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ABSTRACT 

PHIMON ATSAWASUWAN: Lysyl Oxidase Regulates Transforming Growth Factor-ß1 

Function in Bone 
(under the direction of Mitsuo Yamauchi) 

 

Lysyl oxidase (LOX), an amine oxidase critical for the initiation of collagen and 

elastin cross-linking, has recently been shown to regulate cellular activities possibly by 

modulating growth factor activity. In this study, we discovered that osteoblastic (MC3T3-

E1) cell-derived clones expressing higher (S) levels of LOX exhibited smaller collagen 

fibrils and lower collagen production than controls (MC, EV) while the clones expressing 

lower (AS) levels of LOX exhibited larger collagen fibrils and higher amount of collagen 

leading to subsequent defective mineralization. In order to elucidate the mechanisms by 

which collagen synthesis is controlled through LOX, we investigated the potential role of 

LOX in regulating growth factors. We further investigated the interaction of LOX with 

TGF-ß1, a potent growth factor abundant in bone, and evaluated the effect of this 

interaction.  The specific binding between LOX and TGF-ß1 was demonstrated both by 

immunoprecipitation and glutathione-S-transferase pull down assay. Both molecules 

were co-localized in the extracellular matrix in culture and the binding complex was 

identified in the mineral-associated fraction of bone matrix. Furthermore, LOX 

suppressed TGF-ß1 induced Smad3 phosphorylation and collagen (I/V) expression but 

the effects were nullified by ß-aminopropionitrile. The suppression of Smad3 

phosphorylation was not affected by the presence of catalase. The data indicate that 

LOX may bind to mature TGF-ß1 and regulate its signaling via its amine oxidase activity 

in bone, thus, may play an important role in bone remodeling and mineralization. 
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CHAPTER I 

Introduction 

Biology of bone 

Bone is a specialized form of connective tissue in vertebrates. It serves both 

mechanical and metabolic functions and is composed of two components, cellular and 

matrix components. The cellular components include bone lining cells, osteoblasts, 

osteocytes and osteoclasts while its matrix components contain organic and inorganic 

components (1, 2). Morphologically, bone is characterized either as cortical (compact) or 

as cancellous (spongy, trabecular) bone. Functionally, cortical bone provides mechanical 

resistance and strength while cancellous bone serves for mineral homeostasis and 

mechanical strength. The bone homeostatic events include bone formation, resorption 

and remodeling. 

Cellular components of bone 

The cellular components of bone are osteoblasts, osteocytes, bone lining cells 

and osteoclasts (1, 3). Osteoblasts, osteocytes and bone lining cells are derived from 

mesenchymal stem cells known as osteoprogenitor cells, whereas osteoclasts are 

derived from hematopoietic stem cells. Osteoblasts, osteocytes and bone lining cells are 

located along the surface of bone while osteocytes are located in lacuna inside the bone 

matrix (2, 3). Osteoblasts are derived from undifferentiated mesenchymal cells or 

preosteoblasts that are located in the bone marrow, endosteum and periosteum (see 

review in (4)). Bone lining cells cover most surfaces in the mature bone. They are 
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inactive and sometimes called resting osteoblasts (1, 3). The third cell type, osteocyte, is 

estimated to make up more than 90% of the bone cells in an adult bone. Immature 

osteocytes are surrounded in shallow bone matrix and closely resemble osteoblasts. As 

these cells mature and more matrices are laid down, they become located deeper within 

the bone matrix and lose their cytoplasm. They are located within a space or lacuna and 

have long cytoplasmic processes that project through canaliculi within the matrix and 

that contact processes of adjacent cells. The processes are thought to be for cellular 

communication and nutrition within a mineralized matrix (1, 2, 5). The fourth cellular 

component is the osteoclast. It is a multinucleated giant cell responsible for bone 

resorption under normal and pathological conditions. It contains many lysosomal 

vacuoles exhibiting the common description of the foamy cytoplasm. The plasma 

membrane of the active osteoclast has an infolded appearance known as a ruffled 

border. It works as a seal to create microenvironment for bone resorption (3, 6). For the 

development of osteoclast, crosstalk between osteoblasts and osteoclasts must exist to 

coordinate the process of bone formation and resorption. Osteoprotegerin (OPG) was 

discovered to be secreted by osteoblasts and acts as a soluble competitive binding 

partner for RANKL (receptor/activator of NF-B ligand), which inhibits osteoclast 

formation and consequently bone resorption. Both OPG and RNAKL can bind to RANK 

(receptor/activator of NF-B); a transmembranous receptor expressed on osteoclast 

precursor cells.  Interaction between RANKL and RANK initiates a signaling and gene 

expression cascade resulting in the promotion of osteoclast formation from the precursor 

pool (7-9).  
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Extracellular components of bone 

The extracellular matrix (ECM) in bone is composed of organic and inorganic 

components. The organic matrix accounts for approximately 35% of the total weight of 

bone tissue compared with 65% for the inorganic part (3).  

The inorganic component is generally referred to as hydroxyapatite 

(Ca10(PO4)6(OH)2), a plate-like crystal 20-80 nm in length and 2-5 nm thick. Because 

bone apatite is four times smaller than naturally occurring apatites and less perfect in 

structure, it is more reactive and soluble and facilitates chemical turnover (10).  

The freshly synthesized matrix prior to its mineralization, osteoid, consists 

primarily (approximately 94%) of collagen type I and is secreted by osteoblasts. Major 

non-collagenous proteins in bone consist of proteoglycans. In addition to their role in 

defining the spatial organization of the ECM, type I collagen interacts with growth factors 

during the development (11). Osteocalcin, osteopontin, osteonectin and matrix-gla 

protein play roles during the mineralization process (12, 13). Other proteins such as 

bone morphogenic proteins, growth factors, cytokines, and adhesion molecules also play 

roles in bone homeostasis (11).  

Collagens in bone 

Collagens are a large family of structurally related proteins that assemble in the 

ECM and contain one or more domain(s) of unique triple helices (collagenous domain). 

This collagenous domain, the hallmark of these proteins, is a coiled-coil right-handed 

triple helix composed of three polypeptide chains, called  chains. The non-triple helical 

domains are called non-collagenous domains. Each  chain in the molecule is coiled into 

an extended left-handed polyproline II-type helix and then the three left-handed helical  
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chains are intertwined to one another and folded into a ropelike right-handed triple helix 

structure (14). The triple helical structure is stabilized by the high content of imino acids, 

i.e. proline (Pro) and hydroxyproline (Hyp) and the presence of Hyp is essential for 

interchain hydrogen bonds that further stabilize the triple helical structure. Collagen 

molecules consist of the repetitive sequences of amino acids [Gly(glycine)-XY]n (X and Y 

can be any amino acid but often X is Pro and Y Hyp) are required. Every third amino 

acid is situated in the center of the triple helix in a very restricted space where only Gly, 

the smallest amino acid, can fit (15). Collagen is the most abundant protein in 

vertebrates accounting for about 30% of the body’s total proteins and is present in 

essentially all tissues and organs of the body. The collagen superfamily consists of 27 

different genetic types and these distinct types of collagen show marked diversity and 

complexity in the structure, their biological function and tissue distribution. The collagen 

superfamily can be divided roughly into 3 groups: fibril forming (type I, II, III, V, XI, XXIV 

and XXVII), fibril-associated collagen with interrupted triple helices (FACIT) (type IX, XII, 

XIV, XVI, XIX, XX, XXI, XXII and XXVI), and non-fibril forming (type IV, VI, VII, VIII, X, 

XIII, XV, XVII, XVIII, XXIII, XXV and XXVI)(15-19). In bone, type I collagen is the most 

predominant type of collagen and type V collagen is present as a minor type. Type I 

collagen is a heterotrimeric molecule composed of two 1 chains and one 2 chain, 

[1(I)]22(I), although a homotrimeric form of 1 chains [1(I)]3, does exist as a minor 

form. The precursor molecule called tropocollagen consists of three domains: the NH2-

terminal nontriple helical (N-telopeptide), the central triple helical and the COOH-terminal 

nontriple helical (C-telopeptide) domains. The procollagen is secreted outside the cell as 

its precursor form. Proteolytic cleavage of the propeptides results in mature collagen 

molecules and can assemble into fibrils (20-22). The biosynthesis of procollagen is a 

complex process in which several enzymes and molecular chaperones assist its folding 
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and trimerization (23, 24). A number of posttranslational modifications occur both at 

intra- and extracellular locations. Protein disulphide isomerase (PDI) induces the 

formation of inter- and intrachain disulphide bonds within the C-propeptide, allowing the 

association between procollagen chains (25, 26). The C-propeptide ensures the 

association between monomeric and heteromeric procollagen chains. Newly synthesized 

procollagen chains are associated in trimers through their C-propeptides, leading to 

nucleation and folding in a C-to-N direction to form a triple helix. The biosynthesis of 

procollagen involves different posttranslational modifications that occur in the 

endoplasmic reticulum: peptidylproline cis-trans isomerase is required to convert the 

proline residues to the trans form (27, 28), and prolyl 4-hydroxylase is required to 

convert proline into hydroxyproline residues (29, 30). The family of lysyl hydroxylase 

(LH) contributes to the formation of hydroxylysine, which specific residues at telopeptide 

can subsequently be further modified by lysyl oxidases (LOXs). The collagen chaperone 

heat shock protein (HSP) 47 is also required for the folding of the collagen (31, 32). All of 

the enzymes responsible for these modifications work in a coordinated fashion to ensure 

the folding and assembly of a correctly aligned and thermally stable triple-helical 

molecule. During the secretion of these molecules into the ECM, propeptides are 

removed by procollagen N- and C- proteinases (NCP and PCP), thereby allowing 

spontaneous self-assembly of collagen molecules into fibrils (33). Finally, the triple-

helical structure is stabilized by an important posttranslational modification that allows 

intra/intermolecular cross-links to take place as a result of the catalysis of lysyl oxidase 

(LOX), which oxidizes the specific lysine (Lys) and hydroxylysine (Hyl) residues at the 

telopeptidyl domains of collagen molecules (Figure 1.1)(15, 34-36). 
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Figure 1.1 Schematic for the biosynthesis of type I collagen. The upper part shows the 

intracellular events and the lower part shows the extracellular events. The intracellular events 

include extensive post-translational modifications such as Pro- or Lys- hydroxylation, 

glycosylation, association of pro  chains and folding into a triple helical molecule from the C- to 

N-terminus. The extracellular events involve the removal of both N- and C-propeptides, self-

assembly of collagen molecules into fibril, enzymatic oxidative deamination of lysine and 

hydroxylysine residues by lysyl oxidase (LOX) and subsequent intra- and intermolecular covalent 

cross-linking (15). 

Cross-linking pathway 

The process of cross-linking is initiated by the oxidative deamination of ε-amino 

groups on peptidyl Lys and Hyl residues in the N- and C-terminal telopeptides of 

collagen and Lys in elastin (34, 37). This reaction generates 5-amino-5-carboxypentanal 

[(α-aminoadipic acid-δ-semialdehyde) (Lysald)] and 2-hydroxy-5-amino-5-
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carboxypentanal [(δ-hydroxy, α-aminoadipic acid-δ-semialdehyde) (Hylald)] and ammonia 

(NH3) and hydrogen peroxide (H2O2) (Figure 1.2), and initiates a series of condensation 

reactions forming covalent intra- and intermolecular cross-links (15, 38, 39). Covalent 

intermolecular cross-linking is essential to provide the tissues with mechanical properties 

to perform their structural functions. In collagen, once the aldehydes (either Lysald or 

Hylald) are formed by the action of LOX in the C- and the N- telopeptide domains, they 

undergo a series of condensation reactions involving another aldehyde in the same 

molecule and/or the juxtaposed Lys, Hyl and histidine (His) residues on the neighboring 

molecules. The results are the formation of covalent intra- and intermolecular cross-links 

as shown in figure 1.3 (15, 38-40). The cross-linking chemistry/pattern varies from tissue 

to tissue rather than particular collagen types since a number of tissue specific factors 

govern the chemistries. Depending on the state of hydroxylation of Lys residues at 

telopeptides, two major cross-linking pathways evolved Lysald and Hylald pathways. 

Besides the enzymatic cross-linking mentioned above, the non-enzymatic cross-linking 

of collagen has also been taken place (see review in (41-44)).    

 

Figure 1.2 The sites and reaction of LOX on collagen molecules. The specific Lys or Hyl at 

telopeptidyl domain of a collagen molecule which can be oxidized by LOX and the reaction of 

LOX oxidation in the presence of oxygen (O2) and water (H2O). The end products are Lys
ald

 or 

Hyl
ald

, ammonia (NH3) and hydrogen peroxide (H2O2)(15). 
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The Lysald pathway, a major cross-link pathway in non-mineralized tissues, leads 

to the formation of a tetravalent cross-link, dehydrohistidinohydroxymerodesmosine 

(deH-HHMD, Lysald x Lysald x His x Hyl) via intramolecular aldol condensation product 

(ACP), and a trivalent stable cross-link, histidinohydroxylysinonorleucine (HHL, Lysald x 

Hyl x His) via the iminium cross-link, dehydro-hydroxylsinonorleucine (deH-HLNL, Lysald 

x Hyl). ACP (α,ß-unsaturated aldol) occurs as an intramolecular cross-link located in the 

N-telopeptide domain of the molecule (45, 46). Then Michael addition of N3 imidazole of 

His to the ß-carbon of ACP resulting as aldolhistidine and further condenses with ε-

amino group of Hyl forming an iminium bond to produce deH-HHMD (46). The deH-

HHMD is abundant in skin. Lysald located in the C- and N-telopeptide domains can also 

cross-link to the juxtaposed ε-amino group of helical Hyl or Lys on the neighboring 

molecules to form iminium intermolecular cross-links, deH-HLNL. Then deH-HLNL 

further condenses with a helical His residue and forms the HHL cross-link (47). This HHL 

cross-link is abundant in skin and cornea (48) but minimal in skeletal tissues such as 

dentin, bone, ligament and tendon (49). 

The Hylald pathway, a major cross-link pathway in skeletal tissues such as bone, 

cartilage, tendon and dentin leads to the formation of bifunctional cross-links; dehydro-

dihydroxylysinonorleucine (deH-DHLNL, Hylald x Hyl) and deH-HLNL (Hylald x Lys), and 

condenses to tri-functional cross-links; pyridinoline (Pyr, Hylald x Hyl x Hylald), pyrrole (Prl, 

Hylald x Hyl x Lysald), deoxy-pyridinoline (d-Pyr, Hylald x Lys x Hylald), and deoxy-pyrrole 

(d-Prl, Hylald x Lys x Lysald) (15). The deH-DHLNL can spontaneously form its 

ketoamines by Amadori arrangement, and further matures into Pyr by involving Hylald or 

another deH-DHLNL/or its ketoamine (38). Prl can be formed by pairing deH-DHLNL 

with Lysald. This cross-link pathway also leads to deH-HLNL (Hylald x Lys) which further 

condenses with Hylald to form d-Pyr or condenses with Lysald to form d-Prl (15). As 
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described above, the final post-translational modification of collagen is cross-linking 

formation and this process is initiated by LOX enzymes. 

 

Figure 1.3 Major cross-linking pathways in type I collagen. L.H.: Lysyl hydroxylase, LOX: Lysyl 

oxidase, ACP: Aldol condensation product (Intramolecular cross-link), deH: dehydro HLNL: 

hydroxylysinonorleucine, DHLNL: dihydroxylysinonorleucine, HHMD: 

histidinohydroxymerodesmosine, HHL: histidinohydroxylysinonorleucine, Pyr: pyridinoline, d-: 

deoxy, Prl: pyrrole. (15) 

Lysyl oxidases 

Lysyl oxidases (LOXs; EC1.4.3.13; protein-lysine 6-oxidases) are extracellular 

copper (Cu2+)-dependent amine oxidases that oxidize the ε-amino groups on the specific 

Lys and Hyl of collagen and Lys in elastin (34, 37). This enzyme was first demonstrated 

its activity in vitro in 1968 (50) but many studies on this enzyme were limited by its 

marked insolubility and aggregation which later was solved by solubility and stability in 

urea (51). The molecular mass of the enzyme from tissues such as cartilage, aorta, lung, 

placenta and skin was found to be approximately 32 kDa (52-56). Lysyl oxidase 

extracted from several tissues resolved upon DEAE chromatography into multiple forms 
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(57). This suggested the existence of alternative spliced or the presence of isozymes 

with similar but not identical properties. The human LOX gene is located in chromosome 

5q23.3-31.2 encoding a 417 amino acid polypeptide, of which the first 21 residues 

correspond to the signal peptide (58, 59) and the mRNA for human LOX is found as 

multiple species with sizes of 5.5, 4.3, 2.4 and 2.0 kb due to the use of alternate 

polyadenylation sites, and partially to the existence of multiple transcription initiation 

sites (58-60). The mouse Lox gene has been mapped to chromosome 18 (61-63). 

Biosynthesis and processing of the LOX precursor 

LOX protein is secreted into the extracellular space (64-68). The biosynthesis of 

LOX proenzyme has been first proved by immunoprecipitation of a 46 kDa cell-free 

translation product of a rat smooth muscle cell LOX mRNA, using an antibody raised 

against the 32 kDa bovine enzyme (69, 70), and a 48 kDa product, using mRNA isolated 

from fibrotic rat liver (71). Three forms of LOX with molecular masses of 50, 47, and 32 

kDa were identified by immunoprecipitation of media and cell layer extracts of cultured 

rat smooth muscle cells, which were pulse-labelled with [35S] methionine (72). The 50 

kDa product was found both as a secreted protein in the cell medium and in the 

intracellular fraction, and pulse-chase studies revealed that it is converted to a 32 kDa 

protein in the medium. The LOX protein is synthesized as a N-glycosylated derivative of 

the 45 kDa proprotein (72), ~50 kDa proLOX by various cell types including 

normal/transformed fibroblasts, endothelial cells, smooth muscle cells and osteoblasts 

(73-79). The mouse and rat propeptide domain contains two consensus sites for the 

posttranslational N-glycosylation (72). The 32 kDa active enzyme, LOX, contains the 10 

cysteine residues of proLOX, all of which exist in disulfide linkage (80). The secreted 

proLOX is catalytically quiescent but is activated through proteolytic cleavage by 

procollagen C-proteinases (PCP/BMP1) between residue Gly168 and Asp169 (numbered 
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according to the human sequence) (81, 82), that may occur at cell surface in a bound 

complex with cellular fibronectin (83). It was also found that other extracellular 

proteases, including mammalian tolloid (mTLD) and tolloid-like-1 and 2 proteases 

(mTLL-1 and -2) cleaved proLOX at the correct physiological site but at lower efficiency 

(84). The N-terminal propeptide of LOX has been implicated in regulating the localization 

of the enzyme within the specific matrix (85) and reversion of ras-transformed cells to 

the non-oncogenic phenotype (86). 

