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ABSTRACT

Xin Zhou: Machine Learning Techniques for Optimal Treatment Regimes
(Under the direction of Michael R. Kosorok)

Personalized medicine has received increasing attention among statisticians, computer

scientists and clinical practitioners. Patients often show significant heterogeneity in re-

sponse to treatments. The estimation of optimal treatment regimes is of considerable inter-

est to personalized medicine. In this dissertation, we develop methodology mainly using

machine learning techniques to estimate optimal treatment regimes.

In the first part of the dissertation, we apply the k-nearest neighbor (kNN) rule, a sim-

ple nonparametric approach, to estimate the optimal treatment regime. We show that the

kNN rule is universally consistent, and establish its convergence rate. Since kNN suffers

from the curse of dimensionality, we develop an adaptive k-nearest neighbor (AkNN) rule,

where the distance metric is adaptively determined from the data, to perform metric selec-

tion and variable selection simultaneously. The performance of the proposed methods is

illustrated in simulation studies and in an analysis of the Nefazodone-CBASP clinical trial.

In the second part, we point out several weaknesses in outcome weighted learning

(OWL), which was proposed recently to construct optimal treatment regimes by directly

optimizing the clinical outcome. We then propose a general framework, called residual

weighted learning (RWL), to alleviate these problems. RWL weights misclassification

errors by residuals of the outcome from a regression fit on clinical covariates excluding

treatment assignment. We also propose variable selection methods for linear and nonlinear

rules, respectively, to further improve performance. We show that the resulting estimator is

consistent, and obtain a rate of convergence. The performance is illustrated in simulation

studies and in an analysis of cystic fibrosis clinical trial data.
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In the third part, we develop a permutation test for qualitative treatment-covariates in-

teractions. Qualitative interactions arise when the direction of the treatment effect changes

among different subsets of subjects. In this work, we estimate the optimal treatment regime

by a modified residual weighted learning method, called mirrored residual weighted learn-

ing (MRWL), and then apply a permutation test to make inference on the estimated regime.

The performance of the proposed permutation test is illustrated in simulation studies and

case studies.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

Recently, personalized medicine has received much attention among statisticians, com-

puter scientists, and clinicians. The purpose of personalized medicine is to tailor treatments

to individual patient to maximize treatment benefit and safety in health care. There are al-

ready some marketed tailored therapies. For example, ceritinib, a newly approved drug by

FDA for the treatment of lung cancer, is highly active in patients with advanced, ALK-

rearranged non-small-cell lung cancer (Shaw et al. 2014). Patients often show significant

heterogeneity in response to treatments. This inherent heterogeneity suggests a transition

from the traditional “one size fits all” approach to modern personalized medicine.

The goal of personalized medicine is to provide meaningful improved health outcomes

for patients by delivering the right treatment at the right dose at the right time. Personalized

treatments can be seen as realizations of certain decision rules, which dictate what to do in

a given state of an individual patient. The decision problems may be grouped into two cat-

egories: single-stage and multi-stage decision problems. Single-stage decision problems in

personalized medicine are often called optimal treatment regimes, while multi-stage prob-

lems are usually referred to as dynamic treatment regimes. In single-stage problems, the

clinician has to decide on the optimal treatment, from among a set of possible treatments,

for an individual patient. The multi-stage decision problems arising in chronic diseases

often involve complex choices with multiple stages, where treatments administered at one

stage affect those to be administered at a later stage. A dynamic treatment regime is a se-

quence of decision rules, one per stage of intervention, for adapting a treatment plan over
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time to an individual.

In this dissertation, we focus on the single-stage decision problem. It is the building

block for the multi-stage decision problem. Although it is a special case of dynamic treat-

ment regimes, it has wider applications. Dynamic treatment regimes are mainly applicable

to the chronic diseases, while optimal treatment regimes arise in almost all clinical areas.

1.2 Framework and Assumptions

For each patient, we observe a triplet (X,A,R): individual baseline covariatesX ∈ X ,

treatment assignmentA ∈ A and the clinical outcomeR ∈ R with larger values ofR being

more desirable. We follow the convention that a random variable is indicated with a capital

letter and its realization is represented by a lower-case letter.

A treatment regime d is a function of a patient’s covariates X , and outputs a value in

A. The goal of optimal treatment regimes is to identify the best treatment regime dopt

after observing the corresponding baseline covariates x so that the resulting outcome is

optimized.

We then introduce the potential outcomes framework. The notion of potential outcomes

(also called counterfactuals) (Robins 1986) is defined as a patient’s outcome if she had

followed a particular treatment regime, possibly different from the regime that she was

actually observed to follow. Mathematically, potential outcomes are

W ∗ = {R∗(a) : a ∈ A}, (1.1)

where R∗(a) is the outcome if the patient were to have been administered the treatment

a. For a treatment regime d, define the potential outcomes associated with d as {R∗(d)}.

An optimal regime represents the “best” way to treat patients. Mathematically, an optimal
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regime dopt is the one satisfies

E(R∗(d)|X = x) ≤ E(R∗(dopt)|X = x), ∀d and all x ∈ X . (1.2)

Since x is arbitrary, (1.2) is equivalent to finding the regime with E(R∗(d)) ≤ E(R∗(dopt))

for any d. The quantity V(d) := E(R∗(d)) is called the value function of d.

Potential outcomes for a given patient with a specified d are not observed. Thus we

have to estimate dopt in (1.2) using data from a observational study or a clinical trial. The

following assumptions are required for estimation.

• Consistency assumption (Robins 1994): the potential outcomes under the observed

treatment regime and the observed outcomes agree, i.e. R = R∗(A).

• Stable unit treatment value assumption (SUTVA) (Rubin 1978): A patient’s outcome

is not influenced by other patients’ treatment allocation.

• No unmeasured confounders (NUC) (Robins 1997): conditional on covariates, the

treatment actually received is independent of potential outcomes. That is, for any

regime a ∈ A,

A⊥R∗(a)|X.

The first assumption is fundamental for the potential outcomes framework. This assump-

tion requires that the outcome after a given treatment is the same, regardless of the man-

ner in which treatments are ‘assigned’. The second assumption is often reasonable when

patients are independently drawn from a large population. The third assumption always

holds under complete or sequential randomization, and hence is also called the sequential

ignorability assumption. This assumption may also hold in observational studies where all

relevant confounders have been measured.

There is an additional positivity assumption to describe the feasible treatment domain.

We simply assume p(X = x,A = a) > 0 for any x ∈ X and a ∈ A. That is, the
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participants with covariates x have an innegligible probability of receiving any available

treatment. The positivity may be violated either theoretically or practically. A theoretical

violation occurs if the study design excludes certain subjects from receiving a particular

treatment. For instance, in a sequential multiple assignment randomized trial (SMART)

described in (Murphy 2005), the treatment options at the second stage are different for

responders and non-responders to the treatments at the first stage. A practical violation of

the positivity assumption occurs when a particular group of the subjects has a very low

probability of receiving some treatment.

1.3 Optimal treatment regimes

Assuming that the data generating mechanism is known, the best treatment regime is

dictated by the Bayes rule. In particular, to fix idea, consider the case where there are two

treatment choices, that is A = {1,−1}. The potential outcomes are {R∗(1), R∗(−1)}.

According to the consistency assumption, R = R∗(1)I(A = 1) +R∗(−1)I(A = −1). The

NUC assumption says A⊥(R∗(1), R∗(−1))|X . By those assumptions, we can derive the

conditional expected potential outcome, under any treatment regime d : X → A, as

E(R∗(d)|X = x)

= E
(
R∗(1)|X = x

)
I
(
d(x) = 1

)
+ E

(
R∗(−1)|X = x

)
I
(
d(x) = −1

)
= E

(
R|X = x,A = 1

)
I
(
d(x) = 1

)
+ E

(
R|X = x,A = −1

)
I
(
d(x) = −1

)
.

Let

Q(x, a) := E(R|X = x,A = a), a ∈ A, x ∈ X ,

be the conditional expected outcome under a particular treatment. Thus based on the defi-

nition of optimal treatment regimes in (1.2), the optimal treatment is given by the following
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Bayes rule:

dopt(x) = argmax
a∈A

Q(x, a) =

 1 if Q(x, 1) > Q(x,−1),

−1 if Q(x, 1) ≤ Q(x,−1).
(1.3)

Naturally, there are three different paradigms to approach the single-stage decision

problems. The first paradigm is based on the treatment effect: first estimate the expected

outcomes Q(x, 1) and Q(x,−1), and plug the estimates into (1.3) to yield a treatment rule.

There is a significant amount of literature developing optimal regimes based on predicting

patients’ outcomes (Cai et al. 2011, Zhao et al. 2009). Recently, Qian and Murphy (2011)

proposed an `1 penalized least squares (`1-PLS) approach to estimate the optimal treatment

regime. Using a sparse `1 penalty to model conditional expected outcomes, this method

introduces parsimony and facilitates ease of interpretation.

The second paradigm is related to the treatment contrast function C(x) := Q(x, 1) −

Q(x,−1). First estimate the treatment contrast function, and assign treatment 1 if C(x) >

0, and −1 otherwise. For instance, Tian et al. (2012) developed a simple method using

modified covariates to estimate the contrast function directly without the need for mod-

elling the expected outcomes. Coupled with an efficiency augmentation procedure, this

method yields clinically meaningful estimators in a variety of settings. The advantage

learning (A-learning) also falls in this paradigm (Robins 2004, Murphy 2003, Moodie et al.

2007).

The first two paradigms are regression-based approaches. Their aim is to estimate

the contrast function C(x). Given a sample Dn = {(Xi, Ai, Ri)
n
i=1}. Let Cn(x) be an

estimate of C(x) on Dn. Its associated treatment regime is dn(x) = sign(Cn(x)), where

sign(u) = 1 for u > 0 and −1 otherwise. [The particular choice of the value of sign(0) is

not important. Here we fix sign(0) = −1]. The following theorem builds the foundation

of regression-based approaches.
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Theorem 1.3.1. For a sequence Cn(X) of estimates for C(X), we have

Vopt − V(dn) ≤
√

E(Cn(X)− C(X))2,

where Vopt := V(dopt) is the optimal value function.

Proof. For any treatment regime d, we have

V(d) = E
(
RI(A = d(X))

P (A|X)

)
= E(E(R|A = 1, X)I(d(X) = 1) + E(R|A = −1, X)I(d(X) = −1))

= E(Q(X, 1)I(d(X) = 1) +Q(X,−1)I(d(X) = −1)).

Thus,

Vopt − V(dn) = E((Q(X, 1)−Q(X,−1))(I(dopt(X) = 1)− I(dn(X) = 1)))

= E(|C(X)|I(dopt(X) 6= dn(X)))

≤ E(|Cn(X)− C(X)|I(dopt(X) 6= dn(X))).

The last inequality is from the construction of dn and dopt. The desired result follows from

the Cauchy-Schwarz inequality.

Consistent regression estimation leads to consistent treatment selection. But as shown

in Figure 1.1, a good treatment decision function Cn(x) does not require to be a good

regression estimate of C(x). For the optimal treatment regime problem, it is sufficient for

Cn(x) to be close to C(x) only near the zeros of C(x), and elsewhere Cn(x) does not need

to be close to C(x). In general, estimating the optimal treatment regime is easier than

regression function estimation. Regression-based approaches are not the only way to solve

the optimal treatment regime problem.

The third paradigm directly estimates the optimal treatment regime: estimate the set

G := {x ∈ X : C(x) > 0}, and select treatment +1 if x ∈ G, and −1 otherwise. An
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Cn(x)

C ′
n(x)

x

C(x)

Figure 1.1: Cn(x) and C ′n(x) are two linear estimates of the contrast function C(x). Let
dn(x) = sign(Cn(x)) and d′n(x) = sign(C ′n(x)) be their associated treatment selection
rules. Though C ′n(x) is a poor estimate of C(x), its associated selection rule is better than
that of Cn(x).

important quantity in this paradigm is the risk function,

R(d) := E(R|A 6= d(X)) = E
(

R

P (A|X)
I(A 6= d(X))

)
, (1.4)

where I(·) is the indicator function, and P (A|X) is the probability of being assigned treat-

ment A for subjects with covariates X . For clinical trial data, the probability P (A|X) is

predefined in the trial design. For observational studies, the probability has to be estimated

from the observed data. Maximizing the value function is equivalent to minimizing the

risk function. Zhao et al. (2012) viewed (1.4) as the weighted error, and proposed outcome

weighted learning (OWL), which utilizes the weighted support vector machines to estimate

the optimal treatment rule directly. Zhang et al. (2012a) also proposed a general framework

to make use of classification methods to the treatment regime problem.
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1.4 Outline of the dissertation

In this dissertation, we propose two machine learning methods to finding optimal treat-

ment regimes. Chapter 2 apply the k-nearest neighbor (kNN) rule, a simple nonparametric

approach. We show that the kNN rule is universally consistent, and establish its conver-

gence rate. We also develop an adaptive k-nearest neighbor (AkNN) rule to perform metric

selection and variable selection.

In Chapter 3, we demonstrate several weaknesses in outcome weighted learning (OWL),

and then propose a general framework, called residual weighted learning (RWL), to alle-

viate these problems. RWL weights misclassification errors by residuals of the outcome

from a regression fit on clinical covariates excluding treatment assignments. We also pro-

pose variable selection methods for linear and nonlinear rules, respectively. We show that

the RWL estimator is consistent, and obtain the convergence rate.

In Chapter 4, we address an important practical issue, detecting qualitative interac-

tions, in the language of optimal treatment regimes. Qualitative interactions arise when

the direction of the treatment effect changes among different subsets. In this work, we

estimate the optimal treatment regime by a modified residual weighted learning method,

called mirrored residual weighted learning (MRWL), and then apply a permutation test to

make inference on the estimated regime for We develop a permutation test for qualitative

treatment-covariates interactions.

We conclude the dissertation in Chapter 5 with future research work.

8



CHAPTER 2: NEAREST NEIGHBOR REGIMES

2.1 Introduction

Recently, personalized medicine has received much attention among statisticians, com-

puter scientists and clinicians. The purpose of personalized medicine is to tailor treatments

to individual patients to maximize treatment benefit and safety in health care. There are al-

ready several marketed tailored therapies. For example, ceritinib, a recently FDA approved

drug for the treatment of lung cancer, is highly active in patients with advanced, ALK-

rearranged non-small-cell lung cancer (Shaw et al. 2014). Patients often show significant

heterogeneity in response to treatments. This inherent heterogeneity suggests a transition

from the traditional “one size fits all” approach to modern personalized medicine.

A major component of personalized medicine is the treatment selection rule, or opti-

mal treatment regime. Formally, a treatment regime is a rule that assigns a treatment, from

among a set of possible treatments, to a patient based on his or her clinical or genomic

characteristics. There is a significant literature on optimal treatment strategies based on

data from clinical trials or observational studies (Murphy 2003, Robins 2004, Zhang et al.

2012b, Zhao et al. 2009). Most of these methods model either the conditional mean out-

comes or contrasts between mean outcomes. They obtain treatment regimes indirectly

by inverting the regression estimates instead of directly optimizing the decision rule. For

instance, Qian and Murphy (2011) proposed a two-step procedure that first estimates a

conditional mean for the outcome and then determines the treatment regime by compar-

ing conditional means across various treatments. The success of these indirect approaches

depends highly on correct specification of posited models and on the precision of model
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estimates.

Recently, several researchers have applied classification methods to optimal treatment

regimes. For example, Zhao et al. (2012) proposed outcome weighted learning (OWL)

to construct a treatment selection rule that directly optimizes the clinical outcome under

this rule. They cast the treatment selection problem as a weighted classification problem,

and apply state-of-the-art support vector machines to address it. Zhang et al. (2012a) also

proposed a general framework to make use of classification methods to treatment regimes.

The k-nearest neighbor rule is a simple and intuitively appealing classification ap-

proach, where a subject is classified by a majority vote of its neighbors. Since its con-

ception in 1951 (Fix and Hodges 1951), it has attracted many researchers, and retains its

popularity today (Cover and Hart 1967, Stone 1977, Györfi 1981, Devroye and Györfi

1985, Hastie and Tibshirani 1996, Domeniconi et al. 2002, Lindenbaum et al. 2004, Atiya

2005, Hall et al. 2008, Biau et al. 2010, Samworth 2012). The rationale of nearest neighbor

rules is that close covariate vectors share similar properties more often than not.

In this article, we propose a k-nearest neighbor (kNN) rule for optimal treatment

regimes. Although the rule is simple, it possesses good theoretical properties. Firstly,

we show that the kNN rule for optimal treatment regimes is universally consistent. The

notion of universal consistency is borrowed from machine learning. In optimal treatment

regimes, it requires for a rule that when the sample size approaches infinity the rule eventu-

ally learns the Bayes rule without knowing any specifics about the distribution of the data.

Secondly, we establish its convergence rate. The convergence rate is as high as n−1/2 with

appropriately chosen k if the dimension of covariates is 1 or 2, and the rate is n−2/(p+2) for

dimensionality p ≥ 3.

Similar to the nearest neighbor rule for classification, our proposed method suffers from

the curse of dimensionality, i.e., performance deteriorates as dimensionality increases. To
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alleviate this problem, we propose an adaptive k-nearest neighbor (AkNN) rule, where the

distance metric is adaptively determined from the data. Through adaptive metric selection,

AkNN performs variable selection implicitly. The superior performance of AkNN over

kNN is illustrated in the simulation studies. Actually, the kNN rule is a special case of

AkNN. In practical settings, we recommend AkNN.

The remainder of the article is organized as follows. In Section 2.2, we propose the

kNN rule for optimal treatment regimes, establish its theoretical properties, and improve

the rule through an adaptive procedure. We present simulation studies to evaluate per-

formance of the proposed methods in Section 2.3. The method is then illustrated on the

Nefazodone-CBASP clinical trial (Keller et al. 2000) in Section 2.4. We conclude the

article with a discussion in Section 2.5. Theoretical proofs are given in the Appendix.

2.2 Methods

2.2.1 Nearest neighbor rules

Consider a randomized clinical trial with L treatment arms. We observe a triplet

(X, A,R) from each patient, where X = (X1, · · · , Xp)
T ∈ Rp denotes the patient’s

clinical covariates, A ∈ A = {1, 2, · · · , L} denotes the treatment assignment, and R ∈ R

is the observed clinical outcome. Assume without loss of generality that larger values of

R are preferred. Let π`(x) := P (A = `|X = x) be the probability of being assigned

treatment ` for a patient with clinical covariates x. This probability is predefined in the

trial design.

A treatment regime is a function from Rp to A. Mathematically, the expected outcome

under any regime d is given as V(d) := E(R|A = d(X)). This expectation is called the

value function associated with the regime d. In other words, the value function V(d) is the
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expected value of R given that the regime d is applied to the given population of patients.

There is a positivity assumption that π`(X) > 0 for any ` ∈ A. That is, any treatment

option must be represented in the data in order to estimate an optimal regime. An optimal

treatment regime d∗ is a regime that maximizes V(d). The regime d∗ is also called the

Bayes rule. For simplicity, let m`(x) := E(R|X = x, A = `). Because of the positivity

assumption, m`(x) is well defined. It is easy to obtain that

d∗(x) = argmax
`∈{1,··· ,L}

m`(x). (2.1)

The k-nearest neighbor rule is a nonparametric method used for classification and re-

gression (Fix and Hodges 1951). In this article, we apply the nearest neighbor rule to

optimal treatment regimes. The idea is simple. We use the nearest neighbor algorithm to

estimate the conditional outcome m`(x) for each arm, and plug into (2.1) to get the nearest

neighbor estimate for the optimal treatment regime.

Assume that the observed data Dn = {(Xi, Ai, Ri) : i = 1, · · · , n} are collected

independently. We fix x ∈ Rp, and reorder the observed data Dn according to increasing

values of ||Xi − x||. The reordered data sequence is denoted by(
X(1,n)(x), A(1,n)(x), R(1,n)(x)

)
, · · · ,

(
X(n,n)(x), A(n,n)(x), R(n,n)(x)

)
.

Thus X(1,n)(x), · · · ,X(k,n)(x) are k nearest neighbors of x. When the k-nearest neigh-

borhood of x is small, its conditional outcome for arm ` can be estimated by

m̂`(x) =

∑k
i=1 R(i,n)(x)

I(A(i,n)(x)=`)

π`(X(i,n)(x))∑k
i=1

I(A(i,n)(x)=`)

π`(X(i,n)(x))

,

where I(·) is the indicator function, as suggested in Murphy (2005). Here we define 0/0 =

0. For simplicity, denote

W `
n,i(x) =


I(A(i,n)(x)=`)

π`(X(i,n)(x))∑k
j=1

I(A(j,n)(x)=`)

π`(X(j,n)(x))

, if i ≤ k,

0 if i > k.
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The k-nearest neighbor estimate m̂` can now be rewritten as,

m̂`(x) =
n∑
i=1

W `
n,i(x)R(i,n)(x). (2.2)

Thus the plug-in estimate of the Bayes rule in (2.1) is

dNN(x) = argmax
`∈{1,··· ,L}

m̂`(x). (2.3)

This is called the k-nearest neighbor regime, for short kNN, in this article.

We need to address the problem of distance ties, i.e., when ||x−Xi|| = ||x−Xj|| for

some i 6= j. Devroye et al. (1996, Section 11.2) discussed several methods for breaking

distance ties. In practical use, we adopt the tie-breaking method used in Stone (1977).

Subjects who have the same distance from x as the k-th nearest neighbor are averaged on

the outcome R. We denote the distance of the k-th nearest neighbor to x by ρn(x), and

define the setsAn(x) := {i : ||x−Xi|| < ρn(x)} andBn(x) := {i : ||x−Xi|| = ρn(x)}.

The revised rule of (2.2) is as follows:

m̃`(x) =

∑
i∈An(x) R(i,n)(x)

I(A(i,n)(x)=`)

π`(X(i,n)(x))
+ k−|An(x)|

|Bn(x)|
∑

i∈Bn(x) R(i,n)(x)
I(A(i,n)(x)=`)

π`(X(i,n)(x))∑
i∈An(x)

I(A(i,n)(x)=`)

π`(X(i,n)(x))
+ k−|An(x)|

|Bn(x)|
∑

i∈Bn(x)

I(A(i,n)(x)=`)

π`(X(i,n)(x))

.

(2.4)

The corresponding nearest neighbor regime is the regime in (2.3) obtained by replacing

m̂`(x) with m̃`(x). This is not a strictly k-nearest neighbor rule when there are distance

ties on the k-th nearest neighbor, since the estimate uses more than k neighbors.

Nearest neighbor regimes are based on local averaging. Here, k is a tuning parameter.

It is required that k is small enough so that local changes of the distribution can be detected.

On the other hand, k needs to be large so that averaging over the arm is effective. We may

tune this parameter by a cross validation procedure to balance the two requirements. The v-

fold cross validation procedure is described as follows. The data are randomly partitioned

into v roughly equal-sized parts. We use v − 1 parts of the data to predict the optimal

treatments on the part left out. We repeat the procedure v − 1 more times to predict the
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other parts, and obtain the predicted treatment for each patient. The cross-validated value

function is given by Pn[RI(A = Pred)/πA(X)]/Pn[I(A = Pred)/πA(X)], where Pn

denotes the empirical average and Pred is the predicted treatment in the cross validation

procedure. In this article, we apply 10-fold cross validation to tune the parameter k.

2.2.2 Theoretical Properties

In the literature of machine learning, a classification rule is called universally consistent

if its expected error probability converges to the Bayes error probability, in probability or

almost surely, for all distributions underlying the data (Devroye et al. 1996). Although

this generality in distribution may seem to be a very strong condition, it has been known

since a seminal paper by Stone (1977) that there do exist such classification rules. The k-

nearest neighbor classification is the first to be proved to possess such universal consistency

(Stone 1977, Devroye et al. 1996). Here, we extend the concept of universal consistency

to optimal treatment regimes.

Definition 2.2.1. Given a sequence Dn of data, an optimal treatment regime dn is univer-

sally (weakly) consistent if

lim
n→∞

V(dn) = V(d∗) in probability

for all probability measures P on Rp ×A×R, and universally strongly consistent if

lim
n→∞

V(dn) = V(d∗) almost surely

for all probability measures P on Rp ×A×R.

A consistent rule guarantees that by increasing the amount of data, the probability

that the achieved value function is within a very small distance of the Bayes value goes

arbitrarily close to one. Strong consistency means that by using more data the achieved

value gets arbitrarily close to the Bayes value for every sequence of possible data.
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Before proceeding to the theoretical analysis, we need some definitions. Denote the

probability measure for X by µ, and let Sx,ε be the closed ball centered at x of radius

ε > 0. The collection of all x with µ(Sx,ε) > 0 for all ε > 0 is called the support of µ

(Cover and Hart 1967). The set is denoted as support(µ).

The analysis of universal consistency requires some assumptions:

(A1) There exists a constants ζ > 0 such that π`(x) ≥ ζ for any x ∈ support(µ) and

` ∈ {1, · · · , L}.

(A2) E|R| <∞.

(A3) Distance ties occur with probability zero in µ.

These assumptions are quite weak. Assumption (A1) is just the positivity assumption,

and ζ can be obtained by design. Assumption (A2) is natural. This assumption is au-

tomatically satisfied for bounded outcomes, i.e. |R| ≤ M < ∞ for some constant M .

Assumption (A3) is to avoid the messy problem of distance ties. When (A3) does not hold,

we may add a small uniform variable U ∼ uniform[0, ε] independent of (X, A,R) to

the vector X . This causes the (p + 1)-dimensional random vector X ′ = (X, U) to sat-

isfy Assumption (A3). We may perform the k-nearest neighbor rule on the modified data

D′n = {(X ′i, Ai, Ri) : i = 1, · · · , n}. Because of the independence of U , the correspond-

ing conditional outcome m′`(x
′) = E(R|X ′ = x′, A = `) = m`(x). Hence Assumption

(A3) is reasonable, but at the cost of potential compromise of performance by introducing

an artificial variable to the rule. When ε is very small, we actually break ties randomly. The

difference with Stone’s tie-breaking method in the previous section is that Stone’s method

takes into account all subjects whose distance to x equals that of the k-th nearest neighbor,

while the tie-breaking method here only picks one of them randomly. The remark fol-

lowing the proof of Theorem 2.2.1 in the Appendix demonstrates that Stone’s tie-breaking

estimate in (2.4) is asymptotically better than the random tie-breaking method here.
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The following theorem shows universal consistency of the nearest neighbor regime.

The proof is provided in the Appendix.

Theorem 2.2.1. For any distribution P for (X, A,R) satisfying assumptions (A1)∼(A3),

(i) the kNN regime in (2.3) is universally weakly consistent if k →∞ and k/n→ 0;

(ii) the kNN regime in (2.3) is universally strongly consistent if k/ log(n) → ∞ and

k/n→ 0.

If Assumption (A2) is tightened to |R| ≤ M < ∞ for some constant M , the kNN

regime in (2.3) is universally strongly consistent if k →∞ and k/n→ 0.

The next natural question is whether the associated value of the kNN regime tends to

the Bayes value at a specified rate. To establish the rate of convergence, we require stronger

assumptions.

(A1 ′)
∑n

i=1 W
`
n,i(x) = 1 for all x ∈ Rp and ` = 1, · · · , L; and there exists a constant c

such that W `
n,i(x) ≤ c/k for all x ∈ Rp, i = 1, · · · , n and ` = 1, · · · , L.

(A2 ′) There exists a constant σ2 such that σ2
` (x) := V ar(R|X = x, A = `) ≤ σ2 for all

x ∈ Rp and ` = 1, · · · , L.

(A3 ′) Distance ties occur with probability zero in µ, and the support of µ is compact with

diameter 2ρ.

(A4 ′) m`’s are Lipschitz continuous, i.e., there exists a constant C > 0 such that |m`(x)−

m`(x
′)| ≤ C||x− x′|| for any x and x′ in Rp, and ` = 1, · · · , L.

Assumption (A1 ′) implies that randomization is not extremely skewed with respect to

the covariates. Assumptions (A2 ′)∼(A4 ′) are standard in the literature of nearest neighbor

rules (Györfi et al. 2002). The following theorem gives the convergence rate of kNN

regimes. This theorem is proved in the Appendix.
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Theorem 2.2.2. For any distribution P for (X, A,R) satisfying assumptions (A1 ′)∼(A4 ′),

there exists a sequence k such that k →∞ and k/n→ 0, and

E
{(
V(d∗)− V(dNN)

)2
}

= O(n−β).

When p = 1, β = 1/2; when p = 2, β can be arbitrarily close to 1/2; when p ≥ 3,

β = 2/(p+ 2).

The rate of convergence is as high as n−1/2 if dimensionality p is 1 or 2. When p

increases, the convergence rate decreases significantly. As with nearest neighbor rules in

classification and regression, the kNN regime also suffers from the curse of dimensionality.

2.2.3 Adaptive rule

Determination of nearest neighbors highly depends on the distance metric. Thus the

performance of the kNN regime is affected by metric selection. The nearest neighbor

regime is consistent as shown previously. However, it is well known that the curse of

dimensionality can severely hurt nearest neighbor rules in finite samples. The rate of

convergence in Theorem 2.2.2 is slow when dimensionality is high. Hence appropriate

variable selection may improve performance. In this section, we propose an adaptive k-

nearest neighbor algorithm to estimate the optimal treatment regime, and to perform metric

selection and variable selection simultaneously.

Let Σ = diag(σ2
1, · · · , σ2

p) be a diagonal matrix, and use the quadratic form (x1 −

x2)TΣ(x1 − x2) to compute the (squared) distance between x1 and x2. σj is the scaling

factor for the j-th covariate. Setting σj = 0 is equivalent to discarding the j-th covariate.

