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Abstract

Background: E1684 was the pivotal adjuvant melanoma trial for establishment of high-dose interferon (IFN) as
effective therapy of high-risk melanoma patients. E1690 was an intriguing effort to corroborate E1684, and the
differences between the outcomes of these trials have embroiled the field in controversy over the past several
years. The analyses of E1684 and E1690 were carried out separately when the results were published, and there
were no further analyses trying to perform a single analysis of the combined trials.

Method: In this paper, we consider such a joint analysis by carrying out a Bayesian analysis of these two trials, thus
providing us with a consistent and coherent methodology for combining the results from these two trials.

Results: The Bayesian analysis using power priors provided a more coherent flexible and potentially more accurate
analysis than a separate analysis of these data or a frequentist analysis of these data. The methodology provides a
consistent framework for carrying out a single unified analysis by combining data from two or more studies.

Conclusions: Such Bayesian analyses can be crucial in situations where the results from two theoretically identical
trials yield somewhat conflicting or inconsistent results.

Keywords: Cure rate model, Historical data, Prior distribution, Posterior distribution
Background
Brief Introduction to Bayesian Methods
Bayesian methods in clinical trials and biomedical re-
search, in general, have become quite prominent in the
last decade due to their flexibility in use, good operating
characteristics, interpretation, and in their ability to han-
dle design and analysis issues in complex models, such as
survival models, models for longitudinal data, and models
for discrete data. Bayesian methods are becoming more
and more standard in the design and analysis of clinical
trials [1,2]. One main reason for this is in their flexibility
and operating characteristics, for example, in adaptive
designs and interim monitoring [2]. There are many good
introductory as well as advanced level books on Bayesian
methods [3-5].
The Bayesian paradigm differs from the frequentist

paradigm in that our uncertainty about unknown para-
meters in a model is expressed through an entire distri-
bution, called the prior distribution. Thus, the prior
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distribution for a model parameter θ, expresses our prior
uncertainty about the value of the parameter, and “prior”
in the sense that we express our uncertainty before
collecting the data in the study. We denote the prior dis-
tribution for θ by π(θ). The main inferential tool in the
Bayesian paradigm is called the posterior distribution,
that is, the distribution of θ after the data is collected.
By Bayes’ theorem, the posterior distribution of θ is pro-
portional to the likelihood function of the data times the
prior. In terms of a formula, it is given by π(θ∣Data) ∝
L(Data∣θ)π(θ), where π(θ∣Data) denotes the posterior
distribution of θ that is, the distribution of θ given the
data, and L(Data∣θ) denotes the likelihood function of
the data given the parameter θ.
A major consideration in the Bayesian paradigm is the

choice of the prior. Priors that have a minimal impact on
the overall Bayesian analysis are called noninformative
priors. Other names for noninformative priors include
flat, reference, or vague priors. Noninformative priors
yield Bayesian inferences that are very similar to frequen-
tist inference. A noninformative prior is “flat” relative to
the likelihood function, that is, it is flat relative to the
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distribution of the data. On the other hand, informative
priors generally do not lead to results that are similar to
those of the frequentist paradigm and such priors are not
flat relative to the likelihood function and do have an im-
pact on the likelihood in a Bayesian analysis. Examples of
potentially informative priors used in biomedical research
include priors incorporating historical data [6,7].
Bayesian models can be fit in a wide variety of statistical

packages including WinBUGS and SAS. These software
packages have become very powerful in providing the data
analyst with a wide array of flexibility and capability for
fitting complex Bayesian models. Both of these software
packages use Markov chain Monte Carlo (MCMC) me-
thods to carry out the Bayesian computation. MCMC
methods are simulation-based methods that draw samples
from the posterior distribution of θ and have proven to be
quite powerful for fitting even the most complex models
that cannot be entertained in the frequentist paradigm.

