such examinations. The items unique to the Form B variants were more discriminating for those examinees with total scores closest to the cut score, than were the items unique to Form A. Again, according to the *Standards* (AERA et al., 1999), test validity is "the degree to which evidence and theory support the interpretation of test scores entailed by proposed uses" (p. 9). The interpretation of scores associated with credentialing examinations is, of course, that those who pass are qualified to receive certification or licensure. Selecting items that better discriminate among examinees with scores close to the test cut score helps to support this interpretation.

This position is also supported by the previously mentioned work of Harris and

Subkoviak (1986), who proposed item selection criteria for mastery tests, of which

credentialing examinations are a form. Their words seem particularly relevant within the

context of the current discussion:

For a mastery test, this means selecting items that discriminate between masters and non-masters, as opposed to within masters and within non-masters. The consensus appears to be that a good mastery item is one which masters answer correctly and non-masters answer incorrectly. (p. 496)

Likewise, The *Standards* (AERA et al., 1999) make similar recommendations regarding the importance of emphasizing examinees with total scores near cut scores:

Tests for credentialing need to be precise in the vicinity of the passing, or cut, score. They may not need to be precise for those who clearly pass or clearly fail. Sometimes a test used in credentialing is designed to be precise only in the vicinity of the cut score. (p. 157).

Although the use of restricted discrimination values may result in the selection of items that are less discriminating for examinees who clearly pass or fail the examination, their use in the item analysis phase of test development, as documented in this research, resulted in the selection of items that better discriminate among examinees with scores in the vicinity of the cut score. As such, their use supports the suggestions and recommendations outlined in the preceding quotations.

It is also important to understand how the inclusion of items based on restricted discrimination values affects the consistency with which candidates pass or fail the examination. To gain a better understanding of this effect, a series of tables highlighting the degree to which item selection affected pass/fail consistency were created. Figures 5.2, 5.3, and 5.4 display pass/fail consistency comparisons between the full test and both test variants for each of the examinations used in the study. In each of the figures, the cut score used for

the full examination was the actual cut score (C_{X1}) and a proportionally comparable cut score for the test variants.

		Examinatic Pass	on 1 (Full) Fail
Form A	Pass	212	47
(Examination 1)	Fail	22	209
Form B (Examination 1)	Pass Fail	Examinatio Pass 203 31 Form A (Ex	on 1 (Full) Fail 29 227 amination 1)
		Pass	Fail
Form B	Pass	223	9
(Examination 1)	Fail	36	222

Figure 5.2. Pass/fail consistency tables for Examination 1 and associated test variants.

		Examinatio Pass	on 2 (Full) Fail
Form A	Pass	91	7
(Examination 2)	Fail	11	52
		Examinatio	on 2 (Full)
		Pass	Fail
Form B	Pass	97	5
(Examination 2)	Fail	5	54
		Form A (Exa Pass	mination 2) Fail

Pass

Fail

Form B (Examination 2) 90

8

15

Figure 5.3. Pass/fail consistency tables for Examination 2 and associated test variants.

		Examinatic Pass	on 3 (Full) Fail
Form A	Pass	54	0
(Examination 3)	Fail	10	12
		Examinatic Pass	on 3 (Full) Fail
Form B	Pass	59	2
(Examination 3)	Fail	5	10
		Form A (Exa Pass	mination 3) Fail
Form B	Pass	54	7
(Examination 3)	Fail	0	15

Figure 5.4. Pass/fail consistency tables for Examination 3 and associated test variants.

The effect item selection method and, consequently, examination composition had on pass/fail rates may be observed in the figures. As seen in Figure 5.2, among those who passed the full version of Examination 1, 22 examinees would have failed the Form A variant and 31 would have failed the Form B variant.

The figure also illustrates the difference in pass/fail rates between the two test variants. Among those who passed the Examination 1 Form A variant, 36 examinees would have failed the Form B variant, which used restricted discrimination values to select items. Among the candidates who passed the Form B variant, nine would have failed the Form A variant, which used unrestricted discrimination values as the selection criterion. As displayed in Figures 5.3 and 5.4, this was not the case for Examinations 2 and 3. For each of those examinations, there were more examinees who passed the Form B variant (based on restricted discrimination values) but failed the Form A variant (based on unrestricted discrimination values) than examinees who passed the Form A but failed the Form B.

The method by which items were selected for inclusion in the test variants, therefore, played an important and consequential role in determining who passed and who failed the tests. For two of the examinations used in this study, the number of examinees who failed the variant using unrestricted discrimination values but passed the variant using restricted values was greater than those who passed the variant using unrestricted values.

Effect on Examination Reliability

For each of the examinations used in this study, scores associated with the Form B test variant, which utilized restricted item discrimination values as the item selection criterion, produced lower estimates of reliability than did the Form A variants, which used unrestricted discrimination values to select items. The reliability estimates, expressed in terms of coefficient alpha (Cronbach, 1951), are included in Table 5.4. Further analysis

found the differences in reliability estimates between the test variants for each examination to be significantly greater than zero.

A primary consideration when explaining the lower reliability estimates associated with the Form B variants may be their inclusion of unique items that were not included in the Form A variants. As mentioned earlier in this chapter, the Examination 1 Form B variant included 19 unique items. The Form B variant for Examinations 2 and 3 each included 22 unique items. The presence of these unique items led to lower total score variances for the Form B test variants when compared to the Form A versions. As seen in Table 5.4, the standard deviation of each Form B variant is lower than its corresponding Form A. Like the point-biserial statistic, total test score variance is a factor in the calculations of coefficient alpha:

$$\hat{\alpha} - \frac{k}{k-1} \left(1 - \frac{\Sigma \hat{\sigma}_i^2}{\hat{\sigma}_x^2} \right)$$
(5.2)

where *k* is the number of items on the examination;

 $\hat{\sigma}_{i}^{2}$ is the variance of item *i*; and

 $\hat{\sigma}_{r}^{2}$ is the total test variance (Crocker & Algina, 2008).

Examinations with lower total test variance, consequently, generally produce lower estimates of reliability.

A comparison of the unique items included in the Form B variants with the items that would have been selected had unrestricted discrimination values been used to select items, as was done with the Form A variants, is helpful in illustrating this point. These comparisons are included in Table 5.5. As seen in the table, the items unique to Form B variants in each case led to scores that produced lower standard deviations and lower estimates of reliability when compared to the unique items included in their Form A counterparts. With the exception of these items, the remaining items among the examination-specific test variants were identical. The inclusion of the unique Form B items resulted in lower test score variance, and, therefore, lower reliability estimates.

Table 5.5

Descriptive Statistics for Unique Form A and Form B Test Variant Items – All Examinations

Exam	Form	No. Items	п	М	SD	Min	Max	α	SEM
1	Form A	19	490	13.69	3.09	1	19	0.68	1.74
	Form B	19	490	12.16	2.93	3	18	0.57	1.93
2	Form A	22	161	14.06	3.75	2	21	0.73	1.96
	Form B	22	161	15.05	3.11	7	21	0.60	1.96
3	Form A	22	76	16.79	2.94	5	22	0.66	1.72
	Form B	22	76	17.58	2.02	13	21	0.31	1.67

The inclusion of items that better discriminate among examinees with total scores nearest the examination cut score, therefore, appears to come at a cost. Whereas the use of restricted discrimination values allowed items to be included that emphasized the region of the cut score, it resulted in lower levels of test score variance and lower examination reliability estimates.

A more important question in terms of this finding may be the degree to which developers of credentialing examinations are willing to accept the lower estimate of reliability that appear to be associated with the use of restricted discrimination values. Reliability, not unlike validity, should be interpreted within the framework of the examination's purpose. According to Haertel (2006), "test score reliability must be conceived relative to particular testing purposes and contexts" (p. 65). With the purpose of credentialing examinations being placed squarely on the qualification of examinees to receive certification or licensure, it may be possible that the validity-based benefits of using restricted discrimination values outweigh the lower estimates of reliability.

Another important consideration regarding this balance may be the degree to which the use of unrestricted discrimination values results in higher examination reliability estimates. Although the differences in reliability estimates between the test variants were found to be significantly greater than zero, the observed difference between variants was relatively minor. The observed difference in the Examination 1 and 2 variants, for example, was 0.02. The difference between Examination 3 variants was 0.05. Although there is no official threshold for the acceptability of examination reliability estimates, it is seems unlikely that such minor differences would be unacceptable to many test developers.

Effect on Classification Decision Consistency

The Form B test variants, for each examination used, produced lower observed estimates of classification decision consistency, as expressed by coefficient κ , than did the

Form A variants. These observed values are included in Table 5.4. The lack of a test of significant differences between coefficients κ based on dependent samples derived from a single test administration precluded the possibility of hypothesis testing. Analysis of differences, therefore, was limited to comparisons of 95% confidence intervals. Whereas 95% confidence intervals that do not overlap indicate differences that are significantly greater than zero at the $\alpha = .05$ level of significance, similar conclusions cannot be reached if the confidence intervals do overlap. For each of the examinations used, the coefficient κ 95% confidence intervals overlapped. It is plausible, therefore, that the observed differences are not significantly greater than zero. Statistically speaking, however, such a conclusion cannot be made with certainty.

Within the context of using restricted item discrimination values as a criterion for item selection, the interpretation of classification decision consistency coefficients is similar to that of the examination reliability estimates. Although the observed coefficients associated with the Form B test variants were lower than their Form A counterparts, the differences were relatively minor. The observed difference between Examination 1 test variants, for example, was 0.02. The differences between Examinations 2 and 3 variants were 0.03 and 0.07 respectively. Coefficient κ is interpreted as the increase in decision consistency over chance as a proportion of the maximum possible increase over chance (Crocker & Algina, 2008). For the Form A variant associated with Examination 1, therefore, 69% of the total possible increase over chance consistency was observed. This figure was 67% for the Form B variant.

The primary question, therefore, may be the acceptability of slightly lower classification decision consistency coefficients when restricted item discrimination values are

used. Again, the extent to which the differences between classification decision consistency coefficients produced using unrestricted and restricted discrimination values are greater than zero is not known. However, it seems unlikely that the relatively minor observed differences would lead to the elimination of restricted values as a consideration when conducting item analysis.

Recommendations for Future Research

While conducting the research, several recommendations for future research were identified. These recommendations include:

- 1. Conduct research with items that have not previously gone through the process of item analysis.
- Conduct research using test specifications, or blueprints, to guide the selection of items.
- Develop longer test variants to assess the difference between tests with items selected using restricted discrimination values and tests with items selected using unrestricted values.
- 4. Examine the degree to which non-classical test theory approaches, such as item response theory, support the findings of the current study.
- 5. Study how using restricted discrimination values affects the standard setting process.

Each recommendation is discussed in further detail in the sections that follow.

Conduct Research with Less Refined Items

The recommendation to conduct similar research with less refined items is based on a limitation discussed earlier. Each of the three examinations used in this study included items that had previously undergone the process of item analysis. As such, the items used had, presumably, already met certain thresholds that validated their inclusion in the examination. It is also possible that based on this analysis, the items maybe have been modified in certain aspects, such as item or selected response wording.

Future research might examine the degree to which using less refined items, such as those in actual banks of field-tested items, supports the results of the current study. Using less refined items would more accurately replicate the process of item analysis, which, in many ways, was the intent of the procedures conducted to answer Research Question 2.

Use Test Specifications to Guide Item Selection

Like the previous recommendation, this suggestion is tied to one of the study limitations. In the process of creating the test variants used to answer Research Question 2, item discrimination was the only criterion considered in selecting items. As mentioned previously, in reality, it is much more likely that additional factors would be considered when determining the suitability of items to be included in the final version of the examination.

Test specifications, or blueprints, stipulate the degree to which content standards should be covered by examination items. The specifications are important because they tie content standards to the knowledge, skills, and attributes measured by the examination. The content standards are also important because, if developed correctly, they support the purpose of the examination, and, consequently, serve as sources of test validity. Test specifications

were not available for the examinations used in the study. Future research might compare the results of this study with procedures that incorporate test specifications. Had test blueprints been available, the number of items unique to the Form B variants might have been different. A comparison of this nature would provide more clarity to the findings of this study.

Develop Longer Tests to Assess Effects of Restricted Discrimination Values

Another recommendation for possible future research is to increase the scope of the comparison between examinations developed using restricted item discrimination values and those developed using unrestricted values. Whereas the procedures associated with the current study included the creation of two 50-item examinations, the development of larger examinations might provide more insight into the differences in examination reliability and classification decision consistency estimates.

According to Crocker and Algina (2008), test length is one of several factors that affect examination reliability estimates, with longer tests generally producing larger reliability estimates. The differences in examination reliability between the 50-item test variants considered in this study were found to be significantly greater than zero for each examination. Further research, however, might explore the degree to which these findings were consistent with much larger examinations. For example, test variants with between 100 and 200 items might produce reliability estimates that are much closer, and, potentially, whose differences are not found to be significantly greater than zero. This may also be true for classification decision consistency.

Use of Non-Classical Test Theory Approaches

The context under which this study was conducted purposefully attempted to replicate the realistic conditions faced by many developers of credentialing examinations. That is, it utilized examinations with relatively small sample sizes, which necessitated the use of classical test theory. By doing so, the results of this study may be more generalizable to those involved with the development of credentialing examinations.

Research aimed at other approaches used to calculate item discrimination values, however, might help to expand the understanding of restricted discrimination values. One such approach, which is frequently used in larger-scale testing programs, is item response theory. As discussed in Chapter 2, item response theory is a general statistical theory that relates performance on test items to the abilities the test is intended to measure (Hambleton & Jones, 1993). Two- and three-parameter logistic item response models may be used to estimate item discrimination. These procedures, however, generally require much larger sample sizes than classical test theory approaches require. Some have argued that a minimum of 500 cases is required to produce dependable estimates (Reise & Yu, 1990). Comparing the results of this study with a similar study conducted using item response theory may help in gaining a better understanding of restricted item discrimination values.

Effects of Restricted Discrimination Values on Standard Setting

A final recommendation for future research involves studying the degree to which using restricted item discrimination values in the selection of items affects the location of cut scores, as determined by the standard setting process. Using restricted discrimination values to select items, as documented in this study, resulted in the selection of items that were different than those selected had unrestricted values been used. A key component in many standard-setting procedures is the requirement for panelists to make judgments regarding the likelihood that a hypothetical examinee would respond correctly to examination items. Whereas the use of restricted discrimination values results in the selection of a different set of items, it is quite possible that this may also affect the location of the examination cut score. Further research might examine how using restricted discrimination values in the test development process affects the placement of examination cut scores.

Practical Implications for Test Developers

The results of this study present several practical implications for licensure and certification agencies, test developers, and other entities responsible for administering credentialing examinations. First, limiting the calculation of item discrimination values to examinee scores near cut scores will likely result in lower point-biserial values. As discussed previously, this decrease, in large part, is due to the lower variance associated with scores from much more homogeneous groups of examinees. Test developers should consider this implication when making a determination to use either restricted or unrestricted values. In many cases, the lower point-biserials produced by restricted values may not be considered problematic when viewed within the context of the purpose of the examination.

Second, and possibly most important, test developers must understand that using restricted point-biserials as a criterion for item selection, as opposed to the traditionally used unrestricted values, will likely change the content of the examination. Even when examination specifications are considered in the item selection process, using restricted point-biserials as a criterion of selection will likely result in the selection of items that would

not have been included using unrestricted values. Test developers must evaluate how these differences affect the examination's coverage of content standards. Again, in many cases, particularly those in which the examination is unidimensional in nature, the content change affected by using restricted item discrimination values may not be problematic. In cases where test specifications require the inclusion of items dedicated to two or more content domains, however, the changes may require a closer evaluation.

The degree to which using restricted item discrimination values as a criterion for item selection affects test content may serve as an important element of evidence when test developers make a case for examination validity. For credentialing examinations, the interpretation of test scores, the primary concern of validity, is that those who pass the examination are qualified to receive the credential in question, whereas those who do not pass are not. Selecting items using restricted item discrimination values results in the inclusion of items that are more discriminating for those candidates with total score near the examination cut score. As such, the items selected support the interpretation of the scores and, therefore, strengthen the case for examination validity.

Third, test developers should also consider the effect using restricted item discrimination values has on examination reliability and classification decision consistency. The results of the study suggested that using restricted point-biserials as the criterion by which items are selected resulted in lower levels of reliability and decision consistency. As discussed, however, the observed differences were relatively minor. In many cases, the importance placed on obtaining high levels of reliability and decision consistency may determine the decision to use restricted or unrestricted discrimination values when considering items for inclusion. As the *Standards* reiterate however, scoring precision for

credentialing examinations may be focused on scores near the cut score. Including items that discriminate better among those examinees with scores near the cut score may outweigh the relatively lower reliability and classification decision estimates observed in this study.

Ultimately, therefore, developers of credentialing examinations will need to weigh the advantages associated with using restricted discrimination values, mainly the potential for increased validity evidence, with the perceived disadvantages, primarily lower reliability and decision consistency estimates, when determining which type of discrimination value to use. The context of the examination, to include its overriding purpose and the role it plays in the credentialing process, will likely play a significant role in this determination. If governing bodies view the interpretation of test scores as a high priority, using restricted discrimination values may be appropriate. If, however, greater emphasis is placed on test statistics such as reliability and decision consistency, unrestricted discrimination values may be more suitable.

Conclusion

This study examined the degree to which limiting the scores upon which item discrimination values are calculated to those at or near anticipated cut scores affected item discrimination values, referred to here as restricted item discrimination values; item selection; examination reliability; and classification decision consistency. For each examination used in this study, 15 sets of restricted discrimination values were calculated. The sets of values were based on scores within 0.50 *SD*, 0.75 *SD*, and 1.00 *SD* of five unique cut score locations. For Examinations 1 and 2, the difference between each set of restricted values and the examination's unrestricted set was found to be significantly greater than zero. For Examination 3, the difference between 11 of the 15 sets of restricted values and the

unrestricted set were found be significantly greater than zero. In each case in which a significant difference was identified, the mean restricted discrimination value was smaller than the mean unrestricted value.

An evaluation of the effect restricted item discrimination values had on item selection, examination reliability, and classification decision consistency was conducted through the creation of Form A and Form B test variants for each examination. Form A test variants included the 50 most discriminating items using unrestricted discrimination values as the criterion for item selection. Form B variants included the 50 most discriminating items using restricted values (based on scores within 1.00 *SD* of the actual cut score, C_{X1}). Using restricted values to select items resulted in Form B test variants including many items that were not included in Form A variants. The selection of unique items directly relates to the validity of credentialing examinations, as it places increased emphasis on examinees with scores closest to the cut score.

In terms of examination reliability, the study indicated that using restricted discrimination values to select items resulted in scores that produced lower examination reliability than scores derived from items selected using unrestricted discrimination values. For each examination, the difference between test variant reliability estimates were found to be significantly greater than zero, with Form B variants producing lower estimates. Although the differences were statistically significant, in practice, they were relatively small. Similar outcomes were observed with respect to classification decision consistency. Although the degree to which differences in test variant coefficients κ were significantly greater than zero was not determined, their respective 95% confidence intervals overlapped.

The observed Form B variant estimates for each examination were slightly smaller than the Form A variants.

In conclusion, the research found that the use of restricted item discrimination values resulted in the selection of different items than those that would have been selected had unrestricted values been used. The validity-based benefits of using restricted values, namely that doing so increases focus on scores nearest the cut score, appeared to come at the cost of slight decreases in examination reliability and classification decision consistency. When considering the use of restricted item discrimination values, therefore, those who develop credentialing examinations must consider and prioritize these factors. This decision will most likely be tied to the purpose of the examination.

