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Abstract

The aim of this paper is to develop a novel class of functional structural equation models (FSEMs) 

for dissecting functional genetic and environmental effects on twin functional data, while 

characterizing the varying association between functional data and covariates of interest. We 

propose a three-stage estimation procedure to estimate varying coefficient functions for various 

covariates (e.g., gender) as well as three covariance operators for the genetic and environmental 

effects. We develop an inference procedure based on weighted likelihood ratio statistics to test the 

genetic/environmental effect at either a fixed location or a compact region. We also systematically 

carry out the theoretical analysis of the estimated varying functions, the weighted likelihood ratio 

statistics, and the estimated covariance operators. We conduct extensive Monte Carlo simulations 

to examine the finite-sample performance of the estimation and inference procedures. We apply 

the proposed FSEM to quantify the degree of genetic and environmental effects on twin white-

matter tracts obtained from the UNC early brain development study.
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1 Introduction

This paper is primarily motivated by the development of statistical methods for dissecting 

genetic and environmental contributions to functional data, such as brain structure and 

function, observed from twin pairs (Panizzon et al., 2009). The twin study has been widely 
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used to quantify the difference between the similarity of monozygotic twins (MZ), who have 

the same genetic materials, and that of dizygotic twins (DZ), who share about 50% of their 

genes (Feng et al., 2009; Neale et al., 1989; Haseman and Elston, 1970). Such difference 

between MZ and DZ allows us to disentangle genetic factors from environmental factors on 

a known phenotype, such as total brain volume. So far, a substantial amount of heritability 

has been found in different brain volumes (Thompson et al., 2001; Posthuma et al., 2002; 

Peper et al., 2007), cortical thickness in sensorimotor cortex, middle frontal cortex and 

anterior temporal cortex (Panizzon et al., 2009), brain function by using functional magnetic 

resonance imaging (fMRI) (Jansen et al., 2015), and white matter microstructures (Brouwer 

et al., 2010; Chiang et al., 2011; Lee et al., 2015).

The aim of this paper is to develop a new functional data analysis (FDA) framework, called 

functional structural equation model (FSEM), to dissect functional genetic and 

environmental effects on twin functional data, such as cortical thickness, fMRI, and white 

matter bundles. Specifically, for i = 1, …, n and j = 1, 2, we observe a p × 1 vector of clinical 

variables, denoted by xij = (xij1, …, xijp)T, and functional data, denoted by {yij(v): v ∈ V0}, 

from the j-th subject of the i-th twin pair, where v is a grid point in V0 = {v1, v2, …, vNG}, 

which is a set of grid points in a common compact space, denoted by V. The n twin pairs 

consist of n1 MZ twin pairs for i = 1, …, n1 and j = 1, 2, n2 DZ twin pairs for i = n1 + 1, …, 
n1 + n2 and j = 1, 2, and n3 twin individuals for i = n1 + n2 + 1, …, n = n1 + n2 + n3 and j = 

1. As an illustration, Figure 1(a) and (b) present the plots of two diffusion properties 

including fractional anisotropy (FA) and mean diffusivity (MD) measured at 152 grid points 

along the genu tract of the corpus callosum from 40 randomly selected infants in a clinical 

study of neurodevelopment with 356 neonates, who have at least a twin sibling. Figure 1(c) 

and (d) are the FA curves of two randomly selected MZ twin pairs and two randomly 

selected DZ twin pairs. We are particularly interested in delineating the genetic and 

environmental variability of these functional FA and MD data and their association with a 

set of covariates of interest, such as age and gender. See Section 5 for detailed data analysis 

on this data set.

The development of FDA for twin functional data represents several major statistical 

challenges. First, conventional analyses of twin functional data include two steps: the 

commonly used Gaussian kernel or spline for smoothing functional data and then 

independently fitting a statistical model, such as structural equation model, at each grid 

point. Such methods for smoothing raw functional data can change the covariance structure 

of twin functional data, which is primarily associated with genetic and environmental 

factors; thus, it can introduce substantial bias in estimating these factors and dramatically 

increase the Type I and II errors as demonstrated in (Li et al., 2012). Second, although 

researchers have modeled independent functional data with levels of hierarchies (Morris and 

Carroll, 2006; Bathia et al., 2010; Ramsay and Silverman, 2005; Li et al., 2013; Zhang and 

Chen, 2007; Zhu et al., 2012b, 2011; Guo, 2002; Scheipl et al., 2015; Chen and Müller, 

2012; Zhu et al., 2011), their associated inference methods primarily make statistical 

inferences on the mean structure of functional data and are not directly applicable to twin 

data, which requires a careful analysis of the covariance structure of functional data. Some 

popular statistical methods include nonparametric mixed-effects models (Gu and Ma, 2005; 

Wang, 1998a,b; Wood, 2006, 2013; Zhang et al., 1998) and varying coefficient models (Fan 

Luo et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Zhang, 2008; Zhu et al., 2012a; Wu and Zhang, 2006; Huang et al., 2002). For instance, 

Morris and Carroll (2006) developed general functional mixed effects models with multiple 

levels of random effect functions as well as curve-to-curve deviations. See comprehensive 

reviews in Shi and Choi (2011); Hsing and Eubank (2015); Horváth and Kokoszka (2012) 

and references therein. Third, according to the best of our knowledge, little has been done on 

the analysis of functional data from twin studies. In Fang and Wang (2009) and Lei et al. 

(2015), two generic functional data models were developed to test for familial aggregation of 

functional traits, but they do not allow us to dissect genetic and environmental effects on 

functional data, which are scientifically critical for twin and family studies. Moreover, in 

Wang (2011), a functional mixed effects model was proposed for longitudinal family data, 

but it assumes both a common environmental effect and a constant coefficient effect across 

time.

We develop a functional structural equation modeling (FSEM) framework to dissect 

functional genetic and environmental effects on twin functional responses and their 

association with a set of covariates. Our FSEM can be regarded as a novel extension of 

standard structural equation models for twin scalar responses (Neale et al., 1989; Haseman 

and Elston, 1970; Feng et al., 2009; Wang et al., 2011; Rabe-Hesketh et al., 2008), 

nonparametric mixed-effects models (Gu and Ma, 2005; Wang, 1998a,b; Wood, 2006, 2013; 

Zhang et al., 1998), varying coefficient models (Fan and Zhang, 2008; Zhu et al., 2012a; Wu 

and Zhang, 2006; Huang et al., 2002), and functional mixed effects models (Wang, 2011; 

Fang and Wang, 2009; Lei et al., 2015). Our major contributions of this paper are as follows:

• FSEM not only disentangles functional genetic and environmental effects on 

twin functional data, but also characterizes the varying association between 

functional data and covariates of interest.

• We propose an estimation procedure based on weighted maximum likelihood 

functions, which explicitly incorporate the spatial smoothness in the mean and 

covariance structure of functional data. We develop an inference procedure based 

on weighted likelihood ratio statistics to test the genetic/environmental effect 

either at a fixed location or over a compact region.