Brief Introduction to Melanoma
Melanoma incidence is increasing at a rate that exceeds
all solid tumors. Although education efforts have
resulted in earlier detection of melanoma, patients who
have deep primary melanoma (>4mm) or melanoma
metastatic to regional draining lymph nodes, classified
as high-risk melanoma patients, continue to have high
relapse and mortality rates of 50% or higher [8]. Re-
cently, several post-operative (adjuvant) chemotherapies
have been proposed for this class of melanoma patients,
and the one which seems to provide the most significant
impact on relapse-free survival and survival is Interferon
Alpha-2b (IFN). This immunotherapy was evaluated in
two observation-controlled Eastern Cooperative Oncol-
ogy Group (ECOG) phase III clinical trials, E1684 and
E1690. The first trial, E1684, was a two arm clinical trial
comparing high-dose interferon (IFN) to Observation
(OBS). There were a total of 286 patients enrolled in the
study, accrued from 1984 to 1990, and the study was
unblinded in 1993 and published in 1996 [8]. The results
of this study suggested that IFN has a significant impact
on relapse-free survival and survival, which led to the U.
S. Food and Drug Administration (FDA) approval of this
regimen as an adjuvant therapy for high-risk melanoma
patients. Here, relapse-free survival is defined as the
time from randomization until progression of tumor or
death, whichever comes first, and survival is defined as
time from randomization until death. This regimen is
widely used for adjuvant therapy of high-risk melanoma
patients and the reference standard for evaluation of al-
ternative modalities such as vaccines in current U.S. Co-
operative group trials.
The significant treatment effect favoring IFN seen in

E1684 with respect to both relapse- free survival (RFS) and
overall survival (OS) was expected and was accompanied
by substantial side effects due to the high-dose regimen.
As a result, ECOG began a second trial (E1690) in 1991 to
attempt to confirm the results of E1684 and to study the
potential benefit of IFN given at a lower and less toxic
dosage. The ECOG trial E1690 was a three arm phase III
clinical trial, and had treatment arms of high dose inter-
feron, low dose interferon, and observation. This study had
427 patients on the high dose interferon arm and observa-
tion arm combined. Throughout our analyses in this paper,
we will use only the data from these two arms of E1690.
E1690 was initiated right after the completion of E1684.
The E1690 trial accrued patients from 1991 until 1995,
was unblinded in 1998, and published in 2000 [9]. The
E1690 trial was designed for exactly the same patient
population as E1684, and the high dose interferon arm in
E1690 was identical to that of E1684.
E1690 was a critical trial in the assessment of the value

of high-dose IFN as adjuvant therapy for melanoma.
When the results of E1690 were unblinded, separate
results for E1684 and E1690 were reported [9], and ana-
lyses of the combined results were problematic and unable
to be resolved into one coherent analysis. In this paper, we
propose to do a combined analysis of the E1684 and
E1690 trials using Bayesian methods. The Bayesian meth-
odology lends itself well into this type of analysis since the
E1684 data can effectively be used as prior information for
the E1690 analysis. Using the E1684 data as the historical
data and the E1690 data as the current data is natural here
within the Bayesian paradigm and this will serve as the
basis for our analysis. We thus examine the problem of
developing suitable statistical models for high-risk mela-
noma patients as well as the opportunity of conducting
Bayesian inference in the presence of historical data. In
this article, we will discuss a Bayesian analysis for the end-
points of RFS as well as OS. It was in the OS endpoint
where the results were most inconsistent between the two
trials and it was this endpoint which has led to most of
the controversy. The RFS results were more or less con-
sistent between E1684 and E1690. The results of this trial
also raised the issue of whether RFS can be used at all as a
suitable surrogate or predictor of OS, since the RFS and
OS results were not consistent in E1690.
In the present context, the incorporation of historical

data, i.e., the E1684 data, into the analysis of E1690 is a
natural thing to do. Towards this goal, we use the power
priors of Ibrahim and Chen [6] to construct the prior
distribution. Since the FDA has in the past often
required a second confirmatory trial before approving a
new drug for cancer therapy, historical data often exists
for constructing prior distributions in a clinical trial
from a previous trial or trials comparing identical or
very similar treatment regimens. Such is the case for the
E1684 and E1690 trials. Thus, it appears natural to use
the E1684 data somehow for the analysis of E1690.
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The construction of prior distributions from historical
data has been examined under various contexts by Ibrahim
and Chen [6]. Where the focus is on observable quantities
in the prior elicitation scheme. Specifically, prior elicitation
is based on the availability of historical data D0 and a scalar
precision parameter a0 (0≤ a0≤ 1) quantifying the un-
certainty in D0. Then, D0 and a0 are used to specify a prior
distribution for the parameters in a “semi-automatic” fash-
ion. Strictly speaking, D0 can consist of prior predictions
from past data, summary statistics from previous studies,
or subjective elicitation based on case-specific information.
However, the most natural specification of D0 arises when
the raw data from a similar previous study is available, and
this is what we focus on in this paper. There are many
advantages to this type of elicitation scheme. First, the
prior is constructed in a semi-automatic fashion from the
historical data in the sense that the prior itself is just a
weighted likelihood and thus there is minimal subjective
prior elicitation. Second, the precision parameter a0 allows
the investigator a great deal of control on the influence of
the historical data for the current analysis. This is impor-
tant in situations when one suspects heterogeneity between
the patient populations, or when the sample sizes between
the two studies are quite different.
Thus, in the analysis we present here, there are several