We intend to set a large σ2
j if the j-th covariate is important for treatment selection.

We apply the following method to evaluate the importance of an individual covariate.

It is related to a test statistic comparing two treatment regimes (Murphy 2005). One regime
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dj only involves the j-th covariate, and the other d0, called non-informative regime, assigns

all patients to the treatment with the largest estimated conditional outcome Ê(R|A = `) :=∑n
i=1

RiI(Ai=`)
π`(Xi)

/
∑n

i=1
I(Ai=`)
π`(Xi)

. For a specific regime d, let di be the treatment assignment

for the i-th subject according to d. The value function associated with d is estimated by

V̂(d) =

∑n
i=1Ri

I(Ai=di)
πAi (Xi)∑n

i=1
I(Ai=di)
πAi (Xi)

. (2.5)

When we compare two treatment regimes, dj and d0, a consistent estimator of the variance

of
√
n(V̂(dj)− V̂(d0)) is

V̂ ar
(√

n(V̂(dj)− V̂(d0))
)

=
1

n

n∑
i=1


(
I(Ai = dji )

πAi(Xi)
(Ri − V̂(dj))

)2

+

(
I(Ai = d0

i )

πAi(Xi)
(Ri − V̂(d0))

)2

 .(2.6)

Note that even if dj only depends on one single covariate, or d0 is not related to any covari-

ate, πAi(Xi) in (2.5) and (2.6) is still based on the whole covariate vector by design. The

statistic

Tj =

√
n(V̂(dj)− V̂(d0))√

V̂ ar
(√

n(V̂(dj)− V̂(d0))
) (2.7)

asymptotically has a standard normal distribution under the null hypothesis that V(dj) =

V(d0). See Murphy (2005) for technical details. When the statistic is greater than zero,

regime dj is considered better than the non-informative regime d0, otherwise d0 is better.

The statistic Tj reflects the importance of the j-th covariate on optimal treatment regimes.

We estimate dj by kNN only using the j-th covariate. The parameter k is tuned by 10-fold

cross validation. The treatment assignments, dji ’s, are also obtained by cross validation to

avoid over-fitting.

We set σ2
j = (Tj + ∆)+ for each j = 1, · · · , p, where ∆ ∈ R is a predefined parameter

and (·)+ is the positive part. The adaptive k-nearest neighbor regime, denoted AkNN,

follows the same procedure used in the kNN regime described above, except that AkNN
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uses an adaptive distance metric (x1−x2)TΣ(x1−x2) to compute the (squared) distance

between x1 and x2. When ∆ is small (for example, ∆→ −∞), all the σ2
j ’s are zero, hence

the AkNN regime degenerates to a non-informative regime. On the other hand, when ∆

is large (for example, ∆ → ∞), all the σ2
j ’s are almost identical, and the AkNN regime is

equivalent to the kNN one.

Here is a summary of the adaptive nearest neighbor procedure:

1) Normalize each covariate to a similar scale.

2) Calculate Tj in (2.7) for each covariate j = 1, · · · , p.

3) Calculate Σ = diag(σ2
1, · · · , σ2

p), where σ2
j = (Tj + ∆)+.

4) Estimate a kNN regime using the distance metric,

d(x1,x2) =
√

(x1 − x2)TΣ(x1 − x2).

The scaling at the first step is to avoid covariates in greater numeric ranges dominating

those in smaller numeric ranges. We recommend linearly scaling each covariate to the

range [−1,+1] or [0, 1] (Hsu et al. 2003). For AkNN, there are two tuning parameters, k

and ∆. We tune the parameters using 10-fold cross validation as done previously.

2.3 Simulation studies

We carried out extensive simulation studies to investigate finite sample performance of

the proposed kNN and AkNN methods. In the simulations, we generated 10-dimensional

vectors of clinical covariates x1, · · · , x10, consisting of independent uniform random vari-

ables U(−1, 1). The treatment A was generated from {−1, 1} independently of X with

P (A = 1) = 0.5. The response R was normally distributed with mean Q0 = µ0(x) +

δ0(x)·a and standard deviation 1, where µ0(x) is the common effect for clinical covariates,

19



and δ0(x) · a is the interaction between treatment and clinical covariates. We considered

three scenarios with different choices of µ0(x) and δ0(x):

(1) µ0(x) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(x) = 1.8(0.3− x1 − x2).

(2) µ0(x) = 1 + x2
1 + x2

2 + 2x2
3; δ0(x) = 10(1− x2

1 − x2
2)(x2

1 + x2
2 − 0.2).

(3) µ0(x) = 1 + x2
1 + x2

2 + 2x2
3; δ0(x) = 5(1−

∑10
i=1

x2i
i

).

The scenarios have different true decision boundaries. The decision boundaries in the first

two scenarios are determined by x1 and x2 only. The decision boundary is a line in Scenario

1 and a ring in Scenario 2. The decision boundary in Scenario 3 is a sphere in R10, while

the first several covariates play an important role in the regime.

We compared the performance of the following five methods: (1) The proposed kNN

method; (2) The proposed AkNN method; (3) OWL proposed in Zhao et al. (2012) us-

ing the Gaussian RBF kernel (OWL-Gaussian); (4) OWL using the linear kernel (OWL-

Linear); and (5) `1-PLS proposed by Qian and Murphy (2011).

OWL methods view the optimal treatment regime problem as a weighted classification

problem, and treat the original outcomes as weights. OWL-Linear incorporates the linear

kernel to estimate linear treatment regimes, while OWL-Gaussian has the ability to de-

tect nonlinear regimes. Since OWL methods can only handle nonnegative outcomes, we

subtracted min{Ri} from all outcome responses. This is the approach used in Zhao et al.

(2012) [personal communication]. `1-PLS is a two-step method. In the simulation studies,

`1-PLS approximated E(R|X, A) using the basis function set (1,X, A,XA), and applied

LASSO for variable selection. The optimal treatment regime was determined by the sign

of the difference between the estimated E(R|X, A = 1) and E(R|X, A = −1).

For each scenario, we varied sample sizes for training datasets from 50, 100, 200,

400, to 800, and repeated the simulation 500 times. All five methods had at least one
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tuning parameter. In the simulations, we applied 10-fold cross validation to tune param-

eters. For comparison, the performances of the five methods were evaluated by the value

function under the estimated optimal treatment regime when applied to an independent

and large test dataset. Specifically, a test set with 10,000 observations was simulated to

assess the performance. The estimated value function under any regime d is given by

P∗n[RI(A = d(X))/πA(X)]/P∗n[I(A = d(X))/πA(X)] (Murphy 2005), where P∗n de-

notes the empirical average using the test data.

The simulation results are presented in Table 2.1. We report the mean and standard

deviation of value functions over 500 replications. Scenario 1 was a linear example. The

model specification in `1-PLS was correct, and this method performed very well. kNN

showed better performance than both OWL methods. AkNN further improved the perfor-

mance of kNN, and yielded similar performance to `1-PLS especially when the sample

size is large. The conditional mean outcomes and decision boundaries in the remaining

two scenarios were nonlinear. `1-PLS and OWL-Linear were misspecified, and hence they

did not perform very well in either scenarios. We focused on the comparison among OWL-

Gaussian, kNN and AkNN. In Scenario 2, either OWL-Gaussian or kNN did not perform

better than `1-PLS or OWL-Linear, even though they can detect nonlinear decision bound-

ary. The poor performance is probably due to noise covariates. It is well known that nearest

neighbor rules deteriorate when there are irrelevant covariates presented in the data. Due

to the variable selection mechanism with AkNN, this method outperformed other methods

in terms of achieving much higher values. Scenario 3 was an example where all covariates

contributed to the optimal treatment regime. However, their level of contribution varied.

The first covariate was the most important, while the tenth was the least. In this scenario,

kNN and OWL-Gaussian showed better performance than both OWL-Linear and `1-PLS.

AkNN again produced the best performance. The adaptive selection on the distance metric

enhances the nearest neighbor rule. From the simulations, AkNN is always better than

kNN. As we explained before, when the tuning parameter ∆ is very large, AkNN is almost
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Table 2.1: Mean (std) of empirical value function for three simulation scenarios evaluated
on independent validation data. The best value function for each scenario and sample size
combination is in bold.

n = 50 n = 100 n = 200 n = 400 n = 800

Scenario 1 (Optimal value 2.25)

l1-PLS 2.18(0.07) 2.21(0.04) 2.23(0.02) 2.24(0.02) 2.24(0.01)
OWL-Linear 1.64(0.22) 1.77(0.20) 1.90(0.18) 2.00(0.13) 2.10(0.08)
OWL-Gaussian 1.62(0.23) 1.76(0.20) 1.88(0.18) 2.00(0.13) 2.10(0.08)
kNN 1.87 (0.14) 2.00 (0.10) 2.09 (0.06) 2.15 (0.04) 2.19 (0.02)
AkNN 1.98 (0.20) 2.13 (0.12) 2.20 (0.05) 2.23 (0.03) 2.24 (0.02)

Scenario 2 (Optimal value 3.87)

l1-PLS 2.28(0.12) 2.31(0.12) 2.34(0.12) 2.38(0.13) 2.44(0.12)
OWL-Linear 2.37(0.14) 2.42(0.14) 2.45(0.13) 2.49(0.11) 2.53(0.07)
OWL-Gaussian 2.37(0.13) 2.40(0.12) 2.43(0.12) 2.49(0.11) 2.54(0.09)
kNN 2.38 (0.13) 2.41 (0.10) 2.44 (0.07) 2.50 (0.06) 2.59 (0.05)
AkNN 2.51 (0.26) 2.98 (0.42) 3.57 (0.30) 3.80 (0.05) 3.85 (0.02)

Scenario 3 (Optimal value 3.85)

l1-PLS 2.39(0.09) 2.40(0.08) 2.41(0.09) 2.43(0.09) 2.45(0.10)
OWL-Linear 2.37(0.08) 2.38(0.08) 2.39(0.07) 2.41(0.07) 2.43(0.06)
OWL-Gaussian 2.50(0.16) 2.67(0.19) 2.90(0.17) 3.12(0.13) 3.35(0.11)
kNN 2.58 (0.07) 2.66 (0.07) 2.75 (0.06) 2.85 (0.06) 2.98 (0.05)
AkNN 3.31 (0.31) 3.54 (0.11) 3.61 (0.06) 3.67 (0.03) 3.70 (0.02)

equivalent to kNN. Considering the superior performance of AkNN over kNN, we suggest

AkNN for general practical use.

2.4 Data analysis

We applied the proposed methods to analyze data from the Nefazodone-CBASP clini-

cal trial (Keller et al. 2000). The Nefazodone-CBASP trial compared three different treat-

ments for patients suffering chronic depression. Patients with non-psychotic chronic major

depressive disorder (MDD) were randomized in a 1:1:1 ratio to either Nefazodone (NFZ),

cognitive behavioral-analysis system of psychotherapy (CBASP), or the combination of
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Nefazodone and CBASP (COMB). The primary outcome measurement in efficacy was the

score on the 24-item Hamilton Rating Scale for Depression (HRSD). Lower HRSD is de-

sirable. We considered 50 pre-treatment covariates as in Zhao et al. (2012). We excluded

some patients with missing covariate values from the analyses. The data used here con-

sisted of 647 patients. Among them, 216, 220, and 211 patients were assigned to NFZ,

CBASP and COMB, respectively. Each clinical covariate was linearly scaled to the range

[−1,+1], as recommended in Hsu et al. (2003).

Since the trial had three treatment arms, we compared the performance of AkNN with

l1-PLS. The OWL methods can only deal with two treatments. From the simulation studies,

AkNN always outperforms kNN, so we only considered AkNN in this section. Outcomes

used in the analyses were opposites of the HRSD scores. l1-PLS used the basis function

set (1,X, A,XA) in the regression model. We used nested 10-fold cross-validation for

an unbiased comparison (Ambroise and McLachlan 2002). Specifically, the data were

randomly partitioned into 10 roughly equal-sized parts. We used nine parts as training data

to predict optimal treatments for patients in the part left out. The parameter tuning was

based on inner 10-fold cross-validation on the training data. We repeated the procedure

10 times, and obtained the predicted treatment for each patient. We then computed the

estimated value function as Pn[RI(A = Pred)/πA(X)]/Pn[I(A = Pred)/πA(X)], where

Pn denotes the empirical average over the data and Pred is the predicted treatment in the

cross validation procedure. To obtain reliable estimates, we repeated the nested cross-

validation procedure 100 times with different fold partitions. The mean value functions

over 100 repeats and the standard deviations are presented in Table 2.2. Note that the

standard deviation here was calculated from 100 estimated value functions, and reflected

variance across repetitions. It is slightly different from the standard deviation in traditional

10-fold cross validation procedure, which takes account of the variance not only across

repetitions but also across folds. As evident from Table 2.2, AkNN achieved a similar

performance to l1-PLS. Both methods assigned the combination treatment to almost all
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Table 2.2: Mean (std) Hamilton rating scale for depression (HRSD) from the cross-
validation procedure using different methods. Lower HRSD is better.

l1-PLS OWL-Linear OWL-Gaussian AkNN

NFZ vs. CBASP vs. COMB 11.19 (0.15) − − 11.18 (0.27)

NFZ vs. CBASP 16.30 (0.39) 15.91 (0.40) 16.15 (0.40) 15.70 (0.39)
NFZ vs. COMB 11.20 (0.16) 10.87 (0.00) 10.92 (0.06) 11.03 (0.27)
CBASP vs. COMB 10.95 (0.09) 10.87 (0.00) 10.88 (0.02) 11.41 (0.28)

patients. The original analysis in Keller et al. (2000) indicated that the combination of

Nefazodone and CBASP (COMB) is significantly more efficacious than either treatment

alone. Our analysis confirmed this is indeed true.

We also performed pairwise comparisons between two treatment arms. We included

OWL-Linear and OWL-Gaussian in the analysis. The same nested cross validation proce-

dure was used to evaluate performance. The analysis results are also presented in Table 2.2.

As explained before, the standard deviations only reflect variance across repetitions, and

hence are smaller. The zero standard deviations for OWL-Linear in Table 2.2 were due

to the fact that OWL-Linear assigned all patients to the COMB arm in every repeat of

the cross-validation procedure. For comparison between NFZ and CBASP, AkNN was

slightly better than other methods. For comparison between NFZ and COMB, all methods

produced similar performance. For comparison between CBASP and COMB, AkNN did

not perform comparably to other methods. We carried out the significance test described

in Section 2.2.3 to compare the regimes by AkNN and OWL-Linear (a non-informative

regime) for CBASP vs. COMB. The test was based on the cross validation prediction.

Since we repeated the cross validation 100 times, we obtained 100 p-values. The p-values

range from 0.11 to 0.94 with a median at 0.56. Although the value from AkNN was not as

good as that from OWL-Linear, the difference was not statistically significant.
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2.5 Discussion

In this article, we have proposed a simple kNN rule for optimal treatment regimes, and

developed an adaptive method (AkNN) to determine the distance metric. As shown in the

simulation and data studies, the simple method can rival and improve upon sophisticated

methods. The proposed methods are easy to implement. We have implemented them using

an R package FNN, which utilizes fast k-nearest neighbor search algorithms, such as cover

tree (Beygelzimer et al. 2006) and k-d tree (Friedman et al. 1977), to speed up the brute

force search. Our nearest neighbor algorithms can be fast even for data with a large sample

size.

The proposed methods are nonparametric. According to universal consistency, kNN

will eventually learn the optimal treatment regime as the sample size increases. Two-step

methods, such as `1-PLS, are generally parametric. Their performance mainly depends on

how close the posited model is to the true model of the conditional mean outcome. When

the model is correctly specified, two-step methods can be more efficient than nonparametric

methods. However, the relationship among clinical covariates, treatment assignment, and

outcome is complex in practice. Misspecified models may lead to biased estimates.
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CHAPTER 3: RESIDUAL WEIGHTED LEARNING

3.1 Introduction

Personalized medicine is a medical paradigm that utilizes individual patient informa-

tion to optimize patients health care. Recently, personalized medicine has received much

attention among statisticians, computer scientists, and clinical practitioners. The primary

motivation is the well-established fact that patients often show significant heterogeneity in

response to treatments. For instance, in a recent study, it was demonstrated that the optimal

timing for the initiation of antiretroviral therapy (ART) varies in patients co-infected with

human immunodeficiency virus and tuberculosis. Patients with CD4+ T-cell counts of less

than 50 per cubic millimeter benefited substantially from earlier ART with a lower rate of

new AIDS-defining illnesses and mortality as compared with later ART, while those with

larger CD4+ T-cell counts did not have such a benefit (Havlir et al. 2011). The inherent

heterogeneity across patients suggests a transition from the traditional “one size fits all”

approach to modern personalized medicine.

A major component of personalized medicine is the estimation of individualized treat-

ment rules (ITRs). Formally, the goal is to seek a rule that assigns a treatment, from among

a set of possible treatments, to a patient based on his or her clinical, prognostic or ge-

nomic characteristics. The individualized treatment rules are also called optimal treatment

regimes. There is a significant literature on individualized treatment strategies based on

data from clinical trials or observational studies (Murphy 2003, Robins 2004, Zhang et al.

2012b, Zhao et al. 2009). Much of the work relies on modeling either the conditional

mean outcomes or contrasts between mean outcomes. These methods obtain ITRs indi-
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rectly by inverting the regression estimates instead of directly optimizing the decision rule.

For instance, Qian and Murphy (2011) applied a two-step procedure that first estimates a

conditional mean for the outcome and then determines the treatment rule by comparing

the conditional means across various treatments. The success of these indirect approaches

highly depends on correct specification of posited models and on the precision of model

estimates.

In contrast, Zhao et al. (2012) proposed outcome weighted learning (OWL), using data

from a randomized clinical trial, to construct an ITR that directly optimizes the clinical out-

come. They cast the treatment selection problem as a weighted classification problem, and

apply state-of-the-art support vector machines for implementation. This approach opens

the door to introducing machine learning techniques into this area. However, there is still

significant room for improved performance. First, the estimated ITR of OWL is affected

by a simple shift of the outcome. This behavior makes the estimate of OWL unstable. Sec-

ond, since OWL requires the outcome to be nonnegative, OWL works similarly to weighted

classification, in which misclassification errors, the differences between the estimated and

true treatment assignments, are targeted to be reduced. Hence the ITR estimated by OWL

tries to keep treatment assignments that subjects actually received. This is not always ideal

since treatments are randomly assigned in the trial, and the probability is slim that the

majority of subjects are assigned optimal treatments. Third, OWL does not have variable

selection features. When there are many clinical covariates which are not related to the

heterogeneous treatment effects, variable selection is critical to the performance.

To alleviate these problems, we propose a new method, called Residual Weighted

Learning (RWL). Unlike OWL which weights misclassification errors by clinical out-

comes, RWL weights these errors by residuals from a regression fit of the outcome. The

predictors of the regression model include clinical covariates, but exclude treatment as-

signment. Thus the residuals better reflect the heterogeneity of treatment effects. Since
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some residuals are negative, the hinge loss function used in OWL is not appropriate. We

instead utilize the smoothed ramp loss function, and provide a difference of convex (d.c.)

algorithm to solve the corresponding non-convex optimization problem. The smoothed

ramp loss resembles the ramp loss (Collobert et al. 2006), but it is smooth everywhere.

It is well known that ramp loss related methods are shown to be robust to outliers (Wu

and Liu 2007). The robustness to outliers for the smoothed ramp loss is helpful for RWL,

especially when residuals are poorly estimated. Moreover, through using residuals, RWL

is able to deal relatively easily with almost all types of outcomes. For example, RWL can

work with generalized linear models to construct ITRs for count/rate outcomes. We also

propose variable selection approaches in RWL for linear and nonlinear rules, respectively,

to further improve finite sample performance.

The theoretical analysis of RWL focuses on two aspects, universal consistency and

convergence rate. The notion of universal consistency is borrowed from machine learning.

It requires for a learning method that when the sample size approaches infinity the method

eventually learns the Bayes rule without knowing any specifics of the distribution of the

data. We show that RWL with a universal kernel (e.g. Gaussian RBF kernel) is universally

consistent. In machine learning, there is a famous “no-free-lunch theorem”, which states

that the convergence rate of any particular learning rule may be arbitrarily slow (Devroye

et al. 1996). In this work, we prove the “no-free-lunch theorem” for finding ITRs. Thus

the rate of convergence studies for a particular rule must necessarily be accompanied by

conditions on the distribution of the data. For RWL with Gaussian RBF kernel, we show

that under the geometric noise condition (Steinwart and Scovel 2007) the convergence rate

is as high as n−1/3.

At first glance, one may think that there is not a large difference between OWL and

RWL except that RWL uses residuals as alternative outcomes. Actually, RWL enjoys many

benefits from this simple modification. First, by using residuals of outcomes, RWL is able
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to reduce the variability introduced by the original outcomes. Second, since the numbers

of subjects with positive and negative residuals are generally balanced, the ITR determined

by RWL favors neither the treatment assignments that subjects actually received nor their

opposites. Because of the above reasons, RWL improves finite sample performance. Third,

RWL possesses location-scale invariance with respect to the original outcomes. Specifi-

cally, the estimated rule of RWL is invariant to a shift of the outcome; it is invariant to

a scaling of the outcome with a positive number; the rule from RWL that maximizes the

outcome is opposite to the rule that minimizes the outcome. These are intuitively sensible.

The contributions of this work are summarized as follows. (1) We propose the general

framework of Residual Weighted Learning to estimate individualized treatment rules. By

estimating residuals with linear or generalized linear models, RWL can effectively deal

with different types of outcomes, such as continuous, binary and count outcomes. For

censored survival outcomes, RWL could potentially utilize martingale residuals, although

theoretical justification is still under development. (2) We develop variable selection tech-

niques in RWL to further improve performance. (3) We present a comprehensive theoreti-

cal analysis of RWL on universal consistency and convergence rate. (4) As a by-product,

we show the “no-free-lunch theorem” for ITRs that the convergence rate of any particular

rule may be arbitrarily slow. This is a generic result, and it applies to any algorithm for

optimal treatment regimes.

The remainder of the chapter is organized as follows. In Section 3.2, we discuss Out-

come Weighted Learning (OWL) and propose Residual Weighted Learning (RWL) to im-

prove finite sample performance for continuous outcomes. Then we develop a general

framework for RWL to handle other types of outcomes, and use binary and count/rate out-

comes as examples. In Section 3.3, we establish consistency and convergence rate results

for the estimated rules. The variable selection techniques for RWL are discussed in Sec-

tion 3.4. We present simulation studies to evaluate performance of the proposed methods in
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Section 3.5. The method is then illustrated on the EPIC cystic fibrosis randomized clinical

trial (Treggiari et al. 2009; 2011) in Section 3.6. We conclude with a discussion in Section

3.7. All proofs are given in Appendix.

3.2 Methodology

3.2.1 Outcome Weighted Learning

Consider a two-arm randomized trial. We observe a triplet (X, A,R) from each pa-

tient, where X = (X1, · · · , Xp)
T ∈ X denotes the patient’s clinical covariates, A ∈

A = {1,−1} denotes the treatment assignment, and R is the observed clinical outcome,

also called the “reward” in the literature on reinforcement learning. We assume that R

is bounded, and larger values of R are more desirable. An individualized treatment rule

(ITR) is a function from X to A. Let π(a,x) := P (A = a|X = x) be the probability

of being assigned treatment a for patients with clinical covariates x. It is predefined in

the trial design. Here we consider a general situation. In most clinical trials, the treatment

assignment is independent of X , but in some designs, such as stratified designs, A may

depend onX . We assume π(a,x) > 0 for all a ∈ A and x ∈ X .

An optimal ITR is a rule that maximizes the expected outcome under this rule. Mathe-

matically, the expected outcome under any ITR d is given as

E(R|A = d(X)) = E
(

R

π(A,X)
I
(
A = d(X)

))
, (3.1)

where I(·) is the indicator function. Interested readers may refer to Qian and Murphy

(2011) and Zhao et al. (2012) regarding the derivation of (3.1). This expectation is called

the value function associated with the rule d, and is denoted V (d). In other words, the

value function V (d) is the expected value of R given that the rule d(X) is applied to the

given population of patients. An optimal ITR d∗ is a rule that maximizes V (d). Finding d∗
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is equivalent to the following minimization problem:

d∗ ∈ arg min
d

E
(

R

π(A,X)
I
(
A 6= d(X)

))
. (3.2)

Zhao et al. (2012) viewed this as a weighted classification problem, in which one wants to

classify A usingX but also weights each misclassification error by R/π(A,X).

Assume that the observed data {(xi, ai, ri) : i = 1, · · · , n} are collected independently.

For any decision function f(x), let df (x) = sign
(
f(x)

)
be the associated rule, where

sign(u) = 1 for u > 0 and −1 otherwise. The particular choice of the value of sign(0) is

not important. In this work, we fix sign(0) = −1. Using the observed data, the weighted

classification error in (3.2) can be approximated by the empirical risk

1

n

n∑
i=1

ri
π(ai,xi)

I
(
df (xi) 6= ai

)
. (3.3)

The optimal decision function f̂(x) is the one that minimizes the outcome weighted error

(3.3).

It is well known that empirical risk minimization for a classification problem with

the 0-1 loss function is an NP-hard problem. To alleviate this difficulty, one often finds

a surrogate loss to replace the 0-1 loss. Outcome weighted learning (OWL) proposed by

Zhao et al. (2012) uses the hinge loss function, and also applies the regularization technique

used in the support vector machine (SVM) (Vapnik 1998). In other words, instead of

minimizing (3.3), OWL aims to minimize

1

n

n∑
i=1

ri
π(ai,xi)

(
1− aif(xi)

)
+

+ λ||f ||2, (3.4)

where (u)+ = max(u, 0) is the positive part of u, ||f || is some norm for f , and λ is a tuning

parameter controlling the trade-off between empirical risk and complexity of the decision

function f .

OWL opens the door to the application of statistical learning techniques to personalized

medicine. However, this approach is not perfect. First, a simple shift on the outcome R
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should not affect the optimal decision rule, as seen from (3.1) and (3.2). That is, d∗ in

(3.2) does not change if R is replaced by R+ c, for any constant c. Unfortunately this nice

invariance property does not hold for the decision function f̂(x) of OWL in (3.4) when

ri is replaced by ri + c. Consider an extreme case where c is very large and π(1,x) =

π(−1,x) = 0.5 for all x ∈ X , the weights (ri + c)/π(ai,xi) are almost identical, and

the weighted problem is approximately transformed to an unweighted one. Hence the

performance of OWL can be affected by a simple shift ofR. Second, OWL further assumes

thatR is nonnegative to gain computational efficiency from convex programming. A direct

consequence of this assumption, as seen from (3.3), is that the treatment regime df (xi)

tends to match the treatment ai that was actually assigned to the patient, especially when

the decision function f is chosen from a rich class of functions. This property is not ideal

for data from a randomized clinical trial, since treatments are actually randomly assigned

to patients.

3.2.2 Residual Weighted Learning

In this section, we only consider the case that the outcome R is continuous, and extend

the framework to other types of outcomes in Section 3.2.4.

As demonstrated previously, the decision rule in (3.2) is invariant to a shift of outcome

R by any constant. Moreover, Lemma 3.2.1 shows that d∗ in (3.2) is invariant under a shift

of R by a function of X . That is, d∗ remains unchanged if R is replaced by R − g(X)

for any function g, as long as g is not related to d. So there is an optimal solution f̂

in (3.4) corresponding to a particular function g, when ri is replaced by ri − g(xi), and

the associated rule d̂f = sign(f̂) can be seen as an estimated optimal rule in (3.2). As

g varies, we obtain a collection of d̂f ’s. When the sample size is very large, these d̂f ’s

perform similarly by the infinite sample property of OWL shown in Zhao et al. (2012).

However, when the sample size is limited, as in clinical settings, the choice of g is critical
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to the performance of OWL. Zhao et al. (2012) did not delve deeply into this problem. In

this work, we will provide a solution to this, and improve finite sample performance.

Lemma 3.2.1. For any measurable g : X → R and any probability distribution for

(X, A,R),

E
(
R− g(X)

π(A,X)
I
(
A 6= d(X)

))
= E

(
R

π(A,X)
I
(
A 6= d(X)

))
− E (g(X)) .

Intuitively, the function g with the smallest variance of
R− g(X)

π(A,X)
I
(
A 6= d(X)

)
is a

good choice. However, such a function depends on the decision rule d, as shown in the

following theorem. The proof of the theorem is provided in Appendix.

Theorem 3.2.1. Among all measurable g : X → R, g̃(X) = E
(

R

π(A,X)
I
(
A 6= d(X)

)∣∣∣X)
is the function g that minimizes the variance of

R− g(X)

π(A,X)
I
(
A 6= d(X)

)
.

Our purpose is to find a function g, which is not related to d, to reduce the variance of
R− g(X)

π(A,X)
I
(
A 6= d(X)

)
as much as possible. As shown in the proof, the minimizer g̃ can

be written as,

g̃(X) = E(R|X, A = 1)I
(
d(X) 6= 1

)
+ E(R|X, A = −1)I

(
d(X) 6= −1

)
.

That is, g̃(X) jumps between E(R|X, A = 1) and E(R|X, A = −1) as d(X) varies.