• We use simulations and a real data analysis to show that FSEM can substantially 

boost the detection power for dissecting functional genetic and environmental 

effects on twin functional responses.

• We provide a comprehensive theoretical analysis of FSEM. Formally, we 

establish the weak convergence of the estimated varying association functions 

and the estimated genetic and environmental covariance operators, and the 

asymptotic distribution of the local test statistics.

• We have developed the FSEM package by using both matlab and python and will 

release it through the website “https://www.nitrc.org/” and our group website. 

Our package includes a Graphical User Interface (GUI) to pack the code, also 

freely downloadable from the same website.

The rest of this paper is organized as follows. In Section 2, we introduce FSEM and its 

associated estimation and inference procedures. We construct weighted likelihood ratio 
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statistics to test both local and global genetic effects on functional data. In Section 3, we 

establish the theoretical properties of our estimation and inference procedures. In Section 4, 

we carry out simulations to examine the finite sample performance of FSEM. In Section 5, 

we use FSEM to dissect the functional genetic and environmental effects on the genu tract of 

the corpus callosum in a clinical twin study of neurodevelopment.

2 Methods

2.1 Functional Structural Equation Model

We start with a simple extension of standard ACDE model (Haseman and Elston, 1970) for 

twin scalar responses as follows:

yi j(v) = xi j
T β(v) + ai j(v) + di j(v) + ci(v) + ei j(v) (1)

for i = 1, …, n and j = 1,mi, in which mi = 2 for i ≤ n1+n2 and 1 for i > n1+n2, where β(v) = 

(β1(v), …, βp(v))T is a p × 1 vector of coefficient functions. Moreover, aij(v) ~ N(0, σa(v)2), 

ci(v) ~ N(0, σc(v)2), dij(v) ~ N(0, σd(v)2), and eij(v) ~ N(0, σe(v)2) represent the additive 

genetic, common environmental, dominant genetic, and unique environmental effects, 

respectively. It is also assumed that

cov (ai1(v), ai2(v)) = σa(v)2(MZ)i + 0.5 × σa(v)2(DZ)i, (2)

cov (di1(v), di2(v)) = σd(v)2(MZ)i + 0.25 × σd(v)2(DZ)i, (3)

where (MZ)i (or (DZ)i) is an indicator function of the event that the i–th pair of twin subjects 

is MZ (or DZ). See Figure 2 for the diagram of ACDE model for twin data. Due to an 

identifiability issue (Wang et al., 2011), it is common to consider two simpler models. One is 

the ACE model, which only includes additive genetic, common environmental, and unique 

environmental effects. The other is the ADE model, which includes additive and dominant 

genetic, and unique environmental effects.

A conceptual issue associated with (1) comes from the difficulty in characterizing the 

relationship between (ai1(v), di1(v)) and (ai2(v), di2(v)) and in dissecting functional genetic 

and environmental effects. Specifically, for MZ twins, ai1(v) = ai2(v) for all v ∈ V, whereas 

for DZ twins, corr(ai1(v), ai2(v)) = 0.5 holds for all v ∈ V. The next question is how to define 

a bivariate process that satisfies both conditions as v varies in V, while preserving spatial 

smoothness in V. Similar comments hold for di1(v) and di2(v). To deal with such issue, we 

introduce a reparametrization of ACE model for twin functional data, which reduces to the 

standard ACE model at each grid point.

We introduce a new functional ACE model as a special case of FSEM as follows:
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yi j(v) = xi j
T β(v) + ri j(v),

ri j(v) = 0.5(DZ)iai j(v) + {(MZ)i + 0.5(DZ)i}ai(v) + ci(v) + ei j(v),
(4)

in which aij(v) and ai(v) are introduced to represent within-curve and between-curve 

functional additive genetic effects on the i-th twin pair. It is also assumed that

ei j(v) = ei j, G(v) + ei j, L(v), (5)

where eij,L(v) are measurement errors representing local variability and eij,G(s) are stochastic 

processes representing unique functional environmental effects.

It is assumed that aij(v), ai(v), ci(v), eij,G(v), and eij,L(v) are mutually independent, and they 

are independent and identical copies of GP(0,Σa), GP(0,Σa), GP(0,Σc), GP(0,Σe,G), and 

GP(0,Σe,L), respectively, where GP(0, Σ) represents a Gaussian process with mean 0 and 

covariance function Σ(v, v′). Moreover, eij,L(v) and eij,L(v′) are assumed to be independent 

for v ≠ v′, that is, Σe,L(v, v′) = 0 for v ≠ v′. We also denote Σe(v, v′) = Σe,G(v, v′)+Σe,L(v, v
′). The functional ACE model reduces to standard ACE model at each grid point. For v ≠ v′, 

we have

cov (yi j(v), yi j(v′)) = ∑a(v, v′) + ∑c(v, v′) + ∑e, G(v, v′) + ∑e, L(v, v′)1(v = v′),
cov (yi1(v), yi2(v′)) = {(MZ)i + 0.5 × (DZ)i}∑a(v, v′) + ∑c(v, v′) .

(6)

To the best of our knowledge, (4) is the first FDA framework of its kind for twin functional 

data and differs significantly from other models in the existing literature. Most FDA models 

focus on the mean structure of functional data, while they do not dissect genetic and 

environmental effects on functional data. See Wang et al. (2016) and Morris (2015) for 

comprehensive reviews of various FDA models. Moreover, most existing structural equation 

models developed for twin scalar responses are not directly applicable to twin functional 

data. Due to these major differences, we are facing many challenges in accurately estimating 

covariance functions Σa(v, v′), Σc(v, v′), and Σe,G(v, v′) and making statistical inference on 

genetic and environmental effects across all v ∈ V.

2.2 Estimation Procedure

Under model (4), the primary interest is to estimate β(·), Σa(·, ·), Σc(·, ·), Σe,G(·, ·), and 

{Σe,L(v, v): v ∈ V0}. The estimation procedure consists of three steps and the key idea of 

each step is given as follows.

• Step (I): calculate the maximum likelihood estimate of θ(v) = (σ2(v)T, β(v)T )T 

at each grid point v ∈ V0, denoted as θ̂(v) = (σ̂2(v)T, β̂(v)T )T, where 

σ2(v) = (σa
2(v), σc

2(v), σe
2(v))T;
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• Step (II): update the estimate of σ2(v) = (σa
2(v), σc

2(v), σe
2(v))T at all v ∈ V by using 

the weighted likelihood function of the estimated residuals 

r i j(v′) = yi j(v′) − xi j
T β(v′) for a set of grid points v′ ∈ V0 near v, denote it as σK

2 (v);

• Step (III): calculate the estimates of covariance operators Σa(·, ·), Σc(·, ·), and 

Σe,G(·, ·) by using the local constant regression technique (Fan and Gijbels, 1996) 

based on (6).