The C-terminal of human LOX is homologous to the N-terminal extracellular 

domain of the growth factor and cytokine receptor superfamily and this domain overlaps 

the catalytic site. The consensus sequence found in the N-terminal modules of Class 1 

receptors, C-x9-C-x-W-x26-32-C-x10-13-C (where C is cysteine, W is tryptophan, and Xn is a 

defined number of any amino acid), is conserved in human LOX (87). The cytokine 

receptor module is known to play an adhesion role in several proteins of the growth 

factor and cytokine receptor superfamily. Based on structure prediction, the cytokine 

receptor-like domain in the LOX protein forms a partial receptor site and it is 

questionable if it binds cytokines in the same way (88). 

Catalytic mechanism 

Cofactor 

The activity of (mature) LOX requires two cofactors, copper (Cu2+) and lysyl 

tyrosylquinone (LTQ). Direct evidence that copper is a component of LOX was obtained 

from enzyme isolated from chick bone (89, 90), chick aorta (91, 92), and bovine aorta 

(93). Studies have demonstrated that approximately one tightly bound copper atom is 

present in the mature 32 kDa and the removal of the copper ion leads to a catalytically 

inactive apoenzyme. Electron spin resonance studies have indicated that the copper in 
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the resting enzyme is in the Cu(II) state, and is bound tetragonally distorted, octahedrally 

coordinated ligand field (93). The sequence WEWHSCHQHYH in human has been 

suggested to be the actual copper-binding region, which provides four histidine residues 

that are involved in the copper-binding coordination complex (94). In addition to the 

tightly bound Cu ion, purified LOX preparations have been shown to contain 5-9 atoms 

of loosely bound copper per enzyme molecule (93). Experiments in a cell free 

transcription/translation system in vitro have shown that the unprocessed 50 kDa LOX 

precursor binds copper (95). A study showed that protein synthesis was important for the 

incorporation of copper into enzyme but N-linked glycosylation had no effect on 

secretion of the copper that was bound to LOX. In addition, an inhibition of processing of 

the 50 kDa LOX precursor into the 32kDa active form with a PCP inhibitor had minimal 

effect on the amount of copper that was bound to LOX in the cell media (95). Kagan et. 

al. in 1995 (96) has shown that the propeptide region is not essential to the folding and 

secretion of the functional enzyme. A truncated rat LOX cDNA lacking sequences which 

encode for the bulk of the propeptide region was transfected into Chinese hamster ovary 

cells. The 29 kDa form of mature LOX which catalyzed the deamination of human 

recombinant tropoelastin and alkylamines was secreted and this secreted enzyme could 

be inhibited by ß-aminopropionitrile (ßAPN). However, the expression analysis of 

recombinant LOX in myofibroblast-like cells showed that propeptide region was 

important for the secretion (97). These controversial data might be due to the difference 

of type of promoter of the vectors used in the study. These results indicated that copper 

is incorporated into proLOX in the endoplasmic reticulum or during protein trafficking 

through the Golgi elements and independent to glycosylation (95, 98).  

In addition to copper, LOX was known to possess a covalently bound carbonyl 

prosthetic group called LTQ (99-104). LTQ is likely the product of a self-processing 
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reaction involving Cu2+-mediated/assisted oxidation of a specific peptidyl tyrosine (res 

345 in ratLOX) followed by covalent cross-linking with the ε-amino group of a conserved 

peptidyl Lys (res 314 in rat LOX)(105, 106). This unique intramolecular cross-link, LTQ, 

together with several disulfide linkages within the LOX molecules, most likely contributes 

to the remarkable physicochemical stability of LOX (34, 104). The covalently linked lysyl 

component of LTQ of LOX might play an important role in the preference of LOX for 

peptidyl lysine substrates in cationic protein microenvironments both as a result of its 

donation of anionic charge to the active site and possibly by restricting the rotation of the 

LTQ ring in a manner that properly orients the carbonyl cofactor with respect to peptidyl 

lysine substrates (104). LTQ could be formed in the endoplasmic reticulum or during 

protein trafficking through the Golgi apparatus (98)(Figure 1.4)  

The mechanism of action of LOX has been described in many studies (93, 100, 

107-109). The ε-amino group of the substrate lysine residue condenses with one of the 

two carbonyls of LTQ to form a Schiff base. The Schiff base linkage coupled with 

general base-assisted abstraction of hydrogen on carbon 6 of the substrate lysine 

residue permits the flow of two electrons into LTQ generating the reduced peptidyl lysine 

tyrosyl aminoquinol. A histidine has been suggested to act as the general base in LOX 

(110). Hydrolysis of the resulting imine linkage releases the peptidyl aldehyde product 

from the reduced cofactor. This reactive aldehyde product can then react spontaneously 

to form lysine- or hydroxylysine-derived cross-links. Subsequent reoxidation of the 

peptidyl aminoquinol occurs by transfer of two electrons to molecular oxygen, forming 

and releasing hydrogen peroxide. The quinoeimine so formed is then hydrolyzed to 

regenerate LTQ and to release the free ammonia product of the reaction (111).  
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Figure 1.3 Pathway for LOX biosynthesis. The LOX precursor is trafficked into the rough 

endoplasmic reticulum where its signal peptide is cleaved. The precursor is glycosylated within 

the endoplasmic reticulum at two possible Asn residues located in the propeptide region. The 

addition of copper (Cu
2+

) and the formation of LTQ cofactor consequently occur. After secretion of 

the LOX precursor into the ECM, the propeptide region is cleaved by procollagen C-proteinase 

(PCP) between Gly-168 and Asp-169 to obtain and an active 32 kDa enzyme. Lysyl oxidase 

propeptide (LOPP) and mature LOX has been reported to enter the cell and nucleus after 

secretion. Molecular mass of LOX polypeptide is indicated according to human LOX enzyme. (69, 

70, 112, 113). Cu: Copper, LTQ: Lysyl tyrosylquinone. 

Inhibitors 

ßAPN, a potent lathyrogen which can inhibit cross-linkage formation in vivo, was 

recognized before the identification of LOX activity in vitro (114). ßAPN was identified as 

an active agent in Lathyrus oderatus peas causing abnormalities in animals including 

aortic aneurysm, skin abnormalities, bone and joint weakness (115). Administration of 

ßAPN to growing animals results in a condition known as lathyrism, which is 

characterized by an increased fragility of all connective tissues and an increased 

solubility of collagen from the tissues (see section osteolathyrism). It has been first 

demonstrated that micromolar of ßAPN irreversibly inhibited the activity of LOX in vitro 
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(50). ßAPN was found to be a potent irreversible inhibitor and its inhibition was 

temperature- and time-dependent (116). ßAPN binds to the LTQ, the active site of LOX, 

and forms a dead-end complex. A free aldehyde product was not generated and the 

copper content of LOX was not altered upon incubation with ßAPN (117, 118). ßAPN 

has been used to specifically as a lysyl oxidase inhibitor. ß-haloamines and ß-

nitroethylamine are also reported as mechanism-based irreversible inhibitors of LOX 

similar to ßAPN (119). Benzylamine derivatives containing para substituents of 

increased electronegativity and isomers of aminomethypyridine are also identified as 

reversible ground state inhibitors by forming LOX-bound intermediates that are not 

completely processed into aldehydes (107). Vicinal diamines like cis-1,2-

diaminocyclohexane and ethylenediamine are potent irreversible inhibitors (120). LOX is 

inhibited by heparin (121), N-(5-aminopentyl) azidine (122), and trans-2-

phenylcyclopropylamine (123). LOX is inhibited by homocysteine thiolactone and its 

selenium and oxygen analogs in an active-site-directed and irreversible manner (124). 

LOX is inhibited by ascorbic, and esthoric acids and 3,4-dihydroxybenzoate by possibly 

the ascorbic acid structure (125). 

Substrate specificity 

It was long believed that soluble precursors and immature elastin and fibrillar 

collagen were the only biological substrate of LOX. This knowledge has been revised 

when in vitro assays demonstrated that the purified LOX oxidized a number of basic 

globular proteins with pI values > 8.0, but did not oxidize neutral or acidic globular 

proteins with pI value < 8.0 (126). The electrostatic potential between LOX and its basic 

protein substrates was essential to productive catalysis. LOX also oxidizes non-peptidyl 

amine substrates such as n-butylamine and 1,5-diaminopentane leading to the 
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development of fluorescence-based assay for LOX-dependent H2O2 production (127, 

128). 

The sequence region within the LTQ domain between Lys314 and Tyr349 are 

enriched in anionic residues. Once these two regions of LOX become covalently cross-

linked to each other as the LTQ cofactor is generated, both of these regions would 

cooperatively provide an abundance of negatively charged sites in the microenvironment 

of the active site. It is likely that such an arrangement underlies the strong preference of 

LOX for cationic protein substrates (104). Interestingly, the sequences surrounding the 

susceptible lysines in collagen are in hydrophilic sequences containing anionic residues. 

For example, the lysine residue within the Asp-Glu-Lys-Ser sequence which occurs at 

the N-terminal region of the α1(I) collagen chain within the mature type I collagen 

molecule is oxidized by LOX in vivo. However, a collagen-like synthetic peptide which 

contains the similar sequence was not a good substrate in assays in vitro and oxidation 

occurred if the Asp residue was replaced with a Gly residue (129). This observation 

leads to the suggestion that collagen molecules must form into microfibrils before their 

oxidation by LOX (130) and binding domain of LOX is located in the helical portion of 

collagen molecule (131). These results led to the hypothesis that the unfavorable 

negative charge contributed by this Asp residue can be neutralized by a specific cationic 

site in the neighboring collagen molecule within the quarter-staggered microfibril, thus 

allowing lysine oxidation by LOX (129). It has been reported that the propeptide regions 

of recombinant proenzyme of LOX mediated the binding of these enzymes to soluble 

precursor and fibrous form of elastin in the cultures of transfected RFL-6 fibroblasts. It 

leads to the conclusion that the binding of the LOX proenzymes to elastin substrates 

was essential for the oxidation of lysine in elastin by the activated LOX (85). It has been 

reported that proLOX can bind to fibronectin (FN) to be proteolytically activated to the 
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functional catalyst (83). Histone H1 and H2 have been demonstrated to have an 

interaction with LOX in vitro  (132) and incubation of Histone H1 with LOX results in the 

catalytic formation of hydrogen peroxide implicating that histone H1 is a substrate of 

LOX (133). Basic fibroblast growth factor was reported to be a substrate of LOX as the 

oxidation of lysine residues in bFGF by LOX resulted in the covalent cross-linking of 

bFGF monomers to form dimers and higher order oligomers and dramatically altered its 

biological properties (134). Recently, LOX has been reported to be essential for hypoxia-

induced metastasis because the administration of ßAPN, specific anti LOX antibody or 

short hair-pin RNA could inhibit the metastasis in animal model. It is still unclear whether 

LOX might oxidize an unknown key protein and inhibit its function in the cancer 

metastasis, or whether the by-product H2O2 from the oxidation plays a role in the 

inhibition of cancer metastasis (135). 

Regulation of LOX 

The factors that were reported to play roles in the regulation of LOX gene 

expression are transcriptional factors and growth factors as shown in Table 1.1. 

Table 1.1 The various regulators and effects on LOX mRNA and enzymatic activity.  

Effector (reference) Cell or tissue Effect 

IFN- (136) Rat aortic smooth muscle cells Down regulation of mRNA; 
decreased mRNA half-life 

bFGF (75) Mouse osteoblastic cells Decreased mRNA level (1-10nM) 
upregulated of mRNA (0.01-0.2 
nM) 

FGF-2 and IGF-1 (137) Inflamed oral tissue, rat 
fibroblastic mesenchymal cells 

Increased of mRNA 

PGE2 (138-140) Rat lung fibroblasts 

Human embryonic lung 
fibroblasts 

Unchanged mRNA level; 
reduction in enzyme activity 
Downregulation of mRNA 
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TGF-ß1 (75, 76, 138, 
139, 141-146) 

Rat aortic smooth muscle cells  
human gingival fibroblast, flexor 
reticulum cells, renal cell lines, rat 
lung fibroblasts, kidney tubular 
epithelial cells, mouse 
osteoblasts 

Increased mRNA level and 
enzyme activity 

BMP-2 (147) Murine pre-myoblast cells Increased mRNA level 

TNF- (79, 148) Mouse osteoblastic cells          

                                             
Aortic endothelial cells 

Decreased mRNA, protein level 
and enzymatic activity 

Decreased mRNA and level and 
enzymatic activity 

Cadmium (149) Mouse fibroblasts 

Mouse cadmium-resistant 
fibroblasts 

Decreased mRNA level 

Increased mRNA level 

Testosterone (150, 151) Calf aortic smooth muscle cells, 
rat granulosa cells 

Increased enzyme activity and 
increase mRNA expression 

Follicle stimulating 
hormone (151) 

Rat granulosa cells Decrease mRNA expression and 
enzyme activity 

Growth differentiation 
factor-9 (151) 

Rat granulosa cells Increase mRNA expression and 
enzyme activity 

Activin A (151) Rat granulosa cells Increase mRNA expression and 
enzyme activity 

Bleomycin (152) Human lung fibroblasts 

Human dermal fibroblasts 

Increased mRNA level 

Decreased mRNA level 

Hydralazine (152) Human dermal fibroblasts Increased mRNA level 

Minoxidil (152) Human dermal fibroblasts Increased mRNA level 

Adriamycin (153) Rat kidney glomeruli, medulla Increased mRNA level 

cAMP (140, 154) Rat and human vascular smooth 
muscle cells 

Upregulated of transcription 

PDGF (155) Rat vascular smooth muscle cells Upregulation of mRNA 

Dexamethasone (156) Cultured fetal murine lungs Upregulation of mRNA 

Retinoic acid (157) Adipocytes in early adipogenesis Prevents downregulation of 
mRNA and enzyme activity. 

Hypoxia inducible factor-
1 (158) 

Breast cancer cells Increased mRNA and protein 
level but decreased enzymatic 
activity 

Hypoxia/reoxygenation Breast cancer cells Increase mRNA, protein level 
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(158) and enzyme activity 

Low density lipoprotein 
(77) 

Vascular endothelial cells Decrease mRNA expression and 
enzyme activity 

Homocysteine (159) Vascular endothelial cells Decrease LOX activity (35 M) 

Decrease LOX mRNA 
expression and LOX promoter 

activity (250M) 

Pulsed ultrasound (160) Mouse osteoblastic cells Increase LOX mRNA expression 
and enzyme activity (30 mW/cm

2
) 

Metavanadate (161) Rat fibroblast Decrease LOX activity 

Modified from (88, 162)  

Animal models 

The consequence of inactivation of the Lox gene in mice results in neonatal 

lethality (162-164). The mice develop to full term but are not viable. The autopsy 

revealed large aneurysms in aorta, which the diameter of aneurysm was 3 times larger 

than in the aortas of the wild-type littermates and the wall of the aorta in the Lox-/- 

animals was significantly thicker but the diameter of the aortic lumen was significantly 

smaller than those in the wild-type littermates. The Lox-/- animal had a congenital 

diaphragmatic hernia and a large hemorrhage in the upper chest region. Microscopic 

analysis showed abnormal elastic lamellae with fragmented elastic fibers and 

discontinuity in the smooth muscle cell layers in Lox-/- fetuses (162, 163). Another report 

on Lox-/- animals reported the similar phenotypes as that the animal died soon after 

parturition, exhibiting cardiovascular instability with ruptured arterial aneurysms and 

diaphragmatic rupture. Microscopic analysis of the aorta demonstrated fragmented 

elastic fiber architecture in homozygous mutant null mice. LOX activity, as assessed by 

desmosine (elastin cross-link) analysis, was reduced by approximately 60% in the aorta 

and lungs of homozygous mutant animals compared with wild type mice. Immature 

collagen content in aorta and lungs of the animals were decreased 74% and 68% 
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respectively compared with those of wild-type littermates. There were significant 

decreases in DHLNL and HLNL of 43 and 39% respectively in the Lox-/- animals as 

compared with wild type total body collagen cross-links. Interestingly in Lox+/- mice, 

DHLNL was 100% of wild type, while HLNL was only 64% of wild type content. This 

could represent a greater role for LOX in HLNL cross-links. Moreover, DHLNL in lung of 

Lox-/- animals was not different among genotypes while decreased in HLNL in Lox+/- 

and Lox-/- was 14 and 32% respectively (164). 

Lysyl oxidase isoenzymes 

Isoenzymes or isozymes are defined as isoforms of enzymes in biochemistry. 

They are the enzymes that differ in amino acid sequence but catalyze the same 

chemical reaction (165). They are present in different tissues, cell types, or 

developmental stages of the same or different tissues or organs. Four LOX-like (LOXL) 

proteins varying degree of similarity to LOX have been discovered and identified; lysyl 

oxidase-like protein (LOXL1) (87, 166), lysyl oxidase-like 2 protein (LOXL2) (167, 168), 

lysyl oxidase-like 3 protein (LOXL3) (162, 169-172), and lysyl oxidase-like 4 protein 

(LOXL4) (162, 173-175). Polypeptides of all these isozymes are highly conserved within 

their C-terminal ends, which include the copper-biding sites, cytokine receptor-like 

domains, and LTQ cofactor sites (88). All LOXL proteins possess amine oxidase activity 

(174, 176-178). In LOXL2, 3 and 4, repeated scavenger-receptor cysteine-rich (SRCR) 

domains are present as conserved domain. These domains have the potential to interact 

with other proteins. The SRCR domain contains either six or eight cysteine residues 

located at highly conserved positions important for tertiary conformation and is found in 

cell surface protein or secreted protein associated with the immune system. The 

comparison of LOX family member is shown in the table 2 (adapted from Hornstra et al 

2003(164)). 
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Table 1.2  The comparison of LOX family member. 

Family 
member 

Human 
Chr. 

Mouse 
Chr. 

mRNA 
and 

protein 
size 

Highest mRNA 
tissue 

distribution 

Protein 
domains 

%similarity 
to LOX 
domain 

%similarity 
to LOXL2 
domain 

LOX 5 18 6.8, 4.8 kb 
417 res. 

Lung, skeletal 
muscle, kidney, 

heart 

Amine 
oxidase 

100 63 

LOXL1 15 9 2.4 kb    
574 res. 

Lung, heart, 
spleen skeletal 

muscle, 
pancreas 

Amine 
oxidase 

85 63 

LOXL2 8 14 4.0 kb  
774 res. 

Lung, thymus, 
skin, testis, 

ovary 

4 SRCR, 
Amine 

oxidase 

58 100 

LOXL3 2 6 3.3 kb 753 
res. 

Heart, uterus, 
testis, ovary 

4 SRCR, 
Amine 

oxidase 

65 78 

LOXL4 10 19 3.5 kb 756 
res. 