Hence when d is unknown, a reasonable choice of g is

g∗(X) =
E(R|X, A = 1) + E(R|X, A = −1)

2
= E

(
R

2π(A,X)
|X
)
. (3.5)

We propose to minimize the following empirical risk, rather than the original one in (3.3):

1

n

n∑
i=1

ri − ĝ∗(xi)
π(ai,xi)

I
(
df (xi) 6= ai

)
, (3.6)

where ĝ∗ is an estimate of g∗. For simplicity, let r̂i = ri − ĝ∗(xi) be the estimated resid-

ual. Here, we do not weight misclassification errors by clinical outcomes as OWL does,
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and instead we weight them by residuals from a regression fit of outcomes. Thus the opti-

mal decision function is invariant under any translation of clinical outcomes. We call the

method Residual Weighted Learning (RWL).

RWL also has the following interpretation. The outcome R can be characterized as

R = µ(X) + δ(X) · A+ ε,

where ε is the mean zero random error. µ(X) reflects common effects of clinical covariates

X for both treatment arms. It is easy to see that µ(X) = (E(R|X, A = 1) +E(R|X, A =

−1))/2, so the residual, R − g∗(X), in RWL is just δ(X) · A + ε, which captures all

sources of heterogeneous treatment effects. The rationale of optimal treatment regimes is

to keep treatment assignments that subjects have actually received if those subjects are ob-

served to have large outcomes, and to switch assignments if outcomes are small. However,

the largeness and smallness for outcomes are relative. A rather large outcome may still

be considered as small when compared with subjects having similar clinical covariates, as

shown in Figure 3.1. Outcomes are not comparable among subjects with different clinical

covariates, while the residual, by removing common covariates effects, is a better measure-

ment. Figure 3.1 illustrates how residuals work using an example with a single covariate

X . The raw data are shown on the left, and residuals are shown on the right. Residuals are

comparable among subjects, and larger residuals represent better outcomes.

Another benefit from using residuals is a clear cut-off, i.e. 0, to distinguish between

subjects with good and poor clinical outcomes. To minimize the empirical risk in (3.6), for

subjects with positive residuals, RWL is apt to recommend the same treatment assignments

that subjects have actually received; for subjects with negative residuals, RWL is more

likely to give the opposite treatment assignments to what they have received. The optimal

ITR is the one maximizing the conditional expected outcome given in (3.1). An empirical
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Figure 3.1: Example of residual weighted learning. The raw data are shown on the left,
consisting of a single covariate X , treatment assignment A = 1 or −1, and continuous
outcome R with E(R|X,A) = 3X + XA. The allocation ratio is 1:1. The residuals,
R− 3X , are shown on the right.

estimator of (3.1) is,
1

n

n∑
i=1

ri
π(ai,xi)

I
(
d(xi) = ai

)
. (3.7)

Though it is unbiased, it may give an estimate outside the range of R. While for finite

samples a better estimator of (3.1) as shown in Murphy (2005) is,

1
n

∑n
i=1

riI
(
d(xi)=ai

)
π(ai,xi)

1
n

∑n
i=1

I
(
d(xi)=ai

)
π(ai,xi)

. (3.8)

The denominator is an estimator of E
(

I
(
A=d(X)

)
π(A,X)

)
. Similar reasoning as that used in the
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proof of Lemma 3.2.1 yields E
(

I
(
A=d(X)

)
π(A,X)

)
= 1. The estimator 1

n

∑n
i=1

I
(
d(xi)=ai

)
π(ai,xi)

is

called the treatment matching factor in this work. The factor varies between 0 and 2.

If a rule favors treatment assignments that subjects have actually received, its treatment

matching factor is greater than 1, while in contrast if a rule prefers the opposite treatment

assignments, its treatment matching factor is less than 1. For a randomized clinical trial,

we expect that the estimated rule is associated with a treatment matching factor close to 1.

For OWL, since all the weights are nonnegative, the estimated rule of OWL tends to keep,

if possible, the treatments that subjects actually received. Thus the associated treatment

matching factor would be greater than 1, especially when the sample size is small, or

when a complicated rule is applied. Hence the estimator in (3.8) might not be large even

though (3.7) is maximized. RWL alleviates this problem by using residuals to make an

initial guess on the optimal rule. Owing to the balance between subjects with positive and

negative residuals, RWL implicitly finds a rule with its treatment matching factor close to

1.

There are many ways to estimate g∗. In this work, we consider two models. The first

one is the main effects model. Assume that E
(

R

2π(A,X)
|X
)

= β0 + XTβ, where

β = (β1, · · · , βp)T . The estimates β̂ and β̂0 can be obtained by minimizing the sum of

weighted squares,
n∑
i=1

1

2π(ai,xi)
(ri − β0 − xTi β)2.

It can be solved easily by almost any statistical software. Then the estimate is ĝ∗(x) =

β̂0 +xT β̂. The second is the null model. Assume that E
(

R

2π(A,X)
|X
)

= β0. It is easy

to obtain ĝ∗(x) = β̂0 =
∑n

i=1
ri

π(ai,xi)
/
∑n

i=1
1

π(ai,xi)
.

In summary, we propose a method called Residual Weighted Learning to identify the

optimal ITR by minimizing the residual weighted classification error (3.6). The impact of

using residuals is two-fold: it stabilizes the variance of the value function and controls the

treatment matching factor. Both improve finite sample performance.
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3.2.3 Implementation of RWL

As in OWL, we intend to use a surrogate loss function to replace the 0-1 loss in (3.6).

Since some residuals are negative, convex surrogate functions do not work here. We con-

sider a non-convex loss

T (u) =



0 if u ≥ 1,

(1− u)2 if 0 ≤ u < 1,

2− (1 + u)2 if − 1 ≤ u < 0,

2 if u < −1.

It is called the smoothed ramp loss in this work. Figure 3.2 shows the hinge loss, ramp

loss and smoothed ramp loss functions. The hinge loss is the loss function used in support

vector machines (Vapnik 1998). The ramp loss (Collobert et al. 2006) is also called the

truncated hinge loss function (Wu and Liu 2007). It is well known that by truncating the

unbounded hinge loss, ramp loss related methods are shown to be robust to outliers in

the training data for the classification problem (Wu and Liu 2007). Compared with the

ramp loss, the smoothed ramp loss is smooth everywhere. Hence it has computational

advantages in optimization. Moreover, the smoothed ramp loss, which resembles the ramp

loss, is robust to outliers too. In the framework of RWL, subjects who did not receive

optimal treatment assignments but had large positive residuals, or those who did receive

optimal assignments but had large negative residuals may be considered as outliers. The

robustness to outliers for the smoothed ramp loss is helpful in dealing with outliers in the

setting of optimal treatment regimes, especially when residuals are poorly estimated, or

when the outcome R has a large variance.

We incorporate RWL into the regularization framework, and aim to minimize

1

n

n∑
i=1

r̂i
π(ai,xi)

T (aif(xi)) +
λ

2
||f ||2, (3.9)
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Figure 3.2: Hinge loss (a), ramp loss (b), and smoothed ramp loss (c) functions. (d) shows
the difference of convex decomposition of the smoothed ramp loss, T (u) = φ1(u)−φ0(u).

where ||f || is some norm for f , and λ is a tuning parameter. Recall that r̂i is the estimated

residual. The smoothed ramp loss function T (u) is symmetric about the point (0, 1) as

shown in Figure 3.2(c). A nice property that comes from the symmetry is that the rule that

minimizes the outcome R (i.e. maximizes −R) is just opposite to the rule that maximizes

R. This is intuitively sensible. However, OWL does not possess this property.

We derive an algorithm for linear RWL in Section 3.2.3, and then generalize it to the
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case of nonlinear learning through kernel mapping in Section 3.2.3.

Linear Decision Rule for Optimal ITR

Suppose that the decision function f(x) that minimizes (3.9) is a linear function of

x, i.e. f(x) = wTx + b. Then the associated ITR will assign a subject with clinical

covariates x into treatment 1 if wTx + b > 0 and −1 otherwise. In (3.9), we define ||f ||

as the Euclidean norm of w. Then minimizing (3.9) can be rewritten as

min
w,b

λ

2
wTw +

1

n

n∑
i=1

r̂i
π(ai,xi)

T
(
ai(w

Txi + b)
)
. (3.10)

The smoothed ramp loss is a non-convex loss, and as a result, the optimization problem

in (3.10) involves non-convex minimization. This optimization problem is difficult since

there are many local minima or stationary points. For instance, any (w, b) with w = 0

and |b| ≥ 1 is a stationary point. Similar with the robust truncated hinge loss support

vector machine (Wu and Liu 2007), we apply the d.c. (Difference of Convex) algorithm

(An and Tao 1997) to solve this non-convex minimization problem. The d.c. algorithm is

also known as the Concave-Convex Procedure (CCCP) in the machine learning community

(Yuille and Rangarajan 2003). Assume that an objective function can be rewritten as the

sum of a convex part Qvex(Θ) and a concave part Qcav(Θ). The d.c. algorithm as shown

in Algorithm 1 solves the non-convex optimization problem by minimizing a sequence of

convex subproblems. One can easily see that the d.c. algorithm is a special case of the

Majorize-Minimization (MM) algorithm.

Algorithm 1: The d.c. algorithm for minimizing Q(Θ) = Qvex(Θ) +Qcav(Θ).

Initialize Θ(0)

repeat
Θ(t+1) = argminΘQvex(Θ)+ < Q′cav(Θ

(t)),Θ >

until convergence of Θ(t)
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Let

φs(u) =


0 if u ≥ s

(s− u)2 if s− 1 ≤ u < s

2s− 2u− 1 if u < s− 1

.

Note that φs is smooth. We have a difference-of-convex decomposition of the smoothed

ramp loss,

T (u) = φ1(u)− φ0(u), (3.11)

as shown in Figure 3.2(d). Denote Θ as (w, b). Applying (3.11), the objective function in

(3.10) can be decomposed as

Qs(Θ) =
λ

2
wTw +

1

n

n∑
i=1

[
φ1(ui)I(r̂i > 0) + φ0(ui)I(r̂i < 0)

] |r̂i|
π(ai,xi)︸ ︷︷ ︸

Qvex(Θ)

− 1

n

n∑
i=1

[
φ1(ui)I(r̂i < 0) + φ0(ui)I(r̂i > 0)

] |r̂i|
π(ai,xi)︸ ︷︷ ︸

Qcav(Θ)

,

where ui = ai(w
Txi + b). For simplicity, we introduce the notation,

βi =
∂Qcav

∂ui
= − 1

n

[dφ1(ui)

dui
I(r̂i < 0) +

dφ0(ui)

dui
I(r̂i > 0)

] |r̂i|
π(ai,xi)

, (3.12)

for i = 1, · · · , n. Thus the convex subproblem at the (t + 1)’th iteration of the d.c. algo-

rithm is

min
w,b

λ

2
wTw+

1

n

n∑
i=1

[
φ1(ui)I(r̂i > 0)+φ0(ui)I(r̂i < 0)

] |r̂i|
π(ai,xi)

+
n∑
i=1

β
(t)
i ui. (3.13)

There are many efficient methods available for solving smooth unconstrained optimization

problems. In this work, we use the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm (Nocedal 1980). L-BFGS is a quasi-Newton method that approxi-

mates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a limited amount

of computer memory. For more information on the quasi-Newton method and L-BFGS,

see Nocedal and Wright (2006).

The procedure is summarized in the following algorithm:
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Algorithm 2: The d.c. algorithm for linear RWL with the smoothed ramp loss
Set ε to a small quantity, say, 10−8

Initialize β(0)
i = 2|r̂i|

nπ(ai,xi)
I(r̂i < 0)

repeat

• Compute (ŵ, b̂) by solving (3.13),

• Update ui = ai(ŵ
Txi + b̂)

• Update β(t+1)
i by (3.12)

until ||β(t+1) − β(t)||∞ < ε

Nonlinear Decision rule for Optimal ITR

For a nonlinear decision rule, the decision function f(x) is represented by h(x) + b

with h(x) ∈ HK and b ∈ R, where HK is a reproducing kernel Hilbert space (RKHS)

associated with a Mercer kernel function K. The kernel function K(·, ·) is a positive

definite function mapping from X × X to R. The norm in HK , denoted by || · ||K , is

induced by the following inner product:

< f, g >K=
n∑
i=1

m∑
j=1

αiβjK(xi,xj),

for f(·) =
∑n

i=1 αiK(·,xi) and g(·) =
∑m

j=1 βjK(·,xj). Then minimizing (3.9) can be

rewritten as

min
h,b

λ

2
||h||2K +

1

n

n∑
i=1

r̂i
π(ai,xi)

T
(
ai
(
h(xi) + b

))
. (3.14)

Due to the representer theorem (Kimeldorf and Wahba 1971), the nonlinear problem can

be reduced to finding finite-dimensional coefficients vi, and h(x) can be represented as∑n
j=1 vjK(x,xj). Thus the problem (3.14) is transformed to

min
v,b

λ

2

n∑
i,j=1

vivjK(xi,xj) +
1

n

n∑
i=1

r̂i
π(ai,xi)

T
(
ai
( n∑
j=1

vjK(xi,xj) + b
))
. (3.15)
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Following a similar derivation to that used in the previous section, the convex subproblem

at the (t+ 1)’th iteration of the d.c. algorithm is as follows,

min
v,b

λ

2

n∑
i,j=1

vivjK(xi,xj)

+
1

n

n∑
i=1

[
φ1(ui)I(r̂i > 0) + φ0(ui)I(r̂i < 0)

] |r̂i|
π(ai,xi)

+
n∑
i=1

β
(t)
i ui,

where ui = ai
(∑n

j=1 vjK(xi,xj) + b
)
. After solving the subproblem by L-BFGS, we

update β(t+1) by (3.12). The procedure is repeated until β converges. When we obtain

the solution (v̂, b̂), the decision function is f̂(x) =
∑n

j=1 v̂jK(x,xj) + b̂. Note that if we

choose a linear kernelK(x, z) = xTz, the obtained rule reduces to the previous linear rule.

The most widely used nonlinear kernel in practice is the Gaussian Radial Basis Function

(RBF) kernel, that is,

Kσ(x, z) = exp
(
− σ2||x− z||2

)
,

where σ > 0 is a free parameter whose inverse 1/σ is called the width of Kσ.

3.2.4 A general framework for Residual Weighted Learning

We have proposed a method to identify the optimal ITR for continuous outcomes. How-

ever, in clinical practice, the endpoint outcome could also be binary, count, or rate. In this

section, we provide a general framework to deal with all these types of outcomes.

The procedure is described as follows. First, estimate the conditional expected out-

comes given clinical covariates X , Ê
(

R
2π(A,X)

∣∣X), by an appropriate regression model.

It is equivalent to fitting a weighted regression model, in which each subject is weighted

by 1
2π(A,X)

. Second, we calculate the estimated residual r̂i by comparing the observed

outcome and expected outcome estimated in the first step. If the observed outcome is bet-

ter than the expected one, the estimated residual r̂i is positive, otherwise it is negative.

Specifically, if larger values of R are more desirable, as with our assumption for continu-

42



ous outcomes, r̂i = ri − Ê
(

R
2π(A,X)

∣∣X = xi

)
; if smaller values of R are preferred, e.g.

the number of adverse events, then r̂i = Ê
(

R
2π(A,X)

∣∣X = xi

)
− ri. Third, identify the

decision function f̂(x) by using the estimated r̂i in RWL.

The underlying idea is simple. Generally, the outcome R is a random variable depend-

ing on X and A. We estimate common effects of X by ignoring the treatment assign-

ment A, and then all information on the heterogeneous treatment effects is contained in

the residuals. As demonstrated previously, the benefits from using residuals include sta-

bilizing the variance and controlling the treatment matching factor, both of which have a

positive impact on finite sample performance. In previous sections, we discussed RWL for

continuous outcomes in detail. We will provide two additional examples to illustrate the

general framework.

The first example is for binary outcomes, i.e. R ∈ {0, 1}. Assume that R = 1 is

desirable. We may fit a weighted main effects logistic regression model,

E(R|X) =
exp(β0 +XTβ)

1 + exp(β0 +XTβ)
.

The estimates β̂0 and β̂ can be obtained numerically by statistical software, for example,

the glm function in R. The residual r̂i is ri− exp(β̂0+XT β̂)

1+exp(β̂0+XT β̂)
. Then we estimate the optimal

ITR by RWL.

The second is for count/rate outcomes. We use the pulmonary exacerbation (PE) out-

come of the cystic fibrosis data in Section 3.6 as an example. The outcome is the num-

ber of PEs during the study, and it is a rate variable. The observed data are Dn =

{xi, ai, ri, ti}ni=1, where ri is the number of PEs in the duration ti. We treat the count

ri as the outcome, and (xi, ti) as clinical covariates. We may fit a weighted main effects

Poisson regression model,

log (E(R|X, T )) = β0 +XTβ + log(T ).
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Since fewer PEs are desirable, we compute r̂i as exp
(
β̂0 + xTi β̂ + log(ti)

)
− ri, which is

the opposite of the raw residual in generalized linear models.

3.3 Theoretical Properties

In this section, we establish theoretical results for RWL. To the end, we assume that

a sample Dn = {xi, ai, ri}ni=1, is independently drawn from a probability measure P on

X × A × M, where X ⊂ Rp is compact, and M = [−M,M ] ⊂ R. For any ITR

d : X → A, the risk is defined as

R(d) = E
[

R

π(A,X)
I(A 6= d(X))

]
.

The ITR that minimizes the risk is the Bayes rule d∗ = arg mindR(d), and the corre-

sponding risk R∗ = R(d∗) is the Bayes risk. Recall that the Bayes rule is d∗(x) =

sign(E(R|X = x, A = 1)− E(R|X = x, A = −1)).

In RWL, we substitute the 0-1 loss I(A 6= sign(f(X))) by the smoothed ramp loss,

T (Af(X)). Accordingly, we define the T -risk as

RT,g(f) = E
[
R− g(X)

π(A,X)
T (Af(X))

]
,

and, similarly, the minimal T -risk as R∗T,g = inff RT,g(f) and f ∗T,g = arg minf RT,g(f).

In the theoretical analysis, we do not require g to be a regression fit ofR. g can be any arbi-

trary measurable function. We may further assume that (R − g(X))/π(A,X) is bounded

almost surely.

The performance of an ITR associated with a real-valued function f is measured by the

excess risk R(sign(f))−R∗. In terms of the value function, we note that the excess risk

is just V(d∗)− V(sign(f)). Similarly, we define the excess T -risk asRT,g(f)−R∗T,g.
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Let fDn,λn ∈ HK + {1}, i.e. fDn,λn = hDn,λn + bDn,λn where hDn,λn ∈ HK and

bDn,λn ∈ R, be a global minimizer of the following optimization problem:

min
f=h+b∈HK+{1}

λn
2
||h||2K +

1

n

n∑
i=1

ri − g(xi)

π(ai,xi)
T
(
aif(xi))

)
.

Here we suppress g from the notation of fDn,λn , hDn,λn and bDn,λn .

The purpose of the theoretical analysis is to estimate the excess riskR(sign(fDn,λn))−

R∗ as the sample size n tends to infinity. Convergence rates will be derived under the

choice of the parameter λn and conditions on the distribution P .

3.3.1 Fisher Consistency

We establish Fisher consistency of the decision function based on the smoothed ramp

loss. Specifically, the following result holds:

Theorem 3.3.1. For any measurable function f , if f ∗T,g minimizes T-riskRT,g(f), then the

Bayes rule d∗(x) = sign(f ∗T,g(x)) for all x such that E(R|X = x, A = 1) 6= E(R|X =

x, A = −1). Furthermore,RT,g(d
∗) = R∗T,g.

The proof is provided in Appendix. This theorem shows the validity of using the

smoothed ramp loss as a surrogate loss in RWL.

3.3.2 Excess Risk

The following result establishes the relationship between the excess risk and excess

T -risk. The proof can be found in Appendix.

Theorem 3.3.2. For any measurable f : X → R and any probability distribution for

(X, A,R),

R(sign(f))−R∗ ≤ RT,g(f)−R∗T,g.
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This theorem shows that for any decision function f , the excess risk of f under the 0-1

loss is no larger than the excess risk of f under the smoothed ramp loss. It implies that if

we obtain f by approximately minimizingRT,g(f) so that the excess T -risk is small, then

the risk of f is close to the Bayes risk. In the next two sections, we investigate properties

of fDn,λn through the excess T -risk.

3.3.3 Universal Consistency

In the literature of machine learning, a classification rule is called universally consistent

if its expected error probability converges in probability to the Bayes error probability for

all distributions underlying the data (Devroye et al. 1996). We extend this concept to

ITRs. Precisely, given a sequence Dn of training data, an ITR dn is said to be universally

consistent if

lim
n→∞

R(dn) = R∗

holds in probability for all probability measures P on X ×A×M. In this section, we will

establish universal consistency of the rule dDn,λn = sign(fDn,λn). Before proceeding to

the main result, we introduce some preliminary background on RKHSs, which is essential

for our work.

Let K be a kernel, andHK be its associated RKHS. We often use the quantity

CK = sup
x∈X

√
K(x,x).

In this work, we assume CK is finite. For the Gaussian RBF kernel, CK = 1. The as-

sumption also holds for the linear kernel when X ⊂ Rp is compact. By the reproducing

property, it is easy to see that ||f ||∞ ≤ CK ||f ||K for any f ∈ HK . A continuous kernel

K on a compact metric space X is called universal if its associated RKHS HK is dense

in C(X ), i.e., for every function g ∈ C(X ) and all ε > 0 there exists an f ∈ HK such

that ||f − g||∞ < ε (Steinwart and Christmann 2008, Definition 4.52). C(X ) is the space
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of all continuous functions f : X → R on the compact metric space X endowed with the

usual supremum norm. The widely used Gaussian RBF kernel is an example of a universal

kernel.

We are ready to present the main result of this section. The following theorem shows

the convergence of the T -risk on the sample dependent function fDn,λn . We apply empirical

process techniques to show consistency. The proof is provided in Appendix.

Theorem 3.3.3. Assume that we choose a sequence λn > 0 such that λn → 0 and nλn →

∞. For a measurable function g, assume that |R−g(X)|
π(A,X)

≤ M0 almost surely. Then for any

distribution P for (X, A,R), we have that in probability,

lim
n→∞

RT,g(fDn,λn) = inf
f∈HK+{1}

RT,g(f).

By Theorem 3.3.1, the Bayes rule d∗ minimizes the T -risk RT,g(f). Universal con-

sistency follows if inff∈HK+{1}RT,g(f) = R∗T,g by Theorem 3.3.2. That is, d∗ needs to

be approximated by functions in the space HK + {1}. Clearly, this is not always true. A

counterexample is when K is linear.

Let µ be the marginal distribution ofX . Clearly, the rule d∗ is measurable with respect

to µ. Recall that a probability measure is regular if it is defined on the Borel sets. By

Lusin’s theorem, a measurable function can be approximated by a continuous function

when µ is regular (Rudin 1987, Theorem 2.24). Thus the RKHS HK of a universal kernel

K is rich enough to provide arbitrarily accurate decision rules for all distributions. The

finding is summarized in the following universal approximation lemma. The rigorous proof

is provided in Appendix.

Lemma 3.3.1. Let K be a universal kernel, and HK be the associated RKHS. For all

distributions P with regular marginal distribution µ onX , we have

inf
f∈HK+{1}

RT,g(f) = R∗T,g.
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This immediately leads to universal consistency of RWL with a universal kernel.

Proposition 3.3.1. Let K be a universal kernel, andHK be the associated RKHS. Assume

that we choose a sequence λn > 0 such that λn → 0 and nλn → ∞. For a measurable

function g, assume that |R−g(X)|
π(A,X)

≤ M0 almost surely. Then for any distribution P for

(X, A,R) with regular marginal distribution onX , we have that in probability,

lim
n→∞

R(sign(fDn,λn)) = R∗.

3.3.4 Convergence Rate

A consistent rule guarantees that by increasing the amount of data the rule can eventu-

ally learn the optimal decision with high probability. The next natural question is whether

there are rules dn with R(dn) tending to the Bayes risk R∗ at a specified rate for all dis-

tributions. Unfortunately, this is impossible as shown in the following theorem. The proof

follows the arguments in Devroye et al. (1996, Theorem 7.2), which states in the classi-

fication problem the rate of convergence of any particular rule to the Bayes risk may be

arbitrarily slow. We provide the outline of the proof in Appendix.

Theorem 3.3.4. Assume there are infinite distinct points in X . Let {cn} be a sequence of

positive numbers converging to zero with 1
16
≥ c1 ≥ c2 ≥ · · · . For every sequence dn of

ITRs, there exists a distribution of (X, A,R) on X ×A×M such that

R(dn)−R∗ ≥ 2Mcn.

This is a generic result, and applies to any algorithm for ITRs. It implies that rate of

convergence studies for particular rules must necessarily be accompanied by conditions on

(X, A,R). Before moving back to RWL, we introduce the following quantity:

A(λ) = inf
h∈HK ,b∈R

λ

2
||h||2K +RT,g(h+ b)−R∗T,g.
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The termA(λ) describes how well the infinite-sample regularized T -risk λ
2
||h||2K+RT,g(h+

b) approximates the optimal T -riskR∗T,g. A similar quantity is called the approximation er-

ror function in the literature of learning theory (Steinwart and Christmann 2008, Definition

5.14). Since A(λ) is an infimum of affine linear functions, A(λ) is continuous. Thus

lim
λ→0
A(λ) = inf

h∈HK ,b∈R
RT,g(h+ b)−R∗T,g.

By Lemma 3.3.1, for a universal kernel K, limλ→0A(λ) = 0.

In order to establish the convergence rate, let us additionally assume that there exist

constants c > 0 and β ∈ (0, 1] such that

A(λ) ≤ cλβ, ∀λ > 0. (3.16)

The assumption is standard in the literature of learning theory (Steinwart and Christmann

2008, p. 229). The following theorem is the main result in this section. This theorem is

proved in Appendix using techniques of concentration inequalities developed in Bartlett

and Mendelson (2002).

Theorem 3.3.5. For any distribution P for (X, A,R) that satisfies the approximation error

assumption (3.16), take λn = n−
1

2β+1 . For a measurable function g, assume that |R−g(X)|
π(A,X)

≤

M0 almost surely. Then with probability at least 1− δ,

R(sign(fDn,λn))−R∗ ≤ c̃
√

log(4/δ)n−
β

2β+1 ,

where the constant c̃ is independent of δ and n, and c̃ decreases as M0 decreases.

The resulting rate depends on the polynomial decay rate β of the approximation error,

and the optimal rate is about n−1/3 when β approaches 1. Theorem 3.3.5 also implies

that even when the sample size n is fixed, an appropriately chosen g with a small bound

M0 would improve performance. It is easy to verify that g∗ in (3.5) is the function g that

minimizes E
(

(R−g(X))2

π(A,X)

)
. So when we choose g∗ as in RWL, we may possibly obtain a

smaller M0, as shown in Figure 3.1.
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We are particularly interested in the Gaussian RBF kernel since it is widely used and is

universal. It is important to understand the approximation error assumption (3.16) for the

Gaussian RBF kernel. We first introduce the following “geometric noise” assumption for

P on (X, A,R) (Steinwart and Scovel 2007). Let

δ(x) = E(R|X = x, A = 1)− E(R|X = x, A = −1).

Define X+ = {x ∈ X : δ(x) > 0}, X− = {x ∈ X : δ(x) < 0}, and X 0 = {x ∈ X :

δ(x) = 0}. Now we define a distance function x 7→ τx by

τx =


d̃(x,X 0 ∪ X+) if x ∈ X−,

d̃(x,X 0 ∪ X−) if x ∈ X+,

0 if x ∈ X 0,

where d̃(x, A) denotes the distance of x to a set A with respect to the Euclidean norm.

Now we present the geometric noise condition for distributions.

Definition 3.3.1. Let X ⊂ Rp be compact and P be a probability measure of (X, A,R) on

X ×A×M. We say that P has geometric noise exponent q > 0 if there exists a constant

C > 0 such that ∫
X
exp

(
−τ

2
x

t

)
|δ(x)|µ(dx) ≤ Ctqp/2, t > 0, (3.17)

where µ is the marginal measure onX .

The integral condition (3.17) describes the concentration of the measure |δ(x)|dµ near

the decision boundary in the sense that the less the measure is concentrated in this region

the larger the geometric noise exponent can be chosen. The following lemma shows that

the geometric noise condition can be used to guarantee the approximation error assumption

(3.16) when the parameter σ of the Gaussian RBF kernel Kσ is appropriately chosen.
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Lemma 3.3.2. Let X be the closed unit ball of the Euclidean space Rp, and P be a distri-

bution on X × A×M that has geometric noise exponent 0 < q < ∞ with constant C in

(3.17). Let σ = λ−
1

(q+1)p . Then for the Gaussian RBF kernel Kσ, there is a constant c > 0

depending only on the dimension p, the geometric noise exponent q and constant C, such

that for all λ > 0 we have

A(λ) ≤ cλq/(q+1).

The proof provided in Appendix follows the idea from Theorem 2.7 in Steinwart and

Scovel (2007) by replacing their 2η(x) − 1 with δ(x). The key point is the following

inequality, for all measurable f ,

RT,g(f)−R∗T,g ≤ 2E(|δ(x)| · |f − d∗|),

which is the counterpart of Equation (24) in Steinwart and Scovel (2007).

Now we are ready to present the convergence rate of RWL with Gaussian RBF kernel

by combining Theorem 3.3.5 and Lemma 3.3.2:

Proposition 3.3.2. Let X be the closed unit ball of the Euclidean space Rp, and P be a

distribution on X ×A×M that has geometric noise exponent 0 < q <∞ with constant

C in (3.17). For a measurable function g, assume that |R−g(X)|
π(A,X)

≤ M0 almost surely.

Consider a Gaussian RBF kernel Kσn . Take λn = n−
q

3q+1 and σn = λ
− 1

(q+1)p
n . Then with

probability at least 1− δ,

R(sign(fDn,λn))−R∗ ≤ c̃
√

log(4/δ)n−
q

3q+1 ,

where the constant c̃ is independent of δ and n, and c̃ decreases as M0 decreases.