The key idea of Step (I) is to make statistical inference at each v ∈ V0 by using data 

observed at the grid point v, which is the standard pixel-wise method. In Step (I), we 

calculate the maximum likelihood estimate of θ̂(v) based on the log-likelihood function at 

the grid point v ∈ V0, denoted as ℒn(θ(v);Y (v)), where Y (v) are imaging measures for all 

subjects at v. We will use the maximum likelihood estimates β̂(v) for v ∈ V0 in Steps (II) 

and (III). If needed, we can employ smoothing methods (e.g., local linear) to obtain an 

estimate of β(v) for all v ∈ V, we still denote it as β̂(v) (Fan and Gijbels, 1996; Zhu et al., 

2012b).

The key idea of Step (II) is to make statistical inference across all v ∈ V by using data 

observed at those grid points close to v. In Step (II), we construct a weighted log-likelihood 

function at each v, denoted as ℒn,K(σ2(v); R̂), in order to obtain an updated estimate of 

σ2(v), where R̂ represents all r̂ij(v′)’s for v′ ∈ V0. Specifically, ℒn,K(σ2(v); R̂) is given by 

m−1Σv′∈V0 Kh1(v′−v)ℒn(σ2(v), β̂(v′);Y (v′)), where K(v) is a kernel function and 

Kh1
(v) = h1

−1K(v/h1) is the rescaled kernel function with a bandwidth h1. We select the 

bandwidth h1 by using 5-fold cross-validation.

The key idea of Step (III) is to apply the local constant regression technique (Fan and 

Gijbels, 1996) to estimate Σa(v, v′), Σc(v, v′), and Σe,G(v, v′). By using the covariance 

structures in (6), we minimize an objective function Wn(v, v′) given by

1
2n − n3

∑
i = 1

n
∑

j = 1

mi
∑

v0 ≠ v0′ ∈ V0
[Ui j(v0, v0′ ) − ∑a(v, v′) − ∑c(v, v′) − ∑e, G(v, v′)]2 Kh2

2 (v0, v; v0′ , v′)

+ 1
n1

∑
i = 1

n1
∑

v0 ≠ v0′ ∈ V0
Ui(v0, v0′ ) − ∑a(v, v′) − ∑c(v, v′) 2Kh2

2 (v0, v; v0′ , v′)

+ 1
n2

∑
i = n1 + 1

n1 + n2
∑

v0 ≠ v0′ ∈ V0
Ui(v0, v0′ ) − 0.5∑a(v, v′) − ∑c(v, v′) 2Kh2

2 (v0, v; v0′ , v′),

where Kh2
2 (v0, v; v0′ , v′) = Kh2

(v0 − v)Kh2
(v0′ − v′), Ui j(v0, v0′ ) = r i j(v0)r i j(v0′ ), and 

Ui(v0, v0′ ) = [r i1(v0)r i2(v0′ ) + r i1(v0′ )r i2(v0)]/2. With some calculations, we have
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∑a(v, v′) = [2Sw1(v, v′) − 2Sw2(v, v′)]/[w(v, v′)],
∑c(v, v′) = [ − Sw1(v, v′) + 2Sw2(v, v′)]/[w(v, v′)],
∑e, G(v, v′) = [Sw0(v, v′) − Sw1(v, v′)]/[w(v, v′)],

(7)

where w(v, v′), Ŝw0(v, v′), Ŝw1(v, v′), and Ŝw2(v, v′) are, respectively, given by

w(v, v′) = 1
NG(NG − 1) ∑

v0 ≠ v0′ ∈ V0
Kh2

2 (v0, v; v0′ , v′),

Sw0(v, v′) = 1
2n − n3

∑
i = 1

n
∑

j = 1

mi 1
NG(NG − 1) ∑

v0 ≠ v0′ ∈ V0
Ui j(v0, v0′ )Kh2

2 (v0, v; v0′ , v′),

Sw1(v, v′) = 1
n1

∑
i = 1

n1 1
NG(NG − 1) ∑

v0 ≠ v0′ ∈ V0
Ui(v0, v0′ )Kh2

2 (v0, v; v0′ , v′),

Sw2(v, v′) = 1
n2

∑
i = n1 + 1

n1 + n2 1
NG(NG − 1) ∑

v0 ≠ v0′ ∈ V0
Ui(v0, v0′ )Kh2

2 (v0, v; v0′ , v′) .

Furthermore, if we set Σa(v, v′) = 0 for v, v′ ∈ V, then Σ̂c(v, v′) and Σê,G(v, v′), which 

minimize Wn(v, v′), are, respectively, given by

∑c(v, v′) = [Sw1(v, v′) + Sw2(v, v′)]/[2w(v, v′)],
∑e, G(v, v′) = [2Sw0(v, v′) − Sw1(v, v′) − Sw2(v, v′)]/[2w(v, v′)] .

(8)

We also select the bandwidth h2 by using 5-fold cross-validation.

2.3 Inference Procedure

We propose an efficient inference procedure to test the functional genetic or environmental 

effects at either a fixed location or a compact region. For the sake of space, we focus on the 

genetic effects from now on. We need to introduce some notation. We use subscript * to 

denote the true parameter values, say θ*(vk). Let yik = yi(vk) = (yi1(vk), yi2(vk))T and Yk = Y 

(vk) = (y1k, · · ·, ynk). We denote ℒn
(M)(θ(vk); Yk) as ∑i = 1

n1 log f (M)(yik; θ(vk))  for all MZ 

twins, where f(M)(yik; θ(vk)) is the density of yik for the i-th MZ twin pair at the grid point 

vk. We define ℒn, K
(M)(σ2(v); R) as

ℒn, K
(M)(σ2(v); R) = 1

NG
∑

k = 1

NG
Kh1

(vk − v)ℒn
(M)(σ2(v), β(vk); Yk) .
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Moreover, we introduce similar notation for DZ twin pairs and twin individuals by replacing 

the superscript (M) by (D) and (I), respectively.

2.3.1 Local Test—To test the genetic effect at a fixed location, we formulate it as follows:

H0:σa ∗
2 (v) = 0 v.s. H1:σa ∗

2 (v) > 0. (9)

We consider a likelihood ratio test statistic and a weighted likelihood ratio test statistic at v 
given by

LRn(v): = − 2 ℒn(θ0(v); Y(v)) − ℒn(θ(v); Y(v)) , v ∈ V0,

WLRn(v): = − 2 ℒn, K(σ0, K
2 (v); R) − ℒn, K(σK

2 (v); R) , v ∈ V .

where θ̂0(v) and θ̂(v) are the maximum likelihood estimates of θ(v) under H0 and H1, 

respectively. Moreover, σ0, K
2 (v) and σK

2 (v) are the maximum weighted likelihood estimates of 

ℒn, K(σ0, K
2 (v); R) under H0 and H1, respectively. Note that for LRn(v), v has to be in V0 since 

no data is available for v ∈ V/V0. In contrast, our newly proposed weighted likelihood ratio 

test statistic does not require v ∈ V0, since data can be borrowed from nearby grid points of 

v in V0. The asymptotic distribution of LRn(v) can be similarly derived based on the results 

of Self and Liang (1987). A special case is when σc ∗
2 (v) > 0 and σe ∗

2 (v) > 0, the asymptotic 

distribution of LRn(v) is 0.5χ0
2 + 0.5χ1

2. The test LRn(v) is similar to the test for random 

effects in regression models (Wood, 2013).