Skeletal muscle, 
testis, pancreas 

4 SRCR, 
Amine 

oxidase 

62 79 

 

Lysyl oxidase-like protein (LOXL1) 

LOXL1 has been first discovered from a novel human cDNA with a predicted 

protein similar to LOX. The LOXL1 cDNA corresponds to a single polyadenylated mRNA 

species of 2.5 kb, which shows a concomitant expression with LOX mRNA in several 

human tissues (87). The LOXL1 polypeptide consists of 574 amino acids, with a 

calculated mass of 63 kDa. It shows 76% similarity with LOX at its C-terminal region (87, 

166), which includes the copper-binding site and the four histidine residues with the 

conserved sequence (WEWHSCHQHYH) that are involved in the copper binding 

complex. In addition the cytokine receptor-like sequences are present in this C-terminal 

region in both LOX and LOXL1 polypeptides. The LOXL1 gene contains 7 exons and 

has been mapped to chromosome 15q24 in humans (179) and chromosome 9 in mice 
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(180, 181). LOXL1 protein is a secretory protein that is expressed in active fibrotic 

diseases and in the early stromal reaction of breast cancer (182). Coincident 

appearance of increased steady-state levels of LOXL1 and COL3A1 mRNAs was 

detected in the early development of liver fibrosis, suggesting that LOXL1 protein is 

involved in the development of lysine-derived cross-links in collagenous substrates. In 

contrast, steady-state levels of LOX mRNA were increased throughout the onset of 

hepatic fibrosis and appeared in parallel with increased steady-state level of COL1A1 

mRNA (183). A specific antibody against LOXL1 has been used to identify proteins 

immunochemically distinct from LOX in various cells and in bovine aorta. The species of 

the protein are approximately 68, 52, 42 and 30 kDa (182). A 56 kDa LOXL1 protein was 

isolated from bovine aorta and the precursor needs to be cleaved by BMP-1 to be active 

(176). The mice lacking LOXL1 do not deposit normal elastic fibers in the uterine tract 

post partum and develop pelvic organ prolapse, enlarged airspaces of the lung, loose 

skin and vascular abnormalities with concomitant tropoelastin accumulation. Distinct 

from the prototypic LOX, LOXL1 localizes specifically to sites of elastogenesis and 

interacts with fibulin-5. Thus elastin polymer deposition is a crucial aspect of elastic fiber 

maintenance and is dependent on LOXL1, which serves both as a cross-linking enzyme 

and an element of the scaffold to ensure spatially defined deposition of elastin (184). 

Lysyl oxidase-like protein 2 (LOXL2) 

LOXL2 was originally cloned, characterized, and named as WS9-14 for its 

possible association with Werner syndrome (167). Later it was found that WS9-14 

mRNA corresponds to LOXL2 mRNA but WS9-14 transcript encodes one additional 

SRCR domain in its 5’ end region (88, 168). LOXL2 mRNA encodes an 87 kDa 

polypeptide, which contains four SRCR domains that are found in several secreted and 

cell surface proteins (167). LOXL2 polypeptide shares a 48% similarity with the LOX 
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polypeptide in its amino acid sequence from residue 546 to 751 in its C-terminal region. 

This region contains all conserved amino acid sequences needed for the proper function 

of the mature 32 kDa form of LOX enzyme (167, 168). LOXL2 gene has been mapped to 

chromosome 8p21 in humans (185) and chromosome14 in mice (186), and it consists of 

at least 11 exons (168). LOXL2 is abundantly expressed in senescent fibroblasts and 

several adherent tumor cell lines, but is down-regulated in several non-adherent tumor 

cells. This suggests that it may be involved in cell adhesion and that a loss of this protein 

may be associated with the loss of tumor cell adhesion leading to tumor metastasis. 

LOXL2 shows similar spatial expression with LOX and LOXL in human placenta and 

fetal tissues in early pregnancy. However, this pattern diverges during gestation (187). In 

full-term human placenta, LOX is expressed predominantly in the amniotic epithelium, 

with little expression in the placenta, while LOXL shows the highest expression in the 

placenta and lowest expression in the amnion. LOXL2 expression differs in that it is 

detected predominantly in chorionic cytotrophoblasts of the membranes with only low 

expression levels in the amnion and placenta (168, 187, 188). 

Lysyl oxidase-like protein 3 (LOXL3) 

LOXL3 was detected as an osteoblast-derived EST and later in other tissue 

panels (171). LOXL3 mRNA encodes a predicted mass of 80.3 kDa protein with a 

putative signal peptide in the N-terminus. The nonprocessed LOXL3 polypeptide shared 

a 55% amino acid sequence similarity with the LOXL2 polypeptide and the C-terminal 

residues showed a high degree similarity with the LOX, LOXL and LOXL2 polypeptides, 

51%, 53% and 69% respectively.  The N-terminal region of the LOXL3 polypeptide 

contains a bipartite nuclear localization signal (KKQQQSKPQGEARVRLKG), which is 

not found in any other LOX isozyme. Despite the presence of the nuclear localization 

signal, there was no evidence to show any role of LOXL3 in the nucleus, which has been 
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shown to be due in part to the LOX polypeptide (112) or LOXL (189). LOXL3 gene has 

been mapped to chromosome 2p13 in humans (170) and chromosome 6 in mice (171, 

172). LOXL3 is expressed highly in placenta, heart, ovary, testis, small intestine and 

spleen (162, 171).  

Lysyl oxidase-like protein 4 (LOXL4) 

LOXL4 was cloned from placental, kidney, fetal tissues and chondroblast and 

osteoblast cDNA (173-175). The deduced 756-amino acid protein contains an N-terminal 

signal sequence, 4 scavenger receptor cysteine-rich (SRCR) domains, lysyl and tyrosyl 

residues that form the carbonyl cofactor within the catalytic site, and a cytokine receptor-

like domain at the C terminus. LOXL4 shares 51% and 54% amino acid identity with 

LOXL2 and LOXL3, respectively. LOXL4 gene has been mapped to chromosome 10q24 

in humans (175) and chromosome 19 in mice (162, 173). LOXL4 is highly expressed in 

skeletal muscle, testis and pancreas and not expressed in leukocytes (173).  

Novel biological functions of LOX 

LOX in tumor suppression 

LOX was reported to show tumor suppression in 1990 (190). A cDNA species 

named as ras recision gene (rrg) was identified when mouse NIH 3T3 cells were 

transformed with LTR-c-H-ras. This DNA was markedly down-regulated and restored 

when the transformed cell line (RS485) was treated with interferon to obtain a persistent 

revertant cell line (PR4). The revertant cells are phenotypically non-transformed and 

non-tumorigenic. Once an rrg antisense RNA was transfected into PR4 cells, the 

reappearance of the tumorigenic and transformed phenotype was observed. 

Subcutaneous administration on these antisense cells into athymic mice induced tumor 

formation. The cDNA sequences of the mouse rrg and rat Lox were subsequently found 
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to be identical, indicating that rrg encodes Lox (191), the activity of which was already 

known to be markedly low in the medium of malignantly transformed cultured human cell 

lines (192). Expression of LOX was down-regulated in immortalized rat 208F fibroblasts 

after transformation by activated H-ras (193, 194) and up-regulated in spontaneous 

phenotype revertants that continued to express the ras oncogene (193). In spontaneous 

phenotypic revertant, LOX expression was found to be irreversibly and coordinately 

regulated with type I collagen expression (193). A tumor suppressor role of LOX was 

demonstrated by stable transfection of a LOX cDNA in antisense orientation to normal 

rat kidney fibroblasts (NRK-49F). The transfected cells exhibited a loose attachment to 

plate, anchorage-independent growth, and high tumorigenicity in nude mice, and also 

showed an impaired response of the PDGF and IGF-1 receptors to their ligands (195).  

Several malignant transformed human cell lines showed low level of LOX mRNA and 

enzyme activity (196). The LOX gene was identified as a target for the anti-oncogenic 

transcription factor (IRF-1), which manifests tumor suppressor activity and contributes to 

the development of human hematopoietic malignancies (197). In malignant human 

breast carcinomas, LOX was highly expressed in myofibroblasts and myoepithelial cells 

surrounding the in situ tumor and in the reactive fibrosis facing the invasion front of 

infiltrating tumors (198) and type I, III and IV collagens and elastin were found to be co-

distributed with LOX resulting in the formation of a scar-like peritumor barrier (198). In 

contrast, LOX was found to be absent from the carcinoma cells suggesting a possible 

host defense mechanism for cancer. Interestingly a late stromal reaction lacking of LOX 

favors tumor dispersion (198). In mouse prostate cancer model, LOX was expressed in 

normal epithelium, but lost in primary prostate cancer and associated metastatic lesions 

(199). In broncho-pulmonary carcinoma, a strong expression of LOX is associated with 

the hypertrophic scar-like stromal reaction found at the front of tumor progression. In 

contrast, little or no expression was found within the stromal reaction of invasion 
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carcinomas, small cell carcinomas and neuro-endocrine carcinoma (200). It has been 

demonstrated that a loss or reduction of LOX function during tumor development may be 

a direct consequence of somatic mutations and may be associated with the 

pathogenesis of colon cancer (201). The LOX gene is located in chromosome region 

5q23, which is known to be deleted in a high frequency in many different types of cancer 

(202). LOX was reported to inhibit ras-mediated transformation by preventing the 

activation of NF-Kappa B (NF-B) (203). Lysyl oxidase propeptide (LOPP) was also 

reported to have tumor suppression ability by inhibiting Erk1/2 Map kinase activation (86, 

204) and recently by inhibiting Akt activity and BCL2, a tissue-specific NF-B target gene 

(205).   

LOX dependent chemotaxis 

ßAPN has been reported to inhibit fibroblast migration in a dose-dependent 

fashion without inhibiting proliferation (206). Purified 32 kDa mature LOX was shown to 

play a role as a potent chemoattractant for human peripheral blood mononuclear cells, 

with a 237% increase in migration over the enzyme-free or catalytically inhibited LOX 

controls seen at 10-9 M LOX (207). The result showed that H2O2 product of the LOX-

catalytic reaction appeared to mediate the chemotactic response since the observed 

result was not detected when the LOX was inactivated or absent from the reaction (208). 

The result also suggested that the chemotactic effect was not due to the reaction of LOX 

with secreted protein in the media but more likely due to the direct access of LOX to cell-

associated substrates. The cellular responses after addition of LOX showed elevated 

level of intracellular H2O2, enhanced stress fiber formation, and increased focal adhesion 

assembly, consistent with the induction of chemotactic response. The chemotactic 

response was prevented by the prior addition of catalase, indicating the crucial role of 

the H2O2 product of the LOX-catalytic reaction (208). In breast cancer studies, LOX and 
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its isoform mRNA levels are upregulated in invasive type compared to those of non-

invasive type and the invasion phenotype was facilitated by active but not inactive LOX. 

In addition, the invasion was inhibited when the antisense mRNA of LOX was 

transfected or ßAPN was added into the cultured (209). A further report from the same 

group demonstrated that this LOX-dependent chemotactic response of breast cancer 

cells was elicited by the H2O2 product of the LOX-catalytic reaction on unidentified 

substrates (210). Recently it has been shown that actin stress fiber formation and Rho 

activity in breast cancer cell line are increased through the p130 (Cas)/Crk/DOCK180 

signaling complex by inhibition of LOX in these cells (211). It suggests that the down-

regulation of LOX activity could limit the invasiveness of breast cancer. Other isozymes 

have been reported that their expression are high in metastatic breast cancer cells and 

correlate with increased tumor malignancy and increased fibrotic foci (209, 212). The 

elevation of LOX under hypoxic condition in head and neck tumor cells appeared to be 

essential for the hypoxia-induced metastatic response of these cells and the increased 

invasiveness was prevented by treatment of ßAPN, LOX antisense oligonucleotides, 

LOX antibody or short hairpin RNA expression but not with LOX sense oligonucleotides 

(135). This study did not show the role of H2O2 product of the LOX-catalytic reaction. 

Another study showed that LOX interacts with hormone placental lactogen and 

synergistically promotes breast epithelial cell proliferation and migration. However, the 

study showed that lactogen was neither a substrate nor an inhibitor so the H2O2 from the 

oxidative reaction was not generated but their coexpression resulted in a 240% increase 

in cell migration (213). Recently, LOX has been reported to be correlated with focal 

adhesion kinase (FAK)/paxillin activation and migration in invasive astrocytes. Tyrosine 

phosphorylation of FAK/paxillin was inhibited by ßAPN treatment and catalase addition 

(214).  



 28 

Intracellular and intranuclear activities 

LOX was reported to be associated with cytoskeleton protein in cytoplasm in 

cultured fibroblasts (215). It was not conclusive that the observed LOX represented the 

proenzyme and/or mature LOX since the molecular weight of the LOX was not 

determined. It has been reported that an intracellularly expressed recombinant mature 

32 kDa LOX might regulate the activity of COL3A1 gene promoter (195). The coinjection 

of LOX with oncogenic p21-rasval12 into Xenopus laevis oocytes suggests one possible 

intracellular role for LOX in antagonizing a Ras-induced meiotic maturation of these 

cells. It has been suggested that a LOX-dependent block in oocyte maturation may be 

downstream of Erk2, a member of the mitogen-activated protein kinases (216). 

A mature LOX 32kDa was observed by immunocytochemistry and Western blot 

analysis in the nucleus of rat vascular smooth muscle cells and 3T3 fibroblast (112). In 

addition, the nucleus of the vascular smooth muscle cells contained lysinonorleucine 

(LNL), which is the adduct formed during cross-linking formation of LOX and the 

formation of LNL was prevented by administration of ßAPN, confirming a role of LOX in 

the reaction (112). It was demonstrated that a purified bovine 32 kDa LOX polypeptide 

fluorescent-labeled with rhodamine was able to enter into the cytosol and become 

rapidly concentrated into the nuclei of cultured smooth muscle cells. The intracellular 

uptake and distribution of intranuclear LOX were not altered by ßAPN showing its 

independency from the amine oxidase activity of LOX (217). The intracellular LOX was 

reported to activate the transcription activity of human collagene III promoter via possible 

involvement of Ku antigen (218). LOX has been reported to locate in cytoplasm of 

MDCK II kidney cells and MCF-10A breast cancer cells however, the lysyl oxidase 

activity from the cell lysate could not be detected (189). Another report from a different 

group showed a stage-dependent intracellular distribution of mature LOX 32kDa and 
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LOPP 18kDa in osteoblasts. In proliferating cells, mature LOX located in nucleus and 

perinuclear region while LOPP associated with Golgi and endoplasmic reticulum. In 

differentiating cells, mature LOX and LOPP colocalized with the microtubule network 

(113). However, the mechanism of how LOX and LOPP can be uptaken intracellularly or 

intranuclearly remains unelucidated (112). Recently LOX has been reported to regulate 

elastin promoter via intracellular effects of transforming growth factor-ß1 (TGF-ß1). The 

author showed the reduction of Smad 3 and 4 in the addition of TGF-ß1 when the coding 

sequence of mature LOX without signal peptides was transfected in 293T cells. The 

cross control mechanism remains unclear (219). 

Growth factor and cellular modulation 

In addition to collagen and elastin, purified LOX oxidized a number of basic 

globular proteins in vitro with pI values > 8.0, but did not oxidize neutral or acidic globular 

proteins with pI value < 8.0 (126). The study demonstrated Histone H1 as a substrate of 

LOX by detecting the increase of lysinonorleucine cross-link and ACP in histone H1 

sample after incubation with purified LOX. Histones are involved in chromatin packing in 

nucleus and can be oxidized by LOX. The histone oxidation might modulate the packing 

state of nuclear chromatin (220). Basic fibroblast growth factor (bFGF) was reported to 

be a substrate of LOX in vitro. The oxidation of lysine residues in bFGF by LOX resulted 

in the covalent cross-linking of bFGF monomers to form dimers and higher order 

oligomers. The fluorescence LOX assay showed temperature dependent of amine 

oxidase activity of LOX in which LOX oxidized 14 lysine residues at 55C, and 5-6 

residues at 37C. The biological effect of LOX oxidized bFGF resulted in the inhibition of 

bFGF nuclear localization, and the inhibited FGF-2 mediated cell cycling, resulting in cell 

growth suppression (134).  
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Lysyl oxidases in an osteoblast cell culture systems and in mineralized tissues 

LOX was first identified in bone from saline extract in 1968 (50). Several reports 

have shown that the activity of purified bone LOX was inhibited by ßAPN but it was not 

well characterized (50, 90). LOX was also identified in dentin (221). In chick calvarial 

osteoblast cultures, once treated with 20 g/ml ßAPN, total collagen synthesis was 

increased two folds with no change in mRNA levels for collagen type I but the 

accumulated collagen in matrix was decreased by 50% and mineral deposit was 

reduced compared to control. The ßAPN treated cultures showed a wider diversity of 

fibril diameters with a larger average collagen fibril diameter compared to control (222). 

This study implicated the role of collagen cross-link in the collagen deposition, 

fibrillogenesis and fibril stability. In 3-dimensional cultures of chondrocytes, treated with 

0.25 nmM ßAPN, collagen type II synthesis significantly increased and collagen fibril 

diameters were larger compared to controls. In addition, the expression of other minor 

collagens, collagen type XI, and aggrecan increased significantly in the presence of 

ßAPN (223). A study of LOX expression and activity in osteosarcoma cell line showed 

that LOX activity was not related closely to LOX mRNA  levels among the different cell 

clones and the activity of LOX was BMP-1 dependent (224). The role of LOX in 

controlling insoluble collagen deposition in MC3T3-E1 (MC) osteoblastic cells has been 

also studied and reported that the maximum increase in LOX activity precedes the most 

efficient phase of insoluble collagen deposition. Once treated with 400 M ßAPN, the 

cultures showed a 44% increase of insoluble collagen deposition compared to control 

cultures. In addition, the collagen fibril diameter showed irregular shapes and a larger 

average diameter (30%) compared to the control cultures. The authors suggested that 

the increase of collagen accumulation in the matrix was due to insufficient proteolytic 

activity to destroy abnormal collagen fibrils (73). The administration of PCP inhibitor 
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diminished collagen processing and LOX activity; however, the collagen cross-links, Pyr 

and d-Pyr were not altered. Moreover, a slight increase (10%) of collagen fibril diameter 

was reported (225). LOX has been also shown to be regulated by bFGF (226), TGF-ß1 

(75) and TNF-α (79) in MC3T3-E1 (MC) cells. The expression of LOX and its isoforms in 

MC cells have recently been investigated and the result showed that LOX and all LOXLs 

except LOXL2 were expressed in this cell line and the expression during the cell 

differentiation and matrix mineralization was distinct from one another (74). The stage-

dependent intracellular distribution of mature LOX 32kDa and LOPP 18kDa was 

investigated in MC cells. In proliferating cells, mature LOX located in nucleus and 

perinuclear region while LOPP associated with Golgi and endoplasmic reticulum. In 

differentiating cells, mature LOX and LOPP colocalized with the microtubule network 

(113). 