The optimal rate for the risk is about n−1/3 when the geometric noise exponent q is

sufficiently large. A better rate may be achieved by using techniques in Steinwart and

Scovel (2007), but it is beyond the scope of this work.
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3.4 Variable selection for RWL

Variable selection is an important area in modern statistical research. Gunter et al.

(2011) distinguished prescriptive covariates from predictive covariates. The latter refers to

covariates which are related to the prediction of outcomes, and the former refers to covari-

ates which help to prescribe optimal ITRs. Clearly, prescriptive covariates are predictive

too. In practice, a large number of clinical covariates are often available for estimating

optimal ITRs. However, many of them might not be prescriptive. Thus careful variable

selection could lead to better performance.

3.4.1 Variable selection for linear RWL

There is a vast body of literature on variable selection for linear classification in statisti-

cal learning. For instance, Zhu et al. (2003) and Fung and Mangasarian (2004) investigated

the support vector machine (SVM) using the `1-norm penalty (Tibshirani 1994). Wang

et al. (2008) applied the elastic-net penalty (Zou and Hastie 2005) for variable selection

with an SVM-like method. In this work, we replace the `2-norm penalty in RWL with the

elastic-net penalty,

λ1||w||1 +
λ2

2
wTw,

where ||w||1 =
∑p

j=1 |wj| is the `1-norm. As a hybrid of the `1-norm and `2-norm penal-

ties, the elastic-net penalty retains the variable selection features of the `1-norm penalty,

and tends to provide similar estimated coefficients for highly correlated variables, i.e. the

grouping effect, as the `2-norm penalty does. Hence, highly correlated variables are se-

lected or removed together.

The elastic-net penalized linear RWL aims to minimize

λ1||w||1 +
λ2

2
wTw +

1

n

n∑
i=1

r̂i
π(ai,xi)

T
(
ai(w

Txi + b)
)
,
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where λ1(> 0) and λ2(≥ 0) are regularization parameters. We still apply the d.c. algorithm

to solve the above optimization problem. Following a similar decomposition, the convex

subproblem at the (t+ 1)’th iteration of the d.c. algorithm is as follows,

min
w,b

λ1||w||1 +
λ2

2
wTw +

n∑
i=1

β
(t)
i ui

+
1

n

n∑
i=1

[
φ1(ui)I(r̂i > 0) + φ0(ui)I(r̂i < 0)

] |r̂i|
π(ai,xi)

, (3.18)

where ui = ai(w
Txi + b), and β(t)

i is computed by (3.12). The objective function is a

sum of a smooth function and a non-smooth `1-norm penalty. Since L-BFGS can only deal

with smooth objective functions, it may not work here. Instead we use projected scaled

sub-gradient (PSS) algorithms (Schmidt 2010), which are extensions of L-BFGS to the

case of optimizing a smooth function with an `1-norm penalty. Several PSS algorithms

are proposed in Schmidt (2010). Among them, the Gafni-Bertseka variant is particularly

effective for our purpose. After solving the subproblem, we update β(t+1)
i by (3.12). The

procedure is repeated until β converges. The obtained decision function is f̂(x) = ŵTx+

b̂, and thus the estimated optimal ITR is the sign of f̂(x).

3.4.2 Variable selection for RWL with nonlinear kernels

Many researchers have noticed that nonlinear kernel methods may perform poorly

when there are irrelevant covariates presented in the data (Weston et al. 2000, Grandvalet

and Canu 2002, Lin and Zhang 2006, Lafferty and Wasserman 2008). For optimal treat-

ment regimes, we may suffer a similar problem when using a nonlinear kernel. For the

Gaussian RBF kernel, we assume that the geometric noise condition in Definition 3.3.1 is

satisfied with exponent q. When several additional non-descriptive covariates are included

in the data, the geometric noise exponent is decreased according to (3.17), and hence so is

the convergence rate in Proposition 3.3.2. The presence of non-descriptive covariates thus

can deteriorate the performance of RWL.
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The variable selection approach proposed in this section is inspired by the KNIFE

algorithm (Allen 2013), where a set of scaling factors on the covariates are employed to

form a regularized loss function. The idea of scaling covariates within the kernel has

appeared in several methods from the machine learning community (Weston et al. 2000,

Grandvalet and Canu 2002, Rakotomamonjy 2003, Argyriou et al. 2006).

We take the Gaussian RBF kernel as an example. Define the covariates-scaled Gaussian

RBF kernel,

Kη(x, z) = exp

(
−

p∑
j=1

ηj(xj − zj)2

)
,

where η = (η1, · · · , ηp)T ≥ 0. Here each covariate xj is scaled by √ηj . Setting ηj = 0 is

equivalent to discarding the j’th covariate. The hyperparameter σ in the original Gaussian

RBF kernel is absorbed to the scaling factors. Similar with KNIFE, we seek (v̂, b̂, η̂) to

minimize the following optimization problem:

min
v,b,η

λ1||η||1 +
λ2

2

n∑
i,j=1

vivjKη(xi,xj)

+
1

n

n∑
i=1

r̂i
π(ai,xi)

T
(
ai
( n∑
j=1

vjKη(xi,xj) + b
))
, (3.19)

subject to η ≥ 0,

where λ1(> 0) and λ2(> 0) are regularization parameters. Compared with previous non-

linear RWL optimization problem in (3.15), (3.19) has an `1-norm penalty on scaling fac-

tors. The objective function is singular at η = 0 due to nonnegativity of scaling factors.

So (3.19) may produce zero solutions for some of the η, and hence performs variable se-

lection.

We adopt a similar decomposition trick that has been used several times before. The
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subproblem at the (t+ 1)’th iteration is

min
v,b,η

λ1||η||1 +
λ2

2

n∑
i,j=1

vivjKη(xi,xj) +
n∑
i=1

β
(t)
i ui

+
1

n

n∑
i=1

[
φ1(ui)I(r̂i > 0) + φ0(ui)I(r̂i < 0)

] |r̂i|
π(ai,xi)

, (3.20)

subject to η ≥ 0,

where ui = ai
(∑n

j=1 vjKη(xi,xj)+b
)
, and β(t)

i is computed by (3.12). Recall that the d.c.

algorithm is a special case of the Majorize-Minimization (MM) algorithm. Although with

the covariate-scaled kernel the subproblem is nonconvex, we still apply a similar iterative

procedure as in the d.c. algorithm, i.e. solving a sequence of subproblems (3.20), but

based on the MM algorithm. The subproblem (3.20) is a smooth optimization problem

with box constraints. In this work, we use L-BFGS-B (Byrd et al. 1995, Morales and

Nocedal 2011), which extends L-BFGS to handle simple box constraints on variables.

After solving the subproblem (3.20), we update ui and β. The procedure is repeated until

convergence. Then the obtained decision function is f̂(x) =
∑n

i=1 v̂iKη̂(xi,x) + b̂, and

thus the estimated optimal ITR is the sign of f̂(x). The covariates with nonzero scaling

factors η̂ are identified to be important in estimating ITRs.

This variable selection technique can be applied to other nonlinear kernels, such as

the polynomial kernel, and even to the linear kernel. However for the linear kernel, we

recommend the approach in the prior section, where the subproblem (3.18) is a convex

optimization problem with p+ 1 variables. Note that the subproblem (3.20) in this section

is nonconvex even for the linear kernel, and there are n+p+1 variables for the optimization

problem. This is much more challenging.
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3.5 Simulation studies

We carried out extensive simulation studies to investigate finite sample performance of

the proposed RWL methods.

We first evaluated the performance of RWL methods with low-dimensional covariates.

In the simulations, we generated 5-dimensional vectors of clinical covariates x1, · · · , x5,

consisting of independent uniform random variables U(−1, 1). The treatment A was gen-

erated from {−1, 1} independently of X with P (A = 1) = 0.5. That is, π(a,x) = 0.5 for

all a and x. The response R was normally distributed with mean Q0 = µ0(x) + δ0(x) · a

and standard deviation 1, where µ0(x) is the common effect for clinical covariates, and

δ0(x) · a is the interaction between treatment and clinical covariates. We considered five

scenarios with different choices of µ0(x) and δ0(x):

(0) µ0(x) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(x) = 0.4(x2 − 0.25x2
1 − 1).

(1) µ0(x) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(x) = 1.8(0.3− x1 − x2).

(2) µ0(x) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(x) = 1.3(x2 − 2x2
1 + 0.3).

(3) µ0(x) = 1 + x2
1 + x2

2 + 2x2
3 + 0.5x2

4; δ0(x) = 3.8(0.8− x2
1 − x2

2).

(4) µ0(x) = 1 + x2
1 + x2

2 + 2x2
3; δ0(x) = 10(1− x2

1 − x2
2)(x2

1 + x2
2 − 0.2).

Scenario 0 is similar with the second scenario in Zhao et al. (2012). When x2 is restricted to

[−1, 1], the treatment arm−1 is always better than the treatment arm 1 on average. Thus the

true optimal ITR in Scenario 0 is to assign all subjects to arm−1. The decision boundaries

for the remaining four scenarios are determined by x1 and x2 only. The scenarios have

different decision boundaries in truth. The decision boundary is a line in Scenario 1, a

parabola in Scenario 2, a circle in Scenario 3, and a ring in Scenario 4. Their true optimal

ITRs are illustrated in Figure 3.3. It is unclear how often a circle or ring boundary structure
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will occur in practice, although general nonlinear boundaries are likely to arise frequently.

The purpose of including these in the simulations is to verify that the proposed approach

can handle even the most difficult boundary structures. The coefficients in Scenarios 0 ∼ 3

were chosen to reflect a medium effect size according to Cohen’s d index (Cohen 1988);

and the coefficients in Scenario 4 reflect a small effect size. The Cohen’s d index is defined

as the standardized difference in mean responses between two treatment arms, that is,

es =
|E(R|A = 1)− E(R|A = −1)|√

[V ar(R|A = 1) + V ar(R|A = −1)]/2
.

We compared the performance of the following five methods:

(1) The proposed RWL using the Gaussian RBF kernel (RWL-Gaussian). Residuals

were estimated by a linear main effects model.

(2) The proposed RWL using the linear kernel (RWL-Linear). Residuals were estimated

by a linear main effects model.

(3) OWL proposed in Zhao et al. (2012) using the Gaussian RBF kernel (OWL-Gaussian).

(4) OWL using the linear kernel (OWL-Linear).

(5) `1-PLS proposed by Qian and Murphy (2011).

The OWL methods were reviewed in the method section. Since the OWL methods can

only handle nonnegative outcomes, we subtracted min{ri} from all outcome responses.

This is essentially the approach used in Zhao et al. (2012) [personal communication].

In the simulation studies, `1-PLS approximated E(R|X, A) using the basis function set

(1,X, A,XA), and applied LASSO (Tibshirani 1994) for variable selection. The optimal

ITR was determined by the sign of the difference between the estimated E(R|X, A = 1)

and E(R|X, A = −1).

57



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

(a) Scenario 1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

(b) Scenario 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

(c) Scenario 3

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

(d) Scenario 4

Figure 3.3: True optimal ITRs in simulation studies. For subjects in the shade area, the
best treatment is 1; for subjects in the white area, the best treatment is −1.

For each scenario, we considered two sample sizes for training datasets: n = 100

and n = 400, and repeated the simulation 500 times. All five methods had at least one

tuning parameter. For example, there was one tuning parameter, λ, in RWL-linear; and

two tuning parameters, λ and σ in RWL-Gaussian. In the simulations, we applied a 10-

fold cross-validation procedure to tune parameters. For RWL-Linear, we searched over a

pre-specified finite set of λ’s to select the best one maximizing the average of estimated
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values from validation data; while for RWL-Gaussian, we searched over a pre-specified

finite set of (λ, σ)’s to select the best pair. The selection of tuning parameters in `1-PLS

and OWL followed similarly. In the comparisons, the performances of five methods were

evaluated by two criteria: the first criterion is the value function under the estimated op-

timal ITR when we applied to an independent and large test dataset; the second criterion

is the misclassification error rate of the estimated optimal ITR from the true optimal ITR

on the large test dataset. Specifically, a test set with 10,000 observations was simulated

to assess the performance. The estimated value function under any ITR d is given by

P∗n[RI(A = d(X))/π(A,X)]/P∗n[I(A = d(X))/π(A,X)] (Murphy 2005), where P∗n de-

notes the empirical average using the test data; the misclassification rate under any ITR d

is given by P∗n[I(d(X) 6= d∗(X))], where d∗ is the true optimal ITR which is known when

generating the simulated data.

The simulation results are presented in Table 3.1. We report the mean and standard

deviation of value functions and misclassification rates over 500 replications. In Scenario

0, the true optimal ITR would assign all subjects to treatment arm −1. When the sample

size was small (n = 100), `1-PLS, OWL-Linear and RWL-Linear showed similar perfor-

mance, while OWL-Gaussian and RWL-Gaussian were slightly worse. Note that when x2

can go beyond 1, the heterogeneous treatment effect does exist with non-linear (parabola)

decision boundary. The deteriorated performance of OWL-Gaussian and RWL-Gaussian

may be due to unexpected extrapolation. When the sample size was large (n = 400), all

methods performed similarly, and assigned almost all subjects to arm−1. Scenario 1 was a

linear example. The model specification in `1-PLS was correct, and this method performed

very well. The proposed RWL methods, with either the linear kernel or the Gaussian

RBF kernel, yielded similar performance with `1-PLS, and were much better than OWL

methods. Another advantage of using RWL versus OWL was also reflected by a smaller

variance in value functions. The idea of using residuals instead of the original outcomes is

able to stabilize the variance, as we discussed in the method section.
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The conditional mean outcomes and decision boundaries in the remaining three sce-

narios were nonlinear. `1-PLS, RWL-Linear, and OWL-Linear were misspecified, and

hence they did not perform very well in these three scenarios. We focus on the compari-

son between RWL-Gaussian and OWL-Gaussian. These two methods equipped with the

Gaussian RBF kernel should have the ability to capture the nonlinear structure of decision

boundaries. In Scenarios 2 and 3, RWL-Gaussian outperformed OWL-Gaussian in terms of

achieving higher values and smaller variances. It was challenging to find the optimal ITR

in Scenario 4 since the decision boundary was complicated and the effective size was small.

When the sample size was small (n = 100), the performance of RWL-Gaussian was only

slightly better than that of OWL-Gaussian, but with larger variance. It might be too hard

to learn the complicated decision boundary from the limited sample. However, when the

sample size increased, RWL-Gaussian showed significantly better performance than other

methods. The excellent performance of RWL-Gaussian confirms its power in finding the

optimal ITR. Although using the Gaussian RBF kernel, the performance of OWL-Gaussian

was not comparable with that of RWL-Gaussian. In Scenario 2, OWL-Gaussian performed

even worse than `1-PLS and RWL-Linear, both of which can only detect linear boundaries.

While in Scenario 4, OWL-Gaussian gave similar performance as OWL-Linear. Zhao et al.

(2012) also reported similar finding in their simulation studies that there are no large dif-

ferences in the performance between OWL-Linear and OWL-Gaussian.

As we demonstrated in Section 3.2.2, OWL methods tend to favor the treatment as-

signments that subjects actually received, and this behavior deteriorates finite sample per-

formance. We calculated treatment matching factors of these five methods on the training

data. They are shown in Table 3.2. We expect the treatment matching factor to be close

to 1. However, the treatment matching factors for OWL methods were greater than 1.

OWL-Gaussian achieved the largest treatment matching factors, especially when the sam-

ple size was small. This may partially explain why OWL-Gaussian may not outperform

OWL-Linear even when the decision boundary is nonlinear. Whereas for RWL methods,
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the treatment matching factors were close to 1. By appropriately controlling the treatment

matching factors, the aim of RWL methods is to maximize the estimate in (3.8), and hence

to improve finite sample performance.

We applied a linear main effects model to estimate residuals. The model was correctly

specified for Scenarios 0, 1 and 2, and misspecified for Scenarios 3 and 4. However, the

superior performance of RWL methods in Scenarios 3 and 4 demonstrates the robustness

of our methods to residual estimates. We also considered a null model, which was mis-

specified for all scenarios, to estimate residuals. The results were only slightly worse than

those shown in Table 3.1 for Scenarios 1 and 2 when n = 100, and other scenarios were

similar especially when the sample size increased [results not shown].

We then evaluated the performance of RWL methods with moderate-dimensional clini-

cal covariates. We adopted the same data generating procedure as in the above five scenar-

ios except that the dimension of clinical covariates was increased from 5 to 50 by adding

45 independent uniform random variables U(−1, 1). Thus among all these 50 clinical co-

variates, only x1 and x2 are attributed to the decision boundaries for Scenarios 1 ∼ 4. We

repeated the simulations, and the results are shown in Table 3.3. In Scenario 0, all meth-

ods performed similar, and assigned almost all subjects to the treatment arm −1 when the

sample size was large (n = 400). In Scenario 1, `1-PLS performed very well because of

correct model specification and inside variable selection techniques. Although RWL meth-

ods showed better performance than OWL methods, they were not comparable to `1-PLS.

The decision boundaries in Scenarios 2 ∼ 4 are nonlinear. Both RWL and OWL failed

to detect the decision boundaries in these scenarios. They produced similar performance

with either the linear kernel or Gaussian RBF kernel. RWL and OWL methods with Gaus-

sian RBF kernel may perform particularly poorly when many non-descriptive covariates

are present.
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We tested the performance of variable selection approaches described in Section 3.4 for

the linear kernel and Gaussian RBF kernel. They are called RWL-VS-Linear and RWL-

VS-Gaussian, respectively, in this work. There were two tuning parameters, λ1 and λ2, for

both approaches. We applied a 10-fold cross-validation procedure to tune parameters from

a pre-specified finite set of (λ1, λ2)’s. The simulation results are also shown in Table 3.3.

In Scenario 0, both RWL-VS methods showed similar performance as RWL methods. In

Scenario 1, both RWL-VS-Linear and RWL-VS-Gaussian improved the performance of

RWL methods. When the sample size was 400, the performance was as good as that of

`1-PLS. For Scenarios 2 ∼ 4, we only present results from RWL-VS-Gaussian. When the

sample size was small (n = 100), the performance was slightly better (in Scenarios 2 and 3)

than, or similar (in scenario 4) as that of RWL-Gaussian. It is well known that large sample

sizes are needed to find interactions in models. So for similar reasons, we may expect large

samples to be necessary to find and confirm the existence of heterogeneity of treatment

effects, and accurately define the decision boundary. In the simulations, when the sample

size increased, the performance of RWL-VS-Gaussian improved significantly. Variable

selection is necessary for RWL when there are many non-descriptive clinical covariates.

3.6 Data analysis

We applied the proposed methods to analyze data from the EPIC randomized clini-

cal trial (Treggiari et al. 2011). The trial was designed to determine the optimal anti-

pseudomonal treatment strategy in children with cystic fibrosis (CF) who recently acquired

Pseudomonas aeruginosa (Pa). Newly identified Pa was defined as the first lifetime doc-

umented Pa positive culture within 6 months of baseline or a Pa positive culture within 6

months of baseline after a two-year absence of Pa culture-positivity. Other eligibility crite-

ria have been previously reported (Treggiari et al. 2009). A total of 304 patients ages 1∼12
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were randomized in a 1:1 ratio to one of two maintenance treatment strategies: cycled

therapy (treatment with anti-pseudomonal therapy provided in quarterly cycles regardless

of Pa positivity) and culture-based therapy (treatment only in response to identification

of Pa positive cultures from quarterly cultures). All patients regardless of randomization

strategy received an initial course of anti-pseudomonal therapy in response to their Pa pos-

itive culture at eligibility and proceeded with treatment according to their randomization

strategy. In this work, we considered two endpoints over the course of the 18-month study.

One is the number of Pa positive cultures from scheduled follow-up quarterly cultures,

and the other is the number of pulmonary exacerbations (PE) requiring any (intravenous,

inhaled, or oral) antibiotic use or hospitalization during the study. In the original clinical

trial, there was no significant difference between the two maintenance treatment strategies

at the population level for either the Pa outcome (p-value 0.222) or PE outcome (p-value

0.280).

We considered 10 baseline clinical covariates, including age, gender, F508del geno-

type, weight, height, BMI, first documented lifetime Pa positive culture at eligibility versus

positive after a two-year history of negative cultures (neverpapos), use of antibiotics within

6 months prior to baseline (anyabxhist), Pa positive at the baseline visit versus Pa positive

within 6 months prior to baseline only (pabl), and positive versus negative baseline S. au-

reus culture status (sabl). There were three levels (homozygous, heterozygous and other)

for F508del genotype. We coded genotype as two dichotomous covariates, homozygous

and heterozygous, each referenced in relation to the “othe” genotype category. Four pa-

tients did not give consent to have their data put into the databank. We also excluded 17

patients with missing covariate values from the analyses. The data used here consisted of

283 patients: 141 in the cycled therapy, and 142 in the culture-based therapy. Each clinical

covariate was linearly scaled to the range [−1,+1], as recommended in Hsu et al. (2003).

For the Pa-related endpoint, we used the ratio of the number of Pa negative cultures
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to the number of Pa cultures over the follow up period as the outcome. We were seeking

an ITR to reduce the number of Pa positive cultures, so larger outcomes were preferred.

We compared seven methods: `1-PLS, OWL-Linear, OWL-Gaussian, RWL-Linear, RWL-

Gaussian, RWL-VS-Linear, and RWL-VS-Gaussian. `1-PLS used the basis function set

(1,X, A,XA) in the regression model. We treated the outcome as continuous, and used

a linear main effects model to estimate residuals for RWL methods. We used a 10-fold

cross-validation procedure to tune parameters. The estimated rule was then used to pre-

dict the optimal treatment for each patient. The predicted treatment allocation is shown

in Table 3.4. To evaluate the performance of estimated rules, we again carried out a

10-fold cross validation procedure. The data were randomly partitioned into 10 roughly

equal-sized parts. We estimated the ITR on nine parts of the data using the tuned pa-

rameters, and predicted optimal treatments on the part left out. We repeated the pro-

cedure nine more times to predict the other parts, and obtained the predicted treatment

for each patient. The first evaluation criterion was the value function, which is given by

Pn[RI(A = Pred)/π(A,X)]/Pn[I(A = Pred)/π(A,X)], where Pn denotes the empiri-

cal average over a fold in cross validation and Pred is the predicted treatment in the cross

validation procedure. The second evaluation criterion was related to significance tests.

The test was performed when a 10-fold cross validation procedure is finished, that is, when

we had the predicted treatments for all patients. By comparing the predicted treatments

with the treatments that were actually assigned to patients, we divided patients into two

groups: those who followed the estimated optimal rule and those who did not follow the

rule. We tested the difference between the two groups using the two-sample t-test to see

whether the group that followed the estimated rule was better than the other group at the

significance level α = 0.05. The whole procedure was repeated 100 times with different

fold partitions in the cross validation. We obtained 1000 value functions and 100 p-values.

The mean and standard deviation of these value functions, the proportion of significant

p-values and median of these p-values are also presented in Table 3.4. As reference rules,
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we also considered two fixed treatment rules: assign all patients to (1) cycled therapy arm

or (2) culture-based therapy arm. We show in Table 3.4 their value functions from repeated

10-fold cross validation procedures and one-sided p-values from two-sample t-tests. Note

that the p-values for fixed rules were not changed during the cross validation procedure.

`1-PLS showed the best performance, and identified that one covariate, baseline Pa sta-

tus, is important in estimating ITRs. The significance tests also confirmed its superior

performance. Both OWL methods failed to detect the heterogeneity of treatment effects.

They assigned all patients to the cycled therapy arm. Although the performances of RWL

methods (without variable selection) were only slightly better, on average, than those of

OWL methods, they did detect some heterogeneity across treatments. Variable selection

further improved the performance in terms of achieving higher values and better signif-

icance tests. Moreover, both RWL-VS-Linear and RWL-VS-Gaussian selected the same

covariate as `1-PLS.

Our results are consistent with results from the trial suggesting that the subgroup of pa-

tients who were Pa negative at the baseline visit (albeit positive within 6 months of baseline

to meet eligibility) may have more greatly benefited from cycled therapy to suppress Pa

positivity during the trial. However, it is important to note clinically that further analyses

of the trial data demonstrated the comparable effectiveness using culture-based therapy as

compared to cycled therapy in reducing the overall prevalence of Pa positive cultures at the

end of the trial.

The number of PEs during the study was a rate variable. We were seeking an ITR to

lower the number of PEs, so fewer PEs were desirable. We compared several methods:

PoissonReg, `1-PoissonReg, OWL-Linear, OWL-Gaussian, RWL-Linear, RWL-Gaussian,

RWL-VS-Linear, and RWL-VS-Gaussian. PoissonReg fitted a Poisson regression model

using the basis function set (1,X, A,XA), computed the predicted number of PEs for a

particular patient at each arm, and assigned the treatment with smaller prediction to this
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patient. `1-PoissonReg was similar with PoissonReg, but used an `1 penalized term to

perform variable selection. For OWL methods, we used the opposite of individual annual

PE rate as the continuous outcome. The annual PE rate for the i-th patient is defined as

ri
ti
∗ 365.25, where ri is the number of PEs for the i-th patient, and ti is the duration (in

days) when the i-th patient stayed in the study. For RWL methods, we used a main effects

Poisson regression model to estimate residuals, as described in Section 3.2.4. A 10-fold

cross-validation was used to tune parameters. The predicted treatment allocation is shown

in Table 3.5. A similar evaluation procedure as that for the Pa endpoint was also performed,

where we used instead the annual PE rate for the group that followed the rule as the first

evaluation criterion. The group-wise annual PE rate is given as Pn[RI(A=Pred)]
Pn[T I(A=Pred)]

∗ 365.25,

where R is the number of PEs, T is the duration (in days) in the study, Pn denotes the

empirical average over a fold in cross validation and Pred is the predicted treatment as-

signment in the cross validation procedure. For the second criterion, a Poisson regression

model was used to test whether the group that followed the estimated rule had fewer PEs

than the other group that did not follow the estimated rule. The results are presented in Ta-

ble 3.5. We also considered two fixed rules as references. All RWL methods outperformed

OWL and Poisson regression methods in terms of achieving better PE rates and better

significance test results. `1-PoissonReg identified three important covariates, baseline Pa

status, baseline S. aureus staus and height, for treatment assignment.

For this case, RWL-VS-Linear and RWL-VS-Gaussian did not improve performances

comparing with their counterparts without variable selection. RWL-VS-Linear did not

discard any clinical covariates. As its tuned parameter λ1 was very small, RWL-VS-Linear

gave a similar performance as RWL-Linear. The estimated rule from RWL-Linear was
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determined by the following decision function F ,

F = 1.43 ∗ I(gender = female) + 0.07 ∗ age− 0.58 ∗ I(neverpapos = yes)

−1.01 ∗ I(pabl =′ +′)− 0.17 ∗ I(sabl =′ +′) + 0.02 ∗ weight + 0.01 ∗ height

−0.17 ∗ I(anyabxhist = yes) + 0.11 ∗ bmi− 0.90 ∗ I(genotype = homozygous)

−0.83 ∗ I(genotype = heterozygous)− 2.90.

The corresponding ITR is that if F > 0, assign cycled therapy to this patient, otherwise as-

sign the culture-based therapy. The proposed rule suggests that female gender and increas-

ing age are key determinants for the potential of a patient to benefit from cycled therapy,

which is not surprising since these characteristics are known risk factors for exacerbations.

Counterintuitively, this rule suggests that Pa positivity at baseline leads against the recom-

mendation for cycled therapy unlike with the prior outcome of increased Pa frequency. The

rule also suggests that patients with genotypes other than delF508 heterozygous and ho-

mozygous may benefit more from cycled therapy as compared to patient with the delF508

mutation. Overall, these results indicate the importance of evaluating multiple endpoints

to evaluate consistency in recommendations for treatment based on these proposed rules.

For RWL-VS-Gaussian, three clinical covariates (age, weight, baseline S. aureus status)

were identified to be unimportant for estimating ITRs. It is well known that the shrinkage

by the `1 penalty causes the estimates of the non-zero coefficients to be biased towards zero

(Hastie et al. 2001). For similar reasons, the estimates from RWL-VS-Gaussian might be

biased. One approach for reducing this bias is to run the `1 penalty method to identify im-

portant covariates, and then fit a model without the `1 term to the selected set of covariates.

We applied RWL-Gaussian to the identified set of covariates. The results are also presented

in Table 3.5. The obtained annual PE rate was better than that from RWL-Gaussian alone.

Thus variable selection is still helpful to improve the performance.

In summary, the proposed RWL methods can identify potentially useful ITRs. For ex-
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ample, the estimated ITR for the Pa endpoint in the EPIC trial is that if the baseline Pa

status is positive, assign culture-based therapy to the patient; if the baseline Pa status is

negative, assign the cycled therapy. As the Pa endpoint was a secondary endpoint in the

trial, the clinical utility of these findings must be weighed in context of all study findings

and safety. But nonetheless identifying such a strategy is important to improve personal-

ized clinical practice if the strategy is confirmed by future comparative studies.

3.7 Discussion

In this work, we have proposed a general framework called Residual Weighted Learn-

ing (RWL) to use outcome residuals to estimate optimal ITRs. The residuals may be ob-

tained from linear models or generalized linear models, and hence RWL can handle various

types of outcomes, including continuous, count and binary outcomes.

The proposed RWL methods appear to achieve better performance compared to other

existing methods as shown in the simulation studies and real data analyses. The goal of

RWL is to improve finite sample performance of OWL methods. It is not surprising that

RWL outperforms OWL in terms of achieving higher value function and smaller variance.