Table A.1

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
145	0.1624	0.0987	0.1114	0.2241
825	0.2558	0.0557	0.0788	0.0117
890	0.2829	0.1469	0.1366	0.0797
1115	0.2312	0.0308	0.0874	0.1350
1530	0.2356	0.1130	0.1013	0.0928
1660	0.1695	0.0645	0.0093	0.0623
1870	0.3104	0.1614	0.1428	0.1996
2030	0.1547	0.0718	0.0158	0.0132
2175	0.3985	0.2273	0.1565	0.1111
2250	0.3256	0.2055	0.1339	0.0752
2385	0.2968	0.1232	0.0043	-0.0387
2545	0.3718	0.2382	0.2753	0.2452
2725	0.1192	0.1403	0.0911	0.1040
2830	0.3376	0.1948	0.1721	0.0714
2900	0.2990	0.1925	0.0897	0.0479
3115	0.2302	0.0406	0.0787	0.0491
3520	0.2361	0.1682	0.1061	-0.0048
3535	0.3454	0.2758	0.2291	0.1028
3570	0.2944	0.1975	0.2444	0.2120
4300	0.2130	0.0329	0.0584	-0.0889
5925	0.3991	0.1452	0.1897	0.1170
6620	0.2502	0.2016	0.1220	0.0139
6665	0.2674	0.1608	0.1154	0.0537
6710	0.3363	0.1617	0.1235	0.1029
6785	0.4877	0.3462	0.3085	0.1837
7185	0.3084	0.1510	0.0926	0.0735
7240	0.4227	0.2551	0.1279	0.0724
7420	0.1212	0.1202	0.0348	0.1292
8120	0.4633	0.2837	0.2751	0.1255

Item Discrimination Values for Examination $1 - C_{X1}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 SD
10005	0.3567	0.3014	0.1700	0.0044
10560	0.3234	0.2235	0.2336	0.0802
10645	0.4002	0.3023	0.2222	0.2182
10690	0.1914	0.0896	0.0643	-0.0014
11210	0.1892	0.0702	-0.0028	-0.0327
11490	0.2190	0.1661	0.1468	0.1318
12530	0.2701	0.1369	0.1170	0.0516
12585	0.2238	0.0730	0.0701	0.0895
12770	0.2145	0.0937	0.0601	0.0265
12895	0.3307	0.1609	0.2066	0.1886
12945	0.2775	0.0422	0.0815	0.1097
12960	0.3174	0.1018	0.0983	0.2026
12965	0.2288	0.1921	0.1806	0.2454
13020	0.2327	0.1244	0.1120	0.0650
13050	0.2285	0.0959	0.0840	0.1339
13245	0.3465	0.2137	0.1712	0.1869
13500	0.2145	0.0542	0.0405	0.0581
13695	0.2334	0.1855	0.1177	0.0510
14185	0.3771	0.2350	0.2052	0.1392
14275	0.3031	0.0783	0.0509	0.0572
15105	0.2166	0.0530	0.0231	-0.0291
15145	0.1613	0.1444	0.1073	0.1553
15355	0.2608	0.1836	0.1558	-0.0056
15395	0.2588	0.1855	0.1756	0.1678
15430	0.2713	0.2808	0.2170	0.1692
15450	0.4525	0.2385	0.2337	0.1822
15455	0.1563	0.1015	0.0911	-0.0069
15500	0.1028	0.0205	-0.0142	0.0659
15505	0.2527	0.0844	0.0506	0.1611
15535	0.1162	0.1225	0.1340	0.1591
15540	0.2146	0.1234	0.0619	-0.0370

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
15545	0.1930	0.0318	0.0479	0.0822
15565	0.1988	0.1554	0.1427	0.1674
15570	0.2229	0.0549	0.0278	-0.0313
15585	0.3128	0.1657	0.1125	0.0738
15600	0.3630	0.2735	0.2323	0.1815
15615	0.2029	0.0409	0.0192	0.0106
15630	0.2938	0.1218	0.0670	0.0645
15635	0.3756	0.2626	0.2409	0.0931
15645	0.2468	0.1369	0.0688	0.0360
15660	0.2246	0.0500	-0.0016	0.0440
15665	0.1791	0.0233	-0.0330	-0.0564
15670	0.1945	0.0606	0.0641	0.0909
15680	0.1612	0.0810	0.0942	0.0798
15690	0.1971	0.0492	0.0873	0.0710
15705	0.3067	0.1425	0.1600	0.1181
15710	0.1927	0.0905	0.1034	0.0850
15715	0.1508	0.0410	0.0494	0.0322
15720	0.2855	0.1174	0.1444	0.0858
15725	0.2224	0.0687	0.0670	-0.0002
15745	0.2033	0.0813	0.0571	0.0140
15755	0.2927	0.2352	0.1914	0.0355
15770	0.1920	0.1451	0.1149	0.1097
15790	0.1749	0.0586	0.0165	0.0666
15795	0.0801	0.1052	0.0645	-0.0431
15800	0.1837	0.0335	0.0331	-0.0088
15810	0.3582	0.2594	0.1571	0.0060
15890	0.3484	0.2522	0.1991	0.0006
15905	0.4017	0.1613	0.1622	0.1121
15930	0.1898	0.0139	0.0777	0.0135
16005	0.3986	0.2250	0.1129	0.0456
16060	0.2868	0.2038	0.1613	-0.0491

Item Discrimination Values for Examination $1 - C_{XI}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16110	0.4243	0.2523	0.2227	0.2340
16135	0.2716	0.1932	0.1868	0.0902
16210	0.4188	0.2700	0.2243	0.1185
16255	0.1220	0.0461	0.0322	-0.0244
16275	0.1715	0.0954	0.0611	0.0115
16280	0.2719	0.1153	0.0993	0.1103
16305	0.1803	0.1728	0.1745	0.2014
16375	0.3525	0.1046	0.0292	0.0244
16390	0.2068	0.0851	0.0740	0.0672
16415	0.2210	0.0733	0.1186	0.1587
16425	0.2634	0.1103	0.1035	0.1435
16435	0.1672	0.0830	0.0682	0.0925
16445	0.2965	0.1263	0.1239	0.1025
16470	0.2230	0.0479	0.0311	-0.0761
16475	0.2791	0.1397	0.0865	0.1695
16505	0.1442	0.0806	0.1309	0.1902
16515	0.1771	0.0348	0.0801	0.0210
16525	0.0557	-0.0528	-0.0137	-0.0763
16560	0.2017	0.0204	-0.0256	-0.0366
16605	0.0227	0.0216	0.0993	0.0055
16615	0.2484	0.1855	0.2161	0.1762
16635	0.2581	0.1910	0.0513	0.0257
16690	0.3027	0.1250	0.1366	0.0717
16710	0.4226	0.2092	0.2027	0.0886
16715	0.2471	0.1254	0.0990	0.0825
16720	0.4695	0.2338	0.2337	0.2374
16725	0.3359	0.2670	0.2002	0.1314
16740	0.3407	0.2170	0.1545	0.0574
16745	0.2644	0.1694	0.1261	0.0780
16755	0.2363	0.1546	0.1344	0.0569
16760	0.3060	0.1405	0.1804	0.0471

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
16765	0.3531	0.1780	0.0903	0.2293
16775	0.2067	0.1331	0.1151	0.0654
16800	0.2626	0.0996	0.0454	-0.0142
16840	0.3550	0.1438	0.1190	0.1118
16845	0.4353	0.2710	0.2696	0.2051
16895	0.1322	0.0451	0.1059	0.0709
16910	0.3609	0.1933	0.1470	0.1142
16925	0.1134	0.0506	0.0208	0.0570
16940	0.2813	0.1988	0.1574	0.1041
16945	0.2289	0.0703	0.0768	0.0048
16955	0.1375	0.1015	0.0932	0.0121
17010	0.2586	0.2537	0.2250	0.0631
17020	0.2144	0.1154	0.1457	0.1492
17050	0.1092	0.0399	0.0387	0.0510
17105	0.2338	-0.0138	-0.0721	0.0181
17115	0.2431	0.1210	0.0714	0.0423
17125	0.1825	0.1004	0.0416	0.0955
17130	0.1915	0.1213	0.1441	0.0204
17160	0.0628	0.1059	0.0027	-0.1089
17240	0.3277	0.2031	0.1609	-0.0280
17245	0.2662	0.0308	0.0539	0.0068
17265	0.2291	0.1284	0.0698	0.1021
17275	-0.0524	0.0225	0.0134	-0.0028
17285	0.2758	0.1224	0.1213	-0.0014
17300	0.1741	0.0614	0.0880	0.0059
17335	0.2070	0.1040	0.0056	0.0752
17340	0.1773	0.1084	0.0627	0.0249
17345	0.2649	0.1496	0.1161	0.1183
17370	0.3665	0.1429	0.1507	0.1042
17380	0.1734	0.0003	-0.0097	-0.1235
17385	0.2695	0.1863	0.1517	0.1290

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
17425	0.2585	0.1166	-0.0378	-0.0394
17430	0.3883	0.1941	0.1369	0.1246
17460	0.2122	0.0855	0.0757	0.1310
17480	0.2261	0.1164	0.0432	0.0844
17495	0.2081	0.0939	0.0546	0.0551
17500	0.3347	0.1333	0.0487	0.0477
17510	0.1919	0.0776	0.0497	0.0761
17520	0.1498	0.1070	0.0710	0.0564
17545	0.1543	0.0686	0.0226	-0.0314
17550	0.0717	-0.0323	0.0334	0.0302
17565	0.1601	0.0476	0.0707	0.1405
17580	0.3078	0.1574	0.1530	0.0664
17585	0.2006	0.0743	0.0325	0.0002
17595	0.2681	0.1883	0.1310	-0.0137
17605	0.1571	0.0292	0.0045	0.1166
17635	0.1269	0.0262	0.0012	0.0259
17640	0.2316	0.1293	0.0598	-0.0144
17660	0.1847	0.1130	0.1449	0.0712
17665	0.2484	0.1319	0.1156	0.1005
17670	0.2394	0.1224	0.0999	0.0449
17690	0.1535	0.0662	0.0695	-0.0415
17695	0.1150	0.0998	0.1010	0.0614

Table A.2

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
145	0.1624	0.0569	0.0586	0.0681
825	0.2558	0.0822	0.0819	0.0807
890	0.2829	0.1564	0.0859	0.0248
1115	0.2312	0.1276	0.1181	0.1287
1530	0.2356	0.1388	0.0469	-0.0130
1660	0.1695	0.0943	0.0822	0.1085
1870	0.3104	0.1468	0.1646	0.1682
2030	0.1547	0.1012	0.1434	0.2124
2175	0.3985	0.2511	0.1709	0.1540
2250	0.3256	0.1841	0.1220	0.0807
2385	0.2968	0.0059	0.0154	-0.0248
2545	0.3718	0.2301	0.1439	-0.0007
2725	0.1192	0.0742	0.0957	0.0601
2830	0.3376	0.1591	0.1284	0.0579
2900	0.2990	0.2075	0.1909	0.0857
3115	0.2302	0.1105	0.0377	0.0076
3520	0.2361	0.1253	0.1039	0.0459
3535	0.3454	0.2579	0.2222	0.2421
3570	0.2944	0.2004	0.2014	0.1934
4300	0.2130	0.0226	-0.0417	-0.0049
5925	0.3991	0.2188	0.1403	0.0437
6620	0.2502	0.1597	0.1020	0.1386
6665	0.2674	0.1359	0.1081	0.0113
6710	0.3363	0.2728	0.1846	0.0719
6785	0.4877	0.3398	0.2740	0.2486
7185	0.3084	0.1153	0.1107	0.0056
7240	0.4227	0.2315	0.1826	0.1593
7420	0.1212	0.0088	-0.0299	-0.0680
8120	0.4633	0.2529	0.1564	0.1503
10005	0.3567	0.2596	0.1869	0.1665
10560	0.3234	0.2183	0.1681	0.1668

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
10645	0.4002	0.2914	0.2172	0.0108
10690	0.1914	0.0941	0.0501	0.0750
11210	0.1892	0.0629	0.0383	0.0565
11490	0.2190	0.1542	0.1413	0.0479
12530	0.2701	0.1301	0.0592	0.0532
12585	0.2238	0.1316	0.1164	-0.0743
12770	0.2145	0.0801	0.0291	0.0369
12895	0.3307	0.2014	0.2280	0.1422
12945	0.2775	0.1254	0.1001	0.0092
12960	0.3174	0.1090	0.1069	0.0533
12965	0.2288	0.2522	0.1924	0.1524
13020	0.2327	0.1459	0.0819	0.0958
13050	0.2285	0.1223	0.1401	0.0717
13245	0.3465	0.2274	0.1354	0.1052
13500	0.2145	0.0724	0.0811	0.0352
13695	0.2334	0.1949	0.1201	0.0508
14185	0.3771	0.2278	0.1793	0.1722
14275	0.3031	0.0295	0.0126	-0.0441
15105	0.2166	0.0993	0.0495	-0.0201
15145	0.1613	0.1112	0.1489	0.0329
15355	0.2608	0.2480	0.1590	0.1580
15395	0.2588	0.1981	0.2425	0.1499
15430	0.2713	0.2893	0.2248	0.1328
15450	0.4525	0.2462	0.1829	0.0433
15455	0.1563	0.1021	0.1320	0.1499
15500	0.1028	0.0213	0.0910	-0.0211
15505	0.2527	0.0833	0.0952	0.0670
15535	0.1162	0.0991	0.0344	-0.0628
15540	0.2146	0.0242	0.0287	-0.0585
15545	0.1930	0.0512	0.0653	0.1288
15565	0.1988	0.1891	0.1771	0.0905

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
15570	0.2229	-0.0446	0.0034	0.0546
15585	0.3128	0.0578	0.0819	-0.0072
15600	0.3630	0.3022	0.2706	0.2395
15615	0.2029	0.1034	0.0114	-0.0455
15630	0.2938	0.0846	0.0302	-0.0324
15635	0.3756	0.2189	0.1477	0.1207
15645	0.2468	0.1214	0.1892	0.2132
15660	0.2246	0.0278	0.1000	0.0757
15665	0.1791	0.0058	0.0046	0.0236
15670	0.1945	0.0650	0.0645	0.0878
15680	0.1612	0.1002	0.0886	0.0594
15690	0.1971	0.0591	-0.0250	-0.0096
15705	0.3067	0.1569	0.1257	0.1744
15710	0.1927	0.1083	0.1249	0.0673
15715	0.1508	0.0890	0.1004	0.1365
15720	0.2855	0.1034	0.1075	0.0625
15725	0.2224	0.0782	0.0686	0.0553
15745	0.2033	0.0769	0.0585	0.0898
15755	0.2927	0.2212	0.1874	0.0951
15770	0.1920	0.1273	0.1015	0.0662
15790	0.1749	0.0689	0.1205	-0.0049
15795	0.0801	0.0364	0.0342	0.0676
15800	0.1837	0.0583	-0.0038	-0.0354
15810	0.3582	0.1832	0.0915	0.1439
15890	0.3484	0.1533	0.0299	0.0852
15905	0.4017	0.1554	0.0986	0.0819
15930	0.1898	-0.0035	-0.0702	-0.0586
16005	0.3986	0.1720	0.2313	0.1158
16060	0.2868	0.1734	0.1131	0.1106
16110	0.4243	0.2461	0.2483	0.1302
16135	0.2716	0.1314	0.0524	0.0951

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16210	0.4188	0.2236	0.1434	0.0675
16255	0.1220	0.0794	0.0657	-0.0292
16275	0.1715	0.0896	0.0159	0.0851
16280	0.2719	0.1383	0.1093	0.0597
16305	0.1803	0.1924	0.1786	0.1146
16375	0.3525	0.0394	0.0232	0.0078
16390	0.2068	0.1290	0.2056	0.1613
16415	0.2210	0.0584	0.0624	0.0207
16425	0.2634	0.1260	0.0707	0.0361
16435	0.1672	0.1614	0.1378	0.0567
16445	0.2965	0.0898	0.1567	0.1322
16470	0.2230	0.0764	0.0099	-0.0402
16475	0.2791	0.1014	0.0883	-0.0315
16505	0.1442	0.0937	0.1442	0.1762
16515	0.1771	0.0177	0.0448	0.0582
16525	0.0557	-0.0036	0.0038	-0.0414
16560	0.2017	0.0466	-0.0084	-0.0655
16605	0.0227	0.0125	-0.0608	-0.0332
16615	0.2484	0.2078	0.1635	0.2102
16635	0.2581	0.0308	0.0928	0.1026
16690	0.3027	0.1090	0.0563	-0.0667
16710	0.4226	0.2040	0.1681	0.1408
16715	0.2471	0.1422	0.1150	0.1434
16720	0.4695	0.2503	0.1414	0.1803
16725	0.3359	0.2414	0.2626	0.3158
16740	0.3407	0.2174	0.1859	0.1624
16745	0.2644	0.1664	0.1095	0.0237
16755	0.2363	0.1324	0.0804	0.0205
16760	0.3060	0.1280	0.0616	0.0772
16765	0.3531	0.1070	0.1658	0.0452
16775	0.2067	0.1953	0.1598	0.1111

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16800	0.2626	0.1244	0.0672	0.0886
16840	0.3550	0.1205	0.0740	0.1393
16845	0.4353	0.2553	0.2359	0.1161
16895	0.1322	0.0840	0.1307	0.0133
16910	0.3609	0.1927	0.1711	0.1150
16925	0.1134	0.0861	0.0643	-0.0075
16940	0.2813	0.1650	0.1874	0.1787
16945	0.2289	0.0630	0.0561	0.0568
16955	0.1375	0.1054	0.0855	0.1842
17010	0.2586	0.1811	0.0927	0.1929
17020	0.2144	0.1732	0.2085	0.1049
17050	0.1092	0.0615	0.0402	0.0376
17105	0.2338	0.0115	-0.0374	-0.1434
17115	0.2431	0.0537	0.0021	-0.0409
17125	0.1825	0.0764	0.0543	0.1113
17130	0.1915	0.1151	0.0356	0.1070
17160	0.0628	0.0838	0.0327	0.1226
17240	0.3277	0.1606	0.1184	0.1620
17245	0.2662	0.1052	0.0500	0.1546
17265	0.2291	0.1357	0.0975	-0.0071
17275	-0.0524	0.0646	0.0011	0.0113
17285	0.2758	0.1682	0.0747	0.1061
17300	0.1741	0.0590	0.0163	0.0228
17335	0.2070	0.0273	0.0675	0.0237
17340	0.1773	0.1121	0.1105	0.0678
17345	0.2649	0.1634	0.1149	0.1454
17370	0.3665	0.1842	0.1675	0.1755
17380	0.1734	-0.0353	-0.1138	-0.0456
17385	0.2695	0.1344	0.1355	0.1609
17425	0.2585	0.0531	0.0496	0.0563
17430	0.3883	0.1584	0.0991	0.0306

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
17460	0.2122	0.1120	0.0464	-0.0266
17480	0.2261	0.1542	0.1835	0.0457
17495	0.2081	0.0552	0.0452	0.0304
17500	0.3347	0.0832	-0.0147	-0.0760
17510	0.1919	0.1132	0.1074	0.1114
17520	0.1498	0.0951	0.1224	0.0837
17545	0.1543	0.0670	0.0068	0.0042
17550	0.0717	0.0530	0.0438	-0.0259
17565	0.1601	0.0825	0.0376	-0.0162
17580	0.3078	0.1566	0.1538	0.0810
17585	0.2006	0.0210	0.0300	0.0568
17595	0.2681	0.0957	0.0331	0.0731
17605	0.1571	0.0630	0.1039	0.0287
17635	0.1269	0.0557	0.0104	-0.0463
17640	0.2316	0.0753	0.0795	0.0011
17660	0.1847	0.1462	0.1284	0.1978
17665	0.2484	0.0991	0.0800	0.0288
17670	0.2394	0.1490	0.1667	0.2151
17690	0.1535	0.0732	0.1231	0.1294
17695	0.1150	0.0312	0.0880	0.0903

Table A.3

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
145	0.1624	0.1346	0.1505	0.0211
825	0.2558	0.1676	0.0084	-0.0661
890	0.2829	0.2156	0.1649	0.0511
1115	0.2312	0.1294	0.0277	0.0325
1530	0.2356	0.1646	0.0935	0.0973
1660	0.1695	0.0472	0.0200	-0.0537
1870	0.3104	0.1813	0.1239	0.0447
2030	0.1547	0.0516	0.0056	-0.1473
2175	0.3985	0.2342	0.1727	-0.0021
2250	0.3256	0.1518	0.1947	0.1394
2385	0.2968	0.1861	0.1564	0.1539
2545	0.3718	0.2975	0.2994	0.1919
2725	0.1192	0.0615	0.0868	0.0896
2830	0.3376	0.1953	0.1940	0.1470
2900	0.2990	0.1693	0.1139	0.0549
3115	0.2302	0.0744	-0.0051	-0.0122
3520	0.2361	0.1035	0.1386	0.1388
3535	0.3454	0.2713	0.1267	0.0693
3570	0.2944	0.2465	0.1322	0.1161
4300	0.2130	0.1419	-0.0048	0.1544
5925	0.3991	0.1771	0.1445	0.1788
6620	0.2502	0.1309	0.0914	0.1193
6665	0.2674	0.1078	0.1169	0.1347
6710	0.3363	0.1457	0.1328	0.0503
6785	0.4877	0.3075	0.2273	0.2383
7185	0.3084	0.2279	0.1615	0.0948
7240	0.4227	0.2909	0.1940	0.0071
7420	0.1212	0.1199	0.1840	0.0655
8120	0.4633	0.2710	0.2475	0.2077
10005	0.3567	0.2196	0.0855	0.1319
10560	0.3234	0.2005	0.1310	0.1753

Item Discrimination Values for Examination $1 - C_{X3}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 SD
10645	0.4002	0.2879	0.2730	0.3180
10690	0.1914	0.1130	0.0548	0.0196
11210	0.1892	0.0875	0.0586	-0.0204
11490	0.2190	0.0735	0.1106	0.1890
12530	0.2701	0.2103	0.1477	0.1876
12585	0.2238	0.0834	0.0909	0.1323
12770	0.2145	0.1828	0.1563	-0.0030
12895	0.3307	0.1737	0.0571	0.0795
12945	0.2775	0.0157	0.0199	0.0732
12960	0.3174	0.1701	0.1278	0.0726
12965	0.2288	0.1492	0.1777	0.0322
13020	0.2327	0.1367	0.0755	0.0275
13050	0.2285	0.1239	0.0878	-0.0187
13245	0.3465	0.2067	0.1887	0.1244
13500	0.2145	0.0503	0.0432	-0.0426
13695	0.2334	0.0990	0.0919	0.1156
14185	0.3771	0.2586	0.1969	0.1702
14275	0.3031	0.1733	0.1463	0.1158
15105	0.2166	0.0379	0.0021	0.0373
15145	0.1613	0.0918	0.0532	0.0959
15355	0.2608	0.1359	0.0582	0.0515
15395	0.2588	0.1882	0.1319	0.1348
15430	0.2713	0.2252	0.2117	0.1501
15450	0.4525	0.3004	0.2573	0.2423
15455	0.1563	0.0836	-0.0106	-0.0032
15500	0.1028	0.0428	-0.0104	-0.0050
15505	0.2527	0.1030	0.1357	-0.0001
15535	0.1162	0.1322	0.2029	0.2135
15540	0.2146	0.1791	0.1356	0.1005
15545	0.1930	0.0725	0.0836	-0.0788
15565	0.1988	0.1182	0.1608	0.0618

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
15570	0.2229	0.1422	0.0526	-0.0022
15585	0.3128	0.1837	0.1821	0.1162
15600	0.3630	0.2401	0.1280	0.0074
15615	0.2029	0.0485	0.0031	0.0773
15630	0.2938	0.1776	0.1562	0.1057
15635	0.3756	0.2724	0.2081	0.2122
15645	0.2468	0.0884	-0.0492	-0.2087
15660	0.2246	0.0785	0.0203	-0.0444
15665	0.1791	0.1022	0.0139	-0.0371
15670	0.1945	0.1314	0.0226	0.0533
15680	0.1612	0.0453	0.0824	0.0363
15690	0.1971	0.0686	0.1108	0.1018
15705	0.3067	0.1547	0.0816	0.0651
15710	0.1927	0.0966	0.0521	0.0785
15715	0.1508	-0.0171	-0.0966	-0.1205
15720	0.2855	0.1579	0.0953	0.0943
15725	0.2224	-0.0248	0.0199	0.0656
15745	0.2033	0.1265	0.0430	0.0023
15755	0.2927	0.1682	0.1694	0.0958
15770	0.1920	0.1560	0.0877	0.1448
15790	0.1749	0.0913	0.0494	0.0211
15795	0.0801	0.0511	0.0681	0.0131
15800	0.1837	0.1283	0.0506	0.0471
15810	0.3582	0.2133	0.2258	0.1557
15890	0.3484	0.2658	0.2478	0.1932
15905	0.4017	0.1553	0.1149	0.0867
15930	0.1898	0.0585	0.0869	0.0590
16005	0.3986	0.2270	0.1114	0.0222
16060	0.2868	0.1831	0.1302	0.0563
16110	0.4243	0.2460	0.2037	0.1184
16135	0.2716	0.1941	0.1827	0.1982