Osteolathyrism  

Osteolathyrism is caused by chronic ingestion of the sweet pea Lathyrus 

odoratus, which contains -(-glutamyl)aminopropionitrile, a potent irreversible inhibitor 

of LOX when metabolized to ßAPN (115, 227). Other inhibitors are ureides, 

semicarbazide and thiosemicarbazide, which are believed to chelate the prosthetic Cu-

(II)-bipyridine cofactor complex in LOX (228). LOX inhibition leads to the diminished 

cross-linking of collagen and elastin and consequently causes weakness and fragility of 

connective tissue (i.e., skin, bones, and blood vessels [angiolathyrism]) and the paralysis 

of the lower extremities associated with neurolathyrism. A study in Bangladesh showed 

that the prevalence of neurolathyrism among neurological patients is 0.14% and the 

prevalence was higher among young males. The patients always consumed green 

shoots of Lathyrus sativus (229). The prevalence of osteolathyrism in neurolathyritic 

patients was about 12% (230). The connective tissue manifestations include 



 32 

kyphoscoliosis, bone deformities, weakening of tendons and ligament attachments, 

dislocation of joints, weakening of skin and cartilage, hernias and dissecting or saccular 

aneurysm of the aorta (231). In a rabbit model, osteolathyrism does not become 

manifest until practically all mature cross-linking that can be affected has been inhibited 

(232). In experimental osteolathyritic rat model, osteolathyrogens cause a spectrum of 

tissue alterations in skeleton, soft connective tissue and arteries (233). Ectopic 

exostoses and aneurysmal-like bone cysts in mandible and long bones were observed 

(234, 235) due to significantly impaired turnover and remodeling rates of periosteal and 

endosteal bone (236). Fracture healing in osteolathyritic animals results in excessive 

callus formation. The vast fracture callus is very fragile and consists of irregular cartilage 

and premature woven bone (237, 238). Fractured tibias in the animal developed 

excessive amounts of mechanically weak callus tissue with irregular cartilage and  

showed reduced glycosaminoglycan accumulation. In lathyritic calluses, the maximal 

mRNA of type II and IX collagens and aggrecan core protein was peaked 4 days earlier 

than in controls reflecting the less well control of endochondral ossification in lathyritic 

calluses. Interestingly the expression of TGF-ß1 mRNA in lathyritic calluses was already 

peaked at the early time-points while that of control was relatively low and increased 

gradually at later time-points of study (239). 

TGF-ß in bone and its potential regulation by LOX 

TGF-ß is one of the most potent pleiotropic growth factors controlling a diverse 

set of cellular processes, e.g. cell growth, differentiation, migration, apoptosis, and 

synthesis of ECM proteins including collagen (240-245). The TGF-ß superfamily 

comprises over 35 structurally related polypeptides in vertebrates including TGF-ßs, 

activins, nodal, bone morphogenetic proteins (BMPs) and some other related proteins, 

and those have crucial roles in development and in tissue homeostasis (246). All of 



 33 

these members share a cluster of conserved cysteine residues forming a characteristic 

cysteine knot. They are synthesized as precursors with a large N-terminal propeptides 

that is proteolytically cleaved from a mature C-terminal domain peptide. 

TGF-ß1 is the prototypic member of the TGF-ß superfamily, and bone ECM is a 

major storage site in the body for this growth factor (247). Though TGF-ß2 and 3 are 

also present in bone, TGF-ß1 is the predominant isoform (>90%) at the level of 200-700 

μg/Kg in this tissue (248, 249). In bone, TGF-ß1 plays pivotal roles in many, if not all, 

aspects of the tissue development, remodeling, mechanical properties and aging (250-

252). Numerous studies, though not always consistent, have shown that TGF-ß1 

stimulates recruitment and proliferation of osteoblast progenitors (253, 254), stimulates 

matrix production such as collagen, fibronectin, osteopontin, osteonectin, proteoglycans, 

but inhibits osteocalcin (250, 255), inhibits late stage of osteoblast differentiation and 

matrix mineralization (256, 257), and modulates osteoclast differentiation (258). The 

abundance of this growth factor with such potent effects on cells predicts the need for 

tight regulation of its biological activities. Indeed, several studies have shown that 

deregulation/overactivation of TGF-ß could be detrimental to osteoblastogenesis and 

bone formation causing bone defects (259-261).   

TGF-ß1 is secreted as a latent complex that needs to be activated before being 

capable of eliciting biological effects (262, 263), and it appears that it is the only growth 

factor known to be produced in a latent/inactive form. The latency is achieved by 

noncovalent association between TGF-ß and its propeptide, called latency-associated 

peptide (LAP), forming a ~100 kDa small latent complex (SLC). For this association, 

thus, to confer “latency” to TGF-ß, res 50-85 near the N-terminus of LAP is important 

(264). More recently, it has been reported that the LSKL sequence (res 54-57) in this 

region of LAP is critical for its association with mature TGF-ß (265). In the same report, 
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the authors also identified the RKPK sequence near the C-terminus of mature TGF-ß as 

a potential recognition sequence for LSKL. Interestingly, the C-terminus of the mature 

TGF-ß (res 83-112) including the RKPK sequence has also been demonstrated to be the 

critical site for the binding to its type II receptor (TßRII) that initiates the signaling 

cascade of TGF-ß (241, 266, 267). Thus, the association of LSKL of LAP and RKPK of 

TGF-ß may sterically prevent receptor binding (265). It is of interest to note that the 

vicinity of the critical regions of LAP and TGF-ß for their association and the region of 

TGF-ß to bind TßRII for signaling are enriched in basic amino acids, including several 

Lys residues, yielding high pI values (e.g. estimated pI for res 50-85 of LAP is 9.98, and 

for res 83-112 of mature TGF-ß1 is 9.24). In many cell types, LAP is further disulfide-

bonded by latent TGF-ß binding proteins (LTBPs) to form a ~290kDa large latent 

complex (LLC) prior to secretion, and in the ECM, LLC is stored possibly by covalently 

linked to matrix components (263, 268). LTBP is thought to be important for efficient 

secretion, storage of TGF-ß in ECM and TGF-ß activation (268). Although almost all 

nonmalignant cells secrete TGF-ß as a part of LLC, bone cells form an exception as they 

efficiently secrete SLC, thus, lacking LTBP (269-271). At least 50% of the latent TGF-ß 

forms produced by bone cells was found to be SLC (272) indicating its specific role in 

bone biology. Bone cells also produce LLC like other cell types (273) where LTBP may 

play dual roles in matrix storage and structural element for bone formation (272). The 

latent TGF-ß can be activated by plasmin, thrombospondin-1, αvß 6 integrin, heat, low 

pH, etc. (263). Such low pH can be generated by osteoclasts during bone resorption to 

activate TGF-ß (7, 274). Since bone is a dynamic, constantly remodeling tissue, tight 

regulation of TGF-ß activity (either in a free or a complex form) is crucial. The regulation 

can be done by: 1. stable TGF-ß binding molecules limiting the bioavailability of this 

growth factor during remodeling, and/or 2. TGF-ß modifications that reduces its potency 

as a growth factor or stabilizes its latency. In bone matrix, there are several TGF-ß 
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binding molecules including small leucine-rich proteoglycans, decorin and biglycan (260, 

275, 276) that may sequester TGF-ß in the matrix and/or diminish TGF-ß binding to its 

cell receptor (277). However, the significance of these interactions in bone ECM is not 

known. Furthermore, potential extracellular modification of TGF-ß that may change 

and/or stabilize the potency is unknown. 

During the course of my study on the biological significance of the post-

translational modifications of collagen in bone, I discovered that in an osteoblastic cell 

culture system, higher LOX expression resulted in less collagen production and 

suppressed TGF-ß1 signaling while lower LOX expression exhibited more collagen 

production and enhanced TGF-ß1 signaling. This intriguing finding prompted me to 

examine the potential interaction between LOX and this growth factor. When these two 

proteins were co-expressed in 293 cells, the binding was detected in a dose-dependent 

manner. No binding was identified between LOX and BMPs tested or LAP. Furthermore, 

TGF-ß1 was found to be bound LOX in the mineralized bone matrix. Considering the 

facts that LOX possesses a strong preference towards basic proteins as its substrates 

and TGF-ß1 (and LAP) is a basic protein, especially its critical domain for “latency” and 

“signal transduction” is enriched in basic amino acids including Lys residues, it is then 

possible that LOX may bind and oxidize TGF-ß1 in bone. This may result in limiting 

bioavailability and activity of this growth factor.  



CHAPTER II 

 

Hypothesis 

 Lysyl oxidase regulates TGF-ß1 function in bone via its amine oxidase activity. 

 

 



CHAPTER III 

 

STUDY I 

Lysyl oxidase regulates collagen quality and quantity in osteoblasts 

Phimon Atsawasuwan, Yoshiyuki Mochida, Michitsuna Katafuchi, Mitsuo Yamauchi 

 

 

Specific aims 

1. To establish several MC cell clones that express higher or lower levels of LOX by 

overexpression or antisense approaches.  

2. To characterize collagen cross-linking, production, fibrilogenesis and matrix 

mineralization in the clones. 
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ABSTRACT 

Fibrillar type I collagen controls spatial aspects of mineralization by providing a 

stable template in most mineralized tissues. The stability of the fibril is primarily derived 

from covalent intermolecular cross-linking initiated by lysyl oxidase (LOX). In this study, 

MC cell-derived clones expressing higher (S) or lower (AS) levels of LOX were 

generated, and the effects on collagen production, fibrillogenesis and mineralization 

were characterized in vitro. In comparison to controls (parental MC3T3-E1 cells (MC) 

and empty vector (EV) clones), the S clones showed significant decreases in total 

collagen production and increases in pyridinoline cross-link and total aldehydes, AS 

clones showed the opposite phenotypes. The numbers and diameter of collagen fibrils of 

S clones were markedly less and smaller while the diameter of fibrils of AS clones were 

larger than those of controls. The onset of mineralization was delayed in both S and AS 

clones in comparison with the controls indicating defective matrix mineralization. 

CONCLUSION: These results indicate that LOX is critical in regulating not only quality 

but quantity of collagen and mineralization in an osteoblastic cell culture system.



 39 

INTRODUCTION 

Mineralization is a multifactorial process orchestrated by cells and a number of 

matrix molecules. In bone, fibrillar type I collagen regulates spatial aspects of 

mineralization by providing a 3-dimensional template for minerals to deposit and grow. 

One of the characteristics of collagen is its large number of post-translational 

modifications, many of which are unique to collagens (15, 35) Covalent intermolecular 

cross-linking is the final modification essential for the stability of the fibrils, thus, for the 

functional fibrils. The stability and adaptability of the fibril attained by specific covalent 

intermolecular cross-linking seem to be essential and the alterations of collagen cross-

linking were indeed observed in numerous bone disorders (38, 278, 279).The process of 

collagen cross-linking is initiated by the conversion of telopeptidyl lysine and 

hydroxylysine residues to aldehyde through the action of an enzyme, lysyl oxidase (EC 

1.4.3.13, protein-lysine 6-oxidases, LOX) (15, 34). The aldehyde produced then 

undergoes a series of condensation reactions to form intra- and intermolecular cross-

links that are essential for the stability of collagen fibrils (15). A study of LOX in 

MC3T3E-1 (MC) cells showed that the maximum increase in lysyl oxidase activity 

precedes the most efficient phase of insoluble collagen deposition. Once treated with 

400M ßAPN, the cultures showed a 44% increase of insoluble collagen deposition 

compared to control cultures. In addition, the collagen fibril diameter showed irregular 

shapes and a higher average diameter (30%) compared to the control cultures (73). 

Recently we have reported that LOX and all LOXLs, except LOXL2, were expressed in 

MC cells, a osteoblastic cell line, and that the expression pattern during cell 

differentiation and matrix mineralization was distinct from one another (74). The 

expression of LOX mRNA is the highest form among its family and the expression 

pattern corresponds to that of type I collagen in this cell line. To obtain further insights 
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into the function of this enzyme in osteoblastic cells, we generated several MC cells-

derived clones that express higher or lower levels of LOX and investigated the effects on 

collagen matrix in their respective cultures. Here we have demonstrated that LOX has 

significant effects on collagen fibrillogenesis and mineralization in vitro. 
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EXPERIMENTAL PROCEDURES 

Cell Lines and Culture Conditions– MC cells subclone 4, (280) were purchased 

from American Type Culture Collection (CRL-2593) and maintained in -minimum 

essential medium (Gibco) containing 10% FBS (Atlanta Biologicals) and supplemented 

with 100 U/ml penicillin G sodium (Gibco), 100 g/ml streptomycin sulfate (Gibco) in a 

5% CO2 atmosphere at 37 C. The medium was changed twice a week. 

Isolation of LOX cDNA and generation of constructs– Total RNA was isolated 

from MC cells using TRIzol reagent (Invitrogen) according to the manufacturer’s 

protocol. Two g of total RNA was used for reverse transcription and the cDNA was 

synthesized using the Omniscript Reverse Transcriptase kit (Qiagen). Specific primers 

for the coding region of the mouse LOX (Genbank accession NM010728) was as 

follows; forward primer, 5’-CCCGGTCTTCCTTTTTCTCCTAGCC-3’ and reverse primer, 

5’-ATACGGTGAAATTGTGCAGCCTGA-3’. PCR amplification was performed by 

ProofStart DNA polymerase (Qiagen) with an annealing temperature of 62 C for 35 

cycles. After adding 3’A-overhangs, the PCR products were then ligated into the 

pcDNA3.1/V5-His-TOPO mammalian expression vector (Invitrogen) generating the 

plasmid containing LOX (pcDNA3.1/V5-His/LOX) construct. The orientation and 

molecular weight of the ligated insert were analyzed by HindIII (Roche) restriction 

enzyme digestion followed by 1.2% agarose gel electrophoresis. Plasmids containing 

digested inserted of the 996 bp, i.e. in a sense (S) or 343 bp, i.e. antisense orientation 

(AS) orientation were sequenced at the UNC-CH DNA sequencing facility (University of 

North Carolina, Chapel Hill, NC). A search in the database confirmed that the ligated 

PCR product was 100% identical to the mouse LOX sequence from Genbank. 
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Transfection and generation of stable cell clones– MC cells were transfected with 

pcDNA3.1/V5-His/LOX constructs (S and AS orientation) or pcDNA 3.1/V5-His A vector 

(empty vector [EV]; Invitrogen) using Fugene 6 transfection reagent (Roche). After 48 h, 

cells were trypsinized and plated at a low density.  Single cell-derived clones (S and AS 

clones) were isolated and maintained in the presence of 400 g/ml G418 (Invitrogen) for 

up to 4 weeks.  

Immunoprecipitation and Western blot analysis of the S and AS clones– MC, EV, 

S and AS clones were plated onto 10-cm dishes (Falcon) at a density of 2.0 x105/dish 

and cultured in -minimum essential medium (-MEM, Gibco containing 10% FBS) with 

the same supplements described above. After 7 days of cell culture, culture media were 

collected and incubated with anti-LOX antibody (Imgenex) at 4 C overnight. After the 

addition of rec-Protein G-Sepharose conjugate beads (Zymed laboratories) and 

incubation at 4C for 30 min, the samples were washed with lysis buffer containing 

150mM NaCl, 20 mM Tris-HCl pH 7.5, 10mM EDTA, 1% Triton X-100, 1% deoxycholate, 

1.5% aprotinin, and 1mM phenymethylsulfonyl fluoride three times. Protein bound to the 

beads were dissolved in SDS sample buffer (100mM Tris HCl, pH 8.8, 0.01% 

bromophenol blue, 36% glycerol, and 4% SDS) in the presence of 10mM dithiothreitol 

(DTT), applied to 4-12% gradient SDS-PAGE (Invitrogen), transferred onto a 

polyvinylidene fluoride membrane (Immobilon-P, Millipore Corp.), and subjected to 

Western blot analysis with anti LOX antibody and a secondary antibody, an anti-rabbit 

IgG conjugated to alkaline phosphatase [(ALP), Pierce Biotechnology]. The 

immunoreactivity was visualized by an ALP conjugate substrate kit (Bio-Rad 

Laboratories). 

Proliferation assay– MC, EV, S and AS clones were plated in triplicate at a 

density of 5x104 cells /ml in a 96-well plate, and cultured with -MEM and 10% FBS. At 
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day 2, 4 and 6 days of cell culture, the cells were subjected to MTS cell proliferation 

assay (CellTier 96®, Promega) according to the manufacturer’s protocol. Briefly, 100 l 

of MTS solution was added into each well and incubated at 37 C for 4 hrs. The amounts 

of formazan compound, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium), MTS, produced by metabolically active cells were 

measured by absorbance at 490 nm. 

Quantitative Collagen Cross-link Analysis– MC, EV, S and AS clones were 

cultured in -MEM, 10% FBS and 50g/ml ascorbic acid. After 2 weeks of culture, 

cells/matrices were washed with phosphate buffered saline (PBS), scraped into a 1.8 ml 

eppendorf tube and washed with PBS, distilled deionized water (DDW) twice then 

lyophilized. Two milligrams of the lyophilized samples were suspended in 0.15M N-

trismethyl-2-aminoethanesulfonic acid and 0.05M Tris-HCl buffer (pH 7.4) and reduced 

with standardized NaB3H4 (281), hydrolyzed with 6 N HCl in vacuo, after flushing with N2 

at 105C for 22 h. The hydrolysates were dried by a speed vacuum concentrator (Savant 

Instruments Inc), dissolved in 300 µl of DDW and filtered through a 0.22 µm membrane 

(Costar, Corning Inc) and kept in 4C. Aliquots were subjected to amino acid analysis to 

determine Hyp and the hydrolysates with known amounts of Hyp were analyzed for 

cross-links on a cation-exchange column (AA-991; Transgenomic) linked to a 

fluorescence detector (FP1520; Jasco Spectroscopic) and a liquid scintillation analyzer 

(500TR series; Packard Instrument) as reported previously (282). All reducible cross-

links and aldehydes were measured as their reduced forms. The major reducible cross-

links, dihydroxylysinonorleucine and hydroxylysinonorleucine (DHLNL, HLNL) and 

precursor aldehydes and non-reducible cross-links, pyridinoline and deoxypyridinoline 

(Pyr, d-Pyr) were simultaneously quantified by the cross-link analyzer. The quantities of 

the collagen cross-links were expressed as moles/mole of collagen (283). The analyses 
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were done in triplicate and the values are means+SD. To confirm the reproducibility of 

the results, three independent experiments were performed. 

Collagen content determination– MC, EV, S and AS clones were cultured as 

described above. At day 3 and 7, cell culture medium were collected and cell/matrix 

layers were collected and lyophilized as described above. The dry cells/matrices and 

lyophilized medium were hydrolyzed with 300 µl of 6 N HCl (Pierce) in vacuo, after 

flushing with N2, for 22 h at 105ºC, dried, dissolved in 300 l of distilled water, filtered 

with 0.22 m filter unit and kept in 4C. An aliquot of each hydrolysate was subjected to 

amino acid analysis on a Varian high-performance liquid chromatography (HPLC) 

system (9050/9012; Varian Associates Inc) using ninhydrin (Pickering laboratories) for 

color development at 135oC to determine hydroxyproline residue (282). The collagen 

content in the cells/matrices was calculated using a value of 300 residues of Hyp per 

collagen molecule. The total collagen content in the medium and matrices was 

calculated and normalized with the number of the cells in each dish. To confirm the 

reproducibility of the results, three independent experiments were performed. 

Transmission electron microscopy– The cell/matrix layers of MC, EV, S and AS 

clones at week 3 of study were washed with PBS, fixed with 3% glutaraldehyde and 1% 

tannic acid in 0.1 M cacodylate buffer, pH 7.4 for 90 mins. The specimens were then 

post-fixed in 1% osmium tetroxide in 0.1M sodium cacodylate, pH 7.4 for 1 hour at room 

temperature. The samples were dehydrated with ethanol, embedded in Polybed 812 

epoxy resin (Polysciences) and ultrathin sectioned at 70 nm with a diamond knife.  The 

sections were stained with 4% aqueous uranyl acetate for 20 min, followed by Reynolds 

lead citrate for 8 min. The sections were observed at 80 kV using a Leo EM 910 

transmission electron microscope (LEO Electron Microscopy). Digital images were 

acquired at 40,000X magnification using a Gatan Bioscan CCD camera and Digital 
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Micrograph software (Gatan, Inc).  For each sample, a total of 500 collagen fibril 

diameters and the number of fibrils per m2 were measured randomly using Scion Image 

software (Scion Corporation). 