key issues we address. These are

(a) Patient heterogeneity between the two studies.
(b)Methods for incorporation of historical data.
(c) Consistency of the results from the two studies.
(d)A pooled analysis.
(e) Assessing Observation and high-dose IFN time

trends.

As a result of these issues, several questions arise that
we also address here. These are

(1) Should the analysis of E1690 be done independently
of E1684?

(2) If we are interested in the treatment of melanoma,
how can E1864 be used as historical data for E1690?

(3) How does E1684 impact the results?
(4) Can we assess and control the impact of E1684 by

weighting it somehow?
(5) How do we weight the historical data to account for

heterogeneity between the two studies?

Methods
Cure Rate Model
We focus on a Bayesian analysis using a cure rate model
for these data. Details of the cure rate model are
described in [5]. The cure rate model has been a key
component in the design of adjuvant melanoma ECOG
trials, and this model was used to design E1690, E1694,
and the E1697 adjuvant melanoma trials. The cure rate
model is a useful model for designing studies with time-
to-event endpoints, such as RFS and OS. It is most use-
ful when a plateau is reached in the survival curve after
sufficient follow-up. For adjuvant melanoma studies, this
plateau occurs after about 5 years based on the ECOG
experience. To illustrate this plateau, we consider an
RFS plot for E1684 at 6.96 years of follow-up. From the
plot shown in Figure 1a, we see that the plateau begins
to occur after 5 years of follow-up.
In the cure rate model, we assume that our popula-

tion really consists of two subpopulations: cured and
non-cured. We let π = proportion of patients in the
population who are cured, and 1 − π = proportion of
patients in the population who are not cured. The pro-
portion not cured experience events according to a
survival function S0(t) = P(T > t). Then the probability
of surviving beyond time t for the entire population
(i.e., the survival function for the entire population),
denoted by Sp(t), is given by

Sp tð Þ ¼ π þ 1� πð ÞS0 tð Þ ð1Þ

For example, π = 0.25 means that 25% of the popula-
tion are “cured” and 75% are “not cured”. If π = 0, then
we obtain the survival model with survival function
S0(t). The cure rate model fits the data better than the
usual Cox model when a plateau occurs in the right tail
of the survival curve, and thus, for E1684, and most
other melanoma adjuvant trials in ECOG, the cure rate
model fits the data better than the Cox model. The cure
rate model also has other attractive properties. For ex-
ample, the log-rank test has nice properties (i.e., high
power) when a cure rate model is used in the statistical
design [9,10]. Also, the cure rate model is quite easy to
fit and computationally very straightforward to program
in SAS or R.

Prior Elicitation
The specification of the prior distribution is called prior
elicitation. Prior elicitation plays the most crucial role in
Bayesian inference. Prior distributions based on histo-
rical data are useful in applied research settings where
the investigator has access to previous studies measuring
the same response and covariates as the current study.
Plots (a) and (b) in Figure 1 show the Kaplan-Meier