A challenging issue is to derive the asymptotic distribution of WLRn(v). We only give a 

brief derivation for σc ∗
2 (v) > 0 and σe ∗

2 (v) > 0. We use Λℰ to denote the approximation cone 

at a given vertex σ2(v) for a given set ℰ (Andrews, 2001; Self and Liang, 1987). In this case, 

the null and alternative domains of test (9) are given by ℰ0 = {0} × (0,∞)2 and ℰ1 = (0,∞)3, 

respectively. We approximate ℒn,K(σ2(v); R̂) by a quadratic function of σ∗
2(v) and then 

calculate the approximation cones of ℰ1 and ℰ0, denoted as Λℰ1 and Λℰ0, respectively (Self 

and Liang, 1987; Andrews, 2001; Zhu and Zhang, 2004). The approximation cone of ℰ0 and 

ℰ1 at σ2(v) are Λℰ0 = {0} × R2 and Λℰ1 = (0,∞) × R2, respectively.

We have a quadratic approximation to WLRn(v) as follows:
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WLRn(v) = 2 sup
σ2(v) ∈ ℰ1

ℒn, K(σ2(v); R) − 2 sup
σ2(v) ∈ ℰ0

ℒn, K(σ2(v); R)

= sup
λ ∈ Λℰ1

2λT𝒥n, K(σ∗
2(v); R) − λTℐn, K(σ∗

2(v); R)λ − sup
λ ∈ Λℰ0

2λT𝒥n, K(σ∗
2(v); R) − λTℐn, K(σ∗

2(v); R)λ + op(1),

(10)

where n,K(σ2(v); R̂) and –ℐn,K(σ2(v); R̂) are the first-order and second-order derivatives of 

the log-likelihood function of all data ℒn,K(σ2(v); R̂) with respect to σ2(v). Subsequently, 

based on (10), we are able to derive the asymptotic distribution of WLRn(v) presented in 

Section 3.

We propose an efficient resampling method to approximate the empirical distribution of 

WLRn(v) as follows:

Step 1: We generate independent and identically distributed random samples, {ξi,g: i 
= 1, …, n}, from standard normal distribution N(0, 1). Here g represents a replication 

number.

Step 2: We calculate

n𝒥n, K
(g) (σ∗

2(v); R) = 1
NG

∑
k = 1

NG
Kh1

(vk − v) ∑
i = 1

n1
ξi, gℓ

.
σ
(M)(σ∗

2(v), β(vk); yik)

+ 1
NG

∑
k = 1

NG
Kh1

(vk − v) ∑
i = n1 + 1

n1 + n2
ξi, gℓ

.
σ
(D)(σ∗

2(v), β(vk); yik)

+ 1
NG

∑
k = 1

NG
Kh1

(vk − v) ∑
i = n1 + n2 + 1

n
ξi, gℓ

.
σ
(I)(σ∗

2(v), β(vk); yik),

where ℓ
.
σ
(S)(σ∗

2(v), β(vk); yik) is the first order derivative of log-likelihood for the i-th 

twin pair for S = M,D, and I. It is important to note that 𝒥n, K
(g) (σ∗

2(v); R) converges 

weakly to the same stochastic process as n,K(σ*(v); R̂) by using the conditional 

central limit theorem (Theorem 10.2 of Pollard (1990)).

Step 3: The third step is to calculate the weighted likelihood ratio

WLRn
(g)(v) = sup

λ ∈ Λℰ1

2λT𝒥n, K
(g) (σ∗

2(v); R) − λTℐn, K(σ∗
2(v); R)λ − sup

λ ∈ Λℰ0
2λT𝒥n, K

(g) (σ∗
2(v); R) − λTℐn, K(σ∗

2(v); R)λ + op(1) .
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Step 4: We repeat the above three steps G times and obtain realization, 

{ WLRn
(g)(v):g = 1, 2, …, G}. It can be shown that the empirical distribution of 

WLRn
(g)(v) converges to the asymptotic distribution of WLRn(v). Therefore, the 

empirical distribution of this realization forms the basis for the calculation of critical 

values in hypothesis testing as well as power analysis.

We approximate p-value for the testing problem (9) by using

p ≈ p∼G = 1
G ∑

g = 1

G
1(WLRn

(g)(v) > WLRn(v)), (11)

where 1(·) is an indicator function of an event. Note that the true σ∗
2(v) are involved in all the 

calculations, and it is replaced by the σ0, K
2 (v) in practice, since σ0, K

2 (v) is a consistent 

estimator of σ∗
2(v) under the hypothesis H0.

The above resampling approach is quite efficient since the optimization in Step 3 is fast. 

Consider the eigen-decomposition of ℐn, K(σ∗
2(v); R) as PTDP, where P is an orthogonal 

matrix and D is a diagonal matrix with d1 ≥ d2 ≥ d3 ≥ 0 as its diagonal elements. 

Furthermore, since P[(0,∞)×R2] = (0,∞)×R2 and P[{0}×R2] = {0}×R2 (under different 

orthogonal bases), we have

WLRn
(g)(v) = sup

λ ∈ Λℰ1

2λTP𝒥n, K
g (σ∗

2(v); R) − λTDλ − sup
λ ∈ Λℰ0

2λTP𝒥n, K
g (σ∗

2(v); R) − λTDλ + op(1)

=
[P𝒥n, K

g ]1
2

d1
1([P𝒥n, K

g ]1 ≥ 0),

where [P𝒥n, K
g ]1 denotes the first entry of P𝒥n, K

g .

2.3.2 Global Test—We propose a test procedure to test global genetic hypotheses as 

follows:

H0:∫
v ∈ V

∑a ∗(v, v)dv = 0 v.s. H1:∫
v ∈ V

∑a ∗(v, v)dv > 0. (12)

Note that our test procedure is not limited to the entire tract V and can be adapted to any 

subinterval of V. Let ψ(·) = (ψ1(·), …, ψK(·))T denote the K vector of B-spline basis, and ci 

∈ RK×1 be the least square coefficients of regressing r̂i1(·) − r̂i2(·) on ψ(·). In practice, a 
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relative small K is good enough for many applications. Throughout the paper, we set K = 9 

and place the spline knots uniformly in V. We consider a global test statistic as follows:

Tn = max
‖w‖ = 1

wT ∑i ∈ DZcici
T w

wT ∑i ∈ MZcici
T w

where w is a K × 1 vector. The bigger value of Tn indicates the stronger evidence of global 

genetic effect.