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
16210	0.4188	0.2911	0.2438	0.2194
16255	0.1220	0.0358	0.0782	0.0725
16275	0.1715	0.1281	0.1258	-0.0041
16280	0.2719	0.1301	0.0780	0.0783
16305	0.1803	0.1263	0.1301	0.0545
16375	0.3525	0.1110	0.0825	0.0262
16390	0.2068	0.0390	-0.0137	-0.0583
16415	0.2210	0.0901	0.0923	0.0524
16425	0.2634	0.0865	0.1162	0.0985
16435	0.1672	0.0272	-0.0071	0.0118
16445	0.2965	0.1442	0.0705	-0.0212
16470	0.2230	0.0794	0.0017	0.0833
16475	0.2791	0.1861	0.1934	0.1253
16505	0.1442	0.0919	0.0539	-0.0235
16515	0.1771	0.0268	0.0264	0.0213
16525	0.0557	-0.0013	-0.0689	-0.0472
16560	0.2017	0.0391	0.0512	0.0897
16605	0.0227	0.0615	0.0638	0.1439
16615	0.2484	0.1888	0.1556	0.0546
16635	0.2581	0.1022	0.1570	0.0523
16690	0.3027	0.2042	0.1332	0.2600
16710	0.4226	0.2303	0.1388	0.1003
16715	0.2471	0.0953	0.0719	0.0292
16720	0.4695	0.2956	0.2353	0.1531
16725	0.3359	0.2369	0.1568	-0.0343
16740	0.3407	0.2379	0.1548	0.0328
16745	0.2644	0.1473	0.1372	0.1648
16755	0.2363	0.1481	0.1060	0.1622
16760	0.3060	0.2510	0.1756	0.1428
16765	0.3531	0.2120	0.2155	0.0561
16775	0.2067	0.1021	0.0257	0.0668

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16800	0.2626	0.0907	0.0811	-0.0197
16840	0.3550	0.1852	0.1166	0.0552
16845	0.4353	0.2708	0.2602	0.2084
16895	0.1322	0.0050	0.0198	0.0306
16910	0.3609	0.1964	0.1732	0.0960
16925	0.1134	0.0528	0.0117	0.1129
16940	0.2813	0.2190	0.1071	0.0342
16945	0.2289	0.1666	0.0282	0.0515
16955	0.1375	0.1039	0.0314	-0.0328
17010	0.2586	0.2377	0.1964	0.1457
17020	0.2144	0.1577	0.0304	0.0128
17050	0.1092	0.0639	0.0229	0.0292
17105	0.2338	-0.0110	0.0982	0.0896
17115	0.2431	0.1348	0.1411	0.1783
17125	0.1825	0.0728	0.0777	-0.0787
17130	0.1915	0.1616	0.1104	0.1207
17160	0.0628	0.0652	0.0363	0.0343
17240	0.3277	0.2360	0.1909	0.1432
17245	0.2662	0.0479	-0.0071	-0.0844
17265	0.2291	0.0967	0.1320	0.0842
17275	-0.0524	0.0094	0.0423	0.0198
17285	0.2758	0.1434	0.0236	0.1954
17300	0.1741	0.1414	0.0979	0.1365
17335	0.2070	0.1178	0.1094	-0.0308
17340	0.1773	0.1064	0.0692	0.0062
17345	0.2649	0.0987	0.0553	0.0084
17370	0.3665	0.1916	0.1137	-0.0362
17380	0.1734	0.0482	0.0789	0.0936
17385	0.2695	0.2846	0.1601	0.0807
17425	0.2585	0.1367	0.1224	0.0006
17430	0.3883	0.1833	0.1730	0.2077

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
17460	0.2122	0.1606	0.1132	0.0897
17480	0.2261	0.1541	0.0544	-0.0492
17495	0.2081	0.0680	0.1067	0.0630
17500	0.3347	0.1437	0.1639	0.2167
17510	0.1919	0.0698	-0.0472	-0.1057
17520	0.1498	0.0689	0.0336	-0.0752
17545	0.1543	0.0397	0.0478	0.0217
17550	0.0717	-0.0646	-0.0919	-0.0574
17565	0.1601	0.0836	0.0820	0.0886
17580	0.3078	0.1969	0.1041	0.0991
17585	0.2006	0.1920	0.0394	0.0294
17595	0.2681	0.2471	0.1450	0.1293
17605	0.1571	0.0444	-0.0097	-0.1017
17635	0.1269	-0.0072	0.0417	0.0147
17640	0.2316	0.0929	0.1163	0.1233
17660	0.1847	0.1219	-0.0055	-0.0463
17665	0.2484	0.2351	0.1436	0.1286
17670	0.2394	0.0993	-0.0118	-0.0490
17690	0.1535	0.0787	-0.0531	-0.0038
17695	0.1150	0.0921	0.0798	0.0677

Table A.4

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
145	0.1624	0.0326	-0.0148	-0.1526
825	0.2558	0.0989	0.0995	0.0223
890	0.2829	0.1826	0.0656	-0.0168
1115	0.2312	0.1566	0.1577	-0.0331
1530	0.2356	0.1230	0.0857	0.0361
1660	0.1695	0.1765	0.1432	0.0252
1870	0.3104	0.1913	0.1340	0.0406
2030	0.1547	0.2095	0.2141	0.0772
2175	0.3985	0.2215	0.2183	0.1125
2250	0.3256	0.2215	0.1438	0.0924
2385	0.2968	0.0199	0.0457	0.0653
2545	0.3718	0.1682	0.0301	0.0339
2725	0.1192	0.1523	0.0794	0.0483
2830	0.3376	0.1354	0.1248	0.1792
2900	0.2990	0.2134	0.2401	0.1677
3115	0.2302	0.1251	0.0868	0.0360
3520	0.2361	0.1098	0.0516	0.1141
3535	0.3454	0.1755	0.1892	0.2181
3570	0.2944	0.2204	0.1468	0.0716
4300	0.2130	-0.0008	-0.0164	0.0485
5925	0.3991	0.1950	0.1332	0.0659
6620	0.2502	0.1430	0.2307	0.1934
6665	0.2674	0.1736	0.0968	0.1117
6710	0.3363	0.2705	0.2709	0.1515
6785	0.4877	0.3084	0.3131	0.2464
7185	0.3084	0.0519	0.0359	0.0461
7240	0.4227	0.2522	0.2483	0.1913
7420	0.1212	0.0309	-0.0616	-0.0992
8120	0.4633	0.2052	0.1759	0.1598
10005	0.3567	0.2582	0.2550	0.3006
10560	0.3234	0.1828	0.1661	0.1171

Item Discrimination Values for Examination $1 - C_{X4}$

Item	Unrestricted	+/- 1.00 SD	+/- 0.75 SD	+/- 0.50 <i>SD</i>
10645	0.4002	0.2247	0.1144	0.1737
10690	0.1914	0.0865	0.0868	0.1312
11210	0.1892	0.0950	0.1158	0.0745
11490	0.2190	0.1291	0.0534	0.0314
12530	0.2701	0.1152	0.1211	0.0226
12585	0.2238	0.1629	0.0876	0.0702
12770	0.2145	0.0470	0.0530	-0.0357
12895	0.3307	0.1939	0.1061	0.1345
12945	0.2775	0.1289	0.0393	0.0235
12960	0.3174	0.1474	0.0656	0.0221
12965	0.2288	0.2315	0.1989	0.0258
13020	0.2327	0.1748	0.1422	0.1041
13050	0.2285	0.1346	0.0928	0.0084
13245	0.3465	0.2104	0.1490	0.0086
13500	0.2145	0.0895	0.0723	0.1320
13695	0.2334	0.1971	0.1363	0.1890
14185	0.3771	0.2071	0.1970	0.0404
14275	0.3031	0.0758	0.0207	-0.0546
15105	0.2166	0.0867	0.0624	0.2087
15145	0.1613	0.0802	-0.0216	0.0456
15355	0.2608	0.2392	0.2147	0.2004
15395	0.2588	0.1788	0.1737	0.0870
15430	0.2713	0.1985	0.2224	0.1284
15450	0.4525	0.1934	0.1283	0.0415
15455	0.1563	0.1192	0.1431	0.1636
15500	0.1028	0.0939	0.0097	0.0435
15505	0.2527	0.0795	0.0139	-0.0478
15535	0.1162	0.0401	-0.0130	-0.1408
15540	0.2146	0.0461	-0.0226	0.0182
15545	0.1930	0.1047	0.0600	-0.1046
15565	0.1988	0.2201	0.1693	0.0799

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
15570	0.2229	0.0145	0.0041	-0.0543
15585	0.3128	0.0735	-0.0018	0.0000
15600	0.3630	0.3132	0.2843	0.2365
15615	0.2029	0.0596	0.0835	0.0352
15630	0.2938	0.1816	0.0571	0.0444
15635	0.3756	0.1656	0.1690	0.1239
15645	0.2468	0.1308	0.1781	0.2585
15660	0.2246	0.0899	0.0734	0.1176
15665	0.1791	0.0173	0.0245	0.0969
15670	0.1945	0.0503	0.0758	-0.0950
15680	0.1612	0.0898	0.0427	0.0655
15690	0.1971	0.0378	-0.0294	-0.0746
15705	0.3067	0.1783	0.1126	0.0072
15710	0.1927	0.0318	0.0625	0.0787
15715	0.1508	0.1717	0.1589	0.1383
15720	0.2855	0.1135	0.0532	-0.0533
15725	0.2224	0.1699	0.1259	0.0676
15745	0.2033	0.1261	0.0930	0.1045
15755	0.2927	0.2283	0.1541	0.0844
15770	0.1920	0.1359	0.0698	0.0827
15790	0.1749	0.0884	0.0410	0.0854
15795	0.0801	0.0866	0.0725	0.0490
15800	0.1837	0.0451	0.0457	0.0342
15810	0.3582	0.1834	0.1768	0.1241
15890	0.3484	0.1181	0.0717	0.1043
15905	0.4017	0.1452	0.1263	0.1024
15930	0.1898	0.0118	-0.0408	-0.0357
16005	0.3986	0.2598	0.1966	0.2944
16060	0.2868	0.1327	0.1664	0.1563
16110	0.4243	0.2512	0.1786	0.1798
16135	0.2716	0.0961	0.1020	0.0028

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16210	0.4188	0.2581	0.1577	0.0892
16255	0.1220	0.0755	0.0294	0.0982
16275	0.1715	0.0469	0.1043	0.0235
16280	0.2719	0.1762	0.1021	0.0954
16305	0.1803	0.1073	0.1295	0.0779
16375	0.3525	0.0567	0.0484	0.1347
16390	0.2068	0.1706	0.1907	0.1594
16415	0.2210	0.0267	-0.0342	-0.1474
16425	0.2634	0.1207	0.0242	-0.0686
16435	0.1672	0.1233	0.1469	0.1668
16445	0.2965	0.1072	0.1003	0.1901
16470	0.2230	0.0575	0.0673	0.1140
16475	0.2791	0.0801	-0.0211	0.0101
16505	0.1442	0.0696	0.0840	-0.0990
16515	0.1771	0.1149	0.0150	-0.0221
16525	0.0557	-0.0293	0.0111	0.1407
16560	0.2017	0.0707	0.0525	0.0970
16605	0.0227	-0.0482	-0.0813	-0.1339
16615	0.2484	0.2189	0.1551	0.0330
16635	0.2581	0.1025	0.0448	0.1260
16690	0.3027	0.0897	0.0054	0.0294
16710	0.4226	0.2242	0.1518	0.1514
16715	0.2471	0.1497	0.1661	0.0755
16720	0.4695	0.2330	0.1807	-0.0017
16725	0.3359	0.3001	0.2878	0.1544
16740	0.3407	0.2449	0.2534	0.1767
16745	0.2644	0.0762	0.0717	0.1000
16755	0.2363	0.1424	0.0762	0.1414
16760	0.3060	0.1330	0.0617	-0.0266
16765	0.3531	0.1375	0.0923	0.0330
16775	0.2067	0.2230	0.2116	0.1678

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16800	0.2626	0.0970	0.1628	0.1449
16840	0.3550	0.1149	0.1438	0.0094
16845	0.4353	0.2818	0.1781	0.0552
16895	0.1322	0.1844	0.0587	0.0493
16910	0.3609	0.2179	0.1848	0.1186
16925	0.1134	0.0928	0.0549	0.0370
16940	0.2813	0.1501	0.1416	0.2022
16945	0.2289	0.0514	0.0924	0.0836
16955	0.1375	0.1421	0.1383	0.1235
17010	0.2586	0.1345	0.1263	0.1055
17020	0.2144	0.2127	0.0890	0.1114
17050	0.1092	0.0616	0.0510	0.0330
17105	0.2338	0.0377	0.0050	-0.0116
17115	0.2431	0.0153	-0.0115	0.0248
17125	0.1825	0.0681	0.1069	0.0574
17130	0.1915	0.0582	0.1020	-0.0490
17160	0.0628	0.0169	0.1400	0.0906
17240	0.3277	0.1730	0.1492	0.1000
17245	0.2662	0.1353	0.1844	0.0125
17265	0.2291	0.1474	0.1439	0.0659
17275	-0.0524	0.0648	0.0543	-0.0377
17285	0.2758	0.2104	0.1706	0.1270
17300	0.1741	0.0287	0.0128	-0.0649
17335	0.2070	0.0732	0.0123	0.0053
17340	0.1773	0.0769	0.0959	0.1771
17345	0.2649	0.1441	0.1590	0.1065
17370	0.3665	0.1406	0.1705	0.1023
17380	0.1734	0.0088	-0.0375	-0.0472
17385	0.2695	0.1336	0.0970	-0.0600
17425	0.2585	0.0750	0.1044	0.1138
17430	0.3883	0.1796	0.1173	0.0529

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
17460	0.2122	0.1257	0.1071	0.0076
17480	0.2261	0.2221	0.1922	0.1261
17495	0.2081	0.0932	0.0691	0.0534
17500	0.3347	0.0083	0.0204	0.0081
17510	0.1919	0.0858	0.1084	0.1424
17520	0.1498	0.1190	0.0842	0.0735
17545	0.1543	0.0778	0.0717	0.0159
17550	0.0717	0.1143	0.0444	0.0280
17565	0.1601	0.1187	0.0149	-0.1293
17580	0.3078	0.1719	0.1386	0.2217
17585	0.2006	-0.0229	0.0245	0.0793
17595	0.2681	0.0486	0.0720	0.1373
17605	0.1571	0.0292	0.0639	0.0630
17635	0.1269	0.1331	0.0311	-0.0093
17640	0.2316	0.0818	0.0423	0.1402
17660	0.1847	0.0623	0.1461	0.0449
17665	0.2484	0.1176	0.0502	0.0175
17670	0.2394	0.2124	0.1935	0.1705
17690	0.1535	0.0896	0.0693	0.2254
17695	0.1150	0.0741	-0.0173	0.0181

Table A.5

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
145	0.1624	0.0937	0.0477	0.0043
825	0.2558	0.1070	0.1200	0.0083
890	0.2829	0.1821	0.1828	0.1282
1115	0.2312	0.1220	0.0643	-0.2205
1530	0.2356	0.1158	0.1591	0.1251
1660	0.1695	0.1065	0.0543	-0.0052
1870	0.3104	0.1340	0.1337	0.0747
2030	0.1547	0.0205	-0.0362	-0.0914
2175	0.3985	0.2319	0.1610	0.1886
2250	0.3256	0.1481	0.0907	0.0973
2385	0.2968	0.2932	0.3219	0.2173
2545	0.3718	0.3704	0.2108	0.1134
2725	0.1192	-0.0093	0.0169	0.1191
2830	0.3376	0.1837	0.1528	0.2363
2900	0.2990	0.1169	0.1306	0.0451
3115	0.2302	0.0790	0.0377	-0.0131
3520	0.2361	0.1907	0.1368	0.0656
3535	0.3454	0.1666	0.1609	0.1436
3570	0.2944	0.1961	0.1219	0.0430
4300	0.2130	0.1235	0.1846	0.2335
5925	0.3991	0.2060	0.1819	0.0139
6620	0.2502	0.0796	0.1340	0.1647
6665	0.2674	0.1083	0.0794	0.0906
6710	0.3363	0.1231	0.1042	0.0503
6785	0.4877	0.2860	0.1998	0.1008
7185	0.3084	0.2583	0.2431	0.1661
7240	0.4227	0.2620	0.2692	0.1740
7420	0.1212	0.1857	0.1421	0.2106
8120	0.4633	0.3016	0.1914	0.1339
10005	0.3567	0.1271	0.1402	0.2053
10560	0.3234	0.1794	0.1085	-0.0038

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
10645	0.4002	0.3018	0.3006	0.1972
10690	0.1914	0.0847	0.0927	0.1487
11210	0.1892	0.0948	0.1104	0.1272
11490	0.2190	0.1160	0.0599	0.0020
12530	0.2701	0.2109	0.2589	0.1546
12585	0.2238	0.1639	0.0974	0.1202
12770	0.2145	0.1574	0.1738	0.1527
12895	0.3307	0.1083	0.0747	-0.0929
12945	0.2775	0.0790	0.0390	-0.0930
12960	0.3174	0.2051	0.1578	0.0107
12965	0.2288	0.1017	-0.0009	-0.0182
13020	0.2327	0.1016	0.0467	0.0452
13050	0.2285	0.1553	0.0751	-0.0046
13245	0.3465	0.2104	0.1377	0.0856
13500	0.2145	0.1285	0.0469	0.0859
13695	0.2334	0.0653	0.0760	0.1371
14185	0.3771	0.2524	0.2504	0.1490
14275	0.3031	0.2569	0.2617	0.1725
15105	0.2166	0.0078	0.1056	0.0568
15145	0.1613	0.0372	0.0484	-0.0455
15355	0.2608	0.0644	0.0536	0.1261
15395	0.2588	0.1652	0.1397	-0.0429
15430	0.2713	0.1773	0.0997	0.1382
15450	0.4525	0.3259	0.2216	0.1384
15455	0.1563	0.0191	0.0267	-0.0509
15500	0.1028	0.0125	0.0460	-0.0121
15505	0.2527	0.1576	0.0632	-0.0192
15535	0.1162	0.1978	0.1776	0.0291
15540	0.2146	0.1759	0.2321	0.2190
15545	0.1930	0.1097	0.0122	-0.0424
15565	0.1988	0.0411	-0.0041	0.0208

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
15570	0.2229	0.1718	0.1751	0.0885
15585	0.3128	0.2454	0.1973	0.2066
15600	0.3630	0.1857	0.1166	0.0643
15615	0.2029	0.0816	0.0534	-0.0131
15630	0.2938	0.2319	0.2168	0.1541
15635	0.3756	0.2302	0.1811	0.2114
15645	0.2468	-0.0099	-0.0395	0.0333
15660	0.2246	0.0640	0.0773	-0.0293
15665	0.1791	0.0625	0.1279	0.0858
15670	0.1945	0.1537	0.1587	-0.0291
15680	0.1612	0.0802	0.0233	-0.0080
15690	0.1971	0.1508	0.0750	0.0606
15705	0.3067	0.1803	0.0505	-0.0148
15710	0.1927	0.0747	0.0389	-0.0058
15715	0.1508	-0.0444	-0.0572	-0.1244
15720	0.2855	0.1780	0.1394	-0.0770
15725	0.2224	0.0661	0.0129	0.0175
15745	0.2033	0.0376	0.0823	0.0384
15755	0.2927	0.1555	0.0672	0.1272
15770	0.1920	0.0887	0.1453	0.0623
15790	0.1749	0.1648	0.1407	-0.0016
15795	0.0801	0.0082	0.0089	0.1319
15800	0.1837	0.1092	0.1324	0.1549
15810	0.3582	0.1756	0.1995	0.3237
15890	0.3484	0.2303	0.2419	0.3322
15905	0.4017	0.1764	0.1115	0.0534
15930	0.1898	0.0497	0.0123	0.1021
16005	0.3986	0.2210	0.1781	0.1658
16060	0.2868	0.1568	0.1513	0.1900
16110	0.4243	0.2521	0.1397	0.1144
16135	0.2716	0.2047	0.1587	0.2559

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16210	0.4188	0.2665	0.2382	0.2047
16255	0.1220	0.0334	0.0502	0.0686
16275	0.1715	0.1114	0.1314	0.2231
16280	0.2719	0.1954	0.1277	0.0589
16305	0.1803	0.0598	-0.0017	-0.0005
16375	0.3525	0.1963	0.1123	0.1211
16390	0.2068	0.0928	-0.0340	-0.0618
16415	0.2210	0.1390	0.0576	0.0015
16425	0.2634	0.1116	0.0572	0.0461
16435	0.1672	0.0178	-0.0110	-0.0653
16445	0.2965	0.1245	0.0176	0.1032
16470	0.2230	0.0618	0.0810	0.0579
16475	0.2791	0.2140	0.1847	0.1152
16505	0.1442	0.0462	-0.0365	-0.1760
16515	0.1771	0.0099	-0.0570	-0.1010
16525	0.0557	-0.0421	-0.0165	0.0163
16560	0.2017	0.1201	0.1399	0.1473
16605	0.0227	0.1076	0.0658	0.0329
16615	0.2484	0.1331	0.0420	-0.0575
16635	0.2581	0.0779	0.0532	0.2335
16690	0.3027	0.2056	0.2417	0.1423
16710	0.4226	0.2604	0.1959	0.0423
16715	0.2471	0.1103	0.0889	-0.0341
16720	0.4695	0.3140	0.2672	0.0469
16725	0.3359	0.1690	0.0549	0.0522
16740	0.3407	0.2339	0.1416	0.0885
16745	0.2644	0.1573	0.1125	0.0156
16755	0.2363	0.1455	0.1299	0.0950
16760	0.3060	0.2325	0.2058	0.0681
16765	0.3531	0.2844	0.1999	0.1175
16775	0.2067	0.1370	0.0884	0.0113

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
16800	0.2626	0.0802	0.0606	0.1544
16840	0.3550	0.2071	0.1176	0.0611
16845	0.4353	0.2977	0.1702	0.0713
16895	0.1322	0.0347	-0.0619	-0.0933
16910	0.3609	0.2187	0.2064	0.0382
16925	0.1134	0.0449	0.0748	-0.0591
16940	0.2813	0.1512	0.1427	0.0582
16945	0.2289	0.0978	0.1447	0.0745
16955	0.1375	0.0253	0.0119	0.0192
17010	0.2586	0.1302	0.1414	0.1248
17020	0.2144	0.0608	0.0562	-0.0242
17050	0.1092	0.0501	0.0510	-0.0246
17105	0.2338	0.1698	0.1251	0.1069
17115	0.2431	0.1839	0.1494	0.1351
17125	0.1825	0.0658	0.0233	0.0365
17130	0.1915	0.1276	0.1095	0.0660
17160	0.0628	0.1016	0.1340	0.1322
17240	0.3277	0.2671	0.2135	0.1926
17245	0.2662	0.1124	-0.0107	-0.1466
17265	0.2291	0.1063	0.0837	0.1190
17275	-0.0524	-0.0694	-0.0494	0.0851
17285	0.2758	0.0835	0.1730	-0.0374
17300	0.1741	0.1673	0.1295	0.0307
17335	0.2070	0.1304	0.1133	0.1119
17340	0.1773	0.1290	0.1003	0.1004
17345	0.2649	0.0939	0.0689	-0.0474
17370	0.3665	0.1695	0.0389	0.1256
17380	0.1734	0.0917	0.1203	0.1460
17385	0.2695	0.2140	0.2053	0.1199
17425	0.2585	0.1435	0.1396	0.2140
17430	0.3883	0.2379	0.2515	0.0908