survival curves by treatment arm for E1684 and E1690
for the RFS endpoint and Plots (c) and (d) in Figure 1
show the curves for the OS endpoint based on the ana-
lysis and follow-up reported in Kirkwood et al. [9]. An
interesting phenomenon is observed. We see from these
plots that, compared to E1684, there is an upward shift in
both RFS and OS in E1690 for both of the treatment arms,
and this shift is more pronounced in the observation arm.
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Figure 1 Kaplan-Meier RFS plots for E1684 (a) and E1690 (b) and Kaplan-Meier OS plots for E1684 (c) and E1690 (d).
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This feature in the Kaplan-Meier curves has been difficult
to explain and was indeed an unexpected occurrence. This
phenomenon raises the issue of whether the two studies in
fact are comparable and have identical patient populations.
A second striking feature occurs in Figure 1c and d, where
the Kaplan-Meier curves for OS in E1690 are practic-
ally in complete overlap for the two treatment arms,
while in Figure 1c, there is substantial separation be-
tween the two treatment arms in the E1684 study.
Figure 1a and b on the other hand show that the RFS
endpoint is essentially consistent for E1684 and E1690.
Figure 1 has generated much discussion regarding the
OS benefit of high-dose IFN, and whether the RFS
endpoint is a worthwhile measure for melanoma. Many
argue that RFS is of little value if it does not produce
an OS benefit, while others argue that RFS is still use-
ful in identifying treatment strategies for OS benefit.
This controversy was hotly debated based on Figure 1.
This controversy, however, is at least partially resolved
in a combined analysis using the Bayesian method-
ology in Section 4. Figure 1 genuinely establishes the
general importance of the issue of compatibility be-
tween the historical data and the current data. That is,
if one is going to incorporate historical data into the
current analysis, one must first investigate whether
there is adequate homogeneity or “match” between the
historical and current data in order to provide some
justification for using the historical data in the current
analysis. Although, as we will demonstrate, the lack of
compatibility can be reflected by the choice of a0, it is
desirable to have historical and current datasets with
minimum heterogeneity between the patient populations.
Although the E1684 and E1690 trials theoretically involved
identical patient populations, Figure 1 suggests that one
should formally check if the historical data, E1684, is
compatible with the current data, E1690, in some sense.
In the context of these two trials, there are several practical
formal checks one can make given a statistical model.
These are outlined as follows.

1. We compare important demographic and prognostic
factor data from both studies, including distributions
of gender, nodal status, age, Breslow depth, site of
primary, ulceration, stage of disease, as well as other
prognostic factors deemed important. Although not
shown here, these comparisons were conducted for



Table 1 Maximum likelihood estimates of hazard ratios
and cure rates for E1684 and E1690

Endpoint Study Hazard ratio Cure rate

(95% CI) (95% CI)

OBS IFN

RFS E1684 1.43 0.17 0.35

(1.08, 1.89) (0.06, 0.33) (0.28, 0.43)

E1690 1.28 0.32 0.44

(1.00, 1.65) (0.24, 0.40) (0.37, 0.50)

OS E1684 1.32 0.25 0.40

(0.98, 1.78) (0.12, 0.41) (0.32, 0.49)

E1690 1.00 0.49 0.47

(0.75, 1.33) (0.36, 0.60) (0.37, 0.56)
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E1684 and E1690, and the distributions of these
prognostic factors matched remarkably well. That is,
the distributions of each of the demographic
variables were nearly identical for both studies.

2. A more formal procedure involves a comparison of
the posterior distributions for each study. We can
compare posterior summaries, such as posterior
hazard ratios, posterior standard deviations, and
Highest Posterior Density (HPD) intervals.

To examine the compatibility between both studies, se-
veral posterior summaries were computed. Table 1 sum-
marizes the maximum likelihood estimates of the hazard
ratios for both studies, where IFN was a reference arm in
the hazard ratio calculation, as well as the maximum likeli-
hood estimates of the cure rates. Figure 2 shows the poster-
ior hazard ratios and the posterior distributions of the cure
rates under model (A.1) in Additional file 1: Appendix A
for E1684 and E1690 analyzed separately. We see from
Table 1 and Figure 2 that the two studies are quite com-
parable, and there is a great deal of overlap between the
posterior distributions of the hazard ratios for both
studies. This overlap can also be seen from the 95% con-
fidence intervals in Table 1. From these results, we can
conclude that there is adequate compatibility between the
E1684 data and the E1690 data, therefore justifying the
use of the E1684 data as historical data to be incorporated
into an informative prior distribution for a Bayesian ana-
lysis of E1690.
We use the power prior as discussed in [6] to formally

construct an informative prior distribution from the his-
torical data E1684. The general idea of the power prior
is that it is defined to be the likelihood function based
on the historical data D0, raised to a power a0, where
0 ≤ a0 ≤ 1 is the scalar precision parameter that controls
the influence of the historical data on the current data.
Letting θ denote a generic label for the parameters of a
given model, the general power prior for a model is
defined as