Under the null hypothesis of no global genetic effect, {ri1(·) − ri2(·)}s’ are independently and 

identically distributed across MZ and DZ twin pairs. The p-value of the test statistic Tn can 

be obtained through a permutation procedure over MZ and DZ twin pairs. Specifically, for 

each permutation g = 1, …, G, we randomly select n1 twin pairs as MZ twin pairs from (n1 + 

n2) MZ and DZ twin pairs and then compute the new test statistic as Tn
(g). Then, the p-value 

can be approximated by ∑g = 1
G 1(Tn

(g) > Tn)/G.

3 Asymptotic Properties

In this section, we systematically investigate the asymptotic properties (e.g., convergence 

rate) of various estimates and test statistics developed in Section 2. Without loss of 

generality, we set V = [0, 1]. The kernel function K(v) is a symmetric density with compact 

support [−1, 1]. Let ur(K) = ∫ vrK(v)dv and vr(K) = ∫ vrK2(v)dv, where r is any nonnegative 

integer. We assume that Op(1) and op(1) hold uniformly across all v in either V or V0 

throughout the paper. Moreover, the sample sizes n1 and n2 diverge to infinity such that n1/n 
→ α1, n2/n → α2, and n3/n → α3, where α1 > 0, α2 > 0, and α3 ≥ 0 such that α1 +α2 +α3 

= 1. We use →d to denote convergence in distribution and use ⇒d to denote weak 

convergence for stochastic processes. N(μ, σ2) denotes a normal random variable with mean 

μ and variance σ2. We state the following theorems, whose assumptions can be found in the 

Appendix and detailed proofs in supplemental materials.

Theorem 1

Suppose that Assumptions (C1)-(C4) and (C7) hold. As n → ∞, the following results hold:

i. We have n θ(vk) − θ∗(vk) d λ(vk) and

sup
vk ∈ V0

n θ(vk) − θ∗(vk) = Op( log (1 + NG)),

where λ̂(vk) = arg minλ∈[0,∞)×R(p+2){λ − Z(vk)}T ℐ(vk){λ − Z(vk)}, in which 

Z(vk) = ℐ(vk)−1  (vk). Moreover,  (vk) denotes a random score vector and 
ℐ(vk) is the average Fisher information matrix at θ*(vk).

ii. If σc ∗
2 (vk) > 0 and σe ∗

2 (vk) > 0, then under local alternatives Hn:σa
2(vk) = h(vk)/ n, 

we have
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n{σa
2(vk) − σa ∗

2 (vk)} →
Hn

d {Hℐ(vk)−1HT}1/2 × N(h∼(vk), 1)1(N(h∼(vk), 1) ≥ 0),

LRn(vk)
Hn

d N(h∼(vk), 1)21 N(h∼(vk), 1) ≥ 0 ,

where h̃(vk) = {Hℐ−1(vk)HT}−1/2 h(vk) and H = [1, 0p + 2
T ] ∈ R1 × (p + 3).

Theorem 1 (i) delineates the uniform convergence rate of θ̂(vk) for all vk ∈ V0. Theorem 1 

(ii) gives the asymptotic distribution of σa
2(vk) and LRn(vk) under a sequence of local 

alternatives when both σc ∗
2 (vk) and σe ∗

2 (vk) are greater than zero. When h(vk) is equal to zero, 

Theorem 1 (ii) reduces to the well-known results in (Self and Liang, 1987; Andrews, 2001). 

Theorem 1 (ii) characterizes the local power of LRn(vk) as h(vk) > 0.

Theorem 2

Suppose that Assumptions (C1)-(C6) and (C7b) hold. As n → ∞, the following results 
hold:

i. supv ∈ V n {σK
2 (v) − σ∗

2(v)} = Op(1) and n {σK
2 (v) − σ∗

2(v)} d λK(v), where λ̂
K(v) 

= arg minλ∈[0,∞)×R2{λ−ZK(v)}T ℐK(v){λ−ZK(v)}, in which ZK(v) = ℐK(v)−1

K(v). Moreover, K(v) denotes a random weighted score vector and ℐK(v) is the 

average Fisher information matrix at σ∗
2(v).

ii. If σc ∗
2 (v) > 0 and σe ∗

2 (v) > 0, then under local alternatives Hn:σa
2(v) = h(v)/ n, we 

have

n{σa, K
2 (v) − σa ∗

2 (v)}
Hn

d {HKℐK
−1(v)ℐ1, K(v)ℐK

−1(v)HK
T }1/2 × N(h∼K(v), 1)1

N(h∼K(v), 1) ≥ 0 ,

WLRn(v)
Hn

d
HKℐK

−1(v)ℐ1, K(v)ℐK
−1(v)HK

T

HKℐK
−1(v)HK

T × N(h∼K(v), 1)21 N(h∼K(v), 1) ≥ 0 ,

where HK = [1, 0, 0] and h
∼

K(v) = {HKℐK
−1(v)ℐ1, K(v)ℐK

−1(v)HK
T }−1/2

h(v). 

Moreover, ℐ1,K(v) is the covariance matrix of K(v) and ℐK(v)−ℐ1,K(v) is 
positive semi-definite.

Theorem 2 (i) delineates the uniform convergence rate of σK
2 (v) for all v ∈ V. Theorem 2 (ii) 

shows that when min (σc ∗
2 (v), σe ∗

2 (v)) > 0 and σa, K
2 (v) is asymptotically a scaled truncated 

standard normal and the corresponding weighted likelihood ratio is a scaled 0.5χ1
2 + 0.5χ0

2 as 

well with a scale parameter smaller than one. Since ℐ1,K(v) < ℐK(v) as long as σe ∗
2 (v) > 0, 
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the ratio of HKℐK
−1(v)ℐ1, K(v)ℐK

−1(v)HK
T  to HKℐK

−1(v)HK
T  is smaller than one. When h(v) > 0, 

Theorem 2 (ii) characterizes the asymptotic local power of WLRn(v). An important 

implication of Theorem 2 (ii) is that WLRn(v) is statistically more powerful than LRn(v), 

since h̃(v) is smaller than h̃K(v) due to the fact that ℐK(v) − ℐ1,K(v) is nonnegative definite.

Theorem 3

Suppose that Assumptions (C1)-(C8) hold. The following results hold:

n ∑a(u, v) − ∑a(u, v) d N(0, Wa(u, v, u, v)),

n ∑c(u, v) − ∑c(u, v) d N(0, Wc(u, v, u, v)),

n ∑e, G(u, v) − ∑e, G(u, v) d N(0, We, G(u, v, u, v)),

where Wa(u, v, u, v), Wc(u, v, u, v), and We,G(u, v, u, v) are given in supplemental 

document.