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
17460	0.2122	0.0983	0.0861	0.1096
17480	0.2261	0.1772	0.0491	0.0521
17495	0.2081	0.0856	0.0704	0.1124
17500	0.3347	0.2137	0.1789	0.1560
17510	0.1919	0.0519	0.0465	-0.0357
17520	0.1498	0.0039	-0.0028	-0.0779
17545	0.1543	0.0382	0.0315	0.1497
17550	0.0717	-0.0578	-0.1204	-0.0823
17565	0.1601	0.1594	0.0552	-0.1419
17580	0.3078	0.1659	0.2171	0.0338
17585	0.2006	0.1467	0.2387	0.1421
17595	0.2681	0.1879	0.2464	0.2786
17605	0.1571	0.0392	0.0392	-0.0645
17635	0.1269	0.0419	-0.0191	0.0643
17640	0.2316	0.1347	0.1030	0.1278
17660	0.1847	0.0337	0.0200	-0.0305
17665	0.2484	0.2262	0.2389	0.0733
17670	0.2394	0.0600	0.0414	-0.1113
17690	0.1535	0.0912	0.1065	0.0696
17695	0.1150	0.0550	0.0756	0.0639

Table B.1

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
32497	0.2411	0.1088	0.1045	0.3119
40655	0.3516	0.2677	0.2728	0.1453
40657	0.3651	0.1948	-0.1051	-0.0620
40668	0.3077	0.1417	0.1592	-0.0461
40885	0.4001	0.2015	-0.0435	-0.0805
40903	0.1012	0.0204	0.1016	0.0440
40907	0.0642	0.1555	0.1137	0.0939
40916	0.0227	0.1408	0.0667	0.0485
40944	0.2750	0.3059	0.2568	0.1897
40969	0.3391	0.3193	0.3707	0.3796
40992	0.3734	0.2826	0.1050	0.0509
41054	0.0845	-0.2002	-0.1794	-0.1965
41059	0.1457	0.1697	0.0926	0.1185
41066	0.0993	0.0626	0.1019	-0.1139
41093	0.2935	0.1386	-0.0086	0.0120
41098	0.1669	0.0264	0.1606	0.1545
41101	0.1742	0.1560	0.1077	0.0704
41181	0.3619	0.2595	0.1404	0.0876
41190	0.2607	0.1098	0.0807	0.0434
41337	0.1841	0.0721	-0.0447	0.1130
41407	0.2033	0.0772	0.1626	0.0524
41632	0.2642	0.1538	0.1429	0.2577
41645	0.2524	0.2612	0.0294	0.0234
41653	-0.0460	-0.0435	-0.0026	0.1456
41669	-0.0728	0.0051	0.0408	-0.0599
41690	0.1151	0.0477	-0.0077	0.0809
42503	0.2553	0.1759	0.0161	0.0337
42504	0.1333	-0.0408	-0.0308	-0.0690
51693	0.1997	0.1550	-0.0197	-0.1513

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
51717	0.1998	0.1537	0.2050	0.1044
51731	0.2534	0.0747	0.0125	0.0761
51732	0.1875	0.0388	0.0258	0.0063
51742	0.2057	-0.0932	0.0101	0.0495
51781	0.2811	0.2617	0.0883	0.1210
51786	0.1640	-0.0188	-0.1100	-0.0919
51787	0.3500	0.2684	0.1367	0.0703
51793	0.3382	0.1907	0.0770	0.0337
51806	0.3013	0.0783	0.1679	0.0776
51817	0.3639	0.1137	0.2227	0.1256
51825	0.2683	0.1417	0.0685	-0.0656
51839	0.0601	-0.1208	-0.0579	0.0741
51843	-0.0361	0.0095	-0.0785	-0.0844
59127	0.2984	0.0516	0.0607	0.0363
59128	0.2980	0.2535	0.1781	0.0248
59137	0.0786	0.1356	0.1849	0.0948
59138	0.1432	0.2705	0.1524	0.2133
59149	0.3560	0.1372	0.1294	-0.2314
59155	0.2243	0.1424	0.0573	-0.0345
59184	0.3020	0.1213	0.0784	0.0472
59185	0.0802	-0.0351	0.1374	0.1896
59217	0.1105	0.0538	0.0347	0.0000
59231	0.3649	0.1660	0.1124	0.1784
59239	0.2305	0.1372	0.2357	0.1786
59267	0.0877	0.1473	0.1972	0.2640
59489	0.2272	0.0358	0.0383	-0.0484
60230	0.2109	0.0000	0.0000	0.0000
60240	-0.0221	0.0692	0.1464	0.0743
60241	0.2474	-0.0835	-0.0642	-0.1499
60242	0.2856	0.3245	0.3093	0.0980
60250	0.1273	-0.0456	-0.0978	0.0058

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 SD
60258	0.3100	0.3535	0.2324	0.1019
62125	0.1018	-0.1046	-0.0986	-0.1755
62129	0.2786	0.1223	0.1827	0.0713
62132	0.2708	0.2167	0.2131	0.2630
62135	0.2983	0.2064	0.2044	0.1020
62136	0.3512	0.2545	0.1068	0.1849
62140	0.3812	0.3175	0.3059	0.3243
84442	0.3069	0.3427	0.1779	-0.0328
90381	0.2819	0.1300	0.0799	0.0899
90382	0.0569	-0.0875	-0.0459	-0.0293
90384	0.1036	0.0280	0.1892	0.0765
90385	0.1792	0.0809	0.1522	0.0637
90386	0.2554	0.1521	0.1265	-0.0874
90390	0.4318	0.2788	0.1648	0.2544
90396	0.0718	-0.0149	-0.0912	0.0178
90397	0.1268	0.0301	-0.0399	-0.0980
90398	0.2795	0.2136	0.0011	0.1049
90400	0.1985	0.2581	0.0123	0.1101
94445	0.2217	0.0226	-0.1390	-0.2133
94505	0.0600	0.0874	0.1340	0.0115
94510	0.1683	0.1346	0.1603	0.1091
94566	0.3157	0.2505	0.1626	-0.0174
94582	0.3808	0.2083	0.1338	0.1438
94586	0.3209	0.1196	0.2029	0.1837
108131	0.1744	0.0693	-0.0800	-0.0696
108132	0.2818	0.1501	-0.0250	0.0891
108133	0.1783	0.1505	0.0895	0.2447
108134	0.2241	0.1205	-0.0060	0.1733
108135	0.0995	0.0123	0.0845	-0.0590
108136	0.2619	0.1431	0.1045	0.1717
108137	0.1924	0.1771	0.0000	0.0000

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
108138	0.3920	0.2342	0.2480	0.0839
108139	0.2255	0.0218	-0.1041	-0.1280
108140	0.1381	0.0705	0.0461	0.1769
108141	0.0964	0.0340	0.0788	-0.0748
108142	0.2794	0.1865	0.2009	0.3159
108143	0.4001	0.2367	0.3507	0.3147
108144	0.2980	0.2610	0.1608	0.0062
108145	0.1484	0.0735	0.1589	0.0191
108146	0.3033	0.1912	0.1364	0.2508
108147	0.1831	0.1061	0.0302	0.1849
108148	0.1280	-0.0378	-0.0804	-0.0306
108149	-0.0003	-0.0045	0.0284	0.0653
108150	0.1513	0.0746	-0.0432	0.0410
108151	0.1869	0.1356	0.0359	-0.0693
108152	0.3092	0.0667	0.0031	-0.0805
108153	0.4983	0.3633	0.3799	0.4009
108154	0.3769	0.2998	0.1842	0.3276
108155	0.3370	0.0562	-0.0211	-0.0402
108156	0.3039	0.1754	0.1458	0.0122
108157	0.2223	0.0730	0.1115	0.0094
108158	0.1994	0.2088	0.1896	0.1006
108159	0.0479	-0.0548	-0.1484	-0.2965
108160	-0.0783	-0.0242	0.0621	0.0586
108161	-0.0186	0.1302	0.2062	0.2870
108162	0.3128	0.2080	0.2559	0.2191
108163	0.2605	0.1741	0.2342	0.1667
108164	0.2834	0.0740	0.1866	0.1513
108165	-0.0191	-0.0032	-0.0881	-0.2013
108166	0.3038	0.1698	0.1245	0.0899
108167	0.3061	0.1468	0.2038	0.0708
108168	0.2278	0.0633	0.0661	0.0556

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108169	-0.0768	-0.1679	-0.2659	-0.2630
108170	0.2778	0.1033	0.0900	-0.0708
108171	0.1082	0.1786	0.0758	-0.0466
108172	0.0626	-0.0366	-0.1741	-0.1177
108173	0.2470	0.1272	0.0804	0.1750
108174	0.1734	0.1075	0.0961	0.0436
108175	0.2533	0.1593	0.1923	0.1063
108176	0.3077	0.2271	0.0810	-0.0843
108177	0.3764	0.1448	0.0299	-0.1053
108178	0.4233	0.2727	0.2012	0.3035
108179	0.0484	0.0543	-0.0744	-0.0849
108180	0.3023	0.2710	0.1600	0.0839
108181	0.2335	0.0185	-0.0181	0.0219
108182	0.3435	0.1362	-0.0165	0.1017
108183	0.2177	0.0914	0.0733	0.0413
108184	0.2636	0.0996	0.1018	0.2895
108185	-0.2086	-0.1260	-0.1461	-0.0351
108186	-0.1053	0.0000	0.0000	0.0000
108187	0.2966	0.2967	0.1270	-0.0990
108188	0.2519	-0.0497	-0.1329	-0.1258
108189	0.3518	0.2523	0.3109	0.3695
108190	0.2102	0.1429	0.2029	0.0749
108191	0.2098	0.0961	0.1530	0.2026
108192	0.2053	-0.0515	-0.0028	0.0564
108193	0.2459	0.2312	0.2570	0.3014
108194	0.1967	0.1117	0.2363	0.1381
108195	0.1906	0.1138	0.0027	-0.0350
108196	0.2824	0.0755	0.0942	0.1752
108197	0.2556	0.2702	0.3184	0.2874
108198	0.2492	0.2751	0.0787	0.0761
108199	0.2099	0.0687	-0.0039	-0.0428

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108200	0.1870	0.1260	-0.0356	-0.0658
108201	0.3032	0.1365	0.1140	-0.1432
108202	-0.0915	-0.1807	-0.1019	0.0059
108203	-0.0080	-0.0564	0.1211	0.1383
108204	0.3355	0.1726	0.1002	0.0644
108477	0.3690	0.3482	0.4438	0.2723
108478	0.2129	0.3464	0.2730	0.2179
108479	0.2899	0.2657	0.1506	0.1274
108480	0.1822	0.0239	-0.0250	-0.1625
108481	0.2634	0.2052	0.1571	0.0942
108482	0.2746	0.0001	0.2489	0.1444
108483	0.3192	-0.0554	0.0399	-0.0519
108484	0.2636	0.1011	0.0268	-0.0127
108485	0.1653	0.0840	0.1294	0.1474
108486	0.4052	0.3405	0.2698	0.2398
108487	0.3372	0.2292	0.1781	0.0484
108488	0.1810	0.2683	0.2115	0.1441
108489	0.3494	0.0874	-0.0482	0.0980
108490	0.1444	0.0790	0.0177	0.1201
108491	0.0475	0.1464	-0.0475	-0.0061
108492	0.4010	0.3024	0.2600	0.2214
108493	0.1714	0.0297	0.0171	-0.1620
108494	0.3177	0.2564	0.1706	0.0551
108495	0.1151	-0.0390	-0.0312	-0.1451
108497	0.2921	0.1930	0.0910	0.1558
108498	0.2975	0.0949	0.0201	0.1049
108499	0.2863	0.1820	0.0229	-0.0977
108500	0.1575	0.0487	0.1197	0.0636
108501	0.0743	0.1239	-0.0333	0.0121
108502	0.1566	0.2135	0.2387	0.2550
108503	0.1387	0.0435	0.1541	0.1523

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
108504	0.1001	0.1834	0.1075	0.1422
108505	0.2677	0.1163	0.0931	0.0825
108506	0.3136	0.1253	0.1246	0.3025
108507	0.3458	0.1827	0.1238	0.0908
108508	0.2697	0.1583	0.0758	0.1447
108509	0.3294	0.1003	0.1494	-0.0464
108510	0.1560	-0.0513	0.0152	0.0121
108511	0.0278	-0.1043	-0.0483	0.0000
108512	0.2234	0.2715	0.0935	-0.0300
108513	0.1451	0.0620	0.0312	0.0000
108514	0.2470	0.0962	0.0856	0.0532
108515	0.3178	0.2680	0.2600	0.1618
108523	0.1711	-0.0361	0.1494	0.0194
108524	0.1976	0.0928	-0.0181	0.0328
108525	0.0897	-0.0013	-0.0400	-0.1213
950671494	0.1338	0.0737	0.0980	0.1684

Table B.2

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
32497	0.2411	-0.0409	0.0356	-0.0685
40655	0.3516	0.2498	0.2038	0.2693
40657	0.3651	0.1337	0.1451	-0.0118
40668	0.3077	0.2367	0.1325	0.2305
40885	0.4001	0.2311	0.2103	0.1320
40903	0.1012	-0.0477	0.0340	0.2328
40907	0.0642	0.0797	0.1475	0.2394
40916	0.0227	0.1476	0.1755	0.0237
40944	0.2750	0.3149	0.2527	0.1175
40969	0.3391	0.2484	0.2221	0.1288
40992	0.3734	0.2332	0.2357	0.1442
41054	0.0845	0.0599	0.0627	0.0166
41059	0.1457	0.1110	0.1369	0.0000
41066	0.0993	-0.0005	-0.0411	0.2237
41093	0.2935	0.0780	0.1270	-0.0072
41098	0.1669	0.1128	0.1325	0.3057
41101	0.1742	0.0943	0.1219	0.2197
41181	0.3619	0.1092	0.1940	0.1671
41190	0.2607	0.1729	0.0972	0.1656
41337	0.1841	0.1587	0.1123	-0.1718
41407	0.2033	0.1377	-0.0203	0.1618
41632	0.2642	0.1378	0.2057	0.0311
41645	0.2524	0.1910	0.2203	0.1220
41653	-0.0460	-0.0469	-0.0151	-0.1590
41669	-0.0728	0.0416	0.0186	0.0985
41690	0.1151	0.0899	0.0636	-0.0829
42503	0.2553	0.1381	0.1459	0.0578
42504	0.1333	0.0049	0.0296	0.2842
51693	0.1997	0.1037	0.1195	0.0556
51717	0.1998	-0.0024	-0.0203	0.0625
51731	0.2534	0.1898	0.1635	0.1393

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
51732	0.1875	0.1015	0.1013	-0.0023
51742	0.2057	0.1257	0.0608	0.1165
51781	0.2811	0.2147	0.2574	0.0447
51786	0.1640	-0.0322	-0.0112	-0.1302
51787	0.3500	0.3092	0.3465	0.3056
51793	0.3382	0.2101	0.1935	0.2670
51806	0.3013	0.1144	0.0106	0.0204
51817	0.3639	0.1467	0.0585	0.1444
51825	0.2683	0.2142	0.1666	0.1742
51839	0.0601	-0.0765	-0.1698	-0.2116
51843	-0.0361	-0.0606	-0.0627	0.0258
59127	0.2984	0.0633	0.0295	-0.1260
59128	0.2980	0.1150	0.1521	0.2419
59137	0.0786	0.1915	0.1243	0.0000
59138	0.1432	0.1491	0.0000	0.0000
59149	0.3560	0.1003	0.1248	0.3233
59155	0.2243	0.0655	0.0000	0.1517
59184	0.3020	0.1718	0.1475	0.0595
59185	0.0802	0.0221	-0.1538	0.0000
59217	0.1105	0.0763	0.0395	-0.0459
59231	0.3649	0.2244	0.2134	0.0129
59239	0.2305	0.2019	0.2079	0.2386
59267	0.0877	0.2161	0.2692	0.0000
59489	0.2272	0.1459	0.0969	0.1042
60230	0.2109	0.0000	0.0000	0.0000
60240	-0.0221	0.1232	0.2100	0.3068
60241	0.2474	-0.0498	-0.0746	-0.0469
60242	0.2856	0.2881	0.2412	0.3010
60250	0.1273	0.0464	0.0975	-0.1050
60258	0.3100	0.1869	0.2612	0.1235
62125	0.1018	-0.1275	-0.0901	-0.0296

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
62129	0.2786	0.0722	0.0919	0.0699
62132	0.2708	0.2335	0.2262	0.0934
62135	0.2983	0.1945	0.2147	0.2990
62136	0.3512	0.2552	0.2120	-0.0235
62140	0.3812	0.2072	0.2383	0.1184
84442	0.3069	0.1904	0.1511	0.0700
90381	0.2819	0.2417	0.2833	0.1656
90382	0.0569	-0.0270	0.0174	0.0790
90384	0.1036	-0.0126	0.0568	0.2153
90385	0.1792	0.1035	-0.0138	-0.0617
90386	0.2554	0.0319	0.0816	0.1070
90390	0.4318	0.2446	0.1485	-0.0311
90396	0.0718	-0.0831	-0.2507	-0.3411
90397	0.1268	0.0316	-0.0064	0.1305
90398	0.2795	0.1817	0.1018	0.0740
90400	0.1985	0.1197	0.1070	0.0861
94445	0.2217	0.0171	-0.1217	-0.2287
94505	0.0600	0.0143	0.0634	-0.0759
94510	0.1683	0.1864	0.1453	0.0429
94566	0.3157	0.1226	0.0945	0.2292
94582	0.3808	0.1181	0.2256	0.1695
94586	0.3209	0.1981	0.2185	0.0121
108131	0.1744	0.0105	0.0207	0.0469
108132	0.2818	0.2602	0.2164	-0.0865
108133	0.1783	-0.0488	0.0032	-0.1045
108134	0.2241	0.1481	0.1232	0.0297
108135	0.0995	0.1083	0.1095	0.0279
108136	0.2619	0.1307	0.1885	0.1314
108137	0.1924	0.0000	0.0000	0.0000
108138	0.3920	0.3379	0.2430	0.2353
108139	0.2255	-0.1072	-0.0631	-0.0587

Item Discrimination Values for Examination $2 - C_{X2}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108140	0.1381	0.1324	0.0841	-0.0398
108141	0.0964	0.0539	0.0641	-0.0041
108142	0.2794	0.3282	0.3306	0.3337
108143	0.4001	0.2228	0.1770	-0.0022
108144	0.2980	0.2069	0.1486	-0.1215
108145	0.1484	0.0818	0.0727	0.0487
108146	0.3033	0.1245	-0.0142	-0.1655
108147	0.1831	0.1334	0.0434	-0.0895
108148	0.1280	-0.0283	-0.0687	-0.1046
108149	-0.0003	0.0193	0.0535	0.1319
108150	0.1513	0.1207	0.1502	0.2018
108151	0.1869	0.0852	0.0205	0.0903
108152	0.3092	0.0244	-0.0329	-0.0596
108153	0.4983	0.4318	0.3205	0.1534
108154	0.3769	0.3061	0.1561	0.0663
108155	0.3370	0.2068	0.0810	-0.0083
108156	0.3039	0.1962	0.1195	0.1964
108157	0.2223	0.1026	-0.0280	-0.0803
108158	0.1994	0.1983	0.1742	0.0972
108159	0.0479	-0.0009	-0.1028	-0.0762
108160	-0.0783	-0.0487	0.0139	-0.2239
108161	-0.0186	0.0268	0.0329	0.0000
108162	0.3128	0.2197	0.1607	-0.2268
108163	0.2605	0.1773	0.2176	0.1323
108164	0.2834	0.1937	0.1661	0.1679
108165	-0.0191	-0.0882	-0.1260	-0.0140
108166	0.3038	0.1974	0.1397	0.1454
108167	0.3061	0.2556	0.2492	0.1423
108168	0.2278	0.1328	0.1586	0.1722
108169	-0.0768	-0.1223	-0.0718	-0.0618
108170	0.2778	0.0695	0.1498	0.1763

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108171	0.1082	0.0818	0.0882	0.0989
108172	0.0626	-0.0499	-0.1440	-0.2073
108173	0.2470	0.1050	0.0396	-0.1281
108174	0.1734	0.2191	0.2533	0.3011
108175	0.2533	0.2265	0.1590	0.1882
108176	0.3077	0.0356	0.0660	-0.0282
108177	0.3764	0.2775	0.1787	0.1763
108178	0.4233	0.2678	0.2430	0.1639
108179	0.0484	0.0942	0.0159	-0.0792
108180	0.3023	0.1829	0.1862	0.2005
108181	0.2335	0.1187	0.1325	0.0459
108182	0.3435	0.1400	0.0570	0.0145
108183	0.2177	0.0602	0.1471	0.1260
108184	0.2636	0.1966	0.0864	-0.0542
108185	-0.2086	-0.1775	-0.1737	-0.1801
108186	-0.1053	0.0000	0.0000	0.0000
108187	0.2966	0.0598	0.0906	0.1340
108188	0.2519	0.0627	-0.0230	-0.0222
108189	0.3518	0.2250	0.2959	0.0555
108190	0.2102	0.1048	0.0543	0.0845
108191	0.2098	0.0772	0.0848	0.0000
108192	0.2053	0.1652	0.0681	0.1117
108193	0.2459	0.2224	0.2608	0.0953
108194	0.1967	0.1120	0.0186	0.0079
108195	0.1906	0.1768	0.0788	-0.0568
108196	0.2824	0.0525	-0.0686	-0.0690
108197	0.2556	0.2288	0.2365	0.1443
108198	0.2492	0.2085	0.1556	0.1362
108199	0.2099	0.0962	-0.0188	0.0890
108200	0.1870	0.0545	0.0392	-0.0089
108201	0.3032	-0.0407	-0.1503	-0.0539

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108202	-0.0915	-0.1957	-0.1736	-0.3521
108203	-0.0080	0.0047	-0.0679	0.0960
108204	0.3355	0.1792	0.2585	0.1443
108477	0.3690	0.3591	0.3629	0.2620
108478	0.2129	0.2162	0.3151	0.1808
108479	0.2899	0.1181	0.2497	0.2681
108480	0.1822	0.0954	-0.0510	-0.0046
108481	0.2634	0.2301	0.1354	0.0663
108482	0.2746	0.2312	0.1303	0.1886
108483	0.3192	0.1264	-0.0776	0.0314
108484	0.2636	0.1800	0.1125	0.1025
108485	0.1653	0.0653	0.0455	0.0918
108486	0.4052	0.2466	0.2064	0.0487
108487	0.3372	0.1526	0.1430	0.2869
108488	0.1810	0.1106	0.0996	0.1125
108489	0.3494	0.1799	0.1170	0.0214
108490	0.1444	0.1418	0.1149	-0.0248
108491	0.0475	0.0332	0.1788	-0.1105
108492	0.4010	0.1720	0.2435	0.1062
108493	0.1714	-0.0571	-0.0186	0.0519
108494	0.3177	0.1239	0.2521	0.0934
108495	0.1151	0.0337	-0.0012	0.0754
108497	0.2921	0.2791	0.1631	0.1070
108498	0.2975	0.2417	0.1986	0.0963
108499	0.2863	0.2217	0.0647	0.1240
108500	0.1575	0.1448	0.1184	0.1517
108501	0.0743	0.0221	-0.0156	-0.0257
108502	0.1566	0.1955	0.2897	0.1833
108503	0.1387	0.0786	0.0391	0.1912
108504	0.1001	0.1205	0.1496	0.0000
108505	0.2677	0.0018	-0.0048	-0.0092