π θ D0; a0j Þ∝L θ D0; a0j Þπ0 θð Þðð ð2Þ

The quantity π0(θ) is the initial prior for θ. It repre-
sents the prior for θ before observing the historical data
D0. It is reasonable to restrict the range of a0 to be
between 0 and 1, since in general, it does not make sense
to weight the historical data more than the current data.
The parameter a0 controls the heaviness of the tails of
the prior for θ. As a0 becomes smaller, the tails of equa-
tion (2) become heavier. Setting a0 = 1, equation (2) cor-
responds to the update of π0(θ) using Bayes theorem.
That is, with a0 = 1, equation (2) corresponds to the pos-
terior distribution of θ based on the historical data
alone. When a0 = 0, equation (2) does not depend on the
historical data, and in this case, π(θ|D0, a0 = 0) ≡ π0(θ).
Thus, a0 = 0 is equivalent to a prior specification with no
incorporation of historical data. Equation (2) can be
viewed as a generalization of the usual Bayesian update
of π0(θ), and therefore serves as a coherent update of π0(θ).
Details of the power prior, likelihood, and posterior for the
models used in this paper are given in Additional file 1:
Appendix A. We mention here that there are two ways
of specifying the power prior: i) using a0 as a fixed
parameter and ii) treating a0 as random and specify-
ing a beta prior for it as discussed in [6]. In our ex-
perience, we have observed that essentially similar
results are obtained whether we take a0 as fixed or
random. The a0 random case is more computationally
intensive than the a0 fixed case and probably not
worth the extra modeling and computation, and thus
we advocate using a0 fixed and using a goodness of
fit criterion (see Additional file 1: Appendix B) to se-
lect the best a0. Such a procedure is much less com-
putationally demanding than the a0 random case.
Results
Combined Bayesian analysis of E1690 and E1684
In this section, we carry out a Bayesian analysis of E1690
using E1684 as historical data. For ease of exposition, all
analyses are carried out with the treatment covariate alone,
not adjusting for other prognostic factors. The two datasets
were quite similar with respect to the distributions of sev-
eral prognostic factors, including age, Breslow depth, num-
ber of nodes, performance status, gender, site of primary,
and stage of disease. Prognostic factor analyses were con-
ducted to examine the significance of time trend
covariates and institutional effects for each study alone,
as well as for the combined studies, for explaining the
phenomenon in Figure 1. These factors were highly non-
significant. We refer the reader to Kirkwood et al. [9] for
detailed summaries of the prognostic factor distributions
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Figure 2 Plots of posterior densities of hazard ratios (a and c) and cure rates (b and d) for E1684 and E1690.
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for both studies, as well as detailed prognostic factor ana-
lyses and various subset analyses conducted using the
Cox model. The various prognostic factor and subset ana-
lyses in [9] yielded very similar results to analyses using
the treatment covariate alone. In addition, Bayesian ana-
lyses with the proposed models using the prognostic fac-
tors mentioned above gave very similar results to the
Bayesian analyses using the treatment covariate alone.
Thus we conduct all analyses here with the treatment
covariate alone for brevity.
We consider Bayesian analyses using the model in
equation (A.1) in Additional file 1: Appendix A, in which
the likelihood corresponds to a cure rate model along
with a piecewise exponential model for the promotion
time cumulative distribution function (cdf) (see [11]).
The piecewise exponential model for the promotion
time cdf is a very flexible model and it can accommodate
any shape of the hazard function as well as being very
computationally attractive. Our goal in this analysis is to
combine the two studies using the power prior in
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equation (2), and provide a coherent and unified Bayes-
ian analysis combining the data from both studies. As
noted earlier, Table 1 shows estimates of hazard ratios
and 95% confidence intervals based on fitting a Cox
model to the studies separately for the RFS and OS end-
points, and these estimates were reported in Kirkwood
et al. [8] and Kirkwood et al. [9]. Table 1 also shows
maximum likelihood estimates of the cure rate for both
the RFS and OS endpoints based on fitting the model in
equation (1). The results in Table 1 are thus based on a
frequentist (i.e., non-Bayesian) analysis of E1684 and
E1690. The results in Table 2 are for both RFS and OS
based on a0 = 0, 0.4, 1 using the model in equation (A.1)
in Additional file 1: Appendix A along with the prior in
equation (2). We see from Table 2 how the estimates of
the posterior hazard ratio and posterior cure rates
change as more weight is given to the historical data for
both the RFS and OS endpoints. Table 2 shows that
when more weight is given to the historical data, the
posterior hazard ratios increase, resulting in a greater
percent reduction in relapse for the IFN arm compared
to the observation arm. In addition, although not shown
here for brevity, the HPD intervals for the hazard ratio
also become narrower and do not include 1. This is
reasonable since the posterior hazard ratios based on
E1684 alone were much larger than E1690 alone, and
therefore as more weight is given to E1684, the greater the
posterior hazard ratios and the narrower the HPD intervals.
Similarly, the posterior estimates of the cure rates in Table 2
become smaller as a0 is increased. This again can be
explained by the fact that the posterior cure rates for each
arm in E1684 alone were much smaller than those based
on E1690 alone. The value a0 = 1 implies that the E1684
and E1690 data are equally weighted in the Bayesian
analysis, and this value achieves the greatest percent
reduction in relapse (34%) and overall survival (14%), and
Table 2 Bayesian analysis of E1690 using E1684 as historical