Two-step methods, such as `1-PLS and `1-PoissonReg, are generally parametric. Their

performance largely depends on how close the posited model is to the true model of the

conditional mean outcome. When the model is correctly specified, two-step methods can

be more efficient than nonparametric RWL methods. However, the relationship among

clinical covariates, treatment assignment, and outcome is complex in practice. Misspeci-

fied models may lead to biased estimates.

Both two-step methods and RWL require correct model specification to guarantee their

performance. We consider two levels of model specification. The first one is the model for
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the decision boundary; the other is the model for the outcome. Two-step methods, such

as `1-PLS, only specify models for conditional outcomes, and the decision boundary is

implied from these models. Thus the performance of two-step methods are only related

to these models. However, for RWL, the two levels are separated. RWL methods target

the decision boundary directly. The model for decision boundary is more critical to perfor-

mance. RWL with Gaussian RBF kernel can approximate any form of decision boundary

when the sample size is sufficiently large. Even when using linear kernels, RWL is more ro-

bust to model misspecification on the decision boundary than the two-step methods. If the

conditional mean outcome is assumed to be linear in the parameters, the decision bound-

ary will be also; the converse does not hold. For RWL with linear kernel, the decision

boundary remains a simple linear form, while the conditional mean outcome is allowed to

be nonlinear.

Another source of robustness of RWL comes from the model for the outcome, in which

we estimate residuals. By Theorem 3.3.3, no matter how bad the residual estimate is, RWL

is still consistent. In the simulation studies, we have investigated the robustness of residual

estimates on finite samples. We applied the null model, as an example of incorrect model

specification, to estimate residuals, and achieved satisfactory performance. The simulation

studies confirm the robustness of RWL. In this work, we used simple models to obtain

the residuals. However, RWL is quite flexible in the methods used to estimate residuals.

When the sample size is small or the heterogeneous treatment effect is weak, we may con-

sider a complicated method to accurately estimate residuals to improve the performance

of RWL. Alternatively, nonparametric regression methods, such as support vector regres-

sion (Vapnik 1998) or random forests (Breiman 2001), are an option to eliminate model

misspecification.

RWL is closely related to a robust augmented inverse probability weighted estima-

tor (AIPWE) of the value function. AIPWE was first introduced into optimal treatment
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regimes by Zhang et al. (2012b). Under the setup in this article, i.e., A = {1,−1} and

π(a,x) is known, for any rule d, its associated value function can be estimated by an

AIPWE,

AIPWE(d) =
1

n

n∑
i=1

{
I(d(xi) = ai)

π(ai,xi)
Ri −

I(d(xi) = ai)− π(ai,xi)

π(ai,xi)
m̂(xi)

}
,

where m̂(x) = µ̂1(x)I(d(x) = 1) + µ̂−1(x)I(d(x) = −1), µ̂1(x) is an estimate of

E(R|X = x, A = 1), and µ̂−1(x) is an estimate of E(R|X = x, A = −1). If we

take ĝ∗(x) = m̂(x), for a fixed d(x), then maximizing AIPWE is equivalent to minimiz-

ing the risk in (3.6). Hence AIPWE is essentially a “contrast” weighted learning method,

where the contrast is a modelled form that links closely to the residual. Conversely, if we

take µ̂1(x) = µ̂−1(x) = ĝ∗(x), where ĝ∗(x) estimates g∗(x) in (3.5), then maximizing

AIPWE is again equivalent to minimizing (3.6). However, RWL can now be obtained by

replacing the 0-1 loss with the smoothed ramp loss, and hence RWL can be viewed as a

modification of AIPWE with alternative useful connections to classification methods.

Variable selection is critical for good performance of RWL, as demonstrated in the sim-

ulation studies and data analyses. We suggest that practical use of RWL should necessarily

be accompanied by variable selection. In Section 3.4, we introduce the concepts of pre-

dictive and prescriptive covariates. It has been noticed in practical settings that the main

effects, rather than treatment-covariate interactions, tend to explain most of the variability

in the outcome, and thus they are important for good prediction (Gunter et al. 2011). It

is not uncommon that interactions between prescriptive covariates and treatment are over-

looked due to their small predictive ability. Hence variable selection techniques designed

for prediction applications might not work perfectly in finding the prescriptive covariates.

In contrast, RWL focuses on treatment-covariate interactions, and variable selection in

RWL only targets the prescriptive covariates.

RWL methods with linear and Gaussian RBF kernels were discussed in this work. The

decision rule from linear RWL is easy to interpret, but at the risk of misspecification. As
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a universal kernel, the Gausian RBF kernel is free of model misspecification. An obvious

downside is that the final decision rule may be difficult to interpret, and clinical practi-

tioners may not be comfortable using “black box” decision rules. One compromise is to

apply linear RWL with a rich set of bases, for example, including two-way and three-way

covariate interactions.

When the endpoint outcome is the survival time, observations are commonly subject to

right censoring because of subject dropout or censoring due to the end of study. Currently,

RWL does not cover this type of outcomes in theory due to the censorship. We recommend

using martingale residuals (Fleming and Harrington 1991) as alternative outcomes. Specif-

ically, residuals in RWL could be opposites of martingale residuals that are estimated by a

Cox proportional hazards model on clinical covariates but excluding treatment assignment.

Actually, the idea is not new. Therneau et al. (1990) suggested that martingale residuals

from a null Cox model could be used as outcomes for Classification and Regression Trees

(CART). The rigourous theoretical justification is under development. Here we provide an

intuitive explanation. Let T denote the survival time, and C denote the censoring time.

The observed data quadruplet is (X, A,R = T ∧ C,∆ = I(T ≤ C)). Firstly, for general

survival analysis, (R,∆) is seen as the censored outcome. We view the survival data from

a different perspective. We treat ∆ as the outcome, and (X, R) as clinical covariates. In

the framework of counting processes, the martingale residual can be explained as the dif-

ference between the observed number of failures (0 or 1) during the time in the study for

a subject and the expected numbers based on the fitted model. Thus it is almost in line

with our derivation of RWL, although R may not be appropriate as a clinical covariate.

Secondly, martingale residuals from a Cox model fitted excluding a covariate of interest

can be used to determine the appropriate functional form of the covariate (Therneau et al.

1990). If we estimate martingale residuals by ignoring treatment assignment, they contain

information related to the heterogeneity of treatment effects. Thirdly, martingale residuals

have some properties reminiscent of linear models, for example, the residuals are asymp-
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totically uncorrelated. Moreover, the weighted sum of martingale residuals is zero, which

is essential for RWL to control the treatment matching factor.

Several extensions are worthy of further investigation. In this work, we only consid-

ered two-arm trials. In practice, some trials involve multiple arms, i.e. have three or more

treatment arms. A recent review by Baron et al. (2013) reported that 17.6% of published

randomized clinical trials in 2009 were multiple-arm. Because of the number of possible

comparisons, it is more complex to find ITRs in such trials compared with two-arm trials.

It would thus be worthwhile to extend RWL to multiple-arm trials. In the machine learning

literature, two schools of approaches are generally suggested for multi-category classifica-

tion. One is to directly take all classes into consideration. Multicategory SVMs (Lee et al.

2004) and penalized logistic regression (Zhu and Hastie 2004) are two examples. The other

school is to construct and combine several binary classifiers. One-versus-one, one-versus-

all, and more general error-correcting output codes (Dietterich and Bakiri 1995, ECOC) are

in this school. Similar generalizations may be possible for finding ITRs for multiple-arm

trials.

For chronic diseases, multi-stage dynamic treatment regimes are more useful than

single-stage optimal treatment regimes. In the context of multi-stage decision problems,

a dynamic treatment regime is a sequence of decision rules, one per stage of intervention,

for adapting a treatment plan over time to an individual. Zhao et al. (2015) has extended

OWL to dynamic treatment regimes. Considering the improved performance of RWL over

OWL, it is of interest to extend RWL to dynamic treatment regimes.

The intended use of the estimated optimal ITRs discovered using the proposed ap-

proach is for treating new patients. The theoretical, simulation and data analysis results

demonstrate that such estimated ITRs are likely to lead to improved clinical outcomes for

these patients. However, since the data used for estimating the ITRs should not also be

used for confirmation, it is expected that an additional randomized clinical trial compar-
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ing the estimated ITR with standard of care, or some other suitable treatment comparison,

will be used for confirmation as is typically done for new candidate treatments (Zhao et al.

2011).
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Table 3.1: Mean (std) of empirical value functions and misclassification rates evaluated on
independent test data for 5 simulation scenarios with 5 covariates. The best value function
and minimal misclassification rate for each scenario and sample size combination are in
bold.

n = 100 n = 400

Value Misclassification Value Misclassification

Scenario 0 (Optimal value 1.43)

`1-PLS 1.41 (0.07) 0.05 (0.10) 1.42 (0.01) 0.02 (0.04)
OWL-Linear 1.39 (0.11) 0.07 (0.14) 1.43 (0.02) 0.01 (0.04)
OWL-Gaussian 1.33 (0.15) 0.13 (0.18) 1.41 (0.05) 0.03 (0.08)
RWL-Linear 1.40 (0.05) 0.06 (0.09) 1.42 (0.02) 0.03 (0.05)
RWL-Gaussian 1.34 (0.10) 0.13 (0.13) 1.40 (0.04) 0.07 (0.07)

Scenario 1 (Optimal value 2.25)

`1-PLS 2.22 (0.03) 0.06 (0.04) 2.24 (0.02) 0.03 (0.03)
OWL-Linear 1.91 (0.22) 0.23 (0.09) 2.08 (0.14) 0.16 (0.06)
OWL-Gaussian 1.88 (0.24) 0.24 (0.09) 2.08 (0.12) 0.16 (0.06)
RWL-Linear 2.19 (0.04) 0.09 (0.04) 2.23 (0.01) 0.05 (0.02)
RWL-Gaussian 2.17 (0.06) 0.11 (0.04) 2.22 (0.02) 0.05 (0.02)

Scenario 2 (Optimal value 1.96)

`1-PLS 1.71 (0.07) 0.24 (0.04) 1.75 (0.01) 0.22 (0.01)
OWL-Linear 1.51 (0.12) 0.32 (0.05) 1.59 (0.10) 0.29 (0.06)
OWL-Gaussian 1.49 (0.15) 0.33 (0.06) 1.63 (0.11) 0.26 (0.05)
RWL-Linear 1.66 (0.08) 0.26 (0.04) 1.74 (0.03) 0.23 (0.02)
RWL-Gaussian 1.75 (0.09) 0.20 (0.05) 1.90 (0.03) 0.10 (0.03)

Scenario 3 (Optimal value 3.88)

`1-PLS 3.00 (0.11) 0.38 (0.03) 3.03 (0.04) 0.37 (0.01)
OWL-Linear 2.98 (0.10) 0.38 (0.03) 3.01 (0.02) 0.38 (0.01)
OWL-Gaussian 3.21 (0.18) 0.32 (0.05) 3.56 (0.12) 0.22 (0.04)
RWL-Linear 3.15 (0.13) 0.34 (0.03) 3.28 (0.04) 0.31 (0.01)
RWL-Gaussian 3.62 (0.12) 0.19 (0.04) 3.82 (0.04) 0.10 (0.02)

Scenario 4 (Optimal value 3.87)

`1-PLS 2.29 (0.14) 0.49 (0.08) 2.38 (0.15) 0.55 (0.08)
OWL-Linear 2.42 (0.14) 0.55 (0.08) 2.49 (0.11) 0.59 (0.06)
OWL-Gaussian 2.43 (0.15) 0.52 (0.07) 2.59 (0.15) 0.50 (0.07)
RWL-Linear 2.42 (0.14) 0.54 (0.09) 2.49 (0.10) 0.58 (0.08)
RWL-Gaussian 2.68 (0.28) 0.43 (0.08) 3.49 (0.08) 0.22 (0.03)
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Table 3.2: Mean (std) of treatment matching factors evaluated on the training data for 5
simulation scenarios with 5 covariates.

n = 100 n = 400

Scenario 0

`1-PLS 1.00 (0.04) 1.00 (0.01)
OWL-Linear 1.03 (0.07) 1.00 (0.01)
OWL-Gaussian 1.14 (0.24) 1.02 (0.06)
RWL-Linear 1.00 (0.04) 1.00 (0.01)
RWL-Gaussian 1.00 (0.06) 1.00 (0.03)

Scenario 1

`1-PLS 0.99 (0.10) 0.99 (0.05)
OWL-Linear 1.10 (0.08) 1.04 (0.04)
OWL-Gaussian 1.15 (0.13) 1.05 (0.05)
RWL-Linear 0.99 (0.09) 0.99 (0.04)
RWL-Gaussian 0.99 (0.08) 0.99 (0.04)

Scenario 2

`1-PLS 1.00 (0.09) 1.00 (0.04)
OWL-Linear 1.06 (0.09) 1.03 (0.04)
OWL-Gaussian 1.18 (0.20) 1.10 (0.07)
RWL-Linear 1.00 (0.08) 1.00 (0.04)
RWL-Gaussian 1.01 (0.07) 1.00 (0.04)

Scenario 3

`1-PLS 1.00 (0.05) 1.00 (0.01)
OWL-Linear 1.02 (0.06) 1.00 (0.02)
OWL-Gaussian 1.32 (0.17) 1.14 (0.05)
RWL-Linear 1.01 (0.06) 1.01 (0.04)
RWL-Gaussian 1.04 (0.06) 1.02 (0.04)

Scenario 4

`1-PLS 1.00 (0.08) 1.00 (0.03)
OWL-Linear 1.07 (0.10) 1.02 (0.04)
OWL-Gaussian 1.37 (0.34) 1.27 (0.24)
RWL-Linear 1.00 (0.06) 1.00 (0.03)
RWL-Gaussian 1.00 (0.08) 1.02 (0.04)
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Table 3.3: Mean (std) of empirical value functions and misclassification rates evaluated
on independent test data for 5 simulation scenarios with 50 covariates. The best value
function and minimal misclassification rate for each scenario and sample size combination
are in bold.

n = 100 n = 400

Value Misclassification Value Misclassification

Scenario 0 (Optimal value 1.43)

`1-PLS 1.34 (0.15) 0.11 (0.17) 1.42 (0.03) 0.03 (0.06)
OWL-Linear 1.36 (0.15) 0.08 (0.17) 1.43 (0.03) 0.01 (0.03)
OWL-Gaussian 1.35 (0.14) 0.10 (0.16) 1.42 (0.04) 0.01 (0.05)
RWL-Linear 1.38 (0.11) 0.07 (0.13) 1.42 (0.04) 0.03 (0.06)
RWL-Gaussian 1.34 (0.13) 0.11 (0.15) 1.40 (0.05) 0.04 (0.07)
RWL-VS-Linear 1.34 (0.11) 0.11 (0.14) 1.40 (0.04) 0.05 (0.06)
RWL-VS-Gaussian 1.33 (0.12) 0.13 (0.14) 1.41 (0.03) 0.05 (0.06)

Scenario 1 (Optimal value 2.25)

`1-PLS 2.17 (0.11) 0.09 (0.06) 2.23 (0.02) 0.04 (0.03)
OWL-Linear 1.51 (0.12) 0.37 (0.03) 1.68 (0.10) 0.32 (0.03)
OWL-Gaussian 1.49 (0.13) 0.38 (0.04) 1.65 (0.11) 0.32 (0.04)
RWL-Linear 1.75 (0.14) 0.29 (0.05) 2.14 (0.03) 0.13 (0.02)
RWL-Gaussian 1.77 (0.12) 0.29 (0.04) 2.14 (0.03) 0.13 (0.02)
RWL-VS-Linear 2.05 (0.14) 0.17 (0.07) 2.22 (0.02) 0.06 (0.03)
RWL-VS-Gaussian 2.02 (0.18) 0.18 (0.08) 2.21 (0.08) 0.06 (0.04)

Scenario 2 (Optimal value 1.96)

`1-PLS 1.56 (0.19) 0.30 (0.07) 1.73 (0.03) 0.23 (0.01)
OWL-Linear 1.42 (0.14) 0.37 (0.04) 1.47 (0.06) 0.35 (0.01)
OWL-Gaussian 1.40 (0.14) 0.38 (0.04) 1.47 (0.07) 0.35 (0.02)
RWL-Linear 1.42 (0.12) 0.36 (0.04) 1.60 (0.05) 0.28 (0.02)
RWL-Gaussian 1.40 (0.14) 0.36 (0.04) 1.62 (0.05) 0.28 (0.02)
RWL-VS-Gaussian 1.56 (0.15) 0.30 (0.07) 1.92 (0.06) 0.09 (0.05)

Scenario 3 (Optimal value 3.88)

`1-PLS 2.90 (0.19) 0.40 (0.05) 3.00 (0.04) 0.38 (0.01)
OWL-Linear 2.96 (0.14) 0.39 (0.04) 3.00 (0.02) 0.38 (0.01)
OWL-Gaussian 2.97 (0.11) 0.39 (0.03) 3.00 (0.03) 0.38 (0.01)
RWL-Linear 2.90 (0.18) 0.40 (0.05) 3.00 (0.05) 0.38 (0.01)
RWL-Gaussian 2.88 (0.18) 0.41 (0.05) 2.96 (0.09) 0.39 (0.02)
RWL-VS-Gaussian 3.17 (0.33) 0.33 (0.09) 3.82 (0.13) 0.09 (0.05)

Scenario 4 (Optimal value 3.87)

`1-PLS 2.32 (0.09) 0.49 (0.05) 2.36 (0.09) 0.52 (0.05)
OWL-Linear 2.41 (0.14) 0.55 (0.08) 2.48 (0.11) 0.59 (0.06)
OWL-Gaussian 2.43 (0.13) 0.55 (0.07) 2.47 (0.11) 0.58 (0.06)
RWL-Linear 2.38 (0.13) 0.53 (0.07) 2.44 (0.12) 0.56 (0.07)
RWL-Gaussian 2.37 (0.13) 0.53 (0.07) 2.44 (0.12) 0.56 (0.07)
RWL-VS-Gaussian 2.37 (0.12) 0.51 (0.05) 3.47 (0.47) 0.21 (0.15)
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Table 3.4: Comparison of methods for estimating ITRs on the EPIC data with the Pa
endpoint. Higher values are better.

Predicted treatment Mean value Prop. of sig. Median
#cycled vs #culture (std) p-values p-value

`1-PLS 168 : 115 0.913 (0.040) 1 0.004
OWL-Linear 283 : 0 0.894 (0.054) 0 0.111
OWL-Gaussian 283 : 0 0.894 (0.054) 0 0.111
RWL-Linear 178 : 105 0.896 (0.046) 0.37 0.072
RWL-Gaussian 169 : 114 0.900 (0.045) 0.64 0.0404
RWL-VS-Linear 168 : 115 0.909 (0.044) 0.90 0.002
RWL-VS-Gaussian 168 : 115 0.907 (0.045) 0.85 0.007
Fixed rule (cycled) 283 : 0 0.894 (0.054) 0 0.111
Fixed rule (culture-based) 0 : 283 0.864 (0.054) 0 0.889

Table 3.5: Comparison of methods for estimating ITR on the EPIC data with the PE
endpoint. Lower annual PE rates are better.

Predicted treatment Mean annual Prop. of sig. Median
#cycled vs #culture PE rate (std) p-values p-value

PoissonReg 150 : 133 0.742 (0.224) 0.21 0.245
`1-PoissonReg 120 : 163 0.707 (0.233) 0.55 0.042
OWL-Linear 141 : 142 0.722 (0.236) 0.27 0.123
OWL-Gaussian 140 : 143 0.714 (0.247) 0.33 0.079
RWL-Linear 105 : 178 0.673 (0.226) 0.82 0.013
RWL-Gaussian 108 : 175 0.667 (0.220) 0.90 0.008
RWL-VS-Linear 105 : 178 0.676 (0.227) 0.75 0.013
RWL-VS-Gaussian 108 : 175 0.688 (0.218) 0.69 0.024
RWL-VS-Gaussian
+ RWL-Gaussian 102 : 181 0.639 (0.220) 0.97 0.001
Fixed rule (cycled) 283 : 0 0.725 (0.245) 0 0.140
Fixed rule (culture-based) 0 : 283 0.823 (0.253) 0 0.860
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CHAPTER 4: QUALITATIVE TREATMENT-COVARIATE INTERACTIONS

4.1 Introduction

Medical researchers typically examine response to treatment for heterogeneous sam-

ples of subjects in a clinical trial. For example, they may want to know whether a treatment

effect is different in older subjects versus younger subjects, or in men versus women. If

for a group of subjects, a treatment is beneficial, but it is harmful for others, this should be

discovered. Examining only the overall treatment effect may obscure an important effect

of treatment in some specific subgroups.

Interaction is one of the fundamental concepts of statistical analysis. For personal-

ized medicine, it is important to understand the treatment interaction, which is the non-

random variability in the direction or magnitude of the treatment effect. Peto (1982) has

distinguished quantitative interactions from qualitative interactions. A qualitative inter-

action arises when the direction of the treatment effect changes among different subsets

of patients, while for the quantitative interaction, the treatment effect varies only in the

magnitude, but not the direction.

Qualitative interactions are relatively rare (Yusuf et al. 1991), but when they do oc-

cur they are usually quite useful for personalized medicine. Most existing approaches to

test qualitative interactions focus on predefined subgroups (Gail and Simon 1985, Zelter-

man 1990, Li and Chan 2006). Optimal treatment regimes have been recently received

increasing attention in the statistical community. The target of optimal treatment regimes

is just the qualitative interaction. In this work, we formulate hypotheses for qualitative

interactions in the language of optimal treatment regimes, and propose a permutation test
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for qualitative interactions without any prior information on the subgroups.

The remainder of the chapter is organized as follows. In Section 4.2, we review the

residual weighted learning (RWL), and propose a modified version, called mirrored resid-

ual weighted learning (MRWL), to reduce the computational cost. Parameter tuning is

an important issue in statistical learning. We extend the .632+ bootstrap to optimal treat-

ment regime for parameter tuning. Then we propose a permutation test for qualitative

interactions. In Section 4.3, we present simulation studies to evaluate performance of the

proposed permutation test. The method is then illustrated on the two randomized clinical

trials, the Nefazodone-CBASP clinical trial (Keller et al. 2000) and the EPIC cystic fibro-

sis randomized clinical trial (Treggiari et al. 2009; 2011), in Section 4.4. We conclude the

article in Section 4.5.

4.2 Method

4.2.1 Context and notations

Consider a two-arm randomized trial. We observe a triplet (X, A,R) from each pa-

tient, where X = (X1, · · · , Xp)
T ∈ X denotes the patient’s clinical covariates, A ∈ A =

{1,−1} denotes the treatment assignment, and R is the observed clinical outcome. As-

sume without loss of generality that larger values of R are more desirable. Let π(a,x) :=

P (A = a|X = x) be the probability of being assigned treatment a for patients with clini-

cal covariates x. It is predefined in the trial design. We assume π(a,x) > 0 for all a ∈ A

and x ∈ X .

A treatment regime is a function from X to A. An optimal treatment regime is a

regime that maximizes the expected outcome under this regime, E(R|A = d(X)). This

expectation, denoted by V(d), is called the value function associated with the regime d.

79



Assuming that the data generating mechanism is known, the optimal treatment regime is

dictated by the following Bayes rule,

d∗(x) = sign
(
E(R|X = x, A = 1)− E(R|X = x, A = −1)

)
,

where sign(u) = 1 for u > 0 and −1 otherwise. We are particularly interested in a non-

informative rule d0, i.e., all subjects are assigned to a same treatment regardless of their

clinical covariates. The optimal non-informative rule is defined as,

d∗0(x) = sign
(
E(R|A = 1)− E(R|A = −1)

)
, for any x ∈ X .

4.2.2 Residual weighted learning

Mathematically, the value function associated with a regime d is given as

V(d) = E(R|A = d(X)) = E
(

R

π(A,X)
I
(
A = d(X)

))
,

where I(·) is the indicator function (Qian and Murphy 2011). Thus finding d∗ is equivalent

to the following minimization problem:

d∗ ∈ arg min
d

E
(

R

π(A,X)
I
(
A 6= d(X)

))
. (4.1)

Zhao et al. (2012) viewed this as a weighted classification problem, and proposed outcome

weighted learning (OWL) to apply state-of-the-art support vector machines for implemen-

tation. This approach opens the door to application of statistical learning techniques to

optimal treatment regimes. However, as pointed out by Zhou et al. (2015), this approach

is not perfect. First, the estimated regime of OWL is affected by a simple shift of the out-

comeR. Hence estimates from OWL are unstable especially when the sample size is small.

Second, since OWL needs the outcome to be nonnegative to gain computational efficiency

from convex programming, OWL works similarly to weighted classification, whose inten-

tion is to reduce misclassification errors, the differences between the estimated and true
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treatments. Thus the regime by OWL tends to keep the treatments that subjects actually re-

ceived. This behavior is not ideal for data from a randomized clinical trial, since treatments

are actually randomly assigned to patients.

To alleviate these problems, Zhou et al. (2015) proposed residual weighted learning

(RWL), in which the misclassification errors are weighted by residuals of the outcome R

from a regression fit on clinical covariatesX . The residuals are calculated as

R̂ = R− ĝ(X), (4.2)

where ĝ is an estimate of E( R
2π(A,X)

|X). ĝ can be obtained by using weighted linear mod-

els, weighted generalized linear models or other nonparametric regression methods, such

as support vector regression (Vapnik 1998) and random forests (Breiman 2001). Unlike

OWL in (4.1), RWL targets the following optimization problem,

d∗ ∈ arg min
d

E

(
R̂

π(A,X)
I
(
A 6= d(X)

))
. (4.3)

The use of residuals in optimal treatment regimes is justified as follows, for any measurable

function g,

E
(
R− g(X)

π(A,X)
I
(
A 6= d(X)

))
= E

(
R

π(A,X)
I
(
A 6= d(X)

))
− E (g(X)) .

Assume that the observed data {(Xi, Ai, Ri) : i = 1, · · · , n} are collected indepen-

dently. For any decision function f(X), let df (X) = sign
(
f(X)

)
be the associated

regime. RWL aims to minimize the following regularized empirical risk,

1

n

n∑
i=1

R̂i

π(Ai,Xi)
T
(
Aif(Xi)

)
+ λ||f ||2, (4.4)

where T (·) is a continuous surrogate loss function, ||f || is some norm for f , and λ is a

tuning parameter.

Since some residuals are negative, convex surrogate loss functions are not appropriate

in (4.4). Zhou et al. (2015) considered a non-convex loss, the smoothed ramp loss func-

tion. The non-convex loss is shown to be robust to outliers (Wu and Liu 2007), which
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is helpful for RWL, especially when residuals are poorly estimated. On the other hand,

the non-convexity presents significant challenges for solving the optimization problem

(4.4). Unlike convex functions, non-convex functions may possess local optima that are

not global optima, and most of efficient optimization algorithms such as gradient descent

and coordinate descent are only guaranteed to converge to a local optimum. Zhou et al.

(2015) applied a difference of convex (d.c.) algorithm to address the non-convex optimiza-

tion problem by solving a sequence of convex subproblems. However, the d.c. algorithm

is still computationally intensive.

4.2.3 Mirrored residual weighted learning (MRWL)

As a desire to reduce the computational cost of RWL, we develop a modified RWL

method, which still takes the advantage of efficient convex optimization. The modified

method is based on a finding in Liu et al. (2015),

E
(
|R|

π(A,X)
I
(
Asign(R) 6= d(X)

))
= E

(
R

π(A,X)
I
(
A 6= d(X)

))
+E

(
R−

π(A,X)

)
,

where R− = max(−R, 0). Therefore finding d∗ in (4.3) is equivalent to the following

optimization problem,

d∗ ∈ arg min
d

E

(
|R̂|

π(A,X)
I
(
Asign(R̂) 6= d(X)

))
, (4.5)

where negative residuals are reflected to positive, and accordingly their treatments are

switched to the opposites. We propose to minimize the following empirical risk to find

a decision function f ,

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

I
(
Aisign(R̂i) 6= df (Xi)

)
.

Similarly with OWL and RWL, we instead seek the decision function f by minimizing

a regularized surrogate risk,

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)f(Xi)

)
+ λ||f ||2, (4.6)
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where T (·) is a continuous surrogate loss function, ||f || is some norm for f , and λ is a

tuning parameter controlling the trade-off between empirical risk and complexity of the

decision function f . This method is called mirrored residual weighted learning (MRWL).

As the weights |R̂i|
π(Ai,Xi)

are nonnegative, convex surrogate can be employed for efficient

computation. In this article, we apply the Huberized hinge loss function (Wang et al.

2008),

φ(u) =


0 if u ≥ 1,

1
4
(1− u)2 if − 1 ≤ u < 1,

−u if u < −1.

Other loss functions, such as the hinge loss, can be also applied in MRWL. The Huberized

hinge loss is smooth everywhere. Hence it has computational advantages in optimization.

MRWL possesses almost all desirable properties of RWL. First, by using residuals,

MRWL stabilizes the variability introduced from the original outcome. Second, to mini-

mize the empirical risk in (4.6), similarly with RWL, for subjects with positive residuals,

MRWL tends to recommend the same treatments that subjects have actually received; for

subjects with negative residuals, MRWL is apt to give the opposite treatments to what they

have received. Thus due to the balance between positive and negative residuals, MRWL

favors neither the treatments that subjects actually received nor their opposites. Third,

MRWL is location-scale invariant with respect to the original outcomes. Specifically, the

estimated regime from MRWL is invariant to a shift of the outcome; it is invariant to a

scaling of the outcome with a positive number; the regime from RWL that maximizes the

outcome is opposite to the one that minimizes the outcome. These are intuitively sensible.