Theorem 3 shows the asymptotic normality of local constant covariance kernel estimators 

under ultra high dense situations. The ultra high dense condition is n = o(NGh2), which 

means that the number of tract points with observations is extremely large compared to the 

sample size.

4 Simulation Studies

In this section, we present two simulation studies to evaluate the finite sample performance 

of the proposed estimation and inference procedures. We run all our simulations on our 

department linux cluster with configuration: DELL R815 Quad Processor AMD Opteron 16 

core 2.3 GHz machines with 512GB RAM each running 64Bit Fedora Core 20. Our code is 

in Matlab. We use Matlab 2013a on the linux cluster. Each replication takes around 2.5 

seconds. We define three signal to noise ratios (SNRs) as follows:

SNRβ = ∫V
β(v)dv/[∫V

{∑a(v, v) + ∑c(v, v) + ∑e(v, v)}dv],

SNRa = ∫V
∑a(v, v)dv/∫V

∑e(v, v)dv, SNRc = ∫V
∑c(v, v)dv/∫V

∑e(v, v)dv,

where ∑e(v, v) = σe
2(v) = ∑e, G(v, v) + ∑e, L(v, v). We design our simulation based on the SNRs 

obtained from normalized real data. Specifically, in our real data analysis, (SNRβ, SNRa, 
SNRc) is given by (93.5, 1.5, 0.6) for FA, whereas it is equal to (335.3, 1.5, 0.6) for MD. 

Although SNRβ is very large in real data, we reduce it in order to make it comparable with 

SNRa and SNRc. Table 1 summarizes (SNRβ, SNRa, SNRc) under different simulation 

settings. The functional forms of β(v)s are taken from Zhu et al. (2012a) and the 

eigenfunctions of the covariance kernels Σa(v, v′) and Σc(v, v′) are commonly used in the 

literature (Yao, 2007a; Yao et al., 2005; Yao, 2007b; Yao et al., 2005; Zhu et al., 2012a). 

Without loss of generality, the true Σe,G(v, v′) is set to be a zero function.
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Example 1

The first set of simulations is designed to evaluate the estimation procedure. The data were 

generated from model (4), in which xij = (1, xij1, xij2)T and

(xi j1, xi j2)T N((0, 0)T , diag(1 − 2−0.5, 1 − 2−0.5) + 2−0.5(1, 1) ⊗ 2) .

Moreover, we set

ai j(vk) = ∑
l = 1

Na

ξijlψl
a(vk), ai(vk) = ∑

l = 1

Na

ξilψl
a(vk), and ci(vk) = ∑

l = 1

Nc

ζilψl
c(vk),

where ξijl N(0, λl
a), ξil N(0, λl

a), and ζil N(0, λl
c), in which we set Na = Nc = 2 and 

(λ1
a, λ2

a) = (λ1
c, λ2

c) = c(1, 0.5) with c = 0.05 and 0.1. Moreover, v1, …, vNG are equally spaced 

on [0, 1] and NG = 100. Furthermore, we set the coefficient functions and eigenfunctions as 

follows:

β1(v) = v2, β2(v) = (1 − v)2, β3(v) = 4v(1 − v) − 0.4;

ψ1
a = ψ2

c = 2 sin (2πv), ψ2
a = ψ1

c = 2 cos (2πv) .

We set n = 150 (or 300), among which there are 50 (or 100) MZ twin pairs, 50 (or 100) DZ 

twin pairs, and 50 (or 100) single twin individuals. We run our simulations over all 

combinations of n = (150, 300) and (c,Σe) = (0.05, 0.05), (0.1, 0.1), (0.05, 0.1), and (0.1, 

0.2). We report the mean squared errors of parameter estimates over 400 replications.

As shown in Tables 2–4, the finite-sample performance of our estimators improves as 

sample size increases, whereas it decreases as SNRβ roughly drops from 1.5 (c = 0.05) to 

0.75 (c = 0.1). The mean square errors of σa, K
2 ( · ) and σc, K

2 ( · ) are at the same scale since 

SNRa = SNRc in all our settings of Example 1. Tables 2 and 3 show that the mean squared 

errors of maximum weighted likelihood estimators (MWLEs) are roughly half of those of 

the maximum likelihood estimators (MLEs). Figures 3 and 4 present the estimation results 

for n = 300, c = 0.1, and Σe = 0.2. It indicates that our estimates are quite accurate even for 

moderate sample sizes and are better than the maximum likelihood estimates.

Example 2

The second set of simulations is designed to evaluate Type I and II error rates of WLRn(v) 

and Tn. We aim to show that the inference performance of our procedure is good even when 

SNRβ is very small. The simulated data were generated in the same way as Example 1 

except that we set (λ1
c, λ2

c) = (0.5, 1), Σe = 1 and 2, and (λ1
a, λ2

a) = c(0.5, 1), where c (effect size) 

is a scalar specified below. We set c = 0 to assess the Type I error rate of various test 

statistics. We set c = 0.1, 0.2, 0.3, and 0.4 in order to examine Type II error rate of WLRn(v) 
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and set c = 0.01, 0.02, 0.03, and 0.04 in order to examine Type II error rate of Tn at different 

effect sizes. For each simulation, the significance levels were set at α = 0.01 and 0.05, 

respectively, and 400 replications were used to estimate the rejection rates.

Figure 5 presents the Type I and II error rates along the entire tract of both LRn(v) and 

WLRn(v) for Σe = 1. An additional figure corresponding to Σe = 2 is included in the 

Supplementary document. As shown in Figure 5, the Type I error rates for both test statistics 

are quite accurate, whereas WLRn(v) is statistically more powerful than LRn(v) along the 

entire tract. This result is consistent with our theoretical power calculation in Theorem 2.

Figure 6 presents the power function of Tn. The rejection rates for the global test statistic 

based on the permutation method are accurate for moderate sample sizes (n = 150 and 300) 

at both significance levels α = 0.01 and 0.05. As expected, the statistical power of rejecting 

the null hypothesis increases with sample size and SNRa (determined by the effect size, and 

Σe). In contrast, the Type I error rates of the global test statistic in Fang and Wang (2009) are 

close to 1 in all cases, since such statistic only tests for the joint effect of genetic and 

environmental effects.

5 Real Data Analysis

The data set consists of 356 healthy twin neonates with 190 males and 166 females from the 

neonatal project as part of the UNC Early Brain Development Studies between 2004 and 

2014. There are 129 twin pairs (48 MZ twin pairs and 81 DZ twin pairs) and 98 unrelated 

“singleton” twins - a single unpaired twin subject, in which a usable scan was not obtained 

from the co-twin. The gestational ages of these infants range from 257 to 401 days, and their 

mean gestational age is 289 days with standard deviation 18 days. The Diffussion Tensor 

Imaging (DTI) and T1-weighted images were acquired for each subject. For the DTIs, the 

imaging parameters were as follows: the six nonlinear directions at the b-value of 1000 

s/mm2 with a reference scan (b = 0), the isotropic voxel resolution = 2 mm, and the in-plane 

filed of view = 286 × 192 mm2. A total of five repetitions were acquired to improve the 

signal-to-noise ratio of the DTIs.