Endpoint Weight
(a0)

Posterior
hazard
ratio

95% HPD
Interval Red

RFS 0 1.29 (0.98, 1.63)

0.4 1.32 (1.04, 1.62)

1 1.34 (1.10, 1.60)

OS 0 1.01 (0.74, 1.30)

0.4 1.08 (0.82, 1.34)

1 1.14 (0.91, 1.38)
the smallest cure rates for both treatment arms for both
RFS and OS.
Figure 2 shows the posterior distributions of the ha-

zard ratios and cure rates for separate Bayesian analyses
of E1684 and E1690. Plots (a) and (c) in Figure 2 show
the posterior distributions of the hazard ratios based on
separate Bayesian analyses for E1684 and E1690 for the
RFS and OS endpoints, respectively, and Plots (b) and
(d) in Figure 2 show posterior estimates of the cure rates
for RFS and OS, by treatment arm, based on separate ana-
lyses of E1684 and E1690. Plots (a) – (d) in Figure 2 essen-
tially mimic the results based on the separate analyses
conducted in [8,9]. Plots (a) – (d) in Figure 3 are based on
the Bayesian analysis which combines the two studies via
the power prior in equation (2). Plots (a) and (c) in Fig-
ure 3 show the posterior densities of the hazard ratio for
three values of a0 for the RFS (Figure 3a) and OS
(Figure 3c) endpoints. From these plots, we can see how
the posterior distributions shift to the right and become
more peaked as more weight (i.e., increasing a0) is given
to the historical data. Specifically, as a0 is increased, we
see a sharper peak in the posterior distribution of the haz-
ard ratio in Figure 3a and c, thus giving a greater strength
of evidence that the hazard ratio is larger than 1 (1.34 for
RFS, 1.14 for OS). The same phenomenon occurs n
Figure 3b and d which shows the posterior distributions
of the cure rates for RFS and OS. In Figure 3b, we see
that as a0 is increased, there is a shift to the left and
sharper peaks in the posterior distributions of the cure
rates, yielding a greater strength of evidence that the cure
rates are 0.28 and 0.39 for the observation and IFN arms
for RFS, respectively (Figure 3b, and 0.39 and 0.43 for the
observation and IFN arms for OS, respectively (Figure 3d).
A critical issue is the choice of a0 in the power

prior, that is, what value of a0 should the investigator
use in the analysis? To address this issue, we use the
data

%
uction

Posterior cure rate estimate (95% HPD Interval)

OBS IFN

29 0.32 0.41

(0.24, 0.39) (0.32, 0.49)

32 0.30 0.40

(0.23, 0.36) (0.33, 0.46)

34 0.28 0.39

(0.23, 0.33) (0.33, 0.44)

1 0.50 0.50

(0.42, 0.58) (0.42, 0.58)