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108506	0.3136	0.2320	0.0521	-0.0286
108507	0.3458	0.2320	0.2820	0.2133
108508	0.2697	0.1885	0.2820	0.0453
108509	0.3294	0.1885	0.1566	0.3253
108510	0.3294	0.0060	-0.1199	-0.0163
108511	0.0278	0.1130	-0.0327	-0.0103
108512	0.2234	0.1716	0.0265	0.0830
108512	0.1451	0.0606	0.0599	-0.0522
108513	0.2470	0.1048	0.1871	0.1988
108515	0.3178	0.3673	0.3610	0.2085
108523	0.1711	0.0283	-0.0154	0.0738
108524	0.1976	0.0757	0.0732	0.0578
108525	0.0897	0.0051	0.0856	0.0429
950671494	0.1338	0.1032	0.1739	0.0523

Table B.3

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
32497	0.2411	0.1217	0.2911	0.2372
40655	0.3516	0.1787	0.1418	0.0946
40657	0.3651	0.1815	0.1862	-0.0338
40668	0.3077	0.0998	0.0199	-0.0814
40885	0.4001	0.0595	0.0126	-0.1389
40903	0.1012	0.1158	0.0044	-0.0519
40907	0.0642	0.0668	0.1101	0.0747
40916	0.0227	0.0482	0.0259	0.0198
40944	0.2750	0.1619	0.2943	0.0588
40969	0.3391	0.4393	0.3650	0.3248
40992	0.3734	0.1857	0.2219	0.1033
41054	0.0845	-0.2944	-0.4227	-0.3417
41059	0.1457	0.2378	0.1566	0.0467
41066	0.0993	0.1139	-0.0505	-0.0692
41093	0.2935	0.1475	0.0826	0.0153
41098	0.1669	-0.0142	-0.1313	-0.1752
41101	0.1742	0.0931	0.0579	0.1010
41181	0.3619	0.1822	0.2558	0.0544
41190	0.2607	0.1234	0.1521	-0.0783
41337	0.1841	0.0156	0.0357	0.0783
41407	0.2033	0.0939	0.2159	0.1236
41632	0.2642	0.1513	0.2437	0.1469
41645	0.2524	0.0773	0.1553	0.0205
41653	-0.0460	-0.0020	-0.1137	-0.0819
41669	-0.0728	-0.0029	0.0334	0.0506
41690	0.1151	0.1193	0.0190	0.1119
42503	0.2553	0.1045	0.0600	0.1416
42504	0.1333	-0.0560	-0.1206	-0.2483
51693	0.1997	0.0725	-0.0334	-0.0090
51717	0.1998	0.2391	0.3013	0.2927
51731	0.2534	-0.0200	-0.0325	-0.1187

Item Discrimination Values for Examination $2 - C_{X3}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
51732	0.1875	-0.0100	-0.0683	0.0772
51742	0.2057	-0.1380	-0.1095	0.0286
51781	0.2811	-0.0394	0.0874	0.1686
51786	0.1640	0.0213	0.1243	0.1089
51787	0.3500	0.2230	0.0849	-0.0812
51793	0.3382	0.1669	0.0782	-0.1707
51806	0.3013	0.2396	0.1721	0.0234
51817	0.3639	0.1244	0.0426	0.2945
51825	0.2683	0.0962	-0.0146	-0.0276
51839	0.0601	0.1050	0.0366	0.0823
51843	-0.0361	-0.0055	0.0191	0.0283
59127	0.2984	0.0736	0.0298	0.0776
59128	0.2980	0.3114	0.1593	0.0617
59137	0.0786	0.0871	0.0980	0.1616
59138	0.1432	0.2311	0.2990	0.1532
59149	0.3560	0.1274	-0.1024	-0.1454
59155	0.2243	0.1461	0.0779	0.0567
59184	0.3020	0.0842	0.0433	0.0343
59185	0.0802	0.0670	0.0771	0.1266
59217	0.1105	0.1144	0.1114	0.0585
59231	0.3649	0.3284	0.0592	0.1412
59239	0.2305	0.1432	0.0148	-0.0674
59267	0.0877	0.0838	0.0872	0.1450
59489	0.2272	0.0759	-0.0345	-0.0298
60230	0.2109	0.2620	0.0000	0.0000
60240	-0.0221	0.0301	-0.0949	-0.0783
60241	0.2474	0.0609	-0.0407	-0.0979
60242	0.2856	0.1924	0.1850	0.1290
60250	0.1273	-0.1714	-0.1301	-0.0428
60258	0.3100	0.2502	0.3162	0.3900
62125	0.1018	-0.0626	-0.0799	-0.1394

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
62129	0.2786	0.2183	0.0703	0.1507
62132	0.2708	0.2230	0.1634	0.1714
62135	0.2983	0.1894	0.0622	-0.0243
62136	0.3512	0.0556	0.0980	0.0734
62140	0.3812	0.3997	0.2932	0.1867
84442	0.3069	0.2896	0.3430	0.2690
90381	0.2819	0.0743	0.0308	0.0544
90382	0.0569	-0.0666	-0.1631	-0.1797
90384	0.1036	0.0291	-0.0618	-0.1006
90385	0.1792	0.1182	0.0907	0.1984
90386	0.2554	0.2240	0.1738	0.0131
90390	0.4318	0.2296	0.3076	0.2261
90396	0.0718	0.0581	0.2216	0.2125
90397	0.1268	0.0539	0.0679	0.0027
90398	0.2795	0.1449	0.1014	0.0765
90400	0.1985	0.1838	0.2377	0.0545
94445	0.2217	0.0902	0.2386	0.2064
94505	0.0600	0.0758	0.2334	0.1571
94510	0.1683	0.2604	0.0842	0.2566
94566	0.3157	0.1853	0.1088	-0.0114
94582	0.3808	0.2727	0.2503	0.0715
94586	0.3209	0.1767	0.1205	0.0739
108131	0.1744	-0.0082	-0.0508	-0.1536
108132	0.2818	-0.0358	0.0473	0.0858
108133	0.1783	0.1990	0.2375	0.2328
108134	0.2241	0.0081	0.0877	0.0675
108135	0.0995	-0.0635	-0.0919	0.0243
108136	0.2619	0.0560	0.0854	0.0194
108137	0.1924	0.1588	0.2087	0.0000
108138	0.3920	0.1531	0.1059	0.1550
108139	0.2255	0.0048	0.1009	0.0857

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
108140	0.1381	0.0922	0.0667	0.0519
108141	0.0964	-0.1230	-0.0641	0.1657
108142	0.2794	0.1372	0.0225	-0.0360
108143	0.4001	0.2199	0.3057	0.3272
108144	0.2980	0.2069	0.3116	0.3302
108145	0.1484	0.1023	0.0881	0.1930
108146	0.3033	0.2080	0.3127	0.2948
108147	0.1831	0.1017	0.1227	0.0598
108148	0.1280	-0.0069	0.0870	0.0808
108149	-0.0003	0.0100	-0.1872	-0.1751
108150	0.1513	0.0463	0.0080	-0.2060
108151	0.1869	0.0749	0.0054	0.0814
108152	0.3092	-0.0013	0.0284	0.1362
108153	0.4983	0.3790	0.4198	0.2038
108154	0.3769	0.1944	0.2969	0.2564
108155	0.3370	-0.0389	-0.0162	0.0638
108156	0.3039	0.0818	0.1233	0.0519
108157	0.2223	0.1048	0.0668	0.2663
108158	0.1994	0.0958	0.0823	0.1313
108159	0.0479	-0.0489	-0.0332	-0.0308
108160	-0.0783	-0.0238	-0.0248	0.2878
108161	-0.0186	0.1776	0.2220	0.1996
108162	0.3128	0.2078	0.2890	0.3717
108163	0.2605	0.1899	0.1070	0.1781
108164	0.2834	0.2282	0.0387	-0.0213
108165	-0.0191	0.0059	0.0416	-0.0638
108166	0.3038	0.1530	0.0850	0.1153
108167	0.3061	-0.0156	-0.0932	0.1550
108168	0.2278	-0.0166	-0.0573	-0.0898
108169	-0.0768	-0.2375	-0.2086	-0.2323
108170	0.2778	0.1576	-0.0179	-0.0432

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108171	0.1082	0.1928	0.2404	0.0388
108172	0.0626	0.0753	0.0234	0.0898
108173	0.2470	0.1042	0.2478	0.0885
108174	0.1734	-0.0273	-0.0603	-0.0777
108175	0.2533	0.1767	0.0518	0.0909
108176	0.3077	0.1837	0.2413	0.2623
108177	0.3764	0.1079	-0.0403	-0.1178
108178	0.4233	0.2860	0.1938	0.1592
108179	0.0484	0.1223	0.1089	-0.0271
108180	0.3023	0.2827	0.0541	0.0049
108181	0.2335	-0.1106	-0.1103	-0.1758
108182	0.3435	0.1203	0.1049	0.1034
108183	0.2177	0.0238	0.0199	0.0007
108184	0.2636	0.1160	0.1117	0.0898
108185	-0.2086	-0.0782	-0.0452	-0.1867
108186	-0.1053	-0.1932	-0.2581	0.0000
108187	0.2966	0.2050	0.3405	0.1056
108188	0.2519	-0.0577	-0.0594	-0.1239
108189	0.3518	0.2695	0.2531	0.2961
108190	0.2102	0.1495	0.0810	0.1066
108191	0.2098	0.2354	0.1738	0.1046
108192	0.2053	0.0072	-0.0668	-0.2116
108193	0.2459	0.2536	0.2892	-0.0176
108194	0.1967	0.1732	0.1037	0.3159
108195	0.1906	0.0752	0.0877	0.1234
108196	0.2824	0.2447	0.2598	0.1426
108197	0.2556	0.3347	0.3477	0.3605
108198	0.2492	0.0750	0.1668	0.1388
108199	0.2099	0.0096	0.0254	-0.0854
108200	0.1870	0.0532	0.1655	0.0288
108201	0.3032	0.2991	0.2748	0.3142

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108202	-0.0915	-0.0465	0.0356	0.1872
108203	-0.0080	0.1403	0.0820	0.1054
108204	0.3355	0.0802	-0.0470	-0.1009
108477	0.3690	0.2985	0.1924	0.3385
108478	0.2129	0.2447	0.2236	0.3502
108479	0.2899	0.1261	0.1693	0.0900
108480	0.1822	-0.0022	-0.0028	-0.1547
108481	0.2634	0.1822	0.0962	0.2431
108482	0.2746	0.0888	-0.0717	-0.0044
108483	0.3192	0.0077	-0.0422	0.0113
108484	0.2636	0.0241	-0.0433	-0.1182
108485	0.1653	0.0430	-0.0136	0.0383
108486	0.4052	0.3345	0.4211	0.3361
108487	0.3372	0.2391	0.2514	-0.0842
108488	0.1810	0.3028	0.1783	0.0559
108489	0.3494	0.1110	0.0574	0.0238
108490	0.1444	0.0764	0.1009	0.1119
108491	0.0475	0.0339	0.0567	0.1032
108492	0.4010	0.2650	0.2272	0.1414
108493	0.1714	0.0953	0.0085	-0.0257
108494	0.3177	0.2071	0.1362	0.1086
108495	0.1151	0.0099	-0.0931	-0.1405
108497	0.2921	0.0552	0.0404	0.0257
108498	0.2975	0.0388	-0.0977	-0.1106
108499	0.2863	0.0663	0.0319	0.0551
108500	0.1575	0.0332	0.0608	-0.0183
108501	0.0743	0.1760	0.1984	0.0823
108502	0.1566	0.1520	0.1028	0.2247
108503	0.1387	0.1494	0.0831	-0.0423
108504	0.1001	0.1442	0.1800	0.0733
108505	0.2677	0.0876	0.1113	0.0872

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108506	0.3136	0.1621	0.1950	0.1758
108507	0.3458	0.1021	0.0021	-0.0423
108508			0.0883	
	0.2697	0.1154		0.1295
108509	0.3294	0.1092	-0.0651	-0.1140
108510	0.1560	0.1441	0.0150	-0.0506
108511	0.0278	-0.0767	-0.1353	-0.0928
108512	0.2234	0.1574	0.1299	0.0605
108513	0.1451	0.0429	0.0230	0.0097
108514	0.2470	0.1620	0.0273	0.0174
108515	0.3178	0.1897	0.0232	0.1550
108523	0.1711	0.1200	-0.0043	0.0472
108524	0.1976	0.0942	0.1676	-0.0134
108525	0.0897	-0.1087	-0.1953	0.0201
950671494	0.1338	0.0129	0.0357	0.0349

Table B.4

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 SD
32497	0.2411	-0.1008	-0.1401	-0.2282
40655	0.3516	0.2024	0.1856	0.0717
40657	0.3651	0.1839	0.1530	0.3669
40668	0.3077	0.2417	0.3198	0.1534
40885	0.4001	0.3218	0.4059	0.4472
40903	0.1012	0.0574	0.0744	-0.0954
40907	0.0642	0.1053	0.0294	-0.0912
40916	0.0227	0.0585	0.1114	0.2481
40944	0.2750	0.2208	0.2284	0.1060
40969	0.3391	0.1734	0.0080	-0.1036
40992	0.3734	0.2252	0.1796	0.3821
41054	0.0845	0.2010	0.2521	0.2333
41059	0.1457	0.1414	0.0000	0.0000
41066	0.0993	-0.0779	0.0920	0.0348
41093	0.2935	0.0969	0.1143	0.1182
41098	0.1669	0.1335	0.1465	-0.2560
41101	0.1742	0.1160	0.2201	0.1946
41181	0.3619	0.1414	0.1649	0.2030
41190	0.2607	0.1517	0.2625	0.1776
41337	0.1841	0.0847	0.0403	0.1182
41407	0.2033	0.0895	0.1256	-0.1482
41632	0.2642	0.1575	-0.0573	-0.1524
41645	0.2524	0.2136	0.1791	0.2934
41653	-0.0460	-0.0421	-0.1090	0.0049
41669	-0.0728	0.0424	-0.0025	0.1698
41690	0.1151	0.0430	0.0488	0.0249
42503	0.2553	0.1879	0.1130	0.1673
42504	0.1333	0.1102	0.1002	-0.1149
51693	0.1997	0.2041	0.1284	0.1210
51717	0.1998	-0.0286	-0.0828	-0.1889
51731	0.2534	0.1455	0.1492	0.1021

Item Discrimination Values for Examination $2 - C_{X4}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
51732	0.1875	0.0911	0.1220	0.2345
51742	0.2057	0.1094	0.0485	0.1574
51781	0.2811	0.2842	0.1761	0.1674
51786	0.1640	-0.0971	-0.0056	0.0314
51787	0.3500	0.3534	0.3955	0.3739
51793	0.3382	0.1735	0.3432	0.3017
51806	0.3013	0.0307	0.1447	0.0063
51817	0.3639	0.1423	0.1080	-0.0523
51825	0.2683	0.3170	0.2920	0.2039
51839	0.0601	-0.1026	-0.1554	-0.0830
51843	-0.0361	-0.1070	-0.0823	0.0514
59127	0.2984	0.1170	0.0565	0.0433
59128	0.2980	0.1327	0.2331	0.1400
59137	0.0786	0.1313	0.0000	0.0000
59138	0.1432	0.0000	0.0000	0.0000
59149	0.3560	0.2238	0.2247	0.1428
59155	0.2243	-0.0026	0.0602	0.0473
59184	0.3020	0.1979	0.1827	0.2700
59185	0.0802	-0.0891	-0.0994	-0.1515
59217	0.1105	0.1360	0.0422	-0.0271
59231	0.3649	0.1058	0.1398	0.1596
59239	0.2305	0.1157	0.2070	-0.1744
59267	0.0877	0.1414	0.0000	0.0000
59489	0.2272	0.1015	0.1885	0.1037
60230	0.2109	0.0000	0.0000	0.0000
60240	-0.0221	0.1729	0.1333	0.1596
60241	0.2474	0.0201	0.0565	0.0173
60242	0.2856	0.2059	0.1876	0.1013
60250	0.1273	0.0859	0.0688	0.1171
60258	0.3100	0.0559	0.0115	0.2931
62125	0.1018	-0.0646	-0.0337	0.2210

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
62129	0.2786	0.0858	0.0622	-0.0131
62132	0.2708	0.1623	0.1133	0.1231
62135	0.2983	0.2405	0.1654	-0.0223
62136	0.3512	0.2524	0.1805	0.2300
62140	0.3812	0.1665	0.0158	0.0020
84442	0.3069	0.1943	0.0531	0.1410
90381	0.2819	0.2079	0.1367	0.1534
90382	0.0569	0.0482	0.0730	-0.0112
90384	0.1036	0.0004	0.0212	-0.0591
90385	0.1792	0.0780	-0.0655	-0.0012
90386	0.2554	0.1484	0.1108	0.0742
90390	0.4318	0.2234	0.1359	0.0163
90396	0.0718	-0.1581	-0.0904	-0.1955
90397	0.1268	0.0713	0.0313	-0.1344
90398	0.2795	0.1627	0.2002	0.1115
90400	0.1985	0.0562	0.1426	0.1210
94445	0.2217	-0.0389	-0.0144	0.0271
94505	0.0600	-0.0071	-0.0573	-0.1349
94510	0.1683	0.1897	0.0337	0.1053
94566	0.3157	0.1712	0.1686	0.1255
94582	0.3808	0.2002	0.0257	-0.0289
94586	0.3209	0.2932	0.1490	0.1285
108131	0.1744	-0.0416	0.0644	0.1593
108132	0.2818	0.3513	0.2107	0.3229
108133	0.1783	-0.0720	-0.1758	-0.1673
108134	0.2241	0.1065	0.0725	0.0061
108135	0.0995	0.2004	0.1655	0.1131
108136	0.2619	0.0481	0.0615	-0.0040
108137	0.1924	0.0000	0.0000	0.0000
108138	0.3920	0.2367	0.2288	0.1489
108139	0.2255	-0.0332	0.0412	0.1318

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108140	0.1381	0.1026	-0.0197	0.0418
108141	0.0964	0.0659	0.1310	0.1493
108142	0.2794	0.3519	0.1847	0.1679
108143	0.4001	0.1842	0.1018	-0.0147
108144	0.2980	0.1904	0.0910	0.1319
108145	0.1484	0.0476	-0.0152	0.1043
108146	0.3033	0.0713	0.0348	-0.0854
108147	0.1831	0.1117	0.0521	-0.0132
108148	0.1280	0.0108	-0.0666	0.1542
108149	-0.0003	0.0812	0.0241	0.1013
108150	0.1513	0.1792	0.1603	0.0762
108151	0.1869	-0.0003	0.1200	0.1543
108152	0.3092	0.0498	0.0744	-0.0062
108153	0.4983	0.2693	0.2240	0.0823
108154	0.3769	0.1593	0.0820	0.1272
108155	0.3370	0.2547	0.1597	0.2285
108156	0.3039	0.2275	0.1806	0.0783
108157	0.2223	-0.0063	0.0653	0.0528
108158	0.1994	0.2125	0.1772	0.1238
108159	0.0479	0.0914	0.1506	0.2450
108160	-0.0783	-0.0899	-0.1264	-0.0281
108161	-0.0186	-0.1408	-0.1608	-0.1014
108162	0.3128	0.2290	0.0064	0.0745
108163	0.2605	0.1653	0.1467	0.0000
108164	0.2834	0.2057	0.0677	0.0249
108165	-0.0191	-0.0050	0.0561	0.1370
108166	0.3038	0.1810	0.1079	0.1015
108167	0.3061	0.2761	0.1472	0.2005
108168	0.2278	0.1829	0.1990	0.0000
108169	-0.0768	-0.0341	0.0387	0.1474
108170	0.2778	0.1988	0.1933	0.1731

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108171	0.1082	0.1432	-0.0242	-0.0491
108172	0.0626	-0.0108	0.0098	0.0315
108173	0.2470	0.1681	0.1064	0.0085
108174	0.1734	0.3298	0.2310	0.1517
108175	0.2533	0.1238	0.2669	0.0738
108176	0.3077	0.0872	0.0308	0.1037
108177	0.3764	0.3003	0.3243	0.3186
108178	0.4233	0.2182	0.1827	0.0244
108179	0.0484	0.0225	0.0137	0.0565
108180	0.3023	0.2007	0.2488	0.1346
108181	0.2335	0.1870	0.1664	-0.0013
108182	0.3435	0.0929	0.0483	0.2210
108183	0.2177	0.1948	0.1532	0.1372
108184	0.2636	0.1513	0.1076	-0.0223
108185	-0.2086	-0.0682	-0.0959	-0.0743
108186	-0.1053	0.0000	0.0000	0.0000
108187	0.2966	0.0434	0.0980	0.1423
108188	0.2519	0.1026	0.1851	0.1029
108189	0.3518	0.1461	-0.0221	-0.0237
108190	0.2102	0.0417	0.0926	0.0042
108191	0.2098	0.1245	-0.0994	-0.1515
108192	0.2053	0.1081	0.1041	0.1860
108193	0.2459	0.2519	0.1430	-0.0174
108194	0.1967	0.0047	0.0553	-0.0362
108195	0.1906	0.0988	0.2072	0.1875
108196	0.2824	-0.1096	-0.0533	-0.2168
108197	0.2556	0.1955	0.0809	0.0991
108198	0.2492	0.1723	0.1878	0.1237
108199	0.2099	0.0955	0.1458	0.0711
108200	0.1870	0.1393	0.1453	0.0318
108201	0.3032	0.0130	0.0469	0.1239