In vitro mineralization assay– MC, EV, S and AS clones were plated on 35 mm 

plastic dishes at the density of 2x105 cells/dish (Falcon) and cultured until confluence.  

The medium was then replaced with the one supplemented with 50 g/ml of ascorbic 

acid and 2 mM of ß-glycerophosphate (mineralization medium), and maintained for up to 

4 weeks.  In vitro mineralization assay was performed at the end of week 2 and 4.  At 

each time point, cell/matrix layers were washed with 1X PBS twice, fixed with 100% cold 

methanol, stained with 1% Alizarin Red S (Sigma) for 15 min and washed with DDW and 

dried at room temperature(74). At week 4, the calcium contents were quantified by 

measuring the amount of Alizarin red S bound to mineralization nodules in the cultures. 

Briefly, after staining with Alizarin red S, the cultures were washed with 10% (w/v) 

cetylpyridinum chloride in 10 mM sodium phosphate, pH 7.0 for 15 min. The dye 

concentration in the extracts were subjected to spectrophotometer at absorbance 562 

nm (284, 285) to compare the amount of alizarin and normalized with cell numbers. To 

confirm the reproducibility of the results, three independent experiments were 

performed. 

Statistical analyses– All statistical analyses were performed using Sigma stat 

software. Data are expressed as mean+SD. Statistical differences were determined by 

one-way ANOVA followed by a Tukey-Kramer multiple comparison test at P=0.05. 
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RESULTS 

Generation of the S and AS clones– The immunoprecipitation/Western blot 

analysis of three S, three AS clones and the controls are shown in Figure 2.1. S3 

showed the highest level of LOX (S3: 2.34, S2: 2.25 and S1: 1.47 fold) while AS1 

showed the lowest level of LOX (AS1: 0.49, AS2: 0.73, AS3: 0.85 fold) compared to the 

average expression level of MC and EV. Using MTS assay, the proliferation rate of S 

clones were comparable with controls (MC and EV) while those of AS clones were 

slightly lower compared to controls at the same timepoint of study but there is no 

statistically difference among the clones and when compared to controls (P>0.05) 

(Figure 2.2). 

Quantitative collagen cross-link analysis–To confirm if the generated S and AS 

clones secreted functional recombinant LOX, the collagen cross-links in each clones 

were quantified. The collagen cross-links produced in MC, EV, S, and AS clones at 2 

weeks of culture were bifunctional reducible cross-links, i.e. DHLNL and HLNL and a 

trivalent nonreducible cross-link, Pyr. The cross-link analysis of S clone exhibited higher 

levels of total aldehydes (DHLNL+HLNL+2xPyr), DHLNL and Pyr whereas that of AS 

exhibited lower levels of total aldehydes, DHLNL and Pyr (Figure 2.3). The Pyr contents 

in S clones were constantly higher (157, 206 and 260 % increase) whereas those in AS 

clones lower (64, 57and 42% decrease) than those of controls (P<0.05) (Table 2.1). The 

data from cross-link analysis is consistent with the level of LOX in S and AS clones 

(Figure 2.1).  

Collagen content determination– The total collagen content in each clone at day 

3 and 7 of the study was shown in Figure 2.4. After normalized with cell numbers in each 

dish, the results demonstrated that the total collagen content (in medium and matrix) in 
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all S clones was significantly lower than those of controls (MC and EV) at both time-point 

of study (P<0.05) while that in all AS clones was comparable to those of the controls at 

day 3 but significantly higher than those of controls at day 7 in AS1 and AS2 clones 

(P<0.05).  

Ultrastructural analysis of collagen fibrils– Cross-sectional views of collagen 

fibrils obtained from cultures of S (S1, S2, S3) and AS (AS1, AS2, AS3) clones and the 

controls (MC, EV) are shown in Figure 2.5. As shown in histogram, MC cells had a mean 

diameter of 46.2+9.4 nm with a range of 29.2-87.5 nm, which is similar to that of the EV 

clone (mean 42.3+6.8 nm; range 29.2-62.5 nm). In all S clones, the mean fibril diameters 

and their range were significantly smaller than those of controls (P<0.05). Among the S 

clones, S3 that exhibited the highest level of LOX overexpression (Fig 2.1) showed the 

smallest fibril diameter (mean 21.1+7.9 nm; range 3.7-46.6 nm) followed by S2 clones 

(mean 24.2+9.97 nm; range 3.7-44.1 nm) and S1 clones that exhibited the lowest level 

of LOX overexpression (mean 30.1+4.4 nm; range 3.7-44.1 nm). In all AS clones, the 

mean fibril diameters and their range were significantly larger than those of controls 

(P<0.05). Among AS clones, AS1 that exhibited the lowest level of LOX showed the 

largest fibril diameter (mean 99.1+43.2 nm; range 31.3-226.7 nm) followed by AS2 

clones (mean 66.9+21.6 nm; range 22.2-170.8 nm) and AS3 clones that exhibited LOX 

only slightly lower than controls (mean 58.4+19.6 nm; range 16.7-129.2 nm) (Figure 

2.6).Therefore, the fibril diameter and distribution range were inversely correlated with 

the level of LOX expression in the clones. The number of collagen fibrils were counted 

per square micron randomly from 6 areas and presented in Table 2.2. The number of 

fibrils in all S clones were significantly lower than those of the controls (P<0.05). 

In vitro mineralization assay– The result of in vitro mineralization assay is shown 

in Fig 2.7. The mineralization pattern of two controls, MC cells and EV clone, was 
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essentially identical to each other. In both cases, the formation of mineralized nodules 

was present at 2 weeks of culture and the number and size of mineralized nodule 

increased thereafter. In S clones, mineralized nodules were not observed in any clones 

even at week 4. In AS clones, a small number of mineralized nodules were observed at 

2 weeks of cultures and increased there after; however, the amounts of nodules in all AS 

clones were less than those of controls (Fig 2.7A). The quantitative analysis of Alizarin 

Red S stain extracted from the mineralized matrix confirmed the defective matrix 

mineralization observed in S and AS clones. The level of Alizarin Red extracted dye from 

the MC and EV were comparable but higher than those from S and AS clones (Figure 

2.7B) (P<0.05).  



 49 

Table 2.1   The amount (moles/mole collagen) of total aldehydes and reducible and, non-

reducible cross-links in each clone are expressed as mean+S.D. ( - : decrease, * P<0.05, 

ANOVA) 

 DHLNL HLNL PYR Total 
Aldehydes 

% change of 
PYR  

AS1 0.354+0.064* 0.123+0.007 0.012+0.005* 0.500 -64.61 

AS2 0.448+0.023 0.138+0.025 0.014+0.003* 0.614 -56.92 

AS3 0.463+0.013 0.079+0.015* 0.019+0.010 0.580 -41.54 

MC 0.475+0.010 0.168+0.030 0.029+0.007 0.701 0 

EV 0.476+0.032 0.172+0.024 0.036+0.015 0.719 0 

S1 0.487+0.052 0.130+0.001 0.084+0.008* 0.783 156.92 

S2 0.514+0.021 0.140+0.022 0.100+0.013* 0.853 206.15 

S3 0.609+0.126* 0.127+0.003 0.117+0.010* 0.970 260.0 

 

Table 2.2   The fibril density (number fibrils per square micrometer) from each clone is expressed 

as mean+S.D. (* P<0.05, ANOVA) 

Clones Mean + S.D. 

AS1 93.2+48.2 

AS2 122.2+26.9 

AS3 132.7+27.4 

MC 129.8+49.2 

EV 130.5+42.0 

S1 59.0+24.0* 

S2 70.0+25.6* 

S3 72.7+17.6* 
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Figure 2.1 The level of LOX protein expression per dish in stable clones and controls. Cultured 

medium pooled during the first week of culture were analyzed by IP-WB analysis using anti LOX 

antibody. The immunoreactive bands at ~35 kDa can be detected in all stable clones and 

controls. S clones, S1, S2 and S3, possessed higher levels of LOX (S3>S2>S1) compared to 

controls, MC cells or EV clone. AS clones, AS1, AS2 and AS3, synthesized lower levels of LOX 

(AS3>AS2>AS1) compared to that of controls.  
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Figure 2.2 Cell proliferation rate of S and AS clones. Cell proliferation of each clones and 

controls were assessed by MTS cell proliferation assay. Note that cell proliferation was 

comparable among all cell types. (P>0.05, ANOVA) 
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Figure 2.3 Amounts of collagen cross-links and their precursor expressed in moles/mole of 

collagen at 2 weeks of cultures. Total aldehydes and DHLNL in all AS clones were lower and in 

all S clones were higher than those of controls. Non reducible crosslink represented as Pyr in 

clones and controls was shown as bar graph. S1, S2 and S3 clones exhibited significantly higher 

level while AS 1 and 2 exhibited significantly lower level than that of controls (* P<0.05, ANOVA). 

Figure 2.4 Total collagen content from culture matrix and medium at day 3 and 7 of the cultures 

expressed as microgram of collagen per 10
4
 cells in each dish. All S clones showed significantly 

lower collagen production compared to those of controls at each timepoint of study (*,# P<0.05, 

ANOVA) while AS1 and 2 produced more collagen significantly at day 7 (# P<0.05, ANOVA). 
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Figure 2.5 Cross-section of the collagen fibrils in the ECM at 3 weeks of cultures observed under 

TEM and their diameter. All S clones produced smaller collagen fibrils while all AS clones 

produced larger collagen fibrils than those of the controls. The S3 clone, highest LOX level, 

produced the smallest collagen fibrils while the AS1 clone, lowest LOX level, produced the largest 

collagen fibrils. (bar = 100 nm). 
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Figure 2.6 Distribution of the collagen fibril diameter in the ECM at 3 weeks of cultures observed 

under TEM and their diameter distribution, based on total numbers of 500 fibrils.  The fibril 

diameter in all S clones were significantly smaller while those of all AS clones were significantly 

larger than those of the controls (* P<0.05, ANOVA). The S3 clone, highest LOX level, produced 

the smallest collagen fibrils while the AS1 clone, lowest LOX level, produced the largest collagen 

fibrils.  

 



 54 

 

Figure 2.7 In vitro mineralization assay. A. Mineralized nodules formed by the controls (MC and 

EV) at 2 and 4 weeks of cell culture from the clones (S and AS) and the controls (MC and EV). In 

S clones, mineralized nodules were not observed in any clones at any time-point of study while in 

the AS clones, the formed nodules were formed at week 2 of cultures and increased thereafter.  

The nodules of AS clones were lesser than those of controls. B. The quantitative assay at week4 

of cultures confirmed the defective mineralization in S and AS clones. (*P<0.05, ANOVA) 
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DISCUSSION 

 In bone, a specific spatial relationship between the two predominant 

components, collagen fibrils and mineral, is critical for the mechanical function (286, 

287), and the collagen fibrils apparently regulate the manner of mineral deposition and 

growth (288, 289). A number of studies indicate that the covalent intermolecular cross-

linking formed at the edge of the hole zones of the fibril, the putative nucleation sites, 

plays a crucial role in collagen mineralization (283, 290-292). We have reported that the 

manipulation of cross-linking pattern in MC cells through lysyl hydroxylase 2b affects the 

collagen fibrillogenesis, and matrix mineralization (293). The study indicates the 

importance of the type of collagen cross-links is an important factor to regulate collagen 

fibrillogenesis and matrix mineralization. Up to now, however, the effect of the quantity of 

collagen cross-links on mineralization has never been directly investigated. As 

described, LOX family enzymes are the only known family enzyme to initiate the process 

of cross-linking by oxidative deaminating the ε-amino groups on peptidyl Lys and Hyl 

residues in the N- and C-terminal telopeptides of collagen. In this study, by establishing 

and characterizing MC cell derived clones expressing higher and lower levels of LOX, 

we examined if the level of collagen cross-links plays a role in collagen fibrillogenesis 

and subsequent matrix mineralization.  

 The collagen phenotype produced by S and AS clones was investigated by 

analyzing the quantity and quality using HPLC and TEM. The total collagen content in 

culture media and matrix in S clones was markedly decreased while that in AS clones 

was increased. The collagen fibril observed under TEM in S clones was significantly 

smaller and those in AS clones showed diversed diameter and larger than those of 

controls. The findings in AS clones were similar to those treated with ßAPN (73, 222) or 

a procollagen C-proteinase inhibitor (225). In ßAPN treated cultures, the total collagen 
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synthesis was increased and collagen fibril diameters were diversed and larger than 

those observed in control group (73, 222). In PCP inhibitor treated cultures, an increase 

of collagen fibril diameters was detected while LOX activity was decreased (225). In S 

clones, however, the total collagen content and its fibril diameter showed opposite to 

those found in AS clones, i.e. decreased collagen content and larger fibril diameter 

compared to controls. These results indicate the effect of LOX on collagen production, 

fibrillogenesis and mineralization. Altered collagen fibrillogenesis and mineralization 

might be the consequence of altered collagen cross-linking as its pattern is associated 

with those processes (293-295). However, the underlying mechanism of how LOX 

controls the collagen production is not clear. The altered level of collagen production at 

as early as day 3 can be hardly explained by an increase or a decrease of collagen 

cross-linking since even immature cross-links begin to accumulate only after 1-2 weeks 

in osteoblast cultures (222, 295, 296). The increased collagen expression/production by 

the treatment of ßAPN have also been reported in chondrocyte cultures (223, 297). 

These data clearly indicate that LOX inhibition affects “early” cellular functions 

associated with increased collagen expression/synthesis. The upregulation of collagen 

mRNA seen in lathyritic animals during the early phase of bone fracture healing (239) 

also supports this notion. Thus, the effect of LOX on collagen production might be 

related to its recently identified cellular functions (134). Future studies need to be 

investigated to clarify this speculation. 

 The in vitro mineralization was severely impaired in all S clones and, to a certain 

extent, in AS clones. This phenotype might be explained based on the template stability, 

morphology proposed by Landis et al 1993 (289). However, the result in this study 

showed the critical importance of LOX for the physiological matrix mineralization. 
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 In conclusion, this study showed potential roles of LOX in modulating collagen 

production, fibrillogenesis and matrix mineralization in osteoblastic cultures. Some of 

those effects may be associated with the cellular function of LOX.  



CHAPTER IV 

 

STUDY II 

Lysyl oxidase regulates transforming growth factor-ß1 function in bone via 

its amine oxidase activity. 

Phimon Atsawasuwan, Michitsuna Katafuchi, Yoshiyuki Mochida, Masaru Kaku,  

Mitsuo Yamauchi 

 

Specific aims 

1. To elucidate the binding between LOX and TGF-ß1 in vitro and in bone matrix. 

2. To evaluate the role of LOX on TGF-ß activity by determination of the level of 

Smad 3 phosphorylation and TGF-ß1 induced matrix molecule mRNA 

expression. 
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ABSTRACT 

Lysyl oxidase (LOX), an amine oxidase critical for the initiation of collagen and 

elastin cross-linking, has recently been shown to regulate cellular activities possibly by 

modulating growth factor activity. In this study, we investigated the interaction of LOX 

with transforming growth factor-ß1 (TGF-ß1), a potent growth factor abundant in bone, 

and evaluated the effect of this interaction. The specific binding between LOX and TGF-

ß1 was demonstrated both by immunoprecipitation and glutathione-S-transferase pull 

down assay. Both molecules were co-localized in the extracellular matrix in culture and 

the binding complex was identified in the mineral-associated fraction of bone matrix. 

Furthermore, LOX suppressed TGF-ß1 induced Smad3 phosphorylation and collagen 

(I/V) expression but the effects were nullified by ß-aminopropionitrile. The suppression of 

Smad3 phosphorylation was not affected in the presence of catalase. The data indicate 

that LOX may bind to mature TGF-ß1 and regulate its signaling via its amine oxidase 

activity in bone, thus, may play an important role in bone remodelling and mineralization. 
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INTRODUCTION 

Lysyl oxidase (LOX) is a copper-dependent amine oxidase that initiates the 

process of covalent intra- and intermolecular cross-linking in collagen and elastin (34). 

The critical role of LOX in tissue stability is well exemplified by “lathyrism”, the condition 

where deleterious effects in connective tissues are caused by lathyrogens such as ß-

aminopropionitrile (ßAPN) (298). In lathyritic animals, bone is one of the most severely 

affected tissues revealing kyphoscoliosis, bone deformities, weakening of tendons and 

ligament attachments, dislocation of joints, weakening of skin and cartilage, hernias and 

dissecting or saccular aneurysm of the aorta (233-235, 239). ßAPN is a potent and 

irreversible inhibitor of LOX, and prevents cross-linking of immature collagen and elastin 

into mature, stable insoluble fibers. Therefore, it has been thought that the phenotypes 

seen in lathyritic animals are due to the lack of cross-linking. Several reports showed 

that ßAPN treated osteoblasts exhibited an increase in collagen production and 

abnormal fibrillogenesis (73, 222). Moreover, the similar collagen phenotypes were 

observed in ßAPN treated chondrocytes (223, 297). These examples of abnormal 

collagen production can be hardly explained by a decrease of collagen cross-linking 

since even immature cross-links begin to accumulate only after 1-2 weeks in osteoblast 

cultures (222, 295, 296). The upregulation of collagen mRNA was observed in lathyritic 

animals during the early phase of bone fracture healing as well (239).  

Recent reports, however, have revealed novel functions for LOX including the 

regulation of gene transcription and cellular functions. Though the mechanisms are still 

not clear, those functions could be associated with its ability to oxidize substrates other 

than collagen and elastin, such as Histone H1 and H2 (132), basic fibroblast growth 

factor (bFGF) (134), and hypoxia induced factor (299). Thus, lathyritic phenotypes may 

also be due in part to the loss of LOX control of cellular functions.  
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Our previous study (chapter III) has demonstrated that LOX expression is 

inversely correlated with collagen production in an osteoblastic cell culture system. This 

could be due to the LOX interaction/regulation of growth factors that regulate collagen 

expression, as some studies suggested (104, 134). Thus, we next investigated the 

potential LOX regulation of growth factors that are known to regulate collagen 

expression in bone. In bone, there are several major growth factors such as transforming 

growth factor-ß (TGF-ß), bone morphogenic proteins (BMPs), insulin-like growth factors 

(IGFs) and platelet derived growth factor (PDGF), tumor necrosis factor-α (TNF-α) and 

basic fibroblast growth factor (bFGF). Several studies has reported that insulin-like 

growth factors (IGF1 and 2) and TNF-α play some roles in collagen production (300-

307). Concerning the effects on collagen synthesis, bFGF and PDGF showed 

inconsistent results (303, 304, 308-311). However, considering the fact that LOX has a 

strong preference for basic proteins as its substrate (126), IGF1/2 (pI ~6.46 and 7.76) 

and TNF- α (pI ~7.02) may not be substrates for LOX. Type I collagen has been reported 

as a target gene of TGF-ß1 and BMPs in bone (252, 312-314) and that both are basic 

proteins (pI~8.59 and 8.5). During our initial study on the interaction between LOX and 

TGF-ß1/BMPs, we have found that LOX specifically binds to mature TGF-ß1 and 

suppresses its signaling.  TGF-ß1 is one of the most potent growth factors enriched in 

bone matrix modulating many aspects of bone physiology (see a review in (252)). TGF-

ß1 is secreted and stored as a small or large latent complex in bone matrix that can be 

released and activated by the action of osteoclasts (262, 263) and through other 

mechanisms. Numerous studies, though not always consistent, have shown that TGF-ß1 

stimulates recruitment and proliferation of osteoblast progenitors (254, 315) and 

stimulates matrix production including collagen, but rather inhibits late stage of 

osteoblast differentiation and matrix mineralization (256, 257) and osteocalcin 

expression (250, 316). It is also involved in the modulation of osteoclast differentiation 
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(258). The abundance of this growth factor with such potent effects on cells in a dynamic 

environment of bone clearly predicts the need for tight regulation of its biological 

activities.  