8 0.44 0.46

(0.36, 0.51) (0.38, 0.54)

14 0.39 0.43

(0.32, 0.46) (0.36, 0.50)
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value of a0 that yields the best model fit according to
some Bayesian criterion, such as the Deviance Informa-
tion Criterion (DIC) (see Additional file 1: Appendix B).
Figure 4a and b shows that the DIC is optimized when a0
= 0.4 for both the RFS and OS endpoints suggesting that
the Bayesian model fits best when a0 = 0.4 is used for both
of these endpoints. Interestingly enough, the same optimal
value of a0 = 0.4 is obtained under a different Bayesian
criterion (Logarithm of the Pseudo Marginal Likelihood
(LPML) (see Additional file 1: Appendix B and Figure 4c
and d). Thus, the value of a0 = 0.4 appears to be a very
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reasonable value to use for the Bayesian analysis, along
with other a0 values used as a sensitivity analysis, such as
a0 = 0 and a0 = 1.
We compared our Bayesian analysis based on the

power prior to three other standard frequentist methods
as shown in Table 3. These are i) a Cox regression ana-
lysis on the pooled E1684 and E1690 data along with a
binary study covariate in the model, ii) a Cox regression
analysis of the pooled data without a study covariate,
and iii) a gamma frailty model treating study as a cluster
(2 clusters). Methods i), ii) and iii) yielded similar results
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as the Bayesian analysis corresponding to a0 = 1 in
Table 2 for both RFS and OS showing that our Bayesian
analysis using a0 = 1 essentially yields the same results as
these three frequentist methods as well as being a more
flexible methodology for incorporating historical data.
However, we note that a0 = 1 is not an optimal value for
the Bayesian analysis as shown by Figure 4. Our Bayesian
methodology proposed here is much more general and
more flexible than a frequentist analysis and chooses an
optimal value of a0 based on the best model fit to the data.

Discussion
The upward shifts in the OBS and IFN arm in E1690
relative to E1684 do not have a clear cut explanation. It
Table 3 Maximum likelihood analysis of E1690 and E1684

Endpoint Weight (a0) Hazard ratio estimate

RFS Study covariate 1.35

Combined 1.34

Frailty 1.35

OS Study covariate 1.15

Combined 1.13

Frailty 1.14
was conjectured that the standard of care improved with
time, therefore resulting in improved RFS and OS in
E1690. We carried out several analyses to assess this
conjecture by fitting a time trend in the Cox model. As
noted in Section 5, this time trend effect was highly
non-significant in all models fit. Another analysis exami-
ning institutional effects was also conducted and the
analysis yielded non-significant institutional effects. An-
other issue still very difficult to explain is why OS was
much better for the OBS patients in E1690 than in
E1684.
As noted earlier, the KM plot for OS showed almost

total overlap between the IFN and OBS arms. One
potential explanation for this is that patients on the OBS
95% CI % Reduction P-value

(1.12, 1.63) 35 0.0018

(1.11, 1.62) 34 0.0021

(1.12, 1.62) 35 0.0019

(0.93, 1.41) 14 0.196

(0.92, 1.39) 13 0.232

(0.93, 1.40) 14 0.200
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Figure 5 RFS and OS plots of the KL divergence between the posterior for the full data and the posterior without the ith case for
E1684 and E1690.

Ibrahim et al. BMC Medical Research Methodology 2012, 12:183 Page 10 of 12
http://www.biomedcentral.com/1471-2288/12/183
arm received salvage therapies after relapse that may
have improved their OS. The inclusion of these salvage
therapies was not accounted for in the OS analysis. It
will take further confirmatory trials to get better answers
to these two unresolved issues.
All of the computations for the models that were pre-