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108202	-0.0915	-0.1888	-0.3167	-0.1229
108203	-0.0080	-0.0621	-0.0586	-0.2977
108204	0.3355	0.1474	0.1512	0.1803
108477	0.3690	0.3697	0.1923	0.0364
108478	0.2129	0.2502	0.0510	0.3460
108479	0.2899	0.1500	0.1359	0.1131
108480	0.1822	0.1460	0.2189	0.0798
108481	0.2634	0.1928	0.2158	0.2609
108482	0.2746	0.2497	0.1659	-0.0067
108483	0.3192	0.1324	0.0978	-0.1615
108484	0.2636	0.1410	0.2098	0.1931
108485	0.1653	0.1035	0.0721	-0.0972
108486	0.4052	0.1651	0.0009	0.0768
108487	0.3372	0.2592	0.2063	-0.0056
108488	0.1810	0.0152	0.1042	0.0509
108489	0.3494	0.2902	0.1583	0.0959
108490	0.1444	0.1550	0.0959	0.1760
108491	0.0475	-0.0197	0.0221	0.1300
108492	0.4010	0.1912	0.0415	0.0000
108493	0.1714	-0.0034	0.0138	-0.0362
108494	0.3177	0.1256	0.0789	0.0951
108495	0.1151	0.0472	0.1000	0.0812
108497	0.2921	0.2616	0.1935	0.1212
108498	0.2975	0.3111	0.3042	0.2644
108499	0.2863	0.1936	0.3151	0.2911
108500	0.1575	0.0938	0.1467	0.0609
108501	0.0743	0.0325	-0.0553	-0.1424
108502	0.1566	0.2182	0.0242	0.1786
108503	0.1387	0.0240	0.0631	-0.0438
108504	0.1001	0.1514	0.0000	0.0000
108505	0.2677	0.0806	0.0379	-0.0597

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
108506	0.3136	0.2060	0.1717	-0.0784
108500	0.3458	0.2625	0.2849	0.1295
108508	0.2697	0.1941	0.1897	0.1565
108509	0.3294	0.1869	0.1687	0.0116
108510	0.1560	-0.0326	-0.0027	-0.1226
108511	0.0278	0.0907	0.0915	0.0325
108512	0.2234	0.1046	0.1938	0.0063
108513	0.1451	0.0370	0.0894	0.0517
108514	0.2470	0.0134	0.0654	0.0713
108515	0.3178	0.3937	0.2189	0.2571
108523	0.1711	-0.0392	-0.0464	-0.2090
108524	0.1976	0.1472	0.0412	-0.0318
108525	0.0897	-0.0182	0.0481	0.3214
950671494	0.1338	0.1095	0.0220	0.0102

Table B.5

Item	Unrestricted	+/- 1.00 SD	+/- 0.75 SD	+/- 0.50 <i>SD</i>
32497	0.2411	0.1455	0.0719	0.1950
40655	0.3516	0.0823	-0.0032	0.1669
40657	0.3651	0.1211	0.3017	0.2124
40668	0.3077	0.0986	0.1257	0.1358
40885	0.4001	-0.0674	0.0744	0.3156
40903	0.1012	-0.0320	-0.0443	0.1561
40907	0.0642	0.0034	-0.0808	-0.0068
40916	0.0227	0.0391	0.0740	0.0379
40944	0.2750	0.1725	0.0334	0.2342
40969	0.3391	0.3172	0.2639	0.1303
40992	0.3734	0.1655	0.2562	0.2607
41054	0.0845	-0.2639	-0.1633	-0.3825
41059	0.1457	0.1933	0.1991	0.0305
41066	0.0993	-0.0325	0.0260	0.2137
41093	0.2935	0.1652	0.1959	0.2236
41098	0.1669	-0.0850	-0.2690	-0.3012
41101	0.1742	0.0442	0.0536	0.1867
41181	0.3619	0.1673	0.1751	0.3987
41190	0.2607	0.1477	0.0450	0.2398
41337	0.1841	0.0601	0.0064	-0.2234
41407	0.2033	0.0808	-0.0727	0.1544
41632	0.2642	0.1875	0.0074	-0.1177
41645	0.2524	0.0516	0.0026	0.0727
41653	-0.0460	-0.0041	-0.0361	-0.2491
41669	-0.0728	-0.0318	-0.0607	0.0519
41690	0.1151	0.1807	0.1765	-0.1313
42503	0.2553	0.0908	0.1766	0.0068
42504	0.1333	-0.1274	-0.2222	-0.0200
51693	0.1997	0.0018	0.0946	0.0696
51717	0.1998	0.2025	0.1489	0.2491
51731	0.2534	0.0265	-0.0070	-0.1231

Item Discrimination Values for Examination $2 - C_{X5}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
51732	0.1875	-0.0135	-0.0112	-0.1338
51742	0.2057	-0.0298	-0.0547	-0.2671
51781	0.2811	0.0174	-0.0498	-0.1169
51786	0.1640	0.1006	0.1758	0.2887
51787	0.3500	0.0307	0.0514	0.0918
51793	0.3382	0.1913	0.0589	0.3220
51806	0.3013	0.2184	0.1350	0.2362
51817	0.3639	0.1070	-0.0138	-0.0799
51825	0.2683	0.0376	0.1415	0.0465
51839	0.0601	0.0974	0.2371	-0.1575
51843	-0.0361	0.0486	0.1300	0.1934
59127	0.2984	0.2337	0.2855	0.0724
59128	0.2980	0.2475	0.3143	0.4245
59137	0.0786	0.0407	-0.0034	-0.0978
59138	0.1432	0.1859	0.1887	0.2717
59149	0.3560	-0.0121	0.0136	0.0514
59155	0.2243	0.1062	0.1666	0.3158
59184	0.3020	0.1532	0.1233	-0.0007
59185	0.0802	0.2104	0.0065	-0.0503
59217	0.1105	0.1335	0.0920	0.0503
59231	0.3649	0.2531	0.3572	-0.0034
59239	0.2305	0.1026	-0.0136	-0.0453
59267	0.0877	0.0245	-0.0407	-0.1959
59489	0.2272	0.1735	0.1705	-0.0683
60230	0.2109	0.2482	0.3083	0.0000
60240	-0.0221	-0.0886	-0.0543	-0.2751
60241	0.2474	0.0994	0.1165	0.0876
60242	0.2856	0.2061	0.0113	-0.0060
60250	0.1273	-0.0815	-0.1263	-0.2083
60258	0.3100	0.2682	0.3121	0.2751
62125	0.1018	-0.0414	0.2886	0.0513

Item	Unrestricted	+/- 1.00 SD	+/- 0.75 <i>SD</i>	+/- 0.50 SD
62129	0.2786	0.1163	0.0594	0.0332
62132	0.2708	0.1170	0.0910	0.0404
62135	0.2983	0.0973	-0.0032	-0.0355
62136	0.3512	0.1218	0.1278	0.0089
62140	0.3812	0.2872	0.2699	0.1309
84442	0.3069	0.2408	0.2906	0.2346
90381	0.2819	0.1343	0.0455	-0.1277
90382	0.0569	-0.0280	-0.1320	-0.1776
90384	0.1036	-0.1136	-0.0726	-0.0088
90385	0.1792	0.1394	0.1804	-0.1209
90386	0.2554	0.2424	0.2017	0.3749
90390	0.4318	0.2959	0.1077	0.2671
90396	0.0718	0.0983	0.1217	0.3401
90397	0.1268	0.1249	-0.0422	0.1384
90398	0.2795	0.2431	0.1172	0.2108
90400	0.1985	0.1710	0.2266	0.2519
94445	0.2217	0.4427	0.3960	0.2101
94505	0.0600	0.0104	0.0461	0.1491
94510	0.1683	0.1729	0.2164	-0.1702
94566	0.3157	0.1377	0.0818	0.3680
94582	0.3808	0.2140	0.2818	0.1035
94586	0.3209	0.1527	0.2231	-0.1347
108131	0.1744	-0.0580	0.0130	0.0936
108132	0.2818	0.0460	0.0301	-0.1697
108133	0.1783	0.1810	0.1927	0.1170
108134	0.2241	0.1095	-0.0471	-0.1358
108135	0.0995	-0.1453	-0.2013	-0.1798
108136	0.2619	0.1840	0.0389	0.1430
108137	0.1924	0.1353	0.1485	0.2359
108138	0.3920	0.1862	0.0376	-0.1073
108139	0.2255	0.0782	0.0558	0.3834

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108140	0.1381	0.1397	0.1336	-0.0994
108141	0.0964	-0.1663	-0.2452	-0.0174
108142	0.2794	0.0537	0.0016	-0.3701
108143	0.4001	0.1823	0.0062	0.1304
108144	0.2980	0.2150	0.2450	0.2240
108145	0.1484	0.1164	0.2684	-0.0231
108146	0.3033	0.2727	0.2381	0.1617
108147	0.1831	0.1680	0.2177	0.0757
108148	0.1280	0.1068	0.1711	0.1052
108149	-0.0003	-0.1253	-0.0344	-0.2881
108150	0.1513	0.0544	-0.0475	0.0453
108151	0.1869	0.0793	0.1865	0.2199
108152	0.3092	0.1057	0.0774	0.1876
108153	0.4983	0.4293	0.2363	0.0383
108154	0.3769	0.2079	0.2560	0.1708
108155	0.3370	0.0407	0.0878	-0.0478
108156	0.3039	0.0594	0.0192	0.0818
108157	0.2223	0.1718	0.2374	0.1191
108158	0.1994	-0.0082	0.0242	0.0505
108159	0.0479	-0.0006	0.1748	0.2690
108160	-0.0783	-0.0678	-0.0195	-0.2165
108161	-0.0186	0.1272	0.1053	0.1017
108162	0.3128	0.2670	0.1841	-0.0058
108163	0.2605	0.2152	0.1984	-0.0471
108164	0.2834	0.1596	0.1022	-0.1900
108165	-0.0191	0.0059	0.1772	0.2704
108166	0.3038	0.1606	0.0867	-0.1034
108167	0.3061	-0.0108	-0.0587	-0.2964
108168	0.2278	0.0519	-0.0140	-0.1576
108169	-0.0768	-0.2135	-0.2596	0.0000
108170	0.2778	0.0046	0.1606	0.2236

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108171	0.1082	0.1585	0.0979	0.2359
108172	0.0626	0.0305	0.2162	0.0636
108173	0.2470	0.1637	0.0510	0.1172
108174	0.1734	0.0132	-0.0386	-0.2429
108175	0.2533	0.2820	0.1294	-0.0116
108176	0.3077	0.2464	0.2532	0.3877
108177	0.3764	0.1122	0.1671	0.0762
108178	0.4233	0.2682	0.1575	-0.0453
108179	0.0484	0.1551	0.1909	0.2500
108180	0.3023	0.1128	0.1259	0.2216
108181	0.2335	-0.1387	-0.1553	-0.2517
108182	0.3435	0.2730	0.3627	0.0859
108183	0.2177	-0.0041	-0.0407	0.0757
108184	0.2636	0.1495	0.0030	-0.0947
108185	-0.2086	0.0376	0.0944	0.1268
108186	-0.1053	-0.1729	-0.2018	-0.3433
108187	0.2966	0.3021	0.2034	0.4481
108188	0.2519	0.0393	0.0145	0.1430
108189	0.3518	0.3965	0.2078	-0.0877
108190	0.2102	0.0576	0.0461	0.2048
108191	0.2098	0.3791	0.2946	-0.0046
108192	0.2053	0.0340	0.0426	-0.1191
108193	0.2459	0.3143	0.0569	-0.1034
108194	0.1967	0.1171	0.0581	0.0936
108195	0.1906	0.1102	0.0937	0.2609
108196	0.2824	0.2942	0.3130	0.2000
108197	0.2556	0.3740	0.2885	0.0603
108198	0.2492	0.0932	0.0930	0.2470
108199	0.2099	0.0141	0.0305	0.2155
108200	0.1870	0.1277	0.0019	0.1978
108201	0.3032	0.2072	0.4069	0.6162

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108202	-0.0915	0.0677	0.1483	-0.1814
108203	-0.0080	0.1077	0.0131	-0.0463
108204	0.3355	0.1143	0.0650	-0.0364
108477	0.3690	0.1987	0.0695	-0.2171
108478	0.2129	0.1263	0.1903	0.0529
108479	0.2899	0.1627	-0.0603	0.1299
108480	0.1822	-0.0225	-0.0153	0.2430
108481	0.2634	0.1603	0.2368	0.0637
108482	0.2746	0.0613	-0.0918	-0.3200
108483	0.3192	0.1574	0.0863	-0.1462
108484	0.2636	0.0333	0.0795	0.0660
108485	0.1653	0.0934	-0.0257	-0.0517
108486	0.4052	0.3243	0.2684	0.2781
108487	0.3372	0.1355	0.0561	0.3222
108488	0.1810	0.0763	0.1285	0.2950
108489	0.3494	0.1019	0.1679	-0.0158
108490	0.1444	0.0800	0.1511	-0.0007
108491	0.0475	0.1384	0.0872	0.0517
108492	0.4010	0.2368	0.2601	0.1209
108493	0.1714	0.0956	-0.0062	0.0907
108494	0.3177	0.0829	0.0058	0.1034
108495	0.1151	-0.0108	0.0846	0.0258
108497	0.2921	-0.0344	0.0610	-0.1084
108498	0.2975	0.0919	0.0699	-0.1491
108499	0.2863	0.0330	0.1719	0.2751
108500	0.1575	0.0747	0.0168	0.0024
108501	0.0743	0.0800	0.0890	0.1821
108502	0.1566	0.0288	0.0499	-0.1074
108503	0.1387	0.0232	0.1195	0.0837
108504	0.1001	0.1032	0.0852	0.0818
108505	0.2677	0.0584	0.0466	0.2470

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
108506	0.2126	0.2291	0.0231	0.0046
	0.3136	0.2281		0.0046
108507	0.3458	0.0471	-0.0836	-0.0818
108508	0.2697	0.2127	0.0012	-0.0088
108509	0.3294	-0.0356	-0.0054	-0.0198
108510	0.1560	0.1454	0.0394	0.0884
108511	0.0278	-0.1605	-0.2088	-0.2494
108512	0.2234	0.0308	0.1726	0.3128
108513	0.1451	-0.0312	0.0010	0.1075
108514	0.2470	0.1964	0.0910	-0.1871
108515	0.3178	0.0297	0.0407	-0.1912
108523	0.1711	0.2777	0.1268	-0.1705
108524	0.1976	0.2425	0.0819	0.0444
108525	0.0897	-0.1974	-0.0645	-0.1934
950671494	0.1338	0.0413	-0.1208	-0.1023

Table C.1

Item	Unrestricted	+/- 1.00 SD	+/- 0.75 SD	+/- 0.50 SD
159995	-0.1125	-0.0849	-0.1583	0.1173
159996	-0.0017	0.2012	0.0615	0.3932
159997	0.3494	0.1084	-0.0850	-0.0437
159998	0.3372	0.1826	-0.1561	-0.2087
159999	0.2592	0.2028	0.0251	0.4287
160000	0.0715	0.2218	0.0385	-0.2058
160001	-0.0636	0.0000	0.0000	0.0000
160002	0.1160	0.0635	0.2383	0.2460
160003	0.1235	-0.0551	-0.1817	-0.0238
160004	-0.0436	-0.2262	-0.1338	0.2089
160005	0.4647	0.2046	-0.2202	-0.3709
160006	0.4144	0.2992	-0.0491	-0.1993
160007	0.1342	-0.1181	0.0926	0.1690
160008	0.1732	-0.0093	-0.0762	-0.1010
160009	0.0014	0.0050	-0.1561	-0.2087
160010	0.1508	-0.0196	-0.2227	-0.1281
160011	0.2503	0.1195	0.0996	-0.0437
160012	-0.0345	-0.2062	-0.3107	0.0898
160013	0.2169	0.3313	0.4271	0.2807
160014	0.3356	0.3432	0.0909	0.3746
160015	0.1391	0.1384	0.0512	0.0640
160016	0.1500	0.0306	0.2584	0.1173
160017	0.2353	-0.1550	0.0371	-0.1400
160018	0.2385	0.0206	0.0150	-0.3225
160019	0.1183	-0.0831	-0.2196	-0.2058
160020	0.1056	0.3203	0.3876	-0.2919
160021	0.1994	0.2292	0.0312	-0.0437
160022	0.0000	0.0000	0.0000	0.0000
160023	0.0000	0.0000	0.0000	0.0000

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160024	-0.0251	0.1267	0.1364	0.1921
160025	0.1141	0.2719	0.4514	-0.0474
160026	0.1059	0.1562	0.1538	0.1852
160027	0.0230	0.0781	-0.3647	0.0000
160028	0.2308	0.1754	-0.0088	-0.0474
160029	0.3289	0.0913	-0.0694	0.0530
160030	0.2980	0.4566	0.2573	0.2460
160031	0.2154	0.1985	0.0854	-0.0808
160032	0.4353	0.2039	-0.0385	-0.0808
160033	-0.0930	0.0412	0.3579	0.5033
160034	0.4090	0.2046	0.1568	0.2682
160035	0.2824	0.2668	0.2755	0.3612
160036	0.0739	-0.0657	-0.2227	-0.4434
160037	-0.0380	0.0000	0.0000	0.0000
160038	0.0829	-0.0984	0.0766	0.0615
160039	0.1151	0.2090	0.1538	0.1852
160040	-0.0036	0.0346	0.3076	0.3103
160041	0.4053	0.3504	0.0736	-0.2260
160042	0.1553	-0.0364	-0.0921	-0.0474
160043	0.1101	0.0376	0.1957	0.2089
160044	0.1223	-0.0023	-0.1196	-0.0810
160045	0.1300	0.0532	0.2916	-0.0474
160046	0.2300	-0.1416	-0.0814	-0.0913
160047	0.1708	0.1643	-0.0187	-0.1139
160048	0.2581	0.1894	0.0461	-0.2260
160049	0.0586	-0.1206	-0.2200	-0.0056
160050	0.2836	0.4618	0.3757	0.0000
160051	0.3579	0.1745	0.0694	0.3136
160052	0.1241	0.0606	0.1066	-0.2044
160053	0.2348	0.2348	0.1290	0.4263
160054	0.1140	-0.0838	-0.0442	0.0640

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160055	0.2920	0.2352	-0.0670	-0.3746
160056	0.2966	0.1313	0.2107	0.2751
160057	0.3838	0.2967	0.0563	-0.3330
160058	0.0012	-0.2917	0.0168	-0.0692
160059	0.2883	-0.1033	0.1318	0.0640
160060	0.0000	0.0000	0.0000	0.0000
160061	0.2186	-0.1030	0.2107	0.4535
160062	0.1056	-0.0701	-0.1561	-0.2087
160063	0.0365	0.0570	-0.0418	0.0898
160064	0.2481	0.3302	0.1592	-0.0441
160065	-0.0272	-0.2615	-0.4212	-0.1535
160066	-0.1009	0.0125	0.4269	0.2461
160067	0.0136	-0.0093	0.1637	0.0898
160068	0.0390	-0.1219	-0.2824	0.0000
160069	0.2224	-0.0120	0.2108	0.1364
160070	0.0423	-0.0533	0.3699	0.1921
160071	0.1943	0.0031	0.1559	-0.0810
160072	0.2186	0.2331	0.2169	0.2262
160073	0.2013	-0.0126	0.0217	0.3225
160074	0.3289	0.2292	-0.0088	0.0238
160075	0.0000	0.0000	0.0000	0.0000
160076	0.1443	-0.0093	0.0000	0.0000
160077	0.0059	0.1195	0.0703	-0.1281
160078	0.1822	-0.1186	-0.0921	0.4715
160079	0.3248	0.3558	0.0563	0.0808
160080	0.1056	-0.1063	-0.1862	0.4535
160081	0.1882	0.1195	0.1034	-0.1066
160082	0.1301	0.0649	0.3123	-0.0114
160083	0.1376	0.0823	0.2345	-0.2935
160084	0.2800	0.5687	0.3556	0.1139
160085	0.1580	-0.1030	-0.2944	0.0615

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160086	0.1300	0.0572	0.3435	0.2044
160087	0.1955	0.0913	-0.2560	-0.1535
160088	-0.0804	-0.1961	-0.2351	-0.1998
160089	0.2772	0.0126	0.0619	0.4167
160090	-0.0300	0.1905	0.1637	0.0898
160526	0.2836	0.1977	0.2561	0.4535
160527	0.2211	0.1618	0.4232	0.0114
160528	0.1479	-0.0874	0.0038	-0.2919
160529	-0.0272	-0.2582	-0.2814	-0.2894
160530	0.1396	-0.0782	0.1867	0.2682
160531	0.1950	0.0346	-0.1162	0.1087
160532	0.0518	-0.0864	-0.2226	0.0000
160533	0.2074	0.1905	0.3911	0.1852
160534	0.0000	0.0000	0.0000	0.0000
160535	0.2356	0.4575	0.5232	0.3700
160536	0.0713	0.2292	0.1149	0.1377
160537	0.2885	0.1491	0.2862	0.6963
160538	0.1169	0.1491	-0.0533	-0.1535
160539	0.0901	0.1372	0.1034	0.2460
160540	0.1639	0.3961	0.3325	-0.0761
160541	0.3539	0.2337	-0.0217	0.0184
160542	0.1824	-0.1040	-0.0533	-0.1400
160543	0.0649	0.1152	0.2597	0.4715
160544	0.1833	-0.1929	0.0000	0.0000
160545	0.0954	0.1625	0.1385	0.1139
160546	0.0000	0.0000	0.0000	0.0000
160547	0.2811	0.0166	-0.1838	-0.1111
160548	0.2629	-0.0236	0.1241	0.1281
160549	0.2824	0.0992	0.0303	0.2807
160550	0.4042	0.1520	0.2144	-0.0471
160551	0.2205	0.0731	0.5155	0.5977

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160552	0.3101	0.5026	0.2107	-0.1965
160553	0.1476	-0.0690	-0.0945	-0.3810
160554	0.2015	0.2326	0.2835	-0.0692
160555	0.3749	0.0000	0.0000	0.0000
160556	0.2813	0.0217	-0.1094	-0.1111
160557	0.3548	0.3032	0.0996	-0.0437
160558	0.2423	0.0606	-0.1316	0.0238
160559	0.2653	0.0290	-0.0088	-0.0474
160560	0.2133	0.0781	-0.0058	-0.3305
160561	0.2015	-0.2284	0.0000	0.0000
160562	-0.0636	0.0000	0.0000	0.0000
160563	0.1022	-0.0107	-0.1162	-0.1690
160564	0.2586	0.4015	0.2597	-0.1281
160565	0.1646	0.1414	0.1025	-0.1998
160566	0.2540	0.0478	0.1318	0.0898
160567	0.0320	-0.1033	-0.2558	-0.3873
160568	0.0281	0.1622	0.1962	0.3228
160569	0.2538	0.0063	0.1637	0.1852
160570	0.2961	0.1416	0.0312	-0.3330
160571	0.1201	-0.0584	-0.0736	0.1535
160572	0.2302	0.0584	0.0461	0.0332
160573	0.2998	-0.0015	-0.0251	-0.4287
160574	0.2106	-0.1929	0.0000	0.0000
160575	0.0609	0.1534	0.3550	0.1852
160576	0.0652	-0.1116	0.1558	0.1066
160577	0.1216	0.3236	0.1066	0.2058
160578	0.1544	0.1977	0.2561	0.4535