In this study, we have demonstrated that LOX binds to mature TGF-ß1 and 

inhibits its signaling through an amine oxidase activity. Furthermore, LOX and TGF-ß1 

form a complex in the mineralized matrix fraction in bone. Thus, LOX may play a pivotal 

role not only in collagen stability but also in regulation of TGF-ß activity which is critical 

for bone physiology and pathology.  
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EXPERIMENTAL PROCEDURES 

Antibodies and Proteins Used- These following antibodies were used in this 

study: Anti-V5 antibody (Invitrogen), anti-hemagglutinin (HA) antibody (Roche 

Diagnostics), anti-phosphoSmad3 antibody (Biosource), anti-glutathione S-transferase 

(GST) antibody (Sigma-aldrich), anti-Smad3, anti-phosphoSmad1,5,8,  anti-ß-actin 

antibodies (Cell signaling technologies), and anti-TGF-ß1 antibody (R&D systems). Two 

types of polyclonal anti-LOX antibodies were used, one purchased from Imgenex (anti-

LOXi) and another described in previous studies (anti-LOXh) (83, 317). Recombinant 

human TGF-ß1 protein (rhTGF-ß1) and recombinant human BMP-2 (rhBMP-2) were 

purchased from R&D systems.  

 Cell Lines and Culture Conditions- The human embryonic kidney (HEK) 293 cells 

were purchased from Clontech and maintained in Dulbecco’ s modified Eagle medium 

(Gibco) supplemented with 10% fetal bovine serum (Atlanta Biologicals), 100 U/ml 

penicillin (Gibco), and 100 g/ml streptomycin (Gibco) in a 5% CO2 atmosphere at 37 C. 

The medium was changed twice a week. The mouse calvaria-derived MC3T3-E1 (MC) 

cells were purchased from American Type Culture Collection (CRL-2593) and 

maintained in -minimum essential medium (Gibco) with the same supplements as 

above. The medium was changed twice a week. 

 Molecular cloning of mouse LOX cDNA- Total RNA was isolated from MC cells 

using TRIzol (Invitrogen). Two g of total RNA was used for reverse transcription and 

the cDNA was synthesized using the Omniscript RT kit (Qiagen). The cDNA containing 

the coding region of the mouse LOX (Genbank accession NM_010728) was generated 

by PCR using Hotstar Taq polymerase (Qiagen). The sequences of the primers were 

designed as shown in Table 3.1. The PCR product was then ligated into the 
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pcDNA3.1/V5-His-TOPO mammalian expression vector (Invitrogen), sequenced at the 

UNC-CH DNA sequencing facility (University of North Carolina, Chapel Hill, NC), and the 

plasmid containing LOX cDNA in a sense orientation (pcDNA3.1/V5-His/LOX) was 

obtained. To generate pcDNA3/V5-His/LOXdm (LOX with Lys314 and Tyr349 mutated 

resulting in an inactive LOX) (105), the coding sequences of LOX was subcloned from 

pcDNA3.1/V5-His/LOX by PCR and another additional two sets of primers for the 

mutation of Lys314 and Tyr 349 were designed using primers in Table 3.1. To generate 

pcDNA3/HA/LOX and pcDNA3/HA/LOXdm, the coding sequences of LOX was 

subcloned from pcDNA3.1/V5-His/LOX and pcDNA3/V5-His/LOXdm by PCR and the 

primers designed were shown in Table 3.1. The PCR products were digested with BamH 

I and Xho I and ligated into pcDNA3/HA mammalian expression vector (318), sequenced 

at the UNC-CH DNA sequencing facility. Two additional deletion mutant constructs of 

LOX, i.e. mature LOX (signal peptide-residue 1-16 and 162-411, LOX-HA) and LOX 

propeptide (signal peptide and propeptide: residue 1-161, LOPP-HA) were generated 

using 2 additional sets of primers as shown in Table 3.1, subcloned from 

pcDNA3/HA/LOX and sequenced at the UNC-CH DNA sequencing facility. 

Transfection, Immunoprecipitation and Western Blotting- 293 cells 

cotransfected with pcDNA3/HA/LOX vector and pcDNA3.1/V5-His vector harboring 

BMP-2, -4, -6, -7 (318) or pcDNA3.1-V5-His/TGF-ß1 using a FuGENE6 transfection 

reagent (Roche Diagnostics) according to the manufacturer’s instructions. pcDNA3.1-

V5-His/TGF-ß1 was generated as described. Briefly, PCR products were amplified using 

the normal mouse kidney cDNA  (BD Bioscience) as a cDNA template, purified and 

ligated into the pcDNA3.1/V5-His-TOPO mammalian expression vector, sequenced at 

the UNC-CH DNA sequencing facility, and the plasmid containing TGF-ß1 cDNA in a 

sense orientation (pcDNA3.1/V5-His/TGF-ß1) was obtained. The sequences of the 
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primers were designed and shown in Table 3.1. After transfection, the cultured media 

were collected, immunoprecipitated with either anti-V5 or anti-HA antibody. The samples 

were then incubated with protein A-sepharose 4B conjugate beads (Zymed 

Laboratories) for 30 min and the beads were washed twice with lysis buffer containing 

150mM NaCl, 20 mM Tris-HCl pH 7.5, 10mM EDTA, 1% Triton X-100, 1% deoxycholate, 

1.5% aprotinin, and 1mM phenymethylsulfonyl fluoride three times. Protein bound to the 

beads were dissolved in SDS sample buffer (100mM Tris HCl, pH 8.8, 0.01% 

bromophenol blue, 36% glycerol, and 4% SDS) in the presence of 10mM dithiothreitol 

(DTT), applied to 4-12% gradient SDS-PAGE, transferred onto a polyvinylidene fluoride 

membrane (Immobilon-P, Millipore), and subjected to Western blot analysis with anti-V5 

or anti-HA antibody. The immunoreactivity was visualized by an alkaline phosphatase 

(ALP) conjugate substrate kit (Bio-Rad). To determine whether LOX binds to LAP or 

mature TGF-ß, 293 cells were transiently transfected with the pcDNA3/HA/LOX, and 

either pcDNA3.1/V5-His/TGF-ß 1 or pcDNA3.1/V5-His/LAP, using Fugene6 transfection 

reagent. pcDNA3.1/V5-His/LAP was subcloned from pcDNA3.1/V5-His/TGF-ß1 by PCR 

and the primers were shown in Table 3.1. The PCR product was then ligated into the 

pcDNA3.1/V5-His-TOPO mammalian expression vector, sequenced at the UNC-CH 

DNA sequencing facility, and the plasmid containing LAP cDNA in a sense orientation 

(pcDNA3.1/V5-His/LAP) was obtained. The total amounts of plasmid were kept constant 

(2.5 g) by supplementing pcDNA3.1/V5-HisA (empty vector). The media were collected 

and subjected to immunoprecipitation and Western blot analysis in the same manner as 

described above. 

Generation of 293-derived Stable Clones Overexpressing LOX and MC Stable 

Clones Over/Underexpressing LOX– HEK293 cells were transfected with either 

pcDNA3.1/V5-His/LOX or pcDNA3.1/V5-His/LOXdm constructs as described above. 
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After transfection, cell were cultured in the presence of 400 g/ml of G418 (Gibco) for 3-

4 weeks to select stably transfected clones. Positive clones derived from single G418-

resistant cells were then isolated by cloning rings and further grown in the same 

conditions. As a control, 293 cells were also transfected with an empty pcDNA3.1/V5-His 

A vector (EV, Invitrogen) and the clones (EV clones) were generated in the same 

manner.  

MC cells were transfected with pcDNA3.1/V5-His/LOX constructs (S and AS 

orientation) (see Chapter III) and pcDNA 3.1/V5-His A vector (empty vector [EV]; 

Invitrogen) using Fugene 6 transfection reagent (Roche). After 48 h, cells were 

trypsinized and plated at a low density.  Single cell-derived clones (S and AS clones) 

were isolated and maintained in the presence of 400 g/ml G418 (Invitrogen) for up to 4 

weeks.  

Purification of LOX-V5/His Fusion Protein – The 293-derived clones that 

synthesized the highest level of LOX-V5/His protein were cultured in 15 cm plates for 6 

days and the culture media were collected. LOX-V5/His fusion protein (LOX-V5) was 

purified using a nickel-nitrotriacetic acid-agarose resin (Qiagen) at 4˚C, and the purified 

proteins were pooled, dialyzed against 0.2 M sodium borate pH 8.2 and kept in -20˚C 

until use. The protein concentrations were measured by DC protein assay kit (Bio-Rad). 

To assess the purity of LOX-V5, aliquots of the sample were dissolved in SDS sample 

buffer containing 10 mM DTT, separated by 4-12% SDS-PAGE and subjected to 

Coomassie Brilliant Blue (CBB) R-250 staining or Western Blot analysis. For the latter 

analysis, two anti-LOX antibodies (anti-LOXi and anti-LOXh, see above) and anti-V5 

antibody were used. The major CBB stained protein band on the gel was cut and 

subjected to matrix assisted laser desorption ionization mass spectrometric analysis 

(MALDI-MS) at UNC-CH Proteomics Facility. LOXdm-V5/his fusion protein (LOXdm-V5) 
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was also purified in the same manner and subjected to LOX activity assay to verify the 

activity nullification of the mutations. 

 LOX Activity Assay- The LOX enzyme activity was measured using the Amplex 

Ultra Red fluorescence assay (128). Five or ten g of LOX-V5 with or without 500 M 

ßAPN were suspended in 2 ml of 0.1 M sodium borate, pH 8.2, containing, 1.2 M urea, 1 

unit/ml horseradish peroxidase (HRP) (Biochemika), 10 M Amplex red (Molecular 

Probes, Inc.), 10 mM 1,5-diaminopentane dihydrochloride (Sigma). The mixture was 

incubated for 30 min at 37C and the fluorescence intensities were measured with 

excitation and emission wavelength at 563 and 587 nm, respectively, using F2000 

spectrofluorometer (Hitachi). 

Glutathione S transferase (GST) Pull-down Assay- The sequences of the 

primers were designed to amplify the mature form of TGF-ß1 (residue number 279-390) 

and shown in Table 3.1. The PCR products were amplified using the normal mouse 

kidney cDNA as a cDNA template, purified and ligated into a pGEX-4T-1 vector (GE 

Healthcare) and transformed into BL21 strain of Escherichia coli (Stratagene). An empty 

pGEX4T-1 vector was also transformed into the bacterial cells to produce GST protein 

alone. After DNA purification, plasmids were analyzed by restriction enzyme digestion, 

sequenced, and the plasmid harboring the mature form of GST-TGF-ß1 (pGEX4T-1-

TGF-ß1) was obtained. After the bacteria transformed with pGEX4T-1-TGF-ß1 or 

pGEX4T-1 were cultured at 37 ºC for several hours, 250μM of isopropyl-D-1-

thiogalactopyranoside (IPTG, Sigma-Aldrich) was added to induce the synthesis of GST 

and GST-TGF-ß1 proteins. After incubating for 24 hours at 20˚C, the cultures were 

centrifuged, lysed in a buffer containing PBS and 1% Triton X-100, and sonicated for 20 

sec three times with an interval of 3 min on ice. The lysates were collected by 

centrifugation, incubated with glutathione-sepharose beads (GE Healthcare) overnight at 
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4ºC and the beads were extensively washed with PBS. The recombinant GST-TGF-ß1 

and GST proteins were then released with the elution buffer (10mM glutathione, 50mM 

Tris-HCl pH 8.0) at 4 ºC.  The purity of the recombinant proteins was assessed by SDS-

PAGE. The protein concentrations were measured by DC protein assay kit. Then GST 

pull down was performed in the following manner. Five g of of GST or purified GST-

TGF-ß1 fusion protein 2.5 or 5 g were incubated with 10 g of LOX-V5 in 50 mM Tris-

HCl, pH 8.0, with the presence or absence of 500 μM ßAPN for 1 h at 4C. Glutathione-

sepharose beads (GE Healthcare) were then added and further incubated for 30 min at 

4C. The beads were then washed three times with TBST buffer (0.02% Tween 20 

(Fisher scientific), and the proteins bound were released by boiling for 5 min in SDS 

sample buffer containing 10mM DTT, and subjected to Western blot analysis with anti-

V5 antibody. The immunoreactivity was visualized by ALP conjugate substrate kit. 

Direct binding of LOX and TGF-ß1 by immunoprecipitation- Twenty ng of 

rhTGF-ß1 (R&D systems) were incubated with 10 g of LOX-V5 in 50 mM Tris-HCl, pH 

8.0, containing in the presence or absence of 500 μM ßAPN for 1 h at 4C. The protein 

G-sepharose 4B conjugate beads (Zymed) were then added to the solutions and further 

incubated for 30 min. The sepharose-bound complexes were collected by centrifugation, 

washed three times with TBST buffer, and the proteins bound were released and 

subjected to Western blot analysis with anti-V5 antibody as described above.  

Laser-scanning Confocal Microscopy – The potential co-localization of LOX and 

TGF-ß1 was investigated in a MC culture system by a laser-scanning confocal 

microscopy. MC cells were cultured for 3 weeks as described above, washed with PBS 

and fixed with 10% formaldehyde for 10 min. Cell/matrix layer was then cut into 1 X 1cm 

pieces, placed on a glass slide and dried. The slides were then immersed in PBS and 
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treated with 20 μg/ml of Proteinase K (Roche Applied Science) for 10 min. Samples 

were incubated with two primary antibodies, i.e. anti-TGF-ß1 and anti-LOXi antibodies, 

in PBS containing 1.5% goat serum for 30 min, washed with PBS and incubated with 

species-specific fluorescence-labeled secondary antibodies, mouse Alexa Fluor 594 and 

rabbit Alexa Fluor 488 (Invitrogen), for 30 min each. After washing with PBS, the 

specimens were mounted and the immunofluorescence was observed under a Zeizz 

LSM5 Pascal at UNC-CH microscopy services laboratory.  

Identification of LOX-TGF-β1 complex in bone matrix- Femurs from fetal bovine 

animals were purchased from Aries Scientific (Texas) and kept at -80C until use. Both 

femoral heads were removed and the mid-shafts were longitudinally cut. After the bone 

marrow was removed and washed with cold PBS; bones were cut into small pieces, 

defatted with methylene chloride and methanol solution (2:1) overnight at 4C, washed 

with cold DDW and lyophilized. The bone fragments were then pulverized in liquid 

nitrogen using a freezer mill (Spex Certiprep), washed with cold distilled water, 

lyophilized and subjected to sequential extraction described by Termine et al. (319) with 

some modifications (320). Briefly, ~1 g of bone powder was first extracted with 5 ml of 

6M guanidine-HCl (GH), pH 7.4, for 2 days at 4oC, the supernatant was separated by 

centrifugation at 15,000Xg for 30 min, exhaustively dialyzed against cold distilled water 

and lyophilized (G1 representing the matrix molecules that are not associated with 

mineral). The residue (mineral-associated) was then demineralized with 0.5M EDTA, pH 

7.4, for 2 weeks at 4oC with several changes of EDTA, the supernatant was separated 

by centrifugation as described above, dialyzed against cold distilled water and 

lyophilized (E representing soluble matrix molecules associated with mineral). The 

residue was further extracted with 5 ml of 6 M GH, pH 7.4, for 2 days at 4oC, the extract 

was collected by centrifugation, dialyzed and lyophilized as described above (G2 
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including mineral-associated, insoluble matrix). All fractions were weighed, dissolved in 

lysis buffer and centrifuged. The protein concentration in the supernatant was 

determined by a DC protein assay kit. Fifteen g of proteins in each fraction was 

dissolved in SDS sample buffer and subjected to WB analysis with either anti-LOXi or 

anti-TGF-ß1 antibodies. The immunoreactivity was visualized by ALP conjugated 

substrate kit. In order to confirm the specific binding, various amounts of E fraction (500, 

1000 and 2000 g of protein) was immunoprecipitated with either 5 l of anti-LOXi or 

anti-LOXh antibodies or 5 l of rabbit non-immune serum (negative control) in lysis 

buffer overnight at 4C. Then protein G-sepharose 4B conjugate beads were added, 

incubated for 15 min at 4oC and the beads were washed 3 times with lysis buffer. The 

immunocomplex was then released from the beads and subjected to Western blot 

analysis with anti-TGF-ß1 antibody. The immunoreactivity was visualized by ALP 

conjugate substrate kit. 

Effect of LOX on Smad phosphorylation- To determine the effect of LOX on the 

TGF-ß1 activity, MC cells were plated onto 35 mm culture dishes at a density of 2.0 

x105/dish in duplicate and cultured in -minimum essential medium (Gibco) with the 

same supplements as described in the culture condition section. MC cells were 

transiently transfected with 1, 2.5 and 5 g of the pcDNA3.1/V5-His/LOX using Fugene6 

transfection reagent. After 48 hours, cells were treated with rhTGF-ß1 (5 ng/ml) for 30 

min in the presence or absence of 300 M ßAPN or 200U/ml of catalase. Another set of 

the cells was transiently transfected with 5 ug of pcDNA3.1/V5-His/LOXdm and the cells 

were treated with rhTGF-ß1 in the same manner. The cells were lysed with 400 l RIPA 

buffer containing 150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% NP-40, 0.1% SDS, 0.5% 

deoxycholate, 1% aprotinin, and 1 mM phenymethylsulfonyl fluoride by continuous 

shaking for 1 hour at 4C then centrifuged. The supernatants collected were then 
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subjected to Western blot analysis with anti-phospho Smad3 (Biosource) and anti 

Smad3 antibodies (Cell Signaling). The intensity of phospho-Smad3 protein from each 

sample was normalized by the amount of total Smad3 protein using Scion Image 

software. LOX in the media was quantified by immunoprecipitation followed by Western 

blot analysis with anti-LOXi antibody. In a parallel set of experiment, cells were treated 

with 100 ng/ml of rhBMP-2 instead of rhTGF-ß1 and the cell lysates were subjected to 

Western blot analysis with anti-Smad1,5,8 and anti ß-actin (Cell signaling technologies). 