sented here were done using a FORTRAN 95 program,
but the same results can also be easily obtained and pro-
grammed using PROC MCMC in SAS. An important
question here is that of the robustness of the choice of
a0 in the presence of outliers or influential points in the
data. To address this issue, we carried out a case influ-
ence analysis using the methods of Cho et al. [12].
Figure 5 shows the RFS and OS plots of the KL diver-
gence between the posterior for the full data and the
posterior without the ith case for E1684 and E1690.
From Figure 5, we see that the values of the KL dive-
rgence were small for all observations. For the E1864
data, the maximum values of the KL divergence were
0.203 for RFS and 0.324 for OS, respectively, and there
was only one additional case in which the KL divergence
value was greater than 0.06 for each of RFS and OS. For
the E1690 data, there were three cases for RFS and five
cases for OS, in which the KL divergence values were
greater than 0.06. We deleted these relatively most influ-
ential cases (two for E1684 and three for E1690 for RFS
and two for E1684 and five for E1690 for OS) and
then re-ran the analysis to obtain the optimal values
of a0 under DIC and LPML for RFS and OS. Figure 6
shows the DIC and LPML plots for E1684 and E1690
after excluding these influential cases. We see from
this figure that the optimal choice of a0 remains to be 0.4
for both RFS and OS. Thus, the optimal choice of a0
under DIC and LPML is relatively robust to influential
observations.
Moreover, we have carried out a sensitivity analysis with

respect to the choice of the initial prior, using several pos-
sible choices of initial priors. To this end, we consider
π0(β, λ) = π0(β)π0(λ) where β ~ N(0, τ0

2I2), I2 is the 2 × 2
identity matrix, and λj ~ Gamma (b01, b02) (j = 1, 2, . . ., J),
where J=5 for RFS and J=10 for OS, with density propor-
tional to λ b01�1ð Þ

j exp �b02λj
� �

and b01 ≥ 0 and b02 ≥ 0. For
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Figure 6 DIC and LPML plots for E1684 and E1690 after excluding the influential cases.
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RFS, the posterior hazard ratios and 95% HPD intervals
for the treatment effect were 1.294 and (0.977, 1.626) for
a0 = 0, 1.320 and (1.033, 1.611) for a0 = 0.4, and 1.346 and
(1.109, 1.616) for a0 = 1 when τ0

2 = 10 and b01 = b02 = 1;
and 1.293 and (0.968, 1.628) for a0 = 0, 1.320 and (1.037,
1.616) for a0 = 0.4, and 1.342 and (1.098, 1.597) for a0 = 1
when τ0

2 = 2 and b01 = b02 = 10. For OS, the posterior haz-
ard ratios and 95% HPD intervals for the treatment effect
were 1.012 and (0.726, 1.303) for a0 = 0, 1.081 and (0.832,
1.352) for a0 = 0:4, and 1.138 and (0.910, 1.371) for a0 = 1
when τ0

2 = 10 and b01 = b02 = 1; and 1.017 and (0.742,
1.317) for a0 = 0, 1.081 and (0.826, 1.350) for a0 = 0.4, and
1.135 and (0.909, 1.371) for a0 = 1 when τ0

2 = 2 and
b01 = b02 = 10. These results were quite similar to
those given in Table 2. Other choices of (τ0

2, b01, b02)
were also tried and the results were similar. Thus, the
analysis of E1684 and E1690 is quite robust to the
choice of the initial prior.

Conclusions
We have presented a Bayesian analysis of E1684 and
E1690 using the ideas of the power prior. This prior
incorporates historical data in a natural way and gives
the investigator a great deal of control over the weight
given to the historical data through the parameter a0. In
Section 5, we carried out a detailed Bayesian analysis
using this prior and observed that the analysis provided
a more coherent, flexible, and potentially more accurate
analysis than a separate analysis of these data or a fre-
quentist analysis of these data. The methodology pro-
vides a consistent framework for carrying out a single
unified analysis by combining data from two studies.
Our analysis showed that using a0 = 0.4 yielded the best
fitting model based on DIC and LPML, therefore sug-
gesting that this value is the optimal value in discounting
the E1684 data in the Bayesian analysis of E1690. The
Bayesian analysis using a0 = 0.4 yielded markedly differ-
ent results than those of a0 = 0 and a0 = 1 in terms of
estimated hazard ratios and reductions in relapses and/
or deaths in using IFN as compared to OBS. A philo-
sophical issue that arises here is that when such an ana-
lysis is to be carried out. The Bayesian analysis of E1690
was conducted after seeing the inconsistent results be-
tween the studies. A more appropriate approach would
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be to specify these Bayesian analyses in the protocol it-
self before the E1690 data is even collected. Such a deci-
sion would also impact the design of E1690.
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