The DTI data were processed by two key steps including a weighted least squared fitting 

method (Basser et al., 1994; Goodlett et al., 2009) to construct the diffusion tensors and a 

DTI atlas building pipeline (Goodlett et al., 2009; Zhu et al., 2011) to register DTIs from 

multiple subjects to create a study specific unbiased DTI atlas, to track fiber tracts in the 

atlas space and to propagate them back into each subject’s native space by using registration 

information. Subsequently, diffusion tensors (DTs) and their scalar diffusion properties were 

calculated at each location along each individual fiber tract by using DTs in neighboring 

voxels close to the fiber tract. Figure 1(a) and (b) display the diffusion properties (FA and 

MD) along the fiber bundle of the genu of the corpus callosum (GCC), which is an area of 

white matter in the brain. The GCC is the anterior end of the corpus callosum, and is bent 

downward and backward in front of the septum pellucidum; diminishing rapidly in 

thickness, it is prolonged backward under the name of the rostrum, which is connected 

below with the lamina terminals. It was found that neonatal microstructural development of 

GCC was positively correlated with age and callosum thickness. Furthermore, twin DTI 
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studies have reported high heritability of regional FA in the genu of corpus callosum 

(Pfefferbaum et al., 2001; Lee et al., 2015).

The aims of this analysis are to compare the diffusion properties including FA and MD 

along the GCC between male and female groups, to delineate the development of fiber 

diffusion properties across time, which is addressed by including the gestational age at MRI 

scanning as a covariate and, most importantly, to test the genetic effects along the GCC fiber 

tract. FA and MD, respectively, measure the inhomogeneous extent of local barriers to water 

diffusion and the averaged magnitude of local water diffusion. We fit model (4) to the FA 

and MD values from all 356 subjects, in which xij = (1, Gender, Age)T and the number of 

grid points NG = 152.

Figure 7 presents the estimated coefficient functions corresponding to 1, Gender and Age 

associated with FA and MD (blue solid lines in all panels of Figure 7). The intercept 

functions [panels (a) and (d) in Figure 7] describe the overall trend of FA and MD. The 

gender coefficients for FA and MD in Figure 7(b) and (e) are negative at most of the grid 

points, which may indicate that compared with female infants, male infants have relatively 

smaller magnitudes of local water diffusivity along the genu of the corpus callosum. The 

gestational age coefficients for FA [panel (c) of Figure 7] are positive at most grid points, 

indicating that FA measures increase with age in both male and female infants, whereas 

those corresponding to MD [panel (f) of Figure 7] are negative at most grid points. This may 

indicate a negative correlation between the magnitudes of local water diffusivity and 

gestational age along the genu of the corpus callosum. These results are consistent with 

those in Zhu et al. (2012b).

We have the following observations for genetic and environmental effects along the genu 

tract. First, the p values of the global genetic effect tests on FA and MD measures are much 

smaller than 0.001 for Tn, indicating a significant global genetic effect. Second, Figures 8 

and 9 indicate that there are large genetic and environmental effects in the middle range of 

the genu tract for both FA and MD. Third, for both FA and MD, we estimated heritabilities 

along the genu tract by using both FSEM and a functional mixed effects model (FMEM) in 

Wang (2011). Figure 9 indicates that our heritability curves are generally higher than the 

corresponding curve for FA (or MD) based on FMEM, which assumes a common 

environmental effect (Wang, 2011).

Finally, we use 5-fold cross-validation to evaluate the estimation error of FSEM and that of 

standard pixel-wise method (MLE). Specifically, we used the training set to estimate all the 

parameters and the genetic and environmental covariance operators and their corresponding 

basis functions. Then, for each subject in the test set, these basis functions were used to 

estimate the genetic and common environmental components. Figure 10 presents the 

estimated residual processes of four randomly selected subjects. Furthermore, the estimation 

error of FSEM and that of standard pixel-wise method (MLE) are, respectively, equal to 

0.001 and 0.087.
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6 Conclusions

We have developed a novel class of functional structural equation models (FSEMs) to 

dissect functional genetic and environmental effects on twin functional data. We have 

developed a three-stage estimation procedure to estimate varying coefficient functions for 

various covariates (e.g., gender) as well as three covariance operators for the genetic and 

environmental effects. We have developed an inference procedure based on weighted 

likelihood ratio statistics to test the genetic/environmental effect either at a fixed location or 

over a compact region. We have established the asymptotic properties of the estimated 

varying functions, the weighted likelihood ratio statistics, and the estimated covariance 

operators.

Many important issues need to be addressed in future research. First, although we focus on 

modeling twin functional response, it is interesting to extend FSEM to functional data 

obtained from family studies. Second, although it is assumed that both varying coefficient 

functions and covariance operators are smooth functions, it is possible to replace such 

smoothness condition by some piecewise smoothness condition (Li et al., 2012, 2011; 

Polzehl and Spokoiny, 2000). Finally, it is scientifically interesting to extend FSEM to carry 

out whole-genome analysis of twin functional data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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7 Appendix A: Assumptions

Before we present all the assumptions, we first introduce some notation. We set 

xi = (xi1
T , xi2

T )T and ηi(v) = (ηi1(v), ηi2(v))T, where 

ηi j(v) = 0.5(DZ)iai j(v) + [(MZ)i + 0.5(DZ)i]ai(v) + ci(v) + ei, G(v) for 1 ≤ i ≤ n1+n2. We set xi = 

(xi1) and ηi(v) = (ηi1(v)) for n1 +n2 +1 ≤ i ≤ n. Denote 

σ1
2(v) = σa

2(v) + σc
2(v) + σe

2(v), σ2
2(v) = σa

2(v) + σc
2(v) and σ3

2(v) = 0.5σa
2(v) + σc

2(v). Without loss of 

generality, we assume that the parameter space for β(v) and σ2(v) are Rp and [0, ∞)3 

respectively. Furthermore, we denote λmin(A) and λmax(A) as minimum and maximum 

eigenvalues of marix A.

Assumption (C0)

β*(v) ∈ ℬ where ℬ is a open subset of Rp and σ∗
2(v) ∈ ℰ where ℰ is a bounded subset of [0, 

∞)3. The Θ = ℰ × ℬ can be approximated by cone at θ∗(v) = (σ∗
2(v), β∗(v)) for each v ∈ V.