The only nice property of RWL that is not inherited by MRWL is the robustness to outliers

because of the unbounded convex loss in MRWL. However, we may apply an appropri-

ate method or model to estimate the residuals to reduce the probability of outliers. The

computational advantage for MRWL is a big plus for our later proposed permutation test.
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We are particular interested in a linear regime, which is simple and easy for interpreta-

tion. Xu et al. (2015) argued that for many popular models, it is sufficient to find an optimal

linear rule. Consider a linear decision function f(X) = wTX + b. The associated regime

df will assign a subject with clinical covariates X into treatment 1 if wTX + b > 0 and

−1 otherwise. In (4.6), we define ||f || as the Euclidean norm ofw. Then the minimization

problem (4.6) can be rewritten as

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)

(
wTXi + b

))
+
λ

2
wTw. (4.7)

There are many efficient numerical methods for solving this smooth unconstrained op-

timization problems. One example is the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) algorithm (Nocedal 1980). L-BFGS is a quasi-Newton method that

approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a limited

amount of computer memory.

In Appendix C.1, we provided more details about MRWL, including the nonlinear ex-

tension of MRWL. We compared finite sample performance of MRWL and RWL, and pre-

sented the simulation results in Appendix C.2. As evident from Table C.1, MRWL showed

similar performance as RWL when the decision boundary was not very complicated.

Variable selection is an important topic in modern statistical research. Zhou et al.

(2015) applied the elastic-net penalty for linear RWL. In this article, we also replace the

`2-norm penalty in linear MRWL with the elastic-net penalty,

λ1||w||1 +
λ2

2
wTw,

where ||w||1 =
∑p

j=1 |wj| is the `1-norm, and λ1(> 0) and λ2(> 0) are regularization

parameters.

The elastic-net penalized linear MRWL aims to minimize

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)

(
wTXi + b

))
+ λ1||w||1 +

λ2

2
wTw. (4.8)

84



It is popular to use coordinate descent methods to solve such an optimization problem

(Friedman et al. 2010, Yang and Zou 2013). However, under some circumstance, coor-

dinate descent methods may suffer from slow convergence. In this article, we apply the

general iterative shrinkage and thresholding (GIST) algorithm (Gong et al. 2013). GIST

updates all coordinates simultaneously through a gradient descent and a thresholding rule,

and it is easy to implement. We do not delve into the details of GIST. Interested readers

may refer to Gong et al. (2013). The obtained decision function is f̂(x) = ŵTx + b̂, and

thus the estimated optimal treatment regime is the sign of f̂(x).

4.2.4 Theoretical properties of elastic-net penalized linear MRWL

In this section, we establish theoretical properties for the elastic-net penalized linear

MRWL. To the end, suppose that a sample Dn = {Xi, Ai, Ri}ni=1, is independently drawn

from a probability measure P on X × A × R, where X ⊂ Rp. For any treatment regime

d : X → A, the risk is defined as

R(d) = E
(

R

π(A,X)
I(A 6= d(X))

)
.

The regime that minimizes the risk is the Bayes regime d∗ = arg mindR(d), and the

corresponding riskR∗ = R(d∗) is the Bayes risk. Recall that the Bayes regime is d∗(x) =

sign(E(R|A = 1,X = x)− E(R|A = 1,X = x).

For any measurable function g, let R̂g = R− g(x). We define the φ-risk as

Rφ,g(f) = E

(
|R̂g|

π(A,X)
φ
(
Asign(R̂g)f(X)

))
.

In the theoretical analysis, we do not require g to be a regression fit of R. g can be any

arbitrary measurable function.

Let (w̃λ1,λ2 , b̃λ1,λ2) be a solution of the following optimization problem:

min
w∈Rp,b∈R

λ1||w||1 +
λ2

2
wTw +Rφ,g(w

TX + b). (4.9)
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Let wn, bn be a minimizer of the following empirical optimization problem,

1

n

n∑
i=1

|R̂gi|
π(Ai,Xi)

φ
(
Aisign(R̂i)

(
wTXi + b

))
+ λ1n||w||1 +

λ2n

2
wTw. (4.10)

For simplicity, we denote f̃λ1,λ2(X) = w̃T
λ1,λ2

X + b̃λ1,λ2 and fn(X) = wT
nX + bn.

We require some assumptions for consistency analysis.

(A1) X is compact.

(A2) E
(
|R̂g|/π(A,X)

)
<∞.

(A3) There exist λ∗1 ≥ 0 and λ∗2 ≥ 0 such thatR(sign(f̃λ1,λ2)) = R∗.

(A4) There is a unique solution (w̃λ∗1,λ
∗
2
, b̃λ∗1,λ∗2) for (4.9) when λ1 = λ∗1 and λ2 = λ∗2.

Assumption (A1) is common in theoretical analysis. Assumption (A2) is weaker than

the bounded assumption in the theoretical analysis of RWL. It is plausible in real data

applications. Assumption (A3) is a key assumption. It implies that the Bayes rule can be

approximated by the sign of a linear solution in (4.9) when the tuning parameters λ1 and

λ2 are appropriately set. Assumption (A4) is related to identification. It generally holds

when the dimensionality p is not high. The following theorem establishes consistency of

the elastic-net penalized linear MRWL.

Theorem 4.2.1. For any distribution P for (X, A,R) satisfying assumptions (A1)∼(A4)

and sequences of λ1n > 0 and λ2n > 0 such that λ1n → λ∗1 and λ2n → λ∗2, we have that in

probability wn → w̃λ∗1,λ
∗
2
, bn → b̃λ∗1,λ∗2 , andR(sign(fn))→ R∗.

The consistency ofwn and bn is a direct application of Theorem 2.7 in Newey and Mc-

Fadden (1986). The consistency of the riskR(sign(fn)) is a simple exercise of dominated

convergence theorem. Here we skip the proof.
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4.2.5 Parameter tuning

There are two parameters in the elastic-net penalized MRWL. Note that the parameter

λ1 controls variable selection, and hence it is sensitive to the performance. Cross-validation

is a commonly used method for tuning parameters in optimal treatment regimes (Zhao et al.

2012, Zhou et al. 2015). However, when the parameters are sensitive to performance, cross-

validation may not be appropriate. First, cross-validation does not take into consideration

the performance when applying the parameters on the whole data. Consider a case where

there is only one covariate related to the optimal treatment regime. In the cross-validation

procedure, we may obtain the tuned parameters which only identify the correct covariate

in the cross-validation procedure, but it is possible that the tuned parameters may result

in a non-informative regime on the whole data, in which none of covariates are identi-

fied. Second, consider two optimization problems for MRWL. One is (4.8), the other is as

follows,

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)

(
wTXi + b

))
+ λ′1||w||1 +

λ′2
2
wTw. (4.11)

They are equivalent with respect to λ′1 = nλ1 and λ′2 = nλ2. However, when we perform

k-fold cross-validation on them, the tuned parameters are not equivalent any more. Specif-

ically, suppose the tuned parameters in (4.8) are λ∗1 and λ∗2. Then the tuned parameters

in (4.11) must be k−1
k
nλ∗1 and k−1

k
nλ∗2. The additional scale k−1

k
may have a large impact

when the parameters are sensitive to performance.

In the literature on error rate estimation for patter classification, .632+ bootstrap (Efron

and Tibshirani 1997) is an alternative resampling method to cross-validation. It has several

nice properties that may be helpful to alleviate the above-mentioned problems of cross-

validation. For instance, .632+ bootstrap estimator takes into account the performance on

the whole data, and the bootstrap resampling keeps the sample size unchanged. In this

section, we develop a .632+ bootstrap estimator of the value function in optimal treatment
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regimes.

Assume that the observed data Z = {(Xi, Ai, Ri) : i = 1, · · · , n} are collected in-

dependently. For simplicity, denote Zi = (Xi, Ai, Ri). For a certain optimal treatment

regime algorithm, let dZ be the regime based on the training data Z. We want to seek a

bootstrap estimator of the value function associated with dZ .

Ordinary bootstrap samples Zb = (Zb
1, · · · ,Zb

n) are generated with replacement from

Z = (Z1, · · · ,Zn). A total of B such samples are independently drawn, sayZ1, · · · ,ZB.

Let N b
i be the number of times that Zi is included in the b-th bootstrap sample and define,

Ibi =

 1 if N b
i = 0,

0 if N b
i > 0.

Define dbi = dZb(Xi) and di = dZ(Xi). Then, the leave-one-out bootstrap value is

V̂(1) =

∑n
i=1RiP̂i/π(Ai,Xi)∑n
i=1 P̂i/π(Ai,Xi)

, where P̂i =

∑
b I

b
i I(Ai = dbi)∑

b I
b
i

.

The resubstitution value is the value function of dZ estimated on the training data,

V̂Resub =

∑n
i=1 RiI(Ai = di)/π(Ai,Xi)∑n
i=1 I(Ai = di)/π(Ai,Xi)

.

The .632+ bootstrap value is a combination of the leave-one-out bootstrap value and

the resubstitution value,

V̂ .632+ = (1− v̂) · V̂Resub + v̂ · V̂(1), (4.12)

where v̂ is related to the no-information value V0 of dZ , that would apply ifX and (R,A)

were independent. An estimate of V0 can be obtained by permuting (Ri, Ai) andXj ,

V̂0 =

∑n
i=1

∑n
j=1RiI(Ai = dj)/π(Ai,Xi)∑n

i=1

∑n
j=1 I(Ai = dj)/π(Ai,Xi)

.

Then, the weight v̂ is given by

v̂ =
.632(V̂Resub − V̂0)+

.632(V̂Resub − V̂0)+ + .368(V̂ .632+ − V̂0)+

,
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where (·)+ is the positive part. Here we define 0/0 = 0.

Now we give the formula to compute the .632+ bootstrap estimator of the value func-

tion. It is straightforward to use this estimator in parameter tuning. Taking the elastic-net

penalized MRWL as an example, for a predefined pair of λ1 and λ2, we calculate the as-

sociated .632+ bootstrap value. Then we compare the estimated values from all predefined

pairs of parameters to choose the pair giving the largest value. When ties occur, we favor

the parameters with a parsimonious regime.

4.2.6 A permutation test for qualitative interaction

For personalized medicine, the distinction between quantitative and qualitative treatment-

covariate interactions is important. A qualitative interaction arises when the direction of

the treatment effect changes among different subsets of patients, while for the quantitative

interaction, the treatment effect varies only in the magnitude, but not the direction.

Figure 4.1 shows possible relationships between treatment and covariates. Actually

(A) is a special case of (B). However, case (A) of no treatment effects is important for our

proposed permutation test. We will see later that (A) lies on the boundary between the null

and alternative hypotheses.

There are currently a few qualitative interaction tests that can be used to test qualitative

interactions on prespecified subgroups (Gail and Simon 1985, Zelterman 1990, Li and

Chan 2006). These tests were not designed in an exploratory fashion to find the subgroups

presenting qualitative interactions.

From the viewpoint of optimal treatment regimes, the common characteristic of (A)∼(C)

is that their optimal treatment regimes are non-informative. That is, traditional “one size

fits all” approach still works when there are no qualitative interactions. Thus the null and
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x

(a) No treatment effects

x

(b) No treatment interactions

x

(c) Quantitative interactions

x

(d) Qualitative interactions

Figure 4.1: Different types of treatment-covariate relationships. The data consists of a
single covariate X , treatment assignment A = 1 or −1, and outcome R. The conditional
outcomes E(R|X = x,A = 1) and E(R|X = x,A = −1) are represented by solid lines
( ) and dashed lines ( ), respectively.

alternative hypotheses for qualitative interactions are

H0 : V(d∗) = V(d∗0) (4.13)

Ha : V(d∗) > V(d∗0)

A straightforward approach is to estimate the optimal treatment regime d̂∗ and the op-
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timal non-informative regime d̂∗0. The comparison between two estimated regimes can be

performed using the test described in Murphy (2005). However, this method inflates the

Type-I error rate. When we estimate d̂∗, we implicitly compare with many other regimes,

say d1, · · · , dm. Hence the hypotheses in (4.13) are equivalent to

H0 : V(d∗0) ≥ V(dj), j = 1, · · · ,m. (4.14)

Ha : V(d∗0) < V(dj), for some j ∈ {1, · · · ,m}.

Multiplicity has to be considered. However, taking a linear regime as an example, ac-

cording to Sauer’s Lemma (Cover 1965), we simultaneously consider up to C(n, p) linear

regimes in comparison, where

C(n, p) = 2

p−1∑
k=0

(
n− 1

k

)
.

When the sample size n = 100 and dimensionality p = 5, m in (4.14) is just C(n, p),

which is about 8× 106. Traditional multiple comparison approaches would lack of power.

In this work, we propose a permutation test using the elastic-net penalized MRWL. It

is easy to see that the non-informative regime corresponds to the solution with ŵ = 0.

When ŵ is close to 0, its value function is close to V(d∗0). On the contrary, under the null

hypothesis, the Bayes rule is a non-informative regime. When λ1 is large enough, we can

always find a unique solution with w̃ = 0 in (4.9). By Theorem 4.2.1, we havewn → 0 in

probability. Thus we use the test statistic,

T = max
j∈{1,··· ,p}

|ŵj|. (4.15)

Its distribution is complicated. We permute Xi to break their connections with (Ri, Ai)

to generate the null distribution of T . The procedure of the proposed permutation test is

summarized as follows.

1) Calculate R̂i by (4.2).
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2) Tune the parameters λ1 and λ2 in MRWL to give the largest .632+ bootstrap value.

3) Estimate a linear regime f̂(x) = ŵTx + b̂ by MRWL with the tuned parameters λ∗1

and λ∗2.

4) The observed statistic T obs = maxj∈{1,··· ,p} |ŵj|.

5) Fix (R̂i, Ai), and permuteXi to generate the null distribution.

(i) Random permuteXi to generate a sample {Xm
1 , · · · ,Xm

n }.

(ii) Tune the parameters λ1 and λ2 in MRWL to give the largest .632+ bootstrap

value on the training data {(R̂i, Ai,X
m
i ), i = 1, · · · , n}.

(iii) Estimate a linear regime f̂m(x) = ŵmTx + b̂m with the tuned parameters λ∗b1

and λ∗b2 on the training data {(R̂i, Ai,X
m
i ), i = 1, · · · , n}.

(iv) The test statistic on the permuted sample is Tm = maxj∈{1,··· ,p} |ŵmj |.

(v) Repeat step (i)-(iv) M times.

6) The p-value is
∑M
m=1 I(Tm≥T obs)+1

M+1
.

4.3 Simulation studies

In this section, we use simulation studies to investigate performance of the proposed

permutation test.

4.3.1 Type-I error rates

In the simulations, we generated 5-dimensional vectors of clinical covariates X =

(x1, · · · , x5)T , consisting of independent uniform random variables U(−1, 1). The treat-

ment A was generated from {−1, 1} independently of X with π(A,X) = 0.5. The re-

sponse R was normally distributed with mean Q0 = µ0(X) + δ0(X) · A and standard

92



deviation 1, where µ0(X) is the common effect for clinical covariates, and δ0(X) · A is

the treatment-covariate interaction. To evaluate the performance of our proposed permuta-

tion test on controlling Type I errors, we considered two scenarios with different choices

of µ0(X) and δ0(X). We estimated the residuals using a simple weighted linear regres-

sion model. In Scenario I, the linear model for residuals was correctly specified, while in

Scenario II, it was misspecified.

(I): µ0(X) = 1 + x1 + x2 + 2x3 + 0.5x4.

I(A): δ0(X) = 0.

I(B): δ0(X) = 0.45.

I(C): δ0(X) = 0.25(x2
1 + x2

2).

(II): µ0(X) = 1 + x2
1 + x2

2 + 2x2
3 + 0.5x2

4.

II(A): δ0(X) = 0.

II(B): δ0(X) = 0.32.

II(C): δ0(X) = 0.18(x2
1 + x2

2).

In each scenario, three cases were presented for (A) no treatment effects, (B) no treatment-

covariate interactions, and (C) quantitative interactions, respectively. The coefficients in

(B) were chosen to reflect a medium effect size according to Cohen’s d index (Cohen

1988); and the coefficients in (C) reflect a small effect size. The Cohen’s d index is defined

as the standardized difference in mean responses between two treatment arms, that is,

es =
|E(R|A = 1)− E(R|A = −1)|√

[V ar(R|A = 1) + V ar(R|A = −1)]/2
.

The effect size was tentatively defined as “small” by Cohen (1988) if the Cohen’s d index

is 0.2, “medium” if the index is 0.5 and “large” if the index is 0.8.
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Table 4.1: Proportions of significant p values and Type-I error rates in Scenario I and II.

Scenario I Scenario II

Sample size A B C Type-I error A B C Type-I error

n = 100 0.040 0.025 0.031 0.040 0.047 0.029 0.041 0.047
n = 200 0.049 0.024 0.043 0.049 0.058 0.038 0.044 0.058
n = 400 0.056 0.007 0.032 0.056 0.053 0.028 0.045 0.053

For every case, we generated 1, 000 Monte Carlo datasets. On each dataset, we per-

formed the proposed permutation test with M = 1, 000. The parameters in MRWL were

tuned using .632+ bootstrap with B = 20. The nominal significance level is α = 0.05.

For each case, we varied the sample sizes from n = 100, 200, to 400. The proportions

of significant p values among 1, 000 Monte Carlo datasets are shown in Table 4.1. By

definition, the Type-I error rate in each scenario is the maximal proportion of significant

p values among its associated cases (A), (B) and (C). The Type-I error rates are also pre-

sented in Table 4.1. As evident from the table, the Type-I error rates are all derived from

cases (A). The reason is that the case (A) is just on the boundary between the null and

alternative hypotheses. Our proposed permutation test performed well in preserving the

significance levels of the test. Even in Scenario II where the model to estimate residuals

was misspecified, the permutation test still controlled the Type-I error well.

4.3.2 Power comparison

We used the similar simulation setups as in the Type-I error study. The clinical covari-

ates X were 5-dimensional vectors, consisting of independent uniform random variables

U(−1, 1). Two treatment arms were balanced. The response R was normally distributed

with mean Q0 = µ0(X) + δ0(X) ·A and standard deviation 1. We considered two scenar-

ios:
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(III) µ0(X) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(X) = γ(0.3− x1 − x2).

(IV) µ0(X) = 1 + x2
1 + x2

2 + 2x2
3 + 0.5x2

4; δ0(X) = γ(0.3− x1 − x2).

γ controls the level of qualitative treatment-covariate interactions. Again, we used a simple

linear regression model to estimate residuals. Thus, in Scenario III, the linear model was

correctly specified, while in Scenario IV, it was misspecified.

For every scenario, we generated 1, 000 Monte Carlo datasets. On each dataset, we

performed the proposed permutation test with M = 1, 000, and tuned the parameters using

.632+ bootstrap with B = 20. The sample sizes were varied from n = 100, 200, to 400.

The results are reported in Table 4.2, with α = 0.05 as the nominal significance level of

the test.

We also considered the Gail-Simon test (Gail and Simon 1985) and the Zelterman test

(Zelterman 1990) as comparisons. The Gail-Simon test is a widely used likelihood ratio

test for qualitative interactions. However, it is well acknowledged that the Gail-Simon test

is not very powerful especially when treatment effects are close to 0 (Zelterman 1990, Pi-

antadosi and Gail 1993). Zelterman (1990) constructed an unbiased and locally most pow-

erful test by modifying the Gail-Simon test. An interesting discussion between the Gail-

Simon and Zelterman tests can be found in Silvapulle and Sen (2005, Section 9.3). Since

both only apply to predefined subgroups, we used them in an oracle form. Specifically,

we divided the data into two disjoint subgroups according to the sign of (x1 + x2 − 0.3),

and then tested qualitative interactions across the subgroups. The results are also given in

Table 4.2.

Both the Gail-Simon and Zelterman tests failed to control the Type-I error (when γ =

0). The Gail-Simon test is very conservative and the Zelterman test is too liberal. As

shown in previous section, our proposed permutation test controlled Type-I error well. The
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Table 4.2: Power comparison between the permutation test and the oracle Gail-Simon test
in Scenario III and IV.

γ

Sample size Test 0 0.1 0.2 0.3 0.4 0.5 0.6

Scenario III

n = 100 Permutation test 0.040 0.050 0.123 0.250 0.464 0.647 0.790
Oracle Gail-Simon test 0.005 0.009 0.019 0.065 0.111 0.180 0.260
Oracle Zelterman test 0.129 0.124 0.139 0.170 0.190 0.242 0.322

n = 200 Permutation test 0.049 0.106 0.307 0.599 0.852 0.955 0.988
Oracle Gail-Simon test 0.006 0.022 0.052 0.123 0.236 0.386 0.528
Oracle Zelterman test 0.138 0.141 0.157 0.212 0.310 0.429 0.545

n = 400 Permutation test 0.056 0.161 0.562 0.906 0.991 0.999 0.999
Oracle Gail-Simon test 0.008 0.028 0.132 0.269 0.465 0.648 0.787
Oracle Zelterman test 0.128 0.143 0.217 0.315 0.485 0.653 0.788

Scenario IV

n = 100 Permutation test 0.047 0.057 0.095 0.172 0.306 0.460 0.630
Oracle Gail-Simon test 0.008 0.013 0.037 0.083 0.167 0.285 0.434
Oracle Zelterman test 0.119 0.123 0.149 0.163 0.223 0.329 0.452

n = 200 Permutation test 0.058 0.088 0.197 0.378 0.646 0.846 0.950
Oracle Gail-Simon test 0.006 0.017 0.075 0.218 0.405 0.605 0.740
Oracle Zelterman test 0.119 0.132 0.166 0.271 0.432 0.618 0.740

n = 400 Permutation test 0.053 0.116 0.351 0.738 0.928 0.989 0.997
Oracle Gail-Simon test 0.006 0.045 0.197 0.473 0.704 0.859 0.932
Oracle Zelterman test 0.139 0.169 0.263 0.508 0.709 0.859 0.932

poor performance of the Gail-Simon and Zelterman tests is probably due to the violation of

assumptions for them. Both tests assume that the responses on both arms in each subgroups

are independent, and the treatment effects follow normal distributions. These assumptions

were not satisfied in the simulation studies.

The powers of our proposed permutation test, the Gail-Simon and Zelterman tests in-

crease, as γ increases and as the sample size increases. As evident from the table, the

permutation test was more powerful than both the Gail-Simon and Zelterman tests when

γ ≥ 0.3, even though the permutation test did not know the true boundary for qualitative
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interactions. Under the misspecified model for residuals, the permutation test in Scenario

IV still retained good power compared to either the Gail-Simon test or the Zelterman test.

However, when compared to the permutation test in Scenario III, the test in Scenario IV

is not that powerful. It suggests that an appropriate model for estimating residuals may

increase the power of the proposed permutation test.

4.4 Data analysis

In this section, we applied our proposed permutation test to two clinical trial studies.

The first one is the Nefazodone-CBASP clinical trial (Keller et al. 2000), and the second is

the EPIC randomized clinical trial (Treggiari et al. 2011).

4.4.1 Nefazodone-CBASP trial

The Nefazodone-CBASP trial was designed to compare three different treatments for

patients suffering chronic depression. Patients with non-psychotic chronic major depres-

sive disorder (MDD) were randomized in a 1:1:1 ratio to either Nefazodone (NFZ), cog-

nitive behavioral-analysis system of psychotherapy (CBASP), or the combination of Nefa-

zodone and CBASP (COMB). The primary endpoint was the score on the 24-item Hamilton

Rating Scale for Depression (HRSD). Lower HRSD is preferred. We used 50 pre-treatment

covariates as in Zhao et al. (2012). Patients with missing covariates were excluded from

the analyses. The data used here consisted of 647 patients: 216 in NFZ, 220 in CBASP,

and 211 in COMB. Each clinical covariate was linearly scaled to the range [−1,+1].

We carried out pairwise comparisons to test if there exist qualitative interactions be-

tween NFZ and CBASP, between NFZ and COMB, and between CBASP and COMB,

respectively. We run the proposed permutation test with M = 10, 000, and tuned the pa-
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rameters using .632+ bootstrap with B = 50. Figure 4.2 shows the null distributions of

the test statistic and the observed statistics. The corresponding p values are 0.511 (NFZ vs

CBASP), 1 (NFZ vs COMB), and 1 (CBASP vs COMB), respectively. According to the

data, there are no qualitative interactions presenting in the data.

4.4.2 EPIC cystic fibrosis trial

The trial was designed to determine the optimal anti-pseudomonal treatment strategy

in children with cystic fibrosis (CF) who recently acquired Pseudomonas aeruginosa (Pa).

Patients were randomized in a 1:1 ratio to one of two maintenance treatment strategies:

cycled therapy and culture-based therapy. There were two endpoints over the course of the

18-month study. One was the number of Pa positive cultures from scheduled follow-up

quarterly cultures, and the other is the number of pulmonary exacerbations (PE) requiring

any (intravenous, inhaled, or oral) antibiotic use or hospitalization during the study. We

considered 7 baseline clinical covariates. Patients with missing covariates were excluded

from the analyses. The data used here consisted of 283 patients: 141 in the cycled therapy,

and 142 in the culture-based therapy. Each clinical covariate was linearly scaled to the

range [−1,+1]

For the Pa-related endpoint, we used the ratio of the number of Pa negative cultures

to the number of Pa cultures over the follow up period as the outcome, and treated it as

continuous. A linear regression model was used to estimate residuals. We performed the

proposed permutation test with M = 10, 000, and tuned the parameters using .632+ boot-

strap withB = 50. The null distribution is shown in Figure 4.3. The corresponding p value

is 0.158. Zhou et al. (2015) identified a treatment regime only involving one covariate for

the Pa endpoint. However, according to the permutation test here, their finding is probably

spurious. This example demonstrates the risk of data-driven methods in the analysis. A
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rigorous test is required to check the validity of the obtained regimes.

The number of PEs during the study was a rate variable. We used a Poisson regres-

sion model to estimate residuals. The same values of M and B were used to carry out the

proposed permutation test. The null distribution is also given in Figure 4.3. The corre-

sponding p value for the observed test statistic is 0.039. Although there is no significant

difference between the two maintenance treatment strategies at the population level for the

PE outcome (p-value 0.280), qualitative interactions do exist. Correctly identifying the

qualitative interactions may improve the clinical practice.

4.5 Conclusion

In this work, we propose a permutation test for qualitative interactions. In the test, we

first estimate the optimal treatment regime using mirrored residual weighted learning, and

then apply a permutation test to determine the difference between the estimated regime

and non-informative regime. From the simulation studies and case studies, our proposed

permutation test controls the Type-I error rate, and is also powerful to detect the qualitative

interaction.
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Figure 4.2: Histograms of the null distributions and observed statistics for the proposed
permutation test on the Nefazodone-CBASP trial data.
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Figure 4.3: Histograms of the null distributions and observed statistics for the proposed
permutation test on the EPIC trial data.
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH PLAN

Three methods for optimal treatment regimes are proposed in the dissertation: nearest

neighbor rules, residual weighted learning (RWL), and mirrored residual weighted learning

(MRWL). A permutation test for qualitative interactions is also proposed by using MRWL.

There are some subsequent works that we would like to explore or finish in the near future:

• RWL is a powerful tool to detect optimal treatment regimes. However, it can only

apply to two-arm trials. In practice, some trials involve multiple arms, i.e. have three

or more treatment arms. It would thus be worthwhile to extend RWL to multiple-arm

trials.

• Recently, subgroup identification has been received more attention in the pharma-

ceutical industry, since it may help to salvage some new drugs and improve overall

success. It is interesting to extend the proposed methods in this dissertation to the

area of subgroup identification. Inference related to subgroup findings is very chal-

lenging in this topic.

• We have proposed a permutation test for qualitative interaction. However, due to

the computational cost, our proposal is limited to linear regimes. In practical use,

nonlinear optimal treatment regimes do exist. It would be worthwhile to investi-

gate qualitative interactions with nonlinear treatment regimes. The nearest neighbor

regime proposed in this dissertation is a good candidate to address the nonlinear

regime in a permutation test.
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APPENDIX A: PROOFS FOR CHAPTER 2

We prove Theorem 2.2.1 and 2.2.2 in Appendix A.1 and A.2. The proofs are based on

theoretical results for nearest neighbor rules in regression. For completeness, we collect

the theorems and lemmas needed in the proofs in Appendix A.3.

A.1 Proof of Theorem 2.2.1

The following lemma shows that consistency of m̂`(x), ` = 1, · · · , L, guarantees con-

sistency of the rule dNN .

Lemma A.1.1. The k-NN rule in (2.3) satisfies the following bound for any distribution P

for (X, A,R),

V(d∗)− V(dNN) ≤
L∑
`=1

∫
|m̂`(x)−m`(x)|µ(dx).

Proof of Lemma A.1.1: Note that the value function of any rule d,

V(d) := E(R|A = d(X)) = E
(
RI(A = d(X))

πA(X)

)
.

Refer to Qian and Murphy (2011) and Zhao et al. (2012) regarding the derivation. Thus,

by fixing x ∈ Rp, we have

E
(
RI(A = d∗(X))

πA(X)

∣∣X = x

)
− E

(
RI(A = dNN(X))

πA(X)

∣∣X = x

)
=

L∑
`=1

m`(x)
(
I(d∗(x) = `)− I(dNN(x) = `)

)
= m`1(x)−m`2(x),

where `1 = d∗(x) and `2 = dNN(x), and the expectation E is with respect to P for
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(X, A,R). By the construction of dNN(x), we have

m`1(x)−m`2(x)

≤ (m`1(x)− m̂`1(x))− (m`2(x)− m̂`2(x))

≤
L∑
`=1

|m`(x)− m̂`(x)| .