Item Discrimination Values for Examination $3 - C_{XI}$

Table C.2

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
159995	-0.1125	-0.0180	-0.0655	-0.0555
159996	-0.0017	0.0173	-0.1121	0.1118
159997	0.3494	0.0504	-0.0360	-0.0488
159998	0.3372	0.2062	0.2302	0.1236
159999	0.2592	0.2640	0.1734	-0.0075
160000	0.0715	0.0223	0.2313	0.2765
160001	-0.0636	0.0000	0.0000	0.0000
160002	0.1160	0.2518	0.2922	0.2142
160003	0.1235	-0.1785	-0.1647	-0.2173
160004	-0.0436	-0.0804	-0.1274	-0.3181
160005	0.4647	0.0249	-0.0535	0.1118
160006	0.4144	0.1844	0.2643	0.3548
160007	0.1342	-0.1009	-0.1442	-0.1101
160008	0.1732	-0.0133	0.0817	0.0674
160009	0.0014	0.2062	0.2302	0.3368
160010	0.1508	0.2103	0.2298	0.3296
160011	0.2503	0.2637	0.2922	0.2550
160012	-0.0345	0.0886	0.0519	-0.2330
160013	0.2169	0.1471	-0.0657	0.2722
160014	0.3356	0.4352	0.4008	0.0674
160015	0.1391	0.1174	0.0888	-0.1277
160016	0.1500	0.0173	-0.1249	-0.1159
160017	0.2353	0.0488	-0.0664	0.0350
160018	0.2385	0.1029	0.1250	0.1416
160019	0.1183	-0.0727	0.0360	0.1861
160020	0.1056	-0.1309	-0.2356	0.2828
160021	0.1994	-0.0539	0.0841	0.0477
160022	0.0000	0.0000	0.0000	0.0000
160023	0.0000	0.0000	0.0000	0.0000
160024	-0.0251	-0.1067	0.0302	0.0000
160025	0.1141	0.1172	0.1028	0.1697

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160026	0.1059	0.2839	0.3496	0.2722
160027	0.0230	0.0005	-0.0337	-0.1038
160028	0.2308	0.0482	-0.0029	-0.0824
160029	0.3289	0.1678	0.1261	-0.0360
160030	0.2980	0.2603	0.0137	0.1423
160031	0.2154	0.0522	0.2569	0.4330
160032	0.4353	0.2138	0.2906	0.2315
160033	-0.0930	-0.1229	-0.0952	-0.2416
160034	0.4090	0.2019	0.0608	0.1976
160035	0.2824	0.3741	0.3144	0.3932
160036	0.0739	0.0441	-0.0211	0.0154
160037	-0.0380	-0.2140	0.0000	0.0000
160038	0.0829	0.0478	0.0302	0.3487
160039	0.1151	0.1861	-0.0018	-0.0486
160040	-0.0036	0.0972	0.0259	-0.3030
160041	0.4053	0.1560	0.1443	0.1798
160042	0.1553	0.0727	0.0440	0.0098
160043	0.1101	0.2098	0.0753	0.2547
160044	0.1223	-0.2120	-0.0673	-0.0167
160045	0.1300	0.1483	0.1451	0.1697
160046	0.2300	0.1044	0.0372	-0.1179
160047	0.1708	0.1468	0.3210	0.4031
160048	0.2581	0.0140	0.0888	0.0674
160049	0.0586	0.0440	-0.0033	-0.1537
160050	0.2836	0.0000	0.0000	0.0000
160051	0.3579	0.3204	0.2585	-0.0797
160052	0.1241	0.1211	0.1915	0.0974
160053	0.2348	0.3454	0.1138	-0.1070
160054	0.1140	-0.1861	-0.2910	-0.4404
160055	0.2920	0.3076	0.3000	0.5385
160056	0.2966	0.2103	0.2298	-0.1531

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160057	0.3838	0.3311	0.2519	0.3635
160058	0.0012	-0.0677	-0.1423	0.0619
160059	0.2883	0.1162	0.0841	0.0098
160060	0.0000	0.0000	0.0000	0.0000
160061	0.2186	-0.1268	-0.4155	-0.4807
160062	0.1056	0.1638	0.1663	0.2173
160063	0.0365	0.2251	0.2625	0.1171
160064	0.2481	0.0229	0.1588	0.1530
160065	-0.0272	-0.0146	-0.0052	-0.1346
160066	-0.1009	0.1454	0.1249	0.1159
160067	0.0136	-0.1268	0.0605	-0.1946
160068	0.0390	-0.0161	-0.0458	-0.1101
160069	0.2224	0.1801	0.0334	-0.0824
160070	0.0423	-0.1425	-0.2585	-0.3836
160071	0.1943	0.0014	0.0465	0.0828
160072	0.2186	0.3454	0.4090	0.3380
160073	0.2013	0.3213	0.1974	-0.0652
160074	0.3289	0.0413	-0.0380	0.1976
160075	0.0000	0.0000	0.0000	0.0000
160076	0.1443	-0.2085	-0.3414	-0.5215
160077	0.0059	-0.1271	0.0149	0.1179
160078	0.1822	-0.1752	-0.3759	-0.3580
160079	0.3248	0.3544	0.2830	0.2582
160080	0.1056	-0.0851	-0.2121	-0.2453
160081	0.1882	0.4100	0.4888	0.4336
160082	0.1301	-0.0660	0.0097	-0.1695
160083	0.1376	0.0424	0.1407	0.2765
160084	0.2800	0.1017	-0.0957	0.3380
160085	0.1580	-0.0851	-0.1800	-0.0719
160086	0.1300	0.0684	-0.0977	0.0555
160087	0.1955	0.1308	0.0935	0.0154

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160088	-0.0804	-0.3558	-0.1655	0.0619
160089	0.2772	0.0621	0.0383	0.1261
160090	-0.0300	0.0693	0.2360	0.1171
160526	0.2836	0.2808	0.0000	0.0000
160527	0.2211	0.0629	0.0210	0.2315
160528	0.1479	-0.0851	-0.0241	-0.1199
160529	-0.0272	-0.1752	-0.0887	-0.0809
160530	0.1396	0.0272	0.0082	-0.1159
160531	0.1950	0.2776	0.2897	0.3688
160532	0.0518	0.0169	-0.0012	-0.0336
160533	0.2074	0.1035	0.0905	0.0619
160534	0.0000	0.0000	0.0000	0.0000
160535	0.2356	0.4433	0.4482	0.2668
160536	0.0713	0.1740	0.2568	0.3986
160537	0.2885	0.4596	0.3107	-0.1537
160538	0.1169	0.0318	0.0841	0.1798
160539	0.0901	0.0442	0.0587	-0.0694
160540	0.1639	0.0945	0.1164	0.2630
160541	0.3539	0.2127	0.0771	0.2198
160542	0.1824	0.0070	-0.1274	-0.1236
160543	0.0649	-0.0564	0.0243	-0.1101
160544	0.1833	-0.0821	-0.1348	-0.2630
160545	0.0954	0.1549	0.3949	0.1957
160546	0.0000	0.0000	0.0000	0.0000
160547	0.2811	0.0902	0.0259	0.0637
160548	0.2629	-0.0154	-0.1240	-0.3777
160549	0.2824	0.2642	0.3154	-0.0336
160550	0.4042	0.1331	0.1571	0.1256
160551	0.2205	0.1021	-0.0957	-0.0609
160552	0.3101	0.1894	0.2218	0.3380
160553	0.1476	0.0602	0.1309	0.0974

Item	Unrestricted	+/- 1.00 SD	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160554	0.2015	0.1488	0.1768	0.2722
160555	0.3749	0.0000	0.0000	0.0000
160556	0.2813	0.1544	0.1369	-0.0360
160557	0.3548	0.2098	0.2182	0.4002
160558	0.2423	0.1544	0.2661	0.0307
160559	0.2653	0.0617	0.1538	-0.0450
160560	0.2133	0.0478	0.0302	0.0066
160561	0.2015	-0.1151	-0.1793	0.0000
160562	-0.0636	0.0000	0.0000	0.0000
160563	0.1022	-0.0729	-0.0216	0.2615
160564	0.2586	0.2642	0.3154	0.2828
160565	0.1646	-0.0091	-0.0551	0.1171
160566	0.2540	0.1206	0.1138	0.0619
160567	0.0320	0.0440	-0.0033	-0.0926
160568	0.0281	0.2478	0.3104	0.0000
160569	0.2538	0.1172	-0.0724	-0.1946
160570	0.2961	0.1779	0.1588	0.1530
160571	0.1201	-0.0012	-0.2127	-0.2959
160572	0.2302	0.0752	0.1930	-0.1537
160573	0.2998	0.1286	-0.0445	0.0225
160574	0.2106	-0.0821	-0.1348	-0.2630
160575	0.0609	0.1861	-0.0018	-0.0486
160576	0.0652	0.0180	-0.0542	-0.0954
160577	0.1216	0.4867	0.4770	0.4420
160578	0.1544	0.2808	0.0000	0.0000

Item Discrimination Values for Examination $3 - C_{X2}$

Table C.3

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
159995	-0.1125	0.1628	0.3763	0.1530
159996	-0.0017	0.4277	0.3027	0.1976
159997	0.3494	0.2042	-0.0260	0.1848
159998	0.3372	0.1232	0.3508	0.2058
159999	0.2592	0.0069	0.0240	0.1122
160000	0.0715	-0.1042	-0.1651	0.1530
160001	-0.0636	0.0000	0.0000	0.0000
160002	0.1160	0.0330	-0.1430	-0.5412
160003	0.1235	0.1750	0.2161	0.4686
160004	-0.0436	-0.0705	-0.0794	-0.0071
160005	0.4647	0.4288	0.2920	0.8554
160006	0.4144	0.0522	-0.0825	0.0574
160007	0.1342	0.0166	0.0000	-0.1848
160008	0.1732	-0.0696	-0.0809	-0.1564
160009	0.0014	-0.2772	-0.3506	0.0000
160010	0.1508	0.0756	-0.3121	-0.4086
160011	0.2503	-0.1523	-0.1861	-0.0855
160012	-0.0345	0.2269	-0.1559	-0.1656
160013	0.2169	0.0786	0.1117	0.2058
160014	0.3356	0.0365	0.0674	-0.0128
160015	0.1391	0.1850	0.4143	0.1848
160016	0.1500	0.2453	0.0470	0.1275
160017	0.2353	-0.0055	-0.1861	-0.0855
160018	0.2385	0.0322	-0.1101	0.2933
160019	0.1183	-0.0236	-0.1853	-0.1782
160020	0.1056	-0.0034	0.0069	0.3869
160021	0.1994	-0.0321	0.1141	0.3300
160022	0.0000	0.0000	0.0000	0.0000
160023	0.0000	0.0000	0.0000	0.0000
160024	-0.0251	-0.0383	-0.0442	-0.2871
160025	0.1141	0.0021	0.0159	0.1497

Item Discrimination Values for Examination $3 - C_{X3}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160026	0.1059	-0.0909	-0.1101	-0.1656
160027	0.0230	0.2555	0.3345	0.4417
160028	0.2308	0.0747	0.2820	0.5418
160029	0.3289	0.0784	-0.0660	-0.1056
160030	0.2980	0.2654	0.3852	0.4782
160031	0.2154	-0.1445	-0.0393	-0.2232
160032	0.4353	0.1441	0.0449	0.0574
160033	-0.0930	0.0574	0.0955	-0.4026
160034	0.4090	0.2654	0.0747	0.0396
160035	0.2824	0.0524	0.0841	-0.6138
160036	0.0739	-0.0158	0.1430	0.5632
160037	-0.0380	0.0000	0.0000	0.0000
160038	0.0829	-0.0873	-0.1073	-0.4086
160039	0.1151	0.1083	0.1503	0.3869
160040	-0.0036	-0.0972	0.0240	-0.2678
160041	0.4053	0.4493	0.4644	0.5478
160042	0.1553	0.1020	-0.1101	-0.0442
160043	0.1101	-0.1615	-0.1995	-0.3375
160044	0.1223	0.3929	0.2336	0.3849
160045	0.1300	-0.0825	-0.0963	0.0247
160046	0.2300	-0.1413	-0.3490	-0.1848
160047	0.1708	-0.3253	-0.2820	-0.1122
160048	0.2581	0.0981	0.4607	0.3065
160049	0.0586	-0.1618	0.0189	-0.1656
160050	0.2836	0.3344	0.4402	0.5679
160051	0.3579	0.0321	0.0963	-0.0247
160052	0.1241	-0.2708	-0.2161	-0.1640
160053	0.2348	0.0505	0.2476	0.0396
160054	0.1140	0.2718	0.2065	0.2574
160055	0.2920	-0.1413	-0.0240	0.2678
160056	0.2966	0.3169	0.0757	-0.0071

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160057	0.3838	-0.0214	0.2625	0.4633
160058	0.0012	-0.1363	-0.1704	0.0000
160059	0.2883	0.2571	0.0159	-0.4280
160060	0.0000	0.0000	0.0000	0.0000
160061	0.2186	0.3752	0.4970	0.1152
160062	0.1056	-0.0298	-0.0275	0.0000
160063	0.0365	-0.1264	-0.1559	-0.1656
160064	0.2481	-0.0368	0.2359	0.4080
160065	-0.0272	-0.2933	-0.3714	-0.2871
160066	-0.1009	-0.1623	-0.0540	-0.5418
160067	0.0136	0.2337	0.3164	0.0247
160068	0.0390	0.0000	0.0000	0.0000
160069	0.2224	0.3586	0.1741	-0.0071
160070	0.0423	0.0863	0.1192	-0.0658
160071	0.1943	0.0069	0.0240	0.3849
160072	0.2186	0.0752	-0.2383	-0.4776
160073	0.2013	0.0522	0.1011	-0.2574
160074	0.3289	0.1832	0.2640	0.3300
160075	0.0000	0.0000	0.0000	0.0000
160076	0.1443	0.4053	0.5319	0.7490
160077	0.0059	0.2571	0.0159	0.1497
160078	0.1822	0.3455	0.0275	-0.2469
160079	0.3248	0.1042	0.2959	-0.0128
160080	0.1056	0.4407	0.0821	-0.0442
160081	0.1882	-0.1942	-0.1125	-0.3375
160082	0.1301	-0.0684	0.0606	0.0829
160083	0.1376	-0.2921	-0.1189	-0.0574
160084	0.2800	0.4020	0.5509	0.7655
160085	0.1580	0.1217	0.1651	0.0247
160086	0.1300	-0.2251	-0.1516	-0.1122
160087	0.1955	0.3720	0.2048	0.3849

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160088	-0.0804	-0.1852	-0.2335	0.0000
160089	0.2772	0.0841	-0.0449	-0.3634
160090	-0.0300	0.0193	0.0347	0.0247
160526	0.2836	0.3344	0.4402	-0.0442
160527	0.2211	0.1623	0.1990	-0.1497
160528	0.1479	-0.1289	0.0275	0.1988
160529	-0.0272	-0.3069	-0.3891	0.0000
160530	0.1396	-0.0418	-0.0359	-0.0829
160531	0.1950	-0.1032	-0.3144	-0.5412
160532	0.0518	0.0000	0.0000	0.0000
160533	0.2074	0.0490	0.0732	0.1152
160534	0.0000	0.0000	0.0000	0.0000
160535	0.2356	0.3365	0.2935	0.0000
160536	0.0713	-0.3692	-0.2279	-0.6184
160537	0.2885	0.3510	0.1759	-0.4782
160538	0.1169	-0.0386	0.1112	0.3849
160539	0.0901	0.2037	0.2959	0.2933
160540	0.1639	-0.0078	0.1466	0.4686
160541	0.3539	0.2877	0.2406	0.4752
160542	0.1824	0.0365	-0.1261	0.1497
160543	0.0649	0.1083	0.1503	-0.0855
160544	0.1833	0.4024	0.5239	0.0000
160545	0.0954	-0.1586	-0.1965	-0.4280
160546	0.0000	0.0000	0.0000	0.0000
160547	0.2811	-0.0321	-0.0260	0.1848
160548	0.2629	0.2475	0.3121	0.4086
160549	0.2824	0.1973	0.2658	-0.4280
160550	0.4042	0.1577	0.0636	0.0829
160551	0.2205	0.1020	0.1444	-0.1782
160552	0.3101	0.1958	0.2700	0.7770
160553	0.1476	0.1413	0.0240	0.0247

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 SD
160554	0.2015	0.0154	0.0275	0.1988
160555	0.3749	0.6888	0.5239	0.0000
160556	0.2813	0.0330	0.0069	-0.0855
160557	0.3548	0.2671	0.0606	-0.0855
160558	0.2423	-0.1068	-0.1261	-0.0071
160559	0.2653	0.1958	0.0732	0.1152
160560	0.2133	0.1973	0.5319	0.1988
160561	0.2015	0.5493	0.0000	0.0000
160562	-0.0636	0.0000	0.0000	0.0000
160563	0.1022	-0.0368	-0.0275	-0.0330
160564	0.2586	0.2344	0.4924	0.3849
160565	0.1646	0.0154	0.0275	0.3203
160566	0.2540	0.2864	-0.0039	0.0247
160567	0.0320	-0.1586	-0.0183	0.1988
160568	0.0281	0.0106	0.0189	-0.1656
160569	0.2538	0.3127	0.0347	0.1152
160570	0.2961	0.0400	0.0240	0.1122
160571	0.1201	-0.0069	-0.0240	0.0658
160572	0.2302	0.2200	0.1117	-0.1640
160573	0.2998	-0.1434	0.1430	0.6138
160574	0.2106	0.5493	0.0000	0.0000
160575	0.0609	0.0193	0.0347	0.1152
160576	0.0652	0.1441	0.1742	-0.3300
160577	0.1216	0.0810	-0.1853	-0.3379
160578	0.1544	0.0596	0.0821	-0.0442

Item Discrimination Values for Examination $3 - C_{X3}$

Table C.4

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
159995	-0.1125	-0.1515	0.0609	0.1748
159996	-0.0017	-0.1534	-0.3230	-0.2179
159997	0.3494	0.2456	0.1108	0.2144
159998	0.3372	0.2655	0.3618	0.2236
159999	0.2592	0.1381	0.1411	0.1371
160000	0.0715	-0.0351	-0.2648	-0.3753
160001	-0.0636	-0.1278	-0.2494	0.0000
160002	0.1160	0.0220	-0.0161	-0.1714
160003	0.1235	0.0614	-0.1134	-0.0947
160004	-0.0436	-0.0684	0.0882	0.2670
160005	0.4647	0.3704	0.2259	0.2488
160006	0.4144	0.3406	0.0537	0.1261
160007	0.1342	0.0433	0.1535	-0.1148
160008	0.1732	0.2487	0.1411	0.1371
160009	0.0014	0.1562	-0.0930	0.2236
160010	0.1508	0.1332	0.0572	0.3801
160011	0.2503	0.2372	-0.0686	0.0928
160012	-0.0345	-0.0837	0.1086	0.4677
160013	0.2169	0.1249	-0.0911	-0.1746
160014	0.3356	0.1489	0.1688	0.4516
160015	0.1391	0.0904	0.1971	0.1958
160016	0.1500	0.0395	0.0286	0.1824
160017	0.2353	0.3406	0.3292	0.2018
160018	0.2385	0.0519	0.0699	0.2542
160019	0.1183	0.2867	0.0658	-0.1514
160020	0.1056	0.0636	-0.2469	-0.2673
160021	0.1994	0.0351	0.0671	-0.2191
160022	0.0000	0.0000	0.0000	0.0000
160023	0.0000	0.0000	0.0000	0.0000
160024	-0.0251	-0.0865	-0.1688	-0.3094
160025	0.1141	0.1410	-0.1315	-0.0221

Item Discrimination Values for Examination $3 - C_{X4}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160026	0.1059	0.0673	-0.2494	0.0000
160027	0.0230	-0.1348	0.0887	0.3801
160028	0.2308	0.1164	0.2614	0.0947
160029	0.3289	0.2016	0.1515	0.1398
160030	0.2980	0.1099	0.0856	0.0522
160031	0.2154	0.2059	-0.0889	-0.3438
160032	0.4353	0.2836	0.0733	-0.0510
160033	-0.0930	-0.2132	-0.2163	-0.2297
160034	0.4090	0.2511	-0.0684	-0.0419
160035	0.2824	0.1248	-0.0384	-0.0949
160036	0.0739	0.2149	0.3432	0.2346
160037	-0.0380	-0.0740	-0.1439	-0.2542
160038	0.0829	0.1826	0.0144	-0.0153
160039	0.1151	0.0277	0.0671	0.0643
160040	-0.0036	-0.0875	0.2123	0.0153
160041	0.4053	0.2247	0.3350	0.2120
160042	0.1553	0.0190	0.2242	0.0203
160043	0.1101	0.2464	0.1201	0.1161
160044	0.1223	-0.0710	-0.0701	-0.0966
160045	0.1300	0.1661	-0.0686	0.0928
160046	0.2300	0.1515	0.1265	0.2166
160047	0.1708	0.3145	-0.1248	-0.1824
160048	0.2581	0.0806	0.1528	-0.1175
160049	0.0586	0.0298	0.2259	0.2644
160050	0.2836	0.0000	0.0000	0.0000
160051	0.3579	0.2550	0.0066	0.2909
160052	0.1241	0.0965	0.2025	0.0015
160053	0.2348	0.1863	0.3718	0.2652
160054	0.1140	0.0117	0.2894	0.1072
160055	0.2920	0.3703	0.1343	0.2475
160056	0.2966	0.0555	0.0965	0.0928

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160057	0.3838	0.3438	0.4976	0.2236
160058	0.0012	0.1526	0.0887	0.0682
160059	0.2883	0.2140	0.0856	0.0522
160060	0.0000	0.0000	0.0000	0.0000
160061	0.2186	0.0521	0.1087	0.0671
160062	0.1056	0.1597	0.2102	0.2652
160063	0.0365	0.0753	0.2254	0.3032
160064	0.2481	0.0790	0.0340	-0.3226
160065	-0.0272	0.0335	0.1914	0.3305
160066	-0.1009	-0.1216	-0.0066	-0.1134
160067	0.0136	-0.0820	-0.0413	-0.1539
160068	0.0390	0.0875	0.1727	0.2236
160069	0.2224	0.0820	0.0344	0.2220
160070	0.0423	-0.0521	0.0596	0.0015
160071	0.1943	0.1923	0.0853	0.0308
160072	0.2186	0.2338	-0.0384	-0.0949
160073	0.2013	0.2429	0.2322	0.5543
160074	0.3289	0.2511	-0.0905	-0.0783
160075	0.0000	0.0000	0.0000	0.0000
160076	0.1443	-0.0174	0.1353	0.1181
160077	0.0059	0.0351	-0.1347	-0.1510
160078	0.1822	0.0318	0.0701	-0.0235
160079	0.3248	0.1978	0.3073	0.1641
160080	0.1056	-0.1002	0.1101	0.0792
160081	0.1882	0.2174	0.1201	0.1439
160082	0.1301	0.0375	0.0733	-0.2166
160083	0.1376	0.1450	0.0991	-0.2166
160084	0.2800	0.1803	-0.0930	-0.1945
160085	0.1580	0.1909	0.1857	0.1958
160086	0.1300	0.1663	0.0428	-0.1748
160087	0.1955	0.1131	0.1093	0.4669