Assumption (C1)

The number of parameters p is finite. n1, n2 and NG increase to infinity. The weighted 

likelihood bandwidth h1 and the covariance kernel smoothing bandwidth h2 converges to 

zero. n1/n → α1, n2/n → α2, n3/n → α3 where α1 > 0, α2 > 0, α3 ≥ 0 and α1 + α2 + α3 = 

1. Furthermore,

Assumption (C2)

For MZ twin pairs, the covariates xi = (xi1, xi2) are independently and identically distributed 

with Exi = μx
(M) and ||xi||∞ < ∞. Moreover, E xixi

T = Ωx
(M) is invertible. Similar assumptions 

for DZ twin pairs and single twins.

Assumption (C3)

aij(v), ai(v), ci(v), eij, G(v) and eij, L(v) are mutually independent copies of GP(0,Σa), 

GP(0,Σa), GP(0,Σc), GP(0,Σe, G) and GP(0,Σe, L), respectively. Furthermore, eij, L(v) and 

eij, L(v′) are independent for v ≠ v′ ∈ V. Moreover, Σa (v, v′), Σc(v, v′) and Σe, G(v, v′) have 

continuous second-order partial derivative with respect to (v, v′) ∈ V2 and Σe(v, v) = Σe, G(v, 
v)+Σe, L(v, v) is Lipschitz continuous with a Lipschitz constant Ce with infv∈V Σe(v, v) > 0.

Assumption (C4)

Denote the Fisher information matrix at v as ℐ(v),

0 < inf
v ∈ V

λmin(ℐ(v)) < sup
v ∈ V

λmax(ℐ(v)) < ∞ .
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Assumption (C5)

Each component of {η(v) : v ∈ V }, {η(v)η(v′) : (v, v′) ∈ V2}, and {xηT (v) : v ∈ V} are 

Donsker classes.

Assumption (C6)

The tract points in V0 are randomly generated from a density function π(v). Moreover, π(v) 

> 0 for all v ∈ V and π(v) has continuous second-order derivative with bounded support V = 

[0, 1].

Assumption (C7a)

log8 (1 + NG)/n → 0.

Assumption (C7b)

log8 (1 + NG)/n → 0, nh1
2 0, and | log(h1)|/(NGh1) → 0.

Assumption (C8)

nh2
4 0 and n/(NGh2) → 0.

Remarks

Assumption (C1) requires that n1 and n2 diverge to infinity at the same rate as n, whereas n3 

can be zero. Assumption (C2) is a relatively weak condition on the covariate vector, and the 

boundness is not essential. The Gaussian process requirement in Assumption (C3) is not 

necessary but for simplicity. Sub-Gaussian requirement is enough for most theoretical 

arguments. In this case, we have to assume that the Kullback-Leibler distance between the 

true underlying density and the proposed density family is zero in order to ensure the 

consistency of quasi-maximum likelihood estimators. The smoothness condition on the three 

covariance operators are quite general. Assumption (C4) is necessary for establishing the 

uniform consistency of related estimators and is satisfied as long as infv∈V Σe(v, v) > 0 and 

supv ∈V [Σa(v, v) + Σc(v, v) + Σe(v, v)] < ∞ for Gaussian process. Assumption (C5) avoids 

specific smoothness condition on the sample path η(v), which are commonly assumed in the 

literature (Hall et al., 2006; Zhu et al., 2012b). Assumption (C6) is a weak condition on the 

random grid points. In many neuroimaging applications, NG is quite large compared to 

sample size n and for such a large NG, a regular grid of tract points is fairly well 

approximated by a simple uniform distribution in a compact region V. For notational 

simplicity, we only state the theoretical results for the random grid points. Assumptions 

(C7a) and (C7b) are fairly weak conditions on (NG, n, h1). Assumption (C8) is a ultra-dense 

condition, under which we can achieve n convergence rate for local constant estimators.
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Figure 1. 
Representative twin neuroimaging data: [(a), (b)] are fractional anisotropy (FA) and mean 

diffusivity (MD) along the splenium tract of the corpus callosum from 40 randomly selected 

twin pairs; and [(c),(d)] are FA measures of two randomly selected MZ twin pairs and two 

randomly selected DZ twin pairs.
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Figure 2. 
Diagram for the structural equation model for twin data. The correlation of additive effects 

(a1, a2) is 1 for MZ twin and 0.5 for DZ twin. The correlation of dominant effects (d1, d2) is 

1 for MZ twin and 0.25 for DZ twin. The twin share the same common environmental effect 

(c). Residual effects (e1, e2) for twin are not correlated.
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Figure 3. 
Simulation results for estimation performance at n = 300, c = 0.1, and Σe = 0.2: [(a), (b), (c)] 

are true coefficient functions, genetic and environmental covariance functions; [(d), (e), (f)] 

are the means of 400 corresponding estimators.
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Figure 4. 
Box plot for mean squared errors of related estimators n = 300, c = 0.1, and Σe = 0.2.
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Figure 5. 
Inference Performance (Σe = 1): [(a),(c)] are rejection rates (type I error) of the two test 

statistics along fiber tract when c = 0 for n = 150 and n = 300; [(b),(d)] are rejection rates 

(power) of the two test statistics along fiber tract when c = 0.2 for n = 150 and n = 300.
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Figure 6. 
Plots of power curves (Σe = 1 and 2). Rejection rates of Tn based on the permutation method 

are calculated at five different values of c (= 0, 0.01, 0.02, 0.03, 0.04) for sample size of n = 

150 and 300 twin pairs (including singletons) at 5% (solid) and 1% (dashed) significance 

levels.
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Figure 7. 
Plot of estimated coefficient functions of intercept [(a),(d)], gender [(b),(e)] and age [(c),(f)] 

and their pointwise 95% confidence bands. The first three panels [(a),(b),(c)] are for FA and 

the last three panels [(d),(e),(f)] are for MD. The blue solid curves are the estimated 

coefficient functions, and the red dashed curves are the confidence bands.
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Figure 8. 
Plot of estimated covariance structure for genetic effect [(a),(d)], common environmental 

effect [(b),(e)] and unique environmental effect [(c),(f)]. The first three panels [(a),(b),(c)] 

are for FA and the last three [(d),(e),(f)] are for MD.

Luo et al. Page 29

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Plot of estimated heritability along fiber tract [(a),(b)] and the corresponding –log10(p) 

values of tests for genetic variance existence. Panels [(a),(c)] are for FA and panels [(b),(d)] 

are for MD.
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Figure 10. 

Plot of residual processes after removing xi j
T β(v) in FSEM versus the estimated ones based 

on FSEM from four randomly selected subjects.
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Table 1

SNRs of all simulation settings

SNRβ SNRa SNRc

c = 0.05
Σe = 0.05 1.7 1.5 1.5

Σe = 0.1 1.4 0.7 0.7

c = 0.1
Σe = 0.1 0.85 1.5 1.5

Σe = 0.2 0.7 0.7 0.7
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