The desired result follows by taking expectation overX on both sides.

Now it is sufficient to prove, for any ` ∈ {1, · · · , L},∫
|m̂`(x)−m`(x)|µ(dx)→ 0

in probability or almost surely, as n → ∞. We start from a simpler k-nearest neighbor

rule, for ` ∈ {1, · · · , L},

m̂′`(x) =
k∑
i=1

R(i,n)(x)
I(A(i,n)(x) = `)

kπ`
(
X(i,n)(x)

) . (A.1)

The relationship between m̂`(x) and m̂′`(x) is that

m̂`(x) =
m̂′`(x)

1
k

∑k
i=1

I(A(i,n)(x)=`)

π`(X(i,n)(x))

.

By the law of large numbers, the denominator

1

k

k∑
i=1

I(A(i,n)(x) = `)

π`
(
X(i,n)(x)

) → 1 a.s.

as k →∞. Thus it is now sufficient to prove, for any ` ∈ {1, · · · , L},∫
|m̂′`(x)−m`(x)|µ(dx)→ 0

in probability or almost surely, as n→∞.

For weak consistency, we will prove a slightly stronger result,

E
(∫
|m̂′`(x)−m`(x)|µ(dx)

)
→ 0.
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We proceed by checking the conditions of Stone’s Theorem in Appendix A.3. The weights

V `
n,i(x) =


I(A(i,n)(x)=`)

kπ`(X(i,n)(x))
, if i ≤ k,

0 if i > k.

Conditions (ii) and (iv) of Stone’s Theorem are automatically satisfied. Condition (v)

is obvious since k → ∞ and when i ≤ k, V `
n,i(X) → 1/k in probability. For condition

(iii) observe that, for each a > 0,

E

{
n∑
i=1

|V `
n,i(X)|I(||Xi −X|| > a)

}

=

∫
E

{
n∑
i=1

|V `
n,i(x)|I(||Xi − x|| > a)

}
µ(dx)

≤
∫

E

{
1

kζ

k∑
i=1

I(||X(i,n)(x)− x|| > a)

}
µ(dx)

≤ 1

ζ

∫
P (||X(k,n)(x)− x|| > a)µ(dx).

Forx ∈ support(µ), when k/n→ 0, Lemma A.3.1 implies P (||X(k,n)(x)−x|| > a)→ 0.

Then the dominated convergence theorem implies condition (iii). Finally, we consider

condition (i). For any nonnegative measurable function f with E(f(X)) <∞ and any n,

E

{
n∑
i=1

V `
n,i(X)f(Xi)

}

≤ 1

kζ
E

{
k∑
i=1

f(X(i,n)(X))

}
≤ γd

ζ
E(f(X)).

The last inequality is due to Lemma A.3.4. Condition (i) is verified. By Stone’s theorem,

E
∫
|m̂′`(x)−m`(x)|µ(dx)→ 0.

Weak consistency of the kNN rule (2.3) follows by Lemma A.1.1.

We next show strong consistency for bounded outcomes. By the Borel-Cantelli Lemma,

it suffices to show the following theorem. The proof follows an idea in Devroye et al. (1996,

Chapter 11).
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Theorem A.1.1. For any distribution P for (X, A,R) satisfying assumptions (A1), (A3),

and |R| ≤ M < ∞ for some constant M , if k → ∞ and k/n → 0, then for every ε > 0

there exists an n0 such that for n ≥ n0

P

(∫
|m̂′`(x)−m`(x)|d(x) > ε

)
≤ 2 exp(−cnε2),

where c > 0 depends only upon the dimension p, M and ζ .

Proof of Theorem A.1.1: Fix x ∈ Rp. Denote ρn(x) = ||x−X(k,n)(x)||. Also define

ρ∗n(x) as the solution of the equation k
n

= µ(Sx,ρ∗n(x)). Since distance ties occur with

probability zero in µ, the solution always exists. And define the rule

m̂∗`(x) =
n∑
i=1

Ri
I(Ai = `)

kπ`(Xi)
I (||x−Xi|| ≤ ρ∗n(x)) .

Consider the following decomposition,

|m̂′`(x)−m`(x)| ≤ |m̂′`(x)− m̂∗`(x)|+ |m̂∗`(x)−m`(x)|.

For the first term on the right-hand side, we obtain,

|m̂′`(x)− m̂∗`(x)|

=
1

k

∣∣∣ n∑
i=1

Ri
I(Ai = `)

π`(Xi)
I (||x−Xi|| ≤ ρn(x))−

n∑
i=1

Ri
I(Ai = `)

π`(Xi)
I (||x−Xi|| ≤ ρ∗n(x))

∣∣∣
=

1

k

∣∣∣ n∑
i=1

Ri
I(Ai = `)

π`(Xi)

(
I (||x−Xi|| ≤ ρn(x))− I (||x−Xi|| ≤ ρ∗n(x))

)∣∣∣
≤ 1

k

n∑
i=1

∣∣∣Ri
I(Ai = `)

π`(Xi)

(
I (||x−Xi|| ≤ ρn(x))− I (||x−Xi|| ≤ ρ∗n(x))

)∣∣∣
≤ M

kζ

n∑
i=1

∣∣∣I (||x−Xi|| ≤ ρn(x))− I (||x−Xi|| ≤ ρ∗n(x))
∣∣∣

=
M

ζ

∣∣∣1
k

n∑
i=1

I (||x−Xi|| ≤ ρ∗n(x))− 1
∣∣∣ =

M

ζ

∣∣∣1
k

n∑
i=1

I
(
Xi ∈ Sx,ρ∗n(x)

)
− 1
∣∣∣.

Denote ŝ(x) = 1
k

∑n
i=1 I

(
Xi ∈ Sx,ρ∗n(x)

)
. Thus,

|m̂′`(x)−m`(x)| ≤ M

ζ
|ŝ(x)− 1|+ |m̂∗`(x)−m`(x)|. (A.2)
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Observe that E(ŝ(x)) = 1, then we have,

E
{∫
|ŝ(x)− 1|µ(dx)

}
≤

∫ √
E
{(
ŝ(x)− 1

)2
}
µ(dx)

=

∫ √
n

k2
Var
(
I(X ∈ Sx,ρ∗n(x))

)
µ(dx) ≤ 1√

k
.

Thus we obtain,

lim
n→∞

E
(∫
|ŝ(x)− 1|µ(dx)

)
= 0,

and lim
n→∞

E
(∫
|m̂′`(x)− m̂∗`(x)|µ(dx)

)
= 0.

We already showed that

lim
n→∞

E
(∫
|m̂′`(x)−m`(x)|µ(dx)

)
= 0.

So we have,

lim
n→∞

E
(∫
|m̂∗`(x)−m`(x)|µ(dx)

)
= 0.

Fix ε > 0. Then we can find an n0 such that, for n ≥ n0,

E
(∫
|ŝ(x)− 1|µ(dx)

)
<

ζ

8M
ε,

and E
(∫
|m̂∗`(x)−m`(x)|µ(dx)

)
<

ε

8
.

Then, by (A.2), we have, when n ≥ n0,

P (

∫
|m̂′`(x)−m`(x)|µ(dx) > ε) (A.3)

≤ P

(∫
|ŝ(x)− 1|µ(dx)− E

∫
|ŝ(x)− 1|µ(dx) >

ζ

4M
ε

)
+P

(∫
|m̂∗`(x)−m`(x)|µ(dx)− E

∫
|m̂∗`(x)−m`(x)|µ(dx) >

1

2
ε

)
.

We will use McDiarmid’s inequality (Devroye et al. 1996, Theorem 9.2) to bound each

term on the right-hand side of (A.3). Fix an arbitrary realization of the data (xj, aj, rj)
n
j=1.

Replace (xi, ai, ri) by (x′i, a
′
i, r
′
i), changing the value of m̂∗`(x) to m̂∗`,i(x). Thus∣∣∣ ∫ |m̂∗`(x)−m`(x)|µ(dx)−
∫
|m̂∗`,i(x)−m`(x)|µ(dx)

∣∣∣ ≤ ∫ |m̂∗`(x)− m̂∗`,i(x)|µ(dx).
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And

|m̂∗`(x)−m̂∗`,i(x)| = 1

k

∣∣∣ri I(ai = `)

π`(xi)
I (||x− xi|| ≤ ρ∗n(x))−r′i

I(a′i = `)

π`(x′i)
I (||x− x′i|| ≤ ρ∗n(x))

∣∣∣
is bounded by 2M/(kζ), and can differ from zero only if ||x−xi|| ≤ ρ∗n(x) or ||x−x′i|| ≤

ρ∗n(x). Note that ||x−xi|| ≤ ρ∗n(x) if and only if µ(Sx,||x−xi||) ≤ k/n. By Lemma A.3.3,

the measure of such x is bounded by γpk/n. Thus by McDiarmid’s inequality,

P

(∫
|m̂∗`(x)−m`(x)|µ(dx)− E

∫
|m̂∗`(x)−m`(x)|µ(dx) >

1

2
ε

)
≤ exp

(
− nε2ζ2

32M2γ2
p

)
.

Similarly,∣∣∣ ∫ |ŝ(x)− 1|µ(dx)−
∫
|ŝi(x)− 1|µ(dx)

∣∣∣ ≤ ∫ |ŝ(x)− ŝi(x)|µ(dx),

and

|ŝ(x)− ŝi(x)| = 1

k

∣∣∣I (||x− xi|| ≤ ρ∗n(x))− I (||x− x′i|| ≤ ρ∗n(x))
∣∣∣

is bounded by 1/k. By McDiarmid’s inequality again,

P

(∫
|ŝ(x)− 1|µ(dx)− E

∫
|ŝ(x)− 1|µ(dx) >

ζ

4M
ε

)
≤ exp

(
− nε2ζ2

32M2γ2
p

)
.

The desired result follows by (A.3) with c =
ζ2

32M2γ2
p

.

Now we prove (ii), strong consistency for unbounded R. A counterpart of Lemma 5

in Devroye et al. (1994) is needed for the setting of optimal treatment regimes. The proof

follows the idea in Györfi (1991).

Lemma A.1.2. Consider the k-nearest neighbor estimate m̂′`(x) in (A.1). Then∫
|m̂′`(x)−m`(x)|µ(dx)→ 0

almost surely for all distributions of (X, A,R) satisfying assumptions (A1)∼(A3) if the

following two conditions are satisfied:

(a)
∫
|m̂′`(x) −m`(x)|µ(dx) → 0 almost surely for all distributions of (X, A,R) sat-

isfying assumptions (A1) and (A3) with bounded R.
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(b) There exists a constant c > 0 such that, for all distributions of (X, A,R) satisfying

assumptions (A2) and (A3),

lim sup
n→∞

1

k

k∑
i=1

∫
|R(i,n)(x)|µ(dx) ≤ cE|R| a.s. (A.4)

Proof of Lemma A.1.2: For an arbitrary M , let

Ti =

 Ri if |Ri| ≤M,

Msign(Ri) otherwise,

for i = 1, · · · , n. T is defined similarly. Let t̂`(x) be the functions m̂′`(x), respectively,

when the Ri is replaced by Ti, for i = 1, · · · , n. Denote t`(x) = E(T |X = x, A = `) for

` = 1, · · · , L. Now,

lim sup
n→∞

∫
|m̂′`(x)−m`(x)|µ(dx)

≤ lim sup
n→∞

∫
|m̂′`(x)− t̂`(x)|µ(dx) + lim sup

n→∞

∫
|t̂`(x)− t`(x)|µ(dx)

+

∫
|t`(x)−m`(x)|µ(dx).

For the first term on the right-hand side, we have,

lim sup
n→∞

∫
|m̂′`(x)− t̂`(x)|µ(dx)

≤ lim sup
n→∞

1

k

k∑
i=1

∫
|R(i,n)(x)− T(i,n)(x)|

I(A(i,n)(x) = `)

π`
(
X(i,n)(x)

) µ(dx)

≤ lim sup
n→∞

1

kζ

k∑
i=1

∫
|R(i,n)(x)− T(i,n)(x)|µ(dx)

≤ c

ζ
E|R− T | a.s.

The last inequality is due to condition (b) since E|R−T | <∞. The second term converges

almost surely to zero by condition (a). By Jensen’s inequality, the third term satisfies,∫
|t`(x)−m`(x)|µ(dx) = E

∣∣∣E(R−T |X,A = `)
∣∣∣ ≤ E

(
|R− T |

∣∣∣A = `
)
≤ 1

ζ
E|R−T |.
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Thus we have,

lim sup
n→∞

∫
|m̂′`(x)− t̂`(x)|µ(dx) ≤ c+ 1

ζ
E|R− T | a.s.

By the dominated convergence theorem, E|R − T | → 0 as M → ∞. The desired result

now follows as M →∞.

For strong consistency in (ii), since we have already proved strong consistency for

bounded R, it is enough to prove (A.4).

We need some geometric properties of nearest neighborhood. Define a cone C(x, s) to

be the collection of all x′ ∈ Rp for which either x′ = x or angle(x′ − x, s) ≤ π/6. Let

S be a minimal subset of Rp such that a collection of cones C(x, s) for s ∈ S covers Rp.

By Lemma A.3.2, such an S exists, and its cardinality |S| is γp. Let Ai be the collection of

all x ∈ Rp such that Xi is one of its k nearest neighbors. Define the sets Ci,s = C(Xi, s)

for i = 1, · · · , n and s ∈ S. Let Bi,s be the subset of Ci,s consisting of all x that are

among k nearest neighbors of Xi in the set {X1, · · · ,Xi−1,Xi+1, · · · ,Xn,x}
⋂
Ci,s. If

the number ofXj’s (j 6= i) contained in Ci,s is fewer than k, then Bi,s = Ci,s.

Observe that, by Lemma A.3.5 and Lemma A.3.6,

lim sup
n→∞

n

k
max
i
µ(Ai) ≤ lim sup

n→∞

n

k
max
i

∑
s∈S

µ(Bi,s) ≤
∑
s∈S

lim sup
n→∞

n

k
max
i
µ(Bi,s) ≤ 2γp.

Then, we have,

lim sup
n→∞

1

k

k∑
i=1

∫
|R(i,n)(x)|µ(dx)

= lim sup
n→∞

1

k

n∑
i=1

|Ri|µ(Ai)

≤ lim sup
n→∞

(
1

n

n∑
i=1

|Ri|

)
lim sup
n→∞

(n
k

max
i
µ(Ai)

)
≤ 2γp lim sup

n→∞

(
1

n

n∑
i=1

|Ri|

)
= 2γpE|R| a.s.
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Thus strong consistency in (ii) follows from Lemma A.1.2 and Lemma A.1.1. The proof

of Theorem 2.2.1 is complete.

REMARK: In practical use, we prefer Stone’s estimate in (2.4) to break distance ties.

Consider a simpler rule,

m̃′`(x) =
1

k

∑
i∈An(x)

R(i,n)(x)
I(A(i,n)(x) = `)

π`
(
X(i,n)(x)

) +
k − |An(x)|
k|Bn(x)|

∑
i∈Bn(x)

R(i,n)(x)
I(A(i,n)(x) = `)

π`
(
X(i,n)(x)

) .
When k →∞, m̃′` is asymptotically equivalent to Stone’s estimate m̃` in (2.4). Assumption

(A3) has a connotation of breaking distance ties randomly as demonstrated in the main

paper. If the assumption does not hold, a small uniform variable U ∼ uniform[0, ε]

independent of (X, A,R) may be added to the vector X . We may perform the k-nearest

neighbor rule on (X, U). By Jensen’s inequality,

E
∫ ε

0

∫
|m̂′`(x, u)−m`(x)|µ(dx)du ≥ E

∫ ∣∣∣∣E(∫ ε

0

m̂′`(x, u)du
∣∣∣Dn

)
−m`(x)

∣∣∣∣µ(dx).

Fixing the data Dn = {(Xi, Ai, Ri) : i = 1, · · · , n}, we can always find a small enough ε

such that

E
(∫ ε

0

m̂′`(x, u)du
∣∣∣Dn

)
= m̃′`(x).

Thus m̃′` is better than m̂′` on (X, U), and then Stone’s tie-breaking rule m̃` in (2.4) is

asymptotically better than random tie-breaking.

A.2 Proof of Theorem 2.2.2

By Lemma A.1.1,

E
{(
V(d∗)− V(dNN)

)2
}
≤ L

L∑
`=1

E

{(∫
|m̂`(x)−m`(x)|µ(dx)

)2
}
.

So it suffices to show the following theorem for the bound on E
{

(
∫
|m̂`(x)−m`(x)|µ(dx))2

}
,

for ` = 1, · · · , L.
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Theorem A.2.1. For any distribution P for (X, A,R) satisfying assumptions (A1 ′)∼(A4 ′),

and ` = 1, · · · , L,

(i) If p = 1,

E

{(∫
|m̂`(x)−m`(x)|µ(dx)

)2
}
≤ c2σ2 1

k
+ 16cρ2C2 k

n
. (A.5)

(ii) If p = 2,

E

{(∫
|m̂`(x)−m`(x)|µ(dx)

)2
}
≤ c2σ2 1

k
+8cρ2C2 k

n

(
1 + log

(n
k

))
. (A.6)

(iii) If p ≥ 3,

E

{(∫
|m̂`(x)−m`(x)|µ(dx)

)2
}
≤ c2σ2 1

k
+

8cρ2C2

1− 2/p

⌊n
k

⌋− 2
d
. (A.7)

Proof of Theorem A.2.1: Let

m∗`(x) = E (m̂`(x)|X1, A1, · · · ,Xn, An) =
k∑
i=1

W `
n,i(x)m`

(
X(i,n)(x)

)
.

The last equality is due to the fact that W `
n,i(x) = 0 if A(i,n)(x) 6= `. We have the decom-

position

E

{(∫
|m̂`(x)−m`(x)|µ(dx)

)2
}
≤ E

∫ (
m̂`(x)−m`(x)

)2
µ(dx)

= E
∫ (

m̂`(x)−m∗`(x)
)2
µ(dx) + E

∫ (
m∗`(x)−m`(x)

)2
µ(dx).

For the first term on the right-hand side,

E
∫ (

m̂`(x)−m∗`(x)
)2
µ(dx)

= E
∫ ( k∑

i=1

W `
n,i(x)

(
R(i,n)(x)−m`

(
X(i,n)(x)

)))2

µ(dx)

= E
∫ k∑

i=1

(
W `
n,i(x)

)2(
R(i,n)(x)−m`

(
X(i,n)(x)

))2

µ(dx)

= E
∫ k∑

i=1

(
W `
n,i(x)

)2

σ2
`

(
X(i,n)(x)

)
µ(dx)

≤ c2σ2 1

k
.
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For the second term,

E
∫ (

m∗`(x)−m`(x)
)2
µ(dx)

= E
∫ ( k∑

i=1

W `
n,i(x)

(
m`

(
X(i,n)(x)

)
−m`(x)

))2

µ(dx)

≤ E
∫ k∑

i=1

(
W `
n,i(x)

)2
k∑
i=1

(
m`

(
X(i,n)(x)

)
−m`(x)

)2

µ(dx)

≤ cC2E||X(k,n)(X)−X||2

The desired results in Theorem A.2.1 now follow directly from Lemma A.3.7.

When p = 1, take k ∝ n1/2, and the right-hand side of (A.5) is O(n−1/2). When

p = 2, take k ∝ n1/2−ε for any ε > 0, and the right-hand side of (A.6) is O(n−1/2+ε).

When ε is very small, its rate of convergence will arbitrarily be close to 1/2. When p ≥ 3,

take k ∝ n2/(p+2), and the right-hand side of (A.7) is O(n−2/(p+2)). Theorem 2.2.2 is now

proved.

A.3 Background on k-NN regression

The setup in this section is for regression analysis, and is different with the setup in

the main paper. In regression analysis one considers a random vector (X, Y ), where X is

Rp-valued, and Y is R-valued. Let Dn be the set of observed data defined by

Dn = {(X1, Y1), · · · , (Xn, Yn)},

where (X1, Y1), · · · , (Xn, Yn) and (X, Y ) are independent and identically distributed

(i.i.d.) random variables. Let m(x) = E(Y |X = x). In the regression problem one

wants to use the data Dn in order to construct an estimate m̂ : Rp → R of the regression

function m. Here m̂(x) = m̂(x, Dn) is a measurable function of x and the data. We

first state Stone’s Theorem (Stone 1977). The theorem was applied to prove consistency
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of kernel and nearest neighbor estimates in the literature (Devroye et al. 1996, Györfi et al.

2002). The theorem considers a regression function estimate taking the form

m̂(x) =
n∑
i=1

Wn,i(x)Yi,

where the weights Wn,i(x) = Wn,i(x,X1, · · · ,Xn) ∈ R depend onX1, · · · ,Xn.

Theorem A.3.1 (Stone’s Theorem). Assume that the following conditions are satisfied for

any distribution ofX:

(i) There is a constant c such that for every nonnegative measurable function f satisfy-

ing Ef(X) <∞ and any n,

E

{
n∑
i=1

|Wn,i(X)|f(Xi)

}
≤ cEf(X).

(ii) There is a D ≥ 1 such that

P

{
n∑
i=1

|Wn,i(X)| ≤ D

}
= 1,

for all n.

(iii) For all a > 0,

lim
n→∞

E

{
n∑
i=1

|Wn,i(X)|I(||Xi −X|| > a)

}
= 0.

(iv)
n∑
i=1

Wn,i(X)→ 1 in probability.

(v)

max
i
|Wn,i(X)| → 0 in probability.

Then the corresponding regression function estimate m̂ converges in mean to m, i.e.,

E
(∫
|m̂(x)−m(x)|µ(dx)

)
→ 0

for all distributions of (X, Y ) with E|Y | <∞.
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We fix x ∈ Rp, and reorder the observed data (X1, Y1), · · · , (Xn, Yn) according to

increasing values of ||Xi − x||. The reordered data sequence is denoted by

(X(1,n)(x), Y(1,n)(x)), · · · , (X(n,n)(x), Y(n,n)(x)).

ThusX(k,n)(x) is the k-th nearest neighbor of x.

We introduce some results on the nearest neighborhood of x which are useful in prov-

ing theorems in the main paper. Denote the probability measure forX by µ. In this section,

we assume that distance ties occur with probability zero in µ. Let Sx,ε be the closed ball

centered at x of radius ε > 0. Define support(µ) = {x : for all ε > 0, µ(Sx,ε) > 0}.

Lemma A.3.1 (Lemma 5.1 in Devroye et al. (1996)). Ifx ∈ support(µ) and limn→∞ k/n =

0, then ||X(k,n)(x)− x|| → 0 with probability one.

Let us define the cone C(x, s) to be the collection of all x′ ∈ Rp for which either

x′ = x or angle(x′ − x, s) ≤ π/6. The following lemma shows a finite set of such cones

may cover Rp.

Lemma A.3.2 (Lemma 5.5 in Devroye et al. (1996)). There exists a finite set S ⊂ Rp such

that

Rp =
⋃
s∈S

C(x, s),

regardless of how x ∈ Rp is picked. Furthermore, define γp as the minimal number of

elements in S. Then γp depends only on the dimension p, and

γp ≤
(

1 + 2

√
2−
√

3

)p
− 1.

The next several lemma will enable us to establish weak and strong consistency of

nearest neighbor rules.

Lemma A.3.3 (Lemma 11.1 in Devroye et al. (1996)). Let Ba(x
′) = {x : µ(Sx,||x−x′||) ≤

a}. Then for all x′ ∈ Rp,

µ(Ba(x
′)) ≤ γpa.
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Lemma A.3.4 (Lemma 5.3 in Devroye et al. (1996)). For any integrable function f , any

n, and any k ≤ n,
k∑
i=1

E
(
|f(X(i,n)(X))|

)
≤ kγpE(|f(X)|).

Let Ai be the collection of all x ∈ Rp such that Xi is one of its k nearest neighbors.

Let S be a minimal subset of Rp, such that a collection of cones C(x, s) for s ∈ S covers

Rp. Thus γp = |S|, the cardinality of this set. Define the sets Ci,s = C(Xi, s). Let Bi,s be

the subset of Ci,s consisting of all x that are among the k nearest neighbors of Xi in the

set {X1, · · · ,Xi−1,Xi+1, · · · ,Xn,x}
⋂
Ci,s.

Lemma A.3.5 (Lemma 6 in Devroye et al. (1994)). If x ∈ Ai, then x ∈
⋃
s∈S Bi,s, and

thus

µ(Ai) ≤
∑
s∈S

µ(Bi,s).

Lemma A.3.6 (Lemma 8 in Devroye et al. (1994)). If k/ log(n)→∞ and k/n→ 0, then

lim sup
n→∞

n

k
max
i
µ(Bi,s) ≤ 2 a.s.

Devroye et al. (1994) applied an additional independent random variable to break dis-

tance ties. It is easy to translate the proofs of the previous two lemmas for the case where

distance ties occur with probability zero in µ, so we can skip the proofs. The next lemma

is helpful to show the rate of convergence in the main paper.

Lemma A.3.7 (Corollary 6 in Biau et al. (2010)). Suppose that µ has a compact support

with diameter 2ρ. Then

(i) If p = 1,

E||X(i,n) −X||2 ≤
16ρ2i

n
.

(ii) If p = 2,

E||X(i,n) −X||2 ≤
8ρ2i

n

(
1 + log

(n
i

))
.
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(iii) If p ≥ 3,

E||X(i,n) −X||2 ≤
8ρ2bn/ic−

2
p

1− 2/p
.
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APPENDIX B: PROOFS FOR CHAPTER 3

Proof of Lemma 3.2.1

Proof. Note that,

E

(
I
(
A 6= d(X)

)
π(A,X)

∣∣∣X)
= E

(
I
(
d(X) 6= 1

)
|X, A = 1

)
+ E

(
I
(
d(X) 6= −1

)
|X, A = −1

)
= 1. (B.8)

The desired result follows easily.

Proof of Theorem 3.2.2

Proof. For any measurable function g,

V ar

(
R− g(X)

π(A,X)
I
(
A 6= d(X)

))
= V ar

(
R− g̃(X)

π(A,X)
I
(
A 6= d(X)

))
+ V ar

(
g̃(X)− g(X)

π(A,X)
I
(
A 6= d(X)

))
+2Cov

(
R− g̃(X)

π(A,X)
I
(
A 6= d(X)

)
,
g̃(X)− g(X)

π(A,X)
I
(
A 6= d(X)

))
.

It suffices to show that the covariance term is zero. Applying (B.8), we have

E
(
R− g̃(X)

π(A,X)
I
(
A 6= d(X)

)∣∣∣X)
= E

(
R

π(A,X)
I
(
A 6= d(X)

)∣∣∣X)− g̃(X)E

(
I
(
A 6= d(X)

)
π(A,X)

∣∣∣X)
= 0.

Note that

g̃(X) = E
(

R

π(A,X)
I
(
A 6= d(X)

)∣∣∣X)
= E(R|X, A = 1)I

(
d(X) 6= 1

)
+ E(R|X, A = −1)I

(
d(X) 6= −1

)
. (B.9)
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Thus we have,

E
(
R− g̃(X)

π(A,X)2
I
(
A 6= d(X)

)∣∣∣X)
= E (R− g̃(X)|X, A = 1) I

(
d(X) 6= 1

)
/π(1,X)

+E (R− g̃(X)|X, A = −1) I
(
d(X) 6= −1

)
/π(−1,X)

= 0.

The desired result follows easily.

Proof of Theorem 3.3.1

Proof. Given X = x, for any measurable function f , similar reasoning to that used in the

proof of Lemma 3.2.1 yields,

E

(
T
(
Af(X)

)
π(A,X)

∣∣∣X = x

)
= 2.

Then the conditional T -risk is

E
(
R− g(X)

π(A,X)
T (Af(X))

∣∣X = x

)
= E(R|X = x, A = 1)T (f(x)) + E(R|X = x, A = −1)T (−f(x))− 2g(x)

= (E(R|X = x, A = 1)− E(R|X = x, A = −1))T (f(x))

+2E(R|X = x, A = −1)− 2g(x). (B.10)

If E [R|X = x, A = 1] − E [R|X = x, A = −1] > 0, any function f(x) ≥ 1 minimizes

the conditional T -risk; similarly, if E [R|X = x, A = 1]−E [R|X = x, A = −1] < 0, any

function f(x) ≤ −1 minimizes the conditional T -risk. For either case, sign(f ∗T,g) = d∗.

For the second part, by applying (B.10),

E
(
R− g(X)

π(A,X)
T (Ad∗(X))|X = x

)
− E

(
R− g(X)

π(A,X)
T (Af ∗T,g(X))|X = x

)
= (E(R|X = x, A = 1)− E(R|X = x, A = −1))

(
T (d∗(x))− T (f ∗T,g(x))

)
= 0.

The desired result follows by taking expectations on both sides.
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Proof of Theorem 3.3.2

Proof. GivenX = x. By applying (B.10), for any measurable function f , we have

E
(
R− g(X)

π(A,X)
T (Af(X))|X = x

)
− E

(
R− g(X)

π(A,X)
T (Af ∗T,g(X))|X = x

)
= (E(R|X = x, A = 1)− E(R|X = x, A = −1))

(
T (f(x))− T (f ∗T,g(x))

)
.

Similarly,

E
(

R

π(A,X)
I(A 6= sign(f(X)))|X = x

)
− E

(
R

π(A,X)
I(A 6= d∗(X))|X = x

)
= (E(R|X = x, A = 1)− E(R|X = x, A = −1)) (I(sign(f(x)) 6= 1)− I(d∗(x) 6= 1)) .