In another set of experiment, MC cells were cultured as described above. On the 

following day, 2.5 or 5 μg of LOX-V5 or a combination of 5 μg of LOX-V5 with or without 

300 μM of ßAPN or 300 μM ßAPN alone was added to the cells. Cells were then treated 

with 5 ng/mL of rhTGF-ß1 for 30 min, and the phosphorylation of Smad3 was evaluated 

in the same manner as described above.  

To determine the effect of the level of LOX on the TGF-ß1 activity, MC, EV, S 

and AS clones were plated onto 35 mm culture dishes at a density of 2.0 x105/dish in 

duplicate and cultured in -minimum essential medium with the same supplements as 

described in the culture condition section. After 48 hours, cells were treated with rhTGF-

ß1 (5 ng/ml) for 30 min. The cells were lysed then centrifuged and supernatants 

collected were then subjected to Western blot analysis with anti-phospho-Smad3 and 

anti Smad3 antibodies. The intensity of phospho-Smad3 protein from each sample was 

normalized by the amount of total Smad3 protein using Scion Image software. 

Quantitative Real-time PCR- MC cells were cultured in the same manner as 

described in the Smad3 phosphorylation western blotting experiment. On the following 

day, 2.5 or 5 μg of LOX-V5 or a combination of 5 μg of LOX and 300 μM of ßAPN was 

added to the cells. Cells were then treated with 5 ng/mL of rhTGF-ß1 and further 

cultured for 24 hours. Total mRNA was extracted by TRIzol reagent. Two g of total 
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RNA was used for reverse transcription and the cDNA was synthesized using the 

Omniscript RT kit. Real-time PCR was performed using sequence specific primers and 

ABI Prism 7000 Sequence detection system (Applied Biosystems). Primers used are as 

follows: COL1a2 (#Mm00483888_m1) and COL5a1 (#Mm00489342_m1) and GAPDH 

(#4308313). The analyses were performed in triplicate for three independent 

experiments to confirm reproducibility of the results. SB431542, ALK 4,5 and 7 inhibitors, 

were used as negative controls in the experiment (321). The mRNA expression relative 

to GAPDH was determined and the fold changes were calculated using the values of 

rhTGF-ß1 addition only as a calibrator by means of 2-ΔΔC
T method (74). 

RNA interference- MC cells were plated onto 35 mm culture dishes at a density 

of 5.0x104/dish in duplicate and cultured in the same manner as described above. On 

the following day, cells were transfected with 3.75 g of LOX siRNA ID#156159, 156160, 

156161 or Silencer negative control AM4611 (Ambion) using siPORT Amine transfection 

agent (Ambion). Forty-eight hours after transfection, the cells were treated with 5 ng/ml 

of rhTGF-ß1 for 30 min Smad3 phosphorylation was examined in the same manner as 

described above. The suppression of LOX protein in the media was verified by 

immunoprecipitation followed by Western blot analysis with anti-LOX antibodies 

Statistical analyses– All statistical analyses were performed using Sigma stat 

software. Data are expressed as mean+SD. Statistical differences were determined by 

one-way ANOVA followed by a Tukey-Kramer multiple comparison test at P=0.05. 

http://www.sciencedirect.com.libproxy.lib.unc.edu/science?_ob=MathURL&_method=retrieve&_udi=B6WBK-4F4H7MX-5&_mathId=mml1&_user=130907&_rdoc=1&_acct=C000004198&_version=1&_userid=130907&md5=4ec3f8b041cd36ce86eb37a89e0e18b3
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Table 3.1  Primers list of constructs used in the study. 

construct Forward primer 

Reverse primer 

fLLOX-V5/His 5’-CCCGGTCTTCCTTTTTCTCCTAGCC-3’ 

5’-ATACGGTGAAATTGTGCAGCCTGA-3’ 

fLLOXdm-V5/His 5’-GCTGAAGGCCACGCAGCAAGCTTCTGT-3’ 

5’-ACAGAAGCTTGCTGCGTGGCCTTCAGC-3’  and 

5’-TGTTATGACACCTTTGCGGCAGACATA-3’ 

5’-TATGTCTGCCGCAAAGGTGTCATAACA-3’ and  

5’-CCCGGTCTTCCTTTTTCTCCTAGCC-3’ 

5’-ATACGGTGAAATTGTGCAGCCTGA-3’ 

fLLOX-HA and 

fLLOXdm-HA 

5’-GCGGATCCATGCGTTTCGCCTGGGCTGTGCTC-3’ 

5’-GCCTCGAGATACGGTGAAATTGTGCAGCCTGAGGC-3’ 

LOX-HA 5’-CTTCTCCGCTGCGACGACCCCTACAATCCCTAC-3’ 

5’-GTAGGGATTGTAGGGGTCGTCGCAGCGGAGAAG-3’ and 

5’-GCGGATCCATGCGTTTCGCCTGGGCTGTGCTC-3’ 

5’-GCCTCGAGATACGGTGAAATTGTGCAGCCTGAGGC-3’ 

LOPP-HA 5’-GCGGATCCATGCGTTTCGCCTGGGCTGTGCTC-3’ 

5’-GCCTCGAGGCCCACCATGCGATCTATGTGGCT-3’ 

TGF-ß1-V5 5’-CATGCCGCCCTCGGGGCTG-3’  

5’-GCTGCACTTGCAGGAGCGC-3’. 

LAP-V5 5’- GCTGCACTTGCAGGAGCGC -3’ 

5’- TCTCCGGTGCCGTGAGCTGTG -3’ 

Mature GST-TGF-ß1 5' GCGAATTCGCCCTGGATACCAACTATTGCTTC 3' 

5' GCCTCGAGTCAGCTGCACTTGCAGGAGCGCAC 3' 
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RESULTS 

Mature LOX binds to mature TGF-ß1– The binding of LOX to TGF-ß1 and some 

of the osteogenic TGF-ß superfamily members, i.e. bone morphogenetic proteins (BMP-

2, -4, -6 and -7), was investigated by co-expressing those proteins with two types of tag 

(HA for LOX and V5 for other proteins) followed by immunoprecipitation (IP) and 

Western blot (WB) analysis (Fig 3.1A). When IP and WB were performed with either 

anti-V5 or -HA antibody alone, V5-tagged TGF-ß1 (Fig 3.1A, lane 6, lower panel), V5-

tagged BMPs (Fig 3.1A, lanes 2-5, lower panel), or HA-tagged LOX (Fig 3.1A, lanes 2-7, 

middle panel) was detected at the expected molecular weight of each protein 

demonstrating the presence of those proteins. Of the proteins tested, only TGF-ß1 was 

shown to bind LOX (Fig 3.1A, lane 6, upper panel). Any of the BMPs tested did not show 

appreciable binding (Fig 3.1A, lanes 2-5, upper panel). Even when higher levels of 

BMP2 (2-fold) were expressed; no binding was observed (data not shown). The binding 

of LOX to TGF-ß1 was further characterized. Fig 3.1B showed that the binding of LOX to 

full-length TGF-ß1 occurred in a dose dependent manner (Fig 3.1B, lanes 3-5, upper 

panel) while LAP (propeptide of TGF-ß1) alone did not bind to LOX at various doses (Fig 

3.1B, lanes 7-9, upper, indicating that LOX bound specifically to mature TGF-ß1. Then, 

we generated HA-tagged full length LOX (residue 1-411, fLOX-HA) (Fig 3.2A, 1) and two 

deletion mutant constructs of LOX, i.e. mature LOX (signal peptide-residue 1-16 and 

162-411, LOX-HA) (Fig 3.2A, 2) and LOX propeptide (signal peptide and propeptide: 

residue 1-161, LOPP-HA) (Fig 3.2A, 3). One of these proteins and TGF-ß1-V5 were then 

transiently co-expressed by 293 cells and the binding was assessed by IP and WB 

analysis in the same manner as described above. Three different levels of TGF-ß1 were 

expressed for the binding assay (Fig 3.2B, lower panel). The immunoreactive bands 

were detected in a dose dependent manner for fLOX-HA (Fig 3.2B, upper panel) and 
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LOX-HA (Fig 3.2B, upper middle panel) but not LOXPP-HA (Fig 3.2B, lower middle 

panel). When fLOX-HA was expressed, both full length (55 kDa) and mature forms (35 

kDa) of LOX were synthesized (shown by an arrow in the upper panel of Fig 3.2B). 

Though fLOX-HA was partially overlapped with the IgG heavy chain, the dose-

dependent binding was readily observed for both fLOX and mature LOX. These results 

indicate that the binding of LOX to TGF-ß1 occurs via the mature form of LOX but not its 

propeptide domain.  

Direct binding of LOX to TGF-ß and the effect of ßAPN – To determine if LOX 

binds to TGF-ß1 directly, we performed GST pull down assay by using GST fused 

mature TGF-ß1 (GST-TGF-ß1) and purified LOX-V5 protein. First the purity of LOX-V5 

(both full length and mature) was verified by SDS-PAGE and WB analyses. When 

stained with CBB, 4 bands were observed at 28 and 35 kDa corresponding to the 

molecular sizes of mature LOX and 48 and 55 kDa corresponding to those of full-length 

LOX with V5 tag, respectively. The LOX-V5 was further analyzed by WB analysis using 

two anti-LOX antibodies (anti-LOXi and anti-LOXh) and anti-V5 antibody (Fig 3.3A, lanes 

3, 4 and 5, respectively). The 28 kDa band was indeed immunoreactive to 3 antibodies 

but not normal rabbit serum (Fig 3.3A, lane 2). The 28 and 35 kDa band were cut and 

subjected to protein identification using MALDI-MS at UNC-CH Proteomics Facility and 

four tryptic peptides separated were all identified in both bands as portions of LOX (res 

225-231, 246-254, 263-277, 372-391 respectively) (accession protein# NP_034858.1), 

thus unequivocally confirming its identity. LOX-V5 was then subjected to amine oxidase 

assay reported by Palamakumbura AH and Trackman PC (128). The activity increased 

in a dose-dependent manner and nullified by the addition of ßAPN demonstrating that 

the LOX-V5 still retained activity after purification (Fig 3.3B). LOXdm-V5 was also 

subjected to amine oxidase assay and showed no activity at all (data not shown).  After 
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we obtained active LOX-V5, we performed GST pull down using active LOX-V5 and 

GST-TGF-ß1. The positive immunoreactive bands of LOX-V5 were detected when LOX-

V5 was incubated with GST-TGF-ß1 in a dose-dependent manner (Fig 3.4A, lanes 3 and 

4) but not with GST alone (Fig. 3.4A, lanes 2 and 5). LOX-V5 was also verified in Fig. 

4A, lane 1. The binding of LOX-V5 to GST-TGF-ß1 was not affected by the presence of 

500 μM ßAPN (Fig. 3.4A, lanes 6 and 7). The direct binding was also confirmed by IP-

WB analysis using LOX-V5 and rhTGF-ß1. When those two proteins were mixed and 

immunoprecipitated with anti-V5 antibody and subjected to WB analysis with anti-TGF-

ß1 antibody, the TGF-ß1 was detected and it was not interfered in the presence of ßAPN 

as well (Fig. 3.4B). 

Co-localization of LOX and TGF-ß1 in an osteoblast culture system –To 

investigate the endogenous association of LOX with TGF-ß1 in vitro, we used 

preosteoblastic cell line, MC cells, and the localization of both proteins was assessed by 

the laser scanning fluorescence microscopy. In Fig. 3.5, TGF-ß1 was shown in red (Fig. 

3.5A), LOX in green (Fig. 3.5B) and co-localizalization of the two in yellow in the merged 

image (Fig. 3.5D). A fibrous extracellular matrix (ECM) structure between cell bodies 

was identified in the culture and confirmed by differential interference contrast (DIC) 

image (Fig 3.5C). The result demonstrated that both molecules were co-localized in the 

ECM of the culture (Fig. 3.5D) suggesting the close association of both proteins in the 

preosteoblastic cell matrices (Fig. 3.5E). 

Identification of a LOX-TGF-ß1 complex in bone matrix – To investigate whether 

or not a LOX-TGF-ß1 complex is indeed present in bone, bone matrix was fractionated 

into G1, E and G2 by sequential extraction. The equal amount of protein from each 

fraction was subjected to WB analysis with anti-LOXi and anti-TGF-ß1 antibodies. Both 

LOX and TGF-ß1 in bone matrix were identified in mineral-associated matrix fractions (E 
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and G2) but not in G1 fraction though their relative distribution in each fraction was 

different (Fig. 3.6A). This suggested that LOX and TGF-ß1 were both closely associated 

with mineral in bone matrix. Then various amounts of E fraction (500, 1000 and 2000 

μg), which is more soluble and abundant than G2, were then subjected to IP with anti 

LOXi and WB with to investigate their potential endogenous binding in bone matrix. The 

results shown in Fig. 3.6B demonstrated that the endogenous binding between LOX and 

TGF-ß1 occurs in a dose dependent in bone matrix.  

Effect of LOX enzymatic activity on TGF- ß1 signaling– Since the binding of LOX 

to TGF-ß1 in both in vitro and in vivo was confirmed, the effect of LOX on TGF-ß1 

signaling and its potential mechanism were then examined. MC cells were transiently 

transfected with various amounts of pcDNA3.1/LOX/V5-His in the presence or absence 

of 300 M BAPN or 200U/ml of catalase. The LOX protein level in each treatment group 

was evaluated by IP-WB analysis with anti-LOX antibody (Fig 7A,B, lower panel). Then 

rhTGF-ß1 was added to those groups and the phosphorylation of Smad3 

(phosphoSmad3 protein relative to the total Smad3 protein) was evaluated. Without the 

addition of rhTGF-ß1, cells overexpressing EV, LOX did not induce Smad3 

phosphorylation (Fig 3.7A, lanes 1 and 2, Fig 3.7B, lanes 1-3). The addition of TGF-ß1 in 

the EV group induced Smad3 phosphorylation (Fig 3.7A, lane 3). However, the 

phosphorylation level was diminished with the presence of LOX in a dose-dependent 

manner (Fig 3.7A, lanes 4-6). The LOX-mediated inhibition was not affected in the 

presence of catalase (Fig 3.7A, lane 7) but completely rescued in the presence of ßAPN 

(Fig 3.7A, lane 8). When MC cells were transfected with pcDNA3.1/LOX/V5 and 

pcDNA3.1/LOXdm/V5-His in the same amount, in the similar settings, the inhibition of 

Smad3 phosphorylation was observed in cells overexpressing LOX (Fig 3.7B, lane 5) but 

not in LOXdm (inactive LOX) (Fig 3.7B, lane 6) compared to EV group (Fig 3.7B, lane 4)  
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In stable cell clones, without the addition of rhTGF-ß1, Smad3 phosphorylation 

could not be detected (Fig 3.8, lane 2). The addition of TGF-ß1 significantly induced 

Smad3 phosphorylation in all groups of cells (Fig 3.8, lanes 1, 3-9). Moreover, the 

phosphorylation level in all S clones were diminished and in all AS clone were enhanced 

corresponded to the level of LOX expression in each clone (Fig 3.8, lanes 4-9) while that 

in all AS clones were enhanced respectively (Fig 3.8, lanes 7-9) compared to controls 

(MC and EV) (Fig 3.8, lanes 1 and 3). 

In another set of experiments, using MC cells, the effect of exogenous LOX-V5 

addition with or without ßAPN on TGF-ß1 signaling was further evaluated. The results 

are shown in Fig 3.9. Without TGF-ß1 treatment, the presence or absence of LOX or 

ßAPN did not induce Smad3 phosphorylation (Fig 3.9, lanes 1-3). The phosphorylation 

was induced with TGF-ß1 (Fig 3.9, lane 4), but it was significantly diminished with the 

addition of LOX-V5 in a dose-dependent manner (Fig 3.9, lanes 6 and 7). However, this 

LOX mediated inhibition was rescued in the presence of ßAPN (Fig 3.9, lane 7). 

Moreover, when ßAPN without exogenous LOX-V5 was added combined with TGF-ß1, 

Smad3 phosphorylation was slightly more enhanced in comparison to that of TGF-ß1 

alone (Fig 3.9, lane 8 vs. 3). Since ßAPN alone did not induce Smad3 phosphorylation 

(Fig 3.9, lane 3), this result suggests the presence of endogenous LOX in the cultured 

medium that was inhibited by ßAPN. 

To confirm that the inhibitory effect of LOX is specific to TGF-ß1 not BMPs, the 

effect of LOX on BMP-2 induced signaling was then examined. MC cells were transiently 

transfected with various amounts of pcDNA3.1/V5-His/LOX in the presence or absence 

of 300M ßAPN. The LOX protein level in each treatment group was evaluated by IP-

WB analysis with anti-V5 antibody (Fig 3.10, lower panel). Then rhBMP-2 was added to 

those groups of cells overexpressing active LOX and the phosphorylation of Smad1,5,8 
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was evaluated. Regardless the addition of BMP-2, cells overexpressing EV or LOX did 

not induce Smad1,5.8 phosphorylation either in the presence or absence of ßAPN (Fig 

3.10, upper panel, lanes 3-8). The signal of Smad1,5,8 phosphorylation was normalized 

with the level of ß-actin (Fig 3.10, middle panel).  

Effect of LOX on TGF-ß induced ECM molecules mRNA expression – Type I and 

type V collagen mRNA expression were quantified after the addition of exogenous LOX 

either with or without ßAPN (Fig 3.11).  The expression levels of both types of collagen 

were upregulated upon TGF-ß1 treatment (5ng/ml)(Fig3.11,lane 4), however, in the 

presence of LOX (2.5 and 5 ug), the level was decreased respectively (Fig 3.11, lane 5, 

6). Moreover, an addition of 300μM ßAPN rescued LOX-mediated TGF-ß1 inhibition (Fig 

3.11, lane 7). Note that the expression of Col5A1 was more responsive to TGF-ß1 

addition than that of Col1A2. 

Effect of LOX RNA interference on TGF-ß signaling – In addition to verify the 

effect in AS, another loss-of-function experiment was performed by RNAi technology. 