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160088	-0.0804	-0.1547	-0.3549	-0.3690
160089	0.2772	0.0912	0.0198	-0.0402
160090	-0.0300	-0.1330	-0.1315	-0.0221
160526	0.2836	0.0000	0.0000	0.0000
160527	0.2211	0.0573	0.0477	-0.1991
160528	0.1479	0.1909	0.2109	0.0098
160529	-0.0272	0.0708	-0.1234	-0.0179
160530	0.1396	0.0847	-0.1255	0.0827
160531	0.1950	0.2541	-0.0250	0.1398
160532	0.0518	0.1144	0.2254	0.3032
160533	0.2074	0.1546	0.0586	0.0354
160534	0.0000	0.0000	0.0000	0.0000
160535	0.2356	0.0222	-0.0399	0.0654
160536	0.0713	0.0388	-0.1038	-0.4054
160537	0.2885	-0.0677	0.2459	0.3078
160538	0.1169	-0.0576	-0.0173	0.0403
160539	0.0901	-0.0641	-0.2021	-0.1174
160540	0.1639	0.1748	-0.0576	-0.1174
160541	0.3539	0.1281	-0.0250	0.1398
160542	0.1824	0.1611	0.2504	0.0730
160543	0.0649	-0.1348	-0.1083	-0.2448
160544	0.1833	0.0336	0.0671	0.0643
160545	0.0954	-0.0515	-0.1966	-0.3338
160546	0.0000	0.0000	0.0000	0.0000
160547	0.2811	0.3158	0.2413	0.2642
160548	0.2629	0.1228	0.2683	0.1235
160549	0.2824	0.1144	0.2254	0.3032
160550	0.4042	0.2292	0.0767	-0.0557
160551	0.2205	0.1160	0.0025	-0.0751
160552	0.3101	0.1704	-0.2494	0.0000
160553	0.1476	0.1053	0.2494	0.0792

Item	Unrestricted	+/- 1.00 SD	+/- 0.75 SD	+/- 0.50 <i>SD</i>
160554	0.2015	0.2220	0.0000	0.0000
160555	0.3749	0.0000	0.0000	0.0000
160556	0.2813	0.2868	0.4625	0.2346
160557	0.3548	0.2664	-0.0551	-0.1370
160558	0.2423	0.2467	0.0384	0.1569
160559	0.2653	0.1597	0.1556	0.1371
160560	0.2133	0.0594	0.1201	0.2236
160561	0.2015	0.0067	0.0144	-0.0153
160562	-0.0636	-0.1278	-0.2494	0.0000
160563	0.1022	0.2429	0.0991	-0.0095
160564	0.2586	0.1070	0.3309	0.0000
160565	0.1646	0.1704	0.1344	0.1503
160566	0.2540	0.0555	0.1344	0.1503
160567	0.0320	0.1434	0.3197	0.4342
160568	0.0281	-0.2086	0.0000	0.0000
160569	0.2538	0.0784	0.2145	0.2599
160570	0.2961	0.1923	0.2856	0.1371
160571	0.1201	0.1228	0.1926	0.2024
160572	0.2302	-0.0027	0.1556	0.1371
160573	0.2998	0.2811	0.3786	0.3438
160574	0.2106	0.0336	0.0671	0.0643
160575	0.0609	0.0119	0.0671	0.0643
160576	0.0652	-0.1216	-0.1151	-0.0274
160577	0.1216	0.0708	-0.0930	0.2236
160578	0.1544	0.0000	0.0000	0.0000

Item Discrimination Values for Examination $3 - C_{X4}$

Table C.5

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
159995	-0.1125	0.0526	0.0388	0.0624
159996	-0.0017	0.3743	0.2466	0.7057
159997	0.3494	0.2443	0.5114	0.3119
159998	0.3372	0.2454	0.3812	0.2205
159999	0.2592	-0.1505	-0.6117	-0.1953
160000	0.0715	0.1734	0.1165	0.1871
160001	-0.0636	0.0000	0.0000	0.0000
160002	0.1160	-0.1681	0.2018	0.8090
160003	0.1235	0.4983	0.2202	0.5300
160004	-0.0436	-0.1832	-0.5157	-0.5300
160005	0.4647	0.8629	0.7721	0.5300
160006	0.4144	0.0681	0.2719	-0.2205
160007	0.1342	-0.1206	-0.1905	0.1871
160008	0.1732	-0.2353	-0.2202	-0.5300
160009	0.0014	0.0000	0.0000	0.0000
160010	0.1508	0.2096	0.7193	0.8090
160011	0.2503	-0.2308	0.0147	-0.1953
160012	-0.0345	0.3208	0.7193	0.8090
160013	0.2169	-0.0128	-0.4260	-0.3627
160014	0.3356	-0.3096	-0.3710	-0.4411
160015	0.1391	0.1206	-0.1942	-0.3119
160016	0.1500	0.1084	-0.0301	-0.2205
160017	0.2353	0.1538	0.1103	0.3529
160018	0.2385	0.2539	0.3495	-0.0882
160019	0.1183	0.2539	0.4272	0.6862
160020	0.1056	0.0984	-0.2466	-0.7057
160021	0.1994	-0.0201	-0.2908	-0.3088
160022	0.0000	0.0000	0.0000	0.0000
160023	0.0000	0.0000	0.0000	0.0000
160024	-0.0251	-0.2722	0.0000	0.0000
160025	0.1141	-0.0879	-0.2466	-0.7057

Item Discrimination Values for Examination $3 - C_{X5}$

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160026	0.1059	-0.1969	0.0000	0.0000
160027	0.0230	0.1796	0.0147	-0.1953
160028	0.2308	0.1502	-0.2908	-0.3088
160029	0.3289	0.0793	0.1905	0.4852
160030	0.2980	0.1889	-0.4709	-0.3529
160031	0.2154	-0.2136	0.1103	-0.3119
160032	0.4353	0.2919	0.5315	0.7057
160033	-0.0930	-0.5759	-0.4512	-0.5734
160034	0.4090	0.3746	0.1304	0.6862
160035	0.2824	-0.3331	-0.0673	0.3069
160036	0.0739	0.4877	0.3812	0.2205
160037	-0.0380	0.0000	0.0000	0.0000
160038	0.0829	-0.3475	0.0000	0.0000
160039	0.1151	0.0984	-0.2466	-0.0279
160040	-0.0036	-0.4156	-0.4260	-0.3627
160041	0.4053	0.6563	0.6919	0.3627
160042	0.1553	0.3764	0.2018	0.8090
160043	0.1101	-0.3465	-0.4550	0.0000
160044	0.1223	0.6155	0.6602	0.4411
160045	0.1300	-0.1241	-0.1028	-0.3627
160046	0.2300	-0.1206	0.1942	0.3119
160047	0.1708	-0.2030	-0.3510	-0.0624
160048	0.2581	0.2408	0.1103	-0.3119
160049	0.0586	-0.1969	0.0000	0.0000
160050	0.2836	0.2096	-0.0673	-0.4411
160051	0.3579	-0.2931	-0.3812	-0.2205
160052	0.1241	-0.2784	-0.1028	-0.3627
160053	0.2348	-0.1940	-0.6117	-0.1953
160054	0.1140	0.2855	0.1165	0.1871
160055	0.2920	0.0681	0.2719	-0.2205
160056	0.2966	0.1973	0.5606	0.4852

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160057	0.3838	0.3277	-0.1165	-0.1871
160058	0.0012	0.0000	0.0000	0.0000
160059	0.2883	0.2842	0.8296	0.8822
160060	0.0000	0.0000	0.0000	0.0000
160061	0.2186	0.1978	-0.2106	-0.1764
160062	0.1056	0.4054	0.3670	0.3069
160063	0.0365	-0.1969	0.0000	0.0000
160064	0.2481	-0.0681	-0.3495	-0.5614
160065	-0.0272	-0.2722	0.0000	0.0000
160066	-0.1009	-0.5016	-0.5916	-0.4366
160067	0.0136	0.1502	0.2018	-0.0441
160068	0.0390	0.0000	0.0000	0.0000
160069	0.2224	0.4092	0.3495	0.5614
160070	0.0423	-0.1797	-0.2202	-0.5300
160071	0.1943	0.0549	0.0224	-0.3088
160072	0.2186	-0.0635	0.7193	0.8090
160073	0.2013	-0.2855	-0.1165	-0.1871
160074	0.3289	0.2030	0.0388	0.0624
160075	0.0000	0.0000	0.0000	0.0000
160076	0.1443	0.3208	0.1121	-0.1764
160077	0.0059	0.2842	0.3510	0.0624
160078	0.1822	0.1502	0.2018	0.8090
160079	0.3248	-0.0929	0.0388	0.0624
160080	0.1056	0.3764	0.2018	0.8090
160081	0.1882	-0.0403	0.3670	0.3069
160082	0.1301	-0.2094	0.0224	-0.3088
160083	0.1376	-0.2919	0.0224	-0.3088
160084	0.2800	0.4505	-0.0301	-0.2205
160085	0.1580	-0.1241	0.0147	-0.1953
160086	0.1300	-0.4149	-0.5826	-0.3088
160087	0.1955	0.6155	0.6602	0.4411

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 SD	+/- 0.50 <i>SD</i>
160088	-0.0804	0.0000	0.0000	0.0000
160089	0.2772	-0.1734	-0.1942	0.3529
160090	-0.0300	-0.1241	-0.1028	-0.3627
160526	0.2836	0.2096	-0.0673	0.3069
160527	0.2211	0.0879	0.2466	0.0279
160528	0.1479	0.0290	-0.2202	-0.5300
160529	-0.0272	0.0000	0.0000	0.0000
160530	0.1396	-0.3498	-0.3710	-0.4411
160531	0.1950	-0.1681	0.2018	0.8090
160532	0.0518	0.0000	0.0000	0.0000
160533	0.2074	-0.0684	-0.1028	-0.3627
160534	0.0000	0.0000	0.0000	0.0000
160535	0.2356	0.0000	0.0000	0.0000
160536	0.0713	-0.6218	-0.6951	0.0000
160537	0.2885	0.0279	0.1165	0.8822
160538	0.1169	0.0549	-0.0673	-0.4411
160539	0.0901	0.1331	0.0388	0.0624
160540	0.1639	-0.0929	-0.4312	-0.8822
160541	0.3539	0.6161	0.1570	0.5734
160542	0.1824	0.2842	0.2707	0.6175
160543	0.0649	-0.2308	-0.5157	-0.5300
160544	0.1833	0.4054	0.3670	0.3069
160545	0.0954	-0.4021	0.0000	0.0000
160546	0.0000	0.0000	0.0000	0.0000
160547	0.2811	-0.1070	0.1121	-0.1764
160548	0.2629	0.3475	0.0000	0.0000
160549	0.2824	-0.0879	0.3670	0.3069
160550	0.4042	0.3498	0.3710	0.4411
160551	0.2205	-0.3244	-0.7721	-0.5300
160552	0.3101	0.2931	-0.0501	-0.5614
160553	0.1476	0.5016	0.6719	0.5614

Item	Unrestricted	+/- 1.00 <i>SD</i>	+/- 0.75 <i>SD</i>	+/- 0.50 <i>SD</i>
160554	0.2015	0.0290	-0.2202	-0.5300
160555	0.3749	0.7657	0.8296	0.8822
160556	0.2813	0.1538	0.0301	0.2205
160557	0.3548	0.3680	0.7521	0.6862
160558	0.2423	-0.1832	0.1321	-0.0279
160559	0.2653	0.3407	0.4709	0.3529
160560	0.2133	0.3208	0.1121	-0.1764
160561	0.2015	0.6313	0.7193	0.8090
160562	-0.0636	0.0000	0.0000	0.0000
160563	0.1022	-0.0032	0.1103	-0.3119
160564	0.2586	0.2842	0.2707	-0.0624
160565	0.1646	0.1043	-0.1028	-0.3627
160566	0.2540	0.2931	0.3812	0.2205
160567	0.0320	0.0290	-0.2202	-0.5300
160568	0.0281	-0.1969	0.0000	0.0000
160569	0.2538	0.3407	0.0301	0.2205
160570	0.2961	0.2030	0.4312	0.1871
160571	0.1201	-0.1026	-0.1121	0.1764
160572	0.2302	0.1104	0.4709	0.3529
160573	0.2998	0.2094	-0.2018	-0.8090
160574	0.2106	0.6313	0.7193	0.8090
160575	0.0609	-0.0684	-0.5157	-0.5300
160576	0.0652	0.0201	0.2908	0.3088
160577	0.1216	-0.1084	0.1905	0.4852
160578	0.1544	-0.1216	-0.4550	0.0000

Item Discrimination Values for Examination $3 - C_{X5}$

REFERENCES

- Alsawalmeh, Y., & Feldt, L. (1994). A modification of Feldt's test of the equality of two dependent alpha coefficients. *Psychometrika*, 59(1), 49-57.
- American Educational Research Association, American Psychological Association, National Council on Measurement in Education. (1999). *Standards for educational and psychological testing*. Washington, DC: American Psychological Association.
- American National Standards Institute. (2013). *ANSI Overview*. Retrieved from http://www.ansi.org/about_ansi/overview/overview.aspx?menuid=1.
- Atkinson, D. (2012). Legal issues and considerations for standard setting. In G. J. Cizek (Ed.), Setting performance standards: Foundations, methods, and innovations (2nd ed.) (pp. 485-501). New York: Routledge.
- Barnhart, H.X., & Williamson J.M. (2002). Weighted least-squares approach for comparing correlated kappa, *Biometrics*, 58, 1012–1019.
- Beuchert, A. K., & Mendoza, J. L. (1979). A Monte Carlo comparison of ten discrimination indices. *Journal of Educational Measurement*, 16(2), 109-117.
- Brennan, R. L. (1972). A generalized upper-lower item discrimination index. *Educational* and *Psychological Measurement*, 32, 289-303.
- Buckendahl, C. W., & Davis-Becker, S. L. (2012). Setting passing standards for credentialing programs. In G. J. Cizek (Ed.), *Setting performance standards: Foundations, methods, and innovations* (2nd ed.) (pp. 485-501). New York: Routledge.
- Burton, R. (2001). Do item-discrimination indices really help us to improve our tests? *Assessment and Evaluation in Higher Education*, *26*(3), 213-20.
- Cizek, G. J. (2012a). An introduction to contemporary standard setting. In G. J. Cizek (Ed.), *Setting performance standards: Foundations, methods, and innovations* (2nd ed.) (pp. 3-14). New York: Routledge.
- Cizek, G. J. (2012b). Defining and distinguishing validity: Interpretations of score meaning and justification of test use. *Psychological Methods*, *17*(1), 31-43.
- Clauser, B. E., Margolis, M. J., & Case, S. M. (2006). Testing for licensure and certification in the professions. In R. L. Brennan (Ed.). *Educational measurement* (4th ed.) (pp. 701-732). Westport, CT: Praeger.
- Cohen, Jacob (1960). A coefficient of agreement for nominal scales. *Educational and Psychological Measurement* 20(1), 37–46.

- Crocker, L., & Algina, J. (2008). *Introduction to classical and modern test theory*. Mason, OH: Cengage Learning.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, *16*, 297-334.
- Diedenhofen, B. (2013). *cocron: Statistical comparisons of two or more alpha coefficients* (Version 0.01-5). Retrieved from http://r.birkdiedenhofen.de/pckg/cocron/.
- Donner, A., Shoukri, M., Klar, N., & Bartfay E. (2000). Testing the equality of two dependent kappa statistics. *Statistics in Medicine*, 19, 373-387.
- Downing, S. M. (2006). Twelve steps for effective test development. In S. M. Downing & T. M. Haladyna (Eds.), *Handbook of test development* (pp. 3-25). Mahwah, NJ: Erlbaum.
- DuBois, P. H. (1970). A history of psychological testing. Boston: Allyn and Bacon.
- Ebel, R. L. (1965). *Measuring educational achievement*. Englewood Cliffs, NJ: Prentice Hall.
- Ebel, R. L. (1967). The relation of item discrimination to test reliability. *Journal of Educational Measurement, 4*(3), 125-128.
- Fan, X. (1998). Item response theory and classical test theory: An empirical comparison of their item/person statistics. *Educational and Psychological Measurement*, 58(3), 357-381.
- Farish, S. J. (1984). Investigating item stability: An empirical investigation into the variability of item statistics under conditions of varying sample design and sample size. Occasional Paper No. 18. Hawthorn, Australia: Australian Council of Educational Research.
- Fletcher, T. D. (2010). *Psychometric: Applied psychometric theory*. Retrieved from http://CRAN.R-project.org/package=psychometric.
- Fleiss, J. L. (1981). *Statistical methods for rates and proportions* (2nd ed.), New York: Wiley.
- Fox, J., & Weisberg, S. (2011). An {R} companion to applied regression (2nd ed.). Thousand Oaks CA: Sage.
- García Ballester, L., McVaugh, M. R., & Rubio-Vela, A. (1989). *Medical licensing and learning in fourteenth-century Valencia*. Philadelphia: American Philosophical Society.

- Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. *Psychometrika*, 24, 95-112.
- Haertel, E. H. (2006). Reliability. In R. L. Brennan (Ed.). *Educational measurement*, 4th ed. (pp. 65-110). Westport, CT: Praeger.
- Hambleton, R. K., & Jones, R. W. (1993). Comparison of classical test theory and item response theory and their applications to test development. *Educational Measurement: Issues and Practice*, 12(3), 38-47.
- Hambleton, R. K., & Novick, M. R. (1973). Toward an integration of theory and method for criterion-referenced tests. *Journal of Educational Measurement*, 10, 159-170.
- Harris, D. J., & Subkoviak, M. J. (1986). Item analysis: A short-cut statistic for mastery tests. *Educational and Psychological Measurement*, 46, 495-507.
- Huck, S. W. (2008). Reading statistics and research (5th ed.). Boston, MA: Pearson.
- Hunyh, H. (1976). On the reliability of decisions in domain-referenced testing. *Journal of Educational Measurement*, 13, 253-264.
- International Organization for Standardization. (2013). *About ISO*. Retrieved from http://www.iso.org/iso/home/about.htm.
- Jones, P., Smith, R. W., & Talley, D. (2006). Developing test forms for small-scale achievement testing systems. In S. M. Downing & T. M. Haladyna (Eds.), *Handbook* of test development (pp. 487-526). Mahwah, NJ: Erlbaum.
- Kane, M. T. (1992). An argument-based approach to validity. *Psychological Bulletin*, 112(3), 527-535.
- Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. *Journal of Educational Psychology*, *30*(1), 17-24.
- Lipsitz, S. R., Williamson, J., Klar, N., Ibrahim, J., & Parzen, M. (2001). A simple method for estimating a regression model for κ between a pair of raters. *Journal of the Royal Statistical Society*, *164*(3), 449-465.
- Livingston, S. A. (2006). Item Analysis. In S. M. Downing & T. M. Haladyna (Eds.), Handbook of test development (pp. 421-441). Mahwah, NJ: Erlbaum.
- Lord, F. M., & Novick, M. R. (1968). *Statistical theories of mental test scores*. Reading, MA: Addison-Wesley.

- Luecht, R. M. (2006). Designing tests for pass-fail decisions using item response theory. In S. M. Downing & T. M. Haladyna (Eds.), *Handbook of test development* (pp. 575-598). Mahwah, NJ: Erlbaum.
- Mauchly, J. W. (1940). Significance test for sphericity of a normal n-variate distribution. *The Annals of Mathematical Statistics*, 11(2), 204-209.
- McKenzie, D. P., Mackinnon, A. J., Peladeau, N., Onghena, P., Bruce, P., Clark, D., ... McGorry, P. D. (1996). Comparing correlated kappas by resampling: Is one level of agreement significantly different than another? *Journal of Psychiatric Research*, 30(6), 483-492.
- Meyer, J. P. (2013). *jMetrik*. Retrieved from http://www.itemanalysis.com/index.php.
- Millman, J., & Greene, J. (1989). The specification and development of tests of achievement and ability. In R. L. Linn (Ed.), *Educational Measurement* (3rd ed.). Washington, DC: American Council on Education.
- No Child Left Behind (NCLB) Act. (2002). P.L. 107-110.(20 U.S.C. 6301-6578).
- Odueyungbo, A., Thabane, L., & Marlke-Reid, M. (2009). Tips on overlapping confidence intervals and univariate linear models: Adefowope Odueyungbo, Lehana Thabane and Maureen Markle-Reid discuss ways to improve estimates from various linear regression models and derive findings when confidence intervals overlap. *Nurse Researcher*, 16(4), 73.
- Oosterhof, A. C. (1976). Similarity of various item discrimination indices. *Journal of Educational Measurement*, *13*(2), 145-150.
- Pearson, K. (1909). On a new method of determining a correlation between a measured character of A and a character of B, of which only the percentage of cases wherein B exceeds (or falls short of) intensity is recorded for each grade of A. *Biometrika*, 7, 96-105.
- R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
- Raymond, M., & Neustel, S. (2006). Determining the content of credentialing examinations. In S. M. Downing & T. M. Haladyna (Eds.), *Handbook of test development* (pp. 181-224). Mahwah, NJ: Erlbaum.
- Reise, S. P., & Yu, J. (1990). Parameter recovery in the graded response model using MULTILOG. *Journal of Educational Measurement*, 27(2), 133-144.

- Revelle, W. (2013) *psych: procedures for personality and psychological research*. Northwestern University, Evanston, IL. Retrieved from http://CRAN.R-project.org/package=psych Version = 1.3.2.
- Schmeiser, C. B., & Welch, C. J. (2006). Test development. In R. L. Brennan (Ed.). *Educational measurement* (4th ed.) (pp. 307-354). Westport, CT: Praeger.
- Subkoviak, M. J. (1976). Estimating reliability from a single administration of a criterionreferenced test. *Journal of Educational Measurement*, 13, 265-275.
- Subkoviak, M. J. (1978). Empirical investigation of procedures for estimating reliability for mastery tests. *Journal of Educational Measurement*, 15, 111-116.
- Swaminathan, H., Hambleton, R. K., & Algina, J. (1974). Reliability of criterion referenced tests: A decision theoretic formulation. *Journal of Educational Measurement*, 11, 263-268.
- Thorndike, R. L. (1982). Applied psychometrics. Boston: Houghton Mifflin.
- Williamson, J. M., Lipsitz, S. R., & Manatunga, A. K. (2000). Modeling kappa for measuring dependent categorical agreement data. *Biostatistics*, 1(2), 191-202.
- Yen, W. M., & Fitzpatrick, A. R. (2006). Item response theory. In R. L. Brennan (Ed.). *Educational measurement* (4th ed.) (pp. 111-153). Westport, CT: Praeger.