From the proof of Theorem 3.3.1, when E(R|X = x, A = 1) > E(R|X = x, A =

−1), f ∗T,g(x) ≥ 1 and d∗(x) = 1, so T (f ∗T,g(x)) = 0 and I(d∗(x) 6= 1) = 0; when

E(R|X = x, A = 1) < E(R|X = x, A = −1), f ∗T,g(x) ≤ −1 and d∗(x) = −1,

so T (f ∗T,g(x)) = 2 and I(d∗(x) 6= 1) = 1. Note that, for any measurable function f ,

1 ≥ T (f(x)) − I(sign(f(x)) 6= 1) ≥ 0. Thus it is easy to check that when E(R|X =

x, A = 1) > E(R|X = x, A = −1),

T (f(x))− T (f ∗T,g(x)) ≥ I(sign(f(x)) 6= 1)− I(d∗(x) 6= 1),

and when E(R|X = x, A = 1) < E(R|X = x, A = −1),

T (f(x))− T (f ∗T,g(x)) ≤ I(sign(f(x)) 6= 1)− I(d∗(x) 6= 1).

So, for either case, we have

E
(

R

π(A,X)
I(A 6= sign(f(X)))|X = x

)
− E

(
R

π(A,X)
I(A 6= d∗(X))|X = x

)
≤ E

(
R− g(X)

π(A,X)
T (Af(X))|X = x

)
− E

(
R− g(X)

π(A,X)
T (Af ∗T,g(X))|X = x

)
.

The desired result follows by taking expectations on both sides.
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Proof of Theorem 3.3.3

Proof. Let L(h, b) = (R − g(X))T (A(h(X) + b))/π(A,X). For simplicity, we denote

fDn,λn , hDn,λn and bDn,λn by fn, hn and bn, respectively. By the definition of hDn,λn and

bDn,λn , we have, for any h ∈ HK and b ∈ R,

Pn(L(hn, bn)) ≤ Pn(L(hn, bn)) +
λn
2
||hn||2K ≤ Pn(L(h, b)) +

λn
2
||h||2K ,

where Pn denotes the empirical measure of the observed data. Then, lim supn Pn(L(hn, bn)) ≤

P(L(h, b)) = RT,g(h+ b) with probability 1. This implies

lim sup
n

Pn(L(hn, bn)) ≤ inf
h∈HK ,b∈R

RT,g(h+ b) ≤ P(L(hn, bn))

with probability 1. It suffices to show Pn(L(hn, bn))− P(L(hn, bn))→ 0 in probability.

We first obtain a bound for ||hn||K . Since Pn(L(hn, bn))+λn||hn||2K/2 ≤ Pn(L(h, b))+

λn||h||2K/2, for any h ∈ HK and b ∈ R, we can choose h = 0 and b = 0 to obtain,

Pn(L(hn, bn)) + λn||hn||2K/2 ≤ Pn((R− g(X))/π(A,X)). Note that 0 ≤ T (u) ≤ 2. We

thus have,

λn||hn||2K ≤ 2Pn(|R− g(X)|/π(A,X)) ≤ 2M0.

Let M1 =
√

2M0. Then theHK norm of
√
λnhn is bounded by M1.

Next we obtain a bound for bn. We claim that there is a global solution (hn, bn) such

that hn(xi) + bn ∈ [−1, 1] for some i. Suppose there is a global solution (h′n, b
′
n) such that

|h′n(xi) + b′n| > 1 for all i. Let δ = |h′n(xi0) + b′n| = min1≤i≤n |h′n(xi) + b′n| > 1. Then let

hn = h′n and bn = b′n−(δ−1)sign(h′n(xi0)+b′n). It is easy to check that hn(xi0)+bn = 1

if h′n(xi0) + b′n > 1, and hn(xi0) + bn = −1 if h′n(xi0) + b′n < −1; furthermore when

i 6= i0, hn(xi) + bn ≥ 1 if h′n(xi) + b′n > 1, and hn(xi) + bn ≤ −1 if h′n(xi) + b′n < −1.

So T (hn(xi) + bn) = T (h′n(xi) + b′n) for all i. Hence (hn, bn) is a global solution and

satisfies our claim. Now if a solution (hn, bn) satisfies our claim, we then have,

|bn| ≤ 1 + |hn(xi0)| ≤ 1 + ||hn||∞.
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Note that ||h||∞ ≤ CK ||h||K . We have,

|
√
λnbn| ≤

√
λn + CK

√
λn||hn||K .

Since λn → 0, and CK and
√
λn||hn||K are both bounded, we have |

√
λnbn| is bounded

too. Let the bound be M2, i.e. |
√
λnbn| ≤M2.

Note that the class {
√
λnh : ||

√
λnh||K ≤ M1} is a Donsker class. So {

√
λn(h + b) :

||
√
λnh||K ≤M1, |

√
λnb| ≤M2} is also P-Donsker. Consider the function

Tλ(u) =



2
√
λ if u < −

√
λ,

2
√
λ− 1√

λ
(
√
λ+ u)2 if −

√
λ ≤ u < 0,

1√
λ
(
√
λ− u)2 if 0 ≤ u <

√
λ,

0 if u ≥
√
λ.

We have Tλ(
√
λu) =

√
λT (u). Since Tλ(u) is a Lipschitz continuous function with Lip-

schitz constant equal to 2, and R−g(X)
π(A,X)

is bounded, the class {
√
λnL(h, b) : ||

√
λnh||K ≤

M1, |
√
λnb| ≤M2} is also P-Donsker. Therefore,

√
nλn(Pn − P)L(hn, bn) = Op(1).

Consequently, from nλn →∞, Pn(L(hn, bn))− P(L(hn, bn))→ 0 in probability.

Proof of Lemma 3.3.4

Proof. Fix any 0 < ε < 1. d∗(x) = sign(E(R|X = x, A = 1)− E(R|X = x, A = −1))

is measurable. Since µ is regular, using Lusin’s theorem in measure theory, we know that

d∗(x) can be approximated by a continuous function f ′(x) ∈ C(X ) such that µ(f ′(x) 6=

d∗(x)) ≤ ε
4M

. Thus
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E
(
R− g(X)

π(A,X)
T (Af ′(X))|X = x

)
− E

(
R− g(X)

π(A,X)
T (Ad∗(X))|X = x

)
= (E(R|X = x, A = 1)− E(R|X = x, A = −1)) (T (f ′(x))− T (d∗(x))) .

Then,

RT,g(f
′)−R∗T,g = |RT,g(f

′)−RT,g(d
∗)|

=
∣∣∣ ∫ (E(R|X = x, A = 1)− E(R|X = x, A = −1))

(
T (f ′(x))− T (d∗(x))

)
µ(dx)

∣∣∣
≤

∫ ∣∣∣ (E(R|X = x, A = 1)− E(R|X = x, A = −1))
∣∣∣∣∣∣T (f ′(x))− T (d∗(x))

∣∣∣
I(f ′(x) 6= d∗(x))µ(dx).

Since |R| ≤M and 0 ≤ T (u) ≤ 2,

RT,g(f
′)−R∗T,g < ε

Since K is universal, there exist a function f ′′ ∈ HK such that ||f ′′ − f ′||∞ < ε
4M

. Note

that T (·) is Lipschitz continuous with Lipschitz constant 2. Similarly,

|RT,g(f
′′)−RT,g(f

′)|

=
∣∣∣ ∫ (E(R|X = x, A = 1)− E(R|X = x, A = −1))

(
T (f ′′(x))− T (f ′(x))

)
µ(dx)

∣∣∣
≤ 2

∫ ∣∣∣ (E(R|X = x, A = 1)− E(R|X = x, A = −1))
∣∣∣∣∣∣f ′(x)− f ′(x)

∣∣∣µ(dx) < ε.

By combining the two inequalities, we have

RT,g(f
′′)−R∗T,g < 2ε.

Noting that f ′′ ∈ HK and letting ε→ 0, we obtain the desired result.

Proof of Theorem 3.3.6

Proof. The proof follows the idea in Devroye et al. (1996, Theorem 7.2). Since the proof

is very similar, we only provide a sketch to save space.
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Let b = 0.b1b2b3 · · · be a real number on [0, 1] with the given binary expansion, and let

B be a random variable uniformly distributed on [0, 1] with expansion B = 0.B1B2B3 · · · .

Let us restrict ourselves to a random variable X with the support {x1,x2, · · · } where

xi ∈ X . For simplicity, we recode the support ofX as {1, 2, · · · }. Let

P (X = i) = pi, i ≥ 1, (B.11)

where p1 ≥ p2 ≥ · · · > 0, and
∑∞

i=n+1 pi ≥ max(8cn, 32npn+1) for every n. Such pi’s

exist by Devroye et al. (1996, Lemma 7.1). Let A ∈ {1,−1} be a binomial variable with

π(A,X) = 0.5. For a given b, setR = AM if bX = 1, andR = −AM if bX = 0. Then the

Bayes rule is d∗(X) = (2 ∗ bX − 1). Thus each b ∈ [0, 1] describes a different distribution

of (X, A,R). Introduce the shortened notation Dn = {(X1, A1, R1), · · · , (Xn, An, Rn)}.

Let dn be a rule generated by data Dn. Define din = dn(i) for i = 1, · · · , n. Let ∆Rn(b)

be the excess risk of the rule dn for the distribution parametrized by b, and ∆Rn(B) be the

excess risk of the rule dn for the random distribution.

∆Rn(B)

= E
[

R

π(A,X)
I(A 6= dn(X))

∣∣∣B]− E
[

R

π(A,X)
I(A 6= d∗(X))

∣∣∣B]
= E

[(
E(R|B,X, A = 1)− E(R|B,X, A = −1)

)(
I(dn(X) 6= 1)− I(d∗(X) 6= 1)

)∣∣B]
= 2ME

(
I(dn(X) 6= d∗(X))

∣∣B)
= 2ME

(
I(dn(X) 6= 2BX − 1)

)
.

Let Ln(B) = E
(
I(dn(X) 6= 2BX − 1)

)
. Then we have,

Ln(B) =
∞∑
i=1

piI(din 6= 2Bi − 1).

Following the same arguments used in Devroye et al. (1996, Theorem 7.2), we have

P (Ln(B) < 2cn|Dn) ≤ P (
∞∑

i=n+1

piBi < 2cn) ≤ e−2n.
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Hence we have

sup
b

inf
n
E
(
Ln(b)

2cn

)
≥ E

(
E
(

inf
n

(
Ln(b)

2cn

∣∣∣X1,X2, · · ·
)))

≥ E

(
1−

∞∑
i=1

E(P (Ln(B) < 2cn|Dn)|X1,X2, · · · )

)

≥ 1−
∞∑
i=1

e−2n =
e2 − 2

e2 − 1
>

1

2
.

Here we are omitting many steps. Refer to Devroye et al. (1996, Theorem 7.2) for details.

The conclusion is that there exists a b for which ∆Rn(b) ≥ 2Mcn, n = 1, 2, · · · .

Proof of Theorem 3.3.7

Proof. Define the random variable S = R−g(X)
π(A,X)

. We consider a probability measure on

the triplet (X, A, S) instead of on (X, A,R). Let Dn = {Xi, Ai, Si}ni=1 be independent

random variables with the same distribution as (X, A, S). Let Pn be the empirical measure

on Dn. For simplicity, we denote fDn,λn , hDn,λn and bDn,λn by fn, hn and bn, respectively.

Let (h̃λn , b̃λn) be a solution of the following optimization problem:

min
h∈HK ,b∈R

λn
2
||h||2K +RT,g(h+ b).

Let L(h, b) = ST (A(h(X) + b)). Then

RT,g(fn)−RT,g(f
∗
T,g)

≤ (P− Pn)L(hn, bn) + (
λn
2
||hn||2 + PnL(hn, bn))− (

λn
2
||h̃λn||2 + PnL(h̃λn , b̃λn))

+(Pn − P)L(h̃λn , b̃λn) +A(λn)

≤ (P− Pn)L(hn, bn) + (Pn − P)L(h̃λn , b̃λn)) +A(λn).

We first estimate the second term by the Hoeffding inequality (Steinwart and Christmann

2008, Theorem 6.10). Since |L(h, b)| ≤ 2M0, we thus have, with probability at least

1− δ/2,

(Pn − P)L(h̃λn , b̃λn) ≤M0

√
2 log 2

δ

n
. (B.12)
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By the arguments used in the proof of Theorem 3.3.3, we have ||hn||K ≤
√

2M0

λn
and

|bn| ≤ 1 + CK

√
2M0

λn
. Then let F = {(h, b) ∈ HK × R : ||h||K ≤

√
2M0

λn
, |b| ≤ 1 +

CK

√
2M0

λn
}. Let L̃(h, b) = S

[
T (A(h(X) + b))− 1

]
. For the first term, (P−Pn)L(hn, bn),

(P− Pn)L(hn, bn) ≤ sup
(h,b)∈F

(P− Pn)L(h, b)

= sup
(h,b)∈F

(P− Pn)L̃(h, b) + (P− Pn)L(0, 0).

When an (xi, ai, si) triplet changes, the random variable sup(h,b)∈F(P − Pn)L̃(h, b) can

change by no more than 2M0

n
. McDiarmid’s inequality (Bartlett and Mendelson 2002, The-

orem 9) then implies that with probability at least 1− δ/4,

sup
(h,b)∈F

(P− Pn)L̃(h, b) ≤ E sup
(h,b)∈F

(P− Pn)L̃(h, b) +M0

√
2 log(4/δ)

n
.

A similar argument, together with the fact that EPnL(0, 0) = PL(0, 0), shows that with

probability at least 1− δ/2,

(P− Pn)L(hn, bn) ≤ E sup
(h,b)∈F

(P− Pn)L̃(h, b) + 2M0

√
2 log(4/δ)

n
.

LetD′n = {X ′i, A′i, S ′i}ni=1 be an independent sample with the same distribution as (X, A, S).

Let P′n denote the empirical measure onD′n. Let σ be a uniform {±1}-valued random vari-

able, and σ1, . . . , σn be n independent copies of σ. Then we have

E sup
(h,b)∈F

(P− Pn)L̃(h, b) = E sup
(h,b)∈F

E
(
P′nL̃(h, b)− PnL̃(h, b)

∣∣∣Dn

)
≤ 2E sup

(h,b)∈F
PnσL̃(h, b)

≤ 2EE
(

sup
(h,b)∈F

|PnσL̃(h, b)|
∣∣∣Si, Ai, i = 1, . . . , n

)
≤ 16M0

n
E sup

(h,b)∈F

∣∣∣ n∑
i=1

σi
(
h(Xi) + b

)∣∣∣.
The last inequality is due to the contraction inequality (Ledoux and Talagrand 1991, Corol-

lary 3.17). The preceding can be further majorized by using Lemma 22 in Bartlett and
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Mendelson (2002),

E sup
(h,b)∈F

(P− Pn)L̃(h, b) ≤ 16M0

n
E sup

(h,b)∈F

∣∣∣ n∑
i=1

σih(Xi)
∣∣∣+

16M0

n
(1 + CK

√
2M0

λn
)E
∣∣∣ n∑
i=1

σi

∣∣∣
≤ 16M0√

n

√
2M0

λn
CK +

16M0√
n

(1 + CK

√
2M0

λn
)

=
16M0√

n
(1 + 2CK

√
2M0

λn
).

Then we have that with probability at least 1− δ/2,

(P− Pn)L(hn, bn) ≤ 16M0√
n

(1 + 2CK

√
2M0

λn
) + 2M0

√
2 log(4/δ)

n
. (B.13)

By the assumption, (B.12), and (B.13), we obtain that with probability at least 1− δ,

RT,g(fn)−R∗T,g ≤M0

√
2 log(2/δ)

n
+

16M0√
n

(1+2CK

√
2M0

λn
)+2M0

√
2 log(4/δ)

n
+cλβn.

Let λn = n−
1

2β+1 . By Theorem 3.3.2, we obtain the final result that with probability at least

1− δ,

R(sign(fn))−R∗ ≤ c̃
√

log(4/δ)n−
β

2β+1 .

Here c̃ = M0

(
16 + 3

√
2 + 32CK

√
2M0

)
+ c. This completes the proof.

Proof of Lemma 3.3.9

Proof. We first introduce a lemma. It is revised from Lemma 4.1 in Steinwart and Scovel

(2007) to adapt to our settings for individualized treatment rules.

Lemma B.3.8. Let X be the closed unit ball of the Euclidean space Rp, and P be a

distribution on X × A × M with regular marginal distribution on X . Recall δ(x) =

E(R|X = x, A = 1)− E(R|X = x, A = −1) for x ∈ X . On X́ := 3X we define

δ́(x) =


δ(x) if ||x|| ≤ 1,

δ

(
x

||x||

)
otherwise,
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where || · || is the Euclidean norm. We also write X́+ = {x ∈ X́ : δ́(x) > 0}, and

X́− = {x ∈ X́ : δ́(x) < 0}. Finally let B(x, r) denote the open ball of radius r

about x in Rp. Then for x ∈ X+, we have B(x, τx) ⊂ X́+, and for x ∈ X−, we

have B(x, τx) ⊂ X́−.

The proof is simple, and is the same as that of Lemma 4.1 in Steinwart and Scovel

(2007). We omit the proof here. In the lemma, the support is enlarged to ensure that all

balls of the form B(x, τx) are contained in the enlarged support. We return to the proof of

Lemma 3.3.9.

Let L2(Rp) be the L2-space on Rp with respect to Lebesque measure, and Hσ(Rp) be

the RKHS of the Gaussian RBF kernel Kσ. The linear operator Vσ : L2(Rp) → Hσ(Rp)

defined by

Vσ`(x) =
(2σ)d/2

πd/4

∫
Rp
e−2σ2||x−y||2`(y)dy, ` ∈ L2(Rp), x ∈ Rp,

is an isometric isomorphism (Steinwart et al. 2006). Thus we have,

A(λ) ≤ inf
`∈L2(Rp)

λ

2
||`||2L2(Rp) +RT,g(Vσ`)−R∗T,g. (B.14)

With the notation of Lemma B.3.8 we fix a measurable f́P : X́ → [−1, 1] that satisfies

f́P = 1 on X́+, f́P = −1 on X́−, and f́P = 0 otherwise. For ` := (σ2/π)p/4f́P , we

immediately obtain,

||`||L2(Rp) ≤
(

81σ2

π

)p/4
θ(p), (B.15)

where θ(p) denotes the volume of X . As shown in the proof of Theorem 3.3.2, we have

RT,g(Vσ`)−R∗T,g = E(|δ(x)| · |T (Vσ`(x))−T (d∗(x))|) ≤ 2E(|δ(x)| · |Vσ`(x)−d∗(x)|).

Following the same derivations as in the proof of Theorem 2.7 of Steinwart and Scovel

(2007), we also obtain

|Vσ`(x)− d∗(x)| ≤ 8e−σ
2τ2x/(2p).
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The geometric noise assumption yields

RT,g(Vσ`)−R∗T,g ≤ 16E(|δ(x)|e−σ2τ2x/(2p)) ≤ 16C(2p)qp/2σ−qp. (B.16)

Combining (B.14), (B.15) and (B.16) yields

A(λ) ≤
(

81σ2

π

)p/2
θ2(p)λ/2 + 16C(2p)qp/2σ−qp.

The desired result now follows by taking σ = λ−
1

(q+1)p .
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APPENDIX C: SUPPLEMENTS FOR CHAPTER 5

C.1 Details of mirrored residual weighted learning (MRWL)

As explained in Section 4.2.3, MRWL is to find d∗ by solving the following optimiza-

tion problem,

d∗ ∈ arg min
d

E

(
|R̂|

π(A,X)
I
(
Asign(R̂) 6= d(X)

))
,

where negative residuals are reflected to positive, and accordingly their treatments are

switched to opposites. We seek to minimize the following empirical risk to find a deci-

sion function f ,
1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

I
(
Aisign(R̂i) 6= df (Xi)

)
.

Similarly with OWL and RWL, we instead seek the decision function f by minimizing

a regularized surrogate risk,

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)f(Xi)

)
+
λ

2
||f ||2, (C.17)

where φ(·) is a continuous surrogate loss function, ||f || is some norm for f , and λ is a

tuning parameter controlling the trade-off between empirical risk and complexity of the

decision function f . As the weights |R̂i|
π(Ai,Xi)

are nonnegative, convex surrogate can be em-

ployed for efficient computation. In this work, we apply the Huberized hinge loss function

(Wang et al. 2008),

φ(u) =


0 if u ≥ 1,

1
4
(1− u)2 if − 1 ≤ u < 1,

−u if u < −1.

Other loss functions, such as the hinge loss, can be also applied in MRWL. The Huberized

hinge loss is smooth everywhere. Hence it has computational advantages in optimization.
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We derive an algorithm for linear MRWL, and then generalize it to the case of nonlinear

learning through kernel mapping.

C.1.1 Linear decision rules for MRWL

Suppose that the decision function f(x) is a linear function of x, i.e. f(x) = wTx+ b.

Then the associated regime will assign a subject with clinical covariates x into treatment 1

if wTx + b > 0 and −1 otherwise. We define ||f || as the Euclidean norm of w. Then the

optimization problem (C.17) can be rewritten as

min
w,b

λ

2
wTw +

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)(w

TXi + b)
)
.

It is a smooth unconstrained convex optimization problem. There are many efficient

numerical methods for solving this problem. One example is the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Nocedal 1980). L-BFGS is a quasi-Newton

method that approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using

a limited amount of computer memory. When we obtain the solution (ŵ, b̂), the decision

function is f̂(x) = ŵTx+ b̂, and thus the estimated optimal regime is the sign of f̂(x).

C.1.2 Nonlinear decision rule for MRWL

For a nonlinear decision rule, the decision function f(x) is represented by h(x) + b

with h(x) ∈ HK and b ∈ R, where HK is a reproducing kernel Hilbert space (RKHS)

associated with a Mercer kernel function K. The kernel function K(·, ·) is a positive

definite function mapping from X × X to R. The norm in HK , denoted by || · ||K , is

induced by the following inner product:

< f, g >K=
n∑
i=1

m∑
j=1

αiβjK(xi,xj),
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for f(·) =
∑n

i=1 αiK(·,xi) and g(·) =
∑m

j=1 βjK(·,xj). Then minimizing (C.17) can be

rewritten as

min
h,b

λ

2
||h||2K +

1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)

(
h(Xi) + b

))
. (C.18)

Due to the representer theorem (Kimeldorf and Wahba 1971), the nonlinear problem can

be reduced to finding finite-dimensional coefficients vi, and h(x) can be represented as∑n
j=1 vjK(x,xj). Thus the problem (C.18) is transformed to

min
v,b

λ

2

n∑
i,j=1

vivjK(Xi,Xj) +
1

n

n∑
i=1

|R̂i|
π(Ai,Xi)

φ
(
Aisign(R̂i)

( n∑
j=1

vjK(Xi,Xj) + b
))
.

(C.19)

It is still a smooth unconstrained convex optimization problem, and can be solve by, for

example, L-BFGS. When we obtain the solution (v̂, b̂), the decision function is f̂(x) =∑n
j=1 v̂jK(x,xj) + b̂, and thus the estimated optimal regime is the sign of f̂(x). Note that

if we choose a linear kernel K(x, z) = xTz, the obtained regime reduces to the previous

linear regime. The most widely used nonlinear kernel in practice is the Gaussian Radial

Basis Function (RBF) kernel, that is,

Kσ(x, z) = exp
(
− σ2||x− z||2

)
,

where σ > 0 is a free parameter whose inverse 1/σ is called the width of Kσ.

C.2 Simulation studies for comparison between RWL and MRWL

In this section, we carried out simulation studies to compare MRWL with RWL. The

simulation setups were the same as those in Zhou et al. (2015). Specifically, we generated

5-dimensional vectors of clinical covariates x1, · · · , x5, consisting of independent uniform

random variables U(−1, 1). The treatment A was generated from {−1, 1} independently

of X with P (A = 1) = 0.5. That is, π(a,x) = 0.5 for all a and x. The response R was

normally distributed with mean Q0 = µ0(x) + δ0(x) · a and standard deviation 1, where
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µ0(x) is the common effect for clinical covariates, and δ0(x) · a is the interaction between

treatment and clinical covariates. We considered four scenarios with different choices of

µ0(x) and δ0(x):

(1) µ0(x) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(x) = 1.8(0.3− x1 − x2).

(2) µ0(x) = 1 + x1 + x2 + 2x3 + 0.5x4; δ0(x) = 1.3(x2 − 2x2
1 + 0.3).

(3) µ0(x) = 1 + x2
1 + x2

2 + 2x2
3 + 0.5x2

4; δ0(x) = 3.8(0.8− x2
1 − x2

2).

(4) µ0(x) = 1 + x2
1 + x2

2 + 2x2
3; δ0(x) = 10(1− x2

1 − x2
2)(x2

1 + x2
2 − 0.2).

The decision boundaries for all scenarios are determined by x1 and x2 only. The scenarios

have different decision boundaries in truth. The decision boundary is a line in Scenario 1,

a parabola in Scenario 2, a circle in Scenario 3, and a ring in Scenario 4.

We compared the performance of the following four methods:

(1) RWL using the Gaussian RBF kernel (RWL-Gaussian).

(2) RWL using the linear kernel (RWL-Linear).

(1) MRWL using the Gaussian RBF kernel (MRWL-Gaussian).

(2) MRWL using the linear kernel (MRWL-Linear).

Residuals were estimated by a linear main effects model for all methods.

For each scenario, we considered two sample sizes for training datasets: n = 100

and n = 400, and repeated the simulation 500 times. All four methods had at least one

tuning parameter. To be consistent with the simulation studies in Zhou et al. (2015), we

applied a 10-fold cross-validation procedure to tune parameters. In the comparison, the

performances of four methods were evaluated by two criteria: the first criterion was the
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value function under the estimated optimal treatment regime when we applied to an in-

dependent and large test dataset; the second criterion was the misclassification error rate

of the estimated optimal treatment regime from the true optimal treatment regime on the

large test dataset. Specifically, a test set with 10,000 observations was simulated to as-

sess the performance. The estimated value function under any regime d was given by

P∗n[RI(A = d(X))/π(A,X)]/P∗n[I(A = d(X))/π(A,X)] (Murphy 2005), where P∗n de-

noted the empirical average using the test data; the misclassification rate under any regime

d was given by P∗n[I(d(X) 6= d∗(X))], where d∗ was the true optimal regime which was

known when generating the simulated data.

The simulation results are presented in Table C.1. We reported the mean and standard

deviation of value functions and misclassification rates over 500 replications. Scenario 1

was a linear example. The model specification for RWL-Linear and MRWL-Linear was

correct, and they provided good performance. Both RWL and MRWL, with either the

linear kernel or the Gaussian RBF kernel, yielded similar performance.

The decision boundaries in the remaining three scenarios were nonlinear. RWL-Linear

and MRWL-Linear were misspecified, and hence they did not perform very well in these

three scenarios. We focused on the comparison between RWL-Gaussian and MRWL-

Gaussian. In Scenarios 2 and 3, RWL-Gaussian and MRWL-Gaussian achieved similar

performance. It was challenging to find the optimal treatment regime in Scenario 4 since

the decision boundary was complicated. When the sample size was small (n = 100), the

performances of RWL-Gaussian and MRWL-Gaussian were similar. However, when the

sample size increased, RWL-Gaussian showed better performance than MRWL-Gaussian.
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Table C.1: Mean (std) of empirical value functions and misclassification rates evaluated
on independent test data for four simulation scenarios with 5 covariates. The best value
function and minimal misclassification rate for each scenario and sample size combination
are in bold.

n = 100 n = 400

Value Misclassification Value Misclassification

Scenario 1 (Optimal value 2.25)

RWL-Linear 2.19 (0.04) 0.09 (0.04) 2.23 (0.01) 0.05 (0.02)
RWL-Gaussian 2.17 (0.06) 0.11 (0.04) 2.22 (0.02) 0.05 (0.02)
MRWL-Linear 2.20 (0.04) 0.08 (0.03) 2.23 (0.01) 0.04 (0.02)
MRWL-Gaussian 2.17 (0.07) 0.10 (0.05) 2.22 (0.02) 0.06 (0.03)

Scenario 2 (Optimal value 1.96)

RWL-Linear 1.66 (0.08) 0.26 (0.04) 1.74 (0.03) 0.23 (0.02)
RWL-Gaussian 1.75 (0.09) 0.20 (0.05) 1.90 (0.03) 0.10 (0.03)
MRWL-Linear 1.69 (0.08) 0.25 (0.04) 1.75 (0.02) 0.23 (0.01)
MRWL-Gaussian 1.77 (0.09) 0.19 (0.05) 1.91 (0.03) 0.09 (0.03)

Scenario 3 (Optimal value 3.88)

RWL-Linear 3.15 (0.13) 0.34 (0.03) 3.28 (0.04) 0.31 (0.01)
RWL-Gaussian 3.62 (0.12) 0.19 (0.04) 3.82 (0.04) 0.10 (0.02)
MRWL-Linear 3.02 (0.10) 0.37 (0.02) 3.03 (0.04) 0.37 (0.01)
MRWL-Gaussian 3.67 (0.10) 0.18 (0.04) 3.84 (0.03) 0.09 (0.02)

Scenario 4 (Optimal value 3.87)

RWL-Linear 2.42 (0.14) 0.54 (0.09) 2.49 (0.10) 0.58 (0.08)
RWL-Gaussian 2.68 (0.28) 0.43 (0.08) 3.49 (0.08) 0.22 (0.03)
MRWL-Linear 2.42 (0.15) 0.55 (0.08) 2.49 (0.10) 0.59 (0.06)
MRWL-Gaussian 2.61 (0.20) 0.45 (0.06) 3.22 (0.10) 0.29 (0.04)
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