MC cells were transiently transfected with Silencer negative control or three different 

constructs of LOX siRNA. LOX protein levels in the media were lower (20-80%) in the 

cell groups that were transfected with siRNA than that of negative control (Fig 3.12, lane 

2-5, upper panel). The LOX level was the lowest when cells were transfected with 3 

siRNA constructs combined (Fig 3.12, lane 2).  In comparison to the negative control 

(Fig 3.12, lane 1), the TGF-ß1 induced Smad 3 phosphorylation was significantly 

increased in all siRNA transfected groups (Fig 3.12, lane 3, 4 and 5) and the increase 

level was the highest in the combined group that exhibited the lowest LOX protein level 

(Fig 3.12, lane 2). Without rhTGF-ß1, LOX siRNA transfection alone did not induce 

Smad3 phosphorylation (Fig 3.12, lane 6-10). This result implicated that the knock down 

of endogenous LOX in the culture leads to the higher levels of TGF-ß1 signaling.
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Figure 3.1 Binding of LOX to TGF-ß1/BMPs. A, Binding of LOX to TGF-ß1 (upper panel, lane 6), 

but not to any BMPs (upper panel, lanes 2-5) was clearly observed. The expression levels of LOX 

and BMPs/TGF-ß1 were verified by IP-WB analyses with anti-HA antibody (middle panel) and 

with anti-V5 antibody (lower panel), respectively. An asterisk indicates Ig light chain. B, Binding of 

LOX to TGF-ß1 in a dose-dependent manner (upper panel, lanes 3-5 indicated by an arrowhead) 

but not to LAP with any doses tested (upper panel, lane 7-9). The expression levels of LOX and 

TGF-ß1/LAP are shown in the middle and lower panels, respectively. Note that LOX binds to 

TGF- ß1; LAP: latency associated peptide. Molecular weights are shown on the right. 
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Figure 3.2 LOX constructs and their binding to TGF-ß1 by IP-WB. Left panel: a diagram of LOX 

constructs. Right panel: the binding between each LOX-HA construct product and TGF-ß1-V5/His 

by IP with anti-V5 antibody followed by WB with anti-HA antibody. Various expression levels of 

full-length TGF-ß1 for the assay are shown by WB with anti-V5 antibody at the bottom. Note that 

all of the LOX construct products [LOX-HA (1), LOXΔpro-HA (2), LOXdm-HA (4)] except LOPP 

(3) show binding to TGF-ß1-V5/His in a dose-dependent manner except LOXpropeptide. Note 

that LOXdm was shown the similar pattern as LOX-HA and an arrow indicates the full-length LOX 

but the WB showed only mature form area. Asterisks represent heavy and light chains of IgG. AF 

represents alanine (A) and phenylyalanin (F) which replaced tyrosine and lysine in LTQ domain. 
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Figure 3.3 Purity and activity of LOX-V5/His protein. (a) LOX-V5/His protein was stained with 

CBB (lane 1), immunostained with normal rabbit serum (RS; lane 2), anti-V5 antibody (lane 3), 

anti-LOX antibody (Imgenex) (lane 4) and that provided by Dr. Csiszar, U Hawaii (lane 5). An 

immunopositive band at ~35kDa (~30kDa LOX + ~5kDa V-5/His tag) was detected with all the 

antibodies used except RS. (b) Amine oxidase activity of LOX-V5/His protein. Note that an amine 

oxidase activity of LOX-V5/His protein is retained and increased in a dose-dependent manner, 

and the activity was completely blocked with 500μM of ßAPN. 
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Figure 3.4 Direct binding of LOX to TGF-ß1. A, LOX-V5/His protein was incubated with GST-

TGF-ß1 or GST alone, and subjected to GST pull down assay. The binding of GST-TGF-ß1 (lane 

3,4), not GST alone (lane 2), to LOX-V5/His was clearly detected and, moreover, the binding was 

not affected by the presence of ßAPN. Note that the binding is detected in a dose-dependent 

manner (lanes 6 and 7). Note that LOX-V5 in lane 1 was not pulled down with GST agarose. The 

amounts of the GST proteins and peptide added (input) are shown in the lower panel. 10μg of 

LOX-V5 protein added, BAPN: -aminopropionitrile. B, LOX-V5/His protein was incubated with 

rhTGF-ß1 either in the presence of absence of ßAPN. ßAPN did not affect the binding between 

LOX and TGF-ß1 (upper panel). The amounts of the rhTGF-ß1 (input) are shown in lower panel. 
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Figure 3.5 Co-localization of LOX and TGF-ß1 in a MC cell culture system. After 3 weeks of 

culture, immunofluorescence staining for LOX and TGF-ß1 was carried out and observed under 

LSCM (see text for details). (a) TGF-ß1 shown in red, (b) LOX in green, (c) Merged image 

showing co-localization of the two in yellow, (d) Differential interference contrast (DIC) image 

confirming fibrous ECM (arrowhead). 
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Figure 3.6 Binding of LOX and TGF-ß1 in bone extracellular matrix. A, Presence of LOX and 

TGF-ß1 proteins in bone matrix extracts. WB analyses were performed with anti-LOX antibody 

(upper panel), anti-TGF-ß1 antibody (middle panel), and normal rabbit serum (RS) (upper panel). 

The immunoreactive bands for LOX and TGF-ß1 were identified at the expected molecular weight 

in E and G2 fraction of bone (lanes 2 and 3), but not in G1 fraction of bone (lane 1). No 

immunoreactive bands were detected using RS (upper panel). G: guanidine-HCl, E: EDTA, G1: 

non-mineral associated fraction, E: mineral-associated, soluble fraction, G2: mineral-associated, 

insoluble fraction. LOX protein or recombinant human TGF-ß1 protein was subjected to WB 

analyses for positive controls (lane 4). B, Presence of LOX-TGF-ß1 binding complex in bone E 

extract. Note that immunopositive bands of TGF-ß1 are clearly detected in a dose-dependent 

manner (Middle panel, lanes 2-4) when IP-WB analyses were performed (IP; anti-LOX antibody, 

WB; anti-TGF-ß1 antibody), but absent from a negative control (normal rabbit serum, lane 1). The 

immunopositive band was also observed when another anti-LOX antibody was used (lane 5). The 

amount of LOX is shown in lower panel. +, ++, +++: 500, 1000 and 2000 g of protein.  

 

 



 86 

Figure 3.7  Effect of LOX overexpression on TGF-ß signaling in osteoblasts (MC). A. The levels 

of Smad3 phosphorylation upon 30-minute incubation with TGF-ß1 (5ng/ml) (upper panel, lanes 

4-6) were decreased in a dose dependent manner of LOX compared to those of controls (upper 

panel, lanes 3). The inhibited Smad3 phosphorylation was enhanced upon TGF-ß1 treatment in 

the presence of 300M ßAPN (upper panel, lane 8). The presence of catalase 200U/ml did not 

affect the inhibition effect of LOX on TGF-ß signaling (upper panel, lane 7). The levels of Smad 3 

phosphorylation were normalized to those of Smad3.The level of LOX expression was 

determined by IP-WB with anti LOX antibody (lower panel);* P<0.05 compared to control (lane 3). 

B. In the cell transfected with LOXdm (upper panel, lane 6), the signal of smad3 phosphorylation 

was almost comparable to control (upper panel, lane 4) but still inhibited by the presence of LOX 

(lane 5), * P<0.05 compared to control (lane 4) 
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Figure 3.8   Effect of over/underexpression of LOX on TGF-ß signaling in MC cells. Note that the 

expression levels of Smad3 phosphorylation upon 30-minute incubation with TGF-ß1 (5ng/ml) 

after normalized with Smad3 (middle panel) were lower in all S clones (upper panel, lanes 4-6) 

while those in AS clone were higher (upper panel, lane 7-9) compared to those of control cells, 

MC and EV (lanes 1 and 3). The LOX level was shown in lower panel. 
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Figure 3.9  Effect of exogenous LOX protein on TGF-ß signaling in osteoblasts (MC). The levels 

of Smad3 phosphorylation upon 30-minute incubation with TGF-ß1 (5ng/ml) (upper panel, lanes 

5-6) were decreased in a dose dependent manner of LOX compared to those of controls (upper 

panel, lanes 4).  The inhibited Smad3 phosphorylation was enhanced upon 30 minutes of TGF-ß1 

treatment in the presence of 300M ßAPN (upper panel, lane7). In the presence of ßAPN only, 

the signal was increased compared to those of controls (upper panel, lane 8). Without TGF-ß 

induction, the levels of Smad 3 phosphorylation were not detected (upper panel, lane 1-3). The 

levels of Smad3 phosphorylation were normalized to those of Smad3 (lower panel).  
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Figure 3.10  Effect of LOX overexpression on BMP signaling in osteoblasts (MC). The levels of 

Smad 1,5,8 phosphorylation upon 30-minute incubation with BMP-2 (100ng/ml) (upper panel, 

lanes 3-8) were investigated. The Smad3 phosphorylation was not changed upon the treatment in 

any dose of LOX plasmid transfection (upper panel, lane 4-6) compared to those of controls 

(upper panel, lane 3). The Smad 1,5,8 phosphorylation was not changed upon BMP-2 treatment 

in the presence of 300M ßAPN (upper panel, lane7). The levels of Smad 1,5,8 phosphorylation 

were normalized to those of ß-actin (middle panel).The level of LOX expression was determined 

by IP-WB with anti V5 antibody (lower panel).  
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Figure 3.11  Effect of LOX on TGF-ß induced type I and type V collagen expression in 

osteoblasts by real-time PCR. Note that the expression levels of both types of collagen were 

upregulated upon 24-hour incubation with TGF-ß1 (5ng/ml)(lane 4), however, in the presence of 

LOX (2.5 and 5 ug), the level was decreased respectively (lane 5, 6). Moreover, an addition of 

300μM ßAPN rescued LOX-mediated TGF-ß1 inhibition (lane 7). LOX: LOX-V5/His 

protein.*P<0.05. 
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Figure 3.12  Effects of LOX suppression on TGF-ß signaling by RNA interference. The levels of 

Smad3 phosphorylation upon TGF-ß1 treatment (5ng/ml) were higher when LOX siRNA was 

performed (middle panel, lane 2-4) compared to control siRNA treatment (middle panel, lane 1). 

Without TGF-ß1 induction, the levels of Smad 3 phosphorylation were not detected (middle panel, 

lane 6-10). The levels of Smad3 phosphorylation were normalized to those of Smad3 (lower 

panel). The level of LOX expression was determined by IP-WB with anti LOX antibody (upper 

panel).  
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DISCUSSION 

Bone matrix is primarily composed of type I collagen and mineral such as 

hydroxyapatite. Bone matrix has been reported to store high concentrations of several 

growth factors that can affect the behaviour of connective tissue cells including 

transforming growth factor-ß (TGF-ß) and a set of bone morphogenic proteins (BMPs). 

TGF-ß1 is the prototypic member of the superfamily, and bone ECM is a major storage 

site in the body for this growth factor (247). In bone, TGF-ß1 plays pivotal roles in many, 

if not all, aspects of the tissue development, remodeling, mechanical properties and 

aging (250-252). Numerous studies, though not always consistent, have shown that 

TGF-ß1 stimulates recruitment and proliferation of osteoblast progenitors (253, 254), 

stimulates matrix production such as collagen, fibronectin, osteopontin, osteonectin, 

proteoglycans, but inhibits osteocalcin (250, 322), inhibits late stage of osteoblast 

differentiation and matrix mineralization (257, 323), and modulates osteoclast 

differentiation (258). The abundance of this growth factor with such potent effects on 

cells predicts the need for tight regulation of its biological activities. This regulation is 

thought to be achieved through its latency. Since bone is a dynamic, constantly 

remodeling tissue, tight regulation of TGF-ß activity (either in a free or a complex form) is 

crucial. The regulation can be done by: 1. stable TGF-ß binding molecules limiting the 

bioavailability of this growth factor during remodeling, and/or 2. TGF-ß modifications that 

reduces its potency as a growth factor or stabilizes its latency. In bone matrix, there are 

several TGF-ß binding molecules including small leucine-rich proteoglycans, decorin and 

biglycan (260, 275, 276) that may sequester TGF-ß in the matrix and/or diminish TGF-ß 

binding to its cell receptor (277). However, the significance of these interactions in bone 

ECM is not known. Furthermore, potential extracellular modification of TGF-ß that may 

change and/or stabilize the potency is unknown. 
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Here we have demonstrated the direct binding between mature LOX and mature 

TGF-ß1 in vitro and in bone matrix and showed that LOX inhibited TGF-ß1 activity likely 

via its amine oxidase activity. In this study we showed that LOX bound to TGF-ß1 but 

not major osteogenic BMPs found in bone. Using co-immunoprecipitation and GST pull-

down assay, we found that mature TGF-ß1 not LAP was the form that bound directly to 

LOX. As we tried to identify the TGF-ß1 binding site within a LOX molecule, we 

demonstrated that mature LOX, a 32 kDa form of LOX after cleaved by BMP-1 at 

specific sequence, contained TGF-ß1 binding site but not LOX propeptide. Moreover, 

the binding was not affected in the presence of ßAPN, a potent and irreversible inhibitor 

of LOX. It has been proposed that the inhibition occurs by the formation of a “dead-end” 

complex between ßAPN and the carbonyl cofactor of LOX, lysine tyrosylquinone (LTQ) 

(117, 118). The conformational change due to mutations of specific Lys and Tyr in LTQ 

cofactor domain did not affect the binding as well. It implicates that LOX indeed binds 

directly to TGF-ß1 and its LTQ domain is not the binding domain.  

To the best of our knowledge, in bone, LOX was not well characterized except 

the measurement of its activity in crude saline extracts (50). LOX has been reported that 

it can bind to collagen in dentin (221). In preosteoblast culture system, we showed that 

LOX and TGF-ß1 co-localized in the fibrous extracellular matrix. This implicates that 

TGF-ß1 in cultures might be stored closely in the form of SLC and closely associated 

with collagen matrix in which LOX can bind. In bone matrix, LOX and TGF-ß1 appeared 

to be closely associated to collagen and mineral as both were present in E and G2 

fractions of bone matrix. The binding complex of LOX and TGF-ß1 has been identified 

using co-immunoprecipitation in E fraction (mineral-related fraction) indicating the 

presence of the LOX-TGF-ß1 complex in bone.  
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The expression LOX is known to be regulated by TGF-ß1 (75, 76, 138, 141-145) 

but this study is the first to show that LOX in turn regulates TGF-ß activity and signaling. 

It has been well accepted that TGF-ß1 regulates the target genes through TGF-ß 

signaling cascade i.e. Smad3 phosphorylation. Recently, there was a report on a cross 

control of LOX on TGF-ß effects; however, the underlying mechanism was not clear 

(219). Here we showed that LOX directly bound TGF-ß1 and inhibited its signaling 

through amine oxidation evidenced by decreased Smad3 phosphorylation, decreased 

TGF-ß induced gene expression. This was evident since the inhibitory effect was 

diminished by the presence of ßAPN, the LOX inhibitor, or when we transfected cells 

with inactive LOX (LOXdm). In addition the inhibitory effect was not due to H2O2 

byproduct of the LOX oxidative reaction since the inhibitory effect was not altered in the 

presence of catalase, H2O2 scavenger. Previous literature has shown that H2O2 from 

oxidative stress could enhance TGF-ß signaling leading to various effects: i.e. the 

accumulation of extracellular matrix molecules mRNA and protein expression, 

production of proinflammatory mediators or cellular senescense (324-330). Though H2O2 

in this study did not alter the inhibitory effect, it is possible that the H2O2 endproduct from 

LOX oxidative reaction might alleviate the inhibitory effect on TGF-ß1 reflecting a 

moderate inhibition of LOX i.e. the inhibitory effect in exogenous LOX addition. The 

inhibitory effects were also confirmed using MC stable clones over/underexpressing LOX 

and the result showed that Smad3 phosphorylation was enhanced in AS clones (low 

LOX expression) but inhibited in S clones (high LOX expression) after rhTGF-ß1 

induction. 

In MC derived clones overexpressing LOX exhibited less collagen production 

while those underexpressing LOX produced more collagen suggesting the effect of LOX 

on TGF-ß1 induced matrix molecule production (see chapter III). Several reports have 
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shown markedly increased collagen synthesis and abnormal collagen fibrillogenesis in 

ßAPN treated osteoblast cultures (73, 222). The increased collagen production can 

hardly be explained by altered collagen cross-linking since even immature cross-links 

(thus, early forms of cross-links) begin to accumulate only after 1-2 weeks in osteoblast 

cultures (295, 296); however, the current study i.e. LOX regulates TGF-ß1 signaling, 

may explain the phenotype seen in the ßAPN treated osteoblast culture. The 

upregulation of collagen mRNA was also seen in lathyritic animals during the early 

phase of bone fracture healing as well as TGF-ß1 mRNA expression (239). This 

implicates the interaction of LOX and TGF-ß1 in vivo. 

Taken together, our results indicate that for the first time, the signaling of TGF-ß1 

is inhibited by amine oxidase activity of LOX. This proposed mechanism is different from 

the previously reported ones i.e: sequestration of mature TGF-ß to limit the 

bioavailability of this growth factor to its receptor (275) or inhibition of TGF-ß processing 

that decreases its active form or stabilizes its latency (331). This finding represents a 

novel control mechanism of TGF-ß1 function in bone and may provide more insight to 

the mechanism of bone development and remodeling. It will be important in the future to 

determine the specific binding domain of LOX to TGF-ß1 and also the relevant function 

of oxidized TGF-ß1 in bone biology.  

 



CHAPTER V 

 

CONCLUDING REMARKS 
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Concluding remarks 

 It is now evident that LOX substrates are more than immature collagen and 

elastin and that LOX is involved in cellular functions. In conjunction to those, we have 

discovered the followings:  

1. In an osteoblastic cell culture system, overexpression of LOX exhibited lower 

collagen synthesis, smaller collagen fibrils, and markedly delayed mineralization while 

underexpression of LOX exhibited higher collagen synthesis and larger collagen fibrils 

compared to control cells, MC cells and EV clones. These phenomena can be partly 

explained by the fact that the increase of collagen cross-links generated the restricted 

collagen scaffold leading to defective matrix mineralization.  

2. The overexpression of LOX caused suppression of collagen synthesis while 

the underexpression of LOX caused more collagen synthesis at early time-point. The 

LOX overexpression coincided with lower signaling of TGF-ß1 but the underexpression 

enhanced the signaling. The phenomena observed in S and AS clones indicate that LOX 

modulates TGF-ß1 function. 

3. The mature LOX directly binds mature TGF-ß1 both in vitro and in bone marix.  

The binding is not affected by ßAPN or the mutation of LTQ in LOX indicating that the 

binding of LOX to TGF-ß1 does not require LTQ or the conformation generated by LTQ. 

4. The suppression of TGF-ß1 signaling induced either by LOX overexpression 

or an addition of LOX protein was rescued by ßAPN but not affected by catalase. The 

enhancement of TGF-ß1 signaling was observed when LOX mRNA was silenced by 

RNA interference or LOX underexpression. 
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Based on the results that have been observed in the study, it is clear that LOX 

regulates TGF-ß1 signaling through its amine oxidase activity that is important to control 

collagen matrix production/organization and mineralization. The deregulation of such 

control may result in overactivation of TGF-ß signaling leading to bone defects. As TGF-

ß1 is a potent growth factor involved in bone development and remodeling, the current 

study may shed new light on our understanding of bone physiology, pathology and 

treatment. 

Though this study has shown the possible mechanism of how LOX regulates 

TGF-ß1, further experiments are clearly warranted i.e. direct evidence to show whether 

TGF-ß1 is a substrate of LOX by in vitro LOX activity assay, determination of binding 

domain of TGF-ß1 on LOX molecule, identification of oxidized Lys residues on TGF-ß1 

molecule to determine if those Lys are indispensable for the TGF-ß1 signaling. The 

biological significance of LOX-TGF-ß1 complex in bone may be addressed using in vivo 

animal model. The effects of S or AS clones on collagen production, collagen phenotype 

and bone formation could be evaluated using an in vivo transplantation model (285, 

293). The comprehensive analysis of bone phenotypes among LOX deficient animals 

(conventional or tissue specific conditional knock-out), LOX and TGF-ß1 transgenic 

animals should provide valuable information regarding the biological significance of 

LOX-TGF-ß1 interaction. 
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